
University of Strathclyde

Electrical and Electronic Engineering Department

Glasgow, UK

Wind farm high frequency electrical resonances:

impedance-based stability analysis and

mitigation techniques

by

Gabriele Amico

A thesis submitted in fulfilment of the requirements for the

degree of Doctor of Philosophy

2019



To my family



Declaration

This thesis is the result of the author’s original research. It has been composed by the

author and has not been previously submitted for examination which has led to the

award of a degree.

The copyright of this thesis belongs to the author under the terms of the United King-

dom Copyright Acts as qualified by University of Strathclyde Regulation 3.50. Due

acknowledgement must always be made of the use of any material contained in, or

derived from, this thesis.

Signed:

Date:

ii



Acknowledgements

A special thank is to my academic supervisors, Dr. Agust́ı Egea-Àlvarez and Prof.
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Abstract

The installation of larger wind farms has introduced new grid integration challenges.

Among these, high frequency electrical resonances caused by the cables and lines con-

necting the wind farm to the grid have been described in literature. These resonances

may cause instability as they typically occur at frequencies close to the current con-

troller bandwidth of the wind turbine inverter. Different mitigation techniques have

been proposed in the literature to counteract these resonances. However, these tech-

niques lack of generality as they rely on parameter tuning, which varies on a case-by-

case scenario. In order to analyse the problem, an impedance-based stability approach

has been applied. A systematic technique to derived the sequence-frame converter ad-

mittance has been defined, and a stability study methodology including the coupling

between the positive and negative sequence converter admittances has been formulated.

Compared to the existing impedance-based stability criterion, where such coupling is

ignored, the proposed technique is more accurate in the system stability assessment.

The study has shown that the delay introduced by the controller implementation is the

main cause of the investigated wind farm stability issues. An innovative hardware im-

plementation of the controller is proposed to compensate for this delay, without altering

the converter switching frequency but making a more efficient use of the available hard-

ware processing power. Hence, a more general and portable solution to the problem is

proposed, which does not require parameter tuning. An experimental validation of the

applied stability analysis methodology and of the proposed mitigation techniques has

been carried out, making use of a purposed built prototype of a converter-grid system.
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Chapter 1

Introduction

Wind energy is currently seen as one of the most cost-effective renewable resources [1].

As a result of this, installation of wind power plants has significantly increased over

the last decades [2].

As modern wind turbines are based on power electronics equipment, a reduction on

standard synchronous machine generation has been observed [3], resulting in a more

complex power network operation. Some of the challenges include voltage regulation,

power quality and grid stability [4], [5], [6].

New stability issues attributed to the use of power converters have been reported, such

as resonances due to cables [7], [8], sub-synchronous resonances within DFIG-based

wind farms [9] [10], or the connection of power converters to weak grids [11], [12].

Compared to rotating electrical generators the control bandwidth of power converters

is typically much higher, with a consequent increased risk of instability [13].

This work focuses on a specific stability issue observed in wind farms, which is caused

by the electrical resonances generated by the cables and lines installed to connect a

wind park to the grid [8]. These resonances typically occur in a range of frequency

from a few hundred Hz to 1 kHz [14], [8], [15] and, for this reason, will be referred to as

wind farm high frequency electrical resonances, or simply wind farm resonances. As it

will be discussed in the following Section, the parasitic capacitance of such cables and

lines plays an crucial role to the generation of such stability issues.
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1.1 Wind farm resonances

The resonances considered in this work originate, as mentioned, in the interconnection

between a wind farm and the grid [14]. A network of Medium Voltage (MV) cables is

typically employed to constitute the collector system of the wind farm, interconnecting

the turbines and gathering the power produced by each individual unit. An export

system is then used to deliver this power to the grid. In offshore sites this typically is

either a High Voltage (HV) AC submarine cable [16], [17], or HVDC technology when

the offshore park is installed at larger distances from the shore [18], [19], [20]. When

it comes to the onshore case, the search for sites with a higher wind resource typically

leads to intallation of wind parks in remote locations, far from the trasmission network,

with the need of a long HV AC overhead line or underground cable to export the gen-

erated power to the grid [21], [22].

While collector cables typically are tens of kilometers long [23], the export cables/lines

may even reach the length of a hundred kilometres [14]. The parasitic capacitive ele-

ments of such extended cabling system become significant and can not be overlooked

in the design of the interconnenction between the grid and the wind farm. Despite

the fact that the turbine controller is specifically designed to effectively achieve dis-

turbance rejection, its robustness (quantified by stability margins such as gain margin,

phase margin, vector gain margin [24], [25]) is seen to be strongly imperilled by the

inductance and parasitic capacitance of the cables and lines.

Firstly, as discussed in [26], the interaction between the high shunt capacitance of the

cables (particularly the large submarine cables) and the inductive element of some of

the installed equipment (particularly the transformers) generates parallel and series

resonances. These typically occur at frequencies close to the upper limit of the turbine

inverter current controller bandwidth [14], [15]. These so-called wind farm electrical

resonances are likely to interact with the dynamics of the wind turbine power converter

controller, hence increasing the probablility of triggering unstable behaviours if these

resonances are excited. Even though these phenomena have been observed both in

onshore and in offshore sites [14], the resonances of offshore scenarios have been mainly
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studied in the literature, as the bigger and bigger size of offshore parks, combined with

their increasingly complex structure, exacerbate these stability issues [27], [28]. This is

mostly due to the longer cables needed to interconnect the higher number of turbines

of these larger plants [29], which makes the cable parasitic capacitance increasingly sig-

nificant. Moreover, the use of a long HV AC export cable and the problable low short

circuit ratio values at the point of common coupling, are likely to further threaten the

stability of the system, by introducing resonances within the bandwidth of the turbine

current controller [30].

Secondly, as the parasitic capacitive and inductive elements of the cables and lines

require additional reactive power to assure that the interconnection operates in com-

pliance with grid codes [31], [32], further equipment such as capacitors and inductors

are usually installed to make up for this extra reactive power requirement [33]. These

devices introduce further undesired resonances making the stable operation of the sys-

tem even more difficult to preserve [33].

In order to avoid uncontrolled voltages and currents when unstable dynamics build

up, generation units are usually disconnected from the grid [8]. To resolve the issue,

different mitigation techniques have been proposed, which typically consist in the use

of filters specifically tuned to damp these resonances [34], [35]. Each wind farm has its

own resonance frequencies, which depend on factors such as the grid characteristics,

the wind farm configuration and operating point, etc. For example, variations in the

number of operating turbines have been seen to substantially change the frequencies

and the gains of the resonances [8], [14]. This aspect becomes more important in the

larger offshore wind farms, as the number of generating turbines can vary from a few

units to several hundreds. The variety of the possible scenarios makes it difficult to

indentify a unique, universal solution to the problem. In order to investigate the poten-

tial resonances of each wind farm, expensive field measurements need to be carried out,

together with complex model based studies of the system [27], eventually producing

solutions specifically tailored on a case-by-case basis, which de facto limits their porta-

bility. Hence, this research work is inspired by such need of a more general solution to

the problem, which can effectively be applied in disparate scenarios, regardless of the
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wind farm design.

An overview of the currently proposed techniques is presented as follows.

1.2 Mitigation techniques: state-of-the-art

The study of wind farm resonances constitutes a broad area of research and, as a conse-

quence of the increased size of wind parks, the problem is rising in relevance. Different

solutions have been suggested in the literature, which typically consist in the installa-

tion of additional equipment in the wind farm, or in the implementation of active filters

in the turbine control scheme [34].

A study of wind farm resonances for both onshore and offshore wind parks is presented

in [36]. In the work, analytical expressions of the resonance frequencies are provided,

which allow to point out how cable resonances are related to wind farm parameters such

as transformer, capacitor banks and cable impedances. Thereafter, the uses of both

passive notch filters and high-pass filters, installed at specific wind farm buses, are

compared. The study concludes that the latter filter type is more effective at damping

resonances above its tuned frequency, while the notch filter, despite being effective at

its resonance frequency, has the drawback of introducing potential further resonances

in the system. Similar conclusions on the use of passive filters are drawn in [37].

Wind farms resonances are also studied in [38], where it is highlighted how the use

of capacitor banks can detrimentally shift the resonance frequencies in the range of

the 5th and 7th harmonics, causing their amplification. Thereby, the installation of an

inductor in series to the capacitor banks is proposed to shift the resonance frequencies

to less critical (higher) values. Last but not least, the study emphasises that, as the

resonances vary with the operating point of the wind farm, inductors of different sizes

should be used for a more effective damping action, hence pointing out how simple

fixed passive filters are prone to variations in the resonance frequencies.

In [23] and [39], a comprehensive analytical study of wind farm resonances is presented

making use of both the Harmonic Resonance Mode Analysis (HRMA) method and the

frequency scan technique. Considering the case study of a 400MW offshore wind farm,

the length of the MV collector submarine cable is varied in the work to emphasize its
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central role to determine the values of the resonance frequencies, showing how, expect-

edly, longer lengths reduce the frequencies of the resonances. Thereby, the effect of

installing either passive or hybrid ad hoc tuned filters at critical buses of the collector

system is compared. The study concludes that the hybrid ones, despite the fact of being

the more expensive and complex alternative, provide a better performance, damping

the desired resonances without, unlike the passive filters, introducing new resonances

at other frequencies.

In [40], [14] the study of wind farm resonances is carried out considering both onshore

and offshore real plants. Field measurement data are used to support the analysis and

a frequency domain model of the turbine controller is built to assess the stability of

the system. The work confirms that instability is more likely to occur in the case of

large offshore wind farms, where the higher shunt capacitance of the cables can gener-

ate resonances at frequencies as low as 200 Hz, thereby making the controller design

of offshore wind turbines more challenging. Furthermore, the study proves the strong

dependancy of the resonance frequencies on the number of turbines in operation, as

similarly found in [8], [23]. The use of resonant selective control loops, tuned to elimi-

nate specific frequencies and integrated in the inverter current controller of the turbine,

is then proposed to damp the cable resonances. However, albeit these studies prove the

effectiveness of such methods, they also point out how a careful design of these filters

is needed to avoid side effect stability issues.

In [29] resonances in offshore wind farms are investigated and attributed to the long

HV AC export cable connecting the wind park to the onshore grid, and in particular

to its big shunt capacitance. A notch based active damping control strategy is then

successfully used to resolve the stability issue. This is cascaded to the Proportional

Resonance (PR) current controller [41], which is implemented in the αβ-frame, and

tuned to specifically neutralise the high frequency LC cable resonance. However, as

pointed out in [40], the tuning of this active filter is critical not to introduce further

stability problems.

A comprehensive panorama of mitigation techniques for the neutralisation of wind farm

resonances is presented in [34]. These are divided into two categories depending on
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whether resonance damping is carried out by the turbine inverter current controller or

by an external device. In the former case, a revision of the control strategy is required.

This may for example consist in the inclusion of a derivative term in the Voltage Feed-

Forward (VFF) term of the controller [42], [43], or in the implementation of virtual

resistors by adding extra current feedback paths [44]. These approaches are based on

the passivity-based method [45], which aims to make the inverter output admittance

passive to assure the system closed loop stability (under the assumption that the grid

impedance is also passive). Despite the fact that these proposed methods have been

proven to be successful, their applicability in a real scenario is limited by the need to

have an accurate knowledge of the plant parameters, necessary to tune the controller

effectively. The use of a notch filter to attenuate selected resonant frequencies is pro-

posed in [46]. In the study, the filter is cascaded to the PI current controller and tuned

based on an estimation of the system resonance frequency obtained with the Goertzel

algorithm [47]. However, this on-site tuning method, despite the fact that it is robust

to minor variations in the resonance frequency (for example due to aging), is not ade-

quate to cope with the larger frequency changes of the wind farm resonances. The use

of a low quality factor notch filter is proposed in [8] and included in the current and

voltage feedback of the controller. In this study, instability caused by cable resonances

in an offshore wind park is studied, in particular highlighting how relevant the number

of operating turbines is to determine the resonance frequency of the system. Thereby,

a wider band notch filter is used to make up for these broad changes in the resonance

frequencies, with the consequence of reduced stability margins, caused by the poorer

phase performance of such filter.

An alternative approach is the use of Selective Harmonic Elimination (SHE) PWM

algorithms in the control of the wind turbine inverter [48], [49], as a method to avoid

excitation of the wind farm resonances. However, the complexity of their implemen-

tation, which may require, for example, the use of time-dependant carriers, not to

mention the dependency of these PWM patterns on the measured voltage phase angle,

curbs their application in real scenarios.

When it comes to active devices, STATCOMs are among the most used components in
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wind farms. While traditionally used for the provision of reactive power [34], their use

as active dampers has been proposed more recently. For example, in [50], a shunt ac-

tive filter is designed to behave like a damping resistor at the resonance frequency. The

main limit of these devices is that they are suitable only for the elimination of lower fre-

quency resonances, because of the practical contraints on their current controller band-

width [34]. A proposed possible solution is the use of hybrid active filters [51], [52]. In

this case one or more Voltage Source Converters (VSC) is combined to a passive filter,

allowing for lower ratings for the VSC and, therefore, a higher current controller band-

width. A more flexible active filter is then proposed in [53], where power converters are

used to imitate the behaviour of a damping resistor, whose tuned frequency is extracted

on-line from the spectral analysis of the measured bus voltage. While allowing for the

possibility of automatic filter tuning, on the downside, this solution does not allow for

the rejection of multiple resonances simultaneously.

1.3 Motivation and aims of the work

The main limitation of the solutions discussed in Section 1.2 is seen to be lack of gen-

erality. The common denominator of these methods is the use of filters able to damp

specific resonance frequencies. However, as the resonances of each wind park depend

on many parameters such as the cable parameters and length, wind farm layout, use

of capacitor banks, grid specifications, these filters need to be tuned on a case-by-case

basis. Moreover, the resonance frequencies strongly depend on the operating conditions

of the wind farm and, in particular, on the number of active turbines [8], making the

scenarios even more changeable.

The design of these filters requires an accurate study of the resonances for each wind

farm installation, which can be both time consuming and costly. A more flexible solu-

tion, able to cope with potential broad changes in the resonance frequencies, and that

is easy to implement, would be desirable for wind turbine manufacturers. This would

allow them to confidently install their wind turbines in disparate wind farm scenarios,

eliminating the necessity to customise their design for each single case. In more gen-

eral terms, the challenge lies in the intrinsic dependence of the grid-connected turbine
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stability performance on the grid impedance, which varies from site to site.

A first aim of the work is therefore the implementation of a turbine controller scheme

able to enhance its stability robustness against the occurrence of these wind farm elec-

trical resonances. A controller whose design and parameter tuning does not rely on an

a priori knowledge of the wind farm specifics.

In a context where a large variety of designs are possible for the interconnection between

a wind farm and the grid, the modelling of the wind farm system and the assessment

of its stability performance also become more complex tasks. The use of an analytical

method which does not require a detailed knowledge of the system paramters would be

desirable and has been proposed in [54], where the impedance-based stability criterion

is discussed and applied to the study of a converter-grid system. This requires the defi-

nition of a small-signal model of the system in the sequence-frame, formulated in terms

of the small-signal converter admittance and of the Thévenin equivalent small-signal

grid impedance.

A second aim of the work is to enhance the potential of the method presented in [54].

While in the existing literature formulas to calculate the converter admittance are

provided only for a limited number of converter control schemes [55], a systematic

methodology has been defined in this work to calculate the small-signal converter ad-

mittance for any generic converter control scheme. Moreover, while in the method

proposed in [54] the cross-coupling terms between the positive and the negative se-

quence terms of the converter small-signal admittance are neglected, a technique has

been formulated to include them in the analysis, allowing a more accurate stability

assessment of the system. The methodology has been applied to study the wind farm

electrical resonances, both to investigate the related critical aspects of the controller

design, and to evaluate the effectiveness of the proposed mitigation techniques on the

stability performance of the wind farm.

1.4 Methodology

In order to study the wind farm resonances, the case study of a real grid-connected

wind farm system where such a problem was observed, has been considered. Firstly, a
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model of the interconnection between a single wind turbine and the grid has been built.

Thereafter, along the line of similar works published in the literature ( [56], [33], [8]) an

aggregation technique has been applied to model the wind farm-grid interconnection.

In the defined model of the system, as the wind farm resonances are likely to gen-

erate unstable dynamics by interacting with the current controller of the turbine’s

inverter [15], [57], [23], the focus of the study has been on this section of the inverter

controller. In particular, a standard configuration of such a controller has been con-

sidered, implementing the so-called dual vector current control algorithm in the dq-

frame [8], [58].

Having defined a model of the wind farm-grid interface, the second step of the study has

been the analysis of its stability performance. In order to carry out such stability study,

a small-signal Linear Time-Invariant (LTI) model of the system has been built, which

has enabled to describe the linearised dynamics of the system around its steady-state

operating point. Such small-signal model, which is derived in the frequency-domain

and is implemented in the positive dq-frame, has been used to study the system sta-

bility applying classical feedback control theory [11], [25], [59]. It is worth mentioning

that, in such a model, the negative sequence current controller, which is implemented

in the negative dq-frame, is referred to the positive dq-frame. For this purpose, a math-

ematical translation has been introduced to map the transfer function models used to

describe the controller operation, from the negative to the positive dq-frame. Along this

line, an equivalent mapping technique has been derived to translate transfer function

models from the abc- to the dq-frame.

Such a small-signal model constitutes a Multiple-Input-Multiple-Output (MIMO) LTI

system, hence requiring the application of MIMO control theory tools [24]. Carrying

out this task in the dq-frame is effortful for at least two reasons. Firstly, because of

existing couplings between variables in the d- and in the q-axis [58], [60]. Secondly,

because it requires a dq-frame representation of the grid impedance, which can be a

time-consuming task especially when this has a complex structure (as in the case when

it also includes the cabling system connecting a wind farm to the grid). Based on the

impedance-based stability criterion [55], [54], [61], [62], [13], a representation of the sys-
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tem in the sequence-frame as an electrical circuit composed of a source (the inverter)

and a load (the grid), each respectively modelled by their Norton/Thévenin equivalent,

has been used. The main advantage of this approach is the substantial diagonalisation

of the MIMO control system, which allows to treat the system as a combination of

two independent Single-Input-Single-Output (SISO) systems [54]. This facilitates both

the study of the system absolute stability, and of its relative stability [63], allowing to

use familiar tools like the gain and phase margin [25]. Moreover, by representing the

inverter-grid interface as two separate entities, the converter and the grid small-signal

impedances, for a given inverter controller design, the associated small-signal converter

impedance/admittance is unique and only depends on the converter operating point.

Thereby, the stability of the system for different grid impedances can be verified in a

straightforward way, simply updating the sequence-frame small-signal grid impedance

(which corresponds to the abc-frame impedance for a passive and balanced grid [64]).

Only changes in the inverter controller architecture or in its parameters would require

an updated calculation of the small-signal converter impedance/admittance.

Given that the small-signal model of the system has been implemented in the dq-frame,

a tool is needed to map it on the sequence-frame. More specifically, this is necessary to

derive the sequence-frame expression of the small-signal converter admittance. Differ-

ent approaches have been proposed in the literature [13], [65], [66], [67], which calculate

the small-signal converter impedance from a small-signal model of the system either in

the dq-frame, or in the abc-frame, or in the αβ-frame. An alternative technique has

been implemented in this work, where the small-signal converter admittance is first cal-

culated in the dq-frame and then mapped onto the sequence-frame, making use of a set

of equations. The resulting sequence-frame small-signal converter admittance is then

combined with the small-signal grid impedance to carry out the stability study by ap-

plication of the Generalised Nyquist Criterion (GNC) [68], [69]. A significant advantage

of the proposed method is that it can be used for any converter control scheme, once

its small-signal equivalent model is formulated in the dq-frame. Moreover, the method

allows a calculation of the cross-coupling terms between the positive and the nega-

tive sequence components of the small-signal converter admittance. This has allowed
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their inclusion in the stability study, unlike in the application of the impedance-based

stability criterion, where they are neglected [54]. A more in depth analysis of such cou-

pling has been carried out, investigating how this is affected by the converter control

scheme and how it impacts the stability analysis. The definition of a perturbation norm

stability margin that takes such coupling into account is also given, exploiting the typ-

ically verified diagonal dominance property of the converter-grid interface small-signal

impedance-based model in the sequence-frame.

As mentioned, the developed methodology has been used to study the stability perfor-

mance of a wind farm system where such type of investigated resonances was observed.

This has allowed to highlight the significant role of the controller delay in building

up these unstable dynamics. Moreover, the stability analysis has revealed that a grid

connected wind farm can indeed suffer from two types of resonances. One is a low

frequency resonance, associated to a weak grid effect. The other is the high frequency

resonance so far discussed, which is due to the high shunt capacitance of such ca-

bles/lines. Despite the fact that the focus of this work has been on the study of the

latter type of resonances, i.e. the high frequency ones, the beneficial effect of one of

the proposed techniques, the Fast Voltage Feed-Forward (FVFF) strategy, on the low

frequency resonance problem will also be highlighted.

Two complementary mitigations techniques have been designed. Based on the ob-

servation that the controller delay is seen to be critical to the high frequency wind

farm resonance issues, they aim to compensate for such delay, without changing the

switching frequency of the inverter, but making a more efficient use of the controller

hardware. The first strategy, the FVFF one, uses the latest available plant voltage

sample to maximise the damping properties of the converter controller. The second

strategy, named Reduced Current Delay (RCD), eliminates the sampling delay affect-

ing the current control loop, making use of the latest available plant signals to adjust

the PWM pattern currently applied to modulate the inverter voltage. The stabilising

effects of these methods has been verified both analytically, based on the small-signal

model of the system, and experimentally, making use of a built grid-connected converter

prototype, where a cable resonance similar to those observed in wind farms has been
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reproduced [14], [8]. It will be shown how the optimal performance of the controller

is obtained when the FVFF and the RCD strategies operate together, which therefore

constitutes the eventual controller design proposed in this work.

1.5 Structure of the thesis

The work is composed of five more Chapters and six Appendices, whose content is

outlined as follows.

In Chapter 2, the model of the studied wind farm system is presented. As its elementary

block is the interface between the turbine’s inverter and the grid, the components of

such interface are described in more detail, with a particular focus on the converter con-

troller. Thereby, the aggregated model of the studied wind farm system is illustrated,

highlighting how this has allowed a reproduction of the studied high frequency reso-

nances. Subsequently, the built scaled-down laboratory prototype of an inverter-grid

interface, which has been used throughout the work to validate the analytical results

experimentally, is described, specifying its different set-ups that have been considered.

In Chapter 3, the derivation of the small-signal model of the studied inverter-grid

system is provided. As mentioned, this is represented in the frequency domain and

implemented in the dq-frame. In particular, the focus of the derivation has been on the

methodologies that have been used to include both the PLL dynamics and the negative

sequence current controller in the model. Thereafter, a validation of this analytical

model both against an equivalent Simulink based time-domain model of the considered

interface, and against the built laboratory prototype, is provided. This small-signal

model has been used in the stability studies carried out throughout the work, and in

particular in the analysis of the wind farm stability performance.

In Chapter 4, the methodology used to study the stability of the system is presented.

The notion of small-signal converter admittance is introduced, and the equations used

to calculate its analytical expression in the sequence-frame are provided and validated

experimentally. A more in depth analysis of the existing coupling between the posi-

tive and the negative sequence terms of the small-signal converter admittance is pre-

sented, showing how their magnitude is significantly affected by the used control scheme.
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Thereafter, the criterion to assess the absolute stability of the system is described and

applied to study the considered wind farm system. Then, how the stability study is af-

fected by the mentioned coupling terms is investigated and a criterion to decide whether

such coupling should be included or not in the study is provided. This is based on the

diagonal dominance property of the converter-grid system in the sequence-frame. Fi-

nally, such a property of diagonal dominance is exploited to introduce a perturbation

norm stability margin which takes the aforementioned coupling terms into account.

In Chapter 5, the proposed techniques to mitigate the wind farm resonances are de-

scribed, namely the FVFF and the RCD strategies. Their hardware implementation is

outlined, and their effectiveness to counteract such resonance issues is shown, both an-

alytically and experimentally. Finally, based on these strategies, an optimal controller

design is suggested and its stability performance is quantified.

Final conclusions and future work are presented in Chapter 6.

Six complementary Appendices have been included. In Appendix A, a description of

the used Space Vector Modulation (SVM) technique is presented. In Appendix B, the

definitions of the positive and negative dq-frames are provided. In Appendix C, the

analytical derivations of the most relevant equations used throughout the work are

provided, in particular for the expressions relating a generic dq-frame admittance to

its equivalent sequence-frame formulation. In Appendix D, a description of the hard-

ware used to build the converter laboratory prototype is provided. In Appendix E, the

carried out digital implementation of the controller algorithm is presented. Finally, in

Appendix F, the publications and inventions generated by this work are listed.
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Chapter 2

Wind farm-grid modelling and

prototyping

This Chapter describes the model of a wind farm-grid system where the problem of

wind farm resonances has been observed. Such a model makes use of an aggregated

wind turbine model and a grid model, defined based on similar studies published in the

literature [56], [33], [8]. The individual turbines of the wind farm are replaced by an

equivalent scaled-up turbine, and the network of cables and lines connecting the wind

farm to the grid is modelled by a lumped RLC equivalent circuit.

A simplified model of a single grid-connected wind turbine is also introduced, which has

been used to carry out some of the analytical studies presented in the next Chapters.

As the wind farm resonances typically occur at frequencies much higher than those of

the mechanical and aerodynamic modes of the turbine [8], [15], [22], these have not

been included in the used turbine model. The focus has been limited to the turbine

inverter, as it is its interaction with the wind farm resonances which has been seen to

be responsible for the investigated stability issues [14], [30]. The design of the inverter

controller will be presented in detail, as it has a central role in the inverter operation,

and it is where the proposed mitigation techniques will be acting on.

A description of a built prototype of the inverter-grid interconnection is also provided.

It reproduces the cable due instability dynamics of real wind farms on a laboratory
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scale. It will be used to verify the effectiveness of the mitigation techniques presented

in Chapter 5, as well as to validate the theoretical analyses presented in Chapters 3

and 4.

The Chapter is organised as follows. In Section 2.1 the models used throughout the

work are described. In particular, these include the turbine and the grid models, the

model of a turbine-grid interconnection and that of the wind farm-grid system where

the resonance issues have been observed. In Section 2.2, the design of the turbine

inverter controller is presented, and how this is adjusted for the scaled-up turbine

of the wind farm aggregated model is illustrated. Finally, in Section 2.3, the built

laboratory prototype of the inverter-grid system is presented, describing the different

set-ups that have been considered in the carried out tests.

2.1 Modelling

The models that have been used in this work are presented as follows. In Section

2.1.1, the model of the turbine is presented. In Section 2.1.2, the simplified Thévenin

equivalent grid model considered in the work is described. Thereafter, in Section 2.1.3,

the model of a turbine-grid interconnection is outlined. Such a model will be used in

some of the theoretical analyses presented in Chapters 3 and 4. Finally, in Section

2.1.4, the aggregated model of a wind farm-grid system where the wind farm resonance

issue has been observed is presented. This model will be used in Chapter 4 to analyse

the stability problems associated to such resonances, and in Chapter 5 to verify the

effectiveness of the proposed mitigation techniques on the wind farm system stability

behaviour.

2.1.1 Turbine model

A variable speed Full Scale Converter (FSC) turbine has been considered [22], whose

scheme is shown in Figure 2.1. The drivetrain consists of a Permanent Magnet (PM)

synchronous generator connected to a back-to-back power converter [21]. The generator

controls the speed of the wind turbine rotor to maximise its aerodynamic efficiency. As

the machine currents and voltages have variable frequency and amplitude [70] a full

power converter is required to connect the generator to the grid.
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Figure 2.1: Standard grid-connection scheme of a FSC wind turbine.

The inverter is connected to the Low Voltage (LV) bus by means of a coupling

inductor and of a shunt filter, which is used to attenuate the Pulse Width Modulation

(PWM) harmonics generated by the inverter. A transformer is then utilised to increase

the voltage up to the Medium Voltage (MV) bus. A three wire star connected system

has been assumed. The U voltage and the i current are measured by the inverter

controller to control the inverter operation, as it will be discussed in Section 2.2.1.

As the electrical resonances object of this work typically occur in the [200 Hz, 1000 Hz]

range [39], the lower frequency dynamics caused by the mechanical and aerodynamic

modes of the wind turbine [22], as well as the dynamics of the DC link voltage, whose

bandwidth is much lower than 200 Hz [58], have been neglected in the study. The

focus has been on the turbine inverter, ignoring any variations in the DC link electrical

signals. Hence, in the considered model of the turbine the DC link capacitor has been

replaced by an ideal DC voltage generator.

The used inverter model will be discussed in the following Section. Thereafter, in

Section 2.1.1.2 the resulting equivalent electrical circuit used to model the turbine is

presented.

2.1.1.1 Inverter model

Reflecting the trend in the industry [58], a three phase two level Voltage Source Con-

verter (VSC) using IGBT switches has been considered. Its equivalent electrical dia-

gram is shown in Figure 2.2.
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+ 

− 
𝐔𝐃𝐂 

𝐐𝟏 

𝐐𝟐 
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𝐐𝟒 

𝐐𝟓 

𝐐𝟔 

𝐔𝐈,𝐚 𝐔𝐈,𝐛 𝐔𝐈,𝐜 

Figure 2.2: Standard three phase two level VSC with IGBT switching devices.

An average model of the inverter has been considered [58]. This consists of three

controlled voltage sources, one for each phase. Based on (A.2), the inverter output

voltage, UI,abc(t), is calculated as:

UI,abc(t) =
UDC

2
mabc(t) (2.1)

where mabc(t) are the three phase modulation functions used by the PWM technique

to control the turn-on and turn-off times of the inverter switches [71], [72]. These are

calculated by the inverter controller, as it will be discussed in Section 2.2.1.

𝐔𝐈,𝐚 ~ 
 𝐔𝐃𝐂

𝟐
𝐦𝐚 𝐔𝐈,𝐛 ~ 

 𝐔𝐃𝐂

𝟐
𝐦𝐛 𝐔𝐈,𝐜 ~ 

𝐔𝐃𝐂

𝟐
𝐦𝐜 

Figure 2.3: Equivalent circuit of the used average model of the VSC.

Equation (2.1) results from the assumption that linear modulation is used [71],

which requires to limit the range of variation of mabc(t), typically to the [−1, 1] interval.

Thanks to the Space Vector Modulation (SVM) technique, which has been used in this

work, this range can be extended by approximately 15 % [73]. More details on the

inverter operation and on the SVM method can be found in Appendix A.

The equivalent circuit associated to the used average model of the inverter is composed
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of three controlled voltage sources, as shown in Figure 2.3.

2.1.1.2 Turbine equivalent circuit

The equivalent one-line electrical diagram of the considered turbine model is shown in

Figure 2.4, where all the impedances are referred to LV. The coupling inductor and the

transformer are modelled by equivalent RL impedances. The considered PWM filter is

composed by a parallel connection of an RC branch and two LC branches respectively

resonating at fs and 2fs, where fs is the switching frequency of the inverter.

𝐓𝐮𝐫𝐛𝐢𝐧𝐞 
𝐭𝐫𝐚𝐧𝐬𝐟𝐨𝐫𝐦𝐞𝐫 

𝐂𝐨𝐮𝐩𝐥𝐢𝐧𝐠 
𝐢𝐧𝐝𝐮𝐜𝐭𝐨𝐫 

𝐏𝐖𝐌 
𝐟𝐢𝐥𝐭𝐞𝐫 

𝐢 

𝐋𝐟 𝐑𝐟 

𝐔 

𝐂 𝐂𝟏 

𝐑𝐭 𝐋𝐭 

𝐑 

𝐂𝟐 

𝐋𝟏 𝐋𝟐 
𝐔𝐈 

 𝐈𝐧𝐯𝐞𝐫𝐭𝐞𝐫 

~ 

𝐥𝐢𝐧𝐞𝐚𝐫 𝐦𝐨𝐝𝐞𝐥 

𝐔𝐃𝐂

𝟐
𝐦 

Figure 2.4: Equivalent one-line circuit of the modelled turbine.

2.1.2 Grid model

An RL Thévenin equivalent grid model has been assumed throughout the work. Its

equivalent circuit is represented in Figure 2.5. In the study, the grid voltage Ug(t) has

been assumed harmonics free and its frequency f0 has been assumed constant and equal

to 50 Hz. Thereby, the analytical expression of Ug(t) is:

Ug,a(t) = Ûgcos(ω0t)

Ug,b(t) = Ûgcos(ω0t−
2

3
π)

Ug,c(t) = Ûgcos(ω0t−
4

3
π)

(2.2)

where Ûg is the maximum amplitude of the phase voltage and ω0 = 2πf0.
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𝐢𝐦𝐩𝐞𝐝𝐚𝐧𝐜𝐞 
𝐆𝐫𝐢𝐝 

~ 𝐔𝐠 

𝐋𝐠 𝐑𝐠 

Figure 2.5: Equivalent one-line diagram of modelled grid.

2.1.3 Turbine-grid model

A model of a single grid-connected wind turbine has been derived. This model is used

to validate the small-signal modelling theory presented in Chapter 3 (see Section 3.2.1)

as well as to validate the equations introduced in Chapter 4 to calculate the small-signal

converter admittance in the sequence-frame (see Section 4.1.3.1).

The considered interconnection is that between the turbine modelled in Section 2.1.1

and the RL grid modelled in Section 2.1.2. The resulting one-line diagram of such

interconnection is shown in Figure 2.6.

𝐢𝐦𝐩𝐞𝐝𝐚𝐧𝐜𝐞 
𝐆𝐫𝐢𝐝 𝐓𝐮𝐫𝐛𝐢𝐧𝐞 

𝐭𝐫𝐚𝐧𝐬𝐟𝐨𝐫𝐦𝐞𝐫 
𝐂𝐨𝐮𝐩𝐥𝐢𝐧𝐠 
𝐢𝐧𝐝𝐮𝐜𝐭𝐨𝐫 

𝐏𝐖𝐌 
𝐟𝐢𝐥𝐭𝐞𝐫 

𝐢 

𝐋𝐟 𝐑𝐟 

𝐔 ~ 
𝐂 

𝐔𝐠 

𝐋𝐠 

𝐂𝟏 

𝐑𝐭 𝐑𝐠 𝐋𝐭 

𝐑 

𝐂𝟐 

𝐋𝟏 𝐋𝟐 
𝐔𝐈 

 𝐈𝐧𝐯𝐞𝐫𝐭𝐞𝐫 

~ 

𝐥𝐢𝐧𝐞𝐚𝐫 𝐦𝐨𝐝𝐞𝐥 

𝐔𝐃𝐂

𝟐
𝐦 

Figure 2.6: Equivalent one-line diagram of the modelled inverter-grid interconnection.

The electrical parameters used for this model are listed in Table 2.11. Sizing of the

coupling inductor and of the PWM filter has been carried out in line with [74].

1The electrical parameters of the coupling inductor and of the PWM filter are omitted as they
constitute confidential information.
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Table 2.1: Electrical parameters of the modelled turbine-grid interconnection.
Impedance per unit values are also specified.

Parameter Value

Grid line voltage Ug,LL 690 Vrms
Grid frequency f0 50 Hz
DC link voltage UDC 1100 V
Turbine rated power Prat 3 MW
SCR 5
X/R ratio 10
Grid inductance Lg 100.53 µH (0.2 pu)
Grid resistance Rg 3.2 mΩ (0.02 pu)
Transformer inductance Lt 40.41 µH (0.08 pu)
Transformer resistance Rt 1.3 mΩ (0.008 pu)

2.1.4 Wind farm-grid model

The final model that is introduced is that of the studied wind farm-grid system. The

case of an offshore wind park where the wind farm resonance issue was observed has

been considered. A schematic layout of this system is shown in Fig. 2.7.

 

𝐌𝐕 𝐜𝐚𝐛𝐥𝐞 

𝐖𝐢𝐧𝐝 𝐟𝐚𝐫𝐦 

𝐏𝐚𝐫𝐤 
𝐭𝐫𝐚𝐧𝐬𝐟𝐨𝐫𝐦𝐞𝐫 

𝐇𝐕 𝐞𝐱𝐩𝐨𝐫𝐭  
𝐬𝐲𝐬𝐭𝐞𝐦 

𝐆𝐫𝐢𝐝  

 ~
 

𝐆𝐫𝐢𝐝  
𝐢𝐦𝐩𝐞𝐝𝐚𝐧𝐜𝐞 

Figure 2.7: Schematic layout of the interconnection between the wind park and the
grid in the considered case study.

A Medium Voltage (MV) network of 33 kV cables interconnecting the wind turbines

to the Park transformer constitutes the collector system, while a combination of 132 kV

High Voltage (HV) overhead lines and cables constitutes the export system, delivering

the generated power to the grid [75]. A total of N = 54 turbines are installed, each

with a rated power of 3.6 MW.

The system shown in Figure 2.7 has been represented in terms of a lumped equiv-

alent circuit, applying an analogous aggregation technique used in similar works pub-

lished in the literature (see for example [56], [33], [8]). The turbine model introduced
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in Section 2.1.1 has been used. Starting from its one line diagram, shown in Figure

2.4, an equivalent N -scaled turbine is formulated. In this aggregation process it has

been assumed that the operating turbines all inject the same current i into the grid,

making the current of the N -scaled turbine equal to Ni. By indicating with Zf (s),

Zt(s) and ZPWM (s) the equivalent impedances of the coupling reactor, the wind tur-

bine transformer and the PWM filter respectively, the corresponding impedances of the

aggregated turbine model, ZfN (s), ZtN (s) and ZPWMN
(s), are [76]:

ZfN (s) =
Zf (s)

N
;ZtN (s) =

Zt(s)

N
;ZPWMN

(s) =
ZPWM (s)

N
. (2.3)

Both the MV collector system and the HV export system in Figure 2.7 have been

replaced by equivalent RLC lumped models, applying the methodology illustrated in

[76], while the RL Thévenin equivalent model introduced in Section 2.1.2 has been used

for the grid (see Figure 2.8).

~ 

𝐋𝐌𝐕 𝐑𝐌𝐕 

𝐂𝐌𝐕 

𝐋𝐩 𝐑𝐩 𝐋𝐇𝐕 𝐑𝐇𝐕 

𝐂𝐇𝐕 

𝐋𝐠 𝐑𝐠 

𝐔𝐠 

𝐌𝐕 𝐬𝐲𝐬𝐭𝐞𝐦 

𝐥𝐮𝐦𝐩𝐞𝐝 𝐦𝐨𝐝𝐞𝐥 

𝐏𝐚𝐫𝐤 

𝐭𝐫𝐚𝐧𝐬𝐟𝐨𝐫𝐦𝐞𝐫 

𝐇𝐕 𝐬𝐲𝐬𝐭𝐞𝐦 

𝐥𝐮𝐦𝐩𝐞𝐝 𝐦𝐨𝐝𝐞𝐥 

𝐆𝐫𝐢𝐝 

𝐦𝐨𝐝𝐞𝐥 

Figure 2.8: Equivalent circuit composed by the lumped model of the MV and HV
cabling systems, the Park transformer impedance and the grid RL representation.

The resulting Thévenin equivalent representation of the circuit in Figure 2.8, char-

acterized by ZSY S(s) and USY S , forms the final one-line diagram of the system, shown

in Figure 2.9. All the impedances are referred to the LV voltage bus. The electrical

parameters used to calculate ZSY S(s) are listed in Table 2.2 while the other system

parameters are detailed in Table 2.32.

2The electrical parameters of the turbine inductor and PWM filter are omitted as they constitute
confidential information.
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Figure 2.9: Equivalent one-line diagram of the interconnection between the wind farm
and the grid.

Table 2.2: Plant parameters for the studied grid-connected wind farm. Impedance per
unit values are also specified.

Component Symbol Value Note

Turbine Transformer Lt 22.7 µH (0.054 pu) @690 Vrms, @3.6 MVA
690V/33kV Rt 0.99 mΩ (0.0075 pu)

MV cable capacitance CMV 2.1 µF (67.6 pu) @132 kVrms, @777 MVA
MV cable inductance LMV 8 mH (0.11 pu)
MV cable resistance RMV 1.6 Ω (0.07 pu)

Park Transformer inductance Lp 52.3 mH (0.73 pu) @132 kVrms, @777 MVA
Park Transformer resistance Rp 0.39 Ω (0.017 pu)

HV cable capacitance CHV 1.5 µF (94.6 pu) @132 kVrms, @777 MVA
HV cable inductance LHV 40.9 mH (0.57 pu)
HV cable resistance RHV 5.8 Ω (0.26 pu)

Grid short circuit power S 777 MVA @132 kVrms, @777 MVA
Grid inductance Lg 71.4 mH (1 pu)
Grid resistance Rg 3.03 Ω (0.14 pu)

Table 2.3: System parameters of the studied grid-connected wind farm.

System parameters Value

DC link voltage UDC 1100 V
Turbine LV bus voltage Ug,LL 690 Vrms

Grid frequency f0 50 Hz
Turbine rated power Prat 3.6 MW

Figure 2.10 shows the Bode plot of the abc-frame phase admittance YTH(s) =

Z−1TH(s), highlighted in Figure 2.21, as a function of the number N of operating turbines,

with 1 ≤ N ≤ 54.
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Figure 2.10: System admittance YTH(s) for different values of the number of operating
turbines N .

It can be noticed that two groups of spectral peaks are present, one in the [300

Hz, 600 Hz] range, the other in the [1100 Hz, 1200 Hz] range. These resonances are

attributed to the non-negligible capacitance of the cables and lines of both the collector

and export systems [40], and are charachterized by a frequency and a magnitude both

varying with N [8], [77]. As it will be discussed in Chapter 4, these resonances are

responsible for the studied wind farm instability issues.

2.2 Inverter controller design

The inverter controller is designed to regulate the active and reactive power delivered

to the grid. Based on the voltage U and the current i signals measured at the LV bus

(see Figure 2.1), it calculates the PWM signals modulating the inverter AC voltage.

The design of the inverter controller is presented in Section 2.2.1. Thereafter, in Sec-

tion 2.2.2, the corresponding inverter controller of the scaled turbine used to model

wind farm-grid system is presented. This requires to adjust the controller parameters,

applying scaling rules equivalent to those introduced in Section 2.1.4.

2.2.1 Inverter controller

The inverter controller is typically composed of an inner current controller, and of a

slower outer loop, consisting of an active power controller, and of a voltage regulator.
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The former controls the amount of active power injected by the inverter into the grid,

the latter makes sure that the voltage at the LV bus is at its nominal value, by exchang-

ing reactive power with the grid [58]. A PLL loop is included in the controller scheme

and is used to estimate the grid angle, thus allowing the synchronization between the

inverter operation and the grid [78].

Different frames are typically employed to implement the inverter controller, such as

the abc-frame [79], or the αβ-frame [13] or the dq-frame [55], [11]. The last of these

has been chosen in this work. The analytical definition of the dq-frame can be found

in Appendix B.

One of the main advantages of operating the controller in the dq-frame is the possibil-

ity of exploiting the capability of PI regulators to track constant reference signals with

no steady-state error [80]. This combines with the simplicity to tune these regulators,

making such solution the preferred alternative in industrial applications [58]. Design-

ing the controller in the dq-frame requires to implement the so-called vector control

algorithm [8], where separate loops are used to control the d- and q-components of the

measured current signal i. In the implemented controller design, both the positive and

the negative sequence components of i are controlled.

Another significant advantage of implementing the controller in the dq-frame is the

possibility of decoupling the control of the active and reactive power, P (t) and Q(t)

respectively, generated by the controller [58]. These can be expressed in terms of the

dq-frame components of U(t) and i(t), respectively Udq(t) and idq(t):

P (t) =
3

2
[Ud(t)id(t) + Uq(t)iq(t)]

Q(t) =
3

2
[Uq(t)id(t)− Ud(t)iq(t)]

(2.4)

Equations (2.4) are simplified by choosing a dq-frame where either the d- or the

q-axis is aligned to the Ua(t) phasor. The latter alignment has been chosen in this

work [81]. Thanks to this alignment, which is assured by the PLL loop operation, at
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steady state:

Ud,0 = 0

Uq,0 = Û
(2.5)

where Û it the magnitude of the Ua(t) phasor. This allows to rewrite (2.4), at steady

state, as:

P0 =
3

2
Uq,0iq,0

Q0 =
3

2
Uq,0id,0

(2.6)

Equations (2.6) indicate that the active power is controlled exclusively by iq(t),

whilst the reactive power is regulated only by id(t).

The controller design is also affected by its hardware implementation. Tipically, the

controller algorithm is executed by the control board at discrete times, corresponding

to the instants when the voltage and the current signals are sampled. The discrete

sampling of such signals is executed regularly every Tsample. In particular, by indicat-

ing with fs the converter switching frequency, Tsample = 1
2fs

if asymmetrical regular

sampling is used, or Tsample = 1
fs

if symmetrical regular sampling is applied [73] (see

Appendix A for a more detailed description of these sampling methods). Thanks to

these sampling techniques, it is possible to substantially eliminate the PWM harmon-

ics from the sampled current signal i [82]. However, because of the existing phase

shift between the U voltage and the i current, caused by the reactive components of

the electrical system impedances, these PWM harmonics are not eliminated from the

sampled U voltage, and generate aliasing [83]. Therefore, while there is no need of an

anti-aliasing filter for the sampled i current, this is instead necessary for the sampled

U voltage. Therefore, as this filter has been implemented via software, it needs to be

included in the controller scheme.

It is highlighted that the discrete sampling of the voltage and current signals, as well

as the PWM technique used to modulate the inverter voltage, generate a delay in the
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controller action [82]. Such delay has been included in the analytical models defined in

the carried out study and, as it will be discussed, plays a central role in the wind farm

resonance issue.

The design of the inverter controller is presented as follows. In Section 2.2.1.1, the

structure of the inner controller is illustrated. Thereafter, in Section 2.2.1.2 and 2.2.1.3,

the PLL loop and the outer loops are respectively presented. The implementation of

the voltage anti-aliasing filter is outlined in Section 2.2.1.4. while the method used to

model the controller delay is presented in Section 2.2.1.5. Finally, in Section 2.2.1.6,

the complete inverter controller scheme is summarised.

2.2.1.1 Inner controller

This controller consists of two separate control loops, the positive sequence and the neg-

ative sequence current controllers, which respectively regulate the positive and negative

sequence components of the inverter current.

2.2.1.1.1 Positive sequence current loop

Taking into consideration the electrical diagram in Figure 2.4, the structure of this

controller is defined upon equation (2.7). This describes the relation between the space

vectors of the inverter current, the inverter voltage, and the measured voltage, ~i(t),

~UI(t) and ~U(t) respectively:

~UI(t)− ~U(t) = Lf
d~i(t)

dt
+Rf~i(t) (2.7)

The definition of space-vector can be found in Appendix B.1. By applying the Park

transformation (B.16), it is possible to map these signals into the positive dq-frame. In

particular, based on (B.9), (B.13), (2.7) can be reformulated in the positive dq-frame

as:

U+
I,d(t)− U

+
d (t) = Lf

di+d (t)

dt
+Rf i

+
d (t)− Lfω0i

+
q (t)

U+
I,q(t)− U

+
q (t) = Lf

di+q (t)

dt
+Rf i

+
q (t) + Lfω0i

+
d (t)

(2.8)
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where ω0 is the frequency of the three phase electrical signals, assumed equal to 100π

rads−1.

Based on (2.1), it is possible to express U+
I,d(t) and U+

I,q(t) in terms of the inverter

modulation functions:

U+
I,d(t) = m+

d (t)
UDC

2

U+
I,q(t) = m+

q (t)
UDC

2

(2.9)

where m+
d (t), m+

q (t) respectively are the d- and q-components of mabc(t) in the positive

dq-frame. These essentially represent the outputs of the positive sequence controller

loop. In the following description, U+
Sd

(t) and U+
Sq

(t) indicate the d- and q-components

of the voltage signal US(t). As it will be discussed in Section 2.2.1.4, US(t) is the

version of the measured voltage U(t), after the application of the anti-aliasing filter.

Based on (2.8), m+
d (t) and m+

q (t) are calculated as:

m+
d (t) =

2

UDC
[u+d (t)− Lfωi+q (t) + U+

Sd
(t)]

m+
q (t) =

2

UDC
[u+q (t) + Lfωi

+
d (t) + U+

Sq
(t)]

(2.10)

with:

u+d (t) = Lf
di+d (t)

dt
+Rf i

+
d (t)

u+q (t) = Lf
i+q (t)

dt
+Rf i

+
q (t)

(2.11)

Equations (2.10) shows how the m+
dq(t) include the ±Lfω0i

+
dq(t) coupling terms

resulting from the representation of (2.7) in the dq-frame [58].

It is highlighted that (2.11) are the equations of the voltage drop across the coupling

inductor in Figure 2.1, modelled by the series connection of Lf and Rf in Figure 2.4. In

order to compensate for this voltage drop, based on the Internal Model Control (IMC)

technique [84], [58], a PI regulator is employed to calculate u+dq(t).

Two feedback loops are defined, one operating in the positive d-axis, the other operating
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in the positive q-axis. While the former calculates m+
d (t), the latter calculates m+

q (t),

based on (2.10). Each of these loops employs a PI regulator which computes either

u+d (t) or u+q (t), for the d- and q- axis control loops respectively. Both of these regulators

operate on the error between the reference signal to be tracked (i+d,ref or i+q,ref ) and the

feedback current signals (i+d (t) or i+q (t)).
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Figure 2.11: Structure of the positive sequence controller.

Figure 2.11 shows the resulting structure of the positive sequence current controller

where transfer function models, defined in the s-domain [85], have been used to describe

the used control elements. It is highlighted the presence of a low pass filter [86] in

the Voltage Feed-Forward (VFF) term of the controller. Its use represents common

practice [58], [8], and aims to the attenuation of the higher frequency harmonics of the

measured voltage signal. In the scheme, ω is the estimated value of ω0, provided by

the PLL loop (see Section 2.2.1.2).

The employed current PI regulator relies on two tuning parameters, the proportional

gain kp,I and the integral gain ki,I [80]. Different PI tuning techniques can be found

in the literature, such as the previously mentioned IMC or the Modulus Optimum

methods [84], [87]. These methods provide a straightforward methodology to define

the values of kp,I and ki,I , based on the plant electrical parameters (Lf and Rf ) and

on the desired controller bandwidth [58]. This has been set to 700 rads−1.
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2.2.1.1.2 Negative sequence current loop

The other element of the inner controller is the negative sequence current controller.

This controller operates on the negative sequence component of the measured signals,

defined according to the theory presented in Appendix B.4. The implementation of

this loop requires to define a negative dq-frame, which is rotating at the same speed of

the positive dq-frame, but in the opposite direction, as illustrated in Figure B.3.

The US(t) and i(t) AC signals are mapped both on the positive dq-frame, applying

the Park transformation T (θ(t)) in (B.16), and on the negative dq-frame, applying

T (−θ(t)) [58]. T (θ(t)) generates the Û+
Sdq

(t) and î+dq(t) components of US(t) and i(t),

respectively. These signals have been indicated as U+
Sdq

(t) and i+dq(t) in Section 2.2.1.1.1.

T (−θ(t)) produces the Û−Sdq(t) and î−dq(t) components of US(t) and i(t), respectively. As

shown in equation (B.21), these positive and negative sequence dq-components present

sinusoidal coupling terms at 2ω0:

Û+
Sd

(t)

Û+
Sq

(t)

 =

U+
Sd

U+
Sq

 +

 cos(2ω0t) sin(2ω0t)

−sin(2ω0t) cos(2ω0t)

U−Sd(t)
U−Sq(t)


Û−Sd(t)
Û−Sq(t)

 =

U−Sd
U−Sq

 +

cos(2ω0t) −sin(2ω0t)

sin(2ω0t) cos(2ω0t)

U+
Sd

U+
Sq

 (2.12)

î+d (t)

î+q (t)

 =

i+d
i+q

 +

 cos(2ω0t) sin(2ω0t)

−sin(2ω0t) cos(2ω0t)

i−d
i−q


î−d (t)

î−q (t)

 =

i−d
i−q

 +

cos(2ω0t) −sin(2ω0t)

sin(2ω0t) cos(2ω0t)

i+d
i+q

 (2.13)

At steady state, U+
Sd

, U+
Sq

, i+d , i+q , U−Sd , U
−
Sq

, i−d , i
−
q are constant quantities. In order

to attenuate this coupling effect, among the different methods proposed in the literature

(see for example [58]), the use of an notch filter, tuned at 2ω0, has been chosen [8].
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Figure 2.12: Block diagram for the calculation of the positive and negative sequence
components of the measured AC signals.

The complete block diagram designed to extract the positive and negative sequence

components of the AC plant signals is shown in Figure 2.12. The design of this notch

filter is described in more detail in Section E.2.2. There, in particular, its digital

implementation as an adaptive filter is presented. In such a design, the filter tuned

frequency tracks the grid frequency estimation provided by the PLL loop.

The structure of the negative sequence controller is equal to that of the positive sequence

controller, hence consisting of two loops controlling i−d (t) and i−q (t), as shown in Figure

2.13. The output of this controller are the negative sequence modulation functions

m−d (t) and m−q (t) . These are projected onto the positive dq-frame and combined with

m+
d (t) and m+

q (t) to determine the final inverter modulation functions md(t) and mq(t).

In particular, based on (B.21):

md(t)

mq(t)

 =

m+
d (t)

m+
q (t)

 +

 cos(2ωt) sin(2ωt)

−sin(2ωt cos(2ωt)

m−d (t)

m−q (t)

 (2.14)

where ωt = φ(t) is provided by the PLL loop. It is worth underlining that regardless of

the presence of the negative sequence controller, the controller is synchronized to the

positive sequence component of the measured U(t) voltage.
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Figure 2.13: Structure of the negative sequence controller.

2.2.1.2 PLL loop

The PLL loop is used to provide the inverter controller with an estimation of the grid

angle and frequency [78], thus allowing to synchronise its operation with the grid. In

particular, the estimated grid angle θ(t) is used by the controller to map the AC signals

from the abc- to the dq-frame and vice-versa, making use of the Park transformation

and of its inverse, respectively.

As mentioned, the designed PLL loop aims to align the q-axis of the converter dq-frame

to the positive sequence phasor of the US,a(t) voltage, allowing decoupling of active and

reactive power control (see (2.6)). For this purpose, the PLL is implemented as the

feedback loop shown in Figure 2.14, tracking a zero set-point for U+
S,d(t).

Thanks to the use of a PI controller, at steady state, a zero tracking error is achieved,

making φ(t) equal to the phase of the positive sequence component of US,a(t) and

ω(t) = ω0. Tuning of the PLL loop relies on the proportional and integral gain of its

PI regulator, respectively indicated as kp,PLL and ki,PLL, and has been based on [78].
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Figure 2.14: Block diagram of the PLL loop.
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2.2.1.3 Outer controller

The outer controller consists of two loops, the active power regulator, and the voltage

regulator. The former controls the active power generated by the inverter, the latter

aims to keep the measured U voltage at its nominal value, by regulating the amount

of reactive power the inverter exchanges with the grid. It is worth mentioning that,

as the frequency range of the wind farm resonances is significantly higher than the −3

dB bandwidth of the controller outer loops [58], their dynamics have been neglected

in the study of these resonances. However, they have been included in some of the

analyses presented in Chapter 4, where the stability methodology applied in the work

is discussed (see in particular Section 4.1.3.2 and Section 4.4).

2.2.1.3.1 Active power loop

The active power loop controls the set-point of the q+ current loop, i+q,ref . It operates

on the signal error between the active power set-point, Pref , and the calculated power

P (t), obtained considering the positive sequence components of the measured voltage

and current signals [58]:

P (t) =
3

2
[U+
Sd

(t)i+Sd(t) + U+
Sq

(t)i+Sq(t)] (2.15)

A PI regulator is employed to assure a zero tracking error under steady state con-

ditions. The equivalent block diagram of the loop is shown in Figure 2.15, where kp,P

and ki,P are the tuning parameters of the loop.

− 
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𝐏 

Figure 2.15: Block diagram of the active power loop.
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2.2.1.3.2 Voltage loop

The voltage loop controls the set-point of the d+ current loop, i+d,ref . It operates on the

error between the voltage nominal magnitude, Ûref , and the corresponding calculated

value ÛS(t), obtained considering the positive sequence components of the measured

voltage [58]:

ÛS(t) =
√

[U+
Sd

(t)]2 + [U+
Sq

(t)]2 (2.16)

A PI regulator is utilised to assure a zero tracking error under steady state condi-

tions. The equivalent block diagram of the loop is shown in Figure 2.16, where kp,V

and ki,V are the tuning parameters of the loop.

− 
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Figure 2.16: Block diagram of the voltage loop.

2.2.1.4 Voltage anti-aliasing filter

A straightforward implementation of the anti-aliasing filter is a Moving Average (MA)

filter [88], where the filter output is the average of the last M values of the sampled

signal [89]. By appropriately choosing the value of M , it is possible to attenuate

the PWM harmonics of the sampled signal occurring at side-bands of multiples of

the converter switching frequency [71]. Mainly because of the simplicity of its software

implementation, this represents a preferred solution in electronic indutrial applications.

The input-output relationship of such a filter is defined in the discrete time domain

as [89]:

y[k] =
1

M

M−1∑
j=0

x[k − j] (2.17)

The equivalent transfer function of the MA filter in the Laplace domain [85],
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GMA(s), is:

GMA(s) =
1

M

1− e−sTOSM

1− e−sTOS
(2.18)

where TOS is the voltage oversampling period. Oversampling of the U voltage will be

discussed in Chapter 5 and is central to the implementation of one of the presented

wind farm resonance mitigation techniques, the Fast Voltage Feed Forward (FVFF)

strategy.

A different filter design has been formulated in this work, as it provides more tuning

flexibility. The filter consists of a cascaded connection of four notch filters and of a

first order low pass filter. Its equivalent block diagram is shown in Figure 2.17. The

tuning parameters are listed in Table 2.4, for both the asymmetrical and symmetrical

sampling techniques considered in this work.
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Figure 2.17: Equivalent block diagram of the designed anti-aliasing filter.

Table 2.4: Anti-aliasing filter tuning parameters.

Parameter Asymmetrical sampling Symmetrical sampling

Notch filter tuned frequency ω1 2π4800 rads−1 2π2500 rads−1

Notch filter tuned frequency ω2 2π5200 rads−1 2π5000 rads−1

Notch filter tuned frequency ω3 2π9800 rads−1 2π7500 rads−1

Notch filter tuned frequency ω4 2π10200 rads−1 2π1000 rads−1

Notch filter quality factor Q 2 2
Time constant τf 60 µs 100 µs
Filter sampling period TOS 10 µs 10 µs
MA filter window M 20 40

Figure 2.18 compares the Bode plots of the MA filter with that of the used filter,

for the case when asymmetrical sampling is used.
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Figure 2.18: Bode plot of the anti-aliasing filter when asymmetrical regular sampling
is used. Comparison between the MA filter solution and the notch based alternative.
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Figure 2.19: Bode plot of the anti-aliasing filter when symmetrical regular sampling is
used. Comparison between the MA filter solution and the notch based alternative.

While in the lower frequency range the two filters have a pretty similar performance,

the notch based filter allows an increased attenuation of the side-band harmonics at 5
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kHz and at 10 kHz [90]. This is thanks to the possibility of tuning the notch frequencies

of the filter independently, unlike the MA filter where the tuning parameter M defines

all of them uniquely. This comes at the cost of necessitating more hardware processing

power compared to the MA filter solution, as well as of a reduced attenuation of the

higher frequency PWM harmonics. The design of the filter therefore results from a

trade-off between these aspects.

Figure 2.19 compares the Bode plots of the MA filter and the notch based alternative

for the symmetrical sampling case. They confirm the equivalent performances of the

two designs, particularly in the lower frequency range. It is worth mentioning that, in

this case, the use of a lower sampling frequency requires to reduce the bandwidth of

the filter to avoid aliasing of the PWM harmonics at side-bands of 2.5 kHz [83].

The digital implementation of the anti-aliasing filter is described in Appendix E.1,

where the results of the experimental tests carried out to verify its effectiveness are

also reported.

2.2.1.5 Controller delay

The model used to include the controller delay in the analyses carried in the work is

presented as follows.

Such delay is due both to the discrete sampling of the voltage and current signals and

to the converter modulation [82]. The discrete sampling delay is equal to Tsample, and

represents the delay between the instant when the plant signals are sampled and the

time when the corresponding PWM pattern calculated by the controller is delivered

(these times are indicated as tk and tk+1 in the timing diagram in Figure 5.5). The

converter modulation delay is associated to the PWM modulator and is equivalent to

the delay effect of a Sample & Hold device, equal to
Tsample

2 [91]. The total controller

delay Td therefore is [82], [92]:

Td =
3

2
Tsample (2.19)
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which has been modelled with the transfer function GD(s), defined as:

GD(s) = e−sTd (2.20)

As the sampling period Tsample is inversely proportional to the converter switch-

ing frequency fs, in order to reduce the controller delay, an increase of fs would be

necessary. However, this would reduce the efficiency of the inverter, magnifying its

conduction and switching losses [71]. As it will be discussed, this aspect represents a

bottleneck to the solution of the stability issues caused by the wind farm resonances.

2.2.1.6 Complete structure of the controller

Figure 2.20 shows the overall structure of the designed inverter controller. Such control

scheme will be used throughout the work3.

The outer loops have not been included in the shown control scheme as these loops

have been utilised only in some specific analyses (see Section 4.1.3.2 and Section 4.4).

2.2.2 Inverter controller scaling

The controller of the lumped turbine model used in the wind farm-grid system described

in Section 2.1.4 has the same structure of the control scheme shown in Figure 2.20.

The controller parameters are scaled by N (i.e. the number of operating turbines),

according to the scaling rules applied to define the lumped turbine model [8]. The

N -scaled controller scheme is shown in Figure 2.213.

It is worth mentioning that in the baseline operation of the turbines’ inverters employed

in the studied wind farm system, a symmetrical regular sampling technique is used.

3The controller parameters are omitted as they constitute confidential information.
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Figure 2.20: Complete inverter controller scheme used in the carried out study.
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Figure 2.21: Complete model of the grid-connected aggregated wind farm system.

2.3 Scaled-down inverter-grid laboratory prototype

A laboratory prototype of the inverter-grid interconnection has been built in the labo-

ratory. The purpose of this prototype is to verify the results of the study carried out on
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the wind farm resonances, and in particular to verify the effectiveness of the proposed

mitigation techniques. Also, it has been used to validate the stability methodology

used in the work, and for this purpose specific configurations of the test-rig have been

utilised. The same controller scheme discussed in Section 2.2 has been employed, with

the tuning parameters opportunely scaled-down to maintain the same current controller

bandwidth (equal to 700 rads−1, as mentioned in Section 2.2.1.1.1). In Section 2.3.1

the components of the test-rig are outlined, while in Section 2.3.2, the different test-rig

configurations used in the experimental tests carried out throughout the work are de-

scribed.

2.3.1 Hardware setup

A schematic representation of the prototype hardware is shown in Figure 2.22.
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Figure 2.22: Schematic structure of the experimental laboratory setup.

This mainly includes a control board, a set of sensors to read the plant signals,

an ADC/DAC board used both to interface the sensors to the control board and to

display debugging signals on the oscilloscopes, the converter, the gate drivers and a set

of interface boards. The converter is connected to the mains electricity supply through

an autotransformer which has allowed to step-down the grid AC voltage. A detailed

description of each of these components can be found in Appendix D. Table 2.5 lists

the system parameters of the built prototype. Unless otherwise specified, asymmetrical

regular sampling has been used.
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Table 2.5: System parameters of the built inverter-grid interconnection prototype. Per
unit impedance values are also specified.

System parameters Value

DC link voltage UDC 300 V
Inverter rated power Prat 2 kW
Coupling inductance Lf 2.5 mH (0.086 pu)
X/R ratio 10
Converter switching frequency fs 2.5 kHz

2.3.2 Experimental configurations

The different set-ups that have been used for the laboratory prototype are described as

follows. In each of these configurations the electrical interface of the inverter is varied,

and the controller scheme is modified, by changing its tuning parameters and/or in-

cluding/excluding some of its regulators (such as the power loop, the voltage loop, the

PLL loop, etc.). The purpose of using different configurations has been to reproduce

specific scenarios capable to highlight the aspects of the system stability performance

being investigated. The configuration outlined in Section 2.3.2.1 is the one that repro-

duces a cable due resonance in the same range of frequencies where the studied wind

farm resonances typically occur [14], [8]. This has been used to validate the analysis

carried on the wind farm resonances, as well as to provide an experimental verification

of the stabilising effect of the proposed mitigation techniques. In Section 2.3.2.2, the

configuration where the inverter is connected to a resistive load is described. Such a

set-up has been used to validate the equations presented in Chapter 4 to map a small-

signal admittance from the dq-frame to the sequence-frame, as well as to verify the

Mirror Frequency Decoupled (MFD) property of the inverter-grid system [60]. Finally,

in Section 2.3.2.3, the more generic configuration of an inverter connected to an induc-

tive grid is presented. Such a scheme has been used to validate the derived small-signal

model of the inverter-grid system, described in Chapter 3, to verify some aspects of

the stability study discussed in Chapter 4, and to prove the effectiveness of one of the

proposed strategies, the FVFF technique, to counteract weak grid issues.
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2.3.2.1 Wind farm resonance reproduction

In this set-up, shown in Figure 2.23, the studied cable due resonance issue is repro-

duced. The corresponding one-line diagram of the system is illustrated in Figure 2.24.

Figure 2.23: Picture of the laboratory grid-connected inverter prototype used to repro-
duce the cable due resonance issue.

In the baseline operation of the controller, the control scheme shown in Figure 2.20

is used, with the system parameters detailed in Table 2.64. In particular, as it will be

discussed in Chapters 4 and 5, the test-rig has been tested using both a symmetrical

and an asymmetrical regular sampling technique, with the tuning parameters of the

anti-aliasing filter defined as specified in Table 2.4.

Table 2.6: System parameters for the test-rig configuration used to reproduce the cable
due resonance issue. Impedance per unit values are also specified.

System parameters Value

AC grid line voltage Ug,LL 135 Vrms

Grid nominal frequency 50 Hz
Inductance La 1.5 mH (0.052 pu)
Inductance Lb 2 mH (0.069 pu)
Capacitance C 30 µF (11.64 pu)

In the set-up, the values of the electrical parameters La, Lb and C have been

carefully chosen to generate an electrical resonance in the same range of frequencies

where the wind farm cable due resonances typically occur [14], [8]. The resulting

4The controller parameters are omitted as they constitute confidential information.
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frequency of such resonance is 750 Hz, as shown in Figure 2.25, where the magnitude

plot of the equivalent impedance seen by the grid-side terminal of the coupling inductor

Lf is reported.
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Figure 2.24: One-line diagram of the grid-connected converter prototype used to repro-
duce the cable due resonance issue.
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Figure 2.25: Magnitude of the equivalent impedance seen by the Lf coupling inductor
grid-side terminal (see Figure 2.24).

2.3.2.2 Connection to a resistive load

In this set-up, whose one-line diagram is shown in Figure 2.26, the inverter is con-

nected to a resistive load. This configuration has been used in the tests described in

Section 4.1.3.2 to validate the analytical calculation of the small-signal admittance in

the sequence-frame, as well as to verify the MFD property of the system [60]. As it will

be discussed in more detail in Section 4.1.3.2, in these tests the configuration of the

controller scheme has been varied, including/excluding some of the regulators, such as
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the active power loop and the negative sequence current controller. Moreover, in all of

these controller configurations the PLL loop has not been employed. The used system

and controller parameters are listed in Table 2.7.
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Figure 2.26: Equivalent one-line circuit used in the tests described in Section 4.1.3.2.

Table 2.7: System parameters for the prototype set-up used in the tests described in
Section 4.1.3.2.

System parameters Value

Load resistance RL 33 Ω (3.6 pu)

Controller parameters Value

Current loop PI proportional gain kI,p 1.625 VA−1

Current loop PI integral gain kI,i 1056.3 VA−1s−1

Power loop PI proportional gain kP,p 0.0325 AW−1

Power loop PI integral gain kP,i 10.563 AW−1s−1

Time constant τp 0.4 s
Time constant τn 0.04 s
Notch filter frequency ωN 2π100 rads−1

Notch filter quality factor Q 2

2.3.2.3 Connection to an inductive grid

This set-up reproduces a scaled-down prototype of a grid-connected VSC system. An

RC filter has been used for the attenuation of the PWM harmonics, while an inductance

Lg of different sizes has been used to vary the grid Short Circuit Ratio (SCR). The

equivalent one-line diagram of such system is shown in Figure 2.27.
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Figure 2.27: Equivalent one-line circuit of the laboratory prototype inverter-grid inter-
face connected to an inductive grid.

This configuration has been used to validate the dq-frame small-signal model of the

inverter-grid interface described in Chapter 3. In more detail, this set-up has been

used to validate the frequency responses of the current control loops calculated from

the inverter-grid small-signal model outlined in Chapter 3 (see Section 3.2). For these

tests, the system parameters detailed in Table 2.85 have been used, while the control

scheme in Figure 2.20 has been considered.

Table 2.8: System parameters used to validate the frequency response of the current-
loops. Impedance per unit values are also specified.

System parameters Value

AC grid line voltage Ug,LL 135 Vrms

Grid nominal frequency 50 Hz
Inductance Lg 0 mH (stiff grid)
PWM filter resistance R 33 Ω (3.6 pu)
PWM filter capacitance C 25 µF (14 pu)

Thereafter, the set-up has been used to validate the frequency responses of the

outer loops, i.e. the active power and voltage regulators described in Section 2.2.1.3.

In these tests, the system and controller parameters detailed in Table 2.9 have been

used. These paramenters have also been used in the case study illustrated in Section

4.3, where the property of diagonal dominance [93] of the inverter-grid system in the

sequence-frame is investigated.

Subsequently, a different set of system and controller parameters, detailed in Table

2.10, has been considered when using this set-up to validate the study presented in

5The controller parameters are omitted as they constitute confidential information.
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Section 4.4, where a stability margin is introduced to assess the relative stability of

the inverter-grid system. In this scenario, the outer loops have been excluded by the

control scheme, so is the negative sequence current controller.

Table 2.9: System and controller parameters in the case study presented in Section 4.3.
Impedance per unit values are also specified.

System parameters Value

AC grid line voltage Ug,LL 135 Vrms

Grid nominal frequency 50 Hz
Inductance Lg (SCR = 1.9/5.2 ) 15/5 mH (0.52/0.17 pu)
PWM filter resistance R 33 Ω (3.6 pu)
PWM filter capacitance C 25 µF (14 pu)

Controller parameters Value

Current loop PI proportional gain kI,p 5 VA−1

Current loop PI integral gain kI,i 200 VA−1s−1

Power loop PI proportional gain kP,p 0.0001 AW−1

Power loop PI integral gain kP,i 0.025 AW−1s−1

Voltage loop PI proportional gain kV,p 0.0001 AV−1

Voltage loop PI integral gain kV,i 20 AV−1s−1

PLL loop PI proportional gain kPLL,p, (SCR = 1.9/5.2) 0.01/2.74 radV−1s−1

PLL loop PI integral gain kPLL,i, (SCR = 1.9/5.2) 0.9/246.7 radV−1s−2

Time constants τp, τn 0.1 s
Notch filter frequency ωN 2π100 rads−1

Notch filter quality factor Q 2

Table 2.10: System and controller parameters used in the case study presented in
Section 4.4. Impedance per unit values are also specified.

System parameters Value

AC grid line voltage Ug,LL 135 Vrms

Grid nominal frequency 50 Hz
Inductance Lg 15 mH (0.52 pu)
PWM filter resistance R 33 Ω (3.6 pu)
PWM filter capacitance C 25 µF (14 pu)

Controller parameters Value

Current loop PI proportional gain kI,p 1.625 VA−1

Current loop PI integral gain kI,i 1056.3 VA−1s−1

PLL loop PI proportional gain kPLL,p 0.13 radV−1s−1

PLL loop PI integral gain kPLL,i 11.6 radV−1s−2

Time constant τp 0.1 s

The set-up has been then used to prove how the FVFF strategy proposed in Chapter

5 to mitigate the high frequency wind farm resonances, is also effective to counteract

weak grid issues [11]. In this case, the system parameters listed in Table 2.116.

6The controller parameters are omitted as they constitute confidential information.
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Finally, this configuration has been used to verify the functionality of the proposed

RCD technique, making use of the system parameters listed in Table 2.126.

Table 2.11: System parameters used to verify the beneficial effect of the FVFF strategy
on weak grid issues.

System parameters Value

AC grid line voltage Ug,LL 135 Vrms

Grid nominal frequency 50 Hz
Inductance Lg varied
PWM filter resistance R 33 Ω (3.6 pu)
PWM filter capacitance C 25 µF (14 pu)

Table 2.12: System parameters used to verify the functionality of the RCD strategy.
Impedance per unit values are also specified.

System parameters Value

AC grid line voltage Ug,LL 135 Vrms

Grid nominal frequency 50 Hz
Inductance Lg 5.5 mH (0.19 pu)
PWM filter resistance R 33 Ω (3.6 pu)
PWM filter capacitance C 25 µF (14 pu)

2.4 Chapter Summary

An analytical model of the studied wind farm-grid system where the wind farm reso-

nance problem has been observed has been defined. For this purpose, a turbine-grid

model has been formulated and an aggregation technique has been applied to derive

the corresponding wind farm-grid model. The design of the employed turbine’s inverter

controller has been discussed, focusing on the implementation of its current controller.

A description of the built scaled-down laboratory prototype of the studied inverter-

grid system has been presented, outlining the different set-ups that have been used

throughout the work.
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Small-signal modelling

In this Chapter, the models used to study the system stability and performance are

presented.

The standard approach taken in stability studies is based on the representation of the

system dynamics in the frequency domain [11], [58] and on the application of classic

control theory [25]. This approach relies on the assumption that the system is Linear

Time-Invariant (LTI) [94]. Therefore, the preliminary step of studying the stability of

a non-linear system is to build its small-signal model, which, for small variations of

the signals close to the system operating point, is capable of reproducing the system

behaviour confidently. For this purpose, for any of the Time-Domain (TD) models

described in Chapter 2 a corresponding small-signal model is derived in the Frequency-

Domain (FD).

These small-signal models have been implemented in the positive dq-frame. As most of

the components of the inverter controller are implemented in such dq-frame, the deriva-

tion of their equivalent FD model is straightforward. The exceptions are represented

by the negative sequence current controller, the voltage anti-aliasing filter, the con-

troller delay model and the electrical system model. While the first one operates in the

negative dq-frame, the other three are in the abc-frame. Hence, frame transformations

have been applied to refer the dynamics of these elements to the positive dq-frame.

In particular, by mapping the dynamics of the negative sequence current controller

onto the positive dq-frame, it has been possible to include the coupling between the
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positive and the negative sequence current loops in a single controller FD model. This

approach differs from the standard techniques presented in the literature, which, by

modelling these current controllers separately, are unable to take such coupling into

account [58], [54].

The method used to include the PLL dynamics in the controller FD model will be

discussed in detail, both deriving the equivalent small-signal model of the PLL loop,

and describing how such dynamics affect the grid synchronisation of the converter.

In Section 3.1, for the purpose of illustrating the application of the used theory, the

derivation of the small-signal model of the turbine-grid system described in Section

2.1.3 is discussed. In Section 3.2, the validation of the applied theory is presented. The

FD model of the mentioned turbine-grid system is validated against its equivalent TD

model while the FD model of the laboratory prototype described in Section 2.3.2.3 is

validated both against its equivalent TD model and against experimental data.

As it will be discussed in Chapter 4, the theory used to derive these small-signal models

is used to formulate the FD model of the studied wind farm-grid system. Such small-

signal model will be used to assess the stability performance of the wind farm-grid

system, applying the impedance-based approach presented in that Chapter.

3.1 Small-signal model of the turbine-grid system

The derivation of the small-signal model of the turbine-grid system described in Section

2.1.3, including its controller, is described as follows.

This small-signal model has been implemented in the positive dq-frame, which repre-

sents common practice in the literature [58], [95], [11]. The positive-sequence current

controller, the PLL loop and the outer loops are already implemented in this frame.

But, the electrical system, the voltage anti-aliasing filter and the controller delay are

formulated in the abc-frame and the negative sequence current controller is implemented

in the negative dq-frame. Hence, these elements that are not defined in the positive

dq-frame need to be projected onto such frame.

In the following description, the positive dq-frame will be referred to as grid positive

dq-frame, or simply grid dq-frame, as it rotates (anti-clockwise) at the grid frequency
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ω0, assumed to be constant throughout the presented analysis. The converter con-

troller operates in a different dq-frame, the converter dq-frame, which the PLL tries

to align to the grid dq-frame. Under steady-state conditions this alignment is perfect,

thanks to the presence of the PI regulator in the PLL loop (see Figure 2.14), which

assures a zero steady-state error in the detection of the phase angle of the positive

sequence component of the measured Ua voltage. However, during transients, the PLL

dynamics generate a misalignment between the converter and the grid dq-frames. As

the orientation of the converter dq-frame is carried out by the PLL through the Park

transform (B.16), which is a non-linear operator, the frame-alignment between the grid

and the converter dq-frames also undergoes non-linear dynamics. As a result of this,

such dynamics need linearising in the derivation of the controller small-signal model.

The derivation of the small-signal model of the components of the inverter controller

is presented in Section 3.1.1. Thereafter, the small-signal model of the turbine-grid

electrical system is described in Section 3.1.2. Finally, the complete FD model of the

considered turbine-grid system is summarised in Section 3.1.3.

3.1.1 Inverter controller

The linearised models of the inverter controller elements will be presented as follows.

The small-signal model of the PLL loop is derived in Section 3.1.1.1, while the lineari-

sation of the frame-alignment between the grid and the converter dq-frames is discussed

in Section 3.1.1.2. Thereafter, the small-signal models of the inner current loops are

discussed in Section 3.1.1.3, in particular illustrating how the dynamics of the negative

sequence controller have been mapped onto the positive dq-frame. In Section 3.1.1.4,

the dq-frame small-signal model of the abc-frame voltage anti-aliasing filter is derived.

In Section 3.1.1.5, the dq-frame small-signal model of the controller delay, which has

been modelled in the abc-frame, is presented. Finally, in Section 3.1.1.6, the small-

signal models of the outer loops, namely the active power controller and the voltage

regulator, are presented.
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3.1.1.1 PLL loop

As discussed in Section 2.2.1.2, the purpose of the PLL loop is the definition of the

converter dq-frame orientation, allowing to synchronize the controller to U+
S (t), which

is the positive sequence component of the measured voltage U(t), after that this has

been filtered by the anti-aliasing filter (see Figure 2.20).

Based on (B.14), by indicating with ~U+
S (t) the space-vector of the positive sequence

component of the measured voltage, defined in the grid dq-frame, and with ~U+
S,c(t) its

version defined in the converter dq-frame, the following equations can be formulated:

~U+
S,c(t) = [U+

Sd,c
(t) + jU+

Sq ,c
(t)]ej(θ(t)−

π
2
)

~U+
S (t) = [U+

Sd
(t) + jU+

Sq
(t)]ej(ω0t−π2 )

(3.1)

where θ(t) = ω0t + δθ(t) is the PLL angle. It is pointed out that, at steady-state,

δθ(t) = 0, ω = ω0, U
+
Sd

(t) = 0 and U+
Sq

(t) = U+
S,0 = |~U+

S,0(t)|, where ~U+
S,0(t) = ~U+

S (t) at

steady-state. Thanks to the PLL action, under such stationary conditions, ~U+
S,c(t) is

aligned to the grid q-axis and, therefore, is calculated as:

~U+
S,c(t) = ~U+

S,0(t) = U+
S,0e

jω0t (3.2)

From (3.1), (B.3), ~U+
S,c(t) and ~U+

S (t) can be related to each other as [96], [97]:

~U+
S,c(t) = ~U+

S (t)e−jδθ(t) = U
+
S (t)ejω0te−jδθ(t) (3.3)

where, based on (B.12), (B.14):

U
+
S (t) = [U+

Sd
(t) + jU+

Sq
(t)]e−j

π
2 (3.4)

During transient conditions, U
+
S (t) can be expressed as:

U
+
S (t) = U

+
S,0 + δU

+
S (t) (3.5)
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where δU
+
S (t) is the small-signal perturbation added to the steady-state value U

+
S,0 =

U+
S,0. For small values of δθ(t), (3.3) can be linearised as:

~U+
S,c(t) ≈ [1− jδθ(t)][U+

S,0 + δU
+
S (t)]ejω0t

≈ [U
+
S,0 − jδθ(t)U

+
S,0 + δU

+
S (t]ejω0t

(3.6)

where the δθ(t)δU
+
S (t) term has been neglected. As U

+
S,c(t) = [U+

Sd,c
(t)+jU+

Sq ,c
(t)]e−j

π
2 ,

from (3.6):

U+
Sd,c

(t) = −={US,c(t)} = −={U+
S,0 − jδθ(t)U

+
S,0 + δU

+
S (t)}

= δθ(t)U+
S,0 + δU+

Sd
(t)

(3.7)

Based on the PLL block diagram in Figure 2.20:

δθ(s) = −
kp,PLL +

kI,PLL
s

s
U+
Sd,c

(s) = −
GPI,PLL

s
U+
Sd,c

(s) (3.8)

where δθ(s) = L{δθ(t)} and U+
Sd,c

(s) = L{U+
Sd,c

(t)}. L is the Laplace operator [85].

Based on (3.7), (3.9), the following relation can be found between δU+
Sd

(s) and δθ(s):

δθ(s) = −
GPI,PLL

s

1 +
GPI,PLL

s U+
S,0

δU+
Sd

(s) = GPLL(s)δU+
Sd

(s) (3.9)

Figure 3.1 illustrates the equivalent feedback loop of the small-signal model of the

PLL [97].

−𝛅𝐔𝐒𝐝
+  

− + 𝛅𝛉 𝟏

𝐬
 𝐤𝐩,𝐏𝐋𝐋 +

𝐤𝐢,𝐏𝐋𝐋
𝐬

 

𝐔𝐒,𝟎
+  

Figure 3.1: Block diagram equivalent to the small-signal model of the PLL.
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3.1.1.2 Frame alignment

The methodology used to include the PLL loop dynamics in the derived small-signal

models is discussed as follows.

As mentioned, the PLL dynamics generate a misalignment between the grid and the

converter dq-frames. Such misalignment, which is quantified by the δθ(t) angle cal-

culated based on (3.9), occurs both for the positive and for the negative dq-frames,

as illustrated in Figure 3.2. The technique of including such effect in the small-signal

model of the system is called frame-alignment [98] and will be illustrated first for the

positive sequence components of the plant signals and then for their negative sequence

components.

𝛚 

𝛅𝛉 
𝐪+ 

𝐝+ 

𝛚𝟎 

𝐝𝐜
+

 

𝐪𝐜
+

 

𝛃 

𝛂 

𝐪− 

𝐪𝐜
−

 

𝐝− 

𝛚𝟎 

𝝰 

𝝱 

𝐝𝐜
−

 

𝛚 

𝛅𝛉 

Figure 3.2: Misalignment between the grid and converter dq-frames under unsteady
conditions.

Based on (3.3), and applying the same notation used in (2.12) and (2.13), the

positive sequence space vectors
~̂
U+
S (t) and ~̂i+(t), defined in the grid positive dq-frame,

can be related to the corresponding
~̂
U+
S,c(t) and ~̂i+c (t) vectors, calculated in the converter

positive dq-frame, as:

~̂
U+
S,c(t) = [Û+

Sd,c
(t) + jÛ+

Sq ,c
(t)]ej(θ(t)−

π
2
) =

~̂
U+
S (t)e−jδθ(t)

= [Û+
Sd

(t) + jU+
Sq

(t)]ej(ω0t−π2 )e−jδθ(t)

~̂i+c (t) = [̂i+d,c(t) + jî+q,c(t)]e
j(ω0t−π2 ) = ~̂i+(t)e−jδθ(t)

= [̂i+d (t) + jî+q (t)]ej(ω0t−π2 )e−jδθ(t)

(3.10)
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Equations (3.10) can be reformulated in terms of the converter dq-frame components

Û+
Sdq ,c

(t), i+dq,c(t) and the grid dq-frame components Û+
Sdq

(t), i+dq(t), as:

Û+
Sd,c

(t)

Û+
Sq ,c

(t)

 =

 cos(δθ(t)) sin(δθ(t))

−sin(δθ(t)) cos(δθ(t))

Û+
Sd

(t)

Û+
Sq

(t)


î+d,c(t)
î+q,c(t)

 =

 cos(δθ(t)) sin(δθ(t))

−sin(δθ(t)) cos(δθ(t))

î+d (t)

î+q (t)

 (3.11)

Under steady-state conditions δθ(t) = 0, therefore:

~̂
U+
S,c(t) =

~̂
U+
S (t) =

~̂
U+
S,0(t) = (Û+

Sd,0
+ jÛ+

Sq ,0
)ej(ω0t−π2 )

~̂i+c (t) = ~̂i+(t) = ~̂i+0 (t) = (̂i+d,0 + jî+q,0)e
j(ω0t−π2 )

(3.12)

where Û+
Sd,0

, Û+
Sq ,0

, î+d,0, î
+
q,0 represent the positive sequence steady-state dq-components

of the measured voltage and current signals respectively, taken at the system operating

point. During transient conditions the following equations can be formulated:

Û+
Sdq

(t) = Û+
Sdq ,0

+ δÛ+
Sdq

(t)

î+dq(t) = î+dq,0 + δî+dq(t)

Û+
Sdq ,c

(t) = Û+
Sdq ,0

+ δÛ+
Sdq ,c

(t)

î+dq,c(t) = î+dq,0 + δî+dq,c(t)

(3.13)

where δÛ+
Sdq

(t), δî+dq(t), δÛ
+
Sdq ,c

(t), δî+dq,c(t) are the small-signal perturbations around

the steady-state values U+
Sdq ,0

, i+dq,0. From (3.12), (3.13), the small-signal linearised

version of (3.11) is:

δÛ+
Sd,c

(t)

δÛ+
Sq ,c

(t)

 =

1 0 U+
Sq ,0

0 1 −U+
Sd,0



δÛ+

Sd
(t)

δÛ+
Sq

(t)

δθ(t)

 ,
δî+d,c(t)
δî+q,c(t)

 =

1 0 i+q,0

0 1 −i+d,0



δî+d (t)

δî+q (t)

δθ(t)


(3.14)
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An equivalent procedure is applied for the frame alignment of the negative sequence

space vectors of the plant signals, namely
~̂
U−S (t) and ~̂i−(t). As illustrated in Figure

3.2, the misalignment between the converter and the grid negative dq-frame is equal

to −δθ(t). Similarly to (3.10),
~̂
U−S (t) and ~̂i−(t), which are defined in the grid negative

dq-frame, can be related to the corresponding
~̂
U−S,c(t) and ~̂i−c (t) vectors, defined in the

converter negative dq-frame, as:

~̂
U−S,c(t) = [Û−Sd,c(t) + jÛ−Sq ,c(t)]e

−j(θ(t)+π
2
) =

~̂
U−S (t)ejδθ(t)

= [Û−Sd(t) + jÛ−Sq(t)]e
−j(ω0t+

π
2
)ejδθ(t)

~̂i−c (t) = [̂i−d,c(t) + jî−q,c(t)]e
−j(θ(t)+π

2
) = ~̂i−(t)ejδθ(t)

= [̂i−d (t) + jî−q (t)]e−j(ω0t+
π
2
)ejδθ(t)

(3.15)

As previously done with (3.11), equations (3.15) can be reformulated in terms of

the converter negative dq-frame components Û−Sdq ,c(t), î
−
dq,c(t) and of the grid negative

dq-frame components Û−Sdq(t), î
−
dq(t), as:

Û−Sd,c(t)
Û−Sq ,c(t)

 =

cos(δθ(t)) −sin(δθ(t))

sin(δθ(t)) cos(δθ(t))

Û−Sd(t)
Û−Sq(t)


î−d,c(t)
î−q,c(t)

 =

cos(δθ(t)) −sin(δθ(t))

sin(δθ(t)) cos(δθ(t))

î−d (t)

î−q (t)

 (3.16)

Under steady-state conditions, δθ(t) = 0, therefore:

~̂
U−S,c(t) =

~̂
U−S (t) =

~̂
U−S,0(t) = (Û−Sd,0 + jÛ−Sq ,0)e

−j(ω0t+
π
2
)

~̂i−c (t) = ~̂i−(t) = ~̂i−0 (t) = (̂i−d,0 + jî−q,0)e
−j(ω0t+

π
2
)

(3.17)

where Û−Sd,0, Û
−
Sq ,0

, î−d,0, î
−
q,0 are the negative sequence steady-state dq-components of

the measured voltage and current signals, taken at the system operating point. During

55



Chapter 3. Small-signal modelling

transient conditions, the following equations are formulated:

Û−Sdq(t) = Û−Sdq ,0 + δU−Sdq(t)

î−dq(t) = î−d,0 + δî−dq(t)

Û−Sdq ,c(t) = Û−Sdq ,0 + δÛ−Sdq ,c(t)

î−dq,c(t) = î−d,0 + δî−dq,c(t)

(3.18)

where δÛ−Sdq(t), δî
−
dq(t), δÛ

−
Sdq ,c

(t), δî−dq,c(t) are the small-signal perturbations around

the steady-state values Û−Sdq ,0, î
−
dq,0, respectively. From (3.17), (3.18), the small-signal

linearised version of (3.16) is:

δÛ−Sd,c(t)
δÛ−Sq ,c(t)

 =

1 0 −U−Sq ,0
0 1 U−Sd,0



δÛ−Sd(t)

δÛ−Sq(t)

δθ(t)

 ,
δî−d,c(t)
δî−q,c(t)

 =

1 0 −î−q,0
0 1 î−d,0



δî−d (t)

δî−q (t)

δθ(t)


(3.19)

As the small-signal model of the electrical system is implemented in the grid positive

dq-frame, in order to refer the measured plant signals to the negative grid dq-frame,

based on (B.21), these need multiplying by ej2ω0t, which represents a rotation operator

in the αβ-frame. In particular:

Û−Sdq(t) = Û+
Sdq

(t)ej2ω0t

î−dq(t) = î+dq(t)e
j2ω0t

(3.20)

As discussed in Section 2.2.1.1.2, the positive and negative sequence components

U+
Sdq

(t), i+dq(t), U
−
Sdq

(t), i−dq(t) in (2.12) and (2.13) are extracted from Û+
Sdq

(t), î+dq(t),

Û−Sdq(t), î
−
dq(t) by applying a notch filter tuned at 2ω0 (see Figures 2.12).

A further frame alignment which needs doing is that associated to the outputs of

the positive and the negative sequence current controllers U+
Idq ,c

(t) and U−Idq ,c(t). Based

on (3.10), (3.15), these signals can be related to the corresponding U+
Idq

(t) and U−Idq(t)
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signals, defined in the grid dq-frame, as:

U+
Idq

(t) = U+
Idq ,c

(t)ejδθ(t)

U−Idq(t) = U−Idq ,c(t)e
−jδθ(t)

(3.21)

From (3.21), (B.21), by indicating with Û+
Idq

the overall output of the current con-

troller, expressed in the grid positive dq-frame, this is calculated as:

Û+
Idq

(t) = U+
Idq

(t) + U−Idq(t)e
−j2ω0t

= U+
Idq ,c

(t)ejδθ(t) + U−Idq ,c(t)e
−jδθ(t)e−j2ω0t

(3.22)

Under steady-state conditions θ(t) = ω0t, therefore:

Û+
Idq

(t) = Û+
Idq ,0

(t) = U+
Idq ,0

+ U−Idq ,0e
−j2ω0t (3.23)

where U+
Idq ,0

and U−Idq ,0 respectively are the stationary outputs of the positive and the

negative sequence controllers. Under unsteady conditions, the following expressions

can be formulated:

U+
Idq ,c

(t) = U+
Idq ,0

+ δU+
Idq ,c

(t)

U−Idq ,c(t) = U−Idq ,0 + δU−Idq ,c(t)

Û+
Idq ,c

(t) = Û+
Idq ,0

(t) + δÛ+
Idq ,c

(t)

(3.24)

where δU+
Idq ,c

(t), δU−Idq ,c(t) and δÛ+
Idq ,c

(t) are the small-signal perturbations around the

steady-state values U+
Idq ,0

, U−Idq ,0 and Û+
Idq ,0

(t), respectively. From (3.22), (3.23), (3.24),
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(B.21), by linearising the ejδθ(t) and e−jδθ(t) terms in (3.22), it derives that:

δÛ+
Id

(t)

δÛ+
Iq

(t)

 =

1 0 −U+
Iq ,0

0 1 U+
Id,0



δU+

Id,c
(t)

δU+
Iq ,c

(t)

δθ(t)



+

 cos(2ω0t) sin(2ω0t)

−sin(2ω0t) cos(2ω0t)

1 0 U−Iq ,0

0 1 −U−Id,0



δU−Id,c(t)

δU−Iq ,c(t)

δθ(t)


(3.25)

The result (3.25) highlights that in order to map the output of the negative se-

quence controller δU−Idq ,c(t) onto the grid positive dq-frame, both a e−j2ω0t rotation

and a frame alignment need to be applied. Just a frame alignment is instead needed

to map the positive sequence controller output δU+
Idq ,c

(t) onto the grid positive dq-frame.

Figure 3.3 illustrates how the described frame alignment terms are included in the

small-signal model of the system. In particular, GN,M (s) is the transfer function matrix

of the notch filter, defined as:

GN,M (s) =

GN (s) 0

0 GN (s)

 (3.26)

where:

GN (s) =
s2 + 4ω2

0

s2 + 2ω0
Q s+ 4ω2

0

(3.27)

As discussed in Section 2.2.1.1.2, this filter is tuned at 2ω0 to decouple the positive

and negative sequence components of the plant signals.
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𝐀𝐧𝐭𝐢 𝐚𝐥𝐢𝐚𝐬𝐢𝐧𝐠 

𝐟𝐢𝐥𝐭𝐞𝐫 𝐏𝐥𝐚𝐧𝐭  

𝐅𝐃 𝐦𝐨𝐝𝐞𝐥 

𝛅𝛉 

𝛅𝐢 𝐝𝐪,𝐜
+  

𝐞𝐣𝟐𝛚𝟎𝐭 

𝛅𝐔 𝐝𝐪,𝐜
−  

𝛅𝐢 𝐝𝐪,𝐜
−  

𝐆𝐍,𝐌(𝐬) 

𝛅𝐢𝐝𝐪,𝐜
+  

𝐂𝐨𝐧𝐭𝐫𝐨𝐥𝐥𝐞𝐫 
𝐝𝐞𝐥𝐚𝐲 

𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞  

𝐬𝐞𝐪𝐮𝐞𝐧𝐜𝐞  

𝐜𝐮𝐫𝐫𝐞𝐧𝐭  

𝐜𝐨𝐧𝐭𝐫𝐨𝐥𝐥𝐞𝐫 

𝐞−𝐣𝟐𝛚𝟎𝐭 

+ + 

𝐆𝐏𝐋𝐋(𝐬) 
𝛅𝐔𝐒,𝐝

+  𝛅𝛉 

𝛅𝐢𝐝𝐪,𝐜
−  

𝛅𝐔 𝐒𝐝𝐪
+  

𝛅𝐢 𝐝𝐪
+  

𝛅𝐔 𝐒𝐝𝐪,𝐜
+  

𝛅𝐔 𝐝𝐪
+  

𝛅𝐔 𝐒𝐝𝐪
−  

𝛅𝐢 𝐒𝐝𝐪
−  

𝛅𝐢𝐝𝐪,𝐜
+  

𝛅𝐢𝐝𝐪,𝐜
−  

𝛅𝐔𝐈𝐝𝐪,𝐜
−  

𝛅𝐔𝐈𝐝𝐪,𝐜
+  

𝛅𝐔𝐈𝐝𝐪
+  

𝛅𝐔𝐈𝐝𝐪
−  𝟏 𝟎 

𝟎 𝟏 

𝐔𝐈𝐪,𝟎
−  

−𝐔𝐈𝐝,𝟎
−  

𝛅𝐔 𝐈𝐝𝐪,𝐦𝐨𝐝

+  

𝛅𝐢 𝐝𝐪
+  

𝐆𝐍(𝐬) 

𝛅𝐔 𝐈𝐝𝐪
+  

𝛅𝐔𝐒𝐝𝐪,𝐜
+  

𝛅𝐔𝐒𝐝𝐪,𝐜
−  

𝛅𝐔𝐒𝐝𝐪,𝐜
+  

𝛅𝐔𝐒𝐝𝐪,𝐜
−  

𝟏 𝟎 

𝟎 𝟏 

−𝐔𝐈𝐪,𝟎
+  

𝐔𝐈𝐝,𝟎
+  

𝟏 𝟎 

𝟎 𝟏 

𝐔𝐒𝐪,𝟎
+  

−𝐔𝐒𝐝,𝟎
+  

𝛅𝛉 

𝛅𝛉 

𝛅𝛉 

𝟏 𝟎 

𝟎 𝟏 

𝐢𝐪,𝟎
+  

−𝐢𝐝,𝟎
+  

𝐞𝐣𝟐𝛚𝟎𝐭 𝟏 𝟎 

𝟎 𝟏 

−𝐔𝐒𝐪,𝟎
−  

𝐔𝐒𝐝,𝟎
−  

𝟏 𝟎 

𝟎 𝟏 

−𝐢𝐪,𝟎
−  

𝐢𝐝,𝟎
−  

𝐆𝐍,𝐌(𝐬) 

𝐆𝐍,𝐌(𝐬) 

𝐆𝐍,𝐌(𝐬) 𝐍𝐞𝐠𝐚𝐭𝐢𝐯𝐞 

𝐬𝐞𝐪𝐮𝐞𝐧𝐜𝐞  

𝐜𝐮𝐫𝐫𝐞𝐧𝐭  

𝐜𝐨𝐧𝐭𝐫𝐨𝐥𝐥𝐞𝐫 

𝛅𝛉 

𝛅𝛉 𝛅𝐔 𝐒𝐝
+  

Figure 3.3: Block diagram of the system small-signal model, illustrating the frame
alignments between the grid and the converter dq-frames.

3.1.1.3 Inner controller

In the following Section 3.1.1.3.1 the small-signal model of the positive sequence current

controller is presented, while in Section 3.1.1.3.2, that of the negative sequence current

controller is discussed.

3.1.1.3.1 Positive sequence current loop

As the positive sequence controller operates in the positive dq-frame, the derivation of

its small-signal model is straightforward. In fact, thanks to the LTI property of this

controller, its small-signal model is directly obtained from its block diagram, shown

in Figure 2.11. The resulting block diagram of such small-signal model is illustrated

in Figure 3.4, where the frame alignment terms between the grid and the converter

dq-frames have also been included. In particular:

δθM (s) =

δθ(s) 0

0 δθ(s)

 (3.28)

GPI,M (s) =

GPI(s) 0

0 GPI(s)

 =

kp,I +
ki,I
s 0

0 kp,I +
ki,I
s

 (3.29)
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G+
V FF,M (s) =

G+
V FF (s) 0

0 G+
V FF (s)

 =

 1
1+τps

0

0 1
1+τps

 (3.30)

G+
C,M (s) =

 0 −ω0Lf

ω0Lf 0

 (3.31)

𝛅𝐢𝐝𝐪,𝐜
+  

+ 
− 

+ + + + 𝐆𝐏𝐈,𝐌(𝐬) 

𝐆𝐕𝐅𝐅,𝐌
+ (𝐬) 

𝛅𝐔𝐈𝐝𝐪,𝐜
+  

𝛅𝛉𝐌(𝐬) 

+ + 𝐆𝐍,𝐌(𝐬) 
𝛅𝐢 𝐝𝐪,𝐜

+  𝛅𝐢 𝐝𝐪
+  

+ + 𝐆𝐍,𝐌(𝐬) 

[𝐔𝐒𝐪,𝟎
+ ;  −𝐔𝐒𝐝,𝟎

+ ] 

𝛅𝐔𝐒𝐝𝐪,𝐜
+  

[𝐢𝐪,𝟎
+ ; −𝐢𝐝,𝟎

+ ] 

𝛅𝛉𝐌(𝐬) 

𝛅𝛉𝐌(𝐬) 

+ 
+ 

[−𝐔𝐈𝐪,𝟎
+ ;  𝐔𝐈𝐝,𝟎

+ ] 

𝛅𝐔𝐈𝐝𝐪
+  

𝐆𝐂,𝐌
+ (𝐬) 

[𝟎; 𝟎 ] 

𝛅𝐔 𝐒𝐝𝐪
+  𝛅𝐔 𝐒𝐝𝐪,𝐜

+  

Figure 3.4: Block diagram of the small-signal model of the positive sequence current
control loops, implemented in the converter positive dq-frame.

3.1.1.3.2 Negative sequence current loop

The derivation of the small-signal model of the negative sequence current controller in

the negative dq-frame is straightforward. In fact, thanks to the LTI property of the

controller, it can be derived directly from its block diagram shown in Figure 2.13. The

resulting block diagram of such small-signal model is illustrated in Figure 3.5, where

the frame alignment terms between the grid and the converter dq-frames have also been

included.
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𝛅𝐢𝐝𝐪,𝐜
−  

+ 
− 

+ + + + 𝐆𝐏𝐈,𝐌(𝐬) 

𝐆𝐕𝐅𝐅,𝐌
− (𝐬) 

𝛅𝐔𝐈𝐝𝐪,𝐜
−  

𝛅𝛉𝐌(𝐬) 

+ + 𝐆𝐍,𝐌(𝐬) 
𝛅𝐢 𝐝𝐪,𝐜

−  𝛅𝐢 𝐝𝐪
−  

+ + 𝐆𝐍,𝐌(𝐬) 

[−𝐔𝐒𝐪,𝟎
− ;  𝐔𝐒𝐝,𝟎

− ] 

𝛅𝐔𝐒𝐝𝐪,𝐜
−  

[−𝐢𝐪,𝟎
− ; 𝐢𝐝,𝟎

− ] 

𝛅𝛉𝐌(𝐬) 

𝛅𝛉𝐌(𝐬) 

+ 
+ 

[𝐔𝐈𝐪,𝟎
− ;  −𝐔𝐈𝐝,𝟎

− ] 

𝛅𝐔𝐈𝐝𝐪
−  

𝐆𝐂,𝐌
− (𝐬) 

[𝟎; 𝟎 ] 

𝛅𝐔 𝐒𝐝𝐪
−  𝛅𝐔 𝐒𝐝𝐪,𝐜

−  

Figure 3.5: Block diagram of the small-signal model of the negative sequence current
control loops, implemented in the converter negative dq-frame.

In particular:

G−V FF,M (s) =

G−V FF (s) 0

0 G−V FF (s)

 =

 1
1+τns

0

0 1
1+τns

 (3.32)

G−C,M (s) =

 0 ω0Lf

−ω0Lf 0

 (3.33)

As the small-signal model of the system is implemented in the positive dq-frame, the

small-signal model of the negative sequence controller, defined by the block diagram in

Figure 3.5, needs projecting onto the positive dq-frame. For this purpose, the method-

ology described in Appendix C.2.1 is applied, which consists in mapping the dynamics

of the negative sequence current controller onto the positive dq-frame. The technique

is summarised in Figure 3.6. GM (s) represents a generic transfer function matrix de-

fined in the negative dq-frame and has the structure given in (C.24) and reported for

convenience in (3.34):

GM (s) =

G(s) 0

0 G(s)

 (3.34)

61



Chapter 3. Small-signal modelling

ĜM (s) is its corresponding expression in the positive dq-frame. Its expression is

derived in Appendix C.2.1 and is provided in (3.35):

ĜM (s) =

 1
2 [G(s− 2jω0) +G(s+ 2jω0)]

1
2j[G(s+ 2jω0)−G(s− 2jω0)]

1
2j[G(s− 2jω0)−G(s+ 2jω0)]

1
2 [G(s− 2jω0) +G(s+ 2jω0)]

 (3.35)

𝐞𝐣𝟐𝛚𝟎𝐭 𝓛 𝐆𝐌(𝐬) 

𝐆 𝐌(𝐬) 

𝛅𝐲 𝐝𝐪
+ (𝐭) 𝛅𝐲 𝐝𝐪

− (𝐭) 𝛅𝐲 𝐝𝐪
− (𝐬) 𝛅𝐱 𝐝𝐪

− (𝐬) 𝛅𝐱 𝐝𝐪
− (𝐭) 𝛅𝐱 𝐝𝐪

+ (𝐬) 
𝓛−𝟏 𝐞−𝐣𝟐𝛚𝟎𝐭 𝓛−𝟏 

𝛅𝐱 𝐝𝐪
+ (𝐭) 

𝓛 
𝛅𝐲 𝐝𝐪

+ (𝐬) 

Figure 3.6: Translation of a negative dq-frame transfer function matrix GM (s), defined
in (3.34), onto the positive dq-frame.

The signals δx̂+dq(t) and δŷ+dq(t) respectively represent the positive dq-frame expres-

sions of δx−dq(t) and y−dq(t), which are defined in the negative dq-frame.

The method requires the calculation of the corresponding positive dq-frame expres-

sions of each of the transfer function matrices in Figure 3.5. Hence, for the trans-

fer function matrices GPI,M (s), G−V FF,M (s), δθM (s), GN,M (s), respectively defined by

(3.29), (3.32), (3.28) and (3.26), based on (3.35), their equivalent expressions in the

positive dq-frame, ĜPI,M (s), Ĝ−V FF,M (s), δθ̂M (s) and ĜN,M (s), are:

ĜPI,M (s) =

kp,PI +
kI,PIs

s2+4ω2
0

2ω0kI,PIs

s2+4ω2
0

−2ω0kI,PIs

s2+4ω2
0

kp,PI +
kI,PIs

s2+4ω2
0

 (3.36)

Ĝ−V FF,M (s =

 τns+1
τ2ns

2+1+2τns+(2τnω0)2
2τnω0

τ2ns
2+1+2τns+(2τnω0)2

− 2τnω0
τ2ns

2+1+2τns+(2τnω0)2
τns+1

τ2ns
2+1+2τns+(2τnω0)2

 (3.37)

δθ̂M (s) =

 1
2 [δθ(s− 2jω0) + δθ(s+ 2jω0)]

1
2j[δθ(s+ 2jω0)− δθ(s− 2jω0)]

1
2j[δθ(s− 2jω0)− δθ(s+ 2jω0]

1
2 [δθ(s− 2jω0) + δθ(s+ 2jω0)]

 (3.38)
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ĜN,M (s) =


s4+

2ω0
Q
s3+16ω2

0s
2+

16ω30
Q

s

s4+(
2ω0
Q

)2s2+
4ω0
Q
s3+16ω2

0s
2+

32ω30
Q

s+
16ω40
Q2

− 4ω20
Q
s2

s4+(
2ω0
Q

)2s2+
4ω0
Q
s3+16ω2

0s
2+

32ω30
Q

s+
16ω40
Q2

4ω20
Q
s2

s4+(
2ω0
Q

)2s2+
4ω0
Q
s3+16ω2

0s
2+

32ω30
Q

s+
16ω40
Q2

s4+
2ω0
Q
s3+16ω2

0s
2+

16ω30
Q

s

s4+(
2ω0
Q

)2s2+
4ω0
Q
s3+16ω2

0s
2+

32ω30
Q

s+
16ω40
Q2


(3.39)

The resulting block diagram of the small-signal model of the negative sequence

current controller, implemented in the positive dq-frame is shown in Figure 3.7.

+ 
− 

+ + + + 𝐆 𝐏𝐈,𝐌(𝐬) 

𝐆 𝐕𝐅𝐅,𝐌
− (𝐬) 

+ + 𝛅𝐢 𝐝𝐪
+  

+ + 𝐆 𝐍,𝐌(𝐬) 

[−𝐔𝐒𝐪,𝟎
− ;  𝐔𝐒𝐝,𝟎

− ] 

[−𝐢𝐪,𝟎
− ; 𝐢𝐝,𝟎

− ] 

𝛅𝛉 𝐌(𝐬) 

+ 
+ 

[𝐔𝐈𝐪,𝟎
− ;  −𝐔𝐈𝐝,𝟎

− ] 

𝐆𝐂,𝐌
− (𝐬) 

[𝟎; 𝟎 ] 

𝛅𝛉 𝐌(𝐬) 

𝛅𝛉 𝐌(𝐬) 

𝐆 𝐍,𝐌(𝐬) 

𝛅𝐔𝐈𝐝𝐪,𝐜

−  

𝛅𝐔𝐒𝐝𝐪,𝐜

−  𝛅𝐔 𝐒𝐝𝐪,𝐜

−  

𝛅𝐢 𝐝𝐪,𝐜
−  𝛅𝐢𝐝𝐪,𝐜

−  

𝛅𝐔 𝐒𝐝𝐪
+  

Figure 3.7: Block diagram of the small-signal model of the negative sequence control
loops, implemented in the converter positive dq-frame.

3.1.1.4 Anti-aliasing filter

The anti-aliasing filter applied on the measured plant voltage operates in the abc-frame

and, therefore, needs mapping onto the positive grid dq-frame (see Figure 2.20).

The transfer function models of the employed notch and LPF filters are GAFn(s) and

GLPF (s), respectively defined in (E.4) and (E.6). It is emphasised that these filters

operate equally and independently on each phase of the measured U voltage. Therefore,

the anti-aliasing filter, acting on the three phases of U , can be described analytically
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introducing the transfer function matrices GAFn,M (s) and GLPF,M (s), defined as:

GAFn,M (s) =


GAFn(s) 0 0

0 GAFn(s) 0

0 0 GAFn(s)

 (3.40)

GLPF,M (s) =


GLPF (s) 0 0

0 GLPF (s) 0

0 0 GLPF (s)

 (3.41)

An equivalent dq-frame formulation of GAFn,M (s) and GLPF,M (s) is derived. For

this purpose, the technique illustrated in Appendix C.2.2 is applied, which describes

how to map an abc-frame diagonal transfer function matrix, defined as in (C.35), onto

the positive dq-frame. It is worth noticing that such mapping technique is equivalent

to the one illustrated in Figure 3.6, where the frame rotation terms are now equal to

e±jω0t instead of e±j2ω0t (see Figure 3.8).

𝐞𝐣𝛚𝟎𝐭 𝓛 𝐆𝐌(𝐬) 

𝐆𝐃𝐐(𝐬) 

𝛅𝐲 𝐝𝐪
+ (𝐭) 𝛅𝐱 𝐚𝐛𝐜(𝐭) 𝛅𝐱 𝐝𝐪

+ (𝐬) 
𝓛−𝟏 𝐞−𝐣𝛚𝟎𝐭 𝓛−𝟏 

𝛅𝐱 𝐝𝐪
+ (𝐭) 

𝓛 
𝛅𝐲 𝐝𝐪

+ (𝐬) 𝛅𝐱 𝐚𝐛𝐜(𝐬) 𝛅𝐲 𝐚𝐛𝐜(𝐬) 𝛅𝐲 𝐚𝐛𝐜(𝐭) 

Figure 3.8: Translation of an abc-frame transfer function matrix GM (s), defined as in
(C.35), onto the positive dq-frame transfer function GDQ(s).

The resulting dq-frame expressions GAFn,DQ(s) and GLPF,DQ(s), respectively cor-

responding to GAFn,M (s) and GLPF,M (s), are:

GAFn,DQ(s) =

GAFn,dd(s) GAFn,dq(s)

GAFn,qd(s) GAFn,qq(s)

 (3.42)

GLPF,DQ(s) =

GLPF,dd(s) GLPF,dq(s)

GLPF,qd(s) GLPF,qq(s)

 (3.43)
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where:

GAFn,dd(s) = GAFn,qq(s)

=
s4 + ωn

Q s
3 + (2ω2

0 + 2ω2
n)s2 +

ωnω2
0+ω

3
n

Q s+ (ω2
0 − ω2

n)2

s4 + 2ωn
Q s3 + (ω

2
n
Q2 + 2ω2

0 + 2ω2
n)s2 +

2ωnω2
0+2ω3

n

Q s+ (ω2
0 − ω2

n)2 +
ω2
0ω

2
n

Q2

GAFn,dq(s) = −GAFn,qd(s)

=
−ωnω0

Q (s2 + ω2
0 − ω2

n)

s4 + 2ωn
Q s3 + (ω

2
n
Q2 + 2ω2

0 + 2ω2
n)s2 +

2ωnω2
0+2ω3

n

Q s+ (ω2
0 − ω2

n)2 +
ω2
0ω

2
n

Q2

(3.44)

GLPF,dd(s) = GLPF,qq(s) =
τfs+ 1

τ2f s
2 + 1 + 2τfs+ (τfω0)2

GLPF,dq(s) = −GLPF,qd(s) =
τfω0

τ2f s
2 + 1 + 2τfs+ (τfω0)2

(3.45)

The corresponding block diagram of the dq-frame small-signal model of the anti-

aliasing filter is illustrated in Figure 3.9. δÛ+
dq and δÛ+

Sdq
are the small-signal perturba-

tions of Û+
dq and Û+

Sdq
around their steady-state values Û+

dq,0, Û
+
Sdq ,0

. The signal notation

used in (2.13) has been applied.

𝐆𝐀𝐅𝟏,𝐃𝐐(𝐬) 𝐆𝐀𝐅𝟐,𝐃𝐐(𝐬) 𝐆𝐀𝐅𝟑,𝐃𝐐(𝐬) 𝐆𝐀𝐅𝟒,𝐃𝐐(𝐬) 𝐆𝐋𝐏𝐅,𝐃𝐐(𝐬) 
𝛅𝐔 𝐒𝐝𝐪

+  𝛅𝐔 𝐝𝐪
+  

Figure 3.9: Equivalent block diagram of the small-signal model of the anti-aliasing
filter, in the positive dq-frame.

The Bode plots of the elements of the anti-aliasing filter transfer function matrix,

derived in the positive dq-frame, are reported in Figure C.6 in Appendix C.2.2.

3.1.1.5 Controller delay

A further element of the controller scheme shown in Figure 2.20, which has been mod-

elled in the abc-frame, is the controller delay. Similarly to what has been done for the

anti-aliasing filter, the diagonal transfer function matrix GD,M (s) is defined to model
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the delay in the abc-frame:

GD,M (s) =


GD(s) 0 0

0 GD(s) 0

0 0 GD(s)

 (3.46)

where GD(s) is defined in (2.20). Applying the same procedure used for the anti-aliasing

filter, GD,M (s) is mapped onto the dq-frame according to the theory described in Ap-

pendix C.2.2. The resulting dq-frame expression GD,DQ(s), associated to GD,M (s),

is:

GD,DQ(s) =

 e−sTdcos(ω0Td) e−sTdsin(ω0Td)

−e−sTdsin(ω0Td) e−sTdcos(ω0Td)

 (3.47)

The equivalent block diagram of the small-signal model of the controller delay,

implemented in the dq-frame, is illustrated in Figure 3.10. δÛ+
Idq

and δÛ+
Idq ,D

are the

small-signal perturbations of, respectively, Û+
Idq

and Û+
Idq ,D

around their steady-state

values.

𝛅𝐔 𝐈𝐝𝐪,𝐃
+  

𝐆𝐃,𝐃𝐐(𝐬) 
𝛅𝐔 𝐈𝐝𝐪

+  

Figure 3.10: Equivalent block diagram of the small-signal model of the controller delay,
in the positive dq-frame.

3.1.1.6 Outer controller

The small-signal model of the active power controller is presented in Section 3.1.1.6.1,

while that of the voltage regulator is presented in Section 3.1.1.6.2.
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3.1.1.6.1 Active power loop

The derivation of the small-signal model of the power loop requires the linearisation of

(2.15). This results in the following small-signal equation:

δP (t) =
3

2
[δi+d,cU

+
Sd,0

+ i+d,0δU
+
Sd,c

+ δi+q,cU
+
Sq ,0

+ i+q,0δU
+
Sq ,c

] (3.48)

where δP (t) is the small-signal perturbation around the steady-state value P0. The

resulting block diagram of the small-signal model of the power loop is shown in Figure

3.11, where GPI,P (s) is:

GPI,P (s) = kp,P +
ki,P
s

(3.49)

𝐆𝐏𝐈,𝐏(𝐬) 

𝛅𝐔𝐒𝐝𝐪,𝐜
+  

− + 𝛅𝐏 
𝟎 

𝟑

𝟐
(𝛅𝐢𝐝,𝐜

+ 𝐔𝐒𝐝,𝟎
+ + 𝐢𝐝,𝟎

+ 𝛅𝐔𝐒𝐝,𝐜
+ 𝛅𝐢𝐪,𝐜

+ 𝐔𝐒𝐪,𝟎
+ + 𝐢𝐪,𝟎

+ 𝛅𝐔𝐒𝐪,𝐜
+ ) 

𝛅𝐢𝐪,𝐫𝐞𝐟
+  

𝛅𝐢𝐝𝐪,𝐜
+  

Figure 3.11: Block diagram of the active power loop small-signal model.

3.1.1.6.2 Voltage loop

The derivation of the small-signal model of the voltage loop requires the linearisation

of (2.16). This results in the following small-signal equation:

δÛS(t) =
U+
Sd,0√

[U+
Sd,0

]2 + [U+
Sq ,0

]2
δU+

Sd,c
+

U+
Sq ,0√

[U+
Sd,0

]2 + [U+
Sq ,0

]2
δU+

Sq ,c
(3.50)

where δÛS(t) is the small-signal perturbation around the steady-state value ÛS,0. The

resulting block diagram of the small-signal model of the power loop is shown in Figure

3.12, where GPI,V (s) is:

GPI,V (s) = kp,V +
ki,V
s

(3.51)
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𝐆𝐏𝐈,𝐕(𝐬) 
𝛅𝐔𝐒𝐝𝐪,𝐜

+  
− + 𝛅𝐔 𝐒 

𝟎 𝐔𝐒𝐝,𝟎
+

 𝐔𝐒𝐝,𝟎
+ 𝟐

+ 𝐔𝐒𝐪,𝟎
+

𝛅𝐔𝐒𝐝,𝐜
+ +

𝐔𝐒𝐪,𝟎
+

 𝐔𝐒𝐝,𝟎
+ 𝟐

+ 𝐔𝐒𝐪,𝟎
+

𝛅𝐔𝐒𝐪,𝐜
+  𝛅𝐢𝐝,𝐫𝐞𝐟

+  

Figure 3.12: Block diagram of the voltage loop small-signal model.

3.1.2 Electrical system

The theory to define the small-signal model of the electrical system associated to the

considered turbine-grid system described in Section 2.1.3 is presented as follows.

The equations of such electrical system are in the abc-frame, thereby they need to be

referred to the positive dq-frame. This projection from the abc- to the dq- is discussed

in Appendix C.12, and consists in deriving a dq-frame state space representation of the

electrical system.

As the grid only contains linear passive components (see (C.3)), the Au, Bu and Cu

matrices in (C.5) are constant, i.e. they do not vary with the system operating point.

By indicating with δ~xu(t), δ~xd(t), δ~u(t) and δ~y(t) the small-signal perturbations re-

spectively corresponding to ~xu(t), ~xd(t), ~u(t) and ~y(t) (see (C.4) for their definitions),

the following relations can be formulated:

~xu(t) = ~xu,0 + δ~xu(t)

~u(t) = ~u0 + δ~u(t)

~y(t) = ~y0 + δ~y(t)

(3.52)

where ~xu,0, ~u0 and ~y0 are the steady-state values of ~xu(t), ~u(t) and ~y(t), taken at the

system operating point.

As the resulting electrical system model is LTI, based on (C.4) and (C.5), its small-

signal state-space model can be formulated as:


dδ~xu(t)
dt = Auδ~xu(t) +Buδ~u(t),

δ~y(t) = Cuδ~xu(t)

(3.53)
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In particular:

δ~u(t) =


δÛ+

Id,mod
(t)

δÛ+
Iq ,mod

(t)

δÛ+
gd

(t)

δÛ+
gq(t)

 ; δ~y(t) =


δî+d (t)

δî+q (t)

δÛ+
d (t)

δÛ+
q (t)

 ; (3.54)

It is worth mentioning that in the carried out analyses is has been assumed that

δÛ+
gdq

(t) = 0.

3.1.3 Complete small-signal model

The block diagram of the complete small-signal model of the considered turbine-grid

system is shown in Figure 3.13.

3.2 Validation of the small-signal model

In this Section, the derived small-signal models are validated against MATLAB/Simulink

TD model simulations and experimental data.

Validation tests have been carried out for the four current loops of the controller (the

i+d , the i+q , the i−d and i−q loops in Figure 2.20), and for the outer loops (the active

power and the voltage regulators). The validation of inner loops is presented in Section

3.2.1, that of the outer loops in Section 3.2.2.

3.2.1 Inner controller

The validation tests of the inner current loops have been carried out considering the

turbine-grid model described in Section 2.1.3 and the laboratory prototype system de-

scribed in Section 2.3.2.3. For the former system, the system parameters detailed in

Table 2.1 have been applied. For the latter one, those listed in Table 2.8 have been

used. The controller scheme in Figure 2.20 has been considered (i.e. with no outer

loops).

In these tests, while for the turbine-grid system the associated small-signal model has

been validated against its corresponding TD model, the small-signal model of the lab-

oratory prototype system has been validated both against its TD model and against
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experimental data.

𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞 𝐬𝐞𝐪𝐮𝐞𝐧𝐜𝐞 

𝐜𝐮𝐫𝐫𝐞𝐧𝐭 𝐜𝐨𝐧𝐭𝐫𝐨𝐥𝐥𝐞𝐫 

𝛅𝐔 𝐝𝐪
+  

𝛅𝐢 𝐝𝐪
+  

𝛅𝐔 𝐈𝐝𝐪,𝐦𝐨𝐝

+   𝐏𝐥𝐚𝐧𝐭 

𝐬𝐩𝐚𝐜𝐞 𝐬𝐭𝐚𝐭𝐞 − 

𝐦𝐨𝐝𝐞𝐥 

𝛅𝐢𝐝𝐪,𝐜
+  

+ 
− 

+ + + + 𝐆𝐏𝐈,𝐌(𝐬) 

𝐆𝐕𝐅𝐅,𝐌
+ (𝐬) 

𝛅𝐔𝐈𝐝𝐪,𝐜
+  

𝛅𝛉𝐌(𝐬) 

+ + 𝐆𝐍,𝐌(𝐬) 
𝛅𝐢 𝐝𝐪,𝐜

+  𝛅𝐢 𝐝𝐪
+  

+ + 𝐆𝐍,𝐌(𝐬) 

[𝐔𝐒𝐪,𝟎
+ ;  −𝐔𝐒𝐝,𝟎

+ ] 

[𝐢𝐪,𝟎
+ ; −𝐢𝐝,𝟎

+ ] 

𝛅𝛉𝐌(𝐬) 

𝛅𝛉𝐌(𝐬) 

+ 
+ 

[−𝐔𝐈𝐪,𝟎
+ ;  𝐔𝐈𝐝,𝟎

+ ] 

𝐆𝐂,𝐌
+ (𝐬) 

[𝛅𝐢𝐝,𝐫𝐞𝐟
+ ; 𝛅𝐢𝐪,𝐫𝐞𝐟

+  ] 

+ + 

𝐆𝐃,𝐃𝐐(𝐬) 

𝐆𝐀𝐅𝟏,𝐃𝐐(𝐬) 𝐆𝐀𝐅𝟐,𝐃𝐐(𝐬) 𝐆𝐀𝐅𝟑,𝐃𝐐(𝐬) 𝐆𝐀𝐅𝟒,𝐃𝐐(𝐬) 𝐆𝐋𝐏𝐅,𝐃𝐐(𝐬) 

𝛅𝐔 𝐈𝐝𝐪
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𝛅𝐔 𝐒𝐝𝐪
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𝐜𝐮𝐫𝐫𝐞𝐧𝐭 𝐜𝐨𝐧𝐭𝐫𝐨𝐥𝐥𝐞𝐫 

𝐏𝐨𝐰𝐞𝐫 𝐥𝐨𝐨𝐩 

𝐀𝐧𝐭𝐢 𝐚𝐥𝐢𝐚𝐬𝐢𝐧𝐠 𝐟𝐢𝐥𝐭𝐞𝐫 

𝛅𝐔 𝐝𝐪
+  

𝐕𝐨𝐥𝐭𝐚𝐠𝐞 𝐥𝐨𝐨𝐩 

𝐏𝐋𝐋 𝐥𝐨𝐨𝐩 

𝛅𝐔 𝐈𝐝𝐪,𝐦𝐨𝐝

+  

𝐆𝐏𝐋𝐋(𝐬) 
𝛅𝐔𝐒𝐝

+  𝛅𝛉 𝐆𝐍(𝐬) 

𝐏𝐥𝐚𝐧𝐭 

𝐂𝐮𝐫𝐫𝐞𝐧𝐭 𝐯𝐞𝐜𝐭𝐨𝐫  

𝐜𝐨𝐧𝐭𝐫𝐨𝐥 

𝐆𝐏𝐈,𝐏(𝐬) 

𝛅𝐔𝐒𝐝𝐪,𝐜
+  

− + 𝛅𝐏 
𝟎 

𝟑

𝟐
(𝛅𝐢𝐝,𝐜

+ 𝐔𝐒𝐝,𝟎

+ + 𝐢𝐝,𝟎
+ 𝛅𝐔𝐒𝐝,𝐜

+ 𝛅𝐢𝐪,𝐜
+ 𝐔𝐒𝐪,𝟎

+ + 𝐢𝐪,𝟎
+ 𝛅𝐔𝐒𝐪,𝐜

+ ) 
𝛅𝐢𝐪,𝐫𝐞𝐟

+  

𝛅𝐢𝐝𝐪,𝐜
+  

𝐆𝐏𝐈,𝐕(𝐬) 
𝛅𝐔𝐒𝐝𝐪,𝐜

+  
− + 𝛅𝐔 𝐒 

𝟎 𝐔𝐒𝐝,𝟎
+

 𝐔𝐒𝐝,𝟎
+ 𝟐

+ 𝐔𝐒𝐪,𝟎
+

𝛅𝐔𝐒𝐝,𝐜
+ +

𝐔𝐒𝐪,𝟎
+

 𝐔𝐒𝐝,𝟎
+ 𝟐

+ 𝐔𝐒𝐪,𝟎
+

𝛅𝐔𝐒𝐪,𝐜
+  𝛅𝐢𝐝,𝐫𝐞𝐟

+  

+ 
− 

+ + + + 𝐆 𝐏𝐈,𝐌(𝐬) 

𝐆 𝐕𝐅𝐅,𝐌
− (𝐬) 

+ + 𝛅𝐢 𝐝𝐪
+  

+ + 𝐆 𝐍,𝐌(𝐬) 

[−𝐔𝐒𝐪,𝟎
− ;  𝐔𝐒𝐝,𝟎

− ] 

[−𝐢𝐪,𝟎
− ; 𝐢𝐝,𝟎

− ] 

𝛅𝛉 𝐌(𝐬) 

+ 
+ 

[𝐔𝐈𝐪,𝟎
− ;  −𝐔𝐈𝐝,𝟎

− ] 

𝐆𝐂,𝐌
− (𝐬) 
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𝛅𝛉 𝐌(𝐬) 

𝛅𝛉 𝐌(𝐬) 

𝐆 𝐍,𝐌(𝐬) 

𝛅𝐔𝐈𝐝𝐪,𝐜

−  

𝛅𝐔𝐒𝐝𝐪,𝐜

−  𝛅𝐔 𝐒𝐝𝐪,𝐜

−  

𝛅𝐢 𝐝𝐪,𝐜
−  𝛅𝐢𝐝𝐪,𝐜

−  

𝛅𝐔 𝐒𝐝𝐪
+  

𝛅𝐔 𝐒𝐝
+  

𝛅𝐔 𝐒𝐝𝐪
+  

𝛅𝐔 𝐒𝐝𝐪,𝐜

+  𝛅𝐔𝐒𝐝𝐪,𝐜

+  

Figure 3.13: Block diagram of the complete small-signal model of the turbine-grid
system.
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As mentioned, the frequency responses of the closed-loop transfer functions of the

four current loops have been considered. These are indicated as G+
i,d(j2πf), G+

i,q(j2πf),

G−i,d(j2πf) andG−i,q(j2πf) for the i+d , the i+q , the i−d and the i−q loops, respectively. Their

analytical expressions have been calculated from the small-signal models.

Thereafter, these frequency responses have been derived from time-domain simulations

of the corresponding TD models. In these simulations, a small-signal sinusoidal per-

turbation has been added to the reference value of the tested current loop. The case

of the i+q loop test is described as follows. Equivalent tests have been executed for the

other three current loops.

By indicating with i+q,ref (t) the perturbed reference signal of the q+ loop, in the carried

out simulations this has been defined as:

i+q,ref (t) = i+qref ,0 + δi+q,refcos(2πfpt) (3.55)

where i+qref ,0 is the steady-state value, δi+q,ref is the amplitude of the applied small-signal

perturbation, equal to 0.2 A, while fp is its frequency.

The spectrum of the resulting perturbed feedback signal i+q (t) has been analysed. This

was characterized by a component at fp, having a magnitude δî+q (fp) and a phase

γ+q (fp). Hence, the frequency response G+
i,q(j2πfp) has been calculated as:

|G+
i,q(j2πfp)| =

δî+q (fp)

δi+q,ref
,∠(G+

i,q(j2πfp)) = γ+q (fp) (3.56)

The test has been repeated varying the frequency fp of the applied perturbation, thus

carrying out a frequency sweep test. This has allowed the derivation of the TD model

frequency response G+
i,q(j2πf).

As mentioned, equivalent tests have been repeated for the other three current loops of

the system, and the corresponding G+
i,d(j2πf), G−i,d(j2πf) and G−i,q(j2πf) TD model

frequency responses have been derived.

An equivalent methodology has been applied to derive the experimental frequency

response data of the four current loops of the considered laboratory prototype.
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The results of the validation tests are illustrated in Figures 3.14 and 3.15 for the turbine-

grid interface and for the laboratory prototype inverter-grid interface, respectively. For

the former interface, an operating point corresponding to i+q,ref = 2000 A, i+d,ref =

i−q,ref = i−d,ref = 0 A has been considered. For the latter interface, an operating point

corresponding to i+q,ref = 5 A, i+d,ref = i−q,ref = i−d,ref = 0 A has been tested.

Based on the shown results, a substantial accuracy of the tested small-signal models

has been verified.
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Figure 3.14: Comparison between the frequency responses of the closed loop transfer
functions of the four controller current loops of the modelled turbine-grid interface.
The results obtained with the FD model are compared to those of the corresponding
TD model.
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Figure 3.15: Comparison between the frequency responses of the closed loop transfer
functions of the four controller current loops of the built laboratory prototype inverter-
grid interface described in Section 2.3.2.3. The results obtained with the FD model are
compared to those of the corresponding TD model, as well as to experimental data.

3.2.2 Outer controller

In order to validate the accuracy of the derived small-signal model of the outer loops,

the laboratory prototype inverter-grid interface described in Section 2.3.2.3 has been

used. In these tests, the system and controller parameters detailed in Table 2.9 have

been used (considering the scenario with SCR= 1.9). The controller scheme in Figure

2.20 has been considered, where the outer loops shown in Figures 2.15 and 2.16 have

been added.

The frequency responses of the closed-loop transfer functions of the active power con-

troller and of the voltage controller have been considered. These are respectively indi-
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cated as GP (j2πf), and GV (j2πf). Their analytical expressions have been calculated

from the derived small-signal model of the considered inverter-grid interface. On the

other hand, the laboratory prototype has been tested to obtain these frequency re-

sponses experimentally. In these tests, a small-signal sinusoidal perturbation has been

added to the reference value of the tested loop. The case of the power loop test is

described as follows. By indicating with Pref (t) the perturbed reference signal of the

power loop, in the executed tests this has been defined as:

Pref (t) = Pref,0 + δPrefcos(2πfpt) (3.57)

where Pref,0 is the steady-state value, δPref is the amplitude of the applied small-signal

perturbation, equal to 100 W, while fp is its frequency.

The spectrum of the resulting perturbed feedback signal P (t) has been analysed. This

was characterized by a component at fp, with a magnitude δP̂ (fp) and a phase γP (fp).

Hence, the frequency response GP (j2πfp) has been calculated as:

|GP (j2πfp)| =
δP̂ (fp)

δPref
,∠(GP (j2πfp)) = γP (fp) (3.58)

The test has been repeated varying the frequency fp of the applied perturbation, car-

rying out a frequency sweep test. This has allowed the derivation of the experimental

frequency response GP (j2πf). An equivalent test has been repeated for the voltage

loop, allowing the derivation of the experimental GV (j2πf) frequency response. In this

case, the sinusoidal voltage perturbation δÛref added to Ûref had an amplitude of 2 V.

The results of the validation tests are illustrated in Figure 3.16. In these tests, an

operating point characterized by Ûref = 1 pu and Pref = 0.8 pu has been considered.

Based on the shown results, a substantial accuracy of the outer loops small-signal

models has been verified.
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Figure 3.16: Comparison between the frequency responses of the closed loop transfer
functions of the outer loops of the built laboratory prototype inverter-grid interface
described in Section 2.3.2.3. The results obtained with the FD model are compared to
the experimental data.

3.3 Chapter Summary

The theory used to derive a dq-frame small-signal model of the inverter-grid system

discussed in Chapter 2 has been presented. Among the methodologies described to

represent each element of the modelled system in the positive dq-frame, emphasis has

been given on the technique used for the negative sequence current controller. The

accuracy of the applied theory has been verified experimentally making use of the built

scaled-down laboratory prototype of the studied system.
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Impedance-based stability study

Based on the theory described in Chapter 3, a small-signal model of the studied wind

farm-grid system has been derived. This has been used to carry out the study of its

stability applying the methodology presented in this Chapter.

As discussed in Section 2.2.1, the implementation of the controller in the dq-frame is

advantegous for the controller design, especially as it allows to exploit the capability

of PI regulators to track constant reference signals [58]. The applied converter control

scheme shown in Figure 2.20 results in a MIMO small-signal model of the inverter-grid

interface. This makes the study of its stability performance a complex task, especially

because of the existing coupling between the d- and q-axis feedback control loops (see

Figures 2.20 and 3.13). Taking inspiration from the impedance-based stability criterion

[54], the so-called sequence-frame, which will also be named pn-frame in the following

Sections, has been chosen to study the system stability. The used approach requires

a representation of the inverter-grid interface small-signal model in terms of electrical

impedances defined in the sequence-frame. The inverter is modelled as a controlled

current source and is therefore represented by its Norton equivalent, while the grid

is described in terms of its Thévenin equivalent (see Figure 4.1) [54]. The advantage

of such impedance based stability study is the possibility of applying SISO control

theory, thanks to the substantial decoupling between the positive and the negative

sequence impedances of the circuit in Figure 4.1b. This enables to consider the resulting

sequence-frame second order MIMO small-signal model of the system as two decoupled
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SISO models, and, therefore, to use well-known tools such as the gain and the phase

margin to assess the system relative stability [79], [55], [54].

In order to apply this methodology, a technique is needed to describe the converter

dynamics in the sequence-frame. This has been done by making use of the definition of

the small-signal converter admittance [54]. Such admittance is the output small-signal

admittance of the inverter and includes the line reactor connected in series to its AC

terminals (Zf in Figure 4.1). It allows to quantify the effect of the converter controller

on the measured voltage U and current i signals.

𝐆𝐚𝐭𝐞 
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(a) (b) 

Figure 4.1: (a) Inverter-grid interface. (b) Equivalent small-signal circuit representa-
tion, used for the stability study.

In the applied methodology, the small-signal converter admittance has been first

calculated in the dq-frame an then mapped onto the sequence-frame. By doing so, it

has been possible to build the desired link between the dq-frame, where the controller

is implemented, and the pn-frame, where stability is studied. It is worth highlighting

that the equations used in this work to express the dq-frame small-signal admittance

(or impedance) in the sequence-frame differ from similar formula published in the lit-

erature, which instead relate the dq-frame small-signal converter admittance either to

its modified sequence-frame [60] or to its αβ-frame [97] formulations.

The employed equations allow a systematic calculation not only of the positive and

the negative sequence terms of the small-signal converter admittance, but also of the

coupling existing between them. Such coupling results from the converter controller
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action on the measured voltage U and current i signals. In [60], how this coupling is

related to any asymmetry in the d- and q- axes control loops, for instance caused by

the PLL loop, or the voltage/power (outer) loops or the DC link voltage controller, is

highlighted.

The system is said to be Mirror Frequency Decoupled (MFD) when there is a perfect

symmetry between the d- and q- axes control loops, which results in zero coupling

terms in the small-signal converter admittance [60]. In the carried out study, such

MFD property of the inverter-grid interface system has been investigated for different

controller schemes.

Despite the fact that these coupling terms are assumed negligible and therefore ignored

in the impedance-based stability criterion [54], they have been of interest in the litera-

ture. Significant results have been found in [13], where it is shown that neglecting these

coupling terms can lead to a wrong stability assessment when the PLL bandwidth is

increased. Hence, by making use of the defined small-signal converter admittance, a

stability study systematic methodology, which includes the mentioned coupling terms,

has been defined. The method has been applied to the study of the wind farm reso-

nances and its accuracy has been verified experimentally.

The impact of the cross-coupling terms on the stability assessment of the system has

been further investigated, evaluating the property of diagonal dominance of the inverter-

grid system in the sequence-frame [93]. A criterion capable of indicating whether such

coupling is relevant or not to the stability analysis is presented. It indicates how the

verification of the diagonal dominant property of the system is essential to justify the

omission of the aforementioned coupling terms in the application of the impedance-

based stability criterion [54]. A scenario where the inverter is connected to a weak

grid and the diagonal dominance property is not verified is presented, proving, both

analytically and experimentally, how in this circumstance the coupling terms should be

taken into account for a correct judgement of the system stability.

Thereafter, by exploiting the mentioned diagonal dominance property of the system, a

stability margin definition based on perturbation theory is introduced [63]. Compared

to the SISO gain and phase margins, which require to neglect the coupling terms of the
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converter admittance, the presented stability margin takes such coupling into account,

thus providing a safer and more conservative evaluation of the system stability robust-

ness.

The Chapter is organised as follows. In Section 4.1, the methodology to calculate the

small-signal converter admittance in the sequence-frame is described. In particular, in

Section 4.1.3, a validation of this method is provided, experimentally proving its effec-

tiveness regardless of the applied converter control schemes, and thus confirming the

generality of its use. In these tests, specifically designed controller configurations have

been considered to verify the MFD property of the system in the sequence-frame. In

Section 4.2, how the small-signal converter admittance is used to carry out the stability

study of the system is illustrated. A systematic technique to study the system stabil-

ity, which includes the mentioned coupling in the small-signal converter admittance,

is presented and applied to the analysis of the wind farm resonances. The results

of the study are validated both against those obtained with the corresponding TD

model of the wind farm-grid system, and against experimental data obtained with the

built laboratory prototype where the investigated unstable dynamics have been repro-

duced. In Section 4.3, the study of the diagonal dominance property of the system in

the sequence-frame is presented and used to infer whether the coupling terms of the

small-signal converter admittance should be included or not in the stability study. The

theoretical analysis is validated experimentally by considering the scenario of the built

inverter prototype connected to a weak grid, with the outer active power and voltage

regulators included in the control scheme. Finally, in Section 4.4, a stability margin

which takes such coupling terms into account is introduced. Its effectiveness to quantify

the relative stability of the system is validated experimentally and compared to that of

the SISO stability margins used in the impedance-based stability criterion.

4.1 Calculation of the small-signal converter admittance

The small-signal converter admittance is calculated based on the small-signal model

of the converter controller, whose dynamics are linearised at an operating point. This

admittance also includes the coupling reactor interfacing the inverter to the rest of the
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electrical system.

The small-signal converter admittance is defined as the transfer function YC(s) from

the small-signal voltage δU(s) to the small-signal inverter current δi(s) (see Figure 4.2

where U0 and i0 represent the steady-state values of U and i, at the system operating

point):

YC(s) = − δi(s)

δU(s)
(4.1)

It is pointed out that in (4.1), the current signal is taken to be positive when flowing

out of the inverter AC terminals.

𝐆𝐚𝐭𝐞 

  

𝐂𝐨𝐧𝐭𝐫𝐨𝐥𝐥𝐞𝐫 

𝐢𝟎 + 𝛅𝐢 

+ 

− 
𝐔𝐃𝐂 

𝐙𝐟 

 𝐈𝐧𝐯𝐞𝐫𝐭𝐞𝐫 

𝐬𝐢𝐠𝐧𝐚𝐥𝐬 

~ 

𝐔𝟎 + 𝛅𝐔 ~ 𝛅𝐔 

𝐔𝟎 

𝐔𝐈,𝟎 + 𝛅𝐔𝐈 

Figure 4.2: Schematic diagram for the calculation of the converter impedance.

The converter admittance is first calculated in the dq-frame and then mapped onto

the pn-frame. These calculations will be discussed in the following Sections 4.1.1 and

4.1.2, respectively.

4.1.1 Converter admittance in the dq-frame

In order to calculate the dq-frame small-signal converter admittance YC,DQ(s), the

small-signal model of the inverter electrical system in Figure 4.2 is derived, where the

control scheme is the one in Figure 2.20. The derivation of the dq-frame small-signal

state-space representation of such inverter electrical system is reported in Appendix

C.1.4. Thereby, the analytical expression of the small-signal converted admittance
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YC,DQ(s) is calculated as the closed-loop transfer function from δÛ+
dq(s) to −δî+dq(s)

(see Figure C.5 where these signals have been marked in red):

YC,DQ(s) = −
δî+dq(s)

δÛ+
dq(s)

=

YC,dd(s) YC,dq(s)

YC,qd(s) YC,qq(s)

 (4.2)

where δî+dq(s) = L{δî+dq(t)} and δÛ+
dq(s) = L{δÛ+

dq(t)}.
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(d) YC,qq(j2πf)

Figure 4.3: Frequency responses of the four elements of the YC,DQ(j2πf) matrix calcu-
lated for the inverter modelled in the turbine-grid interface described in Section 2.1.3.

Figure 4.3 shows the calculated frequency responses of the admittance terms of

the YC,DQ(s) matrix calculated for the inverter modelled in the turbine-grid interface

described in Section 2.1.3. These terms have been calculated for an operating point
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characterized by i+q,ref = 2000 A, i+d,ref = i−q,ref = i−d,ref = 0 A. It is worth noticing how

the diagonal terms YC,dd(j2πf) and YC,qq(j2πf) demonstrate inductive characteristics

at higher frequencies and how significant the amplitude of the cross coupling terms

YC,dq(j2πf) and YC,qd(j2πf) is within the frequency range of the controller bandwidth

(i.e. at frequencies less than 200 Hz).

In the following Section the methodology used to map YC,DQ(s) onto the sequence-

frame is described.

4.1.2 Converter admittance in the pn-frame

The methodology used to derive the pn-frame small-signal converter admittance terms

from its dq-frame formulation is based on the application of a set of equations. Com-

pared to alternative techniques presented in the literature, see for example [55], [13],

this method is applicable in a systematic way, regardless of the converter controller

scheme.

The transformations that map three-phase electrical signals from one mathematical

frame to another are summarised in Figure 4.4 [99], [100] together with the related

frames.

𝐂 

𝐅 

𝐑(𝐭) 

𝐃 𝐃 

𝐁(𝐭) 

𝐚𝐛𝐜 

𝛂𝛃 𝐝𝐪 

𝐩𝐧 𝐟𝐛 

Figure 4.4: Diagram of the standard frames employed to describe three-phase electrical
signals analytically, and matrix transformations relating one frame to the other.

In particular, C is the Clarke transform defined in (B.8), R(t) is the rotation matrix

formulated in (B.15), F is the Fortescue transform [101], whose definition is given in

(C.63). Finally, the B(t) and D transformations are defined in (C.44) and (C.45),

respectively [99].

The pn-frame small-signal admittance terms are related to the elements of the matrix
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YC,DQ(s) in (4.2) as:

YC,pp(s) =
1

2
[YC,qq(s− jω0)− jYC,dq(s− jω0) + jYC,qd(s− jω0) + YC,dd(s− jω0)],

YC,pn(s) =
1

2
[YC,qq(s− jω0)− jYC,dq(s− jω0)− jYC,qd(s− jω0)− YC,dd(s− jω0)],

YC,np(s) =
1

2
[YC,qq(s+ jω0) + jYC,dq(s+ jω0) + jYC,qd(s+ jω0)− YC,dd(s+ jω0)],

YC,nn(s) =
1

2
[YC,qq(s+ jω0) + jYC,dq(s+ jω0)− jYC,qd(s+ jω0) + YC,dd(s+ jω0)]

(4.3)

Moreover, the following equations relate the δipn(s) and δUpn(s) signals:

δip(s) = −YC,pp(s)δUp(s)− YC,pn(s)δUn(s− 2jω0)

δin(s) = −YC,np(s)δUp(s+ 2jω0)− YC,nn(s)δUn(s)
(4.4)

which can be rewritten in a matrix format as:

 δip(s)

δin(s− 2jω0)

 = −YC,PN (s)

 δUp(s)

δUn(s− 2jω0)


= −

 YC,pp(s) YC,pn(s)

YC,np(s− 2jω0) YC,nn(s− 2jω0)

 δUp(s)

δUn(s− 2jω0)

 (4.5)

YC,PN (s) represents the pn-frame small-signal converter admittance matrix and the

terms YC,pp(s), YC,pn(s), YC,np(s) and YC,nn(s) are the pn-frame small-signal converter

admittance terms.

The derivation of equations (4.3)-(4.4) can be found in Appendix C.3.

It is worth noticing that (4.3)-(4.4) have been derived without making any assumption

on the terms of the YC,DQ(s) matrix. In this regard, such equations are generic and can

therefore be applied for any arbitrarily defined dq-frame small-signal converter admit-

tance matrix. This implies that such methodology to map the small-signal converter

admittance from the dq- to the pn-frame is applicable regardless of the converter con-

troller scheme.

83



Chapter 4. Impedance-based stability study

It is worth mentioning that swapping the roles between voltage and current in (C.48),

analogous relations equivalent to (4.3)-(4.4) can be formulated in terms of the small-

signal converter impedance terms.

Equations (4.4) indicate that the input-output relationship between δipn(s) and δUpn(s)

is not decoupled in the pn-frame owing to the presence of the cross-coupling terms

YC,pn(s) and YC,np(s). Such coupling between the positive and negative sequence sig-

nals involves a frequency shift of ±2f0, with f0 = ω0
2π . While a positive sequence

small-signal voltage at frequency f̂ generates a small-signal current signal with both

a positive sequence component at f̂ and a negative sequence component at f̂ − 2f0, a

negative sequence small-signal voltage at f̂ gives rise to a small-signal current with both

a negative sequence component at f̂ and a positive sequence component at f̂ + 2f0.

The particular case when such coupling effect disappears is when the converter con-

troller is designed so that YC,qq(s) = YC,dd(s) and YC,qd(s) = −YC,dq(s), which requires

the d- and q-axis control loops of the converter controller to be symmetric. Such a

symmetric system is said to be Mirror Frequency Decoupled (MFD), according to the

definition provided in [60]. While the MFD property of the inverter controller is broken

by elements such as the PLL loop, the outer power and voltage regulators or the the DC

link controller, standard tuning of these loops typically makes the cross-coupling terms

YC,pn(s) and YC,np(s) have a sigificantly smaller magnitude than that of the YC,pp(s)

and YC,nn(s) terms. This typically justifies the decision to neglect them in the appli-

cation of the impedance based-stability criterion [54].

A more in depth analysis of these coupling terms and, in particular of how they impact

the stability study is presented in Section 4.3, where a criterion to infer whether such

coupling is relevant or not to the stability assessment of the system is presented. This

is based on the analysis of the diagonal dominance property of the inverter-grid system

in the sequence-frame.

4.1.3 Validation of the methodology

A validation of the presented methodology to map the converter admittance from the

dq- to the pn-frame is presented as follows. In Section 4.1.3.1, the pn-frame small-signal
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converter admittance terms derived from the TD model of the turbine-grid system

described in Section 2.1.3 are compared to the corresponding terms calculated with

(4.3)-(4.4). Thereafter, in Section 4.1.3.2, an experimental validation of these equations

is provided. By making use of the built laboratory prototype, specifically designed tests

have been carried out both to prove the general applicability of (4.3)-(4.4), and to verify

the conditions that make the system MFD.

4.1.3.1 Validation against time-domain simulations

The pn-frame small-signal converter admittance terms of the inverter system modelled

in Section 2.1.3 have been calculated with equations (4.3)-(4.4), applying the method-

ology described in Section 4.1. The frequency responses of these admittance terms have

been compared to those derived from time-domain simulations of the TD model of such

inverter system.

In order to derive the YC,pp(j2πf) and YC,np(j2π(f − 2f0)) terms from the inverter

interface TD model, a small-signal positive sequence voltage δU+(t) has been added to

U0(t) (see Figure 4.2), where U0(t) is:

U0,a(t) = U+
Sq ,0

cos(2πf0t)

U0,b(t) = U+
Sq ,0

cos(2πf0t−
2

3
π)

U0,c(t) = U+
Sq ,0

cos(2πf0t−
4

3
π)

(4.6)

U+
Sq ,0

is the voltage at the system operating point. In particular, the operating point

characterized by i+q,ref = 2000 A, i+d,ref = i−q,ref = i−d,ref = 0 has been considered in this

validation test. The added voltage perturbation has been defined as:

δU+
a (t) = δU0cos(2πfpt)

δU+
b (t) = δU0cos(2πfpt−

2

3
π)

δU+
c (t) = δU0cos(2πfpt−

4

3
π)

(4.7)

where δU0 is the amplitude of the small-signal perturbation, while fp is its frequency.

The corresponding deviation δi(t) on the steady-state inverter current i0(t) has been
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considered and its spectral components have been analysed. These consisted of a posi-

tive sequence component δi+pp(j2πfp) and of a negative sequence component δi−np(j2π(fp−

2f0)). Thereby, YC,pp(j2πfp) and YC,np(j2π(fp − 2f0)) have been calculated as:

YC,pp(j2πfp) =
|δi+pp,a(j2πfp)|

δU0
∠δi+pp,a(j2πfp)

YC,np(j2π(fp − 2f0)) =
|δi−np,a(j2π(fp − 2f0))|

δU0
∠δi−np,a(j2π(fp − 2f0))

(4.8)

Similarly, in order to calculate the YC,nn(j2πf) and YC,pn(j2π(f + 2f0)) terms, a

small-signal negative sequence voltage δU−(t) has been added to U0(t), defined as:

δU−a (t) = δU0cos(2πfpt)

δU−b (t) = δU0cos(2πfpt+
2

3
π)

δU−c (t) = δU0cos(2πfpt+
4

3
π)

(4.9)

In this case, the corresponding deviation δi(t) on the inverter current consisted

of a negative sequence component δi−nn(j2πfp) and of a positive sequence component

δi+pn(j2π(fp + 2f0)). Thereby, YC,nn(j2πfp) and YC,pn(j2π(fp + 2f0)) have been calcu-

lated as:

YC,nn(j2πfp) =
|δi−nn,a(j2πfp)|

δU0
∠δi−nn,a(j2πfp)

YC,pn(j2π(fp + 2f0)) =
|δi+pn,a(j2π(fp + 2f0))|

δU0
∠δi+pn,a(j2π(fp + 2f0))

(4.10)

These time domain simulations have been repeated for fp varying in the [1 Hz, 2

kHz] range, thus carrying out a frequency sweep test. This allowed the derivation of the

TD model frequency responses YC,pp(j2πf), YC,pn(j2π(f + 2f0)), YC,np(j2π(f − 2f0)),

YC,nn(j2πf).
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Figure 4.5: Frequency responses of the small-signal converter admittance terms of
YC,PN (s), for the inverter interface modelled in Section 2.1.3. A comparison is shown
between the results calculated with (4.3) and those derived from time domain simula-
tions of the corresponding inverter interface TD model.

Figure 4.5 compares such results with those calculated with (4.3)-(4.4), which are

based on the small-signal model of the inverter interface. As it can be seen, similarly

to the dq-frame admittance terms YC,dd(s) and YC,qq(s), the pn-frame diagonal terms

YC,pp(s) and YC,nn(s) also show an inductive nature in the higher frequency range,

which is attributed to the presence of the coupling reactor Zf . It is noticed how the

magnitude of the pn-frame coupling terms YC,pn(j2π(f +2f0)) and YC,np(j2π(f −2f0))

is much smaller than that of the dq-frame coupling terms Ydq(j2πf) and Yqd(j2πf) (see

Figure 4.3), in line with the studies presented in [54], [60], [13].
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4.1.3.2 Validation against experimental data

In order to validate equations (4.3-4.4) experimentally, a series of tests have been carried

out making use of the built laboratory inverter prototype. These tests have been

designed both to illustrate how such equations can be applied effectively regardless of

the employed converter control scheme and to investigate the MFD property of the

system [60]. In all of these tests, the inverter has been connected to a resistive load,

according to the electrical diagram shown in Figure 2.26. Different control schemes

have been tested, which are based on the block diagram shown in Figure 2.20. As in

these tests the inverter is not connected to the grid, the PLL loop has been disabled and

the controller angle θ(t) has been calculated with (E.28). The used system parameters

are those detailed in Table 2.7. The derived pn-frame small-signal frequency response

admittance matrix Ym,PN (2jπf) is that resulting from the series combination of the

converter and the load admittances, and has the following matrix format, which is

based on (4.5):

Ym,PN (2jπf) =

 Ym,pp(2jπf) Ym,pn(2jπf)

Ym,np(2jπ(f − 2f0)) Ym,nn(2jπ(f − 2f0))

 (4.11)

It is emphasized how equations (4.3-4.4) are valid for any small-signal admittance

definable within the electrical system. This justifies why the experimental tests have

been carried out for the admittance matrix (4.11), rather than considering the small-

signal converter admittance YC,PN (s) defined in (4.5). In fact, as a matter of fact, with

the equipment available in the used laboratory set-up, it was not possible to derive

YC,PN (s) experimentally.

In order to calculate the analytical expression of (4.11), the methodology described in

Section 4.1 has been applied. The small-signal model of the built prototype has been

derived based on the method discussed in Chapter 3. Thereby, the frequency response

of the dq-frame small-signal admittance matrix Ym,DQ(2jπf) has been obtained from

the closed-loop transfer function Ym,DQ(s) from δÛ+
Idq

(s) to δi+dq(s) (see Figure 3.13),
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setting s = j2πf :

Ym,DQ(j2πf) =
δi+dq(j2πf)

δÛ+
Idq

(j2πf)
=

Ym,dd(j2πf) Ym,dq(j2πf)

Ym,qd(j2πf) Ym,qq(j2πf)

 (4.12)

It is worth mentioning that in the small-signal model used in this calculation, the

plant state-space model has been derived based on (C.17). Finally, the corresponding

pn-frame terms of Ym,PN (j2πf) have been calculated based on equations (4.3)-(4.4).

The same terms have been derived experimentally according to the procedure described

in Appendix E.3, which is summarised as follows. A positive/negative sequence small-

signal three-phase perturbation has been added to the abc-frame PWM modulation

functions of the converter. Such modulation functions represent the reference signals of

the applied SVM modulation technique [73], and are calculated by the controller algo-

rithm as described in Appendix A. The frequency of the added perturbation has been

varied in the [5 Hz, 990 Hz] range, thus carrying out a frequency sweep test. In each

iteration of the test, the small-signal perturbation has been applied for 1s whilst the

system is at steady-state and, simultaneously, the corresponding measured converter

current i has been recorded locally in the control board. As a PWM asymmetrical

sampling technique has been used in these tests, with a converter switching frequency

of 2.5 kHz, the i data recorded during each iteration of the test is composed of 5000

samples. Thereafter, such recorded data has been exported into MATLAB to analyse

their spectral composition. In particular, by having 5000 current samples for each test

iteration, sampled at 5 kHz, the frequency spectrum of the collected data has been cal-

culated with a resolution of 1 Hz. The results of the carried out spectral analysis have

allowed the calculation of the experimental pn-frame small-signal admittance frequency

response Ym,PN (2jπf).

Three different scenarios have been tested, each having a different controller scheme,

as detailed in Table 4.1. It is worth mentioning that in scenario 1, as only the pos-

itive sequence controller is active, the notch filters in the controller block diagram in

Figure 2.20, which have been used to decouple the positive and the negative sequence

components of the measured plant signals, have been disabled.
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Table 4.1: Tested controller configurations.

Scenario Positive sequence current loop Negative sequence current loop Power loop

1 Included Not included Not included
2 Included Included Not included
3 Included Included Included
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Figure 4.6: Admittance terms of Ym,PN (j2πf) (scenario 1).

In scenarios 1 and 2, an operating point characterized by i+q,ref = 2 A, i+d,ref =

i−q,ref = i−d,ref = 0 A has been chosen, while in scenario 3 an operating point deter-

mined by Pref = 200 W has been tested, keeping i+d,ref , i−q,ref and i−d,ref equal to zero.

In Figures 4.6-4.8 the experimental results are compared with those obtained from the

built small-signal model of the system, for scenarios 1-3 respectively. The plots indicate

an overlap between the theoretical calculations and experimental data, hence confirm-

ing the accuracy of the applied methodology, as well as the generality of its use.
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In both scenarios 1 and 2, if it assumed that the plant impedances are balanced then

the system becomes MFD, as the d- and q- axis control loops are symmetric [60]. In

fact, under these conditions, Ym,dq(s) = −Ym,qd(s) and Ym,dd(s) = Ym,qq(s), making

Ym,pn(s) = Ym,np(s) = 0 (see equations (4.4)). However, non-zero coupling terms

were measured, with an amplitude of about 1 mS across the whole range of consid-

ered frequencies (see Figure 4.6b, 4.6c, 4.7b and 4.7c where the cross-coupling terms

calculated by the small-signal model are not shown and equal to 0). This discrepancy

between the theoretical and the experimental results is attributed to a small imbalance

in the plant impedances of the laboratory test rig as well as to measurement tolerances.
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Figure 4.7: Admittance terms of Ym,PN (j2πf) (scenario 2).

Comparing the results from these 2 scenarios, it can be seen that the effect of
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the negative sequence current controller is mainly observed in the negative sequence

admittance term Ym,nn(j2πf), with its magnitude being strongly reduced at frequencies

close to 50 Hz in scenario 2 (see Figure 4.7d), while revealing a substantially constant

trend in scenario 1 (see Figure 4.6d).
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Figure 4.8: Admittance terms of Ym,PN (j2πf) (scenario 3).

In scenario 3 the dq-symmetry of the controller has been broken by the activated

power regulator, as this only operates on the q+ control loop. Thereby, the system is no

longer MFD, as confirmed by the larger magnitude of the coupling terms Ym,pn(j2π(f+

2f0)) and Ym,np(j2π(f−2f0)) (see Figures 4.8b and 4.8c). In addition to this, comparing

scenario 3 with scenarios 1 and 2, the impact of the power loop is mostly observable

on the Ym,pp(j2πf) positive sequence term (as a result of its action being confined to

the q+ axis control loop).

92



Chapter 4. Impedance-based stability study

4.2 Impedance based stability analysis

The pn-frame small-signal converter admittance calculated with the technique described

in Section 4.1 has been used to assess the stability of the converter-grid system apply-

ing an impedance-based approach inspired by [54]. Thanks to the technique used to

calculate the pn-frame small-signal converter admittance, the coupling terms of such

admittance have been taken into account in the used stability study, unlike the method

in [54].

The technique is based on the representation of the small-signal model of the converter-

grid interface as an electrical circuit. The converter is modelled as a current source rep-

resented by its Norton equivalent, while the grid is described in terms of its Thévenin

equivalent. Such circuit is shown in Figure 4.9, where ZC,PN (s) is the small-signal

converter impedance while ZTH,PN (s) is the small-signal grid Thévenin impedance.

It is worth mentioning that all the quantities are defined in the pn-frame. In more

detail, ZC,PN (s) = Y −1C,PN (s), with YC,PN (s) defined by (4.5). Based on (4.4), and un-

der the assumption that the plant impedances are perfectly balanced, the ZTH,PN (s)

impedance has been formulated as:

ZTH,PN (s) =

ZTH,pp(s) 0

0 ZTH,nn(s− 2jω0)

 (4.13)

where ZTH,pp(s) = ZTH,nn(s) = ZTH(s), with ZTH(s) representing the abc-frame phase

impedance [64].

Based on the diagram in Figure 4.9, the following set of equations are written:

δUpn(s) = ZTH,PN (s)δipn(s) + UTH,pn(s)

δUpn(s) = ZC,PN (s)[iref,pn(s)− δipn(s)]
(4.14)
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~ 𝐔𝐓𝐇,𝐩𝐧 𝐙𝐜,𝐏𝐍 𝐢𝐫𝐞𝐟,𝐩𝐧 

𝐙𝐓𝐇,𝐏𝐍 

𝛅𝐢𝐩𝐧 

𝛅𝐔𝐩𝐧 

𝛅𝐢𝐂,𝐩𝐧 

Figure 4.9: Small-signal impedance-based model of the inverter-grid interface.

Hence, δipn(s) is formulated as:

δipn(s) = [YTH,PN (s)ZC,PN (s)] · [I + YTH,PN (s)ZC,PN ]−1iref,pn(s)

− YTH,PN (s) · [I + YTH,PN (s)ZC,PN ]−1UTH,pn(s)]
(4.15)

where I is the 2 × 2 identity matrix, while YTH,PN (s) = Z−1TH,PN (s). Based on (4.15),

the feedback loop system shown in Figure 4.10 is drawn, whose open-loop gain LPN (s)

is:

LPN (s) = YTH,PN (s)ZC,PN (s) (4.16)

𝐔𝐓𝐇,𝐩𝐧 

+ − 𝐘𝐓𝐇,𝐏𝐍(𝐬) 𝐙𝐜,𝐏𝐍(𝐬) + 
− 

𝐢𝐫𝐞𝐟,𝐩𝐧 𝛅𝐢𝐩𝐧 

Figure 4.10: Feedback loop system equivalent to the circuit in Figure 4.9.

The Generalised Nyquist Criterion (GNC) has been applied to study the stability of

the system [68]. It is pointed out that, as the converter is designed to be stable with an

ideal grid [54], the converter admittance YC,PN (s) has no poles in the Right Half Plan

(RHP). Similarly, ZTH,PN (s) does not have poles in the RHP as the grid is designed

to behave stably when connected to an ideal inverter. However, YC,PN (s) might have

RHP zeros [69], which would be RHP poles of ZC,PN (s). Hence, the matrix LPN (s)

might have RHP poles, which must be taken into account when applying the GNC to
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I + LPN (s) [24].

Based on these considerations, the L̂PN (s) = L−1PN (s) matrix has been instead used in

the stability study. From (4.5), (4.13), this is calculated as:

L̂PN (s) = L−1PN (s) = (YTH,PN (s)ZC,PN (s))−1

= Z−1C,PN (s)Y −1TH,PN (s) = YC,PN (s)ZTH,PN (s)

=

 YC,pp(s) YC,pn(s)

YC,np(s− 2jω0) YC,nn(s− 2jω0)

ZTH,pp(s) 0

0 ZTH,nn(s− 2jω0)


=

 YC,pp(s)ZTH,pp(s) YC,pn(s)ZTH,nn(s− 2jω0)

YC,np(s− 2jω0)ZTH,pp(s) YC,nn(s− 2jω0)ZTH,nn(s− 2jω0)


(4.17)

According to the previous considerations, L̂PN (s) does not have poles in the RHP.

The GNC has been applied to I+L̂PN (s). It is worth mentioning that this is equivalent

to applying the Generalised Inverse Nyquist Criterion (GINC) to I + LPN (s) [69].

The condition to verify if the system in Figure 4.10 is absolute stable therefore is as

follows. By indicating with λi(s) the eigenvalues of L̂PN (s) and with D the Nyquist

contour [102], if and only if the polar plots of 1 + λi(s) on the complex plane do not

encircle the (0,0) point, with s ∈ D, i = 1, 2, then the system is stable.

This criterion has been applied in the stability assessment of the studied wind farm-grid

system, as discussed in the following Section.

4.2.1 Analysis of the wind farm resonances

The stability methodology discussed in Section 4.2 has been used to analyse the wind

farm resonance stability problem investigated in this work, and in particular to assess

the stability of the wind farm-grid system modelled in Section 2.1.4.

In order to verify the effectiveness of such methodology, the results of this stability

study have been verified using time-domain simulations of the corresponding TD model

of the wind farm-grid system. Thereafter, making use of the laboratory prototype

of the inverter-grid interface described in Section 2.3.2.1, where such type of cable
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due resonance has been reproduced, an experimental verification of the stability study

methodology has been carried out.

In Section 4.2.1.1, the stability study of the wind farm-grid system is described, while

in Section 4.2.1.2, the mentioned experimental validation is presented.

4.2.1.1 Stability assessment

The stability of the aggregated model of the wind farm grid system described in Section

2.1.4, whose equivalent circuit is illustrated in Figure 2.9, has been studied. In order

to apply the methodology described in Section 4.2, based on the theory presented in

Chapter 3, a small-signal model of such wind farm-grid system has been derived. Hence,

the pn-frame small-signal converter admittance of the N -scaled aggregated turbine

interface has been calculated.

~ 𝐔𝐓𝐇,𝐩𝐧 𝐘𝐜𝐍,𝐏𝐍 𝐍𝐢𝐫𝐞𝐟,𝐩𝐧 

𝐙𝐓𝐇,𝐏𝐍 

𝛅𝐍𝐢𝐩𝐧 

𝛅𝐔𝐩𝐧 

𝛅𝐍𝐢𝐂,𝐩𝐧 

Figure 4.11: Small-signal equivalent circuit of the wind farm-grid interface.

Such small-signal model of the system has been represented in the sequence-frame

in terms of an electrical circuit. The N -scaled aggregated turbine interface has been

represented by its Norton equivalent, while a Thévenin equivalent has been used to

represent the grid interface. Such representation of the system is illustrated in Figure

4.11.

YCN ,PN (s) is the pn-frame small-signal converter admittance of the N -scaled turbine in-

terface, which also includes the N -scaled reactor impedance ZfN (s), while ZTH,PN (s) is

the equivalent pn-frame impedance seen by the aggregated turbine interface. This there-

fore includes the ZSY S(s) impedance as well as the N -scaled impedances ZPWMN
(s)

and ZtN (s) in Figure 2.9.

As discussed in Section 2.1.4, in the applied wind farm aggregation technique it has

been assumed that the N operating turbines are all generating their rated power, i.e.
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they share the same operating point. Hence, the converter admittance of the N -scaled

turbine YCN ,PN (s) has been calculated as NYC,PN (s), where YC,PN (s) is the converter

admittance of the individual turbine, calculated with the method described in Section

4.1, and having the format in (4.5). In the carried analysis, it has also been assumed

that all the plant impedances are balanced. Hence, the ZTH,PN (s) matrix has been

formulated as in (4.13) [64].

It is worth highlighting that in the baseline design of the converter controller scheme

employed in the turbines of the studied wind farm, a symmetrical regular sampling

technique is used. As it will be discussed in more detail in Chapter 5, by affecting

the magnitude of controller delay, such choice of the sampling technique is seen to be

relevant to the wind farm resonance issue.

Having calculated YCN ,PN (s) and ZTH,PN (s), the stability of the system has been stud-

ied applying the GNC to I + L̂PN (s), with L̂PN (s) = YCN ,PN (s)ZTH,PN (s), according

to the method described in Section 4.2. The resulting Nyquist plots are shown in Figure

4.12 as a function of the number of operating turbines N . They show that the system

becomes unstable when more turbines are active and in particular when N ≥ 15.

Figure 4.12: Nyquist plot of I + L̂PN (s) for different values of the number of operating
turbines N , with 1 ≤ N ≤ 54.
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The Bode plots of the eigenvalues of L̂PN (s), λ1(j2πf) and λ2(j2πf), are shown

for different N values in Figure 4.13 and 4.14, respectively. It can be noticed that

for N = 15 a undamped resonance at fr ≈ 344.3 Hz occurs, as |λ1(j2πfr)| > 1,

|λ2(j2πfr)| > 1 and ∠λ1(j2πfr) = ∠λ2(j2πfr) = −540◦. Increasing the value of N ,

this resonance moves to lower frequencies in the close range of fr. The plots reveal how

the presence of these resonances is caused by the large phase loss of both ∠λ1(j2πf) and

∠λ2(j2πf) in the [300 Hz, 600 Hz] range, where the YTH,PN (s) has a series resonance

(see Fig. 2.10). This excessive phase loss is attributed to the controller delay, as it will

be further discussed in the next Chapter.

It is noticed that at higher values of N an additional resonance is observed in the

lower frequency range, at ≈ 59.5 Hz (see Figure 4.14). This is attributed to the larger

magnitude of the small-signal converter admittance YCN ,PN (s) when N is increased,

which eventually introduces weak grid issues. When discussing the FVFF mitigation

technique, in Chapter 5, it will be shown how such solution not only improves damping

of the higher frequency resonances, but also helps alleviate such weak grid problems.

Figure 4.13: Bode plot of the eigenvalue λ1(2πf) of L̂PN (s) for different values of the
number of operating turbines N .
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Figure 4.14: Bode plot of the eigenvalue λ2(2πf) of L̂PN (s) for different values of the
number of operating turbines N .

The analytical results of the stability study have been confirmed by the carried out

time domains simulations of the built TD model of the wind farm-grid interface.
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Figure 4.15: (a) Simulated step response of the i+q control loop for the aggregated TD
model of the wind farm-grid system, with N = 14. (b) Magnitude spectrum of the step
response transient.

Figure 4.15a shows the i+q loop step response of the system for a 5 % increase in the

i+q,ref set-point, with N = 14. The spectral analysis of the recorded transient response

99



Chapter 4. Impedance-based stability study

reveals two components at 297 Hz and 397 Hz. They respectively correspond to a

positive and a negative sequence mode at 347 Hz in the abc-frame. Such mode becomes

divergent when N > 14, giving rise to instability.

These results show an accurate match between the resonance value predicted by the

stability study and the one resulting by the time-domain simulations, which has allowed

a verification of the accuracy of the applied stability assessment methodology.

4.2.1.2 Experimental verification

An experimental verification of the applied stability study technique is presented as

follows.

The laboratory prototype inverter-grid interface described in Section 2.3.2.1 has been

used, where a cable-due resonance of the same type of those analysed in this work has

been reproduced (see Figure 2.25). In this test, the controller scheme in Figure 2.20

has been applied and a PWM symmetrical regular sampling technique has been used.

In other words, the same baseline design of the converter controller employed in the

studied wind farm-grid has been considered.

The results of the carried out test are reported in Figure 4.16a where the measured

i+q feedback signal is shown for a staircase-like increase of the corresponding i+q,ref set-

point. The observed divergent transient confirms the instability of the system as i+q

increases to 7 A, with the current eventually driven to zero by an over-current protec-

tion switch activated by the controller. The spectral analysis of this divergent transient

is illustrated in Figure 4.16b, indicating the presence of two predominant components

at 625 Hz and 725 Hz in the dq-frame. These respectively correspond to a positive and

a negative sequence mode at 675 Hz in the abc-frame.

These experimental data have been verified analytically by studying the stability of the

system with the methodology illustrated in Section 4.2. The resulting Nyquist plots

of I + L̂PN (s) are shown in Figure 4.17, indicating the instability of the system. The

operating point corresponding to the rated power of the inverter has been considered

to generate these results.
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Figure 4.16: Test results of the tested inverter-grid interface described in Section 2.3.2.1.
The baseline controller scheme shown in Figure 2.20 has been applied, using a PWM
symmetrical regular sampling technique; (a) Recorded i+q trend for a staircase-like

change in the i+q,ref set-point. (b) Magnitude spectrum of the divergent transient.
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Figure 4.17: Nyquist plots of I + L̂PN (s) for the system described in Section 2.3.2.1,
considering its operating at rated power.

The corresponding Bode plots of the eigenvalues λ1(j2πf) and λ2(j2πf) of L̂PN (s)

are respectively shown in Figure 4.18 and 4.19. They confirm that the system resonance

is at fr = 675 Hz, as |λ1(j2πfr)| > 1, |λ2(j2πfr)| > 1 and ∠λ1(j2πfr) = ∠λ2(j2πfr)| =

−180◦, hence validating the effectiveness of the used stability analysis methodology.

It can be noticed that the instability is again caused by the excessive phase loss of
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the eigenvalue functions in the frequency range where the cable due resonance occurs.

As previously discussed, this effect is attributed to the controller delay. This aspect

will be further investigated in Chapter 5, where the mitigation techniques proposed to

overcome such resonance issue are presented.
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Figure 4.18: Bode plots of the eigenvalue λ1(2πf) of L̂PN (s) for the system described
in Section 2.3.2.1, considering its operating at rated power.
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Figure 4.19: Bode plots of the eigenvalue λ2(2πf) of L̂PN (s) for the system described
in Section 2.3.2.1, considering its operating at rated power.
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4.3 Effect of the converter admittance coupling on the

stability study

A study of the effect of the pn-frame small-signal converter admittance coupling terms

on the stability study of the inverter-grid system is presented as follows.

A claimed advantage of the impedance-based stability criterion [54] is the possibility

to simplify the stability study by treating the converter-grid interconnection, as two

decoupled SISO systems [55], [65]. This simplification derives from the assumed de-

coupling of the small-signal converter impedance in the sequence-frame [54]. A further

advantage of this approach is that SISO concepts such as phase and gain margins, which

are intuitive and easily interpretable indexes to quantify the stability performance of

the system [103], can be applied. However, the existence of coupling in the pn-frame

small-signal converter impedance has been proved in [60], where the MFD property of

the converter system is introduced and associated to the structure of the converter con-

trol scheme. The verification of this property has been investigated in Section 4.1.3.2,

confirming how asymmetries in the dq-axes control loops generate non-zero coupling

terms in the pn-frame small-signal converter admittance. Significant results are pre-

sented in [13], where it is shown that neglecting such coupling terms can lead to a

wrong stability assessment when the PLL bandwidth is increased.

Along the line of these studies, a criterion to infer whether such coupling is relevant

or not to the stability study of the inverter-grid system is presented. This is based on

the verification of the property of diagonal dominance of such system in the sequence-

frame. The application of this criterion to a case study of an inverter connected to

a grid with different SCR values is illustrated. It is shown how in the weak grid sce-

nario the diagonal dominance property may be lacking, hence necessitating to take the

small-signal converter admittance coupling terms into account for an accurate stability

study. Experimental data will also be included to support the analytical results.
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4.3.1 Study of the system diagonal dominance

The presented criterion to assess whether sequence-frame converter admittance cou-

pling terms are relevant or not to the stability analysis of the inverter-grid system is

based on the assessment of the diagonal dominance property of such system in the

sequence-frame. The results illustrated in [63], where the stability robustness of di-

agonally dominant systems is studied, are applied. These are based on the Strictly

Diagonal Dominance (SDD) property of a transfer function matrix [93] and on the re-

lated Gershgorin’s theorem [104]. One of the key results of [63] is the derivation of a

sufficient condition for the stability of a diagonally dominant system. This requires to

verify that the matrix I + L̂PN (s) is SDD over the Nyquist contour D, where L̂PN (s)

is defined by (4.17). The verification of the SDD property therefore requires to verify

that over the Nyquist contour D:

|1 + L̂1,1(s)| > |L̂1,2(s)|

|1 + L̂2,2(s)| > |L̂2,1(s)|
(4.18)

where L̂1,1(s), L̂1,2(s), L̂2,1(s), L̂2,2(s) are the elements of the L̂PN (s) matrix.

In particular, when (4.18) is verified, then a sufficient condition for the stability of

the system described by LPN (s) is that the characteristic loci of I+L̂D,PN (s) satisfy the

GNC [68], [63], where L̂D,PN (s) corresponds to the L̂PN (s) matrix with the off-diagonal

terms set to zero:

L̂D,PN (s) =

L̂1,1(s) 0

0 L̂2,2(s)

 (4.19)

It can therefore be concluded that if the system is SDD (i.e. (4.18) is true) the sta-

bility assessment of the system can be carried out by ignoring the cross-coupling terms

of the small-signal converter admittance/impedance, which are therefore irrelevant to

the stability analysis. The system can be treated as two decoupled SISO systems, in

line with the impedance-based stability criterion [54]. However, if (4.18) is not verified,

then such cross-coupling terms should be considered. Thereby, the GNC should be
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applied to I + L̂PN (s). The presented results have been derived by studying the row

diagonal dominance of I + L̂PN (s). The same results would be obtained by assessing

the column diagonal dominance of I + L̂PN (s) [63], [93].

4.3.2 Case study: VSC connected to a grid with different SCR

The criterion described in Section 4.3.1 has been applied to the case study of a VSC

connected either to a strong or a weak grid. The study has been used to show how the

verification or not of the SDD property of the system can correctly indicate whether

the coupling terms of the pn-frame small-signal converter admittance are relevant or

not to the stability analysis.

4.3.2.1 Description of the system

The laboratory prototype inverter-grid system described in Section 2.3.2.3 has been

used for this study. The grid inductance has been varied to reproduce a strong and a

weak grid scenarios, respectively having a SCR of 5.2 and 1.9. The controller scheme in

Figure 2.20 has been used, with the addition of both the power and voltage regulators,

whose block diagrams are shown in Figures 2.15 and 2.16, respectively.

The current controller has been tuned applying the IMC method [87], [58] and has a

bandwidth of ≈ 300 Hz. A different value of the PLL bandwidth has been chosen for

the strong and weak grid scenarios, respectively equal to 25 Hz (in accordance with [97])

and 1.9 Hz. The lower value has been selected to stabilise the system dynamics under

weak grid conditions, as discussed in [105]. Finally, the outer power and voltage loops

have been tuned to have a bandwidth at least ten times lower than that of the inner

current loop [58]. The system and controller parameters are those listed in Table 2.9.

4.3.2.2 Experimental results

The laboratory prototype has been tested for a staircase-like increase of the power loop

set-point Pref from 0.4 pu until 1 pu, while the reference value Ûref of the voltage

loop has been kept equal to 1 pu. The set-points of the negative sequence current

controller, i−d,ref and i−q,ref , have been set to 0 pu. Figure 4.20a and 4.20b show the

experimental results for the strong and the weak grid scenarios respectively, indicating

105



Chapter 4. Impedance-based stability study

that the system performs stably for both grid conditions. These results are compared

to those obtained via the stability analysis, which is presented in the next Section.
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Figure 4.20: Tested operation of the grid-connected VSC laboratory prototype; (a)
SCR = 5.2; (b) SCR = 1.9.

4.3.2.3 Stability assessment

The stability of the system has been evaluated for the same operating points tested

experimentally. For each of these operating points, a small-signal model of the inverter-

grid system has been derived, applying the theory described in Chapter 3. Thereby,

these FD models have been used to carry out the stability study of the system, based

on the technique described in Section 4.2, as well as to assess the system SDD property,

based on (4.18).
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Figure 4.21: Verification of the diagonal dominance property of the system for the
scenario with SCR = 5.2 (strong grid).
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The results of the verification of the system SDD property are shown in Figure 4.21

and 4.22, for the strong and the weak grid cases respectively. They indicate that the

system is not diagonal dominant only in the latter weak grid scenario, as can be seen

in the [48 Hz, 62 Hz] range (see Figure 4.22a).
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Figure 4.22: Verification of the diagonal dominance property of the system for the
scenario with SCR = 1.9 (weak grid).

Consequently, according to the theory described in Section 4.3.1, the cross-coupling

terms of the small-signal converter admittance are irrelevant to the stability study only

in the strong grid case, thanks to the SDD property of the system. This is confirmed

by the Nyquist plots of I + L̂PN (s) and I + L̂D,PN (s), respectively shown in Figure

4.23a and 4.23b, which both indicate a stable feedback system.

On the other hand, in the weak grid scenario, as the system is not SDD, it is necessary

to include the aforementioned coupling terms in the stability study. Otherwise a wrong

stability judgement might be made. In fact, while the Nyquist plots of I + L̂PN (s),

shown in Figure 4.24a, correctly confirm the system stability, those of I + L̂D,PN (s),

shown in Figure 4.24b, indicate instability. The difference between these Nyquist plots

is highlighted by the Bode plots of the eigenvalues of L̂PN (s) and L̂D,PN (s), reported

in Figure 4.25. The case of the operating point with Pref = 1 pu is illustrated. It is

worth noticing how such difference is confined in the same range of frequencies where

the system is not SDD (see Fig. 4.22a).

107



Chapter 4. Impedance-based stability study

-0.5 0 0.5 1 1.5 2 2.5 3

Real axis

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Im
a
g
in

a
ry

 a
x
is

P=0.4pu

P=0.6pu

P=0.8pu

P=1pu

(a)

-0.5 0 0.5 1 1.5 2 2.5 3

Real axis

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Im
a
g
in

a
ry

 a
x
is

P=0.4pu

P=0.6pu

P=0.8pu

P=1pu

(b)

Figure 4.23: Nyquist plots of I + L̂PN (s) (a) and I + L̂D,PN (s) (b) for the system with
SCR = 5.2.
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Figure 4.24: Nyquist plots of I + L̂PN (s) (a) and I + L̂D,PN (s) (b) for the system with
SCR = 1.9.

The results of the presented study case indicate that the coupling terms of the

small-signal converter admittance can become relevant to the stability study, especially

when multiple causes of asymmetry in dq-axes control loops are present, as in the

investigated case where these are due both to the PLL loop and to the outer loops.

As such, neglecting these coupling terms should not be an a priori assumption, as
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proposed in the impedance-based stability criterion [54]. The study of the system SDD

property has been presented as a valuable tool to verify whether such coupling terms

are significant or not to the stability analysis.
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Figure 4.25: Comparison between the Bode plots of the eigenvalues λ1(j2πf) (a) and
λ2(j2πf) (b) of L̂PN (s) and L̂D,PN (s) for Pref = 1 pu, Ûref = 1 pu, with SCR = 1.9.

4.4 Study of the system relative stability

Besides the study of the system absolute stability, another important aspect is the as-

sessment of the system relative stability [106]. This typically aims to calculate numerical

quantities, the so-called stability margins, which indicate how robust the stability is

against uncertainties in the system. Such uncertainties may for example arise from

modelling errors, parameter variations or from unmodeled nonlinearities [103].

As aforementioned, by assuming that the positive and the negative sequence small-

signal converter impedances/admittances are decoupled, the system is treated as two

separate SISO systems [54]. Therefore, SISO tools such as the gain and the phase mar-

gin can be applied to evaluate the relative stability of the system. However, as discussed,

non-zero coupling terms exist in the pn-frame small-signal converter impedance [60],

and, as illustrated in Section 4.3, these terms might be relevant to the stability study.

The inclusion of such coupling in the relative stability study of the system requires the

identification of MIMO stability margins, whose definitions are not as straightforward
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and intuitive as in the SISO scenario [103]. Different approaches have been presented

in the control literature [107]. The critical direction theory is proposed in [108], ac-

cording to which at any frequency there is one specific vectorial direction of the applied

perturbation which is relevant to the system stability. The structured singular-value

method is proposed in [109], where a framework is built to generalise SISO stability

margin definitions. Another attempt is the MIMO version of the circle theorem [103],

whose effectiveness to assess the robustness of the system against different sources of

uncertainty has been proved. The special case of diagonal dominant systems [93] is ad-

vantegeous, as more intuitive and graphically visualizable stability margin definitions

are possible [103].

Based on previous studies published in the control literature on diagonally dominant

systems [63], [103], [110], a perturbation norm based stability margin which exploits

the SDD property of the converter-grid system in the sequence-frame is introduced.

Compared to the SISO gain and phase margin figures, which, as mentioned, ignore the

cross-coupling terms of the small-signal converter impedance/admittance, the proposed

stability margin takes such terms into account. The result is a safer and more conser-

vative evaluation of the system stability robustness.

The presented stability margin is defined in the following Section 4.4.1, while its utili-

sation will be illustrated in Section 4.4.2 considering the case of a VSC connected to a

weak grid.

4.4.1 Perturbation norm stability margin

Based on the results presented in [63], when the I + L̂PN (s) matrix is SDD, i.e. (4.18)

are true, then the following strictly positive quantity d∞ can be defined as:

d∞ = min
i=1,2;j 6=i

(|1 + L̂i,i(s)| − |L̂i,j(s)|) (4.20)

with s ∈ D. As demonstrated in [63], the value of d∞ is interpreted as the maximum

multiplicative perturbation δLPN (s) the system can stand without losing the closed-
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loop stability (see Figure 4.26):

d∞ = sup
s∈D
||δLPN (s)||∞ (4.21)

𝐋𝐏𝐍(𝐬) 𝐈 + 𝛅𝐋𝐏𝐍(𝐬) + 
− 

𝐢𝐫𝐞𝐟,𝐩𝐧 𝛅𝐢𝐩𝐧 

Figure 4.26: Feedback loop system with applied multiplicative perturbation δLPN (s).

For this reason, d∞ is named perturbation norm stability margin. By drawing the

Gershgorin discs [104] of the SDD matrix I + L̂PN (s) in the complex plane, which

correspond to the regions where the eigenvalues of I + L̂PN (s) lie, the circle centred

on the (0,0) point and having a radius equal to d∞ can be identified, which is tangent

to the Gershgorin discs. Such circle is indicated as the perturbation norm circle. The

quantity d∞ therefore represents the minimum (normed) distance between the (0,0)

point of the complex plan and the mentioned discs. A similar graphical interpretation

of d∞ can be found in [111]. It is worth mentioning that if the matrix I + L̂PN (s) is

not SDD, the resulting value of d∞ would be negative, indicating that it is not possible

to define the perturbation norm circle. As discussed in Section 4.4.2, negative values

of d∞ indicate that the stability performance of the system is likely to be poor, with

less damped dynamics.

The introduced d∞ margin can be related to the SISO gain and phase margins, cal-

culated by application of the impedance-based stability criterion [54]. In the following

discussion, these will respectively be indicated as GM+
SISO and PM+

SISO for the posi-

tive sequence and GM−SISO and PM−SISO for the negative sequence.

As shown in Figure 4.27, by definition of SISO phase margin [94], the intersection be-

tween the perturbation norm circle and the unit circle allows to calculate the equivalent

minimum SISO phase margin GMd∞ of the system, associated to d∞. Similarly, by

definition of SISO gain margin [94], the intersection between the perturbation norm

circle and the negative real axis allows to obtain the equivalent minimum SISO gain
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margin of the system, GMd∞ , associated to d∞.
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Figure 4.27: Graphical equivalence between d∞ and SISO gain and phase margins, GM
and PM respectively.

These minimum quantities can be calculated as:

GMd∞ [dB] = 20 log10(
1

1−min{1, d∞}
)

PMd∞ [deg] =
360

π
arcsin(

min{2, d∞}
2

)

(4.22)

Therefore, the value of d∞ allows a derivation of the minimum equivalent SISO

stability margins of the system. It is highlighted that (4.22) can be applied only if the

system is SDD, i.e. d∞ > 0.

4.4.2 Case study: VSC connected to a weak grid

For the purpose of illustrating how the stability margin (4.20) can be used to assess the

stability robustness of an inverter-grid system, a case study of an inverter connected to

a weak grid has been considered, assessing how damping of the system dynamics varies

with its operating point.

4.4.2.1 Description of the system

The laboratory prototype inverter-grid system described in Section 2.3.2.3 has been

considered. The employed converter control scheme is the one shown in Figure 2.20.

In this case, both the negative sequence current controller and the notch filters used to

decouple the positive and negative sequence components of the measured plant signals,
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have been disabled. The system and control parameters are those detailed in Table

2.10. Such an ad hoc controller design has enabled the reproduction of an illustrative

scenario for using the stability margin (4.20). It is worth noticing that by utilising a

bigger grid inductance, the studied scenario is that of a weak grid (with a SCR of 1.9).

4.4.2.2 Stability assessment

In the carried out stability assessment, four operating points of the system have been

considered. These are defined by the set-points values of the d- and q- axis current

loops, i+q,ref and i+d,ref respectively, detailed in Table 4.2.

Figures 4.28a and 4.28b show the results of the verification of the conditions in (4.18),

for the first and the second rows of the I + L̂PN (s) matrix, respectively. As it can

be seen, the system is SDD for all the tested operating points, but for OP4. As such,

according to the theory presented in Section 4.4.1, the resulting perturbation norm

stability margin d∞ is positive only for OP1, OP2 and OP3.

Table 4.2: Positive sequence current loop set-points for the considered operating points
for the system.

Operating Point (OP) i+q,ref i+d,ref
OP1 3 A 0 A
OP2 4 A 0 A
OP3 5 A 0 A
OP4 6 A 0 A

The stability of the system has been assessed by applying the Generalised Nyquist

Criterion (GNC) to I+L̂PN (s) [94], as discussed in Section 4.2. As discussed in Section

4.2, as L̂PN (s) is open-loop stable [69], in order to verify the absolute stability of the

system, it is enough to verify that the characteristic loci of I + L̂PN (s) do not encircle

the (0,0) point of the complex plane.

Detailed views of the Nyquist plots of I + L̂PN (s) are shown in Figure 4.29, for the

considered operating points. The associated Gershgorin discs are also shown. For the

operating points OP1, OP2 and OP3 it has been possible to draw the perturbation norm

circle, thanks to the SDD property of the system which makes d∞ > 0. Contrarily, as

for OP4 such property is not verified, the resulting Gershgorin discs encircle the (0,0)

point (see Figure 4.29d). The reduction in the size of the perturbation circle, seen in
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Figures 4.29a, 4.29b, and 4.29c, indicate that, despite of the fact that the system is

absolute stable, its relative stability decreases as i+q,ref increases.

For the calculated d∞ values, the corresponding equivalent minimum SISO margins

have been derived, based on (4.22). These have been compared to the SISO stability

margins obtained by application of the the impedance based stability-criterion [54], i.e.

neglecting the off-diagonal terms of L̂PN (s).

The Bode plots of L̂1,1(j2πf) and L̂2,2(j2πf) are respectively shown in Figures 4.30a

and 4.30b for the considered operating points. From these plots, the aforementioned

stability margins GM+
SISO, PM+

SISO, GM−SISO and PM−SISO have been calculated.
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Figure 4.28: Verification of the diagonal dominance property of the system for the
different operating points taken into considerations.

Table 4.3 compares the obtained stability margins figures. These data indicate that

the critical resonance frequency of the system is at ≈ 57 Hz. As it can be seen, the

SISO gain margin GM+
SISO decreases as i+q,ref increases, indicating a poorer relative

stability of the system at higher current levels. This is also confirmed by the corre-

sponding reduction in d∞, and then by the loss of the system SDD property for OP4,

which makes d∞ negative.

The SISO figures associated to the calculated d∞ stability margin indicate its conserva-

tive feature. Such conservativeness relies on the significance of d∞ [63]. As mentioned,

d∞ is interpreted as the upper limit of the perturbation δLPN (s) that can be applied

to the system without making it unstable. In general, δLPN (s) is not diagonal, as such

it can affect both the positive and the negative sequence control loops simultaneously.
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Both because d∞ is calculated taking into account the off-diagonal terms of L̂PN (s)

(see (4.20)), and because it considers any generic perturbation applied on the system

(i.e. also non diagonal perturbations), such stability margin is more conservative than

the SISO stability margins used in the impedance-based stability criterion [54]. By

taking the coupling between the positive and negative sequence small-signal converter

admittance into account, a safer measure of the system relative stability is therefore

obtained.

(a) OP1 (b) OP2

(c) OP3 (d) OP4

Figure 4.29: Nyquist plots and perturbation norm circle of the system for the different
operating points taken into considerations.
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(a) (b)

Figure 4.30: Bode plots of L̂1,1(j2πf) (a) and L̂2,2(j2πf) (b) for the different operating
points taken into considerations.

Table 4.3: Comparison between the SISO stability margins calculated with the
impedance-based stability criterion (GM+

SISO, FM+
SISO, GM−SISO, PM−SISO) and the

alternative figures based on the study of the system diagonal dominance (d∞ and its
equivalent SISO quantities GMd∞ and PMd∞).

OP GM+
SISO [dB] PM+

SISO [deg] GM−SISO [dB] GM−SISO [deg] d∞ GMd∞[dB] PMd∞ [deg]

OP1 6.2 (at 57.5 Hz) 19 (at 70.2 Hz) ∞ 83 (at 16 Hz) 0.25 ≥ 2.5 ≥ 14.4
OP2 5.7 (at 57.2 Hz) 19 (at 70.1 Hz) ∞ 83 (at 16 Hz) 0.17 ≥ 1.6 ≥ 9.8
OP3 4.8 (at 56.9 Hz) 19 (at 70.1 Hz) ∞ 83 (at 16 Hz) 0.07 ≥ 0.6 ≥ 4
OP4 3.9 (at 56.6 Hz) 19 (at 70 Hz) ∞ 83 (at 16 Hz) < 0 - -

4.4.2.3 Experimental results

The analytical results presented in Section 4.4.2.2 have been verified experimentally

making use of the laboratory prototype of the studied system.

The system has been tested for a staircase-like increase of the i+q,ref set-point from 3A

up to 7A. The recorded data are shown in Figure 4.31a.

A spectral analysis of each of the four step-response transients occurring during the

∆T1, ∆T2, ∆T3 and ∆T4 periods highlighted in Figure 4.31a is shown in Figure 4.31b.

As it can be seen, these transients present a spectral peak at ≈ 6 Hz in the dq-frame,

which corresponds to a positive-sequence mode at ≈ 56 Hz in the abc-frame. The

magnitude of this spectral peak increases with i+q,ref , indicating less damping of the

system dynamics at higher current generation levels, in line with the results of the
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presented analytical study. The presence of smaller spectral peaks at ≈ 106 Hz, which

indicate the existence of a negative-sequence mode at ≈ 56 Hz in the abc-frame, is

attributed to small imbalance in the electrical impedances.
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Figure 4.31: (a) Recorded response of i+q (t) for a staircase-like increase of i+q,ref (t)
from 3A to 7A. (b) Magnitude spectra of the recorded transients, occurring during the
∆T1,∆T2, ∆T3 and ∆T4 periods.

These experimental data are therefore in agreement with the carried out analytical

study, with a substantial overlap between the critical resonance frequency predicted

theoretically (≈ 57 Hz) and the one verified experimentally (≈ 56 Hz). They there-

fore verify the effectiveness of the introduced stability margin to quantify the relative

stability of the system.

4.5 Chapter Summary

The notion of small-signal converter admittance has been introduced. A systematic

methodology to derive its expression in the sequence-frame has been presented and

verified experimentally, proving its effectiveness regardless of the converter controller

scheme. A framework to assess the stability of the system in the sequence-frame has

been defined, which, compared to the impedance-based stability criterion [54], takes into

account the existing coupling between the positive and the negative sequence converter

admittance terms. Such methodology has been applied to assess the stability of the

studied wind farm system and its accuracy has been verified experimentally. The study
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has highlighted that in the connection between a wind farm and the grid both a high

frequency resonance and a weak grid effect are likely to occur, the former caused by the

parasitic capacitance of the installed cables and lines, the latter caused by the larger

equivalent small-signal converter admittance of the wind farm.

A criterion to infer whether the mentioned coupling is relevant or not to the stability

study has been presented. This is based on the evaluation of the diagonal dominance

property of the impedance-based small-signal model of the system in the sequence-

frame. It has been shown how such property might be lacking in the scenario of a

converter connected to the weak grid. A stability margin that takes such coupling

into account has been introduced. Its effectiveness has been verified experimentally,

and its more conservative feature compared to the SISO stability margins used in the

impedance-based stability criterion [54] has been highlighted.
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Wind farm resonances:

mitigation techniques

The stability assessment of the studied wind farm system, presented in Section 4.2.1, has

shown how the electrical resonances caused by the cables and lines connecting the wind

farm to the grid generate instability when a greater number of turbines are operating.

These resonances strongly depend on the wind farm layout and operating point, as well

as on the cable/line parameters [40], [8], thus making the proposed solutions applicable

on a case-by-case scenario, as discussed in Section 1.2.

Compared to the existing approaches, generic mitigation techniques which do not rely

either on the knowledge of the wind farm electrical specifics or on parameter tuning

are presented in this Chapter.

The stability study carried out has also highlighted the greater risk with weak grid

problems. It will be shown how one of the proposed strategies, the Fast Voltage Feed-

Forward (FVFF) technique, is also beneficial to such weak grid issues.

The presented mitigation techniques aim to reduce the phase loss of the eigenvalues

of L̂PN (s), calculated for the modelled wind farm-grid system and shown in Figures

4.13-4.14, in Section 4.2.1.1. Such excessive phase loss, which is particularly evident

in the range of frequencies where the wind farm resonances occur, is attributed to the

discrete controller delay.
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Figure 5.1: Bode plot of the eigenvalue λ1(2πf) of L̂PN (s) for different values of the
switching frequency fs, with N = 54.
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Figure 5.2: Bode plot of the eigenvalue λ2(2πf) of L̂PN (s) for different values of the
switching frequency fs, with N = 54.

A confirmation of the impact of the controller delay on such phase loss effect is pro-

vided in Figures 5.1 and 5.2 where, for the grid-connected wind farm system discussed
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in Section 4.2.1, the Bode plots of the eigenvalues of L̂PN (s) are drawn for two different

converter switching frequencies, fs = 2.5 kHz and fs = 10 kHz. The case with N = 54

operating turbines is shown. As it can be seen, when fs is increased, the mentioned

phase loss is reduced as a consequence of the lower equivalent delay of the controller [91]

(see equation (2.19)). The stabilising effect of using a higher switching frequency of

the inverter is confirmed by the corresponding Nyquist plots of I + L̂PN (s), shown in

Figure 5.3. However, such a strategy would be detrimental for the inverter efficiency,

and, for this reason, would not be feasible in a real application [71].

Figure 5.3: Nyquist plot of I + L̂PN (s) for different values of the switching frequency
fs, with N = 54.

Alternative methods to compensate for the controller delay have been proposed

in the literature and typically consist in adding a tuned filter in the inverter control

system. However, this solution is able to compensate for the delay effect only at a

specific design frequency [58], and therefore is not able to cope effectively with the

variability of the wind farm resonance frequencies, which change with the wind farm

topology and operating point. Also, the technique of adding filters in the converter

control scheme has in general been seen to have an effectiveness significantly dependant
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on the wind farm design [29], [34], [42], [44], [46]. For this reason this approach has not

been pursued.

On the other hand, this work has been focusing on reducing the controller delay by

changing the hardware implementation of the controller algorithm. The aim has been

to make a more efficient use of the hardware resources to tackle the problem, with-

out increasing the converter switching frequency. A straightforward way to reduce the

controller delay, by modifying the execution of the controller algorithm, would be to

change the PWM regular sampling method, from symmetrical, which is the technique

used in the baseline controller scheme of the studied wind farm, to asymmetrical (see

Appendix A for the description of these PWM sampling methods). In fact, this would

allow a reduction of the controller delay by 50 % [71]. However, such beneficial effect

may not be enough to achieve the desired stability performance (this aspect will be

discussed in more detail in Section 5.2.2.1). Thereby, two more techniques have been

designed to reduce the controller delay further.

The first proposed strategy aims to reduce the delay on the voltage feed-forward term

of the controller scheme (see Figure 2.20), and for this reason it has been named FVFF.

The second one aims to reduce the delay associated to the current loop calculations,

and, for this reason, it has been named Reduced Current Delay (RCD) strategy.

The implementation of these techniques has been made possible by the more recent

availability of control boards with two processor cores, such as the TMS320F28377D

control board by Texas Instrument, or the ZC706 control board by Xilinx. The latter

model has been used in this work. By making use of two microprocessors, it has been

possible to double the processing power of the control board, and therefore to execute

different sections of the controller algorithm simultaneously.

A description of the designed hardware implementation of the controller is provided in

Section 5.1, where the baseline execution of the controller algorithm is presented. Both

the FVFF and the RCD strategies will modify such a baseline execution, with the pur-

pose of minimising the delay of the controller action. One processor is used to sample

the plant signals, while the other one is used to execute the vector control algorithm.

The possibility of oversampling of the U voltage signal will be exploited by the FVFF
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strategy. The use of FPGA modules will be exploited by the RCD strategy and will

allow to adjust, in a scale of nanoseconds, the converter PWM pattern currently being

applied to modulate the inverter AC voltage.

The FVFF technique is presented in Section 5.2. Its hardware implementation is

described and its stabilising effect is validated both analytically and experimentally.

Moreover, it will be shown how this strategy is also beneficial to weak grid issues.

Thereafter, in Section 5.3, the RCD strategy is presented. It will be shown how the

optimal performance of the controller is obtained when both of these strategies are

used, which therefore represents the final design proposed by this work.

5.1 Controller hardware implementation

The controller has been implemented making use of the Xilinx Zynq-7000 ZC706 eval-

uation board. The board is composed of a Processing System (PS) section, where two

ARM R© CortexTM-A9 MPCoreTM processors are included, and of a Programmable

Logic (PL) section, based on FPGA technology [112]. The two sections can operate

simultaneously, exchanging data and control signals.

A schematic block diagram of the controller hardware implementation is represented

in Figure 5.4. Both ARM R© processors have been used, which will be referred to as

Processor 1 (P1) and Processor 2 (P2) in the following description.

In this design, the two processors of the PS section are used to execute the controller

algorithm, while FPGA modules implemented in the PL section control the operation

of the ADC/DAC board as well as generate the PWM pattern delivered to the con-

verter’s gate driver.

The controller operation is synchronized to two clocks, both implemented in the PL

section. The main clock triggers P2 by generating an interrupt every Tsample. This

is equal to 1
fs

if symmetrical sampling is used, or 1
2fs

in case of asymmetrical sam-

pling [71]. The second clock, at fOS = 100 kHz, is derived from the main clock and

controls both the operation of P1, by sending an interrupt every TOS = 1
fOS

= 10 µs,

and that of the ADC driver, activating sampling of the plant signals.
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Figure 5.4: Block diagram of the controller hardware implementation.

The notation detailed in Table 5.1 is used for the time variable.

Table 5.1: Notation used for the time variable

Symbol Description Sampling time

t continuous time -
tk discrete time Tsample
t̄n discrete time TOS

Figure 5.5 shows a time diagram of the baseline execution of the controller algo-

rithm. The kth sampling period [tk, tk+1] is shown, with p = TsamplefOS .

P1 reads the DC voltage UDC and the inverter current i at t = tk (i.e. at the beginning

of each Tsample period), and the AC voltage U at t = t̄n, t̄n+1, t̄n+2, ..., t̄n+p, i.e. every

TOS . While no filter is applied on the i current and on the UDC voltage signals, the

anti-aliasing filter discussed in Section 2.2.1.4 is applied by P1 on U . The operations

executed by P1 have been indicated as ”S” in the timing diagram. By making use of

the shared DDR memory (see Figure 5.4), P1 provides P2 with the sampled plant sig-

nals, namely US [k]=US(tk), iS [k] = iS(tk) and UDC [k] = UDC(tk)), every Tsample. It is

worth mentioning that the whole data set is sent to P2 a ∆T̂ time after the acquisition

of the plant signals (which occurs at t = tk). ∆T̂ is the time it takes P1 to execute its
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”S” algorithm.
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Figure 5.5: Timing diagram of the baseline controller operation.

The calculations carried out by P2 consist in the vector control algorithm (opera-

tions ”C”) and in the calculation of the PWM timers (operations ”G”). Such PWM

pattern is delivered to the inverter switches at t = tk+1, i.e. at the beginning of the

next sampling period. This shows the Tsample delay between the instant when the plant

signals are measured and the moment when the resulting PWM pattern is delivered.

The proposed mitigation techniques aim to reduce such delay.

A summary of the operations executed by the controller is provided in Table 5.2, where

their execution time has also been specified. A detailed description of the digital im-

plementation of the controller algorithm can be found in Appendix E.

Table 5.2: Summary of the operations executed by the controller algorithm.

Operations Processor Execution time Notes

S P1 7 µs Sampling + Anti-aliasing filter on AC voltage
C P2 23 µs Vector control algorithm
G P2 6 µs Calculation of the PWM pattern
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5.2 FVFF strategy

The first mitigation method is presented as follows. In Section 5.2.1 the operation of the

FVFF technique is described. In Sections 5.2.2 and 5.2.3 its benefits on the controller

performance will be proven theoretically and experimentally.

5.2.1 Description of the technique

The FVFF strategy consists in a revision of the way the voltage feed-forward term

of the converter current controller contributes to the control action (see the control

scheme in Figure 2.20). In order to maximise the damping capabilities of this term

[58], this strategy aims to make such term as close as possible to the latest sample of

the measured voltage U . In order to do so, the FVFF strategy modifies the baseline

hardware implementation of the controller algorithm, discussed in Section 5.1.
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Figure 5.6: Timing diagram of the controller operation with the FVFF strategy.

The timing diagram illustrating the operation of the FVFF technique is shown in

Figure 5.6. While in the baseline controller operation the voltage signal used in the

feed-forward term is the one sampled at the beginning of each switching period (i.e. the
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signal US [k] in Figure 5.6), in the proposed strategy the latest voltage sample available

during the present sampling period [tk, tk+1] is instead utilised.

A practical constraint in the implementation of this strategy is the hardware processing

time needed to execute the ”S” and ”G” operations. Based on the execution times

detailed in Table 5.2, it takes ≈ 13 µs to complete the ”S” and ”G” calculations.

Therefore, the latest voltage sample that can be used to calculate the Voltage Feed-

Forward (VFF) within the present sampling period [tk, tk+1], is the one read a 2TOS

time before its end (US [n+ p− 2] in Fig. 5.6). By using this latest sample it has been

possible to reduce the controller delay affecting the feed-forward term from the Tsample

value of the baseline design down to 2TOS .
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Figure 5.7: Block diagram of the current controller in the proposed FVFF strategy.

A modification has also been applied on the current control loops. Considering the

controller scheme in Figure 2.20, the low pass filter employed in the feed-forward term

of the current controllers has been removed. In fact, despite the fact that it allows

an attenuation of the higher harmonics of the measured voltage, this filter causes a

significant phase lag on the measured U signal, which curbs the damping properties of
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the feed-forward term. Figure 5.7 illustrates the revised version of such control loops,

where it can be seen how the feed-forward term USdq now directly contributes to define

the outputs of the positive sequence current loop. It is worth highlighting that the

USdq signal includes both the positive and the negative sequence components of the

measured U voltage.

The effect of the FVFF strategy on the stability of the studied wind farm system will

be shown in the following Section 5.2.2. Thereafter, an experimental verification of its

effectiveness will be provided in Section 5.2.3.

5.2.2 Effect of the FVFF strategy on the wind farm resonances

The impact of the FVFF strategy on the stability performance of the wind farm system

described in Section 4.2.1 has been verified. The new Nyquist plots of I + L̂PN (s) are

shown in Figure 5.8, indicating that the system is now stable for any considered number

N of operating turbines (see Figure 4.12 for comparison with the baseline controller).

These results have been obtained considering a PWM symmetrical sampling technique.

Figure 5.8: Nyquist plot of I + L̂PN (s) for different values of the number of operating
turbines N , considering the revised controller design where the FVFF strategy has been
implemented.
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Figure 5.9: Bode plot of the eigenvalue λ1(2πf) of L̂PN (s) for different values of the
number of operating turbines N , considering the revised controller design where the
FVFF strategy has been implemented.

Figure 5.10: Bode plot of the eigenvalue λ2(2πf) of L̂PN (s) for different values of the
number of operating turbines N , considering the revised controller design where the
FVFF strategy has been implemented.
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Such stabilising effect of the FVFF term derives from its impact on the phase of

the system eigenvalues λ1(j2πf) and λ2(j2πf), as shown in their Bode plots in Figures

5.9 and 5.10, respectively. Thanks to the reduced phase loss achieved in the [300 Hz,

600 Hz] frequency range, the wind farm resonances are counteracted effectively making

the system stable. It is highlighted how the FVFF strategy also improves the system

dynamics in the lower frequency range, mitigating the weak grid issues observed in the

range of 60 Hz for higher N values (see Figure 4.14 and the related comments in Section

4.2.1.1).

5.2.2.1 Impact of the PWM sampling method

In this Section effect of the PWM sampling technique on the stability performance

of the studied wind farm system is considered. In particular, the scenarios where an

asymmetrical sampling is used either with or without the FVFF strategy are compared

to the controller scheme analysed in the previous Section (i.e. the one where the FVFF

strategy is used with symmetrical sampling).

The resulting Nyquist plots are shown in Figure 5.11. The case with N = 54 is shown

which corresponds to the most critical operating condition for the wind farm. As it can

be seen from these plots, changing the PWM technique of the baseline controller from

symmetric to asymmetric PWM is not sufficient to stabilise the system dynamics. This

is confirmed by the Bode plots of the eigenvalues λ1(j2πf) and λ2(j2πf) of L̂PN (jω),

shown in Figures 5.12 and 5.13 respectively. As it can be seen, the phase loss of

these functions is still too high in the [1000 Hz, 1200 Hz] range, i.e. in the frequency

range of the second group of resonance of YTH(s) (see Figure 2.10), making the system

unstable. This confirms the need to design alternative methods to mitigate the effect

of the controller delay further.

Comparing the two configurations where the FVFF strategy is employed, it can be

observed how the benefit of using a PWM asymmetrical sampling technique is mostly

in the higher frequency range, where the effect of the controller delay becomes more

significant. An improvement can also be noticed in the [50 Hz, 70 Hz] range, with the

low frequency resonance due to the weak grid effect becoming better damped.
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Figure 5.11: Comparison between the Nyquist plots of I + L̂PN (s) for the scenarios
where the FVFF strategy is combined with either a symmetrical or an asymmetrical
sampling technique and the one where the baseline controller is used with asymmetrical
sampling. The case with N = 54 is shown.

Figure 5.12: Comparison between the Bode plots of the eigenvalue λ1(2πf) of L̂PN (s)
for the scenarios where the FVFF strategy is combined with either a symmetrical or
an asymmetrical sampling technique and the one where the baseline controller is used
with asymmetrical sampling. The case with N = 54 is shown.
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Figure 5.13: Comparison between the Bode plots of the eigenvalue λ2(2πf) of L̂PN (s)
for the scenarios where the FVFF strategy is combined with either a symmetrical or
an asymmetrical sampling technique and the one where the baseline controller is used
with asymmetrical sampling. The case with N = 54 is shown.

As expected, the improvement on the stability performance obtained by combining

the asymmetrical sampling method with the FVFF strategy is confirmed by the stability

margins of the system, calculated based on the methodology described in Section 4.4,

and detailed in Table 5.3. The figures confirm the instability of the configuration where

the baseline controller is used with an asymmetrical sampling method, and indicate

how the weak grid effect ultimately becomes the critical aspect that limits the system

stability performance, when the FVFF strtegy is combined with asymmetrical sampling.

It is worth mentioned that when the FVFF strategy is used with symmetrical sampling

it is not possible to calculate the d∞ perturbation norm, as the system is not diagonally

dominance (i.e. the conditions (4.18) are not verified).

The results of the stability study are aligned with those obtained with the corre-

sponding TD model of the wind farm-grid system, as shown in the Figure 5.14. The

step response of the q+ current loop is shown for a 5 % increase in the i+q,ref set-point.

As it can be seen, in both the scenarios where either the symmetrical or the asym-

metrical sampling technique is combined with the FVFF strategy, the system is stable.
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Table 5.3: Analysis of the wind farm system relative stability for the control designs
where the FVFF strategy is combined either with symmetrical or with asymmetrical
sampling and for the configuration where the baseline controller is used with asymmet-
rical sampling. The case with N = 54 is shown.

Control strategy GM+
SISO PM+

SISO GM−SISO GM−SISO d∞ GMd∞ PMd∞

[dB] [deg] [dB] [deg] - [dB] [deg]

Baseline - PWM symm. −3 (at 1041 Hz) −2.7(1063 Hz) −3 (at 1041 Hz) −2.7(1063 Hz) < 0 - -
FVFF - PWM symm. 0.8 (at 62 Hz) 3.5 (at 63 Hz) 12.6 (at 55 Hz) 7.7 (412 Hz) < 0 - -
FVFF - PWM asymm 5 (at 59 Hz) 19 (at 64 Hz) 47 (at 51 Hz) 34 (at 65 Hz) 0.132 ≥ 1.23 ≥ 7.6

However, a lower overshoot is observed in the latter scenario, conforming the increased

damping of the system dynamics assured by this design, in line with the results of the

presented stability study, as shown in Figure 5.11.
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Figure 5.14: Simulated step response of the i+q control loop, making use of the TD
model of the wind farm-grid system. The case with N = 54 is shown.

5.2.3 Experimental verification

The effectiveness of the FVFF strategy to stabilise the system dynamics has been ver-

ified experimentally. Both its capability to counteract the higher frequency resonances

caused by the parasitic capacitance of the cables, and its benefit on weak grid issues

have been verified, as it will be shown in the following Sections 5.2.3.1 and 5.2.3.2, re-

spectively. The laboratory prototype of the inverter-grid interconnection has been used

for these tests. The collected experimental data have been backed up by corresponding

results obtained from the stability study of the tested system configurations.
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5.2.3.1 Influence on the high frequency resonance

In order to verify the effect of the FVFF term on the high frequency resonance, the

laboratory prototype inverter-grid system described in Section 2.3.2.1 has been used.

The test described in Section 4.2.1.2 has been repeated making use of the new controller

design, where the FVFF strategy has been implemented. Both cases where either sym-

metrical or asymmetrical sampling is used have been tested, with a switching frequency

of 2.5 kHz (see Table 2.6). The results are shown in Figure 5.15, which confirm the

beneficial effect of the FVFF strategy on the system stability performance, in both of

the tested configurations (see Figure 4.16a for comparison with the baseline controller

design).
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Figure 5.15: Recorded i+q trend for a staircase-like change in the i+q,ref set-point, making
use of the FVFF strategy; (a) PWM symmetrical sampling; (b) PWM asymmetrical
sampling.

The associated Nyquist plots are shown in Figure 5.16, which confirm the stability

of the system when the FVFF strategy is utilised. The operating point correspond-

ing to the rated power of the inverter has been considered to generated these results.

Thanks to the diagonal dominance property of the test rig system being satisfied, it has

also been possible to calculate the corresponding perturbation norm stability margins

and draw the corresponding circles, shown in the same Figure 5.16.

The Bode plots of the system eigenvalues are shown in Figures 5.17 and 5.18, respec-
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tively. They indicate how in the higher frequency range, where the resonance occurs,

the FVFF term has a beneficial effect on the phase loss of both λ1(j2πf) and λ2(j2πf).

As expected, a further improvement is obtained when the asymmetrical PWM sampling

technique is used.
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Figure 5.16: Nyquist plot of I+L̂PN (s) for the laboratory tested system, for the scenar-
ios where the FVFF strategy is combined with either a symmetrical or an asymmetrical
sampling technique.

Figure 5.17: Bode plot of the eigenvalue λ1(j2πf) of L̂PN (s) for the scenarios where
the FVFF strategy is combined with either a symmetrical or an asymmetrical sampling
technique.
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Figure 5.18: Bode plot of the eigenvalue λ2(j2πf) of L̂PN (s) for the scenarios where
the FVFF strategy is combined with either a symmetrical or an asymmetrical sampling
technique.

The resulting stability margins of the system, calculated with the methodology

described in Section 4.4, are detailed in Table 5.4. These confirm how a better perfor-

mance is obtained when the FVFF strategy is used together with the PWM asymmet-

rical sampling technique.

Table 5.4: Stability margins for the tested laboratory prototype

Control strategy GM+
SISO PM+

SISO GM−SISO GM−SISO d∞ GMd∞ PMd∞

[dB] [deg] [dB] [deg] - [dB] [deg]

FVFF - PWM symm. 22.9 (at 54 Hz) 22.4 (at 788 Hz) 57 (at 51 Hz) 25.3 (at 786 Hz) 0.38 ≥ 4.15 ≥ 21.9
FVFF - PWM asymm. 25.7 (at 52.5 Hz) 42.8 (at 776 Hz) 55 (at 51 Hz) 43.4 (at 773 Hz) 0.66 ≥ 9.4 ≥ 38.5

5.2.3.2 Influence on the weak grid effect

This study has revealed how the connection of a wind farm to the grid is likely to

give rise to a lower frequency resonance associated to a weak grid effect. In this Sec-

tion, the experimental results verifying the beneficial effect the FVFF strategy has

on this resonance are presented, comparing the performance of the baseline controller

scheme, shown in Figure 2.20, to that of the revised one where the FVFF strategy is
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implemented. In these tests, a switching frequency of 2.5 kHz has been used with an

asymmetrical PWM regular sampling technique. The test-rig configuration described

in Section 2.3.2.3 has been used, where the grid SCR has been varied by modifying the

size of the grid inductance Lg, hence reproducing weak grid conditions. The controller

parameters listed in Table 2.11 have been utilised.

The results of the tests where the baseline controller is used are shown in Figure 5.19.
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Figure 5.19: Recorded i+q trend for a staircase-like change in the i+q,ref set-point for
different values of the grid SCR. The baseline controller has been tested.

As it can be seen, increasing the value of the grid inductance, the system dynamics

become less and less damped, until when the system becomes unstable for a grid SCR

≤ 3.4. A spectral analysis of the divergent transient shown in Figure 5.19d is shown in
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Figure 5.20, which indicates the presence of two components at 7.5 Hz and 107.5 Hz,

respectively corresponding to a positive sequence component and a negative sequence

component at 57.5 Hz in the abc-frame.
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Figure 5.20: Magnitude spectrum of the divergent transient in Figure 5.19d
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Figure 5.21: Nyquist plot of I + L̂PN (s) for the laboratory tested system, where the
baseline controller is used.

These experimental results are confirmed by those of the system stability study.

The corresponding Nyquist plots are shown in Figure 5.21, confirming the instability of
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the system for SCR ≤ 3.4. The operating point corresponding to the rated power of the

inverter has been considered to generated these results. The Bode plots of the system

eigenvalues λ1(j2πf) and λ2(j2πf) are shown in Figure 5.22 and 5.23, respectively.

Figure 5.22: Bode plot of the eigenvalue λ1(j2πf) of L̂PN (s) for the laboratory tested
system, where the baseline controller is applied.

Figure 5.23: Bode plot of the eigenvalue λ2(j2πf) of L̂PN (s) for the laboratory tested
system, where the baseline controller is applied.
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As it can be seen, an undamped negative sequence mode at f2 = 59 Hz is predicted

as ∠λ2(j2πf2) = −540◦ (i.e. −3 · 180◦) and |λ2(j2πf2)| > 1. A substantial match

with the frequency of the resonance observed in the test is found. The existence of a

positive sequence component at 57.5 Hz, which results from the experimental data, is

attributed to imbalance in the grid impedance.

The test has been repeated applying the new controller scheme, where the FVFF strat-

egy has been implemented. As it can be seen from the experimental data shown in

Figure 5.24, the system now behaves stably when the grid SCR is > 1.6, hence con-

firming the beneficial effect of the FVFF strategy on weak grid issues.
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Figure 5.24: Recorded i+q trend for a staircase-like change in the i+q,ref set-point for dif-
ferent values of grid inductance. The control scheme implementing the FVFF strategy
has been tested.
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Figure 5.25 shows the magnitude spectrum of the divergent transient in Figure

5.24d, which indicates the presence of two components at 10 Hz and 110 Hz. These

are respectively associated to a positive and a negative sequence component at 60 Hz

in the abc-frame.
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Figure 5.25: Magnitude spectrum of the divergent transient in Figure 5.24d.
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Figure 5.26: Nyquist plot of I + L̂PN (s) for the laboratory tested system, where the
FVFF strategy is applied.
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Figure 5.27: Bode plot of the eigenvalue λ1(j2πf) of L̂PN (s) for the laboratory tested
system, where the FVFF strategy is applied.
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Figure 5.28: Bode plot of the eigenvalue λ2(j2πf) of L̂PN (s) for the laboratory tested
system, where the FVFF strategy is applied.

The experimental data are in line with the results of the stability study. As it can be

seen from the new Nyquist plots of the system, shown in Figure 5.26, stable dynamics

are confirmed when the grid SCR is > 1.6. The Bode plots of the system eigenvalues
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λ1(j2πf) and λ2(j2πf) are shown in Figures 5.27 and 5.28, respectively. The presence

of an undamped positive sequence mode at f1 = 57.3 Hz is predicted, with a substantial

match with the frequency of the experimentally observed resonance. The existence of

a negative sequence component at 60 Hz, which results from the experimental data, is

attributed to imbalance in the grid impedance.

In conclusion, the tests have allowed a confirmation of the capability of the FVFF

strategy to mitigate weak grid issues. In fact, for the test-rig configuration used in the

tests, while with the baseline controller the system dynamics have been seen to become

unstable for a grid SCR≤ 3.4, when the FVFF strategy is employed the system becomes

unstable only for a SCR ≤ 1.6.

5.3 RCD strategy

The second designed mitigation technique, named the RCD strategy is presented as

follows. In Section 5.3.1, the technique is described, and a verification of its function-

ality is provided experimentally. Thereafter, in Section 5.3.2, its capability to mitigate

the wind farm resonance issue is shown highlighting how an optimal performance of

the controller is possible when this technique is used in combination with the FVFF

term. Such solution is therefore seen as the optimal design suggested by this work, and

experimental results will be used to support this conclusion. A sensitivity analysis will

also be presented to verify the robustness of this design against changes in the wind

farm resonance frequencies.

5.3.1 Description of the technique

The strategy takes an approach similar to the one applied by the FVFF technique,

where the latest available AC voltage sample contributes to the definition of the PWM

pattern used to control the converter (see the timing diagram in Figure 5.6). In this

case, the aim is the utilisation of the latest available measured signals (both current

and voltage) to adjust the PWM signals being applied in the current sampling period

to modulate the inverter AC voltage. In the implementation of this strategy, an asym-

metrical sampling technique has been assumed, with a switching frequency of 2.5 kHz.

Two different timing diagrams are defined to describe the operation of the RCD strat-
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egy. One, illustrated in Figure 5.29, refers to the case when the RCD strategy operates

without the FVFF term. The other, shown in Figure 5.31, applies when both the RCD

and the FVFF techniques are active. To explain these timing diagrams, the operations

executed in the generic [tk, tk+1] sampling period will be described as follows.

𝐔𝐒[𝐤] 

𝐓𝐂 

𝐢[𝐤] 

𝐔𝐒[𝐧 − 𝟐] 𝐔𝐒[𝐤 + 𝟏] 
𝐢[𝐤 + 𝟏] 

𝐔𝐒[𝐤 + 𝟐] 
𝐢[𝐤 + 𝟐] 

𝐔𝐒[𝐤 + 𝟑] 
𝐢[𝐤 + 𝟑] 

𝐭𝐤 𝐭𝐤+𝟏 𝐭𝐤+𝟐 𝐭𝐤+𝟑 

𝐓𝐬𝐚𝐦𝐩𝐥𝐞 𝐓𝐬𝐚𝐦𝐩𝐥𝐞 𝐓𝐬𝐚𝐦𝐩𝐥𝐞 

𝐏𝐖𝐌 𝐩𝐚𝐭𝐭𝐞𝐫𝐧 

𝐂 𝐆 𝐂 𝐆 𝐂 𝐆 𝐂 𝐆 𝐆 

Figure 5.29: Timing diagram illustrating the operation of the RCD technique, when it
operates without the FVFF term.

𝐢[𝐤] 𝐂𝐮𝐫𝐫𝐞𝐧𝐭 𝐥𝐨𝐨𝐩 

𝐜𝐚𝐥𝐜𝐮𝐥𝐚𝐭𝐢𝐨𝐧𝐬 

𝐒𝐂[𝐤] 

𝐔𝐒 𝐤  
𝐏𝐖𝐌 𝐩𝐚𝐭𝐭𝐞𝐫𝐧 

𝐜𝐚𝐥𝐜𝐮𝐥𝐚𝐭𝐢𝐨𝐧 𝐔𝐒[𝐤] 

𝐢[𝐤] 

𝐭𝐤 𝐭𝐤+𝟏 

𝐂 𝐆 

Figure 5.30: Operations executed in the RCD strategy in the [tk, tk+1] sampling period,
when it operates without the FVFF term.

The key point of the RCD strategy is that the gate signals delivered at t = tk are

revised in view of the PWM pattern calculated with the voltage and current samples

read at the same tk time. Because of this correction, shown by red dashed lines in

Figures 5.29 and 5.31, the final PWM pattern applied during the [tk, tk+1] sampling

period may no longer result from the AC signals read at time tk−1, but from their

values read at tk. In other words, if the converter switches have not already changed

their on/off status, then the results of the controller algorithm are used in the current

sample window to review the PWM pattern currently being delivered, instead of being

used only in the next sampling window. This therefore allows the elimination of the
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Tsample delay associated to the discrete sampling of the voltage and current signals.

𝐔𝐒[𝐤] 

𝐓𝐂 

𝐢[𝐤] 

𝐔𝐒[𝐧 − 𝟐] 𝐔𝐒[𝐧 + 𝟏𝟖] 𝐔𝐒[𝐤 + 𝟏] 
𝐢[𝐤 + 𝟏] 

𝐔𝐒[𝐧 + 𝟑𝟖] 𝐔𝐒[𝐤 + 𝟐] 
𝐢[𝐤 + 𝟐] 

𝐔𝐒[𝐧 + 𝟓𝟖] 𝐔𝐒[𝐤 + 𝟑] 
𝐢[𝐤 + 𝟑] 

𝐭𝐤 𝐭𝐤+𝟏 𝐭𝐤+𝟐 𝐭𝐤+𝟑 

𝐓𝐬𝐚𝐦𝐩𝐥𝐞 𝐓𝐬𝐚𝐦𝐩𝐥𝐞 𝐓𝐬𝐚𝐦𝐩𝐥𝐞 

𝐏𝐖𝐌 𝐩𝐚𝐭𝐭𝐞𝐫𝐧 

𝐂 𝐆 𝐆 𝐂 𝐆 𝐆 𝐂 𝐆 𝐆 𝐂 𝐆 𝐆 

Figure 5.31: Timing diagram illustrating the operation of the RCD technique, when it
operates in combination with the FVFF term.

𝐢[𝐤] 𝐂𝐮𝐫𝐫𝐞𝐧𝐭 𝐥𝐨𝐨𝐩 

𝐜𝐚𝐥𝐜𝐮𝐥𝐚𝐭𝐢𝐨𝐧𝐬 

𝐒𝐂[𝐤] 
+ + 

𝐔𝐒 𝐤  

𝐏𝐖𝐌 𝐩𝐚𝐭𝐭𝐞𝐫𝐧 

𝐜𝐚𝐥𝐜𝐮𝐥𝐚𝐭𝐢𝐨𝐧 

 𝐑𝐞𝐯𝐢𝐞𝐰 𝐨𝐟 𝐭𝐡𝐞 𝐜𝐮𝐫𝐫𝐞𝐧𝐭𝐥𝐲 𝐝𝐞𝐥𝐢𝐯𝐞𝐫𝐞𝐝 𝐏𝐖𝐌 𝐩𝐚𝐭𝐭𝐞𝐫𝐧 

+ + 

𝐔𝐒[𝐧 + 𝟏𝟖] 

𝐏𝐖𝐌 𝐩𝐚𝐭𝐭𝐞𝐫𝐧 

𝐜𝐚𝐥𝐜𝐮𝐥𝐚𝐭𝐢𝐨𝐧 

𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐢𝐨𝐧 𝐨𝐟 𝐭𝐡𝐞 𝐠𝐚𝐭𝐞 𝐬𝐢𝐠𝐧𝐚𝐥𝐬 𝐟𝐨𝐫 𝐭𝐡𝐞 
 𝐭𝐤+𝟏, 𝐭𝐤+𝟐  𝐩𝐞𝐫𝐢𝐨𝐝 

𝐔𝐒[𝐤] 

𝐢[𝐤] 
𝐔𝐒[𝐧 + 𝟏𝟖] 

𝐭𝐤 𝐭𝐤+𝟏 

𝐂 𝐆 𝐆 

Figure 5.32: Operations executed in the RCD strategy in the [tk, tk+1] sampling period,
when it operates with the FVFF term.

The implementation of this strategy has required a revision of the hardware im-

plementation of the controller algorithm described in Section 5.2. In particular, in the

upgraded design, the AC voltage U is still sampled by P1 while the AC inverter current

i and the inverter DC voltage UDC are sampled by P2 (see Table 5.5). An optimisation

of the ”C” algorithm has been also been carried out to reduce its execution time (this

aspect will be discussed in more detail later on).
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Table 5.5: Summary of the operations executed by the controller algorithm, when the
RCD strategy is used.

Operations Processor Execution time Notes

S P1 7 µs AC voltage sampling + Anti-aliasing filter
C P2 5 µs Current and DC voltage sampling + Vector control algorithm
G P2 6 µs Calculation of the PWM pattern

The result of calculations ”C” is based on the inverter AC current sampled at time

tk (see Figures 5.29 and 5.31) and has been indicated as SC,k in Figure 5.30 and 5.32,

where the operations associated to the timing diagrams in Figures 5.29 and 5.31 are

respectively illustrated. The SC,k data is then combined with the voltage feed-forward

term US [k], which is provided to P2 by P1 and consists in the AC plant voltage sampled

at t = tk, and filtered by the anti-aliasing filter.

When the RCD strategy is used without the FVFF term, the SC,k data is combined

with US [k] according to the current controller scheme in Figure 2.20. On the other

hand, when the FVFF strategy is also used, SC,k is combined with US [k] as detailed in

the current controller scheme in Figure 5.7.

Once SC,k is combined with US [k], the resulting modulation depth is used to calculate

the PWM pattern used to update the gate signals delivered in the current sampling

window. Based on the execution times detailed in Table 5.5, with the ”C” execution

time reduced to 5 µs thanks to a carried out optimization of its algorithm, the total

time needed for carry out the PWM pattern update is Tc = 13 µs.

Finally, only when the FVFF is also active, the SC,k data are then combined with

US [n+18] to derive the initial version of the PWM pattern that will be delivered in the

next [tk+1, tk+2] sampling period (see Figure 5.32). Otherwise, the PWM pattern used

to review the currently delivered gate signals will also provide the initial gate signals

timers used in the following [tk+1, tk+2] sampling period.

The process of reviewing the currently delivered PWM pattern is based on the

principle that only the converter switches that have not changed their status during the

initial Tc period can have their turn-on/turn-off times being reviewed. The occurrence

of such early switching events depends both on the duration of the Tc period and on the

amplitude of the SVM modulation functions. The ideal situation would be that none
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of the converter switches have changed their status during the mentioned Tc period, so

that all of their turn-on/turn-off times can be updated in a straightforward manner.

As it will be discussed in Section 5.3.1.2, this condition would also be beneficial for the

harmonics content of the modulated converter voltage. Hence, it would be desirable to

reduce the calculation time Tc as much as possible (which justifies the need to optimise

the execution of the ”C” algorithm) as well as to operate the converter with lower PWM

modulation depths (this notion will be discussed in more detail in Section 5.3.1.2).

Depending on which and on how many of the converter switches have changed their

status during the Tc period, the implemented RCD algorithm operates differently. Its

ultimate aim is to review the PWM pattern currently delivered without altering the

fundamental component of the modulated line voltage, defined by the PWM pattern

being reviewed. The execution of the algorithm depends on W , which is the number of

converter legs whose switching devices have changed their status during the Tc period.

The currently applied PWM pattern is then updated only if the switching devices of

no more than one leg have already switched their on/off status (i.e. only if W ≤ 1), as

illustrated in Figure 5.33.

𝐖 ≤ 𝟏 
𝐘𝐄𝐒 

𝐍𝐎 

𝐃𝐨 𝐧𝐨𝐭 𝐫𝐞𝐯𝐢𝐞𝐰 𝐭𝐡𝐞  
𝐏𝐖𝐌 𝐩𝐚𝐭𝐭𝐞𝐫𝐧 

𝐑𝐞𝐯𝐢𝐞𝐰 𝐭𝐡𝐞  
𝐏𝐖𝐌 𝐩𝐚𝐭𝐭𝐞𝐫𝐧 

Figure 5.33: Illustration of the operation of the RCD algorithm.

If none of the converter devices have switched during the Tc period (i.e. W = 0),

all of them will have their PWM timers being reviewed. On the other hand, if either

one or both of the switches of any one of the three converter legs have already switched

during Tc (i.e. W = 1), only the PWM timers of the switches belonging to the other

two legs will be updated, as their IGBT modules have not switched yet. The leg where

at least one of its two IGBT modules has changed its status during Tc will be indicated

as x̂ in the following description, with x̂ = a, b, c. In more detail, when W = 1, the

PWM on/off timers of the other two legs are replaced by the new reviewed timers after
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that these are adjusted. This preliminary correction of the new timers depends on

when the IGBT modules of leg x̂ have switched. Such correction is done not to alter

the fundamental component of the modulated line voltage. Finally, when W ≥ 2, the

currently applied PWM pattern is not modified, as any carried out modification would

alter the desired line voltage.

If W = 0, i.e. no switching activity has occurred during the Tc period, two possible

cases may occur, indicated as W0,1 and W0,2.

An example of scenario W0,1 is illustrated in Figure 5.34. In this case, according to the

new PWM pattern calculated at t = tk + Tc, the switches will change their state at a

time t, with tk + Tc < t < tk+1, i.e. sometime within the present Tsample window after

tk + Tc. The currently applied PWM pattern is therefore simply replaced by the new

pattern calculated at t = tk + Tc.

}

}

}

𝐏𝐖𝐌 𝐩𝐚𝐭𝐭𝐞𝐫𝐧 
𝐫𝐞𝐯𝐢𝐞𝐰 

𝐓𝐜 

𝐏𝐖𝐌 𝐩𝐚𝐭𝐭𝐞𝐫𝐧 
𝐚𝐩𝐩𝐥𝐢𝐞𝐝 
𝐚𝐭 𝐭 = 𝐭𝐤 

𝐍𝐞𝐰 𝐏𝐖𝐌 
𝐩𝐚𝐭𝐭𝐞𝐫𝐧 

𝐚𝐭 𝐭 = 𝐭𝐤 + 𝐓𝐜 
𝐜𝐚𝐥𝐜𝐮𝐥𝐚𝐭𝐞𝐝 

𝐅𝐢𝐧𝐚𝐥 
𝐫𝐞𝐯𝐢𝐞𝐰𝐞𝐝 

𝐏𝐖𝐌 𝐩𝐚𝐭𝐭𝐞𝐫𝐧 
𝐚𝐧𝐝 𝐚𝐩𝐩𝐥𝐢𝐞𝐝 

𝐏𝐡𝐚𝐬𝐞 𝐚 

𝐏𝐡𝐚𝐬𝐞 𝐛 

𝐏𝐡𝐚𝐬𝐞 𝐜 

𝐏𝐡𝐚𝐬𝐞 𝐚 

𝐏𝐡𝐚𝐬𝐞 𝐛 

𝐏𝐡𝐚𝐬𝐞 𝐜 

𝐏𝐡𝐚𝐬𝐞 𝐚 

𝐏𝐡𝐚𝐬𝐞 𝐛 

𝐏𝐡𝐚𝐬𝐞 𝐜 

𝐭𝟏 
𝐭𝟐 𝐭𝟑 

𝐭𝟒 
𝐭𝟓 
𝐭𝟔 

𝐓𝐬𝐚𝐦𝐩𝐥𝐞 𝐭𝐤 𝐭𝐤+𝟏 

𝐭 

Figure 5.34: Illustration of the operation of the RCD algorithm, case W0,1
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}

}

}

𝐏𝐖𝐌 𝐩𝐚𝐭𝐭𝐞𝐫𝐧 
𝐚𝐩𝐩𝐥𝐢𝐞𝐝 
𝐚𝐭 𝐭 = 𝐭𝐤 

𝐍𝐞𝐰 𝐏𝐖𝐌 
𝐩𝐚𝐭𝐭𝐞𝐫𝐧 

𝐚𝐭 𝐭 = 𝐭𝐤 + 𝐓𝐜 
𝐜𝐚𝐥𝐜𝐮𝐥𝐚𝐭𝐞𝐝 

𝐅𝐢𝐧𝐚𝐥 
𝐫𝐞𝐯𝐢𝐞𝐰𝐞𝐝 

𝐏𝐖𝐌 𝐩𝐚𝐭𝐭𝐞𝐫𝐧 
𝐚𝐧𝐝 𝐚𝐩𝐩𝐥𝐢𝐞𝐝 

𝐏𝐡𝐚𝐬𝐞 𝐚 

𝐏𝐡𝐚𝐬𝐞 𝐛 

𝐏𝐡𝐚𝐬𝐞 𝐜 

𝐏𝐡𝐚𝐬𝐞 𝐚 

𝐏𝐡𝐚𝐬𝐞 𝐛 

𝐏𝐡𝐚𝐬𝐞 𝐜 

𝐏𝐡𝐚𝐬𝐞 𝐚 

𝐏𝐡𝐚𝐬𝐞 𝐛 

𝐏𝐡𝐚𝐬𝐞 𝐜 

𝐭𝟏 

𝐭𝐤+𝟏 

𝐓𝐜 

𝐏𝐖𝐌 𝐩𝐚𝐭𝐭𝐞𝐫𝐧 
𝐫𝐞𝐯𝐢𝐞𝐰 

𝐓𝐬𝐚𝐦𝐩𝐥𝐞 

𝐭 

𝐭𝐤 

𝐭𝟐 𝐭𝟑 
𝐭𝟒 𝐭𝟓 

𝐭𝟔 

∆𝐓 
∆𝐓 ∆𝐓 

Figure 5.35: Illustration of the operation of the RCD algorithm, case W0,2

}

}

}

𝐏𝐖𝐌 𝐩𝐚𝐭𝐭𝐞𝐫𝐧 
𝐫𝐞𝐯𝐢𝐞𝐰 

𝐓𝐜 

𝐏𝐖𝐌 𝐩𝐚𝐭𝐭𝐞𝐫𝐧 
𝐚𝐩𝐩𝐥𝐢𝐞𝐝 
𝐚𝐭 𝐭 = 𝐭𝐤 

𝐍𝐞𝐰 𝐏𝐖𝐌 
𝐩𝐚𝐭𝐭𝐞𝐫𝐧 

𝐚𝐭 𝐭 = 𝐭𝐤 + 𝐓𝐜 
𝐜𝐚𝐥𝐜𝐮𝐥𝐚𝐭𝐞𝐝 

𝐅𝐢𝐧𝐚𝐥 
𝐫𝐞𝐯𝐢𝐞𝐰𝐞𝐝 

𝐏𝐖𝐌 𝐩𝐚𝐭𝐭𝐞𝐫𝐧 
𝐚𝐧𝐝 𝐚𝐩𝐩𝐥𝐢𝐞𝐝 

𝐏𝐡𝐚𝐬𝐞 𝐚 

𝐏𝐡𝐚𝐬𝐞 𝐛 

𝐏𝐡𝐚𝐬𝐞 𝐜 

𝐏𝐡𝐚𝐬𝐞 𝐚 

𝐏𝐡𝐚𝐬𝐞 𝐛 

𝐏𝐡𝐚𝐬𝐞 𝐜 

𝐏𝐡𝐚𝐬𝐞 𝐚 

𝐏𝐡𝐚𝐬𝐞 𝐛 

𝐏𝐡𝐚𝐬𝐞 𝐜 

𝐭𝟏 

𝐓𝐬𝐚𝐦𝐩𝐥𝐞 𝐭𝐤 𝐭𝐤+𝟏 

𝐭 

𝐭𝟐 𝐭𝟑 
𝐭𝟒 

𝐭𝟓 
𝐭𝟔 

∆𝐓 ∆𝐓 ∆𝐓 

Figure 5.36: Illustration of the operation of the RCD algorithm, case W1,1

The scenario W0,2 occurs when, according to the new PWM pattern calculated at
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t = tk + Tc, the switches of one leg should already have switched at a time t, with

tk < t < tk + Tc. An example of this case is shown in Figure 5.35 where, according

to the new pattern, such condition occurs for the switches of phase c. Consequently,

these two IGBT modules are switched immediately (i.e. at t = tk + Tc, keeping the

constraint on the dead-time). As they have switched with a ∆T delay compared to the

time when they were supposed to change their state, such ∆T delay is added to the

PWM timers of the IGBT modules of the other two legs, in order to maintain the same

modulated line voltage, as previously discussed.

If W = 1, i.e. the switches of only one converter leg have already changed their on/off

status during the Tc period, two other possible scenarios may occur, referred to as W1,1

and W1,2.

}

}

}
𝐏𝐖𝐌 𝐩𝐚𝐭𝐭𝐞𝐫𝐧 

𝐫𝐞𝐯𝐢𝐞𝐰 𝐓𝐜 

𝐏𝐖𝐌 𝐩𝐚𝐭𝐭𝐞𝐫𝐧 
𝐚𝐩𝐩𝐥𝐢𝐞𝐝 
𝐚𝐭 𝐭 = 𝐭𝐤 

𝐍𝐞𝐰 𝐏𝐖𝐌 
𝐩𝐚𝐭𝐭𝐞𝐫𝐧 

𝐚𝐭 𝐭 = 𝐭𝐤 + 𝐓𝐜 
𝐜𝐚𝐥𝐜𝐮𝐥𝐚𝐭𝐞𝐝 

𝐅𝐢𝐧𝐚𝐥 
𝐫𝐞𝐯𝐢𝐞𝐰𝐞𝐝 

𝐏𝐖𝐌 𝐩𝐚𝐭𝐭𝐞𝐫𝐧 
𝐚𝐧𝐝 𝐚𝐩𝐩𝐥𝐢𝐞𝐝 

𝐏𝐡𝐚𝐬𝐞 𝐚 

𝐏𝐡𝐚𝐬𝐞 𝐛 

𝐏𝐡𝐚𝐬𝐞 𝐜 

𝐏𝐡𝐚𝐬𝐞 𝐚 

𝐏𝐡𝐚𝐬𝐞 𝐛 

𝐏𝐡𝐚𝐬𝐞 𝐜 

𝐏𝐡𝐚𝐬𝐞 𝐚 

𝐏𝐡𝐚𝐬𝐞 𝐛 

𝐏𝐡𝐚𝐬𝐞 𝐜 

𝐭𝟏 
𝐭𝟐 𝐭𝟑 

𝐭𝟒 
𝐭𝟓 
𝐭𝟔 

𝐓𝐬𝐚𝐦𝐩𝐥𝐞 𝐭𝐤 𝐭𝐤+𝟏 

𝐭 

∆𝐓 

∆𝐓 
∆𝐓 

Figure 5.37: Illustration of the operation of the RCD algorithm, case W1,2

In scenario W1,1, according to the new PWM pattern, the IGBT modules that

have already changed their status should have switched at an earlier time, as shown

in Figure 5.36. In this example, at the time when the new PWM pattern is available,
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the switches of phase c have already switched. However, according to the new pattern,

these switches should have switched a ∆T time earlier. In other words, these switches

have changed their state with a delay equal to ∆T . This ∆T time is then added to the

PWM timers of the IGBTs of the other two legs, again to maintain the same modulated

line voltage.

Finally, the complementary W1,2 scenario occurs when, according to the new PWM

pattern, the switches that have already changed their status should have switched at a

later time, as shown in Figure 5.37. In this example, at the time when the new PWM

pattern is available, the switches of phase c have already switched. However, according

to the new pattern, these switches should have switched a ∆T time later. In other

words, these switches have changed their state a ∆T time earlier. This ∆T time is

then subtracted from the PWM timers of the IGBTs of the other two legs, once again

to maintain the same modulated line voltage.

It is worth mentioning that in scenarios W0,2, W1,1 and W1,2, the RCD algorithm

also verifies that by modifying the PWM timers of the switches that have not changed

their status yet, their final PWM timers ti are such that Tk + Tc < ti < Tk + Tsample,

with i = 1, 2, ...6. If this condition is not verified, the PWM pattern is not reviewed.

The technique used to calculate the PWM timers is described in Appendix E.2.4.

The occurrence of the above listed cases depends both on the Tc calculation time

and on the amplitude of the SVM modulation functions mx[k], with x = a, b, c. In

fact, operating at higher modulation depths makes the switching activity of the IGBT

modules start at earlier times during each Tsample window, therefore impacting on

the execution of the RCD algorithm. In more detail, the verification of the different

scenarios with W = 0, 1, 2 can be related to the SVM modulation depth m̂[k], calculated

as:

m̂[k] =

√
3

2
M [k] =

√
3

2

√
m2
d[k] +m2

q [k], (5.1)

where md[k] and mq[k] are the resulting dq-frame modulation signals generated by the

controller algorithm. It is then possible to identify the critical value of m̂[k], indicated
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as m̂c, for which the RCD algorithm will operate with W = 0. This is related to the

Tc calculation time as:

m̂c = − 2Tc
Tsample

+ 1 (5.2)

where in (5.2) 0 ≤ Tc ≤
Tsample

2 . In particular, for the achieved calculation time, Tc = 13

µs, m̂c is 0.87 (see Figure 5.38a). It is worth mentioning that this result depends on

the shape of the modulation functions.

When m̂[k] > 0.87, at any time tk, no more then one of the three phases of the SVM

modulation functions, phase x̂, will have an amplitude higher than 0.87. Hence, under

this operating condition, only the converter leg corresponding to phase x̂ will experience

a switching activity during the initial Tc time of the [tk, tk+1] sampling period, i.e. at

a time t with tk < t ≤ tk + Tc. This will cause the RCD algorithm to operate with

W = 1. Finally, it is pointed out that the case with W = 2 never occurs with Tc ≤ 13

µs (see Figure 5.38b, where the most critical scenario with m̂[k] = 1 is illustrated).

By satisfying such condition on the Tc calculation time, it is therefore assured that the

implemented RCD algorithm will always succeed in updating the currently delivered

PWM pattern, regardless of the converter operating point.
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Figure 5.38: (a) Converter SVM modulation functions for (a) m̂[k] = m̂c and (b)
m̂[k] = 1 > m̂c.
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5.3.1.1 Experimental verification

The operation of the RCD algorithm has been tested with the laboratory test-rig de-

scribed in Section 2.3.2.3, making use of the system and controllers parameters detailed

in Table 2.12.
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Figure 5.39: Recorded SVM modulation functions generated by the controller prototype
for the different operating points listed in Table 5.6.

Different operating points of the system have been tested in order to verify the

functionality of the RCD algorithm both for m̂[k] ≤ 0.87 (i.e. when only the scenario

with W = 0 occurs) and for m̂[k] > 0.87 (i.e when both cases with W = 0 and W = 1

occur). Higher SVM modulation depths have been obtained increasing the set-point

of the i+d loop, in other words increasing the amount of reactive power injected into
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the grid. The tested operating points are listed in Table 5.6. The resulting modulation

functions recorded from the carried out tests are shown in Figure 5.39, for the considered

operating points. Testing the prototype with higher SVM modulation depths has been

avoided not to incur in over-modulation.

Table 5.6: Operating points tested to verify the functionality of the RCD algorithm.

Operating point i+q,ref i+d,ref i−q,ref i−d,ref m̂[k]

OP1 4 A 0 A 0 A 0 A 0.73
OP2 4 A 5 A 0 A 0 A 0.87
OP3 4 A 8 A 0 A 0 A 0.91
OP4 4 A 9 A 0 A 0 A 0.97
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Figure 5.40: Comparison between current loop frequency responses either obtained
experimentally or with the system FD model. The case corresponding to the operating
point OP1 in Table 5.6 is illustrated.
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Figures 5.40, 5.41, 5.42, 5.43 show the closed loop frequency responses of the current

controller loops, for the operating points OP1, OP2, OP3 and OP4, respectively.

The results obtained from the system small-signal model are contrasted to the exper-

imental data. The controller scheme where only the FVFF term is implemented is

compared to the configuration where the RCD algorithm is also active. In the small-

signal models, in order to reproduce the effect of the RCD strategy, the Tsample delay

of the current loop has been eliminated. In other words, the controller delay Td defined

in (2.19) has been set to 0.5Tsample, which is attributed to the Sample & Hold effect of

the PWM generation [91].
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Figure 5.41: Comparison between current loop frequency responses either obtained
experimentally or with the system FD model. The case corresponding to the operating
point OP2 in Table 5.6 is illustrated.
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Figures 5.40 and 5.41 show the cases with a modulation depth m̂ of 0.73 and 0.87

respectively, which makes the RCD algorithm operate with W = 0. On the other hand,

Figures 5.42 and 5.43 show the cases with m̂ equal to 0.91 and 0.97 respectively, where

both conditions W = 0 and W = 1 may occur.
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Figure 5.42: Comparison between current loop frequency responses either obtained
experimentally or with the system FD model. The case corresponding to the operating
point OP3 in Table 5.6 is illustrated.

The plots show a substantial overlap between the results from the small-signal (FD)

model and the experimental data. For all the considered operating points, the relevant

difference between the two controller schemes is seen in the reduction of the phase

loss in the higher frequencies range. Such phase loss reduction is attributed to the

elimination of the Tsample delay in the controller operation, which therefore confirms

156



Chapter 5. Wind farm resonances: mitigation techniques

the effectiveness of the RCD algorithm.
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Figure 5.43: Comparison between current loop frequency responses either obtained
experimentally or with the system FD model. The case corresponding to the operating
point OP4 in Table 5.6 is illustrated.

5.3.1.2 Effect on the harmonics of the modulated voltage

The review of the PWM pattern delivered during the current sampling period, applied

according to the described RCD method, has an impact on the harmonics of the in-

verter modulated AC voltage, as it will be discussed in this Section.

In order to evaluate such effect, the RCD algorithm has been implemented in MAT-

LAB/Simulink, and the operation of the inverter with and without the use of the RCD

technique has been simulated for different PWM modulation depths m̂. From the

simulation results, the harmonic content of the modulated voltage has been assessed,
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comparing the scenario where the RCD strategy is used to the one where it is not ap-

plied. These simulations have been carried out with the inverter connected to a passive

RL load through its coupling reactor, and with the inverter feedback controller disabled

(see Figure 5.44). The system parameters used in this analysis are detailed in Table

5.7.
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Figure 5.44: Symulink based model used to assess the impact of the RCD algorithm
on the harmonics of the modulated voltage signal.

Table 5.7: System parameters associated to scheme in Figure 5.44.

Electrical Parameters Value

Fundamental frequency 50 Hz
Grid Inductance Lg 0.1 mH
Grid Resistance Rg 0.1 Ω
Coupling Inductance Lf 2.5 mH
Coupling Resistance Rf 0.1 Ω
Inverter DC voltage 3000 V

Figure 5.45 shows the results obtained from the carried simulations for different

values of the modulation depth m̂. As it can be seen, the RCD strategy does not alter

the harmonic content of the U voltage as long as the modulation depth is lower than

0.87. This indicates that when operating in scenario W0,1, i.e. when the currently

applied PWM pattern is simply replaced by its updated version (see Figure 5.34),

there is no effect on the harmonics of the modulated inverter voltage . However, at

higher modulation depths, an impact on the voltage harmonics can be observed. This

is attributed to the occurrence of scenarios W0,2, W1,1 and W1,2, and in particular to

the preliminary correction applied on the new calculated PWM pattern before this is
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applied (see Figures 5.35, 5.36 and 5.37).
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Figure 5.45: Comparison between the harmonic components of the modulated U voltage
in Figure 5.44. The cases with mdepth = 0.70, 0.87, 0.95, 1 are shown, with Tc = 13 µs.

These results are also confirmed in Figure 5.46 where the Total Harmonic Distortion

(THD) of the U voltage is shown for different modulation depths m̂. For this calculation

the harmonics up to the 30th order have been considered, according to the following

equation [113]:

THD[%] =

√∑30
n=2(Ûa,n)2

Ûa,1
× 100 (5.3)

where Ûa,n is the RMS voltage magnitude of the nth harmonic of Ua(t).
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As it can be seen, the RCD algorithm has no impact on the voltage THD, as long as

m̂ ≤ 0.87. On the other hand, at higher modulation depths, the voltage THD increases

when the RCD algorithm is in action. The worst case scenario occurs with m̂ = 1, with

the THD becoming approximately 0.15 % higher. Based on these results, it can be

stated that the beneficial effect of the RCD strategy on the delay performance of the

controller operation comes at the cost of a lower quality of the modulated AC voltage,

when operating at higher PWM modulation depths.
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Figure 5.46: Comparison between the THD of the modulated U voltage as a function
of m̂. The cases where the RCD algorithm is either used or not are contrasted, with
Tc = 13 µs.

5.3.2 Effect of the RCD strategy on the wind farm resonances

The effect of the RCD strategy on the stability performance of the wind farm system

described in Section 2.1.4 has been evaluated. In this analysis, the use of a PWM

asymmetrical sampling technique has been assumed. Figures 5.47 and 5.48 show the

resulting Nyquist plots of I + L̂PN (s) for the cases where the RCD is strategy operates

without or with the FVFF term, respectively. As it can be seen, in both scenarios the

system is stable for any number N of operating turbines, with 1 ≤ N ≤ 54. The corre-

sponding Bode plots of the system eigenvalues, λ1(j2πf) and λ2(j2πf), are reported in

Figures 5.49 and 5.50 for the scenario where the RCD technique operates without the

FVFF strategy, and in Figures 5.51 and 5.52 for the scenario where both the RCD and

the FVFF techniques are used. As it can be seen, in the higher frequency range, the
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reduction on the phase loss of the eigenvalue functions is expectedly maximized when

both strategies are in action.

Figure 5.47: Nyquist plot of I + L̂PN (s) for different values of the number of oper-
ating turbines N , considering the revised controller where only the RCD strategy is
implemented.

Figure 5.48: Nyquist plot of I + L̂PN (s) for different values of the number of operating
turbines N , considering the revised controller where both the RCD and the FVFF
strategies are implemented.
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Figure 5.49: Bode plot of the eigenvalue λ1(2πf) of L̂PN (s) for different values of the
number of operating turbines N , considering the revised controller where only the RCD
strategy is implemented.

Figure 5.50: Bode plot of the eigenvalue λ2(2πf) of L̂PN (s) for different values of the
number of operating turbines N , considering the revised controller where only the RCD
strategy is implemented.
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Figure 5.51: Bode plot of the eigenvalue λ1(2πf) of L̂PN (s) for different values of the
number of operating turbines N , with the revised controller where both the RCD and
the FVFF strategies are implemented.

Figure 5.52: Bode plot of the eigenvalue λ2(2πf) of L̂PN (s) for different values of the
number of operating turbines N , with the revised controller where both the RCD and
the FVFF strategies are implemented.
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Figure 5.53: Comparison between the Nyquist plots of I+L̂PN (s). The different control
schemes proposed in the study are compared. N = 54.
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Figure 5.54: Comparison between the Bode plots of the eigenvalue λ1(j2πf) of L̂PN (s).
The different control schemes proposed in the study are compared. N = 54.
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Figure 5.55: Comparison between the Bode plots of the eigenvalue λ2(j2πf) of L̂PN (s).
The different control schemes proposed in the study are compared. N = 54.

A comparison among the proposed controller schemes has been carried for the case

with N = 54, i.e. in the most critical operating conditions of the wind farm, when it

is generating its rated power. The resulting Nyquist plots are shown in Figure 5.53,

while the Bode plots of the system eigenvalues are reported in Figures 5.54 and 5.55.

The results show that the FVFF strategy is more effective than the RCD strategy on

reducing the phase loss of the eigenvalues of L̂PN (jω) in the range of frequencies where

the wind farm resonances occur. In addition to this, the plots show that the FVFF

term reduces the magnitude of the eigenvalues of L̂PN (jω) in the lower frequency range,

which confirms the damping properties of such a strategy. This is seen as acting to

mitigate weak grid issues.

The results of the study of the system relative stability are detailed in Table 5.8. When

only the RCD strategy is used, the mitigation of the high frequency cable resonance

is less effective, as the low phase margin data obtained in the higher frequency range

indicates. When the FVFF strategy is applied, the high frequency resonances are

counteracted more effectively, making the weak grid effect critical in the system stability
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performance. Thanks to the diagonal dominance property of the system being satisfied,

it has also been possible to calculate the d∞ stability margin introduced in Section 4.4.

Its values confirm the conservativeness of this figure, which is particularly evident for

the two scenarios where the FVFF term is active.

Table 5.8: Analysis of the wind farm system relative stability for N = 54.

Control strategy GM+
SISO PM+

SISO GM−SISO GM−SISO d∞ GMd∞ PMd∞

[dB] [deg] [dB] [deg] - [dB] [deg]

RCD 8.7 (at 54 Hz) 11 (at 1072 Hz) 7.5 (at 55 Hz) 11 (at 1072 Hz) 0.177 ≥ 1.69 ≥ 10.2
FVFF 5 (at 59 Hz) 19 (at 64 Hz) 47 (at 51 Hz) 34 (at 65 Hz) 0.132 ≥ 1.23 ≥ 7.6

FVFF + RCD 6.3 (at 58 Hz) 30 (at 65 Hz) 47 (at 51 Hz) 45 (at 65 Hz) 0.24 ≥ 2.4 ≥ 13.9

Overall, the results indicate that by combining the FVFF and the RCD strategies,

both the high frequencies resonances and the weak grid effect are mitigated more ef-

fectively. This is in line with the simulation data obtained with the corresponding TD

model of the studied wind farm system. As it can be seen from Figure 5.56, where the

step response of the q+ current loop is shown for a 5 % increase in the i+q,ref set-point,

a lower overshoot as well as more damped dynamics are achieved when the FVFF

technique is combined with the RCD strategy.
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Figure 5.56: Simulated step responses of the i+q control loop, using the TD model of
the studied wind farm system. The case with N = 54 operating turbines is shown. The
different mitigation techniques presented in this work have been compared.

In conclusion, based on the stability margins detailed in Table 5.8, the best per-

forming one is the scheme where both the FVFF and the RCD strategies are employed.
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Such control scheme will be indicated as the optimal controller design in the following

Sections.

5.3.2.1 Sensitivity analysis

A particular aspect of the wind farm electrical resonances is that their frequency

strongly depends on the details of the cabling system of the wind park, as discussed

in Chapter 1. Therefore, a desirable property of any proposed mitigation technique

should be its robustness against any changes in the frequencies of these resonances.

In order to assess how well the proposed optimal control scheme can deal with such

changes, the frequencies of the cable resonances of the studied wind farm have been var-

ied. In more detail, the cable parameters listed in Table 2.2 have been altered to shift

the resonance frequencies of the system admittance YTH(s), shown in Figure 2.10, by

approximately ±20%. The new resonance frequencies are detailed in Table 5.9, where

these have been grouped in two ranges, indicated as FR1 and FR2. The resulting Bode

plots of the modified YTH(s) admittance are shown in Figure 5.57.

Table 5.9: Analysed ranges of resonances of the system admittance YTH(s).

Scenario FR1 [Hz] FR2 [Hz] Notes

M [218, 477] [952, 1108] ≈ 20 % lower than scenario B, see Figure 5.57a
B [280, 575] [1111, 1200] Baseline scenario, see Figure 2.10
P [341, 713] [1573, 1590] ≈ 20 % higher than scenario B, see Figure 5.57b

(a) Scenario M (b) Scenario P

Figure 5.57: Modified system admittance YTH(s) in the carried out sensitivity analysis
study.
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As mentioned, the proposed optimal control strategy where both the RCD and the

FVFF strategies are utilised is evaluated. The resulting Nyquist plots of the system are

shown in Figure 5.58, which confirm that the system is stable in any of the reproduced

scenarios. The corresponding Bode plots of the system eigenvalues are illustrated in

Figures 5.59 and 5.60. As it can be seen, the phase performance of L̂PN (jω) results

substantially immune to the applied changes on the resonance frequencies. This there-

fore confirms the capability of the proposed optimal controller design to mitigate the

wind farm resonances, regardless of the details of the wind farm cabling system.

The corresponding stability margins of the system are reported in Table 5.10. They

confirm that the high frequency resonances are no longer critical to the system stability.

The presence of a low frequency resonance, attributed to weak grid issues, is now the

factor curbing the system stability performance. Its criticality is seen to increase when

the wind farm resonances occur at lower frequencies.

Figure 5.58: Comparison between the Nyquist plots of I + L̂PN (s) for scenarios M, B
and P. N = 54.
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Figure 5.59: Comparison between the Bode plots of the eigenvalue λ1(j2πf) of L̂PN (s)
for scenarios M, B and P. N = 54.
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Figure 5.60: Comparison between the Bode plots of the eigenvalue λ2(j2πf) of L̂PN (s)
for scenarios M, B and P. N = 54.
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Table 5.10: Sensitivity analysis: assessment of the system relative stability. N = 54.

Scenario GM+
SISO PM+

SISO GM−SISO GM−SISO d∞ GMd∞ PMd∞

[dB] [deg] [dB] [deg] - [dB] [deg]

M 5 (at 58 Hz) 22 (at 63 Hz) 47 (at 51 Hz) 38 (at 63.5 Hz) 0.132 ≥ 1.23 ≥ 7.6
B 6.3 (at 58 Hz) 30 (at 6 Hz) 47 (at 51 Hz) 45 (at 65 Hz) 0.242 ≥ 2.4 ≥ 13.9
P 8.1 (at 58 Hz) 42 (at 67 Hz) 47 (at 51 Hz) 56 (at 68 Hz) 0.352 ≥ 3.8 ≥ 20.3

5.3.2.2 Experimental verification

The effect of the RCD strategy on the cable due resonances has been verified exper-

imentally, making use of the laboratory prototype described in Section 2.3.2.1. The

same test described in Section 4.2.1.2 and 5.2.3.1 has been carried out, making use of

a PWM asymmetrical sampling technique, with a switching frequency of 2.5 kHz.

A comparison among the experimental results obtained considering the three proposed

mitigation strategies, namely the FVFF, the RCD and the FVFF+RCD techniques, is

reported in Figure 5.61.
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Figure 5.61: Comparison among the recorded i+q trends for the considered control
scheme configurations.

The results confirm that when the FVFF and the RCD strategies are combined the

optimal stability perfomance is obtained, with the 10 % - 90 % rise time tr, the 1 %

settling time ts and the Percentage Overshoot PO being reduced [25] (see Table 5.11).
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As such, a faster control action with more damped system dynamics are obtained.

Table 5.11: Comparison between the step response parameters tr, ts and PO for the
different controller schemes. These values have been derived from the step response
occurring at t = 3 s in Figure 5.61

Control strategy tr[ms] ts[ms] PO[%]

RCD ≈16 ≈70 ≈30
FVFF ≈6 ≈40 ≈40

FVFF + RCD ≈7 ≈40 ≈20

Figure 5.62 shows the corresponding Nyquist plots of the system, comparing the

proposed controller configurations. The operating point corresponding to the rated

power of the inverter has been considered to generated these results. The associated

Bode plots of the system eigenvalues are shown in Figures 5.63 and 5.64. These results

confirm the previously mentioned observations that the FVFF term has a higher capa-

bility than the RCD algorithm to counteract the cable due high frequency resonances,

and that the optimal performance is obtained when both the RCD and the FVFF

strategies operate together.
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Figure 5.62: Nyquist plot of I + L̂PN (s) for the laboratory tested system.

171



Chapter 5. Wind farm resonances: mitigation techniques

Figure 5.63: Bode plot of the eigenvalue λ1(j2πf) of L̂PN (s) for the laboratory tested
system.

Figure 5.64: Bode plot of the eigenvalue λ2(j2πf) of L̂PN (s) for the laboratory tested
system.

These conclusions are in line with the corresponding system stability margin data

detailed in Table 5.12. In particular, it can be seen how the phase margin figures in-

crease significantly when the RCD and the FVFF strategies are combined. The results
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therefore are a further confirmation that such controller scheme is the optimal one

among the proposed designs.

Table 5.12: Stability margins for the tested laboratory prototype. A comparison among
the proposed mitigation techniques is presented.

Control strategy GM+
SISO PM+

SISO GM−SISO GM−SISO d∞ GMd∞ PMd∞

[dB] [deg] [dB] [deg] - [dB] [deg]

RCD 25.4 (at 51.5 Hz) 24 (at 784 Hz) 29 (at 52 Hz) 24 (at 784 Hz) 0.4 ≥ 4.44 ≥ 23.1
FVFF 25.7 (at 52.8 Hz) 42.8 (at 776 Hz) 55 (at 50 Hz) 43.4 (at 774 Hz) 0.66 ≥ 9.4 ≥ 38.5

FVFF + RCD 26.2 (at 52.6 Hz) 55 (at 753 Hz) 57 (at 50 Hz) 55 (at 750 Hz) 0.79 ≥ 13.56 ≥ 46.5

5.4 Chapter summary

The significant role of the controller delay on the studied wind farm high frequency res-

onance problem has been identified. Two mitigation methods, the FVFF and the RCD

strategies, have been designed to minimise such delay without increasing the switching

frequency of the converter. Both techniques are based on a more efficient use of the

hardware processing power available in modern control boards, and do not require ei-

ther parameter tuning or a prior knowledge of the details of the wind farm design.

The FVFF strategy is based on using the latest AC voltage sample to determine the

controller action, exploiting oversampling of such signal. It has been shown, both

analytically and experimentally, how this strategy is beneficial not only to the high

frequency resonance problem associated to the parasitic capacitance of the employed

cables/lines, but also to weak grid issues.

The RCD strategy is based on adjusting the PWM pattern currently being delivered

to the converter, based on the latest samples of the voltage and current signals. The

capability of the RCD strategy of eliminating the sampling delay of the controller has

been proven experimentally, highlighting how this comes at a cost of a higher harmonic

content in the modulated inverter voltage when operating at higher modulation depths.

It has been shown that the optimal performance of the controller is obtained when both

the FVFF and the RCD strategies are applied, which therefore represents the final con-

troller design proposed by this work. Its robustness against changes in the frequencies
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of the wind farm resonances has been verified, confirming the general applicability of

the presented solution, regardless of the wind farm electrical specifics.
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Conclusions

6.1 General conclusions

In this thesis an analysis of the electrical resonances caused by the cables and lines

connecting a wind farm to the grid has been carried out. The stability issues arising

from the interaction between these resonances and the turbine’s inverter controller have

been reproduced, both in an analytical small-signal model of a wind farm-grid system

where such issues were observed, and in a scaled-down prototype of a grid-connected

VSC system. The relevant role of the parasitic capacitance of such cables and lines to

the generation of these resonances has been confirmed, and the likelihood of potential

weak grid issues has been identified.

In the modelling phase of the work, a technique has been defined to derive a unique

small-signal model of the converter-grid system in the positive dq-frame. In particular,

a methodology to project the dynamics of the inverter’s negative sequence current con-

troller from the negative to the positive dq-frame has been formulated. This has allowed

the inclusion of the coupling between the positive and the negative sequence current

controllers into the corresponding controller small-signal model, while such coupling

is typically ignored in the modelling techniques published to date in the literature. A

particular application of this projection technique consists in mapping transfer function

models defined in the abc-frame onto the positive dq-frame.

A framework has been built to study the stability of the inverter-grid system in the
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sequence-frame, based on an impedance-based approach. For this purpose, a system-

atic methodology to calculate the sequence-frame small-signal converter admittance has

been derived, and its accuracy and applicability regardless of the employed converter

control scheme have been verified experimentally. A study of the existing coupling

between the positive and the negative sequence components of the small-signal con-

verter admittance has been carried out, verifying how this is affected by the employed

converter control scheme, and in particular by asymmetries between the d- and the q-

axis control loops. An experimental validation of the conditions that make the system

Mirror Frequency Decoupled has been carried out.

An analytical technique to include the effect of these coupling terms into the stability

study has been introduced, which has allowed to improve the accuracy of the sta-

bility study compared to the impedance-based stability criterion. Hence, a criterion

to infer whether such coupling terms are relevant or not to the stability analysis has

been presented, by assessing the property of diagonal dominance of the small-signal

impedance-based model of the system in the sequence-frame. It has been shown how

in the scenario of a VSC connected to a weak grid this coupling is likely to become

relevant in a standard controller configuration where the active power and the voltage

regulators are included in the converter control scheme. A stability margin definition

that takes such coupling into account has been introduced. Its effectiveness has been

verified experimentally, by considering the scenario of a VSC connected to a weak grid

and evaluating how damping of the system dynamics varies with its operating point.

It has been show how the presented stability margins offers a more conservative and

safer analysis of the system relative stability compared to the gain and phase margin

figure used in the impedance-based stability criterion.

The proposed stability study methodology has been applied to analyse the wind farm

resonances of the considered wind farm-grid system. Its accuracy to predict the sta-

bility behaviour of the system has been verified experimentally making use of a labo-

ratory inverter-grid prototype, where such type of cable due resonance issue has been

reproduced. The analysis has indicated the central role of the controller delay in con-

tributing towards unstable dynamics when such high frequency wind farm resonances
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are present.

Compared to the techniques proposed in the literature to address these instability

problems, which need to be customised on a case-by-case basis and require an a pri-

ori knowledge of the wind farm specifics, a more generic and portable solution to the

problem has been aimed by this work. The proposed techniques, the FVFF and the

RCD strategies, differ from such standard methodologies as they do not require pa-

rameter tuning, nor the installation of additional equipment such as STATCOMs or

reactive components. They are instead based on optimising the use of the processing

power available in modern control boards, with the purpose of reducing the mentioned

detrimental effect of the controller delay on the investigated problem. This has been

done without altering the converter switching frequency, but making a more effective

use of the voltage and current measurements taken from the plant. In particular, the

implementation of the proposed techniques has required a revision of the standard im-

plementation of the controller algorithm, making use of two processor cores instead of

one.

The proposed FVFF technique has allowed to reduce the phase lag on the voltage feed

forward term of the current controller. In this way, by oversampling the voltage signal,

and by making use of its latest available sample to determine the controller action, it

has been possible to maximise the damping capabilities of the controller. The effec-

tiveness of this strategy to counteract the high frequency electrical resonances caused

by the parasitic capacitance of the cables/lines, and to mitigate weak grid issues has

been verified experimentally.

The designed RCD strategy has successfully eliminated the sampling delay of the con-

troller, allowing a prompt controller action based on the latest voltage and current

measurements. An experimental verification of its functionality and of its stabilising

effect on the wind farm resonance problem has been carried out. The elimination of the

sampling delay is seen to come at the cost of a potential higher harmonic generation in

the modulated converter voltage, when this operates with higher modulation depths.

It has been seen how this effect could be reduced by minimising the execution time of

the controller algorithm.
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In conclusion, the controller implementation where both the FVFF and the RCD strate-

gies are used, has been proposed as the optimal design to boost the stability perfor-

mance of the controller, making it more robust to changes in the wind farm resonances,

as well as more immune to weak grid issues.

6.2 Author’s contributions

The following contributions of this work are listed:

• A methodology to include the negative sequence current controller of the converter

system in a unique small-signal model of such system, defined in the positive dq-

frame.

• A set of equations to derive the small-signal converter admittance in the sequence-

frame, in a systematic way, starting from equivalent data defined in the dq-frame.

• An analysis of the cross-coupling terms between the positive and the negative

sequence terms of the small-signal converter admittance, verifying how different

elements of the converter controller affect the Mirror Frequency Decoupled (MFD)

property of the system.

• A criterion to infer whether such coupling terms should be included or not in

the stability analysis of the converter-grid system, by evaluation of the diagonal

dominance property of the small-signal impedance-based model of such system in

the sequence-frame.

• The introduction of a perturbation norm stability margin to assess the relative

stability of a converter-grid system. This exploits the mentioned property of

diagonal dominance of the small-signal impedance-based model of such system in

the sequence-frame, when this property is verified.

• The design of a FVFF strategy to reduce the phase lag on the voltage feed-forward

term of the converter current controller, proving its effectiveness to counteract the

high frequency wind farm resonance problem, as well as to mitigate weak grid

issues.
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• The design of a RCD strategy to eliminate the sampling delay of the converter

controller.

6.3 Future work

The following items are identified as future work:

• Extend the developed methodology to calculate the pn-frame small-signal con-

verter admittance to the cases of other converter topologies (e.g. Modular-

Multilevel-Converter).

• Apply the presented stability study methodology to the cases where alternative

converter control strategies are used (e.g. Virtual Synchronous Machine control).

• Further study on the anti-aliasing filter design, and evaluation of how such filter

implementation affects the performance of the FVFF strategy.

• Further analyse the impact of the RCD strategy on the harmonics of the inverter

modulated AC voltage and suggest possible mitigation methods.

• Improve the operation of the RCD strategy, by a further minimisation of the

controller algorithm execution time.
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Appendix A

Inverter AC voltage modulation

The theory applied to modulate the inverter AC voltage is presented in Section A.1,

while the Space Vector Modulation (SVM) method, which has been used throughout

the work, is discussed in Section A.2.

A.1 Inverter voltage modulation

The modulation of the three phase two level converter topology described in Section

2.1.1.1 is discussed as follows.

The inverter output voltage is regulated by a set of digital signals, the so-called Pulse

Width Modulation (PWM) pattern. These signals alternatively change the turn-on

and turn-off status of the inverter IGBT switches [72], with the purpose of obtaining

the desired modulated voltage. The PWM pattern results from an algorithm which

calculates the turn-on and turn-off times of the six inverter switches by comparing a

set of per-unit reference voltages, the so-called modulation index functions mabc, to a

unique carrier signal. This typically is a triangular periodic waveform, whose frequency

fs is the switching frequency of the converter, and whose amplitude is in the range [−1,

1]. In this work, only the operation of the inverter under linear modulation conditions

has been considered, therefore assuming that the modulation functions mabc also lie in

the [−1, 1] range [90].

Depending on the sampling strategy, namely natural sampling, regular symmetrical

sampling and regular asymmetrical sampling, different PWM signals are obtained [73],
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shown in Figure A.1. In the natural sampling case, the modulation function and the

carrier are continuously sampled. In the other two methods, which are used in prac-

tical hardware implementations, the comparison takes place at discrete times. In the

symmetrical case, this occurs only when the carrier waveform has its minimum (or max-

imum) value, once every switching period Ts = 1
fs

. Conversely, in the asymmetrical

case, the comparison occurs twice per switching period, when the carrier is maximum

and minimum. The modulation functions are therefore updated every Tsample, with

Tsample = Ts
2 . [73].

Taking into consideration the regular asymmetrical sampling technique, for a generic

Tsample period [tk, tk+1], by respectively indicating with da[k], db[k] and dc[k] the frac-

tions of Tsample during which the switches Q1, Q3 and Q5 are conducting during the

[tk,tk+1] interval (see Figure 2.2), these can be related to the values of ma[k], mb[k] and

mc[k] as:

da[k] =
ma[k] + 1

2
, db[k] =

mb[k] + 1

2
, dc[k] =

mc[k] + 1

2
(A.1)

Thereby, by considering the middle point of the DC link as the reference voltage,

the average values ÛI,a[k], ÛI,b[k], ÛI,c[k] of the inverter output voltages, calculated

over the [tk, tk+1] period, are [71], [72]:

ÛI,a[k] =
2da − 1

2
UDC = ma[k]

UDC
2

,

ÛI,b[k] =
2db − 1

2
UDC = mb[k]

UDC
2

,

ÛI,c[k] =
2dc − 1

2
UDC = mc[k]

UDC
2

(A.2)

The linear relations (A.2) between the DC link voltage UDC and the average inverter

output voltages are valid for modulation indexes lying in the [−1, 1] range, in other

words under linear modulation conditions [71]. Equations (A.2) are at the basis of the

average model of the inverter, used in this work (see Section 2.1.1.1).

Among the possible techniques that define the modulation functions, Space Vector

Modulation (SVM) has been applied, because of its main advantage of assuring linear
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modulation over a wider range of values of the modulation indexes [73], as it will be

discussed in the following Section A.2.

PWM signal

Carrier

Modulation 

function

t

0

1

1

0

-1

(a)

PWM signal

Carrier

Modulation 

function

t

0

1

1

0

-1

(b)

PWM signal

Carrier

Modulation 

function

t

0

1

1

0

-1

(c)

Figure A.1: Comparison among standard sampling strategies used to generate the
PWM signal: (a) Natural sampling; (b) Regular symmetrical sampling (single edge);
(c) Regular asymmetrical sampling (double edge).
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A.2 Space Vector Modulation

The basic idea of this technique is to represent the desired inverter average output

voltage ÛI,abc[k] in (A.2) as a space vector ~UI [k] in the αβ-frame (see Appendix B.1 for

the definition of space vector). In particular, based on (B.7):

~UI [k] = UI,α[k] + jUI,β[k] (A.3)

As the output terminal of each inverter leg can either be connected to the positive

terminal of the inverter DC voltage (see Figure 2.2), or to its negative terminal, a digi-

tal value can be used to identify the two possible inverter leg output voltages (codified

as 1 or 0 respectively). Thereby, the resulting three phase inverter voltage UI,abc can

be identified as UI,nmk where n, m, k indicate the digital value, 0 or 1, for legs a, b,

c respectively. Only 8 possible values can be taken by UI,nmk, determining 8 corre-

sponding base space vectors in the αβ-frame and indicated as ~Unmk (see Figure A.2).

The vectors ~U000 and ~U111 are the so-called zero vectors, which respectively correspond

to the cases where the leg outputs are all connected to the negative terminal of the

inverter DC input, or to its posititve terminal. The other six non-zero vectors have a

magnitude equal to 2UDC
3 and divide the αβ plane into 6 equal sectors, indicated as

S1,..,6 in the Figure A.2 [73]. UDC is the inverter DC voltage.

Hence, the voltage ~UI [k] in (A.3) can be described as a linear combination both of two

of the six non-zero base vectors, depending on the sector where ~UI [k] lies, and of the

two zero base vectors. To give an example, if ~UI [k] lies in sector S1, it will be described

as a combination of ~U100 and ~U110 and of the zero vectors. The two non-zero vectors

used to describe ~UI [k] are those limiting the sector where the ~UI [k] is. Each of the se-

lected base vectors is applied at the inverter output for a fraction of Tsample so that the

resulting average inverter output over the Tsample period equals ~UI [k]. By indicating

with ~UL and ~UR the two non-zero base vectors respectively leading and lagging ~UI [k],
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the following linear combination can be formulated:

~UI [k] = kL~UL + kR~UR (A.4)

where in (A.4) kL and kR are the fractions of Tsample during which the two base vectors

~UL and ~UR are respectively applied. In other words, the vector ~UL is applied for a time

TL = klTsample, while the vector ~UR is applied for a time TR = krTsample, with:

TL + TR ≤ Tsample

The remaining fraction of Tsample will be covered by the zero vectors ~U000 and ~U111,

respectively applied for T0 and T1 periods. Among the different methods used to ap-

ply the zero vectors, their application before and after the non-zero vectors has been

considered in this work [114].

𝐔   𝟎𝟏𝟎 𝐔   𝟏𝟏𝟎 

𝐔   𝟏𝟎𝟎 

𝐔   𝟏𝟎𝟏 𝐔   𝟎𝟎𝟏 

𝐔   𝟎𝟏𝟏 𝐔   𝟏𝟏𝟏 

𝐔   𝟎𝟎𝟎 
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Figure A.2: Graphical representation of the SVM vectors

Taking into consideration the regular asymmetrical sampling strategy, the following

Figure A.3 illustrates the operation of the SVM technique for a switching period Ts =
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2Tsample.
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Figure A.3: Operation of the SVM algorithm.

The SVM modulation functions mabc[k] are applied by the inverter controller at

t = tk, i.e. at the beginning of the Tsample period. Hence, the corresponding PWM

pattern associated to mabc[k] is applied in the [tk,tk+1] interval. Based on (A.2), the

following linear relation can be written between the modulated inverter voltage ~UI [k]

and the space vector ~m[k] associated to mabc[k]:

~UI [k] = ~m[k]
UDC

2
(A.5)

199



Appendix A. Inverter AC voltage modulation

An analytical expression of the SVM functions mabc[k] is calculated, which depends

on the sector where the inverter voltage ~UI [k] to be generated in the [tk, tk+1] interval

lies in. From (A.5), as this sector is the same one where ~m[k] lies, it can be identified

by the mα[k] and mβ[k] components of ~m[k] in the αβ-frame, as detailed in Table A.1.

The modulation functions mabc[k] are calculated as detailed in Table (A.2) where M [k]

is the module of the ~m[k] vector, calculated as
√
m2
α[k] +m2

β[k], while φ[k] is the angle

between ~UI [k] (or equivalently ~m[k]) and the α axis, varying in the [0, 2π] range (see

Figure A.2).

Table A.1: Sector identification according to the SVM algorithm

1◦ Quadrant mβ[k] ≤
√

(3)mα[k] mβ[k] >
√

(3)mα[k]
mα[k] ≥ 0,
mβ[k] ≥ 0 S1 S2

2◦ Quadrant mβ[k] ≤ −
√

(3)mα[k] mβ[k] > −
√

(3)mα[k]
mα[k] < 0,
mβ[k] ≥ 0 S3 S2

3◦ Quadrant mβ[k] ≥
√

(3)mα[k] mβ[k] <
√

(3)mα[k]
mα[k] ≤ 0,
mβ[k] ≤ 0 S4 S5

4◦ Quadrant mβ[k] ≥ −
√

(3)mα[k] mβ[k] < −
√

(3)mα[k]
mα[k] > 0,
mβ[k] ≤ 0 S6 S3

It is worth noticing that, within the limits of linear modulation, the maximum lenght

of ~UI [k] which can be reproduced by this algorithm is equal to UDC√
3

, identifying the

circular area in Figure (A.2). The corresponding maximum value of the modulations

function is 2√
3
≈ 1.15, i.e. approximately 15 % higher than the maximum modulation

indexes achievable when using sinusoidal reference functions. This is one of the main

advantages of the SVM technique, which justifies its wide use in industrial applications

[73].
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Table A.2: mabc[k] modulation functions according to the SVM algorithm.

Sector mabc[k] Sector mabc[k]

1 ma[k] =

√
(3)

2 M [k]cos(φ[k]− π
6 ), 4 ma[k] =

√
(3)

2 M [k]cos(φ[k]− π
6 ),

mb[k] = 3
2M [k]cos(φ[k]− 2

3π), mb[k] = 3
2M [k]cos(φ[k]− 2

3π),

mc[k] =

√
(3)

2 M [k]cos(φ[k]− 7
6π) mc[k] =

√
(3)

2 M [k]cos(φ[k]− 7
6π)

2 ma[k] = 3
2M [k]cos(φ[k]), 5 ma[k] = 3

2M [k]cos(φ[k]),

mb[k] =

√
(3)

2 M [k]cos(φ[k]− π
2 ), mb[k] =

√
(3)

2 M [k]cos(φ[k]− π
2 ),

mc[k] =

√
(3)

2 M [k]cos(φ[k]− 3
2π) mc[k] =

√
(3)

2 M [k]cos(φ[k]− 3
2π)

3 ma[k] =

√
(3)

2 M [k]cos(φ[k] + π
6 ), 6 ma[k] =

√
(3)

2 M [k]cos(φ[k] + π
6 ),

mb[k] =

√
(3)

2 M [k]cos(φ[k]− 5
6π), mb[k] =

√
(3)

2 M [k]cos(φ[k]− 5
6π),

mc[k] = 3
2M [k]cos(φ[k]− 4

3π) mc[k] = 3
2M [k]cos(φ[k]− 4

3π)
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Definition of the dq-frame

In this Appendix the mathematical framework used to formulate the dq-frame used

throughout this work will be presented. This is based on the phase space vector con-

cept, defined in Section B.1 and on the Clarke and Park transformations, respectively

discussed in Sections B.2 and B.3. Both a positive and a negative dq-frame will be

defined, which are respectively used for the implementation of the positive and the

negative sequence current controllers, discussed in Section 2.2.1.

B.1 Three phase space vector

The following abc-frame balanced signal fabc(t) is considered:

fa(t) = f̂ cos(ω0t),

fb(t) = f̂ cos(ω0t−
2

3
π),

fc(t) = f̂ cos(ω0t−
4

3
π)

(B.1)

where f̂ is constant and represents the maximum amplitude of the phase signals,

whereas ω0 = 2πf0 is the frequency, with f0 = 50 Hz. Equation (B.1) describes the

ideal form of the plant signals in a power system operating at steady state conditions.

The space vector ~f(t) is defined as [58]:

~f(t) =
2

3
[fa(t) + ej

2
3
πfb(t) + ej

4
3
πfc(t)] (B.2)
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which, using Euler’s formula [115], can be reformulated as:

~f(t) = f̂ ejω0t (B.3)

The space vector ~f(t) can be interpreted as a phasor vector rotating (anti-clockwise)

in the complex plane at the rotational speed ω0.

The expression (B.3) can be extended to the case when both the amplitude f̂ and the

frequency ω of the three phase signal are time-dependant:

fa(t) = f̂(t)cos(θ(t)),

fb(t) = f̂(t)cos(θ(t)− 2

3
π),

fc(t) = f̂(t)cos(θ(t)− 4

3
π)

(B.4)

where θ(t) is:

θ(t) =

∫ t

0
ω(τ)dτ (B.5)

ω(t) represents the time-dependent angular frequency of the three phase signal.

Hence, the general expression of the space vector can be formulated as:

~f = f̂(t)ejθ(t) (B.6)

It is worth mentioning that (B.1) and (B.4) indicate a positive sequence (balanced)

signal, where phase b and c respectively lag phase a by 2
3π rad and 4

3π rad.

B.2 Stationary αβ-frame

The space vector introduced in the previous Section can be mapped onto a stationary

two dimensional frame, whose axis are conventionally indicated as α and β [58]. This

represents a complex plane reference frame in which the time-varying position of the
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rotating space vector is identified by its coordinates fα(t) and fβ(t):

~f(t) = fα(t) + jfβ(t) (B.7)

In particular, fα(t) and fβ(t) can be calculated making use of the Clarke transform

C [116]:

fα(t)

fβ(t)

 = C


fa(t)

fb(t)

fc(t)

 =
2

3
·

1 −1
2 −1

2

0 1
2

√
3 −1

2

√
3



fa(t)

fb(t)

fc(t)

 (B.8)

The Figure B.1 represents the space vector ~f(t) in the defined stationary αβ-frame.

𝐟 (𝐭) 
𝛚(𝐭) 

𝜽(𝐭) 

𝐟𝛂(𝐭) 

𝐟𝛃(𝐭) 

𝝱 

𝝰 

Figure B.1: Representation of the space vector ~f(t) in the αβ-frame.

B.3 Positive dq-frame

From the perspective of the controller designer, a convenient reference frame would be

one where the space vector is represented by constant coordinates. In fact, this would

allow to deal with AC signals as if they were DC quantities. For this purpose, a new

set of coordinates of ~f(t) are defined, indicated as fd(t) and fq(t), such that [58]:

~f(t) = fα(t) + jfβ(t) = [fd(t) + jfq(t)]e
jε(t) (B.9)
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The fd(t) and fq(t) coordinates are defined in the so-called dq-frame, which is

rotated by an angle ε(t) with respect to the stationary αβ-frame. In particular, ε(t) is

defined as:

ε(t) = ε0 +

∫ τ

0
ω(τ)dτ. (B.10)

From (B.5), (B.10):

dε(t)

dt
=
dθ(t)

dt
= ω(t) (B.11)

Equation (B.10) implies that the dq-frame rotates at the same speed ω(t) of the

space vector ~f(t). In particular, from equations (B.6), (B.9):

~f = f̂(t)ejθ(t) = [fd(t) + jfq(t)]e
jε(t) ⇒

f̂(t)ej(θ(t)−ε(t)) = fd(t) + jfq(t)⇒

f̂(t)e−jε0 = fd(t) + jfq(t)⇒

f̂(t) = [fd(t) + jfq(t)]e
jε0

(B.12)

Furthermore, if θ(t) = ω0t then:

d~f(t)

dt
=
d{[fd(t) + jfq(t)]e

j(ω0t+ε0)}
dt

= [
dfd(t)

dt
+ j

dfq(t)

dt
]e(jω0t+ε0)

+ [fd(t) + jfq(t)]jω0e
(jω0t+ε0) =

= {[dfd(t)
dt
− ω0fq(t)] + j[

dfq(t)

dt
+ ω0fd(t)]}e(jω0t+ε0)

(B.13)

Among the different possible orientations of the dq-frame, in the present work the

one shown in Figure (B.2) has been chosen where the q-axis leads the d-axis by 90◦

and is aligned to the phase a of ~f(t) [81]. According to this orientation, ε0 in (B.10),

(B.12) is equal to −π
2 . Thereby, from (B.12):

~f = [fd(t) + jfq(t)]e
j(θ(t)−π

2
) (B.14)
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The fd(t) and fq(t) coordinates can be obtained from the fα(t), fβ(t) applying the

R(θ(t)) transformation, which is one version of the Givens rotations [117]:

fd(t)
fq(t)

 = R(θ(t))

fα(t)

fβ(t)

 =

sin(θ(t)) −cos(θ(t))

cos(θ(t)) sin(θ(t))

fα(t)

fβ(t)

 (B.15)

𝛚(𝐭) 

𝜽(𝐭) 

𝝱 

𝝰 

𝐪 

𝐝 

Figure B.2: Defined orientation of the dq-frame.

In order to highlight that the defined dq-frame rotates at the same frequency ω(t)

of (B.4), which is a positive sequence signal, such rotating frame will also be indicated

as positive sequence dq-frame, or simply positive dq-frame throughout the work.

Combining the C and R(θ(t)) transformations respectively defined in (B.8) and (B.15),

a unique matrix transformation T (θ(t)) = R(θ(t)) · C can be formulated to map the

three phase signal defined in (B.4) onto the positive dq-frame:

fd(t)
fq(t)

 = T (θ(t))


fa(t)

fb(t)

fc(t)

 =
2

3
·

sin(θ(t)) sin(θ(t)− 2
3π) sin(θ(t)− 4

3π)

cos(θ(t)) cos(θ(t)− 2
3π) cos(θ(t)− 4

3π)



fa(t)

fb(t)

fc(t)


(B.16)

Such transformation in (B.16) is the Park transform [118]. In particular, assuming

that the three phase signal fabc(t) is defined as in (B.1) then the values of fd(t) and fq(t)
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become time-invariant. Such property of T (θ(t)) is exploited in the implementation of

the converter controller in the dq-frame, as discussed in Section 2.2.1.

The fabc(t) signal can be obtained from the dq-frame signal fdq(t) applying the transpose

transform matrix T T (θ(t)):


fa(t)

fb(t)

fc(t)

 = T T (θ(t))

xd(t)
xq(t)

 =


sin(θ(t)) cos(θ(t))

sin(θ(t)− 2
3π) cos(θ(t)− 2

3π)

sin(θ(t)− 4
3π) cos(θ(t)− 4

3π)


fd(t)
fq(t)

 (B.17)

B.4 Negative dq-frame

In this Section, the case of mapping an unbalanced three phase signal on a rotating

dq-frame is considered. This will lead to the introduction of the negative sequence

dq-frame.

Unbalance in plant signals may for example be caused by fault grid conditions or simply

by differences in the phase impedances of the electrical system [58]. Such unbalanced

signals can be analytically described as a combination of a positive and a negative

sequence signal. While the former has the form given in (B.1) and is characterized

by a space vector rotating anti-clockwise at ω0 in the αβ-frame, the latter is instead

associated to a space vector rotating at ω0 but in the opposite direction (i.e. clock-

wise), with phase b and c respectively leading phase a by 2
3π rad and 4

3π rad.

It is worth mentioning that three phase AC signals may also have a zero sequence

component, where no phase shift occurs among the phases of the signal. However, such

component may be present only when a 4 wire electrical connection which includes the

neutral conductor is employed in the system. A 3 wire connection (i.e. without the

neutral wire) has been applied in this work, as this represents common practice in real

installations of grid-connected inverters [119], as such the zero sequence component has

not been included in this study.

Based on the aforementioned considerations, a generic unbalanced signal fabc(t) signal
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can be described as [119]:

fabc(t) =


fa(t)

fb(t)

fc(t)

 = f̂+


cos(ω0t)

cos(ω0t− 2
3π)

cos(ω0t+ 2
3π)

 + f̂−1


cos(ω0t)

cos(ω0t+ 2
3π)

cos(ω0t− 2
3π)

 (B.18)

where the scenario of a signal with no other frequency harmonics has been considered.

Despite the fact that f̂+ and f̂− are assumed constant in (B.18), the theoretical results

illustrated in this Section can be generalised to the more general case when these

quantities are time-dependant. Based on the definition given in (B.2), the space vector

corresponding to (B.18) is:

~f(t) = ~f+(t) + ~f−(t) = f̂+ejω0t + f̂−e−jω0t (B.19)

which highlights how this is composed of two components, ~f+(t) and ~f−(t), respec-

tively associated to the positive and negative sequence components of fabc(t). Albeit

both of them rotate at ω0, the former moves anti-clockwise, the latter clockwise. Hence,

an equivalent dq-frame can be defined for the negative sequence component of fabc(t).

Such a frame would now be rotating at the same speed of ~f−(t), i.e. at ω0 (clockwise).

It is named negative sequence dq-frame, or simply negative dq-frame. According to the

used notation, ~f−(t) can be expressed as:

~f− = [f−d + jf−q ]e−j(θ(t)+
π
2
) (B.20)

with θ(t) = ω0t. The signals f−d and f−q are the dq-components of ~f− in the negative

dq-frame. These are calculated by the same Park transform matrix in (B.16) where θ(t)

is now replaced by −θ(t). A graphical representation of both the positive and negative

sequence dq-frames is given in Figure B.3.

208



Appendix B. Definition of the dq-frame
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Figure B.3: Representation of the positive and negative dq-frames.

When mapping the ~f+(t) space vector on the positive dq-frame its d- and q-

components respectively are f̄+d and f̄+q . Equivalently, when representing the ~f−(t)

space vector on the negative dq-frame the resulting components are f̄−d and f̄−q . When

the ~f space vector (B.19) is mapped either on the positive or on the negative dq-frame,

its dq-components will be either f+q (t), f+q (t) or f−q (t), f−q (t), respectively. Their ex-

pressions are [58]:

f+d (t)

f+q (t)

 =

f̄+d
f̄+q

 +

 cos(2ω0t) sin(2ω0t)

−sin(2ω0t) cos(2ω0t)

f̄−d
f̄−q

 ,
f−d (t)

f−q (t)

 =

f̄−d
f̄−q

 +

cos(2ω0t) −sin(2ω0t)

sin(2ω0t) cos(2ω0t)

f̄+d
f̄+q

 (B.21)

It can be seen that such dq-frame components have both a DC element (f̄+d , f̄+q ,f̄−d ,

f̄−q ) and an oscillatory one. The latter, which is at 2ω0, can be seen as a coupling

effect between the positive and negative sequence components of fabc(t). This result

affects the design of the converter current controller, which aims to control the positive

and negative sequence components of the AC inverter current separately (see Section

2.2.1.1). Among the different methods suggested in the literature to remove this cou-

pling effect [119], a notch filter tuned at 2ω0 has been used in this work, as discussed

in Section 2.2.1.1.2.
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Mathematical derivations

C.1 State-space model of the electrical system in the dq-

frame

In this Section, the derivation of the dq-frame state-space representations of the grid-

inverter electrical system models used in the work is provided.

C.1.1 Electrical system in Figure 2.6

The dq-frame state-space model of the circuit illustrated in Figure (C.1) is derived,

which is equal to the grid-inverter interface equivalent circuit shown in Figure 2.6.

𝐢 

𝐋𝐟 𝐑𝐟 

𝐔 ~ 
𝐂 

𝐔𝐠 

𝐋𝐠 

𝐂𝟏 

𝐑𝐭 𝐑𝐠 𝐋𝐭 

𝐑 

𝐂𝟐 

𝐋𝟏 𝐋𝟐 𝐔𝐈 

𝐢𝐠 

𝐔𝟐 𝐔𝟏 𝐔𝐂 

𝐢𝐂 𝐢𝟏 𝐢𝟐 

~ 
𝐔𝐃𝐂

𝟐
𝐦 

Figure C.1: One-line diagram of the turbine-grid model described in Section 2.1.3.

The set of equations (C.1) can be written, in the time domain, for the space vectors

associated to the signals highlighted in the circuit. Such space vectors have been defined
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according to (B.14), with θ(t) = ω0t.

~UI(t) = ~U(t) +Rf
~i(t) + Lf

d~i(t)

dt

~U(t) = ~Ug(t) + (Rt +Rg)~ig(t) + (Lt + Lg)
d~ig(t)

dt

~U(t) = ~U2(t) + L2
d~i2(t)

dt

~U(t) = ~U1(t) + L1
d~i1(t)

dt

~i2(t) = C2
d~U2(t)

dt

~i1(t) = C1
d~U1(t)

dt

~ic(t) = C
d~Uc(t)

dt

(C.1)

It is highlighted that equations (C.1) define an LTI system, thus making the deriva-

tion of the state-space model straightforward [25]. Equations (C.1) are reformulated

in terms of the dq-components of the signals. By making use of (B.13), the following

equations (C.2) and (C.3) are obtained for the d- and q- components of the signals,

respectively:

UId(t) = Ud(t) +Rf id(t) + Lf
did(t)

dt
− Lfω0iq(t)

Ud(t) = Ugd(t) + (Rt +Rg)igd(t) + (Lt + Lg)
digd(t)

dt
− (Lt + Lg)ω0igq(t)

Ud(t) = U2d(t) + L2
di2d(t)

dt
− L2ω0i2q(t)

Ud(t) = U1d(t) + L1
di1d(t)

dt
− L1ω0i1q(t)

i2d(t) = C2
dU2d(t)

dt
− C2ω0U2q(t)

i1d(t) = C1
dU1d(t)

dt
− C1ω0U1q(t)

icd(t) = C
dUcd(t)

dt
− Cω0Ucq(t)

(C.2)
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UIq(t) = Uq(t) +Rf iq(t) + Lf
diq(t)

dt
+ Lfω0id(t)

Uq(t) = Ugq(t) + (Rt +Rg)igq(t) + (Lt + Lg)
digq(t)

dt
+ (Lt + Lg)ω0igd(t)

Uq(t) = U2q(t) + L2
di2q(t)

dt
+ L2ω0i2d(t)

Uq(t) = U1q(t) + L1
di1q(t)

dt
+ L1ω0i1d(t)

i2q(t) = C2
dU2q(t)

dt
+ C2ω0U2d(t)

i1q(t) = C1
dU1q(t)

dt
+ C1ω0U1d(t)

icq(t) = C
dUcq(t)

dt
+ Cω0Ucd(t)

(C.3)

By defining the state variables xi(t), with i = 1, ..., 14, the input variables uj(t),

with j = 1, ..., 4, and output variables yk(t), with k = 1, ..., 4, as detailed in (C.4),

the state-space model (C.5) is found. In particular, ~xu(t) = [x1(t), ..., x14(t)], ~u(t) =

[u1(t), ..., u4(t)] and ~y(t) = [y1(t), ..., y4(t)] respectively are the state-, the input- and

the output- (column) vectors.



x1(t) + jx2(t)

x3(t) + jx4(t)

x5(t) + jx6(t)

x7(t) + jx8(t)

x9(t) + jx10(t)

x11(t) + jx12(t)

x13(t) + jx14(t)


=



U2d(t) + jU2q(t)

Ucd(t) + jUcq(t)

U1d(t) + jU1q(t)

i2d(t) + ji2q(t)

i1d(t) + ji1q(t)

id(t) + jiq(t)

igd(t) + jigq(t)


;

u1(t) + ju2(t)

u3(t) + ju4(t)

 =

UId(t) + jUIq(t)

Ugd(t) + jUgq(t)

 ;

y1d(t) + jy2q(t)

y3d(t) + jy4q(t)

 =

 id(t) + jiq(t)

Ud(t) + jUq(t)

 ;

(C.4)
d~xu(t)
dt = Au~xu(t) +Bu~u(t),

~y(t) = Cu~xu(t)

(C.5)

The matrices Au, Bu and Cu are respectively provided in (C.6), (C.7) and (C.8).
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A
u

=

                                      0
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−
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−
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−
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−
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0
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−
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1
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−
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1
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−
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0
−
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1
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0
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1

0
−

R L
1

0

0
0

0
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1

0
−
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1

0
−

R L
1
−
ω
0
−

R L
1

0
R L
1

0
−

R L
1

0
0

−
1 L
f

0
0

0
R L
f

0
R L
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0
−
R
+
R
f

L
f

ω
0

R L
f

0

0
0

0
−

1 L
f

0
0

0
R L
f

0
R L
f

−
ω
0

−
R
+
R
f

L
f

0
R L
f

0
0

1 L
t

0
0

0
−
R L
t

0
−
R L
t

0
R L
t

0
−
R
+
R
t

L
t

ω
0

0
0

0
1 L
t

0
0

0
−
R L
t

0
−
R L
t

0
R L
t

−
ω
0
−
R
+
R
t

L
t

                                      

(C
.6

)
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Bu =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1
Lf

0 0 0

0 1
Lf

0 0

0 0 − 1
Lt

0

0 0 0 − 1
Lt



(C.7)

Cu =


0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 1 0 0 0 −R 0 −R 0 R 0 −R 0

0 0 0 1 0 0 0 −R 0 −R 0 R 0 −R

 (C.8)

C.1.2 Electrical system in Figure 2.27

The dq-frame state-space model of the circuit illustrated in Figure (C.2) is derived,

which models the grid-inverter system shown in Figure 2.27. The set of equations

(C.9) can be derived for the space vectors associated to the signals highlighted in the

circuit. Such space vectors have been defined according to (B.14), with θ(t) = ω0t.
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𝐢 

𝐋𝐟 𝐑𝐟 

𝐔 ~ 
𝐂 

𝐔𝐠 

𝐋𝐠 𝐑𝐠 

𝐑 

𝐢𝐠 

𝐔𝐜 

~ 
 𝐔𝐃𝐂

𝟐
𝐦 𝐔𝐈 

Figure C.2: One-line diagram of the laboratory prototype grid-converter interface
model described in Section 2.3.2.3.

~UI(t) = ~U(t) +Rf~i(t) + Lf
d~i(t)

dt

~U(t) = ~Ug(t) +Rt~ig(t) + Lt
d~ig(t)

dt

~i(t) =~ig(t) + C
d~Uc(t)

dt

(C.9)

Equations (C.9) identify an LTI system, which makes the derivation of the state-

space model straightforward. Applying the same procedure illustrated in Section C.1.1,

(C.9) is mapped onto the dq-frame, resulting in the following set of equations for the dq-

components of the signals. These equations have been obtained making use of (B.13).

UId(t) = Ud(t) +Rf id(t) + Lf
did(t)

dt
− Lfω0iq(t)

UIq(t) = Uq(t) +Rf iq(t) + Lf
diq(t)

dt
+ Lfω0id(t)

Ud(t) = Ugd(t) +Rtigd(t) + Lt
igd(t)

dt
− Ltω0igq(t)

Uq(t) = Ugq(t) +Rtigq(t) + Lt
igq(t)

dt
+ Ltω0igd(t)

id(t) = igd(t) + C
dUcd(t)

dt
− Cω0Ucq(t)

iq(t) = igq(t) + C
dUcq(t)

dt
+ Cω0Ucd(t)

(C.10)

By defining the state variables xi(t), with i = 1, ..., 6, the input variables uj(t),

with j = 1, ..., 4, and output variables yk(t), with k = 1, ..., 4, as detailed in (C.11),

the state-space model (C.12) can be found. In particular, ~xd(t) = [x1(t), ..., x6(t)],

215



Appendix C. Mathematical derivations

~u(t) = [u1(t), ..., u4(t)], ~y(t) = [y1(t), ..., y4(t)] respectively are the state-, the input-

and the output- (column) vectors.


x1(t) + jx2(t)

x3(t) + jx4(t)

x5(t) + jx6(t)

 =


Ucd(t) + jUcq(t)

id(t) + jiq(t)

igd(t) + jigq(t)

 ;

u1(t) + ju2(t)

u3(t) + ju4(t)

 =

UId(t) + jUIq(t)

Ugd(t) + jUgq(t)

 ;

y1(t) + jy2(t)

y3(t) + jy4(t)

 =

 id(t) + jiq(t)

Ud(t) + jUq(t)

 ;

(C.11)


d~xd(t)
dt = Ad~xd(t) +Bd~u(t),

~y(t) = Cd~xd(t)

(C.12)

The matrices Ad, Bd and Cd are provided in (C.13).

Ad =



0 ω 1
C 0 − 1

C 0

−ω 0 0 1
C 0 − 1

C

− 1
Lf

0 −Rf+R
Lf

ω R
Lf

0

0 − 1
Lf

−ω −Rf+R
Lf

0 R
Lf

1
Lt

0 − R
Lt

0 −Rt+R
Lt

ω

0 1
Lt

0 − R
Lt

−ω −Rt+R
Lt


;

Bd =



0 0 0 0

0 0 0 0

1
Lf

0 0 0

0 1
Lf

0 0

0 0 − 1
Lt

0

0 0 0 − 1
Lt


;Cd =


0 0 0 0 1 0

0 0 0 0 0 1

1 0 R 0 −R 0

0 1 0 R 0 −R

 ;

(C.13)
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C.1.3 Electrical system in Figure 2.26

The dq-frame state-space model of the electrical system in Figure 2.26 is derived, which

is modelled by the circuit shown in Figure C.3.

The set of equations (C.14) can be derived for the space vectors associated to the signals

highlighted in the circuit. Such space vectors have been defined according to (B.14),

with θ(t) = ω0t.

~UI = (Rf +RL)~i+ Lf
d~i

dt

~U = RL~i

(C.14)

𝐢 𝐋𝐟 𝐑𝐟 

~ 
 𝐔𝐃𝐂

𝟐
𝐦 𝐔 𝐔𝐈 𝐑𝐋 

Figure C.3: One-line diagram of the linearised circuit modelling the electrical system
in Figure 2.26.

Equations (C.14) identify an LTI system, which makes the derivation of the state-

space model straightforward. Applying the same procedure illustrated in Sections C.1.1

and C.1.2, (C.14) is mapped onto the dq-frame making use of (B.13). The resulting

following set of equations are formulated for the dq-components of the signals.

UI,d(t) = (Rf +RL)id(t) + Lf
did(t)

dt
− Lfω0iq(t)

UI,q(t) = (Rf +RL)iq(t) + Lf
diq(t)

dt
+ Lfω0id(t)

(C.15)

By setting the state-vector ~xl(t), the input-vector ~u(t) and the output-vector ~y(t)
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as:

~xl(t) =

id(t)
iq(t)

 ; ~u(t) =

UId(t)
UIq(t)

 ; ~y(t) =


id(t)

iq(t)

Ud(t)

Uq(t)

 ; (C.16)

the following state-space model has been formulated for the circuit in Figure C.3:


d~xl(t)
dt = Al~xl(t) +Bl~u(t),

~y(t) = Cl~xl(t)

(C.17)

where Al, Bl and Cl are:

Al =

−Rf+R
Lf

ω

−ω −Rf+R
Lf

 ;Bl =

 1
Lf

0

0 1
Lf

 ;Cl =

1 0

0 1

 ; (C.18)

C.1.4 Electrical system in Figure 4.2

The derivation of the dq-frame state-space small-signal model of the electrical system

in Figure 4.2 is presented as follows.

As for the cases described in the previous Sections, an average model of the inverter

is used. The resulting circuit modelling the electrical system in Figure 4.2 is shown in

Figure C.4, where the coupling reactor Zf has been modelled by the series connection

of its inductance Lf and its parasitic resistance Rf . In order to derive the state-space

representation of such system, the same methodology applied in Appendices C.1.1,

C.1.2 and C.1.3 has been applied. Hence, the equations of the electrical system have

been first defined in the abc-frame and then mapped onto the dq-frame.
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𝐢𝟎 + 𝛅𝐢 𝐋𝐟 𝐑𝐟 

~ ~ 
 𝐔𝐃𝐂

𝟐
𝐦 𝐔𝟎 + 𝛅𝐔 𝐔𝐈,𝟎 + 𝛅𝐔𝐈 

Figure C.4: One-line diagram of the linearised circuit modelling the electrical system
in Figure 4.2.

Based on the LTI property of the system identified by the circuit in Figure C.4,

and making use of the space-vector notation defined by (B.9), the following equation

(C.19) is formulated, which relates the small-signal perturbation on the voltage across

the reactor to the corresponding small-signal perturbation on its current:

δ~UI(t)− δ~U(t) = Rfδ~i(t) + Lf
dδ~i(t)

dt
(C.19)

Based on (B.13), (C.19) can be reformulated in the grid positive dq-frame as:

δUI,d(t)− δUd(t) = Rfδid(t) + Lf
dδid(t)

dt
− Lfω0δiq(t)

δUI,q(t)− δUq(t) = Rfδiq(t) + Lf
dδiq(t)

dt
+ Lfω0δid(t)

(C.20)

Equations (C.20) can be expressed in a state-space format as:


dδ~xf (t)
dt = Afδ~xf (t) +Bfδ~u(t),

δ~y(t) = Cfδ~xf (t) +Dfδ~u(t)

(C.21)

where:

δ~xf (t) =

xf,1(t)
xf,2(t)

 =

δid(t)
δiq(t)

 ; δ~u(t) =


δUId(t)

δUIq(t)

δUd(t)

δUq(t)

 ; δ~y(t) =


δid(t)

δiq(t)

δUd(t)

δUq(t)

 ; (C.22)

219



Appendix C. Mathematical derivations

𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞 𝐬𝐞𝐪𝐮𝐞𝐧𝐜𝐞 

𝐜𝐮𝐫𝐫𝐞𝐧𝐭 𝐜𝐨𝐧𝐭𝐫𝐨𝐥𝐥𝐞𝐫 

𝛅𝐔 𝐝𝐪
+  

𝛅𝐢 𝐝𝐪
+  

𝛅𝐔 𝐈𝐝𝐪,𝐦𝐨𝐝

+  

 𝐏𝐥𝐚𝐧𝐭 

𝐬𝐩𝐚𝐜𝐞 𝐬𝐭𝐚𝐭𝐞 − 

𝐦𝐨𝐝𝐞𝐥 

𝛅𝐢𝐝𝐪,𝐜
+  

+ 
− 

+ + + + 𝐆𝐏𝐈,𝐌(𝐬) 

𝐆𝐕𝐅𝐅,𝐌
+ (𝐬) 

𝛅𝐔𝐈𝐝𝐪,𝐜
+  

𝛅𝛉𝐌(𝐬) 

+ + 𝐆𝐍,𝐌(𝐬) 
𝛅𝐢 𝐝𝐪,𝐜

+  𝛅𝐢 𝐝𝐪
+  

+ + 𝐆𝐍,𝐌(𝐬) 

[𝐔𝐒𝐪,𝟎
+ ;  −𝐔𝐒𝐝,𝟎

+ ] 

[𝐢𝐪,𝟎
+ ; −𝐢𝐝,𝟎

+ ] 

𝛅𝛉𝐌(𝐬) 

𝛅𝛉𝐌(𝐬) 

+ 
+ 

[−𝐔𝐈𝐪,𝟎
+ ;  𝐔𝐈𝐝,𝟎

+ ] 

𝐆𝐂,𝐌
+ (𝐬) 

[𝛅𝐢𝐝,𝐫𝐞𝐟
+ ; 𝛅𝐢𝐪,𝐫𝐞𝐟

+  ] 

+ + 

𝐆𝐃,𝐃𝐐(𝐬) 

𝐆𝐀𝐅𝟏,𝐃𝐐(𝐬) 𝐆𝐀𝐅𝟐,𝐃𝐐(𝐬) 𝐆𝐀𝐅𝟑,𝐃𝐐(𝐬) 𝐆𝐀𝐅𝟒,𝐃𝐐(𝐬) 𝐆𝐋𝐏𝐅,𝐃𝐐(𝐬) 

𝛅𝐔 𝐈𝐝𝐪
+  

𝛅𝐔 𝐒𝐝𝐪
+  

𝐍𝐞𝐠𝐚𝐭𝐢𝐯𝐞 𝐬𝐞𝐪𝐮𝐞𝐧𝐜𝐞 

𝐜𝐮𝐫𝐫𝐞𝐧𝐭 𝐜𝐨𝐧𝐭𝐫𝐨𝐥𝐥𝐞𝐫 

𝐏𝐨𝐰𝐞𝐫 𝐥𝐨𝐨𝐩 

𝐀𝐧𝐭𝐢 𝐚𝐥𝐢𝐚𝐬𝐢𝐧𝐠 𝐟𝐢𝐥𝐭𝐞𝐫 

𝛅𝐔 𝐝𝐪
+  

𝐕𝐨𝐥𝐭𝐚𝐠𝐞 𝐥𝐨𝐨𝐩 

𝐏𝐋𝐋 𝐥𝐨𝐨𝐩 

𝛅𝐔 𝐈𝐝𝐪,𝐦𝐨𝐝

+  

𝐆𝐏𝐋𝐋(𝐬) 
𝛅𝐔𝐒𝐝

+  𝛅𝛉 𝐆𝐍(𝐬) 

𝐏𝐥𝐚𝐧𝐭 

𝐂𝐮𝐫𝐫𝐞𝐧𝐭 𝐯𝐞𝐜𝐭𝐨𝐫  

𝐜𝐨𝐧𝐭𝐫𝐨𝐥 

𝐆𝐏𝐈,𝐏(𝐬) 

𝛅𝐔𝐒𝐝𝐪,𝐜
+  

− + 𝛅𝐏 
𝟎 

𝟑

𝟐
(𝛅𝐢𝐝,𝐜

+ 𝐔𝐒𝐝,𝟎

+ + 𝐢𝐝,𝟎
+ 𝛅𝐔𝐒𝐝,𝐜

+ 𝛅𝐢𝐪,𝐜
+ 𝐔𝐒𝐪,𝟎

+ + 𝐢𝐪,𝟎
+ 𝛅𝐔𝐒𝐪,𝐜

+ ) 
𝛅𝐢𝐪,𝐫𝐞𝐟

+  

𝛅𝐢𝐝𝐪,𝐜
+  

𝐆𝐏𝐈,𝐕(𝐬) 
𝛅𝐔𝐒𝐝𝐪,𝐜

+  
− + 𝛅𝐔 𝐒 

𝟎 𝐔𝐒𝐝,𝟎
+

 𝐔𝐒𝐝,𝟎
+ 𝟐

+ 𝐔𝐒𝐪,𝟎
+

𝛅𝐔𝐒𝐝,𝐜
+ +

𝐔𝐒𝐪,𝟎
+

 𝐔𝐒𝐝,𝟎
+ 𝟐

+ 𝐔𝐒𝐪,𝟎
+

𝛅𝐔𝐒𝐪,𝐜
+  𝛅𝐢𝐝,𝐫𝐞𝐟

+  

+ 
− 

+ + + + 𝐆 𝐏𝐈,𝐌(𝐬) 

𝐆 𝐕𝐅𝐅,𝐌
− (𝐬) 

+ + 𝛅𝐢 𝐝𝐪
+  

+ + 𝐆 𝐍,𝐌(𝐬) 

[−𝐔𝐒𝐪,𝟎
− ;  𝐔𝐒𝐝,𝟎

− ] 

[−𝐢𝐪,𝟎
− ; 𝐢𝐝,𝟎

− ] 

𝛅𝛉 𝐌(𝐬) 

+ 
+ 

[𝐔𝐈𝐪,𝟎
− ;  −𝐔𝐈𝐝,𝟎

− ] 

𝐆𝐂,𝐌
− (𝐬) 

[𝟎; 𝟎 ] 

𝛅𝛉 𝐌(𝐬) 

𝛅𝛉 𝐌(𝐬) 

𝐆 𝐍,𝐌(𝐬) 

𝛅𝐔𝐈𝐝𝐪,𝐜

−  

𝛅𝐔𝐒𝐝𝐪,𝐜

−  𝛅𝐔 𝐒𝐝𝐪,𝐜

−  

𝛅𝐢 𝐝𝐪,𝐜
−  𝛅𝐢𝐝𝐪,𝐜

−  

𝛅𝐔 𝐒𝐝𝐪
+  

𝛅𝐔 𝐒𝐝
+  

𝛅𝐔 𝐒𝐝𝐪
+  

𝛅𝐔 𝐒𝐝𝐪,𝐜

+  𝛅𝐔𝐒𝐝𝐪,𝐜

+  

𝛅𝐔 𝐝𝐪
+  

Figure C.5: Block diagram of the small-signal model used to calculated the small-signal
converter admittance in the dq-frame.
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The matrices Af , Bf , Cf and Df are:

Af =

−Rf
Lf

ω0

−ω0 −Rf
Lf

 ;Bf =

 1
Lf

0 − 1
Lf

0

0 1
Lf

0 − 1
Lf

 ;Cf =


1 0

0 1

0 0

0 0

 ;Df =


0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1


(C.23)

It is worth noticing that the δUdq(t) is both an input and an output. How such

state-space model is included in the small-signal model of the system in Figure 4.2

is shown in Figure C.5. Such complete small-signal model is used to calculate the

small-signal converter admittace in the dq-frame (see Section 4.1.1).

C.2 Translation of a transfer function from one frame to

another

C.2.1 From the negative to the positive dq-frame

In this Section, the relation between the transfer function matrix GM (s) defined in

the negative sequence dq-frame and its equivalent expression in the positive dq-frame

is derived. The particular case where GM (s) has the structure defined in (C.24) is

considering, where G(s) is a generic transfer function.

y−d (s)

y−q (s)

 = GM (s)

x−d (s)

x−q (s)

 =

G(s) 0

0 G(s)

x−d (s)

x−q (s)

 (C.24)

In (C.24), y−dq(s) and x−dq(s) are two generic signals defined in the negative dq-

frame. Their corresponding expressions in the time domain are y−dq(t) and x−dq(t), i.e.

y−dq(t) = L−1{y−dq(s)} and x−dq(t) = L−1{x−dq(s)}.

The signal y+dq(t), corresponding to the image of y−dq(t) on the positive sequence dq-

frame, can be obtained making use of the following R2(θ(t)) transformation [58], with
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θ(t) = ω0t :

y+d (t)

y+q (t)

 = R2(ω0t)

y−d (t)

y−q (t)

 =

 cos(2ω0t) sin(2ω0t)

−sin(2ω0t) cos(2ω0t)

y−d (t)

y−q (t)

 (C.25)

Equivalently, the signal x−dq(t) can be related to its positive sequence dq-frame image

x+dq(t) applying the R−2(ω0t) transform [58]:

x−d (t)

x−q (t)

 = R−2(ω0t)

x+d (t)

x+q (t)

 =

cos(2ω0t) −sin(2ω0t)

sin(2ω0t) cos(2ω0t)

x+d (t)

x+q (t)

 (C.26)

where in (C.25), (C.26), θ(t) = ω0t.

Hence, from (C.25), (C.26), a transfer function Ĝ(s) is defined such that:

y+d (s)

y+q (s)

 =

Ĝdd(s) Ĝdq(s)

Ĝqd(s) Ĝqq(s)

x+d (s)

x+q (s)

 (C.27)

By using Euler’s formula [115], (C.26) can be reformulated as:

x−d (t) =
1

2
(e2jω0t + e−2jω0t)x+d (t)− 1

2j
(e2jω0t − e−2jω0t)x+q (t)

x−q (t) =
1

2j
(e2jω0t − e−2jω0t)x+d (t) +

1

2
(e2jω0t + e−2jω0t)x+q (t)

(C.28)

whose corresponding Laplace transform x−d (s) and x−q (s) are:

x−d (s) =
1

2
x+d (s− 2jω) +

1

2
x+d (s+ 2jω) +

1

2
jx+q (s− 2jω)− 1

2
jx+q (s+ 2jω)

x−q (s) = −1

2
jx+d (s− 2jω) +

1

2
jx+d (s+ 2jω) +

1

2
x+q (s− 2jω) +

1

2
x+q (s+ 2jω)

(C.29)

Equivalently, by using Euler’s formula, (C.25) can be rewritten as:

y+d (t) =
1

2
(e2jω0t + e−2jω0t)y−d (t) +

1

2j
(e2jω0t − e−2jω0t)y−q (t)

y+q (t) = − 1

2j
(e2jω0t − e−2jω0t)y−d (t) +

1

2
(e2jω0t + e−2jω0t)y−q (t)

(C.30)
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whose Laplace transform y−d (s) and y−q (s) are:

y+d (s) =
1

2
y−d (s− 2jω) +

1

2
y−d (s+ 2jω)− 1

2
jy−q (s− 2jω) +

1

2
jy−q (s+ 2jω)

y+q (s) =
1

2
jy−d (s− 2jω)− 1

2
jy−d (s+ 2jω) +

1

2
y−q (s− 2jω) +

1

2
y−q (s+ 2jω)

(C.31)

Thereby, from (C.29), (C.31), and (C.24), the following expressions can be obtained

for y+d (s) and y+q (s):

y+d (s) =
1

2
[G(s− 2jω0) +G(s+ 2jω0)]x

+
d (s) +

1

2
j[G(s+ 2jω0)−G(s− 2jω0)]x

+
q (s)

y+q (s) = +
1

2
j[G(s− 2jω0)−G(s+ 2jω0)]x

+
d (s) +

1

2
[G(s− 2jω0) +G(s+ 2jω0)]x

+
q (s)

(C.32)

Equations (C.32) can be rewritten in a matrix format as:

y+d (s)

y+q (s)

 =

 1
2 [G(s− 2jω0) +G(s+ 2jω0)]

1
2j[G(s+ 2jω0)−G(s− 2jω0)]

1
2j[G(s− 2jω0)−G(s+ 2jω0)]

1
2 [G(s− 2jω0) +G(s+ 2jω0)]

x+d (s)

x+q (s)


(C.33)

Hence, from(C.27), (C.33):

ĜM (s) =

 1
2 [G(s− 2jω0) +G(s+ 2jω0)]

1
2j[G(s+ 2jω0)−G(s− 2jω0)]

1
2j[G(s− 2jω0)−G(s+ 2jω0)]

1
2 [G(s− 2jω0) +G(s+ 2jω0)]

 (C.34)

ĜM (s) therefore represents the expression of GM (s) in the positive dq-frame.

C.2.2 From the abc- to the positive dq-frame

In this Section, the relation between the transfer function matrix GM (s) defined in the

abc-frame and its equivalent expression in the dq-frame is derived. The particular case

where GM (s) has the structure defined in (C.35) is considered, where G(s) is a generic
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transfer function.


ya(s)

yb(s)

yc(s)

 = GM (s)


xa(s)

xb(s)

xc(s)

 =


G(s) 0 0

0 G(s) 0

0 0 G(s)



xa(s)

xb(s)

xc(s)

 (C.35)

The signals yabc(s) and xabc(s) are the Laplace transform [85] of the correspond-

ing time domain signals yabc(t) and xabc(t), respectively. In other words xabc(s) =

L{xabc(t)} and yabc(s) = L{yabc(t)}. By applying the Park transform T (ω0t) (B.16)

and its transpose T T (ω0t) (B.17), such time domain signals can be related to their

dq-frame counterparts, ydq(t) and xdq(t) respectively, as:

xd(t)
xq(t)

 =
2

3
·

sin(ω0t) sin(ω0t− 2
3π) sin(ω0t− 4

3π)

cos(ω0t) cos(ω0t− 2
3π) cos(ω0t− 4

3π)



xa(t)

xb(t)

xc(t)


yd(t)
yq(t)

 =
2

3
·

sin(ω0t) sin(ω0t− 2
3π) sin(ω0t− 4

3π)

cos(ω0t) cos(ω0t− 2
3π) cos(ω0t− 4

3π)



ya(t)

yb(t)

yc(t)



xa(t)

xb(t)

xc(t)

 =


sin(ω0t) cos(ω0t)

sin(ω0t− 2
3π) cos(ω0t− 2

3π)

sin(ω0t− 4
3π) cos(ω0t− 4

3π)


xd(t)
xq(t)



ya(t)

yb(t)

yc(t)

 =


sin(ω0t) cos(ω0t)

sin(ω0t− 2
3π) cos(ω0t− 2

3π)

sin(ω0t− 4
3π) cos(ω0t− 4

3π)


yd(t)
yq(t)



(C.36)

From (C.36), by making use of Euler’s formula [115], the following equations (C.37)
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and (C.38) can be derived for ydq(t) and xabc(t), respectively:

yd(t) =
2

3
[sin(ω0t)ya(t) + sin(ω0t−

2

3
π)yb(t) + sin(ω0t−

4

3
π)yc(t)]

=
1

3j
[(ejω0t − e−jω0t)ya(t) + (ej(ω0t− 2

3
π) − e−j(ω0t− 2

3
π))yb(t)

+ (ej(ω0t− 4
3
π) − e−j(ω0t− 4

3
π))yc(t)]

yq(t) =
2

3
[cos(ω0t)ya(t) + cos(ω0t−

2

3
π)yb(t) + cos(ω0t−

4

3
π)yc(t)]

=
1

3
[(ejω0t + e−jω0t)ya(t) + (ej(ω0t− 2

3
π) + e−j(ω0t− 2

3
π))yb(t)

+ (ej(ω0t− 4
3
π) + e−j(ω0t− 4

3
π))yc(t)]

(C.37)

xa(t) = sin(ω0t)xd(t) + cos(ω0t)xq(t)

=
1

2j
(ejω0t − e−jω0t)xd(t) +

1

2
(ejω0t + e−jω0t)xq(t)

xb(t) = sin(ω0t−
2

3
π)xd(t) + cos(ω0t−

2

3
π)xq(t)

=
1

2j
(ej(ω0t− 2

3
π) − e−j(ω0t− 2

3
π))xd(t) +

1

2
(ej(ω0t− 2

3
π) + e−j(ω0t− 2

3
π))xq(t)

xc(t) = sin(ω0t−
4

3
π)xd(t) + cos(ω0t−

4

3
π)xq(t)

=
1

2j
(ej(ω0t− 4

3
π) − e−j(ω0t− 4

3
π))xd(t) +

1

2
(ej(ω0t− 4

3
π) + e−j(ω0t− 4

3
π))xq(t)

(C.38)

The corresponding Laplace transform signals of (C.37), (C.38) are:

yd(s) =
1

3j
[ya(s− jω0)− ya(s+ jω0) + yb(s− jω0)e

−j 2
3
π − yb(s+ jω0)e

j 2
3
π

+ yc(s− jω0)e
−j 4

3
π − yc(s+ jω0)e

j 4
3
π]

yq(s) =
1

3
[ya(s− jω0) + ya(s+ jω0) + yb(s− jω0)e

−j 2
3
π + yb(s+ jω0)e

j 2
3
π

+ yc(s− jω0)e
−j 4

3
π + yc(s+ jω0)e

j 4
3
π]

(C.39)

xa(s) =
1

2
[−jxd(s− jω0) + xd(s+ jω0) + xq(s− jω0) + xq(s+ jω0)]

xb(s) =
1

2
[−jxd(s− jω0)e

−j 2
3
π + xd(s+ jω0)e

j 2
3
π + xq(s− jω0)e

−j 2
3
π + xq(s+ jω0)e

j 2
3
π]

xc(s) =
1

2
[−jxd(s− jω0)e

−j 4
3
π + xd(s+ jω0)e

j 4
3
π + xq(s− jω0)e

−j 4
3
π + xq(s+ jω0)e

j 4
3
π]

(C.40)
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Thereby, as from (C.35), ya(s) = G(s)xa(s), yb(s) = G(s)xb(s) and yc(s) = G(s)xc(s),

replacing the expression of xabc(s) given by (C.40) in the expression of ydq(s) provided

by (C.39), the following equations can be derived:

yd(s) =
1

2
[G(s− jω0) +G(s+ jω0)]xd(s) +

1

2
j[G(s+ jω0)−G(s− jω0)]xq(s)

yq(s) =
1

2
j[G(s− jω0)−G(s+ jω0)]xd(s) +

1

2
[G(s− jω0) +G(s+ jω0)]xq(s)

(C.41)

These can be reformulated in a matrix format as:

yd(s)
yq(s)

 =

 1
2 [G(s− jω0) +G(s+ jω0)]

1
2j[G(s+ jω0)−G(s− jω0)]

1
2j[G(s− jω0)−G(s+ jω0)]

1
2 [G(s− jω0) +G(s+ jω0)]

xd(s)
xq(s)


(C.42)

The matrix GDQ(s), defined as:

GDQ(s) =

 1
2 [G(s− jω0) +G(s+ jω0)]

1
2j[G(s+ jω0)−G(s− jω0)]

1
2j[G(s− jω0)−G(s+ jω0)]

1
2 [G(s− jω0) +G(s+ jω0)]

 (C.43)

therefore represents the dq-frame expression of the abc-frame matrix GM (s) defined

in (C.35).

For the purpose of illustration, Figure C.6 shows the elements of the dq-frame transfer

function matrix of the anti-aliasing filter, derived as discussed in Section 3.1.1.4. In the

shown case, the filter parameters are those of the asymmetrical regular sampling case

(see Table 2.4). As it can be seen, the magnitude of the cross diagonal elements is much

lower than that of the main diagonal components. Moreover, these latter elements have

a trend similar to that of the abc-frame components of the filter (see Figure 2.18).
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Figure C.6: Bode plots of the elements of the anti-aliasing filter transfer function matrix
in the dq-frame.

C.3 Relation between dq- and pn-frame admittance

Two derivations of equations (4.3)-(4.4) are presented as follows. In Appendix C.3.1, a

derivation which makes use of the matrices transformations D and B(t) in the diagram

in Figure 4.4, is provided. In Appendix C.3.2, an alternative derivation which makes

use of the transformations C, R(t) and F in the diagram in Figure 4.4, is presented.
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C.3.1 Derivation of equations (4.3)-(4.4)

The presented derivation makes used of the matrices transformations D and B(t) in

the diagram in Figure 4.4. These are respectively defined as:

D =
1√
2

−j 1

j 1

 (C.44)

B(t) =
√

2

e−jω0t 0

0 ejω0t

 (C.45)

In the following description, Udq(t) and idq(t) are the expressions of, respectively, a

generic voltage signal U(t) and a generic current signal i(t), in the dq-frame. Similarly,

Upn(t) and ipn(t) are their expression in the pn-frame, respectively. It is assumed

that the following relation can be defined between Udq(s) and idq(s), with Udq(s) =

L{Udq(t)}, idq(s) = L{idq(t)}:

id(s)
iq(s)

 = YDQ(s)

Ud(s)
Uq(s)

 =

Ydd(s) Ydq(s)

Yqd(s) Yqq(s)

Ud(s)
Uq(s)

 (C.46)

Based on the diagram in Figure 4.4, the following equations can be formulated

between Udq(t), idq(t) and, respectively, Upn(t), ipn(t):

Ud(t)
Uq(t)

 = D−1 ·B(t) ·

Up(t)
Un(t)

 ,
id(t)
iq(t)

 = D−1 ·B(t) ·

ip(t)
in(t)

 (C.47)

By indicating with YDQ(t) the impulse response matrix associated to YDQ(s), cal-

culated as YDQ(t) = L−1{YDQ(s)} [120], (C.46) can be rewritten in the time-domain
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as:

id(t)
iq(t)

 =

Ydd(t) Ydq(t)

Yqd(t) Yqq(t)

 ∗
Ud(t)
Uq(t)

 (C.48)

where the symbol ∗ indicates the convolution operator [120]. By replacing the expres-

sions of idq(t) and Udq(t), given by (C.47), into (C.48), the following relation can be

derived:

ip(t)
in(t)

 = B−1(t)D[

Ydd(t) Ydq(t)

Yqd(t) Yqq(t)

 ∗ (D−1B(t)

Up(t)
Un(t)

)]

=
1

2

−jejω0t ejω0t

je−jω0t e−jω0t

 [

Ydd(t) Ydq(t)

Yqd(t) Yqq(t)

 ∗ (

je−jω0t −jejω0t

e−jω0t ejω0t

Up(t)
Un(t)

)]

=
1

2

−jejω0t ejω0t

je−jω0t e−jω0t

 (

Ydd(t) Ydq(t)

Yqd(t) Yqq(t)

 ∗
je−jω0tUp(t)− jejω0tUn(t)

e−jω0tUp(t) + ejω0tUn(t)

)

(C.49)

From which:

ip(t) = −1

2
jejω0t{Ydd(t) ∗ [je−jω0tUp(t)− jejω0tUn(t)]

+ Ydq(t) ∗ [e−jω0tUp(t) + ejω0tUn(t)]}

+
1

2
ejω0t{Yqd(t) ∗ [je−jω0tUp(t)− jejω0tUn(t)]

+ Yqq(t) ∗ [e−jω0tUp(t) + ejω0tUn(t)]}

in(t) =
1

2
je−jω0t{Ydd(t) ∗ [je−jω0tUp(t)− jejω0tUn(t)]

+ Ydq(t) ∗ [e−jω0tUp(t) + ejω0tUn(t)]}

+
1

2
e−jω0t{Yqd(t) ∗ [je−jω0tUp(t)− jejω0tUn(t)]

+ Yqq(t) ∗ [e−jω0tUp(t) + ejω0tUn(t)]}

(C.50)
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The Laplace transform of (C.50) is:

Up(s) = −1

2
j{Ydd(s− jω0)[jip(s)− jin(s− 2jω0)]

+ Ydq(s− jω0)[ip(s) + in(s− 2jω0)]}

+
1

2
{Yqd(s− jω0)[jip(s)− jin(s− 2jω0)]

+ Yqq(s− jω0)[ip(s) + in(s− 2jω0)]}

Un(t) =
1

2
j{Ydd(s+ jω0)[jip(s+ 2jω0)− jin(s)]

+ Ydq(s+ jω0)[ip(s+ 2jω0) + in(s)]}

+
1

2
{Yqd(s+ jω0)[jip(s+ 2jω0)− jin(s)]

+ Yqq(s+ jω0)[ip(s+ 2jω0) + in(s)]}

(C.51)

By setting:

Ypp(s) =
1

2
[Yqq(s− jω0)− jYdq(s− jω0) + jYqd(s− jω0) + Ydd(s− jω0)],

Ypn(s) =
1

2
[Yqq(s− jω0)− jYdq(s− jω0)− jYqd(s− jω0)− Ydd(s− jω0)],

Ynp(s) =
1

2
[Yqq(s+ jω0) + jYdq(s+ jω0) + jYqd(s+ jω0)− Ydd(s+ jω0)],

Ynn(s) =
1

2
[Yqq(s+ jω0) + jYdq(s+ jω0)− jYqd(s+ jω0) + Ydd(s+ jω0)]

(C.52)

equation (C.51) can be rewritten as:

ip(s) = Ypp(s)Up(s) + Ypn(s)Un(s− 2jω0)

in(s) = Ynp(s)Up(s+ 2jω0) + Ynn(s)Un(s)
(C.53)

Based on (4.2), (C.52) and (C.53) correspond to (4.3) and (4.4), respectively.

C.3.2 Alternative derivation of equations (4.3)-(4.4)

An alternative derivation of equations (4.3)-(4.4) is presented as follows, which makes

use of the transformations C, D and F in Figure 4.4. Two generic current and voltage

signals, idq(t) and Udq(t) respectively, are considered, which are defined in a nominal
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dq-frame rotating anti-clockwise at ω0. Their Laplace transforms are idq(s) = L{idq(t)}

and Udq(s) = L{Udq(t)}. It is assumed that a YDQ(s) admittance matrix can be defined

such that:

id(s)
iq(s)

 = YDQ(s)

Ud(s)
Uq(s)

 =

Ydd(s) Ydq(s)

Yqd(s) Yqq(s)

Ud(s)
Uq(s)

 (C.54)

An equivalent relation can be defined in the time domain making use of the impulse

response matrix YDQ(t) = L−1{YDQ(s)} [120]:

id(t)
iq(t)

 = YDQ(t) ∗

Ud(t)
Uq(t)

 =

Ydd(t) Ydq(t)

Yqd(t) Yqq(t)

 ∗
Ud(t)
Uq(t)

 (C.55)

where the symbol ∗ indicates the convolution operator. By indicating with iabc(t) the

abc-frame signal corresponding to idq(t), based on (B.17), this is calculated as:


ia(t)

ib(t)

ic(t)

 = T T (ω0t)

id(t)
iq(t)

 =


sin(ω0t) cos(ω0t)

sin(ω0t− 2
3π) cos(ω0t− 2

3π)

sin(ω0t− 4
3π) cos(ω0t− 4

3π)


id(t)
iq(t)

 (C.56)

Combining (C.55) and (C.56), and by using Euler’s formula [115], the phase current

ia(t), ib(t) and ic(t) can be expressed as:

ia(t) = cos(ω0t)[Yqq(t) ∗ Uq(t) + Yqd(t) ∗ Ud(t)]

+ sin(ω0t)[Ydq(t) ∗ Uq(t) + Ydd(t) ∗ Ud(t)]

=
1

2
(ejω0t + e−jω0t)[Yqq(t) ∗ Uq(t) + Yqd(t) ∗ Ud(t)]

+
1

2j
(ejω0t − e−jω0t)[Ydq(t) ∗ Uq(t) + Ydd(t) ∗ Ud(t)]

(C.57)
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ib(t) = cos(ω0t−
2

3
π)[Yqq(t) ∗ Uq(t) + Yqd(t) ∗ Ud(t)]

+ sin(ω0t−
2

3
π)[Ydq(t) ∗ Uq(t) + Ydd(t) ∗ Ud(t)]

=
1

2
(ej(ω0t− 2

3
π) + e−j(ω0t− 2

3
π))[Yqq(t) ∗ Uq(t) + Yqd(t) ∗ Ud(t)]

+
1

2j
(ej(ω0t− 2

3
π) − e−j(ω0t− 2

3
π))[Ydq(t) ∗ Uq(t) + Ydd(t) ∗ Ud(t)]

(C.58)

ic(t) = cos(ω0t−
4

3
π)[Yqq(t) ∗ Uq(t) + Yqd(t) ∗ Ud(t)]

+ sin(ω0t−
4

3
π)[Ydq(t) ∗ Uq(t) + Ydd(t) ∗ Ud(t)]

=
1

2
(ej(ω0t− 4

3
π) + e−j(ω0t− 4

3
π))[Yqq(t) ∗ Uq(t) + Yqd(t) ∗ Ud(t)]

+
1

2j
(ej(ω0t− 4

3
π) − e−j(ω0t− 4

3
π))[Ydq(t) ∗ Uq(t) + Ydd(t) ∗ Ud(t)]

(C.59)

By calculating the Laplace transform of (C.57), (C.58) and (C.59), and by setting

s = jω, the following expressions can be obtained for ia(jω), ib(jω) and ic(jω):

ia(jω) =
1

2
[Yqq(j(ω − ω0))Uq(j(ω − ω0)) + Yqd(j(ω − ω0))Ud(j(ω − ω0))]

+
1

2
[Yqq(j(ω + ω0))Uq(j(ω + ω0)) + Yqd(j(ω + ω0))Ud(j(ω + ω0))]

+
1

2j
[Ydq(j(ω − ω0))Uq(j(ω − ω0)) + Ydd(j(ω − ω0))Ud(j(ω − ω0))]

− 1

2j
[Ydq(j(ω + ω0))Uq(j(ω + ω0)) + Ydd(j(ω + ω0))Ud(j(ω + ω0))]

(C.60)

ib(jω) =
1

2
e−j

2

3
π[Yqq(j(ω − ω0))Uq(j(ω − ω0)) + Yqd(j(ω − ω0))Ud(j(ω − ω0))]

+
1

2
ej

2

3
π[Yqq(j(ω + ω0))Uq(j(ω + ω0)) + Yqd(j(ω + ω0))Ud(j(ω + ω0))]

+
1

2j
e−j

2

3
π[Ydq(j(ω − ω0))Uq(j(ω − ω0)) + Ydd(j(ω − ω0))Ud(j(ω − ω0))]

− 1

2j
ej

2

3
π[Ydq(j(ω + ω0))Uq(j(ω + ω0)) + Ydd(j(ω + ω0))Ud(j(ω + ω0))]

(C.61)
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ic(jω) =
1

2
e−j

4

3
π[Yqq(j(ω − ω0))Uq(j(ω − ω0)) + Yqd(j(ω − ω0))Ud(j(ω − ω0))]

+
1

2
ej

4

3
π[Yqq(j(ω + ω0))Uq(j(ω + ω0)) + Yqd(j(ω + ω0))Ud(j(ω + ω0))]

+
1

2j
e−j

4

3
π[Ydq(j(ω − ω0))Uq(j(ω − ω0)) + Ydd(j(ω − ω0))Ud(j(ω − ω0))]

− 1

2j
ej

4

3
π[Ydq(j(ω + ω0))Uq(j(ω + ω0)) + Ydd(j(ω + ω0))Ud(j(ω + ω0))]

(C.62)

It is worth noticing that ia(jω), ib(jω) and ic(jω) are the Fourier transforms of

ia(t), ibt) and ic(t), respectively [25]. By definition, these transforms are related to

the corresponding îa(jω), îb(jω), îc(jω) signal phasors [115], îa(jω) = |ia(jω)|ej∠ia(jω),

îa(jω) = |ia(jω)|ej∠ib(jω), îb(jω) = |ic(jω)|ej∠ic(jω). These îabc(jω) phasors can be

related to the signal symmetrical components, i.e. the positive and negative sequence

phasors îp(jω) and în(jω) as [99]:

îp(jω)

în(jω)

 = F


îa(jω)

îb(jω)

îc(jω)

 =
1

3

1 a a2

1 a2 a



îa(jω)

îb(jω)

îc(jω)

 (C.63)

where F is the Fortescue transform [101] while a = ej
2

3
π. Its inverse F−1 is calculated

as:


îa(jω)

îb(jω)

îc(jω)

 = F−1

îp(jω)

în(jω)

 =


1 1

a2 a

a a2


îp(jω)

în(jω)

 (C.64)

By applying the Fortesque transform F to (C.60), (C.61) and (C.62), it is possible
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to calculate the corresponding Fourier transforms ip(jω) and in(jω) as:

ip(jω) =
1

3
(ia(jω) + aib(jω) + a2ic(jω))

= ...

=
1

2
Uq(j(ω − ω0))[Yqq(j(ω − ω0))− jYdq(j(ω − ω0))]

+
1

2
Ud(j(ω − ω0))[Yqd(j(ω − ω0))− jYdd(j(ω − ω0))]

(C.65)

in(j(ω)) =
1

3
(ia(jω) + a2ib(jω) + aic(jω))

= ...

=
1

2
Uq(j(ω + ω0))[Yqq(j(ω + ω0)) + jYdq(j(ω + ω0))]

+
1

2
Ud(j(ω + ω0))[Yqd(j(ω + ω0)) + jYdd(j(ω + ω0))]

(C.66)

The next step of the derivation is to determine the relation between the Fourier

transforms Udq(jω) and Upn(jω). A generic asymmetrical sinusoidal component Uabc(t, ω̂)

of Uabc(t) is considered, defined as:


Ua(t, ω̂)

Ub(t, ω̂)

Uc(t, ω̂)

 =


Ua(ω̂)cos(ω̂t+ θa(ω̂))

U b(ω̂)cos(ω̂t+ θb(ω̂))

U c(ω̂)cos(ω̂t+ θc(ω̂))

 (C.67)

Ûp(jω̂) and Ûn(jω̂) indicated the positive and negative sequence phasors associated

to Uabc(t, ω̂). Based on (C.64), the relation between the signals Uabc(t, ω̂) and Ûpn(jω̂)

can be written as [99]:


Ua(t, ω̂)

Ub(t, ω̂)

Uc(t, ω̂)

 =


<[Ûp(jω̂)ejω̂t + Ûn(jω̂)ejω̂t]

<[a2Ûp(jω̂)ejω̂t + aÛn(jω̂)ejω̂t]

<[aÛp(jω̂)ejω̂t + a2Ûn(jω̂)ejω̂t]



=


<[Ûp(jω̂)ejω̂t + Ûn(jω̂)ejω̂t]

<[Ûp(jω̂)ej(ω̂t+
4

3
π) + Ûn(jω̂)ej(ω̂t+

2

3
π)]

<[Ûp(jω̂)ej(ω̂t+
2

3
π) + Ûn(jω̂)ej(ω̂t+

4

3
π)]


(C.68)

234



Appendix C. Mathematical derivations

As <[z] = 1
2 [z + z∗], equation (C.68) can be rewritten as:


Ua(t, ω̂)

Ub(t, ω̂)

Uc(t, ω̂)

 =
1

2


[Ûp(jω̂) + Ûn(jω̂)]ejω̂t + [Û∗

p (jω̂) + Û∗
n(jω̂)]e−jω̂t

[Ûp(jω̂)ej
4
3π + Ûn(jω̂)ej

2
3π]ejω̂t + [Û∗

p (jω̂)e−j
4
3π + Û∗

n(jω̂)e−j
2
3π]e−jω̂t

[Ûp(jω̂)ej
2
3π + Ûn(jω̂)e+j

4
3π]ejω̂t + [Û∗

p (jω̂)e−j
2
3π + Û∗

n(jω̂)e−j
4
3π]e−jω̂t


(C.69)

Applying the transformation T T (ω0t), defined in (C.56), to (C.69) the resulting Ud(t, ω̂)

and Uq(t, ω̂) signals are:

Ud(t, ω̂) =
2

3
[Ua(t, ω̂)sin(ω0t) + Ub(t, ω̂)sin(ω0t−

2

3
π) + Uc(t, ω̂)sin(ω0t−

4

3
π)]

= ...

= |Ûp(jω̂)|cos((ω̂ − ω0)t+ ∠Ûp(jω̂) +
π

2
)

+ |Ûn(jω̂)|cos((ω̂ + ω0)t+ ∠Ûn(jω̂)− π

2
)

(C.70)

Uq(t, ω̂) =
2

3
[Ua(t, ω̂)cos(ω0t) + Ub(t, ω̂)cos(ω0t−

2

3
π) + Uc(t, ω̂)cos(ω0t−

4

3
π)]

= ...

= |Ûp(jω̂)|cos((ω̂ − ω0)t+ ∠Ûp(jω̂))

+ |Ûn(jω̂)|cos((ω̂ + ω0)t+ ∠Ûn(jω̂))

(C.71)

The results (C.70) and (C.71) show that the Uabc(t, ω̂) signal is associated to a

sinusoidal signal in the dq-frame. In particular, its positive sequence component gives

rise to a dq-frame sinusoidal signal at frequency ω̂ − ω0, while its negative sequence

component generates a dq-frame sinusoidal signal at frequency ω̂ + ω0.
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The Fourier transforms of (C.70) and (C.71), Ud(jω, ω̂) and Uq(jω, ω̂) respectively, are:

Ud(jω, ω̂) = F [Ûd(t, ω̂)]

= jπ|Ûp(jω̂)|[ej∠Ûp(jω̂)δ(ω − ω̂ + ω0) + e−j∠Ûp(jω̂)δ(ω + ω̂ − ω0)]

− jπ|Ûn(jω̂)|[ej∠Ûn(jω̂)δ(ω − ω̂ − ω0) + e−j∠Ûn(jω̂)δ(ω + ω̂ + ω0)]

(C.72)

Uq(jω, ω̂) = F [Ûq(t, ω̂)]

= π|Ûp(jω̂)|[ej∠Ûp(jω̂)δ(ω − ω̂ + ω0) + e−j∠Ûp(jω̂)δ(ω + ω̂ − ω0)]

+ π|Ûn(jω̂)|[ej∠Ûn(jω̂)δ(ω − ω̂ − ω0) + e−j∠Ûn(jω̂)δ(ω + ω̂ + ω0)]

(C.73)

where δ(x) is the Dirac delta function [115]. It is worth noticing that, by definition,

Ûp(jω̂) and Ûn(jω̂) are related to the Fourier transforms Up(jω) and Un(jω) of the

positive and negative sequence components Up(t, ω̂) and Un(t, ω̂) of Uabc(t, ω̂). In par-

ticular:

Up(jω) = F [Up(t, ω̂)]

=

∫ ∞
0

[π|Ûp(jω̂)|(ej∠Ûp(jω̂)δ(ω − ω̂) + e−j∠Ûp(jω̂)δ(ω + ω̂))]dω̂
(C.74)

Un(jω) = F [Un(t, ω̂)]

=

∫ ∞
0

[π|Ûn(jω̂)|(ej∠Ûn(jω̂)δ(ω − ω̂) + e−j∠Ûn(jω̂)δ(ω + ω̂))]dω̂
(C.75)

Applying Fourier theory, the generic voltage signal Uabc(t) can be described as a

sum of an infinite number of components Uabc(t, ω̂), with ω̂ ∈ [0,+∞). By indicating

with Ud(t) and Uq(t) the dq-components of Uabc(t), their Fourier transforms are:

Ud(jω) =

∫ ∞
0

Ud(jω, ω̂)dω̂

= j

∫ ∞
0

[π|Ûp(jω̂)|(ej∠Ûp(jω̂)δ(ω − ω̂ + ω0) + e−j∠Ûp(jω̂)δ(ω + ω̂ − ω0))]dω̂

− j
∫ ∞
0

[π|Ûn(jω̂)|(ej∠Ûn(jω̂)δ(ω − ω̂ − ω0) + e−j∠Ûn(jω̂)δ(ω + ω̂ + ω0))]dω̂

(C.76)
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Uq(jω) =

∫ ∞
0

Uq(jω, ω̂)dω̂

=

∫ ∞
0

[π|Ûp(jω̂)|(ej∠Ûp(jω̂)δ(ω − ω̂ + ω0) + e−j∠Ûp(jω̂)δ(ω + ω̂ − ω0))]dω̂

+

∫ ∞
0

[π|Ûn(jω̂)|(ej∠Ûn(jω̂)δ(ω − ω̂ − ω0) + e−j∠Ûn(jω̂)δ(ω + ω̂ + ω0))]dω̂

(C.77)

Based on (C.74), (C.75), (C.77) and (C.76), the following expressions can be written

for Ud(jω) and Uq(jω):

Ud(jω) = jUp(j(ω + ω0))− jUn(j(ω − ω0))

Uq(jω) = Up(j(ω + ω0)) + Un(j(ω − ω0))
(C.78)

The result (C.78) shows that any spectral component which appears at frequency

ω in the dq-frame signal can be associated to a positive sequence signal at frequency

ω + ω0 and to a negative sequence signal at frequency ω − ω0.

Based on (C.65), (C.66) and (C.78), the following expressions are derived:

ip(jω) =
1

2
[Up(jω) + Un(j(ω − 2ω0))][Yqq(j(ω − ω0))− jYdq(j(ω − ω0))]

+
1

2
[jUp(jω)− jUn(j(ω − 2ω0))][Yqd(j(ω − ω0))− jYdd(j(ω − ω0))]

(C.79)

in(jω) =
1

2
[Up(j(ω + 2ω0)) + Un(jω)][Yqq(j(ω − ω0)) + jYdq(j(ω − ω0))]

+
1

2
[jUp(j(ω + 2ω0))− jUn(jω))][Yqd(j(ω − ω0)) + jYdd(j(ω − ω0))]

(C.80)

By setting:

Ypp(s) =
1

2
[Yqq(s− jω0)− jYdq(s− jω0) + jYqd(s− jω0) + Ydd(s− jω0)],

Ypn(s) =
1

2
[Yqq(s− jω0)− jYdq(s− jω0)− jYqd(s− jω0)− Ydd(s− jω0)],

Ynp(s) =
1

2
[Yqq(s+ jω0) + jYdq(s+ jω0) + jYqd(s+ jω0)− Ydd(s+ jω0)],

Ynn(s) =
1

2
[Yqq(s+ jω0) + jYdq(s+ jω0)− jYqd(s+ jω0) + Ydd(s+ jω0)]

(C.81)
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equations (C.79), (C.80) can be written as:

ip(s) = Ypp(s)Up(s) + Ypn(s)Un(s− 2jω0),

in(s) = Ynn(s)Un(s) + Ynp(s)Up(s+ 2jω0)
(C.82)

Based on (4.2), (C.81) and (C.82) correspond to (4.3) and (4.4).
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Hardware implementation of the

inverter laboratory prototype

In this Appendix an outline of the hardware used to build the laboratory inverter

prototype is provided.

D.1 Control board

The control board is the core element of the set-up. Its function is the execution of the

inverter controller algorithm. The Xilinx Zynq-7000 ZC706 evaluation board has been

used for this purpose. A detailed description of the ZC706 board characteristics is out of

the scope of this work and can be found in [112]. The board is composed of a Processing

System (PS) section and of a Programmable Logic (PL) unit. While the former includes

two ARM R© CortexTM-A9 MPCoreTM processors [121], the latter is based on FPGA

technology. The PS and the PL units operate simultaneously exchanging data and

control signals.

D.2 Interface boards

The ZC706 board is connected both to a laptop to allow debugging of the controller

algorithm and delivery of the recorded data, and to the rest of the set-up, in particular

the ADC/DAC board and the gate driver. The connection to the ADC/DAC board

is needed to acquire the plant signals read from the sensors and to deliver debugging
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signals to the oscilloscopes. The connection to the gate driver is necessary to provide

this with the computed PWM pattern as well as to receive a diagnostic error signal

generated by the driver.

The connection to the ADC/DAC board has been carried out through the LPC FMC

port of the control board and makes use of an additional interface board, named FMC-

PCI. This consists both of an FMC LPC 160-pin [122] and of a PCI/104-Express [123]

connector, as detailed in Section D.2.1, where the design of the FMC-PCI board is

discussed in more detail.

On the other hand, the connection to the gate driver has been made through the PMOD

GPIO port of the control board. A voltage level shifter has been used in this connection

to rise the level of the PWM voltage signals from 3.3 V to 5 V, thus making these signals

compliant with the gate driver PWM input specifications [124]. Similarly, such voltage

level shifter has been used to lower the voltage of the diagnostic signal generated by

the driver, from 5 V to 3.3 V. The shifter is made up of two separate units, the VLS-Rx

and the VLS-Rx boards. Further details on their design are reported in Section D.2.2.

D.2.1 FMC-PCI interface board

This board has been designed to connect the ADC/DAC board to the control board.

It mounts both a FMC LPC 160-pin [122] and a PCI/104-Express [123] connector, as

illustrated in Figure D.1.

The board is composed of six layers, four of which employed to accommodate the

control and data signals. The remaining two layers are ground layers, used to allow

a better Electromagnetic Interference (EMI) immunity. The schematics of the boards

are reported in Figures D.6, D.7 and D.8 in Section D.7.
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Figure D.1: Picture of the FMC-PCI interface board.

D.2.2 Level shifter interface board

In order to allow the exchange of signals between the control board and the gate driver,

a voltage level shifter has been used. In fact, while the PMOD I/O signals of the control

board have a higher voltage level of 3.3 V [112], the I/O inputs of the gate driver, whose

model is SKHI 71 [124], have a minimum high voltage level equal to 4 V. A level shifter

has been therefore used both to increase the voltage of the six PWM signals delivered

to the gate driver (from 3.3 V to 5 V) and to reduce that of the error signal generated

by the gate driver (from 5 V to 3.3 V). Such shifter is composed of two separate PCBs,

the VLS-Tx board, which is connected to the control board, and the VLS-Rx board,

which is connected to the gate driver. The change in the voltage amplitude of the

signals is carried out by the VLS-Tx board, making use of two SN74LVCC3245A 8-bit

voltage translators [125], one magnifies the PWM signal voltages, the other reduces the

error signal voltage amplitude.

The digital information is delivered by a current signal. In particular, for each of the

seven interface channels, the 0 data bit is encoded by no current flowing between the

transmitting and the receiving ends of the communication channel. On the other hand,

the 1 data bit is encoded by generating a non-zero current through the channel. The

electrical diagrams corresponding to the PWM data and the error signal channels are

respectively shown in Figures D.2 and D.3, while the PCB schematics of the two boards
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are reported in Figures D.9, D.10, D.11 and D.12 in Section D.7.
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𝐆𝐚𝐭𝐞 

Figure D.2: Schematic diagram of the PWM signal transmission from the control board
to the gate driver through the voltage level shifter.

𝐕𝐋𝐒  𝐓𝐱 − 𝐛𝐨𝐚𝐫𝐝 𝐕𝐋𝐒  𝐑𝐱 − 𝐛𝐨𝐚𝐫𝐝 

𝐛𝐨𝐚𝐫𝐝 
𝐂𝐨𝐧𝐭𝐫𝐨𝐥 

𝐄𝐫𝐫𝐨𝐫 𝐬𝐢𝐠𝐧𝐚𝐥 
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𝟓𝐕 𝐭𝐨 𝟑. 𝟑𝑽 

𝐂𝐚𝐛𝐥𝐞 
𝐝𝐫𝐢𝐯𝐞𝐫 
𝐆𝐚𝐭𝐞 

𝟓𝐕 𝟓𝐕 

Figure D.3: Schematic diagram of the error signal transmission from the gate driver to
the control board through the voltage level shifter.

D.3 ADC/DAC board

The ADC/DAC board is used, as above mentioned, to acquire the analogue signals

generated by the sensors, converting them into a digital format to be sent to the control

board. Furthermore, it converts the debug digital signals generated by the control board

into an analogue format, suitable to be read by the connected oscilloscopes.

The board is equipped with 12 ADC inputs (only seven of them have been used), and

8 DAC outputs, all utilised. In more detail, the analogue signals generated by the

sensors, which are in the range [−10 V, 10 V], are read by two ADC converter chips,

each capable of reading up to six channels. The ADC conversion is carried out with

a resolution of 12 bits and requires ≈ 2.3 µs. One single chip is used for the DAC

conversion, carried out with a 12 bit resolution and generating analogue outputs in the
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[−10 V, 10 V] range .

The ADC/DAC module requires a 24 V DC power supply and, as mentioned before, is

connected to the ZC706 control board through the FMC-PCI interface board.

D.4 Gate driver

The adopted gate driver is the SKHI 71 model by Semikron [124]. It allows the delivery

of the PWM pattern received by the control board to the converter IGBT modules. By

making use of opto-couplers, it assures electrical isolation between the control board

and the inverter. The driver has been configured to add a 1 µs dead-time to the PWM

pulses sent to the IGBTs of the same inverter leg (additional dead-time is introduced

via software by the control board, as discussed in Section E.2.4). Besides the six PWM

inputs, the driver is also equipped with an active low diagnostic output to indicate

unsafe operating conditions within the driver. Under these circumstances, the driver

is automatically turned off [124]. Simultaneously, as soon as the control board detects

the activation of such error signal, it resets its output PWM signals.

D.5 Converter

The converter used is the SKM75GB124D model by Semikron [126]. It is designed

to operate with a DC voltage < 600 V and a forward current < 50 A under normal

operating conditions, while being able to stand up to a 1200 V collector-to-emitter

burst voltage and up to a 100 A burst collector current. The module is specifically

suitable for switching applications, with reduced power losses (2.25 % under maximum

rating conditions). Further technical specifications can be found in [126].

D.6 Sensors

Seven sensors have been used to measure the plant signals, namely the DC Voltage

UDC , the three phase voltage U and the inverter current i (see Figure 2.22). Besides

measuring the electrical signal, each sensor also provides galvanic isolation between the

plant components and the control board. For this purpose, Hall effect sensors have

been chosen, the LV25-P sensor and the LA55-P sensor (both manufactured by LEM).

They respectively measure voltage or current. The design of the sensor boards are
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discussed in more detail is the following Sections D.6.1 and D.6.2

D.6.1 Voltage Sensor

Four voltage sensors have been used to measure the plant three phase voltage U and the

converter DC voltage UDC in Figure 2.22. All of these sensors share the same design

and make use of the LV25-P transducer, which also provides galvanic isolation between

the plant and the control system.

As shown in Figure D.4, where a schemetic diagram of the sensor circuit is shown,

the input voltage Uin is converted into a (primary) current Iin by means of the input

resistor Rin. Having assumed a maximum input voltage Uin,max = 300 V and a nominal

input current Iin,nom of 7.5 mA [127], the resulting value of Rin has been calculated as:

Rin =
Uin,max
Iin,nom

(D.1)

The secondary (output) current of the transducer, Im, is converted into the voltage

signal Um by the 300 Ω resistor Rm,v. Such voltage is then increased by means of an

operation amplifier used in its inverting configuration [128].

A 10 kΩ trimmer, RG, is used to tune the gain Gv of the amplification stage, calculated

as [128]:

Gv =
Uout
Um

= −R2 +RG
R1

. (D.2)

By choosing R1 = 10 kΩ and R2 = 5.6 kΩ , the value of RG has been tuned such

that:

GV =
Uout
Uin

= −0.03 (D.3)

where GV is the overall gain of the sensor.
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Figure D.4: Schematic diagram of the voltage sensor.

With such a sizing of the resistors, for an input voltage Uin in the [−300 V, 300

V] range, the corresponding output voltage of the sensor is in the [−9 V, 9 V] range

(i.e. within the [−10 V, 10 V] range of the ADC inputs of the ADC/DAC board). It

is worth noticing that the use of the variable resistor RG has allowed a fine calibration

of the sensor. An additional 10 kΩ trimmer (not shown in Figure D.4) has been used

to compensate for the operational amplifier voltage offset. The PCB schematics of the

sensor are reported in Figure D.13, in Section D.7.

D.6.2 Current Sensor

The structure of the current sensor is similar to that of the voltage one. In this case,

only three sensors have been used, which measure the three phase inverter output

current i in Figure 2.22. The LA55-P transducer has been employed which, like the

LV25-P voltage transduser, also provides galvanic isolation between the plant and the

controller. The transducer operates according to a closed-loop scheme where its output

current is proportional both to the primary (input) current Iin and to the number Nt

of turns of the input wire across the sensor aperture [129] (see Figure D.5).
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Figure D.5: Schematic diagram of the current sensor.

As shown in Figure D.5, the output current of the transducer, Im, is converted into

the voltage signal Um by the 100 Ω resistor Rm,i. This voltage is then amplified using

the same amplifier configuration adopted for the voltage sensor. The number Nt of

turns of the primary current conductor has been set to three. R1 = 10 kΩ, R2 = 5.6

kΩ, while RG is a 10 kΩ trimmer. Equation (D.2) also provides the gain of the current

sensor amplification stage, with the trimmer tuned such that:

GI =
Uout
Iin

= −0.4 (D.4)

where GI is the total gain of the sensor.

As the accepted voltage of the ADC/DAC board ADC inputs is, as aforementioned,

in the [−10 V, 10 V] range, the corresponding input current that can be measured by

the sensor is in the [−25 A, 25 A] range. A further 10 kΩ trimmer (not shown in

Figure D.5) has been used to compensate for the operational amplifier voltage offset,

as similarly done for the voltage sensor. The PCB schematics of the sensor are reported

in Figure D.14, in Section D.7.

D.7 PCB schematics

In this Section, the schematics of the designed PCB boards are reported.
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Figure D.6: Schematic diagram of the FMC-PCI interface board. General interconnec-
tion scheme.
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Figure D.7: Schematic diagram of the FMC-PCI interface board. FMC HPC ASP-
134488-01 connector.
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Figure D.8: Schematic diagram of the FMC-PCI interface board. PCI/104 Express
ASP-129637-03 connector.
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Figure D.10: Schematic diagram of the VLS-Tx level shifter board. PWM signals’
circuitry.
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Figure D.11: Schematic diagram of the VLS-Tx level shifter board. Error signal cir-
cuitry.
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Figure D.12: Schematic diagram of the VLS-Rx level shifter board.
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Figure D.13: Schematic diagram of the voltage sensor board.
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Appendix E

Digital implementation of the

controller algorithm

In this Appendix the implementation of the controller algorithm, executed by the two

processor cores of the control board, is described. Such algorithm has been coded in C

language. As described in Section 5.1, processor P1 samples the plant signals and filters

the measured AC voltage. On the other hand, processor P2 executes the controller

algorithm, calculating the PWM pattern used to modulate the inverter voltage. These

data consist in six timers defining the turn on/off times of the inverter IGBT modules.

These timers are loaded on the PL section of the control board and are used to determine

the gate signals driving the inverter IGBT modules for the next Tsample period. The

main sections of the algorithms executed by P1 and P2 are described as follows, in

particular presenting the anti-aliasing filter, implemented in P1, and the vector control

algorithm, executed by P2.

In Section E.3, a description of the methodology used to derive the pn-frame admittance

frequency responses experimentally is provided.

E.1 Anti-aliasing filter

One of the main tasks of processor P1 is to pre-filter the meausured AC voltage U ,

before this is passed to P2. This is needed to avoid aliasing of the PWM harmonics

present in the spectrum of U . Their existence at side-bands of the switching frequency
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(and of its integer multiples) [90] is confirmed in Figure E.1, where a detailed view of the

magnitude spectrum of the experimentally measured phase a voltage, Ua[n] = Ua(t̄n),

sampled at fOS by P1, is illustrated (fOS = 100 kHz).
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Figure E.1: Detailed view of the magnitude spectrum of the Ua[n] (phase a). A sampling
frequency of 100 kHz has been considered. Such signal has been obtained testing the
grid-connected converter prototype corresponding to the scheme in Figure 2.27.

In the following description, asymmetrical sampling with a switching frequency of

2.5 kHz is assumed. By providing P2 with the samples US [k] = US(tk), which are

sampled at a fsample = 5 kHz rate, based on the Shannon sampling theorem [83], the

voltage signal seen by P2 contains scaled replica of the U(t̄n) spectrum, shifted by

±kfsample, with k = 1, 2, 3, ... + ∞. In more detail, by indicating with XU (f) the

spectrum of U and with XUS
(f) the spectrum of US :

XUS
(f) =

+∞∑
k=−∞

XU (f − kfsample) (E.1)

Therefore, the result of P2 sampling the U signal measured by P1 at a fsample rate

is that the PWM harmonics of U will appear in the lower frequency range of XUS
(f).

Such effect is called aliasing and is confirmed in Figure E.2, where the spectra of Ua(t̄n)

and US,a(tk) are compared. As it can be seen, such aliasing effect not only generates

new components in the spectrum of US,a(tk), particularly evident at 150 Hz, 450 Hz
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and 2200 Hz, but also distorts the 50 Hz, 250 Hz and 350 Hz components of Ua(t̄n).

The presence of spectral components at 250 Hz and 350 Hz in the spectrum of Ua(t̄n)

is attributed to the harmonics in the grid voltage. It is pointed out that by sampling

the inverter current at t = tk, no aliasing occurs on the sampled current [82], [90].

Therefore, while no anti-aliasing filter is needed for the measured current [92], it is

instead required for the measured AC voltage.
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Figure E.2: Detailed view of the magnitude spectrum of the sampled AC voltage (phase
a). Aliasing effect introduced by P2 sampling the AC voltage signal at 5 kHz. The
signal has been obtained testing the grid-connected converter prototype corresponding
to the scheme in Figure 2.27.

As discussed in Section 2.2.1.4, the anti-aliasing filter used in this work consists of a

cascaded connection of four notch filters and of a first order low pass filter (see Figure

E.3).
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Figure E.3: Block diagram of the anti-aliasing filter used to filter the measured plant
AC voltage.
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The digital implementation of such filter is discussed as follows. The used discrete-

time domain transfer funcion of the notch filter is [130]:

GAFn(z) = GAn ·
1 + anz

−1 + z−2

1 + anαnz−1 + α2
nz
−2 (E.2)

where:

an = −2cos(ωnTOS), αn = e−
1

2Q
ωnTOS , GAn =

1 + anαn + α2
n

2 + an
(E.3)

with TOS = 1
fOS

= 10 µs. The expression of an and αn have been derived by im-

posing same pole/zero locations for both GAFn(z) and GAFn(s), with GAFn(s) defined

as [86], [131]:

GAFn(s) =
s2 + ω2

n

s2 + ωn

Q s+ ω2
n

(E.4)

On the other hand, the discrete-time domain transfer function of the low pass filter

is:

GLPF (z) =
TOS

(TOS + τf )− τfz−1
(E.5)

This has been obtained from GLPF (s), defined in (E.6), by using the Backward

Euler’s integration method [131]. τf is the time constant of the filter.

GLPF (s) =
1

1 + sτf
(E.6)

From (E.2) and (E.5), the signals U1[n], U2[n], U3[n], U4[n] and US [n] in Figure E.3
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are calculated as:

U1[n] = GA1 · U [n] +GA1 · a1 · U [n− 1] +GA1 · U [n− 2]

− a1 · α1 · U1[n− 1]− α2
1 · U1[n− 2];

U2[n] = GA2 · U1[n] +GA2 · a2 · U1[n− 1] +GA2 · U1[n− 2]

− a2 · α2 · U2[n− 1]− α2
2 · U2[n− 2];

U3[n] = GA3 · U2[n] +GA3 · a3 · U2[n− 1] +GA3 · U2[n− 2]

− a3 · α3 · U3[n− 1]− α2
3 · U3[n− 2];

U4[n] = GA4 · U3[n] +GA4 · a4 · U3[n− 1] +GA4 · U3[n− 2]

− a4 · α4 · U4[n− 1]− α2
4 · U4[n− 2];

US [n] =
TOS

TOS + τf
U4[n] +

τs
TOS + τf

US [n− 1];

(E.7)

Finally, US [k] is the version of US [n] sampled at fsample (i.e. 5 kHz), as illustrated

in Figure E.3.

Figure E.4: Comparison between the spectrum of Ua[n] and US,a[n].
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Figure E.5: Comparison between the spectrum of Ua[n] and those of US,a[k] (with and
without the use of the anti-aliasing filter).

Figure E.4 compares the magnitude spectrum of Ua[n] to that of US,a[n] (phase a).

The results confirm the effectiveness of the filter to attenuate the PWM harmonics at

side-bands of both 5 kHz and 10 kHz. On the other hand, the PWM harmonics at

side-bands of 2.5 kHz and 7.5 kHz are less attenuated, as only the low pass filter sig-

nificantly exerts a filtering action on them. However, based on the Shannon sampling

theorem [83], such harmonics do not generate significant alias in the low frequency

range of US [k], namely at frequencies less than 1.5 kHz, where the stability problems

investigated in this work occur. Hence, despite of the fact that these harmonics reduce

the quality of the voltage signal, they are seen as irrelevant to the stability study of

the system, which is the main focus of this work.

Figure E.5 compares the spectra of US,a[k], with the anti-aliasing filter either used or

not, to the spectrum of Ua[n]. The results confirm the effectiveness of the filter to coun-

teract the aliasing effects observed in Figure E.2, in particular avoiding the alteration

of the 50 Hz component, and the generation of the aliased components at 150 Hz, 450

Hz and 2200 Hz.
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E.2 Vector control algorithm

This algorithm is executed, as aforementioned, by P2 and aims to calculate the PWM

timers necessary to modulate the inverter AC voltage. The main sections of the algo-

rithm consist in the PLL calculations (described in Section E.2.1), the transformation

of the acquired plant signals from the abc- to the dq-frame (described in Section E.2.2),

the current loop calculations (described in Section E.2.3) and the SVM algorithm cal-

culating the final PWM timers (described in Section E.2.4). The implementation of

the baseline controller algorithm, based on the scheme in Figure 2.20, is described.

E.2.1 PLL

The aim of the PLL loop is to estimate the grid angle and the grid frequency, θ[k]

and fPLL[k] respectively. A digital implementation of the operations defined by the

block diagram in Figure 2.14 has been carried out. For this purpose, a discrete-time

implementation of the PI controller employed by the PLL has been used. This has

been obtained from the continuous-time domain equation describing the PI regulator

operation [25]:

uPLL(t) = uPLL(t0) + kp,PLL · ePLL(t) + ki,PLL ·
∫ t

t0

ePLL(t)dt (E.8)

where ePLL(t) is the PI controller input, while kp,PLL and ki,PLL respectively are its

proportional and integral gains. Applying the Backward Euler’s approximation of the

integral [131], the discrete-time equation corresponding to (E.8) is:

uPLL[k] = kp,PLL ·ePLL[k]−kp,PLL ·ePLL[k−1]+ki,PLL ·Tsample ·ePLL[k]+uPLL[k−1]

(E.9)

where, in particular, ePLL[k] = −U+
S,d[k], i.e. the opposite of the d-component of the

measured AC plant voltage in the positive dq-frame (see Figure 2.14). The output of

the PI controller has been allowed to vary within the [uPLL,min, uPLL,max] range, where

uPLL,max and uPLL,min are the lower and the upper saturation limits of the regulator.
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When these limits are reached an anti wind-up algorithm intervenes which operates as

detailed in Table (E.1) [25]. The used values of uPLL,min and uPLL,max respectively

are −20π rads−1 and 20π rads−1. Based on the PLL block diagram shown in Figure

2.14, the PLL frequency fPLL[k] is then obtained as:

fPLL[k] =
uPLL[k]

2π
+ f0 (E.10)

where f0 = 50 Hz. The PLL angle θ[k] is finally derived by integrating fPLL[k] over

time (see Figure 2.14), resulting in the following expression in the discrete-time domain

θ[k] = 2πfPLL[k] · Tsample + θ[k − 1] (E.11)

This has been obtaining applying the same Backward Euler’s approximation of the

integral operator, used to derive (E.9). In more detail, θ[k] has been confined to vary

within the [0, 2π] range.

It is worth mentioning that, despite of the fact that in this description the PLL loop

calculations have been presented first, these are executed as last by the P2 algorithm.

As a result of this, θ[k] and fPLL[k] are only used in the next iteration of the P2

algorithm, i.e. during the [tk+1, tk+2] period. That being said, in the following Sections,

P2 algorithm will be presented taking into consideration the [tk, tk+1] period (see Figure

5.5). As such, the values θ[k − 1] and fPLL[k − 1] will be used in the formula that will

be presented, which are the values calculated by the PLL loop in the [tk−1, tk] period.

Table E.1: Operation of the PLL PI controller anti windup algorithm.

ePLL[k] ≥ 0 ePLL[k] < 0

uPLL[k − 1] = uPLL,max uPLL[k] = uPLL[k − 1] eq. (E.9)
uPLL[k − 1] = uPLL,min eq. (E.9) uPLL[k] = uPLL[k − 1]

E.2.2 Frame transformation

The algorithm executed by P2 bases its calculations on the plant data acquired at

t = tk. Firstly, as the controller operates in the dq-frame, the measured three phase
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signals, namely US [k] and iS [k], are mapped onto the positive and negative dq-frames

as detailed in equation (E.12). The Park transformations T (θ[k− 1]) and T (−θ[k− 1])

are employed to, respectively, derive the positive and negative sequence dq-components

of US [k] and iS [k], as discussed in Section 2.2.1.1.2. θ[k−1] is the PLL angle calculated

during the [tk−1, tk] period (see the comments at the end of Section E.2.1).

Û+
S,d[k]

Û+
S,q[k]

 =
2

3

sin(θ[k − 1]) sin(θ[k − 1]− 2
3π) sin(θ[k − 1]− 4

3π)

cos(θ[k − 1]) cos(θ[k − 1]− 2
3π) cos(θ[k − 1]− 4

3π)



US,a[k]

US,b[k]

US,c[k]


î+d [k]

î+q [k]

 =
2

3

sin(θ[k − 1]) sin(θ[k − 1]− 2
3π) sin(θ[k − 1]− 4

3π)

cos(θ[k − 1]) cos(θ[k − 1]− 2
3π) cos(θ[k − 1]− 4

3π)



ia[k]

ib[k]

ic[k]


Û−S,d[k]

Û−S,q[k]

 =
2

3

sin(−θ[k − 1]) sin(−θ[k − 1]− 2
3π) sin(−θ[k − 1]− 4

3π)

cos(−θ[k − 1]) cos(−θ[k − 1]− 2
3π) cos(−θ[k − 1]− 4

3π)



US,a[k]

US,b[k]

US,c[k]


î−d [k]

î−q [k]

 =
2

3

sin(−θ[k − 1]) sin(−θ[k − 1]− 2
3π) sin(−θ[k − 1]− 4

3π)

cos(−θ[k − 1]) cos(−θ[k − 1]− 2
3π) cos(−θ[k − 1]− 4

3π)



ia[k]

ib[k]

ic[k]


(E.12)

An adaptive notch filter is applied to extract the positive and negative sequence

components from the results provided by (E.12) (see Figure 2.12). For its implemen-

tation, the same z-domain transfer function form (E.2) has been used, with the only

difference that the filter tuned frequency now is equal to twice the PLL frequency (i.e.

2fPLL[k − 1]) [130]:

GN (z)[k] = GNF [k] · 1 + aN [k]z−1 + z−2

1 + aN [k]αN [k]z−1 + α2
N [k]z−2

(E.13)
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where

aN [k] = −2cos(4πfPLL[k − 1] · Tsample),

αN [k] = e−
1

2Q
·4πfPLL[k−1]·Tsample ,

GNF [k] =
1 + aN [k]αN [k] + α2

N [k]

2 + aN [k]

(E.14)

with Q = 2. This filter is applied to the 8 signals obtained with (E.12), hence

extracting the desired positive and negative sequence dq-components of the voltage

and current signals, as detailed in (E.15) and (E.16) respectively.

U+
S,d[k] = GNF [k] · Û+

S,d[k] +GNF [k] · aN [k] · Û+
S,d[k − 1] +GNF [k] · Û+

S,d[k − 2]

− aN [k] · αN [k] · U+
S,d[k − 1]− α2

N [k] · U+
S,d[k − 2];

U+
S,q[k] = GNF [k] · Û+

S,q[k] +GNF [k] · aN [k] · Û+
S,q[k − 1] +GNF [k] · Û+

S,q[k − 2]

− aN [k] · αN [k] · U+
S,q[k − 1]− α2

N [k] · U+
S,q[k − 2];

U−S,d[k] = GNF [k] · Û−S,d[k] +GNF [k] · aN [k] · Û−S,d[k − 1] +GNF [k] · Û−S,d[k − 2]

− aN [k] · αN [k] · U−S,d[k − 1]− α2
N [k] · U−S,d[k − 2];

U−S,q[k] = GNF [k] · Û−S,q[k] +GNF [k] · aN [k] · Û−S,q[k − 1] +GNF [k] · Û−S,q[k − 2]

− aN [k] · αN [k] · U−S,q[k − 1]− α2
N [k] · U−S,q[k − 2];

(E.15)

i+d [k] = GNF [k] · î+d [k] +GNF [k] · aN [k] · î+d [k − 1] +GNF [k] · î+d [k − 2]

− aN [k] · αN [k] · i+d [k − 1]− α2
N [k] · i+d [k − 2];

i+q [k] = GNF [k] · î+q [k] +GNF [k] · aN [k] · î+q [k − 1] +GNF [k] · î+q [k − 2]

− aN [k] · αN [k] · i+q [k − 1]− α2
N [k] · i+q [k − 2];

i−d [k] = GNF [k] · î−d [k] +GNF [k] · aN [k] · î−d [k − 1] +GNF [k] · î−d [k − 2]

− aN [k] · αN [k] · i−d [k − 1]− α2
N [k] · i−d [k − 2];

i−q [k] = GNF [k] · î−q [k] +GNF [k] · aN [k] · î−q [k − 1] +GNF [k] · î−q [k − 2]

− aN [k] · αN [k] · i−q [k − 1]− α2
N [k] · i−q [k − 2];

(E.16)

Once such components have been calculated, it is then possible to execute the
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current controller algorithm, according to the scheme in Figure 2.20. The result of this

algorithm will be the dq-components of the PWM modulation functions, mdq[k]. These

will be used to calculate the PWM pattern applied in the following [tk+1, tk+2] period.

While the current controller algorithm is described in Section E.2.3, the calculation of

the PWM timers is illustrated in Section E.2.4.

E.2.3 Current controller

As shown in Figure 2.20, the current controller is composed by four feedback loops,

all having the same architecture with the PI regulator being the core control element.

Equivalently to (E.9), the outputs of the four PI current regulators in Figure 2.20 are

calculated as:

u+I,d[k] = kp,I · e+I,d[k]− kp,I · e+I,d[k − 1] + ki,PLL · Tsample · e+I,d[k] + u+I,d[k − 1],

u+I,q[k] = kp,I · e+I,q[k]− kp,I · e+I,q[k − 1] + ki,PLL · Tsample · e+I,q[k] + u+I,q[k − 1],

u−I,d[k] = kp,I · e−I,d[k]− kp,I · e−I,d[k − 1] + ki,PLL · Tsample · e−I,d[k] + u−I,d[k − 1],

u−I,q[k] = kp,I · e−I,q[k]− kp,I · e−I,q[k − 1] + ki,PLL · Tsample · e+I,q[k] + u−I,q[k − 1],

(E.17)

where kp,I and kp,I respectively are the proportional and the integral gains of the

regulator. The PI input errors in (E.17) are calculated as:

e+I,d[k] = i+d,ref − i
+
d [k],

e+I,q[k] = i+q,ref − i
+
q [k],

e−I,d[k] = i−d,ref − i
−
d [k],

e−I,q[k] = i−q,ref − i
−
q [k],

(E.18)

Such as the PLL PI controller, the current PI regulators outputs are limited in a

[uI,min, uI,max] range, where uI,max and uI,min respectively are the lower and upper

saturation limits of the these regulators. When these limits are reached, the same

anti-windup strategy used for the PLL loop is applied [25], as detailed in the Table E.2.

The values of uI,min and uI,max respectively are −0.4UDC [k] and 0.4UDC [k].

Considering the controller scheme in Figure 2.20, a Voltage Feed Foward (VFF) term
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Table E.2: Operation of the current PI controller anti windup algorithm.

eI [k] ≥ 0 eI [k] < 0

uI [k − 1] = uI,max uI [k] = uI [k − 1] eq. (E.17)
uI [k − 1] = uI,min eq. (E.17) uI [k] = uI [k − 1]

is used, which results from the application of a first order low pass filter on the positive

and negative dq-components of the measured US [k] signal (i.e. U+
S,d[k], U+

S,q[k], U−S,d[k]

and U−S,q[k]). Applying the same discrete-time trasnfer function formulation of the LPF

filter (E.5), these VFF terms have been calculated as [131]:

U+
V FF,d[k] =

Tsample
Tsample + τp

U+
S,d[k] +

τp
Tsample + τp

U+
V FF,d[k − 1],

U+
V FF,q[k] =

Tsample
Tsample + τp

U+
S,q[k] +

τp
Tsample + τp

U+
V FF,q[k − 1],

U−V FF,d[k] =
Tsample

Tsample + τn
U−S,d[k] +

τn
Tsample + τn

U−V FF,d[k − 1],

U−V FF,q[k] =
Tsample

Tsample + τn
U−S,q[k] +

τn
Tsample + τn

U−V FF,q[k − 1],

(E.19)

where τp and τn respectively are the positive sequence and the negative sequence time

constants of the filter.

Based on the control scheme in Figure (2.20), the outputs of the four current feedback

loops are calculated as:

m+
d [k] =

2

UDC [k]
(u+I,d[k] + U+

V FF,d[k]− 2πfPLL[k − 1] · i+q [k] · Lf ),

m+
q [k] =

2

UDC [k]
(u+I,q[k] + U+

V FF,q[k] + 2πfPLL[k − 1] · i+d [k] · Lf ),

m−d [k] =
2

UDC [k]
(u−I,d[k] + U−V FF,d[k] + 2πfPLL[k − 1] · i−q [k] · Lf ),

m−q [k] =
2

UDC [k]
(u−I,q[k] + U−V FF,q[k]− 2πfPLL[k − 1] · i−d [k] · Lf ),

(E.20)

The negative sequence dq-components are then mapped on the positive dq-frame,
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based on (2.14), as:

md[k] = m+
d [k] +m−d [k]cos(2φPLL[k − 1]) +m−q [k]sin(2φPLL,k−1),

mq,k = m+
q [k]−m−d [k]sin(2φPLL[k − 1]) +m+

d [k]cos(2φPLL,k−1),
(E.21)

The results in (E.21) are used by the SVM algorithm to calculate the final PWM

timers that will drive the IGBT modules in the next [tk+1, tk+2] sampling window.

Their calculation is discussed in the following Section.

E.2.4 Calculation of PWM timers

A set of calculations is used to implement the SVM algorithm and, thereby, to determine

the six PWM timers driving the converter IGBT modules in the next [tk+1, tk+2] (see

Figure 5.5). For this purpose, the modulation indexes (E.21) are expressed in the

αβ-frame applying the transformation (B.15). The resulting mα[k] and mβ[k] indexes

are:

mα[k] = md[k]sin(φPLL[k − 1]) +mq[k]cos(φPLL[k − 1]),

mβ[k] = −md[k]cos(φPLL[k − 1]) +mq[k]sin(φPLL[k − 1]),
(E.22)

As discussed in Section A.2, from the result in (E.22) it is possible to derive the

corresponding abc-frame modulation functions, according to the equations detailed in

Tables A.1 and A.2. These respectively allow the identification of the ~m[k] sector and,

thereby, of the ma[k], mb[k] and mc[k] indexes. Based on (A.1), such three phase mod-

ulation functions can be related to the turn-on times of Q1, Q3 and Q5, which are the

switches on the top of the inverter legs (see Figure 2.2). In particular, by respectively

indicating these times as TON,a[k], TON,b[k] TON,c[k], these can be calculated as:

TON,a[k] = Tsample
1 +ma[k]

2

TON,b[k] = Tsample
1 +mb[k]

2

TON,c[k] = Tsample
1 +mc[k]

2

(E.23)
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whose corresponding off times are:

TOFF,a[k] = Tsample − TON,a[k]

TOFF,b[k] = Tsample − TON,b[k]

TOFF,c[k] = Tsample − TON,c[k]

(E.24)

As discussed in Appendix A, in the asymmetrical sampling technique [72] the mod-

ulation functions are sampled when the triangular carrier function is either equal to

1 or −1. While in the former case the Q1, Q3 and Q5 switches are turned-off during

the first portion of the Tsample period, in the latter case, Q1, Q3 and Q5 are instead

turned-on during such period (see Figure A.3). Hence, by indicating with T1[k], T3[k],

T5[k] the PWM timers calculated by the controller algorithm for the Q1, Q3 and Q5

switches, these are either the turn-off times (E.24) when the carrier is equal to 1 or

the turn-on times (E.23) when the carrier is −1. By indicating with T2[k], T4[k], T6[k]

the PWM timers of Q2, Q4 and Q6, T1[k] = T2[k], T3[k] = T4[k], T5[k] = T6[k], even

though the states of Q2, Q4 and Q6 are complementary to those of Q1, Q3 and Q5,

respectively.

The technique used by the implemented algorithm to define the PWM timers is sum-

marised in Table E.3.

Table E.3: PWM timers without added dead-time.

Carrier value mabc[k] top IGBT bottom IGBT

1 T1[k] = T2[k] = TOFF,a[k] OFF ON
T3[k] = T4[k] = TOFF,b[k] OFF ON
T5[k] = T6[k] = TOFF,c[k] OFF ON

-1 T1[k] = T2[k] = TON,a[k] ON OFF
T3[k] = T4[k] = TON,b[k] ON OFF
T5[k] = T6[k] = TON,b[k] ON OFF

For the proper operation of the converter, a dead-time must be introduced to avoid

the IGBTs of the same converter leg from conducting simultaneously. Given that, as

mentioned in Appendix D.4, a 1 µs dead-time is introduced by the gate driver, an extra

2TDT dead-time has been introduced via software, with TDT = 0.5 µs. By doing so, a

total dead-time of 2 µs has been obtained. Taking into account such added TDT dead-
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time, the final PWM timers calculated by the controller, namely T̂1[k], T̂2[k], T̂3[k],

T̂4[k], T̂5[k] and T̂6[k], are as detailed in Table (E.4).

These timers are loaded on the PL section of the board and are used by six correspond-

ing FPGA counters as threshold values to commutate the state of the associated PWM

outputs.

Table E.4: PWM timers with added dead-time.

Carrier value mabc[k] IGBT state

1 T̂1[k] = T1[k] + TDT OFF

T̂2[k] = T2[k]− TDT ON

T̂3[k] = T3[k] + TDT OFF

T̂4[k] = T4[k]− TDT ON

T̂5[k] = T5[k] + TDT OFF

T̂6[k] = T6[k]− TDT ON

-1 T̂1[k] = T1[k]− TDT ON

T̂2[k] = T2[k] + TDT OFF

T̂3[k] = T3[k]− TDT ON

T̂4[k] = T4[k] + TDT OFF

T̂5[k] = T5[k]− TDT ON

T̂6[k] = T6[k] + TDT OFF

E.3 Experimental calculation of the pn-frame small-signal

admittance

The methodology used in the tests described in Section 4.1.3.2 to derive the pn-frame

admittance frequency responses experimentally is described as follows. In particular,

this technique allows the derivation of the pn-frame admittance resulting from the series

combination of the converter admittance and of the admittance which is connected to

the inverter AC terminals through its coupling reactor. Based on (4.5), the frequency

response matrix of such admittance is formulated as:

Ym,PN (j2πf) =

 Ym,pp(j2πf) Ym,pn(j2πf)

Ym,np(j2π(f − 2f0)) Ym,nn(j2π(f − 2f0))

 (E.25)

In order to calculate the frequency responses Ym,pp(j2πf) and Ym,np(j2π(f − 2f0))

in (E.25), a small-signal positive sequence perturbation δm+
abc[k] has been added to the
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steady-state abc-frame modulation indexes mabc,0[k]:

δm+
a [k] = δm0cos(γ[k])

δm+
b [k] = δm0cos(γ[k]− 2

3
π)

δm+
c [k] = δm0cos(γ[k]− 4

3
π)

(E.26)

where δm0 is the amplitude of the small-signal perturbation. The γ[k] angle, confined

in the [0 rad, 2π rad] range, is defined as:

γ[k] = 2πfp · Tsample + γ[k − 1] (E.27)

where fp is the frequency of the applied small-signal perturbation. It is pointed out

that γ[k] is synchronized to the converter angle θ[k]. As in the carried out tests, no

PLL loop has been used, θ[k] has been calculated as:

θ[k] = 2πf0 · Tsample + θ[k − 1] (E.28)

and has been confined in the [0 rad, 2π rad] range. f0 = 50 Hz. In these tests,

asymmetrical regular sampling has been applied, with a converter switching frequency

fs = 2.5 kHz. Therefore, Tsample = 200 µs.

Based on (A.5), and taking into consideration the Tsample delay of the controller, the

corresponding small-signal perturbation δUI [k] on the inverter output voltage is:

δUIa [k + 1] =
UDC

2
δm0cos(γ[k]) = δUI0cos(γ[k])

δUIb [k + 1] =
UDC

2
δm0cos(γ[k]− 2

3
π) = δUI0cos(γ[k]− 2

3
π)

δUIc [k + 1] =
UDC

2
δm0cos(γ[k]− 4

3
π) = δUI0cos(γ[k]− 4

3
π)

(E.29)

with:

δUI0 =
UDC

2
δm0 (E.30)
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In the test, the small-signal perturbation in (E.26) has been applied for a period

of 1s, recording the corresponding current feedback signal i[k]. This consists of 5000

samples, as Tsample = 200 µs. A spectral analysis of this signal has been carried

out, which indicated the presence of both a positive sequence component δi+pp(j2πfp)

and of a negative sequence component δi−np(j2π(fp − 2f0)). Hence, Ym,pp(j2πfp) and

Ym,np(j2π(fp − 2f0)) have been calculated as:

Ym,pp(j2πfp) =
|δi+pp,a(j2πfp)|

δUI0
∠(δi+pp,a(j2πfp)e

−j2πfpTsample)

YC,np(j2π(fp − 2f0)) =
|δi−np,a(j2π(fp − 2f0))|

δUI0
∠(δi−np,a(j2π(fp − 2f0))e

−j2πfpTsample)

(E.31)

Similarly, in order to calculate the Ym,nn(j2πf) and Ym,pn(j2π(f + 2f0) terms in

(E.25), a small-signal negative sequence deviation δm−abc[k] has been added to mabc,0[k]:

δm−a [k] = δm0cos(φ[k])

δm−b [k] = δm0cos(φ[k] +
2

3
π)

δm−c [k] = δm0cos(φ[k] +
4

3
π)

(E.32)

The recorded current feedback signal i[k] now revealed the presence of a nega-

tive sequence spectral component δi−nn(j2πfp) and of a positive sequence component

δi+pn(j2π(fp + 2f0)). Thereby, Ym,nn(j2πfp) and Ym,pn(j2π(fp + 2f0)) have been calcu-

lated as:

Ym,nn(j2πfp) =
|δi−nn,a(j2πfp)|

UI0
∠(δi−nn,a(j2πfp)e

−j2πfpTsample)

Ym,pn(j2π(fp + 2f0)) =
|δi+pn,a(j2π(fp + 2f0))|

UI0
∠(δi+pn,a(j2π(fp + 2f0))e

−j2πfpTsample)

(E.33)

The test has been repeated for fp varying in the [5 Hz, 990 Hz] range, which allowed

the derivation of the experimental frequency responses Ym,pp(j2πf), Ym,pn(j2π(f +
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2f0)), Ym,np(j2π(f − 2f0)), Ym,nn(j2πf).
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1. Accepted: G. Amico, A. Egea-Àlvarez, P. Brogan and S. Zhang, ”Small-signal

converter admittance in the pn-frame: systematic derivation and analysis of the

cross-coupling terms”, IEEE Transaction on Energy Conversion.

2. Accepted: G. Amico, A. Egea-Àlvarez, L. Xu, and P. Brogan, ”Stability margin

definition for a converter-grid system based on diagonal dominance property in

the sequence-frame”, IEEE EPE 2019 ECCE Europe Conference, Genova (Italy).

3. Submission pending: G. Amico, A. Egea-Àlvarez, P. Brogan and L. Xu, ”Study

of the diagonal dominance property of the converter-grid system in the sequence-

frame and its implication of the stability analysis”.

4. Submission pending: G. Amico, A. Egea-Àlvarez, P. Brogan and L. Xu, ”Study

of cable due wind farm resonances and mitigation technique”.

F.2 Inventions

1. Paul Brogan, Paul Godridge, Gabriele Amico, Agusti Egea-Àlvarez, ”PWM en-

hancement to minimize discrete delay ”, Invention Disclosure no. 2019600740

GB, Siemens Gamesa Renewable Energy.
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