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Abstract

Squeeze film flow of a viscoplastic Bingham fluid between non-

parallel plates has been analysed. It is assumed that the force ap-

plied to the plates is known, therefore, their velocity must be found,

and the film thickness decreases then as time proceeds. Moreover,

for non-parallel plates, the position along the plates at which flow

reverses direction is found as part of the solution. In the Newtonian

limit, the thickness of the gap between the plates in the parallel sys-

tem never quite reaches zero at any finite time, while for the non-

parallel case a finite time can be obtained when the plates touch

one another at a point. In squeeze flow of a viscoplastic Bingham

fluid between parallel and non-parallel plates, under a fixed applied

force, a final steady film thickness can sometimes be reached. This

final thickness turns out to be sensitive not just to the plate tilt an-

gle but also to the so called Oldroyd number which is defined as

the ratio between yield stress and imposed stress. Nevertheless

for squeeze film flow of Bingham viscoplastic fluid between non-

parallel plates, the results show that other cases exist in which the

lubrication force cannot always balance the applied force, leading

to the plates approaching and touching at the narrowest end of the

gap. Moreover torques that develop within the system have been

analysed.

On the other hand, there are flows of viscoplastic Bingham fluids in

which motion decays to zero in finite time typically after a load is re-
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moved: a final state is thereby reached after finite time. Analogous

flows of Newtonian fluids need however an infinite time for motion

to decay to zero. In this thesis, a flow of a Bingham fluid squeezed

between two parallel and non-parallel plates is considered with the

plates subject to a constant load. This admits a final state without

any motion despite the load remaining present. Asymptotic anal-

ysis close to that final state is considered, which reveals that in

the squeeze film configuration, a Bingham fluid requires an infinite

(rather than a finite time) to stop moving. That said, the decay of

the motion of the Bingham fluid is still shown to be asymptotically

much faster than that of the equivalent Newtonian fluid.

It is known that the squeeze film flows have a myriad applications,

one of which can be the foam-based papermaking process. As a

case in point, in this thesis, the squeeze film flow of Newtonian and

non-Newtonian fluids between two parallel and non-parallel plates

has been investigated in an effort to understand the behaviour of

foam-fibre suspensions in the foam-formed papermaking process.

Pore size distributions in foam-formed paper tend to be more uni-

form than in water-formed paper, so the hypothesis explored is that

this distribution might reflect uniformity or non-uniformity of gaps be-

tween fibres as either foam or water is squeezed out from between

them. Data we examine however tend to contradict that hypothesis,

suggesting that foam rheology alone is insufficient to account for

pore size distributions.



Chapter 1

Introduction

This chapter provides an introduction for this thesis and consists of three sec-

tions. In section 1.1 the background of this thesis is presented. A brief dis-

cussion of the squeeze film flow is described in the background section. Then,

the motivation for the thesis is considered in section 1.2 in which the gap in

knowledge and importance of this research are delineated. Finally, the layout

of the thesis is outlined in section 1.3.

1.1 Background to Research

Among the different classifications of fluids that flow [1, 2], from viscous New-

tonian to non-Newtonian fluids, viscoplastic fluids and in particular viscoplastic

Bingham fluids are of special interest due to their specific properties. That is,

some materials may not flow until a critical stress called a yield stress is ex-

ceeded [3, 4]. These are yield stress or viscoplastic materials that present a

plastic response or viscous resistance when they are undergoing deformation

[5, 6]. In viscoplastic Bingham materials in particular, deformation and as-

sociated viscous dissipation only take place when the shear stress is greater

than the yield stress, and material will otherwise behave as a solid. Thus, when

1
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shear stress is less than yield stress, no deformation can be seen, but when the

yield stress is exceeded, any stress in excess of that yield stress is accounted

for the viscous resistance of the flow [7, 8]. Although yield stress fluids are

complicated to deal with as it can be challenging to compute their flow prop-

erties, there is a large number of literature articles that studied the rheological

flow behaviour of these fluids in various geometries (see [4, 6, 9, 10] amongst

others). One of the motivating reasons to study the rheological characteristics

of viscoplastic fluids is their applications in our daily lives, from foodstuffs such

as pastes, foams, sauces to cements, paints and cosmetic products [9, 11].

Another of the motivations to study the rheology of materials is to use the

data obtained via rheometry devices [1, 12, 13], in development of constitu-

tive equations, calculations of flow behaviour in varied geometries, etc.. In-

deed, non-Newtonian fluids (viscoplastic fluids amongst them) are often en-

countered in complex geometries. Thus, observing rheological properties of

non-Newtonian fluids in various geometries is useful to model the design and

operation of equipment utilized in process related industries that deal with such

materials [1, 12]. For instance, designing equipment in food industry requires

a comprehensive knowledge to elucidate and interpret the rheological data of

the materials being processed [14–16].

A rheometer [14, 17] is a device that is used to measure the rheological prop-

erties of different materials in a very specific geometry, usually classified into

two main types: rotational and tube type. This then reflects that flow can be

studied in various geometries, but two of the simplest are steady shear flow

and extensional rheological flow. Another geometry that has drawn attention

however [18, 19] is the parallel plate squeezing film flow geometry in which

the data from the instrument set up will be valuable for quality control tests by

comparing with other rheometer flows.
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The term squeeze film refers to a system in which a material is being squeezed

between two approaching plates [20, 21]. Lubricated squeeze film flow has

long been studied by Stefan [22] and Reynolds [23], but originally for Newto-

nian fluids. The work of Stefan [22] seems to be the first which has developed

a model for the squeeze film behaviour. The work done by [22] investigated

the force required to separate two parallel plates laid upon one another which

is called apparent adhesion, and which differs in different environments such

as in air, immersed under water and other liquids. From the experiments, it is

found that the apparent adhesion for the plates immersed in water is bigger

than the amount acquired for plates in air. After that, Reynolds [23] developed

hydrodynamic lubrication theory and established the well known equations for

a viscous fluid between two circular parallel surfaces approaching each other.

Squeeze film flow experiments can be done either under constant load or con-

stant squeezing rate [21]. Squeeze film flow between parallel plates can be

employed to interrogate rheological behaviour in other flows, such as shear

flow or extensional flow, since squeezing can involve elements of both [14].

The fluid used in a squeeze film system can be either Newtonian or non-

Newtonian. Thus much work has been done in the area of squeeze film flow

using fluids with different constitutive behaviour [18, 19, 24–28]. Indeed, due to

their complex characteristics, understanding the flow behaviour and deforma-

tion of non-Newtonian fluids in different geometries is particularly instructive.

As mentioned though, one of the geometries in which the steady shear and

also extensional viscosity fluid properties can be relevant is the parallel lubri-

cated squeeze film flow configuration [20, 21, 29].

One of the pioneering works that advanced knowledge in the theory of vis-

coplastic Bingham fluids squeezed between parallel plates is the work of Covey

and Stanmore [30]. They have done both experimental and theoretical inves-

tigations in a parallel plate “plastometer” to find the fundamental rheological
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properties of the non-Newtonian fluids exhibiting yield stress. They used a

constant force in their rheometer instrument to figure out the yield stress and

other properties of Bingham fluid flow behaviour. Other work that has been

done by Muravleva [28] provides a solution for the planar squeeze film flow

of a Bingham fluid where a constant velocity has been considered, and the

required squeezing force for the system has then been established.

There is however a connection between the constant velocity and constant load

cases: much of the solution procedure of Muravleva [28] carries over to the

constant load case, but an extra step is required matching the instantaneous

squeezing velocity to the given specified load. In this thesis therefore, we follow

the formulation utilized by Muravleva [28], even while considering a condition

in which a constant load is applied on the plates in order to figure out the

squeezing rate of the system. Although the work of Covey and Stanmore [30]

already considered a constant load in the squeeze film flow of a Bingham fluid,

in this study, we expand that solution for a different geometry (i.e. a non-parallel

squeeze film flow configuration).

1.2 Motivation for Thesis

A viscoplastic Bingham fluid [6] has a defining characteristic in which it will

deform when the imposed stress exceeds the yield stress. Gels, foams, sus-

pensions, creams, pastes, some industrial oils and muds exhibit yield stress

behaviour [31]. Our everyday life is surrounded by these materials. Hence, in-

vestigation of yield stress fluid behaviour in various geometries has been long

a subject of interest, due to the complex behaviour exhibited and the applica-

tions in a wide variety of industries [18].

As has been mentioned, one of the interesting geometries in which to explore

yield stress fluid characteristics is the squeeze film medium in which the ma-
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terial can be deformed between two plates approaching each other [28, 30].

Again as has been mentioned, squeeze film flow can be performed with a

constant squeezing force or a constant displacement rate. In both situations,

depending on the surface configuration and fluid properties, the gap thickness

between plates will be decreased and a certain time is required to squeeze

out a specified amount of the material [20, 21, 29]: for yield stress fluids in

particular, the long time behaviour might however be somewhat different in the

constant force or constant rate cases [28, 30]. The behaviours of the squeeze

film [32] have been widely studied in many application such as machine tools,

joints and gears, bearings, rolling elements, etc., and in applications such as

these, yield stress fluids such as gels may present different behaviours from

purely viscous fluids.

As alluded to above, much work has been done in the area of squeeze film

flows using various fluids, but the focus here is on viscoplastic ones. Key

references namely, works by Covey and Stanmore [30] and Muravleva [28]

have likewise already been discussed. Unsteady state evolution of a system

of a lubricated parallel plate squeeze film for a yield stress fluid with a constant

force have been investigated by Covey and Stanmore [30]. In this system,

the squeezing rate of the flow under a constant force will slow down as time

proceeds and eventually stop. This is due to the fact that the applied force on

the plate will be sustained by the lubrication force that develops, but over time

more and more of this lubrication force is contributed by yield stress rather than

viscous stress. However, the Bingham fluid squeezed between parallel plates

with a constant squeezing rate as has been done by Muravleva [28] will by

definition not slow down. To compensate, for flow under a constant velocity, the

force required for the squeezing action to take place will necessarily increase

as the film thickness between plates decreases.

The studies mentioned above refer only to parallel plate geometries. Until
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now (to the knowledge of this author), there is no known work done on the

squeeze film flow of a viscoplastic Bingham fluid between non-parallel plates.

Hence, this research seeks to explore the yield stress fluid behaviour between

non-parallel plates squeeze film configuration under a constant applied force

extending the approach taken by Covey and Stanmore [30] but making use

also of the work of Muravleva [28]. This work is described in Chapter 3 and

also in a paper published by the present author [33].

Although the works done by [28, 30, 33] have explored the unsteady state for-

mulation of the squeeze film theory of a yield stress fluid, the detailed solution

for the unsteady approach to the final steady state has not been considered.

Approach to final state is generally of interest for viscoplastic fluids, since fi-

nal states can sometimes be reached in finite time and motion then ceases

[34, 35], even though an analogous Newtonian fluid might require infinite time

to stop. This situation to be studied here is not quite the same as [34, 35]

which involve removal of a force driving flow, whereas here a driving force is

maintained. Even so, with this in mind, in this thesis, further work has been

established the asymptotic approach to the final state in both parallel and non-

parallel squeeze film flow of a viscoplastic Bingham fluid. This then is dis-

cussed in Chapter 4.

Moreover, what has motivated the present study are applications in which a

viscoplastic fluid is squeezed out of a complex shaped gap. One such exam-

ple is foam-based papermaking in which a foam carrier fluid is squeezed out

from a network of fibres [36]. There is no need for the fibres in the network to

be aligned parallel. Often moreover, length of the fibres is significantly greater

than the size of the bubbles in the foam [37], in which case it might be permitted

to treat the bubbles, at least in a rough approximation, as if they were a contin-

uum. Foam-based papermaking is in fact a very complex system [36, 38], and

the problem to be solved here is admittedly just a highly idealised version of it.
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The extent to which foam rheology might or might not impact on the eventual

structure of paper made from a foam-based process is discussed in Chapter 5.

1.3 Layout of Thesis

This thesis includes 6 chapters. The present chapter 1 has provided an intro-

duction which contained the background to this research, and then the motiva-

tion for it.

Chapter 2 will consider the literature review of the thesis which begins by pro-

viding materials related to non-Newtonian fluid rheology. Then the viscoplas-

tic Bingham fluids in particular and their properties and applications are re-

viewed. After that, the squeeze film flow theory in general and yield stress

fluids squeezed between parallel and non-parallel plates are discussed. Fi-

nally, the last part of the chapter presents one of the potential applications of

the squeeze film flow theory which is the foam-based papermaking process.

We propose a hypothesis for how squeeze film flow in the process of making

paper using a yield stress fluid such as foam might influence the properties of

the paper eventually produced.

Chapter 3 will focus on the methodology of this research which develops nu-

merical solution for squeeze film flow of viscoplastic Bingham fluids between

non-parallel plates. The discussion will highlight the underlying physics and

and analyse the mathematics of the equations. The final steady state situa-

tion reached after viscoplastic Bingham fluid is squeezed between non-parallel

plates has been established in this chapter as well. Finally, section 3.3 dis-

cusses the results from the squeeze film flow system of viscoplastic Bingham

fluids between the non-parallel plates.

Chapter 4 will consider one of the interesting characteristics of yield stress flu-
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ids regarding how they come to a stop while the driving force is maintained.

Specifically the chapter will investigate the asymptotic behaviour of the vis-

coplastic Bingham fluid approaching the final steady state situation when it is

squeezed between parallel and subsequently non-parallel plates. Then, sec-

tion 4.4 will consider the results obtained from equations derived from different

systems (parallel or non-parallel) on the approach to final state.

Chapter 5 will consider the implications from the proposed hypothesis related

to how foam rheology might influence the foam-formed papermaking process.

This is included as an application of squeeze film flow of yield stress fluids

which is reviewed in chapter 2.

Finally, chapter 6, will discuss the conclusions and potential research areas for

the future.

Appendix A presents the squeeze film flow theory of Newtonian fluids between

parallel and non-parallel fluids to provide the fundamental background for the

concepts discussed in chapter 3. Furthermore, in appendix B, the principal

equations, important effects and results of viscoplastic Bingham fluid squeezed

between parallel plates are outlined in detail again to give insights into the

discussion in chapter 3. The author’s published paper is provided in appendix

C.



Chapter 2

Literature Survey

This chapter covers some fundamental concepts of fluid mechanics which

starts with rheology in section 2.1. Then in section 2.2 we review the viscoplas-

tic Bingham fluids and their properties. After that, squeeze film flow theory will

be discussed in section 2.3. Following that, in section 2.4 we specifically de-

scribe the squeeze film flow of viscoplastic materials. Finally, we outline a

particular application in which the literature that we have reviewed thus far may

be relevant, namely the foam-based papermaking process. This is discussed

in section 2.5, along with some more general background on foams (which are

viscoplastic fluids).

2.1 Rheology

The word rheology was first introduced by Bingham in 1928 [14, 39]. Rheology

[12, 40] is defined as the “study of deformation and flow of matter”. It is also

described [41] as the investigation of the behaviour of materials in response to

an applied stress or strain.

Elastic behaviour has been described by Hooke’s law [12, 42] for solid ma-

terials. Viscous behaviour has been described by Newton’s law [12, 43] for

9
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liquids. Based on these two laws, there has been a distinction between solids

and liquids. In Hooke’s law, the strain (i.e. displacement) of an elastic object is

proportional to the stress applied on that object. Meanwhile, in Newton’s law,

the required stress or force per unit area is proportional to the shear rate (i.e.

shear strain rate) of a liquid. In fact, in both laws, linearity [12] is assumed be-

tween stress and strain or rate thereof. Thus, linearity applies to both Hookean

solids and Newtonian viscous liquids. However, many materials that do not

follow the aforementioned laws: these are called non-Newtonian or complex

materials [12, 44]. Based on the definition provided by Crochet et al. [1], any

fluids that exhibit behaviour which cannot be predicted by the Navier-Stokes

equations (applicable to purely viscous fluids) are called non-Newtonian fluids.

Understanding the rheological properties of complex materials is of paramount

importance in a wide variety of applications and industries such as food indus-

try, engineering, materials science, etc.. Significant growth of rheology as a

discipline has been seen in food industries in particular, due to the biological

nature of foods rendering them very often complex [3]. The information from

rheological properties of materials is used by researchers and industry alike to

design operational equipment for processes [1]. There are also different instru-

ments that are able to measure the rheological properties of materials which

are called rheometers [14].

2.2 Viscoplastic Bingham Fluids

Viscoplastic fluids or so called yield stress materials are considered to be im-

portant class of non-Newtonian fluids. Our everyday life is surrounded by yield

stress materials from food products such as pastes, gels, foams, to cosmetic

products to muds, slurries, coatings, paints, cements, and various other house-

hold and industrial products [9, 45, 46]. One of the other applications of yield
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stress materials is that they can be used as lubricants [47, 48] in hydrodynamic

bearing devices to transport loads between two moving parts. Thus, it is useful

to understand the rheological behaviour of yield stress materials in different

applications.

Mathematical equations used to describe the rheological properties of materi-

als may be called rheological models or constitutive models [3]. A Newtonian

model for instance can be used to describe the rheological data of Newtonian

viscous fluids. A Newtonian fluid [49] is characterised by having a linear rela-

tionship between the shear stress � and shear rate _
,

� = � _
 (2.1)

where � here represents the (constant) viscosity of a Newtonian fluid, whereas

a non-Newtonian fluid has a more complex relation [14]. The fluids of interest

in the present work, viscoplastic fluids (also known as yield stress materials as

we have said) fall under the category of non-Newtonian fluids, such that their

effective viscosity (i.e. ratio of stress to shear rate) changes with the shear

rate.

For many non-Newtonian fluids, particularly viscoplastic ones, the measured

flow curves e.g. from a rheometer are often fitted using the Herschel-Bulkley

law [14, 50] which relates the shear stress � and shear rate _
 by,





� = �0 +K _
n for j� j > �0

_
 = 0 for j� j 6 �0

(2.2)

where �0 is yield stress (i.e. stress needed for the material to flow at all, the

defining characteristic of viscoplasticity), n > 0 is flow index and K is called

consistency.
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For Newtonian fluids and Bingham viscoplastic fluids, the consistency term

(i.e. K) is replaced by a viscosity term (denoted �) and n is set to unity. For

Newtonian fluids in addition, yield stress (i.e. �0) is zero. Meanwhile for power-

law fluids that are classified into shear thinning or pseudo-plastic (0 < n < 1)

and shear thickening or dilatant (1 < n < 1), the yield stress �0 is likewise

zero [14, 49]. The curves of shear stress versus shear rate for typical fluids

explained above is depicted in Figure 2.1.

Figure 2.1: Shear stress against shear rate curves for different fluids [5, 14, 51].

As alluded to above, if a yield stress material has a flow index of unity [52],

then the Herschel-Bulkley expression is reduced to a Bingham model equation

[12, 39] 



� = �0 + �p _
 for j� j > �0

_
 = 0 for j� j 6 �0

(2.3)

in which �p is the “plastic” viscosity of a Bingham viscoplastic or yield stress

material [7]. As is clear from the above equation, a yield stress material has an

intermediate liquid/solid characteristic in which there is no flow when the shear

stress is less than the yield stress, and it has a liquid-like behaviour if the shear
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stress is larger than the yield stress [9, 14, 39, 46, 53]. As well as being difficult

to start moving, viscoplastic fluids also stop moving easily. There are cases for

instance in which viscoplastic fluid flows are known to stop moving in finite

time [34, 35] (e.g. upon removal of a driving force), whereas an equivalent

Newtonian fluid might require (at least in principle) an infinite time to stop.

Non-Newtonian fluids such as those discussed above have been studied in

different geometries [1] such as steady shear flow, contraction flow, extensional

flow, squeeze film flows, etc.. There is moreover a review by Bird et al. [54] in

which the rheology and flow of viscoplastic Bingham fluids in particular have

been investigated. In what follows, we specifically expand upon one particular

geometry, namely lubricated squeeze film flows.

2.3 Squeeze Film Flows

Squeeze film flows [21] are flows in which a material is compressed between

two approaching parallel or nearly parallel plane surfaces. They have myriad

applications, including in areas such as engineering, biology, food industries,

rheometry devices, compression moulding, papermaking, etc. [21, 55–57].

Squeeze flow tests can be carried out either using a specified shear rate (con-

stant displacement rate) or a specified shear stress (constant load). Thus,

results can be in the form of relations between force-height, force-time and

height-time depending on how the test is done [21, 30, 55, 57]. The relation

between the load-carrying capacity and the rate of approach, is the focal point

of most squeeze film analyses.

The squeeze film flow for a sample is shown schematically in Figure 2.2. In

Figure 2.2a, the material is confined between two plates, the lower plate is

fixed and the upper plate is moving downward subject to a constant applied
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force, F̂app and this squeezes the sample. Figure 2.2b shows the sample after

being pushed by the upper plate.

(a) (b)

Figure 2.2: Geometry of squeeze film flow.

An early review on the subject of squeeze films was provided by Moore [21],

who revised even earlier classical works of Stefan [22] and Reynolds [23].

Squeeze film flows of Newtonian and non-Newtonian fluids have been stud-

ied experimentally, theoretically and numerically. In particular, there is another

comprehensive review by Engmann et al. [57] on squeeze flow theory and

its applications in which a wide variety of materials (such as Newtonian, vis-

coelastic and viscoplastic) with different boundary conditions (i.e. perfect slip,

no slip and partial slip) at the sample-plate interfaces have been investigated.

Assuming a no slip condition between the sample and the plates, at fixed ap-

plied force (i.e. constant load), the shear rate in the squeeze film tends to fall as

time proceeds (even the Newtonian case implies that in fact, see appendix A).

For one class of non-Newtonian fluid, so called viscoelastic fluids, this then

means that elastic effects are likely to become less important over time [58]

(viscoelastic fluids behave closer to Newtonian as shear rate falls). On the

other hand, for a pseudo-plastic power law fluid say, it implies that the effective

viscosity rises as time proceeds (the flow necessarily slows down relative to a

Newtonian case) [55, 57, 59]. The same is true for viscoplastic fluids: effective

viscosity (ratio of stress to strain rate) rises and the impact of yield stress is

greater as time proceeds. Squeeze flow can thereby be used to gain insights

into different rheologies [5, 60, 61].
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In summary, squeeze flows are applicable in many industrial processes [62].

Meanwhile understanding deformation and flow of non-Newtonian fluids is of

utmost importance as many fluids (including e.g. foams, emulsions and sus-

pensions) utilised in industrial processes are non-Newtonian [19]. As a result,

understanding squeeze flows of non-Newtonian fluids is important. Indeed

there are several published articles, as discussed in more detail below, investi-

gating squeeze film flow of complex non-Newtonian fluids either experimentally

or numerically.

One such complex fluid for instance would be an electrorheological (ER) fluid

used in vibration control devices, dampers, automotive and aerospace indus-

tries [63, 64]. An experimental study of squeeze flow of ER silica suspensions

was carried out by Chu et al. [65] to evaluate the ER rheological properties

and also squeeze flow performance. Theory for squeeze flow of an elastic Ol-

droyd fluid meanwhile has been considered by Phan-Thien and Tanner [66].

Further to this, temperature dependence and viscoelastic effects of an elastic

Oldroyd fluid using squeeze flow between infinite plates have been studied nu-

merically by Debbaut [62], By virtue of a finite element method, a fountain flow

was observed at the outer border of the sample. However, rather than consid-

ering a fixed applied force (i.e. constant load) the required force for squeeze

action was determined in that case with a constant squeeze velocity applied.

In yet another study, the thermo-hydrodynamic properties of a non-Newtonian

power law fluid by applying squeeze flow was investigated [67]. A complex

interrelation between squeezing dynamics and rheology of the fluid has been

established. Consequently, the results would be beneficial for industries which

involve designing engineering devices including squeezing and extrusion of

non-Newtonian fluids such as these. In what follows, we focus however on

squeezing of a viscoplastic Bingham fluid.
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2.4 Viscoplastic Bingham Squeeze Film Flows

Viscoplastic Bingham or yield stress materials [4, 10, 68] are of special interest

in squeeze film situations [56, 57, 69], since they flow as a fluid when the

imposed stress is bigger than the yield stress but can be treated as a plug-

like solid when the imposed stress is less than the yield stress. Since, as

already mentioned, the flow slows down over time under constant load, more

and more of the fluid is expected to enter that plug-like regime. Indeed as

shown in Figure 2.3, the squeeze film flow field for a viscoplastic fluid is often

considered to be divided into two regions [19, 28, 70], yielded (fluid) and plug

(unyielding) region. The surface which separates yielded and plug regions is

called the yield surface [71].

Figure 2.3: Schematic representation of the flow structure showing yielded and plug
regions. The sketch shows the case for the initial film thickness, Ĥ = Ĥ0, but general-
izes to any other Ĥ at subsequent time.

During squeeze film flow under constant load, as time proceeds, the yield sur-

face would be expected to shift so that, as mentioned, more and more of the

flow domain is in the plug region and less of it is in the yielded region, until the

yielded region disappears and the flow has stopped altogether, even whilst the

squeeze film can remain at a finite thickness [30, 52, 56].

These flows are however less simple than might first appear. When coupled

with conventional lubrication theory applicable in small aspect ratios, they lead
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to an apparent paradox (the so called “lubrication paradox”) [19, 25, 31, 70]. It

is predicted that the plug region in Figure 2.3 has a variable velocity at different

locations in x direction. Hence there is predicted to be a non-zero strain rate in

the normal direction even in the (supposedly non-yielding) plug region, albeit

this is of much smaller magnitude than the shear strain rate in the yielded re-

gion. The paradox has however been resolved by Walton and Bittleston [72].

That analysis revealed [72, 73] that the yielded region was in fact what was

termed a “fully-plastic” region, in which even the dominant shear stress com-

ponent exceeded the yield stress. On the other hand, the plug region was

revealed to be merely a “pseudo-plug”. When normal stresses (in addition

to shear stresses) as well as perturbations over and above the leading order

horizontal flow are taken into account, the “pseudo-plug” was found to be at

a stress condition just slightly in excess of the yield stress. This then admit-

ted the required non-zero strain rate there, which as mentioned, is smaller than

the shear strain rate in the “fully-plastic” region. The “fully-plastic” and “pseudo-

plug” regions were separated by what was termed a “fake yield surface”. For

the present work however it is sufficient to consider just the leading order hori-

zontal flow and the pressure field that is associated with it. For simplicity then

we continue to use the terminology “yielded”, “plug” and “yield surface” rather

than the terms “fully-plastic” “pseudo-plug” and “fake yield surface” [72, 73].

As already alluded to above, squeeze film flow between parallel plates say can

be considered either with constant rate or constant load. The work done by

Covey and Stanmore [30], investigated the behaviour of a yield stress material

between two parallel plates with a constant load, theoretically and experimen-

tally. However, this work did not deal with the non-parallel plate geometry, to be

discussed in chapter 3 onward. Nonetheless it was one of the early works that

advanced the study of Bingham fluid behaviour in parallel plate plastometers.

Following on from this, other research has been undertaken in this area: e.g.
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squeeze film flow in different geometries, with various applications in mind and

using various (viscoplastic) fluid types and materials [5, 19, 27, 28, 74]. The

work of Muravleva [28] for instance provided an asymptotic solution for the two-

dimensional planar squeeze film flow of a viscoplastic medium and analytical

solutions for the flow fields have been compared to numerical computations.

We will make use of these solutions. Nonetheless the work done by Muravleva

[28] and likewise by Smyrnaios and Tsamopoulos [19], again only investigated

the squeeze flow of a viscoplastic fluid between parallel plates with a constant

squeezing rate. This requires in particular that larger squeezing forces are ap-

plied as time proceeds, with the squeezing force needing to become arbitrarily

large as the gap narrows.

Few studies though have investigated non-parallel squeeze film flows. The

squeeze film flow, albeit of a viscous Newtonian fluid, between inclined plates

has been considered theoretically and experimentally by Moore [75]. The

squeezing or sinkage rate (i.e. the velocity of the inclined plate) and film thick-

ness changes with varying the loading force and time were established. Flow

of two viscoplastic fluid types on an inclined plane (and opposed to between

inclined plates) has been studied by De Kee et al. [76] theoretically and exper-

imentally. Two models were utilized (i.e. Herschel-Bulkley and another model

proposed by Kee et al. [77]) to determine the yield stress of two viscoplastic

fluids. The work done by Koblitz et al. [78] has carried out the two-dimensional

numerical simulation of the squeeze film flow of a viscoplastic fluid between

two approaching circular cylinders. In another study conducted by Vajravelu

et al. [79], the peristaltic flow of a Herschel–Bulkley fluid was examined in an

inclined tube.

These studies have not however used the aforementioned calculation pro-

cedure of Covey and Stanmore [30] (originally developed by [30] for paral-

lel squeeze films) to establish under constant load conditions what the final
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steady state of a viscoplastic Bingham fluid might be in a non-parallel squeeze

film system. Instead they have tended to use different geometries and even

different fluids. Thus, in the present work (see chapter 3 onward), non-parallel

squeeze flow of a viscoplastic Bingham fluid with an assumption of a fixed

squeezing force (arguably more realistic than constant squeezing rate which

requires an ever increasing force) is developed. In the present work, the fi-

nal steady state of the system is identified, and it is also considered how the

squeezing rate varies with time (up to the final state). A number of features

specific to non-parallel plates i.e. identifying the position along the plates at

which flow direction reverses as well as evolution of torque, will also be de-

scribed in subsequent chapters.

2.5 Foam and Papermaking

Foam (i.e. gas bubbles dispersed in a liquid phase) is relevant to this thesis as

it is a typical example of a viscoplastic fluid. Some of the properties of foam,

along with their relevance to applications which helped to motivate the present

study (specifically foam-based papermaking and pressing/squeezing flows that

occur during papermaking) are discussed below.

2.5.1 Physics of Foam

A two-phase system of liquid and gas in which gas bubbles are surrounded by

liquid films is called aqueous foam. This liquid phase consists of a liquid, mainly

water and a surfactant which stabilises the films and allows foams to exist.

Moreover, surfactants are concentrated at the gas-liquid interfaces and help

to decrease the surface tension reducing the surface energy cost. Surfactant

molecules can also prevent the rupture of liquid films through increasing the

viscoelasticity of the interfaces and producing colloidal forces between bubbles
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that can oppose film thinning [80, 81].

Generally speaking, the thickness of the liquid films enclosing gas bubbles can

be in the range of 10 nanometre to a few microns [80]. A foam film can reach

a stable configuration when there exists a balance between the pressure dif-

ference across the gas-liquid interface and the net surface tension force acting

on the interface in the presence of film curvature. When a foam drains to equi-

librium, the pressure in the gas bubbles is different from the pressure of the

liquid and this difference is due to capillary and disjoining pressures, whereas,

the pressure in the liquid can be defined by the hydrostatic laws at least in a

static foam [82].

Foams can be categorized into two regimes of wet and dry in terms of the

relative proportion of liquid and gas. Although finding a precise boundary for

these two regimes is not straightforward, a foam with gas content below around

80 percent can be treated effectively as liquid (it tends to deform much like

a liquid would), thus it can be called wet foam [83]. Meanwhile dry foams

contain little liquid thus, having very thin liquid films and also very thin liquid-

filled channels at which different films meet. For a wet foam, gas bubbles are

almost spherical with little contact between them due to the presence of a thick

layer of liquid separating the gas bubbles [84]. Bubbles in dry foam however

are not spherical, and make direct contact with numerous neighbours.

Now, based on the properties explained for viscoplastic Bingham fluids in sec-

tion 2.2, foams particularly dry foams, can be classified as yield stress ma-

terials. The reason is that bubbles in a wet foam are unjammed, but in dry

foam they are jammed together such that their motion is constrained by neigh-

bouring bubbles [85]. If just a small amount of stress is applied, the jammed

foam deforms like an elastic solid, and bubbles retain their neighbours [86]. If

instead large stress is applied however, bubbles can change their neighbours



21

and yielding occurs [86].

2.5.2 Foam Generation

Foam can be produced in different ways, such as, blowing or injecting gas

into the liquid phase through a nozzle or a porous plug (which is called the

sparging process), shaking or beating the liquid and nucleation of gas bubbles

in a supersaturated liquid phase [80]. Therefore, each method has specific

application. For instance, most everyday foams can be produced by shaking

and beating the liquid or even the nucleation method, while blowing or sparging

methods can be used to produce foams for laboratory or industrial applications.

The foam generation method used in the system of interest to us, foam-based

papermaking, is mechanical mixing of water and surfactant with gas within a

vessel [83].

To summarise the discussion to date, foams are ubiquitous, have interesting

physics (including yield stress behaviour), are straightforward to generate, and

have different applications such as fire fighting, enhancing oil recovery, food

and drinks applications, and so on [80]. Here however our focus is to be on

foam-based (also known as foam-formed) papermaking, as described in more

detail below.

2.5.3 Rationale for the Foam-formed Papermaking Process

Although technology has revolutionized the way people communicate, there is

still a tremendous demand for using paper at offices, producing books, news-

papers, packaging etc.. Paper therefore remains an important commodity,

combining wood as raw material and significant volumes of water during the

papermaking process. Given the extremely large volume of paper produc-

tion [87], even small percentage increases in the efficiency of the papermaking
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process translate into massive sustainability gains.

Increasingly however, many communities around the globe are confronting the

problems of water stress and/or water scarcity. There is an extreme compe-

tition for water worldwide [88]. Climate change, global population rise, the

expansion of cities, dietary changes, and the emerging biofuels industry are

factors putting the world’s water supplies under pressure. Therefore, seeking

a new holistic approach to water management is needed.

Reducing the water footprint of the papermaking process will help significantly

to alleviate the aforementioned issues [89]. Recently, there has been an in-

creasing interest in so called foam-forming technology which helps saving en-

ergy and raw materials in the papermaking industry. Replacing water by foam

as a carrier for the fibres utilized in papermaking will lead to sustainability gains

through using less water. Given that foam is typically just several percent by

volume water, using foam in lieu of water in the papermaking process will not

only decrease the water consumption considerably but also the required en-

ergy for the paper drying process [82, 90].

To summarize, foam-forming is of great advantage to the papermaking industry

in comparison with water-forming. Using foam instead of water in papermaking

have been considered as a sustainable solution which reduces water use in the

process significantly [91]. Accordingly, research on the papermaking process

using foams and investigation of the final properties of papers that are formed

with foams has been increasing over the years: a recent review can be found

in [36]. Some of the main research advances in the field are discussed in the

next section.
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2.5.4 Properties of Foam-formed Paper

Foam-forming can provide the possibilities to control the structure of subse-

quent paper sheets [92]. It has been reported that there is a different be-

haviour while producing paper sheets, specifically in the wet-pressing step,

between water and foam-forming processes. At this stage, a higher “thick-

ness recovery” (applying a load, then removing it and measuring how much

thickness recovers after removing the load) is observed for the foam-formed

papers rather than water-formed ones [93]. One possible explanation of this

behaviour is the unique structure of fibre networks made by foam which is able

to remove plastic deformation of fibres and subsequently reduce the stresses

on the fibres during the pressing stage [93].

Subsequent to wet-pressing, one of the most important properties of paper

which directly affects the drying, coating and printing processes, is pore size

distribution which is more uniform with also bigger pores on average for foam

made papers compared to water-formed sheets [83]. In addition to that, one of

the effective controlling factors on pore size distribution of final fibre networks

is the type of fibre used in the papermaking process [83, 89]. In what follows,

we consider not only pore sizes but also bubble sizes, fibre types as well as

mechanical properties.

2.5.4.1 Bubble Sizes

It is observed that during foam generation, adding fibres often leads to a de-

crease in the bubble size due to the effect of fibres in enhancing the shear

forces that drive bubble break up [84]. Moreover, different fibre types can

change the bubble size considerably [94]. For instance, using natural wood fi-

bres (which contain a substantial proportion of sub-micron fine fibrillar particles

and have rough surfaces and broad size distributions) reduce the bubble size
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significantly. The possible explanation suggested by Al-Qararah et al. [94] for

this behaviour is that these fine particles can be adsorbed on the interfaces of

foam bubbles and as a result, help to stabilize those interfaces. Meanwhile, us-

ing short regenerated cellulose fibres [94] (regenerated fibres have smoother

surfaces than the natural wood fibres and their length varies from 0.35 mm to

10 mm) can boost the foam bubble size slightly in comparison with the bubble

size in pure foam without fibres. It is proposed by Al-Qararah et al. [94] that

these regenerated fibres are able to stick to those bubbles with diameter equal

to fibre length. Therefore, fibres not only decrease the shear forces driving

break up but also protect the interfaces of bubbles.

2.5.4.2 Pore Sizes

Bubble size distributions aside, it is noticed that there is a direct relationship

between the proportion of large pores in paper structures and foam-fibre inter-

actions in which the proportion of large pores is greater for the sheets produced

by foam-forming [89]. As has been mentioned already, foam-forming can be

applied to manufacture fibrous structures typically with more uniform pore size

distribution than papers made by traditional water-forming. One of the possi-

ble reasons for producing these uniform fibre networks can be explained by

the reduced flocculation of fibres as their movement is confined in the foam

[82, 93].

One study which considered pore size distribution in detail was the work of

Al-Qararah et al. [83]. This used foams to produce paper and studied the

subsequent structure of paper thereby made. According to the approach they

used for making paper, firstly foam was generated through mechanical mixing

of water containing surfactant with gas. Then a suspension of fibres and aque-

ous foam is transferred to a screen and finally foam is removed using vacuum.

This technique can provide many advantages. For instance, in the foam-fibre
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suspension medium, foam bubbles have the property to enclose fibres and

thus fibre transport is blocked and this gives less agglomeration in the web of

sheets. In addition, Al-Qararah et al. [83] showed that this method reduces the

energies required for de-watering and incorporating air drying of the foam-fibre

suspension will provide bulky fibrous network structures.

A typical pore size distribution found by Al-Qararah et al. [83] is shown in

Figure 2.4. This will be discussed in more detail in the next subsection.

2.5.4.3 Relationship between Fibre Types, Bubble Sizes and Pore Sizes

The link between properties of foam and subsequent pore structure in foam-

formed fibre networks was studied by Al-Qararah et al. [83]. They found a

different pore size distribution in sheets made with foam-forming compared to

water-formed ones. The impacts of different parameters such as, type and

concentration of surfactant, different types of fibres, rotational speed of mixer

and air content of the foam upon the pore size distribution of sheets made

by either foam or water were investigated. The results indicate that pore size

distribution might indeed be affected by the properties of the foam.

Thus, foam-forming is recognized as a technique in which the characteristic

form of pore size distribution can be controlled. Meanwhile this distribution

cannot be manipulated so easily for the case of water-forming, consequently,

the proportion of large pores is fairly small [95].

The average bubble radius of the foams used in the experiment of Al-Qararah

et al. [83] was approximately 30 micron (i.e. 60 micron bubble diameter) and

fibre length was about 1.6 mm, so fibres were much larger than bubbles. Aver-

age pore size was also a similar order of magnitude to, but slightly larger, than

bubble size (see Figure 2.4). Moreover based on the results shown in Figure

2.4, more large pores are observed in the foam-formed sample, while there
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are typically smaller pores on average in the sample made by water. Indeed

Al-Qararah et al. [83] suggested that there may be an effect of foam bubbles

in which they act like “ghost particles” during foam-forming. Since pores could

not be smaller than the “ghost particles” this then would be a plausible rea-

son for forming larger pores when using foams, albeit not the only possible

explanation. They also stated that geometric restrictions caused by bubbles

not only affect the location and orientation of fibres, but can also influence their

bending.

Figure 2.4: Pore size distribution of water and foam-formed samples with the average
bubble radius of 30 �m for foams [83].

Subsequent studies have considered pore size distributions as well. The work

of Al-Qararah et al. [89], focussed on achieving a micro-structure of fibre net-

works made from foam used as a suspending medium. A wider pore size

distribution accessing larger pores is achieved for the case of foam-formed

sheets compared to water-formed ones. The impact of different types of fibres

on pore size distribution of resulting fibre networks was studied. It was con-

cluded that using flexible fibres leads to smaller pore size distribution, while
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the pore size of the stiff fibre networks can be influenced by the bubble size

distribution of foam, although data in [83] suggest that bubble size distribution

has only limited impact on pore size, compared at least to the impact that fibre

type has.

Returning to consider [89], in addition, fibres can reorient and bend during the

interaction with bubbles due to the geometric restrictions caused by bubbles.

Moreover, it was mentioned along the same lines as [83], that bubbles can po-

tentially behave like “ghost particles” during foam-forming, limiting how small

pores are allowed to become and thus, leaving more large pores in the sheet

structures once the sheet is formed. It is possible to speculate however that

foam rheology (or even foam-fibre suspension rheology) might be a surrogate

measurement for bubble size, which suggests that rheology of foam-fibre sus-

pensions might be of interest, a point we will return to later.

Meanwhile [92] and the follow up study [96] modified the process of foam-

formed papermaking and explored a new technique to produce lightweight

fibrous networks using foams. Their approach involves slowly draining (and

thereby drying) the foam-fibre suspension until all foam has disappeared. This

method was able to result in very thin fibrous structures. Moreover using this

method, the properties of resulting structures such as, strength, density and

thickness could be effectively controlled by manipulating the initial liquid frac-

tion of the foam and initial fibre concentration. The follow up study [96] exam-

ined both bubble size distributions and pore size distributions and found they

were comparable, lending some support to the notion of ghost particles. This

work of Burke et al. [92, 96] (i.e. carrier fluid draining slowly away from the

fibres) differs however from industrial-scale papermaking in which carrier fluid

generally needs to be separated rapidly from the fibres via pressing.
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2.5.4.4 Mechanical Properties

In work carried out by by Jarvinen et al. [93], the compression behaviour of

foam-formed and water-formed wet sheets has been studied. The experimen-

tal results obtained from their work suggest that the solid contents (i.e. solid

mass fraction) in paper produced using foam are higher compared to water-

formed papers which is due to the better sheet formation and usage of higher

consistency for the fibres (consistency is the mass fraction of the solid fibres in

the water suspension before mixing the foam) and also the low surface tension

of the aqueous phase in the case of foams. They also found that permeability of

fibre networks made by foam-forming leads to achieving a uniform de-watering

process. According to the work of Alimadadi and Uesaka [97], which investi-

gated the structures and mechanical properties of three dimensional fibre net-

work structure made by foam-forming, using foams in papermaking process

helps in boosting bulk and softness features of papers produced from long and

fine fibres at higher consistencies.

The effects of utilizing foam-forming on producing lightweight three dimen-

sional fibre structures has been studied by Burke et al. [92], albeit with car-

rier fluid being separated from fibres via drainage rather than pressing (see

section 2.5.4.3). They found that fibre concentration and initial liquid fraction

of the foam-fibre suspension have direct impact on compressive strength and

density of the fibrous structures. There is a linear relationship between density

of the final product and fibre concentration of the initial suspension which for

densities less than a specific amount, samples cannot behave stably mechani-

cally. Their results showed that the compressive strength of samples increases

linearly with the sample’s density. They also suggested that adding bonding

agents can help enhance the compressive strength of fibre networks.
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2.5.5 Foam-formed Papermaking from a Rheological View-

point

In order to gain insights into the properties of foam-formed paper, and in order

to process the foam-fibre suspensions that are utilised in foam-formed paper-

making, it is helpful to understand their rheology. Although foam rheology has

been studied extensively, foam-particle systems have received less attention

[98]. Flows of particles suspended in fluid occur in a number of contexts [99–

102] amongst them papermaking. Therefore, at the most basic level we need

to understand the case of single fibre in fluid [103], before tackling multiple

fibres. Yet more complexity is anticipated of fibres suspended in a foam (non-

Newtonian fluid), as opposed to in a Newtonian fluid which is simpler [104].

In the context of foam-based papermaking, a previous study has treated just a

single fibre (as a chain of approximately 50 disks tethered together and interact

with enclosing bubbles), with both the fibre and the foam bubbles surrounding

it as discrete objects [37]. Fibres are likely to undergo a tumbling motion, in

the same way that rigid rods would in a shear flow [103, 105]. Even though

the work of Langlois and Hutzler [37] resolved both fibres and foam bubbles,

in reality the fibres (at least in their longest dimension) are many times larger

than the foam bubbles. According to the study of Haffner et al. [90, 91], the

fibres (average length 2.3 mm, average diameter 35 micron) are an order of

magnitude larger than the bubbles (average bubble diameter 170 micron to

220 micron depending on the system). That then suggests using a discrete

model for the fibres but a continuum model for the foam, as is considered next.

2.5.5.1 Discrete Objects within Continuum Fluids

The objective is to study the foam-fibre system rheology but to describe the

system using a discrete model for each fibre as per [106], but a continuum
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description of the foam, the latter treated as a yield stress material, with the

foam yield stress being sensitive both to bubble size and foam liquid frac-

tion [107, 108]. This approach should be more computationally efficient than

the fully discrete models used hitherto, and should then meet the objective

of studying foam-mediated interactions between a collection of fibres (as op-

posed to just a single fibre as per the previous study of Langlois and Hutzler

[37]): clearly it is important to consider more than one single fibre in the context

of papermaking.

The study of elongated objects such as fibres moving in continuum fluids has

a long history. The work of Jeffery [103] for instance calculated the angular

motion and dissipation for a small ellipsoidal particle in a viscous fluid. Prop-

erties of the bulk stress in a suspension of non-spherical particles immersed

in a Newtonian fluid have been studied by Batchelor [104]. The work of Keiller

and Hinch [109] found the constitutive equation for a suspension of rods in a

Newtonian fluid as a Newtonian term, plus a non-Newtonian contribution from

the rods. Additional complexity arises here because fibre suspensions are

typically classified into three concentration regimes: dilute, semi-dilute, and

concentrated [110, 111], based on their volume fraction.

The dilute regime is such that the fibres within the suspension are sufficiently

far apart that they are free both to rotate and translate without contacting one

another. The transition to semi-dilute occurs when hydrodynamic interaction

between fibres is the predominant phenomenon albeit with little actual fibre

contact: a fibre is likely to have neighbouring fibres within a distance on the

order of one fibre length away, but because the fibres are long, slender objects

with varying orientations, they are not necessarily in direct contact. As they

move through the foam, fibres produce flow fields which in turn influence the

motion of other nearby fibres. Even when the volume fraction occupied by the

fibres remains comparatively small (i.e. semi-dilute), owing to their elongated
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shape, they can actually interact via the fluid flow field and hence influence the

flow very strongly. In the concentrated regime however, fibre-fibre interactions

dominate and this can eventually lead to solid-like jamming behaviour typical

of sufficiently concentrated suspensions [112]. All of the above studies how-

ever concern fibres or rods moving in Newtonian fluids. Any non-Newtonian

behaviour arises thereby from the presence of the fibres, but not however from

the carrier fluid.

Fibres (or solid objects more generally) that are moving through viscoplastic

yield stress materials have been modelled by [113–115]: techniques used in-

volve finite element, finite difference or even spectral methods. In addition to

those sorts of techniques, fibres in a purely viscous liquid can be described

by a so called boundary element technique which uses analytic formulae for

describing what is happening throughout the bulk of the liquid, and so only

needs to be solved around the boundaries of the domain [116]. This reduces

the dimensionality of the problem, speeding up the solution technique im-

mensely. Unfortunately however, the analytical approaches [104] underpinning

the boundary element technique lose their validity in the case of fibres sus-

pended in foam (as a result of the greater complexity, i.e. non-linearity of the

viscoplastic fluid rheology compared to simple viscous liquids). Nonetheless

boundary element techniques for objects suspended in and moving through

simple viscous liquids could still be used to validate say a finite element tech-

nique applied to objects in those same simple liquids. Then that finite element

technique could be extended to fibres suspended in a viscoplastic fluid such

as foam for instance.

It is clear from the above discussion that modelling flows involving a collection

of fibres in a viscoplastic fluid (such as would occur in foam-based papermak-

ing) remains a challenging task. To a large extent, the challenge here is that

obtaining mechanistic understanding of how foam-fibre suspensions behave
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during the foam based papermaking process involves incorporating foam-fibre

interactions and foam-mediated fibre-fibre interactions into the description. Ob-

taining such understanding is however far from straightforward though because

foams are themselves considered to be complex fluids [117]. Nevertheless the

first step toward understanding all of this must be to understand the properties

of the underlying elements, namely the fibres and the foam, and ultimately how

these govern the processing of and properties of foam-formed paper.

As we have mentioned earlier, an important step in the papermaking process

is pressing. In what follows therefore we consider a system which is specif-

ically subject to pressing. Section 2.5.6 proposes a hypothesis for how a

system might evolve during pressing if foam behaves like a continuum fluid

(even though surrounding fibres remain discrete), and how the continuum fluid

properties then affect the characteristics of a resulting fibre network structure.

Pressing however is effectively a squeeze film flow, so the hypothesis links

back to the discussion given earlier on viscoplastic squeeze flows.

2.5.6 Hypothesis

As just mentioned above, one interesting application of squeeze film flow with

viscoplastic fluids is foam-formed papermaking. As has been alluded to, foam-

forming technology for manufacturing paper is a novel technique in which the

paper sheets are made from a suspension of pulp fibres in foam, rather than a

suspension of pulp fibres in water. The properties of foam bubbles along with

foam rheology potentially play a role in producing a fibre network with improved

characteristics compared to water-formed papers, including more uniform pore

size distribution, increased strength, different density, etc. [36, 83, 96, 118].

As we have already discussed, pore size distribution is amongst the most com-

monly measured properties [119], and from it one can deduce an average pore
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size and also a measure of polydispersity, i.e. standard deviation of pore size

divided by the average. A hypothesis commonly made in the foam-formed pa-

permaking literature is the aforementioned “ghost particle” hypothesis, namely

that the pore size distribution is simply inherited from the bubble size distribu-

tion of the foam used to make the paper [89, 120].

During any papermaking process, regardless of whether the pulp fibres are

suspended in water (as in conventional papermaking) or suspended in foam,

a step typically arises in which the fibres must be pressed together and the

carrier fluid squeezed out [38]. As a model for contrasting water-forming versus

foam-forming, the present work investigates the effect of squeeze film flow of

water as a Newtonian fluid versus that of foam as a viscoplastic Bingham fluid

between two parallel and non-parallel fibres. Treating fibres as discrete but

the foam between them as a continuum recognises that fibre lengths often far

exceed bubble diameters [37, 106] as has been mentioned. In such a model,

bubble sizes then impact the squeezing behaviour, but not in the form of “ghost

particles”. Instead bubble sizes impact only to the extent that yield stress of a

foam treated as a viscoplastic fluid scales typically as the ratio between surface

tension and bubble size [80, 107, 108]. Thus, yield stress is a surrogate for

bubble size.

Using a model like that enables us to predict how rheological properties of

foam might affect the size of the voids or pores between fibres during the foam-

forming process. The investigation of non-parallel squeeze flows is of particular

interest to study the potential impact of foam rheology on producing either more

or less uniformity in the size of voids: if fibres are non-parallel, a void or gap at

one end of a fibre would have a different size from an adjacent void at the other

end. Of course any model predictions that we make also need to be checked

against data for the properties of foam-formed papers, a point we return to

towards the end of the thesis (see chapter 5).
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A hypothesis then to explain larger pore sizes could be that the foam might

behave as a “continuum viscoplastic fluid” during foam-forming, with the prop-

erties of the continuum fluid (i.e. in particular yield stress) being a function of

the underlying bubble size. The fact that, compared to a simple viscous liquid,

the presence of a yield stress makes it more difficult to push fibres together

could then account for voids, i.e. pores in the foam-formed papers, remaining

larger. As already noted in the context of e.g. the work of Al-Qararah et al.

[83] and also Haffner [90], fibre lengths are considerably larger than bubble

sizes, so in the first approximation at least, it should be permissible to consider

a model in which the fibres are discrete, but the foam is treated as a continuum

viscoplastic fluid.

From Figure 2.4, it can be clearly seen that foam gives bigger pores on average

than water. A question however arises in this regard is that what would be the

main reason producing larger pores in foam-formed papers rather than papers

made by water. Is it due to the “ghost particle” mechanism or is it due to

“continuum foam rheology”, e.g. associated with yield stress of the foam?

If the “ghost particle” mechanism is correct, then smaller bubbles might be ex-

pected to lead to smaller pores. Likewise, if the “ghost particle” mechanism is

correct, more uniform bubble sizes would be expected to lead to more uniform

pores. On the other hand, if “continuum foam rheology” plays a role, we know

that smaller bubbles should produce higher yield stress [80, 107, 108], and this

could actually leave a larger gap between the fibres. Moreover, if “continuum

foam rheology” is relevant and if fibres are tilted (i.e. non-parallel case), then

differences in a final gap size after squeezing between one end of the tilted

fibre and the other might give an indication of polydispersity of eventual pore

sizes: again these differences in gap size between ends of a fibre should be

sensitive to yield stress.
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The difficulty here however is that it is not clear a priori exactly how non-parallel

fibres behave when a non-Newtonian viscoplastic fluid is squeezed between

them, so what the squeeze film implications might be of coupling non-parallel

fibres with complex rheology (and in particular how such coupling might affect

pore size distribution) still needs to be determined. This then is the problem

we will tackle. The implications that follow from the aforementioned “continuum

foam rheology” hypothesis now need to be deduced: the effect of squeezing

film for the cases of either foam or water between two non-parallel squeezed

fibres will therefore be investigated in the chapters to follow.



Chapter 3

Squeeze Film Flow of Viscoplastic

Bingham Fluid between

non-Parallel Plates

3.1 Introduction

In this section, the squeeze film flow of a yield stress fluid between non-parallel

plates is investigated. The general analysis is based on the work of Covey and

Stanmore [30] Muravleva [28], but now for tilted plates, and compared to [28]

a different situation is considered. In [28], squeezing force is analysed with

a constant squeezing velocity, whereas here we are investigating a constant

squeezing force to find the rate of squeeze action, as was done by Covey and

Stanmore [30], albeit for parallel plates. Squeeze film flows of Newtonian and

non-Newtonian fluids between parallel plates have been known and investi-

gated significantly [5, 30]. We have reviewed the squeeze film flow of New-

tonian fluid between parallel and non-parallel plates in appendix A. Moreover,

the analysis of Covey and Stanmore [30] for the squeeze film flow of a vis-

coplastic Bingham fluid between parallel plates is reviewed in appendix B. The

36
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present chapter focusses on the methodology and results for a Bingham fluid

with non-parallel plates which is one of the novel contributions of this thesis.

In what follows, this chapter describes in detail the methodology 3.2 by which

squeeze film flow of a viscoplastic Bingham fluid squeezed out from between

non-parallel plates is considered. Section 3.2.1 discusses the assumptions

considered to develop the equations and mathematical model needed to inves-

tigate the behaviour of a yield stress fluid in squeeze film flow. Then section

3.2.2 describes the squeeze film flow problem between non-parallel plates.

Then section 3.2.3 considers final steady states of the non-parallel squeeze

film system of a yield stress fluid. Finally, section 3.3 will discuss the results

associated with the squeeze film flow of viscoplastic Bingham fluid between

non-parallel plates.

3.2 Methodology

In this section the mathematical method used to investigate the squeeze film

flow of viscoplastic Bingham fluid between non-parallel plates is described.

The parallel case has already been tackled by Covey and Stanmore [30], but

for the convenience of the reader we give the details of the parallel squeeze

film methodology in appendix B. In what follows, to make the analysis easier

to carry out, whether non-parallel or parallel, a number of assumptions have

been made as discussed below.

3.2.1 Squeeze Film Flow Assumptions

In squeeze film flows (i.e. lubrication flows [23]), inertia effects tend to be neg-

ligible in comparison with the dominant effects of pressure and viscous forces,

thus the Reynolds number for the flow is small. We are simplifying the three-

dimensional problem of squeezing two fibres together (see e.g. section 2.5) by
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the simple two-dimensional problem of squeezing two plates together. Here-

after we will refer to plates rather than fibres. In all systems considered here,

the lower plate is fixed, and the upper plate approaches to the lower plate un-

der the influence of externally applied force with a non-inertial squeeze motion.

The following assumptions are imposed:

1. Planar (i.e. two-dimensional) geometry is considered, i.e. we consider a

squeeze film between plates. This assumption is made for mathematical

simplicity even though in a papermaking application for instance (again

see section 2.5), fibres are not planar in reality. Instead, fibre-fibre in-

teraction is a complicated three-dimensional process. However, by con-

sidering plates rather than fibres, the system can be simplified into a

two-dimensional planar geometry.

2. Inertial and gravitational terms are negligible compared to the pressure

and viscous forces.

3. There is a no slip condition at boundaries between the liquid and the

plates.

4. The thickness of the squeeze film is assumed to be small in comparison

with the plate dimensions which means that the velocity component in the

direction of flow is bigger than the velocity component perpendicular to

the plane of plate. Therefore, the outflow velocity gradient in the direction

along the squeeze film flow is smaller than the velocity gradient across

the gap between the plates.
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3.2.2 Squeeze Film Flow of Viscoplastic Bingham Fluid be-

tween non-Parallel Plates

This section considers the squeeze flow of viscoplastic Bingham fluid between

non-parallel plates. The analysis for a parallel, Newtonian squeeze film is well

known in the literature [23]. However for completeness we have presented it in

appendix A.1. Moreover, the behaviour of a Newtonian fluid squeezed between

non-parallel plates is reviewed in appendix A.2 to facilitate comparison with

the non-parallel viscoplastic Bingham case, particularly with regard to possible

final steady states. The solution of squeeze film flow of a Bingham viscoplastic

in the parallel case has been investigated by Covey and Stanmore [30] and we

provide the mathematical procedure in the appendix B.1 again to support the

non-parallel plate case which is discussed in the present section.

We consider a gap of initial thickness Ĥc0 at the centre of the plates of length

2L̂. In Figure 3.1 the top plate is moving downward with a time-varying velocity

v̂top under a constant applied force F̂app (per unit distance transverse to the

two-dimensional plane) thereby displacing the fluid, while the bottom plate is

stationary. Moreover � is the angle between the upper surface and the hori-

zontal coordinate (it is assumed that the angle � is small).

Figure 3.1: Geometry of squeeze film flow between non-parallel plates.

The flow of a non-Newtonian fluid is governed by the momentum and continuity
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equations [121] in dimensional form as follow:
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Now, using those assumptions as made in section 3.2.1, governing lubrication

equations [25] for a viscoplastic Bingham fluid are
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Here û and v̂ are velocities in x̂ and ŷ directions, p̂ is pressure and �̂xy denotes

shear stress of the viscoplastic Bingham fluid which satisfies the Bingham ma-

terial model (see e.g. [39, 68]). As discussed in chapter 2 (see section 2.2),

the Bingham model describes the behaviour of a viscoplastic material which

is characterized by two parameters namely a viscosity and yield stress. If

yield stress is bigger than the magnitude of stresses, the Bingham material will

behave as a solid. Meanwhile the material can be considered as a viscous

Newtonian fluid when the stresses exceed the yield stress [6, 8, 30, 39, 47].

It should be noted that the stress and strain rate are tensors and when all

the components of the stress tensor (shear components and normal compo-
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nents together) and strain rate tensor (shear strain rate components and nor-

mal strain rate components) are taken into account, the components can be

combined together into a quantity called the second invariant [73]. For the fluid

to yield, it is the second invariant of stress which must exceed the yield stress,

rather than any single component of the stress tensor needing to exceed the

yield stress. Of course when one component of the stress tensor dominates

all the others, then it is that particular component which dominates the yield-

ing [39]. Indeed, in this thesis, based on the squeeze film flow assumptions,

we only consider the shear stress and shear strain rate components of stress

tensor and strain rate tensor, respectively.

Now for a viscoplastic Bingham fluid, shear stress is





�̂xy = ��0 + �p _̂
 for j�̂xy j > �0

_̂
 = 0 for j�̂xy j 6 �0.

(3.7)

Here �0 is yield stress, _̂
 = @û=@ŷ is shear rate and �p is Bingham fluid viscos-

ity after yielding occurs. Here the ��0 term is positive if _̂
 > 0 and it is negative

if _̂
 < 0. The dimensional variables are denoted with a hat symbol and their di-

mensionless analogues (described later on) will have the hat symbol dropped.

3.2.2.1 Non-dimensionalization of Equations

We cast equations in dimensionless form. Horizontal lengths are scaled by

L̂, and vertical lengths are scaled by Ĥc0. Horizontal velocities are scaled by

~u � (F̂app=�)(Ĥ
2
c0
=L̂2), and vertical velocities are scaled by ~v � Ĥc0 ~u=L̂. Times

are scaled by Ĥc0=~v � L̂=~u and shear stress �̂xy is scaled by �~u=Ĥc0. Finally

pressures are scaled by F̂app=L̂: note that this has the correct units of pressure

since F̂app is taken as applied force per unit distance transverse to the two-

dimensional calculation domain. Now the dimensionless analogue of equation
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(3.4) becomes

�@p
@x

+
@�xy
@y

= 0 (3.8)

@p

@y
= 0 (3.9)

@u

@x
+
@v

@y
= 0. (3.10)

The dimensionless film thickness H is a function of both time t and x coordi-

nate. We define � as a rescaled angle, � = �L̂=Ĥc0. Geometrically � is the

thickness change between the middle of the plate and one of the ends divided

by the initial thickness in the middle. Thus, the dimensionless squeeze film

thickness which varies with x-coordinate and time t, can be determined

H(x , t) = Hc(t)� � x (3.11)

where Hc(t) is film thickness at the centre of the plates.

We can define a dimensionless group, the Oldroyd number (Od) which repre-

sents the relative importance of yield stress effects and imposed stress [71].

In our system, Oldroyd number can be defined as follows

Od =
Yield stress

Imposed stress
=

�0L̂
2

Ĥc0F̂app
. (3.12)

Suppose we make shear rate _̂
 � @û=@ŷ dimensionless on the scale ~u=Ĥc0.

We deduce a dimensionless analogue of the constitutive equation





�xy = �Od + _
 for j�xy j > Od

_
 = 0 for j�xy j 6 Od .

(3.13)

Here the�Od term is positive if _
 > 0 and is negative if _
 < 0. Now, integrating
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equation (3.8), and applying the boundary condition in which at y = H(x , t)=2,

we have �xy = 0, shear stress can be written, at least in regions in which the

fluid is yielding, as below

�xy =
@p

@x

(
y � H(x , t)

2

)
= �Od + _
 = �Od +

@u

@y
. (3.14)

In the non-parallel geometry, the point along the plates at which flow reverses

such that the flow rate to either right or left is zero needs to be determined.

This point will be denoted as xc . The domain for solving the problem is divided

into two sections x > xc and x < xc and we consider these in what follows.

3.2.2.2 Squeeze Film Flow for Domain x > xc

For the domain in which x > xc , considering the fact that at the yield surface

(denoted y = yplug), shear rate is zero and shear stress is Od , using equation

(3.14), pressure gradient with respect to x will be found

@p

@x
=

Od(
yplug � H(x ,t)

2

) . (3.15)

By substitution of equation (3.15) into (3.14), and from the Bingham fluid rhe-

ology, it is found that (in the yielded region 0 � y � yplug), �xy = @u=@y + Od ,

thus, integrating and using the boundary condition in which at y = 0, u = 0, the

velocity profile in the x direction for yielded and plug regions will be obtained





u =
Od

2(yplug � H(x ,t)
2

)
y 2 � Od

(yplug � H(x ,t)
2

)
yplugy for y 6 yplug

uplug = � Od

2(yplug � H(x ,t)
2

)
y 2plug for yplug < y <

H

2
.

(3.16)

Now we note dQ=dx = vtop, i.e. downward motion of the plates vtop neces-

sarily causes the volumetric flow Q along the gap to change, since the fluid is

incompressible. In general there is a location xc at which there is neither flow
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to left or right, thus at that point, Q = 0. Integrating then gives the equation

for flow rate Q which is established from the velocity profile for both plug and

yielded regions as follow

Q = 2

(∫ yplug

0

u dy +

∫ H(x ,t)
2

yplug

uplug dy

)
= vtop(x � xc). (3.17)

Substitution of equation (3.16) into (3.17), taking the integral and making some

manipulations, the final equation for yplug for the domain x > xc will be gener-

ated. If H(x , t) is substituted using equation (3.11) a cubic equation for yplug

now results

y 3plug�
3

2
(Hc(t)��x)y 2plug�3

vtop(x � xc)

Od
yplug+

3

2

vtop(Hc(t)� �x)(x � xc)

Od
= 0.

(3.18)

3.2.2.3 Squeeze Film Flow for Domain x < xc

In the domain, x < xc , the flow and the shear stress have opposite sign from

what they have for x > xc . Working through the computation, we deduce

y 3plug�
3

2
(Hc(t)��x)y 2plug+3

vtop(x � xc)

Od
yplug� 3

2

vtop(Hc(t)� �x)(x � xc)

Od
= 0.

(3.19)

3.2.2.4 Solving for yplug

The next step is to solve for the yield surface, yplug, which is a function of po-

sition x , based on the two obtained equations (3.18) and (3.19) for domains

x > xc and x < xc respectively. To do so, a standard numerical method such

as the Newton-Raphson technique is employed. Following an analogous pro-

cedure to that used for parallel plates (discussed in the appendix B, section

B.1.1), assuming small values of jx � xc j and yplug, a first guess for yplug can be

obtained. Specifically, based on the observation that at x = xc there can be no
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fluid motion either to left or right, hence there is no strain rate @u=@y at any y .

Hence at x = xc , we must have yplug = 0. For the domain x > xc but close to

x = xc , it follows that yplug must be small, i.e. yplug � H(x , t)=2. The integral

within (3.17) then evaluates to uplugH(x , t) which we set equal to vtop(x � xc),

with uplug � y 2plugOd=H(x , t) via (3.16). We can use analogous assumptions

for the domain x < xc , therefore, the initial guess for yplug is





yplug =
√
vtop(x � xc)=Od for x > xc

yplug =
√
vtop(xc � x)=Od for x < xc .

(3.20)

These only apply if they predict yplug � H(x , t)=2. More generally we can have

yplug values up to H(x , t)=2. Nevertheless once we have the correct yplug value

at any given x , we can readily find it at a nearby x , using one yplug value as

an initial guess for the next. We end up with yplug values for all x , provided

Hc , vtop and xc are given, and provided Od and � are specified. The technique

for finding vtop, xc and ultimately squeeze film thickness H versus time t is

described next.

3.2.2.5 Computing Film Thickness versus Time

So far, the computational procedure for the constant load (i.e. constant applied

force) and constant rate systems have been similar. In this section, we proceed

to find the force as a function of velocity, and hence the velocity required to

deliver a constant load, and so we start to see a deviation between the constant

load and constant rate systems.

Now, after finding yplug, for the domain x > xc , we can integrate the pressure

gradient equation (3.15) to find the pressure as

p =

∫ 1

x

Od
H(x ,t)

2
� yplug

dx . (3.21)
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Meanwhile for the pressure profile in the domain x < xc , we have

p =

∫ x

�1

Od
H(x ,t)

2
� yplug

dx . (3.22)

The value of xc needs to be chosen to ensure p is continuous at x = xc . Once

that is achieved (for any selected vtop) the value of vtop then needs to be chosen

so as to ensure
∫ 1

�1
p(x) dx = 1, the integral being readily computed numeri-

cally by quadrature. All this says is that in the dimensionless system consid-

ered here, the constant load is set to unity. We then evolve Hc(t) according to

dHc(t)=dt = �vtop, with H(x , t) then given by equation (3.11). To start the iter-

ation at initial time, we need guesses of xc and vtop. However we have guesses

corresponding to the Newtonian case (see equations (A.21) and (A.22) in the

appendix A), and in general we expect that the Newtonian vtop provides an

upper bound for the velocity in the viscoplastic Bingham fluid case. Once we

have xc and vtop values initially, we can then use xc and vtop values at one time

step as initial guesses for the subsequent time step.

The algorithm flowchart used to compute vtop and xc is shown in Figure 3.2.

3.2.2.6 Computing Torque

In addition to computing film thickness versus time, the numerical scheme out-

lined above also allows us to track another quantity namely torque T . The

scheme balances a lubrication force developed between the plates to an ex-

ternal applied force (which as mentioned is unity in the dimensionless system).

However if the plates are tilted, a lubrication torque also develops. To keep

the tilt angle fixed (as is assumed here), an external applied torque would be

needed to balance it assuming applying a fixed downwards force on the plate,

and imposing a zero rotation rate. That said, it turns out that the signs of

torques that we compute, were they able to act, would try to rotate the plates
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For a given Od num-
ber and �, guess

values for vtop and xc
at the first time step

Determine
whether x > xc

Solve equation
(3.18) to
find yplug

Solve equation
(3.19) to
find yplug

Solve equation
(3.21) to find p

Solve equation
(3.22) to find p

Solving for the force, F =

1 compute the difference
between: vtop and v newtop

xc and xnewc

<TOL >TOL

vtop=v newtop

xc = xnewc

yes no

Figure 3.2: Algorithm flowchart used to compute vtop and xc , TOL is the tolerance
needed for the convergence of the code. This value was set at 10�4.
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closer to parallel. In fact, there is another option of imposing a fixed load and

no torque. We can however quantify the lubrication torque (per unit distance

normal out of the two-dimensional plane) via

T =

∫ 1

�1

x p(x) dx . (3.23)

Since p versus x is computed numerically at any instant in time, this torque can

also be evaluated by quadrature.

Here we have considered a zero rotation rate. However, there is another option

of imposing a fixed load and no torque (e.g. by pushing down the plate with

a certain weight at the centre point). In that case, there is a new constraint

(torque = 0) which would have to be imposed by adding an (a priori unknown)

angular rotation 
 to the plate, as well as the (unknown) plate speed vtop. We

now have an equation dQ=dx = vtop � 
x , where vtop represents downward

motion and 
 represents anticlockwise rotation. This integrates to Q = Q0 +

vtopx � 
x2=2, where Q0 is an a priori unknown flow rate at x = 0. This is a

quadratic equation which, in the domain of interest namely �1 < x < 1, might

have no solutions for Q = 0, exactly one solution for Q = 0, or two solutions

for Q = 0. Therefore, once we include rotation, the kinematics of the flow field

becomes more complicated. In that case, the definitive answer would require

more analysis with additional equations (i.e. a torque balance) and possibly

a less straightforward picture for the flow reversals (as the flow kinematics is

more complex when rotation is included).

It is possible to consider a hypothetical case in which there is rotation about

x = 0 but no squeezing. If 
 is the rotation rate, then we know that vertical

velocity of the plate at location x is 
 x . If the rotation leads the plate to move

upwards locally (as happens for positive x assuming 
 is positive), then Q (the

horizontal fluid flux) decreases with x . If the rotation causes the plate to move
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downwards locally (as happens for negative x), then Q (the horizontal fluid

flux) increases with x . In short we have dQ=dx = �
 x from which it follows

Q = Q0 � 
 x2=2, where Q0 is as above the a priori unknown flux at x = 0

(which needs to be calculated as part of the solution of the problem).

Now there are different possible scenarios. If Q0 > 0, there are two flow rever-

sals (and hence two places in which shear stress switches sign) and if more-

over 2Q0=
 < 1 they are both in the domain �1 < x < 1. However if Q0 < 0,

there is no flow reversal (and hence no place in which shear stress switches

sign). Thus the kinematics with rotation is more complicated than in the case

of squeezing with no rotation. Of course in general we have both squeezing

(velocity vtop) and rotation (angular velocity 
) together, and both of them affect

Q.

As we have stated therefore, depending on Q0 and depending on the relative

size of vtop and 
 then, over the domain of interest �1 < x < 1, we might

have no places in which flow changes sign, exactly one place in the domain

in which flow changes sign (as per the case of squeezing without rotation), or

two places in which flow changes sign.

In other words, there might be no values of xc , exactly one value of xc or exactly

two values of xc . Perhaps, in all practical cases, we always end up with a situ-

ation in which there is exactly one value of xc in the domain of interest (as per

the case of squeezing without rotation), but this is not yet certain. The problem

surely could be tackled (starting with the Newtonian case, and then tackling

the non-linear viscoplastic Bingham case after that). However the rotating,

torque-free case is not presented here. Instead we focus on the non-rotating

case.

The question we now ask is whether the plates ever come to rest at a finite film

thickness (as is known to happen for a viscoplastic Bingham fluid in a parallel
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plate geometry as described in appendix B section B.1.4) or whether their right

hand ends manage to touch (as happens for a Newtonian fluid between non-

parallel plates as demonstrated in section A.2). The question is addressed in

the next section.

3.2.3 Final Steady State for the Case of Viscoplastic Bing-

ham Fluid between non-Parallel Plates

This section develops the final steady state solution for the system. The analo-

gous approach for a yield stress fluid system in a parallel plate configuration is

provided in appendix B.1 and more specifically in section B.1.4 . In the parallel

plate system, a final steady state with a finite gap thickness is always found to

exist. However in a non-parallel plate system, a final steady state with a finite

gap does not always exist. If there is no such final steady state, then the plates

eventually touch.

3.2.3.1 Conditions for Final Steady State to Exist

In the final steady state, the plug region fills the entire gap and the yield surface

is at yplug = 0. On the yield surface, there is a point now denoted x = xcf at

which the dimensionless shear stress changes sign from�Od to +Od . This xcf

is the final value of xc (which typically denotes the point at which flow changes

sign). However there is no flow at all in the final steady state, so what changes

sign is now the shear stress.

We integrate the equation @p=@x = �Od=((Hcf � � x)=2) applicable in the final

steady state. Here Hcf is the assumed final thickness at the centre of the

plates. Thus for x > xcf , the pressure profile is determined

p(x) =
2Od

�
ln
Hcf � �x

Hcf � �
. (3.24)
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For x < xcf , the pressure profile is

p(x) =
2Od

�
ln

Hcf + �

Hcf � �x
. (3.25)

Since the pressure profile has to be continuous at x = xcf , equations (3.24)

and (3.25) should be equal at this point

2Od

�
ln
Hcf � �xcf
Hcf � �

=
2Od

�
ln

Hcf + �

Hcf � �xcf
. (3.26)

Simplifying equation (3.26), a quadratic equation can be obtained

x2cf � 2
Hcf

�
xcf + 1 = 0. (3.27)

Solving the quadratic equation (3.27) gives xcf as a function of Hcf and �

xcf =
Hcf

�
�
√
H2

cf

�2
� 1. (3.28)

The force applied over the entire plate length can be calculated utilising the

pressure profiles obtained above

F =

∫ xcf

�1

p(x)dx +

∫ 1

xcf

p(x)dx =
2Od

�

((
xcf � Hcf

�

)
ln

H2
cf � �2

(Hcf � �xcf )2
+ 2xcf

)
.

(3.29)

Substituting the obtained xcf from equation (3.28) into (3.29), considerable sim-

plification results, because the argument of the logarithmic term turns out to be

unity, so the logarithm itself vanishes. Assuming the plates have stopped mov-

ing then, the force applied over the entire plate length turns out to be

F = 4
Od

�

(
Hcf

�
�
√
H2

cf

�2
� 1

)
=

4Od

�
xcf . (3.30)

This force generated by the pressure profile must now be matched to the

unit force applied to the plates, and conditions determined in which physically
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meaningful solutions for Hcf or equivalently for xcf are obtained. Setting F = 1

we need to find combinations of Od and � that admit solutions with Hcf > � or

equivalently with xcf < 1. It is clear that to achieve this we require 4Od=� > 1.

Provided this condition is satisfied, the gap at the right hand end Hcf �� is then

finite.

3.2.3.2 Final Steady State Torque Calculation

As well as computing a force in the final steady state, we can also compute a

torque. For a Bingham fluid in a non-parallel system this can be obtained by

taking the integral of equation (3.23) using pressure profiles provided in equa-

tions (3.24) and (3.25). For comparison, analysis of torque for a Newtonian

fluid (albeit at unsteady state) has been done in the appendix A, section A.2.2,

but here we focus on the final steady state Bingham case. We find

Tsteady =
Od

2�3

(
2(H2

cf � �2x2cf ) ln
(Hcf � � xcf )

2

H2
cf � �2

+ 4 � xcfHcf + 2�2(x2cf � 1)

)

(3.31)

where Tsteady is the final steady state torque and xcf is a known function of

Hcf =� from equation (3.28). As before the logarithmic term vanishes (its argu-

ment is unity) and after some further algebra using equation (3.27), the final

steady state torque reduces to

Tsteady =
2Od

�
x2cf . (3.32)

However, from equation (3.30) applicable in the final steady state we already

know (Od=�)xcf =
1
4
. Hence final torque is

Tf inal = xcf =2. (3.33)
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This indicates that Tf inal depends on the film thickness at the right hand end

Hcf �� relative to the film thickness at the centre Hcf . For instance, a final state

with a gap on the right hand end that is not too narrow relative to the centre (i.e.

small �=Hcf , hence small xcf ) leads to small Tf inal . However a much narrower

gap with plates almost touching when they stop (i.e. �=Hcf close to unity, hence

xcf close to unity) leads to Tf inal =
1
2
. Note that this is only half the torque of

the Newtonian system when it touches (see section A.2.2 in appendix A).

There is another way to interpret the torque obtained in equation (3.32). Rather

than obtaining it at the final thickness Hcf , we can find torque at any instanta-

neous Hc . This allows us to estimate (at any instant) a yield stress contribution

to both force and torque, the total force and torque being a sum of yield stress

contributions and viscous contributions. This approach will be discussed in

section 3.2.3.6. However, when a final steady state is reached, there is no mo-

tion even though the driving force is maintained, hence no viscous contribution,

and so total force and torque arise entirely from yield stress contributions.

3.2.3.3 Maximum and Minimum Oldroyd Number

To proceed we next define a parameter called � which involves the ratio be-

tween the tilt angle and the Oldroyd number

� = �=(4Od). (3.34)

Note that the bracketed term in equation (3.30) is always less than unity for

any Hcf =� > 1, i.e. xcf < 1 always. Hence in order to satisfy the constraint

F = 1, it is essential to have � < 1. In other words for a specified Od there is

a maximum � at which a final steady state solution with a finite thickness could

exist (or equivalently for any �, there is a minimum Oldroyd number, Odmin, for
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a final steady state with a finite gap thickness to exist)

Odmin = �=4. (3.35)

If Od < Odmin, the plates rather than reaching final steady state instead must

touch as they do in the Newtonian limit Od ! 0. It is only in the limit of

parallel plates with � ! 0 that Odmin falls to zero. When plates are tilted, the

narrow end of the gap is more effective at supplying force to the plates than the

wider end is. The issue with increasing � however is that the gap only remains

narrow over a limited domain of x close to its right hand end. An increase in �

therefore must be accompanied by an increase in Od (effectively an increase

in yield stress of the fluid) to ensure that equation (3.30) in the absence of any

fluid motion is still able to satisfy F = 1.

If � > 1, there is no final steady state in which the yield stresses in the fluid are

able to balance the imposed unit force on the plates. The plates must always

keep moving until their right hand ends touch, as happens in the Newtonian

limit for instance. Moving plates always have yplug > 0, and this leads to larger

pressures p and larger forces F (due to those pressures) than a stationary

plate case can deliver (via equation (3.30)). Hence moving plates can achieve

F = 1 even with � > 1 even though stationary plates cannot.

In addition to Odmin given above, there is a maximum Oldroyd number, Odmax ,

at which Hcf = 1: at this Odmax , the plates will not move at all. Inserting Hcf = 1

in equation (3.30) and rearranging, Odmax which depends on � turns out to be

Odmax =
1 +

p
1� �2

4
. (3.36)
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Figure 3.3: Phase diagram in the Od versus � plane for squeeze flow of viscoplastic
Bingham fluid between non-parallel plates. In the “move and stop” and “do not move”
regions, � < 1. In the “move and touch” region, � > 1.

3.2.3.4 Phase Diagram for Permitted States of System

Figure 3.3 shows the phase diagram in the Od versus � plane in which there

are three regions, “do not move”; “move and stop”; “move and touch”. Although

(at any fixed �) there is both a Odmin and Odmax for the plates to move and stop,

in the case of fixed Od , there is only a maximum � value, �max say. However

what happens at that �max depends on the value of Od . If Od < 1
4
, then �max

corresponds to the plates moving and touching. However if Od > 1
4
, then �max

corresponds to the plates not moving at all.

Generally speaking, the data for the unsteady state evolution are sensitive to

both � and Od number. However the final fate of the system (i.e. whether the

plates stop without touching or whether instead they move and touch) is only

dependent on the � value. Indeed, if � < 1, such that the final film thickness

is non-zero, the final steady state is approached but an arbitrarily long time is

needed to reach it at least in principle (see chapter 4; qualitatively this is similar
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to the viscoplastic Bingham case in a parallel system). However, if � > 1, the

gap falls to zero at the right hand end and a non-parallel viscoplastic Bingham

system will behave instead more like a Newtonian non-parallel case. In the

Newtonian case, the right hand ends of the plates touch in a finite time (see

section A.2).

3.2.3.5 Computing Final Film Thickness

Having now identified the domain for which final steady state solutions are pos-

sible, we proceed to analyse the final steady state solutions further. Returning

to equation (3.30) assuming � < 1, and imposing F = 1 we deduce

Hcf =
�2

8Od
+ 2Od . (3.37)

For any Od number less than the maximum, a final Hcf less than unity can be

determined. Now using this Hcf value, the point xcf at which the viscoplastic

stress switches sign can be defined. This can be determined via equation

(3.28) and/or (3.30), and the result is

xcf = �=(4Od) � �. (3.38)

Note that this final state viscoplastic xcf in general differs from the instanta-

neous Newtonian xc given by equation (A.21). Note also that as � ! 1, mean-

ing the plates almost touch at their right hand ends once they have stopped

moving, we find that xcf ! 1, i.e. shearing in the final steady state is entirely

towards the left. Furthermore, as already mentioned, in the non-parallel case,

torques can develop, and it turns out that final states with the largest xcf also

exhibit the largest torques. Indeed based on equation (3.33), torque is just

xcf =2 = �=2.

Rearranging equation (3.37) in terms of � gives Hcf =(2Od) which is the aver-
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age film thickness in the final steady state (at the centre of the plates) relative

to the parallel case. This satisfies

Hcf

2Od
= �2 + 1. (3.39)

Another important quantity, (Hcf ��)=2Od , which is the minimum film thickness

(at the right hand end) in the final steady state relative to the parallel case, can

be obtained
Hcf � �

2Od
= (1� �)2. (3.40)

The ratio between equation (3.40) and equation (3.39), (Hcf � �)=Hcf , is a

measure of uniformity or otherwise of gap thicknesses such that it is zero if

polydisperse (the gaps at either end of the plates have different sizes) and

unity if monodisperse (the gaps at either end have, in relative terms at least,

the same thickness)
Hcf � �

Hcf

=
(1� �)2

�2 + 1
. (3.41)

To summarise, equations (3.39) and (3.40) give final film thicknesses in a tilted

case relative to a parallel one. Meanwhile equation (3.41) tells us about the

uniformity of final film thicknesses in the tilted case. These quantities depend

on �, but not on Od and � individually.

3.2.3.6 Yield Force and Yield Torque Calculation

For the Bingham parallel system presented in section B.1.3 of the appendix B,

we discuss a so called “yield force” contribution to the total force (the remainder

of the total force being viscous force). The yield force is the force that would

be developed with a given plate separation in the hypothetical case in which

motion is stopped. Typically early on in the evolution, when plate separations

are still quite large, yield force can be relatively small, meaning that total force

is primarily viscous. However (see e.g. Figure B.6) we show that over time
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eventually all the force becomes yield force. In this present section we explore

the analogous behaviour for the non-parallel system.

Of course in the non-parallel case, in addition to defining a “yield force”, we can

also define a “yield torque”. Again these both correspond at any given plate

separation to the situation that occurs in the hypothetical case in which motion

is stopped. The formulae we need are just (3.30) and (3.32), but using now

the instantaneous Hc , albeit still computing xc for this Hc value using (3.28).

Thus at any instantaneous film thickness, a yield stress contribution to the

force using equation (3.30) can be deduced

Fy ield = Od
/
(
Hc

4
+

√
H2

c

16
� �2

16

)
. (3.42)

Here we have multiplied the numerator and denominator of (3.30) by (Hc=�) +
√

(H2
c=�

2)� 1 and then simplified. What the yield force corresponds to is com-

puting force via
∫ 1

�1
p dx as usual, but replacing the pressure field in (3.22) via

an analogous pressure field as if the instantaneous H(x , t) = Hc � �x were

the final state (essentially dropping yplug from (3.22)). Then considering the

total force to be unity in our dimensionless system, viscous force would be

Fv iscous = 1� Fy ield .

Similarly, at any instantaneous film thickness, a yield stress contribution to the

torque using equation (3.32) can be deduced

Ty ield =
2Od

�

(
Hc

�
�
√
H2

c

�2
� 1

)2

. (3.43)

What the yield torque corresponds to is computing torque via (3.23) as usual,

but replacing the pressure field (3.22) as if the instantaneous H(x , t) = Hc��x
were the final state. Effectively then we use (3.32) but substitute (3.28) again

as if the instantaneous H(x , t) were the final state. Then the viscous torque
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will be the difference between total torque, T and yield torque, Ty ield as follow

Tv iscous = T � Ty ield .

Of course the yield force and yield torque are not the same as the total force

and total torque, since the totals include viscous contributions as well. Typically

we can expect the yield force and yield torque to start out quite small, and only

grow to match the total force and total torque in a situation in which the plates

move and stop. On the other hand, if the plates instead move and touch (which

can happen in a non-parallel system but not a parallel one), the yield force and

yield torque might never match the total force and total torque.

In methodology section, the equations needed to investigate the behaviour

of a viscoplastic Bingham fluid in squeeze film flow with non-parallel plates

have been developed in both final steady state and unsteady state situations.

Now that the formulation and mathematical modelling of the squeeze flow of

Bingham fluids between non-parallel plates is complete, predictions from the

various equations that we have derived will be analysed in the next section 3.3.

3.3 Results and Discussion for Squeeze Flow of

Viscoplastic Bingham Fluids between non- Par-

allel Plates

The results we discuss in the thesis are organised as follows. Section A.3

(in the appendix A) deals with the results obtained from the squeeze flow of

Newtonian fluid between parallel and non-parallel plates. Then section B.2

(in the appendix B) considers the results of investigating the squeeze flow of a

Bingham fluid between parallel plates. In this section (main results section pre-

sented below) considers a Bingham fluid and non-parallel plates, with sections

A.3 and and B.2 being included in the appendix for comparison.
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In the present section, results for a viscoplastic Bingham fluid in a non-parallel

plate scenario are presented. We consider yield surfaces (section 3.3.1), film

thicknesses (section 3.3.3), forces (section 3.3.4), torques (section 3.3.5) and

final steady states (section 3.3.6). As already alluded to, sections A.3 and

B.2 focus primarily on results for the Newtonian fluid between parallel and non-

parallel plates, and a viscoplastic Bingham fluid in a parallel plate configuration,

respectively. Those results are useful for comparing and contrasting with the

viscoplastic non-parallel case.

3.3.1 Yield Surface

Figure 3.4: Yield surfaces as functions of x corresponding to Hc = 1 and � = 0.2 for
different Oldroyd numbers. Note that Od = 0.495 is close to the maximum Od number
for the particular � = 0.2, so that yplug � 1 when Hc = 1 in this case.

The yield surface, yplug versus x for Hc = 1 and � = 0.2 is shown in Fig-

ure 3.4 (see Table 3.1 for relevant data). This shows that yplug for x > xc is

not necessarily a monotonically increasing function of x , because yplug has a

maximum value of H(x , t)=2 and H(x , t) is a decreasing function of x . Note

that for � = 0.2, the maximum Od just slightly above Od � 0.495 is determined
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(via equation (3.36)). Close to this maximum Od number, yplug is small.

For small Od however, yplug is close to H(x , t)=2 (except very close to x = xc

where yplug = 0). For x just slightly greater than xc , the value of yplug increases

very sharply at first (a consequence of the square root law in equation (3.20)),

but for values of Od = 0.1 or less, yplug reaches a maximum at a certain x ,

then, starts to decrease gradually.

The yield surface, yplug versus x corresponding to Hc = 1 for different � values

and a constant Od = 0.3 is shown in Figure 3.5 (see Table 3.2 for relevant

data). It is seen that, by increasing �, the value of xc increases and the yield

surface becomes increasingly asymmetrical, tending to be thicker on the left

hand side and thinner on the right hand side due to the geometrical constraint.

For even larger � however, yplug can be small even on the left hand side, despite

the wider gap there. This is due to vtop turning out to be small for these larger

�. Indeed by rearranging equation (3.36), a maximum value of � (for the plates

to move at all) just above 0.97 can be obtained for Od = 0.3.

Figure 3.5: Yield surfaces as functions of x corresponding to Hc = 1 and Od = 0.3

for different � values.
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Note that Figure 3.4 and Figure 3.5 tell us the locations of the plug region and

yielded region, but not the velocities within each of those regions. Data for

these velocities are however reported in next section.

Note moreover that Figure 3.4 and Figure 3.5 just consider one instant of time,

i.e. the initial instant at which Hc = 1. The shapes of the yield surfaces can also

be computed at later times with Hc < 1. However results are not presented

here, because qualitatively the shapes are similar to those already seen in

Figure 3.4 and Figure 3.5. The narrower the gap, the more impact the yield

stress has upon the system, to the point that motion might stop altogether (as

per section 3.2.3). Hence decreasing Hc at fixed Od is similar, as far as shapes

of yield surfaces are concerned, to increasing Od at fixed Hc . Likewise the

narrower the gap, the more impact a given tilt angle has upon the ratio of the

film thickness between the right hand end and the centre. Hence decreasing

Hc at fixed � is similar, as far as shapes of yield surfaces are concerned, to

increasing � at fixed Hc . Instead of focussing on how yplug varies with varying

Hc , we therefore focus in what follows on how film thickness varies with time.

Before that however we consider, as already mentioned, some velocity profiles.

3.3.2 Velocity Profiles

In this section we report some additional results for a Bingham fluid squeezed

between non-parallel plates to supplement those already given in section 3.3.1.

Figure 3.4 and Figure 3.5 plot values of shapes of yield surfaces for various

combinations of Od and �. To compute these shapes it is necessary to know

vtop and xc . Relevant values are reported in Table 3.1 and Table 3.2.

In addition to computing shapes of yield surfaces as Figure 3.4 and Figure 3.5

already do, it is also of interest to know the velocity fields both in the yielded

and plug regions. These velocity fields are influenced by the shapes of the
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Od vtop xc

0.495 6� 10�5 0.1023

0.4 0.0064 0.1168

0.3 0.0248 0.1360

0.2 0.052 0.1573

0.1 0.0853 0.1793

0.02 0.1145 0.1961

Table 3.1: Values of vtop and xc for the case � = 0.2 and various Od . These vtop and
xc values correspond to the initial instant at which Hc = 1, and are needed to compute
yield surfaces.

� vtop xc

0.1 0.06774 0.0260

0.2 0.0248 0.1360

0.4 0.01995 0.2763

0.5 0.01654 0.3498

0.7 0.00851 0.5096

0.8 0.00447 0.6009

0.9 0.00115 0.7083

0.97 2� 10�5 0.8013

Table 3.2: Values of vtop and xc for the case Od = 0.3 and various �. These vtop and
xc values correspond to the initial instant at which Hc = 1, and are needed to compute
yield surfaces.

yield surface (i.e. by the yplug values) and hence are influenced in turn by the

vtop and xc values as given in Table 3.1 and Table 3.2. Figure 3.6 shows the

plots of velocity profiles u versus y at various x values. Provided x > xc , these

can be computed using equation (3.16). If x < xc , the profile is given by the

negative of equation (3.16).

In Figure 3.6 we consider the case � = 0.2 and Od = 0.3, a parameter com-

bination occurring in both Figure 3.4 and Figure 3.5. Velocity profiles at the

initial instant of time are plotted at x = 0.2, x = 0.6 and x = 1.0, and also at



64

Figure 3.6: Velocity profiles for the case Od = 0.3 and � = 0.2 at different x locations.

Figure 3.7: Profiles of juplugj versus x for � = 0.2 and various Od . Data are deter-
mined at the initial instant (such that Hc = 1).

x = �0.2, x = �0.6 and x = �1.0. According to Table 3.1 and Table 3.2 the

value of xc is xc � 0.1360. What we see then, as x moves away from xc in

either direction, is that velocities generally increase in magnitude and also a
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Figure 3.8: Profiles of juplugj versus x for Od = 0.3 and various �. Data are deter-
mined at the initial instant (such that Hc = 1).

higher proportion of the flow profile is in the yielded region and less of it is in

the plug region.

Another effect evident in Figure 3.6 is that, at any given value of jx j, there is

more flux to the left than to the right (owing to xc being positive). However this

does not always manifest in a higher uplug value on the left as Figure 3.7 and

Figure 3.8 show. The larger flux to the left is also delivered over a larger verti-

cal distance, and this impacts on the velocity. Notice that Figure 3.6 indicates

how u varies with y at specified x , whereas Figures 3.7 and 3.8 indicate how

u in the plug region varies with x . At first sight it might appear that we can use

these figures to compare du=dy and du=dx . However this overlooks the fact

(see section 3.2.2.1) that x and y are already scaled differently. If a direct com-

parison were made, removing the effect of that different scaling, derivatives of

u in the y direction would always be must greater than those in the x direction.
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3.3.3 Film Thickness versus Time Results

Changes of film thickness with respect to time for a constant � = 0.2 and var-

ious Od numbers are shown in Figure 3.9. For the maximum Od � 0.495, the

plates never move at all, whereas, for very small Od numbers (i.e. according to

equation (3.35) for Od < 0.05 with this particular �), the plates move and touch

one another, and for all values of Od number in between, the plates move and

stop at a final film thickness without touching one another at the right hand end

(see also Figure 3.3). Assuming the plates move and stop without touching,

equation (3.37) implies final film thickness is dependent not just on Od , but

also on the ratio between tilt angle � and Od number which appears in the

definition of � in equation (3.34).

Figure 3.9: Film thickness versus time for a constant � = 0.2 and different Oldroyd
numbers.

Film thickness versus time for different � values and a constant Od = 0.3 is

shown in Figure 3.10. As � increases, the final thickness Hcf increases. For

any value of Od , there is a maximum value of � beyond which the system stops

moving. Using equation (3.36), the maximum � value for a given Od number
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can be estimated (i.e. for Od = 0.3, a �max just slightly above 0.97 is achieved).

All the � values here are therefore less than the maximum. Hence, for all values

of � shown, the plates move, but also stop at final thickness since the value of

� (see equation (3.34)) is also less than unity. However, for some cases (e.g.

� = 0.97 or � = 0.9) the plates barely move before stopping.

Figure 3.10: Film thickness versus time corresponding to Od = 0.3 and different �
values.

A general comparison of film thickness versus time for squeeze film flow of

a viscoplastic Bingham fluid with a constant Od = 0.3 between parallel non-

parallel plates with different � values is depicted in Figure 3.11. In addition to

that, changes of thickness at right hand ends of the plates (i.e. Hc � �) versus

time for the two non-parallel cases are shown in the figure.

The difference between the final film thickness in the parallel case and the

� = 0.2 non-parallel case is very small indeed, in line with the prediction of

(3.37) which suggests this difference is second order in � and hence in �. The

difference with respect to the system with � = 0.5 is larger. Nonetheless, both

the non-parallel systems shown here behave at least quantitatively analogous
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Figure 3.11: Film thickness versus time corresponding to Od = 0.3 for parallel plates
and non-parallel plates with � values � = 0.2 and � = 0.5.

to the parallel case, with the gap at the right hand ends of the plates never

reaching zero thickness as seen for the curves of Hc � � (contrast this with

section A.3 in appendix A and in particular Figure A.2).

In Figure 3.11 the parallel Hcf always lies between the non-parallel Hcf and

the non-parallel Hcf � �, but is always further from the latter. This follows from

equation (3.40) which suggests Hcf � � is a first order quantity in � and hence

first order in �.

3.3.4 Contributions to the Force

The force contributions (comprised of yield force and viscous force contribu-

tions summing to unity) as time proceeds for different Od values and � = 0.2

are shown in Figure 3.12. The analogous result for the Bingham fluid in a

parallel system has been provided in the appendix B, section B.2.5.

For bigger Od numbers in the move and stop region (i.e. Od = 0.2, Od = 0.1),

after relatively short times, yield force dominates the viscous force which is sim-
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Figure 3.12: Force contributions to the squeeze flow versus time for different Oldroyd
numbers and � = 0.2 in the non-parallel geometry.

ilar to the behaviour of the Bingham parallel system. However, for the smallest

Od number considered (i.e. Od = 0.02) which is in the move and touch region,

the yield force starts small, and despite it growing, it never approaches any-

where near unity. In fact when the plates eventually touch at right hand end of

the gap the yield force, can only ever reach (4Od)=�.

3.3.5 Torque Results

Figure 3.13 shows the numerically computed total torque (T ; see the definition

in section 3.2.2.6) and also yield torque (Ty ield ; see section 3.2.3.6) versus time

for different Od numbers and a constant � = 0.2. From the figure, for each Od

value the total torque is bigger than the yield torque and as time proceeds, the

total torque and yield torque come closer together. For the largest Od number

plotted (i.e. Od = 0.2), in fact total and yield torques are close together for

almost all times. However, for the smallest Od number plotted (i.e. Od = 0.05),

the yield torque starts off very small as mostly viscous torque is present initially
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Figure 3.13: Numerically computed total torque and also yield torque versus time for
different Od numbers and � = 0.2. The horizontal dashed lines are the final torques
attained in the limit of long times.

and only by increasing the time, do the total and yield torques come closer

together. Note that case Od = 0.05 with � = 0.2 has � = 1 so is on the

boundary between the move and stop region and the move and touch region.

Any smaller Od number will be in the move and touch region, and in such

cases, the yield torque will never reach the same value as the total torque.

Another important point is that as Od decreases, the torque overall increases,

whereas the yield torque starts off smaller but finishes larger due to the fact

that the smaller the Od number, the greater the nonuniformity (average film

thickness relative to film thickness on the right hand end) in the final steady

state. This leads to a greater value of xcf , and thus a larger final yield torque.

Indeed the predicted final torque for each Od value is found via equation

(3.33) and then given xcf from equation (3.38), the final torque is found to

be Tf inal = �=(8Od). As seen in Figure 3.13, the curves for each Od value are

approaching the predicted final torque, although in the Od = 0.05 case, the
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approach is seen to be rather slow.

This completes the discussion of torque in the Bingham fluid case, although a

comparison between torques for Newtonian and Bingham fluids both as func-

tions of xc has been discussed in section A.3.3 of appendix A, (e.g. see Fig-

ure A.4).

3.3.6 Final Steady States

Figure 3.14: Final film thicknesses in terms of � = �=(4Od) values. The parallel case
is � = 0 and the plates touch at � = 1.

In Figure 3.14 plots are shown of Hcf =(2Od) the average film thickness in

the final steady state relative to the parallel case, (Hcf � �)=(2Od) the mini-

mum film thickness in the final steady state relative to the parallel case, and

(Hcf � �)=Hcf which is a measure of how uniform or nonuniform of film thick-

nesses are, specifically (Hcf ��)=Hcf measures the ratio of the narrowest point

to the average film thickness. All these quantities are plotted in terms of � (see

equations (3.39)–(3.41)), recalling that they are indeed functions only of � and
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not of Od and � individually. In the case of the ratio (Hcf � �)=Hcf in particular,

note that as � increases, this ratio becomes smaller and hence the more poly-

disperse the system becomes in terms of film thickness, since the narrowest

gap at the right hand end is then much thinner than the average thickness.

3.4 Summary

Planar non-Newtonian squeeze film flows between non-parallel plates has been

investigated and equations which model the changes of film thickness versus

time have been generated.

From the results shown in appendix A, for both Newtonian parallel and non-

parallel plates, the film thickness decreases as time increases and both sys-

tems have the same behaviour initially. For the parallel plates though the thick-

ness of the gap between the plates never quite reaches zero at any finite time

(as it needs infinite time to achieve that), while for the non-parallel case a finite

time can be obtained when the plates touch one another at one point at least.

In squeeze flow theory of a Bingham fluid between parallel and non-parallel

plates we considered a system squeezed by a fixed applied force (unlike the

work of [28] which considered a fixed squeezing rate). Under a fixed applied

force, a final film thickness can be found which is very sensitive to Oldroyd

number. A maximum Oldroyd number can be found such that film thickness

is constant without any squeezing whatsoever, due to the fact that the whole

flow field is in a plug region. However, decreasing Oldroyd number allows

the system to yield, thereby reduce the film thickness as time increases. In a

parallel system, for any finite Oldroyd number, the two plates never touch even

at infinite time.

How the non-parallel system behaves depends however upon the ratio be-
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tween the tilt angle, � and the Oldroyd number, Od which is defined as �. If

this ratio is small (i.e. � < 1), the behaviour is analogous to a Bingham fluid

in a parallel configuration: squeezing stops while the gap is still finite. If this

tilt angle to Oldroyd number ratio becomes too large (i.e. � > 1) however, the

behaviour is more akin to a Newtonian fluid in a non-parallel configuration: the

plates touch one another at a point. It is in the narrow part of the gap in which

a Bingham fluid is best able to resists squeezing, but for a large tilt angle, the

gap can only remain narrow over a very limited distance.



Chapter 4

Asymptotic Behaviour

Approaching the Final State of

Viscoplastic Bingham Fluid

Squeezed between Parallel &

non-Parallel Plates

4.1 Introduction

Viscoplastic fluids (i.e. fluids that exhibit a yield stress including as examples

gels, muds, pastes, emulsions and foams) form one of the classes of fluids of

interest in the field of non-Newtonian fluid mechanics [10]. Even more gen-

erally, viscoelastoplastic fluids may exhibit yield stress behaviour also [122].

Nonetheless the archetype of yield stress fluids remains the viscoplastic Bing-

ham fluid which has been first modelled by [39]. There is a large volume of

published studies exploring the rheological behaviour of yield stress fluids in

general and Bingham fluids in particular [4, 10, 68, 123–126]. It was already

74
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identified by [39] that a viscoplastic material will only start to flow after an im-

posed stress exceeds a yield stress. A corollary of this however is that, when

the material is flowing but the stress is decaying over time, the flow will neces-

sarily stop once stress everywhere falls below the yield stress. Via techniques

of [127], a remarkable characteristic of Bingham fluids is therefore that, in fi-

nite time, they can stop dead (and their velocity can hence go to zero) due to

the aforementioned yield stress effects [34, 35]. This typically happens when

the cause of the flow (the driving force) is removed, so that the flow slows

and eventually ceases. Meanwhile, for Newtonian fluids in analogous flows

[128], the velocity fields go to zero only in the limit of infinite time. In view of

this difference, a number of quantitative and qualitative analyses have been

performed to establish the finite time decay of viscoplastic Bingham fluids in

various geometries and under various conditions [129–132].

Returning to consider fluids in general (not just viscoplastic ones), there are of

course many different geometries in which rheology can be studied [12], e.g.

steady shear flows, oscillatory shear flows, extensional flows, flows through

channel expansions and contractions. One particularly simple geometry to set

up however is a squeeze film flow, originally studied by [23] in the context of

lubrication theory [133], but also useful for studying interactions between a

fluid and the solid that bounds it [134, 135]. Squeeze film flows have moreover

been investigated using various types of fluids [21, 57], Newtonian or non-

Newtonian. In a squeeze film situation, fluid inertia tends to be insignificant

[133], so if a driving force (e.g. a load on the squeeze film) were to be removed,

the flow would in principle stop immediately (regardless of the fluid’s rheology).

Hence a driving force must be applied to continue to have any flow. That said,

absence of flow does not necessarily imply absence of a driving force, if the

fluid in question happens to be viscoplastic.

It is possible also to distinguish between a squeeze film flow with a constant
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squeezing rate (see e.g. [28]) or with a constant applied squeezing force (also

known as a constant load case, see e.g. [56]). In the latter case, flow tends to

slow down over time even for a Newtonian fluid [23]. This happens because,

as the gap becomes narrow, pressures can develop within it that are sufficient

to match the applied force despite having a lower shear stress and hence a

lower flow velocity along the gap also.

In the case of squeeze film flows of yield stress fluids, many of the results in

literature (see e.g. [19, 28, 78]) are for constant rate rather than constant load.

A question of interest in studies like those is therefore how the load must vary

as the constant rate squeezing proceeds. To determine this, it is necessary

to establish, given the kinematics associated with the constant rate squeezing,

how the stress field varies both across and along the gap. The stresses then

determine lubrication pressures and lubrication forces that ultimately match the

varying load. The stresses are however such that fluid in certain regions of the

gap (typically close to the plates) is in a yielded plastic region, whereas fluid

elsewhere in the gap (typically midway across and midway along the gap) is

more plug-like [28]. A yield surface between these regions must be found as

part of the solution of the problem.

This however leads to an apparent paradox, the so called “lubrication paradox”

for yield stress fluids [25, 31, 70]: different parts of the supposedly plug-like

region at different locations along the gap need to move at different velocities.

It cannot truly be a plug. One way to resolve this is to consider a so called

biviscosity model rather than a yield stress fluid per se [19]. In other words, a

fluid can be considered which has a certain viscosity at high shear rates, but

with a much higher (albeit still finite) viscosity at low shear rates.

It is however possible to resolve the paradox [72] even for a yield stress fluid,

without resorting to biviscosity models. Stress is a tensor, and the dominant
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component of that tensor in a typical lubrication flow is a shear stress coupling

the directions along the flow direction and across the gap. In the yielded plastic

region, this component alone, although not itself as large as the lubrication

pressures, is still large enough to exceed the yield criterion for stress. However

the conditions for yielding can involve all components of the stress tensor, not

just the aforementioned shear stress one. In the nominal plug region, that

particular component of the stress tensor is insufficient to produce yielding on

its own. Nonetheless, it has been found by [73] that when all components of the

tensor are considered, even the nominal plug region very slightly exceeds the

yield criterion [72]. Hence even that region deforms, albeit with a much lower

strain rate than in the aforementioned plastic region. The nominal yield surface

then separates a rapidly strained region from a much more slowly strained one.

Sometimes the terms “fully plastic region”, “pseudo-plug region” and “fake yield

surface” are used (see [72, 73] for full details), reflecting the fact that even the

nominally plug-like region also yields to a certain extent. However, as was also

the case in [33], distinctions like those are not central to the arguments that

follow.

One issue with constant rate studies though is that it is not possible to inter-

rogate long time behaviour. For constant rate, by definition, we always know

exactly what the plate separation is at any instant in time, and we know that

there is always a finite time at which the plates come into contact. Hence we

cannot ask questions about how yield stresses in particular might cause flow

to come to a stop, nor about how the squeeze film flow behaves if and when

it is close to stopping. To address questions like those, a constant load (i.e.

constant applied squeezing force) must be considered. In fact the solution pro-

cedure for determining the squeeze film flows of yield stress fluids at constant

rate [28] can be readily adapted to the constant load case also, merely with

an extra step of identifying the instantaneous squeezing rate for any instan-
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taneous gap thickness. Despite the similarity in procedure, what is however

different is the final state of the system, i.e. whether the plates touch at the

end of the process or not.

Squeeze film flow of a yield stress fluid between parallel plates and subject

to a constant applied squeezing force has been studied by [30]. As already

alluded to, the shear stress decays as the gap between the plates decreases:

in more and more of the gap, the shear stress decays below the yield stress.

The study of [30] accordingly identified that for a viscoplastic Bingham fluid, the

flow can cease at a finite final gap thickness even through the load is not re-

moved. In that final state, the gap between the plates remains finite, and yield

stresses alone cause sufficient pressure to develop so as to balance the ap-

plied force. This feature which makes yield stress fluids attractive for lubrication

applications, potentially also mitigating against complications associated with

lubricating gaps with rough surfaces[136].

The work of [30] was recently extended by [33]. This showed that the final

steady state of a viscoplastic Bingham fluid squeezed between non-parallel

plates is qualitatively similar to the parallel plate case, provided the tilt angle

remains less than a certain threshold value, albeit the threshold value itself

is sensitive to yield stress. This then echoes a more general finding of [137],

namely that static (i.e. non-flowing) states of yield stress fluids can be rather

common in many different geometries, and are not always trivial to analyse.

Returning specifically to the squeeze film case, although the final steady states

under constant load are known, and although [30, 33] also considered un-

steady state evolution numerically, what these works did not consider are the

details of how the unsteady state solution approaches the final state. Specifi-

cally it was not established whether the unsteady state reaches the final state

in finite time and then stops dead, or whether this final state is only reached
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in the limit of infinite time. This therefore is the question we address in this

chapter. What we will find is that the viscoplastic Bingham fluids do not actu-

ally stop dead in a squeeze film, but instead they take an infinite time to reach

the final state. However, the way in which they approach the final state is faster

than for a Newtonian fluid. In yield stress fluids, what we will demonstrate is

that the difference between instantaneous gap thickness at any time t and final

gap thickness decays proportionally to t�1, whereas for a Newtonian fluid this

decays instead proportionally to t�1=2.

Thus what we discover in this chapter is that, for a yield stress fluid, there

is more than one way to cut off motion quickly. One way, as already alluded

to, is cutting off motion in finite time (e.g. by removing a driving force). The

other way is still to require infinite time for motion to stop, but even so, for

motion to decay faster than for the analogous Newtonian fluid. This chapter

explores the latter type of behaviour specifically for a viscoplastic Bingham fluid

squeezed between parallel plates in section 4.2. Similar results also apply for

a non-parallel plate case discussed in section 4.3, whereas the mathematical

analysis is rather more complicated. The results associated with the approach

to the final state in parallel and non-parallel cases are discussed in sections

4.5 and 4.6, respectively. The analysis that we used for the parallel case is

based on the methodology of [30] which is outlined in appendix B but now

focussing specifically on the asymptotic behaviour. Meanwhile, the analysis

for the non-parallel case is based on chapter 3.
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4.2 Methodology: Asymptotic Behaviour for the

Case of a Bingham Viscoplastic Fluid between

Parallel Plates Approaching Final State

In this section the behaviour of a Bingham fluid in parallel squeeze film geom-

etry near the final state will be developed. The methodology to be adopted

is summarised as follows. In section 4.2.1 we identify parameter values for

the squeezed parallel plate system. After that section 4.2.2 considers a yield

surface within the squeeze film. Section 4.2.3 then identifies the final state

of the squeeze flow. Following that in section 4.2.4, gap thicknesses close to

a final state are discussed. After this section however, novel aspects of the

methodology are introduced. Section 4.2.5 for instance determines lubrication

pressure and lubrication force close to a final state. This then enables us to

determine, close to that final state, the speed of approach of the plates enclos-

ing a squeeze film (section 4.2.6) and subsequently the evolution of the gap

between them (section 4.2.7).

4.2.1 Parallel Plates System

As alluded already, the case of a Bingham fluid squeezed between parallel

plates is discussed in detail in appendix B. In the system studied here depicted

in Figure 4.1 say, we have parallel plates of length 2L̂, with a viscoplastic Bing-

ham fluid in between them. A fixed force F̂app (or more specifically, since we

consider a two-dimensional system, force per unit length in the direction nor-

mal to the two-dimensional plane) is applied on the upper plate. This moves

downward with a time varying velocity, v̂top. The initial thickness of the gap

between the plates is Ĥ0 and the instantaneous thickness is Ĥ.

We use governing momentum, continuity and Bingham model equations [25,
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Figure 4.1: Geometry of squeeze film flow between parallel plates.

39, 121] provided in chapter 3. We cast parameters in dimensionless form

based on section 3.2.2.1.

The lubrication force that develops in the gap between the plates must match

the applied force. In order of magnitude terms, we estimate the lubrication

pressure as being order F̂app=L̂ and the gradient of the pressure as being or-

der F̂app=L̂2. Momentum balance requires that the pressure gradient should

match the divergence of the shear stress. If the shear stress has a typical

value � , then in order of magnitude terms its divergence (at least in the initial

configuration with gap thickness Ĥ0) will be order �=Ĥ0. It follows then that �

will be an order Ĥ0F̂app=L̂
2 quantity. Note specifically that we use the initial Ĥ0

and not some other time varying Ĥ here.

Suppose now that the Bingham fluid has a yield stress �0. As was the case in

chapter 3, an Oldroyd number can be defined based on equation (3.12) (i.e.

Od � �0L̂
2=(Ĥ0F̂app)). Effectively, as alluded to already, this is the ratio be-

tween the yield stress �0 and the typical imposed shear stress Ĥ0F̂app=L̂
2, at

least assuming a shear stress corresponding to the initial gap thickness. If

Od � 1, then the yield stress is much smaller than the typical shear stress

needed to balance applied force. The system must yield, leading then to vis-

cous stresses over and above the yield stress. However as the gap narrows,

the shear stress � required to balance the applied force falls likewise, becom-
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ing only order ĤF̂app=L̂2 instead of Ĥ0F̂app=L̂
2. Eventually � falls to a value

commensurate with the yield stress �0.

4.2.2 Determining the Yield Surface

We now work towards identifying the location of the yield surface, which recall

separates plastic and plug regions. The analysis follows the approach of [28].

The procedure to find the yield surface is explained in detail in section B.1.

It requires first converting from dimensional variables to dimensionless ones

(relevant scales are given in chapter 3 and also in Table A.1). We use the

same notation for dimensional variables and dimensionless ones, merely with

the hat symbol dropped in the case of dimensionless variables. The equation

for the yield surface yplug(x) is then as follows

y 3plug �
3

2
H(t)y 2plug � 3

vtopjx j
Od

yplug +
3

2

vtopjx jH(t)

Od
= 0. (4.1)

One issue with solving the above equation for yplug is that vtop is a priori un-

known. In order to determine the plate velocity vtop, in general we need to

proceed iteratively as it is discussed in section B.1.1. For any assumed value

of vtop and any position x along the plates and any given Oldroyd number Od ,

it is possible to identify the location of a yield surface yplug(x). In any case once

the yield surface is identified for an assumed vtop, it is possible to deduce the

lubrication pressure field developed in the gap (obtained via equation (B.2), i.e.

dp=dx = Od=(yplug � (H=2))), and hence the lubrication force: further details

of pressures and lubrication forces that we compute are given later on, see

section 4.2.5. The value of vtop then generally needs to be adjusted iteratively

until the lubrication force balances the applied force. In fact in the dimension-

less system considered here, forces have been scaled in such a fashion that

the dimensionless applied force is effectively unity.
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Another complication however is that equation determining yplug for any given

vtop, x and Od , is a cubic equation that is rather awkward to solve [33]. Here

however we are specifically interested in systems approaching close to their

final state. In this limit, small vtop is expected. For small vtop, the second and

fourth terms on the left hand side of equation (4.1) dominate, with the first

and third terms becoming smaller (which is easily verified a posteriori). It then

follows that

yplug �
√
jx jvtop=Od . (4.2)

For small vtop what this equation means is that yplug(x) is small, i.e. the yield

surface at yplug(x) and its symmetric partner at H � yplug(x) are both close to

the plates. Most of the gap is then in the plug region, and most of the fluid flux

out of the gap is carried by the plug, with very little flux contribution from the

plastic region. This approximate formula for yplug(x) was originally obtained for

a general vtop but just in the neighbourhood of x = 0. However when vtop is

small, as happens when the final state is approached, this same formula for

yplug applies now for a general x .

4.2.3 Final State

In the present formulation similar to [30] but unlike [28], a constant squeezing

force is applied to determine the squeezing rate. Squeezing must however

eventually stop. For any given Oldroyd number, a final gap thickness (denoted

Hf ) can be obtained. Indeed, for large enough values of Od , we will see that

even the initial state, which is non-dimensionalized here such that H = 1, leads

to no motion.

When motion comes to a stop that is equivalent to having yplug ! 0 (or equiv-

alently yplug � H=2) for all x values. Thus, the plug region now fills essentially

the entire gap. Putting yplug = 0 and H = Hf in pressure gradient equation
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(B.2), (i.e. dp=dx = Od=(yplug � (H=2)))

∣∣∣∣
dp

dx

∣∣∣∣ =
2Od

Hf

, (4.3)

with dp=dx being positive if x < 0 and negative if x > 0. In addition, p = 0 at

x = �1.

Force is obtained by integrating the pressure profile

F =

∫ 1

�1

p(x) dx =

∫ 0

�1

2Od

Hf

(1 + x) dx +

∫ 1

0

2Od

Hf

(1� x) dx =
2Od

Hf

. (4.4)

Inserting F = 1 in the above equation, we find

Hf = 2Od . (4.5)

Thus at any given Od the final steady state thickness is just twice the Od num-

ber. For small Od , it is possible to squeeze plates really quite close together

before they stop moving. As Od increases though, the plates stop moving at

a rather larger Hf . Moreover a maximum Oldroyd number equal to 1
2

is found

in order for any squeezing to take place whatsoever: as Od ! 1
2
, there can be

no plate motion even at the initial plate separation H = 1.

Systems with Od � 1=2 do not yield at all, but systems with Od < 1=2 evolve

from H = 1 initially to Hf = 2Od at steady state. Newtonian systems, which

have Od zero by definition, permit the plates to approach arbitrarily close to-

gether, i.e. Hf ! 0.

Having determined the final state, what we describe next is how to perturb the

system for H close to Hf .
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4.2.4 Gap Thicknesses Close to the Final State

Thus far we have identified the final state of the squeeze film flow, but have not

determined how rapidly flow comes to a stop. To determine that, what needs

to be established is how vtop varies as a function of H. We then know that

dH

dt
= �vtop, (4.6)

the negative sign here arising from the sign convention that plates approaching

one another are considered to have positive vtop. After finding vtop for any given

H, we can solve for how H evolves with time t. Clearly vtop is identically zero

in the final state when H = Hf , but the question here is how vtop behaves

for H > Hf , and in particular for H just slightly greater than Hf . Based on

arguments presented in [130, 137], the flow of yield stress fluids tends to slow

to a stop more quickly than Newtonian fluids do. This then could also impact

on the functional form of vtop versus H.

For parallel plates with a Newtonian system (originally tackled by [23] but sum-

marised in dimensionless form in [33], see also appendix A), final gap thick-

ness Hf is zero, and velocity dH=dt turns out to be �H3=8. The Newtonian

solution for H is then

H = (1 + t=4)�1=2 (4.7)

meaning that at long times

H � 2t�1=2. (4.8)

For parallel plates with a viscoplastic yield stress fluid, final gap thickness Hf

is non-zero as we have seen. It is convenient then to write

H(t) � Hf + �H(t), (4.9)

where �H(t) (the difference in gap thickness from the final state) must even-
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tually decay towards zero. For a Bingham fluid, we will show shortly as one of

the main novel contributions of this work (see section 4.2.6), that in the asymp-

totic limit when �H is small, the value of d�H=dt is proportional to ��H2. This

still takes an infinite time for �H to reach zero, and hence an infinite time for H

to reach the final state Hf (see section 4.2.7). However because it involves a

quadratic �H2 not a cubic H3=8, the approach is faster than the purely viscous

Newtonian case. In addition, in the viscoplastic Bingham fluid case, the value

of d�H=dt also turns out (again see section 4.2.6) to depend on Oldroyd num-

ber Od , and part of our aim here is to elucidate how Od impacts upon the time

to approach the steady state.

4.2.5 Determining the Pressure Field and Lubrication Force

Having found a formula for yplug (equation (4.1) or more specifically equation

(4.2) close to the final state), we can now determine the pressure field in the

gap. Pressure for x > 0 obeys equation (B.2), (i.e. dp=dx = Od=(yplug�(H=2)))

and for x < 0, it is similar, merely with opposite sign. Physically this is simply

a momentum balance, with pressure gradient matched to the divergence of

the shear stress. The divergence of the shear stress is then computed on the

basis that shear stress vanishes on the centreline of the gap, but equals the

yield stress on the yield surface [28].

Close to the final state, in the asymptotic limit of small �H and small vtop, we

Taylor expand the pressure gradient, for x > 0

dp

dx
� �2Od

Hf

(
1� �H

Hf

+
2yplug(x)

Hf

)
(4.10)

with an analogous equation for x < 0, solely with opposite sign. This equa-

tion implies that having finite �H makes the magnitude of the pressure gra-

dient slightly smaller (meaning the lubrication pressure is less able to resist
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the imposed pressure). Meanwhile having finite yplug makes the magnitude of

the pressure gradient slightly bigger (meaning the lubrication pressure is more

able to resist the imposed pressure).

Integrating equation (4.10), after substituting from equation (4.2) and imposing

conditions that p = 0 at x = �1, we find

p(x) � 2Od

Hf

(
(1� jx j)� �H

Hf

(1� jx j) + 4
√
vtop=Od

3Hf

(1� jx j
√
jx j)
)
.

In the above equation, the first term is dominant and gives the final pressure

field, making a positive contribution to the pressure. The second term has

a negative contribution to the pressure due to the fact that when the gap is

still thick, the pressure may be rather weak, but it can become stronger and

support the force applied on the system when the gap thickness is smaller.

The third term has a positive contribution to the pressure, since the system is

able to yield in order to increase the pressure to sustain the applied force. We

integrate this pressure field p(x) over the whole domain �1 � x � 1 to find the

lubrication force F which is comprised of three terms as follows

F � 2Od

Hf

� 2Od

H2
f

�H(t) +
16Od

5H2
f

√
vtop
Od

. (4.11)

4.2.6 Determining Speed of Approach of the Plates

In equation (4.11) the lubrication force F , must match the applied force, which

is normalised to unity in the dimensionless system being considered here.

However the first term on the right hand side, which is the force in the final

state, is also necessarily unity (as equation (4.4) already found). In order to

keep F = 1, the second and third terms on the right hand side are required to

be equal. Thus

vtop � 25

64
Od �H(t)2. (4.12)
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We recall also (see equation (4.6)) that dH(t)=dt = �vtop and hence

d�H(t)

dt
� �25

64
Od �H(t)2. (4.13)

As already stated earlier, the value of d�H=dt is indeed proportional to��H(t)2.

The above equation is well known in chemistry and chemical engineering albeit

in a different context. It is in fact entirely analogous to the equation that arises

for the evolution of reactant concentration for a second order reaction [138]

provided reactants are supplied in stoichiometric amounts (neither of them in

excess). This then leads to a relatively slow decay because both reactants be-

come exhausted simultaneously, thereby slowing the reaction rate significantly.

This is then a rather slower decay than the late-time exponential decay which

arises when one reactant is supplied in excess, meaning that just one of them

becomes exhausted. On the other hand, the decay is still faster than for a third

order reaction in stoichiometric amounts, which is the analogue of equations

(4.7) and (4.8). We also observe that the Oldroyd number Od within equation

(4.13) is analogous to a second order kinetic rate constant. Hence decreasing

Od tends to slow down the decay.

4.2.7 Evolution of the Plate Separation

The gap between the plates H(t) can now be determined remembering here

that �H(t) � H(t)�Hf with Hf given by equation (4.4). The solution of equa-

tion (4.13) for �H versus t is obtained as

�H � �H1

(25=64)Od (t � t1) �H1 + 1
(4.14)

where �H1 is any value at which �H is small, and then t1 is the time at which

�H reaches �H1. Equation (4.14) cannot be extrapolated for t values much
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earlier than t1, because �H would then be predicted to grow, whereas the

derivation leading up to equation (4.13) was an asymptotic analysis that as-

sumed small �H. On the other hand, for t > t1, the equation should be reli-

able. Moreover in the limit when t � t1 and (25=64)Od (t � t1) �H1 � 1, we

find a very simple formula

�H � 64=(25Od t). (4.15)

It follows then that the approach to the final state for the yield stress fluid re-

quires an infinite time and, at any instant in time, the state of the system is

sensitive only to the value of Od number (i.e. ratio between yield stress and

imposed stress).

In addition to the analytical approximations described above, we can also com-

pute �H(t) � H(t) � Hf versus t numerically (details of the numerical proce-

dure are already discussed in appendix B and [33] so are not reproduced here).

If we plot those data on a log-log graph, then based on equation (4.15) a slope

�1 is expected for long times. Although this is still an algebraic decay (rather

than an exponential one), even so it is faster than the decay of the Newto-

nian case, given by equation (4.7) and then reducing to equation (4.8), namely

H � 2t�1=2 in the long time limit. Plotting the Newtonian system on a log-log

graph will give a slope of �1=2, indicating a more gradual decay than happens

for a slope of �1.
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4.3 Methodology: Asymptotic Behaviour of Vis-

coplastic Bingham Fluid between non-Parallel

Plates on the Approach to Final State

The method to analyse the approach to a final state in the parallel case with

a yield stress fluid is outlined in previous section. In this section the fluid be-

haviour will be established in the tilted, i.e. non-parallel case. The method-

ology is summarised and discussed as follows. In section 4.3.1 the equation

for the yield surface in the squeeze film is developed. Then in section 4.3.2

the approach to determine the pressure profiles and lubrication forces is dis-

cussed. After that, we establish the speed of approach of the plates enclosing

a squeeze film (section 4.3.3) and finally the evolution of the gap between them

is presented in section 4.3.4.

4.3.1 Determining the Yield Surface

There are a few subtleties in the non-parallel case, i.e. the need to perturb xc

(which is the separation point between leftward and rightward flow) away from

xcf (the final limiting value of that point). In the parallel case xc always vanishes

on symmetry grounds, so the issue does not arise.

In the non-parallel system, a significant change is that Hf in equation (4.10)

becomes a function of x . Hence the equation for the pressure gradient for x >

xc domain considering equations (3.15) and (4.9) after some algebra reduces

to
dp

dx
� � 2Od

Hf (x)

(
1� �H(t)

Hf (x)
+

2yplug(x)

Hf (x)

)
(4.16)

where Hf (x) = Hcf � � x . Recall that Hcf (as it is already described in chapter

3) is the final thickness at the centre of the plates. Like equation (4.10) this

assumes �H=Hf � 1 and yplug=Hf � 1. For x < xc there is a sign change
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in the above equation. Either way though yplug(x) is approximated by equation

(3.20) (i.e.
√
jx � xcf jvtop=Od), remembering here that xc is close to xcf (as we

are near the final state).

Note that for investigating the yield stress behaviour close to final state in the

non-parallel case, the system should be in the “move and stop” region de-

scribed in Figure 3.3. Thus, the Od number should be greater than the value

�=4 and, at long enough times, that then leads to small values of vtop and

yplug. By contrast, if the plates touch, there needs to be some regions in which

yplug is a significant fraction of film half-thickness H=2 to keep the pressures

in equations (3.21)–(3.22) and hence the associated lubrication forces higher

than they would be in a static state. Since H is a function of x (tending to zero

at the right hand end if the plates touch), then yplug can be considerable com-

pared with H=2 at least near x = 1. Indeed the complication in the “move and

touch” region at x = 1 is that both yplug and Hf are zero. However, in the “move

and stop” region as considered here, since the system comes eventually to a

stop with Hf always finite, there is a finite minimum value of Hf (x) when x = 1.

Moreover, close to the final state, a small vtop and hence a small yplug(x) can

be obtained (much smaller than Hf (x)=2, the half-thickness of the gap).

4.3.2 Determining Pressure Profile and Lubrication Force

By integrating equation (4.16), starting from 1 down to x , and from �1 up to x ,

the pressure fields are obtained. For the x > xc domain, the pressure field is

p = 2Od

[
1

�
ln
Hcf � �x

Hcf � �
+

�H

�
(

1

Hcf � �x
� 1

Hcf � �
)

+ 2

√
vtop
Od

(
�
p
x � xcf

�(Hcf � �x)
+

p
1� xcf

�(Hcf � �)

+
1

�3=2
p
Hcf � �xcf

(tanh�1

√
�(x � xcf )

Hcf � �xcf
� tanh�1

√
�(1� xcf )

Hcf � �xcf
)

)]
. (4.17)
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For the x < xc domain, the pressure profile is

p = 2Od

[
1

�
ln

Hcf + �

Hcf � �x
+

�H

�
(

1

Hcf + �
� 1

Hcf � �x
)

+ 2

√
vtop
Od

( p
xcf � x

�(Hcf � �x)
�
p
1 + xcf

�(Hcf + �)

� 1

�3=2
p
Hcf � �xcf

(tan�1

√
�(1 + xcf )

Hcf � �xcf
� tan�1

√
�(xcf � x)

Hcf � �xcf
)

)]
. (4.18)

The pressures need to match at x = xc . The pressure profile contains a main

term which is the pressure at final state (i.e. no motion) and perturbations due

to �H and yplug being non-zero: the term involving yplug has been written in

terms of vtop using equation (3.20). We also however need to account for xc

not being quite the same as the value of xcf . The second and third terms in

the above (i.e. terms involving �H and yplug) can be evaluated at xcf , but the

leading terms should be evaluated at xc = xcf + �xc (where �xc is a pertur-

bation). Since terms involving �H and yplug are already small, considering xc

as being xcf rather than xc = xcf + �xc in those terms will not have any effect

on the pressure field. This however is not valid for the leading order pressure

term, as shifting xc by a small amount away from xcf would possibly lead to the

final pressure failing to meet up.

However the leading order contributions to the leading order pressure terms at

x = xcf for both x > xc and x < xc domains are equal by definition. Hence

that can be subtracted from the leading order expression and the remaining

contribution to the pressure will be on the order of �xc . Therefore, the above

equations once pressures are matched will be reduced to
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2Od

[
2�xc

Hcf � �xcf
+

�H

�
(

2Hcf

H2
cf � �2

� 2

Hcf � �xcf
) + 2

√
vtop
Od

(
�
p
1 + xcf

�(Hcf + �)

�
p
1� xcf

�(Hcf � �)
+

1

�3=2
p
Hcf � �xcf

(tanh�1

√
�(1� xcf )

Hcf � �xcf
+tan�1

√
�(1 + xcf )

Hcf � �xcf
)

)]

= 0. (4.19)

The prefactor for �H and yplug perturbation terms are constants (independent

of time) and can be denoted as D and E, respectively.

D = (
2Hcf

H2
cf � �2

� 2

Hcf � �xcf
) (4.20)

E =

(
1

�3=2
p
Hcf � �xcf

(
tanh�1

√
�(1� xcf )

Hcf � �xcf
+ tan�1

√
�(1 + xcf )

Hcf � �xcf

)

�
p
1� xcf

�(Hcf � �)
�
p
1 + xcf

�(Hcf + �)

)
. (4.21)

Then equation (4.19) becomes

2Od

[
2�xc

Hcf � �xcf
+

�H

�
D + 2

√
vtop
Od

E

]
= 0. (4.22)

Now that we have derived the pressure profiles, we need to integrate equations

(4.17) and (4.18) over x to obtain the force,
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F = 2Od

[
(
1

�
(xc � Hcf

�
) ln

H2
cf � �2

(Hcf � �xc)2
+

2xc
�

)

+
�H

�
(
1

�
ln

(Hcf � �xc)
2

H2
cf � �2

+
2Hcf xc � 2�

H2
cf � �2

)

+ 2

√
vtop
Od

(
(1� xc)

p
1� xcf

�(Hcf � �)
� (1� xc)

�3=2
p
Hcf � �xcf

tanh�1

√
�(1� xcf )

Hcf � �xcf

+
1

�5=2

(
3
√
�(1� xc) +

�(1� xc)� 3(Hcf � �xcf )p
Hcf � �xcf

tanh�1

√
�(1� xcf )

Hcf � �xcf

)

� (1 + xc)
p
1 + xcf
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√
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(4.23)

Here the two pressure profiles have been integrated from �1 to xc and from xc

to 1. In the perturbation terms involving �H and yplug (or equivalently involving

vtop), xc will be replaced by xcf . Moreover, the leading order force expression at

xc = xcf is 1 by definition, a result that follows based on equation (3.30). Note

that the leading order contribution to the force is insensitive to �xc also, as xcf in

practice is chosen in exactly such a way that the leading order term from �xc is

zero (a result that turns out to follow from final pressures necessarily matching

at xcf , so locally near xc it does not matter which branch of the pressure formula

we integrate). Imposing the condition that F = 1 leads to the sum of second

and third terms (i.e. perturbation) terms becoming zero. Now, balancing those

second and third terms at xc = xcf

�H

�
M = 2

√
vtop
Od

N (4.24)
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where M and N are as follow

M =

(
1

�
ln

(Hcf � �xcf )
2

H2
cf � �2

+
2Hcf xcf � 2�

H2
cf � �2

)
(4.25)

N =

[
�(1� xcf )

p
1� xcf

�(Hcf � �)
+

(1� xcf )

�3=2
p
Hcf � �xcf

tanh�1

√
�(1� xcf )

Hcf � �xcf

� 1

�5=2

(
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√
�(1� xcf ) +

� + 2�xcf � 3Hcfp
Hcf � �xcf

tanh�1

√
�(1� xcf )
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+
(1 + xcf )

p
1 + xcf

�(Hcf + �)
� (1 + xcf )

�3=2
p
Hcf � �xcf

tan�1
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�(1 + xcf )
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� 1

�5=2

(
3
√
�(1 + xcf )� � � 2�xcf + 3Hcfp

Hcf � �xcf
tan�1

√
�(1 + xcf )

Hcf � �xcf

)]
. (4.26)

4.3.3 Determining the Speed of the Approach to Final State

Using the expression (4.24), vtop can be found as a function of �H

vtop = (
�HM

2�N
)2Od . (4.27)

Substituting vtop in equation (4.19) (or equivalently equation (4.22)), �xc as a

function of �H will be acquired

�xc = �(Hcf � �xcf )�H

2�
(D +

ME

N
) (4.28)

Using Hcf , xcf and � definitions from equations (3.37), (3.38) and (3.34), mod-

ifying all the parameters in terms of � and Od , we have

D =
2�2

Od(1� �2)2
(4.29)
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E =
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8Od2�
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(4.30)

M =
�

Od(�2 � 1)
(4.31)
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(4.32)

Now �xc follows

�xc =
�2 � 1

�
�H(D +

ME

N
) (4.33)

where it turns out �xc is a negative quantity since the final value of xc which

is denoted as xcf is the largest possible value that can be obtained over the

course of this evolution, and hence xc is always less than xcf . Geometrically

this follows because the tilt has more impact (i.e. the ratio between the gap at

the right hand end of the plates to the gap at the left hand end of the plates

is further from unity) when the gap is thinner. Equation (4.33) indicates how

much xc is evolving on the approach to the final state. Since xc evolves over

time, this equation then gives the final asymptotic approach of xc to its final

value.

4.3.4 Evolution of the Plate Separation

The centre point of the plates (denoted Hc ) located at x = 0, now satisfies

dHc=dt = �vtop, but Hc = Hcf + �H and since Hcf is constant, then from
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equation (4.27), vtop is a known function of �H2, thus, similar to the parallel

plates system, a relation for d(�H)=dt follows

�H =
�H1

( M
2�N

)2Od(t � t1)�H1 + 1
. (4.34)

When writing � � 4Od � in the expression (M=2�N)2 that expression becomes

solely a function of �. We will consider this expression further in next section

4.4. Note however that in the limit � ! 0 (parallel case) it reduces to 25=64

as per equation (4.14). For much stronger tilt with � ! 1, we have instead

M � �1=(2Od(1� �)), and

N � 1

8Od2

(
� 1p

1� �
+

1p
1� �

�

2
� 1

2

(
2p
1� �

�

2

))
� � 1

8Od2
1p
1� �

(4.35)

so that M=(2�N) � 2Od=(�
p
1� �) � 1=(2

p
1� �). Here we have used the

fact that � approaches 4Od when � ! 1. Finally we deduce, in the � ! 1 limit,

that

(
M

2�N
)2 � 1

4(1� �)
. (4.36)

Computing time for the plates to touch, i.e. � > 1, in the viscoplastic Bingham

case in instances when the plates move and touch, is a difficult task to do.

Details of this are expanded upon below.

Numerical schemes are not typically well suited at distinguishing between situ-

ations in which plates move and touch in finite time, and those which move and

nearly touch in finite time, but then require an infinite time to touch in actuality.

To distinguish between these situations therefore, we require an asymptotic

analytical approximation, at least close to point of plates touching.

In the Newtonian case, it is possible to obtain this asymptotic approximation

(as per appendix A). However even the Newtonian case is non-trivial as sec-
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tion A.2.1 explains. Near the point of touching, there is a very large relative

difference between the widest part of the gap (on the left hand end of the gap)

and the narrowest part of the gap (on the right hand end). Since pressure

gradients vary inversely with gap thickness, the pressure field is highly skewed

towards the narrow end of the gap. A consequence of this turns out to be that

at the instant the plates touch, the approach velocity is not finite, but has in-

stead tended towards zero (albeit it is a logarithmic decay to zero velocity such

that time for plates to touch remains finite). Knowing that there is (zero) veloc-

ity at the instant when the plates touch is, on its own, no help for determining

time for the plates to touch. It is necessary to know how the velocity behaves

asymptotically on the approach to touching.

The viscoplastic Bingham case (the rheology now being non-linear) in cases for

which the plates move and touch is even harder to tackle than the Newtonian

“move and touch” case. The equation we have to solve in general is dp=dx =

�Od=((H=2)� yplug).

In the case when the plates move and stop (without touching), it is possible to

obtain an analytic approximation of the approach rate and it turns out to take

an infinite time for the plates to come to a stop. The reason why an analytical

approximation is possible in that case (as it is discussed in section 4.3.1) is

that at long enough times, yplug is uniformly small compared with H=2. Almost

all the flow is in the plug region, and a simplified approximate analytic formula

for yplug then follows.

However, the case when the plates move and touch is more challenging. We

have the same equation as above to solve. In some parts of the gap, yplug

remains small compared to H=2. However in other parts of the gap, yplug must

become comparable with H=2. (Otherwise the plates would simply move and

stop, instead of move and touch). Thus in the move and touch case there is no
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simplified approximate analytical formula for yplug that applies uniformly over

the entire length of the plates. As a consequence, there is no easy way to

estimate the pressure field for plates that nearly touch, and hence no easy way

to obtain an analytical estimate for the approach velocity for nearly touching

plates either.

Therefore, finding time for the plates to touch relies on a very delicate (and

a priori unknown) asymptotic behaviour involving very small velocities that

nonetheless significantly perturb pressure fields in very narrow gaps. We know

the plates move and touch solely due to the absence of a steady state in which

they move and stop. However, we do not know the details of the final approach

to the move and touch state, nor therefore whether the time required to achieve

it is finite or infinite. To summarise, if plates were to move and touch and meet

with finite velocity, it would be easy to compute numerically the time for them to

touch. However that situation does not arise, not even for a Newtonian case.

Instead in the Newtonian case there is a logarithmic singularity and velocity

falls to zero at the instant of touching. We then only manage to determine

time to touch, owing to an analytic formula for the singular behaviour. A non-

Newtonian move and touch case is harder still, as the nonlinearity prevents us

from determining the exact nature of any singularity.

To recapitulate, the asymptotic formulae for the approach to the final state of

the squeeze film system of a viscoplastic Bingham fluid between parallel and

non-parallel plates have been formulated and developed here. In next section

results for a squeeze film on the approach to the final state will be compared

with the asymptotic formulae.
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4.4 Results for Asymptotic Behaviour Approach-

ing Final State of Viscoplastic Bingham Fluid

Squeezed between Parallel and non-Parallel

Plates

Yield stress fluids will deform and flow similar to a liquid if the local stresses

become greater than the yield stress. However, they will behave as an elasto-

plastic solid when yield stress exceeds the shear stress [39, 45, 54]. What is

interesting about yield stress fluids however is not just how they flow, but also

how they stop flowing. Specifically yield stress fluids stop flowing much faster

than viscous Newtonian fluids do. It is known that motion of Bingham fluids

can decay to zero in finite time [34, 35] when a driving force is removed. Here

however, we have analysed a system with a different behaviour in which an

infinite time is required for a yield stress fluid to stop flowing while maintaining

a constant driving force. Nonetheless, the stopping of the flow for a yield stress

fluid is much faster than a viscous Newtonian fluid.

In this section, the results acquired for the asymptotic approach to the final

steady state situation for parallel and non-parallel squeeze film geometries are

considered to investigate the behaviour of the viscoplastic Bingham fluid rhe-

ology. This is done in sections 4.5 and 4.6, respectively.

In the parallel geometry [33], the approach to the final state for the yield stress

fluid takes an infinite time and its rate depends only on the value of Oldroyd

number Od (i.e. ratio between yield stress and imposed stress). However, for

non-parallel configuration, the asymptotic analysis for the approach to the final

state still requires infinite time, but depends not just on the the Oldroyd number

but on the tilt angle as well.
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4.5 Results: Approach to Final State of Squeeze

Flow of Viscoplastic Bingham Fluid for Paral-

lel Plates

In what follows, sections 4.5.1–4.5.3 deal with evolution of squeeze film gap

thickness, and sections 4.5.2–4.5.4 deal with difference between gap thickness

and final gap thickness.

4.5.1 Squeeze Film Gap Thickness versus Time

Figure 4.2 shows the profiles of gap thickness (computed numerically using

the procedures of appendix B, section B.1.2 and [33]) versus logarithmic time

for a viscoplastic Bingham fluid with different Od values, and also for a New-

tonian fluid with Od = 0. As seen, for small Oldroyd numbers, the curves will

stay close to the Newtonian curve (i.e. Od = 0) up to a comparatively long

time. Meanwhile the curves for larger Od numbers deviate from the Newtonian

graph sooner. In addition to that, gap thickness for each Od number eventually

approaches Hf � 2Od at long enough time. Note though that this value is

approached sooner as Od increases.

4.5.2 Difference in Gap Thickness versus Time

Figure 4.3 presents both numerical and analytical �H (i.e. the difference in gap

thickness from the final state) on a logarithmic scale in terms of logarithmic time

for different Oldroyd numbers. Here the numerical �H is computed using the

methodology of explained in appendix B, whereas the analytical �H is obtained

using equation (4.14). Values of �H1 and t1 to use within equation (4.14)

were themselves read off from the numerical data: see values in Table 4.1.

Equation (4.14) is however insensitive to which combination of �H1 and t1 is
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Figure 4.2: Gap thickness H against logarithmic time t for different Od values.

chosen, provided we select a combination with �H1 rather smaller than Hf .

This is certainly the case in Table 4.1 when Od = 0.2, Od = 0.1 or Od = 0.05.

For Od = 0.01 or Od = 0.001 this is more difficult to achieve however, as it

would require very long t1 values, so we have opted in those cases for �H1

values just slightly smaller than Hf .

Od �H1 �H1=Hf t1 Od2 t1

0.001 0.0013 0.65 40000 0.04

0.01 0.01277 0.6385 10000 1

0.05 0.01044 0.1044 4000 10

0.1 0.00913 0.04565 2500 25

0.2 0.00483 0.012075 2500 100

Table 4.1: Values of �H1 and t1 used for each Od .

Gap thickness for Od = 0 (i.e. Newtonian fluid) decreases with a slope of �1=2
in Figure 4.3, at least at long times. Meanwhile subtracting Hf from H to obtain

�H moves the curves for the viscoplastic Bingham fluid below the Newtonian

case.
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Figure 4.3: Numerical (N) and Analytical (A) values of logarithmic �H against loga-
rithmic t for different Od values.

In the Bingham fluid case, by plotting numerical and analytical �H values

against time, we see that discrepancies arise at early times, but for times

greater than t1, the analytical predictions and numerical data tend to agree.

As Od decreases however, we need to select longer and longer times before

agreement is attained. Indeed for Od = 0.001, the numerical and analytical

data are only just starting to agree at the very largest timescales we have con-

sidered.

For Od = 0.2, Od = 0.1, Od = 0.05, we see in Figure 4.3 good agreement

between numerical and analytical formulae for �H less than about 2 � 10�2,

which matches with the notion that �H=Hf needs to be small for the analytical

formulae to work well, remembering here that Hf = 2Od . Smaller Od values

e.g. Od = 0.01 and Od = 0.001, in principle should require even smaller �H

values before the analytical formula starts to be reliable. Judging the quality

of the analytical formula for these smaller Od is however less straightforward

for the following reason. By construction we fit the analytical formula to the
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numerical data at t1 and �H1, and so what we must verify is that the formula

continues to fit well for t � t1 and �H � �H1, but that then needs data out to

very long times. Nonetheless, as Table 4.1 makes apparent, when Od is small,

meaning that Hf is also small, it is not easy to reach a �H1 that is itself much

smaller than Hf .

From Figure 4.3, �H for all values of Od number decays towards zero as time

proceeds, and moreover the curves at long times appear to acquire a slope

of �1 as expected based on equation (4.15). For bigger Od numbers, this

regime is attained sooner. For small Od on the other hand, the curves follow

the Newtonian case (slope �1=2) for quite some time, before deviating towards

a slope �1.

4.5.3 Gap Thickness versus Rescaled Time

The timescale that is of interest in this system is order 1=Od2, which can be

deduced as follows. For small enough Od , systems should start off follow-

ing Newtonian behaviour (equation (4.7) and eventually equation (4.8), H �
2t�1=2). However that behaviour must cease once equation (4.8) predicts H

values comparable with Hf (with Hf � 2Od itself given by equation (4.5)). This

of course happens when t � 1=Od2. We can however rescale time (from t to

Od2 t) in an effort to obtain a universal behaviour for different Od values. We

also rescale the gap thickness (plotting H=Hf instead of just H). Thus Figure

4.4 presents rescaled logarithmic gap thickness H=Hf against rescaled loga-

rithmic time Od2 t for various Od numbers.

As seen, each curve now starts off at a different location for each Oldroyd

number, but at sufficiently large Od2 t they all collapse together onto a single

master curve. In fact since the initial H is unity whereas Hf � 2Od , it follows

that the initial H=Hf is (2Od)�1. Therefore, as Od decreases, the initial H=Hf is



105

Figure 4.4: Logarithmic ratio of gap thickness to final state gap thickness H=Hf in
terms of rescaled logarithmic time, Od2 t for different Od values. Long time asymptotic
formulae given respectively by equations (4.37) (dash-dot curve) and (4.38) (dashed
line) are also plotted.

larger, whilst the master curve is likewise attained at a larger H=Hf value and

hence at a smaller Od2 t. Using equations (4.5), (4.9) and (4.15) a possible

asymptotic form for a master curve can be deduced

H=Hf � 1 + 32=(25Od2 t), (4.37)

which is plotted within Figure 4.4. Obviously though this formula presents is-

sues for the case Od � 1, because we then also need very long times t to

prevent Od2 t from being vanishingly small. If times are not sufficiently long,

then the Od � 1 case should follow instead the Newtonian equations (4.7)–

(4.8), not equation (4.15). If a system with Od � 1 satisfies, at least temporar-

ily, equation (4.8) instead of equation (4.15), we can deduce an asymptotic

formula

H=Hf � (Od2 t)�1=2. (4.38)
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This is also plotted in Figure 4.4.

What is apparent is that equation (4.37) does not give a good fit to H=Hf over

a wide domain of H=Hf values, whereas equation (4.38) evidently does, par-

ticularly when Od is small. The issue with equation (4.37) is that the analysis

leading to it is based on an assumption that �H is rather smaller than Hf and

hence H=Hf � 1 + �H=Hf can never be much larger than unity if the formula

is to be valid.

4.5.4 Difference in Gap Thickness versus Rescaled Time

Figure 4.5: Numerical values of rescaled logarithmic �H=Hf in terms of rescaled
logarithmic time, Od2 t for different Od values. Long time asymptotic formulae given
respectively by equations (4.38) (dashed line) and (4.39) (dash-dot line) are also plot-
ted.

Figure 4.5 shows the rescaled logarithmic gap thickness �H=Hf (computed

numerically) against rescaled logarithmic time Od2 t for different Oldroyd num-

bers. Recall also the basis for this rescaling: the characteristic timescale to

approach close to the final state is expected to be on the order of 1=Od2.

In Figure 4.5, all of the plots do appear to collapse together at sufficiently long
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times. At very short times of course there are discrepancies: the value of

�H can never exceed 1 � 2Od and so the value of �H=Hf can never exceed

(2Od)�1 � 1. Focussing on asymptotics at much longer times though, the

analogue of equation (4.37) is

�H=Hf = 32=(25Od2 t). (4.39)

This is plotted on Figure 4.5. It does fit the data when Od2 t is sufficiently

large and �H=Hf is sufficiently small. On the other hand, it does not fit the

data well for larger �H=Hf . To attain large values of �H=Hf (well in excess

of unity) we require small Od . Data with small Od (e.g. Od = 0.001, Od =

0.01) do collapse together in Figure 4.5 but they collapse onto the Newtonian

formula given by equation (4.38), also plotted on Figure 4.5. Even though

equation (4.38) gives H=Hf rather than �H=Hf , they are essentially the same

when �H=Hf is large.

A conclusion we draw here is that Figure 4.4 shows that equation (4.37) is not

valid over a wide domain of H=Hf values (even though equation (4.39) is valid

over, in relative terms, a wide domain of �H=Hf values as Figure 4.5 shows).

4.6 Results: Approach to Final State of Squeeze

Flow for a Viscoplastic Bingham Fluid for non-

Parallel Plates

In a non-parallel configuration, the approach to the final steady state situation

is qualitatively the same as the parallel case (i.e. it takes an infinite time to

reach the final film thickness). Whereas the behaviour of Bingham fluid in the

parallel system is dependent on the Oldroyd number, in the tilted case, it is

reliant also on the ratio between tilt angle � and Od number which is defined
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as �. Specifically we have � = �=(4Od). In what follows, the difference of gap

thickness and final gap thickness with respect to time and rescaled difference

in gap thickness against rescaled time are discussed in sections 4.6.1 and

4.6.2, respectively.

4.6.1 Difference in Gap Thickness versus Time

Figure 4.6: Numerical (N) and Analytical (A) values of logarithmic �H in terms of
logarithmic t for � = 0.2 and different Od values.

Figure 4.6 shows the logarithmic numerical and analytical difference in gap

thickness relative to the final gap thickness for different Oldroyd numbers and

a constant tilt angle (i.e. � = 0.2). The numerical �H is computed via the

equation �H = Hc(t)�Hcf where Hc(t) is calculated numerically through the

procedure described in chapter 3, section 3.2.2.5. The analytical �H is also

computed using analytical equation (4.34) derived in section 4.3.4 in which the

�H1 and t1 have been selected from the numerical values such that for t > t1,

and �H < �H1 < Hcf . Selected values of �H1 and t1 for different Od numbers

have been provided in Table 4.2.
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Od �H1 �H1=Hf t1 Od2 t1

0.1 0.0252 0.1008 584 5.84

0.2 0.046 1.08 2500 8

0.3 0.003794 0.00615 2000 180

Table 4.2: Values of �H1 and t1 used for each Od and a fixed � = 0.2.

As can be seen from the Figure 4.6 there is a good agreement between numer-

ical and analytical data for �H and for all values of Od , the curves will decay

to zero. However, for bigger Od values this decay takes place faster compared

with the smaller Od numbers.

(a) ( M
2�N

)2 versus �

(b) 4(1� �)( M
2�N

)2 versus �

Figure 4.7: Plots of ( M
2�N )

2 and 4(1� �)( M
2�N )

2 with respect to �.
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The behaviour of the yield stress fluid in non-parallel system depends on both

Od number and tilt angle � and recall we defined the ratio of tilt angle and

Oldroyd as a parameter called � � �=(4Od). Thus it is rational to investi-

gate the results based on � rather than Od number or � individually. Figure

4.7(a) depicts a function (M=(2� N))2 in terms of �: at large times, equation

(4.34) shows �H is decaying to 1=(Od t f (�)) in which f (�) � (M=(2� N))2 is

a sharply increasing function of �. Thus the decay would be much faster when

� is larger: in the limit as � ! 1 it is possible to show that f (�) is proportional

to (1 � �)�1 so that f (�)(1 � �) approaches a finite limit. This function is also

shown in Figure 4.7(b).

Moreover (see Figure 3.3), if � increases and reaches a value close to 1, then

the plates are more likely to move and (almost) touch, at least provided Od

is not too large (otherwise they do not move at all). Then, the fact that the

moving system is decaying very quickly means that it reaches the final state

much more quickly. On the other hand, the gap at the right hand side of the

plates at steady state will decrease as � increases. One way to account for

this is to rescale data, as discussed below.

4.6.2 Rescaled Difference in Gap Thickness and its Varia-

tion with Rescaled Time

As is discussed for parallel plates case in section 4.5.3, the rescaled time

for the approach to the final state will be Od2t. Thus, Figure 4.8 shows the

rescaled gap thickness �H=Hcf (i.e. �H=Hcf is the deviation from the final

state relative to the final state) against logarithmic rescaled time for a constant

Od number (i.e. Od = 0.3) and different values of �. Figure 4.9 shows similar

data but plotting �H=(Hcf � �), i.e. normalised by the gap on the right hand

end in the final state, rather than the gap at the centre.
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Figure 4.8: Size of �H relative to the final gap width Hcf against logarithmic rescaled
time Od2t for Od = 0.3 and different � values. These are numerical data.

When we consider �H against time, �H decays more quickly in the non-

parallel case (as has been demonstrated with the asymptotic analysis; it de-

cays like 1=(Od t f (�)) as already mentioned). The value of �H also tends

to start off smaller if the plates are non-parallel. Meanwhile Hcf grows as the

plates deviate further and further from parallel. As a result, in Figure 4.8 at ini-

tial times, all of the curves start comparatively far away from each other. Then

at later times they approach each other as �H=Hcf approaches zero. However,

even at these later times, the curves with smaller � are always higher up than

those with larger �.

The gap at the centre in the final state can however be very different from the

gap at the right hand end. For a highly tilted system, �H might be small in

absolute terms and small relative to Hcf , but it might be quite large compared

to the gap at the right hand side Hcf � �. We are in a situation here in which

the gap at the right hand end is quite small as well. We have a small deviation

from the final state (i.e. �H) and also a small final gap on the right and that is
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why we investigate the ratio between those.

Figure 4.9 shows the deviation from the final state relative to the final gap

width at the right hand side of the plates, �H=(Hcf � �) with respect to the

rescaled time, Od2t for fixed Od = 0.3 number and different � values. For

these parameter values, the initial value of �H=(Hcf � �) is non-monotonic in

�. As can be seen, for all values of �, all the curves will eventually approach

zero at long times.

Figure 4.9: Size of �H relative to the final gap width at the right hand side of the plates
(Hcf � �) against logarithmic rescaled time Od2t for Od = 0.3 and different � values.
These are numerical data.

For � close to 0 (i.e. the parallel geometry) the curves in both Figures 4.8 and

4.9 are broadly the same but for � close to 1 they are rather different since

the gap at the centre is then very different from the gap on the right hand

side. Comparing Figure 4.8 and 4.9 recall (see section 3.2.3.5) that we have

Hcf = 2Od(1 + �2) and so by changing �, then the value of Hcf is not varying

dramatically. Meanwhile since Hcf � � = 2Od(1 � �)2, varying � will change

Hcf � � significantly particularly when � is relatively close to 1. For small �

values, Hcf � � is around 2Od but for larger �, it is much smaller. At long times
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�H=(Hcf ��) is 1=(2Od2 t f (�) (1��)2) and the increase in f (�) with � is offset

by the decrease in (1� �)2.

4.7 Summary

In the present squeeze film system assuming constant load and focussing par-

ticularly on late times, the Bingham viscoplastic fluids do not stop dead, but

rather they take an infinite time to reach the final steady state. However, the

way they reach the final state is faster than a Newtonian fluid does. In yield

stress fluids, the difference in film thickness from the final one decays on the

order of t�1, whereas for a Newtonian fluid the decay is on the order of t�1=2.

Thus, there is more than one way to cut off one motion quickly. One way is

cutting off a motion in finite time by removing the driving force. The other way

is to cut off the motion in infinite time while maintaining the driving force but

faster than the Newtonian fluids.

Viscoplastic fluids are of interest because they stop much more suddenly than

Newtonian fluids do. Indeed these types of fluids have been studied in the

past due to the fact that they have the capacity to stop dead in finite time upon

removal of a driving force. In this work we looked at a squeeze film system

with a different behaviour in which yield stress fluids stop only in infinite time

but they still decay faster than Newtonian fluids do. The decay in the motion

of squeezed yield stress fluids depend on the Oldroyd number. For instance,

for larger Od numbers, the decay is faster than for smaller Od numbers, as the

smaller values of Od lead to the fluid behaving similar to a Newtonian fluid.



Chapter 5

Squeeze Film Flow Applications in

Papermaking

5.1 Introduction

In the present work, the squeeze film flow of Newtonian and non-Newtonian flu-

ids between two parallel and non-parallel plates has been analysed in an effort

to understand the behaviour of foam-fibre suspensions in the foam-formed pa-

permaking process. Relative to conventional water-based papermaking which

involves using large flows of water, the process of making paper with foam-

forming utilises foam instead of water as a carrier for the fibres. Therefore, it

leads to significant sustainability gains by reducing the water footprint of the

process [118]. The foam forming technique can produce a paper with more

uniform pore size distribution than a water-formed paper [83]. The squeeze

flow theory can help to establish the extent to which foam rheology plays a

role in establishing the more uniform pore size distribution of foam-formed pa-

pers as opposed to papers made with water. The hypothesis to be explored

is that, during the course of the papermaking process, as fibres are pushed

together to remove the carrier fluid, the foam might be behaving as a contin-
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uum viscoplastic fluid, albeit with the viscoplastic fluid properties being related

to underlying bubble size. Thus, if the hypothesis were to be borne out, inves-

tigation of squeeze film flow would give an insight into whether non-uniformity

of the gap between two fibres being pushed together is reflected in the subse-

quent level of uniformity or non-uniformity of pore sizes of foam-formed paper,

and if so, how the non-uniformity of the gap depends on the fluid rheology.

5.2 Foam-formed Papermaking as a Squeeze Film

Process

Foam-forming has aroused interest [82] and provides many advantages com-

pared with water-forming. For instance, as already mentioned, reduction of

water footprint is realised in the process of making foam-formed paper, which

leads to sustainability gains and reduction of energy especially in the drying

process [82].

In this thesis, as alluded to earlier, the squeeze film flows of a Newtonian and

a non-Newtonian fluid between two parallel and non-parallel plates have been

investigated in order to establish the effects of non-Newtonian rheology in the

papermaking process. Thus, this should achieve a general insight into the

mechanism of fluid-mediated interaction between fibres using different types

of fluids (from Newtonian to yield stress fluids). According to the study of [83],

pore size distribution of papers made using foam-forming is bigger and more

uniform than the pore size distribution of papers made using water. In order to

explore a possible reason of this uniform structure, a hypothesis was proposed

implying that foam can behave like a continuum fluid with rheology properties

which affects the properties of fibre networks structure. The notion (see sec-

tion 2.5.6 for discussion) is that the squeeze film gap size after squeezing (i.e.

after pressing the foam-formed paper pulp to remove the foam carrier fluid prior
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to a drying step) might correlate with the typical pore size in the eventual paper,

whereas the similarity or difference in final gap size from one side of a tilted

fibre to the other might correlate with uniformity or non-uniformity of pore sizes.

To the extent that foam rheology (or in other words Oldroyd number) influences

squeeze film gap sizes, it could then also influence pore sizes. Therefore, ex-

ploring this hypothesis potentially gives insights into pore size distribution that

could result due to squeezing fluids with different rheology [28].

5.3 Results and Discussion

The way in which this work has represented the foam as a continuum fluid

is convenient due to the fact that the foam structural properties influence pri-

marily the yield stress, and the only place in which the yield stress enters is

in the Oldroyd number. The implication of this approach is that the obtained

results can easily be compared with the experimental data. For instance, an

experimentalist can change the size of bubbles and our established approach

then makes the process of comparison effective and straightforward because

that parameter (i.e. bubble size) which the experimentalist changes in a lab-

oratory would need to be incorporated in the Oldroyd number definition. In

other words, changing of foam structural and hence rheological properties is a

characteristic which is incorporated in this work and makes it straightforward to

compare with experiments. Therefore, we would be able to make a prediction

with the model and then compare the results against experimental data.

To the extent that gap thicknesses and gap non-uniformities as predicted here

might correlate with pore sizes and pore size variations in foam-formed paper,

the model explored here makes predictions for how pore size distribution might

be sensitive to foam rheology. The predictions are distinct from those of the

ghost particle hypothesis advanced by [83], so a suitably designed experiment
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could distinguish between these models. The prediction of the present model

is that smaller bubbles (with larger yield stress [80, 107, 108] and hence larger

Oldroyd numbers) lead to larger gaps (hence larger pores). Moreover larger

Oldroyd numbers lead to smaller � � �=(4Od) (i.e. larger Od reduces the in-

fluence of tilt angle �) and hence gives more monodisperse pores (less relative

difference in gap size between one side of the fibre and the other). In addition

to that, Newtonian fluids between plates on the point of touching have more

torque than viscoplastic fluids between plates on the point of touching (see

Figure A.4). Moreover, larger Od number keeps the gap wider, thus there is

not such a big relative difference in gap size from one side of the gap to the

other: this also tends to reduce the impact of torque.

The aforementioned ghost particle hypothesis predicts instead that larger bub-

bles would give larger pores, and also that polydisperse bubbles are needed to

give polydisperse pores: the predictions are distinct as has been mentioned.

Note moreover that finding pore size being similar to bubble size for one set of

bubble sizes (see e.g. Figure 2.4) is not in itself sufficient to prove the ghost

particle hypothesis. It would be necessary to look at different sets of bubble

sizes and to see how pore size changed, with the ghost particle hypothesis and

the foam rheology hypothesis then predicting opposite trends for pore size.

At least some of the literature [83, 120] on foam-formed papers however sug-

gests that even though foam bubble size is sensitive to surfactant type (as one

might expect), it is relatively insensitive to fibre type (i.e. whether fibres are

flexible or rigid). That same literature shows that pore size in the foam-formed

papers tends to be sensitive to fibre type (i.e. flexible versus rigid) but rel-

atively insensitive to surfactant type (hence insensitive to bubble size). This

suggests then that pore size distribution in foam-formed papers is sensitive to

solid mechanics of the fibres (differing amounts of fibre-fibre flocculation for

the different fibre types might also play a role, see e.g. [82, 93]), and less sen-
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sitive to the properties of the foam. It is not then relevant to apply either the

ghost particle or the viscoplastic foam rheology models to predict pore sizes

in foam-formed paper. So the model explored here is arguably not useful for

foam-formed papers but it might still be useful for other applications involving

squeeze film flows of viscoplastic materials.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

Historically squeeze film flows have been investigated extensively using vari-

ous types of fluids [21, 57]. One of the interesting fluids to consider is a vis-

coplastic Bingham fluid which has been modelled first by [39]. There is a large

volume of published studies exploring the rheological behaviour of viscoplastic

Bingham fluids [4, 10, 68, 123, 126]. Squeeze film flow of a yield stress fluid be-

tween parallel plates has been studied by [30] in which they have formulated

the final state of a viscoplastic Bingham fluid. We considered a viscoplas-

tic Bingham fluid squeezed between non-parallel plates (extending the work of

[30] which considered merely the parallel geometry) under a fixed applied force

(unlike the work of [28] which considered a fixed squeezing rate and parallel

plates). We have also investigated the torque for the tilted plates as well as

establishing the final state of a viscoplastic Bingham fluid squeezed between

non-parallel plates [33].

Under a fixed applied force, a final film thickness can be found at which the

plates stop moving. The final thickness is sensitive to Oldroyd number. A max-
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imum Oldroyd number can be found beyond which the film thickness remains

constant always without any squeezing whatsoever, due to the fact that the

whole solution domain is in a plug region even at the initial instant. However,

decreasing Oldroyd number allows the system to yield, and thereby reduces

the film thickness as time increases. In a parallel system though for any fi-

nite Oldroyd number, the two plates never touch even at infinite time. How the

non-parallel, viscoplastic system which is considered here behaves depends,

however, upon the ratio between the tilt angle, � and the Oldroyd number, Od ,

this ratio appearing in the definition of a parameter � � �=(4Od).

If this ratio is small (i.e. � < 1), the behaviour is analogous to a viscoplastic

Bingham fluid in a parallel configuration: squeezing stops while the gap is

still finite. If this tilt angle to Oldroyd number ratio becomes too large (i.e.

� > 1) however, the behaviour is more akin to a Newtonian fluid in a non-

parallel configuration: the plates touch one another at a point. It is in the

narrow part of the gap in which a viscoplastic Bingham fluid is best able to

resist squeezing, but for a large tilt angle, the gap can only remain narrow over

a very limited distance. Hence, with sufficient tilt, the applied force overcomes

the yield stress even in the narrow part of the gap and drives the plates to

touch. Moreover larger Oldroyd numbers lead to smaller � and hence more

monodisperse film thicknesses.

Changing Oldroyd number also impacts on torque. Decreasing Od number

increases the torque value, and torque also increases as time proceeds. In

particular the torque is comprised of viscous and yield stress components. As

Od decreases, the yield torque component is typically very small at early times

as viscous torque dominates the yield torque. Then, as time proceeds and the

system approaches a final state, the yield torque tends to dominate the viscous

torque due to the fact that fluid is not moving in the final state.
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A remarkable characteristic of viscoplastic Bingham fluids is that they can stop

dead and their velocities can go to zero in finite time due to the yield stress

effects [34, 35, 127]. Meanwhile, in Newtonian fluids the velocity fields only go

to zero at infinite time [128]. Thus viscoplastic fluids (e.g. gels, muds, pastes,

emulsions, suspensions, foams) are of interest because, amongst other prop-

erties, they can stop flowing much more suddenly than the Newtonian fluids

do. As mentioned, studies on these types of fluids in the past have identified

that they have the capacity to stop dead in finite time, if a driving force or a

load is removed. However viscoplastic fluids can also stop moving even when

a load is maintained. In this thesis we looked at a squeeze film problem to

explore such behaviour. What we have found is that yield stress fluids in a

squeeze film require infinite time to stop, but even so their motion still decays

faster than what happens with Newtonian fluids. Specifically we see a decay

in the difference between instantaneous squeeze film gap thickness and final

gap thickness scaling inversely with time. The Newtonian analogue however

scales inversely with only square root of time.

The decay towards the final thickness in yield stress fluids depends also on

the Oldroyd number Od , which measures the ratio between the yield stress

and the initial applied stress. For larger Od numbers i.e. larger yield stresses,

the decay towards the final state is faster than for smaller Od numbers. This im-

plies an advantage of selecting fluids with larger Od in lubrication applications:

squeeze films approach a final gap thickness more rapidly, and then remain

at that thickness. On the other hand, smaller values of Od lead to the system

behaving, for quite some time, similar to a Newtonian fluid with its slower de-

cay. It is then only at very long times that the faster than Newtonian decay in

rate of squeezing becomes evident. Although many of the results presented

here concern parallel squeeze films, it turned out they also extend to the non-

parallel case, albeit the calculations were less simple to perform than for the
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parallel case.

The model explored here also makes predictions (distinct from those of the

so called ghost particle hypothesis advanced by [83]) for how the pore size

distribution of a foam-formed porous medium (e.g. foam-formed paper) might

be sensitive to foam rheology: a suitably designed experiment could therefore

distinguish between these models. The prediction of the present model is that

smaller bubbles (which have larger yield stress and hence larger Oldroyd num-

bers) lead to larger gaps (hence larger pores). Moreover larger Oldroyd num-

bers leads to more monodisperse pores. What we discovered though based

on literature [83, 94] is that pore size distribution in foam-formed papers is sen-

sitive to the fibre types so that it is sensitive to solid mechanics of the fibre. In

circumstances like that it is not relevant to use either ghost particle or the foam

rheology models, as these are sensitive only to the properties of the foam. So

the model explored here is not useful for foam-formed papers but it might be

useful for other applications of squeezed yield stress fluids.

6.2 Future Work

Although we have obtained model predictions for squeezed yield stress fluids

it is worth reflecting on the limitations of the model, that would need to be over-

come in future work. We have considered a two dimensional planar system

(squeezing plates together): squeezing together fibres is however a three di-

mensional problem, and it is likely to be easier for fluid to escape in that case

since it can flow in various directions. Moreover we have ignored rotation of

the plates. In reality the pressure field induced in the squeeze film, places not

just a force on the plates (that balances the applied force) but also, as we have

discussed, a torque. By balancing torque in addition to force it should be pos-

sible to deduce both a plate squeezing rate and a plate rotation rate. Rotation
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does however lead to a slightly more complicated flow field in the squeeze film

(specifically equation (3.17) no longer applies; this is a complication, because

depending on the values of rotation rate, squeezing rate and flow rate midway

along the plates, it can be shown that there might be a single x location at

which there is flow neither to left or right as in the non-rotating case, or there

might be two such x locations, or no such location – this needs to be explored

further to establish which case is realized in practice). Here of course, rather

than computing rotation, we have computed instead the torques that develop

in the absence of rotation. Nevertheless the signs of those torques suggest

that had rotation been permitted, it would have been such as to move the con-

figuration closer to parallel as time evolved.

Although the analysis discussed in chapter 4 is for a non-rotating case, it raises

interesting questions regarding what might happen in a rotating case. From

[31, 126] we know that yield stress fluids have a habit of stopping more quickly

that viscous fluids do, and we know that there are solutions for final states

with non-zero tilt (which balance fluid lubrication force to imposed force, albeit

they do not necessarily balance torque). We expect that rotation (needed to

balance torque) will tend to reduce the amount of tilt (possibly at a different rate

in a yield stress fluid than in a viscous fluid though).

Now the question that is raised is whether the rotating system can ever stop

moving even with non-zero tilt. In other words, for a given Oldroyd number,

are there combinations of film thickness and tilt angle that balance imposed

force but simultaneously have zero net torque? For instance, if an arbitrarily

oriented tilted particle is inserted into a strong enough gel (i.e. a fluid with

high enough yield stress), the tilted particle should stay there without moving.

However that is not a problem for attempting to balance torque, because there

is no constraint that the shear stress at the tilted particle surface must equal

the yield stress. Any shear stress less than the yield stress will do and will
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keep the particle in place.

For the case of our system however the tilted fibre was moving and then stops.

Hence, at the point where it stops, the shear stress at the fibre must be the yield

stress, not some lower value. Otherwise there would not have been motion

up to this point. Since the y derivative of the shear stress matches the x

derivative of the pressure, imposing a (shear stress) equal to a (yield stress)

condition at the fibre surface seems like a strong constraint (much stronger

that the aforementioned case of the arbitrarily oriented particle placed in a

gel). Therefore it probably still is the case in this system that the fibre must

rotate to parallel if torque is to balance as motion also ceases.
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Appendix A

Squeeze Film Flow of Newtonian

Fluid between Parallel &

non-Parallel Plates

A.1 Methodology: Squeeze Film Flow of Newto-

nian Fluid between Parallel Plates

In this section, the analysis for a parallel, Newtonian squeeze film will be re-

viewed. Geometry of the squeeze film flow specifically between parallel plates

is shown in Figure 4.1.

We consider a gap of initial thickness Ĥ0 between plates of length 2L̂. In Figure

4.1 the top plate is moving downward with a time-varying velocity v̂top under a

constant applied force F̂app (per unit distance transverse to the two dimensional

plane) thereby displacing the fluid, while the bottom plate is stationary.

To solve the system, the continuity and Navier-Stokes equations are required.

The general dimensional form of these equations in Cartesian x̂ and ŷ coor-

A-1



A-2

dinates for an incompressible and Newtonian fluid in planar geometry can be

written as below [139]. Here dimensional variables are denoted with a hat

symbol.

�

(
@û

@t̂
+ û

@û

@x̂
+ v̂

@û

@ŷ

)
= �@p̂

@x̂
+ �

(
@2û

@x̂2
+
@2û

@ŷ 2

)
+ � gx (A.1)

�

(
@v̂

@t̂
+ û

@v̂

@x̂
+ v̂

@v̂

@ŷ

)
= �@p̂

@ŷ
+ �

(
@2v̂

@x̂2
+
@2v̂

@ŷ 2

)
+ � gy (A.2)

@û

@x̂
+
@v̂

@ŷ
= 0. (A.3)

Here, û and v̂ are velocities in the x̂ and ŷ directions, respectively, p̂ is pressure

� is fluid density, � is Newtonian viscosity, and gx and gy denote components

of gravity acceleration.

A.1.1 Nondimensionalization of Equations

In this work we use the dimensionless form of the continuity and Navier-Stokes

equations. The horizontal lengths are scaled on L̂, and vertical lengths are

scaled on Ĥ0. Meanwhile horizontal velocities are scaled on an as yet unspec-

ified scale ~u, and vertical velocities are scaled on ~v � Ĥ0~u=L̂0. Times are

scaled on Ĥ0=~v � L̂=~u. Finally pressures are scaled on F̂app=L̂: note that this

has the correct units of pressure since F̂app is taken as applied force per unit

distance transverse to the two dimensional calculation domain. The dimen-

sionless variables are summarised in Table A.1.

We now set

~u =
F̂app
�

Ĥ2
0

L̂2
. (A.4)

The governing lubrication equations for squeeze film flow of a Newtonian fluid
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Nondimensionalization of variables

x̂ = L̂x

ŷ = Ĥ0y

Ĥ(t̂) = Ĥ0H(t)

û(x̂ , ŷ) = ~u u(x , y)

v̂(x̂ , ŷ) = ~v v(x , y) = (Ĥ0=L̂)~u v(x , y)

v̂top(t̂) = ~v vtop(t) = (Ĥ0=L̂)~u vtop(t)

t̂ = (Ĥ0=~v) t = (L̂=~u) t

p̂(x̂) = (F̂app=L̂) p(x)

Table A.1: Table of dimensionless variables.

based on the assumptions made in chapter 3 are [23]

�@p̂
@x̂

+ �
@2û

@ŷ 2
= 0 (A.5)

@p̂

@ŷ
= 0 (A.6)

@û

@x̂
+
@v̂

@ŷ
= 0. (A.7)

Dimensionless analogues of these equations, making variables dimensionless

on scales identified in Table A.1 are

@p

@x
=
@2u

@y 2
(A.8)

@p

@y
= 0 (A.9)

@u

@x
+
@v

@y
= 0. (A.10)
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The solution of equations (A.8), (A.9) and (A.10) now follows a standard pro-

cedure for a Newtonian squeeze film [21, 55]. From equation (A.9) we find

that the pressure is a function of x coordinate, thus, p = p(x). Using the no

slip boundary conditions u = 0 at y = 0 and y = H(t), equation (A.8) can be

solved to obtain the velocity u in the horizontal direction

u =
1

2

@p

@x
y(y �H(t)). (A.11)

Via the continuity equation (A.10), the vertical velocity component at the top of

the film, vtop can be determined

vtop = �H(t)3

12

@2p

@x2
. (A.12)

Note the sign convention adopted here: we define vtop to be a positive quantity,

so that vtop(t) � �v jy=H(t). The flow rate between the plates can be expressed

as

Q �
∫ H(t)

0

u dy =

∫ H(t)

0

1

2

@p

@x
y(y �H(t)) dy = �H(t)3

12

@p

@x
. (A.13)

We also know that, Q = vtopx , in which recall vtop is considered as a positive

quantity. Thus, using also boundary conditions in which at x = �1 and x = 1,

p = 0, we can obtain the pressure distribution in the squeeze film

p(x) =
6vtop
H(t)3

(1� x2). (A.14)

We now define F as the force (per unit distance out of the two-dimensional

plane) that this pressure field places on the upper plate. This is obtained by

integration of the pressure field along the plates

F =

∫ 1

�1

p(x) dx =
8vtop
H(t)3

. (A.15)
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We can define the velocity of the upper plate, vtop as a derivative of film thick-

ness, H(t). With our sign convention

vtop = �dH(t)=dt. (A.16)

The force F imposed by the pressure field on the plate must balance the ap-

plied force that sets up the squeeze film flow in the first place. However be-

cause of the way we have non-dimensionalized the system (the relevant scales

were given earlier), this applied force is simply unity. It then follows from equa-

tion (A.15) that vtop = H(t)3=8. Via equation (A.16) it then follows

t = 4

(
1

H(t)2
� 1

)
. (A.17)

This rearranges to

H(t) = (1 + t=4)�1=2. (A.18)

A.2 Methodology: Squeeze Film Flow of Newto-

nian Fluid between non-Parallel Plates

Now, we will investigate the behaviour of squeeze film flow between two non-

parallel plates, still for a Newtonian fluid. In the parallel case, section A.1, on

symmetry grounds, it was found that the dimensionless flow rate Q vanishes

at the half way point along the plates, i.e. at x = 0. However, we cannot

use that same assumption for non-parallel plates. Therefore, we must find the

point at which the flow rate will be zero. This point will be denoted as xc . The

flow rate Q can still be defined in terms of the integral of the horizontal velocity

equation (A.11) over the film thickness which gives equation (A.13). However

the flow rate for non-parallel plates is Q = vtop(x � xc) where, as before, the

sign convention is such that vtop is positive. Moreover, H within that equation
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now depends on x (not just on t). Hence, using the equations (A.13) and

(3.11), the pressure gradient is

@p

@x
=

12vtop(xc � x)

(Hc(t)� � x)3
. (A.19)

Here Hc(t) is the separation at the centre of the plates, and � is the rescaled

tilt angle. Note that when Hc is close to � and also x is close to unity, such that

the gap at the right hand end of the plates is narrow, large pressure gradients

are seen near x = 1. This means that as x decreases from unity, sharp rises in

pressure are seen in the narrow part of the gap. Integration of equation (A.19)

using the boundary conditions in which at x = �1 and x = 1, the pressure

is equal to zero, the pressure distribution and also xc can be determined after

some algebra

p(x) =
6vtop(1� x2)

Hc(t)
3
(
1� �

Hc(t)
x
)2 (A.20)

with

xc = �=Hc(t). (A.21)

Note that in the limit of � ! 0 this reduces back to the parallel plate case as we

expect. On the other hand for a fixed �, as Hc(t) falls over time, it is clear that

xc grows. When Hc(t) falls towards the value �, the plates come into contact

at the right hand end, since in that case Hjx!1 � Hc(t) � � approaches zero.

In that limit, xc ! 1, implying that all the flux Q = vtop(x � xc) is to the left

with x < xc and none of it flows out the narrow gap to the right. Returning to a

general value of �=Hc(t), the force F which the pressure distribution places on

the upper plate can be obtained by integrating equation (A.20) which leads to

F =
24vtop
Hc(t)�2

(
Hc(t)

2�
ln

1 + �
Hc(t)

1� �
Hc(t)

� 1

)
. (A.22)
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A differential equation for Hc(t) versus t can now be derived by recognising

that this force F due to the pressure field must be balanced to the unit force

imposed externally on the plate. Setting F = 1 and vtop = �dHc(t)=dt leads

to after some algebra

t =
12

�3

(
(Hc � �) ln(1� �

Hc

)� (1� �) ln(1� �)

� (Hc + �) ln(
�

Hc

+ 1) + (� + 1) ln(� + 1)

)
. (A.23)

This is an implicit equation for Hc given t. It is easy to check by inspection that

Hc ! 1 as t ! 0. At other times, we cannot in general invert this expression

to obtain an explicit analytic formula for Hc in terms of t. However there is still

a limiting case that we can analyse as discussed below.

A.2.1 Asymptotic Behaviour in Limit �=Hc ! 1

In this section, the special case in which the two plates touch at one end is

considered. In equation (A.23), if we take the limit �=Hc ! 1, a final time tf at

which the plates touch (i.e. Hc equals �) can be calculated:

tf =
12

�3

(
� (1� �) ln(1� �)� 2 � ln(2) + (� + 1) ln(� + 1)

)
. (A.24)

Details of how tf behaves are deferred until section A.3. For now however we

note that tf is finite, i.e. the plates touch in finite time, unlike the parallel case

given by equation (A.18) which requires infinite time for the plates to touch.

Hence, for non-parallel geometry and at the final time, what happens at this

point geometrically is that according to Figure A.1 (b), the gap thickness on the

right is much smaller compared to the gap thickness on the left, meaning that

the gap at right end is almost closed and flow moves towards the left end.
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By way of contrast, Figure A.1 (a) shows the case with the same � but with

instantaneously a rather thicker gap. In relative terms, the gap thickness on

the right and left are comparable, so the non-parallel plates case can be con-

sidered as almost a parallel case and flow can move towards both the left and

right ends of plates. The present section however focusses on the case of

Figure A.1 (b), i.e. close to the final time.

(a) thick gap but small slope (b) small gap

Figure A.1: Two types of geometries obtained for non-parallel squeeze film flow

Of interest also is to find out how Hc varies with time close to this final time.

Within equation (A.22) we know that the term ln(1 � �=Hc(t)) goes to infinity

when Hc(t) approaches �. Hence, consulting equation (A.22) with F = 1 and

vtop = �dHc(t)=dt, it follows that dHc(t)=dt approaches zero at t = tf , even

though the final time is already obtained as a finite quantity.

Therefore, an asymptotic analysis is required to establish the behaviour of film

thickness for times close to the final time. A parameter called � (the gap thick-

ness on the right relative to the gap thickness in the centre) is defined such

that �(t) � 1 � �=Hc(t) with � � 1 in cases of interest. In this limit � � 1 we

have Hc(t) � � + � �(t). It follows via equation (A.22) that

�
d�(t)

dt
� dHc(t)

dt
� �3

24 ln �
. (A.25)

As expected dHc(t)=dt approaches zero in the limit as �! 0, but the approach

to zero is exceedingly slow, so tiny velocities are only reached for exceedingly

small �.
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When � is small this gives at leading order

t � tf � 24

�2
� ln(1=�) for �� 1. (A.26)

Starting then from any time t at which � is small but finite, the subsequent time

interval tf � t that must elapse for the plates to touch scales not proportionally

to � but rather proportionally to � ln(1=�) which is significantly greater than �.

The time interval tf � t, whilst shrinking as � shrinks, is therefore surprisingly

long.

To summarize, even though having a very narrow gap tends to imply a very

slow approach to the final state (e.g. vtop = H(t)3=8 in the parallel case), in the

tilted case, the gap only manages to be exceedingly narrow over a very short

distance in x (at the far right hand end), so vtop is large enough that plates

still touch in finite time. That said, the approach to the final state still remains

surprisingly slow.

A.2.2 Torque Calculation

Tilted systems are associated with non-zero torques. In this section the anal-

ysis for investigating the torque is considered. Torque (per unit distance out

of the two-dimensional plane) is evaluated as an integral along the plates
∫ 1

�1
x p(x) dx . Thus, for Newtonian fluid in the non-parallel system, we can

compute a dimensionless torque that is analogous to the dimensionless force

formula, equation (A.22). Since vtop is defined by setting the dimensionless

lubrication force to unity, we can evaluate vtop and substitute it in, to obtain a

torque expression wholly in terms of �=Hc(t). Equivalently the torque can be

expressed in terms of xc since by equation (A.21), �=Hc(t) is the same as xc in
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the Newtonian case. We find

T =

∫ 1

�1

x p(x)dx =

Hc(t)
2

(
(3� �2

Hc(t)2
) ln

1+ �
Hc (t)

1� �
Hc (t)

� 6 �
Hc(t)

)

4�2
(

Hc(t)
2�

ln
1+ �

Hc (t)

1� �
Hc (t)

� 1

) . (A.27)

In the limit of xc ! 0 (i.e. �=Hc(t) to zero), this gives zero torque (as expected).

Also in the limit of xc ! 1 (i.e. �=Hc(t) to unity), it gives unit torque. Physically

this implies that the lubrication pressure field (and hence the lubrication force)

is highly concentrated in the neighbourhood of xc = 1.

A.3 Results: Newtonian Fluid Squeezed between

Parallel & non-Parallel Plates

In the main body of the thesis, chapter 3, section 3.3 focussed primarily on

results for the viscoplastic Bingham fluid in non-parallel plate configurations.

In the present section, in the interests of completeness and for comparison,

analogous results for a Newtonian fluid are presented.

A.3.1 Film Thickness versus Time

In Figure A.2 changes of film thickness versus time are shown. For parallel

plates (equation (A.18)), film thickness decreases with time and the most rapid

changes occur at early times and then film thickness changes slowly with sub-

sequent time. Indeed, in the parallel case, the plates only come into contact in

the limit of infinite time which means that theoretically the film thickness never

quite reaches zero [21, 55].

However, in the case of non-parallel plates, Hc reaches its final value � when

time is still finite. The parallel case can be a good approximation to the non-

parallel case for sufficiently large values of film thickness, i.e. provided Hc
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Figure A.2: Profile of film thickness versus time. For non-parallel plates, � was set to
0.2.

much larger than �. It is only when Hc falls to comparable magnitude to � that

the non-parallel case differs notably from the parallel one. In that situation, the

film thickness on the right hand end Hc � � is much smaller in relative terms

than the film thickness at the centre Hc .

Furthermore, for small times, the parallel and non-parallel plate formulae are

almost the same because � is small and it cannot be seen easily that the plates

are not parallel: in relative terms, the gap thickness on the left and right hand

side are nearly the same (see Figure A.1 (a)).

However for times close to the final time as shown in Figure A.1 (b), Hc is equal

to � plus a small amount and and the gap thickness on the right is relatively

speaking much smaller than the gap thickness on the left. Hence for an ob-

server located at the centre of plates and looking toward the right, it looks like

the gap is almost closed and it cannot readily be seen that this is actually a

small gap as opposed to a closed off system. As a result, all the flow is now
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moving to the left (which is also seen from equation (A.21) which places xc , the

divider between leftward moving and rightward moving flow, towards the right).

Therefore, physically or geometrically, for small times, near parallel plates be-

haviour is expected and flow moves through both directions. Meanwhile, for

times close to the final time, flow only can move towards one end (i.e. towards

the left end in Figure A.1 (b)).

Figure A.2 for a Newtonian system looks superficially like Figure 3.11 for a

viscoplastic Bingham fluid (with Oldroyd number Od = 0.3 and various �) in the

sense that the non-parallel Hc exceeds the parallel H which in turn exceeds

the non-parallel Hc � �. The difference of course is that for Figure A.2 the

non-parallel plates touch whereas in Figure 3.11 motion stops at a finite film

thickness. In order for plates to touch in a viscoplastic Bingham fluid it would

be necessary to choose a different combination of Od and �, specifically Od

must be less than �=4.

As we have already noted, in a non-parallel case, and in the limit as Hc ap-

proaches �, the remaining gap on the right hand end has almost closed com-

pletely. As a result, all flow is now towards the left (which, as has been men-

tioned, is also seen from equation (A.21) for Newtonian systems which then

places xc , the divider between leftward moving and rightward moving flow, at

the far right hand end). A similar situation is also seen in the special case of vis-

coplastic Bingham systems which reach a steady state, with a very small but fi-

nite film thickness (i.e. Hcf �� � 1). These states have Od very slightly greater

than �=4. Equation (3.38) then gives the final xc value satisfying xcf ! 1, such

that all material is sheared toward the left.
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A.3.2 Final Time for Plates to Touch

Figure A.2 only considered data for one particular � value. Using analytical

equation (A.24) we can however predict the final time for plates to touch in

a Newtonian system for any � value. Figure A.3 shows how final time in the

squeeze film flow of a Newtonian fluid between non-parallel plates changes

with the value of �. As can be seen, the system will reach the final time sooner

as � increases. For very small �, it turns out that equation (A.24) predicts tf

scales proportionally to ��2. Conceptually this is easy to understand. When �

is small, the system behaves similar to a parallel case, at least until Hc falls to

a value on the order of �. The parallel case equation (A.17) predicts an order

��2 time for this to occur.

Figure A.3: Final time versus � in Newtonian non-parallel system.

Thus the bigger � becomes, the sooner the right hand end of the plates touch.

On the other hand in the limit as � ! 0 the time for the plates to touch diverges

as the parallel case is reached. A viscoplastic Bingham system can reach a

final state in which plates do not touch at all, although in principle an arbitrarily

long time is needed to attain that final state.
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A.3.3 Torque Results

In Figure A.4, the graph of torque for a Newtonian fluid in terms of xc is de-

picted. Here xc according to equation (A.21) is the same as �=Hc in the New-

tonian case. Over time, Hc decreases, so xc increases. Within Figure A.4 the

value of Newtonian torque based on equation (A.27), increases comparatively

slowly with xc near xc = 0, and it is only near xc = 1 that torque increases very

sharply eventually to reach unity.

For comparison we have also shown the yield stress contribution to torque in a

Bingham fluid non-parallel case. Torque is again plotted against xc , but this xc

is now no longer given by equation (A.21) but instead by (3.28), although this

again gives xc growing as Hc falls. The yield stress contribution to the torque or

so called yield torque now obeys equation (3.32) and we can assume a case

in which Od = �=4, so that at final steady state, the final xc (now denoted xcf )

satisfies xcf ! 1, corresponding to a case in which plates move and stop but

almost touch. In this final state, torque is then only half the Newtonian torque.

Note also that cases with even larger Od=� than the one we have selected

(which move and stop without nearly touching) would have smaller �=Hc in the

final state, hence smaller xcf , and correspondingly smaller final torque in line

with predictions of equation (3.33).

Another interesting comparison is in the small �=Hc limit in which the New-

tonian xc is then �=Hc as we have said, but the xc used in the yield torque

calculation via equation (3.28) is roughly half that. However the Newtonian

torque is linear in the small parameter xc , whereas the yield torque computed

via equation (3.32) (for the specified Od=�) is found to be quadratic in this small

parameter. The Bingham yield stress contributions to the torque are therefore

very small when �=Hc is small, but can start to matter as Hc falls over time,

such that �=Hc grows, and hence xc grows as well.
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Figure A.4: Changes of torque in terms of xc for Newtonian and Bingham fluids. In
the Bingham case, we plot specifically the yield stress contribution to the torque.



Appendix B

Squeeze Film Flow of Viscoplastic

Bingham Fluid between Parallel

Plates

B.1 Methodology: Squeeze Film Flow of Bingham

Fluid between Parallel Plates

In this section the parallel plate squeeze film flow of a viscoplastic Bingham

fluid is discussed.

The geometry of squeeze film flow is similar to Figure 4.1 just with different

rheology. The governing lubrication equations [25] for a yield stress fluid are

discussed in the main body of the thesis, chapter 3, section 3.2.2. That anal-

ysis however concerned the non-parallel case. Here in the interests of com-

pleteness, we review step by step the analogous development for the parallel

case. This is included specifically for the benefit of those readers who prefer to

understand the parallel case first, before generalising to the non-parallel one.

B-1
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The aim is to find the yield surface (or strictly speaking “fake yield surface” [72])

which is denoted as yplug(x). The yield surface will divide the film thickness into

two regions, a yielded region (or strictly speaking “fully plastic” region [73]) in

which (y < yplug) and a plug region (or strictly speaking “pseudo-plug” region

[19, 25, 31, 70]) in which (yplug < y < H(t)=2) and these regions are sketched

in Figure 2.3. Due to the flow symmetry, only one quadrant of the flow domain

is represented.

Taking the integral of equation (3.14) using a no slip boundary condition (i.e.

u = 0 at y = 0), a velocity profile in the y direction can be deduced

u =
@p

@x

1

2
y(y �H(t))�Od y , (B.1)

where recall Od is the Oldroyd number (the ratio between yield stress and

imposed stress). The obtained velocity profile applies generally throughout the

yielded region. In order to find the boundary between the yielded and plug

regions, we use the fact that at the yield surface (y = yplug), the shear rate is

zero (@u=@y = 0) or equivalently j�xy j = Od . Therefore putting this condition

into equation (3.14), the expression for the pressure gradient in the x direction

can be determined
@p

@x
=

Od

yplug � H(t)
2

. (B.2)

Now, via substitution of equation (B.2) in (B.1), the velocity profile for both

yielded and plug regions is achievable





u =
Od

2(yplug � H(t)
2

)
y 2 � Od

(yplug � H(t)
2

)
yplugy for y 6 yplug

uplug = � Od

2(yplug � H(t)
2

)
y 2plug for yplug < y <

H(t)

2
.

(B.3)

Here, u and uplug are the yielded and plug regions velocity profiles, respectively.

Using the definition for the flow rate Q, an equation for the yield surface is
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generated.

Q � 2

(∫ yplug

0

u dy +

∫ H(t)
2

yplug

uplug dy

)
= vtopx . (B.4)

Inserting equation (B.3) in (B.4), taking the integral and after some algebra, the

expression for the yield surface becomes [28]

y 3plug �
3

2
H(t)y 2plug � 3

vtopx

Od
yplug +

3

2

vtopxH(t)

Od
= 0. (B.5)

This is a cubic equation for yplug which in general can be tedious to solve ex-

actly, so more convenient approaches to obtaining solutions are considered

below. The fact that we encounter a non-linear equation here is a reflection

of the non-linear rheology of a viscoplastic Bingham fluid. The equation only

applies for x � 0 but that is all we need in the parallel plate case, as yplug is

symmetric about x = 0.

B.1.1 Solving for yplug

As equation (B.5) is non-linear, typically numerical methods are employed to

solve it. The typical way of solving it would be, starting from a guess of yplug

at any given x , using the Newton-Raphson method which gives a sequence of

better approximations to the value of yplug.

A suitable initial guess can be readily obtained. We rely on the observation

that (at least in this parallel plate case) on symmetry grounds at x = 0 there

can be no fluid motion either to left or right, hence no strain rate @u=@y at any

y . Hence at x = 0, we must have yplug = 0.

Close to x = 0 then, yplug must be small, i.e. yplug � H(t)=2. The integral on

the left hand side of (B.4) then evaluates to uplugH(t) which we set equal to

vtopx , and with uplug � y 2plugOd=H(t) via (B.3). Therefore, the initial guess for
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yplug is

yplug(x) �
√
vtopx=Od . (B.6)

This gives a good approximation for yplug at least for small x , and the Newton-

Raphson approach then converges to the actual yplug value. Equation (B.6)

does not however apply uniformly for all x . Indeed for sufficiently large x , this

equation might even predict a nonsense value of yplug larger than H(t)=2.

Nonetheless, once we have solutions for yplug for any particular x value, we can

simply make a small increment in x , and use the yplug value at one x value as

an initial Newton-Raphson guess for yplug at the next x value. Hence a profile

of yplug versus x all the way up to the end of the plate (x = 1) can be obtained.

Note that for sufficiently small Od (a system that is close to Newtonian), we

anticipate that yplug could be close to H(t)=2 over a significant domain of x .

The Newtonian @p=@x � �12vtopx=H(t)3 is then recovered (this follows from

equation (A.12)). If we substitute this into equation (B.2) for yplug we find

yplug � H(t)

2
� H(t)3Od

12vtopx
. (B.7)

Regardless of whether we are in a regime in which equation (B.6) applies,

or in which equation (B.7) applies, or whether we instead obtain solutions to

the cubic equation (B.5) numerically, once we have values of yplug(x) we can

evaluate how squeezing proceeds over time as follows.

B.1.2 Computing Film Thickness versus Time

So far our analysis has not differed from that of [28]. Now however we introduce

a point of departure. Whereas [28] assumed a given constant vtop leading to a

pre-specified H versus t relation, the difference here is that vtop is not constant

and instead must be computed as part of the solution as was done by [30], and
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this then affects H versus t.

We proceed as follows. Once yplug versus x is determined, for any arbitrary

vtop, we can integrate equation (B.2) to determine p versus x . Typically for

0 � x � 1, we have

p(x) =

∫ 1

x

Od

(�yplug(x) +H(t)=2)
dx . (B.8)

This enforces a constraint p = 0 at x = 1. Given that yplug(x) is usually only

known numerically, this integral needs to be done by quadrature (e.g. trape-

zoidal rule or Simpson’s rule). We solve for p(x) over the domain 0 � x � 1

remembering that p is symmetric in the domain �1 � x � 0 at least in this

parallel plate case.

Once p versus x is known, we evaluate the force F =
∫ 1

�1
p(x) dx that this

pressure field places on the plate: again this is determined by quadrature. This

force now needs to be set to unity to match the applied force that is assumed

constant and that is normalised to unity here.

Note that, as well as depending on x , the yplug value also depends implicitly on

Od , H(t) and vtop, as follows from equation (B.5). Hence for any given Od and

H(t), imposing the constraint F = 1 implies a non-linear equation that defines

vtop. Once vtop is determined, H(t) can be updated via dH(t)=dt = �vtop.

In order to solve the non-linear equation for vtop we need a starting guess.

An upper bound for vtop is the Newtonian value (see section A.1) which is

(H(t)3)=8 and which is only realised in the limit Od ! 0. Once vtop is found for

any given Od at some particular H(t), that same vtop value can be used as a

starting guess for nearby values of H(t) and/or Od .

Specifically the numerical routine that we used computed yplug for at least 100

locations along the film, performed quadrature to obtain lubrication pressures
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(and forces associated with those pressures). It then matched lubrication force

to applied force to find vtop values, and updated H(t) via Heun’s method using

an initial time step1 of 0.5, although we found we could adapt to longer times as

the squeezing proceeded and the squeezing rate slowed. Indeed, decreasing

H(t) and/or increasing Od causes vtop to fall. The issue we face in the parallel

case is that for any finite Od (no matter how small) it is always possible to find

a value of H(t) at which vtop vanishes. All squeezing motion has now stopped

and the force imposed on the plate is balanced by the force due to the yield

stress of the fluid. This leads to a steady state H(t) that we analyse shortly.

We also checked adequacy of the selected time step (set to 0.5) as follows.

Heun’s method was applied to a Newtonian system, and numerical data were

compared with an analytical solution (given in section A.1). By time t = 12 (at

which time the Newtonian H(t) was half its original value), the difference be-

tween the numerical and analytical H(t) was only 0.0002, an error we deemed

acceptable. Systems with finite Oldroyd number evolve, if anything, more

slowly than their Newtonian counterparts (i.e. smaller vtop), so if a time step

of 0.5 was adequate for the Newtonian system, it would also be adequate in a

case for which the Oldroyd number was finite.

B.1.3 Computing Contributions to the Force

The applied force (taken as unity here) is balanced by the lubrication force in

the gap, which is comprised of a part associated with yield stresses plus a part

associated with viscous stresses. In the final state, there is no viscous stress

because there is no motion.

On the other hand, at very early times, viscous stresses are expected to be
1Although this selected time step might seem larger than expected, it should be remem-

bered via equation (A.15) that the initial vtop in the Newtonian case is only 0.125 and the
Bingham vtop is lower still. Hence the change in H(t) over even the first time step is actually
quite modest.
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relevant, because any force associated with the yield stress is just a small

fraction of the total. A transition is therefore possible between a situation in

which the viscous forces are dominant and a situation in which the yield stress

forces are dominant and finding which force dominates at which time depends

on the Od number.

By computing the force that would be placed on the plate in the hypothetical

situation in which vtop = 0 for any given H, the force associated with the yield

stress (i.e. so called yield force) is obtained. Then the force associated with

viscous stresses (i.e. viscous force) is calculated as the difference between

the applied force and the yield force.

B.1.4 Steady State for Viscoplastic Bingham Fluid between

Parallel Plates

For any given Oldroyd number, a final film thickness can be obtained. Indeed,

for Od big enough, even the initial state, which is non-dimensionalized such

that H = 1, leads to no motion. As alluded to earlier, in the present formulation

like [30] but unlike [28], a constant squeezing force is considered to find the

squeezing rate. Thus squeezing must eventually stop. Motion coming to a stop

is equivalent to having yplug ! 0 (or equivalently yplug � H=2) for all x values.

Thus, the plug region now fills effectively the entire gap. Putting yplug = 0

in equation (B.2), j@p=@x j = 2Od=Hf . Here Hf is the final steady state film

thickness. Using the above equation to find the pressure profile for positive

and negative x directions, taking the integral of pressure profile over the whole

length of the plate, the applied force is obtained as F = 2Od=Hf . Inserting

F = 1 in this equation, we find, Hf = 2Od which means that for a given Od

the final steady state thickness is twice the Od number. Thus for small Od ,

we can squeeze the plates really quite close together before they stop moving.
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As Od increases, the plates stop moving sooner, i.e. at larger Hf . Moreover a

maximum Oldroyd number equal to 1
2

is found for any squeezing to take place

whatsoever: as Od ! 1
2
, even the initial plate separation H = 1 leads to no

plate motion.

B.2 Results: Squeeze Film Flow of Bingham Fluid

between Parallel Plates

In this section, the results obtained for the squeeze flow of viscoplastic Bing-

ham between parallel plates are discussed. Again these are shown for com-

pleteness and to facilitate comparison with the non-parallel case results in the

main body of the thesis, (e.g. chapter 3).

B.2.1 Yield Surface

The curves of yield surface yplug with respect to x direction for the initial H

value (i.e. H = 1) and different Od numbers, have been plotted in Figure B.1.

As Od number decreases, the yield surface yplug increases. For a case in

which Od = H=2, which is the maximum Od number for which there is any

motion at all for that specified H, we can deduce that the yield surface yplug is

zero everywhere since the whole flow field is a plug region. The viscoplastic

Bingham fluid is now behaving as a rigid solid, and the yield stress is in balance

with the imposed stress.

For large enough Od , there is no motion even in the initial state H = 1 which

is the particular H value considered here. However, as Od number decreases

closer to zero, more and more of the film yields, and the viscoplastic Bingham

fluid starts to become more like a Newtonian fluid which yields over the entire

film. Hence, as seen here, the value of yplug will increase when the Od number
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Figure B.1: Yield surfaces yplug corresponding to H = 1 as functions of x for different
Oldroyd numbers. Corresponding vtop values for different Od numbers at this H are
as follows: Od = 0.5, vtop � 0; Od = 0.4, vtop = 0.0072; Od = 0.3, vtop = 0.0265;
Od = 0.2, vtop = 0.0545; Od = 0.1, vtop = 0.0889.

decreases. Note also that, even though just the case H = 1 has been con-

sidered here, decreasing H is qualitatively like increasing Od , i.e. it decreases

yplug.

B.2.2 Pressure Profile

The pressure profile p versus x for H = 1 (i.e. the initial film thickness) and

different Oldroyd numbers is depicted in Figure B.2. As can be seen, when

Od number decreases and becomes closer to zero, the pressure profile ap-

proaches a parabolic shape which is found in the Newtonian fluid. On the

other hand, as the Od number approaches a maximum such that no motion

occurs, the pressure profile asymptotes to a straight line which applies when

the entirety of the fluid is in the plug region.
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Figure B.2: Pressure profiles corresponding to H = 1 in terms of x for different Ol-
droyd numbers. Corresponding vtop values for different Od numbers at this H are as
follows: Od = 0.5, vtop � 0; Od = 0.4, vtop = 0.0072; Od = 0.3, vtop = 0.0265;
Od = 0.2, vtop = 0.0545; Od = 0.1, vtop = 0.0889; Od = 0.0001, vtop = 0.125.

B.2.3 Velocity Profile

The horizontal velocity profile (u versus y ) for H = 1 and different x locations

with constant Od number (Od = 0.2) and vtop = 0.0545 is depicted in Figure

B.3. In general, the horizontal velocity increases with x , both in the plug region

and in the yielded region. This is because the total horizontal flow that this

velocity profile must deliver increases with x . At the centre of the plates (near

x = 0) the fraction of fluid in the plug region far exceeds that in the yielded

region. This balance however shifts as x increases. Thus, at the centre x =

0, the plug region occupies the entire thickness but by moving to the right

(increasing x), the yielded region grows because shear stress becomes greater

than the yield stress over a significant part of the gap.
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Figure B.3: Horizontal velocity profiles corresponding to H = 1 and Od = 0.2 at
different x locations. Here vtop = 0.0545.

The horizontal velocity field at a constant location (x = 0.5) with different Ol-

droyd numbers for H = 1 is shown in Figure B.4. For small Oldroyd numbers,

the velocity profile of a viscoplastic Bingham fluid exhibits similar behaviour to

the parabolic profile of a Newtonian fluid. For bigger Od numbers, the velocity

profile becomes a plug flow field with a uniform velocity over most of the width

of the gap [19].

B.2.4 Film Thickness versus Time

From Figure B.5, which shows how film thickness H varies with time t, it can be

seen that (at any given time) squeeze film thickness decreases with decreasing

Od number, this being the dimensionless measure of the yield stress. At a

certain maximum Od number, the plates never move at all since the plug region

dominates the whole film thickness and the “fluid” behaves effectively as a rigid

solid. Meanwhile, for small Od number, yield stress is small and the system
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Figure B.4: Horizontal velocity profiles corresponding to H = 1 and x = 0.5 for differ-
ent Od .

is much closer to the Newtonian case. For instance, when Od = 0.0001, the

behaviour of H versus t is almost same as the analytical formula (equation

(A.18)) in the Newtonian case. Moreover the final state at any finite Od number

system corresponds to a final thickness Hf = 2Od .

Thus, the smaller the Od number, the smaller the final film thickness, the more

the film can be squeezed before the yield stress alone is sufficient to stop the

squeezing by balancing the force which is applied to the plate. In the case

Od � 1, it takes at least a time t � Od�2 before H is even close to this final

value 2Od . This follows since the Od � 1 case starts off close to the Newto-

nian case (see e.g. the case Od = 0.0001 in Figure B.5), whilst at very long

times, the Newtonian system behaves as H � 2 t�1=2 (see equation (A.18)).
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Figure B.5: Film thickness versus time for different Oldroyd numbers in a viscoplastic
Bingham system with parallel plates.

B.2.5 Contributions to the Force

The total force comprises the viscous force and yield force (as mentioned in

section B.1.3). The relative contributions that these make depends on the Ol-

droyd number Od . Figure B.6 shows the force contributions as time proceeds.

For instance, for Od = 0.2, the yield force starts to dominate the viscous force

even at early times. Meanwhile for smaller Oldroyd number (e.g. Od = 0.02),

the viscous force accounts for almost all the force early on. Then as time goes

on, the yield force increases as the viscous force decays. For each different

Od number, there is a certain time at which the yield and viscous force curves

cross over and this time is expected to scale proportionally to Od�2.
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Figure B.6: Force contributions to the squeeze flow versus time for different Oldroyd
numbers in the parallel geometry.



Appendix C

Published paper

The published paper [33] (J. non-Newtonian Fluid Mech., 305:104817), and

associated supplementary material is reproduced in what follows. This is also

available open access via

https://doi.org/10.1016/j.jnnfm.2022.104817

The published paper is based on the work of chapter 3, while the supplemen-

tary material is based on the work in appendix A and B.

An additional manuscript based on the work of chapter 4 has also been sub-

mitted to Eur. Phys. J. E. and is under peer review. This is also appended.
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A B S T R A C T

Squeeze film flow of a viscoplastic Bingham fluid between non-parallel plates has been analysed. It is assumed
that the force applied to the plates is known, therefore, their velocity must be found, and the film thickness
decreases then as time proceeds. Moreover, for non-parallel plates, the position along the plates at which flow
reverses direction is found as part of the solution. In the Newtonian limit, the thickness of the gap between
the plates in the parallel system never quite reaches zero at any finite time, while for the non-parallel case
a finite time can be obtained when the plates touch one another at a point. In squeeze flow of a viscoplastic
Bingham fluid between parallel and non-parallel plates, under a fixed applied force, a final steady film thickness
can sometimes be reached. This final thickness turns out to be sensitive not just to the plate tilt angle but
also to the so called Oldroyd number which is defined as the ratio between yield stress and imposed stress.
Nevertheless for squeeze film flow of Bingham viscoplastic fluid between non-parallel plates, the results show
that other cases exist in which the lubrication force cannot always balance the applied force, leading to the
plates approaching and touching at the narrowest end of the gap. Moreover torques that develop within the
system have been analysed.

1. Introduction

Squeeze film flows [1] are flows in which a material is compressed
between two approaching parallel or nearly parallel plane surfaces.
They have myriad applications, including in areas such as engineering,
biology, food industries, rheometry devices, compression moulding,
papermaking, etc. [1–4]. Squeeze film flows of Newtonian and non-
Newtonian fluids have been studied experimentally, theoretically and
numerically. In particular, there is a comprehensive review [4] on
squeeze flow theory and its applications in which a wide variety of
materials such as Newtonian, viscoelastic and viscoplastic with differ-
ent boundary conditions, i.e. perfect slip, no slip and partial slip at the
sample-plate interfaces have been investigated.

Squeeze flow tests can be carried out either using a specified shear
rate (constant displacement rate) or a specified shear stress (con-
stant load). Thus, results can be in the form of relations between
force–height, force–time and height–time depending on how the test
is done [1,2,4,5]. Assuming a no slip condition between the sample
and the plates, at fixed applied force, the shear rate in the squeeze
film tends to fall as time proceeds (the Newtonian case implies that
in fact). For viscoelastic fluids, this then means that elastic effects are
likely to become less important over time [6] (the fluids behave closer
to Newtonian). On the other hand, for a pseudo-plastic power law fluid
say, it implies that the effective viscosity rises as time proceeds (the
flow necessarily slows down relative to a Newtonian case) [2,4].

∗ Corresponding author.
E-mail address: elaheh.esmaeili@strath.ac.uk (E. Esmaeili).

Indeed viscoplastic materials [7–9] are of special interest in squeeze
film situations [3,4,10], since they flow as a fluid when the imposed
stress is bigger than the yield stress but can be treated as a plug-like
solid when the imposed stress is less than the yield stress. Therefore, the
squeeze film flow field for a viscoplastic fluid is often considered to be
divided into two regions [11–13], yielded (fluid) and plug (unyielding)
region. The surface which separates yielded and plug regions is called
the yield surface [14]. During squeeze film flow under constant load,
as time proceeds, the yield surface would be expected to shift so that
more and more of the flow domain is in the plug region and less of it is
in the yielded region, until the yielded region disappears and the flow
has stopped altogether, even whilst the squeeze film can remain at a
finite thickness [3,5,15].

These flows are however less simple than it might first appear. When
coupled with conventional lubrication theory applicable in small aspect
ratios, they lead to an apparent paradox (the so called ‘‘lubrication
paradox’’) [11,12,16,17]. Fig. 1 is predicted to have different horizontal
velocities. Hence there is predicted to be a non-zero strain rate in the
normal direction even in the (supposedly non-yielding) plug region,
albeit this is of much smaller magnitude than the shear strain rate in
the yielded region. The paradox has however been resolved by [18].
That analysis revealed [18,19] that the yielded region was in fact what
was termed a ‘‘fully-plastic’’ region, in which even the dominant shear

https://doi.org/10.1016/j.jnnfm.2022.104817
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stress component exceeded the yield stress. On the other hand, the
plug region was revealed to be merely a ‘‘pseudo-plug’’. When normal
stresses (in addition to shear stresses) as well as perturbations over
and above the leading order horizontal flow are taken into account,
the ‘‘pseudo-plug’’ was found to be at a stress condition just slightly
in excess of the yield stress. This then admitted the required non-zero
strain rate there, which as mentioned, is smaller than the shear strain
rate in the ‘‘fully-plastic’’ region. The ‘‘fully-plastic’’ and ‘‘pseudo-plug’’
regions were separated by what was termed a ‘‘fake yield surface’’. For
the present work however it is sufficient to consider just the leading or-
der horizontal flow and the pressure field that is associated with it. For
simplicity then we continue to use the terminology ‘‘yielded’’, ‘‘plug’’
and ‘‘yield surface’’ rather than the terms ‘‘fully-plastic’’ ‘‘pseudo-plug’’
and ‘‘fake yield surface’’ [18,19].

As alluded to above, literature has been published on the squeeze
film flow between parallel plates either with constant rate or constant
load. The work done by [5], investigated the behaviour of a yield
stress fluid between two parallel plates with a constant load, theo-
retically and experimentally. However, they have not dealt with the
non-parallel plates geometry. The work of [13] meanwhile provided an
asymptotic solution for the two-dimensional planar squeeze film flow
of a viscoplastic medium and analytical solutions for the flow fields
have been compared to numerical computations. We will make use
of these solutions. Nonetheless the work done by [13] and likewise
by [12], only investigated the squeeze flow of a viscoplastic fluid
between parallel plates with a constant squeezing rate. This requires
in particular that larger squeezing forces are applied as time proceeds,
with the squeezing force needing to become arbitrarily large as the gap
narrows.

Few studies have investigated non-parallel squeeze film flows. One
study by [20] carried out the two-dimensional numerical simulation of
the squeeze film flow of a viscoplastic fluid between two approaching
circular cylinders. In another study conducted by [21], the peristaltic
flow of a Herschel–Bulkley fluid is examined in an inclined tube. These
studies have not however used the calculation procedure developed
by [5] to establish under constant load conditions what the final state
of such systems might be. Thus, in the present work, non-parallel
squeeze flow of a viscoplastic Bingham fluid with an assumption of a
fixed squeezing force (arguably more realistic than fixed squeezing rate
which requires an ever increasing force) is developed. In the present
work, the final state of the system is identified, and it is also considered
how the squeezing rate varies with time (up to the final state). A
number of features specific to non-parallel plates i.e. identifying the
position along the plates at which flow direction reverses as well as
evolution of torque, have also been described.

What has motivated the present study are applications in which a
viscoplastic fluid is squeezed out of a complex shaped gap. One such
example is foam-based papermaking in which a foam carrier fluid is
squeezed out from a network of fibres [22]. There is no need for the
fibres in the network to be aligned parallel. Often moreover, length of
the fibres is significantly greater than the size of the bubbles in the
foam [23], in which case it might be permitted to treat the bubbles,
at least in a rough approximation, as if they were a continuum. Foam-
based making is in fact a very complex system [22,24], and the problem
to be solved here is admittedly just a highly idealised version of it.

The rest of this work is laid out as follows. Section 2 deals with
methodology and introduces governing equations for non-parallel
squeeze flow geometry. After that Section 3 deals with the results
obtained from the investigated squeeze flow problem. Finally, Section 4
considers the conclusions from the present study.

2. Methodology

In what follows, Section 2.1 describes the squeeze film flow prob-
lem between non-parallel plates, Section 2.2 deals with torques and
Section 2.3 considers final steady states. Following that, yield stress
contributions to force and torque are discussed in Section 2.4.

2.1. Squeeze film flow of Bingham viscoplastic fluid between non-parallel
plates

This section considers the squeeze flow of viscoplastic Bingham
fluid between non-parallel plates. The analysis for a parallel, Newto-
nian squeeze film is well known in the literature [25]. However for
completeness we have presented it in section S1 of the supplemen-
tary material. Moreover, the behaviour of a Newtonian fluid squeezed
between non-parallel plates is reviewed in section S2 to facilitate com-
parison with the non-parallel viscoplastic Bingham case, particularly
with regard to possible final states. The solution of squeeze film flow of
a Bingham viscoplastic in the parallel case has been investigated by [5]
and we provide the mathematical procedure in the supplementary
material, section S3 again to support the non-parallel plate case in the
present section.

In what follows, standard lubrication theory assumptions [25],
i.e. planar geometry, thin geometry, incompressible fluid, negligible
gravity, negligible inertia, no slip boundaries are considered to apply.
We consider a gap of initial thickness �̂�𝑐0 at the centre of the plates
of length 2�̂�. In Fig. 1 the top plate is moving downward with a
time-varying velocity �̂�𝑡𝑜𝑝 under a constant applied force 𝐹𝑎𝑝𝑝 (per unit
distance transverse to the two-dimensional plane) thereby displacing
the fluid, while the bottom plate is stationary. Moreover 𝜃 is the angle
between the upper surface and the horizontal coordinate (it is assumed
that the angle 𝜃 is small).

Governing lubrication equations [16] for a viscoplastic Bingham
fluid are

− 𝜕�̂�∕𝜕�̂� + 𝜕𝜏𝑥𝑦∕𝜕�̂� = 0 (1)

𝜕�̂�∕𝜕�̂� = 0 (2)

𝜕�̂�∕𝜕�̂� + 𝜕�̂�∕𝜕�̂� = 0. (3)

Here �̂� and �̂� are velocities in �̂� and �̂� directions, �̂� is pressure and 𝜏𝑥𝑦
denotes shear stress of the viscoplastic Bingham fluid which satisfies
(see e.g. [9])
{

𝜏𝑥𝑦 = ±𝜏0 + 𝜇 ̂̇𝛾 for |𝜏𝑥𝑦| > 𝜏0
̂̇𝛾 = 0 for |𝜏𝑥𝑦| ⩽ 𝜏0.

(4)

Here 𝜏0 is yield stress, ̂̇𝛾 = 𝜕�̂�∕𝜕�̂� is shear rate and 𝜇 is fluid viscosity
after yielding occurs. Here the ±𝜏0 term is positive if ̂̇𝛾 > 0 and it is
negative if ̂̇𝛾 < 0. The dimensional variables are denoted with a hat
symbol and their dimensionless analogues (described later on) will have
the hat symbol dropped.

2.1.1. Non-dimensionalisation of equations
We cast equations in dimensionless form. Horizontal lengths are

scaled by �̂�, and vertical lengths are scaled by �̂�𝑐0 . Horizontal velocities
are scaled by �̃� ≡ (𝐹𝑎𝑝𝑝∕𝜇)(�̂�2

𝑐0
∕𝐿2), and vertical velocities are scaled

by �̃� ≡ �̂�𝑐0 �̃�∕�̂�. Times are scaled by 𝐻𝑐0∕�̃� ≡ �̂�∕�̃�. Finally pressures
are scaled by 𝐹𝑎𝑝𝑝∕�̂�: note that this has the correct units of pressure
since 𝐹𝑎𝑝𝑝 is taken as applied force per unit distance transverse to the
two-dimensional calculation domain.

The dimensionless film thickness𝐻 is a function of both time 𝑡 and 𝑥
coordinate. We define 𝛿 as a rescaled angle, 𝛿 = 𝜃�̂�∕�̂�𝑐0 . Geometrically
𝛿 is the thickness change between the middle of the plate and one
of the ends divided by the initial thickness in the middle. Thus, the
dimensionless squeeze film thickness which varies with 𝑥-coordinate
and time 𝑡, can be determined

𝐻(𝑥, 𝑡) = 𝐻𝑐(𝑡) − 𝛿 𝑥 (5)

where 𝐻𝑐 (𝑡) is film thickness at the centre of the plates.
We can define a dimensionless group, the Oldroyd number (𝑂𝑑)

which represents the relative importance of yield stress effects and
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Fig. 1. Geometry of squeeze film flow between non-parallel plates.

imposed stress [14]. In our system, Oldroyd number can be defined
as follows

𝑂𝑑 = Yield stress
Imposed stress

=
𝜏0𝐿2

𝐻𝑐0𝐹𝑎𝑝𝑝
. (6)

Suppose we make shear rate ̂̇𝛾 ≡ 𝜕�̂�∕𝜕�̂� dimensionless on the scale �̃�∕�̂�𝑐0
and shear stress 𝜏𝑥𝑦 dimensionless on the scale 𝜇�̃�∕�̂�𝑐0 . We deduce a
dimensionless analogue of the constitutive equation
{

𝜏𝑥𝑦 = ±𝑂𝑑 + �̇� for |𝜏𝑥𝑦| > 𝑂𝑑
�̇� = 0 for |𝜏𝑥𝑦| ⩽ 𝑂𝑑.

(7)

Here the ±𝑂𝑑 term is positive if �̇� > 0 and is negative if �̇� < 0. Recasting
Eq. (1) in dimensionless form, integrating, and applying the boundary
condition in which at 𝑦 = 𝐻(𝑥, 𝑡)∕2, we have 𝜏𝑥𝑦 = 0, shear stress can
be written, at least in regions in which the fluid is yielding, as below

𝜏𝑥𝑦 =
𝜕𝑝
𝜕𝑥

(
𝑦 − 𝐻(𝑥, 𝑡)

2

)
= ±𝑂𝑑 + �̇� = ±𝑂𝑑 + 𝜕𝑢

𝜕𝑦
. (8)

In the non-parallel geometry, the point along the plates at which flow
reverses such that the flow rate to either right or left is zero needs to be
determined. This point will be denoted as 𝑥𝑐 . The domain for solving
the problem is divided into two sections 𝑥 > 𝑥𝑐 and 𝑥 < 𝑥𝑐 and we
consider these in what follows.

2.1.2. Squeeze film flow for domain 𝑥 > 𝑥𝑐
For the domain in which 𝑥 > 𝑥𝑐 , considering the fact that at the

yield surface (denoted 𝑦 = 𝑦𝑝𝑙𝑢𝑔), shear rate is zero and shear stress is
𝑂𝑑, using Eq. (8), pressure gradient with respect to 𝑥 will be found
𝜕𝑝
𝜕𝑥

= 𝑂𝑑(
𝑦𝑝𝑙𝑢𝑔 −

𝐻(𝑥,𝑡)
2

) . (9)

By substitution of Eq. (9) into (8), and from the Bingham fluid rheology,
it is found that (in the yielded region 0 ≤ 𝑦 ≤ 𝑦𝑝𝑙𝑢𝑔), 𝜏𝑥𝑦 = 𝜕𝑢∕𝜕𝑦 + 𝑂𝑑,
thus, integrating and using the boundary condition in which at 𝑦 = 0,
𝑢 = 0, the velocity profile in the 𝑥 direction for yielded and plug regions
will be obtained.

⎧⎪⎪⎨⎪⎪⎩

𝑢 = 𝑂𝑑
2(𝑦𝑝𝑙𝑢𝑔 −

𝐻(𝑥,𝑡)
2 )

𝑦2 − 𝑂𝑑
(𝑦𝑝𝑙𝑢𝑔 −

𝐻(𝑥,𝑡)
2 )

𝑦𝑝𝑙𝑢𝑔𝑦 for 𝑦 ⩽ 𝑦𝑝𝑙𝑢𝑔

𝑢𝑝𝑙𝑢𝑔 = − 𝑂𝑑
2(𝑦𝑝𝑙𝑢𝑔 −

𝐻(𝑥,𝑡)
2 )

𝑦2𝑝𝑙𝑢𝑔 for 𝑦𝑝𝑙𝑢𝑔 < 𝑦 < 𝐻
2
.

(10)

The equation for flow rate 𝑄 established from the velocity profile for
both plug and yielded regions is as follows

𝑄 ≡ 2

(
∫

𝑦𝑝𝑙𝑢𝑔

0
𝑢 d𝑦 + ∫

𝐻(𝑥,𝑡)
2

𝑦𝑝𝑙𝑢𝑔
𝑢𝑝𝑙𝑢𝑔 d𝑦

)
= 𝑣𝑡𝑜𝑝(𝑥 − 𝑥𝑐). (11)

Substitution of Eq. (10) into (11), taking the integral and making some
manipulations, the final equation for 𝑦𝑝𝑙𝑢𝑔 for the domain 𝑥 > 𝑥𝑐 will

be generated. If 𝐻(𝑥, 𝑡) is substituted using Eq. (5) a cubic equation for
𝑦𝑝𝑙𝑢𝑔 now results

𝑦3𝑝𝑙𝑢𝑔 −
3
2
(𝐻𝑐 (𝑡) − 𝛿𝑥)𝑦2𝑝𝑙𝑢𝑔 − 3

𝑣𝑡𝑜𝑝(𝑥 − 𝑥𝑐 )
𝑂𝑑

𝑦𝑝𝑙𝑢𝑔

+ 3
2
𝑣𝑡𝑜𝑝(𝐻𝑐(𝑡) − 𝛿𝑥)(𝑥 − 𝑥𝑐 )

𝑂𝑑
= 0. (12)

2.1.3. Squeeze film flow for domain 𝑥 < 𝑥𝑐
In the domain, 𝑥 < 𝑥𝑐 , the flow and the shear stress have opposite

sign from what they have for 𝑥 > 𝑥𝑐 . Working through the computation,
we deduce

𝑦3𝑝𝑙𝑢𝑔 −
3
2
(𝐻𝑐 (𝑡) − 𝛿𝑥)𝑦2𝑝𝑙𝑢𝑔 + 3

𝑣𝑡𝑜𝑝(𝑥 − 𝑥𝑐 )
𝑂𝑑

𝑦𝑝𝑙𝑢𝑔

− 3
2
𝑣𝑡𝑜𝑝(𝐻𝑐(𝑡) − 𝛿𝑥)(𝑥 − 𝑥𝑐 )

𝑂𝑑
= 0. (13)

2.1.4. Solving for 𝑦𝑝𝑙𝑢𝑔
The next step is to solve for the yield surface, 𝑦𝑝𝑙𝑢𝑔 , which is a

function of position 𝑥, based on the two obtained Eqs. (12) and (13) for
domains 𝑥 > 𝑥𝑐 and 𝑥 < 𝑥𝑐 respectively. To do so, a standard numerical
method such as the Newton–Raphson technique is employed. Following
an analogous procedure to that used for parallel plates (discussed in the
supplementary material, section S3.1), assuming small values of |𝑥 − 𝑥𝑐 |
and 𝑦𝑝𝑙𝑢𝑔 , a first guess for 𝑦𝑝𝑙𝑢𝑔 can be obtained. Specifically, based on
the observation that at 𝑥 = 𝑥𝑐 there can be no fluid motion either to left
or right, hence there is no strain rate 𝜕𝑢∕𝜕𝑦 at any 𝑦. Hence at 𝑥 = 𝑥𝑐 , we
must have 𝑦𝑝𝑙𝑢𝑔 = 0. For the domain 𝑥 > 𝑥𝑐 but close to 𝑥 = 𝑥𝑐 , it follows
that 𝑦𝑝𝑙𝑢𝑔 must be small, i.e. 𝑦𝑝𝑙𝑢𝑔 ≪ 𝐻(𝑥, 𝑡)∕2. The integral within (11)
then evaluates to 𝑢𝑝𝑙𝑢𝑔𝐻(𝑥, 𝑡) which we set equal to 𝑣𝑡𝑜𝑝(𝑥 − 𝑥𝑐 ), with
𝑢𝑝𝑙𝑢𝑔 ≈ 𝑦2𝑝𝑙𝑢𝑔𝑂𝑑∕𝐻(𝑥, 𝑡) via (10). We can use analogous assumptions for
the domain 𝑥 < 𝑥𝑐 , therefore, the initial guess for 𝑦𝑝𝑙𝑢𝑔 is

⎧⎪⎨⎪⎩

𝑦𝑝𝑙𝑢𝑔 =
√

𝑣𝑡𝑜𝑝(𝑥 − 𝑥𝑐)∕𝑂𝑑 for 𝑥 > 𝑥𝑐

𝑦𝑝𝑙𝑢𝑔 =
√

𝑣𝑡𝑜𝑝(𝑥𝑐 − 𝑥)∕𝑂𝑑 for 𝑥 < 𝑥𝑐 .
(14)

These only apply if they predict 𝑦𝑝𝑙𝑢𝑔 ≪ 𝐻(𝑥, 𝑡)∕2. More generally we
can have 𝑦𝑝𝑙𝑢𝑔 values up to 𝐻(𝑥, 𝑡)∕2. Nevertheless once we have the
correct 𝑦𝑝𝑙𝑢𝑔 value at any given 𝑥, we can readily find it at a nearby 𝑥,
using one 𝑦𝑝𝑙𝑢𝑔 value as an initial guess for the next. We end up with
𝑦𝑝𝑙𝑢𝑔 values for all 𝑥, provided 𝐻𝑐 , 𝑣𝑡𝑜𝑝 and 𝑥𝑐 are given, and provided
𝑂𝑑 and 𝛿 are specified. The technique for finding 𝑣𝑡𝑜𝑝, 𝑥𝑐 and ultimately
squeeze film thickness 𝐻 versus time 𝑡 is described next.

2.1.5. Computing film thickness versus time
So far, the computational procedure for the constant load and

constant rate systems have been similar. In this section, we proceed to
find the force as a function of velocity, and hence the velocity required
to deliver a constant load, and so we start to see a deviation between
the constant load and constant rate systems.

Now, after finding 𝑦𝑝𝑙𝑢𝑔 , for the domain 𝑥 > 𝑥𝑐 , we have

𝑝 = ∫
1

𝑥

𝑂𝑑
𝐻(𝑥,𝑡)

2 − 𝑦𝑝𝑙𝑢𝑔
d𝑥. (15)
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Meanwhile for 𝑥 < 𝑥𝑐 we have

𝑝 = ∫
𝑥

−1

𝑂𝑑
𝐻(𝑥,𝑡)

2 − 𝑦𝑝𝑙𝑢𝑔
d𝑥. (16)

The value of 𝑥𝑐 needs to be chosen to ensure 𝑝 is continuous at 𝑥 = 𝑥𝑐 .
Once that is achieved (for any selected 𝑣𝑡𝑜𝑝) the value of 𝑣𝑡𝑜𝑝 needs to be
chosen to ensure ∫ 1

−1 𝑝(𝑥) d𝑥 = 1, the integral being readily computed
numerically by quadrature. All this says is that in the dimensionless
system considered here, the constant load is set to unity. We then
evolve 𝐻𝑐 (𝑡) according to d𝐻𝑐(𝑡)∕d𝑡 = −𝑣𝑡𝑜𝑝, with 𝐻(𝑥, 𝑡) then given
by Eq. (5). To start the iteration at initial time, we need guesses of 𝑥𝑐
and 𝑣𝑡𝑜𝑝. However we have guesses corresponding to the Newtonian
case (see equations (S17) and (S18) in the supplementary material),
and in general we expect that the Newtonian 𝑣𝑡𝑜𝑝 provides an upper
bound for the velocity in the viscoplastic Bingham fluid case. Once we
have 𝑥𝑐 and 𝑣𝑡𝑜𝑝 values initially, we can then use 𝑥𝑐 and 𝑣𝑡𝑜𝑝 values at
one time step as initial guesses for the subsequent time step.

2.2. Computing torque

In addition to computing film thickness versus time, the numerical
scheme outlined above also allows us to track another quantity namely
torque 𝑇 . The scheme balances a lubrication force developed between
the plates to an external applied force (which as mentioned is unity in
the dimensionless system). However if the plates are tilted, a lubrica-
tion torque also develops and to keep the tilt angle fixed (as is assumed
here) an external applied torque would be needed to balance it. We can
however quantify the lubrication torque (per unit distance normal out
of the two-dimensional plane) via 𝑇 = ∫ 1

−1 𝑥 𝑝(𝑥) d𝑥. Since 𝑝 versus 𝑥 is
computed numerically at any instant in time, this torque can also be
evaluated by quadrature.

The question we now ask is whether the plates ever come to rest
at a finite film thickness (as is known to happen for a viscoplastic
Bingham fluid in a parallel plate geometry as described in supplemen-
tary material section S3) or whether their right hand ends manage to
touch (as happens for a Newtonian fluid between non-parallel plates
as demonstrated in section S2). The question is addressed in the next
section.

2.3. Steady state for viscoplastic Bingham fluid between non-parallel plates

This section develops the steady state solution for the system.
The analogous approach for a yield stress fluid system in a parallel
plate configuration is provided in section S3 and more specifically in
section S3.4 of the supplementary material. In the parallel plate system,
a steady state with a finite gap thickness is always found to exist.
However in a non-parallel plate system, a steady state with a finite gap
does not always exist. If there is no such steady state, then the plates
eventually touch.

2.3.1. Conditions for steady state to exist
In the final state, the plug region fills the entire gap and the yield

surface is at 𝑦𝑝𝑙𝑢𝑔 = 0. On the yield surface, there is a point now denoted
𝑥 = 𝑥𝑐𝑓 at which the dimensionless shear stress changes sign from −𝑂𝑑
to +𝑂𝑑. This 𝑥𝑐𝑓 is the final value of 𝑥𝑐 (which typically denotes the
point at which flow changes sign). However there is no flow at all in
the final state, so what changes sign is now the shear stress.

We integrate the equation 𝜕𝑝∕𝜕𝑥 = ∓𝑂𝑑∕((𝐻𝑐𝑓 − 𝛿 𝑥)∕2) applicable
in the final steady state. Here 𝐻𝑐𝑓 is the assumed final thickness at the
centre of the plates. Thus for 𝑥 > 𝑥𝑐𝑓 , the pressure profile is determined

𝑝(𝑥) = 2𝑂𝑑
𝛿

ln
𝐻𝑐𝑓 − 𝛿𝑥
𝐻𝑐𝑓 − 𝛿

. (17)

For 𝑥 < 𝑥𝑐𝑓 , the pressure profile is

𝑝(𝑥) = 2𝑂𝑑
𝛿

ln
𝐻𝑐𝑓 + 𝛿
𝐻𝑐𝑓 − 𝛿𝑥

. (18)

Since the pressure profile has to be continuous at 𝑥 = 𝑥𝑐𝑓 , Eqs. (17)
and (18) should be equal at this point

2𝑂𝑑
𝛿

ln
𝐻𝑐𝑓 − 𝛿𝑥𝑐𝑓
𝐻𝑐𝑓 − 𝛿

= 2𝑂𝑑
𝛿

ln
𝐻𝑐𝑓 + 𝛿

𝐻𝑐𝑓 − 𝛿𝑥𝑐𝑓
. (19)

Simplifying Eq. (19), a quadratic equation can be obtained

𝑥2𝑐𝑓 − 2
𝐻𝑐𝑓

𝛿
𝑥𝑐𝑓 + 1 = 0. (20)

Solving the quadratic Eq. (20) gives 𝑥𝑐𝑓 as a function of 𝐻𝑐𝑓 and 𝛿

𝑥𝑐𝑓 =
𝐻𝑐𝑓

𝛿
−

√
𝐻2

𝑐𝑓

𝛿2
− 1. (21)

The force applied over the entire plate length can be calculated utilising
the pressure profiles obtained above

𝐹 = ∫
𝑥𝑐𝑓

−1
𝑝(𝑥)d𝑥 + ∫

1

𝑥𝑐𝑓
𝑝(𝑥)d𝑥

= 2𝑂𝑑
𝛿

((
𝑥𝑐𝑓 −

𝐻𝑐𝑓

𝛿

)
ln

𝐻2
𝑐𝑓 − 𝛿2

(𝐻𝑐𝑓 − 𝛿𝑥𝑐𝑓 )2
+ 2𝑥𝑐𝑓

)
. (22)

Substituting the obtained 𝑥𝑐𝑓 from Eq. (21) into (22), considerable
simplification results, because the argument of the logarithmic term
turns out to be unity, so the logarithm itself vanishes. Assuming the
plates have stopped moving then, the force applied over the entire plate
length turns out to be

𝐹 = 4𝑂𝑑
𝛿

⎛⎜⎜⎝
𝐻𝑐𝑓

𝛿
−

√
𝐻2

𝑐𝑓

𝛿2
− 1

⎞⎟⎟⎠
= 4𝑂𝑑

𝛿
𝑥𝑐𝑓 . (23)

This force generated by the pressure profile must now be matched to
the unit force applied to the plates, and conditions determined in which
physically meaningful solutions for 𝐻𝑐𝑓 or equivalently for 𝑥𝑐𝑓 are
obtained. Setting 𝐹 = 1 we need to find combinations of 𝑂𝑑 and 𝛿 that
admit solutions with 𝐻𝑐𝑓 > 𝛿 or equivalently with 𝑥𝑐𝑓 < 1. It is clear
that to achieve this we require 4𝑂𝑑∕𝛿 > 1. Provided this condition is
satisfied, the gap at the right hand end 𝐻𝑐𝑓 − 𝛿 is then finite.

2.3.2. Final steady state torque calculation
As well as computing a force in the steady state, we can also

compute a torque. For a Bingham fluid in a non-parallel system this can
be obtained by taking the integral ∫ 1

−1 𝑥 𝑝(𝑥) d𝑥 using pressure profiles
provided in Eqs. (17) and (18). For comparison, analysis of torque
for a Newtonian fluid (albeit at unsteady state) has been done in the
supplementary material, section S2.2, but here we focus on the steady
Bingham case. We find

𝑇𝑠𝑡𝑒𝑎𝑑𝑦 =
𝑂𝑑
2𝛿3

(
2(𝐻2

𝑐𝑓 − 𝛿2𝑥2𝑐𝑓 ) ln
(𝐻𝑐𝑓 − 𝛿 𝑥𝑐𝑓 )2

𝐻2
𝑐𝑓 − 𝛿2

+4 𝛿 𝑥𝑐𝑓𝐻𝑐𝑓 + 2𝛿2(𝑥2𝑐𝑓 − 1)

)
(24)

where 𝑇𝑠𝑡𝑒𝑎𝑑𝑦 is the steady state torque and 𝑥𝑐𝑓 is a known function
of 𝐻𝑐𝑓∕𝛿 from Eq. (21). As before the logarithmic term vanishes (its
argument is unity) and after some further algebra using Eq. (20), the
steady state torque reduces to

𝑇𝑠𝑡𝑒𝑎𝑑𝑦 =
2𝑂𝑑
𝛿

𝑥2𝑐𝑓 . (25)

However, from Eq. (23) in the final steady state we already know
(𝑂𝑑∕𝛿)𝑥𝑐𝑓 = 1

4 . Hence final torque is

𝑇𝑓𝑖𝑛𝑎𝑙 = 𝑥𝑐𝑓∕2. (26)

This indicates that 𝑇𝑓𝑖𝑛𝑎𝑙 depends on the film thickness at the right hand
end𝐻𝑐𝑓−𝛿 relative to the film thickness at the centre 𝐻𝑐𝑓 . For instance,
a final state with a gap on the right hand end that is not too narrow
relative to the centre (i.e. small 𝛿∕𝐻𝑐𝑓 , hence small 𝑥𝑐𝑓 ) leads to small
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𝑇𝑓𝑖𝑛𝑎𝑙. However a much narrower gap with plates almost touching when
they stop (i.e. 𝛿∕𝐻𝑐𝑓 close to unity, hence 𝑥𝑐𝑓 close to unity) leads
to 𝑇𝑓𝑖𝑛𝑎𝑙 =

1
2 . Note that this is only half the torque of the Newtonian

system when it touches (see section S2.2 in supplementary material).
There is another way to interpret the torque obtained in Eq. (25).

Rather than obtaining it at the final steady thickness 𝐻𝑐𝑓 , we can find
torque at any instantaneous 𝐻𝑐 . This allows us to estimate (at any
instant) a yield stress contribution to both force and torque, the total
force and torque being a sum of yield stress contributions and viscous
contributions. This approach will be discussed in Section 2.4. However,
when a steady state is reached, there is no motion, hence no viscous
contribution, and so total force and torque arise entirely from yield
stress contributions.

2.3.3. Maximum and minimum Oldroyd number
To proceed we next define a parameter called 𝜂 which involves the

ratio between the tilt angle and the Oldroyd number

𝜂 = 𝛿∕(4𝑂𝑑). (27)

Note that the bracketed term in Eq. (23) is always less than unity for
any 𝐻𝑐𝑓∕𝛿 > 1, i.e. 𝑥𝑐𝑓 < 1 always. Hence in order to satisfy the
constraint 𝐹 = 1, it is essential to have 𝜂 < 1. In other words for a
specified 𝑂𝑑 there is a maximum 𝛿 at which a steady state solution
with a finite thickness could exist (or equivalently for any 𝛿, there is
a minimum Oldroyd number, 𝑂𝑑𝑚𝑖𝑛, for a steady state with a finite
thickness to exist)

𝑂𝑑𝑚𝑖𝑛 = 𝛿∕4. (28)

If 𝑂𝑑 < 𝑂𝑑𝑚𝑖𝑛, the plates rather than reaching steady state instead must
touch as they do in the Newtonian limit 𝑂𝑑 → 0. It is only in the limit
of parallel plates with 𝛿 → 0 that 𝑂𝑑𝑚𝑖𝑛 falls to zero. When plates are
tilted, the narrow end of the gap is more effective at supplying force to
the plates than the wider end is. The issue with increasing 𝛿 however
is that the gap only remains narrow over a limited domain of 𝑥 close
to its right hand end. An increase in 𝛿 therefore must be accompanied
by an increase in 𝑂𝑑 (effectively an increase in yield stress of the fluid)
to ensure that Eq. (23) in the absence of any fluid motion is still able
to satisfy 𝐹 = 1.

If 𝜂 > 1, there is no steady state in which the yield stresses in the
fluid are able to balance the imposed unit force on the plates. The
plates must always keep moving until their right hand ends touch, as
happens in the Newtonian limit for instance. Moving plates always have
𝑦𝑝𝑙𝑢𝑔 > 0, and this leads to larger pressures 𝑝 and larger forces 𝐹 (due to
those pressures) than a stationary plate case can deliver (via Eq. (23)).
Hence moving plates can achieve 𝐹 = 1 even with 𝜂 > 1 even though
stationary plates cannot.

In addition to 𝑂𝑑𝑚𝑖𝑛 given above, there is a maximum Oldroyd
number, 𝑂𝑑𝑚𝑎𝑥, at which 𝐻𝑐𝑓 = 1: at this 𝑂𝑑𝑚𝑎𝑥, the plates will not
move at all. Inserting 𝐻𝑐𝑓 = 1 in Eq. (23) and rearranging, 𝑂𝑑𝑚𝑎𝑥 which
depends on 𝛿 turns out to be

𝑂𝑑𝑚𝑎𝑥 = 1 +
√
1 − 𝛿2
4

. (29)

2.3.4. Phase diagram for permitted states of system
Fig. 2 shows the phase diagram in the 𝑂𝑑 versus 𝛿 plane in which

there are three regions, ‘‘do not move’’; ‘‘move and stop’’; ‘‘move and
touch’’. Although (at any fixed 𝛿) there is both a 𝑂𝑑𝑚𝑖𝑛 and 𝑂𝑑𝑚𝑎𝑥 for
the plates to move and stop, in the case of fixed 𝑂𝑑, there is only
a maximum 𝛿 value, 𝛿𝑚𝑎𝑥 say. However what happens at that 𝛿𝑚𝑎𝑥
depends on the value of 𝑂𝑑. If 𝑂𝑑 < 1

4 , then 𝛿𝑚𝑎𝑥 corresponds to the
plates moving and touching. However if 𝑂𝑑 > 1

4 , then 𝛿𝑚𝑎𝑥 corresponds
to the plates not moving at all.

Generally speaking, the data for the unsteady state evolution are
sensitive to both 𝛿 and 𝑂𝑑 number. However the final fate of the system
(i.e. whether the plates stop without touching or whether instead they

Fig. 2. Phase diagram in the 𝑂𝑑 vs 𝛿 plane for squeeze flow of viscoplastic Bingham
fluid between non-parallel plates. In the ‘‘move and stop’’ and ‘‘do not move’’ regions,
𝜂 < 1. In the ‘‘move and touch’’ region, 𝜂 > 1.

move and touch) is only dependent on the 𝜂 value. Indeed, if 𝜂 < 1, such
that the final film thickness is non-zero, the final state is approached
but an arbitrarily long time is needed to reach it at least in principle
(qualitatively this is similar to the viscoplastic Bingham case in a
parallel system). However, if 𝜂 > 1, the gap falls to zero at the right
hand end and a non-parallel viscoplastic Bingham system will behave
instead more like a Newtonian non-parallel case. In the Newtonian case,
the right hand ends of the plates touch in a finite time (see section S2).

2.3.5. Computing final film thickness
Having now identified the domain for which steady solutions are

possible, we proceed to analyse the steady solutions further. Returning
to Eq. (23) assuming 𝜂 < 1, and imposing 𝐹 = 1 we deduce

𝐻𝑐𝑓 = 𝛿2

8𝑂𝑑
+ 2𝑂𝑑. (30)

For any 𝑂𝑑 number less than the maximum, a final 𝐻𝑐𝑓 less than
unity can be determined. Now using this 𝐻𝑐𝑓 value, the point 𝑥𝑐𝑓 at
which the viscoplastic stress switches sign can be defined. This can be
determined via Eq. (21) and/or (23), and the result is

𝑥𝑐𝑓 = 𝛿∕(4𝑂𝑑) ≡ 𝜂. (31)

Note that this steady state viscoplastic 𝑥𝑐𝑓 in general differs from the
instantaneous Newtonian 𝑥𝑐 given by Eq. (S17). Note also that as 𝜂 → 1,
meaning the plates almost touch at their right hand ends once they have
stopped moving, we find that 𝑥𝑐𝑓 → 1, i.e. shearing in the final state
is entirely towards the left. Furthermore, as already mentioned, in the
non-parallel case torques can develop, and it turns out that final states
with the largest 𝑥𝑐𝑓 also exhibit the largest torques. Indeed based on
Eq. (26), torque is just 𝑥𝑐𝑓∕2 = 𝜂∕2.

Rearranging Eq. (30) in terms of 𝜂 gives 𝐻𝑐𝑓∕(2𝑂𝑑) which is the
average film thickness in the final state (at the centre of the plates)
relative to the parallel case. This satisfies
𝐻𝑐𝑓

2𝑂𝑑
= 𝜂2 + 1. (32)

Another important quantity, (𝐻𝑐𝑓 −𝛿)∕2𝑂𝑑, which is the minimum film
thickness (at the right hand end) in the final state relative to the parallel
case, can be obtained
𝐻𝑐𝑓 − 𝛿
2𝑂𝑑

= (1 − 𝜂)2. (33)

The ratio between Eq. (33) and Eq. (32), (𝐻𝑐𝑓 − 𝛿)∕𝐻𝑐𝑓 , is a measure
of uniformity or otherwise of gap thicknesses such that it is zero if
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polydisperse (the gaps at either end of the plates have different sizes)
and unity if monodisperse (the gaps at either end have, in relative terms
at least, the same thickness)
𝐻𝑐𝑓 − 𝛿
𝐻𝑐𝑓

= (1 − 𝜂)2

𝜂2 + 1
. (34)

To summarise Eqs. (32) and (33) give final film thicknesses in a tilted
case relative to a parallel one. Meanwhile Eq. (34) tells us about the
uniformity of final film thicknesses in the tilted case. These quantities
depend on 𝜂, but not on 𝑂𝑑 and 𝛿 individually.

2.4. Yield force and yield torque calculation

For the Bingham parallel system presented in section S3.3 of supple-
mentary material, we discuss a so called ‘‘yield force’’ contribution to
the total force (the remainder of the total force being viscous force).
The yield force is the force that would be developed with a given
plate separation in the hypothetical case in which motion is stopped.
Typically early on in the evolution, when plate separations are still
quite large, yield force can be relatively small, meaning that total force
is primarily viscous. However (see e.g. Figure S8) we show that over
time eventually all the force becomes yield force. In this present section
we explore the analogous behaviour for the non-parallel system.

Of course in the non-parallel case, in addition to defining a ‘‘yield
force’’, we can also define a ‘‘yield torque’’. Again these both corre-
spond at any given plate separation to the situation that occurs in the
hypothetical case in which motion is stopped. The formulae we need
are just (23) and (25), but using now the instantaneous 𝐻𝑐 , albeit still
computing 𝑥𝑐 for this 𝐻𝑐 value using (21). Of course the yield force
and yield torque are not the same as the total force and total torque,
since the totals include viscous contributions as well. Typically we can
expect the yield force and yield torque to start out quite small, and only
grow to match the total force and total torque in a situation in which
the plates move and stop. On the other hand, if the plates instead move
and touch (which can happen in a non-parallel system but not a parallel
one), the yield force and yield torque might never match the total force
and total torque.

3. Results and discussion

In the present section, results for a viscoplastic Bingham fluid in
a non-parallel plate scenario are presented. We consider yield sur-
faces (Section 3.1), film thicknesses (Section 3.2), forces (Section 3.3),
torques (Section 3.4) and final steady states (Section 3.5). The supple-
mentary material, sections S4 and S5 focus primarily on results for
the Newtonian fluid between parallel and non-parallel plates, and a
viscoplastic Bingham fluid in a parallel plate configuration, respec-
tively. Those results are useful for comparing and contrasting with the
viscoplastic non-parallel case to be treated here, along with additional
results which are presented in section S6.

3.1. Yield surface

The yield surface, 𝑦𝑝𝑙𝑢𝑔 versus 𝑥 for 𝐻𝑐 = 1 and 𝛿 = 0.2 is
shown in Fig. 3. This shows that 𝑦𝑝𝑙𝑢𝑔 for 𝑥 > 𝑥𝑐 is not necessarily a
monotonically increasing function of 𝑥, because 𝑦𝑝𝑙𝑢𝑔 has a maximum
value of 𝐻(𝑥, 𝑡)∕2 and𝐻(𝑥, 𝑡) is a decreasing function of 𝑥. Note that for
𝛿 = 0.2, the maximum 𝑂𝑑 just slightly above 𝑂𝑑 ≈ 0.495 is determined
(via equation (29)). Close to this maximum 𝑂𝑑 number, 𝑦𝑝𝑙𝑢𝑔 is small.

For small 𝑂𝑑 however, 𝑦𝑝𝑙𝑢𝑔 is close to 𝐻(𝑥, 𝑡)∕2 (except very close
to 𝑥 = 𝑥𝑐 where 𝑦𝑝𝑙𝑢𝑔 = 0). For 𝑥 just slightly greater than 𝑥𝑐 , the value
of 𝑦𝑝𝑙𝑢𝑔 increases very sharply at first (a consequence of the square root
law in Eq. (14)), but for values of 𝑂𝑑 = 0.1 or less, 𝑦𝑝𝑙𝑢𝑔 reaches a
maximum at a certain 𝑥, then, starts to decrease gradually.

The yield surface, 𝑦𝑝𝑙𝑢𝑔 versus 𝑥 corresponding to 𝐻𝑐 = 1 for
different 𝛿 values and a constant 𝑂𝑑 = 0.3 is shown in Fig. 4. It is seen

Fig. 3. Yield surfaces as functions of 𝑥 corresponding to 𝐻𝑐 = 1 and 𝛿 = 0.2 for different
Oldroyd numbers. Note that 𝑂𝑑 = 0.495 is close to the maximum 𝑂𝑑 number for the
particular 𝛿 = 0.2, so that 𝑦𝑝𝑙𝑢𝑔 ≪ 1 when 𝐻𝑐 = 1 in this case. The different 𝑂𝑑 values
here have different 𝑣𝑡𝑜𝑝 and 𝑥𝑐 , values for which are reported in section S6.

Fig. 4. Yield surfaces as functions of 𝑥 corresponding to 𝐻𝑐 = 1 and 𝑂𝑑 = 0.3 for
different 𝛿 values. The different 𝛿 values here have different 𝑣𝑡𝑜𝑝 and 𝑥𝑐 , values for
which are reported in section S6.

that, by increasing 𝛿, the value of 𝑥𝑐 increases and the yield surface
becomes increasingly asymmetrical, tending to be thicker on the left
hand side and thinner on the right hand side due to the geometrical
constraint. For even larger 𝛿 however, 𝑦𝑝𝑙𝑢𝑔 can be small even on the
left hand side, despite the wider gap there. This is due to 𝑣𝑡𝑜𝑝 turning
out to be small for these larger 𝛿. Indeed by rearranging equation (29),
a maximum value of 𝛿 (for the plates to move at all) just above 0.97
can be obtained for 𝑂𝑑 = 0.3.

Note that Figs. 3 and 4 tell us the locations of the plug region and
yielded region, but not the velocities within each of those regions. Data
for these velocities are however reported in section S6 in supplementary
material.

Note moreover that Figs. 3 and 4 just consider one instant of time,
i.e. the initial instant at which 𝐻𝑐 = 1. The shapes of the yield surfaces
can also be computed at later times with 𝐻𝑐 < 1. However results are
not presented here, because qualitatively the shapes are similar to those
already seen in Figs. 3 and 4. The narrower the gap, the more impact
the yield stress has upon the system, to the point that motion might
stop altogether (as per Section 2.3). Hence decreasing 𝐻𝑐 at fixed 𝑂𝑑
is similar, as far as shapes of yield surfaces are concerned, to increasing
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Fig. 5. Film thickness vs time for a constant 𝛿 = 0.2 and different Oldroyd numbers.

𝑂𝑑 at fixed𝐻𝑐 . Likewise the narrower the gap, the more impact a given
tilt angle has upon the ratio of the film thickness between the right hand
end and the centre. Hence decreasing 𝐻𝑐 at fixed 𝛿 is similar, as far
as shapes of yield surfaces are concerned, to increasing 𝛿 at fixed 𝐻𝑐 .
Instead of focussing on how 𝑦𝑝𝑙𝑢𝑔 varies with varying 𝐻𝑐 , we therefore
focus in what follows on how film thickness varies with time.

3.2. Film thickness versus time results

Changes of film thickness with respect to time for a constant 𝛿 =
0.2 and various 𝑂𝑑 numbers are shown in Fig. 5. For the maximum
𝑂𝑑 ≈ 0.495, the plates never move at all, whereas, for very small 𝑂𝑑
numbers (i.e. according to Eq. (28) for 𝑂𝑑 < 0.05 with this particular
𝛿), the plates move and touch one another, and for all values of 𝑂𝑑
number in between, the plates move and stop at a final film thickness
without touching one another at the right hand end. Assuming the
plates move and stop without touching, Eq. (30) implies final film
thickness is dependent not just on 𝑂𝑑, but also on the ratio between tilt
angle 𝛿 and 𝑂𝑑 number which appears in the definition of 𝜂 in Eq. (27).

Film thickness versus time for different 𝛿 values and a constant
𝑂𝑑 = 0.3 is shown in Fig. 6. As 𝛿 increases, the final thickness 𝐻𝑐𝑓
increases. For any value of 𝑂𝑑, there is a maximum value of 𝛿 beyond
which the system stops moving. Using Eq. (29), the maximum 𝛿 value
for a given 𝑂𝑑 number can be estimated (i.e. for 𝑂𝑑 = 0.3, a 𝛿𝑚𝑎𝑥 just
slightly above 0.97 is achieved). All the 𝛿 values here are therefore less
than the maximum. Hence, for all values of 𝛿 shown, the plates move,
but also stop at final thickness since the value of 𝜂 (see Eq. (27)) is also
less than unity. However, for some cases (e.g. 𝛿 = 0.97 or 𝛿 = 0.9) the
plates barely move before stopping.

A general comparison of film thickness versus time for squeeze film
flow of a viscoplastic Bingham fluid with a constant 𝑂𝑑 = 0.3 between
parallel non-parallel plates with different 𝛿 values is depicted in Fig. 7.
In addition to that, changes of thickness at right hand ends of the plates
(i.e. 𝐻𝑐 −𝛿) versus time for the two non-parallel cases are shown in the
figure.

The difference between the final film thickness in the parallel case
and the 𝛿 = 0.2 non-parallel case is very small indeed, in line with the
prediction of (30) which suggests this difference is second order in 𝜂
and hence in 𝛿. The difference with respect to the system with 𝛿 = 0.5 is
larger. Nonetheless, both the non-parallel systems shown here behave
at least quantitatively analogous to the parallel case, with the gap at
the right hand ends of the plates never reaching zero thickness as seen
for the curves of 𝐻𝑐 −𝛿 (contrast this with section S4 in supplementary
material and in particular Figure S3).

Fig. 6. Film thickness vs time corresponding to 𝑂𝑑 = 0.3 and different 𝛿 values.

Fig. 7. Film thickness vs time corresponding to 𝑂𝑑 = 0.3 for parallel plates and
non-parallel plates with 𝛿 values 𝛿 = 0.2 and 𝛿 = 0.5.

In Fig. 7 the parallel 𝐻𝑐𝑓 always lies between the non-parallel 𝐻𝑐𝑓
and the non-parallel 𝐻𝑐𝑓 − 𝛿, but is always further from the latter. This
follows from Eq. (33) which suggests 𝐻𝑐𝑓 − 𝛿 is a first order quantity
in 𝜂 and hence first order in 𝛿.

3.3. Contributions to the force

The force contributions (comprised of yield force and viscous force
contributions summing to unity) as time proceeds for different 𝑂𝑑
values and 𝛿 = 0.2 are shown in Fig. 8. The analogous result for
the Bingham parallel system has been provided in the supplementary
material, section S5.3.

For bigger 𝑂𝑑 numbers in the move and stop region (i.e. 𝑂𝑑 = 0.2,
𝑂𝑑 = 0.1), after relatively short times, yield force dominates the viscous
force which is similar to the behaviour of the Bingham parallel system.
However, for the smallest 𝑂𝑑 number considered (i.e. 𝑂𝑑 = 0.02) which
is in the move and touch region, the yield force starts small, and despite
it growing, it never approaches anywhere near unity. In fact when the
plates eventually touch at right hand end of the gap the yield force can
only ever reach (4𝑂𝑑)∕𝛿.

3.4. Torque results

Fig. 9 shows the numerically computed total torque (𝑇 ; see Sec-
tion 2.2) and also yield torque (𝑇𝑦𝑖𝑒𝑙𝑑 ; see Section 2.4) versus time for
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Fig. 8. Force contributions to the squeeze flow vs time for different Oldroyd numbers
and 𝛿 = 0.2 in the non-parallel geometry.

Fig. 9. Numerically computed total torque and also yield torque versus time for
different 𝑂𝑑 numbers and 𝛿 = 0.2. The horizontal dashed lines are the final torques
attained in the limit of long times.

different 𝑂𝑑 numbers and a constant 𝛿 = 0.2. From the figure, for
each 𝑂𝑑 value the total torque is bigger than the yield torque and as
time proceeds, the total torque and yield torque come closer together.
For the largest 𝑂𝑑 number plotted (i.e. 𝑂𝑑 = 0.2), in fact total and
yield torques are close together for almost all times. However, for the
smallest 𝑂𝑑 number plotted (i.e. 𝑂𝑑 = 0.05), the yield torque starts
off very small as mostly viscous torque is present initially and only by
increasing the time, do the total and yield torques come closer together.
Note that case 𝑂𝑑 = 0.05 with 𝛿 = 0.2 has 𝜂 = 1 so is on the boundary
between the move and stop region and the move and touch region.
Any smaller 𝑂𝑑 number will be in the move and touch region, and in
such cases, the yield torque will never reach the same value as the total
torque.

Another important point is that as 𝑂𝑑 decreases, the torque overall
increases, whereas the yield torque starts off smaller but finishes larger
due to the fact that the smaller the 𝑂𝑑 number, the greater the nonuni-
formity (average film thickness relative to film thickness on the right
hand end) in the final state. This leads to a greater value of 𝑥𝑐𝑓 , and
thus a larger final yield torque. Indeed the predicted final torque for
each 𝑂𝑑 value is found via Eq. (26) and then given 𝑥𝑐𝑓 from Eq. (31),
the final torque is found to be 𝑇𝑓𝑖𝑛𝑎𝑙 = 𝛿∕(8𝑂𝑑). As seen in Fig. 9, the
curves for each 𝑂𝑑 value are approaching the predicted final torque,
although in the 𝑂𝑑 = 0.05 case, the approach is seen to be rather slow.

Fig. 10. Final film thicknesses in terms of 𝜂 = 𝛿∕(4𝑂𝑑) values. The parallel case is
𝜂 = 0 and the plates touch at 𝜂 = 1.

This completes the discussion of torque in the Bingham fluid case,
although a comparison between torques for Newtonian and Bingham
fluids both as functions of 𝑥𝑐 has been discussed in the supplementary
material, Figure S5.

3.5. Steady states

In Fig. 10 plots are shown of 𝐻𝑐𝑓∕(2𝑂𝑑) the average film thickness
in the final steady state relative to the parallel case, (𝐻𝑐𝑓 −𝛿)∕(2𝑂𝑑) the
minimum film thickness in the final state relative to the parallel case,
and (𝐻𝑐𝑓 − 𝛿)∕𝐻𝑐𝑓 which is a measure of how uniform or nonuniform
of film thicknesses are, specifically (𝐻𝑐𝑓 −𝛿)∕𝐻𝑐𝑓 measures the ratio of
the narrowest point to the average film thickness. All these quantities
are plotted in terms of 𝜂 (see Eqs. (32)–(34)), recalling that they are
indeed functions only of 𝜂 and not of 𝑂𝑑 and 𝛿 individually. In the
case of the ratio (𝐻𝑐𝑓 − 𝛿)∕𝐻𝑐𝑓 in particular, note that as 𝜂 increases,
this ratio becomes smaller and hence the more polydisperse the system
becomes in terms of film thickness, since the narrowest gap at the right
hand end is then much thinner than the average thickness.

4. Conclusions

We considered a viscoplastic Bingham fluid squeezed between non-
parallel plates (extending the work of [5] which considered merely the
parallel geometry) under a fixed applied force (unlike the work of [13]
which considered a fixed squeezing rate and parallel plates). We have
also investigated the torque for the tilted plates.

Under a fixed applied force, a final film thickness can be found at
which the plates stop moving. The final thickness is sensitive to Oldroyd
number. A maximum Oldroyd number can be found beyond which
the film thickness remains constant always without any squeezing
whatsoever, due to the fact that the whole solution domain is in a plug
region even at the initial instant. However, decreasing Oldroyd number
allows the system to yield, and thereby reduce the film thickness as
time increases. In a parallel system though, for any finite Oldroyd
number, the two plates never touch even at infinite time. How the non-
parallel, viscoplastic system which is considered here behaves depends,
however, upon the ratio between the tilt angle, 𝛿 and the Oldroyd
number, 𝑂𝑑, this ratio appearing in the definition of a parameter 𝜂 ≡
𝛿∕(4𝑂𝑑).
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If this ratio is small (i.e. 𝜂 < 1), the behaviour is analogous to a
viscoplastic Bingham fluid in a parallel configuration: squeezing stops
while the gap is still finite. If this tilt angle to Oldroyd number ratio
becomes too large (i.e. 𝜂 > 1) however, the behaviour is more akin
to a Newtonian fluid in a non-parallel configuration: the plates touch
one another at a point. It is in the narrow part of the gap in which
a viscoplastic Bingham fluid is best able to resist squeezing, but for a
large tilt angle, the gap can only remain narrow over a very limited
distance. Hence, with sufficient tilt, the applied force overcomes the
yield stress even in the narrow part of the gap and drives the plates to
touch. Moreover larger Oldroyd numbers lead to smaller 𝜂 and hence
more monodisperse film thicknesses.

Changing Oldroyd number also impacts on torque. Decreasing 𝑂𝑑
number increases the torque value, and torque also increases as time
proceeds. In particular the torque is comprised of viscous and yield
stress components. As 𝑂𝑑 decreases, the yield torque component is
typically very small at early times as viscous torque dominates the yield
torque. Then, as time proceeds and the system approaches a final state,
the yield torque tends to dominate the viscous torque due to the fact
that fluid is not moving in the final state.

Although we have managed to obtain model predictions here it is
worth reflecting on the limitations of the model itself, that would also
need to be overcome in future work. We have considered for simplicity
a two-dimensional planar system (squeezing plates together). Squeez-
ing together plates is however often a three-dimensional problem, as
there will be many squeeze flow applications in which it is likely to
be easier for fluid to escape by flowing in various directions during
squeezing. Moreover we have ignored rotation of the plates. In reality
the pressure field induced in the squeeze film, places not just a force
on the plates (that balances the applied force) but also, as we have
discussed, a torque. By balancing torque in addition to force it should
be possible to deduce both a plate squeezing rate and a plate rotation
rate. Rotation does however lead to a slightly more complicated flow
field in the squeeze film (specifically equation (11) no longer applies).
Here of course we have computed instead the torques that develop in
the absence of rotation. Nevertheless the signs of those torques suggest
that had rotation been permitted, it would have been such as to move
the configuration closer to parallel as time evolved.
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Abstract

This supplementary section reviews standard lubrication theory for Newtonian fluids
(section S1) including cases in a non-parallel plate configuration (section S2). It then
extends to consider the case of a viscoplastic Bingham fluid in a parallel configura-
tion (section S3). Some additional results (over and above the results presented in
the main text) for squeeze film flows of both Newtonian (section S4) and viscoplastic
Bingham fluids (section S5 and section S6) are then presented. All of these supple-
mentary sections support the analysis of squeeze film flow of a viscoplastic Bingham
fluid between non-parallel plates that is presented in the main text.

S1. Squeeze Film Flow of Newtonian Fluid between Parallel Plates

In this section, the analysis for a parallel, Newtonian squeeze film will be reviewed.
The governing lubrication equations for squeeze film flow of a Newtonian fluid are [1]

− ∂p̂/∂x̂+ µ ∂2û/∂ŷ2 = 0 (S1)

∂p̂/∂ŷ = 0 (S2)

∂û/∂x̂+ ∂v̂/∂ŷ = 0 (S3)

where x̂ and ŷ are coordinates along and across the lubrication layer, û and v̂ are
corresponding velocity components, p̂ is pressure and µ is viscosity.

Dimensionless analogues of these equations, making variables dimensionless on

∗Corresponding author.
Email address: elaheh.esmaeili@strath.ac.uk (Elaheh Esmaeili)

Preprint submitted to Journal of non-Newtonian Fluid Mechanics April 14, 2022



scales identified in the main text are

∂p/∂x = ∂2u/∂y2 (S4)

∂p/∂y = 0 (S5)

∂u/∂x+ ∂v/∂y = 0. (S6)

Geometry of the squeeze film flow specifically between parallel plates is shown in
Figure S1.

Figure S1: Geometry of squeeze film flow between parallel plates.

The solution of equations (S4), (S5) and (S6) now follows a standard procedure
for a Newtonian squeeze film [2, 3]. From equation (S5) we find that the pressure is
a function of x coordinate, thus, p = p(x). Using the no slip boundary conditions
u = 0 at y = 0 and y = H(t), equation (S4) can be solved to obtain the velocity u
in the horizontal direction

u =
1

2

∂p

∂x
y(y −H(t)). (S7)

Via the continuity equation (S6), the vertical velocity component at the top of the
film, vtop can be determined

vtop = −H(t)3

12

∂2p

∂x2
. (S8)

Note the sign convention adopted here: we define vtop to be a positive quantity, so
that vtop(t) ≡ −v|y=H(t). The flow rate between the plates can be expressed as

Q ≡
∫ H(t)

0

u dy =

∫ H(t)

0

1

2

∂p

∂x
y(y −H(t)) dy = −H(t)3

12

∂p

∂x
. (S9)

2



We also know that, Q = vtopx, in which recall vtop is considered as a positive quantity.
Thus, using also boundary conditions in which at x = −1 and x = 1, p = 0, we can
obtain the pressure distribution in the squeeze film

p(x) =
6vtop
H(t)3

(1− x2). (S10)

We now define F as the force (per unit distance out of the two-dimensional plane)
that this pressure field places on the upper plate. This is obtained by integration of
the pressure field along the plates

F =

∫ 1

−1

p(x) dx =
8vtop
H(t)3

. (S11)

We can define the velocity of the upper plate, vtop as a derivative of film thickness,
H(t). With our sign convention

vtop = −dH(t)/dt. (S12)

The force F imposed by the pressure field on the plate must balance the applied
force that sets up the squeeze film flow in the first place. However because of the
way we have non-dimensionalized the system (the relevant scales are given in the
main text), this applied force is simply unity. It then follows from equation (S11)
that vtop = H(t)3/8. Via equation (S12) it then follows

t = 4

(
1

H(t)2
− 1

)
. (S13)

This rearranges to
H(t) = (1 + t/4)−1/2. (S14)

S2. Squeeze Film Flow of Newtonian Fluid between non-Parallel Plates

Now, we will investigate the behaviour of squeeze film flow between two non-
parallel plates, still for a Newtonian fluid. In the parallel case, section S1, on sym-
metry grounds, it was found that the dimensionless flow rate Q vanishes at the half
way point along the plates, i.e. at x = 0. However, we cannot use that same as-
sumption for non-parallel plates. Therefore, we must find the point at which the
flow rate will be zero. This point will be denoted as xc. The flow rate Q can still be
defined in terms of the integral of the horizontal velocity equation (S7) over the film

3



thickness which gives equation (S9). However the flow rate for non-parallel plates is
Q = vtop(x − xc) where, as before, the sign convention is such that vtop is positive.
Moreover, H within that equation now depends on x (not just on t). Hence, using
the equations (S9) and (5), the pressure gradient is

∂p

∂x
=

12vtop(xc − x)

(Hc(t)− δ x)3
. (S15)

Here Hc(t) is the separation at the centre of the plates, and δ is the rescaled tilt
angle. Note that when Hc is close to δ and also x is close to unity, such that the
gap at the right hand end of the plates is narrow, large pressure gradients are seen
near x = 1. This means that as x decreases from unity, sharp rises in pressure are
seen in the narrow part of the gap. Integration of equation (S15) using the boundary
conditions in which at x = −1 and x = 1, the pressure is equal to zero, the pressure
distribution and also xc can be determined after some algebra

p(x) =
6vtop(1− x2)

Hc(t)
3
(
1− δ

Hc(t)
x
)2 . (S16)

xc = δ/Hc(t). (S17)

Note that in the limit of δ → 0 this reduces back to the parallel plate case as we
expect. On the other hand for a fixed δ, as Hc(t) falls over time, it is clear that xc

grows. When Hc(t) falls towards the value δ, the plates come into contact at the
right hand end, since in that case H|x→1 ≡ Hc(t)− δ approaches zero. In that limit,
xc → 1, implying that all the flux Q = vtop(x − xc) is to the left with x < xc and
none of it flows out the narrow gap to the right. Returning to a general value of
δ/Hc(t), the force F which the pressure distribution places on the upper plate can
be obtained by integrating equation (S16) which leads to

F =
24vtop
Hc(t)δ2

(
Hc(t)

2δ
ln

1 + δ
Hc(t)

1− δ
Hc(t)

− 1

)
. (S18)

A differential equation for Hc(t) versus t can now be derived by recognising that
this force F due to the pressure field must be balanced to the unit force imposed
externally on the plate. Setting F = 1 and vtop = −dHc(t)/dt leads to after some

4



algebra

t =
12

δ3

(
(Hc − δ) ln(1− δ

Hc

)− (1− δ) ln(1− δ)

− (Hc + δ) ln(
δ

Hc

+ 1) + (δ + 1) ln(δ + 1)

)
. (S19)

This is an implicit equation for Hc given t. It is easy to check by inspection that
Hc → 1 as t → 0. At other times, we cannot in general invert this expression to
obtain an explicit analytic formula for Hc in terms of t. However there is still a
limiting case that we can analyse as discussed below.

S2.1. Asymptotic Behaviour in Limit δ/Hc → 1

In this section, the special case in which the two plates touch at one end is
considered. In equation (S19), if we take the limit δ/Hc → 1, a final time tf at which
the plates touch (i.e. Hc equals δ) can be calculated:

tf =
12

δ3

(
− (1− δ) ln(1− δ)− 2 δ ln(2) + (δ + 1) ln(δ + 1)

)
. (S20)

Details of how tf behaves are deferred until section S4. For now however we note
that tf is finite, i.e. the plates touch in finite time, unlike the parallel case given by
equation (S14) which requires infinite time for the plates to touch.

Of interest also is to find out how Hc varies with time close to this final time.
Within equation (S18) we know that the term ln(1− δ/Hc(t)) goes to infinity when
Hc(t) approaches δ. Hence, consulting equation (S18) with F = 1 and vtop =
−dHc(t)/dt, it follows that dHc(t)/dt approaches zero at t = tf , even though the
final time is already obtained as a finite quantity.

Therefore, an asymptotic analysis is required to establish the behaviour of film
thickness for times close to the final time. A parameter called ϵ is defined such that
ϵ(t) ≡ 1 − δ/Hc(t) with ϵ ≪ 1 in cases of interest. In this limit ϵ ≪ 1 we have
Hc(t) ≈ δ + δ ϵ(t). It follows via equation (S18) that

δ
dϵ(t)

dt
≈ dHc(t)

dt
≈ δ3

24 ln ϵ
. (S21)

As expected dHc(t)/dt approaches zero in the limit as ϵ → 0, but the approach to
zero is exceedingly slow, so tiny velocities are only reached for exceedingly small ϵ.
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When ϵ is small this gives at leading order

t ≈ tf −
24

δ2
ϵ ln(1/ϵ) for ϵ ≪ 1. (S22)

Starting then from any time t at which ϵ is small but finite, the subsequent time
interval tf − t that must elapse for the plates to touch scales not proportionally to ϵ
but rather proportionally to ϵ ln(1/ϵ) which is significantly greater than ϵ. The time
interval tf − t, whilst shrinking as ϵ shrinks, is therefore surprisingly long.

To summarize, even though having a very narrow gap tends to imply a very slow
approach to the final state (e.g. vtop = H(t)3/8 in the parallel case), in the tilted
case, the gap only manages to be exceedingly narrow over a very short distance in
x (at the far right hand end), so vtop is large enough that plates still touch in finite
time. That said, the approach to the final state still remains surprisingly slow.

S2.2. Torque Calculation

Tilted systems are associated with non-zero torques. In this section the analysis
for investigating the torque is considered. Torque (per unit distance out of the two-

dimensional plane) is evaluated as the integral along the plates
∫ 1

−1
x p(x) dx. Thus,

for Newtonian fluid in the non-parallel system, we can compute a dimensionless
torque that is analogous to the dimensionless force formula, equation (S18). Since
vtop is defined by setting the dimensionless lubrication force to unity, we can evaluate
vtop and substitute it in, to obtain a torque expression wholly in terms of δ/Hc(t).
Equivalently the torque can be expressed in terms of xc since by equation (S17),
δ/Hc(t) is the same as xc in the Newtonian case. We find

T =

∫ 1

−1

x p(x)dx =

Hc(t)
2

(
(3− δ2

Hc(t)2
) ln

1+ δ
Hc(t)

1− δ
Hc(t)

− 6 δ
Hc(t)

)

4δ2
(

Hc(t)
2δ

ln
1+ δ

Hc(t)

1− δ
Hc(t)

− 1

) . (S23)

In the limit of xc → 0 (i.e. δ/Hc(t) to zero), this gives zero torque (as expected).
Also in the limit of xc → 1 (i.e. δ/Hc(t) to unity), it gives unit torque. Physically
this implies that the lubrication pressure field (and hence the lubrication force) is
highly concentrated in the neighbourhood of xc = 1.

S3. Squeeze Film Flow of Bingham Fluid between Parallel Plates

In this section the parallel plate squeeze film flow of a viscoplastic Bingham fluid
is discussed. The general analysis is based on the work of [4, 5], but compared to [5]
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a different situation is considered. In [5], squeezing force is analysed with a constant
squeezing velocity, while we are investigating a constant squeezing force to find the
rate of squeeze action, as per [4].

The geometry of squeeze film flow is similar to Figure S1 just with different
rheology. The governing lubrication equations [6] for a yield stress fluid are discussed
in the main text, section 2.1. Obviously the analysis in the main text concerned the
non-parallel case. Here in the interests of completeness, we review step by step
the analogous development for the parallel case. This is included specifically for
the benefit of those readers who prefer to understand the parallel case first, before
generalising to the non-parallel one.

The aim is to find the yield surface (or strictly speaking “fake yield surface”)
which is denoted as yplug(x). The yield surface will divide the film thickness into
two regions, a yielded region (or strictly speaking “fully plastic” region) in which
(y < yplug) and a plug region (or strictly speaking “pseudo-plug” region) in which
(yplug < y < H(t)/2) and these regions are shown in Figure S2. Due to the flow
symmetry, only one quadrant of the flow domain is represented.

Figure S2: Schematic representation of the flow structure showing yielded and plug regions. The
sketch shows the case for the initial film thickness, Ĥ = Ĥ0, but generalizes to any other Ĥ.

Taking the integral of equation (8) using a no slip boundary condition (i.e. u = 0
at y = 0), a velocity profile in the y direction can be deduced

u =
∂p

∂x

1

2
y(y −H(t))−Od y, (S24)

where recall Od is the Oldroyd number (the ratio between yield stress and imposed
stress as defined in the main text). The obtained velocity profile applies generally
throughout the yielded region. In order to find the boundary between the yielded
and plug regions, we use the fact that at the yield surface (y = yplug), the shear rate
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is zero (∂u/∂y = 0) or equivalently |τxy| = Od. Therefore putting this condition
into equation (8), the expression for the pressure gradient in the x direction can be
determined

∂p

∂x
=

Od

yplug − H(t)
2

. (S25)

Now, via substitution of equation (S25) in (S24), the velocity profile for both yielded
and plug regions is achievable





u =
Od

2(yplug − H(t)
2
)
y2 − Od

(yplug − H(t)
2
)
yplugy for y ⩽ yplug

uplug = − Od

2(yplug − H(t)
2
)
y2plug for yplug < y <

H(t)

2
.

(S26)

Here, u and uplug are the yielded and plug regions velocity profiles, respectively. Using
the definition for the flow rate Q, an equation for the yield surface is generated.

Q ≡ 2

(∫ yplug

0

u dy +

∫ H(t)
2

yplug

uplug dy

)
= vtopx. (S27)

Inserting equation (S26) in (S27), taking the integral and after some algebra, the
expression for the yield surface becomes [5]

y3plug −
3

2
H(t)y2plug − 3

vtopx

Od
yplug +

3

2

vtopxH(t)

Od
= 0. (S28)

This is a cubic equation for yplug which in general can be tedious to solve exactly, so
more convenient approaches to obtaining solutions are considered below. The fact
that we encounter a non-linear equation here is a reflection of the non-linear rheology
of a viscoplastic Bingham fluid. The equation only applies for x ≥ 0 but that is all
we need in the parallel plate case, as yplug is symmetric about x = 0.

S3.1. Solving for yplug

As equation (S28) is non-linear, typically numerical methods are employed to
solve it. The typical way of solving it would be, starting from a guess of yplug at
any given x, using the Newton-Raphson method which gives a sequence of better
approximations to the value of yplug.

A suitable initial guess can be readily obtained. We rely on the observation that
(at least in this parallel plate case) on symmetry grounds at x = 0 there can be no
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fluid motion either to left or right, hence no strain rate ∂u/∂y at any y. Hence at
x = 0, we must have yplug = 0.

Close to x = 0 then, yplug must be small, i.e. yplug ≪ H(t)/2. The integral on
the left hand side of (S27) then evaluates to uplugH(t) which we set equal to vtopx,
and with uplug ≈ y2plugOd/H(t) via (S26). Therefore, the initial guess for yplug is

yplug(x) ≈
√
vtopx/Od. (S29)

This gives a good approximation for yplug at least for small x, and the Newton-
Raphson approach then converges to the actual yplug value. Equation (S29) does not
however apply uniformly for all x. Indeed for sufficiently large x, this equation might
even predict a nonsense value of yplug larger than H(t)/2.

Nonetheless, once we have solutions for yplug for any particular x value, we can
simply make a small increment in x, and use the yplug value at one x value as an
initial Newton-Raphson guess for yplug at the next x value. Hence a profile of yplug
versus x all the way up to the end of the plate (x = 1) can be obtained.

Note that for sufficiently small Od (a system that is close to Newtonian), we an-
ticipate that yplug could be close to H(t)/2 over a significant domain of x. The New-
tonian ∂p/∂x ≡ −12vtopx/H(t)3 is then recovered (this follows from equation (S8)).
If we substitute this into equation (S25) for yplug we find

yplug ≈
H(t)

2
− H(t)3Od

12vtopx
. (S30)

Regardless of whether we are in a regime in which equation (S29) applies, or in which
equation (S30) applies, or whether we instead obtain solutions to the cubic equation
(S28) numerically, once we have values of yplug(x) we can evaluate how squeezing
proceeds over time as follows.

S3.2. Computing Film Thickness versus Time

So far our analysis has not differed from that of [5]. Now however we introduce
a point of departure. Whereas [5] assumed a given constant vtop leading to a pre-
specified H versus t relation, the difference here is that vtop is not constant and
instead must be computed as part of the solution as was done by [4], and this then
affects H versus t.

We proceed as follows. Once yplug versus x is determined, for any arbitrary vtop,
we can integrate equation (S25) to determine p versus x. Typically for 0 ≤ x ≤ 1,
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we have

p(x) =

∫ 1

x

Od

(−yplug(x) +H(t)/2)
dx. (S31)

This enforces a constraint p = 0 at x = 1. Given that yplug(x) is usually only known
numerically, this integral needs to be done by quadrature (e.g. trapezoidal rule or
Simpson’s rule). We solve for p(x) over the domain 0 ≤ x ≤ 1 remembering that p
is symmetric in the domain −1 ≤ x ≤ 0 at least in this parallel plate case.

Once p versus x is known, we evaluate the force F =
∫ 1

−1
p(x) dx that this pressure

field places on the plate: again this is determined by quadrature. This force now
needs to be set to unity to match the applied force that is assumed constant and
that is normalised to unity here.

Note that, as well as depending on x, the yplug value also depends implicitly on
Od, H(t) and vtop as follows from equation (S28). Hence for any given Od and H(t),
imposing the constraint F = 1 implies a non-linear equation that defines vtop. Once
vtop is determined, H(t) can be updated via dH(t)/dt = −vtop.

In order to solve the non-linear equation for vtop we need a starting guess. An
upper bound for vtop is the Newtonian value (see section S1) which is (H(t)3)/8 and
which is only realised in the limit Od → 0. Once vtop is found for any given Od at
some particular H(t), that same vtop value can be used as a starting guess for nearby
values of H(t) and/or Od.

Specifically the numerical routine that we used computed yplug at least 100 lo-
cations along the film, performed quadrature to obtain lubrication pressures (and
forces associated with those pressures). It then matched lubrication force to applied
force to find vtop values, and updated H(t) via Heun’s method using an initial time
step1 of 0.5, although we found we could adapt to longer times as the squeezing
proceeded and the squeezing rate slowed. Indeed, decreasing H(t) and/or increasing
Od causes vtop to fall. The issue we face in the parallel case is that for any finite
Od (no matter how small) it is always possible to find a value of H(t) at which vtop
vanishes. All squeezing motion has now stopped and the force imposed on the plate
is balanced by the force due to the yield stress of the fluid. This leads to a steady
state H(t) that we analyse shortly.

We also checked adequacy of the selected time step (set to 0.5) as follows. Heun’s
method was applied to a Newtonian system, and numerical data were compared
with an analytical solution (given in section S1). By time t = 12 (at which time the

1Although this selected time step might seem larger than expected, it should be remembered
via equation (S11) that the initial vtop in the Newtonian case is only 0.125 and the Bingham vtop
is lower still. Hence the change in H(t) over even the first time step is actually quite modest.
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Newtonian H(t) was half its original value), the difference between the numerical and
analytical H(t) was only 0.0002, an error we deemed acceptable. Systems with finite
Oldroyd number evolve, if anything, more slowly than their Newtonian counterparts
(i.e. smaller vtop), so if a time step of 0.5 was adequate for the Newtonian system, it
would also be adequate in a case for which the Oldroyd number was finite.

S3.3. Computing Contributions to the Force

The applied force (taken as unity here) is balanced by the lubrication force in the
gap, which is comprised of a part associated with yield stresses plus a part associated
with viscous stresses. In the final state, there is no viscous stress because there is no
motion.

On the other hand, at very early times, viscous stresses are expected to be rel-
evant, because any force associated with the yield stress is just a small fraction of
the total. A transition is therefore possible between a situation in which the viscous
forces are dominant and a situation in which the yield stress forces are dominant and
finding which force dominates at which time depends on the Od number.

By computing the force that would be placed on the plate in the hypothetical
situation in which vtop = 0 for any given H, the force associated with the yield stress
(i.e. so called yield force) will be obtained. Then the force associated with viscous
stresses (i.e. viscous force) is calculated as the difference between the applied force
and the yield force.

S3.4. Steady State for Viscoplastic Bingham Fluid between Parallel Plates

For any given Oldroyd number, a final film thickness can be obtained. Indeed, for
Od big enough, even the initial state, which is non-dimensionalized such that H = 1,
leads to no motion. As alluded to earlier, in the present formulation like [4] but
unlike [5], a constant squeezing force is considered to find the squeezing rate. Thus
squeezing must eventually stop. Motion coming to a stop is equivalent to having
yplug → 0 (or equivalently yplug ≪ H/2) for all x values. Thus, the plug region now
fills effectively the entire gap. Putting yplug = 0 in equation (S25)

|∂p/∂x| = 2Od/Hf . (S32)

Here Hf is the final steady state film thickness. Using the above equation to find the
pressure profile for positive and negative x directions, taking the integral of pressure
profile over the whole length of the plate, the applied force is obtained

F =

∫ 1

−1

p(x) dx =

∫ 0

−1

2Od

Hf

(1 + x)dx+

∫ 1

0

2Od

Hf

(1− x)dx =
2Od

Hf

. (S33)
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Inserting F = 1 in above equation, we find, Hf = 2Od which means that for a given
Od the final steady state thickness is twice the Od number. Thus for small Od, we
can squeeze the plates really quite close together before they stop moving. As Od
increases, the plates stop moving sooner, i.e. at larger Hf . Moreover a maximum
Oldroyd number equal to 1

2
is found for any squeezing to take place whatsoever: as

Od → 1
2
, even the initial plate separation H = 1 leads to no plate motion.

S4. Results: Newtonian Fluid between Parallel & non-Parallel Plates

The main text section 3 focussed primarily on results for the viscoplastic Bingham
fluid in non-parallel plate configurations. In the present section, in the interests
of completeness and for comparison, analogous results for a Newtonian fluid are
presented.

S4.1. Film Thickness versus Time

In Figure S3 changes of film thickness versus time are shown. For parallel plates
(equation (S14)), film thickness decreases with time and the most rapid changes
occur at early times and then film thickness changes slowly with subsequent time.
Indeed, in the parallel case, the plates only come into contact in the limit of infinite
time which means that theoretically the film thickness never quite reaches zero [2, 3].

Figure S3: Profile of film thickness vs time. For non-parallel plates, δ was set to 0.2.
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However, in the case of non-parallel plates, Hc reaches its final value δ when time
is still finite. The parallel case can be a good approximation to the non-parallel case
for sufficiently large values of film thickness, i.e. provided Hc much larger than δ. It
is only when Hc falls to comparable magnitude to δ that the non-parallel case differs
notably from the parallel one. In that situation, the film thickness on the right hand
end Hc−δ is much smaller in relative terms than the film thickness at the centre Hc.

Figure S3 for a Newtonian system looks superficially like Figure 7 in the main
text for a viscoplastic Bingham fluid (with Oldroyd number Od = 0.3 and various δ)
in the sense that the non-parallel Hc exceeds the parallel H which in turn exceeds
the non-parallel Hc−δ. The difference of course is that for Figure S3 the non-parallel
plates touch whereas in Figure 7 motion stops at a finite film thickness. In order
for plates to touch in a viscoplastic Bingham fluid it would be necessary to choose a
different combination of Od and δ, specifically Od must be less than δ/4.

In a non-parallel case, and in the limit as Hc approaches δ, the remaining gap on
the right hand end has almost closed completely. As a result, all flow is now towards
the left (which is also seen from equation (S17) for Newtonian systems which places
xc, the divider between leftward moving and rightward moving flow, at the far right
hand end). A similar situation is also seen in the special case of viscoplastic Bingham
systems which reach a steady state, with a very small but finite film thickness (i.e.
Hcf − δ ≪ 1). These states have Od very slightly greater than δ/4. Equation (31) in
the main text then gives the final xc value satisfying xcf → 1, such that all material
is sheared toward the left.

S4.2. Final Time for Plates to Touch

Figure S3 only considered data for one particular δ value. Using analytical equa-
tion (S20) we can however predict the final time for plates to touch in a Newtonian
system for any δ value. Figure S4 shows how final time in the squeeze film flow of
a Newtonian fluid between non-parallel plates changes with the value of δ. As can
be seen, the system will reach the final time sooner as δ increases. For very small
δ, it turns out that equation (S20) predicts tf scales proportionally to δ−2. Concep-
tually this is easy to understand. When δ is small, the system behaves similar to a
parallel case, at least until Hc falls to a value on the order of δ. The parallel case
equation (S13) predicts an order δ−2 time for this to occur.

Thus the bigger δ becomes, the sooner the right hand end of the plates touch.
On the other hand in the limit as δ → 0 the time for the plates to touch diverges as
the parallel case is reached. A viscoplastic Bingham system can reach a final state
in which plates do not touch at all, although in principle an arbitrarily long time is
needed to attain that final state.
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Figure S4: Final time vs δ in Newtonian non-parallel system.

S4.3. Torque Results

In Figure S5, the graph of torque for a Newtonian fluid in terms of xc is depicted.
Here xc according to equation (S17) is the same as δ/Hc in the Newtonian case.

Figure S5: Changes of torque in terms of xc for Newtonian and Bingham fluids.

Over time, Hc decreases, so xc increases. The value of Newtonian torque based
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on equation (S23), increases comparatively slowly with xc near xc = 0, and it is only
near xc = 1 that torque increases very sharply eventually to reach unity.

For comparison we have also shown the yield stress contribution to torque in
a Bingham fluid non-parallel case. Torque is again plotted against xc, but this xc

is now no longer given by equation (S17) but instead by (21), although this again
gives xc growing as Hc falls over time. The yield stress contribution to the torque
or so called yield torque now obeys equation (25) and we assume a case in which
Od = δ/4, so that at final steady state, the final xc (now denoted xcf ) satisfies
xcf → 1, corresponding to a case in which plates move and stop but almost touch.
In this final state, torque is then only half the Newtonian torque. Note also that cases
with even larger Od/δ than the one we have selected (which move and stop without
nearly touching) would have smaller δ/Hc in the final state, hence smaller xcf , and
correspondingly smaller final torque in line with predictions of equation (26).

Another interesting comparison is in the small δ/Hc limit in which the Newtonian
xc is then δ/Hc as we have said, but the xc used in the yield torque calculation via
equation (21) is roughly half that. However the Newtonian torque is linear in the
small parameter xc, whereas the yield torque computed via equation (25) (for the
specified Od/δ) is quadratic in this small parameter. The Bingham yield stress
contributions to the torque are therefore very small when δ/Hc is small, but can
start to matter as Hc falls over time, such that δ/Hc grows, and hence xc grows as
well.

S5. Results: Squeeze Film Flow of Bingham Fluid between Parallel Plates

In this section, the results obtained for the squeeze flow of viscoplastic Bingham
between parallel plates are discussed. Again these are shown for completeness and
to facilitate comparison with the non-parallel case results in the main text.

S5.1. Yield Surface

The curves of yield surface yplug with respect to x direction for the initial H value
(i.e. H = 1) and different Od numbers, have been plotted in Figure S6. As Od
number decreases, the yield surface yplug increases. For the special case in which
Od = H/2, which is the maximum Od number for which there is any motion at all
for any specified H, we see that yield surface yplug is zero everywhere since the whole
flow field is a plug region. The viscoplastic Bingham fluid is now behaving as a rigid
solid, and the yield stress is in balance with the imposed stress.

For large enough Od, there is no motion even in the initial state H = 1. However,
as Od number decreases closer to zero, more and more of the film yields, and the
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Figure S6: Yield surfaces yplug corresponding to H = 1 as functions of x for different Oldroyd
numbers. Corresponding vtop values for different Od numbers at this H are as follows: Od =
0.5, vtop ≡ 0; Od = 0.4, vtop = 0.0072; Od = 0.3, vtop = 0.0265; Od = 0.2, vtop = 0.0545; Od =
0.1, vtop = 0.0889.

viscoplastic Bingham fluid starts to become more like a Newtonian fluid which yields
over the entire film. Hence, as seen here, the value of yplug will increase when the
Od number decreases. Note also that, even though just the case H = 1 has been
considered here, decreasing H is qualitatively like increasing Od, i.e. it decreases
yplug.

S5.2. Film Thickness versus Time

From Figure S7, which shows how film thickness H varies with time t, it can be
seen that (at any given time) squeeze film thickness decreases with decreasing Od
number, this being the dimensionless measure of the yield stress. For maximum Od
number, the plates never move at all since the plug region dominates the whole film
thickness and the “fluid” behaves effectively as a rigid solid. Meanwhile, for small
Od number, yield stress is small and the system is much closer to the Newtonian
case. For instance, when Od = 0.0001, the behaviour of H versus t is almost same
as the analytical formula (equation (S14)) in the Newtonian case. Moreover the final
state of the finite Od number system corresponds to a final thickness Hf = 2Od.

Thus, the smaller the Od number, the smaller the final film thickness, the more
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the film can be squeezed before the yield stress alone is sufficient to stop the squeezing
by balancing the force which is applied to the plate. In the case Od ≪ 1, it takes
at least a time t ∼ Od−2 before H is even close to this final value 2Od. This follows
since the Od ≪ 1 case starts off close to the Newtonian case (see e.g. the case
Od = 0.0001 in Fig S7), whilst at very long times, the Newtonian system behaves as
H ∼ 2 t−1/2 (see equation (S14)).

Figure S7: Film thickness vs time for different Oldroyd numbers in a viscoplastic Bingham system
with parallel plates.

S5.3. Contributions to the Force

The total force comprises the viscous force and yield force (as per section S3.3).
The relative contributions that these make depends on the Oldroyd number Od.
Figure S8 shows the force contributions as time proceeds. For instance, for Od = 0.2,
the yield force starts to dominate the viscous force even at early times. Meanwhile
for smaller Oldroyd number (e.g. Od = 0.02), the viscous force accounts for almost
all the force early on. Then as time goes on, the yield force increases as the viscous
force decays. For each different Od number, there is a certain time at which the yield
and viscous force curves cross over and this time is expected to scale proportionally
to Od−2.
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Figure S8: Force contributions to the squeeze flow vs time for different Oldroyd numbers in the
parallel geometry.

S6. Additional Results: Squeeze Film Flow of Bingham Fluid between
non-Parallel Plates

In this section we report some additional results for a Bingham fluid squeezed
between non-parallel plates to supplement those already given in section 3. Figure 3
and Figure 4 in the main text plot values of shapes of yield surfaces for various
combinations of Od and δ. To compute these shapes it is necessary to know vtop and
xc. Relevant values are reported in Table S1 and Table S2.

Od vtop xc

0.495 6× 10−5 0.1023
0.4 0.0064 0.1168
0.3 0.0248 0.1360
0.2 0.052 0.1573
0.1 0.0853 0.1793
0.02 0.1145 0.1961

Table S1: Values of vtop and xc for the case δ = 0.2 and various Od. These vtop and xc values
correspond to the initial instant at which Hc = 1, and are needed to compute yield surfaces.
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δ vtop xc

0.1 0.06774 0.0260
0.2 0.0248 0.1360
0.4 0.01995 0.2763
0.5 0.01654 0.3498
0.7 0.00851 0.5096
0.8 0.00447 0.6009
0.9 0.00115 0.7083
0.97 2× 10−5 0.8013

Table S2: Values of vtop and xc for the case Od = 0.3 and various δ. These vtop and xc values
correspond to the initial instant at which Hc = 1, and are needed to compute yield surfaces.

Figure S9: Velocity profiles for the case Od = 0.3 and δ = 0.2 at different x locations.

Note that in addition to computing shapes of yield surfaces as Figure 3 and
Figure 4 already do, it is also of interest to know the velocity fields both in the
yielded and plug regions. Figure S9 shows the plots of velocity profiles u vs y at
various x values. Provided x > xc, these can be computed using equation (10) in the
main text. If x < xc, the profile is given by the negative of equation (10).

In Figure S9 we consider the case δ = 0.2 and Od = 0.3, a parameter combination
which occurs in both Figure 3 and Figure 4. Velocity profiles at the initial instant of
time are plotted at x = 0.2, x = 0.6 and x = 1.0, and also at x = −0.2, x = −0.6 and
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Figure S10: Profiles of |uplug| vs x for δ = 0.2 and various Od. Data are determined at the initial
instant (such that Hc = 1).

Figure S11: Profiles of |uplug| vs x for Od = 0.3 and various δ. Data are determined at the initial
instant (such that Hc = 1).

x = −1.0. According to Table S1 and Table S2 the value of xc is xc ≈ 0.1360. What
we see then is that as x moves away from xc in either direction, velocities increase in
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magnitude in general and also a higher proportion of the flow profile is in the yielded
region and less of it is in the plug region.

Another effect evident in Figure S9 is that, at any given value of |x|, there is more
flux to the left than to the right (owing to xc being positive). However this does not
always manifest in a higher uplug value on the left as Figure S10 and Figure S11 show.
The larger flux to the left is also delivered over a larger vertical distance, and this
impacts on the velocity.
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Abstract There are flows of viscoplastic Bingham fluids in which motion decays to zero in finite time typically after a load
is removed: a final state is thereby reached after finite time. Analogous flows of Newtonian fluids need however an infinite
time for motion to decay to zero. In this work, a flow of a Bingham fluid squeezed between two parallel plates is considered
with the plates subject to a constant load. This admits a final state without any motion despite the load remaining present.
Asymptotic analysis close to that final state is considered, which reveals that in the squeeze film configuration, a Bingham
fluid requires an infinite (rather than a finite time) to stop moving. That said, the decay of the motion of the Bingham fluid is
still shown to be asymptotically much faster than that of the equivalent Newtonian fluid.

1 Introduction

Viscoplastic fluids (i.e. fluids that exhibit a yield stress in-
cluding as examples gels, muds, pastes, emulsions and foams)
form one of the classes of fluids of interest in the field of
soft matter/non-Newtonian fluid mechanics [10]. Even more
generally, viscoelastoplastic fluids may exhibit yield stress
behaviour also [4]. Nonetheless the archetype of yield stress
fluids remains the viscoplastic Bingham fluid which has been
first modelled by [5]. There is a large volume of published
studies exploring the rheological behaviour of yield stress
fluids in general and Bingham fluids in particular [6, 9, 10,
15, 25–27]. It was already identified by [5] that a viscoplas-
tic material will only start to flow after an imposed stress ex-
ceeds a yield stress. A corollary of this however is that, when
the material is flowing but the stress is decaying over time,
the flow will necessarily stop once stress everywhere falls
below the yield stress. Via techniques of [16], a remarkable
characteristic of Bingham fluids is therefore that, in finite
time, they can stop dead (and their velocity can hence go to
zero) due to the aforementioned yield stress effects [7, 17].
This typically happens when the cause of the flow (the driv-
ing force) is removed, so that the flow slows and eventually
ceases. Meanwhile, for Newtonian fluids in analogous flows

ae-mail: elaheh.esmaeili@strath.ac.uk
be-mail: paul.grassia@strath.ac.uk (corresponding author)

[30], the velocity fields go to zero only in the limit of infinite
time. In view of this difference, a number of quantitative and
qualitative analyses have been performed to establish the fi-
nite time decay of viscoplastic Bingham fluids in various
geometries and under various conditions [1, 19, 29, 38].

Returning to consider fluids in general (not just viscoplas-
tic ones), there are of course many different geometries in
which rheology can be studied [3], e.g. steady shear flows,
oscillatory shear flows, extensional flows, flows through chan-
nel expansions and contractions. One particularly simple ge-
ometry to set up however is a squeeze film flow, originally
studied by [32] in the context of lubrication theory [31], but
also useful for studying interactions between a fluid and the
solid that bounds it [33, 34]. Squeeze film flows have more-
over been investigated using various types of fluids [12, 24],
Newtonian or non-Newtonian. In a squeeze film situation,
fluid inertia tends to be insignificant [31], so if a driving
force (e.g. a load on the squeeze film) were to be removed,
the flow would in principle stop immediately (regardless of
the fluid’s rheology). Hence a driving force must be applied
to continue to have any flow. That said, absence of flow does
not necessarily imply absence of a driving force, if the fluid
in question happens to be viscoplastic.

It is possible also to distinguish between a squeeze film
flow with a constant squeezing rate (see e.g. [28]) or with a
constant applied squeezing force (also known as a constant
load case, see e.g. [23]). In the latter case, flow tends to slow
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down over time even for a Newtonian fluid [32]. This hap-
pens because, as the gap becomes narrow, pressures can de-
velop within it that are sufficient to match the applied force
despite having a lower shear stress and hence a lower flow
velocity along the gap also.

In the case of squeeze film flows of yield stress fluids,
many of the results in literature (see e.g. [20, 28, 36]) are for
constant rate rather than constant load. A question of interest
in studies like those is therefore how the load must vary as
the constant rate squeezing proceeds. To determine this, it is
necessary to establish, given the kinematics associated with
the constant rate squeezing, how the stress field varies both
across and along the gap. The stresses then determine lubri-
cation pressures and lubrication forces that ultimately match
the varying load. The stresses are however such that fluid in
certain regions of the gap (typically close to the plates) is in
a yielded plastic region, whereas fluid elsewhere in the gap
(typically midway across and midway along the gap) is more
plug-like [28]. A yield surface between these regions must
be found as part of the solution of the problem. Sometimes
the terms “fully plastic region”, “pseudo-plug region” and
“fake yield surface” are used (see [2, 39] for full details), re-
flecting the fact that even the nominally plug-like region also
yields to a certain extent. However distinctions like those are
not central to the arguments that follow.

One issue with constant rate studies though is that it is
not possible to interrogate long time behaviour. For constant
rate, by definition, we always know exactly what the plate
separation is at any instant in time, and we know that there
is always a finite time at which the plates come into con-
tact. Hence we cannot ask questions about how yield stresses
in particular might cause flow to come to a stop, nor about
how the squeeze film flow behaves if and when it is close
to stopping. To address questions like those, a constant load
(i.e. constant applied squeezing force) must be considered.
In fact the solution procedure for determining the squeeze
film flows of yield stress fluids at constant rate [28] can be
readily adapted to the constant load case also, merely with
an extra step of identifying the instantaneous squeezing rate
for any instantaneous gap thickness. Despite the similarity
in procedure, what is however different as we explain next,
is the final state of the system, i.e. whether the plates touch
at the end of the process or not.

Squeeze film flow of a yield stress fluid between parallel
plates and subject to a constant applied squeezing force has
been studied by [11]. As already alluded to, the shear stress
decays as the gap between the plates decreases: in more and
more of the gap, the shear stress decays below the yield
stress. The study of [11] accordingly identified that for a vis-
coplastic Bingham fluid, the flow can cease at a finite final
gap thickness even though the load is not removed. In that fi-
nal state, the gap between the plates remains finite, and yield
stresses alone cause sufficient pressure to develop so as to

balance applied force. This feature which makes yield stress
fluids attractive for lubrication applications, potentially also
mitigating against complications associated with lubricating
gaps with rough surfaces [22].

The work of [11] was recently extended by [14]. This
showed that the final steady state of a viscoplastic Bingham
fluid squeezed between non-parallel plates is qualitatively
similar to the parallel plate case, provided the tilt angle re-
mains less than a certain threshold value, albeit the thresh-
old value itself is sensitive to yield stress. This then echoes
a more general finding of [18], namely that static (i.e. non-
flowing) states of yield stress fluids can be rather common
in many different geometries, and are not always trivial to
analyse.

Returning specifically to the squeeze film case, although
the final steady states under constant load are known, and al-
though [11, 14] also considered unsteady state evolution nu-
merically, what these works did not consider are the details
of how the unsteady state solution approaches the final state.
Specifically it was not established whether the unsteady state
reaches the final state in finite time and then stops dead, or
whether this final state is only reached in the limit of infinite
time. This therefore is the question we address here. What
we will find is that the viscoplastic Bingham fluids do not
actually stop dead in a squeeze film, but instead they take
an infinite time to reach the final state. However, the way in
which they approach the final state is faster than for a New-
tonian fluid. In yield stress fluids, what we will demonstrate
is that the difference between instantaneous gap thickness at
any time t and final gap thickness decays proportionally to
t−1, whereas for a Newtonian fluid this decays instead pro-
portionally to t−1/2.

Thus what we discover in the present work therefore is
that, for a yield stress fluid, there is more than one way to
cut off motion quickly. One way, as already alluded to, is
cutting off motion in finite time (e.g. by removing a driv-
ing force). The other way is still to require infinite time for
motion to stop, but even so, for motion to decay faster than
for the analogous Newtonian fluid. This paper explores the
latter type of behaviour specifically for a viscoplastic Bing-
ham fluid squeezed between parallel plates. Similar results
turn out also to apply for a non-parallel plate case, but the
mathematical analysis is rather more complicated. We focus
just on the simpler, i.e. parallel plate case here, but details
of the non-parallel case can be found in a thesis prepared by
one of us [13].

The rest of this work is laid out as follows. Section 2
presents the methodology that we deploy to analyse the ap-
proach of a squeeze film flow to steady state. After that sec-
tion 3 presents squeeze film results for viscoplastic Bingham
fluids with different yield stresses, assuming constant load
and focussing particularly on late times. Finally section 4
offers conclusions.
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2 Methodology

This methodology section is laid out as follows. Section 2.1
describes the governing equations for a viscoplastic Bing-
ham fluid in squeeze film geometry. In section 2.2 we iden-
tify a key dimensionless group that governs system behaviour.
Variables are cast in dimensionless form in section 2.3. After
that section 2.4 considers a yield surface within the squeeze
film. Section 2.5 then identifies the final state of the squeeze
flow. Following that in section 2.6, gap thicknesses close to
a final state are discussed. Up until section 2.6, the method-
ology merely reviews existing techniques for determining
squeeze film flows of yield stress fluids such as e.g. [14]
also reviewed. After this section however, novel aspects of
the methodology are introduced. Section 2.7 for instance de-
termines lubrication pressure and lubrication force close to
a final state. This then enables us to determine, close to that
final state, the speed of approach of the plates enclosing a
squeeze film (section 2.8) and subsequently the evolution of
the gap between them (section 2.9).

2.1 Governing equations

In the system studied here depicted in Figure 1, we have par-
allel plates of length 2L̂, with a viscoplastic Bingham fluid
in between them. A fixed force F̂app (or more specifically,
since we consider a two-dimensional system, force per unit
length in the direction normal to the plane of Figure 1) is
applied on the upper plate. This moves downward with a
time varying velocity, v̂top. The initial thickness of the gap
between the plates is Ĥ0. The instantaneous thickness is Ĥ.

In what follows, standard lubrication theory assumptions
[32] (i.e. planar two-dimensional geometry, gap thickness
much smaller than length along the gap, incompressible fluid,
negligible gravity, negligible inertia, no slip boundaries) are
considered to apply. Governing lubrication equations for a
viscoplastic Bingham fluid now become [40]

−∂ p̂
∂ x̂

+
∂ τ̂xy

∂ ŷ
= 0 (1)

∂ p̂
∂ ŷ

= 0 (2)

∂ û
∂ x̂

+
∂ v̂
∂ ŷ

= 0. (3)

Here û and v̂ are velocities in x̂ and ŷ directions, p̂ is pres-
sure and τ̂xy denotes shear stress of the viscoplastic Bingham
fluid. The Bingham model (see e.g. [5, 6]) is characterized
by two parameters namely a viscosity and yield stress. If
the magnitude of shear stress is less than the yield stress,
the Bingham material behaves as a solid. On the other hand,
when the shear stress exceeds the yield stress, the material

behaves instead akin to a viscous fluid [5, 8, 11, 35, 37].
Specifically for a viscoplastic Bingham fluid, shear stress
obeys the constitutive equation
{

τ̂xy =±τy + µp ˆ̇γ for |τ̂xy|> τy

ˆ̇γ = 0 for |τ̂xy|6 τy.
(4)

Here τy is yield stress, ˆ̇γ = ∂ û/∂ ŷ is shear rate and µp is
Bingham fluid viscosity after yielding occurs. Here the ±τy

term is positive if ˆ̇γ > 0 and it is negative if ˆ̇γ < 0. Many of
the variables are denoted here with a hat symbol. This is to
indicate that they are dimensional variables which also have
dimensionless analogues (to be used later on, with the hat
symbol dropped).

Fig. 1 Geometry of squeeze film flow of viscoplastic Bingham fluid
between parallel plates.

2.2 Oldroyd number

The lubrication force that develops in the gap between the
plates must match the applied force. In order of magnitude
terms, we estimate the lubrication pressure as being order
F̂app/L̂ and the gradient of the pressure as being order F̂app/L̂2.
Momentum balance requires that the pressure gradient should
match the divergence of the shear stress (see equation (1)). If
the shear stress has a typical value τ̂ , then in order of magni-
tude terms its divergence (at least in the initial configuration
with gap thickness Ĥ0) will be order τ̂/Ĥ0. It follows then
that τ̂ will be an order Ĥ0F̂app/L̂2 quantity.

Suppose now that the Bingham fluid has a yield stress τy.
As in [14], we define an Oldroyd number Od as

Od ≡ τyL̂2/(Ĥ0F̂app). (5)

Effectively this is the ratio between the yield stress τy and
the typical imposed shear stress Ĥ0F̂app/L̂2, at least assum-
ing a shear stress corresponding to the initial gap thickness.
If Od ≪ 1, then the yield stress is much smaller than the typ-
ical shear stress needed to balance applied force. The system
must yield, leading then to viscous stresses over and above
the yield stress. However as the gap narrows, the shear stress
τ̂ required to balance the applied force falls likewise, becom-
ing only order ĤF̂app/L̂2 instead of Ĥ0F̂app/L̂2. Eventually
τ̂ falls to a value commensurate with the yield stress τy.
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2.3 Non-dimensionalization of equations

Equations are now expressed in dimensionless form. Hori-
zontal lengths are scaled by L̂, whereas vertical lengths are
scaled by Ĥ0. Meanwhile horizontal velocities are scaled by
ũ ≡ (F̂app/µp)(Ĥ2

0/L̂2), and vertical velocities are scaled by
ṽ ≡ Ĥ0ũ/L̂. Times are scaled by Ĥ0/ṽ ≡ L̂/ũ. Pressures are
scaled by F̂app/L̂, which has units of pressure since F̂app

is taken as applied force per unit distance transverse to the
two-dimensional calculation domain. We make shear rate
ˆ̇γ ≡ ∂ û/∂ ŷ dimensionless on the scale ũ/Ĥ0 and shear stress
τ̂xy dimensionless on the scale µpũ/Ĥ0.

All variables from here onward are dimensionless. The
dimensionless analogues of equations (1)–(3) have the same
form as the originals merely with the hat symbols dropped.
Meanwhile the dimensionless analogue of the constitutive
equation (4) is
{

τxy =±Od+ γ̇ for |τxy|> Od

γ̇ = 0 for |τxy|6 Od.
(6)

Here the ±Od term is positive if γ̇ > 0 and is negative if
γ̇ < 0.

2.4 Determining the yield surface

We now work towards identifying the location of the yield
surface, which recall separates plastic and plug regions. The
analysis follows the approach of [28]. Integrating the dimen-
sionless analogue of equation (1), and applying the bound-
ary condition in which at y = H(t)/2, we have τxy = 0, shear
stress is obtained. At least in regions in which the fluid is
yielding, this can then be related to shear rate

τxy =
∂ p
∂x

(
y− H(t)

2

)
=±Od+ γ̇ =±Od+

∂u
∂y

. (7)

Taking the integral of equation (7) using a no slip boundary
condition (i.e. u = 0 at y = 0), a velocity profile across the y
direction can be deduced

u =
∂ p
∂x

1
2

y(y−H(t))−Od y. (8)

This velocity profile applies throughout the yielded plastic
region. In the plug region, we have instead u = uplug, where
uplug is a value to be determined. The boundary between the
plastic region and the plug region, defines the yield surface
y = yplug. We use the fact that at the yield surface, the shear
rate is zero (∂u/∂y = 0) or equivalently |τxy| = Od. There-
fore putting this condition into equation (7), the expression
for the pressure gradient in the x direction can be determined

dp/dx =−Od/(−yplug(x)+H/2), (9)

which applies for x > 0, but has a sign change when x < 0.
Now, via substitution of equation (9) into (8), the velocity
profile for both yielded plastic and plug regions is obtained

u =





− Od

2(H(t)
2 − yplug)

y2 +
Od

(H(t)
2 − yplug)

yplugy

for y 6 yplug

Od

2(H(t)
2 − yplug)

y2
plug ≡ uplug

for yplug < y <
H(t)

2
,

(10)

which again applies for x> 0, but switches sign if x < 0. The
velocity field in the domain H(t)/2 < y < H(t) is symmet-
ric with that in the domain 0 < y < H(t)/2 which is given
here. Note that, amongst other things, equation (10) speci-
fies uplug, provided yplug is known.

Using the definition for the flow rate Q ≡ 2
∫ H(t)/2

0 udy,
along with equation (3), we can deduce ∂Q/∂x= vtop, where
vtop is the velocity at which the top plate moves relative to
the bottom plate. The sign convention adopted here is that
downward motion of the top plate corresponds to positive
vtop. It now follows

Q ≡ 2

(∫ yplug

0
udy+

∫ H(t)
2

yplug

uplug dy

)
= vtopx. (11)

Inserting equation (10) into (11), taking the integral and af-
ter some algebra, the expression for the yield surface yplug
becomes [28]

y3
plug−

3
2

H(t)y2
plug−3

vtop|x|
Od

yplug+
3
2

vtop|x|H(t)
Od

= 0. (12)

One issue with solving the above equation for yplug is
that vtop is a priori unknown. In order to determine the plate
velocity vtop, in general we need to proceed iteratively as
[14] explained. For any assumed value of vtop and any posi-
tion x along the plates and any given Oldroyd number Od, it
is possible to identify the location of a yield surface yplug(x).
In any case once the yield surface is identified for an as-
sumed vtop, it is possible to deduce the lubrication pressure
field developed in the gap (obtained via equation (9)), and
hence the lubrication force: further details of pressures and
lubrication forces that we compute are given later on, see
section 2.7. The value of vtop then generally needs to be ad-
justed iteratively until the lubrication force balances the ap-
plied force. In fact in the dimensionless system considered
here, forces have been scaled in such a fashion that the di-
mensionless applied force is effectively unity.

Another complication however is that equation (12), de-
termining yplug for any given vtop, x and Od, is a cubic equa-
tion that is rather awkward to solve [14]. Here however we
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are specifically interested in systems approaching close to
their final state. In this limit, small vtop is expected. For
small vtop, the second and fourth terms on the left hand side
of equation (12) dominate, with the first and third terms be-
coming smaller (which is easily verified a posteriori). It then
follows [14] that

yplug ≈
√
|x|vtop/Od. (13)

For small vtop what this equation means is that yplug(x)
is small, i.e. the yield surface at yplug(x) and its symmetric
partner at H − yplug(x) are both close to the plates. Most
of the gap is then in the plug region, and most of the fluid
flux out of the gap is carried by the plug, with very little
flux contribution from the plastic region. It follows that the
flux now satisfies Q ≈ uplugH with uplug ≈ Od y2

plug/H in
equation (10). Using equation (11), we can thereby deduce
equation (13). This approximate formula for yplug(x) was
originally obtained by [14] for a general vtop but just in the
neighbourhood of x= 0. However when vtop is small, as hap-
pens when the final state is approached, this same formula
for yplug applies now for a general x.

2.5 Final state

In the present formulation similar to [11] but unlike [28], a
constant squeezing force is applied to determine the squeez-
ing rate. Squeezing must however eventually stop. For any
given Oldroyd number, a final gap thickness (denoted H f )
can be obtained. Indeed, for large enough values of Od, we
will see that even the initial state, which is non-dimensionalized
here such that H = 1, leads to no motion.

When motion comes to a stop that is equivalent to hav-
ing yplug → 0 (or equivalently yplug ≪ H/2) for all x val-
ues. Thus, the plug region now fills essentially the entire gap.
Putting yplug = 0 and H = H f in equation (9)

|dp/dx|= 2Od/H f , (14)

with dp/dx being positive if x < 0 and negative if x > 0. In
addition, p = 0 at x =±1.

Force is obtained by integrating the pressure profile

F =

∫ 1

−1
p(x)dx =

∫ 0

−1

2Od
H f

(1+ x)dx+
∫ 1

0

2Od
H f

(1− x)dx

=
2Od
H f

. (15)

Inserting F = 1 in the above equation, we find H f = 2Od.
Thus at any given Od the final steady state thickness is just
twice the Od number. For small Od, it is possible to squeeze
plates really quite close together before they stop moving.
As Od increases though, the plates stop moving at a rather
larger H f . Moreover a maximum Oldroyd number equal to 1

2

is found in order for any squeezing to take place whatsoever:
as Od → 1

2 , there can be no plate motion even at the initial
plate separation H = 1.

Systems with Od ≥ 1/2 do not yield at all, but systems
with Od < 1/2 evolve from H = 1 initially to H f = 2Od
at steady state. Newtonian systems, which have Od zero by
definition, permit the plates to approach arbitrarily close to-
gether, i.e. H f → 0.

Having determined the final state, what we describe next
is how to perturb the system for H close to H f .

2.6 Gap thicknesses close to the final state

Thus far we have identified the final state of the squeeze film
flow, but have not determined how rapidly flow comes to a
stop. To determine that, what needs to be established is how
vtop varies as a function of H. We then know that

dH/dt =−vtop, (16)

the negative sign here arising from the sign convention that
plates approaching one another are considered to have posi-
tive vtop. After finding vtop for any given H, we can solve for
how H evolves with time t. Clearly vtop is identically zero
in the final state when H = H f , but the question here is how
vtop behaves for H > H f , and in particular for H just slightly
greater than H f . Based on arguments presented in [18, 19],
the flow of yield stress fluids tends to slow to a stop more
quickly than Newtonian fluids do. This then could also im-
pact on the functional form of vtop versus H.

For parallel plates with a Newtonian system (originally
tackled by [32] but summarised in dimensionless form in
[14]), final gap thickness H f is zero, and velocity dH/dt
turns out to be −H3/8. The Newtonian solution for H is
then

H = (1+ t/4)−1/2 (17)

meaning that at long times

H ∼ 2t−1/2. (18)

For parallel plates with a viscoplastic yield stress fluid,
final gap thickness H f is non-zero as we have seen. It is con-
venient then to write

H(t)≡ H f +∆H(t), (19)

where ∆H(t) (the difference in gap thickness from the final
state) must eventually decay towards zero. For a Bingham
fluid, we will show shortly as one of the main novel con-
tributions of this work (see section 2.8), that in the asymp-
totic limit when ∆H is small, the value of d∆H/dt is pro-
portional to −∆H2. This still takes an infinite time for ∆H
to reach zero, and hence an infinite time for H to reach the
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final state H f (see section 2.9). However because it involves
a quadratic ∆H2 not a cubic H3/8, the approach is faster
than the purely viscous Newtonian case. In addition, in the
viscoplastic Bingham fluid case, the value of d∆H/dt also
turns out (again see section 2.8) to depend on Oldroyd num-
ber Od, and part of our aim here is to elucidate how Od
impacts upon the time to approach the steady state.

2.7 Determining the pressure field and lubrication force

Having found a formula for yplug (equation (12) or more
specifically equation (13) close to the final state), we can
now determine the pressure field in the gap. Pressure for
x > 0 obeys equation (9) and for x < 0, it is similar, merely
with opposite sign. Physically this is simply a momentum
balance, with pressure gradient matched to the divergence
of the shear stress. The divergence of the shear stress is then
computed on the basis that shear stress vanishes on the cen-
treline of the gap, but equals the yield stress on the yield
surface [28].

Close to the final state, in the asymptotic limit of small
∆H and small vtop, we Taylor expand the pressure gradient,
for x > 0

dp
dx

≈−2Od
H f

(
1− ∆H

H f
+

2yplug(x)
H f

)
(20)

with an analogous equation for x < 0, solely with opposite
sign. This equation implies that having finite ∆H makes the
magnitude of the pressure gradient slightly smaller (mean-
ing the lubrication pressure is less able to resist the imposed
pressure). Meanwhile having finite yplug makes the magni-
tude of the pressure gradient slightly bigger (meaning the
lubrication pressure is more able to resist the imposed pres-
sure).

Integrating equation (20), after substituting from equa-
tion (13) and imposing conditions that p = 0 at x = ±1, we
find

p(x)≈ 2Od
H f

(
(1−|x|)− ∆H

H f
(1−|x|)

+
4
√

vtop/Od
3H f

(1−|x|
√
|x|)
)
. (21)

In the above equation, the first term is dominant and gives
the final pressure field, making a positive contribution to the
pressure. The second term has a negative contribution to the
pressure due to the fact that when the gap is still thick, the
pressure may be rather weak, but it can become stronger and
support the force applied on the system when the gap thick-
ness is smaller. The third term has a positive contribution to
the pressure, since the system is able to yield in order to in-
crease the pressure to sustain the applied force. We integrate

this pressure field p(x) over the whole domain −1 ≤ x ≤ 1
to find the lubrication force F which is comprised of three
terms as follows

F ≈ 2Od
H f

− 2Od
H2

f
∆H(t)+

16Od
5H2

f

√
vtop

Od
. (22)

2.8 Determining speed of approach of the plates

In equation (22) the lubrication force F , must match the ap-
plied force, which is normalised to unity in the dimension-
less system being considered here. However the first term
on the right hand side, which is the force in the final state,
is also necessarily unity (as equation (15) already found). In
order to keep F = 1, the second and third terms on the right
hand side are required to be equal. Thus

vtop ≈
25
64

Od ∆H(t)2. (23)

We recall also (see equation (16)) that dH(t)/dt =−vtop and
hence

d∆H(t)
dt

≈−25
64

Od ∆H(t)2. (24)

As already stated earlier, the value of d∆H/dt is indeed pro-
portional to −∆H(t)2.

The above equation is well known in chemistry and chem-
ical engineering albeit in a different context. It is in fact en-
tirely analogous to the equation that arises for the evolution
of reactant concentration for a second order reaction [21]
provided reactants are supplied in stoichiometric amounts
(neither of them in excess). This then leads to a relatively
slow decay because both reactants become exhausted simul-
taneously, thereby slowing the reaction rate significantly. This
is then a rather slower decay than the late-time exponential
decay which arises when one reactant is supplied in excess,
meaning that just one of them becomes exhausted. On the
other hand, the decay is still faster than for a third order re-
action in stoichiometric amounts, which is the analogue of
equations (17) and (18). We also observe that the Oldroyd
number Od within equation (24) is analogous to a second or-
der kinetic rate constant. Hence decreasing Od tends to slow
down the decay.

2.9 Evolution of plate separation

The gap between the plates H(t) can now be determined re-
membering here that ∆H(t) ≡ H(t)−H f with H f given by
equation (15). The solution of equation (24) for ∆H versus
t is obtained as

∆H ≈ ∆H1

(25/64)Od (t− t1)∆H1 + 1
(25)
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where ∆H1 is any value at which ∆H is small, and then t1
is the time at which ∆H reaches ∆H1. Equation (25) cannot
be extrapolated for t values much earlier than t1, because
∆H would then be predicted to grow, whereas the derivation
leading up to equation (24) was an asymptotic analysis that
assumed small ∆H. On the other hand, for t > t1, the equa-
tion should be reliable. Moreover in the limit when t ≫ t1
and (25/64)Od (t− t1)∆H1 ≫ 1, we find a very simple for-
mula

∆H ∼ 64/(25Od t). (26)

It follows then that the approach to the final state for the
yield stress fluid requires an infinite time and, at any instant
in time, the state of the system is sensitive only to the value
of Od number (i.e. ratio between yield stress and imposed
stress).

In addition to the analytical approximations described
above, we can also compute ∆H(t) ≡ H(t)−H f versus t
numerically (details of the numerical procedure are already
discussed in [14] so are not reproduced here). If we plot
those data on a log-log graph, then based on equation (26)
a slope −1 is expected for long times. Although this is still
an algebraic decay (rather than an exponential one), even so
it is faster than the decay of the Newtonian case, given by
equation (17) and then reducing to equation (18), namely
H ∼ 2t−1/2 in the long time limit. Plotting the Newtonian
system on a log-log graph will give a slope of −1/2, indicat-
ing a more gradual decay than happens for a slope of −1.

3 Results and Discussion

In what follows, sections 3.1–3.2 deal with evolution of squeeze
film gap thickness, and sections 3.3–3.4 deal with difference
between gap thickness and final gap thickness.

3.1 Squeeze film gap thickness versus time

Figure 2 shows the profiles of gap thickness (computed nu-
merically using the procedure of [14]) versus logarithmic
time for a viscoplastic Bingham fluid with different Od val-
ues, and also for a Newtonian fluid with Od = 0. As seen,
for small Oldroyd numbers, the curves will stay close to
the Newtonian curve (i.e. Od = 0) up to a comparatively
long time. Meanwhile the curves for larger Od numbers de-
viate from the Newtonian graph sooner. In addition to that,
gap thickness for each Od number eventually approaches
H f ≡ 2Od at long enough time. Note though that this value
is approached sooner as Od increases.

Fig. 2 Gap thickness H against logarithmic time t for different Od
values.

3.2 Gap thickness versus rescaled time

The timescale that is of interest in this system is order 1/Od2,
which can be deduced as follows. For small enough Od, sys-
tems should start off following Newtonian behaviour (equa-
tion (17) and eventually equation (18), H ∼ 2t−1/2). How-
ever that behaviour must cease once equation (18) predicts
H values comparable with H f (with H f ≡ 2Od itself given
by equation (15)). This of course happens when t ∼ 1/Od2.
We can however rescale time (from t to Od2 t) in an effort to
obtain a universal behaviour for different Od values. We also
rescale the gap thickness (plotting H/H f instead of just H).
Thus Figure 3 presents rescaled logarithmic gap thickness
H/H f against rescaled logarithmic time Od2 t for various
Od numbers.

Fig. 3 Logarithmic ratio of gap thickness to final state gap thickness
H/H f in terms of rescaled logarithmic Od2 t for different Od values.
Long time asymptotic formulae given respectively by equations (27)
(dash-dot curve) and (28) (dashed line) are also plotted.
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As seen, each curve now starts off at a different location
for each Oldroyd number, but at sufficiently large Od2 t they
all collapse together onto a single master curve. In fact since
the initial H is unity whereas H f ≡ 2Od, it follows that the
initial H/H f is (2Od)−1. Therefore, as Od decreases, the
initial H/H f is larger, whilst the master curve is likewise
attained at a larger H/H f value and hence at a smaller Od2 t.

Using equations (15), (19) and (26) a possible asymp-
totic form for a master curve can be deduced

H/H f ∼ 1+ 32/(25Od2 t), (27)

which is plotted within Figure 3. Obviously though, this for-
mula presents issues for the case Od ≪ 1, because we then
also need very long times t to prevent Od2 t from being van-
ishingly small. If times are not sufficiently long, then the
Od ≪ 1 case should follow instead the Newtonian equa-
tions (17)–(18), not equation (26). If a system with Od ≪ 1
satisfies, at least temporarily, equation (18) instead of equa-
tion (26), we can deduce an asymptotic formula

H/H f ∼ (Od2 t)−1/2. (28)

This is also plotted in Figure 3.
What is apparent is that equation (27) does not give a

good fit to H/H f over a wide domain of H/H f values, whereas
equation (28) evidently does, particularly when Od is small.
The issue with equation (27) is that the analysis leading to it
is based on an assumption that ∆H is rather smaller than H f
and hence H/H f ≡ 1+∆H/H f can never be much larger
than unity if the formula is to be valid.

3.3 Difference in gap thickness versus time

Figure 4 presents both numerical and analytical ∆H (i.e. the
difference in gap thickness from the final state) on a loga-
rithmic scale in terms of logarithmic time for different Ol-
droyd numbers. Here the numerical ∆H is computed using
the methodology of [14], whereas the analytical ∆H is ob-
tained using equation (25). Values of ∆H1 and t1 to use
within equation (25) were themselves read off from the nu-
merical data: see values in Table 1. Equation (25) is however
insensitive to which combination of ∆H1 and t1 is chosen,
provided we select a combination with ∆H1 rather smaller
than H f . This is certainly the case in Table 1 when Od = 0.2,
Od = 0.1 or Od = 0.05. For Od = 0.01 or Od = 0.001 this
is more difficult to achieve however, as it would require very
long t1 values, so we have opted in those cases for ∆H1 val-
ues just slightly smaller than H f .

Gap thickness for Od = 0 (i.e. Newtonian fluid) decreases
with a slope of −1/2 in Figure 4, at least at long times.
Meanwhile subtracting H f from H to obtain ∆H moves the
curves for the viscoplastic Bingham fluid below the Newto-
nian case.

Fig. 4 Numerical (N) and Analytical (A) values of logarithmic ∆H
against logarithmic t for different Od values.

Od ∆H1 ∆H1/H f t1 Od2 t1
0.001 0.0013 0.65 40000 0.04
0.01 0.01277 0.6385 10000 1
0.05 0.01044 0.1044 4000 10
0.1 0.00913 0.04565 2500 25
0.2 0.00483 0.012075 2500 100

Table 1 Values of ∆H1 and t1 used for each Od.

In the Bingham fluid case, by plotting numerical and an-
alytical ∆H values against time, we see that discrepancies
arise at early times, but for times greater than t1, the analyt-
ical predictions and numerical data tend to agree. As Od de-
creases however, we need to select longer and longer times
before agreement is attained. Indeed for Od = 0.001, the nu-
merical and analytical data are only just starting to agree at
the very largest timescales we have considered.

For Od = 0.2, Od = 0.1, Od = 0.05, we see in Figure 4
good agreement between numerical and analytical formu-
lae for ∆H less than about 2× 10−2, which matches with
the notion that ∆H/H f needs to be small for the analytical
formulae to work well, remembering here that H f = 2Od.
Smaller Od values e.g. Od = 0.01 and Od = 0.001, in prin-
ciple should require even smaller ∆H values before the an-
alytical formula starts to be reliable. Judging the quality of
the analytical formula for these smaller Od is however less
straightforward for the following reason. By construction we
fit the analytical formula to the numerical data at t1 and ∆H1,
and so what we must verify is that the formula continues to
fit well for t ≫ t1 and ∆H ≪ ∆H1, but that then needs data
out to very long times. Nonetheless, as Table 1 makes appar-
ent, when Od is small, meaning that H f is also small, it is
not easy to reach a ∆H1 that is itself much smaller than H f .

From Figure 4, ∆H for all values of Od number decays
towards zero as time proceeds, and moreover the curves at
long times appear to acquire a slope of −1 as expected based
on equation (26). For bigger Od numbers, this regime is at-
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tained sooner. For small Od on the other hand, the curves fol-
low the Newtonian case (slope −1/2) for quite some time,
before deviating towards a slope −1.

Fig. 5 Numerical values of rescaled logarithmic ∆H/H f in terms of
rescaled logarithmic Od2 t for different Od values. Long time asymp-
totic formulae given respectively by equations (28) (dashed line) and
(29) (dash-dot line) are also plotted.

3.4 Difference in gap thickness versus rescaled time

Figure 5 shows the rescaled logarithmic gap thickness namely
∆H/H f (computed numerically) against rescaled logarith-
mic time Od2 t for different Oldroyd numbers. Recall also
the basis for this rescaling: the characteristic timescale to ap-
proach close to the final state is expected to be on the order
of 1/Od2.

In Figure 5, all of the plots do appear to collapse together
at sufficiently long times. At very short times of course there
are discrepancies: the value of ∆H can never exceed 1−2Od
and so ∆H/H f can never exceed (2Od)−1−1. Focussing on
asymptotics at much longer times though, the analogue of
equation (27) is

∆H/H f∼32/(25Od2 t). (29)

This is plotted on Figure 5. It does fit the data when Od2 t
is sufficiently large and ∆H/H f is sufficiently small. On the
other hand, it does not fit the data well for larger ∆H/H f .

To attain large values of ∆H/H f (well in excess of unity)
we require small Od. Data with small Od (e.g. Od = 0.001,
Od = 0.01) do collapse together in Figure 5 but they col-
lapse onto the Newtonian formula given by equation (28),
also plotted on Figure 5. Even though equation (28) gives
H/H f rather than ∆H/H f , they are essentially the same
when ∆H/H f is large.

4 Conclusions

Viscoplastic fluids (e.g. gels, muds, pastes, emulsions, foams)
are of interest because, amongst other properties, they can
stop flowing much more suddenly than Newtonian fluids do.
Studies on these types of fluids in the past have identified
that they have the capacity to stop dead in finite time, if a
driving force or a load is removed. However viscoplastic flu-
ids can also stop moving, even when a load is maintained.
In this work we looked at a squeeze film problem to explore
such behaviour. What we have found is that yield stress flu-
ids in a squeeze film require infinite time to stop, but even so
their motion still decays faster than what happens with New-
tonian fluids. Specifically we see a decay in the difference
between instantaneous squeeze film gap thickness and final
gap thickness scaling inversely with time. The Newtonian
analogue however scales inversely with square root of time.

The decay towards the final thickness in yield stress flu-
ids depends also on the Oldroyd number Od, which mea-
sures the ratio between the yield stress and the initial ap-
plied stress. For larger Od numbers i.e. larger yield stresses,
the decay towards the final state is faster than for smaller
Od numbers. This implies an advantage of selecting fluids
with larger Od in lubrication applications: squeeze films ap-
proach a final gap thickness more rapidly, and then remain
at that thickness. On the other hand, smaller values of Od
lead to the system behaving, for quite some time, similar
to a Newtonian fluid with its slower decay. It is then only
at very long times with very small gap thicknesses that the
faster than Newtonian decay in rate of squeezing becomes
evident. Although the results presented here concern paral-
lel squeeze films, it turns out they also extend to the non-
parallel case (see thesis work of one of us [13] for details),
albeit the calculations are less simple to perform than for the
parallel case.
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