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Abstract

Three different problems concerning thin-film flows on horizontal cylinders are

studied. Firstly, steady two-dimensional gravity-driven flow with prescribed vol-

ume flux of a thin film of Newtonian fluid with temperature-dependent viscosity

(i.e. thermoviscous flow) over a uniformly heated or cooled stationary horizontal

cylinder is studied. Numerical results along with asymptotic solutions in appro-

priate limits are presented giving an insight into the effects of thermoviscosity and

heat transfer at the free surface. Next, we consider steady two-dimensional flow of

a prescribed load (mass) of Newtonian fluid with temperature-dependent viscosity

on a uniformly heated or cooled rotating horizontal cylinder. The existence of a

critical solution with a critical load above which no solutions exist is found, and

both this critical solution and the case of prescribed subcritical load are studied

in detail, with both numerical and asymptotic solutions presented. In particular,

it is found that backflow (i.e. flow counter to the direction of rotation) occurs

within a certain region of parameter space (backflow never occurs in the corre-

sponding isothermal problem). Finally, the steady isothermal flow of a symmetric

thin slowly-varying rivulet of a non-perfectly wetting Newtonian fluid on either

the outside or the inside of a uniformly rotating horizontal cylinder is considered.

Numerical and asymptotic solutions in appropriate limits are presented and it is

found that rivulet flow on a rotating cylinder gives rise to a critical solution similar

in nature to the critical solution found for the classical two-dimensional problem.

We also show that backflow occurs within a particular region of parameter space.
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Chapter 1

Introduction

1.1 Thin-Film Flow

Thin-film flows occur in a large number of situations, including many biological,

industrial, geophysical and simple everyday contexts. For example, thin films in a

biological context appear in several places in the human body, such as tear films,

which lubricate the eyes, peritoneal fluid, which lubricates the outside of organs

and tissue in the peritoneal cavity, synovial fluid, which lubricates joints, and mu-

cus, which coats the airways. In industrial contexts thin-film flows occur in a wide

variety of coating applications, such as painting, printing, dying, coating foodstuffs

(for example, figure 1.1(a) shows doughnuts passing though an enrober which coats

each doughnut with a thin film of glaze) and the coating of photographic film with

photosensitive chemicals. Industrial coatings are applied through a variety of pro-

cesses, such as blade coating, in which a blade is used to spread the coating fluid

over an object to form a thin film, air-knife coating, which uses a jet of air instead

of a physical blade, spin coating, in which the coating fluid is applied to an object

which is spun until the fluid spreads to form the desired thickness, dip coating, in

which the object to be coated is immersed in a vat of fluid and is then removed

with a coating of the fluid, and curtain coating, in which the object to be coated

passes through a falling film of the coating fluid (the coating of the doughnuts in

1
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Figure 1.1: (a) Doughnuts passing though an enrober which coats each doughnut

with a thin film of glaze; picture sourced from flickr.com/kathleenhaboc. (b) An oil

spill in the sea; the oil floats on top of the water forming a thin film; picture sourced

from NOAA Photo Library.

figure 1.1(a) being an example of this). Many industrial processes require various

parts of machinery to be lubricated, which is often achieved using a thin film of a

lubricant; for example, bearings, pumps, pistons and turbines all require lubrica-

tion. Heat exchangers often involve the evaporation of (or condensation to) a thin

film of fluid, while distillation processes can form thin films when the distillate

condenses. There are also a large number of everyday situations that give rise
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to thin-film flows, such as oil spreading in a frying pan, the spreading of honey

onto a piece of toast with a knife, and droplets and rivulets of rain flowing down a

window. It is worth noting that the word thin does not necessarily mean “small”

in the everyday sense of the word; thin simply means “depth significantly smaller

than width”. Examples of “large” but thin flows may be found in geophysical and

environmental settings, such as in rivers, lava flows and mud flows, while oil spills

in large bodies of water lead to thin films of oil floating on top of the water; figure

1.1(b) shows an example of an oil spill at sea.

1.2 Mathematical Modelling of Thin-Film Flows

The flow of an incompressible Newtonian fluid is modelled using the well-known

Navier–Stokes equation

ρ
Du

Dt
= ρf −∇p+ µ∇2u, (1.1)

together with the mass-conservation equation

∇ · u = 0, (1.2)

where ρ is the density of the fluid, p is the pressure in the fluid, µ is the viscosity

of the fluid, u is the fluid velocity, t is time, f is any body forces acting on the

fluid per unit volume, ∇ is the vector gradient operator, and
D

Dt
=

∂

∂t
+ u · ∇ is

the material derivative. At any fluid-fluid boundary one must also consider the

stress balance equation

n · σ − n · σ̂ = γn(∇ · n)−∇γ (1.3)

where σ = −pI + µ[∇u + (∇u)T] is the stress tensor in the “first” fluid (with σ̂

being the stress tensor in the “second” fluid), n is the unit outward normal to the

surface pointing towards the first fluid, and γ is the surface tension between the

fluids (which is often taken to be constant). In the case of a free surface the stress

boundary equation reduces to n · σ = γn(∇ · n)−∇γ, while if it is also assumed
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that the surface tension is constant (which it is often considered to be) then the

stress boundary equation reduces to n · σ = γn(∇ · n). If there is zero mass

flux across a fluid-fluid boundary then we must also use the kinematic boundary

condition DF/Dt = 0, where F (x, t) = 0 is the equation for the boundary and x

is the position vector. In the case of a fluid-solid boundary it is usual to impose

the condition u = 0, namely the no-slip and no-penetration conditions (thought it

should be noted that slip conditions are possible). In general, these equations do

not permit any meaningful analytical progress and can only be solved numerically;

as a result of this, it is common practice to consider instead some practically

relevant approximation to the equations. In particular, the relative smallness of one

lengthscale of a thin film (for example, depth) compared to another (for example,

length or width) can be used to simplify the problem greatly. The introduction of

an appropriate small aspect ratio allows simplification of the governing equations

by ignoring terms that are small compared to others, and often results in equations

where analytical progress can be made; this form of approximation is often referred

to as lubrication theory because of its applicability in the modelling of thin films

of lubricant between two substrates (for example, in journal bearings).

We shall introduce the idea of lubrication theory by considering a basic exam-

ple, namely the two-dimensional flow of a thin film of fluid down a plane inclined

at an angle α (0 ≤ α ≤ π/2) to the horizontal, and in doing so we reproduce the

work of Huppert [1]. A diagram showing the setup of the problem is shown in fig-

ure 1.2, where L and H are typical lengthscales in the longitudinal and transverse

directions, respectively, and the aspect ratio, denoted ε, is given by ε = H/L� 1

and is taken to be small. We choose Cartesian coordinates Oxy with the x axis in

the direction of flow and the y axis normal to the substrate, and take the substrate

to be at y = 0 and the free surface to be at y = h, where h = h(x, t) is the film

thickness. We non-dimensionalise and scale the system appropriately by writing
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Figure 1.2: Geometry of two-dimensional thin-film flow down an incline.

x = Lx∗, y = Hy∗, h = Hh∗, t =
L

U
t∗,

u = Uu∗, v =
UH

L
v∗, p− pa =

µU

H
p∗, U =

ρgH2

µ
,

 (1.4)

where u and v are the components of velocity in the x and y directions, respec-

tively, h is the film thickness, U is a characteristic velocity in the x direction,

pa is the constant pressure in the surrounding atmosphere, and g is the magni-

tude of gravitational acceleration. The star superscripts are immediately dropped

for clarity. The mass-conservation and Navier–Stokes equations, (1.1) and (1.2),

become
∂u

∂y
+
∂v

∂y
= 0, (1.5)

ε2Re

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= −ε∂p

∂x
+ ε2

∂2u

∂x2
+
∂2u

∂y2
+ sinα (1.6)

and

ε3Re

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+ ε3

∂2v

∂x2
+ ε

∂2v

∂y2
− cosα, (1.7)

where Re∗ = ε2Re = ε2ρUL/µ � 1 is the reduced Reynolds number which is

assumed to be small; in particular, this means that the Reynolds number itself need
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not be small. At leading order in ε the governing equations simplify dramatically

to
∂u

∂x
+
∂v

∂y
= 0,

∂2u

∂y2
= − sinα and

∂p

∂y
= − cosα, (1.8)

together with the boundary conditions of no-slip and no-penetration on the sub-

strate:

u = v = 0 on y = 0, (1.9)

and the balances of normal and tangential stress at the free surface:

∂u

∂y
= 0 and p = 0 on y = h, (1.10)

where it has been assumed that the effects of surface tension are negligible. The

solution to (1.8)–(1.10) for the pressure p and velocities u and v is given by

p = cosα(h− y), u =
sinα

2
(2h− y)y and v = −sinα

2

∂h

∂x
y2, (1.11)

while the kinematic condition, which may be written in the form

∂h

∂t
+
∂Q

∂x
= 0, (1.12)

where Q is the volume flux per unit width, given by

Q =

∫ h

0

u dy =
sinα

3
h3, (1.13)

leads to an evolution equation for the film thickness h, namely

∂h

∂t
+ h2 sinα

∂h

∂x
= 0, (1.14)

which may be solved for h using the method of characteristics to yield the implicit

solution

h = f(x− h2t sinα), (1.15)

where f = f(x) is the initial shape of the film when t = 0 (i.e. h(x, 0) = f(x)).

A long time after the start of the flow the bulk of the fluid approaches the simple

similarity solution

h =

(
x

t sinα

)1/2

, (1.16)



Chapter 1 7

which is independent of the initial shape f(x). It may also be shown the “nose”

of the flow, denoted x = xN(t), approaches

xN =

(
9

4
A2t sinα

)1/3

, (1.17)

where A is the initial two-dimensional volume (i.e. area) of the film. The region

near the nose is not described by the similarity solution (1.16) becasuse pressure

gradients in the x direction will become important along with the effects of surface

tension; to obtain a satisfactory solution one would have to construct an inner

solution taking one or both of these effects into account.

As a result of the relative simplicity of the equations that result from lubrication

theory there has been a vast amount of research using this approach, and there are

several review articles devoted to it, including those by Oron et al. [2], Colineta

et al. [3] and Craster and Matar [4].

1.3 Flow on a Horizontal Cylinder

The flow of a thin film of fluid on a cylindrical substrate is of great importance

in a number of industrial contexts, for example, in the chemical process, food and

paper industries. Heat exchangers, such as falling-film condensers and evaporators,

are often made up of a series of cylinders where either a vapour condenses on the

cooled cylinders forming a thin film of fluid or thin films of fluid on heated cylinders

evaporate. Coating processes often involve the application of a thin film of fluid

to one or more rotating cylindrical rollers, as is the case with the Fourdrinier

machine in the paper industry, or in the coating of the inside of fluorescent tubes.

As a result of the many applications there has been much interest in the problems

considered in this section, namely the two-dimensional steady flow of a thin film

of fluid of prescribed flux over a stationary horizontal cylinder (hereafter referred

to as “curtain flow”) and the two-dimensional steady flow of a thin film of fluid

of prescribed load (that is, the prescribed mass of fluid per unit axial length on
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the cylinder) on either the outside (hereafter referred to as “coating flow”) or the

inside (hereafter referred to as “rimming flow”) of a uniformly rotating horizontal

cylinder. The early work for curtain flow was done by Nusselt [5, 6], who studied

the steady condensation of a quiescent surrounding vapour (steam) into a thin

film of fluid (water) on a stationary horizontal cylinder, and in doing so obtained

the solution for the fluid velocity of the leading-order lubrication theory. The

pioneering study of the leading-order lubrication theory for coating and rimming

flow was performed by Moffatt [7] who found that steady continuous, finite and

non-zero solutions to his model (hereafter referred to as “full-film” solutions) are

possible only below a critical load. In the following subsection we summarise the

key ideas in these classical studies of two-dimensional thin-film flow on horizontal

cylinders.

1.3.1 Leading-order lubrication theory

We will explore curtain, coating and rimming flow by modelling them using

leading-order lubrication theory. Consider the steady two-dimensional flow of a

thin film of a Newtonian fluid with constant density ρ and viscosity µ on a circular

cylinder of radius a with its axis horizontal, the cylinder being either stationary or

rotating in a counter-clockwise direction about its horizontal axis at uniform angu-

lar speed Ω (so that the circumferential speed is aΩ). Referred to polar coordinates

r = a ± y (with origin at the cylinder’s axis) and θ (measured counter-clockwise

from the horizontal), as shown in figure 1.3, we take the free surface of the fluid

to be at r = a + h for curtain flow or coating flow and r = a − h for rimming

flow, the film thickness being denoted by h = h(θ). For curtain flow the azimuthal

volume flux of fluid per unit axial length crossing a station θ = constant, denoted

Q, takes the prescribed constant values Q = QL (> 0) and Q = QR (< 0) on

the left-hand side and right-hand side of the cylinder, respectively, and the supply

flux QS satisfies QS = QL − QR, whereas in coating and rimming flow the flux Q

is constant (since the flow is steady) but is unknown a priori, and is determined
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Figure 1.3: Geometry of steady two-dimensional flow of a thin film of Newtonian

fluid on a horizontal cylinder, where (a) the volume flux of fluid is prescribed and

the cylinder is stationary, and (b) the fluid load is prescribed and the cylinder is

rotating.

through the condition of prescribed load. The fluid velocity u = ueθ + ver (where

eθ and er denote unit vectors in the azimuthal and radial directions, respectively)

and pressure p are governed by the mass-conservation and Navier–Stokes equa-

tions. Surface-tension and inertia effects are neglected. On the cylinder r = a the

velocity u satisfies no-slip and no-penetration conditions and on the free surface

r = a ± h the normal and tangential stress balances and the kinematic condition

apply. We consider only thin films with small aspect ratio ε = (µU0/a
2ρg)1/2 � 1

where U0 is the characteristic velocity defined by U0 = (ρgQ2
S/µ)1/3 for curtain

flow and U0 = aΩ for coating and rimming flow. We non-dimensionalise and scale

the system appropriately by writing

r = a(1± εy∗), h = εah∗, u = U0u
∗, v = ±εU0v

∗,

p = pa ± εaρgp∗, Q = εaU0Q
∗, M = εa2ρM∗,

 (1.18)
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in which the + in the ± corresponds to curtain or coating flow while the − corre-

sponds to rimming flow, pa is the constant pressure in the surrounding atmosphere,

and M (> 0) is the constant fluid load on the cylinder. For clarity the star super-

scripts on non-dimensional variables will be omitted henceforth.

At leading order in ε the governing equations become

∂u

∂θ
+
∂v

∂y
= 0,

∂2u

∂y2
= cos θ,

∂p

∂y
= − sin θ, (1.19)

together with the boundary conditions

u = U and v = 0 on y = 0 (1.20)

and
∂u

∂y
= 0 and p = 0 on y = h, (1.21)

where U = 0 for a stationary cylinder (which we use in curtain flow) and U = 1

for a rotating cylinder (which we use in coating and rimming flow). Solving (1.19)

subject to (1.20) and (1.21) for the azimuthal velocity u = u(y, θ) and pressure

p = p(y, θ) yields

u = U − cos θ

2
(2h− y)y (1.22)

and

p = (h− y) sin θ. (1.23)

Hence the volume flux Q is given by

Q =

∫ h

0

u dy = Uh− h3 cos θ

3
. (1.24)

(a) Curtain flow

In the case of curtain flow on a stationary cylinder we have U = 0 and the solution

for h in terms of the constant prescribed flux Q is given from (1.24) by

h =

(
− 3Q

cos θ

)1/3

, (1.25)
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Figure 1.4: Contours of the expression for the flux Q given by (1.24) in the θ/π–h

plane when (a) U = 0 (the cylinder is stationary) with the contours drawn for flow

on the right-hand-side of the cylinder (−π/2 < θ < π/2) with Q = −1/10, −1/5,

−3/10, . . . , −1, and (b) U = 1 (the cylinder is rotating) with the contours drawn

for Q = 1/9, 2/9, 1/3, . . . , 2 where Qc = 2/3 is the critical flux above which full-film

solutions do not exist.

while the velocity u and pressure p are given by equations (1.22) and (1.23), re-

spectively, with U = 0, and the load M is given by

M =

∫ −π/2
−π

h dθ +

∫ π

π/2

h dθ = CQ1/3 or M =

∫ π/2

−π/2
h dθ = −CQ1/3, (1.26)

where

C =
25/3π2

32/3Γ
(

2
3

)3 ' 6.06689, (1.27)

depending on whether we are considering flow on the left-hand-side (where Q =

QL > 0) or the right-hand-side (where Q = QR < 0) of the cylinder, respectively.

Figure 1.4(a) shows the solution for h given by (1.25) plotted as a function of θ/π

for different values of the flux Q (or, equivalently, contours of the expression for

the flux Q given by (1.24)). In particular, figure 1.4(a) and equation (1.25) show
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that h increases monotonically with |θ| away from its minimum value of (3|Q|)1/3

at θ = 0, becoming unbounded at the top and the bottom of the cylinder according

to

h =

(
3Q

|θ| − π/2

)1/3

+O
(
|θ| − π

2

)5/3

as θ → ±π
2
, (1.28)

where, of course, the lubrication theory fails, by which we mean that since both

h → ∞ and |dh/dθ| → ∞ as |θ| → π/2, higher order terms that were previously

ignored may become relevant. In particular, the pressure and the velocity, together

with their corresponding θ gradients, will also tend to infinity as |θ| → π/2 and

the assumption that ε� 1 may not be enough to “kill off” these terms. However,

this may not be especially important since the flow near the top and bottom could

be affected by other factors away from the cylinder (in particular, near the top

where the manner in which the fluid is supplied would certainly be important) in

which case the solution here acts as an outer solution describing the flow away

from the top and the bottom.

(b) Coating and rimming flow

In the case of coating or rimming flow we have U = 1 without loss of generality,

and so h is given from (1.24) in terms of the constant flux Q by the solution to a

cubic polynomial equation. Figure 1.4(b) shows contours of the expression for the

flux Q given by (1.24) in the θ/π–h plane for several values of Q, and highlights the

existence of a critical flux, denoted Q = Qc = 2/3 above which full-film solutions

(i.e. continuous, finite and non-zero solutions) do not exist. The root of the flux

equation (1.24) that gives rise to full-film solutions is given by

h =



2

(cos θ)1/2
cos

[
2π

3
− 1

3
cos−1

(
−3

2
Q[cos θ]1/2

)]
if |θ| < π/2,

Q if |θ| = π/2,

2

(− cos θ)1/2
sinh

[
1

3
sinh−1

(
3

2
Q[− cos θ]1/2

)]
if π/2 < |θ| ≤ π,

(1.29)
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where 0 < Q ≤ 2/3, while the load M is given by

M =

∫ π

−π
h dθ, (1.30)

and the critical load, denoted Mc, is given by Mc ' 4.442721. With the load M

prescribed, the flux Q is obtained from equations (1.24) and (1.30), and the film

thickness h is given by (1.29), while the velocity u and pressure p are given by (1.22)

and (1.23), respectively, with U = 1. The film thickness h is a monotonic increasing

function of the load M and flux Q and is a monotonic decreasing function of

|θ|, achieving its maximum value at θ = 0 where in the critical case (i.e. when

Q = Qc = 2/3) there is, as can be seen in figure 1.4(b), a corner in the solution

given by h = 1− |θ|/
√

6 +O(θ2) as θ → 0.1

1.3.2 Review of previous literature

(a) Flows on stationary horizontal cylinders

As we have already mentioned, the pioneering work on curtain flow was done by

Nusselt [5, 6], who studied the steady condensation of a quiescent surrounding

vapour (steam) into a thin film of fluid (water) on a stationary horizontal cylin-

der. Extensions of this basic problem have been considered by many subsequent

authors, including, for example, Sparrow and Gregg [8], Nicol et al. [9] and Shu and

Wilks [10], who included fluid inertia and thermal advection in the film, Shekri-

ladze and Gomelauri [11], Fujii et al. [12], Rose [13] and Chen and Lin [14], who

considered the influence of flow of the vapour, Sarma et al. [15] and Yang and

Lin [16], who considered turbulent flow in the film, and Conlisk and Mao [17]

who investigated the unsteady flow of a thin film of both one-component and two-

component fluids. Condensation onto an elliptical (rather than a circular) cylinder

has been studied by, for example, Yang and Hsu [18] who considered laminar flow

and included the effects of flow in vapour, Lin and Yang [19] who extended the

1Note that Moffatt [7] gave slightly inaccurate values for Mc and the solution at the corner,

corresponding to Mc = 4.428 and h ∼ 1− 0.577|θ| in the present notation.
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Figure 1.5: Images of the flow types of falling films between cylindrical tubes found

by Hu and Jacobi [21]. These are (a) droplet, (b) droplet-jet, (c) in-line jet, (d)

staggered jet, (e) jet-sheet, and (f) sheet. Reprinted from Hu and Jacobi [21] with

permission, copyright 1996, ASME (American Society of Mechanical Engineers).

work of Sarma et al. [15] and Yang and Hsu [18] to consider turbulent flow in

the film, and Li and Yang [20] who considered laminar flow and showed that as

the ellipticity increases so does the entropy generation while the film thickness

decreases.

The flow of a film over multiple horizontal cylindrical tubes that are vertically

aligned, with applications in evaporators and absorbers used in refrigeration, has

been well studied. Hu and Jacobi [21] conducted an experimental study of falling

films between cylindrical tubes and suggested the following categorisations for the

different flow types: droplet, droplet-jet, in-line jet, staggered jet, jet-sheet and

sheet. Images of these flow types are shown in figure 1.5. Killion and Garimella [22]

conducted an experimental study of falling films focusing on flows where drops fall

between the cylindrical tubes, while Killion and Garimella [23] obtained numerical

solutions to the Navier–Stokes equation that accurately modelled the observed

drop formations. Figure 1.6 shows a comparison between the numerical solution
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Figure 1.6: Comparison between the experimental (left-hand-side of each image a–p)

and numerical (right-hand-side of each image a–p) results of Killion and Garimella

[23] showing drops falling between stationary cylinders at different times. Reprinted

from Killion and Garimella [23] with permission, copyright 2004, ASME (American

Society of Mechanical Engineers).

and images of the experimental study. Sultana et al. [24] considered situations

where a uniform film, drops or jets fall between the cylindrical tubes and included

the effect of the flow of a coolant in the cylindrical tube, while Ruan et al. [25]

considered the effect of flow in the surrounding vapour on the transitions between

uniform films, drops and jets between the cylindrical tubes. Ribatskia and Jacobib

[26] presented an extensive review of the literature on falling film evaporation on

horizontal cylindrical tubes, while, Li et al. [27] and Yang and Wang [28] conducted

experimental studies of falling film evaporation on horizontal cylindrical tubes

with non-uniform surfaces, with Yang and Wang [28] also including numerical

simulations; both Li et al. [27] and Yang and Wang [28] showed that the non-
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uniform cylinder surfaces lead to increased heat transfer rates.

There have also been a number of studies on both two-dimensional and three-

dimensional thin-film flow on both the inside and the outside of a horizontal cylin-

der that do not involve either evaporation or absorption. Reisfeld and Bankoff

[29] undertook an investigation of unsteady flow on a heated or cooled cylinder

incorporating the effects of gravity, surface tension, thermocapillarity (i.e. vari-

ation of surface tension with temperature) and van der Waals forces, while Lin

et al. [30] investigated the three-dimensional evolution and rupture of a film due

to van der Waals forces. King et al. [31] studied the three-dimensional evolution

of a film on both a horizontal and an inclined cylinder. Band et al. [32] considered

two-dimensional flow driven by prescribed azimuthal variations in surface tension.

Haimovich and Oron [33] investigated the effect of axial oscillations of the cylinder

on the evolution and rupture of an axisymmetric film, while Haimovich and Oron

[34] extended the work of Haimovich and Oron [33] to the case of a non-isothermal

fluid where thermocapillary effects are significant.

(b) Flows on rotating horizontal cylinders

Coating and rimming flows have been studied extensively, with most of the the-

oretical work building on the pioneering papers by Pukhnachev [35]2, Moffatt [7]

and Johnson [36]. Pukhnachev [35] discussed the existence and uniqueness of so-

lutions for coating flow of the steady two-dimensional Navier–Stokes equation and

then used lubrication theory to derive an evolution equation that includes the ef-

fects of gravity, viscosity and surface tension, while, as we have already discussed,

Moffatt [7] considered coating flow both theoretically using a model based on lu-

brication theory and experimentally and, in particular, found that steady solutions

covering the entire cylinder are possible only below a critical load. Though their

attention is focused on coating flow at leading order, the theoretical results of both

2This author’s name has been transliterated into English as both “Pukhnachev” and “Pukhna-

chov”.
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Figure 1.7: The four possible types of steady rimming flow found by Johnson [36].

Pukhnachev [35] and Moffatt [7] also apply to rimming flow. Steady rimming flow

was considered by Johnson [36] who found four different types of free surface pro-

file, two in which the fluid fully coats the cylinder, one in which the fluid pools at

the bottom of the cylinder, and one in which the fluid coats part of only one side

of the cylinder. A diagram depicting the four types of profile is shown in figure

1.7. The profile that coats only one side of the cylinder and one of the profiles

that fully coats the cylinder ((b) and (d) in figure 1.7) involve shock-like jumps in

the film thickness (often called “shock solutions”) and have loads greater than the

critical load found by Moffatt [7].

Subsequently, there have been a large number of studies of both coating and

rimming flow, many (but not all) focusing on the two-dimensional problem. Solu-

tions to the Stokes equations where there is no restriction on the thickness of the

film have been considered by Hansen and Kelmanson [37] who obtained steady nu-
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merical solutions for coating flow using integral-equation method, Peterson et al.

[38] who obtained unsteady numerical solutions for coating flow using a finite-

element method and found that steady-state solutions are more readily attained

for near-critical loads than for significantly sub-critical loads, Wilson et al. [39]

who obtained steady numerical solutions for both coating and rimming flow in the

critical state and developed higher-order asymptotic solutions in the limit of a thin

film, and concluded that the critical load always slightly exceeds Moffatt’s value,

and later by Hunt [40] who obtained unsteady numerical solutions for flow on an

elliptical (rather than a circular) cylinder. The work of Moffatt [7] was extended

by Duffy and Wilson [41] to include “curtain” solutions, that is, solutions that

are unbounded at the top and bottom of the cylinder, representing fluid falling

onto and off the cylinder at these locations. Tirumkudulu and Acrivos [42] ex-

tended leading-order lubrication theory in the case of rimming flow by adding a

higher-order term arising from the hydrostatic pressure, and found good agree-

ment with their own experimental measurements and numerical solutions of the

Stokes equations; later Acrivos and Jin [43] investigated the stability of these so-

lutions. Tougher et al. [44] analysed the approach to the leading order critical

solution obtained by Moffatt [7] for both rimming and coating flow. The evolution

equation derived by Pukhnachev [35] has formed the basis for many subsequent

studies of coating flow, including that of Hinch and Kelmanson [45] who anal-

ysed and numerically solved the equation and found that perturbations to the

solutions decay slowly to the steady state and exhibit a phase lag, Karabut [46]

who obtained solutions to the equation representing a hanging drop, and Kelman-

son [47] who extended the work of Pukhnachev [35] by including inertial effects.

Rimming flows involving shocks of the type described by Johnson [36] have been

studied further by Wilson and Williams [48] who derived and numerically solved

an evolution equation (including the smoothing effect of surface tension) that de-

termines the height and location of the shock, O’Brien and Gath [49] who used

the approach of Johnson [36] to determine the height and location of the shock
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without considering surface-tension effects, O’Brien [50] who extended the leading

order lubrication theory to include higher-order terms arising from the hydrostatic

pressure and surface tension and investigated the stability of both smooth and

shock solutions, and Benilov et al. [51] who obtained numerical solutions to the

Stokes equations that include a smoothed shock and showed that steady solutions

do not exist if the shock is too close to the bottom of the cylinder. Ashmore et al.

[52] considered steady rimming flow including the smoothing effect of surface ten-

sion and considered a situation in which gravitational forces are large compared

to viscous forces, causing a pool of fluid to form at the bottom of the cylinder,

while Benilov et al. [53] investigated this pooling behaviour and derived a matched

asymptotic solution describing the pool, and Noakes et al. [54] included the effect

of mass transfer and obtained shock solutions that exhibit the pooling behaviour.

Various aspects of the stability of rimming flow were examined by Benilov et al.

[55], Benilov et al. [56] and Benilov and O’Brien [57], the latter of whom consid-

ered the effect of inertia and found that, although it always causes instability, its

effect may be counteracted by increasing the viscosity so as to make the time of

growth so large that the solution is effectively stable, while Villegas-Dı́az et al.

[58] included a uniform surface shear stress together with the effects of surface

tension and higher-order gravity. Rimming flow of non-Newtonian fluids has been

considered by, amongst others, Rajagopalan et al. [59] who studied the flow of a

viscoelastic fluid and obtained numerical solutions using a finite-element method,

and found that steady solutions exist only below a certain rotation speed, Fomin

et al. [60] who studied the flow of a shear-thinning generalised Newtonian fluid and

found that the critical load is smaller than in the case of a Newtonian fluid, and

Fomin et al. [61] who studied the flow of a power-law fluid and obtained analytical

solutions in the particular case when the power-law index is equal to 1/2.

Studies of three-dimensional coating and rimming flow have also been under-

taken. Moffatt [7] conducted experiments on coating flow and found that the

steady two-dimensional solution can be realised at sufficiently low rotation speeds,
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Figure 1.8: (i) Images of coating flow from the experimental work of Moffatt [7]

showing the development from a uniform film at low rotation speeds to the ring

formations at higher speeds. The higher rotation speed in (i)(d) causes lobes to

develop; these can be seen side on in (ii). (iii) Images of rimming flow from the

experimental work of Chen et al. [62] showing the ring formations. (i) and (ii)

reprinted with the kind permission of Prof. Keith Moffatt. (iii) Reprinted from

Chen et al. [62] with permission, copyright 2007, American Institute of Physics.

but that the flow becomes unstable and “rings” of fluid are formed at higher

rotation speeds, and that at even higher rotations speeds depth discontinuities

develop and “lobes” start to form. The rings and lobes can be seen in figures

1.8(i) and 1.8(ii) which shows images from the experimental work of Moffatt [7].

Thoroddsen and Mahadevan [63] carried out an experimental study of rimming

flow and observed many different phenomena, including a shark’s-teeth-like pat-

tern in the axial direction, while Hosoi and Mahadevan [64] derived an evolution

equation including the effect of weak surface tension and weak inertia and ob-
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Figure 1.9: The shark’s-teeth-like pattern observed in rimming flow: (a) shows im-

ages from the experimental work of Thoroddsen and Mahadevan [63] while (b) shows

the numerical solution of Hosoi and Mahadevan [64]. (a) Reprinted from Thoroddsen

and Mahadevan [63] with permission, copyright 1997, Springer. (b) Reprinted from

Hosoi and Mahadevan [64] with permission, copyright 1999, American Institute of

Physics.

tained solutions showing the shark’s-teeth pattern. The shark’s-teeth-like pattern

can be seen in figure 1.9(a) which shows images from the experimental work of

Thoroddsen and Mahadevan [63] while figure 1.9(b) shows the numerical solu-

tion of Hosoi and Mahadevan [64]. Jin and Acrivos [65] extended the approach

used by Tirumkudulu and Acrivos [42] to three dimensions for rimming flows with

axially-varying viscosity. Evans et al. [66] derived a three-dimensional evolution

equation for coating flow which includes the effects of rotation, gravity and surface
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tension, and obtained two-dimensional numerical solutions for the case when axial

flow is neglected; later Evans et al. [67] extended the work of Evans et al. [66] to

obtain three-dimensional numerical solutions, and reported experimental results

that confirm the general features of the numerical results. Noakes et al. [68] in-

vestigated the stability of three-dimensional coating flow in the absence of gravity,

and Noakes et al. [69] used a multiple-time-scales approach to derive evolution

equations describing rimming and coating flows in which inertial effects (including

centrifugal effects) are significant, along with the effects of viscous, gravitational

and surface-tension forces, while Pougatch and Frigaard [70] obtained numerical

solutions to a three-dimensional evolution equation for rimming flow that retains

first order terms and includes the effect of inertia. Chen et al. [62] carried out an

experimental investigation into the conditions in which a uniform film occurs for

rimming flow with a low volume fraction and found that the rotation speed must

be sufficiently high for this to be possible. Figure 1.8(iii) shows the formation of

rings in rimming flow in the experiment by Chen et al. [62]. Chicharro et al. [71]

performed similar experiments to Chen et al. [62] and found six different possible

patterns when the rotation speed is low, but that a uniform film occurs if the

rotation speed is sufficiently high.

1.4 Rivulet Flow Down an Inclined Substrate

Flows involving rivulets of fluid on inclined substrates occur in a large number

industrial situations including, for example, heat exchangers, distillation processes,

desalination processes and trickle-bed reactors. They can also occur in everyday

situations such as rainwater on a car windscreen and water flowing down the wall of

a shower. Flows of thin films of fluid often breakup to form dry patches together

with rivulets or drops, while the rivulets that may be formed can themselves

give rise to many interesting features including spreading, meandering and break-

up into droplets. Figure 1.10 shows examples of rivulet flows; specifically, the
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Figure 1.10: (a) Image showing the break up of film of fluid into rivulets from

the experiment by Hocking et al. [72]; reprinted with permission, copyright 1999,

American Institute of Physics. (b) Image showing rivulets on a car windscreen;

picture courtesy of Prof. S. K. Wilson.

break-up of a film into rivulets and rivulets on a car windscreen are shown. As

a result of the many interesting features of rivulet flows there has been much

interest in the problem of rivulet flow down an inclined substrate. The pioneering

work on this problem was performed by Towell and Rothfeld [73] who studied

the steady unidirectional flow of a uniform rivulet (i.e. a rivulet with constant

width and cross-sectional profile) of Newtonian fluid down an inclined plane and

obtained numerical solutions for the rivulet profile that are in good agreement

with their own experimental results, while also obtaining asymptotic solutions in

the limits of thin and wide rivulets and of thin and narrow rivulets. Allen and

Biggin [74] used the lubrication approximation to investigate the limit of a thin

rivulet and found good agreement between their first-order-accurate asymptotic

solution and the numerical solution obtained using a finite element method, while

Bentwich et al. [75] obtained an analytical solution for the flow of a rivulet down a
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vertical plane, and also derived an approximate solution to describe the flow down

an inclined plane. Duffy and Moffatt [76] followed the approach of Allen and

Biggin [74] to obtain the leading order asymptotic solution in the limit of a thin

rivulet on an inclined plane and interpreted their results as describing the locally

unidirectional flow of a rivulet down a slowly varying substrate, and, in particular,

as describing the flow in the azimuthal direction round a large horizontal cylinder.

In the following subsection we reproduce the work of Duffy and Moffatt [76] to

study the case of a locally unidirectional rivulet flowing down a slowly varying

substrate.

1.4.1 Locally unidirectional rivulet flow down a slowly vary-

ing substrate

Consider the steady three-dimensional gravity-driven flow of a thin symmetric

rivulet of Newtonian fluid with uniform density ρ and viscosity µ down a substrate

inclined at an angle α (0 ≤ α ≤ π) to the horizontal. We choose Cartesian axes

Oxyz as shown in figure 1.11, with the x axis in the direction of flow, the y axis

horizontal and transverse to the direction of flow and the z axis normal to the

substrate, and take the free surface to be at z = h, where h = h(x, y) is the

rivulet thickness, and take the contact lines of the rivulet (where h = 0) to be

at y = ±a, where a = a(x) is the semi-width of the rivulet. The velocity u =

uex+vey+wez (where ex, ey and ez denote unit vectors in the x, y and z directions,

respectively) and pressure p are governed by the usual mass-conservation and

Navier–Stokes equations. On the substrate z = 0 the velocity u satisfies no-

slip and no-penetration conditions, while on the free surface z = h the normal and

tangential stress balances apply. We consider only thin, slowly varying rivulets

whose transverse aspect ratio is denoted δ � 1, and whose longitudinal aspect

ratio is denoted ε and is defined in terms of the capillary length lc = (γ/ρg)1/2 to

be ε = lc/l, where l is a typical length scale in the x direction, γ is the coefficient



Chapter 1 25

Figure 1.11: Geometry of steady three-dimensional flow of a thin uniform rivulet of

Newtonian fluid on an inclined plane.

of surface tension (assumed constant), and g is the magnitude of gravitational

acceleration. In particular, we consider the case where the rivulet is sufficiently

slowly varying that ε� δ � 1; this is a sensible case to consider since it is easily

realised by making the substrate (and therefore the length scale l) sufficiently long.

One could also consider, for example, ε = O(δ) or ε � δ � 1 instead. However

ε = O(δ) is somewhat restrictive (though entirely possilbe) while ε� δ � 1 would

likey result in a rivulet so thin that surface tension would cause it to breakup with

dry patches and drops forming. Hence we non-dimensionalise and scale the system

appropriately by writing

x = lx∗, y = εly∗, z = εδlz∗, a = εla∗, h = εδlh∗, β = δβ∗,

u =
ε2δ2l2ρg

µ
u∗, v =

ε3δ2l2ρg

µ
v∗, w =

ε3δ3l2ρg

µ
w∗,

p = pa + εδlρgp∗, Q =
ε4δ4l4ρg

µ
Q∗,


(1.31)
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in which β � 1 is the prescribed contact angle, pa is the constant pressure in

the surrounding atmosphere, and Q is the prescribed constant volume flux of

fluid down the substrate. For clarity the star superscripts on the non-dimensional

quantities will be omitted henceforth.

At leading order in ε and δ the governing equations become

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0,

∂2u

∂z2
= − sinα,

∂p

∂y
= 0 and

∂p

∂z
= − cosα, (1.32)

together with the boundary conditions

u = v = w = 0 on z = 0, (1.33)

p = −∂
2h

∂y2
and

∂u

∂z
=
∂v

∂z
= 0 on z = h, (1.34)

and

h = 0 and
∂h

∂y
= ∓β on y = ±a. (1.35)

Integrating (1.32)4 subject to (1.34) yields the pressure distribution

p = (h− z) cosα− ∂2h

∂y2
, (1.36)

from which (1.32)3 gives a third-order differential equation for the rivulet thickness

h, namely
∂

∂y

(
h cosα− ∂2h

∂y2

)
= 0, (1.37)

which together with (1.35) shows that the rivulet thickness does not depend on

the longitudinal coordinate x, and so h = h(y). Integrating (1.32)2 twice subject

to (1.33) and (1.34) yields the velocity distribution

u =
sinα

2
(2h− z)z, (1.38)

and hence the constant volume flux Q is given by

Q =

∫ a

−a

∫ h

0

u dz dy =
sinα

3

∫ a

−a
h3 dy, (1.39)

which in general provides an implicit solution for the semi-width a in terms of

the prescribed constant flux Q and the angle of inclination α; equation (1.39) also

shows that a does not depend on x and is therefore simply a constant depending

only on the flux Q.
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(a) Perfectly wetting rivulet

In the case of a perfectly wetting rivulet we take the contact angle to be zero (i.e.

let β = 0) and reproduce the solution obtained by Duffy and Wilson [77]. It is

found that there are no solutions to (1.37) and (1.39) for 0 ≤ α ≤ π/2 (i.e. no

solution corresponding to a sessile rivulet or a rivulet on a vertical substrate), but

that there is a solution when π/2 < α ≤ π (i.e. a solution corresponding to a

pendent rivulet), namely

a =
π

m
and h =

hm

2

(
1 + cos(my)

)
, (1.40)

where the maximum thickness of the rivulet hm = h(0) is given by

hm = 2

(
3Qm

5π sinα

)1/3

, (1.41)

where for convenience we have defined m = | cosα|1/2. The solutions (1.40) and

(1.41) show that the semi-width a (but not the rivulet thickness h) of the rivulet

is, rather surprisingly, independent of the value of the prescribed flux Q. Figure

1.12(a) shows the semi-width a and the maximum thickness hm plotted as functions

of α/π when Q = 1, and figure 1.12(b) shows the rivulet thickness h plotted as a

function of y for different values of α when Q = 1. Figure 1.12 together with the

solutions (1.40) and (1.41) show that the rivulet becomes wide and thin according

to

a = π
(
α− π

2

)−1/2

+O

[(
α− π

2

)3/2
]

(1.42)

and

hm = 2

(
3Q

5π

)1/3 (
α− π

2

)1/6

+O

[(
α− π

2

)13/6
]

(1.43)

as α → π/2+ (i.e. as the substrate tends towards being vertical), and becomes

deep with finite width according to

a = π +
π

4
(π − α)2 +O

[
(π − α)4

]
(1.44)

and

hm = 2

(
3Q

5π(π − α)

)1/3

+O
[
(π − α)5/3

]
(1.45)

as α→ π− (i.e. as the substrate tends towards being horizontal).



Chapter 1 28

Figure 1.12: Perfectly wetting rivulet: (a) The semi-width a and the maximum

thickness hm plotted as functions of α/π when Q = 1. (b) The rivulet thickness h

plotted as a function of y when α/π = 11/20, 6/10, 13/20, . . . , 19/20 and Q = 1.

(b) Non-perfectly wetting rivulet

In the case of a non-perfectly wetting rivulet we take the contact angle to be β = 1,

so that the transverse aspect ratio δ is equal to the original unscaled contact angle

(which is, of course, small). As Duffy and Moffatt [76] showed, the solution to

(1.37) for the rivulet thickness h = h(y) is given by

h =



cosh(ma)− cosh(my)

m sinh(ma)
if 0 ≤ α < π/2,

a2 − y2

2a
if α = π/2,

cos(my)− cos(ma)

m sin(ma)
if π/2 < α ≤ π,

(1.46)

and hence the flux Q is given from (1.39) as

Q =
sinα

9m4
F (ma), (1.47)
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Figure 1.13: Non-perfectly wetting rivulet: (a) The semi-width a and (b) the maxi-

mum thickness hm plotted as functions of α/π for Q = 10−n with n = −2, −1, 0, 1

and 2 together with the leading order result in the limit Q→∞ (dashed line).

where we have defined

F (ma) =



15ma coth3(ma)− 15 coth2(ma)

−9ma coth(ma) + 4
if 0 ≤ α < π/2,

−15ma cot3(ma) + 15 cot2(ma)

−9ma cot(ma) + 4
if π/2 < α ≤ π.

(1.48)

Appropriate interpretation of (1.47) as a limit is needed in the case α = π/2,

whereupon the flux equation becomes Q = 4a4/105. For 0 ≤ α < π/2 there is a

unique solution for a at each value of α, while for π/2 < α ≤ π there are infinitely

many branches of solutions for a for each value of α; of these, however, only the

lowest positive one, which connects smoothly with the solution in 0 ≤ α < π/2, is

physically realisable. With a known from (1.47), the rivulet thickness is given by

(1.46), which has a single maximum h = hm at y = 0, where hm = h(0). Figure

1.13 shows (a) the semi-width a and (b) the maximum thickness hm plotted as
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Figure 1.14: Non-perfectly wetting rivulet: The rivulet thickness h plotted as a

function of y for (a) α/π = 1/20, 1/10, 3/20, . . . , 1/2, and (b) α/π = 1/2, 11/20,

6/10, . . . , 19/20, when Q = 1. Note the different h and y scales used in (a) and (b).

functions of α/π for a range of values of the flux Q, while figure 1.14 shows the

rivulet thickness h plotted as a function of y for a range of values of α when

Q = 1. In particular, figures 1.13 and 1.14 together with the solutions for a and h

obtained from (1.47) and (1.46) show that the rivulet becomes wide with uniform

depth unity according to

a =
3Q

2α
+O(1) and hm = 1 +

α2

4
+O

(
α4
)

(1.49)

as α → 0+ (i.e. as the substrate tends towards being horizontal with a sessile

rivulet), becomes of finite width and depth with

a =

(
105Q

4

)1/4

and hm =
1

2

(
105Q

4

)1/4

(1.50)

at α = π/2 (i.e. when the substrate is vertical), and becomes deep with finite

width according to

a = π−
(

5π(π − α)

3Q

)1/3

+O(π−α), hm =

(
24Q

5π(π − α)

)1/3

+O(π−α)1/3 (1.51)
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as α → π− (i.e. as the substrate tends towards being horizontal with a pendent

rivulet). In the limit of small flux Q→ 0 the rivulet becomes narrow and shallow

according to

a =

(
105Q

4 sinα

)1/4

+O
(
Q3/4

)
and hm =

1

2

(
105Q

4 sinα

)1/4

+O
(
Q3/4

)
, (1.52)

while in the limit of large flux Q→∞ the rivulet becomes wide with finite depth

according to

a =
3Qm3

2 sinα
+O(1) and hm =

1

m
+O

[
exp

(
− 6Qm4

2 sinα

)]
(1.53)

if 0 ≤ α < π/2, becomes wide and deep with a and hm given by (1.50) if α = π/2,

and becomes deep with finite width according to

a =
π

m
−
(

5π sinα

3Qm7

)1/3

+O

(
1

Q

)
and hm =

(
24Qm

5π sinα

)1/3

+O

(
1

Q1/3

)
(1.54)

if π/2 < α ≤ π. Note that (1.52) fails near α = 0 and α = π where there are

boundary layers of width O(Q), while (1.53) and (1.54) fail near α = π/2 where

there are boundary layers of width O(Q−1/2).

1.4.2 Review of previous literature

Various aspects of the flow of rivulets have been studied extensively. At the be-

ginning of the section we discussed some of the early work on the unidirectional

flow of a rivulet down an inclined plane by Towell and Rothfeld [73], Allen and

Biggin [74], Bentwich et al. [75] and Duffy and Moffatt [76]. Subsequently, Wilson

and Duffy [78] extended the work of Duffy and Moffatt [76] to include the effect of

substrate variation transverse to the direction of flow. In particular, Wilson and

Duffy [78] found that a rivulet can run continuously from the top to the bottom

of a large horizontal cylinder only if the transverse profile of the substrate is a

sufficiently shallow trough; if the profile is a deeper trough then a rivulet is not

possible near the bottom of the cylinder whereas if the profile is a ridge then a

rivulet is not possible near the top of the cylinder. Later, Perazzo and Gratton
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[79] revisited the basic flow considered by Towell and Rothfeld [73] and included

discussion of the case when the contact angle is greater than π/2, while recently

Tanasijczuk et al. [80] extended this work to include the effect of substrate varia-

tion transverse to the direction of flow. The flow of a rivulet down the underside

of an inclined cylinder was considered by Kuibin [81], Alekseenko et al. [82] and

Alekseenko et al. [83] both theoretically and experimentally. In particular, Kuibin

[81] obtained the leading order asymptotic solution in the limit of small contact

angle which corresponds to the flow of a perfectly wetting rivulet (i.e. a rivulet

with zero contact angle). Further studies of the flow of a perfectly wetting rivulet

down a slowly varying substrate have been performed by Duffy and Wilson [77] for

the case when the viscosity is temperature-dependent (i.e. with thermoviscosity)

and the substrate is uniformly heated or cooled, and Wilson and Duffy [84], who

extended the work of Duffy and Moffatt [76] and Wilson and Duffy [78] to the

case of a perfectly wetting rivulet. In particular, both Duffy and Wilson [77] and

Wilson and Duffy [84] found that a perfectly wetting sessile rivulet (i.e. a rivulet

on top of the substrate) is not possible but that a pendent rivulet (i.e. a rivulet

hanging below the substrate) is.

Taking a somewhat different approach, Smith [85] and Duffy and Moffatt

[86] obtained similarity solutions to the thin-film equations describing the steady

gravity-driven flow of a slender non-uniform rivulet flowing either from a point

source or to a point sink on an inclined plane in the cases of weak and strong

surface-tension effects, respectively, while Wilson et al. [87] obtained the cor-

responding similarity solutions for the steady flow of a thin rivulet of a non-

Newtonian power-law fluid down an inclined plane driven either by gravity or

by a uniform surface shear stress. Snoeijer et al. [88] derived steady similarity

solutions describing the flow of a drop down an inclined plane which show that

there is a critical velocity above which a corner forms at the rear of the drop; as

the velocity increases further this corner solution ultimately fails and thereafter a

rivulet of fluid or droplets (“pearling”) are left behind. Yatim et al. [89] derived
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Figure 1.15: The solution obtained by Yatim et al. [89] for rivulet flow down an

included plane in the case of a sessile rivulet with constant volume at different

times. Reprinted from Yatim et al. [89] with permission of Oxford University Press.

an unsteady similarity solution corresponding to a rivulet with a fixed “nose” with

either a “single-humped” or “double-humped” cross-sectional profile that widens

(for a sessile rivulet) or narrows (for pendent a rivulet) with distance down the

plane. Figure 1.15 shows the solution obtained Yatim et al. [89] in the case of a

sessile rivulet with constant volume at different times.

In many situations involving the flow of rivulets non-isothermal effects are

significant. Sultanović et al. [90] conducted an experimental study of the heat

transfer in rivulets of water flowing down a heated inclined plane and found that

if the rivulets develop waves or undergo meandering then the heat-transfer rate

increases, while Kabov et al. [91] experimentally investigated the heat transfer to

a film falling down a locally heated vertical plane and its breakup into rivulets.

El-Genk and Saber [92] studied the steady flow of an evaporating film of fluid

down a uniformly heated vertical plane and, via an argument based on minimisa-

tion of energy that they had previously used for the isothermal case [93], derived

analytical expressions for the critical film thickness below which the film breaks

up into rivulets. Holland et al. [94] used the lubrication approximation to study

the steady locally unidirectional flow of a thin rivulet whose surface tension varies
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linearly with temperature (i.e. with thermocapillarity) down a heated or cooled

slowly varying substrate, and found that fluid particles spiral down the rivulet in

helical vortices (something which does not occur in the corresponding isothermal

problem), while Wilson and Duffy [95, 96] and Duffy and Wilson [77] consid-

ered the effects of thermoviscosity on a rivulet flowing down a heated or cooled

slowly varying substrate for three different viscosity models (namely a linear, an

exponential and an Eyring model) in the cases of both perfectly wetting [77] and

non-perfectly wetting [95, 96] rivulets.

The important question of the stability of rivulet flows has been considered by

many authors. Davis [97] considered the stability of a static rivulet on a horizontal

plane in three different cases, namely fixed contact lines, fixed contact angles, and

contact angles that are smooth functions of the speed of the moving contact line,

while Young and Davis [98] studied the stability of a rivulet flowing down a verti-

cal plane for the same three cases. Nakagawa and Scott [99] and Nakagawa [100]

experimentally investigated the gravity-driven flow of a rivulet down an inclined

plane and found four different regimes of flow depending on the flow rate, namely,

drops, a stable meandering rivulet, an unstable meandering rivulet that breaks

up into multiple rivulets, and a restabilised rivulet that no longer meanders but

still has varying width; Schmuki and Laso [101] also investigated this flow both

experimentally and theoretically and showed that uniform rivulets can also occur.

In particular, by using an argument based on minimisation of energy, Schmuki

and Laso [101] obtained predictions as to when the transitions from a single uni-

form rivulet to a meandering rivulet and from a meandering rivulet to multiple

rivulets occur. Figure 1.16 shows images of five forms of rivulet flow obtained ex-

perimentally by Schmuki and Laso [101], namely a wetting film, droplets, a linear

rivulet, a meandering rivulet and a oscillating or pendulum rivulet (essentially an

unstable meandering rivulet). Roy and Schwartz [102] considered the stability of

static rivulets on substrates of various shapes, including both wedges and cylin-

ders, and found that stability is guaranteed if the pressure within the rivulet is an
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Figure 1.16: Images of five forms of rivulet flow obtained experimentally by Schmuki

and Laso [101], namely (from left to right) a wetting film, droplets, a linear rivulet, a

meandering rivulet and a oscillating or pendulum rivulet. Reprinted from Schmuki

and Laso [101] with permission.

increasing function of its cross-sectional area. Saber and El-Genk [103] studied the

flow of a uniform film down an inclined plane subject to a prescribed non-uniform

longitudinal surface shear stress and, by using similar methods to El-Genk and

Saber [93, 92], described the breakup of the film into rivulets. Myers et al. [104]

considered the stability of a rivulet down an inclined plane subject to both the

effects of gravity and a uniform longitudinal surface shear stress, and presented

both numerical solutions and asymptotic solutions for a thin rivulet, finding good

agreement between them for contact angles up to approximately π/6. Using an

argument based on minimisation of energy they also calculated when it is ener-
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getically favourable for the rivulet to split into two rivulets and hypothesised that

a purely shear-driven rivulet will never split whereas a purely gravity-driven one

may do so. Wilson and Duffy [105] and Wilson et al. [106] reconsidered the same

problem for the particular case of a thin rivulet on a vertical plane, with Wilson

and Duffy [105] finding that it can in fact be energetically favourable for a purely

shear-driven rivulet to split, while Sullivan et al. [107] considered the stability

of a thin perfectly wetting rivulet on an inclined plane. Le Grand-Piteira et al.

[108] and Daerr et al. [109] experimentally investigated the meandering that can

occur above a critical flow rate when a rivulet flows down an inclined plane. They

considered the cases of both a non-perfectly wetting [108] and a perfectly wetting

[109] rivulet. Benilov [110] considered the stability of the gravity-driven flow of

a thin sessile or pendent rivulet on an inclined plane and found that whereas the

sessile rivulet is always stable, the stability of the pendent rivulet depends on both

the rivulet width and the angle of inclination of the plane. Diez et al. [111, 112]

considered the stability of a static rivulet on a horizontal plane on both the macro-

scopic scale where gravitational effects are dominant and on the microscopic scale

where van der Waals forces are dominant, and also discussed the case of a static

rivulet of finite length.

1.5 Non-Isothermal Flow

In many thin-film flows, such as those found in heat exchangers, distillation pro-

cesses and various coating problems, the effects of heating or cooling are important.

In order to analyse the effects that temperature can have on a flow we must con-

sider the energy in the system; the energy-balance equation for an incompressible

Newtonian fluid is given by

ρcp

(
∂T

∂t
+ u · ∇T

)
−∇ · (kth∇T )− µ

2
tr
([
∇u + (∇u)T

]2)
+ q = 0,︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

thermal
advection

thermal
diffusion

viscous
dissipation

(1.55)
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where T is temperature, cp is the specific heat, kth is the thermal conductivity

(which, in general, depends on temperature, but, is very often taken to be constant)

and q is a heat source or sink. The different physical effects described by the

terms in (1.55) are labelled. We note that in the case of the lubrication theory

described in Section 1.1, equation (1.55) simplifies greatly to ∂2T/∂y2 = 0 at

leading order in ε (� 1), provided that the suitably defined Péclet (a measure

of the ratio of thermal advection to thermal diffusion) and Brinkman (a measure

of the ratio of viscous dissipation to thermal diffusion) numbers are assumed to

be small. Equation (1.55) requires boundary conditions; these may simply consist

of fixed temperatures at the boundaries (be it at a substrate, a free surface or a

fluid–fluid interface) or they may be more complicated and incorporate thermal

effects such as heat transfer at the boundaries. In Chapters 2 and 3 we invoke a

boundary condition involving heat transfer at a free surface; we model this with

the commonly used Newton’s law of cooling (see for example, Reisfeld and Bankoff

[113], Selak and Lebon [114], Balmforth and Craster [115], Kabova and Kuznetsov

[116], Wilson and Duffy [96] and Usha et al. [117]), which may be expressed as

−kth∇T · n = αth(T − T∞) (1.56)

where αth is the heat transfer coefficient (a measure of the ratio of heat flux at

the free surface to the temperature difference across the boundary; it is usually

taken to be constant), n is the outward unit normal to the free surface, and T∞

is the temperature in the surrounding atmosphere. This condition is applicable

to cases where the heat transfer at the free surface is dominated by convective

heat transfer, as is commonly the case at a liquid-gas boundary. Note that it is

assumed there is a small airflow present in the atmosphere driving the convective

heat transfer (though not enough to cause a significant shear on the surface of the

fluid). Another thermal effect that is sometimes considered is that of thermocap-

illarity at a free surface, that is, the dependence of surface tension on temperature

which is often called the Marangoni effect. In general, the density ρ and viscosity
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µ vary with temperature, and a model describing their dependence on tempera-

ture is required; however, in many problems the variation of these quantities is

sufficiently small that it is suitable to assume that one or both of them is con-

stant. In Chapters 2 and 3 we consider flows that include thermoviscosity effects

(with the density assumed constant). There are many models that can be used to

describe the dependence of viscosity on temperature, including linear, exponential

and Arrhenius/Eyring models; in Chapters 2 and 3 we use an exponential model.

Thermoviscosity effects are significant in a wide range of problems, and because

of this there have been a large number of studies of the effects of thermoviscosity

on the non-isothermal flow of thin films of fluid on a variety of substrates. Ther-

moviscous flow of a thin film of fluid down an inclined substrate has been studied

by, among others, Goussis and Kelly [118, 119] who used an exponential viscosity

model to considered the stability of the film and found that heating destabilises

the flow while cooling stabilises it, Hwang and Weng [120] who used an Arrhe-

nius/Eyring viscosity model and gave the same conclusion as Goussis and Kelly

[118, 119] regarding stability of the film. Kabova and Kuznetsov [116] used a lin-

ear viscosity model to consider the steady flow of a film flowing down a locally

heated substrate with both thermoviscous and thermocapillarity (i.e. temperature-

dependent surface tension) effects and found that the film thickens at the heated

section of the substrate. Wilson and Duffy [95, 96] and Duffy and Wilson [77]

studied the steady flow of a thin rivulet of fluid for three viscosity models (namely

a linear, an exponential and an Arrhenius/Eyring model) and also included the

effect of heat transfer at the free surface; they found that cooling the atmosphere

widens and deepens the rivulet. There have also been many studies of thermovis-

cous flow of a thin film of fluid on a horizontal substrate; for example, Reisfeld

and Bankoff [113] and Wu and Hwang [121] used a linear and an Arrhenius/Eyring

viscosity model, respectively, to consider the evolution and eventual rupture of the

film subject to surface tension and van der Waals; they found that heating reduces

the rupture time while cooling increases it. Selak and Lebon [114] used both linear
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and exponential viscosity models to investigate the onset of convection in a quies-

cent film subject to both buoyancy and thermocapillarity effects and found that

the effect of thermoviscosity on stability depends on the sign of the of the viscos-

ity’s variation with temperature. Sansom et al. [122] considered the spreading of

a film for three viscosity models (namely a linear, an exponential and a biviscos-

ity model) and found that thicker regions of the droplet spread much faster that

thinner ones. Motivated by lava flows, Bercovici [123] and Balmforth and Craster

[115] studied the radial spreading of a film; Bercovici [123] used a viscosity model

that is inversely proportional to temperature and included the effects of thermal

advection, while Balmforth and Craster [115] used an exponential viscosity model

and considered a viscoplastic fluid with a yield stress and found that finger-like

instabilities can form. Also with applications to lava flows, Osiptsov [124] used an

exponential viscosity model to consider the unsteady flow of a thin film of fluid

over a conical surface with fluid being supplied at the apex. Unsteady flow of a

thin film of fluid with thermoviscous and thermocapillary effects on a uniformly

rotating disk was considered by Usha et al. [117], who used a linear viscosity model,

and Wu [125], who used an Arrhenius/Eyring viscosity model.

1.6 Outline of Thesis

In this thesis we study three different problems concerning thin-film flows on hor-

izontal cylinders.

In Chapter 2 we consider steady two-dimensional curtain flow with prescribed

volume flux of a Newtonian fluid with temperature-dependent viscosity over a uni-

formly heated or cooled stationary horizontal cylinder. The problem is formulated

for a general viscosity model and the effects of both thermoviscosity and heat trans-

fer at the free surface are studied in detail in the particular case of an exponential

viscosity model. We present and discuss numerical results along with asymptotic

solutions in appropriate limits of the physical parameters of the problem.
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In Chapter 3 we consider the steady two-dimensional coating and rimming

flow of a Newtonian fluid with temperature-dependent viscosity on a uniformly

heated or cooled rotating horizontal cylinder. As in Chapter 2, we formulate

the problem for a general viscosity model and study the particular case of an

exponential viscosity model in detail by giving numerical and asymptotic results.

We show that there exists a critical solution with a critical load above which no

solutions exist (analogous to that found in the corresponding isothermal problem);

a detailed analysis of this critical solution and its dependence on the physical

parameters of the problem is given. The case of prescribed subcritical load is also

discussed in detail and we show the it is possible for backflow to occur within a

particular region of parameter space.

In Chapter 4 we consider steady isothermal flow of a rivulet of Newtonian fluid

on either the outside or the inside of a uniformly rotating horizontal cylinder. We

present and discuss numerical and asymptotic solutions in appropriate limits, and

find that the flow of a rivulet on a rotating cylinder also gives rise to a critical

solution that is similar in nature to the critical solution found in the classical

isothermal two-dimensional problem. We also show that backflow occurs within a

particular region of parameter space.

Finally, in Chapter 5 we summarise Chapters 2–4 and discuss the key results

and conclusions, and suggest ideas for possible further work.

1.7 Presentations and Publications

Aspects of the work given in Chapters 2 and 3 have been presented at the European

Postgraduate Fluid Dynamics Conference at Keele University in 2008, the British

Applied Mathematics Colloquium at the University of Nottingham in 2009, the

22nd Scottish Fluid Mechanics Meeting at The Scottish Association for Marine

Science (SAMS), Oban in 2009, the EUROMECH Colloquium 497 on “Recent

developments and New Directions in Thin-Film Flow” at the Royal Society of
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Edinburgh in 2009, the 11th UK National Heat Transfer Conference at Queen

Mary, University of London in 2009; including a short paper (Leslie et al. [126])

in the conference proceedings on the material in Chapter 2, and the 12th UK

National Heat Transfer Conference at the University of Leeds in 2011; including

a short paper (Leslie et al. [127]) in the conference proceedings on the material

in Chapter 3. The work contained in Chapter 2 has been published in Physics of

Fluids (Leslie et al. [128]), while the work in Chapter 3 has recently been submitted

for publication in the Quarterly Journal of Mechanics and Applied Mathematics.

Parts of the work in Chapter 4 have been presented at the British Applied

Mathematics Colloquium at the University of Edinburgh in 2010, and the 8th

Euromech Fluid Mechanics Conference (EMFC8) in Bad Reichenhall, Germany in

2010. The work contained in Chapter 4 has recently been submitted for publication

in the Journal of Fluid Mechanics.
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Thermoviscous Curtain Flow

In this chapter we use lubrication theory to study the steady two-dimensional

thermoviscous gravity-driven flow of a Newtonian fluid on a stationary horizontal

cylinder.

2.1 Problem Formulation

Consider steady two-dimensional gravity-driven flow of a thin film of Newto-

nian fluid with uniform (temperature-independent) density ρ and temperature-

dependent viscosity µ = µ(T ), where T denotes the (in general) non-uniform

temperature of the fluid, on a stationary circular cylinder of radius a with its axis

horizontal, the cylinder being at a uniform temperature T0, which may be either

hotter or colder than the uniform temperature T∞ (6= T0) of the surrounding at-

mosphere. Where possible we will consider a general viscosity model µ = µ(T ),

where µ(T ) is any monotonically decreasing function of T satisfying µ = µ0 and

dµ/dT = −λ (< 0) when T = T0, where λ (> 0) is a prescribed positive con-

stant. When it is necessary to specify a particular viscosity model we will use the

exponential viscosity model

µ(T ) = µ0 exp

(
−λ(T − T0)

µ0

)
(2.1)

42
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as used by, for example, Goussis and Kelly [118, 119], Hwang and Weng [120],

Selak and Lebon [114], Balmforth and Craster [115] and Wilson and Duffy [95].

The choice of the cylinder temperature T = T0 as the reference point for the

viscosity model (as opposed to using the atmosphere temperature T = T∞) is

made because the heat transfer from the cylinder to the fluid is usually much

stronger than the heat transfer at the free surface and so the temperature of the

fluid will be closer to that of the cylinder and hence the viscosity model will be

more accurate (generally, the further the temperature goes from the reference

temperature, the less accurate the viscosity model becomes). The appropriate

non-dimensional measure of thermoviscosity (i.e. the variation of viscosity with

temperature) is the thermoviscosity number, V , defined by

V =
λ(T0 − T∞)

µ0

. (2.2)

Since V has the same sign as T0 − T∞, situations in which the cylinder is hotter

(colder) than the atmosphere correspond to positive (negative) values of V . The

physically realistic values of V vary over several orders of magnitude from arbi-

trarily small values (when the viscosity is effectively independent of temperature

and/or when the magnitude of the heating or cooling is small) to reasonably large

values (when the viscosity is strongly dependent on temperature and/or when the

magnitude of the heating or cooling is large). For example, using the parame-

ter values given by Selak and Lebon [114] in the case |T0 − T∞| = 25 K yields

|V | = 0.3825 for acetic acid, |V | = 0.5225 for silicone oil, |V | = 0.625 for water,

and |V | = 2.5125 for glycerol, while Balmforth and Craster [115] give “typical”

values of |V | = 1 for wax and slurry, |V | = 5 for basaltic lava, |V | = 7 for syrup,

and |V | = 10 − 18 for silicic lava. Hence we will consider the full range of values

from V = 0 to the limits V →∞ and V → −∞ in the present work.

Referred to polar coordinates r = a+Y (with origin at the cylinder’s axis) and

θ (measured counter-clockwise from the horizontal) as shown in figure 2.1, we take

the free surface of the fluid to be at r = a+h, the film thickness being denoted by



Chapter 2 44

Figure 2.1: Geometry of the problem: steady two-dimensional flow of a thin film

of Newtonian fluid with temperature-dependent viscosity on a stationary horizon-

tal cylinder which may be either uniformly hotter or colder than the surrounding

atmosphere.

h. The fluid velocity u = ueθ + ver (where eθ and er denote unit vectors in the

azimuthal and radial directions, respectively), pressure p and temperature T are

governed by the familiar mass-conservation, Navier–Stokes and energy equations.

On the cylinder r = a the velocity u satisfies the no-slip and no-penetration

conditions, and the temperature is T = T0 (a prescribed constant). On the free

surface r = a+h the usual normal and tangential stress balances and the kinematic

condition apply, as does Newton’s law of cooling

−kth∇T · n = αth(T − T∞), (2.3)

where kth denotes the thermal conductivity of the fluid (assumed constant), αth (≥

0) denotes an empirical surface heat-transfer coefficient, and n denotes the unit

outward normal to the free surface. Surface tension, viscous dissipation, thermal
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advection and inertia are all neglected (i.e. it is assumed that the appropriately

defined Brinkman, Péclet and reduced Reynolds numbers are all small, while the

Bond number is large).

Since the flow is steady, the volume flux per unit axial length Q (measured

positive in the direction of increasing θ) is a piecewise constant, and since (as we

shall show) the film thickness h always becomes unbounded at the top (θ = π/2)

and the bottom (θ = −π/2) of the cylinder (where the tangential component of

gravity is zero), it is natural to follow previous studies of the isothermal problem

(see, for example, Duffy and Wilson [41]) and to interpret this as a curtain of

fluid with prescribed constant volume flux QS (> 0) falling onto the top of the

cylinder and splitting into two films with constant azimuthal fluxes Q = QR and

Q = QL round the right-hand and left-hand sides of the cylinder, respectively, with

a corresponding curtain (also with flux QS) falling off at the bottom of the cylinder.

By global conservation of mass these fluxes are related by QS = QL−QR, but the

relative split of the flux between the two sides of the cylinder is not determined by

the present theory. In particular, the flow need not necessarily have left-to-right

symmetry (i.e. QR and QL need not necessarily be equal to −QS/2 and QS/2,

respectively). If QR 6= QL then there will be a resultant torque τ on the cylinder

given by

τ = a2µ0

∫ π

−π

∂u

∂Y

∣∣∣∣
Y=0

dθ, (2.4)

however, we shall assume that the cylinder can resist this torque and will remain

stationary.

The total fluid load (i.e. the mass of fluid) per unit axial length on either side

of the cylinder M is denoted by M = MR and M = ML on the right-hand and

left-hand sides of the cylinder, respectively, and hence the total fluid load on the

cylinder is given by MR +ML.

We will consider only thin films, whose aspect ratio ε, defined by

ε =

(
µ0QS

ρga3

)1/3

� 1, (2.5)
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is small. We non-dimensionalise and scale the system by writing

r = a(1 + εY ∗), h = εah∗, u = Uu∗, v = εUv∗,

p = pa + εaρgp∗, T = T∞ + (T0 − T∞)T ∗, ψ = QSψ
∗, µ = µ0µ

∗,

Q = QSQ
∗= εaUQ∗, QR = QSQ

∗
R = εaUQ∗R, QL = QSQ

∗
L = εaUQ∗L,

M = ερa2M∗, MR = ερa2M∗
R, ML = ερa2M∗

L,


(2.6)

where the characteristic azimuthal fluid velocity U , defined to be equal to QS/εa,

is given by

U =

(
ρgQ2

S

µ0

)1/3

, (2.7)

pa is the constant pressure in the surrounding atmosphere and ψ is the stream-

function satisfying u = ∂ψ/∂Y and v = −∂ψ/∂θ with ψ = 0 on Y = 0. Note that

the non-dimensionalisation of temperature given in (2.6) incorporates the factor

T0 − T∞, which can be either positive or negative, and so a little care is required

in interpreting results for the non-dimensional temperature T ∗ in terms of the

dimensional temperature T . For clarity the star superscripts on non-dimensional

variables will be omitted henceforth.

Expressed in non-dimensional variables the fluid occupies 0 ≤ Y ≤ h for −π <

θ ≤ π, the flux Q takes the values Q = QR on the right-hand side of the cylinder

|θ| < π/2 and Q = QL on the left-hand side of the cylinder π/2 < |θ| ≤ π, with

QL − QR = 1; also the general viscosity model µ = µ(T ) satisfies µ = 1 and

dµ/dT = −V when T = 1, and, in particular, the exponential viscosity model

(2.1) is given by

µ = exp(−V (T − 1)). (2.8)

At leading order in ε the governing equations become

∂u

∂θ
+
∂v

∂Y
= 0,

∂

∂Y

(
µ
∂u

∂Y

)
= cos θ,

∂p

∂Y
= − sin θ,

∂2T

∂Y 2
= 0, (2.9)

together with the boundary conditions

u = 0, v = 0 and T = 1 on Y = 0, (2.10)
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∂u

∂Y
= 0, p = 0 and

∂T

∂Y
+BT = 0 on Y = h, (2.11)

where B = εaαth/kth (≥ 0) is the non-dimensional Biot number (a non-dimensional

measure of heat transfer to or from the atmosphere at the free surface). The special

case B = 0 corresponds to that of a perfectly insulated free surface with no heat

transfer (i.e. ∂T/∂Y = 0 at Y = h), while at leading order in the limit B → ∞

the free surface is at the same uniform temperature as the atmosphere (i.e. T = 0

at Y = h), and so we will consider the full range of values from B = 0 to the limit

B →∞ in the present work.

Introducing the rescaled variable y = Y/h (so that the fluid occupies 0 ≤ y ≤ 1)

and solving (2.9) subject to (2.10) and (2.11) for the temperature T = T (y, θ), the

azimuthal velocity u = u(y, θ) and the pressure p = p(y, θ) yields

T (y, θ) = 1− Bhy

1 +Bh
, (2.12)

u(y, θ) = −h2 cos θ

∫ y

0

1− ỹ
µ(T (ỹ, θ))

dỹ (2.13)

and

p(y, θ) = h(1− y) sin θ. (2.14)

The stream function ψ = ψ(y, θ)1 is given by

ψ = −h3 cos θ

∫ y

0

∫ ȳ

0

1− ỹ
µ(T (ỹ, θ))

dỹ dȳ = −h3 cos θ

∫ y

0

(1− ỹ)(y − ỹ)

µ(T (ỹ, θ))
dỹ. (2.15)

The volume flux Q (= ψ(1, θ)) is given by

Q = h

∫ 1

0

u dy = −h3 cos θ

∫ 1

0

∫ y

0

1− ỹ
µ(T (ỹ, θ))

dỹ dy, (2.16)

leading to

Q = −h
3 cos θ

3
f, (2.17)

where f = f(θ) (> 0) is a measure of the fluidity of the fluid film (herein referred

to simply as the fluidity), defined by

f = 3

∫ 1

0

∫ y

0

1− ỹ
µ(T (ỹ, θ))

dỹ dy = 3

∫ 1

0

(1− y)2

µ(T (y, θ))
dy. (2.18)

1Note that the rescaled stream function ψ = ψ(y, θ) satisfies u = 1
h
∂ψ
∂y and v = −∂ψ∂θ + y

h
dh
dθ

∂ψ
∂y .
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In the special case of constant viscosity µ ≡ 1 the fluidity is simply equal to unity,

i.e. f ≡ 1. Note that, since the flux Q is prescribed, (2.17) is the key equation

which determines the film thickness h. Furthermore, since by definition f > 0 and

h > 0, (2.17) shows that −Q/ cos θ > 0, i.e. that Q must always have the same sign

as − cos θ. Thus we deduce that −1 < QR < 0 and 0 < QL < 1, where the sign

difference between QR and QL arises because the flux is everywhere downwards,

and so it is in the direction of increasing θ on the left-hand side of the cylinder but

is in the direction of decreasing θ on the right-hand side of the cylinder. In fact,

the present analysis also applies to the flow on the left-hand side of the cylinder

in the case QR = 0, QL = 1 (in which there is no fluid on the right-hand side of

the cylinder), and to the flow on the right-hand side of the cylinder in the case

QR = −1, QL = 0 (in which there is no fluid on the left-hand side of the cylinder).

The fluid loads on the right-hand and the left-hand sides of the cylinder are

given by

MR =

∫ π/2

−π/2
h dθ (2.19)

and

ML =

∫ π

π/2

h dθ +

∫ −π/2
−π

h dθ, (2.20)

respectively.

Thus, for a specific choice of viscosity model µ = µ(T ), the film thickness h

is determined in terms of Q = QR (−1 ≤ QR < 0) on the right-hand side of the

cylinder and in terms of Q = QL (0 < QL ≤ 1) on the left-hand side of the cylinder

by the algebraic equation (2.17) in which f is given by (2.18), and the solutions

for T , u, p, MR and ML are given explicitly by (2.12)–(2.14), (2.19) and (2.20),

respectively.

Note that while the present problem has been obtained as the leading-order

approximation to the steady flow of a thin film of fluid on a large horizontal circular

cylinder, exactly the same problem also describes the leading-order approximation

to the steady flow of a thin film of fluid down any sufficiently slowly varying

substrate with local angle of inclination to the horizontal α = π/2 − θ, where
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0 ≤ α ≤ π. In particular, the present analysis applies to the widely studied

problem of rectilinear flow down a planar substrate inclined at an angle α to the

horizontal.

From (2.12), (2.13), (2.15), (2.17) and (2.18) it is clear that the Biot number

B appears only in the combinations Bh, B2u, B3ψ and B3Q, and that Bh is a

function of −B3Q/ cos θ (> 0). Thus, in particular, we could remove B explicitly

from the mathematical problem by rescaling h, u, ψ and Q appropriately; however,

since this obscures the physical interpretation of the results obtained we retain B

explicitly in what follows.

Combining (2.12), (2.13), (2.15), (2.17) and (2.18) shows that h, T , u, ψ and

f depend on θ only through cos θ, and so the flow has top-to-bottom symmetry,

but (as we have already mentioned) not necessarily left-to-right symmetry.

Using (2.12) and (2.18) one may show that

d (fh3)

dh
=

3h2

1 +Bh

∫ 1

0

(1− y) [2 + 3Bh(1− y)]

µ(T (y, θ))
dy > 0, (2.21)

and hence from (2.17) we find that ∂h/∂Q has the same sign as Q, which means

that the film thickness at each station θ increases monotonically with |Q|.

Similarly, from (2.17) we find that dh/dθ has the same sign as tan θ, which

means that the film thickness on the right-hand (left-hand) side of the cylinder

increases monotonically away from its minimum value at θ = 0 (θ = π).

Near the top and the bottom of the cylinder we have h→∞, T ∼ 1− y, and

f → f̂ as θ → ±π/2, where from (2.18) the constant f̂ (> 0), which depends only

on the specific viscosity model considered, is defined by

f̂ = 3

∫ 1

0

T 2

µ(T )
dT. (2.22)

Specifically, from (2.17) the thin-film approximation ultimately fails as the film

thickness becomes unbounded according to

h =

(
3Q

(|θ| − π/2) f̂

)1/3

− f̂ − ĝ
f̂B

+O
(
|θ| − π

2

)1/3

as θ → ±π
2
, (2.23)
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where the constant ĝ (> 0), which (like f̂) also depends only on the specific vis-

cosity model considered, is defined by

ĝ = 2

∫ 1

0

T

µ(T )
dT. (2.24)

Hereafter we will, for simplicity, restrict our attention to the flow on the right-

hand side of the cylinder (|θ| < π/2) with flux Q = QR (−1 ≤ QR < 0) and load

M = MR, from which the corresponding results for the flow on the left-hand side

of the cylinder (π/2 < |θ| < π) with flux Q = QL (0 < QL ≤ 1) and load M = ML

can be readily obtained.

2.2 Special Case of Constant Viscosity

If either there is no heat transfer to or from the atmosphere at the free surface

(i.e. in dimensional terms if αth = 0) so that B = 0 (in which case the fluid film

is isothermal with constant temperature T ≡ 1) or the viscosity is independent

of temperature (i.e. in dimensional terms if λ = 0) so that V = 0 (in which case

the fluid film is non-isothermal with non-constant temperature T 6≡ 1), then the

fluid has constant viscosity µ ≡ 1 and fluidity f ≡ 1. In either case we recover the

classical isothermal solution in which h = h0, u = u0 and ψ = ψ0, where

h0 =

(
− 3Q

cos θ

)1/3

, (2.25)

u0 = −h
2
0 cos θ

2
(2− y)y (2.26)

and

ψ0 = −h
3
0 cos θ

6
(3− y)y2. (2.27)

In particular, (2.25) shows that the film thickness h0 increases monotonically with

|θ| away from its minimum value of (3|Q|)1/3 at θ = 0, becoming unbounded at

the top and the bottom of the cylinder according to

h0 =

(
3Q

|θ| − π/2

)1/3

+O
(
|θ| − π

2

)5/3

as θ → ±π
2
, (2.28)
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in agreement with the corresponding general results obtained in Section 2.1. The

load M = M0 is given by

M0 = 2

∫ π/2

0

h0 dθ = C0|Q|1/3, (2.29)

in which the numerical coefficient C0 is given by

C0 = 2

∫ π/2

0

(
3

cos θ

)1/3

dθ =
25/3π2

32/3Γ
(

2
3

)3 ' 6.0669. (2.30)

2.3 General Case of Non-Constant Viscosity

In general, if there is heat transfer to or from the atmosphere at the free surface

(i.e. in dimensional terms if αth > 0) so that B > 0 and the viscosity depends

on temperature (i.e. in dimensional terms if λ > 0) so that V 6= 0, then the fluid

film is non-isothermal with, in general, non-constant temperature, viscosity and

fluidity. In the particular case of the exponential viscosity model (2.8) we have

µ = exp(−V (T − 1)) = exp

(
BV hy

1 +Bh

)
= exp(Vy), (2.31)

where, for brevity, we have introduced the notation V = V(θ) defined by

V =
BV h

1 +Bh
, (2.32)

so that (2.13) yields the azimuthal velocity

u = −h
2 cos θ

V2
[V − 1 + (1− V(1− y)) exp(−Vy)] , (2.33)

(2.15) yields the stream function

ψ = −h
3 cos θ

V3
[(V − 1)(Vy − 1) + 1− (2− V(1− y)) exp(−Vy)] (2.34)

and (2.18) yields the fluidity

f =
3

V3

[
(V − 1)2 + 1− 2 exp(−V)

]
. (2.35)
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Figure 2.2: Film thickness h plotted as a function of θ/π for (a) B = 0 (dash-dotted

line), B = 10n (n = −1.25, −1, −0.75, . . . , 1.25) in the case V = −5 (dotted lines)

and B = 10n (n = −1.25, −1, −0.75, . . . , 0.75) in the case V = 5 (solid lines)

together with the leading order asymptotic solutions in the limit B → ∞ in the

cases V = −5 and V = 5 (dashed lines), and for (b) V = −30, −25, −20, . . . , 30 in

the case B = 1, when Q = −1/2.

Note that f is a monotonically decreasing function of V satisfying

f ∼ 6 exp(−V)

(−V)3
→∞ as V → −∞, (2.36)

f = 1− V
4

+O(V2) as V → 0 (2.37)

and

f ∼ 3

V
→ 0 as V → ∞. (2.38)

Figures 2.2 and 2.3 show the film thickness h plotted as a function of θ/π for

a range of values of B and V , and the film thickness at θ = 0, h(0), plotted as

a function of B for a range of values of V and of V for a range of values of B,

respectively. In particular, figures 2.2 and 2.3 illustrate that h is a monotonically

increasing (decreasing) function ofB for positive (negative) V , and a monotonically
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Figure 2.3: Film thickness at θ = 0, h(0), plotted as a function (a) of B for V = −20,

−16, −12, . . . , 20 (solid lines) together with the asymptotic solutions in the limits

B → 0+ and B → ∞ in the cases V = −4 and 4 (dotted lines), and (b) of V for

B = 0 and B = 10n (n = −1.5, −1.25, −1, . . . , 1.5) (solid lines) together with

the asymptotic solutions in the limits V → 0, V → ∞ and V → −∞ in the case

B = 1 (dotted lines) and the leading order asymptotic solution in the limit B →∞

(dashed line), when Q = −1/2.

increasing function of V . In addition, figure 2.3 shows good agreement with the

asymptotic results for h obtained subsequently.

Figure 2.4 shows the free-surface temperature at θ = 0, T (1, 0), plotted as a

function of B for a range of values of V and of V for a range of values of B. Taken

together with the results for h shown in figures 2.2 and 2.3, figure 2.4 illustrates

that the free-surface temperature, T (1, θ), is a monotonically decreasing function

of both B and V .

Figure 2.5 shows the velocity u plotted as a function of Y = hy for a range of

values of θ for both a negative and a positive value of V , and Figure 2.6 shows

the free-surface velocity at θ = 0, u(1, 0), plotted as a function of B for a range of

values of V and of V for a range of values of B. In particular, figure 2.5 shows that
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Figure 2.4: Free-surface temperature at θ = 0, T (1, 0), plotted as a function (a)

of B for V = −20, −16, −12, . . . , 20 (solid lines) together with the leading order

asymptotic solution in the limit V → ∞ (i.e. T (1, 0) = 0) (dashed line) and the

leading order asymptotic solution in the limit V → −∞ (i.e. T (1, 0) = 1) (dash-

dotted line), and (b) of V for B = 0 and B = 10n (n = −1.5, −1.25, −1, . . . , 1.5)

(solid lines) together with the leading order asymptotic solution in the limit B →∞

(i.e. T (1, 0) = 0) (dashed line), when Q = −1/2.

Figure 2.5: Velocity u plotted as a function of Y = hy for θ = 0, π/64, π/32, . . . ,

31π/64 in the cases (a) V = −5 and (b) V = 5, when Q = −1/2 and B = 1.
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Figure 2.6: Free-surface velocity at θ = 0, u(1, 0), plotted as a function (a) of B for

V = −10, −8, −6, . . . , 10 (solid lines) together with the asymptotic solutions in the

limits B → 0+ and B →∞ in the cases V = −2 and 2 (dotted lines) and the leading

order asymptotic solution in the limit V → ∞ (i.e. u(1, 0) = 0) (dashed line), and

(b) of V for B = 0 and B = 10n (n = −1.5, −1.25, −1, . . . , 1) (solid lines) together

with the asymptotic solutions in the limits V → 0, V → ∞ and V → −∞ in the

case B = 10−0.5 ' 0.3162 (dotted lines) and the leading order asymptotic solution

in the limit B →∞ (dashed line), when Q = −1/2.

the velocity profiles for non-zero values of V are, in general, quite different from the

familiar semi-parabolic profile (2.26) in the constant viscosity case V = 0. Figure

2.7 shows typical streamlines of the flow on the right-hand side of the cylinder.

Figure 2.8 shows the load M plotted as a function of B for a range of values

of V and of V for a range of values of B. In particular, figure 2.8 shows that M

is a monotonically increasing (decreasing) function of B for positive (negative) V ,

and a monotonically increasing function of V . In addition, figure 2.8 shows good

agreement with the asymptotic results for M obtained subsequently.

In order to obtain a complete understanding of the influence of varying B and

V , in the following Subsections 2.3.1–2.3.5 we analyse the behaviour in the asymp-
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Figure 2.7: Typical streamlines of the flow on the right-hand side of the cylinder

plotted for ψ = 0 (the cylinder), Q/5, 2Q/5, 3Q/5, 4Q/5 and Q (the free surface)

when Q = −1/2, B = 1 and V = 1.

totic limits of weak heat transfer at the free surface, B → 0+, strong heat transfer

at the free surface, B →∞, weak thermoviscosity, V → 0, strong positive thermo-

viscosity, V → ∞, and strong negative thermoviscosity, V → −∞, respectively.

In addition, in Section 2.4 we analyse the distinguished limit of strong thermovis-

cosity and weak heat transfer, |V | → ∞ and B → 0+ with BV = O(1), in which,

although the variation in temperature across the fluid film small, thermoviscosity

effects still enter the problem at leading order.

2.3.1 The limit of weak heat transfer B → 0+

At leading order in the limit of weak heat transfer at the free surface, B → 0+,

the free surface is insulated (i.e. ∂T/∂y = 0 at y = 1) and, as already discussed in

Section 2.2, the fluid film is isothermal with constant temperature T ≡ 1, viscosity
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Figure 2.8: Load M plotted as a function (a) of B for V = −20, −16, −12, . . . ,

20 (solid lines) together with the asymptotic solutions in the limits B → 0+ and

B → ∞ in the cases V = −4 and 4 (dotted lines), and (b) of V for B = 0 and

B = 10n (n = −1.5, −1.25, −1, . . . , 1.5) (solid lines) together with the asymptotic

solutions in the limits V → 0, V → ∞ and V → −∞ in the case B = 1 (dotted

lines) and the leading order asymptotic solution in the limit B →∞ (dashed line),

when Q = −1/2.

µ ≡ 1 and fluidity f ≡ 1. Hence the leading-order solutions for h, u and M are

simply the isothermal solutions h0, u0 and M0 given by (2.25), (2.26) and (2.29),

respectively.

The effect of variations in B first appear at O(B), to which order the solutions

for h, T , u and M are given by

h = h0 +
BV h2

0

12
+O(B2), (2.39)

T = 1−Bh0y +
B2(12− V )h2

0y

12
+O(B3), (2.40)

u = u0 −
BV h3

0 cos θ

12
(4y2 − 7y + 2)y +O(B2) (2.41)
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and

M = M0 + C1Q
2/3BV +O(B2), (2.42)

where the numerical coefficient C1 is given by

C1 =
1

6

∫ π/2

0

(
3

cos θ

)2/3

dθ =
π2

21/335/6Γ
(

2
3

)3 =
C0

4× 31/6
' 1.2629. (2.43)

Note that the solutions (2.39)–(2.42) are valid for a general viscosity model satis-

fying µ = 1 and dµ/dT = −V when T = 1 to the order shown (but not to higher

orders). The solution (2.40) shows that the effect of weak heat transfer at the free

surface is to decrease T from its constant isothermal value T ≡ 1 throughout the

fluid film. Thus for positive (negative) thermoviscosity V > 0 (V < 0) the viscosity

is increased (decreased) from its constant isothermal value µ ≡ 1, and determining

the sign of u1 shows that the magnitude of the velocity is increased (decreased)

from its value in the isothermal case when 0 < y < (7 −
√

17)/8 ' 0.3596 and

decreased (increased) when (7−
√

17)/8 < y ≤ 1, with the net effect that the mag-

nitude of the average fluid velocity is decreased (increased) and hence that the

film thickness (and hence the load) is increased (decreased) everywhere in order

to accommodate the fixed volume flux of fluid.

2.3.2 The limit of strong heat transfer B →∞

At leading order in the limit of strong heat transfer at the free surface, B → ∞,

the free surface is at the same uniform temperature as the atmosphere (i.e. T = 0

at y = 1) and the fluid film has non-constant temperature T = T̂ = 1 − y and

viscosity µ = µ̂ = µ(T̂ ). As Duffy and Wilson [129] showed, the leading-order

solutions for u and f , denoted by û and f̂ , are given by

û = −ĥ2 cos θ

∫ 1

T̂

T

µ(T )
dT (2.44)

and (2.22), respectively, where ĥ denotes the leading-order solution for h. Closed-

form expressions for f̂ for linear, exponential and Eyring viscosity models are



Chapter 2 59

described in detail by Wilson and Duffy [95]. Since f̂ is a constant (and not a

function of θ as, in general, f is) the leading-order solutions for h and M , the

latter denoted by M̂ , are simply given by

ĥ =
h0

f̂ 1/3
=

(
− 3Q

f̂ cos θ

)1/3

, M̂ =
M0

f̂ 1/3
= C0

(
|Q|
f̂

)1/3

, (2.45)

where h0 and M0 are the solutions for h and M of the corresponding isothermal

problem with the same flux given by (2.25) and (2.29) in which the constant C0 is

again given by (2.30). Thus, rather remarkably, for a general viscosity model the

film thickness and the load (but not the temperature or the velocity) at leading or-

der in the limit of strong heat transfer are simply re-scaled versions of their values

for the corresponding isothermal problem with the same flux. In particular, this

means that for positive (negative) thermoviscosity the leading-order film thickness

and load are increased (decreased) from their values for the corresponding isother-

mal problem with the same flux. Furthermore, in this limit V ∼ V , and so the

leading order expressions for µ, u, ψ and f are simply given by (2.31), (2.33),

(2.34) and (2.35) with V replaced by V , respectively.

Note that the re-scaling (2.45) differs from that proposed by Duffy and Wilson

[129]. In general, the leading-order solutions for h, Q and M in the limit of

strong heat transfer, denoted by ĥ, Q̂ and M̂ , are given simply by ĥ = f̂−mh0,

Q̂ = f̂ 1−3mQ0, and M̂ = f̂−mM0 for any non-zero value of m, where h0 and M0 are

the solutions for h and M of the corresponding isothermal problem with flux Q0.

Thus at leading order in the limit of strong heat transfer, the film thickness and the

load are simply re-scaled versions of their values for the corresponding isothermal

problem with the appropriate flux. The present scaling (2.45) corresponds to the

choice m = 1/3 and is simply the special case in which the flux remains unscaled.

The scaling proposed by Duffy and Wilson [129] corresponds to the choicem = 1/2,

who showed that this the only possible choice for the corresponding problem of

non-isothermal flow on a uniformly rotating cylinder at leading order in the limit

of strong heat transfer, but failed to notice that there is no restriction on the value
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of m for the present problem of non-isothermal flow on a stationary cylinder.

As might have been anticipated, this simple re-scaling property does not extend

to higher orders. Specifically, extending the analysis to O(1/B2) the solutions for

h, T , u and M are given by

h = ĥ− (V + 3)f̂ − 3

3f̂B
+O

(
1

B2

)
, (2.46)

T = T̂ +
y

Bĥ
+

(V f̂ − 3)y

3f̂B3ĥ2
+O

(
1

B3

)
, (2.47)

u = û− ĥ cos θ

3f̂BV

[
6(V − 1)

V
− (2V + 1)f̂

+

(
6[1− V (1− y)]

V
+ [1 + V (1− y)(2− 3y)]f̂

)
exp(−V y)

]
+O

(
1

B2

) (2.48)

and

M = M̂ −
π
[
(V + 3)f̂ − 3

]
3f̂B

+O

(
1

B2

)
. (2.49)

The solution (2.47) shows that the effect of large-but-finite heat transfer at the free

surface is to increase T from its leading-order value T = T̂ = 1− y throughout the

fluid film. Thus for positive (negative) thermoviscosity V > 0 (V < 0) the viscosity

is decreased (increased) from its leading-order value µ = µ̂ with the net effect that

the film thickness is decreased (increased) uniformly in order to accommodate the

fixed volume flux of fluid, and hence that the load is decreased (increased).

2.3.3 The limit of weak thermoviscosity V → 0

As already discussed in Section 2.2, at leading order in the limit of weak thermo-

viscosity, V → 0, the fluid film has non-constant temperature T 6≡ 1 but constant

viscosity µ ≡ 1 and fluidity f ≡ 1. From (2.17) and (2.18) the solution for h is

given by

h = h0 +
BV h2

0

12(1 +Bh0)
+O(V 2), (2.50)
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and hence from (2.12), (2.13) and (2.19) the solutions for T , u and M are given

by

T = 1− Bh0y

1 +Bh0

− B2V h2
0y

12(1 +Bh0)3
+O(V 2), (2.51)

u = u0 −
BV h3

0 cos θ

12(1 +Bh0)
(4y2 − 7y + 2)y +O(V 2) (2.52)

and

M = M0 +
Q2/3BV

2× 31/3

∫ π/2

0

dθ

(cos θ)2/3 +B(3|Q| cos θ)1/3
+O(V 2), (2.53)

where h0, u0 and M0 are the isothermal solutions given by (2.25), (2.26) and (2.29),

respectively. Note that the solutions (2.50)–(2.53) are valid for a general viscosity

model satisfying µ = 1 and dµ/dT = −V when T = 1 to the order shown (but

not to higher orders). The solutions in this limit are similar to those in the limit

B → 0+ described in Subsection 2.3.1 and have a similar physical interpretation.

This behaviour is illustrated in figure 2.9 which shows the film thickness h plotted

as a function of θ/π and the velocity u at θ = 0 plotted as a function of Y = hy

for a range of values of V near V = 0.

2.3.4 The limit of strong positive thermoviscosity V →∞

In the limit of strong positive thermoviscosity, V →∞, from (2.17) and (2.18) the

solution for h is given by

h = h0

(
V

3

)1/3

− 1

3B
+O

(
1

V 1/3

)
, (2.54)

and hence from (2.12), (2.13) and (2.19) the solutions for T , u and M are given

by

T = 1− y +
y

Bh0

(
3

V

)1/3

− 2y

3B2h2
0

(
3

V

)2/3

+O

(
1

V

)
, (2.55)

u = −h
2
0 cos θ

3

(
3

V

)1/3

[1− exp(−V y)]

− h0 cos θ

9B

(
3

V

)2/3

[1− (1 + 3V y) exp(−V y)] +O

(
1

V

)
(2.56)
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Figure 2.9: (a) Film thickness h plotted as a function of θ/π for V = −10, −8, −6,

. . . , 10 (solid lines), and (b) velocity u at θ = 0 plotted as a function of Y = hy for

V = −3, −2, −1, . . . , 3 (solid lines), together with the corresponding asymptotic

solutions in the limit V → 0 (dotted lines), when Q = −1/2 and B = 1.

and

M = M0

(
V

3

)1/3

− π

3B
+O

(
1

V 1/3

)
, (2.57)

where h0 and M0 are the isothermal solutions for h and M given by (2.25) and

(2.29), respectively. In particular, these solutions show that at leading order in the

limit of strong positive thermoviscosity the temperature is given by T = 1− y and

the viscosity µ = O(exp(V y)) is exponentially large outside a narrow boundary

layer of width O(1/V ) � 1 near the cylinder y = 0, resulting in a slow “plug

flow” with a uniform (i.e. independent of y) velocity of O(V −1/3) � 1 outside

the boundary layer and a large film thickness of O(V 1/3) � 1. This behaviour is

illustrated in figure 2.10 which shows the film thickness h plotted as a function of

θ/π and the velocity u at θ = 0 plotted as a function of Y = hy for a range of

positive values of V .
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Figure 2.10: (a) Film thickness h plotted as a function of θ/π for V = 7.5, 15, 22.5,

. . . , 60 (solid lines), and (b) velocity u at θ = 0 plotted as a function of Y = hy

for V = 4, 8, 12, ..., 40 (solid lines), together with the corresponding asymptotic

solutions in the limit V →∞ (dotted lines), when Q = −1/2 and B = 1.

2.3.5 The limit of strong negative thermoviscosity V → −∞

In the limit of strong negative thermoviscosity, V → −∞, from (2.17) and (2.18)

the solution for h is given by

h =
1

B(−V )
log

(
QB3V 3

2 cos θ

)
+O

(
log(−V )2

V 2

)
, (2.58)

and hence from (2.12), (2.13) and (2.19) the solutions for T , u and M are given

by

T = 1− y

(−V )
log

(
QB3V 3

2 cos θ

)
+O

(
log(−V )

V 2

)
, (2.59)

u = − cos θ

B2V 2

[(
QB3V 3

2 cos θ

)y {
log

(
QB3V 3

2 cos θ

)
(1− y) + 1

}
− log

(
QB3V 3

2 cos θ

)
− 1

]
+O (log(−V )) (2.60)

and

M =
π log(|Q|B3(−V )3)

B(−V )
+O

(
log(−V )2

V 2

)
. (2.61)
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Figure 2.11: (a) Film thickness h plotted as a function of θ/π for V = −30, −60,

−90, . . . , −180 (solid lines), and (b) velocity u at θ = 0 plotted as a function

of Y = hy also for V = −30, −60, −90, . . . , −180 (solid lines), together with

the corresponding asymptotic solutions in the limit V → −∞ (dotted lines), when

Q = −1/2 and B = 1.

In particular, these solutions show that at leading order in the limit of strong

negative thermoviscosity the temperature is given by T = 1 and the viscosity

µ =

(
2 cos θ

QB3V 3

)y
(2.62)

decreases from O(1) at the cylinder y = 0 to O((−V )−3)� 1 at the free surface y =

1 and that the velocity increases from zero at the cylinder (where there is a narrow

boundary layer of width O(1/ log(−V )) � 1) to O(−V ) � 1 at the free surface

(where there is another narrow boundary layer also of width O(1/ log(−V ))� 1),

resulting in a small film thickness of O(log(−V )/(−V )) � 1. This behaviour is

illustrated in figure 2.11 which shows the film thickness h plotted as a function of

θ/π and the velocity u at θ = 0 plotted as a function of Y = hy for a range of

negative values of V .
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2.4 Distinguished Limit of Strong Thermoviscos-

ity and Weak Heat Transfer |V | → ∞ and

B → 0+ With V̂ = BV = O(1)

Another interesting case also worth considering is the distinguished limit discussed

by Wilson and Duffy [96] of strong thermoviscosity, |V | → ∞, and weak heat

transfer at the free surface, B → 0+, such that V̂ = BV = O(1), in which,

although the variation in temperature across the fluid film is small, specifically

T = 1 − Bhy + O(B2), thermoviscosity effects still enter the problem at leading

order, i.e. the variation in viscosity across the fluid film is still O(1). This case is

physically relevant since the Biot number is often found to be small. By making

the substitution V = V̂ /B and taking the limit B → 0 we are able to consider this

interesting case with one less parameter than we had previously thereby simplifying

the analysis of the problem. Note that in this limit the effective thermoviscosity

number, V̂ = BV , defined in terms of dimensional quantities by

V̂ =
λ(T0 − T∞)εaαth

µ0kth

, (2.63)

and not the previously defined thermoviscosity number, V , is the appropriate

non-dimensional measure of thermoviscosity effects. In the particular case of the

exponential viscosity model (2.31) in this limit V ∼ V̂ h and so the leading order

expressions for µ, u, ψ and f are simply given by (2.31), (2.33)–(2.35) with V

replaced by V̂ h, respectively.

Note that, in an analogous way to being able to remove B explicitly from the

general mathematical problem by rescaling appropriately (discussed in Section

2.1), in this case we could remove V̂ explicitly from the mathematical problem by

rescaling h, u, ψ and Q appropriately; however, since this again obscures the phys-

ical interpretation of the results obtained we retain V̂ explicitly in what follows.

In the limit of “weak” thermoviscosity, V̂ → 0, the solutions for h, u and M

are given by the corresponding results in the limit B → 0 given in Subsection
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2.3.1, namely (2.39), (2.41) and (2.42), with BV replaced by V̂ , and hence have

the same physical interpretation.

In the limit of strong positive thermoviscosity, V̂ → ∞, the solutions for h, u

and M are given by

h =

(
− QV̂

cos θ

)1/2

+
1

V̂
+O

(
1

V̂ 5/2

)
, (2.64)

u = −cos θ

V̂

(
− QV̂

cos θ

)1/2
1− exp

−(−QV̂ 3

cos θ

)1/2

y

+O

(
1

V̂ 2

)
(2.65)

and

M = Ĉ
(
|Q|V̂

)1/2

+
π

V̂
+O

(
1

V̂ 5/2

)
, (2.66)

in which the numerical coefficient Ĉ is given by

Ĉ = 2

∫ π/2

0

(
1

cos θ

)1/2

dθ = 2
√

2 K

(
1√
2

)
' 5.2441, (2.67)

where K(k) is the complete elliptic integral of the first kind with modulus k defined

by

K(k) =

∫ 1

0

dx√
1− x2

√
1− k2x2

(2.68)

(see, for example, Gradshteyn and Ryzhik [130]). These solutions differ from

the corresponding results in the limit V → ∞ given in Subsection 2.3.4, namely

(2.54), (2.56) and (2.57), but have a qualitatively similar physical interpretation.

In particular, these solutions show that at leading order in the limit of strong

positive thermoviscosity the viscosity

µ = exp

(−QV̂ 3

cos θ

)1/2

y + y

 (2.69)

is exponentially large outside a narrow boundary layer of width O(V̂ −3/2)� 1 near

the cylinder y = 0, resulting in a slow “plug flow” with a uniform (i.e. independent

of y) velocity ofO(V̂ −1/2)� 1 outside the boundary layer and a large film thickness

of O(V̂ 1/2)� 1.
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In the limit of strong negative thermoviscosity, V̂ → −∞, the solutions for h,

u and M are given by

h =
1

(−V̂ )
log

(
QV̂ 3

2 cos θ

)
+O

(
log((−V̂ )6)

V̂ 4

)
, (2.70)

u = −cos θ

V̂ 2

[(
QV̂ 3

2 cos θ

)y{
log

(
QV̂ 3

2 cos θ

)
(1− y) + 1

}
− log

(
QV̂ 3

2 cos θ

)
− 1

]

+O

(
log((−V̂ )6)

V̂ 2

)
(2.71)

and

M =
π log(|Q|(−V̂ )3)

(−V̂ )
+O

(
log((−V̂ )6)

V̂ 4

)
. (2.72)

At leading (but not higher) order these solutions coincide with the corresponding

results in the limit V → −∞ given in Subsection 2.3.5, namely (2.58), (2.60) and

(2.61), and hence have the same physical interpretation.

2.5 Conclusions

In the present work we obtained a comprehensive description of the two-dimensional

steady gravity-driven flow with prescribed volume flux of a thin film of Newtonian

fluid with temperature-dependent viscosity on a heated or cooled stationary hori-

zontal cylinder. In particular, we showed that for the exponential viscosity model

(2.8) the effect of increasing B depends on the sign of V . When the cylinder is hot-

ter than the surrounding atmosphere (i.e. when V > 0) the effect of increasing B

is to decrease the average temperature and so to increase the average viscosity and

hence reduce the average velocity within the film, with the net effect that the film

thickness (and hence the total fluid load on the cylinder) is increased to maintain

the fixed volume flux of fluid. When the cylinder is colder than the surrounding

atmosphere (i.e. when V < 0) the opposite occurs. Similarly, we showed that the

effect of increasing V is always to increase the film thickness and hence the load.
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In order to obtain a complete understanding of the influence of varying B and

V , we also analysed the behaviour in the asymptotic limits of weak heat transfer,

B → 0+, strong heat transfer, B →∞, weak thermoviscosity, V → 0, strong pos-

itive thermoviscosity, V →∞, and strong negative thermoviscosity, V → −∞, as

well as in the distinguished limit of strong thermoviscosity and weak heat transfer,

|V | → ∞ and B → 0+ with BV = O(1). The asymptotic analysis in the limits

B → 0+ and B →∞ revealed that increasing B from zero to infinity changes the

film thickness everywhere (and hence the load, but not the temperature or the

velocity) by a constant factor of f̂−1/3, where f̂ is given by (2.22), which depends

only on the specific viscosity model considered. The asymptotic analysis in the

limits V → 0, V → ∞ and V → −∞ revealed that for the exponential viscos-

ity model (2.8) the behaviour of the solution for large positive thermoviscosity is

very different from that for large negative thermoviscosity, and that both are very

different from that in the constant viscosity case V = 0. Specifically, in the limit

V → ∞ the viscosity is exponentially large of O(exp(V )) � 1 and the velocity

is small and uniform (i.e. independent of y) of O(V −1/3) � 1 outside a narrow

boundary layer of width O(1/V ) � 1 near the cylinder, leading to a large film

thickness of O(V 1/3) � 1, while in the limit V → −∞ the viscosity decreases

from O(1) at the cylinder to O((−V )−3) � 1 at the free surface and the velocity

increases from zero at the cylinder to a large value of O(−V ) � 1 at the free

surface, leading to a small film thickness of O(log(−V )/(−V ))� 1.
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Thermoviscous Coating and

Rimming Flows

In this chapter we use lubrication theory to study the steady two-dimensional

thermoviscous flow of a Newtonian fluid on either the outside or the inside of a

rotating horizontal cylinder.

3.1 Problem Formulation

Consider the steady two-dimensional thermoviscous flow of a thin film of a New-

tonian fluid with uniform (temperature-independent) density ρ and temperature-

dependent viscosity µ = µ(T ), where T denotes the (in general) non-uniform tem-

perature of the fluid, on either the outside (“coating flow”) or the inside (“rimming

flow”) of a circular cylinder of radius a rotating in a counter-clockwise direction

about its horizontal axis at uniform angular speed Ω (so that the circumferential

speed is aΩ), the cylinder being at the uniform temperature T0, which may be

either hotter or colder than the uniform temperature of the surrounding atmo-

sphere, denoted by T∞ (6= T0). Where possible we will consider a general viscosity

model µ = µ(T ), where µ(T ) is any monotonically decreasing function of T satis-

fying µ = µ0 and dµ/dT = −λ (< 0) when T = T0, where λ (> 0) is a prescribed

69
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positive constant. When it is necessary to specify a particular viscosity model we

will use the exponential viscosity model

µ(T ) = µ0 exp

(
−λ(T − T0)

µ0

)
(3.1)

as used by, for example, Goussis and Kelly [118, 119], Hwang and Weng [120],

Selak and Lebon [114], Balmforth and Craster [115] and Wilson and Duffy [95].

The choice of the cylinder temperature T = T0 as the reference point for the

viscosity model (as opposed to using the atmosphere temperature T = T∞) is

made because the heat transfer from the cylinder to the fluid is usually much

stronger that the heat transfer at the free surface and so the temperature of the

fluid will be closer to that of the cylinder and hence the viscosity model will be

more accurate (the further the temperature goes from the reference temperature,

the less accurate the viscosity model becomes). The appropriate non-dimensional

measure of thermoviscosity (i.e. the variation of viscosity with temperature) is the

thermoviscosity number, V , defined by

V =
λ(T0 − T∞)

µ0

. (3.2)

Since V has the same sign as T0 − T∞, situations in which the cylinder is hotter

(colder) than the atmosphere correspond to positive (negative) values of V . The

physically realistic values of V vary over several orders of magnitude from arbi-

trarily small values (when the viscosity is effectively independent of temperature

and/or when the magnitude of the heating or cooling is small) to reasonably large

values (when the viscosity is strongly dependent on temperature and/or when the

magnitude of the heating or cooling is large). For example, using the parame-

ter values given by Selak and Lebon [114] in the case |T0 − T∞| = 25 K yields

|V | = 0.3825 for acetic acid, |V | = 0.5225 for silicone oil, |V | = 0.625 for water,

and |V | = 2.5125 for glycerol, while Balmforth and Craster [115] give “typical”

values of |V | = 1 for wax and slurry, |V | = 5 for basaltic lava, |V | = 7 for syrup,

and |V | = 10 − 18 for silicic lava. Hence we will consider the full range of values

from V = 0 to the limits V →∞ and V → −∞ in the present work.
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Figure 3.1: Geometry of the problem (drawn for coating flow): steady two-

dimensional thermoviscous flow of a thin film of Newtonian fluid on a uniformly

rotating horizontal cylinder which is uniformly hotter or colder than the surround-

ing atmosphere.

Referred to polar coordinates r = a±Y (with origin at the cylinder’s axis) and θ

(measured counter-clockwise from the horizontal), as shown in figure 3.1 (drawn for

coating flow), we take the free surface of the fluid to be at r = a+h for coating flow

and r = a−h for rimming flow, the film thickness being denoted by h = h(θ). The

fluid velocity u = ueθ + ver (where eθ and er denote unit vectors in the azimuthal

and radial directions, respectively), the pressure p, and the temperature T are

governed by the usual mass-conservation, Navier–Stokes and energy equations. On

the cylinder r = a the velocity u satisfies no-slip and no-penetration conditions,

and the temperature is T = T0 (a prescribed constant). On the free surface

r = a ± h the usual normal and tangential stress balances and the kinematic

condition apply, as does Newton’s law of cooling −kth∇T ·n = αth(T −T∞), where

kth denotes the thermal conductivity of the fluid (assumed constant), αth (≥ 0)

denotes an (empirical) surface heat-transfer coefficient, and n denotes the unit

outward normal to the free surface. Surface tension, viscous dissipation, inertia



Chapter 3 72

and thermal advection are all neglected.

We consider only thin films with small aspect ratio ε defined by

ε =

(
µ0Ω

ρga

)1/2

� 1, (3.3)

where g denotes the magnitude of gravitational acceleration, and we scale and

non-dimensionalise the system appropriately by writing

r = a(1± εY ∗), h = εah∗, u = aΩu∗, v = ±εaΩv∗,

ψ = ±εa2Ωψ∗, p = pa ± εaρgp∗, T = T∞ + (T0 − T∞)T ∗,

µ = µ0µ
∗, Q = εa2ΩQ∗, M = εa2ρM∗,

 (3.4)

in which the + in the ± corresponds to coating flow while the − corresponds to

rimming flow, ψ is the streamfunction satisfying u = ∂ψ/∂Y and v = −∂ψ/∂θ with

ψ = 0 on Y = 0, pa is the constant pressure in the surrounding atmosphere, Q is

the constant azimuthal volume flux of fluid per unit axial length crossing a station

θ = constant, and M (> 0) is the constant fluid load on/in the cylinder (that is,

the mass of fluid per unit length on/in the cylinder). Note that since the non-

dimensionalisation of temperature given in (3.4) incorporates the factor T0 − T∞,

which can be either positive or negative, care is required when interpreting results

for the non-dimensional temperature T ∗ in terms of the dimensional temperature

T . For clarity the star superscripts on non-dimensional variables will be omitted

henceforth. In terms of non-dimensional variables the fluid occupies 0 ≤ Y ≤ h

for −π < θ ≤ π, the general viscosity model µ = µ(T ) satisfies µ = 1 and

dµ/dT = −V when T = 1, and the exponential viscosity model (3.1) is given by

µ = exp(−V (T − 1)). (3.5)

For both coating and rimming flow at leading order in ε the governing equations

become

∂u

∂θ
+
∂v

∂Y
= 0,

∂

∂Y

(
µ
∂u

∂Y

)
= cos θ,

∂p

∂Y
= − sin θ,

∂2T

∂Y 2
= 0, (3.6)
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together with the boundary conditions

u = 1, v = 0 and T = 1 on Y = 0 (3.7)

and
∂u

∂Y
= 0, p = 0 and

∂T

∂Y
+BT = 0 on Y = h, (3.8)

where the Biot number, B (≥ 0), defined by

B =
εaαth

kth

, (3.9)

is the appropriate non-dimensional measure of heat transfer to or from the atmo-

sphere at the free surface. The special case B = 0 corresponds to a perfectly insu-

lated free surface with no heat transfer to or from the atmosphere (i.e. ∂T/∂Y = 0

on Y = h), while at leading order in the limit B → ∞ the free surface is at the

same uniform temperature as the atmosphere (i.e. T = 0 on Y = h).

Introducing the rescaled radial coordinate y = Y/h (so that the fluid lies within

the fixed range 0 ≤ y ≤ 1) and solving (3.6) subject to (3.7) and (3.8) for the

azimuthal velocity u = u(y, θ), the streamfunction ψ = ψ(y, θ)1 the pressure

p = p(y, θ) and the temperature T = T (y, θ) yields

u = 1− h2 cos θ

∫ y

0

1− ỹ
µ(T (ỹ, θ))

dỹ, (3.10)

ψ = hy − h3 cos θ

∫ y

0

∫ ȳ

0

1− ỹ
µ(T (ỹ, θ))

dỹ dȳ

= hy − h3 cos θ

∫ y

0

(1− ỹ)(y − ỹ)

µ(T (ỹ, θ))
dỹ,

(3.11)

p = h(1− y) sin θ (3.12)

and

T = 1− Bhy

1 +Bh
. (3.13)

Hence the volume flux Q (= ψ(1, θ)) is given by

Q = h

∫ 1

0

u dy = h− h3 cos θ

∫ 1

0

∫ y

0

1− ỹ
µ(T (ỹ, θ))

dỹ dy, (3.14)

1Note that the rescaled stream function ψ = ψ(y, θ) satisfies u = 1
h
∂ψ
∂y and v = −∂ψ∂θ + y

h
dh
dθ

∂ψ
∂y .
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which may be re-written as

Q = h− h3 cos θ

3
f, (3.15)

where f = f(θ) (> 0) is a measure of the fluidity of the fluid film (herein referred

to simply as the fluidity), defined by

f = 3

∫ 1

0

∫ y

0

1− ỹ
µ(T (ỹ, θ))

dỹ dy = 3

∫ 1

0

(1− y)2

µ(T (y, θ))
dy. (3.16)

In the special case of constant viscosity µ ≡ 1 the fluidity is simply equal to unity,

i.e. f ≡ 1.

In the present work we shall be concerned only with “full-film” solutions, i.e.

solutions for which h is continuous, finite and non-zero for all −π < θ ≤ π,

corresponding to a continuous film of fluid covering the entire outside or inside of

the cylinder. In particular, for such solutions equations (3.13) and (3.16) show that

f depends on θ only through its dependence on h, and hence, using (3.15), only

through its dependence on cos θ. Hence h, u and T depend on θ only through cos θ,

and so the flow has top-to-bottom symmetry (but not left-to-right symmetry).

This symmetry is due to the balance between the viscous and gravitational forces

at leading order and would not be found if the higher order term corresponding to

pressure gradients in the θ direction was included. Moreover, at the top and the

bottom of the cylinder (θ = ±π/2) the film thickness is simply h = Q (from which

we trivially deduce that Q > 0) and the velocity is a uniform (i.e. independent of

y) “plug flow” u ≡ 1 across the film.

The fluid load in/on the cylinder, M (> 0), is given by

M =

∫ π

−π
h dθ = 2

∫ π

0

h dθ. (3.17)

With the viscosity model µ = µ(T ) prescribed, the film thickness h is deter-

mined in terms of Q by the algebraic equation (3.15) in which f is given by (3.16).

The value of Q is determined from either an appropriate criticality condition (given

in Section 3.4) or from the condition of prescribed load using (3.17). The prop-

erties and behaviour of the solutions in these two cases are discussed in detail in
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Sections 3.4 and 3.5, respectively, but in both cases, the solutions for u, ψ, p and

T are given explicitly by (3.10)–(3.13), respectively.

3.2 The Special Case of Constant Viscosity

If either there is no heat transfer to or from the atmosphere at the free surface

(i.e. in dimensional terms if αth = 0) so that B = 0 (in which case the fluid film

is isothermal with constant temperature T ≡ 1) or the viscosity is independent

of temperature (i.e. in dimensional terms if λ = 0) so that V = 0 (in which case

the fluid film is non-isothermal with non-constant temperature T 6≡ 1), then the

fluid has constant viscosity µ ≡ 1 and fluidity f ≡ 1. In either case we recover

the classical constant-viscosity solution derived by Moffatt [7], denoted by h = h0,

u = u0, ψ = ψ0, Q = Q0 and M = M0, where

u0 = 1− h2
0 cos θ

2
(2− y)y, (3.18)

ψ0 = h0y −
h3

0 cos θ

6
(3− y)y2, (3.19)

Q0 = h0 −
h3

0 cos θ

3
(3.20)

and

M0 = 2

∫ π

0

h0 dθ. (3.21)

Figure 3.2 shows contours of the flux Q0 given by (3.20) in the θ/π–h0 plane, which,

since they are by definition curves on which Q0 = constant, represent candidate

solutions for the free surface h0 = h0(θ). In particular, figure 3.2 shows that full-

film solutions are possible only for values of Q0 satisfying 0 < Q0 ≤ Qc0, where

Qc0 = 2/3 denotes the flux of the critical solution above which full-film solutions

are not possible, and that these solutions have loads M0 satisfying 0 < M0 ≤Mc0,

where Mc0 denotes the load of the critical solution. A detailed description of

the other (i.e. non-full-film) solutions of (3.20) is given by Duffy and Wilson [41].
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Figure 3.2: Contours of the flux in the constant-viscosity case, Q0, given by (3.20)

in the θ/π–h0 plane. The contours are drawn for Q0/Qc0 = 1/6, 1/3, 1/2, . . . , 3,

where Qc0 = 2/3.

When 0 < Q0 ≤ Qc0 the full-film solution of (3.20) for h0 may be written explicitly

in terms of Q0 and θ as

h0 =



2

(cos θ)1/2
cos

[
2π

3
− 1

3
cos−1

(
−3

2
Q0[cos θ]1/2

)]
if |θ| < π/2,

Q0 if |θ| = π/2,

2

(− cos θ)1/2
sinh

[
1

3
sinh−1

(
3

2
Q0[− cos θ]1/2

)]
if π/2 < |θ| ≤ π,

(3.22)

and has load M0 satisfying 0 < M0 ≤ Mc0 given by (3.21). The critical solution,

denoted by h0 = hc0, u0 = uc0 and ψ0 = ψc0, is obtained by substituting Q0 =

Qc0 = 2/3 into (3.18), (3.19) and (3.22), and from (3.21) has load M0 = Mc0,

where

Mc0 = 2

∫ π

0

hc0 dθ ' 4.44272. (3.23)

As figure 3.2 shows, the critical film thickness hc0 has a corner at θ = 0 (with

corresponding corners in all of the other streamlines ψc0 = constant also at θ = 0)
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given by hc0 = 1−Hc0|θ|+O(θ2), where the magnitude of the slope of the corner,

denoted by Hc0, is given by Hc0 = 1/
√

6 ' 0.40825.2 It is worth mentioning that

at the corner the fluid undergoes infinite acceleration and so the lubrication theory

breaks down; the corner could be “smoothed out” by the inclusion of higher order

effects. Wilson et al. [39] obtained an inner expansion for the solution near θ = 0

for the case of constant viscosity and showed that even in the absence of surface

tension (which one would certainly assume smooths out the corner) the inclusion

of higher order terms eliminated the corner. In what follows we will not obtain

the inner solution near θ = 0 since doing so would complicate the full solution

enormously and obscure the interpretation of the effects of interest, namely the

non-isothermal effects.

3.3 The General Case of Non-Constant Viscosity

In general, if there is heat transfer to or from the atmosphere at the free surface

(i.e. in dimensional terms if αth > 0) so that B > 0 and the viscosity depends

on temperature (i.e. in dimensional terms if λ > 0) so that V 6= 0, then the fluid

film is non-isothermal with, in general, non-constant temperature, viscosity and

fluidity. In the particular case of the exponential viscosity model (3.5) we have

µ = exp(−V (T − 1)) = exp

(
BV hy

1 +Bh

)
= exp(Vy), (3.24)

where, for brevity, we have introduced the notation V = V(θ) defined by

V =
BV h

1 +Bh
, (3.25)

so that (3.10) yields the azimuthal velocity

u = 1− h2 cos θ

V2
[V − 1 + (1− V(1− y)) exp(−Vy)] , (3.26)

2Note that Moffatt [7] gave slightly inaccurate values of Mc0 and Hc0, corresponding to

Mc0 = 4.428 and Hc0 = 0.577 in the present notation.
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(3.11) yields the stream function

ψ = hy − h3 cos θ

V3
[(V − 1)(Vy − 1) + 1− (2− V(1− y)) exp(−Vy)] (3.27)

and (3.16) yields the fluidity

f =
3

V3

[
(V − 1)2 + 1− 2 exp(−V)

]
. (3.28)

Note that the azimuthal velocity profile (3.26) is, in general, very different from

the simple parabolic velocity profile in the constant-viscosity case (3.18), and

that the fluidity (3.28) is a monotonically decreasing function of V satisfying

f = O(exp(−V)/(−V)3) → ∞ as V → −∞, f = 1 + O(V) as V → 0, and

f = O(1/V)→ 0+ as V → ∞.

Figure 3.3 shows contours of the flux Q given by (3.15) and (3.28) when B = 1

for (a) V = −5 and (b) V = 5. These plots are typical of those for all values of

B and V , and show that, as in the constant-viscosity case, there is a critical flux

Qc = Qc(B, V ) with a corresponding critical load Mc = Mc(B, V ) (both of which,

of course, now depend on both B and V ) such that full-film solutions exist only

for 0 < Q ≤ Qc (i.e. for 0 < M ≤ Mc). For future reference, the corresponding

critical solution (with Q = Qc and M = Mc) is denoted by µ = µc, h = hc, u = uc,

ψ = ψc, T = Tc and f = fc.

Figure 3.4 shows streamlines of the flow (drawn for coating flow) when B = 1

and V = 1 for (a) a prescribed load M = 4 (< Mc ' 4.73590) and (b) the critical

case M = Mc. In particular, in the case shown in Figure 3.4 the azimuthal velocity

u is always in the same direction as the rotation of the cylinder (i.e. u ≥ 0 for

all 0 ≤ y ≤ 1), and so backflow (i.e. u < 0 somewhere in 0 < y ≤ 1) does not

occur. While this is by far the most common behaviour (i.e. for most values of B

and V backflow does not occur), unlike in the special case of constant viscosity in

which backflow never occurs, in Section 3.6 we will show that in the general case

of non-constant viscosity there is a region of the B–V parameter plane in which

backflow occurs in a region on the right-hand side of the cylinder containing the

point on the free surface at θ = 0 (i.e. the point y = 1 and θ = 0).
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Figure 3.3: Contours of the flux in the non-constant-viscosity case, Q, given by

(3.15) and (3.28) in the θ/π–h plane when B = 1 for (a) V = −5 and (b) V = 5.

The contours are drawn for Q/Qc = 1/6, 1/3, 1/2, . . . , 3, where (a) Qc ' 0.49107

and (b) Qc ' 0.89514.

Figure 3.4: Streamlines of the flow (drawn for coating flow) plotted for ψ/Q = 0

(the cylinder), 1/5, 2/5, 3/5, 4/5 and 1 (the free surface) when B = 1 and V = 1 for

(a) a prescribed load M = 4 (< Mc ' 4.73590) with Q ' 0.62083 (< Qc ' 0.70942)

and (b) the critical case M = Mc with Q = Qc.
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3.4 The Critical Solution

In this Section we consider the properties and behaviour of the non-constant-

viscosity critical solution with load M = Mc introduced in Section 3.3 such that

full-film solutions exist only for 0 < M ≤ Mc. Not only is this generalisation of

the classical constant-viscosity critical solution of some interest in its own right,

but, as we shall see subsequently in Section 3.5, it is crucial to understanding the

properties and behaviour of solutions with a prescribed load.

As figures 3.2 and 3.3 clearly show, the unique feature of the critical solution

is that Q has a saddle point at θ = 0 and h = hc(0), at which point ∂Q/∂θ = 0

and ∂Q/∂h = 0, which leads to the criticality condition

d

dh

(
fh3

3

)
= 1 (3.29)

evaluated at θ = 0. For the exponential viscosity model (3.24) the criticality

condition (3.29) yields

V2 + 2V(V − 2)− 2V + 6−B2V (V − V)2 − 2(V − V + 3) exp(−V) = 0 (3.30)

evaluated at θ = 0, where V is given by (3.25). Solving (3.30) yields the value

of V(0) and hence the value of hc(0), and then (3.15) with fc given by (3.28)

yields the value of Qc and the solution for hc. The solutions for uc, ψc, Tc and

Mc are then given by (3.26), (3.27), (3.13) and (3.17), respectively. As in the

constant-viscosity case, the critical film thickness hc has a corner at θ = 0 (with

corresponding corners in all of the other streamlines ψc = constant also at θ = 0)

given by hc = hc(0) − Hc|θ| + O(θ2), where the magnitude of the slope of the

corner, denoted by Hc = Hc(B, V ) (which, of course, now depends on both B and

V ) is given by

Hc =

(
V 2 [(V − 1)2 + 1− 2 exp(−V)]

2B2(V−V)2[V 2+ 2V (V−2)−2V+6−[(V−V−2)2+2] exp(−V)]

)1/2
(3.31)
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evaluated at θ = 0. In fact, rather unexpectedly, a general version of (3.31) valid

for any viscosity model can be also obtained and is given by

Hc =


∫ 1

T̄

(T − T̄ )2

µ(T )
dT

2

∫ 1

T̄

T (3T − 2T̄ )

µ(T )
dT

∫ 1

T̄

(T − T̄ )(3T − T̄ )

µ(T )
dT


1/2

, (3.32)

where T̄ = Tc(1, 0) = 1/(1 + Bhc(0)) is the critical free-surface temperature

evaluated at θ = 0.

Figure 3.5 shows the critical film thickness hc plotted as a function of θ/π for a

range of values of (a) B and (b) V , and figure 3.6 shows the critical film thickness

at θ = 0, hc(0), plotted as a function of (a) B for a range of values of V and (b)

V for a range of values of B. In particular, figures 3.5 and 3.6 show that hc is

a decreasing function of |θ|, an increasing (decreasing) function of B for positive

(negative) V , and an increasing function of V .

Figures 3.7 and 3.8 show the magnitude of the slope of the corner in the critical

film thickness at θ = 0, Hc, and the critical load Mc, respectively, plotted as

functions of (a) B for a range of values of V and (b) V for a range of values of

B. In particular, figures 3.7 and 3.8 show that both Hc and Mc are increasing

(decreasing) functions of B for positive (negative) V , and increasing functions of

V .
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Figure 3.5: Critical film thickness hc plotted as a function of θ/π for (a) B = 0

(dash-dot line) and B = 10n (n = −1, −0.75, −0.5, . . . , 1.5) for V = −5 (dotted

lines) and B = 10n (n = −1, −0.75, −0.5, . . . , 1) for V = 5 (solid lines) and the

leading-order asymptotic solution in the limit B → ∞ for V = −5 and V = 5

(dashed lines), and (b) V = −30, −25, −20, . . . , 30 for B = 1.

Figure 3.6: Critical film thickness at θ = 0, hc(0), plotted as a function of (a) B for

V = −20, −16, −12, . . . , 20 with the asymptotic solutions in the limits B → 0+

and B → ∞ for V = −4 and 4 (dotted lines), and (b) V for B = 0 and B = 10n

(n = −1.5, −1.25, −1, . . . , 1.5) with the asymptotic solutions in the limits V → 0,

V → ∞ and V → −∞ for B = 1 (dotted lines) and the leading-order asymptotic

solution in the limit B →∞ (dashed line).
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Figure 3.7: Magnitude of the slope of the corner in the critical film thickness at

θ = 0, Hc, plotted as a function of (a) B for V = −20, −16, −12, . . . , 20 with the

asymptotic solutions in the limits B → 0+ and B → ∞ for V = −4 and 4 (dotted

lines), and (b) V for B = 0 and B = 10n (n = −1.5, −1.25, −1, . . . , 1) with the

asymptotic solutions in the limits V → 0, V → ∞ and V → −∞ for B = 10−0.5

(dotted lines) and the leading-order asymptotic solution in the limit B →∞ (dashed

line).

Figure 3.9 shows critical velocity profiles uc at various values of θ in the range

0 ≤ θ ≤ π when B = 1 for (a) V = −5 and (b) V = 5. The corresponding profiles

in the range −π < θ < 0 follow immediately from the top-to-bottom symmetry

of the flow. In particular, figure 3.9 shows that uc is an increasing function of |θ|,

a decreasing (increasing) function of y on the right-hand side 0 ≤ |θ| < π/2 (the

left-hand side π/2 < |θ| ≤ π) of the cylinder, and a uniform plug flow uc ≡ 1

at the top and bottom of the cylinder |θ| = π/2. Figure 3.10 shows the critical

free-surface velocity at θ = 0, uc(1, 0), plotted as a function of (a) B for a range of

values of V and (b) V for a range of values of B. In particular, figure 3.10 shows

that uc(1, 0) is an increasing (decreasing) function of B for positive (negative) V ,

an increasing function of V for positive V , but a non-monotonic function of V for

negative V .
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Figure 3.8: Critical load Mc plotted as a function of (a) B for V = −20, −16, −12,

. . . , 20 with the asymptotic solutions in the limits B → 0+ and B →∞ for V = −4

and 4 (dotted lines), and (b) V for B = 0 and B = 10n (n = −1.5, −1.25, −1, . . . ,

1.5) with the asymptotic solutions in the limits V → 0, V → ∞ and V → −∞ for

B = 1 (dotted lines) and the leading-order asymptotic solution in the limit B →∞

(dashed line).

Figure 3.9: Critical velocity profiles uc plotted as a function of Y = hcy at θ = 0,

π/32, π/16, . . . , π when B = 1 for (a) V = −5 and (b) V = 5.
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Figure 3.10: Critical free-surface velocity at θ = 0, uc(1, 0), plotted as a function of

(a) B for V = −20, −16, −12, . . . , 20 with the leading-order asymptotic solution

in the limit V → ∞ (i.e. uc(1, 0) = 2/3) (dashed line) and the solution for V = 0

and the leading-order asymptotic solution in the limit V → −∞ (i.e. uc(1, 0) = 1/2)

(dash-dot line), and (b) V for B = 0 (i.e. uc(1, 0) = 1/2) and B = 10n (n = −1.5,

−1.25, −1, . . . , 1.5) with the leading-order asymptotic solution in the limit B →∞

(dashed line).

Figure 3.11 shows the critical free-surface temperature at θ = 0, Tc(1, 0), plot-

ted as a function of (a) B for a range of values of V and (b) V for a range of values

of B. In particular, figure 3.11 shows that Tc(1, 0) is a decreasing function of both

B and V .

In order to complete our understanding of the effects of varying B and V on

the critical solution, in the following Subsections we analyse the behaviour of the

critical solution in the asymptotic limits B → 0+, B → ∞, V → 0, V → ∞ and

V → −∞.
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Figure 3.11: The critical free-surface temperature at θ = 0, Tc(1, 0), plotted as a

function of (a) B for V = −20, −16, −12, . . . , 20 with the leading-order asymptotic

solution in the limit V → ∞ (i.e. Tc(1, 0) = 0) (dashed line) and the leading-order

asymptotic solution in the limit V → −∞ (i.e. Tc(1, 0) = 1) (dash-dot line), and (b)

V for B = 0 (i.e. Tc(1, 0) = 1) and B = 10n (n = −1.5, −1.25, −1, . . . , 1.5) with

the leading-order asymptotic solution in the limit B →∞ (i.e. Tc(1, 0) = 0) (dashed

line).

3.4.1 The limit of weak heat transfer B → 0+

At leading order in the limit of weak heat transfer at the free surface, B → 0+,

the free surface is perfectly insulated (i.e. ∂Tc/∂y = 0 on y = 1) and the fluid

film is isothermal with constant temperature Tc ≡ 1, viscosity µc ≡ 1 and fluidity

fc ≡ 1. Hence the leading-order solutions for hc, Hc, Mc and uc are simply the

constant-viscosity solutions hc0, Hc0, Mc0 and uc0 given in Section 3.2. The effect

of variations in B first appear at O(B), to which order the solutions for hc, Hc,

Mc, uc and Tc are given by

hc = hc0 +
BV hc0

24
(3hc0 + 1) +O(B2), (3.33)

Hc = Hc0 +
7BV

24
√

6
+O(B2), (3.34)
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Mc = Mc0 +
BV

24
(3CB0 +Mc0) +O(B2), (3.35)

uc = uc0 −
BV hc

2
0y cos θ

24

[
hc0(8y2 − 15y + 6) + 2− y

]
+O(B2) (3.36)

and

Tc = 1−Bhc0y −
B2hc0y

24
[V (3hc0 + 1)− 24hc0] +O(B3), (3.37)

where the constant CB0 is given by

CB0 = 2

∫ π

0

hc
2
0 dθ ' 3.21962. (3.38)

Note that the solutions (3.33)–(3.37) are valid for a general viscosity model sat-

isfying µ = 1 and dµ/dT = −V when Tc = 1 to the order shown (but not to

higher orders). The same is true for the asymptotic solution in the limit of weak

thermoviscosity V → 0 presented subsequently in Subsection 3.4.3. The solution

(3.37) shows that the effect of weak heat transfer at the free surface is to decrease

the temperature from its constant isothermal value Tc ≡ 1 throughout the fluid

film, and thus to increase (decrease) the viscosity from its constant isothermal

value µc ≡ 1, causing hc, Hc and Mc to increase (decrease) from their isothermal

values when V > 0 (V < 0). Furthermore, since the sign of the first-order term in

(3.36) is simply the sign of −V cos θ, the effect of weak heat transfer at the free

surface is to decrease (increase) uc from its isothermal value uc0 when V cos θ > 0

(V cos θ < 0). The asymptotic results (3.33)–(3.35) are included in figures 3.6(a),

3.7(a) and 3.8(a), respectively.

3.4.2 The limit of strong heat transfer B →∞

At leading order in the limit of strong heat transfer at the free surface, B → ∞,

the free surface is at the same uniform temperature as the atmosphere (i.e. Tc = 0

on y = 1) and the fluid film has non-constant temperature Tc = T̂ = 1 − y and

viscosity µc = µ̂ = µ(T̂ ). As Duffy and Wilson [129] showed, from (3.10) and

(3.16) the leading-order solutions for uc and fc, denoted by û and f̂ , are given by

û = 1− ĥ2 cos θ

∫ 1

T̂

T

µ(T )
dT (3.39)
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and

f̂ = 3

∫ 1

0

T 2

µ(T )
dT, (3.40)

where ĥ denotes the leading-order solution for hc. Moreover, since, for any viscosity

model, f̂ = f̂(V ) is a constant (and not a function of θ as, in general, f is) the

leading-order solutions for hc, Hc and Mc, denoted by ĥ, Ĥ and M̂ , are given

simply by rescaling the corresponding constant-viscosity solutions hc0, Hc0, Qc0

and Mc0 according to ĥ = f̂−1/2hc0, Ĥ = f̂−1/2Hc0 = (6f̂)−1/2, Q̂ = f̂−1/2Qc0 and

M̂ = f̂−1/2Mc0. For the exponential viscosity model V ∼ V in the limit B → ∞,

and so the leading-order solutions for µc, uc, ψc and fc are given simply by (3.24),

(3.26)–(3.28) with V replaced by V , respectively.

As might have been anticipated, this simple re-scaling property does not extend

to higher orders. Specifically, to higher order the solutions for hc, Hc, Mc, uc and

Tc are given by

hc = ĥ+
3− (V + 3)f̂

3Bf̂
+O

(
1

B2

)
, (3.41)

Hc = Ĥ +
V 2f̂ 2 + 3(V + 6)f̂ − 18

3B2(6f̂)3/2
+O

(
1

B3

)
, (3.42)

Mc = M̂ +
2π[3− (V + 3)f̂ ]

3Bf̂
+O

(
1

B2

)
, (3.43)

uc = û− hc0 cos θ

3V 2Bf̂ 3/2

[{
V (3y − 5)f̂ + 6

}
V y exp(−V y)

−
{
V (1 + 2V )f̂ + 6(1− V )

}
(1− exp(−V y))

]
+O

(
1

B2

)
(3.44)

and

Tc = T̂ +
f̂ 1/2y

Bhc0

− (3− V f̂)y

3B2hc
2
0

+O

(
1

B3

)
. (3.45)

The solution (3.45) shows that the effect of large-but-finite heat transfer at the

free surface is to increase the temperature from its leading-order value Tc = T̂ =

1− y throughout the fluid film, and thus to decrease (increase) the viscosity from

its leading-order value µc = µ̂ = exp(V y), causing hc, Hc and Mc to decrease
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(increase) from their leading-order values when V > 0 (V < 0). The asymptotic

results (3.41)–(3.43) are included in figures 3.6(a), 3.7(a), and 3.8(a), respectively.

3.4.3 The limit of weak thermoviscosity V → 0

At leading order in the limit of weak thermoviscosity, V → 0, the fluid film has

non-constant temperature Tc 6≡ 1 but constant viscosity µc ≡ 1 and fluidity fc ≡ 1.

Hence, like in the limit B → 0+, the leading-order solutions for hc, Hc, Mc and uc

are simply the constant-viscosity solutions hc0, Hc0, Mc0 and uc0 given in Section

3.2. The effect of variations in V first appear at O(V ), to which order the solutions

for hc, Hc, Mc, uc and Tc are given by

hc = hc0 +
BV hc0[3(1 +B)hc0 + 1]

24(1 +B)(1 +Bhc0)
+O(V 2), (3.46)

Hc = Hc0 +
BV (3B2 + 9B + 7)

24
√

6(1 +B)3
+O(V 2), (3.47)

Mc = Mc0 +
BV

12(1 +B)

∫ π

0

hc0[3(1 +B)hc0 + 1]

1 +Bhc0

dθ +O(V 2), (3.48)

uc = uc0 −
BV hc

2
0y cos θ[(1 +B)hc0(8y2 − 15y + 6) + 2− y]

24(1 +B)(1 +Bhc0)
+O(V 2) (3.49)

and

Tc = 1− Bhc0y

1 +Bhc0

− B2V hc0y[3(1 +B)hc0 + 1]

24(1 +B)(1 +Bhc0)3
+O(V 2). (3.50)

The solutions in this limit are somewhat similar to those in the limit B → 0+

described previously in Subsection 3.4.1 and have the corresponding physical in-

terpretation. There is, however, one noteworthy difference. Whereas in the limit

B → 0+ the sign of the first-order term in (3.36) is simply the sign of −V cos θ,

in the present limit it is the sign of the somewhat more complicated expression

−V cos θ[(1 + B)hc0(8y2 − 15y + 6) + 2 − y]. Thus for 0 < hc0 ≤ 1/(1 + B) and

for 0 < y < yc0 when 1/(1 +B) < hc0 ≤ 1 the effect of weak thermoviscosity is to

decrease (increase) uc from its isothermal value uc0 when V cos θ > 0 (V cos θ < 0),

whereas for yc0 < y ≤ 1 when 1/(1+B) < hc0 ≤ 1 the effect is the opposite, where
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y = yc0 (0 < yc0 ≤ 1) satisfies (1+B)hc0(8y2−15y+6)+2−y = 0. This behaviour

is the first hint of the occurrence of the backflow described subsequently in Section

3.6. The asymptotic results (3.46)–(3.48) are included in figures 3.6(b), 3.7(b) and

3.8(b), respectively.

3.4.4 The limit of strong positive thermoviscosity V →∞

In the limit of strong positive thermoviscosity, V → ∞, the solutions for hc, Hc,

Mc, uc and Tc are given by

hc =
V 1/2hc0√

3
− 1

3B
+O

(
1

V 1/2

)
, (3.51)

Hc =
V 1/2

3
√

2
+

√
2(3B2 − 1)

18B2V 1/2
+O

(
1

V

)
, (3.52)

Mc =
V 1/2Mc0√

3
− 2π

3B
+O

(
1

V 1/2

)
, (3.53)

uc = 1− hc
2
0 cos θ

3
[1− exp(−V y)]

−
√

3hc0 cos θ

9BV 1/2
[1− (3V y + 1) exp(−V y)] +O

(
1

V

)
(3.54)

and

Tc = 1− y +

√
3y

BV 1/2hc0

− 2y

B2V hc
2
0

+O

(
1

V 3/2

)
. (3.55)

These solutions show that at leading order in the limit of strong positive thermo-

viscosity the temperature is given by Tc = 1−y and the viscosity µc = O(exp(V y))

is exponentially large outside a narrow boundary layer of width O(1/V )� 1 near

the cylinder y = 0, resulting in a uniform plug flow uc ≡ 1 − hc
2
0 cos θ/3 outside

the boundary layer and a large film thickness and load of O(V 1/2) � 1. The

asymptotic results (3.51)–(3.53) are included in figures 3.6(b), 3.7(b) and 3.8(b),

respectively.
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3.4.5 The limit of strong negative thermoviscosity V → −∞

In the limit of strong negative thermoviscosity, V → −∞, the solutions for hc, Hc,

Mc, uc and Tc are given by

hc =
1

B(−V )

[
log

(
B2V 2

2

)
−WV∞ − 1

]
+O

(
log(−V )2

V 2

)
, (3.56)

Hc =
1

B(−V )
+O

(
log(−V )

V 2

)
, (3.57)

Mc =
1

B(−V )

[
2π log

(
B2V 2

2

)
− CV∞ − 2π

]
+O

(
log(−V )2

V 2

)
, (3.58)

uc = 1− cos θ

B2V 2

[(
−B

2V 2WV∞

2 cos θ

)y {[
log

(
B2V 2

2

)
−WV∞

]
(1− y) + y

}
− log

(
B2V 2

2

)
+WV∞

]
+O

(
log(−V )2

−V

)
(3.59)

and

Tc = 1− y

(−V )

[
log

(
B2V 2

2

)
−WV∞ − 1

]
+O

(
log(−V )

V 2

)
, (3.60)

where the function WV∞ = WV∞(θ) is given by

WV∞ = W0

(
−cos θ

e

)
(3.61)

and the constant CV∞ is given by

CV∞ = 2

∫ π

0

WV∞ dθ ' −0.73144, (3.62)

in which W0 = W0(x) denotes the principal real branch of the Lambert W function.

Figure 3.12(a) shows the two real branches of the Lambert W function, which is

defined to be the solution for W = W (x) of W exp(W ) = x, namely the principal

real branch W0(x) with domain [−1/e,∞) and range [−1,∞) and the lower real

branch W−1(x) with domain [−1/e, 0) and range (−∞,−1]. Figure 3.12(b) shows

the function WV∞ given by (3.61) plotted as a function of θ/π and, in particular,

shows that the sign of WV∞ is simply the sign of − cos θ. The solutions (3.56)–

(3.60) show that at leading order in the limit of strong negative thermoviscosity
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Figure 3.12: (a) The two real branches of the Lambert W function, W0(x) and

W−1(x), plotted as functions of x. (b) The function WV∞ = W0(− cos θ/e) plotted

as a function of θ/π.

the temperature is given by Tc ≡ 1 and the viscosity µ = O(V −2y) decreases from

O(1) at the cylinder y = 0 to O((−V )−2)� 1 at the free surface y = 1, resulting

in a velocity that increases (decreases) from uc = 1 at the cylinder [where there

is a narrow boundary layer of width O(1/ log(−V )) � 1] to uc = 1 + WV∞/2

at the free surface [where there is another narrow boundary layer also of width

O(1/ log(−V )) � 1] when cos θ < 0 (cos θ > 0), and a small film thickness and

load of O(log(−V )/(−V ))� 1. The asymptotic results (3.56)–(3.58) are included

in figures 3.6(b), 3.7(b) and 3.8(b), respectively.

3.5 Full-Film Solution with a Prescribed Load

In this Section we consider the properties and behaviour of the non-constant-

viscosity full-film solution with a prescribed load M . As described in Section 3.3,

such solutions exist only when 0 < M ≤ Mc, where Mc is the load of the critical

solution described in Section 3.4 and shown in Figure 3.8. Thus for a prescribed
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value of M such solutions exist, in general, only for restricted ranges of values of

B and V , and the critical values of B and V for such solutions to exist, denoted by

Bc and Vc, are precisely the values of B and V for which the critical solution has

load Mc = M . The ranges of values of B and V depend on the relative size of the

prescribed load M compared to the load of the critical solution in the limit B → 0+

(i.e. in the constant-viscosity case), namely Mc0 ' 4.44272, and the load of the

critical solution in the limit B → ∞, namely M̂ = f̂−1/2Mc0, where f̂ = f̂(V )

is given by (3.40), described previously. Specifically, as Figure 3.8(a) shows, for

positive V there are no full-film solutions for any value of B when M ≥ M̂ , full-film

solutions for B ≥ Bc when Mc0 < M < M̂ , and full-film solutions for all values

of B when M ≤ Mc0, while for negative V there are no full-film solutions for any

value of B when M > Mc0, full-film solutions for B ≤ Bc when M̂ < M ≤ Mc0,

and full-film solutions for all values of B when M ≤ M̂ . In particular, if we denote

the value of V satisfying M = M̂ by V = V∞, then there are full-film solutions in

the limit B → ∞ for V ≥ V∞, but not for V < V∞. Similarly, as Figure 3.8(b)

shows, for all values of B there are full-film solutions for V ≥ Vc, but not for

V < Vc. This behaviour is summarised in Figure 3.13, which shows the critical

curves (Bc, Vc) for a range of values of M . For each value of M the corresponding

critical curve (Bc, Vc) divides the B–V parameter plane into the region above the

curve in which full-film solutions exist and the region below the curve in which

they do not exist.

Figure 3.14 shows the film thickness h when M = 2 (< Mc0) plotted as a

function of θ/π for a range of values of B for (a) V = ±4 and (b) V = ±5. Figure

3.14 shows that when M = 2 for V = 5, V = 4 and V = −4 (all of which satisfy

V > V∞ ' −4.51567) there are full-film solutions for all values of B, but for

V = −5 < V∞ there are full-film solutions only for B ≤ Bc ' 19.84427. Figure

3.15(a) shows the film thickness h plotted as a function of θ/π for a range of values

of B when M = 6 (> Mc0) and V = 5, in which case there are full-film solutions for

B ≥ Bc ' 0.99344. Note that there is no corresponding plot for M = 6 (> Mc0)
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Figure 3.13: The critical curves (Bc, Vc) for M = 1, 2, 3, . . . , 12 and M = Mc0 '

4.44272. For each value of M the corresponding curve (Bc, Vc) divides the B–V

parameter plane into the region above the curve in which full-film solutions exist

and the region below the curve in which they do not exist.

and V = −5 because there are no full-film solutions when M > Mc0 and V < 0.

Figure 3.15(b) shows the film thickness h plotted as a function of θ/π for a range

of values of V when M = 2 (< Mc0) and B = 1, in which case there are full-film

solutions for V ≥ Vc ' −14.83331 (< 0). Note that the corresponding plot for

M = 6 (> Mc0) (which is omitted for brevity) is qualitatively similar to figure

3.15(b) except that Vc > 0. Figures 3.14 and 3.15 also show that h is a decreasing

function of |θ|, but, in contrast to the corresponding results for hc shown in Figure

3.5, show that near θ = 0 the film thickness h is a decreasing (increasing) function

of B for positive (negative) V and a decreasing function of V , but that near θ = π

it behaves in the opposite way in order to satisfy the condition of prescribed load.
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Figure 3.14: Film thickness h when M = 2 (< Mc0) plotted as a function of θ/π

for (a) B = 0 (dash-dash-dotted line), B = 10n (n = −0.5, 0, 0.5, 1, 1.5, 2) for

V = −4 (dotted lines) and B = 10n (n = −0.5, 0, 0.5, 1) for V = 4 (solid lines)

together with the leading-order asymptotic solution in the limit B →∞ for V = −4

and V = 4 (dashed lines), and (b) B = 0 (dash-dash-dotted line), B = 10n (n = 0,

0.5, 1) for V = −5 (dotted lines) and B = 10n (n = −0.5, 0, 0.5) for V = 5 (solid

lines) together with the leading-order asymptotic solution in the limit B → ∞ for

V = 5 (dashed line) and the critical solution for V = −5 with B = Bc ' 19.84427

(dash-dotted line).

Figures 3.16 and 3.17 show the film thickness at θ = 0, h(0), and at θ = π,

h(π), plotted as a function of (a,c) B for a range of values of V and (b,d) V for

a range of values of B when M = 2 (< Mc0) and M = 6 (> Mc0), respectively.

Note that in figure 3.16(a,c) the curve V = V∞ ' −4.51567 divides curves that

attain the limit B → ∞ from those that terminate at the finite value B = Bc

on the curve corresponding to V = Vc. In particular, figures 3.16 and 3.17 show

that h(0) is a decreasing (increasing) function of B for positive (negative) V and

a decreasing function of V , and that h(π) behaves in the opposite way.
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Figure 3.15: Film thickness h plotted as a function of θ/π for (a) B = 10n (n = 0.25,

0.5, 0.75, 1, 1.25) (solid lines) together with the leading-order asymptotic solution

in the limit B → ∞ (dashed line) and the critical solution with B = Bc ' 0.99344

(dash-dotted line) when M = 6 (> Mc0) and V = 5, and (b) V = −12, −8, −4,

. . . , 20 (solid lines) together with the leading-order asymptotic solution in the limit

V → ∞ (i.e. h ' 0.31831) (dashed line) and the critical solution with V = Vc '

−14.83331 (dash-dotted line) when M = 2 (< Mc0) and B = 1.

Figure 3.18 shows velocity profiles u at various values of θ in the range 0 ≤

θ ≤ π when M = 2 and B = 1 for (a) V = −5 and (b) V = 5. Again the

corresponding profiles in the range −π < θ < 0 follow immediately from the top-

to-bottom symmetry of the flow. In particular, figure 3.18 shows that the velocity

profiles u are qualitatively similar to the critical velocity profiles uc shown in figure

3.9. Figures 3.19 and 3.20 show the free-surface velocity at θ = 0, u(1, 0), and at

θ = π, u(1, π), plotted as a function of (a,c) B for a range of values of V and

(b,d) V for a range of values of B when M = 2 (< Mc0) and M = 6 (> Mc0),

respectively. In particular, figures 3.19 and 3.20 show that u(1, 0) is an increasing

(decreasing) function of B for positive (negative) V and an increasing function of

V , and that u(1, π) behaves in the opposite way.
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Figure 3.16: Film thickness at θ = 0, h(0), and at θ = π, h(π), when M = 2 (< Mc0)

plotted as a function of (a,c) B for V = −20, −16, −12, . . . , 20 (solid lines) and

V = V∞ ' −4.51567 (dash-dotted line) together with the leading-order asymptotic

solution in the limit V → ∞ (i.e. h(0) = h(π) ' 0.31831) (dotted lines) and the

critical solution with V = Vc (dashed line), and (b,d) V forB = 0 (i.e. h(0) ' 0.32971

and h(π) ' 0.30802) and B = 10n (n = −1, −0.75, −0.5, . . . , 1) (solid lines) together

with the leading-order asymptotic solution in the limit B → ∞ (dotted line) and

the critical solution with B = Bc (dashed line).
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Figure 3.17: Film thickness at θ = 0, h(0), and at θ = π, h(π), when M = 6 (> Mc0)

plotted as a function of (a,c) B for V = 4, 8, 12, . . . , 28 (solid lines) together with the

leading-order asymptotic solution in the limit V → ∞ (i.e. h(0) = h(π) ' 0.95493)

(dotted lines) and the critical solution with V = Vc (dashed line), and (b,d) V for

B = 10n (n = −1, −0.75, −0.5, . . . , 1) (solid lines) together with the leading-order

asymptotic solution in the limit B →∞ (dotted line) and the critical solution with

B = Bc (dashed line).
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Figure 3.18: Velocity profiles u plotted as a function of Y = hy at θ = 0, π/32,

π/16, . . . , π when M = 2 and B = 1 for (a) V = −5 and (b) V = 5.

Figures 3.21 and 3.22 show the free-surface temperature at θ = 0, T (1, 0), and

at θ = π, T (1, π), plotted as a function of (a,c) B for a range of values of V and

(b,d) V for a range of values of B, when M = 2 (< Mc0) and M = 6 (> Mc0),

respectively. In particular, figures 3.21 and 3.22 show that T (1, 0) is a decreasing

function of B and an increasing function of V , and that T (1, π) is also a decreasing

function of B but a decreasing function of V .

In the following Subsections we analyse the behaviour of the full-film solution

with a prescribed load in the asymptotic limits B → 0+, B →∞, V → 0, V →∞

and M → 0. Note that (unlike in the corresponding analysis of the critical solution

described in Subsection 3.4.5) there is no solution with prescribed load in the limit

V → −∞, and, of course, there is no solution with prescribed load in the limit

M →∞. Moreover, there are solutions with a prescribed load in the limits B → 0+

and V → 0 only when M ≤Mc0.



Chapter 3 100

Figure 3.19: Free-surface velocity at θ = 0, u(1, 0), and at θ = π, u(1, π), when

M = 2 (< Mc0) plotted as a function of (a,c) B for V = −20, −16, −12, . . . , 20

(solid lines) and V = V∞ ' −4.51567 (dash-dotted line) together with the leading-

order asymptotic solution in the limit V → ∞ (i.e. u(1, 0) = u(1, π) = 1) (dotted

lines) and the critical solution with V = Vc (dashed line), and (b,d) V for B = 0

(i.e. u(1, 0) ' 0.94565 and u(1, π) ' 1.04744) and B = 10n (n = −1, −0.75, −0.5,

. . . , 1) (solid lines) together with the leading-order asymptotic solution in the limit

B →∞ (dotted line) and the critical solution with B = Bc (dashed line).
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Figure 3.20: Free-surface velocity at θ = 0, u(1, 0), and at θ = π, u(1, π), when

M = 6 (> Mc0) plotted as a function of (a,c) B for V = 4, 8, 12, . . . , 28 (solid

lines) together with the leading-order asymptotic solution in the limit V →∞ (i.e.

u(1, 0) = u(1, π) = 1) (dotted lines) and the critical solution with V = Vc (dashed

line), and (b,d) V for B = 10n (n = −1, −0.75, −0.5, . . . , 1) (solid lines) together

with the leading-order asymptotic solution in the limit B → ∞ (dotted line) and

the critical solution with B = Bc (dashed line).
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Figure 3.21: Free-surface temperature at θ = 0, T (1, 0), and at θ = π, T (1, π), when

M = 2 (< Mc0) plotted as a function of (a,c) B for V = −20, −16, −12, −8, −4, 0

[for clarity, only the curves corresponding to V = −8 and V = 0 are shown in (c)]

(solid lines) and V = V∞ ' −4.51567 (dash-dotted line) together with the leading-

order asymptotic solution in the limit V →∞ (dotted line) and the critical solution

with V = Vc (dashed line), and (b,d) V for B = 0 (i.e. T (1, 0) = T (1, π) = 1) and

B = 10n (n = −1, −0.75, −0.5, . . . , 1) (solid lines) together with the leading-order

asymptotic solution in the limit B → ∞ (i.e. T (1, 0) = T (1, π) = 0) (dotted lines)

and the critical solution with B = Bc (dashed line).
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Figure 3.22: Free-surface temperature at θ = 0, T (1, 0), and at θ = π, T (1, π), when

M = 6 (> Mc0) plotted as a function of (a,c) B for V = 4, 8, 12, 16 [for clarity, only

the curves corresponding to V = 8 and V = 20 are shown in (c)] (solid lines) together

with the leading-order asymptotic solution in the limit V →∞ (dotted line) and the

critical solution with V = Vc (dashed line), and (b,d) V for B = 10n (n = −1, −0.75,

−0.5, . . . , 1) (solid lines) together with the leading-order asymptotic solution in the

limit B →∞ (i.e. T (1, 0) = T (1, π) = 0) (dotted lines) and the critical solution with

B = Bc (dashed line).
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3.5.1 The limit of weak heat transfer B → 0+

In the limit of weak heat transfer at the free surface, B → 0+, the solutions for h,

u and T are given by

h = h0 +
BV (IB0 − h4

0 cos θ)

12(1− h2
0 cos θ)

+O(B2), (3.63)

u = u0 −
BV h0y cos θ

12(1− h2
0 cos θ)

[
h2

0(1− h2
0 cos θ)(4y2 − 7y + 2)

+ (IB0 − h2
0)(2− y)

]
+O(B2) (3.64)

and

T = 1−Bh0y −
B2y [V (IB0 − h4

0 cos θ)− 12h2
0(1− h2

0 cos θ)]

12(1− h2
0 cos θ)

+O(B3), (3.65)

where the constant IB0 = IB0(M0) (0 < IB0 < 1) is given by

IB0 =

∫ π

0

h4
0 cos θ

1− h2
0 cos θ

dθ∫ π

0

1

1− h2
0 cos θ

dθ

, (3.66)

and h0 and u0 are the constant-viscosity solutions with load M0 = M (≤ Mc0)

given in Section 3.2. Note that the solutions (3.63)–(3.65) are valid for a general

viscosity model satisfying µ = 1 and dµ/dT = −V when T = 1 to the order shown

(but not to higher orders). The same is true for the asymptotic solution in the

limit of weak thermoviscosity V → 0 presented subsequently in Subsection 3.5.3.

Like the corresponding behaviour of the critical solution described in Subsection

3.4.1, the solution (3.65) shows that the effect of weak heat transfer at the free

surface is to decrease the temperature from its constant isothermal value T ≡ 1

throughout the fluid film, and thus to increase (decrease) the viscosity from its

constant isothermal value µ ≡ 1 when V > 0 (V < 0). However, unlike the

corresponding behaviour of the critical solution, the effect on h depends on the

sign of V (IB0 − h4
0 cos θ) (rather than just V ). Thus when V > 0 (V < 0) the

effect of weak heat transfer at the free surface is to decrease (increase) h from its



Chapter 3 105

isothermal value when |θ| < θ̄ with the opposite behaviour when |θ| > θ̄, where

θ = θ̄ (0 < θ̄ ≤ π/2) satisfies IB0 − h4
0 cos θ = 0.

3.5.2 The limit of strong heat transfer B →∞

In the limit of strong heat transfer at the free surface, B → ∞, the solutions for

h, u and T are given by

h = ĥ+
h1

B
+O

(
1

B2

)
, (3.67)

u = û+
h0 cos θ

V 2Bf̂ 1/2
[{V (1− y)− 2(1 + h1)}V y exp(−V y)

− {V (1 + 2h1)− 2(1 + h1)} (1− exp(−V y))] +O

(
1

B2

)
(3.68)

and

T = T̂ +
f̂ 1/2y

Bh0

− f̂(1 + h1)y

B2h2
0

+O

(
1

B3

)
, (3.69)

where h1 = h1(θ) is given by

h1 =
(IB∞ − h2

0 cos θ)[3− (V + 3)f̂ ]

3f̂(1− h2
0 cos θ)

(3.70)

and the constant IB∞ = IB∞(M0) (0 < IB∞ < 1) is given by

IB∞ = 1− π
(∫ π

0

1

1− h2
0 cos θ

dθ

)−1

. (3.71)

As in the corresponding analysis of the critical solution described in Subsection

3.4.2, the leading-order solutions for h and Q, denoted by ĥ and Q̂, are given simply

by rescaling the corresponding constant-viscosity solutions h0 and Q0 according

to ĥ = f̂−1/2h0 and Q̂ = f̂−1/2Q0, where M = f̂−1/2M0, and the leading-order

solutions for u and f , denoted by û and f̂ , are again given by (3.39) and (3.40),

respectively. Like the corresponding behaviour of the critical solution described in

Subsection 3.4.2, the solution (3.69) shows that the effect of large-but-finite heat

transfer at the free surface is to increase the temperature from its leading-order

value T = T̂ = 1 − y throughout the fluid film, and thus to decrease (increase)
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the viscosity from its leading-order value µ = µ̂ = exp(V y) when V > 0 (V < 0).

However, unlike the corresponding behaviour of the critical solution, the effect on h

depends on the sign of (IB∞−h2
0 cos θ)[3−(V +3)f̂ ] (rather than just 3−(V +3)f̂).

Thus when V > 0 (V < 0), the effect of large-but-finite heat transfer at the

free surface is to increase (decrease) h from its isothermal value when |θ| < θ̄

with the opposite behaviour when |θ| > θ̄, where θ = θ̄ (0 < θ̄ ≤ π/2) satisfies

IB∞ − h2
0 cos θ = 0.

3.5.3 The limit of weak thermoviscosity V → 0

In the limit of weak thermoviscosity, V → 0, the solutions for h, u and T are given

by

h = h0 +
BV [IV 0(1 +Bh0)− h4

0 cos θ]

12(1− h2
0 cos θ)(1 +Bh0)

+O(V 2), (3.72)

u = u0 −
BV h0y cos θ

12(1− h2
0 cos θ)(1 +Bh0)

{
h2

0(1− h2
0 cos θ)(4y2 − 7y + 2)

+
[
IV 0(1 +Bh0)− h2

0

]
(2− y)

}
+O(V 2) (3.73)

and

T = 1− Bh0y

1 +Bh0

− B2V y [IV 0(1 +Bh0)− h4
0 cos θ]

12(1− h2
0 cos θ)(1 +Bh0)3

+O(V 2), (3.74)

where the constant IV 0 = IV 0(M0, B) (0 < IV 0 < 1) is given by

IV 0 =

∫ π

0

h4
0 cos θ

(1− h2
0 cos θ)(1 +Bh0)

dθ∫ π

0

1

1− h2
0 cos θ

dθ

, (3.75)

and h0 and u0 are the constant-viscosity solutions with load M0 = M (≤ Mc0)

given in Section 3.2. Like the corresponding behaviour of the critical solution

described in Subsection 3.4.3, the solutions in this limit are somewhat similar to

those in the limit B → 0+ described previously in Subsection 3.5.1 and have the

corresponding physical interpretation.
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3.5.4 The limit of strong positive thermoviscosity V →∞

In the limit of strong positive thermoviscosity, V →∞, the solutions for h, u and

T are given by

h =
M

2π
+
M2 cos θ(2π +BM)

8π3BV
+O

(
1

V 2

)
, (3.76)

u = 1− M cos θ(2π +BM)

4π2BV

[
1− exp

(
− BVMy

2π +BM

)]
+O

(
1

V 2

)
(3.77)

and

T = 1− BMy

2π +BM
− M2y cos θ

2π(2π +BM)V
+O

(
1

V 2

)
. (3.78)

These solutions show that, like the corresponding behaviour of the critical solu-

tion described in Subsection 3.4.4, at leading order in the limit of strong positive

thermoviscosity the temperature is given by T = 1 − BMy/(2π + BM) and the

viscosity

µ = O

[
exp

(
BVMy

2π +BM

)]
(3.79)

is exponentially large outside a narrow boundary layer of width O(1/V )� 1 near

the cylinder y = 0, resulting in a uniform plug flow u ≡ 1 outside the boundary

layer. However, unlike the corresponding behaviour of the critical solution, the

leading-order film thickness is an O(1) constant, and the effect of large-but-finite

positive thermoviscosity is to decrease T from its leading-order value throughout

the fluid film, and thus to decrease (increase) u outside the boundary layer and

increase (decrease) h, respectively, from their leading-order values when cos θ > 0

(cos θ < 0).

3.5.5 The limit of small load M → 0

In the limit of small load, M → 0, the solutions for h, u and T are given by

h =
M

2π
+
M3 cos θ

24π3
+O(M4), (3.80)

u = 1− M2 cos θ(2− y)y

8π2
+
M3BV cos θ(3− 2y)y2

48π3
+O(M4) (3.81)
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and

T = 1− MBy

2π
+
M2B2y

4π2
+O(M3). (3.82)

These solutions show that, as might have been anticipated, at leading order in the

limit of small load the film is isothermal, T ≡ 1, the viscosity is constant, µ ≡ 1,

the film thickness is a small O(M)� 1 constant, and there is a uniform plug flow

u ≡ 1.

3.6 Backflow

As we noted near the end of Section 3.3, in the special case of constant viscosity

the azimuthal velocity u is always in the same direction as the rotation of the

cylinder (i.e. u ≥ 0 for all 0 ≤ y ≤ 1) and so backflow (i.e. u < 0 somewhere in

0 < y ≤ 1) never occurs. It is therefore interesting to discover that in the general

case of non-constant viscosity there is a region of the B–V parameter plane in

which backflow occurs in a region on the right-hand side of the cylinder containing

the point on the free surface at θ = 0 (i.e. the point furthest from the cylinder at

the azimuthal location where the strongest local effect of gravity occurs). Figure

3.23 shows the regions of the B–V parameter plane in which backflow occurs for

a range of values of M and shows that backflow only occurs when the atmosphere

is sufficiently heated and there is sufficient heat transfer at the free surface. The

backflow that occurs is due to the reduction in viscosity of the fluid allowing gravity

to “win” oven the rotation of the cylinder. The “bounding” curve corresponding

to uc(1, 0) = 0 divides the B–V parameter plane into the region to the left of the

curve in which uc(1, 0) > 0 in which backflow is impossible from the region to the

right of the curve in which uc(1, 0) < 0 in which backflow is possible (but may

or may not actually occur). As we have already seen, for each prescribed value

of M full-film solutions exist only above the corresponding critical curve (Bc, Vc)

(described in Section 3.5 and shown in figure 3.8). Hence, for sufficiently small

prescribed values of M backflow occurs in the narrow region bounded below by
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Figure 3.23: The regions of the B–V parameter plane in which backflow occurs for

M = 0.1, 0.2, 0.3, . . . , 1.4. For each value of M the region in which backflow occurs

is bounded below by the critical curve (Bc, Vc) (solid lines) and above by the curve

on which u(1, 0) = 0 (dashed lines), which meet on the bounding curve on which

uc(1, 0) = 0 (thick solid line). Also shown are the asymptotic solutions for the upper

and lower branches of the bounding curve given by (3.83) and (3.84), respectively,

(dashed lines).

the critical curve (Bc, Vc) and above by the curve on which u(1, 0) = 0, and these

curves meet on the bounding curve on which uc(1, 0) = 0. In the limit B → ∞

the upper and lower branches of the bounding curve satisfy

V = Vmax +
2
√

3Vmax(Vmax + 3)

B
√
Vmax + 6(2Vmax + 9)

+O

(
1

B2

)
(3.83)

where Vmax ' −5.65658 satisfies 2V 2
max − 5Vmax + 6 − (Vmax + 6) exp(−Vmax) = 0,

and

V = −4 logB − 4 log(logB) + 6− 4 log 2 +O

(
log(logB)

logB

)
, (3.84)

respectively. In particular, equations (3.83) and (3.84) show that backflow never

occurs for any value of B when V ≥ Vmax, or, equivalently, when M ≥ Mmax =
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Figure 3.24: Details of the streamlines of the flow near y = 1 and θ = 0 when

B = 100 and V = −10 for (a) the solution with prescribed load M = 1/2 (Q '

0.07642) in which the streamlines are drawn for ψ/Q = 1487/1500 (the lowest visible

streamline), 1488/1500, 1489/1500, . . . , 1 (the stagnation streamline), 1501/1500

and 1502/1500 (inside the recirculation region), and (b) the critical solution with

load M = Mc ' 0.50800 (Q = Qc ' 0.07716) in which the streamlines are drawn for

ψ/Q = 87/100 (the lowest visible streamline), 88/100, 89/100, . . . , 1 (the stagnation

streamline), 101/100 and 102/100 (inside the recirculation region). In both cases

the curve on which u = 0 is shown with a dashed line and the stagnation points are

shown with large dots.

f̂(Vmax)−1/2Mc0 ' 1.50315. Furthermore, since the bounding curve lies to the right

of the point (26.29946,−9.69044), backflow never occurs for any value of V when

B < Bmin ' 26.29946.

In order to illustrate backflow, Figure 3.24 shows details of the streamlines of

the flow near y = 1 and θ = 0 when B = 100 and V = −10 in two situations

in which backflow occurs. Specifically, figure 3.24(a) shows streamlines of the

solution with prescribed load M = 1/2, while figure 3.24(b) shows streamlines of

the critical solution with load M = Mc ' 0.50800.
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3.7 The Distinguished Limit of Strong Thermo-

viscosity and Weak Heat Transfer |V | → ∞

and B → 0+ with V̂ = BV = O(1)

Another interesting case also worth considering is the distinguished limit discussed

by Wilson and Duffy [96] of strong thermoviscosity, |V | → ∞, and weak heat

transfer at the free surface, B → 0+, such that V̂ = BV = O(1), in which,

although the variation in temperature across the fluid film is small, specifically

T = 1 − Bhy + O(B2), thermoviscosity effects still enter the problem at leading

order, i.e. the variation in viscosity across the fluid film is still O(1). This case is

physically relevant since the Biot number is often found to be small. By making

the substitution V = V̂ /B and taking the limit B → 0 we are able to consider this

interesting case with one less parameter than we had previously thereby simplifying

the analysis of the problem. Note that in this limit the effective thermoviscosity

number, V̂ = BV , defined in terms of dimensional quantities by

V̂ =
λ(T0 − T∞)εaαth

µ0kth

, (3.85)

and not the previously defined thermoviscosity number, V , is the appropriate

non-dimensional measure of thermoviscosity effects. In the particular case of the

exponential viscosity model (3.24) in this limit V ∼ V̂ h and so the leading-order

expressions for µ, u, ψ and f are given simply by (3.24), (3.26)–(3.28) with V

replaced by V̂ h, respectively.

3.7.1 The critical solution

Unlike in the general case considered in Section 3.4, in the present distinguished

limit explicit expressions can be obtained for the critical film thickness at θ = 0,

hc(0), the magnitude of the slope of the corner in hc at θ = 0, Hc, and the critical
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flux, Qc, namely

hc(0) =
V̂ 2 + 2(WV̂ + 1)

2V̂
, (3.86)

Hc =

(
V̂ 4 + 4V̂ 2WV̂ + 4(WV̂ + 1)2

8V̂ (WV̂ + 1)

)1/2

(3.87)

and

Qc =
V̂ 2(V̂ 2 + 4)− 4(WV̂ + 1)2

4V̂ 3
, (3.88)

where WV̂ = WV̂ (V̂ ) is given by

WV̂ =


W0

(
− exp

[
− V̂

2

2
− 1

])
if V̂ ≥ 0,

W−1

(
− exp

[
− V̂

2

2
− 1

])
if V̂ < 0,

(3.89)

where W0(x) and W−1(x) are again the principal and lower real branches of the

Lambert W function, respectively. Figure 3.25 shows the quantities hc(0), Hc, Qc

and Mc plotted as functions of V̂ .

In the limit of weak thermoviscosity, V̂ → 0, the solutions for hc, Hc, Mc and uc

are given by the corresponding results in the limit B → 0 given in Subsection 3.4.1,

namely (3.33)–(3.36), with BV and O(B2) replaced by V̂ and O(V̂ 2), respectively,

and hence have the same physical interpretation.

In the limit of strong positive thermoviscosity, V̂ → ∞, the solutions for hc,

Hc, Mc and uc are given by

hc =
V̂
[
1− (1− cos θ)1/2

]
2 cos θ

+
1

V̂
+O

(
1

V̂ 3

)
, (3.90)

Hc =
V̂

2
√

2
+O

(
1

V̂ 3

)
, (3.91)

Mc = 2V̂ log(1 +
√

2) +
2π

V̂
+O

(
1

V̂ 3

)
(3.92)

and

uc =1−1

2

[
1−(1−cos θ)1/2

]1−exp

− V̂ 2
[
1−(1−cos θ)1/2

]
y

2 cos θ

+O( 1

V̂ 2

)
. (3.93)
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Figure 3.25: The quantities hc(0) given by (3.86) (dash-dotted line), Hc given by

(3.87) (dotted line), Qc given by (3.88) (dashed line), and Mc (solid line) plotted as

functions of V̂ .

These solutions differ from the corresponding results in the limit V →∞ given in

Subsection 3.4.4, namely (3.51)–(3.54), but have a qualitatively similar physical

interpretation. In particular, these solutions show that at leading order in the

limit of strong positive thermoviscosity the viscosity

µ = exp

(
V̂ 2
[
1− (1− cos θ)1/2

]
y

2 cos θ
+ y

)
(3.94)

is exponentially large outside a narrow boundary layer of width O(1/V̂ 2) � 1

near the cylinder y = 0, resulting in a uniform plug flow uc ≡ [1 + (1− cos θ)1/2]/2

outside the boundary layer and a large film thickness and load of O(V̂ )� 1.

In the limit of strong negative thermoviscosity, V̂ → −∞, the solutions for hc,

Hc, Mc, and uc are given by

hc =
1

(−V̂ )

[
log

(
V̂ 2

2

)
−WV∞ − 1

]
+O

(
log(−V̂ )2

V̂ 3

)
, (3.95)
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Hc =
1

(−V̂ )
+O

(
log(−V̂ )2

V̂ 3

)
, (3.96)

Mc =
1

(−V̂ )

[
2π log

(
V̂ 2

2

)
− CV∞ − 2π

]
+O

(
log(−V̂ )2

(−V̂ )3

)
(3.97)

and

uc = 1− cos θ

V̂ 2

[(
− V̂

2WV∞

2 cos θ

)y{[
log

(
V̂ 2

2

)
−WV∞

]
(1− y) + y

}

− log

(
V̂ 2

2

)
+WV∞

]
+O

(
log(−V̂ )2

V̂ 2

)
, (3.98)

where the function WV∞ = WV∞(θ) and the constant CV∞ are again given by

(3.61) and (3.62), respectively. At leading (but not higher) order these solutions

coincide with the corresponding results in the limit V → −∞ given in Subsection

3.4.5, namely (3.56)–(3.59), and hence have the same physical interpretation.

3.7.2 Full-film solution with a prescribed load

In the limit of weak thermoviscosity, V̂ → 0, the solutions for h and u are given

by the corresponding results in the limit B → 0 given in Subsection 3.5.1, namely

(3.63) and (3.64), with BV and O(B2) replaced by V̂ and O(V̂ 2), respectively, and

hence have the same physical interpretation.

In the limit of strong positive thermoviscosity, V̂ →∞, the solutions for h and

u are given by

h =
M

2π
+
M2 cos θ

4π2V̂
+O

(
1

V̂ 2

)
(3.99)

and

u = 1− M cos θ

2πV̂

[
1− exp

(
−MV̂ y

2π

)]
+O

(
1

V̂ 2

)
. (3.100)

These solutions are similar to the corresponding results in the limit V →∞ given

in Subsection 3.5.4, namely (3.76) and (3.77), from which they can be obtained by

writing V = V̂ /B and taking the limit B → 0, and hence have the same physical

interpretation.
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In the limit of small load, M → 0, the solutions for h and u are given by

the corresponding results in the limit M → 0 given in Subsection 3.5.5, namely

(3.80) and (3.81), with BV replaced by V̂ , and hence have the same physical

interpretation.

3.8 Conclusions

In the present work we obtained a comprehensive description of steady thermo-

viscous coating and rimming flow on a uniformly rotating horizontal cylinder. We

found that, as in the corresponding isothermal problem studied by Moffatt [7],

there is a critical solution with a corresponding critical load (which depends, in

general, on both the Biot number B and the thermoviscosity number V ) above

which no full-film solutions exist.

In Section 3.4 we showed that the critical film thickness, hc, the magnitude of

the slope of the corner in the critical film thickness at θ = 0, Hc, and the critical

load, Mc, are increasing (decreasing) functions of B for positive (negative) V , and

increasing functions of V . For a positive (negative) fixed value of V the maximum

(minimum) possible critical load is attained in the limit of strong heat transfer at

the free surface B →∞ and is given by M̂ = f̂−1/2Mc0, where f̂ = f̂(V ) is given

by (3.40) and Mc0 ' 4.44272 is the critical load in the constant-viscosity case. For

a fixed value of B the critical film thickness, and hence the critical load, become

small like O(log(−V )/(−V )) � 1 in the limit of strong negative thermoviscosity

V → −∞ and become large like O(V 1/2) � 1 in the limit of strong positive

thermoviscosity V →∞.

Full-film solutions with a prescribed load M exist only when 0 < M ≤Mc, and

figure 3.13 shows how for each prescribed value of M the corresponding critical

curve (Bc, Vc) divides the B–V parameter plane into the region above the curve

in which full-film solutions exist from the region below the curve in which they

do not exist. In particular, there are no full-film solutions with a prescribed load
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for any value of B when M ≥ M̂ for positive V and when M > Mc0 for negative

V . In Section 3.5 we showed that near θ = 0 the film thickness h is a decreasing

(increasing) function of B for positive (negative) V , and a decreasing function of

B, but that near θ = π it behaves in the opposite way. For a fixed value of V there

are full-film solutions in the limit B →∞ for V ≥ V∞, but not for V < V∞, where

V = V∞ satisfies M = M̂ . For a fixed value of B there is no full-film solution in

the limit V → −∞, while the leading-order film thickness is the O(1) constant

h = M/2π in the limit V →∞.

In Section 3.6 we showed that, while by far the most common behaviour of

the azimuthal velocity is that it is always in the same direction as the rotation of

the cylinder, for sufficiently small prescribed values of M satisfying M < Mmax '

1.50315 there is a narrow region of the B–V parameter plane shown in figure

3.23 in which backflow occurs in a region on the right-hand side of the cylinder

containing the point of the free surface at θ = 0. In particular, backflow never

occurs for any value of B when V ≥ Vmax ' −5.65658 or for any value of V when

B < Bmin ' 26.29946.

Lastly, in Section 3.7 we considered the distinguished limit of strong thermo-

viscosity |V | → ∞ and weak heat transfer B → 0+ with V̂ = BV = O(1) in

which the variation of temperature across the film is small but the variation of

viscosity across the film is still O(1), and found qualitative agreement with but

some quantitative differences from the previous results. In particular, unlike in

the limit V →∞ described above, in the limit V̂ →∞ the critical film thickness,

and hence the critical load, become large like O(V̂ )� 1.
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Rivulet Flow on a Rotating

Horizontal Cylinder

In this chapter we use lubrication theory to study the steady three-dimensional

flow of a rivulet of Newtonian fluid on either the outside or the inside of a rotating

horizontal cylinder.

4.1 Problem Formulation

Consider the three-dimensional steady flow of a thin, slowly varying, symmetric

rivulet of Newtonian fluid with uniform density ρ and viscosity µ on either the

outside or the inside of a large circular cylinder of radius R rotating in a counter-

clockwise direction about its horizontal axis at uniform angular speed Ω (> 0)

(so that the circumferential speed, denoted by U , is U = RΩ). Referred to po-

lar coordinates θ (the azimuthal coordinate measured counter-clockwise from the

horizontal), Y (the axial coordinate with origin at the axis of symmetry of the

rivulet) and r = R ± Z (the radial coordinate with origin at the cylinder’s axis),

as shown in figure 4.1 (drawn for the case of flow on the outside of the cylinder),

we take the free surface of the rivulet to be at r = R+h for flow on the outside of

the cylinder and r = R−h for flow on the inside of the cylinder, the rivulet profile

117
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Figure 4.1: Geometry of the problem: steady flow of a thin, slowly varying, sym-

metric rivulet of Newtonian fluid on a uniformly rotating horizontal cylinder

being denoted by h = h(θ, Y ), and take the contact lines of the rivulet (where

h = 0) to be at Y = ±a, the semi-width being denoted by a = a(θ) (> 0). Hence

the fluid lies in the intervals −a ≤ Y ≤ a and 0 ≤ Z ≤ h for −π < θ ≤ π. The

fluid velocity u = ueθ + veY +wer (where eθ, eY and er denote unit vectors in the

azimuthal, axial and radial directions, respectively) and pressure p are governed

by the usual mass-conservation and Navier–Stokes equations. On the cylinder

r = R the velocity u satisfies no-slip and no-penetration conditions, while on the

free surface r = R ± h the usual normal and tangential stress balances and the

kinematic condition apply.

We consider only thin, slowly varying rivulets whose transverse aspect ratio

is defined to be the prescribed contact angle, denoted by β � 1, and whose

longitudinal aspect ratio, denoted ε, is defined in terms of the capillary length l =

(γ/ρg)1/2 to be ε = l/R� 1, where γ is the coefficient of surface tension (assumed
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constant) and g is the magnitude of gravitational acceleration. In particular,

we consider the case where the rivulet is sufficiently slowly varying such that

ε� β � 1; this is a sensible case to consider since it is easily realised by making

the cylinder (and therefore the radius of the cylinder R) sufficiently large. Hence

we non-dimensionalise and scale the system appropriately by writing

r = R(1± εβZ∗), Y = εRY ∗, θ = ±θ∗, h = εβRh∗, a = εRa∗,

u =
ε2β2R2ρg

µ
u∗, v = ±ε

3β2R2ρg

µ
v∗, w =

ε3β3R2ρg

µ
w∗,

p = pa + εβRρgp∗, U = RΩ =
ε2β2R2ρg

µ
U∗,

Q =
ε4β3R4ρg

µ
Q∗, M = ε2βR3ρM∗,


(4.1)

in which the + sign (− sign) corresponds to flow on the outside (inside) of the

cylinder, pa is the constant pressure in the surrounding atmosphere, Q is the

constant azimuthal volume flux of fluid crossing a station θ = constant, and M

(> 0) is the constant fluid load (i.e. the mass of fluid) on the cylinder. For clarity

the star superscripts on the non-dimensional quantities will be omitted henceforth.

We shall describe what follows in terms of flow on the outside of the cylinder only

(i.e. we choose the + in the ± above) so that, in particular, positive values of

θ correspond to the top of the cylinder and negative values to the bottom; to

interpret the results that follow for flow on the inside of the cylinder it is simply

necessary to let positive values of θ correspond to the bottom of the cylinder and

negative values to the top. Note that physically this “swapping” of top and bottom

when switching between coating and rimming flow also occurs in the corresponding

two-dimensional “full-film” problem considered by Moffatt [7], however, since this

flow exhibits top-to-bottom symmetry (unlike in the present problem), the sign

change is unnecessary.

At leading order in ε and β the governing equations for the flow on the cylinder

become

∂u

∂θ
+
∂v

∂Y
+
∂w

∂Z
= 0,

∂p

∂Z
= − sin θ,

∂2u

∂Z2
= cos θ and

∂p

∂Y
= 0, (4.2)
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together with the boundary conditions

u = U and v = w = 0 on Z = 0, (4.3)

p = − ∂
2h

∂Y 2
and

∂u

∂Z
=
∂v

∂Z
= 0 on Z = h, (4.4)

the kinematic condition on Z = h, which may be written in the form

∂ū

∂θ
+
∂v̄

∂Y
= 0, (4.5)

where the local fluxes ū = ū(θ, Y ) and v̄ = v̄(θ, Y ) are defined by

ū =

∫ h

0

u dZ, v̄ =

∫ h

0

v dZ, (4.6)

and

h = 0 and
∂h

∂Y
= ∓1 on Y = ±a. (4.7)

Introducing the rescaled axial coordinate y = Y/a and rescaled radial coordi-

nate z = Z/h (so that the fluid lies within the fixed intervals −1 ≤ y ≤ 1 and

0 ≤ z ≤ 1 for −π < θ ≤ π) and integrating (4.2)2 subject to (4.4)1 at the free

surface z = 1 gives the pressure distribution

p = h sin θ(1− z)− 1

a2

∂2h

∂y2
, (4.8)

from which (4.2)4 gives a third-order differential equation for the rivulet profile

h = h(θ, y), namely
∂

∂y

(
a2h sin θ − ∂2h

∂y2

)
= 0, (4.9)

whose solution satisfying (4.7) at the contact lines y = ±1 is

h =



cosh(ma)− cosh(may)

m sinh(ma)
if 0 < θ < π,

a

2
(1− y2) if θ = 0 or θ = π,

cos(may)− cos(ma)

m sin(ma)
if −π < θ < 0,

(4.10)

where for convenience we have introduced the notation m = | sin θ|1/2. Note that

this solution for the rivulet profile h is exactly the same as that given by Duffy
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and Moffatt [76] for the unidirectional flow of a rivulet down a plane inclined at

an angle π/2− θ to the horizontal.

We shall be concerned only with “full-rivulet” solutions, i.e. solutions for which

h and a are continuous, finite and non-zero for all −π < θ ≤ π and −1 < y < 1,

corresponding to a continuous rivulet of finite, non-zero thickness and width that

runs all the way round the cylinder. This may be thought of as a three-dimensional

generalisation of the two-dimensional “full-film” coating and rimming solutions

first considered by Moffatt [7]. At any station θ = constant the rivulet profile h,

given by (4.10), is symmetric about y = 0, with a single maximum at y = 0, and

the maximum thickness of the rivulet, denoted hm = hm(θ) = h(θ, 0), is given by

hm =



1

m
tanh

(ma
2

)
if 0 < θ < π,

a

2
if θ = 0 or θ = π,

1

m
tan
(ma

2

)
if −π < θ < 0.

(4.11)

For future reference it is useful to note that in both of the limits a→ 0+ or m→ 0+

the rivulet profile h is given by

h =
a

2

(
1− y2

)
− sgn(θ)

m2a3

24

(
1− y2

)2
+O

(
m4a5

)
, (4.12)

while in the limit a→∞ if 0 < θ < π the rivulet profile h is given by

h =
1

m

(
1− 2e−ma cosh(may)

)
+O

(
e−2ma

)
, (4.13)

and in the limit ma→ π if −π < θ < 0 the rivulet profile h is given by

h =
1 + cos(πy)

m(π −ma)
+
y sin(πy)

m
+O(π −ma). (4.14)

Integrating (4.2)3 twice subject to (4.3)1 on the cylinder at z = 0 and (4.4)2

on the free-surface z = 1 gives the azimuthal velocity

u = U +
h2z

2
(z − 2) cos θ, (4.15)
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and so the local azimuthal flux ū is given by

ū = Uh− 1

3
h3 cos θ, (4.16)

and hence the constant volume flux Q is given by

Q = a

∫ 1

−1

u dy = Ua

∫ 1

−1

h dy − a

3
cos θ

∫ 1

−1

h3 dy, (4.17)

which leads to

Q = −cos θ

9m4
F (ma) +

U

m2
G(ma), (4.18)

where appropriate interpretation of the cases θ = 0 and θ = π as limits is required.

Equation (4.18) provides an implicit solution for the semi-width a = a(θ) in terms

of the constant (but as yet unknown) flux Q, where the functions F (ma) and

G(ma) are defined by

F (ma) =


15ma coth3(ma)− 15 coth2(ma)− 9ma coth(ma)+4 if 0 < θ < π,

−15ma cot3(ma) + 15 cot2(ma)− 9ma cot(ma) + 4 if −π < θ < 0,

(4.19)

and

G(ma) =


2(ma coth(ma)− 1) if 0 < θ < π,

2(1−ma cot(ma)) if −π < θ < 0,

(4.20)

and are plotted together with their derivatives F ′(ma) and G′(ma) in figure 4.2.

For 0 < θ < π the functions F (ma), G(ma), F ′(ma) and G′(ma) are positive

functions of ma, increasing monotonically from zero at ma = 0 to infinity, infinity,

6 and 2, respectively, as ma→∞, whereas for −π < θ < 0 the functions F (ma),

G(ma), F ′(ma) and G′(ma) have multiple branches; however, one may show that

in the latter case the branch that gives rise to full-rivulet solutions lies in the

interval 0 < ma < π within which F (ma), G(ma), F ′(ma) and G′(ma) are positive

functions of ma, increasing monotonically from zero at ma = 0 to infinity as

ma→ π. For future reference it is useful to note that in the limit ma→ 0, F (ma)
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Figure 4.2: The functions F (ma) and G(ma) (solid lines), defined by (4.19) and

(4.20), respectively, together with their derivatives F ′(ma) and G′(ma) (dashed

lines) when (a) 0 < θ < π and (b) −π < θ < 0 in the interval 0 < ma < π.

and G(ma) are given by

F (ma) =


12

35
(ma)4 − 8

105
(ma)6 +O

(
(ma)8

)
if 0 < θ < π,

12

35
(ma)4 +

8

105
(ma)6 +O

(
(ma)8

)
if −π < θ < 0,

(4.21)

and

G(ma) =


2

3
(ma)2 − 2

45
(ma)4 +O

(
(ma)6

)
if 0 < θ < π,

2

3
(ma)2 +

2

45
(ma)4 +O

(
(ma)6

)
if −π < θ < 0,

(4.22)

while in the limit ma→∞ when 0 < θ < π, F (ma) and G(ma) are given by

F (ma) = 6ma− 11 + 12(6ma− 5) exp(−2ma) +O
(
ma exp(−4ma)

)
(4.23)

and

G(ma) = 2ma− 2 + 4ma exp(−2ma) +O
(
ma exp(−4ma)

)
, (4.24)
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Figure 4.3: Three contours of the expression for the flux Q given by (4.18) in the

θ/π–a plane when U = 1. The contours are drawn for (a) Q = 2.25, (b) Q =

Qc = 10
√

5/9 ' 2.48452 and (c) Q = 2.75, which together illustrate that full-rivulet

solutions exist when Q ≤ Qc but not when Q > Qc.

and in the limit ma→ π when −π < θ < 0, F (ma) and G(ma) are given by

F (ma) =
15π

(π −ma)3
− 6π

π −ma
+O(π −ma) (4.25)

and

G(ma) =
2π

π −ma
− 2π

3
(π −ma) +O(π −ma)2. (4.26)

At the top and bottom of the cylinder (θ = ±π/2) the flux Q given by equation

(4.18) takes the form Q = UG(a), which shows that Q > 0, while at θ = 0

and θ = π careful interpretation of (4.18) as a limit is required whereupon (4.18)

becomes Q = −4a4/105 + 2Ua2/3 and Q = 4a4/105 + 2Ua2/3 for θ = 0 and

θ = π, respectively. By considering the roots the equation for the flux when

θ = 0 it can be shown that Q satisfies 0 < Q < 35U2/12. Figure 4.3 shows

three contours of the expression for the flux Q given by (4.18) in the θ/π–a plane

when U = 1 (these plots are typical for any value of U), which, since they are

by definition curves on which Q = constant, represent candidate solutions for the
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semi-width a = a(θ). It can also been seen from Figure 4.3 that only the lowest

positive solution for a can possibly correspond to a full-rivulet solution (that is,

a solution corresponding to a rivulet with continuous, finite and non-zero width

and thickness). This figure also clearly demonstrates one of the key features of

the present problem, namely the existence of a critical solution with critical flux

Q = Qc above which no full-rivulet solution exists (the critical solution is discussed

in detail in Section 4.2). This result is similar in nature to the critical full-film

solution found by Moffatt [7] for two-dimensional flow; however, as we shall see

in Section 4.2, unlike the two-dimensional problem, the critical flux in the present

problem depends on a condition of criticality and either the rotation speed U or

the load M . In particular, figure 4.3(a) shows that when Q < Qc only the lowest

branch is a full-rivulet solution while the higher branches form a rather complicated

“network” which does not extend over all −π < θ ≤ π and so cannot be full-rivulet

solutions. Figure 4.3(b) shows that when Q = Qc a critical full-rivulet solution

again exists; however, it is made up of two branches of solutions which meet to

form a corner at some point θ = θ̂c, a = âc (similar to the corner found by Moffatt

[7] in the critical two-dimensional full-film flow), while again the higher branches

cannot be full-rivulet solutions. Figure 4.3(c) shows that when Q > Qc there is no

branch that is continuous for all −π < θ ≤ π and so no full-rivulet solution exists.

The total fluid load on the cylinder, M(> 0), is given by

M =

∫ π

−π

∫ 1

−1

∫ 1

0

a(θ)h(θ, y) dz dy dθ, (4.27)

leading to

M =

∫ π

−π

G(ma)

m2
dθ, (4.28)

where the function G(ma) is again given by (4.20).

With the rotation speed U prescribed, the semi-width a, and hence the rivulet

profile h, is determined in terms of Q by the algebraic equation (4.18) in which F

and G are given by (4.19) and (4.20), respectively. The value of Q is determined

either from an appropriate criticality condition or from the condition of prescribed
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load using (4.28). The properties and behaviour of the solutions in these two cases

are discussed in detail in Sections 4.2 and 4.3, respectively, but in both cases, the

solutions for p, h and u are given explicitly by (4.8), (4.10) and (4.15), respectively.

4.2 The Critical Solution

In this Section we consider in detail the behaviour of the critical full-rivulet solution

with critical flux Q = Qc. Not only is this of interest in its own right but, as we

shall see, investigating this critical case is necessary to understand when a full-

rivulet solution exists when both the rotation speed U and load M are prescribed

(this non-critical solution is discussed in detain in Section 4.3). In the critical

case either U or M may be prescribed with the other being determined by the

condition of criticality; specifically, as we shall see, if the rotation speed U is

prescribed then there is a critical load, denoted Mc, above which no full-rivulet

solutions are possible, whereas if the load M is prescribed then there is a critical

rotation speed, denoted Uc, below which no full-rivulet solutions are possible. For

future reference we note here that variables in the critical case will be denoted

with a subscript c, e.g. ac, hc, Mc, etc. For simplicity and to avoid repetition we

present the following analysis for the case of prescribed rotation speed U and leave

the reader to interpret the results appropriately for the case of prescribed load M .

As may be seen from figure 4.3(b), a key feature of the critical solution is that

the expression for Q in (4.18) has a saddle point at some θ = θ̂c and a = âc which

gives rise to a corner in the critical full-rivulet profile hc (similar in nature to that

found by Moffatt [7] for the case of two-dimensional full-film flow). Variables in

the critical case relating to the corner will be denoted with both a subscript c and

a hat e.g. θ̂c, âc, ĥc, etc. At the saddle point we have ∂Q/∂θ = 0 and ∂Q/∂a = 0,

which, from (4.18), leads to the criticality conditions

(1 + cos2 θ̂c)F (m̂câc) = 9U cos θ̂c| sin θ̂c|G(m̂câc),

cos θ̂cF
′(m̂câc) = 9U | sin θ̂c|G′(m̂câc),

(4.29)
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where we have defined m̂c = | sin θ̂c|1/2. We may eliminate âc and θ̂c from (4.29)

in favour of Bc = m̂câc (> 0) in order to obtain a single algebraic equation for Bc

involving the parameter U only, namely

F (Bc)F
′(Bc)

2

G′(Bc) [F ′(Bc)G(Bc)− 2F (Bc)G′(Bc)]
= 81U2. (4.30)

From the criticality conditions (4.29) it is clear that cos θ̂c > 0 and so we deduce

that the corner lies on the right-hand-side of the cylinder (i.e. in the interval

−π/2 < θ̂c < π/2). When 0 < θ̂c < π/2 the function on the left-hand side of

(4.30) is negative for all Bc > 0, and so (4.30) has no full-rivulet solution for Bc

for any U ; on the other hand, when −π/2 < θ̂c < 0 this function is positive for

0 < Bc < π, increasing monotonically from zero at Bc = 0 to infinity as Bc → π,

so that for any prescribed U equation (4.30) has a unique solution for Bc. Then,

with Bc determined numerically from (4.30), the position of the corner θ̂c = θ̂c(U)

is given by (4.29) as

θ̂c = − tan−1

(
F ′(Bc)

9UG′(Bc)

)
, (4.31)

which together with (4.19), (4.20) and (4.30) can be used to show that θ̂c satisfies

−π/4 < θ̂c < 0. In particular, if Bc → 0 then θ̂c → 0, while if Bc → π then

θ̂c → −π/4. The semi-width at the corner âc = âc(U) is then given by

âc =
Bc

m̂c

=
Bc(

− sin θ̂c

)1/2
, (4.32)

and from (4.18) and (4.29) the critical flux Qc = Qc(U) is given by

Qc =
F (Bc)

9 sin2 θ̂c cos θ̂c

. (4.33)

With the rotation speed U prescribed and the value of Qc obtained from (4.33), the

solution for the critical semi-width ac, critical rivulet profile hc, critical maximum

thickness hmc, critical pressure pc, critical velocity uc and critical load Mc may be

obtained from (4.18), (4.10), (4.11), (4.8), (4.15) and (4.28), respectively. Figure

4.4 shows (a) the scaled position of the corner θ̂c/π, (b) the critical flux Qc and

(c) the critical load Mc, plotted as functions of U . In particular, figure 4.4 shows
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Figure 4.4: (a) The scaled position of the corner in the critical solution θ̂c/π, (b)

the critical flux Qc and (c) the critical load Mc plotted as functions of U (solid

lines) together with the asymptotic solutions (4.35), (4.36) and (4.41), and (4.42),

(4.43) and (4.60) in the limits U → 0 (dotted lines) and U → ∞ (dashed lines),

respectively. Full-rivulet solutions exist only for values of U and M that lie below

the solid line in (c).

Figure 4.5: (a) The critical semi-width ac and (b) the critical maximum thickness

hmc plotted as functions of θ/π for U = 1/3, 2/3, 1, . . . , 10 (solid lines) together

with the asymptotic solutions (4.37) and (4.38), and (4.50), (4.51), (4.56) and (4.57)

in the limits U → 0 (dotted lines) and U → ∞ (dashed lines) for U = 1/3 and

U = 10, respectively.
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Figure 4.6: (a) The critical semi-width ac and (b) the critical maximum thickness

hmc plotted as functions of U for θ = π (solid lines), θ = π/2 (long-dashed lines),

θ = 0 (short-dashed lines) and θ = −π/2 (dotted lines).

that θ̂c is a decreasing function of U , decreasing from zero at U = 0 to −π/4

as U → ∞, and so, unlike in the two-dimensional full-film flow considered by

Moffatt [7], in which the corner is always at θ = 0, the position of the corner

in the present problem varies with the rotation speed U . Figure 4.4 also shows

that both the critical flux Qc and critical load Mc are increasing functions of U ,

increasing from zero at U = 0 to infinity as U →∞, and so full-rivulet solutions,

which exist only for values of U and M that lie below the solid line in figure

4.4(c), are possible for larger loads when the rotation speed is increased. The fact

that the corner in the solution moves towards the bottom of the cylinder as U is

increased may seem counterintuitive, however, one must keep in mind that as U is

increased the critical load Mc is also increased and it is the effect of gravity on the

resultant increased film thickness that causes the corner to move down. Figure 4.5

shows (a) the critical semi-width ac and (b) the critical maximum thickness hmc

plotted as functions of θ/π for a range of values of U , and figure 4.6 shows the same
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Figure 4.7: Three-dimensional plots of the critical rivulet profile hc as a function of

Y = acy and θ/π for (a) U = 1/3, (b) U = 1, (c) U = 3, (d) U = 6 and (e) U = 10.

quantities plotted as functions of U for a range of values of θ. In particular, figures

4.5 and 4.6 show that both ac and hmc are increasing functions of U (a property

that also holds for the critical rivulet profile hc) and that the critical semi-width

ac (critical maximum thickness hmc) is a decreasing (increasing) function of θ on

the left-hand side of the cylinder near θ = π but is a non-monotonic function of θ

elsewhere. Figure 4.7 shows three-dimensional plots of the critical rivulet profile

hc for different values of the rotation speed U , clearly illustrating the shape of the

rivulet and how it changes as U varies. In particular, figures 4.5–4.7 show that

when U is small the rivulet is almost uniform, whereas when U is large the rivulet



Chapter 4 131

Figure 4.8: (a) The slopes of the critical semi-width ac as θ → θ̂±c , A±c , and (b) the

slopes of the critical maximum thickness hmc as θ → θ̂±c , H±mc, plotted as functions

of U (solid lines) together with the asymptotic solutions (4.39) and (4.40), and

(4.58) and (4.59) in the limits U → 0 (dotted lines) and U → ∞ (dashed lines),

respectively.

is wide and thin at the top of the cylinder near θ = π/2 and is narrow and thick

at the bottom of the cylinder near θ = −π/2. The asymptotic limits of small and

large U will be considered in detail in subsections 4.2.1 and 4.2.2, respectively.

Figures 4.3(b), 4.5 and 4.7 clearly illustrate the corner in the critical rivulet

profile, the position and shape of which depends on the rotation speed U . The

slopes of ac and hc on either side of this corner (i.e. as θ → θ̂±c ) are denoted by

A±c =
dac

dθ

∣∣∣∣
θ=θ̂±c

and H±c =
∂hc

∂θ

∣∣∣∣
θ=θ̂±c

. (4.34)

Figure 4.8 shows (a) the slopes of ac, A
±
c , and (b) the slopes of hmc, H

±
mc, plotted

as functions of U . In particular, figure 4.8 shows that A−c and H−mc are positive

increasing functions of U (a property that also holds for H−c ), whereas H+
mc is a

negative decreasing function of U (a property that also holds for H+
c ) and A+

c



Chapter 4 132

is a negative decreasing function of U when U < 0.25452, a negative increasing

function of U when 0.25452 < U < 1.40264, and a positive increasing function

of U when U > 1.40264. This behaviour of the slopes of hc differs significantly

from the two-dimensional full-film situation considered by Moffatt [7], not only

because the slopes vary with the rotation speed U but also because the corner is

not symmetric, i.e. the slope of hc as θ → θ̂−c is not simply the negative of the

slope as θ → θ̂+
c as it is in the two-dimensional case.

In order to obtain a thorough understanding of the effect of varying the rotation

speed U on the critical solution, in the following two subsections we analyse the

behaviour of the critical solution in the asymptotic limits U → 0 and U → ∞,

respectively.

4.2.1 The limit of small rotation speed U → 0

In the limit of small rotation speed U → 0 the position of the corner in the critical

solution θ̂c is given from (4.30) and (4.31) by

θ̂c = −7U

9
+

22148U3

24057
+O(U5), (4.35)

while from (4.33) the critical flux Qc is given by

Qc =
35U2

12
− 1715U4

1944
+O(U6). (4.36)

These solutions for θ̂c and Qc are shown as dotted lines in figures 4.4(a) and 4.4(b),

respectively, and show that the effect of small rotation speed is to decrease θ̂c from

zero at U = 0 (specifically O(U) as U → 0) and to increase Qc from zero at U = 0

(specifically O(U2) as U → 0). With the solution for Qc known we may show from

(4.18), (4.21) and (4.22) that the critical semi-width ac is given by

ac =
1

2

(
35U

1 +
√

2S sin(θ/2)

)1/2

+
7
√

35U3/2S cos(θ/2)
(
5S sin(θ/2)−

√
2
)

72
(
1 +
√

2S sin(θ/2)
)3/2

+O(U5/2), (4.37)
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Figure 4.9: Three-dimensional plots of the asymptotic solutions for the critical

rivulet profile hc in the limit (a) U → 0, given by (4.38), shown for U = 1/3

and (b) U →∞, given by (4.56) and (4.57), shown for U = 10, and plotted as func-

tions of Y = acy and θ/π. These figures may be compared with the corresponding

numerical solutions shown in figures 4.7(a) and 4.7(e), respectively.

and hence from (4.10) and (4.12) that the critical rivulet profile hc is given by

hc =
1− y2

4

(
35U

1 +
√

2S sin(θ/2)

)1/2

+
7
√

35U3/2S(1− y2) cos(θ/2)
(
5S sin(θ/2)(3y2 − 1)− 2

√
2
)

288
(
1 +
√

2S sin(θ/2)
)3/2

+O(U5/2), (4.38)

where we have defined S = sgn(θ− θ̂c). These solutions for the critical semi-width

ac and critical maximum thickness hmc = hc(θ, 0) are shown as dotted lines in

figure 4.5 and also in figure 4.9(a), which shows a three-dimensional plot of the

asymptotic solution (4.38) for the critical rivulet profile hc for U = 1/3, which

may be compared with the corresponding three-dimensional plot of the numerical

solution shown in figure 4.7(a). In particular, the solutions show that the effect of

small rotation speed is to increase both the critical semi-width ac and the critical

rivulet profile hc from zero when U = 0 (specifically both are O(U1/2) as U → 0).
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The slopes on either side of the corners in ac and hc, A
±
c and H±c , are given by

A±c = ∓(70U)1/2

8
+

(35U)3/2

144
+O

(
U5/2

)
(4.39)

and

H±c = ∓(70U)1/2(1− y2)

16
+

(35U)3/2(1− y2)(3y2 − 1)

576
+O

(
U5/2

)
. (4.40)

These solutions are shown as dotted lines in figure 4.8, and show that the effect

of small rotation speed is to increase A−c and H−c , and decrease A+
c and H+

c from

zero at U = 0, with all of the slopes being O(U1/2) in the limit U → 0.

From the solution for ac given by (4.37) and the expression for the load (4.28)

we find that the critical load Mc is given by

Mc =
70U

3
log
(
1 +
√

2
)

+O(U3); (4.41)

this is shown as a dotted line in figure 4.4(c) and shows that the effect of small

rotation speed U is to increase the critical load from zero at U = 0 (specifically

O(U) as U → 0).

4.2.2 The limit of large rotation speed U →∞

In the limit of large rotation speed U →∞ the position of the corner in the critical

solution θ̂c is given from (4.30) and (4.31) by

θ̂c = −π
4

+
3

4U
− 15

8π

(
5

2U3

)1/2

+O

(
1

U2

)
, (4.42)

and from (4.33) the critical flux Qc is given by

Qc =
8πU3/2

3
√

5
− 2πU1/2

√
5

+O (1) . (4.43)

These solutions for θ̂c and Qc are shown as dashed lines in figures 4.4(a) and 4.4(b),

respectively, and show that the effect of large but finite rotation speed is to increase

θ̂c from its leading order value θ̂c = −π/4 (specifically θ̂c = −π/4 + O(1/U) as



Chapter 4 135

U → ∞), while at leading order in the limit of large rotation speed the critical

flux Qc is large (specifically O(U3/2) as U →∞).

Unlike the behaviour of the solution in the limit U → 0, the behaviour of

the solution for ac in the limit U → ∞ is qualitatively different for positive and

negative θ with boundary layers near θ = 0 and θ = π of width O(1/U1/2). With

the solution for Qc given by (4.43) we may show from (4.18) and (4.23)–(4.26)

that the solution for the critical semi-width ac is given by

ac =
4πmU1/2

3
√

5
+

1

m
+O

(
1

U1/2

)
(4.44)

if 0 < θ < π, and is given by

ac =
π

m
− ζ

mU1/2
+O

(
1

U3/2

)
(4.45)

if −π < θ < 0, where ζ = ζ(θ) is a root of the cubic polynomial equation

8 sin2 θζ3 + 6
√

5 sin θζ2 + 5
√

5 cos θ = 0 (4.46)

that is real in the interval −π < θ < 0. The real roots of (4.46) are shown in figure

4.10, in which the root corresponding to the full-rivulet solution is shown with

a solid line while the other real roots, which correspond to higher (unphysical)

branches of solutions, are shown with dashed lines. The root ζ of (4.46) that

corresponds to the full-rivulet solution may be written as

ζ =



−
√

5

4 sin θ

[
1 + 2 cosh

(
1

3
cosh−1

[
1 + 2 sin(2θ)

])]
if −π < θ < −π/2,

3
√

5

4
if θ = −π/2,

−
√

5

4 sin θ

[
1 + 2 cos

(
1

3
cos−1

[
1 + 2 sin(2θ)

])]
if −π/2 < θ < 0,

(4.47)

which has a corner at θ = −π/4. From (4.44) and (4.45) we see that the effect

of large but finite rotation speed U is to decrease the critical semi-width ac from

ac = π/m (an O(1) quantity) on the bottom of the cylinder near θ = −π/2, while
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Figure 4.10: Plot of the real roots of the cubic equation (4.46), ζ, as a function of

θ/π, with the root that corresponds to the full-rivulet solution shown with a solid

line and the other real roots, which correspond to higher (unphysical) branches of

solutions, shown with dashed lines.

on the top of the cylinder near θ = π/2 ac is large and of O(U1/2). It is also

interesting to note that there is no corner at leading order in the solution for ac

when −π < θ < 0 given by (4.45); the corner does, however, appear at first order.

In the boundary layers near θ = 0 and |θ| = π, ac is given by

ac =


a1U

1/4 − sgn(cos θ)F (a1|T |1/2)

9U1/4|T |3/2G′(a1|T |1/2)
+O

(
1

U3/4

)
if θ 6= 0,

2
√
πU1/4

51/4
+

8π3/2sgn(cos θ)

35(125U)1/4
+O

(
1

U3/4

)
if θ = 0 or θ = π,

(4.48)

where a1 = a1(T ) is the smallest positive root of

G
(
a1|T |1/2

)
=

8π|T |
3
√

5
(4.49)

and T ( 6= 0) is given by T = θU1/2 with a1 = ac0 in the boundary layer near θ = 0

and by T = (sgn(θ)π−θ)U1/2 with a1 = acπ in the boundary layer near |θ| = π. A
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Figure 4.11: Plot of a1 as a function of T given by the smallest positive root to

(4.49).

plot of a1 as a function of T from (4.49) is shown in figure 4.11. The solution for

ac given by (4.48) shows that at leading order in the limit of large rotation speed

the critical semi-width ac is large and of O(U1/4) on the right-hand and left-hand

sides of the cylinder near θ = 0 and θ = π, respectively. A sketch showing the

structure of the solution for ac in the limit U → ∞ is shown in figure 4.12(a). A

composite solution for ac may be written as

ac =
4πU1/2

3
√

5

(
m−(π−θ)1/2−θ1/2

)
+

1

m
− 1

(π − θ)1/2
− 1

θ1/2
+(ac0+acπ)U1/4 (4.50)

if 0 < θ < π, and as

ac =
π

m
− π

|θ|1/2
− π

(π + θ)1/2
− 1

U1/2

(
ζ

m
− 3
√

5

4

[
1

|θ|3/2
+

1

(π + θ)3/2

− 8

27|θ|1/2
+

8

27(π + θ)1/2

])
+ (ac0 + acπ)U1/4 (4.51)

if −π < θ < 0. This composite solution for ac is shown as a dashed line in figure

4.5(a), and shows that the effect of an increasingly large rotation speed is to make
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Figure 4.12: Sketch showing the structure of the solution for (a) the critical semi-

width ac, and (b) the critical maximum thickness hmc (which is also typical of hc),

in the limit U →∞.

the semi-width approach an O(1) value near the bottom of the cylinder and become

large and of O(U1/2) near the top of the cylinder.

The solution for the critical rivulet profile hc is given by

hc = ξ(m) +O

(
1− |y|
U1/2

exp

[
−4πm2(1− |y|)U1/2

3
√

5

])
(4.52)

if 0 < θ < π where

ξ(m) =
1

m

[
1− 2 exp

(
−4πm2U1/2

3
√

5
− 1

)
cosh

(
4πm2U1/2y

3
√

5
+ y

)]
, (4.53)
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and is given by

hc =
1 + cos(πy)

ζm
U1/2 +

y sin(πy)

m
+O

(
1

U1/2

)
(4.54)

if −π < θ < 0 with ζ as in (4.47). From (4.52) and (4.54) we see that at leading

order in the limit of large rotation speed, the critical rivulet profile hc at the

bottom of the cylinder near θ = −π/2 is large and of O(U1/2), while at the top

of the cylinder near θ = π/2 the effect of large but finite rotation speed U is to

decrease the critical rivulet profile hc away from its leading order value hc = 1/m

(an O(1) quantity) except near y = ±1 where hc is exponentially small. We note

that, unlike in the asymptotic solution for ac when −π < θ < 0 given by (4.45),

the corner appears at leading order in the solution for hc when −π < θ < 0, given

by (4.54). In the boundary layers near θ = 0 and |θ| = π, hc is given by

hc =η(T, y)=



cosh(a1T
1/2)− cosh(a1T

1/2y)

T 1/2 sinh(a1T 1/2)
U1/4+O

(
1

U1/4

)
if 0 < θ < π,

a1U
1/4

2
(1− y2) +O

(
1

U1/4

)
if θ = 0 or θ = π,

cos(a1|T |1/2y)− cos(a1|T |1/2)

|T |1/2 sin(a1|T |1/2)
U1/4+O

(
1

U1/4

)
if −π < θ < 0,

(4.55)

This solution for hc shows that at leading order in the limit of large rotation speed,

the critical rivulet profile hc is large and of O(U1/4) on the right-hand and left-

hand sides of the cylinder near θ = 0 and θ = π, respectively. A plot detailing the

structure of the solution for hmc (which is also typical of hc) in the limit U →∞

is shown in figure 4.12(b). A composite solution for hc may be written as

hc = ξ(m)− ξ(θ1/2)− ξ([π − θ]1/2) + η(θU1/2, y) + η([π − θ]U1/2, y) (4.56)

if 0 < θ < π, and as

hc = U1/2(1 + cos(πy))

(
1

mζ
− 4

3
√

5
(|θ|1/2 + (π + θ)1/2)

)
+ y sin(πy)

(
1

m
− 1

|θ|1/2
− 1

(π + θ)1/2

)
+ η(θU1/2, y) + η([π + θ]U1/2, y) (4.57)
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if −π < θ < 0 where ζ, ξ and η are given by (4.47), (4.53) and (4.55), respectively.

This composite solution for the critical rivulet profile hc is shown as a dashed line in

figure 4.5(b) and is also shown in figure 4.9(b), which shows a three-dimensional

plot of the asymptotic critical rivulet profile hc given by (4.56) and (4.56) for

U = 10 which may be compared with the corresponding three-dimensional plot of

the numerical solution shown in figure 4.7(e). In particular, these solutions show

that effect of an increasingly large rotation speed is to make the critical rivulet

thin and wide near the top of the cylinder and thick and narrow near the bottom

of the cylinder; this effect can be attributed to the combination of increased load

and the effect of gravity on the rivulet.

The slopes on either side of the corner in the solutions for ac and hc, A
±
c and

H±c , are given by

A±c =
π

23/4
− 23/4

√
5

12U1/2

(
9± 2

√
6
)

+
15π

215/4U
+O

(
1

U3/2

)
(4.58)

and

H±c = ∓23/4(5U)1/2

30

(
1 + cos(πy)

) (
2
√

6± 3
)

+
y sin(πy)

23/4
+O

(
1

U1/2

)
. (4.59)

These solutions are shown as dashed lines in figure 4.8 and show that the effect

of a large but finite rotation speed is to decrease A±c away from its leading order

value A±c = π/23/4 (specifically A±c = π/23/4 + O(1/U1/2) as U → ∞), while at

leading order in the limit of large rotation speed the slope H−c (the slope H+
c ) is

large and positive (negative) and of O(U1/2). We note that A−c and A+
c take the

same (constant) value at leading order (as we would expect given that at leading

order the asymptotic solution for ac when −π < θ < 0, given by (4.45), has no

corner in it) while H−c and H+
c have the same magnitude but opposite sign at

leading order.

With the solution for ac known we find from (4.28) that the critical load Mc is

given by

Mc = U1/2

(
8π2

3
√

5
+

∫ 0

−π

2π

m2ζ
dθ

)
+O(1) ' 24.25391U1/2 +O(1). (4.60)
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This solution is shown as a dashed line in figure 4.4(c), and shows that at leading

order in the limit of large rotation speed the critical loadMc is large and of O(U1/2).

4.3 The Non-Critical Solution

In this Section we consider in detail the behaviour of the non-critical full-rivulet

solution with both the rotation speed U and load M prescribed such that U and M

satisfy M < Mc (sub-critical load) and U > Uc (super-critical rotation speed) so

that Q < Qc, i.e. the point (U,M) lies below the curve in figure 4.4(c). Figure 4.13

shows the semi-width a and maximum thickness hm plotted as functions of θ/π for

three different values of the rotation speed U and a range of values of the load M in

each case (including the critical load Mc), while figure 4.14 shows the semi-width

a and maximum thickness hm plotted as functions of θ/π for five different values of

the load M and a range of values of the rotation speed U in each case (including the

critical rotation speed Uc); these figures clearly show the behaviour of the rivulet

as one parameter varies while the other remains constant. In particular, figures

4.13 and 4.14 show that both the semi-width a and the maximum thickness hm

are increasing functions of the load M (a property that also holds for the rivulet

profile h) and are decreasing functions of the rotation speed U on the right-hand-

side of the cylinder near θ = 0 and are increasing functions of the rotation speed

U on the left-hand-side near θ = π (and again, these properties also hold for the

rivulet profile h). It may also be seen that the semi-width a (maximum thickness

hm) is a decreasing (increasing) function of θ on the left-hand-side of the cylinder

near θ = π but is a non-monotonic function of θ elsewhere. Another feature

that is seen in figures 4.13 and 4.14 is that varying the load M has a substantial

effect on the behaviour of the solution, as would be expected. However, varying

the rotation speed U varies the solution only slightly, with the most significant

changes occurring for values of U close to the critical (i.e. close to U = Uc) and

values of θ close to the corner in the critical solution (i.e. close to θ = θ̂c(Uc)); this
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Figure 4.13: (a,b,c) The semi-width a and (d,e,f) the maximum thickness hm plotted

as functions of θ/π for (a,d) M = 1, 2, 3, . . . , 9 and M = Mc ' 9.55293 with

U = 1/2, (b,e) M = 3, 6, 9, . . . , 27 and M = Mc ' 27.75873 with U = 2 and (c,f)

M = 5, 10, 15, . . . , 60 and M = Mc ' 64.48444 with U = 8.



Chapter 4 143

Figure 4.14: (a-e) The semi-width a and (f-j) the maximum thickness hm plotted as

functions of θ/π for (a,f) U = Uc ' 0.12240 and U = 0.15, 0.2, 0.25, . . . , 0.5 with

M = 2.5, (b,g) U = Uc ' 0.24834 and U = 0.3, 0.4, 0.5, . . . , 1 with M = 5, (c,h)

U = Uc ' 0.52666 and U = 0.6, 0.8, 1, . . . , 2 with M = 10, (d,i) U = Uc ' 1.24416

and U = 1.5, 2, 2.5, . . . , 5 with M = 20, and (e,j) U = Uc ' 3.51518 and U = 4, 5,

6, . . . , 11 with M = 40 (solid lines). Also shown for each load is the leading-order

asymptotic solutions (4.62), (4.65) and (4.66) in the limit U →∞ (dotted lines).
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Figure 4.15: Three-dimensional plots of the rivulet profile h as a function of Y = ay

and θ/π for (a) M = 3, (b) M = 6 and (c) M = 9 for U = 1/2, (d) M = 9, (e)

M = 18 and (f) M = 27 for U = 2, and (g) M = 20, (h) M = 40 and (i) M = 60

for U = 8.
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is mainly due to the load being fixed. This result may seem odd because intuitively

one might imagine that the increased rotation speed could lead to a uniform rivulet

or perhaps critical solution beyond which load shedding occurs, however, both of

these would be the result of inertial effects which are outside the regime considered

here. Figure 4.15 shows three-dimensional plots of the non-critical rivulet profile

h for various values of the rotation speed U and load M , clearly illustrating how

the shape of the rivulet changes as U and M vary.

In the following two subsections we analyse the behaviour of the non-critical

solution with prescribed rotation speed U or prescribed load M in the asymptotic

limits M → 0 and U →∞, respectively. Note that there is no full-rivulet solution

in the limits M →∞ with prescribed U or U → 0 with prescribed M , since these

would exceed the critical (maximum) value Mc and the critical (minimum) value

Uc, respectively.

4.3.1 The limit of large rotation speed U →∞

In the limit of large rotation speed U → ∞ with the load M prescribed, the flux

Q and semi-width a are given from (4.18) and (4.28) by

Q =
MU

2π
− I

162πU
+O

(
1

U3

)
(4.61)

and

a = a0 +
F (ma0) cos θ

9m3UG′(ma0)
+O

(
1

U2

)
, (4.62)

where a0 is the smallest positive solution of

G(ma0) =
Mm2

2π
(4.63)

when θ 6= 0 and θ 6= π, and is a0 =
√

3M/π/2 when θ = 0 or θ = π, while

I = I(M) is given by

I =

∫ π

−π

cos2 θF (ma0)F ′(ma0)

m6G′(ma0)
dθ (4.64)
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and is plotted as a function of M in figure 4.16. The leading order solution for a,

a0, is shown as dotted lines in figure 4.14(a) for a range of values of the load M .

With the semi-width a given by (4.62) the rivulet profile h is given from (4.10) by

a(1− y2)/2 if θ = 0, by

h =
cos(ma0y)− cos(ma0)

m sin(ma0)

−
cos θ

[
cos(ma0) cos(ma0y)+y sin(ma0) sin(ma0y)−1

]
F (ma0)

9Um3 sin2(ma0)G′(ma0)
+O

(
1

U2

)
(4.65)

if −π < θ < 0, and by

h =
cosh(ma0)− cosh(ma0y)

m sinh(ma0)

+
cos θ

[
cosh(ma0) cosh(ma0y)− y sinh(ma0) sinh(ma0y)−1

]
F (ma0)

9Um3 sinh2(ma0)G′(ma0)
+O

(
1

U2

)
(4.66)

if 0 < θ < π.

The solution for the flux Q given by (4.61) shows that at leading order in the

limit of large rotation speed the flux is large and of O(U). Plots of this solution

for Q as a function of U are included as dotted lines in figure 4.17(a) for a range of

values of the load M together with the corresponding numerical solutions as solid

lines and the critical solution Qc as a dashed line. In particular, figure 4.17(a)

demonstrates the rather surprising conclusion that although (4.61) is strictly valid

only in the limit U →∞, in practice it provides a good approximation to Q for all

U ≥ Uc. This property also holds for the solutions for the semi-width a and rivulet

profile h, given by (4.62), (4.65) and (4.66), as may be seen in figure 4.18, which

shows three-dimensional plots of the asymptotic rivulet profile h for (a) U = 1/2

and M = 9, (b) U = 2 and M = 27, and (c) U = 8 and M = 60, which may be

compared with the corresponding three-dimensional plots of the numerical solution

shown in figures 4.15(c), 4.15(f) and 4.15(i), respectively. These solutions show

that the effect of large but finite rotation speed is to increase (decrease) both the

semi-width a and the rivulet profile h on the right-hand side |θ| ≤ π/2 (left-hand

side π/2 ≤ |θ| ≤ π) away from their respective O(1) leading order values.
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Figure 4.16: Plot of I, given by (4.64), as a function of the load M .

Figure 4.17: The flux Q plotted as a function of (a) U for M = 10, 20, 30, 40, 50

(solid lines) with the asymptotic solution (4.61) in the limit U → ∞ (dotted lines)

together with the critical flux Qc (dashed line), and (b) M for U = 1, 2, 3, 4, 5

(solid lines) with the asymptotic solution (4.67) in the limit M → 0 (dotted lines)

together with the critical flux Qc (dashed line).
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Figure 4.18: Three-dimensional plots of the asymptotic solution in the limit U →∞

for the rivulet profile h as a function of Y = ay and θ/π for (a) U = 1/2 with M = 9,

(b) U = 2 with M = 27 and (c) U = 8 for M = 60. These plots may be compared

with figures 4.15(c), 4.15(f) and 4.15(i), respectively.

4.3.2 The limit of small load M → 0

In the limit of small load M → 0 with the rotation speed U prescribed, the flux

Q and semi-width a are given from (4.18) and (4.28) by

Q =
MU

2π
− 9M3

9800π3U
+O

(
M5
)

(4.67)

and

a =
1

2

(
3

π

)1/2(
M1/2 +

(7U sin θ + 6 cos θ)

280πU
M3/2

)
+O

(
M5/2

)
, (4.68)
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Figure 4.19: Three-dimensional plots of the asymptotic solution in the limit M → 0

for the rivulet profile h as a function of Y = ay and θ/π for (a) M = 3 with U = 1/2,

(b) M = 8 with U = 2 and (c) M = 20 with U = 8. These plots may be compared

with the corresponding numerical solutions shown in figures 4.15(a), 4.15(d) and

4.15(g), respectively.

and hence, from (4.10), the rivulet profile h is given by

h =
1− y2

4

(
3

π

)1/2
(
M1/2 +

[
7(5y2 − 3)U sin θ + 12 cos θ

]
560πU

M3/2

)
+O

(
M5/2

)
.

(4.69)

The solution for the flux Q given by (4.67) shows that at leading order in the limit

of small load the flux is small and of O(M) and is the same as the leading order

value for Q in the limit of large rotation speed U → ∞ given by (4.61). Plots of

Q in (4.67) as a function of M are included as dotted lines in figure 4.17(b) for a

range of values of the rotation speed U together with the corresponding numerical

solutions as solid lines and the critical solution Qc as a dashed line. As was the

case in the limit U → ∞ discussed previously in subsection 4.3.1, the solution

(4.67) a surprisingly good approximation to Q for any M ≤ Mc, and again this

property also holds for the solutions for the semi-width a and rivulet profile h given

by (4.68) and (4.69), as may be seen in figure 4.19, which shows three-dimensional

plots of the rivulet profile h for (a) M = 3 and U = 1/2, (b) M = 8 and U = 2,

and (c) M = 20 and U = 8, which may be compared with the corresponding

three-dimensional plots of the numerical solution shown in figures 4.15(a), 4.15(d)
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and 4.15(g), respectively. These solutions show that at leading order the effect of

a small load is to increase the semi-width a and rivulet profile h, both of which

are of O(M1/2).

4.4 Backflow

For the two-dimensional full-film flow considered by Moffatt [7], the azimuthal

velocity u is always in the same direction as the rotation of the cylinder (i.e. u ≥ 0

for all −π < θ ≤ π and 0 ≤ z ≤ 1) and so backflow (i.e. u < 0 somewhere

within the flow) never occurs. In contrast, in this Section we will show that in the

present case of three-dimensional rivulet flow backflow is possible, but only within

a restricted region of the M–U parameter space, and that when it does occur it is

always in a small region on the right-hand side of the cylinder near θ = 0.

From (4.15) we see that the azimuthal velocity may be zero (u = 0) only on

the three-dimensional surface defined by

z = 1−
(

1− 2U

h2 cos θ

)1/2

, (4.70)

in 0 < z ≤ 1. It is immediately apparent that (4.70) may have solutions satisfying

z ≥ 0 only for −π/2 < θ < π/2 (that is, on the right-hand side of the cylinder),

and that the surface (4.70) cannot intersect either the substrate z = 0 (by the

no-slip condition) or the plane surfaces θ = ±π/2. If it intersects the free surface

of the fluid z = 1 then it would do so when h = (2U/ cos θ)1/2, which from (4.10)

means that it may intersect the free surface only on the curve y = ±ys(θ) defined

by

ys =



1

ma
cosh−1

[
cosh(ma)− (2U tan θ)1/2 sinh(ma)

]
if 0 < θ <

π

2
,(

1− 2(2U)1/2

a

)1/2

if θ = 0,

1

ma
cos−1

[
cos(ma) + (−2U tan θ)1/2 sin(ma)

]
if −π

2
< θ < 0,

(4.71)
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which provides an explicit expression for the “footprint” of the region of recircu-

lation on the cylinder. From (4.15) it is clear that at any station θ = constant the

azimuthal velocity u on the free surface z = 1 has a minimum at y = 0 since this

is where h takes its maximum value h = hm; hence, the endpoints of the region of

backflow in the θ direction (where u = 0) will lie on y = 0. At these endpoints we

have hm = (2U/ cos θ)1/2 and the semi-width a is given by

a =



2

m
tanh−1

(
2U tan θ

)1/2
if 0 < θ <

π

2
,

2(2U)1/2 if θ = 0,

2

m
tan−1

(
− 2U tan θ

)1/2
if −π

2
< θ < 0,

(4.72)

so that the flux equation (4.18) becomes

Q =



U

m2
G
(

2 tanh−1
(
2U tan θ

)1/2
)

−cos θ

9m4
F
(

2 tanh−1
(
2U tan θ

)1/2
) if 0 < θ <

π

2
,

304

105
U2 if θ = 0,

U

m2
G
(

2 tan−1
(
− 2U tan θ

)1/2
)

−cos θ

9m4
F
(

2 tan−1
(
− 2U tan θ

)1/2
) if −π

2
< θ < 0,

(4.73)

which provides an equation determining the values of θ at the endpoints of any

region of recirculating flow in terms of the flux Q. The function on the right-

hand side of (4.73) is real and positive only for −π/2 < θ < θmax, where θmax =

θmax(U) = cot−1(2U) > 0; the function decreases with θ from infinity as θ →

−π/2+ to a minimum value Qmin at some θ = θmin(U) (−π/2 < θmin < 0), and

then increases to infinity as θ → θ−max. With U prescribed, it is found that Qmin

satisfies 0 < Qmin ≤ Qc(U) for any U (together with a corresponding minimum

load denoted Mmin satisfying 0 < Mmin ≤ Mc(U)), and therefore (4.73) has two

solutions θ = θ1 and θ = θ2 (with −π/2 < θ1 < θmin < θ2 < θmax) when Q >



Chapter 4 152

Qmin (with Q ≤ Qc), one solution θ = θ1 = θ2 = θmin when Q = Qmin, and

no solution when Q < Qmin. However, some of these correspond to solutions on

higher branches; specifically, it is found that for a full-rivulet solution there may

be a region of backflow near the free surface in θ1 ≤ θ ≤ θ2 only when U < 1

and Qmin < Q ≤ Qc, and that otherwise the flow is always in the same direction

as the rotation of the cylinder. When Q = Qmin the region of recirculating flow

collapses to just a single stagnation point on the free surface. Figure 4.20 shows

the differences between (a) the critical flux and the minimum flux below which

backflow is not possible, Qc − Qmin, and (b) the critical load and the minimum

load below which backflow is not possible, Mc −Mmin, plotted as functions of U ,

which, in conjunction with figures 4.4(b) and 4.4(c), shows the regions of Q–U and

M–U parameter space in which backflow occurs. In particular, figure 4.20 shows

that for a given rotation speed U , backflow occurs only when the load M is very

close to the critical load Mc. With this result in mind we shall further describe

backflow only in the critical case.

Figure 4.21(a) shows the endpoints of the region of backflow in the critical case,

θ1c and θ2c, plotted as functions of U together with the position of the corner in

the critical solution, θ̂c, and shows that the endpoints always lie on opposite sides

of the corner. It may also be shown that in the limit U → 0 the endpoints θ1c and

θ2c have the same magnitude, with θ1c = −θ2c = − cos−1(1216/1225) ' −0.12129

(' −0.03861π), while in the limit U → 1− the endpoints take the same value

θ1c = θ2c = − cot−1(2) ' −0.46365 (' −0.14758π), showing that the region of

backflow has zero width.

Figure 4.21(b) shows the footprint of the region of backflow in the Y –θ/π plane

(i.e. the curves y = ±ys given by (4.71)) for a range of values of the rotation speed

U in the critical case. Also shown is the maximum width of the region (which

always occurs at θ = θ̂c) given by the curves Y = ±ŷsc = ±ŷc(θ) in which the

value of the rotation speed U is determined by the solution of θ = θ̂c(U). In

particular, figure 4.21(b) shows that in the limit U → 0 the region of backflow
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Figure 4.20: (a) The difference between the critical flux and the minimum flux below

which backflow is not possible, Qc−Qmin, and (b) the difference between the critical

load and the minimum load below which backflow is not possible, Mc−Mmin, plotted

as functions of U .

Figure 4.21: (a) The endpoints of the region of backflow, θ1/π and θ2/π, plotted as

a function of U together with the position of the corner, θ̂c/π. (b) The footprint of

the region of backflow Y –θ/π plane (i.e. the curves y = ±ys given by (4.71)) in the

critical case for U = 0.1, 0.2, 0.3, . . . , 0.9 and U = 0, U = 0.01, U = 0.01, U = 0.95

(solid lines) and U = 1 (dot) together with the curve ŷsc as a function of θ̂c/π which

shows the maximum width of the regions.
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becomes narrow in the Y direction but tends towards a constant width in the θ

direction, eventually becoming a line when U = 0 (when, of course, there is no

full-rivulet solution), while in the limit U → 1− the region of backflow becomes

narrow in the Y direction and narrower in the θ direction, eventually becoming a

point when U = 1 (representing a single stagnation point on the free surface).

4.5 Conclusions

In this Chapter we used the lubrication approximation to obtain a detailed descrip-

tion of the steady flow of a thin, slowly varying, symmetric rivulet of Newtonian

fluid on either the outside or the inside of a uniformly rotating horizontal cylinder.

We found that, like the two-dimensional full-film flow considered by Moffatt [7],

there exists a critical solution corresponding to either a critical load Mc above

which no full-rivulet solution exists (if the rotation speed U is prescribed) or a

critical rotation speed Uc below which no full-rivulet solution exists (if the load M

is prescribed).

In Section 4.2 we showed that the critical solution for the semi-width a is made

up of two branches of solutions that meet to form a corner at some point on the

bottom-right of the cylinder; this is analogous to the corner found by Moffatt [7]

for the two-dimensional problem. However, unlike in Moffatt’s problem, in the

present problem the position and slopes either side of the corner in the present

problem depend on the rotation speed U or the load M . We also showed that the

critical flux Qc, critical semi-width ac, critical rivulet profile hc and the critical

load Mc are increasing functions of the rotation speed U . In the limit of small

rotation speed U → 0 the critical rivulet becomes both narrow and thin, with the

critical semi-width ac and critical rivulet profile hc both being of O(U1/2), leading

to small critical load of O(U). In the limit of large rotation speed U → ∞ the

critical rivulet becomes narrow and thick at the bottom of the cylinder and wide

and thin at the top of the cylinder with the critical semi-width being of O(1) on
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the bottom and of O(U1/2) on the top of the cylinder and the critical rivulet profile

being of O(U1/2) on the bottom and O(1) on the top of the cylinder, leading to a

large critical load of O(U1/2).

In Section 4.3 we considered the case in which both the rotation speed U and

load M are prescribed such that non-critical full-rivulet solutions are possible and

found that the semi-width a and the rivulet profile h are increasing functions of the

load M and are decreasing functions of the rotation speed U , and that varying the

load can have a substantial effect on the behaviour of the solution while varying

the rotation speed varies the solution only slightly. In particular, we found that

at leading order in the limit of large rotation speed U → ∞ both the semi-width

a and rivulet profile h are of O(1) while at leading order in the limit of small load

M → 0 both the semi-width a and the rivulet profile h are small and of O(M1/2).

In Section 4.4 we showed that, for most values of the parameters U and M , the

azimuthal velocity is in the same direction as the rotation of the cylinder; however,

if 0 < U < 1 and we are sufficiently close to the critical solution a small region of

backflow occurs on the right-hand side of the cylinder.



Chapter 5

Conclusions and Further Work

5.1 Conclusions

In this thesis we obtained a comprehensive description of three problems concern-

ing thin-film flows on horizontal cylinders.

In Chapter 2 we considered steady two-dimensional gravity-driven curtain flow

with prescribed volume flux of a Newtonian fluid with temperature-dependent

viscosity over a uniformly heated or cooled stationary horizontal cylinder. We

showed that, for the exponential viscosity model (2.8), when the thermoviscosity

number is positive V > 0, the effect of increasing the Biot number B is to decrease

the average temperature and the average velocity and to increase the viscosity, film

thickness and the load; when V < 0 the opposite occurs. Similarly, we showed that

the effect of increasing V is always to increase the film thickness and the load. In

order to obtain a complete understanding of the influence of varying B and V , we

also analysed the behaviour in appropriate asymptotic limits. In the limits B → 0+

and B →∞ these solutions revealed that increasing B changes the film thickness

everywhere by a constant factor of f̂−1/3, where f̂ is given by (2.22), which depends

only on the specific viscosity model considered. In the limit V → −∞ the viscosity

decreases from O(1) at the cylinder to O((−V )−3)� 1 at the free surface and the

velocity increases from zero at the cylinder to a large value of O(−V )� 1 at the
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free surface, leading to a small film thickness of O(log(−V )/(−V )) � 1, while

in the limit V → ∞ the viscosity is exponentially large and the velocity is small

and uniform of O(V −1/3)� 1 outside a narrow boundary layer near the cylinder,

leading to a large film thickness of O(V 1/3)� 1. The distinguished limit of strong

thermoviscosity and weak heat transfer, |V | → ∞ and B → 0+ with BV = O(1),

was also considered.

In Chapter 3 we considered steady two-dimensional coating and rimming flow

of a Newtonian fluid with temperature-dependent viscosity on a uniformly heated

or cooled rotating horizontal cylinder. We found that, as in the corresponding

isothermal problem studied by Moffatt [7], there is a critical solution with a cor-

responding critical load (which depends, in general, on both the Biot number B

and the thermoviscosity number V ) above which no full-film solutions exist. The

critical film thickness, magnitude of the slope of the corner in the critical film

thickness at θ = 0, and the critical load were all found to be increasing (decreas-

ing) functions of B for positive (negative) V , and increasing functions of V . In

the limit of V → −∞ the critical film thickness and the critical load become

small like O(log(−V )/(−V )) � 1, while in the limit V → ∞ they become large

like O(V 1/2) � 1. For a prescribed load M , it was shown that near θ = 0 the

film thickness is a decreasing (increasing) function of B for positive (negative)

V , and a decreasing function of B, but that near θ = π it behaves in the oppo-

site way. Full-film solutions exist in the limit B → ∞ for V ≥ V∞, but not for

V < V∞, where V = V∞ satisfies M = f̂−1/2Mc0, where Mc0 ' 4.44272 is the

critical load in the isothermal problem. In the limit V → −∞ there is no full-film

solution, while in the limit V →∞ the leading-order film thickness is the constant

h = M/2π. We also showed that for sufficiently small prescribed values of M

satisfying M < 1.50315 there is a narrow region of the B–V parameter plane in

which backflow occurs in a region on the right-hand side of the cylinder. Again,

the distinguished limit of strong thermoviscosity and weak heat transfer, |V | → ∞

and B → 0+ with BV = O(1), was also considered.



Chapter 5 158

In Chapter 4 we considered the steady isothermal flow of a rivulet of Newtonian

fluid on either the outside or the inside of a uniformly rotating horizontal cylinder.

We found that, like the two-dimensional full-film flow considered by Moffatt [7],

there exists a critical solution corresponding to either a fixed rotation speed U and

a critical load Mc above which no full-rivulet solution exists or a fixed load M

and a critical rotation speed Uc below which no full-rivulet solution exists. It was

shown that the critical rivulet profile has a corner at some point on the bottom-

right of the cylinder, the position of which depends on the rotation speed or the

load; this is analogous to the corner found by Moffatt [7] for the two-dimensional

problem. The critical flux, critical semi-width, critical rivulet profile and critical

load are all increasing functions of the rotation speed U . In the limit U → 0

the critical rivulet becomes both narrow and thin with width and thickness of

O(U1/2) and a small critical load of O(U). In the limit U →∞ the critical rivulet

becomes narrow and thick at the bottom of the cylinder and wide and thin at the

top of the cylinder with width of O(1) and O(U1/2) on the bottom and top of the

cylinder, respectively, and a thickness of O(U1/2) an O(1) on the bottom and top

of the cylinder, respectively, leading to a large critical load of O(U1/2). For non-

critical solutions we found that the width and thickness are increasing (decreasing)

functions of the load M (rotation speed U) and that varying the load can have

a substantial effect on the behaviour of the solution while varying the rotation

speed varies the solution only slightly. At leading order in the limit U → ∞ the

width and thickness are of O(1) while at leading order in the limit of small load

M → 0 both width and thickness are small and of O(M1/2). We also showed that

if 0 < U < 1 and if we are sufficiently close to the critical solution a small region

of backflow (which does not occur in the two-dimensional problem) occurs on the

right-hand side of the cylinder.
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5.2 Further Work

There are a number of possible interesting extensions to the work described in this

thesis that could be considered.

In Chapter 2 we considered thermoviscous curtain flow on a stationary horizon-

tal cylinder and in Chapter 3 we considered thermoviscous coating and rimming

flow on a rotating horizontal cylinder. The applications of these problems often in-

volve temperature differences that are important (for example, in heat exchangers

or in many coating flows) and so further extensions to these problems would be of

much interest. A natural extension to the work of Chapters 2 and 3 would be to

consider different viscosity models, as Wilson and Duffy [96] did for the flow of a

rivulet down an inclined plane. The inclusion of other thermal effects, such as ther-

mocapillarity, heat transfer to or from the cylinder or evaporation/condensation

at the free surface would also be of interest. Some of these of effects have been

considered for curtain flow (see Section 1.3.2(a)), though, as far as the author is

aware, no work that also includes thermoviscous effects has been performed. In the

case of coating and rimming flow very little work (Duffy and Wilson [129] being

the only example that the author is aware of) has been done that includes non-

isothermal effects (despite their obvious importance to the applications of these

flows) and so almost any non-isothermal extension to the work of Chapter 3 would

be of interest. Extensions that consider the flow of non-Newtonian fluids would be

of interest since in many of the applications the fluids are often non-Newtonian,

particularly in the case of coating and rimming flows. Another potentially in-

teresting addition to the work is to include higher order terms in the governing

equations, possibly extending to numerical simulations of the full equations as well

as the consideration of unsteady solutions; as we saw in Chapter 1, many people

have performed these types of extensions, but few include non-isothermal effects

(especially for coating and rimming flow) and none include thermoviscous effects.

One could also address the important question of if and when these flows are sta-
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ble. Carefully controlled laboratory experiments involving non-isothermal effects

could also be conducted; this would be very useful for making comparisons with

the model and could also help to address the question of stability.

In Chapter 4 we considered the flow of a non-perfectly wetting rivulet on either

the outside or the inside of a rotating horizontal cylinder. There are many exten-

sions to this flow that would be of interest. The inclusion of thermoviscous effects

(as in Chapters 2 and 3 for two-dimensional flow) would present an interesting

problem as would the inclusion of other non-isothermal effects (Holland et al. [94],

El-Genk and Saber [92] and Wilson and Duffy [96] all consider non-isothermal ef-

fects for rivulet flows down inclined planes). One could also consider the case of a

perfectly wetting rivulet or a non-perfectly wetting rivulet with fixed contact lines

(but variable contact angle) or a case where both the contact angle and the contact

lines vary; for example, Davis [97] considered contact angles that are functions of

the contact line speed, for rivulet flow down an incline. The inclusion of higher

order terms in the governing equations or unsteady solutions may also lead to in-

teresting results, as would the consideration of surface shear stress effects (Saber

and El-Genk [103], Myers et al. [104] and Sullivan et al. [107] all considered the

effects of a surface shear stress on the flow of a rivulet down an incline). Studies

into the stability of rivulet flows on rotating cylinders would also be useful, as

would experimental investigations for the purpose of comparison.
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