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ABSTRACT

In the natural environment many organisms demonstrate the ability to synchronise
their life cycle to periodic environmental variations. Previous studies have shown
that life histories consisting of a contiguous series of stages all with density
independent development rates exhibiting the same dependence on time cannot
synchronise to a periodic environmental variation. The same studies established that
both dormancy and quiescence at specific points in the life cycle could produce
strong synchronising effects.

In this thesis I examine a very general strategic model of a two-stage life-cycle, each
stage having a density independent development rate with a characteristic periodic
time-dependence. I develop a concise circle map representation between the
emergences of successive generations. The two stage circle map which relates these
emergences is composed from two simple rotations and an interphase map which
represents the relationship between the physiological times for the two life-history
stages. I explore synchronisation behaviour of the life cycle model in terms of the
qualitative dynamics that correspond to the iterative dynamic behaviour of the
associated two stage circle map.

I derive a series of analytic results relating the behaviour of systems whose
interphase maps are interrelated and give analytic conditions for a broad class of
two-stage circle maps to have a fixed point (that is for the systems they describe to
reach the critical life-history stage at the same point in each environmental cycle).
Finally I report the results of numerical investigations of the relationship between the
biological characteristics of the development functions and the fine-scale details of
the locking behaviour of the systems they define. I illustrate the practical
implications of these findings by examining results obtained when the model is
parameterised with data for two diverse organisms, namely a beetle Catops nigricans
and a micro-organism phytoplankton.
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CHAPTER 0

INTRODUCTION



0.0 INTRODUCTION

The most persistent cycle in nature is the diurnal light cycle which is
accompanied by a slightly out of phase temperature cycle. It is hard to imagine
how cells in the course of their evolution could have ignored this physical
relationship and the limitations it imposed’ (James 1964)

Almost all organisms exist in environments which exhibit predictable variations
in quality. Evidence abounds in the real world of organisms that can at least on
average, predict the timing of periods of both favourable and unfavourable
conditions with considerable accuracy because the relevant factors show
variation which has a very strong periodic component. These natural periodicities
result from the inexorable periodic motions of the earth about its own axis or the
sun, or even the moon about the earth. They can also come from more
unexpected sources, such as variations in the rate of addition of nutrient to a
commercial yeast or bacterial culture arising from organisational or experimental
regimen. Populations in such periodically varying environments frequently
exhibit dramatic changes in the relative abundance of individuals in different life-
history stages at frequencies which are clearly harmonically related to that of the
environmental variation. These changes often show every sign of being
synchronised to the environmental periodicity in the sense that key biological
events occur at the same point (or points) in the environmental cycle.

The advantages to an organism of synchronising its lifecycle to those of its con-
specifics include increasing survival by predator satiation and (in sexually
reproducing organisms) enhancing the probability of finding a suitable mate.
Although synchronisation to the lifecycle of con-specifics does not logically
imply synchronisation to a periodic environment it is clear that if a population of
identical organisms synchronise tightly to an environmental periodicity then they
are by definition synchronised to one another. Moreover, the benefits of
synchronisation to con-specifics accrue only where the population of such con-
specifics is large (such as emergence synchrony induced by pheromones in
locusts (Mordue et al 1980) ) whereas the benefits of synchronisation to the
environment (and the penalties of failure to achieve that synchrony) continue to
operate even when the population contains very few individuals.



Although mechanisms have been proposed which produce such synchrony by
operating at the population level (see for example Hoppensteadt & Keller 1976),
I suggest that the most general class of mechanisms operates by controlling the
development rate of the individual organism. In this thesis I seek to elucidate the
necessary characteristics of a broad class of such mechanisms which can lead to
synchronisation of an individual life-cycle to periodic environmental variation. I
examine the conditions under which an organism whose development rate is a
periodic function of time can achieve synchronisation to that periodicity or to a
harmonic or sub-harmonic of it.

I shall shortly give an outline of the two main classes of synchronisation
mechanisms that have been hypothesised but prefer to first present a diverse
selection of reported examples, both natural and induced, of biological
synchrony.



0.1 BIOLOGICAL SYNCHRONY

Biological (as opposed to formal) synchrony is defined (less strictly) to be a high
degree of concurrence (rather than exact simultineity) of a population in the
engagement of a particular activity (Zeuthen 1964). Although laboratory
experiments to induce synchrony in mass cultures go back to at least Angerer
(1936), 1 surprisingly find that not until Zeuthen (1964) are the topics of induced
and natural synchrony considered together in the same volume. Perhaps this
stems from the large scale chanelling of resources in the singular quest for the
hypothesised (but still unfound) autonomous biological clock (e.g. Edmunds
1976, Winfree 1986).

Natural Synchrony

At the most fundamental level, mitotic synchrony (division of nuclei) within the
cell has long been documented in the embryos of a wide range of taxa including
slime moulds (Lister & Lister 1925), amoebae (Kudo 1947), sea urchins (Agrell
1956), Euglenineae (Leedale 1959, Cook & James 1960) and amphibians
(Agrell 1964). The natural life cycle synchrony of cell division (from mother to
two daughter cells) was first reported at micro-organism level in 1905 by Gough
for the dinoflagellate Ceratium and subsequently in the individual cells of larger
animals (Carleton 1934, Halberg et al 1958). In the case of Ceratium such
natural synchrony of division was later confirmed in the laboratory to be so
precise as to occur only at night around 3.30 A.M. (Braarud & Pappas 1951,
Sweeney & Hastings 1958). Shortly after this, 'natural phasing' of cell division
was observed in a variety of algae such as the genus Chlamydomonas (Bernstein
1960) and thereafter in several others (Sweeney & Hastings 1962). Ongoing
research has continued to show that synchronous behaviour among such simple
organisms is indeed widespread (Heath 1988).

Life cycle synchrony of more complex (multi-cellular) organisms is well
documented in arthropods through observations of the emergence of adults. One
of the most dramatic examples of this phenomenon is the regular appearance of
adults of the various USA cicadas which in some species takes place at intervals
of up to every 17 years (Simon 1979). A related pattern of behaviour is shown
by many odonate species (damselflies and dragonflies) which have life cycle
lengths in the range three to seven years. Although adults of these species
appear in most years they do so only at a small number of highly predictable






inductive synchronisation treatments included algae such as Chlorella (Tamiya
et al 1953), dinoflagellates such as Gonyaulux (Sweeney & Hastings 1958),
amoebae (Angerer 1936, James 1959), yeasts (Sylven et al 1959, Spoerl &
Looney 1959), and ciliate protozoa such as Tetrahymena (Zeuthen 1964).

The fact that synchronous behaviour could be induced in cell populations by
external treatments sparked much excitement into speculation of potential
underlying mechanisms. Intuitively it is clear what effect a synchronising
mechanism must induce in the population for synchronisation to be achieved.
James and Zeuthen have provided eloquent summary statements:

“Successful experimental induction of division synchrony requires that a
growing culture be subjected to an experimental treatment which will either
advance or retard some of the cells in their duplication cycle with respect to the
remainder’” (James 1964).

“Synchronisation depends on the establishment of conditions which will reduce
the rate of preparation along one or a few channels, primarily the change in rate
depending on stage of division such that individuals closest to division are most
retarded those furthest away are least retarded” (Zeuthen 1964).

However, it is much less obvious (and still unresolved) what the underlying
mechanism(s) actually are. Postulated synchronisation mechanisms, although not
necessarily mutually exclusive, fall into two main classes according to their
proposed undelying rimer. These proposed timers by their very definition, as we
shall now see, are necessarily mutually exclusive.



0.2 A BRIEF HISTORY OF TIMERS

The broad class of proposed biological timers divides into two distinct sub-
groups according to the category of timer mechanism hypothesized to underly
the biological process.

(a) Autonomous Clock Hypothesis

The most obvious hypothesized timer is an autonomous biological clock located
inside the organism which is subject to entrainment by external periodicity
(Edmunds 1976). Time information is postulated to be generated intrinsically
from within the organism and interaction with the external environment merely
serves to adjust the biological process so that it remains ‘in sync’.

A frequently cited observation put forward as evidence for the existence of an
autonomous biological clock is that of the circadien rhythm observed in many
insect species (Brown 1976, Mordue et al 1980). Such a rhythm is displayed in
the perochial 'cockroach in the actograph’' experiment through locomotor
activity which recurs in a regular daily pattern. The persistence of this rhythm
when the insect is kept under constant light-proof conditions away from a
zeitgeber (transmitter of temporal information) has been the single definitive
result interpreted to demand the requirement for a private endogeneous timer
(Brown 1976).

Significantly, a circadien rhythmn has never been found to exactly match
external (solar) time but rather 'free runs' or 'drifts’ relative to it. This implies that
the rhythmn recurs only at intervals of slightly more (or less, depending on the
species) than 24 hours. Indeed, the term circadien was first coined by Halberg
(1959) to emphasise the approximate character (circa- about, dien -a day) of the
observed biological rhythmn.

Supporters of the autonomous clock have argued that because the duration of
the drift is stable and largely resistant to the level of constant temperature (Qjo=
1), the drift must correspond with the period of oscillation of the postulated
internal clock. They deduce that the presence of the external zeitgeber merely
acts to entrain the postulated inate timer of the organism to that of the periodic
environment. Perversely the conclusion is drawn that the observed drift gives
further support to the hypothesis that the timer is in the organism rather than in



the environment. I prefer to interpret this empirical observation more
objectively. In the insightful words of Brown (1976), '... the experiment merely
demonstrates that whereas biological rhythmns can become circadien it is only
hypothesis that the clocks are too'.

In the insect literature the autonomous clock hypothesis has recently fallen into
disfavour and has been entirely abandoned in the context of explaining diapause
because of observed ‘gradual changes in diapause intensity’ (Hodek 1983). The
greatest argument against the existence of an autonomous clock is the simple
fact that despite many years of searching not even a single component has yet
been discovered (Palmer 1976, John Tyson personal communication SIAM
conference San Diego 1994 ).

(b) Non-autonomous Clock Hypothesis

The second main hypothesis postulates that time interval information is received
from an external source (such as the sun) and is then transformed into time
information by the organism. Supporters of the non-autonomous clock
hypothesis advocate that the periodic motions of the earth, moon and sun
relative to each other provide a continual time reference frame which is mediated
to the organism through the biological effect of the environmental periodicities
that they engender. This is such a broad definition that it could holistically
embrace all other proposed timers. In a sense the non-autonomous clock
hypothesis can thus be regarded as the alternate hypothesis to the autonomous
clock (either the proposed timer is dependent on the environment or it is not).

There is an argument that the above historically-adhered-to classification is an
over-simplification of the types of timer mechanism that may exist. Even where
the proposed timer is (supposedly) autonomous, we have seen that some
interaction with the environment (entrainment) is necessary to keep perfect time.
Further, there is no requirement that proposed timers be mutually exclusive.

Perhaps a more appropriate classification would be in terms of the ‘plasticity’ of
the internal response exhibited to the environment. The autonomous clock timer
could then be classified as a rigid type of internal response in which the
organism could only keep correct time under a very narrow range of external
(environmental) periodicity (e.g. 24 hour). The non-autonomous timer response
would imply a more plastic response whereby the organism could maintain






0. 3DEVELOPMENT IN A CONSTANT ENVIRONMENT

Biological development of an organism is the resultant of an immense number of
chemical and physical reactions (Johnson & Lewin 1946, Wigglesworth 1972,
Sharpe & de Michele 1977). It involves processes of growth and differentiation
which ultimately result in the organism passing from one condition to another. In
many interesting situations (which I seek to investigate), such a transition occurs
between two or more clearly definable states which are exhibited as a contiguous
sequence of discrete successive stages. Typical examples of such ‘stage
specificity’ are to be seen at the cellular level in cellular divisions (Mitchison
1971), in the progress from one instar to the next in arthropods (Logan et al
1976) and in the appearance of buds in flowers (Overcash & Campbell 1955). In
section 0.5 I shall outline a generic model which can encompass this entire broad
class of situations.

Let us make the reasonable assumption that development within any stage
proceeds continuously at a constant rate under constant environmental
conditions. Assuming a development index is possible for the organism (see
section 0.4 below) a simple measure of development rate can be encapsulated by
a ‘development velocity’ defined in terms of a goal quantity of development
required to complete the stage (measured on the development index) divided by
the time taken to traverse it (Wigglesworth 1972). If development velocity is
charted throughout a complete range of different (but constant) environmental
conditions, the stage development rate can be set up as a continuous function of

the varying parameter(s).

Since the rate of all chemical reactions is dependent on temperature it follows
that the rate of progress of most physiological processes bears a strong
relationship with this parameter. It is therefore unsurprising that most historical
studies have seeked to establish development rate as a function of temperature.
There have been two main classes of attempts by which past authors have
sought to achieve this, namely empirical or theoretical. I now briefly review the
more prominent of these.

10



(a) Empirical derivations

The insect literature overflows with empirical formulations of development rate
derived by holding a particular species under a range of constant laboratory
temperature regimes and then fitting a curve to the acquired data. The earliest
attempts at deriving development rate as a function of temperature were made with
the implicit assumption that development increases in a linear fashion (de Candolle
1855, Sanderson 1910, Blunck 1914, Krogh 1914). In all these studies development

rate g was presumed to be related to temperature T by

g(T)=k(T-a) 0.1

where k and a are constants. The value of the constant a is referred to as the
‘development threshold’. Although the relationship of equation (0.1) holds for some
organisms over the main range of naturally encountered temperatures (Williams &
Wratten 1987) and most apparently for the insect orders Lepidoptera and Diptera
(Peairs 1927, Hughes 1970) it generally becomes increasingly inaccurate as
temperatures become more extreme (Mordue et al 1980). Many later authors
attempted to improve upon this by deriving better empirical descriptions both within
the fields of insect (Zwolfer 1934, Davidson 1942) and plant ecology (Leitch 1916,
Shelford 1929, Barton-Wright 1933).

Most notable amongst these studies is Davidson (1942) who in a now famous paper
employed the Verhurst logistic curve

g = 0.2)

1+e®*D

where k, a and b are constants, to accurately describe the development of eggs of the
human body louse. According to Wigglesworth (1972), this single curve affords a
faithful representation for 85-90% of the complete temperature range over which
development can occur in many insects and has since been applied in a more general

context to other animals (Andrewartha & Birch 1954). However, the effects of

11






()3 sy wowdopeasg

Topper
Temperature T

<r

Lo






0.4 DEVELOPMENT IN A CHANGING ENVIRONMENT

My main interest lies in investigating situations where the organism is exposed to a
periodically varying environment. How valid are the above descriptions when the same
organism is exposed to a changing environment? There is no logical reason to expect
that each of the many processes constituting development will necessarily exhibit the
same rate of response to a given change of environmental parameter. By a
continuation of this argument, there is no logical reason for development rate (the
resultant rate of all such processes) to follow the same relationship under time-varying
conditions as that obtained when the conditions are held constant. Thus, a question of
central importance is whether the functional relationship between development rate
and environmental parameter(s) obtained under constant conditions does indeed still
hold when the parameters vary with time. Unsurprisingly, the precise answer is that
this depends upon both the organism and the parameters being varied (Cloudsley-
Thompson 1953, Wigglesworth 1972).

In the case of temperature, it is well known that changes can have a stimulating or
retarding effect on development beyond the functional relationship obtained under
constant conditions (Parker 1929, Powsner 1935, Precht et al 1973). That temperature
fluctuations can accelerate development has been established by past studies in the
germination and bud break of plants (Overcash & Campbell 1955, Kramer 1958,
Hellmers & Sundahl 1959) and some species of insects (Parker 1929, Cloudsely-
Thompson 1953, Clarke 1967, Remmert & Wunderling 1970). On the other hand, it
has been equally well established that for a range of taxa as diverse as bedbugs
(Johnson 1940,1942) and flies (Ludwig & Cable 1933, Vogt et al 1990) to amphibian
embryos (Khan 1965) no such developmental stimulation occurs.

Throughout this thesis I make the simplifying assumption that the functional
relationship exhibited between development rate and environmental parameter(s)
under constant conditions is maintained when the parameter(s) change with time. Even

though such a description may not aways be entirely accurate, I take the view (by

15



appeal to Occam’s razor) that it is unrivalled in terms of general compactness and

cogency.

Thermal Summation

Thermal summation originates from first attempts to assess the duration of
development of an organism situated in a changing temperature. Historically, the
technique first appeared in the insect literature with the implicit assumption that
development rate is a linear function of temperature (de Candolle 1855) as in equation
(0.1). For such a model, the product of degrees above the zero development threshold
with development duration is of constant value (proof: If g(T) = k(T —a) so that the
excess temperature x = T —a then the product of excess temperature and development
time is x(i) =+ =constant). This gives rise to the simple hypothesis that a fixed
number of 'degree-days'’ must be required for the organism to complete its
development (applied by Blunck (1914) in his studies on Dyfiscus water beetles). A
further piecewise linear extension of the approach to cover situations where

development is non-linear was outlined by Sanderson (1910).

Development Index

The concept of degree-days ultimately relies upon the assumption that development of
the organism proceeds cumulatively in a (linear) quantifiable way. A natural
continuation of the idea is to move to a more general development description defined
in terms of an abstract scale referred to as a development index (e.g Pradhan 1946).
To do this requires the almost hidden assumption that, in the first place, development

of the organism is expressable cumulatively as a function of time only.

Assuming this to be so, development rate is determined first (as a function of time) by
appealing to the relationship established under constant conditions between
development time and an influential environmental parameter such as temperature (e.g.
Pradhan 1946). This necessitates use of the earlier assumption that the same
relationship (established under constant conditions) holds when conditions are

changing. What are the benefits of this approach ?
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The great merit of obtaining development rate as a function of time only is that
physiological progress (development) can then be dealt with in an analagous fashion to
a distance travelled (Stinner et al 1974, Logan et al 1976). Essentially development
then corresponds to the area under the deveopment velocity vs time graph. I shall
show in Chapter 2 that this in turn allows a tremendously simpler model formulation in

terms of a measure that I shall refer to as physiological time.

A Generic Life Cycle Model

Any complex life cycle can be regarded as a combination of several successive simpler
component mechanisms (Danks 1991). For many organisms the successive transitions
that occur in the life cycle are so rapid in relation to the duration of the life history that
the intermediate state can be justifiably considered as a component stage of the life
history (Mitchison 1971, Wigglesworth 1972). In such cases the main characterising
feature of the life cycle is a contiguous sequence of separate ‘differentially sensitive’
stages (Palmer 1976). I seek to construct a simple life cycle model which incorporates
this quintessential feature.

Usher (1976) has proposed excellent guidelines for any model which purports to
describe a biological process. These specify that it must (a) encompass some biological
feeling, (b) give a satisfactory fit to the process it describes, (c) be sufficiently general
to describe a wide range of similar processes, (d) be tractable.

Following these, I suggest that the simplest generic model of such a life cycle is one
composed of a contiguous sequence of discrete stages each of which has an associated
continuous density independent time-varying development rate function. The only
restriction which I shall place on the nature of these development rate functions is that
all are periodic with the same repeat period. I make one further simplifying
assumption, namely that there exists a finite point in time at which a given generation
disappears and the next one appears (which necessitates the implicit assumption that
reproduction occurs over a sufficiently short period that it can be considered as a point
event in time). Completion of each generation is then analagous to the ‘tick’ of the

underlying timer mechanism.
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Support for the realistic worth of even such a simple model can easily be found. The
observations of Spudich and Sager (1980) on chlamydomonas and Heath & Spencer
(1985) on a number of marine algae are consistent with this picture. Gumey et al
(1992, 1994) have shown that two special cases of this type of mechanism predict
dynamic behaviour similar to that observed in many odonate populations (see section

4.1).
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0.5 OVERVIEW OF THESIS

I commence with a detailed case study performed with a stage specific model of the
univoltine European beetle Catops nigricans parameterised with data obtained by
Topp (1990). 1 demonstrate that the model formulation not only gives realistic
synchronisation results but also that equally valid results are obtained by collapsing the
model into a simpler appropriate two stage description.

Realising that future analytic tractability could easily be lost, the concept of
physiological time is introduced early in the next Chapter. Immediately, I demonstrate
the potency of this description by constructing a straightforward formal proof (of the
observation by Gurney et al 1992) that no physiologically unstructured population
whose development rate depends only on time can ever achieve synchrony.

In Chapter 3 I dig into dynamical systems literature to extract a foundational block of
theory which will later serve as fundamental throughout the thesis. Utilising this, I set
up a general two stage model in Chapter 4 and together with the broad analysis
performed in Chapter 5 uncover a powerful repertoire of general properties. These are
summarised by a selecion of compact new Theorems together with novel
relationships between interphase map and behaviour portrait.

In Chapter 6 I take a ‘time out’ from the general model to explore a simpler linearised
version which enables higher-ordered locking behaviour to be more thoroughly
investigated. The analysis of this model provides insight into other (though
biologically less interesting) forms of dynamic behaviour that can occur such as
neutral stability.

I return to the general model in Chapter 7 and show a selection of surveys via
sequences of behaviour portraits. These demonstrate how the shape of the interphase
map largely determines synchronisation behaviour. Important practical biological
implications are mentioned in the final section. In particular, the Catops nigricans
model is re-examined in the light of its associated behaviour portrait. A concluding
discussion which includes an outline of possible future avenues of research is covered
in Chapter 8.
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CHAPTER 1

A LIFE CYCLE IN A SEASONALLY
VARYING ENVIRONMENT

Catops Nigricans
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temperatures). Topp's data showed that only development of the 1.3 instar was greatly
affected by photoperiod.
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Diagram 1.1(a) shows data and plots of development rate v temperature for each of
the pre-adult stages under the SD photoperiod regime. Plots of fumctions are
constrained within the threshold temperatures of each stage. Thus for temperatures
outside these ranges, development rates are strictly given by extrapolation. Only
within the temperature range of 5-15C are no such extrapolations required for all
stages.

The effect of increased photophase on instar L3 in the LD regime is shown in
Diagram 1.2(a) by an upward shift in the development rate curve. On other pre-adult
stages, Topp found this effect to be negligible. Thus, I reasonably define LD data as
that set of data made up of LD data points for stage L3 and only SD data points
otherwise.

For the Immature Adult stage, data on the female development time, referred to as
'diapause intensity', was available for a range of photophases held at a single
temperature value of 10C. Topp's diapause data suggests that diapause intensity
suddenly increases dramatically at a critical photophase Lcrit of approximately 13.2
hours and levels off at a photophase Rcrit of approximately 14.8 hours. For daily
photophases of durations either side of these values, diapause intensity remains at a
fairly constant plateau level. Catops therefore exhibits 'short day' insect development
(Type I diapause response (Beck 1980)) since its development is enhanced (i.e.
diapause duration reduced) by shorter periods of photophase. Diagram 1.1(b) shows
the relationship between development rate (taken to be 1/diapause intensity) and
photophase.

Less detailed data under the LD regime was also presented for diapause intensity at a
constant temperature of 15C. Taken together with the former, the data suggests that
the Catops diapause mechanism is dependent on both temperature and photoperiod as
shown in Diagram 1.2(b). Such a temperature-compensatory effect is frequently found
in the diapause of many species of insects (Beck 1980, Mordue et al 1980).



(a) L3 Stage

1.8+

15¢

12+

09t

20

é.S
1
Temperature T *
8.0
60
40+
10C R
20} 15c _
0.0 . - * .
0.6 0.8 1.0 12 14 1.6 1.8



1.2 A LIFE CYCLE MODEL OF CATOPS NIGRICANS
Environment

Meteorological records of the monthly mean air temperatures in the Koln locality over
a 20 year period were obtained by Topp (1990) and these were found to periodically
vary in a sinusoidal manner between an annual minimum of Tmin=2C at the end of
January and an annual maximum of Tmax=21C in mid-July. I can thus choose to
simulate the annual variation of air temperature T as a function of time t by

T(t) =T, - T, Cos k (t- Tshift) (1.1)

where Tshift is a one month time lag which displaces troughs and peaks by one month
from the beginnings and centres of the years, with T,, T, and k suitable constants.

Annual variations of daily total photophase P at Koln latitudes also vary sinusoidally,

between a minimum of Pmin=8 hours on 21st December and a maximum of Pmax=16
hours on 21st June, so that I can choose

P(t) = P,- P, Cos kt (1.2)
with P, and P, suitable fixed constants.
Since Catops prefers life below ground in its natural habitat, I must explore the
implications of subterranean development by considering the effect of ground
attenuation of surface temperature variation (Moon 1983, Gordon et al 1989).
Suppose the surface temperature T, oscillates in a sinusoidal manner about a mean
surface temperature T, according to

T,=T,- T, Cos kt (1.3)

where T, is the amplitude, k = 21 / P, and P is the period of the oscillation.
Standard textbooks [e.g. Ingersoll et al 1948] show that the vertical heat flux (G) in

. dT
the ground and the vertical temperature gradient 3z are related by

G=-k,— (1.4)

where kg is the thermal conductivity of the soil.
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with g; determined by regression. I carried out linear and loglinear regressions to
obtain the g of best fit. Table 1 shows that loglinear regressions gave the better fits
for all pre-adult stages and in particular for the obviously non-linear Egg stage.

Pre-imaginal Stage R2-Adjusted %
Loglinear Reg. Linear Reg. |

Egg 98.7 85.9
L1 99.3 973
L2 99.9 97.4
L3 100.0 93.8

Pupa 98.8 96.6

TABLE 1.

Comparison of quality of fit of linear and loglinear regression lines to Topp's 1990
pre-aduit SD data.

I thus define development rate by the exponential function
g =g (T)=we*" fori=Egg, L1, 12, Pupa (1.7)

with w, , z, , the respective stage specific coefficients obtained by loglinear regression
of SD data (that is as obtained from the linear regression lines y,(T) = Ln[g, (T)] =
Ln(w)+zT in the loglinear plane ) and T(t) as in equation (1.1).

For stage L3, I construct a dynamic photoperiod-compensated version of equation
(1.7) such that the development rate is now defined by

g3 = 813 (T,P) = wp,(P)e™= @7 (1.8)
where w;,(P), z,,(P) are functions of photophase P obtained by loglinear regressions
and T(t), P(t) are the driver functions given in equations (1.1) and (1.2) respectively.

That the loglinear relationship is maintained when coefficients w,,, z , are sinusoidally
driven is a straightforward proof.
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For the Immature Adult stage I treat diapause intensity in the same manner as pre-
adult development so that under fixed abiotic conditions g, is defined as g, =
diapause development rate=1/(diapause intensity). Thus, to reflect the dependence of
diapause intensity on both temperature and photophase

8 = g (T,P) (1.9)

I fitted a piecewise linear function to Topp's diapause data as illustrated in Diagram
1.1(b). I modelled the temperature-compensatory effect in accordance with Topp's
data so that the altitude of the leftmost 'plateau’ decreases with increasing temperature
as shown in Diagram 1.2(b). For T outside the range of temperature interpolation (
10C < T £ 15C), a 10C SD diapause ceiling value and a 15C LD diapause floor
value were imposed in the Default Model (see 1.3 Structural Stability for other
variants). The rightmost plateau was made temperature independent, reflecting the
fact that at photophases above Rcrit, diapause development was found to be
insignificantly affected by temperature variation. For photophases between Lcrit and
Rcrit, diapause development rate was defined by interpolating photophase between
the two plateau levels. Hence

SDdiapause rate T<10 8 <P<Lecrit
mT+c 10<T<15
g (T, P) = ¢ LDdiapause rate 15<T (1.10)
n(T)P +D(T) Lcrit <P < Rerit
| LDdiapause rate Rerit<P<16

where m, ¢ are constants and n(T), D(T) are linear functions of T. In the absence of
enough data, I make two assumptions here, namely that:

(1) the form of this function always has left and right segments connected by a central
joining line and

(2) Lcrit and Rcrit critical photophases remain the same at any temperature that is, are
temperature independent.

Diagram 1.3 shows plots of periodic (seasonal) development rates S, (t) for all stages i
= Egg to Immature Adult, as functions of time of year t. The periodic development is
shown in the frame below for the same temperature variations (1.3(c) and (d) ). I
notice that the general effect of an increase in annual temperature variation is to
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accentuate both the peaks and the troughs of the periodic development rates for all
stages.

i (a) L3 Stage (8-15C)
E+1 i ' T '

40+

307t

Development Rate

0.0 d A
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. (b) L3 Stage (2-21C)
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DIAGRAM 1.4 Effect of Short day/Long day photophase on L3 stage for annual
temperature variations of (a ) 8-15C (b) 2- 21C
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For a given individual, let ty (= tgg,, ) be the time of recruitment to the life cycle and
let t,, (=tyg,) be the ime of maturation . Then clearly

ty, =t + L) (1.14)

I prefer to think of the life cycle model in terms of a 'black box'. This black box is
sensitive only to temperature and photoperiod and is continually exposed to the
seasonal variations imposed by the temperature and driver functions T(t) and P(t)
respectively. After the input of an initial time of year t; (oviposition), 6 successive
modes of internal response occur, each of which corresponds to a discrete stage of
development. Whilst in each mode, a corresponding internal development rate
(dependent only on time t) is utilised to calculate how long the black box remains in
that particular mode. The total time taken for the black box to pass through all 6
modes is then added to the initial input time to produce an output time t,,.

Reproduction

I can think of the the black box as being an egg at the input time which thereafter
develops through stages L1, L2, L3, Pupa, followed by the Immature Adult stage. For
any input time, a single output time is eventually produced, which corresponds to the
respective time of maturation of the Immature Adult. By brief semelparity, oviposition
can be reasonably approximated as occuring at that same point in time. Thus, each
time of maturation t,, of generation n is re-entered in a cycle as a time of recruitment
traey (Ftyy ) tO generation n+1. The umes of maturation/ recruitment of progeny
stemming from any initial recruit (its lineage), can thus be calculated for several
successive generations.

I extend the notation of equation (1.14) to encompass the nth generation of any
lineage so that

ty =tg, + L (t,) (1.15)

and since by brief semelparity
tyg =lreay (O tg, =tyeyy) (1.16)

successive times of maturation are given by

tMn = tM(n-l) +L (tM(n-l)) (117)
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1.4 A TWO STAGE MODEL

The first five (pre-adult) developmental stages of the Default Model follow a similar
seasonal development pattern which is reflected by the single solitary peak shape of
all the graphs shown in Diagram 1.3 ((a) and (b)). I carried out a simple re-
parameterisation to obtain the average seasonal development rate taken over all these
stages and thus collapse them into a single 'pseudo’ pre-adult developmental stage.
The most different Immature Adult stage was kept unchanged. Thus, I constructed a
two stage model composed of a single stage with the same Gaussian seasonal form as
any original pre-adult stage and a second Immature Adult stage as defined in the
Default Model.

Diagram 1.9 shows the graphs of the seasonal development rates of both these
stages. (The graph of the pre-adult stage achieves a much lower altitude than any of
the original pre-adult stages because all of these stages were calibrated to achieve a
development index of 1 before moving on to the next stage.) Extensive simulation
studies with the two stage model demonstrated that all the quantitative and
qualitative dynamics of the Default Model were preserved.

Table 5 compares the synchronised times-of-year for oviposition or eclosion and
time duration for diapause. Results between the default and two stage models were
virtually indistinguishable .

Date of oviposition | Date of eclosion | Diapause duration
Real Life Average 6th May 11th October 158 days
(Per Topp 1990)
Default Model 25th April 1st November 190 days
Two Stage Model 22nd April 30th October 191 days
TABLE §

Comparison of synchronised times of key Catops life-cycle events with those of
results from simulations at 2-21C

Diagram 1.10 confirms by comparison of Line Plot diagrams, that the synchronisation
behaviour of each model is identical.
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DIAGRAM 1.9 Development rates of the pre-adult and immature adult stages of the
two stage model at (a) 8-15C (b) 2-21C.
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DIAGRAM 1.10 Comparison of simulation results with annual temperature variation
of 2-21C (a) Default Model (b) Two Stage Model
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1.5 DISCUSSION

The Default Model synchronises to a univoltine life cycle as an autumnal breeder for
an annual temperature variation of 2-21C in the same way as Catops does in the Koln
locality. Although this fact is singularly impressive and still holds even when a modest
subterrranean existence is allowed for, it becomes less so in the light of how easily it
fails to happen. When annual temperature variation narrows by any more than +1C,
no synchronisation occurs (Table 2, and Diagram 1.8).

The overall sparsity of data, in any event, automatically ensures that sweeping
inferences about Catops per se are not sensibly possible. This is particularly true in
respect of stage specific threshold temperature values that were laboratory-measured
in constant conditions. The ability of an individual in a given stage to survive a life-
threatening temperature depends not only on the temperature value but also on the
length of time that it has to be endured (Precht et al 1973). It is well known that
insects can survive both higher and lower lethal temperatures under a variable
temperature regime than under constant temperatures (Headlee 1914, Messenger &
Flitters 1959). Indeed, Watt (1968) has suggested five major factors that influence
mortality at extreme temperatures:

(1) the lethal temperature

(2) temperature prior to exposure

(3) length of exposure to the non-lethal temperature

(4) length of exposure to the lethal temperature

(5) time taken to change from non-lethal to lethal temperature

Since life-threatening temperatures do not occur to Catops until the range 5-15C is
exceeded (per Topp's data), I reasonably infer that for an annual surface temperature
variation of 2-21C such temperatures will (if at all) be encountered only for very short
durations. In the Catops model, I therefore reasonably make the assumption that they
are not lethal and that death does not occur.

The model also demonstrates that early convergence of lineages does not necessarily
imply ultimate life cycle synchronisation, since divergence of lineages may still occur
before the former is achieved. Hence a preliminary overview of data which indicates
that times of adult oviposition (or emergence) converge together over one generation
cannot justifiably allow a leap to the conclusion made by some authors (Topp 1990,



Tasch and Topp 1991) that synchronisation must occur. Lineages must be projected
forward over several generations before the long term synchronisation behaviour can
be inferred from any data set.

In summary, two central key points emerge from this empirical case study. Firstly, the
Catops Default Model establishes that a purely stage specific developmental response
within a periodically varying environment does indeed provide a mechanism by which
life cycle synchronisation can occur. Secondly, the case study shows that the seasonal
pattern of development (shape of the graph) of separate developmental stages is
important in the sense that synchronisation behaviour is dependent on how different
these actually are. The two stage model demonstrated (by way of alterations to the
amplitude of periodic variation) that the more pronounced this difference is, the
stronger the synchronising effect. Simultaneously, this parameter-sparse version of
Catops pleasingly established that the qualitative dynamic behaviour of the Default
Model could still be retained within a minimal two stage representation simply by
collapsing all of the (similar) pre-adult stages into one, whilst keeping the (most
different) Immature Adult stage unaltered.

In the next chapter, I shall show that a one stage model cannot synchronise to any
external periodic variation. Prompted by the encouraging results of the re-
parameterised two stage Catops model, I now have reasonable grounds to commence
a trail of investigation into the simplest (minimal) stage specific life cycle model that
can synchronise, namely that consisting of only two stages.
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2.0 INTRODUCTION

Before proceeding further, I first ask whether a more translucent way of analysing
synchronisation behaviour is possible. The question arises, because of the rapidity
with which calculations performed in real time descend into intractability. This
intractableness stems from the dependence of stage duration on the real time at which
recruitment to the stage occurs. Stage duration, other than where it is equal to an
integer multiple of the environmental repeat cycle, is generally not a fixed quantity,
but rather has an upper and lower bound which differ increasingly as the periodic
environmental variation becomes more extreme. A corollary to this, is that equal
periods of real time do not generally produce equal increments in development. This
simple fact is a major source of extraneous complications in any analysis conducted in
real time.

It turns out that many of the analytic unpleasantries can be alleviated by characterizing
development status by reference to physiological age. Such a paradigm shift of
emphasis is well established in insect studies, where the point reached on the road to
complete development is frequently more important than the (real) time taken to get
there ( Hughes 1970, Stinner et al 1974, Logan et al 1976, Berry et al 1977). Thus,
the fact that all members of a cohort have attained a given physical attribute (for
example are all able to bite) is biologically more pertinent than the fact that they are
all the same (real time) age but have not (Hughes 1970, Kunz et al 1976, Berry et al
1977, Palmer et al 1981, Moon 1983, Huryn & Wallace 1986, Vogt et al 1990).
Provided that times in either measure are interchangeable, I can choose to perform
analyses in physiological time that are directly interpretable in real time. In this way, I
shall by-pass much of the otherwise more protracted analytic tedium .

In this chapter, I focus on how a physiological time scale can be set up in the context
of a single stage, as a preliminary to dealing with the multi-stage situation. The new
scale is derived directly in terms of the proportion of development required to traverse
each developmental stage. Since I am primarily concemed with the timing of events
within the repeat cycle, I slightly modify the scale to define a relative physiological
time, referred to as phase. Immediately, I gather the reward of a simple circle map
relationship between the points of recruitment to and promotion from the stage. The
approach serves as a foundation for the two-stage situation and shall be extended in
Chapter 4.
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I briefly consider the simple situation where the entire life cycle model consists of only
one stage. That such a model cannot synchronise to a periodic environment is easily
proven and instructively demonstrates the benefit of conducting analyses in the
physiological time scale.
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2.1 SIMPLIFYING THE ANALYSIS : PHYSIOLOGICAL TIME

I consider the progress of an organism through a single life history stage in which the
(strictly positive) development rate g is dependent only on time. To represent the
underlying regularity to which synchronisation may be possible (that is seasonal or
daily cycle) I regard g(x) as strictly periodic with period T.

(a)
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3
=}
0
0 T 2T 3T 4T 5T
Time t
5
at
g
= 3
3
£~
L
2
> 2t
£
1}
0 N .
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Time t

DIAGRAM 2.1 Typical Graphs. (a) Development Rate g(t) (b) respective
Physiological Time ¢(t)
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Diagram 2.1(a) shows the graph of a typical development response, in which the
development rate peaks at the midpoint of the environmental repeat cycle. The key to
simplification is to set up a new scale in which stage duration is measured in terms of
physiological development rather than real time. Such an approach is akin to the
method of thermal summation (section 0.4) in the sense that developmental progress
is measured directly in terms of the achievement of a fixed goal quantity of some
appropriate measure (previously a number of degree-days). Indeed, I must still make
the same underlying biological assumptions, namely that development is quantifiable
in the first place and that it acts cumulatively with the passage of time. With all of this
in mind, I carefully define a cumulative development function

C(t) = [ g(x)dx 2.1)
0

C(T) is then the total development, measured in terms of the appropriate
development index, achieveable during a single environmental repeat cycle. I define a
dimensionless new measure ¢(t) which I shall henceforth refer to as physiological

time (itself a function of time) by
C(v)

o(t)= res) (2.2)

so that ¢(t) is the total stage development achieved by time t as a fraction of C(T).
Observe that since the development rate is strictly positive, ¢(t) must be a
monotonically increasing function. Because of the normalisation by C(T), the
physiological time scale conveniently achieves integer values at the turn of every
repeat cycle. Diagram 2.1(b) shows the respective graph of ¢(t) for the periodic
development rate shown in Diagram 2.1(a). We shall see in the next Chapter that
physiological time is in fact the /ift of phase (Definition 3.12).

Physiological time satisfies the quest for a new scale in which equal intervals within
the scale produce equal increments in development. I show this easily. Let ¥ be a

fixed 'period’ of physiological time. Then

Y =¢(t,)—¢(t,) for a pair of real times tl,t2 witht, > t,,

C(T)(Ig( )dx —jg(x)dx) &, I g(x)dx
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jg(x)dx =yC(T) (2.3)

Equation (2.3) tells us that the development increment occurring in physiological time
interval yis dependent only on Yy and T. Since both of these are fixed, it follows that

equal periods’ of physiological time produce equal increments in development

which, paradoxically, implies that the development rate of a stage expressed in terms
of its own physiological time is always constant.
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from a variety of initial phases might converge. Hence in this case no synchronisation
is possible either. This completes the proof.

Gumney et al (1992) also showed that the above result can be extended to a model
composed of any number of contiguous life-history stages provided that each stage
exhibits the same development response to the environmental forcing function.
Intuitively, this powerful result is unsurprising because in such a situation each stage
merely acts to produce a single fixed displacement in physiological time. Passage
through the entire life cycle can therefore only produce a similar fixed displacement
(consisting of the sum of all the separate stage displacements) in an analagous manner
to the single stage model. Thus, the synchronisation of such a multi-stage life cycle to
the environmental repeat cycle is impossible.

This is easily proved more formally by induction. Suppose the organism has a total of

Z stages in the life history each with a corresponding stage specific physiological
duration of a;,for j=1 to Z. For ease of notation I shall denote

A

S;=3%a, (2.10)

=1

I must show that if the life cycle is commenced at phase 6, then it is completed at
phase 6_,, where

0..z =Rg,(8,) (2.11)
If equation (2.11) is true for some k(< Z), thatis

eu+k = RS, (en) (2. 12)
then

Osrrs =Ra,, (80ii)
=R,,, (Rs, ®, ))
=R,,450(81)
=Ry  (8,)
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so that equation (2.11) is also true for k+1 thereby completing the inductive step.
Clearly, equation (2.12) holds for k=1 therefore equation (2.11) is true for all k=1 to
Z and the proof is completed.

Because of the inherent periodicity imposed by the environmental forcing function,
the circle map representation of the chosen phase formulation between recruitment
and promotion is a natural one. I shall now take a whole chapter interlude to expand
upon this and other central concepts from dynamical systems theory. In Chapter 4 1
shall return to the physiological time description and extend the current formulation to
encompass a general two stage model.
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CHAPTER 3

CIRCLE MAPS



3.0 INTRODUCTION

I am led to investigate the dynamics that result from a system governed by the first
order difference equation

X =f(x;)ie Zor N 3.1

where f is a map between successive states x,,x,,, which take values in some state or
phase space. There is much theory on such a one dimensional dynamical system
(Collet & Eckman 1980, Preston 1983, de Melo & van Strien 1992) and in particular
for when the state space is a topological space (Dugundji 1965).

Fortunately, many interesting situations can be modelled when the arena for dynamics
takes the form of some human envisageable structure such as the surface of a sphere
(S?), torus, or indeed circumference of a circle (S') (Bak 1986, Parker & Chua 1987,
Schaffer 1988, Courtemanche et al 1989, Gumey et al 1992, 1994). All of these
particular topological spaces are examples of differentiable manifolds (Matsushima
1972, Arrowsmith & Place 1990). Because of the cyclic nature of the phenomena
being modelled, I shall mainly focus on the situation in which the state space setting is
S'. In this case, the map fis referred to as a circle map.

Clearly, the general theory of maps on a differentiable manifold must also apply to the
more specialised scenario of a circle map. I must introduce some concepts taken from
the broader theory before moving on to the more special situation of the circle map
scenario. The single most important concept is that of topological conjugacy. If two
maps are topologically conjugate then the number and character of any attractors the
two maps may possess must be the same and hence all the qualitative features of their
orbits (in particular the existence and repeat lengths of stable cycles) must also be the
same.

Much of this chapter will form the subtext of discussion for later chapters. I begin by
introducing some basic definitions.
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3.2 ITERATIVE DYNAMICS

Although the iteration of maps has a long history going back as far as the Babylonians
and Ancient Greeks when calculating calendric cycles (Neugebauer 1969,1975,
Fowler 1990) a more deeper understanding of the dynamics that they lead to only
began with Poincare last century (de Melo & van Strien 1992). Today the general
theory of the dynamics that result from iterating one dimensional maps is well
developed (Amold 1988, Smale 1965, 1967, Collet & Eckman 1980, Preston 1983,
de Melo & van Strien 1992). Although such dynamics can be extremely complicated,
they can be described completely in a topological sense (de Melo & van Strien 1992,
Akin 1993). There are two main aspects which we should always like to enquire about
when iterating any map.

Topological aspect. What are the attractors, which maps are dynamically equivalent,
and which are structurally stable?
Ergodic aspect. What is the 'dynamic behaviour' of the sequence of iterates?

Henceforth I shall focus soley on the differentiable manifold setting even though some
of the subsequent definitions can also be adequately defined for other spaces. I
immediately clarify a frequent source of confusion that occurs in the use of the word
'iterate’ within the language of dynamical systems. An iterate of fisamap f*,n € Nin
its own right defined by f® =identity map, f! =f, f* =f(f*?)=f"ntimes', whereas
an iterate of a point x € M is the point given by f”(x). Further, if f is invertible as
when a homeomorphism, then I can define the map f™ =(f™')", n e N because in this
case f*(f)* =f°. If f is non-invertible the best that can be done is to define f™ such
that f™(y)={x:f*(x)=y},ne N.

The set of iterates of a point x € M under f form a sequence which I shall henceforth

term an orbit.

Definition 3.5
An orbit O, (x) of a point x € M is defined as the set O;(x)= {f“ x):ne Z}

Thus, O,(x) consists of the sequence of distinct points generated from x by

successive iterations of f. I also choose to name some special points.

Definition 3.6
A point x* € M is a fixed point of £ iff f*(x")=x"V meZ



Definition 3.7

A point x € M is a periodic point of f iff f*(x")=x" for some integer q >1

The least value of q which satisfies this definition is referred to as the period of x*. A
fixed point is therefore a periodic point with a period of one. It follows that a fixed
point is completely unaffected by the repeated operation of f whereas a periodic point
recurs every q iterations. Clearly, any periodic point x* of f with period q is a fixed
point of f9.

g-cycle Of (x*)

The orbit of any periodic point x* with period q must consist of exactly q distinct
points (otherwise its period would not be q). I shall henceforth refer to such an orbit
as a g-cycle Q= O}(x"). In the situation where the map fis a homeomorphism, some
very simple but powerful properties pertain to the orbits that arise. I demonstrate two
of the most important by way of two short theorems.

Theorem 3.0
The elements of a g-cycle Q belong to no other p-cycle P where p=q (alternatively,
the members of any two cycles form disjoint sets).

Proof
Suppose for some x;e€Q that x; €P. Then fP(xj)=x; and clearly I need only

consider p>q . But f%(x])=x; and therefore f(‘”“’(x;)=f“’“"(f“(x;))=x; which

contradicts the fact that x; has period p [since (p-q) <p ].

Theorem 3.1

Each element of a g-cycle Q is also a periodic point of f with period q.
Proof .

Let x; =f'(xs)e Q= 0} (x,) for some periodic point x,.

Then £°(x}) = £1(F'(x})) = £(£7(xy)) = £ (x5) = x].

Topological Conjugacy

How can the 'same dynamic behaviour' be defined between two maps f and g? The
most natural way is to define an equivalence relation between the two maps which has
the property that corresponding sequences of iterates are the same up to a coordinate
change. Two such maps are then said to be topologically conjugate.
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If I choose to relax the homeomorphic requirement that h be invertible then f and g
are said to be combinatorially equivalent. In the case of maps f, g :S' —§',
combinatorial equivalence between them only ensures that each orbit of f occurs in S'
in the same order as the corresponding orbit of g (de Melo & van Strien 1992).
Whereas two maps that are combinatorially equivalent may share many dynamical
properties (van Strien 1991), the stronger requirement of topological conjugacy
ensures that all the qualitative features of orbits and in particular the existence and
repeat lengths of stable cycles must be the same. If topological conjugacy is to be
established between f and g then the map h must always be shown to be a
homeomorphism.

Stability

I introduce some standard definitions to describe the ergodicity of points in the
neighbourhood of any fixed or periodic points. Although other types of stability such
as 'semi-stable’ or 'one-sided stable’ can also be defined (Devaney 1986) three types of
stability in the style of Liapunov will suffice for our purposes.

Definition 3.9

A periodic point x" is stable iff for every neighbourhood N of x* 3 a neighbourhood
N’ c N of x* such that if x € N’ then f™(x*)e N forall m > 0.

Definition 3.10
A periodic point x" is unstable iff it is not stable.

Definition 3.11
A periodic point x* is asymptotically stable iff x” is stable and Limf™ (x)=x" for all

m—jeo

x in some neighbourhood of x°.

Periodic points that are stable but not asymptotically so, shall henceforth be referred
to as neutrally stable.

Stability of a g-cycle OF (x")

When both f and f™' are also differentiable at all points in M (and therefore
diffeomorphisms) it turns out that Df*(x") takes the same value for any x* in the g-

cycle. Surprisingly, many authors quote this powerful property without proof (e.g.
Collet & Eckman 1980, Sandefur 1990 ). I give a general proof using induction.
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Theorem 3.3
Df9(x]) takes the same valueV x; € Of (x})

Proof
By the chain rule of differentiation

Df*(x) = D[f(£*™ (x))] = DE(£* (x)).Df ™ (x) = Df(£+ (). D[£(£52(x0))]
= Df(£97 (x)). DF(£972 (x))Df* (x)

= ﬁDf(f““(x)) with £°(x)=x

i=1

Suppose Df % (x, ) =c¢ for some 1<k <q. Then

q . 3 .
DF* (xs,y) = [ [ DE(E (xe,p)) = [ [ DE(e[ecxp)]) = [T (e ()

ql:l | i=1 i=1
=Dt )
i=0
= ISIDf(f‘l'i (x})) because f9O(x})=f4(x})
i=1

= Df9(x, ) = ¢ also, completing the inductive step.

The result establishes that it is meaningful to refer to the stability of a q-cycle in terms
of the stability of any individual member.
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3.3 CIRCLE MAPS

I now consider the special situation in which the differentiable manifold M is the
circumference of a circle $'. Any map f: §' —S§' is referred to as a circle map.

The setting is not to be confused with the topologically entirely different situation of a
map of the interval. Whereas both settings are one-dimensional (only one variable is

needed to specify the position of any point) the outcome of the iterative dynamics that
result from each situation may be different.

However, a useful representation of a circle map can be made in the plane by plotting
f in time honoured fashion as a function of x in the closed real interval I. Such a plot
will reveal key properties such as whether f is invertible or not. If f(x) 'doubles back'
producing a kink this immediately tells us that f is non-invertible and that the iterative
dynamics are likely to be chaotic (non-invertibility is a necessary ingredient for chaos
e.g. Baker & Gollub 1990).

Let us now assume that f is a homeomorphism. In this case, the graph of f(x) will
either be monotone increasing or decreasing depending on whether f is respectively
orientation-preserving or orientation-reversing. How do the interval dynamics of the
graph of f(x) compare with the dynamics of the homeomorphism f ? I sketch a
straightforward argument to show that they will in general be different.

Consider first the graph of f(x). Let x € I and suppose first that f(x) is monotone
increasing. If f(x) > x then by induction £*(x) > £7(x) so that the sequence {f“ (x)}
is monotone increasing and must converge to some limit y = sup{f i (x)}. By the

continuity of f(x),

£(y)=f{limf*(0)) =m0 =y (3.6)

so that £ (x) must therefore converge to a fixed point y. A parallel argument holds if
f(x) < x. Thus every orbit O,(x) converges to a fixed point of f(x). Alternatively, if
f(x) is monotone decreasing then f %(x) is monotone increasing. A simple modification
of the above argument this time shows that either every orbit converges to a periodic
point of period 2 or to a fixed point. Thus the dynamics of a monotone increasing or
decreasing map of the interval are very simple.

69



Now consider the homeomorphism f. There are two cases possible depending on
whether f has a periodic point or not.

If f has a periodic point then it turns out that all orbits must converge to a periodic
point. The argument follows logically from the above by considering f* (where k is
the period) as a map f*(x) of the interval for each of the k segments of S' situated
between periodic points. If f is orientation-preserving then so is f* and f*(x) is
monotone increasing so all orbits converge to one of the k periodic points. If f is
orientation-reversing then f> is orientation-preserving and a slightly more subtle
argument this time shows that all orbits either converge to the corresponding 2-cycle
or to one of a possible two fixed points (de Melo & van Strien 1992).

If f does not have a periodic point the situation is more complicated but in all cases
the resulting dynamics are combinatorially equivalent to a pure rotation of the circle
by a Poincare Theorem.

A more realistic representation of f can be made by continuing the graph of f(x)
beyond the unit square. Moving diagonally away from the origin, f(x) then
perpetually repeats itself within each unit square situated on the leading 45° diagonal.
The plot obtained is a graph of a function f :R—R termed the Jift of f (Devaney 1986,
Arrowsmith & Place 1990).

Definition 3.12
f :R >R is a lift of f onto R iff f is continuous and (f(x)) =f(x")

The graph of the lift f not only enables periodic or fixed points of f to be easily
identified by their location on the 45° diagonal but also serves to give a compact
classic definition of the rotation (or winding) number p(f) associated with any circle

map.

Definition 3.13
Let f: S' —S' be a homeomorphism. The rotation number p(f) is defined by

p(f) = 1ir3(f—(5n)—'—’5) G3.7)
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3.4 SOME FURTHER THEOREMS

Let f : M—M be a diffeomorphism.
Theorem 3.6

If Q is a stable (unstable) g-cycle of f then it is an unstable (stable) g-cycle of £~

Proof.
Let Df % (x) denote the derivative of f(x) and let x* € Q.

fixH)=x" o f"‘(x'):f'q(f"(x')):x' =3 (f'l)q(x')=x'
x" a g-periodic point under f < x* a g-periodic point under

I use the following standard numerical analysis result

Iff |Df*(x")| >1then Qis stable, (3.92)
< 1 then Q is unstable (3.9b)

By Theorem 3.3, Df 9(x*) takes the same value V x* € Q so that it makes sense to
refer to the stability of Q in terms of the stability of a particular x* € Q.

Further, since f™(x) is a reflection of f?%(x) in the leading 45° diagonal, the
gradients of £%(x) and f%(x) at x* are related by their reciprocals so that

|qu(X‘)|=|—Df—;m (3.10)

Thus
IDfe(x")[>1 & [Df 1 (x| <1 (3.11a)
IDfe(x*)| <1 & [DF(x")|>1 (3.11b)

and hence by inequalities (3.9) ,

Q stable (unstable) under f > K unstable (stable) under .
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Theorem 3.7
Let Ube the set of all cycles of f and let U’ be the set of all cycles of £ ™. Then

U=U’
Proof.
I divide the proof into 2 parts.

(i) Let S and S’ consist of the sets of all periodic points of f and f™ respectively.
Then

Proof
Let x" € S be a periodic point of f with period n. Thus

fPx)=x"e (")) =f"x)e x=f"x") (3.12)
so that x"is also a periodic point of f ' with period n and x* € §’.

(ii) I must still show that all cycles produced under f are the same as those produced
under f . Since by Theorem 3.0, all cycles form disjoint sets it suffices to show that :

If Qisa g-cycle of f then Q is also a g-cycle of f*.

Proof.
Since Q is a g-cycle I can write that

Q={xo,x;, ..... ,x;_l} for q 21, (3.13)

where each x; is distinct and where

x; =f9(x;) and x:m)...,, =f(x;) Vx €Q (3.14)
But V x; €Q,
o x) =) =x] (3.15)
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and also

£ (x})=17(f(x}))
=f47(x;)
=e(rx, )
=f9 (x;n )

-
= XG-)mad k

Hence Q is also a g-cycle of f™, which orbits in the reverse direction.

This completes the proof of Theorem 3.7.

(3.16)
3.17)
(3.18)
(3.19)
(3.20)
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CHAPTER 4

CIRCLE MAPS ARISING FROM TWO

STAGE LIFE HISTORIES
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4.0 INTRODUCTION

In Chapter 2, I proved that synchronisation to a periodic environment is impossible
for a life cycle composed from stages which all exhibit the same developmental
response. Faced with such a breathtaking negative, I argue that the route to positive
analytical enlightenment begins with the life cycle of simplest physiological structure,
namely that composed from only two stages. This is the simplest stage specific
scheme which can contrast different (biotic) responses to continuous (abiotic) factors.
Any stage specific life cycle must be composed of a repeated sequence of this basic
couplet. I conjecture that an intimate understanding of the two stage situation is a
necessary and vital preliminary to an understanding of the synchronising effects
produced by stage specificity. In this Chapter, equipped with the armoury of
dynamical systems theory from Chapter 3, I resume the trail of investigation into the
fundamental (minimal) two stage model.

Previous investigations with specialised stage specific models of odonata species have
demonstrated that synchronisation of emergences can be induced in a periodic
environment by incorporating seasonal dormancy mechanisms (Gurney et al 1992,
1994). Although I shall review these mechanisms, I really wish to elucidate whether a
more general mechanism can produce similar results. Without these abstract models, I
therefore seek to establish the existence of a general minimum requirement for
synchronisation to occur.

To achieve this, I must commence from a more general set of assumptions. The
Catops investigation of Chapter 1 hints that a multi-stage life cycle can be regarded in
terms of an appropriate (much simpler) two stage affair. The work of Heath &
Spencer (1985) makes it clear that the key element which leads to synchronisation of
phytoplankton life-cycles is the existence of two distinguishable stages in the life-cycle
each with a different (characteristic) response to environmental variation. In section
4.2, 1 formulate a very general strategic model of an organism with a two-stage life-
cycle each stage having a density independent development rate with a characteristic
(periodic) time-dependence. The only restriction that I shall place on the nature of
these development rate functions is that both are periodic with the same repeat period.

I develop a compact representation of this model in terms of a circle map composed

from two simple rotations and the "interphase map" representing the relationship
between the physiological times for the two life-history stages. The interphase map
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enables the phase of either stage to be obtained in terms of the phase of the other.
Crucially, this implies that any point in the entire life cycle can be expressed in terms
of any chosen stage phase. I arrive at a parameter sparse description which uses only

two dimensionless parameters corresponding to the physiological durations of each
stage, namely o and B.

For a more general n-stage life history where n > 1, the same approach can be applied

repeatedly to yield (n-1) interphase maps between each of the other (n-1) stages thus
permitting any stage specific life cycle to be described in terms of a single stage-phase.
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4.1 SYNCHRONISATION THROUGH SPECIALISED DORMANCY

That seasonal dormancy contributes towards life cycle synchronisation is well known
across a wide range of taxa for both plants (Courtney 1968, Harper 1977, Lacey
1986) and animals (Common 1954, Corbet 1957, Cohen 1967, Norling 1984a,b,c,
Taylor 1980, Topp 1984,1990, Denlinger 1986, Tauber et al 1986, Gruner & Sauer
1988, Wipking 1988, Zaslavski 1988, Tasch & Topp 1991).

In this section, I briefly review two specialised dormancy mechanisms incorporated in
stage specific models investigated by Gurney et al (1992, 1994). Both mechanisms
were postulated from detailed biological studies carried out on odonata (dragonflies)
located in temperate climes (Corbet 1957, Norling 1984a,b,c). Odonata are of tropical
origin and have evolved dormancy mechanisms to survive more temperate (and
seasonally periodic) environments (Norling 1984c, Corbet 1957, 1980). The adults
are unquestionably the least suited of all stages to survive winter (Norling 1984c). In
view of this, it is unsurprising that such dormancy is found to occur exclusively in the
aquatic pre-adult stages.

Previous simulations using complex damselfly models (Crowley et al 1987) have
indicated that for such organisms the non-linearities which regulate population
numbers have only a weak effect on the fiming of emergence and reproduction. By
these studies, the most significant environmental factor affecting emergence timing
was found to be fluctuations in temperature. Observing this, Gumey et al (1992,1994)
constructed models that were driven only by a single temperature driver function.
Neither of these models addresses the important question of how development in
different environmental mediums (in a single life cycle) may affect synchronisation of
emergences. In this respect, both models are surprisingly artificial.

The Corbet Model

Corbet (1957) proposed a stage specific 'overwintering' mechanism through which
odonata in temperate climes such as Britain may achieve synchronisation of
emergence. Species located in such environments frequently have lifecycles of a
duration greater than one year and so must pass through at least one winter in a pre-

adult (larval) stage.

Corbet postulated the existence of a special reversible dormancy (quiescence) which
could occur in all stages throughout the 'stressful’ winter period. He suggested that

78



the field-observed increasing sequence of lower temperature thresholds (in successive
development stages) implied the existence of a stage specific quiescence (SSQ). Such
a mechanism ensures that individuals in earlier stages of development start or resume
development sooner in the following spring than those in more advanced stages.
Corbet hypothesised that in a strongly seasonal environment the SSQ mechanism
contributes towards synchronisation by producing a temporal convergence of

developmental trajectories. Clearly, the potential for synchronisation through such a
mechanism 1is self-evident.

Gurney et al (1994) constructed a stage specific model to test the hypothesis that
SSQ alone may synchronise life cycles. The model incorporated a simple
representation of the SSQ mechanism and closely resembled the development data
obtained by Lutz (1968) for a North American damselfly. They found that such a
mechanism produces a 'quiescence lens' which acts to ‘condense’ developmental
trajectories stemming from those stages that remain dormant during the winter period.
Thus, repeated passage through the quiescence lens of developmental trajectories that
emanate from successive generations can (in turn) produce the temporal convergence
of lineages that leads to synchronisation of emergence. Diagram 4.1(a) shows a circle
map plot of the Corbet model (Gurney et al 1994). Observe that the effect of the SSQ
mechanism is to produce a segment that deviates away from 45° .

The Norling Model

Unlike Corbet (1957), Norling (1984a,b,c) in his studies on the Scandinavian odonata
observed that several species exhibited the special dormant state of facultative
diapause over the winter period. Facultative (as opposed to obligatory) diapause
differs in two main respects from quiescence. Firstly, it is induced by environmental
signals before the onset of adverse conditions and secondly, once entered such
dormancy is not easily reversed (Danilevskii 1965, Saunders 1982, Hodek et al 1983).

Norling proposed a simple mechanism by which odonata exhibiting facultative
diapause may achieve synchronisation of emergence. He postulated the existence of a
critical stage and a critical time of year (CST) during development, at which entry to
diapause is determined (or not). Individuals reaching the critical stage before the
critical time of year continue their development to maturity, whereas those that reach
the critical stage after the critical time, enter diapause and suspend development until
the following spring. Photoperiod is much the most reliable cue for insects
(Danilevskii 1965, Beck 1980, Mordue et al 1980, Corbet 1989, Tanaka 1992) and in
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DIAGRAM 4.1.Typical circle map plots of (a) the Corbet Model and (b) the Norling
Model (Gurney et al 1994,1992)

An obvious but severe limitation of both the Corbet and Norling mechanisms is that
they are abstractions which may resemble relatively few of the diverse natural means
by which organisms achieve life cycle synchronisation. In nature, hybrid mechanisms
abound which combine features of both, such as the ‘eudiapause’ described by Muller

81









where R, is a simple rotation, and a is the A stage physiological time duration of the
A stage. An exactly parallel treatment shows that if B is the B-stage physiological time

required to traverse the stage B then, in terms of that stage's own physiological time,
the phases of recruitment 85 and completion 05, are related by

65 =Ry (6;) (4.45)
LA A 0 6}
= | STAGE A = STAGE B =
Recruitment Promotion Maturation
Duration o Duration B
Re-enters
&

DIAGRAM 4.2 Representation of the General Two-Stage Life Cycle Model
operating in physiological time

Although equations (4.4) show that passage through either stage is simple when
considered in its own physiological time, if I am to consider the whole lifecycle 1
need to work with a single measure of time. How can the single stage phase
description of Chapter 2 be extended to an organism whose life history is made up of
two stages?

I solve this by performing a 'conversion' between the stage-i phases 68,. To achieve
this, I require two maps f,; and f;, which map A-stage phase 0, into the ‘equivalent’
B-stage phase 0, and vice-versa. I define these maps in the natural way, namely so
that any point in either stage-phase is mapped to its image point (in the other phase)
via its correspondance with real time t.

Definition 4.1
The forward interphase map f,5:S' —S' which takes 6, »6, and reverse
interphase map f,,:S' — S' which takes 6; — 0, are defined respectively by

£,5(0,()=05(t) (4.52)
5, (0,(1))=0,(1). (4.5b)









4.3 THE INTERPHASE MAP

I primarily seek to investigate synchronisation between the lifecycle of successive
"generations” and the underlying periodicity of the environmental variation. Such
synchronisation is indicated by the existence of stable, fixed or periodic points of the
circle map F, 5. The maps (R,, Ry) representing passage through each individual stage
in its own physiological time (see equations (4.4)) are pure rotations and so cannot
play any significant role in creating such points. The critical properties of the two-
stage circle map are thus determined by the relationship between the two phases that

is by the properties of the forward and reverse interphase maps {5 and f;,. Do both
of these necessarily exist?

Notice first that equations (4.1) to (4.3) show that both stage-specific phases must be
zero at t=mT and must tend to 1° as t—mT" (integer m). The Euclidean plot of f,;(x)
(or f5,(x) ) vs x thus always passes through the origin, and approaches arbitrarily
close to (1,1). I return to the question on the existence of such maps by considering a
critical pathological example .
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DIAGRAM 4.3 Relationships between stage phases and forward interphase map f,;
Sequence (a to b) plots where both stages are diffeomorphisms, (c tod)
where B-stage phase is not.

Diagram 4.3 shows two situations represented by pairs of phase plots (a) and (c)
respectively. For clarity, 6, is the same diffeomorphism in both situations.

In the first situation shown in 4.3(a), 8, is also a diffeomorphism. The forward or
reverse interphase map (4.3(b)) is thus well-defined and is a diffeomorphism.
However, in the second situation (4.3(c)) the phase plot of O5(t) vs t reveals a 'kink'
produced by 6, doubling back on itself. This kink is passed on to the corresponding
forward interphase map f,; and surfaces in the plot of f,5(0,)vs 6, (4.3(d)). Thus,
the forward interphase map f, is non-invertible and the reverse interphase map f;,

does not exist.

The kink problem will occur whenever a development rate goes below zero. Such a
problem can be avoided by making the biologically reasonable assumption that
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development is irreversible. This ensures that development rate either proceeds
forward at a strictly positive rate or at worse reaches zero.

If development rate falls to zero (other than at the origin) the corresponding
interphase map is no longer single-valued and consequently is not a homeomorphism.
Thus, if a zero development rate occurs in the model, theoretical complications arise.
Fortunately these complications are of hypothetical interest only, since an organism's
development rate can be effectively zero (arbritrarily small) without actually reaching
zero (beyond the accuracy of any measuring device) in the real world.

If the development rate functions g, and g are both strictly positive and bounded
above then both stage-specific phases are continuous monotone increasing functions
of time. This in turn implies that the forward interphase map f,; must be a continuous
monotone increasing function of A-stage phase, and is therefore a homeomorphism.
The reverse interphase map fy, is just its inverse so that f,,f;, (x)=x is assured for all
x. A plot of f;,(x) vs x is thus a reflection of the plot of f,;(x) vs x in the leading 45°
diagonal. I shall refer to such interphase maps as continuous interphase maps.

I observe further that development rate functions g, and gz need only be continuous
to ensure that the forward interphase map is everywhere differentiable. Thus, where
both development rate functions are also continuous the (forward or reverse)
interphase map is everywhere differentiable, and is a diffeomorphism. I refer to
interphase maps in this class as differentiable interphase maps. 1 neatly produce a
definition which summarises this.

Definition 4.2 A continuous (differentiable) interphase map is a strictly increasing
homeomeorphism (diffeomorphism) on S! which satisfies f(0)=0 [and f(1)=1 in the
plot].

Henceforth in the remainder of this Chapter and throughout Chapter 5, I shall focus
on the important broad class of biologically feasible life cycles whose development
rate functions are strictly positive, finite and continuous. For compactness I shall
denote the forward interphase map f,5 simply by f and the reverse interphase map f;,
by £1. The two-stage circle map F,; defined in equation (4.7b) then becomes

4.10
F,5 = f'R4f R, (4.10)
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Since f and f™ are continuous and monotone increasing the associated two-stage circle
map F, g has the same property and is thus a homeomorphism. Similarly, if f and £

are differentiable then F,p still retains the same property and is a diffeomorphism. I
summarise this in a definition.

Definition 4.3 A continuous (differentiable) two stage circle map is a strictly

increasing homeomeorphism (diffeomorphism) on S! composed from a continuous
(differentiable) interphase map.

Notice that because F,; is (at worst) a homeomorphism, F;; exists and thus F; is

always invertible. Since non-invertibility is a necessary condition for chaos (e.g. see

Armold 1973) no chaos can occur in the system described in equation (4.8) whenever
F,; is the beast of Definition 4.3.

I easily show that the extension of the physiological time formulation to two stages is

consistent with the previous (one stage) theoretical framework. Suppose that stages A
and B exhibit the same developmental response. This implies that 6, =0, so that the

plot of the interphase map is simply the leading 45° diagonal. Hence f(x)=f"'(x)=x
so that

-1 - —
F,, 'R R, =R;R, =Ry, 4.11)

which corresponds to two consecutive rotations. Thus, in this case the two stage
model behaves as a one stage model and no synchronisation occurs (Chapter 2 ).



4.4 GENERIC INTERPHASE MAP SHAPE: TWO FREQUENT SITUATIONS

In this sectiop I shall illustrate how generic shape of the interphase map can be
r(?latefi to a blologlca% context. I restrict our consideration to a frequent life cycle
situation, namely that in which the development rate functions g, and g have a single

maximum within the repeat period T.

u’a) DEVELOPMENT RATE FUNCTIONS

md) DEVELOPMENT RATE FUNCTIONS
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DIAGRAM 4.4 Patterns of development. (a and d) Development rates with respective
plots of (b and e) Phase and (c and f) Interphase maps.
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In such cases the forward interphase map f (that is, f,;) has only a small repertoire of
possible shapes, which are illustrated in Diagram 4.4. Development rate functions are
shown in normalised form for convenience (the altitude of development rate functions
has no effect on interphase map shape because of the normalisation of the cumulative

development functions in equation (4.1), but note that the values of o and Bare
dependent on altitude).

Diagram 4.4 sequence (a) to (c) shows the behaviour of a life cycle with equal width
Gaussian development rate functions (s.d.=0.1T) with a lag between stage-A and
stage-B development peaks equal to one standard deviation. Sequence (d) to (f)
shows the behaviour of a life cycle with two Gaussian development functions both
peaking at the same point but with the stage-A development function having twice the
width of the stage-B function. In both sequences the first frame ( (a) and (d) ) shows
the development rates as a function of time, the second frame ( (b) and (¢) ) shows the
two stage specific phases as a function of time, and the third frame ( (c) and (f) )

shows the forward interphase map. I shall categorise these patterns of development as
two generic cases.

Case 1 (lag between development rate functions)

Stage A development takes place earlier in the repeat period than stage B
development (as in 4.4(a)). This implies that the A-stage phase leads the B-stage
phase at all times ( 4.4(b)) and the forward interphase map is a monotone increasing,
strictly concave function (4.4(c)).

Case 2 (different length of growing season)

The timing of the maximum development is much the same for both stages, but the A-
stage is capable of rapid development over a larger part of the repeat time than the B-
stage (as in 4.4(d)). This implies that the A-stage phase leads the B-stage phase in the
early part of the cycle but lags it in the later part ( 4.4(¢)). In this case the forward
interphase map adopts a characteristic S-shape (4.4(f).

In both cases, g;(t) is a Gaussian function truncated at 0 and 1 thereby ensuring that
strict continuity is maintained in the periodic form. In Case 1 the lag of the B stage (a

horizontal shift parallel to the x-axis) may imply that the ratio of the gradients of the
stage specific phase d8,/d0, at the point 0 € S! tend to different values from below

and above thus producing a non-differentiable point. In other words, although the
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resulting interphase map must still be continuous and differentiable for O<x<1, we are
no longer guaranteed that

hm(gB(x))=hm(gB(x) ,
x—0* gA(x) x—1" gA(x)

so it may contain a non-differentiable point at x=0. In this case I refer to it as an
interior differentiable interphase map.

Diagram 4.5 shows the corresponding two-stage circle map plots for each pattern of
development. Observe that the plots differ significantly from those associated with the
Corbet and Norling models in that they are made up of nonlinear (curved) sections.

Other than curvature, the plots of F,s for Casel and Case 2 have some notable
features imputed by the interphase map f and its inverse f -1.

In Case 1 the non-differentiable point at x=0 in f (discontinuity in Df) is subject to
displacements (‘'modulo 1 translations'- see Definition 5.1) of 1-a* horizontally and B*
vertically by the pure rotations R, and R, and corresponds to the point P, in Diagram
4.5(a). Similarly, the non-differentiable point at x=0 in f -! is carried through to F.p 50
that it appears at the point P, . The steepness of the section P,P, actually results from
the parameter choice of o and B used in the plot.

In Case 2 the interphase map has no non-differentiable points but the gradient of f is
zero at x=0 thus implying that the gradient of f ~! achieves infinity at x=0. This
appears at the point P, in the plot, displacement away from x=0 again being due to
the rotations R and Ry within the composite map F 5.

It is essential to the subsequent analysis that I distinguish between two-stage circle
maps containing linear segments parallel to the leading 45° diagonal and those without
such features. It is clear from equation (4.10) that such linear segments in the circle
map can only arise as a consequence of linear 45° segments in the interphase map.
These in turn must indicate that the development rate functions have equal values
over intervals (rather than at a finite set of points). I shall refer to the class of
continuous two-stage circle maps which excludes those containing 45° line segments

as continuous non-diagonal two-stage circle maps.
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In fact Theorem 5.2 goes further and shows that a pure rotation transformation T
(where T=R ()) applied to the interphase map f has no effect on the resulting iterative
dynamic behaviour of F 5.

Theorem 5.3 shows that if the interphase map f from which F_ g is composed is
interchanged with its own inverse (so that the plot of f is reflected in the leading 45°
diagonal) the dynamic behaviour of F,s is equivalent to that when the parameters o
and B are simply interchanged. Theorem 5.4 shows that a transformation of the
interphase map resulting in the plot of mapped phase against original phase being
rotated 180° about the point (15,1%) is equivalent to changing the parameters o and f
to 1-a and 1-P respectively. For two special classes of interphase map shape, these
last two theorems also give insight into how the parameters o and § may be
interchanged without affecting the dynamic behaviour of F,g .

I next enquire about the sensitivity of F, 3 composed from a general interphase map, to
changes in value of the parameters o and .
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Lemma 5.1
If x is a stable (un§t£}ble) q-periodic point of a continuous non-diagonal two-stage
circle map F, ; then it is an unstable (stable) g-periodic point of F;},.
Proof
F,(x)=x" & Fix)= F;;(Fgﬁ(x')) =X & (F;fs)q(x') =x"
x* a q-periodic point under F,, <> x*a g-periodic point under F:B
Since the stability of the point x* is defined F, s and F,§; must be differentiable at x*.
Hence Fj, and F.} are differentiable at x* and so
DFj;(x’)<1 & DF3(x")>1
x* stable (unstable) under F, ; <> x* unstable (stable) under F;js

Lemma 5.2
The continuous two-stage circle maps F__ 1-p and F;‘B are topologically conjugate.
Proof

Faip= f'R, R, =f"R R,
-1
and  F;b =(f'RyfR,) =R_,f'R 4f
Ra(F‘;}S)(Ra y1= Ra(F;j,)R_a =fIR R =F_ 15

Theorem 5.5
Let F, ¢ be a continuous non-diagonal two-stage circle map. F, g and F_,, ; have the

same number of stable q-cycles.

Proof

Since F}, is everywhere differentiable it must cross the leading 45° diagonal an even
number of times, each pair of crossings corresponding to one stable and one unstable
g-periodic point of F, g

The first line in Lemma 5.1 above shows that F, ; and F;}s have the same set of q-
periodic points [revealed in the plots of interphase maps by the fact that (F(,,:‘E,)‘l is the
reflection of F}g in the leading 45° diagonal].

By Lemma 5.1 any stable g-periodic point of F,, must be an unstable g-periodic
point of F(;}3 and vice versa. Hence F, jand F;,}s must have the same number of stable

g-cycles. .
Since by Lemma 5.2, F;}3 and F_,, 5 are topologically conjugate they each have the

same number of stable g-cycles and hence F, ;has the same number of stable g-cycles

as Fl_a'l_s.
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Theorem 5.5 tells us that for any continuous non-diagonal two-stage circle map,
substitution of the parameters o and B respectively with 1-o and 1-B, leaves the
number of stable q-cycles unaffected. If there are only stable cycles of order q (in fact
empirical studies show that only one stable cycle occurs) it immediately follows that

Corollary to Theorem 5.5 (general rotational symmetry of the behaviour portrait)

The behaviour portrait of any continuous non-diagonal two stage circle map is always
rotationally symmetric about its central point (%,4).

The above Corollary is stated in terms of a theoretical behaviour portrait. In practice
the behaviour portrait is constructed using a numerical procedure so that the fine-
scale detail can only be as precise as the rounding accuracy implemented within the
procedure. The chosen procedure operates with sequences of iterations. Starting with
an initial point located at the centre point of the pixel, an initial run of 10 iterations is
made in which each member of the sequence is checked to the specified accuracy (1
part in 105) with the value of the initial point. If no member is found to be equal with
the initial point, a second run is commenced, this time starting with the last value of
the previous sequence. The same checking procedure is re-performed with the second
sequence for a run of up to 20 iterations and the whole process is repeated, run
lengths of consecutive sequences being doubled until either a repeat is found or the
maximum number of iterations (10%) is exceeded (in which case a 'no lock' is
registered and the pixel is illuminated in black). Optimal accuracies in terms of
minimising the calculation time without loss of resolution of visual detail were
empirically found to be those stated above. Greater calculative precision beyond these
levels served neither to enhance the finer resolution of the zones outside the lock
regions nor their overall form (the resolution is, in any case, limited by the actual
minimum size of the pixel).

Locks were formally (and correctly) detected in both the 'near graze' and 'actual
graze' situations where the plot of FJ, crossed and touched with the leading 45°
diagonal even where the two-stage circle map was not Morse-Smale (that is, a
diffeomorphism with rational rotation number [and hence periodic points by Theorem
3.4] with |Df‘* (x")| # 1 where x* is a periodic point of prime order q (Devaney 1986))
(see Bifurcations' on page 109 and Sketch 1(a) and (b) respectively). Whenever a
'gap’ (e.g Sketch 1(c)) occurs, I find that the chosen levels of accuracy for the

behaviour portrait are still correct beyond the visual resolution of the corresponding
plot of F;, for a given parameter pair (o,f).
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5.3 CONDITIONS FOR SYNCHRONISATION

Observe that because two-stage circle-map F,; is a circle homeomorphism, I need

only show that a periodic point exists to establish that all orbits must converge
asymptotically towards periodic points and thus that synchronisation to a q-cycle must
eventually occur (e.g de Melo & van Strien 1992 or see Section 3.3).

If F,  has a stable fixed point (i.e. only one periodic point) then the orbits produced
by iterating it tend towards a state in which each generation of a particular lineage is
replaced by its successor at the same point in the environmental cycle. If F, 4 has a
stable g-periodic point then the orbits tend towards a stable cycle in which the
changeover between generations takes place at the same phase every q generations.
The existence of this form of attractor (a stable q-cycle) is indicated by the qth iterate
of the map (Fj}) possessing a group of q (distinct) stable periodic points, each of
which is a solution of 6 =F};(8) and represents the phase at which one generation
gives way to its successor. When F,p and hence Fjy are strictly increasing non-
diagonal homeomorphisms, each stable periodic point must be accompanied by a
companion unstable periodic point.’ Thus if F,; exhibits m g-cycles the defining
equation 8 =F};(0) must have exactly 2mq solutions.

In line with empirical observations, I henceforth assume that any particular instance of
a class of maps F,; derived from a given interphase map f has at most only a single
stable g-cycle (m=1). I shall characterise the properties of that instance by the lock-

number (the number of periodic points in that single stable g-cycle). Under what
conditions does F, ; have such periodic points that is, 3 0" such that 6° =F;;(6")?

Case 1 and Case 2 generic patterns of development revisited

I now state two theorems which give necessary and sufficient conditions on the stage
durations o and B in order for two-stage circle maps derived from the two broad
classes of interphase map corresponding to Case 1 and Case 2 in section 4.4 to have a
stable one-lock (that is a stable fixed point (periodic point of period 1) ). The plots of
the interphase maps for each Case are shown in Diagrams 5.2(a) and (b) respectively.
The proof of these theorems is given in the Appendix A5.1.

Let F, ; be a two-stage circle map composed from f according to equation 4.10.
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Theorem 5.7 gives the one-lock condition for a two-stage circle map derived from an
interphase map which is a symmetrical, initially concave S-shape (i.e. the interphase
map is rotationally symmetrical about (15,%), lies below the leading diagonal for 0<x<
%, crosses the diagonal at x=% and lies above the diagonal for l4<x<1). This
interphase map shape arises when B-stage development occurs over a more restricted
portion of the environmental repeat cycle than A-stage development, but peak
development rates occur at more or less the same time as shown in Diagram 4.4
sequence (d) to (f). Clearly, the converse situation, in which A-stage development is
possible for only a brief part of the cycle, and B-stage development for a more
extended period, can be represented by inverting the generic interphase map. This
again leads to a one-lock condition identical to that of Theorem 5.7 with the
inequalities reversed.

Corollary to Theorem 5.7

If DA(x)<0, 0<x<¥%; D?(14£)=0; D?f(x)>0 Y%<x<l in Theorem 5.7 then F,; has a
stable fixed point iff

1-2f(a" 72) <B* <2f(1-a")/2) (5.6)
Proof

By Theorem 5.3, interchanging f with f! and substituting o and f with B and
respectively in inequality (5.4) leaves the dynamic behaviour of F, g unaltered.

Now D*f < (>)0 & D*f ™ > (<)0 so that by Theorem 5.7

1—-2f“(9—‘]>a‘ >f"(l——B-‘)
2 2

PN 2f(1—‘2—“-‘)> B* and f(%)>(l——2£)
or 1—2f(%.) <B' < 2f(1—"5°—“)

I note that both the regions of one-lock defined by inequalities (5.3) and (5.4) display

the rotational symmetry about (}4,}%) implied by Theorem 5.5, for if I
write h(a.*) =1—f(a") in the LHS of (5.3) then the RHS

f(l-a’)=1-{1-f(1-a"))=1-h(1-a")

which proves that the one lock boundary in the lower part of the behaviour portrait is
the rotational image of the upper boundary. By a similar argument, the same is true
for (5.4).
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I note furthermore that the width of the region which each inequality defines is
determined in a general sense by the non-linearity of the interphase map. In particular,
if the interphase map becomes the 45° diagonal, (that is A-stage and B-stage
physiological times become identical) the one-lock region formally disappears.
However, if I extend Theorems 5.6 and 5.7 to include neutrally stable fixed points (by
allowing equality in inequalities (5.3) and (5.4)) then the identity interphase map
causes the "non-unstable one-lock" region to collapse to the line B*=1-a*, which is

the condition for a neutrally stable fixed point in a single stage model with stage
length " +B™.

Bifurcations

Where bifurcations occur that is, where the dynamics change suddenly for small
changes in the values of a* and B* (near the boundaries of lock regions), the
distinction between (biologically less interesting) higher ordered lock and no lock
(yellow or black for colour choice of associated pixel) is dependent on the levels of
calculative accuracy chosen. Such bifurcations correspond to the plot of Fa,, passing
through a transition as o* and B* are varied in which a 'graze' of some part of the plot
occurs with the leading 45° diagonal. Passage through such a transition is helpfully
envisaged in three stages with the use of "cobwebs"” as shown in the example of
Sketch 1. Note that F_ 4 is not Morse-Smale here (Devaney 1986).

In (a) P, is a stable (attracting) fixed point because DF_4(P,) <1 and P, is an unstable
(repelling) fixed point because DF, 4(P,) >1. A small change in the parameter B*
results in the two points P, and P, ‘fusing’ together to form a plot which just grazes
the leading 45° diagonal at the single point P, as shown in (b). Simple cobwebs
starting with an initial point located on either side of P, easily show that it is stable
from the left but unstable from the right. Effectively this is a stable point because the
closed topology of the circle ensures that the trajectory eventually returns from the
left and is ultimately attracted to P,. As B* is changed by a further small increment,
situation (c) occurs in which a gap appears in the plot between the curve and the
leading 45° diagonal so that a low-ordered lock is no longer possible and the
corresponding pixel is either illuminated in yellow (if a lock occurs within 10°
iterations) or black (if not).

Portraits 1 Associated behaviour portraits of Diagram 5.2 (a) Case 1 for systems
with both development rate functions having a standard deviation of 0.IT and a lag
0.IT (b) Case 2 for systems where both development rate Sfunctions are centered at
0.5T with the stage-A development rate function having a standard deviation of 0.1T
and stage-B having a standard deviation of 0.2T.
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5.5 DISCUSSION

Although the physiological time formulation has yielded a very concise model
description, the dimensionless parameters o and B ‘feel' inherently uncomfortable.
This discomfort stems from the fact they do not easily translate into directly
meaningful biological terms. In this chapter I have shown that the discomfort can
nevertheless be alleviated by digesting a behaviour portrait which has the ubiquitous
merit of displaying the full range of dynamic behaviour of F,p as a single snapshot in
the (a,B)-plane. The behaviour portrait grants us that desired biological feel in
accordance with the Usher (1976) guidelines of Section 0.4. Each individual lock
region clearly shows the values of o and B for which (asymptotically) stable cycles
exist and hence when synchronization occurs in the model. I have conjectured that
neutral stability only occurs on the boundaries of these regions.

Whereas the two stage circle maps F, jand its inverse F;j3 must always have the same

identical set of periodic points (because they are both continuous), when Fgisa
diffeomorphism this entire set necessarily partitions into two equal size sets made up
of stable and unstable periodic points respectively. Because only one stable cycle
exists, the set of stable (unstable) periodic points collectively forms the stable
(unstable) cycle and since F;;3 is topologically conjugate to F,_,, 5 this automatically
implies that the behaviour portrait must be rotationally symmetric. I conjecture that
this geometric property also extends to the more general situation in which F, zis a
homeomorphism or the limiting case of one (that is when either of the development
rate functions g, or g, are held at zero for a finite interval of real time). In the next
chapter we shall see that this is indeed so for a particular two stage life cycle model
composed from such an interphase map.

I still wish to investigate higher ordered locking behaviour more fully. Most of the
analytic intractability that has been encountered so far, results from the nonlinearity of
the interphase map. In classic fashion I shall first carry out a more complete
investigation of higher ordered locking behaviour by appealling to the simpler
situation in which the interphase map is reduced to a simple linear case.

113






6.0 INTRODUCTION

The numerical investigations of section 5.4 have revealed that the behaviour portrait
in the (a,B)-plane is made up of separate lock regions together with areas or points of
no lock’ inbetween. The shape of the lock regions was found to be related to the
shape of the interphase map. In two separate but broad classes of nonlinear interphase
map, we have seen that the corresponding region for the simplest lock (a 1 lock),
consists of the interior of a central zone situated between a pair of boundary
conditions. I have proved that this whole zone corresponds to conditions which are
expressable concisely in terms of the interphase map.

Although higher lock regions can be readily obtained by numerical procedures for any
two stage circle map composed from a nonlinear interphase map, beyond a 1 lock
their algebraic derivation rapidly becomes intractable. Progress in the analysis of
higher ordered locking behaviour can be achieved without arduous algebraic tedium
by focusing on the dynamics that result when the interphase map is reduced to a single
straight line. However this necessitates a relaxation of the previously held
(homeomorphic) requirement that zero development rate over a finite interval cannot
occur. In this Chapter I investigate a circle map model which is composed from such
an interphase map whose plot consists of a single straight line. Without loss of
generality I choose the slope S >1 as shown in Diagram 6.1(c) and henceforth refer to
the model as the SLIM (Single Line Interphase Map) circle map. I show that for this
model, higher-order conditions and associated lock regions can be derived in
straightforward algebraic terms. I also show that whole classes of itineraries
correspond with separate regions of the associated behaviour portrait and these in
turn give insight into the biological implications of various life cycle strategies.

Strictly speaking, the single line ‘interphase map' is not an interphase map in the true
sense (Chapter 4) since it is not single valued (one-to-one) throughout the entire unit
phase circle. Consequently, neither it nor the SLIM circle map are invertible and
(consequently also) neither of these maps are homeomorphisms. The SLIM circle map
is therefore not a two stage circle map in the usual sense so that much of the theory
developed over the past few chapters does not automatically apply. However, I
circumnavigate most of these potential difficulties by viewing SLIM as the limiting
case of a two piece linear homeomorphism TLIM (Two Line Interphase Map). I am
then able to show that the SLIM circle map model still obeys the more salient

properties of a continuous two stage circle map.
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become synchronised. Even where synchronisation does occur, I am unable to
determine the repeat length of the respective cycle of emergences and have only a
limited understanding of the overall qualitative or quantitative dynamics which may
occur. In due course I shall address these aspects in the following analysis.

117



6.2 THE SLIM CIRCLE MAP

I compose the SLIM circle map F,, in usual two stage circle map fashion (by

equation 4.10) from the SLIM map f together with an appropriate ‘inverse' . I

shall now establish an algebraic relationship between the phase emergences of
successive generations.

Choosing to work in A-stage phase 0, , I shall now derive an expression for the

relationship between the emergences of successive generations at phases 6, and 0, ,,,,

By definition of the SLIM circle map

O puny = Fag(8,,) (6.0)
with E,p =f'R IR, (6.1)
and f defined by

0, =(0,)= {ff’" ig s 6.2

where S > 1 is the gradient of the single line. I observe that f is not invertible because
it is not one-to-one over the entire second segment [+,1) (all points in this part of the
domain are contracted to a single point). Because this segment corresponds with that
part of the environmental repeat cycle during which B stage development rate is held
at zero, emergence from the life cycle into it is (in any event) not biologically possible.
I shall henceforth refer to the segment [$,1) as the 'non-emergence' phase segment.

For the first segment [0,+) however, I can still define an 'inverse' map ' which will
have the invertible property £ (x)=f"f(x) =x, Vx €[0,4)by

9, =f"(0;)=146; , 0<6;<1 (6.3)

Substituting for f and £ in equation (6.1), I obtain the circle map
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2 1 2 2-p*
—+—-<d<l+—
3°S 35 and 1+ 7S <d (6.21)

2 1 I_Bt I_Bo
or —+—<d<l+— el A
31 318 +3S and 1+ 7S <d< 1+ 5 (6.22)
2 2 1-B°
or —+—-<d<—-4+=
373 373 and 1+ S <d (6.23)
are satisfied.

Table 1 shows all the itineraries and associated lock conditions for the Form 1 SLIM
circle map up to locks of order 5.

LOCK NUMBER ITINERARY CORRESPONDING LOCK CONDITIONS
PARALLEL LINES | CROSS LINES
» .
HU d<d<3} d<if
3 HUU L<d<i d<it
RIGHTMOST 2<d< . .
e i o
HUa 3tig<d<4 d<’—'sL'
4 HUUU s<d<y d<if
RIGHTMOST HbbU 3 <cd<ci+ g 3-8
BLOCK * o E<d<iE
HbUa Ttd<d<2+ik g 2
— <_—
HUaa 24+k<d<? s B
d<¥
5 HUUUU F<d<i d<if
HUbUU A<d<i+d B g2
. L 2 25 4s
HUUaU t+&<d<? d<i®
25
HbUbU i<d<i+d Hed<HE
HUabU brh<d<ird | gy
HUaUa 2+4k<d<? d<-§-+”5'
RIGHTMOST
BLOCK HbbbU E£<d<i+d = DY P
HbbUa t+i<d<i+d H'd<3—"'3§-'-
HbUaa 3
+&<d<i+ %k L gy BE
HUaaa 3+d<d<? P
d<iP

TABLE 1 .
Lock conditions and associated itineraries up to lock number 5 for the Form 1 SLIM circle map.
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6.5 TRAILS INVESTIGATION

One of the most visually striking features of the SLIM behaviour portrait (and indeed
all those thus far encountered) are the black clouds or blackness' that surface between
the lock regions. Often these appear to form dark trails which traverse across the
(o’,B") plane as can be clearly seen in Portrait 5. Outwardly they have the

appearrance of vapour trails left in a bubble chamber by a charged particle. Their
existence raises two main questions.

(1) What dynamic behaviour corresponds to the 'no lock’ black points which make up
these clouds or trails ?

(2) Are the trails actually lines or are they composed from sequences of separate
islands’ or points that are situated on a line?

In answer to the first question I conjecture that only two types of dynamic behaviour

can occur in the SLIM circle map, namely synchronisation (asymptotic stability) or
neutral stability (but not quasi-periodicity). An intuitive sketch proof follows
immediately from the observation that the configuration of any SLIM circle map plot
is entirely composed from exactly 45° or exactly horizontal straight lines.
Synchronisation occurs iff every orbit eventually passes through the contractive
segment H. Synchronisation does not occur iff there exist orbits which never pass
through H in which case they must continually pass through 45° segments. This can
only happen if there exists at least one such segment which is displaced from the
leading 45° diagonal by a rational number (otherwise if all the segments are displaced
by an irrational amount, the orbit would eventually ‘cobweb’ its way of all such
segments into the contractive segment H ). In this case the orbit must eventually
return back to the rationally displaced segment and the whole process repeats again
producing neutrally stable dynamic behaviour.

In answer to the second question I note that empirical studies indicate that these trails
always pass through the nodes of lock regions and this leads me to conjecture that
they are entirely composed from them. To test this hypothesis I shall investigate the
nodes produced by the intersections of a particular family of cross lines and parallels.
Consider the family of cross lines which correspond to the conditions of the last
(rightmost) block for every lock number that is, on choosing n as the level in the Sim
Farey Tree, the conditions (see T able 1 right column)
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7.1 TLIM AND THLIM

TLIM

Consider a simple continuous Two Line Interphase Map (TLIM) defined by two
parameters S, and S, (where S, >1, §,>0, §, >8,) which respectively correspond to
the slopes of the left and right lines of the TLIM plot, as shown in Diagram 7.1. In
additdon to being continuous and onto, TLIM (unlike SLIM) is a one-to-one map
throughout the entire circle domain and thus is a homeomorphism. The interphase

map transformation theorems derived in section 5.1 (other than Theorem 5.5) must
hold for TLIM.
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DIAGRAM 7.1 The TLIM interphase map
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interphase map plots as those curves which appear within the unit square as it is
shifted about the graph of the lift f(x) of the original interphase map f. I see that under
such translations modulo 1, the complete set consists of all such plots obtained by

confining the displacement of the unit square so that the line y=x must pass through
its interior.

Realising this, I apply a modulo 1 translation to the Case 2 interphase map by a
positive amount 3 <1 parallel to the x-axis and an amount f(3) parallel to the y-axis as
shown in Diagram 7.5. I now see that F, 3 composed from the Case 2 interphase map
has the same dynamic behaviour as F,; composed from an interphase map whose
shape is no longer strictly concave rather like the Cauchy interphase map above. 1
spot that the overall quality of the behaviour portrait associated with the Case 2
interphase map (seen in Portraits 3) is closer to the above Cauchy case (¢.g Portraits 8
top right frame) than any derived from the Case 1 interphase map (Portraits 2). In line

with the above hypotheses, this is particularly true in terms of both general blackness
and low lock region shape.
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Because the A stage is light dependent, I set up a development index which measures
development in terms of the photon dosage absorbed by the organism during this

stage of the life cycle. Development rate is then proportional to the rate of absorption

of photons, which I assume to be directly proportional to the light intensity at the

surface (sea level). This enables me to define an A stage phase 6,(t) directly in terms

of the proportion of daily photon dose delivered by (normalised) time of day t.

I assume that B stage development proceeds independently, at a constant
development velocity measured in an (other) appropriate index. It immediately

follows that the stage specific plot of B stage phase 6; vs (normalised) real time t is
the leading 45° degree diagonal.

Hence the separate physiological time durations of each stage in this model are:

a=quantity of 'daily photon doses' required to traverse the A stage,
B=quantity of daily development increments required to traverse the B stage.

Diagram 7.6 (top frame) shows monthly graphs, with linear interpolations between
hourly placed data points, of the mean daily irradiation intensities recorded in the
coastal town of Oban (west Scotland) for the calendar year 1991 (data from Heath).
By the above assumptions, these graphs depict the mean daily development rate of the
A stage for each month of the year.

For the most extreme months of January and July I used numerical integration to
obtain the A stage phase 6,(t) and the respective forward (A—B) interphase map f
associated with each month. Diagram 7.6 (middle and lower frames) shows the plots
of f for each month together with the monthly irradiation data (superimposed plot)
from which it is derived. In this model because B stage phase 8;(t)=t, the interphase
map plot 6, (=£(6,)) vs 6, is simply the mirror image (in the leading 45° diagonal) of
the stage specific plot of the A stage phase: 6, =£(8,) &6, (1)= £71(0, (1) =7 (1)
As with Catops each interphase map plot is thus a lefthand S.

Portraits 10 Behaviour portraits associated with the January and July
interphase maps
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Example

Utilising the January behaviour portrait, I shall estimate the synchronisation behaviour
of the phytoplankton species Thalassiorira pseudonana in January, by approximatin

the development function shown in Diagram 7.5 (middle fra,me) with a Zer(g,
background top hat of altitude 150 pEm2s- (vertical scale, micro-Einsteins, per

square metre, per second) and a base width of 0.25 days (6 hours). This implies that o
is given by the simple ratio;

o=duration of the A stage /duration of the daily illumination period
where durations are measured as proportions of 1 day.

Heath obtained that for the above species:
(i) At a constant light intensity of 150 pEm™s"! the real time duration of the (light
dependent) A stage is 1.85 hours=0.077 days. Thus I calculate a= 0.077/0.25= 0.31.

(ii) For the (light independent) B stage the real time duration is 5.5 hours=0.23 days
and therefore (=0.23.

Viewing the January behaviour portrait, I see that the parameter pair (0.31, 0.23) lies

within the green 1 lock region and thus I estimate that during the winter this species
will exhibit a synchronised life cycle, with one division occurring each day.
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7.5 DISCUSSION

The key result which comes out of the foregoing analysis is that stage-specificity of
developmental response is a powerful mechanism for synchronising life-cyclez to
periodic environmental forcing. The determinant of the power of the synchronising
force, and hence its capacity for maintaining synchrony in the face of cycle-on-cycle
variability in both environment and organism, depends on the extent of the stage-
specificity. In a nutshell, the essence of synchronization behaviour in the general two
stage model is determined by the amount of discontinuity (in a broad 'fuzzy' sense)
present within the exhibited development response to the environment.

The shape of the interphase map gives an immediate visual measure of the amount of
such discontinuity present. It serves to foresee (by the extent of the maximum
deviation of its plot away from the leading 45° diagonal) the expected robustness and
dominance of low lock behaviour. It can also indicate the likelihood of a sparsity of
high lock behaviour, by the presence of plot portions close to the leading 45°
diagonal. My investigations have also shown that (in any event) high lock regions
become decreasingly smaller in separate area as the lock number increases and
therefore, because of the inevitable presence of real world 'noise’, biologically less

significant.

The examples included in the final section give weight to the argument (previously
outlined in section 4.1) that development dormancy, that is a period of the
environmental repeat cycle when some life history-stages exhibit reduced
development rates, is important in the maintenance of life cycle synchrony (e.g.
Lacey 1986, Tauber et al 1986, Danks 1987). They powerfully re-enforce the
strategic observation that relatively small differences in either the timing or the width
of the growing season for the two stages can result in an interphase map sufficiently
perturbed from the leading diagonal to imply that a majority of possible life-cycle
lengths will result in observable (as opposed to formal) synchronisation.
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CHAPTER 8

DISCUSSION
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‘Studies mc‘ludmg .mo;.-e than one life stage are rare and those where the life history
of the species studied is also reasonably well known are rarer still. (Wolda 1988)

That 'stage. specificity can lead to life cycle synchronisation would probably pass
unnoticed in many quarters were it not for motivational data sets such as those
obtained by Topp (1990). Perhaps the more exciting evolutionary aspects of the
influence of periodic environments on life cycle phenomena have yet to be realised. I
believe that simple models such as the general two stage model of this thesis have a
key role to play in accumulating evidence about the dynamic properties of widely
occurring biological systems. To ensure continual progress however, such models
must be tested against real world data (Logan & Allen 1992). Sadly and in line with
many other authors (e.g. Wolda 1988, Gilbert 1990), I report shortage of data in the
life cycle context . Wolda (1988) has urged practical researchers in temperate areas
"to concentrate on gathering data on all life stages together with the appropriate life
history information”. In the seasonal context, comparison of future investigations will

need to rely upon data obtained from populations located at a variety of different
latitudes.

A key message to emerge from Chapter 1 is that a relative modicum of behavioural
data can go a long way towards promoting understanding of powerful underlying
mechanisms. Stage specificity is the key synchronisational mechanism in the Catops
default model. As well as having major generic implications, such a description has
the quintessential robustness demanded of any model that purports to describe a
biological process (Usher 1976). Equally impressive is the innate general property that
a greater amplification of stage specificity implies a greater robustness of low ordered
locking behaviour (visible in the revealing behaviour portraits of Catops in Portraits
9.

The introduction of the concept of physiological time in Chapter 2 provides the
building block formulation from which the interphase map description later emerges in
Chapter 4. This fundamental component provides a tangible instrument by which
stage specificity can be gauged, both visually through the shape of its plot and
analytically as a homeomorphism in the realm of dynamical systems theory. The phase
description is powerful because it permits synchronisation behaviour to be analysed
directly in terms of a dynamic outcome. I point out however, that there are some
inevitable limitations of carrying out such an analysis in isolation.
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Essentially the phase formulation tells us about types of dynamic behaviour that occur

over the complete range of separate stage phase durations «* and B°. Because the
values of these durations are (by definition) modulo 1, no information can be gleaned

on the absolute durations of the component stages of the life cycle and therefore on

the life cycle total duration. Consequently, although the model encompassses species

with sub-annual lifecycle lengths as well as species with multi-annual life-cycles it
does not distinguish results between them.

Whereas the behaviour portrait tells us for what values of a* and B* synchronisation

occurs (and what the lock numbers are), it does not show the actual emergence (or
recruitment) phases to which the life cycle locks. Hence (for example) the formulation
cannot tells us anything about cohort splitting. This is exemplified in the simulation
with the Catops default model where the model was found to synchronise to a 1 lock,
lineages for an arbitrary cohort being shown in Diagram 1.7. Although the total life
cycle duration is equal to 1 year, the initial cohort splits in two. In an extreme case,
many cohorts could arise which, though synchronised in terms of emergence time of
year, may actually emerge in different years.

The physiological time description has an innate robustness which stems from the fact
that changes in the shape of development response graph vs environmental driving
parameter result in a lesser change in the shape of the interphase map plot. Despite
the multitude of subtly different graphs of development velocity vs temperature
function reported in the literature, it turns out that their finer details bear litde
influence on the current model's synchronisation behaviour. The work of Chapter 7
goes some way to unifying the results of investigations into lineate and curved
interphase maps by developing the (expected) robust theme that curves (as in
elementary calculus) can be thought of as the limiting case of a 'staircase’ of adjacent

horizontal lines.

There is scope for investigation into important related areas. Computationally easy
explorations into the selection pressures exerted by adverse conditions could be
carried out by incorporating appropriate stage threshold criteria such as those
suggested by Watt (1968) (see section 1.5). These would produce periods in the year
termed 'holes' (as in the investigations of Gurney et al 1992), any lineages emerging
into which would terminate. Prospects for a population surviving extinction in a given
environment could thus be explored. To be fully productive such investigations would

greatly benefit from diverse sources of data.
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the current model set up. The great potential for cohort overlap in this situation is self

evident. Inclusion of the Crowleyesque mechanism can thus easily produce the 'kink'

o i 3
in th.e assoc ated.cucle. n.lz.lp plot (between the emergences of successive generations)
required for non-invertibility and iterative chaotic behaviour

In fact, chaos is conspicious by its absence in the current model dynamics. I have
observed intriguingly (in Chapter 4) that chaotic behaviour could occur in the
description, but only if development is permitted to proceed backwards. Because it
would contravene the laws of entropy, such (hypothetical) reverse development never
occurs in nature. For example, no creature has been found which ‘'undevelops' back
into the egg from whence it came. Does the model have inadvertent potential to
contribute to the lively philosophical debate on the role of chaos in evolutionary
ecology (Logan & Allen 1992) ?

In nature there will be a degree of blurring of the physiological characteristics of the
individual through heterogeneity in terms of its development response to the
environment. Further, the environment itself will generally be 'noisy' and therefore
subject to a degree of unpredictability. In an effort to make the current description
more realistic, a stochastic element could be introduced into the model by making the
assumption that the physiological durations oo and B of each stage are random
variables drawn from some probability distribution. These stochastic parameters could
be incorporated into the computational statement of the two stage circle map,
investigations with which would then centre on the time evolution of an emergence
phase distribution rather than on the dynamic behaviour of orbits. In their
investigations with the Corbet model, Gumney et al (1994) found that inclusion of a
narrow range (5—-10%) of random variability in the individual development rate and
duration of reproductive period did not alter their previously held deterministic
conclusions. Encouragingly, they found that the emergence phase (probability)
distribution of a lineage ultimately tended towards sharp stationary peaks that centred
on the stationary phases of the deterministic model.

A reasonable operational definition of observable synchrony is that in the presence of
realistic individual and environmental variability, an observer should be able to detect
a finite number of distinguishable abundance peaks (of individuals at the key life-
history stage) within a single environmental repeat cycle. My simulation studies
suggest that locks with repeat lengths greater than ten or SO generations, and hence
with more than ten peaks of abundance within an environmental repeat cycle, do not
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represent observable synchrony. This Suggests that the (small) region of very high
lock-numbers and near neutral stability shown in some of my investigations should be
regarded as predicting effectively unsynchronised behaviour. However, even
discounting all regions with lock numbers greater than twelve (shown in yellow on my
plots) as well as all neutrally stable points (shown in black) I still conclude that quite
subtle differences in developmental Tesponse to environmental forcing will imply low

lock-number (and hence observable) synchrony for most life-cycle lengths.

As well as establishing the answer to the strategic question about the relation between
stage specificity and synchronisation, the present work has also established a number
of clear empirical relations between synchronisation behaviour and interphase-map
shape. I suggest that experimental investigations of these questions can now proceed
directly from developmental response measurements to (approximate) determination
of synchronisation behaviour by visual analysis of the interphase map. Simple
graphical techniques will suffice to construct the first few iterates of the two-stage
circle map and hence to determine the stationary phases for observable locks.
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Hence a 2 lock occurs iff (A6.6b) and (A6.7b) are both satisfied that is

l+1<d<1+L 1-p
S*s 55 and d>1+ S (A6.8)

FORM 3 (*F <d <1+ %)

The horizontal section is now split into two parts which I shall

1
and H, (rightmost). abel as H, (leftmost)
(at) Itinerary H, 2 : by the same argument as in Form 2(b) Ppassage through segment a
after H, implies that d>1 . Phase duration must this time satisfy

B. *
O<( 3 +(d—1))< - (A69a)
= d<l1 (A69Db)

contradicting d>1 above. Thus itinerary H, a is impossible.

(a2) Itinerary H, a : passage through a requires that

*

1
l-a" <“-< (1+§ d) (A6.10a)
1+—
= a’ S < 3 (A6.10b)
and phase duration must satisfy
l+l—a' < E-+(d—1) <1 (A6.11a)
S S
1
1+—<d (A6.11b)
= 25
B 1.1 (A611c)
= S >l-a' + S > 33
1
= B> (A6.11d)

But from (A6.10b)
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2p° 1

a' +——<1+—=
S S1 (A6.12a)
1 * 1
= d<l+—Z+—-— —
28728 s “1*3g (A6.12b)
1 . .
snce B> > This contradicts (A6.11b). Thys H, a is impossible,
(b1) Itinerary H, E : passage through E requires that
1 B* 1 :
l+5-d<-+ <-a
S < S <1+S a (A6.13a)
1-p° 1
& 1+ S <d<1+§ (A6.13b)
Phase duration must satisfy
B’ 1 .
O<(S +(d—1—§) <l-a (A6.14)

which re-arranges to condition (A6.12b) above.

(A6.13b) and (A6.14) together imply that a 2 lock occurs when the conditions

1—B.<d<1+i A6.15
S 25 (A6.15)

1+

are satisfied.

(b2) Itinerary H,E : passage through E requires that inequality (A6.13b) must be
satisfied. Phase duration must now satisfy

1 p* 1

——a N 1 (A6.16a)
1+s a <(S +(d-1 S))<
= 1+é< d (A6.16b)

which contradicts d < 1+ Bs (by definition of FORM 3). Thus H,E is impossible.

Conditions (A6.8) and (A6.15) taken together imply that a 2 lock occurs iff

*

1 1 1
5+§<d<l+-2'§ and d>1+ S
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A6.3 Conditions for a 3 lock : two other FORM 1 itineraries

(i Iinerary HBU
Repeating the same logical argument, phase duration muyst now satisfy

*

* B
G-o )<(—_+(d—l +dJ ‘ A
S S S) <= (A6.17a)

2 <d< 1+ !
@ — — —a
38 33 (A6.17b)

To pass through b and then U successively after H respectively requires that

. .
(g—d)< % < (é- a‘) (A6182)
. _I_:S_ﬁ_ < d (A6.18b)

and .
0< SB +( _é)< é‘d) (A6.192)
. g<2 ;SB‘ (A6.19b)

must be satisfied. Combining inequalities (A6.17b) , (A6.18b) and (A6.19b) the
conditions for a 3 lock are thus

3S 373 S 28 (A6.20)
(iii) Itinerary HUa
Phase duration must satisfy
(-}—a‘)<( 2 +d+(d—l))<(l—a‘) (A621a)
1 1 2
S b (A621b)
=3 3+ S <d< 3

*

. B o .
To pass through U immediately after H requires that d < S (by earlier inequality

(6.13)), and then to continue passage through segment a requires that
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* —B;
(1-a )<( S +dj<1 (A622a)

—1— d< 1—;
o 2< S (A622b)

must be satisfied. The RHS of condition (A6.22b) i redundant, because
-p_, B

i< 3 < 1—?, since S>1. The LHS of (A6.22b) is also redundant,

because if
d<1/2 a 2 lock occurs (by earlier inequality (6.12) ). The conditions for a 3 lock are
thus inequality (A6.21b) and earlier inequality (6.13) together, namely
11 2 1-f
5+-3§<d<3 and dc< 3

(A6.23)
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Appendix A7 (to Chapter 7)

A7.1 Derivation of the TLIM circle map

The two line interphase map TLIM is defined by

93 E%(ﬁ,\):{sleA OSGA <P
1-5,(1-6,) P<e, < (A7.1)

where 8, =P is the phase where segments L and R meet.

Observe that at the point (P,Q) where the two corresponding lines of the plot meet

{Q =S,P
Q=1-S,(1-P) (A7.2)
which together imply that
po1=Ss
=3,<s, (A7.3)

Clearly, this interphase map is a homeomorphism, with its inverse defined by

1
= EGB 0<06, <S,P
=t G)=1 (A7.4)
1-5-(1-0;) S,P<6; <1
2
- ~=1 -
The TLIM Circle map Fap =f Ry fR, is thus
) £ R[S, (B, +00)°] 0<@,+’)<P  (A753)
eA(n+l) = G.B(BM) =1 .
f1R,(1-S,(1-(8,, +0)")) P<(6,+a) <1  (A75b)
Dropping the A-stage suffix for clarity (so that 0,, =6,), I observe that
B 48,8, +0)"  for B8, + <l o

Rslsl(eﬂ+a).]={B'—1+Sl(9,,+a)’ for B*+S5,(6, +a)* >1
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(A7.11¢) The RHS inequality, right limit
1—(‘3 +1)+S—1P=Ll——1—+§l— )—B

SZ SZ Sz SZ 82

— 1-§, _ B*

S, =S, ) §,

=P~—B <P.

2

Hence the left hand term does not exist.

This leaves terms (A7.11a) to (A7.11c) and (A7.11f) to (A7.11h).

The TLIM circle map is therefore

i +0,+o)’ OS((),,+oc)*<P—B
S, S,
p-1 8§, . B’ . 1B
1 - P-——< —_—
+ s, +sz(6"+°‘) s, O, +0)" < s,
t—l 1— *
BS +(0, +a) P <O, +a)" <P
en+l= 4-1 ' *
WB +(0, +o)" P$(6n+0c)"<1-—[3
S, S,
B‘_SZ SZ * B* B*
—+—(0_+ 1-—=< f<1-
S, Sl( LT s, 6,+a)" <1 s
ﬁ‘_l * Bt S1
+(0, +a I-—+P<@® +)" <1
s, TG 5,75, =0t

+2Lp
S,
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