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To Mum and Dad

A plausible impossibility is always preferable to an unconvincing 
possibility- Aristotle
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ABSTRACT

In the natural environment many organisms demonstrate the ability to synchronise 
their life cycle to periodic environmental variations. Previous studies have shown 
that life histories consisting of a contiguous series of stages all with density 
independent development rates exhibiting the same dependence on time cannot 
synchronise to a periodic environmental variation. The same studies established that 
both dormancy and quiescence at specific points in the life cycle could produce 
strong synchronising effects.

In this thesis I examine a very general strategic model of a two-stage life-cycle, each 
stage having a density independent development rate with a characteristic periodic 
time-dependence. I develop a concise circle map representation between the 
emergences of successive generations. The two stage circle map which relates these 
emergences is composed from two simple rotations and an interphase map which 
represents the relationship between the physiological times for the two life-history 
stages. I explore synchronisation behaviour of the life cycle model in terms of the 
qualitative dynamics that correspond to the iterative dynamic behaviour of the 
associated two stage circle map.

I derive a series of analytic results relating the behaviour of systems whose 
interphase maps are interrelated and give analytic conditions for a broad class of 
two-stage circle maps to have a fixed point (that is for the systems they describe to 
reach the critical life-history stage at the same point in each environmental cycle). 
Finally I report the results of numerical investigations of the relationship between the 
biological characteristics of the development functions and the fine-scale details of 
the locking behaviour of the systems they define. I illustrate the practical 
implications of these findings by examining results obtained when the model is 
parameterised with data for two diverse organisms, namely a beetle Catops nigricans 
and a micro-organism phytoplankton.
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0.0 INTRODUCTION
The most persistent cycle in nature is the diurnal light cycle which is 
accompanied by a slightly out of phase temperature cycle. It is hard to imagine 
how cells in the course of their evolution could have ignored this physical 
relationship and the limitations it imposed' (James 1964)

Almost all organisms exist in environments which exhibit predictable variations 
in quality. Evidence abounds in the real world of organisms that can at least on 
average, predict the timing of periods of both favourable and unfavourable 
conditions with considerable accuracy because the relevant factors show 
variation which has a very strong periodic component.These natural periodicities 
result from the inexorable periodic motions of the earth about its own axis or the 
sun, or even the moon about the earth. They can also come from more 
unexpected sources, such as variations in the rate of addition of nutrient to a 
commercial yeast or bacterial culture arising from organisational or experimental 
regimen. Populations in such periodically varying environments frequently 
exhibit dramatic changes in the relative abundance of individuals in different life­
history stages at frequencies which are clearly harmonically related to that of the 
environmental variation. These changes often show every sign of being 
synchronised to the environmental periodicity in the sense that key biological 
events occur at the same point (or points) in the environmental cycle.

The advantages to an organism of synchronising its life-cycle to those of its con- 
specifics include increasing survival by predator satiation and (in sexually 
reproducing organisms) enhancing the probability of finding a suitable mate. 
Although synchronisation to the life-cycle of con-specifics does not logically 
imply synchronisation to a periodic environment it is clear that if a population of 
identical organisms synchronise tightly to an environmental periodicity then they 
are by definition synchronised to one another. Moreover, the benefits of 
synchronisation to con-specifics accrue only where the population of such con- 
specifics is large (such as emergence synchrony induced by pheromones in 
locusts (Mordue et al 1980) ) whereas the benefits of synchronisation to the 
environment (and the penalties of failure to achieve that synchrony) continue to 
operate even when the population contains very few individuals.
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Although mechanisms have been proposed which produce such synchrony by 
operating at the population level (see for example Hoppensteadt & Keller 1976), 
I suggest that the most general class of mechanisms operates by controlling the 
development rate of the individual organism. In this thesis I seek to elucidate the 
necessary characteristics of a broad class of such mechanisms which can lead to 
synchronisation of an individual life-cycle to periodic environmental variation. I 
examine the conditions under which an organism whose development rate is a 
periodic function of time can achieve synchronisation to that periodicity or to a 
harmonic or sub-harmonic of it

I shall shortly give an outline of the two main classes of synchronisation 
mechanisms that have been hypothesised but prefer to first present a diverse 
selection of reported examples, both natural and induced, of biological 
synchrony.
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0.1 BIOLOGICAL SYNCHRONY

Biological (as opposed to formal) synchrony is defined (less strictly) to be a high 
degree of concurrence (rather than exact simultineity) of a population in the 
engagement of a particular activity (Zeuthen 1964). Although laboratory 
experiments to induce synchrony in mass cultures go back to at least Angerer 
(1936), I surprisingly find that not until Zeuthen (1964) are the topics of induced 
and natural synchrony considered together in the same volume. Perhaps this 
stems from the large scale chanelling of resources in the singular quest for the 
hypothesised (but still unfound) autonomous biological clock (e.g. Edmunds 
1976, Winffee 1986).

Natural Synchrony
At the most fundamental level, mitotic synchrony (division of nuclei) within the 
cell has long been documented in the embryos of a wide range of taxa including 
slime moulds (Lister & Lister 1925), amoebae (Kudo 1947), sea urchins (Agrell 
1956), Euglenineae (Leedale 1959, Cook & James 1960) and amphibians 
(Agrell 1964). The natural life cycle synchrony of cell division (from mother to 
two daughter cells) was first reported at micro-organism level in 1905 by Gough 
for the dinoflagellate Ceratium and subsequently in the individual cells of larger 
animals (Carleton 1934, Halberg et al 1958). In the case of Ceratium such 
natural synchrony of division was later confirmed in the laboratory to be so 
precise as to occur only at night around 3.30 A.M. (Braarud & Pappas 1951, 
Sweeney & Hastings 1958). Shortly after this, 'natural phasing' of cell division 
was observed in a variety of algae such as the genus Chlamydomonas (Bernstein 
1960) and thereafter in several others (Sweeney & Hastings 1962). Ongoing 
research has continued to show that synchronous behaviour among such simple 
organisms is indeed widespread (Heath 1988).

Life cycle synchrony of more complex (multi-cellular) organisms is well 
documented in arthropods through observations of the emergence of adults. One 
of the most dramatic examples of this phenomenon is the regular appearance of 
adults of the various USA cicadas which in some species takes place at intervals 
of up to every 17 years (Simon 1979). A related pattern of behaviour is shown 
by many odonate species (damselflies and dragonflies) which have life cycle 
lengths in the range three to seven years. Although adults of these species 
appear in most years they do so only at a small number of highly predictable 
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times (Corbet 1957, Lutz 1968, Norling 1984c, Crowley et al 1987). Amongst 
those synchronous arthropods with sub-annual life cycle lengths are locusts 
(Mordue et al 1980), beetles (Engler 1982, Topp 1990, Tasch & Topp 1991), 
moths (Common 1954, Nagase & Masaki 1991, Topp & Kirsten 1991), midges 
(Brust 1991) and spiders (Downes 1988, Tanaka 1992). Examples of organisms 
showing a fixed number of years per generation with key events occurring at 
predictable times of year are also common among herbaceous plants (Courtney 
1968).

In the case of insects the combined morphological factors of small size, 
poikilothermy and poor insulation necessarily maintain their body temperature 
close to that of the environment (Mordue et al 1980). The benefits to such an 
individual of synchronising its life cycle to a periodic environment are therefore 
obvious. It can ensure that the only life history stages exposed to periods of 
highly adverse conditions (winter cold, summer heat or drought) are those 
specially adapted to survive them and it can ensure that the offspring which 
carry its hope of genetic survival will be produced at a time giving maximum 
chance of survival to maturity.

Induced Synchrony
Experiments to artificially induce synchrony boomed in the 1950’s when 
realisation dawned that what is determined for a synchronised culture of cells 
pertains as a reliable first approximation to the individual cell (Zeuthen 1964). 
Studies conducted on such synchronised mass populations of micro-organisms 
have two clear practical advantages. Firstly they enable representative samples 
to be withdrawn without disturbing the cyclic chain of events under scrutiny. 
Secondly they permit sophisticated structural studies and chemical analyses to be 
carried out which cannot be performed on a single or few individual cells.

Earlier experiments with micro-organisms established that synchrony could be 
induced by a diverse range of periodic regimen. Angerer (1936) put it 
emphatically 'any treatment which alters the growth rate of a culture may be a 
potential synchronising one'. Apart from the natural occurring environmental 
periodicities of daylight and temperature, successfully applied regimen have 
included periodic treatments of nutrient increase or mechanical agitation 
(Angerer 1936), starvation (Sylven et al 1959) and even irradiation with X-rays 
(Spoerl & Looney 1959). Famous populations of organisms succumbing to such
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inductive synchronisation treatments included algae such as Chlorella (Tamiya 
et al 1953), dinoflagellates such as Gonyaulux (Sweeney & Hastings 1958), 
amoebae (Angerer 1936, James 1959), yeasts (Sylven et al 1959, Spoerl & 
Looney 1959), and ciliate protozoa such as Tetrahymena (Zeuthen 1964).

The fact that synchronous behaviour could be induced in cell populations by 
external treatments sparked much excitement into speculation of potential 
underlying mechanisms. Intuitively it is clear what effect a synchronising 
mechanism must induce in the population for synchronisation to be achieved. 
James and Zeuthen have provided eloquent summary statements:

“Successful experimental induction of division synchrony requires that a 
growing culture be subjected to an experimental treatment which will either 
advance or retard some of the cells in their duplication cycle with respect to the 
remainder” (James 1964).

“Synchronisation depends on the establishment of conditions which will reduce 
the rate of preparation along one or a few channels, primarily the change in rate 
depending on stage of division such that individuals closest to division are most 
retarded those furthest away are least retarded” (Zeuthen 1964).

However, it is much less obvious (and still unresolved) what the underlying 
mechanism(s) actually are. Postulated synchronisation mechanisms, although not 
necessarily mutually exclusive, fall into two main classes according to their 
proposed undelying timer. These proposed timers by their very definition, as we 
shall now see, are necessarily mutually exclusive.
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0.2 A BRIEF HISTORY OF TIMERS

The broad class of proposed biological timers divides into two distinct sub­
groups according to the category of timer mechanism hypothesized to underly 
the biological process.

(a) Autonomous Clock Hypothesis
The most obvious hypothesized timer is an autonomous biological clock located 
inside the organism which is subject to entrainment by external periodicity 
(Edmunds 1976). Time information is postulated to be generated intrinsically 
from within the organism and interaction with the external environment merely 
serves to adjust the biological process so that it remains ‘in sync’.

A frequently cited observation put forward as evidence for the existence of an 
autonomous biological clock is that of the circadien rhythm observed in many 
insect species (Brown 1976, Mordue et al 1980). Such a rhythm is displayed in 
the perochial 'cockroach in the aerograph' experiment through locomotor 
activity which recurs in a regular daily pattern. The persistence of this rhythm 
when the insect is kept under constant light-proof conditions away from a 
zeitgeber (transmitter of temporal information) has been the single definitive 
result interpreted to demand the requirement for a private endogeneous timer 
(Brown 1976).

Significantly, a circadien rhythmn has never been found to exactly match 
external (solar) time but rather 'free runs' or 'drifts' relative to it This implies that 
the rhythmn recurs only at intervals of slightly more (or less, depending on the 
species) than 24 hours. Indeed, the term circadien was first coined by Halberg 
(1959) to emphasise the approximate character (circa- about, dien -a day) of the 
observed biological rhythmn.

Supporters of the autonomous clock have argued that because the duration of 
the drift is stable and largely resistant to the level of constant temperature (Qio= 
1), the drift must correspond with the period of oscillation of the postulated 
internal clock. They deduce that the presence of the external zeitgeber merely 
acts to entrain the postulated inate timer of the organism to that of the periodic 
environment Perversely the conclusion is drawn that the observed drift gives 
further support to the hypothesis that the timer is in the organism rather than in 
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the environment I prefer to interpret this empirical observation more 
objectively. In the insightful words of Brown (1976), the experiment merely 
demonstrates that whereas biological rhythmns can become circadien it is only 
hypothesis that the clocks are too'.

In the insect literature the autonomous clock hypothesis has recently fallen into 
disfavour and has been entirely abandoned in the context of explaining diapause 
because of observed ‘gradual changes in diapause intensity’ (Hodek 1983). The 
greatest argument against the existence of an autonomous clock is the simple 
fact that despite many years of searching not even a single component has yet 
been discovered (Palmer 1976, John Tyson personal communication SIAM 
conference San Diego 1994 ).

(b) Non-autonomous Clock Hypothesis
The second main hypothesis postulates that time interval information is received 
from an external source (such as the sun) and is then transformed into time 
information by the organism. Supporters of the non-autonomous clock 
hypothesis advocate that the periodic motions of the earth, moon and sun 
relative to each other provide a continual time reference frame which is mediated 
to the organism through the biological effect of the environmental periodicities 
that they engender. This is such a broad definition that it could holistically 
embrace all other proposed timers. In a sense the non-autonomous clock 
hypothesis can thus be regarded as the alternate hypothesis to the autonomous 
clock (either the proposed timer is dependent on the environment or it is not).

There is an argument that the above historically-adhered-to classification is an 
over-simplification of the types of timer mechanism that may exist. Even where 
the proposed timer is (supposedly) autonomous, we have seen that some 
interaction with the environment (entrainment) is necessary to keep perfect time. 
Further, there is no requirement that proposed timers be mutually exclusive.

Perhaps a more appropriate classification would be in terms of the ‘plasticity’ of 
the internal response exhibited to the environment The autonomous clock timer 
could then be classified as a rigid type of internal response in which the 
organism could only keep correct time under a very narrow range of external 
(environmental) periodicity (e.g. 24 hour). The non-autonomous timer response 
would imply a more plastic response whereby the organism could maintain 
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appropriate timing throughout a much broader range of environmental 
periodicities.

In this thesis I explore the synchronous prospects for a mechanism which 
operates through an internal stage specific development response exhibited to an 
external periodic forcing. Rate of progression through the life-cycle, whilst 
proceeding at constant speed in constant conditions, responds to the periodic 
forcing in such a way as to induce synchrony between the life-cycle and the 
environment Such a mechanism would be placed under the historical non- 
autonomous clock ‘camp’ banner. As a final preliminary, I now provide a 
quintessential review of biological development
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0. 3 DEVELOPMENT IN A CONSTANT ENVIRONMENT

Biological development of an organism is the resultant of an immense number of 
chemical and physical reactions (Johnson & Lewin 1946, Wigglesworth 1972, 
Sharpe & de Michele 1977). It involves processes of growth and differentiation 
which ultimately result in the organism passing from one condition to another. In 
many interesting situations (which I seek to investigate), such a transition occurs 
between two or more clearly definable states which are exhibited as a contiguous 
sequence of discrete successive stages. Typical examples of such ‘stage 
specificity’ are to be seen at the cellular level in cellular divisions (Mitchison 
1971), in the progress from one instar to the next in arthropods (Logan et al 
1976) and in the appearance of buds in flowers (Overcash & Campbell 1955). In 
section 0.51 shall outline a generic model which can encompass this entire broad 
class of situations.

Let us make the reasonable assumption that development within any stage 
proceeds continuously at a constant rate under constant environmental 
conditions. Assuming a development index is possible for the organism (see 
section 0.4 below) a simple measure of development rate can be encapsulated by 
a ‘development velocity’ defined in terms of a goal quantity of development 
required to complete the stage (measured on the development index) divided by 
the time taken to traverse it (Wigglesworth 1972). If development velocity is 
charted throughout a complete range of different (but constant) environmental 
conditions, the stage development rate can be set up as a continuous function of 
the varying parameter(s).

Since the rate of all chemical reactions is dependent on temperature it follows 
that the rate of progress of most physiological processes bears a strong 
relationship with this parameter. It is therefore unsurprising that most historical 
studies have seeked to establish development rate as a function of temperature. 
There have been two main classes of attempts by which past authors have 
sought to achieve this, namely empirical or theoretical. I now briefly review the 
more prominent of these.
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(a) Empirical derivations

The insect literature overflows with empirical formulations of development rate 

derived by holding a particular species under a range of constant laboratory 

temperature regimes and then fitting a curve to the acquired data. The earliest 

attempts at deriving development rate as a function of temperature were made with 

the implicit assumption that development increases in a linear fashion (de Candolle 

1855, Sanderson 1910, Blunck 1914, Krogh 1914). In all these studies development 

rate g was presumed to be related to temperature T by

g(T) = k(T-a) (0.1)

where k and a are constants. The value of the constant a is referred to as the 

‘development threshold’. Although the relationship of equation (0.1) holds for some 

organisms over the main range of naturally encountered temperatures (Williams & 

Wratten 1987) and most apparently for the insect orders Lepidoptera and Diptera 

(Peairs 1927, Hughes 1970) it generally becomes increasingly inaccurate as 

temperatures become more extreme (Mordue et al 1980). Many later authors 

attempted to improve upon this by deriving better empirical descriptions both within 

the fields of insect (Zwolfer 1934, Davidson 1942) and plant ecology (Leitch 1916, 

Shelford 1929, Barton-Wright 1933).

Most notable amongst these studies is Davidson (1942) who in a now famous paper 

employed the Verhurst logistic curve

(0 2) 
1 1 V

where k, a and b are constants, to accurately describe the development of eggs of the 

human body louse. According to Wigglesworth (1972), this single curve affords a 

faithful representation for 85-90% of the complete temperature range over which 

development can occur in many insects and has since been applied in a more general 

context to other animals (Andrewartha & Birch 1954). However, the effects of 
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retardation may still be inadequately taken into account at higher temperatures 

(Davidson 1942 on Ludwig & Cable (1933) Drosophilia data).

Observing this deficiency, Pradhan (1946) went on to suggest the new formula

g(T) = ke*^2 (0.3)

where k, a and To are constants, whose graph deviates strongly from linearity at both 

lower and higher extreme temperatures. He demonstrated that this functional 

relationship accurately depicts the development rates through the egg and larval stages 

of 3 species of insect taken from different orders, most noteworthily the desert locust 

Schistocerca gregaria (Orthoptera) using data taken from Hussain & Ahmad (1936).

(b) Theoretical derivations

More ambitiously, there have been attempts at deriving alleged general descriptions of 

development rate by appealing to some theoretical principle extracted from the 

physical sciences. Such attempts are characterised by the author outlining the virtues 

of the chosen principle which (it is claimed) necessarily underlies the whole 

development process. Famous amongst such descriptions are the catenary curves of 

Janisch (1938) extracted from dynamics theory. Although these curves accurately 

depict the development of muscid flies (Larsen & Thomson 1940), they frequently 

give much poorer estimates at the lower range of developmental temperatures 

(Messenger & Fitters 1959, Messenger 1964).

In general the more simpler the theoretical relationship, the more limited the 

temperature range over which it holds (Nielsen & Evans 1960). Nevertheless some 

authors have still favoured simple relationships such as the Eyring equation taken from 

physical chemistry (Eyring & Stem 1939) or the exponential rule of Van't Hoff and 

Arrhenius (for chemical reactions)

g(T) = AkT (0.4)
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where A and k are constants, as good general descriptions of metabolism (Palmer 

1976).

A popular recent variation on the theoretical theme is the 'thermodynamic model' of 
Sharpe & de Michele (1977). This model blends the early high temperature enzymatic 
descriptions of Johnson & Lewis (1946) with similar at low temperature by Hultin 
(1955) through a linear relationship over the intermediate temperature range (their 
equation 17). The graph of this function gives rise to the most widely accepted 
generic relationship between development rate and temperature namely that of an S- 
shaped curve as shown in Diagram 0.1 (Mordue et al 1980).

DIAGRAM 0.1. The general relationship between biological development rate and 
temperature (Mordue et al 1980). Beyond the ends of the plot (above temperature 
T.^ or below temperature T^J the organism dies.
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Other recent authors have continued to add to this already vast body of 
literature. Eubank (1973) introduced parabolic functions, Parker & Pardue 
(1974) increased the empirical catalogue, Stinner et al (1974) modified a 
sigmoid curve first introduced by Crozier in 1926 to exhibit a more impressive 
dip at higher temperatures. Logan et al (1976) applied the method of matched 
asymptotic expansions in a boundary layer context taken from the physical 
sciences (Lin & Segel 1974) to derive a two-part development rate function 
which, for the first time, was asymmetrical about the peak value.

I summarise all of the above with wise words of Wigglesworth (1972), “... 
whereas particular curves can be made to fit particular cases, no description is of 
sufficiently general application to be regarded as embodying any rational 
principle”.
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0.4 DEVELOPMENT IN A CHANGING ENVIRONMENT

My main interest lies in investigating situations where the organism is exposed to a 

periodically varying environment. How valid are the above descriptions when the same 

organism is exposed to a changing environment9 There is no logical reason to expect 

that each of the many processes constituting development will necessarily exhibit the 

same rate of response to a given change of environmental parameter. By a 

continuation of this argument, there is no logical reason for development rate (the 

resultant rate of all such processes) to follow the same relationship under time-varying 

conditions as that obtained when the conditions are held constant. Thus, a question of 

central importance is whether the functional relationship between development rate 

and environmental parameter(s) obtained under constant conditions does indeed still 

hold when the parameters vary with time. Unsurprisingly, the precise answer is that 

this depends upon both the organism and the parameters being varied (Cloudsley- 

Thompson 1953, Wigglesworth 1972).

In the case of temperature, it is well known that changes can have a stimulating or 

retarding effect on development beyond the functional relationship obtained under 

constant conditions (Parker 1929, Powsner 1935, Precht et al 1973). That temperature 

fluctuations can accelerate development has been established by past studies in the 

germination and bud break of plants (Overcash & Campbell 1955, Kramer 1958, 

Hellmers & Sundahl 1959) and some species of insects (Parker 1929, Cloudsely- 

Thompson 1953, Clarke 1967, Remmert & Wunderling 1970). On the other hand, it 

has been equally well established that for a range of taxa as diverse as bedbugs 

(Johnson 1940,1942) and flies (Ludwig & Cable 1933, Vogt et al 1990) to amphibian 

embryos (Khan 1965) no such developmental stimulation occurs.

Throughout this thesis I make the simplifying assumption that the functional 

relationship exhibited between development rate and environmental parameters) 

under constant conditions is maintained when the parameters) change with time. Even 

though such a description may not aways be entirely accurate, I take the view (by 
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appeal to Occam’s razor) that it is unrivalled in terms of general compactness and 

cogency.

Thermal Summation

Thermal summation originates from first attempts to assess the duration of 

development of an organism situated in a changing temperature. Historically, the 

technique first appeared in the insect literature with the implicit assumption that 

development rate is a linear function of temperature (de Candolle 1855) as in equation 

(0.1). For such a model, the product of degrees above the zero development threshold 

with development duration is of constant value (proof: If g(T) = k(T - a) so that the 

excess temperature x = T - a then the product of excess temperature and development 

time is x(|) = constant). This gives rise to the simple hypothesis that a fixed 

number of 'degree-days' must be required for the organism to complete its 

development (applied by Blunck (1914) in his studies on Dytiscus water beetles). A 

further piecewise linear extension of the approach to cover situations where 

development is non-linear was outlined by Sanderson (1910).

Development Index

The concept of degree-days ultimately relies upon the assumption that development of 

the organism proceeds cumulatively in a (linear) quantifiable way. A natural 

continuation of the idea is to move to a more general development description defined 

in terms of an abstract scale referred to as a development index (e g Pradhan 1946). 

To do this requires the almost hidden assumption that, in the first place, development 

of the organism is expressable cumulatively as a function of time only.

Assuming this to be so, development rate is determined first (as a function of time) by 

appealing to the relationship established under constant conditions between 

development time and an influential environmental parameter such as temperature (e g. 

Pradhan 1946). This necessitates use of the earlier assumption that the same 

relationship (established under constant conditions) holds when conditions are 

changing. What are the benefits of this approach ?
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The great merit of obtaining development rate as a function of time only is that 

physiological progress (development) can then be dealt with in an analagous fashion to 

a distance travelled (Stinner et al 1974, Logan et al 1976). Essentially development 

then corresponds to the area under the deveopment velocity vs time graph. I shall 

show in Chapter 2 that this in turn allows a tremendously simpler model formulation in 

terms of a measure that I shall refer to as physiological time.

A Generic Life Cycle Model

Any complex life cycle can be regarded as a combination of several successive simpler 

component mechanisms (Danks 1991). For many organisms the successive transitions 

that occur in the life cycle are so rapid in relation to the duration of the life history that 

the intermediate state can be justifiably considered as a component stage of the life 

history (Mitchison 1971, Wigglesworth 1972). In such cases the main characterising 

feature of the life cycle is a contiguous sequence of separate ‘differentially sensitive’ 

stages (Palmer 1976). I seek to construct a simple life cycle model which incorporates 

this quintessential feature.

Usher (1976) has proposed excellent guidelines for any model which purports to 

describe a biological process. These specify that it must (a) encompass some biological 

feeling, (b) give a satisfactory fit to the process it describes, (c) be sufficiently general 

to describe a wide range of similar processes, (d) be tractable.

Following these, I suggest that the simplest generic model of such a life cycle is one 

composed of a contiguous sequence of discrete stages each of which has an associated 

continuous density independent time-varying development rate function. The only 

restriction which I shall place on the nature of these development rate functions is that 

all are periodic with the same repeat period. I make one further simplifying 

assumption, namely that there exists a finite point in time at which a given generation 

disappears and the next one appears (which necessitates the implicit assumption that 

reproduction occurs over a sufficiently short period that it can be considered as a point 

event in time). Completion of each generation is then analagous to the ‘tick’ of the 

underlying timer mechanism.
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At first sight the assumption of such an instantaneous transition might seem unrealistic 

because of the likelihood of a blurring caused through individual non-homogeneity. 

However, the model is well suited to explosive reproducers such as ‘big bang’ insects 

(Roff 1990) (e g. Catops nigricans of Chapter 1) and the general multitude of cases of 

cell division which have been outlined earlier in section 0.1 (e g. Spudich & Sager 

1980). It has also been argued that such a description is appropriate for organisms 

with a more protracted reproductive period provided that mortality during the period 

when emergence occurs is high (so that only those individuals which emerge within a 

narrow time interval survive to reproduce) (Roff 1990).

Because I wish to conduct an in-depth exploration of stage specificity, in this thesis I 

shall exclude any effects that may result from stochasticity produced by environmental 

noise or individual heterogeneity. In due course we shall see that such a model satisfies 

all of the Usher guidelines.

Observe now that this generic model, although simple, permits investigation of the 

entire class of situations in which each stage in the life cycle ‘exhibits’ a different 

developmental response that is, where

(a) a different internal (biotic) development response takes place within each 

developmental stage, or

(b) a different external (abiotic) environmental forcing function affects each stage of 

development such as when the organism has different developmental stages in different 

media (e,g dragonflies), or

(c) a combination of both (a) and (b) occurs in the life history.

In this thesis I shift our main focus to the simplest such model with the minimal set of 

necessary characteristics, namely one in which the life-history consists of two stages. I 

do this primarily because I seek to investigate the extent to which life cycle synchrony 

can be influenced by stage specificity per se. I use this simplest model to explore (at 

minimum cost to intractability) the general synchronous implications of exhibiting a 

stage-specific developmental response in a periodically varying environment.
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Support for the realistic worth of even such a simple model can easily be found. The 

observations of Spudich and Sager (1980) on chlamydomonas and Heath & Spencer 

(1985) on a number of marine algae are consistent with this picture. Gurney et al 

(1992, 1994) have shown that two special cases of this type of mechanism predict 

dynamic behaviour similar to that observed in many odonate populations (see section 

4.1).
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03 OVERVIEW OF THESIS

I commence with a detailed case study performed with a stage specific model of the 
univoltine European beetle Catops nigricans parameterised with data obtained by 
Topp (1990). I demonstrate that the model formulation not only gives realistic 
synchronisation results but also that equally valid results are obtained by collapsing the 
model into a simpler appropriate two stage description.

Realising that future analytic tractability could easily be lost, the concept of 
physiological time is introduced early in the next Chapter. Immediately, I demonstrate 
the potency of this description by constructing a straightforward formal proof (of the 
observation by Gurney et al 1992) that no physiologically unstructured population 
whose development rate depends only on time can ever achieve synchrony.

In Chapter 3 I dig into dynamical systems literature to extract a foundational block of 
theory which will later serve as fundamental throughout the thesis. Utilising this, I set 
up a general two stage model in Chapter 4 and together with the broad analysis 
performed in Chapter 5 uncover a powerful repertoire of general properties. These are 
summarised by a selection of compact new Theorems together with novel 
relationships between interphase map and behaviour portrait.

In Chapter 6 I take a ‘time out’ from the general model to explore a simpler linearised 
version which enables higher-ordered locking behaviour to be more thoroughly 
investigated. The analysis of this model provides insight into other (though 
biologically less interesting) forms of dynamic behaviour that can occur such as 
neutral stability.

I return to the general model in Chapter 7 and show a selection of surveys via 
sequences of behaviour portraits. These demonstrate how the shape of the interphase 
map largely determines synchronisation behaviour. Important practical biological 
implications are mentioned in the final section. In particular, the Catops nigricans 
model is re-examined in the light of its associated behaviour portrait. A concluding 
discussion which includes an outline of possible future avenues of research is covered 
in Chapter 8.
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CHAPTER 1

A LIFE CYCLE IN A SEASONALLY
VARYING ENVIRONMENT

Catons Nigricans
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'[Coleoptera] provide excellent illustrations and test cases for almost every general 
evolutionary principle, and future study of the group may well lead to the 
formulation of new generalisations'. R.A. Crowson (1981).

1 .0 INTRODUCTION

The small European beetle Catops Nigricans (Catops for brevity) displays remarkable 
univoltine seasonal synchronicity in times of adult emergence and oviposition. A 
central quest of this detailed case study is to determine whether such a phenomenon 
can arise purely through a stage specific developmental response to periodic 
environmental variations. Although other abiotic development factors such as 
humidity may be important (Evans 1975), I make the assumption that then- 
developmental effects are negligible. For the purposes of this investigation, Catops 
shall essentially be reduced as near as possible to a mere bag of chemicals.

In line with the assumptions of section 0.4,1 shall construct a stage specific life cycle 
model of Catops which utilises the complete development data presented in a study by 
Topp (1990). Seasonal environmental variations of temperature and photoperiod shall 
be represented by sinusoidal driver functions (of time) thereby defining stage specific 
annual development rates for each stage throughout the year. This 'default' model 
shall give the best possible representation of Catops together with its immediate 
external abiotic environment I shall use this model to investigate the synchronising 
effect of periodic environmental variations of temperature and light on the adult 
eclosion and oviposition times of an arbritrary initial cohort, over several generations. 
Can the observed real life synchronisation of the Catops life cycle be wholly 
attributed to a stage specific developmental response to known periodic variations of 
temperature and photoperiod?
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1.1 BIOLOGY OF CATOPS NIGRICANS

Natural History
Somewhat unusually for an insect of temperate latitudes, the life cycle of Catops 
Nigricans (Coleóptera: Leoididae: Catopinae: Spence 1813) begins with oviposition 
in the autumn. Larval development then proceeds throughout the winter months 
before the newly formed immature adult beetle emerges from the pupa stage in the 
following spring. A period of diapause during the summer months ( referred to as 
aestivation) typical of Catopinae (Engler 1982) delays development of female 
reproductive organs. Maturation and oviposition finally take place in the autumn, to 
complete the univoltine life history. The reproductive period is relatively brief in 
comparison to the length of the complete life history so that Catops is a Trig bang' 
insect (section 0.4) and exhibits this through briefly semelparous reproduction (Topp 
1990).

Catops leads a secretive existence. As a typical member of the Catops genus at 5.5 to 
6.5mm long (Jeannel 1936), it is to be found as a general forager in the litter layer of 
European forests, with northern limits on its distribution ranging from Iceland and 
Scotland through to northern Norway and Finland (Topp 1990). The species was 
classified as eucoenic in a survey by Israelson (1971) since it was so rarely to be met 
with outside of the burrows of small mammals. By no accounts does it ever venture 
upwards beyond the litter layer level (Topp and Engler 1980). The question as to how 
far it ventures below ground is less easily answered and most ecological (as opposed 
to biological) information on Catops appears to be purely anecdotal (Topp 1993, 
personal communication). Catops does enter soil layers of up to 25 cm during adult 
diapause and should be able to permanently live in the burrows of small mammals 
(Topp 1990). Research by Topp in the same study also showed that as far as 
temperature measurements are concerned, an adequate permanent habitat is certainly 
to be found in mole nests. Indeed, Casale (1975) unhesitatingly links the home of a 
close relative Catops Nigriclavis with such places. It would therefore appear that 
Catops is very partial to subterranean life and this is not entirely surprising given that 
other members of the Catopinae with a more southerly European distribution (such as 
some in the genus Choleva) are exclusively cave-dwellers (Deleurance-Glacon 1963 )

Life Cycle
Like most species of beetles, Catops commences life as an egg and then passes passes 
through 3 distinct larval instars labelled LI, L2, L3 and finally a pupa stage before 
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emerging as an adult. At the time of emergence into the world as an adult (eclosion) 
the young Catops is immature. According to Topp (1990) the delay between adult 
emergence and maturation, as measured by the period between eclosion and 
deposition of eggs (oviposition), lasts between 97 and 212 days. The duration of this 
relatively long delay (symptomatic of diapause) is referred to as diapause intensity. 
Diapause actually corresponds to a slowing down of internal metabolic processes and 
surfaces most visibly as a retardation of development. The occurrence of adult 
diapause within the insect life cycle is certainly well known (Hodek, Pener & Orshan 
1983) and frequently has a retarding effect (as it does for Catops) on the female 
reproductive organs (Beck 1980, Danilevskii 1965). I choose to consider the period 
of adult diapause as a 6th stage of development which follows immediately after the 
pupa stage. I shall refer to this convenient 6th stage as the Immature Adult (IA) stage.

Topp's (1990) Laboratory Data
Catops is easily reared in the laboratory and is ideal for 'generation' studies because of 
the ease with which it can be bred (Topp and Engler 1980). Larval development is 
temperature dependent (typically 01O= 2 to 3) and maturation of the ovaries in the 

adult female also depends upon photoperiod (Engler 1982). Topp (1990) recorded 
complete data on the development times of each of the distinct 5 pre-adult stages, egg 
to pupa inclusive, when Koln beetles were kept under regulated laboratory conditions 
of temperature and light (Topp 1990). These data consist of the mean durations of 
each pre-adult stage under controlled regimes of either Short Day (SD) or Long Day 
(LD) photoperiod conditions, held under a range of constant temperatures. SD data 
refers to data that were obtained for individuals exposed to shorter periods of light 
throughout development in the ratio 8:16 hours light:dark (or photophase: 
scotophase) per day. Similarly, LD data refers to data obtained in which light:dark 
was regulated at 16:8 hours per day. The chosen photoperiod regimes, SD and LD 
respectively, correspond to minimal (mid-winter) and maximal (mid-summer) periods 
of daylight at Koln latitudes.

All beetles were reared from eggs inside incubators in which temperature was 
maintained at a constant level. The chosen constant temperatures started at 5 C and 
increased in steps of 5 C up to 25C. For both photoperiod regimes (SD and LD) the 
mean time taken for each pre-adult stage to complete development where death did 
not occur was recorded. Under either regime, when temperatures were held at 20 C 
and 25 C, Topp found that individuals died during larval instars L2 and LI 
respectively (consequently there is no data for the later stages L3 and pupa at these 
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temperatures). Topp's data showed that only development of the L3 instar was greatly 
affected by photoperiod.

Temperature T

DIAGRAM 1.1 Rates of development per Topp's 1990 Laboratory Data
(a) Short Day regime, Key: O Egg, □ LI stage, + L2 stage, 0 L3 stage, A Pupa.

(b) Immature Adult at 10 C
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Diagram 1.1(a) shows data and plots of development rate v temperature for each of 
the pre-adult stages under the SD photoperiod regime. Plots of fumctions are 
constrained within the threshold temperatures of each stage. Thus for temperatures 
outside these ranges, development rates are strictly given by extrapolation. Only 
within the temperature range of 5-15C are no such extrapolations required for all 
stages.

The effect of increased photophase on instar L3 in the LD regime is shown in 
Diagram 1.2(a) by an upward shift in the development rate curve. On other pre-adult 
stages, Topp found this effect to be negligible. Thus, I reasonably define LD data as 
that set of data made up of LD data points for stage L3 and only SD data points 
otherwise.

For the Immature Adult stage, data on the female development time, referred to as 
'diapause intensity', was available for a range of photophases held at a single 
temperature value of IOC. Topp's diapause data suggests that diapause intensity 
suddenly increases dramatically at a critical photophase Lcrit of approximately 13.2 
hours and levels off at a photophase Rcrit of approximately 14.8 hours. For daily 
photophases of durations either side of these values, diapause intensity remains at a 
fairly constant plateau level. Catops therefore exhibits 'short day' insect development 
(Type II diapause response (Beck 1980)) since its development is enhanced (i.e. 
diapause duration reduced) by shorter periods of photophase. Diagram 1.1(b) shows 
the relationship between development rate (taken to be 1/diapause intensity) and 
photophase.

Less detailed data under the LD regime was also presented for diapause intensity at a 
constant temperature of 15C. Taken together with the former, the data suggests that 
the Catops diapause mechanism is dependent on both temperature and photoperiod as 
shown in Diagram 1.2(b). Such a temperature-compensatory effect is frequendy found 
in the diapause of many species of insects (Beck 1980, Mordue et al 1980).
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(b) Immature Adult

Photophase P

DIAGRAM 1.2 Effect of (a) photophase on L3 stage and 
(b) temperature on Immature Adult
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1.2 A LIFE CYCLE MODEL OF CATOPS NIGRICANS 
Environment
Meteorological records of the monthly mean air temperatures in the Koln locality over 
a 20 year period were obtained by Topp (1990) and these were found to periodically 
vary in a sinusoidal manner between an annual minimum of Tmin=2C at the end of 
January and an annual maximum of Tmax=21C in mid-July. I can thus choose to 
simulate the annual variation of air temperature T as a function of time t by

T(t) = T0-T1Cosk(t-Tshift) (1.1)

where Tshift is a one month time lag which displaces troughs and peaks by one month 
from the beginnings arid centres of the years, with To, Tj and k suitable constants.

Annual variations of daily total photophase P at Koln latitudes also vary sinusoidally, 
between a minimum of Pmin=8 hours on 21st December and a maximum of Pmax=16 
hours on 21st June, so that I can choose

P(t) = Po- Pj Cos kt (1.2)

with Po and P1 suitable fixed constants.

Since Catops prefers life below ground in its natural habitat, I must explore the 
implications of subterranean development by considering the effect of ground 
attenuation of surface temperature variation (Moon 1983, Gordon et al 1989). 
Suppose the surface temperature Ts oscillates in a sinusoidal manner about a mean 
surface temperature To according to

T, = To - Tj Cos kt (1.3)

where Tj is the amplitude, k = 2k / P, and P is the period of the oscillation.
Standard textbooks [e.g. Ingersoll et al 1948] show that the vertical heat flux (G) in

3T
the ground and the vertical temperature gradient — are related by 

oZ

O=-k,£
5 az (1.4)

where ks is the thermal conductivity of the soil.
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A reasonable approximation to temperature variation Tz at a depth z below the 
surface can be found by solving equation (1.4) for the simplest possible situation, 
namely that of constant kg . In this case, the temperature variation below ground also 
turns out to be sinusoidal but with the surface amplitude exponentially damped as a 
function of the depth z so that

Tz =T0-T1e-“zCos(kt-az) (1.5)

where
/ ttpc . k

a = ——, p= soil density, c = specific heat of soil. The parameter B = — is 
V Pks pc

known as the thermal diffusivity of the soil so I shall write a = . At a depth z

below the soil surface the amplitude (range) of variation is therefore T^-*“.

The extent to which Catops regulates its own internal developmental processes by 
reacting to external stimuli (for example, burrowing deeper to avoid 'unpleasant' 
temperatures) is not known. This kind of behavioural non-homogeneity frequently 
occurs in many fields of animal ecology (Precht et al 1973, Grist 1994). I make the 
(usual) simplifying assumption that the organism does not significantly self-regulate its 
abiotic environment

Model Definitions
I define development rate in time honoured fashion by reference to a Development 
Index based on temperature T (e.g Pradhan 1946 see Chapter 0), and defined on a 
continuous scale ranging from 0 at the start to 1 at the completion of the stage . The 
development rate with all abiotic conditions held constant is then taken to be given by 
development rate = 1 / development Time

For each pre-adult stage i= Egg to Pupa, I shall define the development rate as a 
continuous function g^ to fit Topp's data by

g, = gi(T) for i=Egg, LI, L2, Pupa, (1.6a)
gi = gi(T,P) fori=L3 (1.6b)
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with gj determined by regression. I carried out linear and loglinear regressions to 
obtain the gr of best fit. Table 1 shows that loglinear regressions gave the better fits 
for all pre-adult stages and in particular for the obviously non-linear Egg stage.

TABLE 1.

Comparison of quality of fit of linear and loglinear regression lines to Topp's 1990 
pre-adult SD data.

Pre-imaginal Stage R2-Adjusted %

Loglinear Reg. Linear Reg.

Egg 98.7 85.9
LI 99.3 97.3
L2 99.9 97.4

L3 100.0 93.8

Pupa 98.8 96.6

I thus define development rate by the exponential function

gi = gi(T) = w^1 for i=Egg, LI, L2, Pupa (1.7)

with wt, z , the respective stage specific coefficients obtained by loglinear regression 

of SD data (that is as obtained from the linear regression lines y/T) = Ln[gi (T)] = 
Ln(w;)+zT in the loglinear plane ) and T(t) as in equation (1.1).
For stage L3, I construct a dynamic photoperiod-compensated version of equation 
(1.7) such that the development rate is now defined by

gu =gL3(T,P) = wL3(P)ez-(P)T (1.8)

where wu(P), ^(P) are functions of photophase P obtained by loglinear regressions 
and T(t), P(t) are the driver functions given in equations (1.1) and (1.2) respectively. 
That the loglinear relationship is maintained when coefficients w^, z^ are sinusoidally 
driven is a straightforward proof.
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For the Immature Adult stage I treat diapause intensity in the same manner as pre­
adult development so that under fixed abiotic conditions gu is defined as gw = 

diapause development rate=l/(diapause intensity). Thus, to reflect the dependence of 
diapause intensity on both temperature and photophase

glA = glA (T’p) (1.9)

I fitted a piecewise linear function to Topp's diapause data as illustrated in Diagram 
1.1(b). I modelled the temperature-compensatory effect in accordance with Topp's 
data so that the altitude of the leftmost 'plateau' decreases with increasing temperature 
as shown in Diagram 1.2(b). For T outside the range of temperature interpolation ( 
IOC < T < 15C), a IOC SD diapause ceiling value and a 15C LD diapause floor 
value were imposed in the Default Model (see 1.3 Structural Stability for other 
variants). The rightmost plateau was made temperature independent, reflecting the 
fact that at photophases above Rcrit, diapause development was found to be 
insignificantly affected by temperature variation. For photophases between Lcrit and 
Rcrit, diapause development rate was defined by interpolating photophase between 
the two plateau levels. Hence

gu(T,P) =

SD diapause rate 
mT + c

LD diapause rate 
n(T)P + D(T)

T<10 
10<T<15 
15<T

8 < P < Lcrit

Lcrit < P < Rcrit
(1.10)

LD diapause rate Rcrit < P < 16

where m, c are constants and n(T), D(T) are linear functions of T. In the absence of 
enough data, I make two assumptions here, namely that:
(1) the/orm of this function always has left and right segments connected by a central 
joining line and
(2) Lcrit and Rcrit critical photophases remain the same at any temperature that is, are 
temperature independent.

Diagram 1.3 shows plots of periodic (seasonal) development rates S^t) for all stages i 
= Egg to Immature Adult, as functions of time of year t. The periodic development is 
shown in the frame below for the same temperature variations (1.3(c) and (d) ). I 
notice that the general effect of an increase in annual temperature variation is to
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accentuate both the peaks and the troughs of the periodic development rates for all 
stages.

DIAGRAM 1.4 Effect of Short day/Long day photophase on L3 stage for annual 
temperature variations of (a ) 8-15C (b) 2- 2IC
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The photoperiod-compensatory mechanism embodied within the L3 stage causes a 
slight skewness of annual development rate when plotted as a function of time of year 
and this is shown in Diagram 1.4 . I observe that this plot necessarily touches the SD 
and LD curves at the times when Pmin and Pmax occur, namely at the year ends and 
centre respectively.

The temperature-compensatory mechanism included within the Immature Adult stage 
has a more pronounced effect which can seen in Diagram 1.5. This time, the one 
month lag of temperature behind photoperiod causes the observed skewness which 
becomes more pronounced as the range of temperature variation is decreased.

Time (years)

DIAGRAM 1.5 Effect of Short day/Long day photophase on Immature Adult for 
annual temperature variations of (a) 8-15C and (b) 2-2IC.

Stage Specificity
I now formulate a simple model of Catops in which the complete life cycle consists of 
6 discrete developmental stages, namely Egg, LI, L2, L3, Pupa and IA stages. I make 
the assumption that at the end of each stage, promotion to the next stage occurs 
instantaneously. By the brief semelparity of Catops I make the assumption that 
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reproduction occurs instantaneously and only once in the life cycle, after the 
completion of the Immature Adult stage (Topp 1990). Diagram 1.6 shows the stage 
specific life cycle structure.

DIAGRAM 1.6 Schematic illustration of the Catops Life Cycle Model

For stage i=Egg to Immature Adult, let t^ denote the time at which an individual 
enters the stage and let \ denote the stage duration so that promotion from the stage 
occurs at time tK = t^ + xi. By definition of development index

lRi+xi

1 = JSi(t)dt = Js/Odt (Ui)
lRi lRi

L = L(t) = £Xi(t) (1-13)
i=egg

Let Gj (t) = J S, (t)dt with Gr (0) = 0 so that Gj (t) (shown in Diagram 1.3 (c) and (d)) 

corresponds to the area under the graph of St (t). Hence

^G^ + xJ-G^) (1.12)

must be solved to find xi. Since S^t) is not analytically integrable for the g, functions 
employed here, I used straightforward numerical integration techniques (Appendix 
A 1.2) to calculate x^ The life cycle duration L of a given individual is then simply 
given by the sum of all the separate stage durations x; for i = Egg to Immature Adult.

I carefully note that in general, Xj is not a fixed time interval since the duration of any 
stage i is dependent on the time of year t at which the stage is commenced. So xi = xi 

(t) and
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For a given individual, let tR (= ) be the time of recruitment to the life cycle and

let tM (= t^) be the time of maturation . Then clearly

tM =tR + L(tR) (1-14)

I prefer to think of the life cycle model in terms of a "black box'. This black box is 
sensitive only to temperature and photoperiod and is continually exposed to the 
seasonal variations imposed by the temperature and driver functions T(t) and P(t) 
respectively. After the input of an initial time of year tR (oviposition), 6 successive 
modes of internal response occur, each of which corresponds to a discrete stage of 
development. Whilst in each mode, a corresponding internal development rate 
(dependent only on time t) is utilised to calculate how long the black box remains in 
that particular mode. The total time taken for the black box to pass through all 6 
modes is then added to the initial input time to produce an output time tM.

Reproduction
I can think of the the black box as being an egg at the input time which thereafter 
develops through stages LI, L2, L3, Pupa, followed by the Immature Adult stage. For 
any input time, a single output time is eventually produced, which corresponds to the 
respective time of maturation of the Immature Adult. By brief semelparity, oviposition 
can be reasonably approximated as occuring at that same point in time. Thus, each 
time of maturation t^ of generation n is re-entered in a cycle as a time of recruitment 
tR(n+1) (=tNfa ) to generation n+1. The times of maturation/ recruitment of progeny 
stemming from any initial recruit (its lineage), can thus be calculated for several 
successive generations.
I extend the notation of equation (1.14) to encompass the nth generation of any 
lineage so that

^Mn ~ ^Rn + Oro ) (L15)

and since by brief semelparity
^Mn = ^R(n+1) ( OT ^Rn = ^M(n-l) ) (L16)

successive times of maturation are given by

lMn = tM(n-l) + L (t^.p) (L17)
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Hence for any lineage the times of recruitment to all subsequent generations are 
determined solely by the time of recruitment of the first (ancestor) individual. I 
construct a simple algorithm to calculate all times of recruitment in successive 
generations up to a final generation N >2 by combining equations (1.15) and (1.17).
Algorithm for times of recruitment
(1) For generation n = 1: 

(1 iteration)
^mi — Iri +L(tR1);

(2) For generations n = 2 to N : 
tun = + L(tM(n_n)

REPEAT for n = 2 to N ,

(N-l iterations)
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13 SIMULATION RESULTS

I carried out simulation studies to investigate the effect of annual temperature 
variation on the synchronisation of recruitment times. Synchronisation behaviour was 
conveniently illustrated by the use of Line Plot diagrams (Tasch and Topp 1991). For 
clarity, these were constructed by joining together the algorithmically calculated times 
of recruitment to successive generations (points) with straight lines. The 'trajectory' 
obtained thus represented the lineage which stemmed from the initial ancestor 
individual. Ground damping of surface air temperature variation was also taken into 
account for a variety of soil types. For each soil type a 'critical depth' was calculated, 
below which the effect of damping would be too great for 1 lock synchronisation to 
occur in the model.

All simulations were performed with an arbritrary initial cohort consisting of 27 
individuals spaced equally at fortnightly intervals throughout the starting year. This 
initial cohort was then exposed to sinusoidal variations of temperature and 
photophase over a period of several seasonal cycles, keeping variation of 
temperature and photophase the same within each cycle. The lineage stemming from 
each individual (by semelparity only one such lineage could arise from each 
individual) was then plotted as a single trajectory line together with the complete set 
of all such trajectories stemming from all other individuals in the cohort. The 
resulting diagram, referred to as a Line Plot diagram, then clearly showed up any 
synchronisation behaviour by the convergence of these lines.
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Default Model

Time (years)

DIAGRAM 1.7 Synchronisation of lineages in the Default Model at 2-2IC annual 
temperature variation.

Diagram 1.7 shows that when the annual temperature variation was fixed at 2-2IC, 
rapid synchronisation to a 1 lock took place and the initial cohort was split into 2 
distinct cohorts, each with successive recruitments separated by an interval of exactly 
1 year. The synchronising effect of narrower variations in annual temperature 
(keeping the annual mean temperature fixed at 11.5C) is shown in Table 2 and by 
Line Plot diagrams in Diagram 1.8. Diagram 1.8(c) sharply illustrates that any initial 
tendency towards synchronisation (convergence of lineages) does not necessarily 
imply that synchronisation must ultimately occur.
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TABLE 2

Behaviour of Default Model About 11.5C Annual Mean Temperature

Observe that for an annual temperature variation of less than ±8.5C (3-20C) no 1 
lock occurs so that this particular range of variation can be considered as a minimum 
required to achieve 1 lock synchronisation. At what depth below the ground 

surface does this critical minimum annual variation occur?

Anual Temperature 

variation (C)

Synchronisation behaviour Diagram 1.8

11.5 ±9.5 (2-21) 1 Lock (a)
11.5 ±8.5 (3-20) 1 Lock (b)

11.5 ±7.5 (4-19) No Lock (c)

11.5 ±3.5 (8-15) No Lock (d)

From section (1.3) I recall that temperature variation below ground is dependent on 
the thermal diffusivity pof the soil in question. If this parameter is assumed constant 

and the value is known for a particular soil type then by inspection of equation (1.5) 
T1Min = Tie'“2^ so that 

Zm Ln 
a

IMin (1.18)

where T1Mn is the minimum annual amplitude of variation required for a 1 Lock to 
occur. From Table 2 T1Mm = 8.5C [8.5 = (20-3)/2] (note that the mean temperature 
value at any depth below ground always remains equal to the mean surface 
temperature (van Wijk and de Vries 1963)).
Table 3 shows the calculated critical soil depth Z^ obtained from equation (1.18) for 

constant ks , for various soil types. I observe that damping to within the minimum 
annual temperature range of 3 - 20C (required for a 1 Lock) is impossible until a 
depth of at least 12cm below the surface is reached (in peat soil). With the proviso 
that Catops remains within the uppermost ground layers, this suggests that an annual 
air temperature variation of 2 - 21 C would only just be adequate to produce 
subterranean Catops synchronisation. A subterranean life would also ensure a more 
stable abiotic environment because the daily variation in temperature would be greatly 
reduced. Such daily variations are subject to a much greater percentage reduction than 
annual variations even at very shallow soil depths (van Wijk and de Vries 1963). The 
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reduction in daily environmental 'stress' that results from venturing downwards could 
possibly explain the observed preference for deeper soil layers during diapause .

SOIL TYPE
* Therm al 
Diffusivity P 
(cm2 s-l) to=J5

Critical Soil 
Depth Zcrit (cm)

Clay Soil - Dry 0.0018 0.0074 15
-Wet 0.005 0.0045 25

Sandy Soil - Dry 0.0024 0.0064 17
-Wet 0.0074 0.0036 30

Peat Soil
(~ Same, Dry or Wet)

0.001 0.0095 12

* from van Wijk and de Vries (1963). f where P is the period of oscillation taken to be 1 year 

here.

TABLE 3

Critical Soil Depth at which annual surface temperature variation of 2-2IC is damped 
to 3-20C. Thermal conductivity ks , assumed constant for each soil type.

Structural Stability
How does the range of annual temperature affect synchronisation behaviour as the 
mean annual temperature is varied? Fixing the annual mean temperature at a variety of 
values, I performed simulations to find the minimum range of annual temperature 
variation required for 1 lock synchronisation to occur. The results of simulation 
studies are shown in Table 4 .

I observe from these that as the annual mean temperature increases, the required 
range of variation about that mean to achieve 1 lock synchronisation also increases. 
Interestingly, this property runs counter to the earth's climatic temperature trend as 
degrees of latitude are decreased. It could hint at the potential existence of an 
associated minimum latitude, below which no 1 lock syncronisation for this species is 
possible. Alternatively Catops may have evolved a mechanism to compensate for the 
effects of different latitudes (e.g Conover & Present 1990)

Simulations were also performed using different but equally plausible L3 stage and 
Immature Adult developmental responses. Results demonstrate that the pronounced 
quiescence effect of photoperiod on the L3 stage (relative to the other pre-adult 
stages) only slightly affects the synchronisation behaviour of the model.
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(a) I first investigated the effect of relative displacment between T(t) and P(t) on 
synchronisation behaviour.
Variant 1

Temperature was not shifted relative to photophase. Hence Train and Tmax were 
made to occur at the end of December and mid-June respectively.
Variant 2
Photoperiod was also shifted by one month. Hence (unnaturally) Pmin and Pmax as 
well as Tmin and Tmax were made to occur at the end of January and mid-July.

Neither of the above variations made any difference to simulation results.
(b) Secondly, I investigated the potential significance of the photoperiod- 
compensatory mechanism in the L3 stage and the temperature-compensatory 
mechanism in the Immature Adult.

Variant 3
The L3 stage development rate was defined solely as a function of temperature 
(independent of photophase) at either SD or LD rates respectively. Results at SD 
rates were the same as those with the Default Model but no 1 lock occurred at 2-2IC 
annual temperature variation when the L3 stage development rate was parameterised 
with LD values.

Variant 4
Some other temperature-compensated responses were incorporated in the Immature 
Adult development for temperatures outside the interpolation range of IOC < T < 
15C.
Response 1.
For T < IOC NO ceiling was imposed
For T > 15C a floor was imposed.

Response 2.
For T < IOC a 'rebound' occurred at IOC 'off' of the IOC ceiling. The rebound Tuts' 
the 15C floor when T = 5C and continues to 'sink' for T < 5C nearly reaching a 0 
diapause rate at T=0C. (NB: not defined for T < OC.) 
For T > 15C a floor was imposed.

Neither of these alterations in development response made any difference to 
simulation results.
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Thus it turns out that only an alteration to L3 stage developmental response (Variant 
3) had any noticeable effect on the synchronisation behaviour of the Default Model.

TABLE 4
Minimum Annual Temperature Variation required for 1 Lock synchronisation to 
occur in the Catops Default Model for decreasing annual mean temperatures (to 
nearest C).

ANNUAL MEAN

TEMP (C)

REQUIRED ANNUAL

TEMP VARIATION

(O

VARIATION 

ABOUT ANNUAL 

MEAN(C)

14 2-26 ±12

13 3-23 ±10
12 3-21 ± 9

11.5 3-20 ± 8.5

11 3-19 ± 8

10 3-17 ± 7
9 3-15 ± 6

8 3-13 ± 5

Preliminary Conclusions
The intricacies modelled in terms of the choice of possible Catops developmental 
responses for the L3 and Immature Adult stages had only a marginal effect on 
synchronisation behaviour. This was clearly seen in terms of the consistency of 
simulation outcomes for a selection of different diapause responses incorporated 
within the Immature Adult stage. In fact, provided that the duration of diapause was 
at least 183 days, synchronisation to a univoltine life cycle still occurred even when 
diapause development rate was simply held constant. From this, I infer that the main 
synchronising influence produced by diapause (and also of the L3 stage quiescence) 
takes effect by prolonging the total life cycle duration. The acute sparsity of data 
quantifying the precise effects of photoperiod on the development of the two 
photosensitive stages therefore turns out to be largely inconsequential.
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1.4 A TWO STAGE MODEL

The first five (pre-adult) developmental stages of the Default Model follow a similar 
seasonal development pattern which is reflected by the single solitary peak shape of 
all the graphs shown in Diagram 1.3 ((a) and (b)). I carried out a simple re­
parameterisation to obtain the average seasonal development rate taken over all these 
stages and thus collapse them into a single 'pseudo' pre-adult developmental stage. 
The most different Immature Adult stage was kept unchanged. Thus, I constructed a 
two stage model composed of a single stage with the same Gaussian seasonal form as 
any original pre-adult stage and a second Immature Adult stage as defined in the 
Default Model.

Diagram 1.9 shows the graphs of the seasonal development rates of both these 
stages. (The graph of the pre-adult stage achieves a much lower altitude than any of 
the original pre-adult stages because all of these stages were calibrated to achieve a 
development index of 1 before moving on to the next stage.) Extensive simulation 
studies with the two stage model demonstrated that all the quantitative and 
qualitative dynamics of the Default Model were preserved.

Table 5 compares the synchronised times-of-year for oviposition or eclosion and 
time duration for diapause. Results between the default and two stage models were 
virtually indistinguishable.

Date of oviposition Date of eclosion Diapause duration
Real Life Average 6th May 11th October 158 days
(Per Topp 1990)
Default Model 25th April 1st November 190 days
Two Stage Model 22nd April 30th October 191 days

TABLE 5
Comparison of synchronised times of key Catops life-cycle events with those of 
results from simulations at 2-2IC

Diagram 1.10 confirms by comparison of Line Plot diagrams, that the synchronisation 
behaviour of each model is identical.
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DIAGRAM 1.9 Development rates of the pre-adult and immature adult stages of the 
two stage model at (a) 8-15C (b) 2-2IC.
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DIAGRAM 1.10 Comparison of simulation results with annual temperature variation 
of 2-21C (a) Default Model (b) Two Stage Model
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1.5 DISCUSSION

The Default Model synchronises to a univoltine life cycle as an autumnal breeder for 
an annual temperature variation of 2-2IC in the same way as Catops does in the Koln 
locality. Although this fact is singularly impressive and still holds even when a modest 
subterranean existence is allowed for, it becomes less so in the light of how easily it 
fails to happen. When annual temperature variation narrows by any more than ± IC, 
no synchronisation occurs (Table 2, and Diagram 1.8).

The overall sparsity of data, in any event, automatically ensures that sweeping 
inferences about Catops per se are not sensibly possible. This is particularly true in 
respect of stage specific threshold temperature values that were laboratory-measured 
in constant conditions. The ability of an individual in a given stage to survive a life­
threatening temperature depends not only on the temperature value but also on the 
length of time that it has to be endured (Precht et al 1973). It is well known that 
insects can survive both higher and lower lethal temperatures under a variable 
temperature regime than under constant temperatures (Headlee 1914, Messenger & 
Flitters 1959). Indeed, Watt (1968) has suggested five major factors that influence 
mortality at extreme temperatures:

(1) the lethal temperature
(2) temperature prior to exposure
(3) length of exposure to the non-lethal temperature
(4) length of exposure to the lethal temperature
(5) time taken to change from non-lethal to lethal temperature

Since life-threatening temperatures do not occur to Catops until the range 5-15C is 
exceeded (per Topp's data), I reasonably infer that for an annual surface temperature 
variation of 2-2IC such temperatures will (if at all) be encountered only for very short 
durations. In the Catops model, I therefore reasonably make the assumption that they 
are not lethal and that death does not occur.

The model also demonstrates that early convergence of lineages does not necessarily 
imply ultimate life cycle synchronisation, since divergence of lineages may still occur 
before the former is achieved. Hence a preliminary overview of data which indicates 
that times of adult oviposition (or emergence) converge together over one generation 
cannot justifiably allow a leap to the conclusion made by some authors (Topp 1990,
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Tasch and Topp 1991) that synchronisation must occur. Lineages must be projected 
forward over several generations before the long term synchronisation behaviour can 
be inferred from any data set.

In summary, two central key points emerge from this empirical case study. Firstly, the 
Catops Default Model establishes that a purely stage specific developmental response 
within a periodically varying environment does indeed provide a mechanism by which 
life cycle synchronisation can occur. Secondly, the case study shows that the seasonal 
pattern of development (shape of the graph) of separate developmental stages is 
important in the sense that synchronisation behaviour is dependent on how different 
these actually are. The two stage model demonstrated (by way of alterations to the 
amplitude of periodic variation) that the more pronounced this difference is, the 
stronger the synchronising effect. Simultaneously, this parameter-sparse version of 
Catops pleasingly established that the qualitative dynamic behaviour of the Default 
Model could still be retained within a minimal two stage representation simply by 
collapsing all of the (similar) pre-adult stages into one, whilst keeping the (most 
different) Immature Adult stage unaltered.

In the next chapter, I shall show that a one stage model cannot synchronise to any 
external periodic variation. Prompted by the encouraging results of the re­
parameterised two stage Catops model, I now have reasonable grounds to commence 
a trail of investigation into the simplest (minimal) stage specific life cycle model that 
can synchronise, namely that consisting of only two stages.
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CHAPTER 2

PHYSIOLOGICAL TIME
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2.0 INTRODUCTION

Before proceeding further, I first ask whether a more translucent way of analysing 
synchronisation behaviour is possible. The question arises, because of the rapidity 
with which calculations performed in real time descend into intractability. This 
intractableness stems from the dependence of stage duration on the real time at which 
recruitment to the stage occurs. Stage duration, other than where it is equal to an 
integer multiple of the environmental repeat cycle, is generally not a fixed quantity, 
but rather has an upper and lower bound which differ increasingly as the periodic 
environmental variation becomes more extreme. A corollary to this, is that equal 
periods of real time do not generally produce equal increments in development. This 
simple fact is a major source of extraneous complications in any analysis conducted in 
real time.

It turns out that many of the analytic unpleasantries can be alleviated by characterizing 
development status by reference to physiological age. Such a paradigm shift of 
emphasis is well established in insect studies, where the point reached on the road to 
complete development is frequently more important than the (real) time taken to get 
there ( Hughes 1970, Stinner et al 1974, Logan et al 1976, Berry et al 1977). Thus, 
the fact that all members of a cohort have attained a given physical attribute (for 
example are all able to bite) is biologically more pertinent than the fact that they are 
all the same (real time) age but have not (Hughes 1970, Kunz et al 1976, Berry et al 
1977, Palmer et al 1981, Moon 1983, Huryn & Wallace 1986, Vogt et al 1990). 
Provided that times in either measure are interchangeable, I can choose to perform 
analyses in physiological time that are directly interpretable in real time. In this way, I 
shall by-pass much of the otherwise more protracted analytic tedium .

In this chapter, I focus on how a physiological time scale can be set up in the context 
of a single stage, as a preliminary to dealing with the multi-stage situation. The new 
scale is derived directly in terms of the proportion of development required to traverse 
each developmental stage. Since I am primarily concerned with the timing of events 
within the repeat cycle, I slightly modify the scale to define a relative physiological 
time, referred to as phase. Immediately, I gather the reward of a simple circle map 
relationship between the points of recruitment to and promotion from the stage. The 
approach serves as a foundation for the two-stage situation and shall be extended in 
Chapter 4.
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I briefly consider the simple situation where the entire life cycle model consists of only 
one stage. That such a model cannot synchronise to a periodic environment is easily 
proven and instructively demonstrates the benefit of conducting analyses in the 
physiological time scale.
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2.1 SIMPLIFYING THE ANALYSIS : PHYSIOLOGICAL TIME

I consider the progress of an organism through a single life history stage in which the 
(strictly positive) development rate g is dependent only on time. To represent the 
underlying regularity to which synchronisation may be possible (that is seasonal or 
daily cycle) I regard g(x) as strictly periodic with period T.

DIAGRAM 2.1 Typical Graphs, (a) Development Rate g(t) (b) respective
Physiological Time <()(t)
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Diagram 2.1(a) shows the graph of a typical development response, in which the 
development rate peaks at the midpoint of the environmental repeat cycle. The key to 
simplification is to set up a new scale in which stage duration is measured in terms of 
physiological development rather than real time. Such an approach is akin to the 
method of thermal summation (section 0.4) in the sense that developmental progress 
is measured directly in terms of the achievement of a fixed goal quantity of some 
appropriate measure (previously a number of degree-days). Indeed, I must still make 
the same underlying biological assumptions, namely that development is quantifiable 
in the first place and that it acts cumulatively with the passage of time. With all of this 
in mind, I carefully define a cumulative development function

t

C(t) = Jg(x)dx (2.1)
0

C(T) is then the total development, measured in terms of the appropriate 
development index, achieveable during a single environmental repeat cycle. I define a 
dimensionless new measure <|)(t) which I shall henceforth refer to as physiological 

time (itself a function of time) by

0(t) =
C(t)
C(T)

(2.2)

so that (|)(t) is the total stage development achieved by time t as a fraction of C(T). 
Observe that since the development rate is strictly positive, <|)(t) must be a 

monotonically increasing function. Because of the normalisation by C(T), the 
physiological time scale conveniently achieves integer values at the turn of every 
repeat cycle. Diagram 2.1(b) shows the respective graph of 4>(t) for the periodic 

development rate shown in Diagram 2.1(a). We shall see in the next Chapter that 
physiological time is in fact the lift of phase (Definition 3.12).

Physiological time satisfies the quest for a new scale in which equal intervals within 
the scale produce equal increments in development. I show this easily. Let y be a 

fixed 'period' of physiological time. Then

y = 0(t2) —tXti) for a pair of real times t15t2 witht2>tj,
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Jg(x)dx=yC(T) (2.3)
h

Equation (2.3) tells us that the development increment occurring in physiological time 
interval y is dependent only on y and T. Since both of these are fixed, it follows that

equal 'periods’ of physiological time produce equal increments in development

which, paradoxically, implies that the development rate of a stage expressed in terms 
of its own physiological time is always constant
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2.2 INCORPORATING PHYSIOLOGICAL TIME INTO A CIRCLE MAP 
DESCRIPTION
I am principally interested in the positioning of key events within the repeat-cycle so I 
shall naturally define a relative physiological time 0, hereafter known as phase 
(Gurney et al 1992), by

0 (t) = 4>(t)‘ = <b( t) mod 1 (2.4)

DIAGRAM 2.2 (a) Development Rate g(t) and (b) corresponding plot of Phase 0(t)
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Since equal intervals of physiological time represent equal development increments, 
the passage of an individual through the developmental stage can now be described 
very compactly in terms of phase. If the total development required to transit the 
stage is A and tr , tp are the real times of recruitment and promotion respectively, 

then the stage physiological time required is given by

a = <J>(tp)-<t>(tr)
1 

C(T)
[C(tp)-C(tr)] A 

C(T)
(2.5)

Development on the physiological or phase time scale therefore always occurs at the 
constant rate A / a = C(T)

Continuing with this powerful theme, I define an operator

*Ra(x)=(x+a) =(x+a) mod 1 (2.6)

and observe that an individual recruited to the stage at phase 6n must complete its 
passage through the stage at phase 0n+! given by

en+1 = Ra(en) (2.7)

Equation (2.7) defines one of the simplest examples of a circle map relationship 
(Chillingworth 1976). Any circle map can be thought of as a map between points on
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the circumference of a circle. However, I can still construct a Euclidean' plot of Rain 
the plane and find that this simply consists of two straight 45° lines displaced from the 
leading 45° diagonal as shown in Diagram 2.3.
Although frequently useful, such a plot fails to convey the true topology of a circle 
map, in the same way that a world map is unable to display the true curved nature of 
the globe. Thus, no discontinuity occurs where the plot moves 'beyond' an edge of the 
unit square to 'reappear' on the opposite side. This is nicely exemplified by the plot of 
Ra in which the two 'separate' lines are not disconnected, but really form part of the 
same single continuous entity.

DIAGRAM 2.3 (Euclidean) Plot of the circle map 0n+1 = Ra(0n)
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2.3 THE ONE STAGE LIFE CYCLE

Consider a life cycle that is made up of only one stage. Assume that emergence 
followed by recruitment to successive generations occurs immediately, at the same 
point in the environmental repeat cycle (as where the newly emerging individual or its 
progeny immediately re-enter). Repeated iteration of the circle map Ra in equation 
(2.7) then corresponds to a one stage life cycle model of these successive emergences. 
Traditionally, the effect of such iterations is shown in the plot by a path which spiderly 
'cobwebs' along inbetween touching the plot and the leading 45° diagonal (e.g Bak 
1986).
I prefer to think of this iterative effect in its true non-Euclidean context. Each iteration 
of the map Ra has the simple effect of rotating all points in the circle by an angular 
displacement of a about its centre and is thus referred to as a 'pure' rotation. Realising 
this, I can easily prove the observation of Gurney et al (1992) that for a life cycle 
consisting of a single developmental stage driven by a single environmental forcing 
function, no synchronisation to that function is possible.

If a is irrational then ma cannot be an integer for any integer m, so that for any phase
e

R”(0) = (0 +ma)modi * 0 (2.8)

which immediately proves that no synchronisation is possible. In fact, it turns out that 
in this case lineages (orbits) are 'space-filling' or 'dense' (Arnold 1973) so that all 
values of phase will be approached arbritrarily close by repeated iteration of any initial 
phase.

Alternatively, if a is rational I can write that a=p/q for some relatively prime integers 
p,q and so

R£(0) = (0 + p)modl = 0 (2.9)

so that any starting phase will repeatedly visit itself after every q iterations (the orbit 
of any phase is therefore a q-cycle). However, since all points on the circumference of 
the circle are rotated uniformly, no contraction takes place over any segment (arc) 
which in turn implies that no stable phase attractor exists to which lineages stemming 
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from a variety of initial phases might converge. Hence in this case no synchronisation 
is possible either. This completes the proof.

Gurney et al (1992) also showed that the above result can be extended to a model 
composed of any number of contiguous life-history stages provided that each stage 
exhibits the same development response to the environmental forcing function. 
Intuitively, this powerful result is unsurprising because in such a situation each stage 
merely acts to produce a single fixed displacement in physiological time. Passage 
through the entire life cycle can therefore only produce a similar fixed displacement 
(consisting of the sum of all the separate stage displacements) in an analagous manner 
to the single stage model. Thus, the synchronisation of such a multi-stage life cycle to 
the environmental repeat cycle is impossible.

This is easily proved more formally by induction. Suppose the organism has a total of 
Z stages in the life history each with a corresponding stage specific physiological 
duration of a j ,for j = 1 to Z. For ease of notation I shall denote

z
(2.10)

>i

I must show that if the life cycle is commenced at phase 0n then it is completed at 
phase 9n+z where

0n+z = RSz(en) (2.H)

If equation (2.11) is true for some k (< Z), that is

0n+k = RSt(0n) (2-12)

then

0(n+k)+l — Rat+l (®n+k )

=R^(Rs.(e.>)

= R(at+1+Sk)(0n)
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so that equation (2.11) is also true for k+1 thereby completing the inductive step. 
Clearly, equation (2.12) holds for k=l therefore equation (2.11) is true for all k=l to 
Z and the proof is completed.

Because of the inherent periodicity imposed by the environmental forcing function, 
the circle map representation of the chosen phase formulation between recruitment 
and promotion is a natural one. I shall now take a whole chapter interlude to expand 
upon this and other central concepts from dynamical systems theory. In Chapter 4 I 
shall return to the physiological time description and extend the current formulation to 
encompass a general two stage model.
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CHAPTER 3

CIRCLE MAPS
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3.0 INTRODUCTION

I am led to investigate the dynamics that result from a system governed by the first 
order difference equation

xi+i =f(Xi) ie Zor N (3.1)

where f is a map between successive states xs, xi+1 which take values in some state or 

phase space. There is much theory on such a one dimensional dynamical system 
(Collet & Eckman 1980, Preston 1983, de Melo & van Strien 1992) and in particular 
for when the state space is a topological space (Dugundji 1965).

Fortunately, many interesting situations can be modelled when the arena for dynamics 
takes the form of some human envisageable structure such as the surface of a sphere 
(S2), torus, or indeed circumference of a circle (S1) (Bak 1986, Parker & Chua 1987, 
Schaffer 1988, Courtemanche et al 1989, Gurney et al 1992, 1994). All of these 
particular topological spaces are examples of differentiable manifolds (Matsushima 
1972, Arrowsmith & Place 1990). Because of the cyclic nature of the phenomena 
being modelled, I shall mainly focus on the situation in which the state space setting is 
S1. In this case, the map f is referred to as a circle map.

Clearly, the general theory of maps on a differentiable manifold must also apply to the 
more specialised scenario of a circle map. I must introduce some concepts taken from 
the broader theory before moving on to the more special situation of the circle map 
scenario. The single most important concept is that of topological conjugacy. If two 
maps are topologically conjugate then the number and character of any attractors the 
two maps may possess must be the same and hence all the qualitative features of their 
orbits (in particular the existence and repeat lengths of stable cycles) must also be the 

same.

Much of this chapter will form the subtext of discussion for later chapters. I begin by 

introducing some basic definitions.
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3.1 BASIC DEFINITIONS

Let X and Y be sets.

Definition 3.0

A map f is a correspondance that associates to each element x e X an element f(x) e

Definition 3.1

f is a one-to-one map from X into Y iff for any two distinct elements x, y eX, f(x)^ 
f(y), that is f(x) and f(y) are also distinct

Definition 3.2
f is an onto map from X onto Yiff Vy e Y, 3 x e X such that f(x) = y

A one-to-one and onto map is often referred to as a bijection.
Now let X and Y be topological spaces that is sets for which topologies are defined 
(Dugundji 1965).

Definition 3.3
f is a homeomorphism from X onto Y iff
1. f is a one-to-one and onto map from X to Y and
2. f and f-1 are both continuous [f1 is the map from Y to X defined by 
r!(y) = x if y = f(x)]

Differentiable Manifold
A diffferentiable manifold is the natural setting for dynamics (Arrowsmith & Place 
1990). Roughly speaking, a differentiable manifold M is a topological space which has 
the extra property that every point x has a neighbourhood for which it is possible to 
define a differentiable function between any two sets of points in the neighbourhood. 
A precise definition can be found in Matsushima (1972). The most important property 
of differentiable manifolds is that such spaces always have local euclidean properties, 
which implies that the concept of differentiability can be meaningfully extended to any 
global function defined on the whole manifold M.
A particularly well-behaved map that can be defined between two differentiable 
manifolds is a diffeomorphism.
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Definition 3.4

Let M and N be differentiable manifolds, f is a diffeomorphism from M onto N iff
1. f is a one-to-one and onto map from M to N and
2. f and f-1 are both differentiable at all points of M and N respectively.

Diffeomorphisms are logically classified according to the number of times n that they 
are differentiable and referred to as being of type O. Thus, a homeomorphism is a C°- 
diffeomorphism. In general the resulting iterative dynamics become increasingly well- 
behaved as n—k« (Smale 1967).
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3. 2 ITERATIVE DYNAMICS
Although the iteration of maps has a long history going back as far as the Babylonians 
and Ancient Greeks when calculating calendric cycles (Neugebauer 1969,1975, 
Fowler 1990) a more deeper understanding of the dynamics that they lead to only 
began with Poincare last century (de Melo & van Strien 1992). Today the general 
theory of the dynamics that result from iterating one dimensional maps is well 
developed (Arnold 1988, Smale 1965, 1967, Collet & Eckman 1980, Preston 1983, 
de Melo & van Strien 1992). Although such dynamics can be extremely complicated, 
they can be described completely in a topological sense (de Melo & van Strien 1992, 
Akin 1993). There are two main aspects which we should always like to enquire about 
when iterating any map.

Topological aspect. What are the attractors, which maps are dynamically equivalent, 
and which are structurally stable?
Ergodic aspect. What is the 'dynamic behaviour' of the sequence of iterates?

Henceforth I shall focus soley on the differentiable manifold setting even though some 
of the subsequent definitions can also be adequately defined for other spaces. I 
immediately clarify a frequent source of confusion that occurs in the use of the word 
'iterate' within the language of dynamical systems. An iterate of f is a map f “, n e N in 
its own right defined by f° =identity map, f1 = f, fn = f(f0-1) = f' n times', whereas 
an iterate of a point x e M is the point given by fn(x). Further, if f is invertible as 
when a homeomorphism, then I can define the map f ”n = (f-1)", ne N because in this 

case fn (f-1 )n = f°. If f is non-invertible the best that can be done is to define f-" such 
that fn(y) = {x:fn(x) = y},ne N.

The set of iterates of a point x e M under f form a sequence which I shall henceforth 

term an orbit.

Definition 3.5
An orbit Of (x) of a point x e M is defined as the set Of (x) = {fn (x): n e z}

Thus, Of(x) consists of the sequence of distinct points generated from x by 

successive iterations of f. I also choose to name some special points.

Definition 3.6
A point x* e M is a fixed point of f iff f” (x ) = x V m e Z
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Definition 3.7
A point x g M is a periodic point of f iff fq (x’) = x* for some integer q >1

The least value of q which satisfies this definition is referred to as the period of x*. A 
fixed point is therefore a periodic point with a period of one. It follows that a fixed 
point is completely unaffected by the repeated operation of f whereas a periodic point 
recurs every q iterations. Clearly, any periodic point x’ of f with period q is a fixed 
point of fq.

q-cycle Oq (x*)
The orbit of any periodic point x* with period q must consist of exactly q distinct 
points (otherwise its period would not be q). I shall henceforth refer to such an orbit 
as a q-cycle Oq (x*). In the situation where the map f is a homeomorphism, some 

very simple but powerful properties pertain to the orbits that arise. I demonstrate two 
of the most important by way of two short theorems.

Theorem 3.0
The elements of a q-cycle Q belong to no other p-cycle P where p*q (alternatively, 
the members of any two cycles form disjoint sets).
Proof
Suppose for some x*gQ that xj gP. Then fp(x‘) = x* and clearly I need only 
consider p>q . But fq(x*) = x* and therefore f(p-q)(xj) = f(p_q)(fq(x*)) = x‘ which 

contradicts the fact that x* has period p [since (p-q) < p ].

Theorem 3.1
Each element of a q-cycle Q is also a periodic point of f with period q.

Proof
Let x* = fj (Xq ) e Q = O? (x*) for some periodic point x*.
Then fq(x*) = fq(f j(xJ)) = f j(fq(xj)) = fj(xS) = x‘.

Topological Conjugacy
How can the 'same dynamic behaviour' be defined between two maps f and g? The 
most natural way is to define an equivalence relation between the two maps which has 
the property that corresponding sequences of iterates are the same up to a coordinate 
change. Two such maps are then said to be topologically conjugate.
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Definition 3.8

Two continuous maps f, g :M —>M are topologically conjugate iff 3 a 
homeomorphism h: M —>M such that hf = gh (or g = hfh"1)

Notice that f and g are not required to be differentiable (Devaney 1986, de Melo & 
van Strien 1992) so that for example, they could be homeomorphisms. The map h 
must be a homeomorphism however, to ensure that orbits of f and g behave in a 
similar manner. Thus xn+1=f(xn) and yn+1=g(yn) are then identical up to a 
coordinate change so that hfn(xn) = gnh(xn) and h takes orbits of f into orbits of g 
. I prove this by induction.
Theorem 3.2
Let f, g: M—>M be continuous maps and let h: M —> M be a homeomorphism such 
that hf = gh (or g = hfh-1). If {xB} is the orbit produced by the map f starting from 

an initial value x0 and {yn} is the orbit produced by the map g starting from a related 
value y0 = h(x0), then V n > 1 and V x0 e M

yn =h(xn) (3.2)

Proof.
If it is true for some integer k >1 and x gM that

gk(x) = hfk h-1(x) (3.3)

then
gk+1 (x) = g(gk (x))

= g(hfk h-^x))
= hfh"1(hfk h“’(x))

= hfk+1 h-1(x) (3-4)

By definition of g, equation (3.3) is true for k=l, so, by induction we have that 
equation (3.3) holds for all integer k > 1. But yn = gn (y0) and y0 = h(x0), so

yn =gn(h(x0))
= hfn h-1(h(x0)) by (3.4)

= hf°(x0)
= h(f°(x0))

= h(xn) (3.5)
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If I choose to relax the homeomorphic requirement that h be invertible then f and g 
are said to be combinatorially equivalent. In the case of maps f, g rS1 —>S\ 
combinatorial equivalence between them only ensures that each orbit of f occurs in S1 
in the same order as the corresponding orbit of g (de Melo & van Strien 1992). 
Whereas two maps that are combinatorially equivalent may share many dynamical 
properties (van Strien 1991), the stronger requirement of topological conjugacy 
ensures that all the qualitative features of orbits and in particular the existence and 
repeat lengths of stable cycles must be the same. If topological conjugacy is to be 
established between f and g then the map h must always be shown to be a 
homeomorphism.

Stability
I introduce some standard definitions to describe the ergodicity of points in the 
neighbourhood of any fixed or periodic points. Although other types of stability such 
as 'semi-stable' or 'one-sided stable' can also be defined (Devaney 1986) three types of 
stability in the style of Liapunov will suffice for our purposes.
Definition 3.9
A periodic point x‘ is stable iff for every neighbourhood N of x* 3 a neighbourhood 
N'cN of x* such that if x e N' then fm(x‘) e N for all m > 0.

Definition 3.10
A periodic point x’ is unstable iff it is not stable.

Definition 3.11
A periodic point x* is asymptotically stable iff x’ is stable and Limfm(x) = x‘ for all 

m—>°°

x in some neighbourhood of x‘.

Periodic points that are stable but not asymptotically so, shall henceforth be referred 

to as neutrally stable.

Stability of a q-cycle O’ (x‘)

When both f and f"1 are also differentiable at all points in M (and therefore 
diffeomorphisms) it turns out that Dfk(x’) takes the same value for any x‘ in the q- 

cycle. Surprisingly, many authors quote this powerful property without proof (e.g. 
Collet & Eckman 1980, Sandefur 1990). I give a general proof using induction.

67



Theorem 3.3
Dfq(x‘) takes the same value V x* e O^(x‘)

Proof
By the chain rule of differentiation

Df q(x) = D[f(fq-1(x))] = Df(fq-l(x)).Dfq-1 (x) = Df(fq-1 (x)).D[f(fq-2(x))] 

= Df(fq’\x)).Df(fq’2(x))Dfq’2(x)

q

withf°(x) = x 
i=l

Suppose Dfq (x*) = c for some 1 < k < q. Then 
q q q

Dfq «+1)=n (f q-i <xi+i >)=n Df (f q_i [f«>])=riDf (f - >)
i=l i=l i=l

q-1
^nDfff^«)) 

i=0

= J3lDf(fq-i(x*)) because fq-°(x* ) = fq(xO 
i=l

= Dfq (x^) = c also, completing the inductive step.

The result establishes that it is meaningful to refer to the stability of a q-cycle in terms 
of the stability of any individual member.
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3.3 CIRCLE MAPS

I now consider the special situation in which the differentiable manifold M is the 
circumference of a circle S1. Any map f: S1 —»S1 is referred to as a circle map.

The setting is not to be confused with the topologically entirely different situation of a 
map of the interval. Whereas both settings are one-dimensional (only one variable is 
needed to specify the position of any point) the outcome of the iterative dynamics that 
result from each situation may be different

However, a useful representation of a circle map can be made in the plane by plotting 
f in time honoured fashion as a function of x in the closed real interval I. Such a plot 
will reveal key properties such as whether f is invertible or not If f(x) 'doubles back' 
producing a kink this immediately tells us that f is non-invertible and that the iterative 
dynamics are likely to be chaotic (non-invertibility is a necessary ingredient for chaos 
e.g. Baker & Gollub 1990).

Let us now assume that f is a homeomorphism. In this case, the graph of f(x) will 
either be monotone increasing or decreasing depending on whether f is respectively 
orientation-preserving or orientation-reversing. How do the interval dynamics of the 
graph of f(x) compare with the dynamics of the homeomorphism f ? I sketch a 
straightforward argument to show that they will in general be different
Consider first the graph of f(x). Let x g I and suppose first that f(x) is monotone 
increasing. If f(x) > x then by induction fn(x) > fn-1(x) so that the sequence {fn (x)} 
is monotone increasing and must converge to some limit y = sup{f”(x)}. By the 

continuity of f(x),

f(y) = f(limfn(x)) = limfn+1(x) = y (3.6)
n-*«>

so that fn(x) must therefore converge to a fixed point y. A parallel argument holds if 
f(x) < x. Thus every orbit Of(x) converges to a fixed point of f(x). Alternatively, if 
f(x) is monotone decreasing then f2(x) is monotone increasing. A simple modification 

of the above argument this time shows that either every orbit converges to a periodic 
point of period 2 or to a fixed point. Thus the dynamics of a monotone increasing or 

decreasing map of the interval are very simple.

69



Now consider the homeomorphism f. There are two cases possible depending on 
whether f has a periodic point or not.

If f has a periodic point then it turns out that all orbits must converge to a periodic 
point. The argument follows logically from the above by considering fk (where k is 
the period) as a map fk (x) of the interval for each of the k segments of S1 situated 

between periodic points. If f is orientation-preserving then so is fk and fk(x) is 

monotone increasing so all orbits converge to one of the k periodic points. If f is 
orientation-reversing then f2 is orientation-preserving and a slightly more subtle 

argument this time shows that all orbits either converge to the corresponding 2-cycle 
or to one of a possible two fixed points (de Melo & van Strien 1992).
If f does not have a periodic point the situation is more complicated but in all cases 
the resulting dynamics are combinatorially equivalent to a pure rotation of the circle 
by a Poincare Theorem.
A more realistic representation of f can be made by continuing the graph of f(x) 
beyond the unit square. Moving diagonally away from the origin, f(x) then 
perpetually repeats itself within each unit square situated on the leading 45° diagonal. 
The plot obtained is a graph of a function f :R—»R termed the lift of f (Devaney 1986, 
Arrowsmith & Place 1990).

Definition 3.12
f :R —>R is a lift of f onto R iff f is continuous and (f(x)) = f(x‘)

The graph of the lift f not only enables periodic or fixed points of f to be easily 
identified by their location on the 45° diagonal but also serves to give a compact 
classic definition of the rotation (or winding) number p(f) associated with any circle

map.

Definition 3.13
Let f: S1 —»S1 be a homeomorphism. The rotation number p(f) is defined by 

p(f) = lim
^f°(x)~x

< n
(3.7)
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Observe that p(f) is independent of x and is the single most important topological 
invariant that can be associated with any circle map (Devaney 1986, de Melo & van 
Strien 1992).

Poincare (1885) established that when f :S' —»S1 is a homeomorphism, iterative 
dynamic behaviour of f is completely determined by whether p(f) is rational or 
irrational. I quote two powerful theorems due to Poincare. Readable proofs are given 
in de Melo & van Strien (1992).

Theorem 3.4 p(f) is rational if and only if f has periodic points.

Theorem 3.5 If p(f) is irrational (so f has no periodic points) then f is combinatorially 
equivalent to a pure rotation R with the same rotation number.

Combined with the earlier observation that all orbits converge towards periodic points 
it follows from Theorem 3.4 that whenever p(f) is rational all orbits asymptotically 
converge to q-cycles. I exemplify this by returning to the situation of Chapter 2 
equation (2.6) where f is the pure rotation Ra(x) = (x + a)‘. The lift Ra of Ra is then 
simply given by Ra(x) = x + a so that R° (x) = x + na and

((x + na)-xA
p(Ra) = hm ----------4----  = a (3.8)

“-»“V n J

Hence in this case the periodicity of Ra is directly determined by whether a is rational 

or irrational, a fact that we already know about from Chapter 2 (section 2.3).
In general, if p(f) is irrational there is no concise general description of the dynamics 
that can occur. In the special case where f is at least twice-differentiable (a C2- 

diffeomorphism) the dynamics are always topologically conjugate (by a Denjoy 
Theorem) to a pure rotation with irrational rotation number and thus quasi-periodic. 
p(f) is frequently difficult to evaluate so that empirical methods of determining 

dynamic behaviour, as we shall see later, may be quicker in practice.
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3.4 SOME FURTHER THEOREMS

Let f : M—»M be a diffeomorphism.
Theorem 3.6

If Q is a stable (unstable) q-cycle of f then it is an unstable (stable) q-cycle of f 1

Proof.
Let Dfq (x) denote the derivative of fq (x) and let x’ e Q.

fq(x*) = x* « f-q(x*) = f-q(fq(x*)) = x* (f1)q(x*) = x*

x* a q-periodic point under f « x* a q-periodic point under f 1

I use the following standard numerical analysis result

Iff |Dfq (x* )| > 1 then Q is stable, (3.9a)

< 1 then Q is unstable (3.9b)

By Theorem 3.3, Dfq (x‘) takes the same value V x’ e Q so that it makes sense to 
refer to the stability of Q in terms of the stability of a particular x‘ e Q.

Further, since f q(x) is a reflection of fq(x) in the leading 45° diagonal, the 
gradients of fq (x) and fq (x) at x* are related by their reciprocals so that

|Dfq(x’)| 1
|Df’q(x‘)|

(3.10)

Thus

Dfq(x‘) >1 «>

Dfq(x‘) <1 «

Df-q(x’) <1

DTq(x‘) >1

(3.11a)

(3.11b)

and hence by inequalities (3.9),

Q stable (unstable) under f « K unstable (stable) under f"1.
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Theorem 3.7
Let U be the set of all cycles of f and let U' be the set of all cycles of f 1. Then

U = U'

Proof.

I divide the proof into 2 parts.

(i) Let S and S' consist of the sets of all periodic points of f and f-1 respectively. 
Then

S = S'

Proof
Let x‘ e S be a periodic point of f with period n. Thus

fn(x‘) = x‘<=> f“n(fn(x*)) = f“n(x‘)<=> x‘ = rn(x‘) (3.12)

so that x‘is also a periodic point of f “’with period n and x* e S'.

(ii) I must still show that all cycles produced under f are the same as those produced 
under f “’. Since by Theorem 3.0, all cycles form disjoint sets it suffices to show that:

If Q is a q-cycle of f then Q is also a q-cycle of f “’.

Proof.
Since Q is a q-cycle I can write that

Q = {xo,x‘,......,xJ_J for q >1, (3.13)

where each x* is distinct and where

x* =fq(x*) and x* =f(x’) VxjeQ (3.14) 
1 x 1 z (t+1) mod q

But V x* e Q,

f“q(x‘) = f“q(f‘!(x1*)) =x* (3.15)
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and also

r1(X-)=r1(f’(X‘)) (3.16)
=fq_1(<) (3.17)
= fq-1(f(X* ))

V (i-1) mod k ' /
(3.18)

= fq(x* )

0-1) mod k '
(3.19)

*
= X(i-1) mod k (3.20)

Hence Q is also a q-cycle of f 1, which orbits in the reverse direction.
This completes the proof of Theorem 3.7.
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CHAPTER 4

CIRCLE MAPS ARISING FROM TWO 
STAGE LIFE HISTORIES
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4.0 INTRODUCTION

In Chapter 2, I proved that synchronisation to a periodic environment is impossible 
for a life cycle composed from stages which all exhibit the same developmental 
response. Faced with such a breathtaking negative, I argue that the route to positive 
analytical enlightenment begins with the life cycle of simplest physiological structure, 
namely that composed from only two stages. This is the simplest stage specific 
scheme which can contrast different (biotic) responses to continuous (abiotic) factors. 

Any stage specific life cycle must be composed of a repeated sequence of this basic 
couplet. I conjecture that an intimate understanding of the two stage situation is a 
necessary and vital preliminary to an understanding of the synchronising effects 
produced by stage specificity. In this Chapter, equipped with the armoury of 
dynamical systems theory from Chapter 3, I resume the trail of investigation into the 
fundamental (minimal) two stage model.

Previous investigations with specialised stage specific models of odonata species have 
demonstrated that synchronisation of emergences can be induced in a periodic 
environment by incorporating seasonal dormancy mechanisms (Gurney et al 1992, 
1994). Although I shall review these mechanisms, I really wish to elucidate whether a 
more general mechanism can produce similar results. Without these abstract models, I 
therefore seek to establish the existence of a general minimum requirement for 
synchronisation to occur.

To achieve this, I must commence from a more general set of assumptions. The 
Catops investigation of Chapter 1 hints that a multi-stage life cycle can be regarded in 
terms of an appropriate (much simpler) two stage affair. The work of Heath & 
Spencer (1985) makes it clear that the key element which leads to synchronisation of 
phytoplankton life-cycles is the existence of two distinguishable stages in the life-cycle 
each with a different (characteristic) response to environmental variation. In section 
4.2,1 formulate a very general strategic model of an organism with a two-stage life­
cycle each stage having a density independent development rate with a characteristic 
(periodic) time-dependence. The only restriction that I shall place on the nature of 
these development rate functions is that both are periodic with the same repeat period.

I develop a compact representation of this model in terms of a circle map composed 
from two simple rotations and the "interphase map representing the relationship 
between the physiological times for the two life-history stages. The interphase map 
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enables the phase of either stage to be obtained in terms of the phase of the other. 
Crucially, this implies that any point in the entire life cycle can be expressed in terms 
of any chosen stage phase. I arrive at a parameter sparse description which uses only 
two dimensionless parameters corresponding to the physiological durations of each 
stage, namely a and £.

For a more general n-stage life history where n > 1, the same approach can be applied 
repeatedly to yield (n-1) interphase maps between each of the other (n-1) stages thus 
permitting any stage specific life cycle to be described in terms of a single stage-phase.
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4.1 SYNCHRONISATION THROUGH SPECIALISED DORMANCY

That seasonal dormancy contributes towards life cycle synchronisation is well known 
across a wide range of taxa for both plants (Courtney 1968, Harper 1977, Lacey 
1986) and animals (Common 1954, Corbet 1957, Cohen 1967, Norling 1984a,b,c, 
Taylor 1980, Topp 1984,1990, Denlinger 1986, Tauber et al 1986, Gruner & Sauer 
1988, Wipking 1988, Zaslavski 1988, Tasch & Topp 1991).

In this section, I briefly review two specialised dormancy mechanisms incorporated in 
stage specific models investigated by Gurney et al (1992, 1994). Both mechanisms 
were postulated from detailed biological studies carried out on odonata (dragonflies) 
located in temperate climes (Corbet 1957, Norling 1984a,b,c). Odonata are of tropical 
origin and have evolved dormancy mechanisms to survive more temperate (and 
seasonally periodic) environments (Norling 1984c, Corbet 1957, 1980). The adults 
are unquestionably the least suited of all stages to survive winter (Norling 1984c). In 
view of this, it is unsurprising that such dormancy is found to occur exclusively in the 
aquatic pre-adult stages.

Previous simulations using complex damselfly models (Crowley et al 1987) have 
indicated that for such organisms the non-linearities which regulate population 
numbers have only a weak effect on the timing of emergence and reproduction. By 
these studies, the most significant environmental factor affecting emergence timing 
was found to be fluctuations in temperature. Observing this, Gurney et al (1992,1994) 
constructed models that were driven only by a single temperature driver function. 
Neither of these models addresses the important question of how development in 
different environmental mediums (in a single life cycle) may affect synchronisation of 
emergences. In this respect, both models are surprisingly artificial.

The Corbet Model
Corbet (1957) proposed a stage specific 'overwintering' mechanism through which 
odonata in temperate climes such as Britain may achieve synchronisation of 
emergence. Species located in such environments frequently have life-cycles of a 
duration greater than one year and so must pass through at least one winter in a pre­

adult (larval) stage.

Corbet postulated the existence of a special reversible dormancy (quiescence) which 
could occur in all stages throughout the 'stressful' winter period. He suggested that 
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the field-observed increasing sequence of lower temperature thresholds (in successive 
development stages) implied the existence of a stage specific quiescence (SSQ). Such 
a mechanism ensures that individuals in earlier stages of development start or resume 

development sooner in the following spring than those in more advanced stages. 
Corbet hypothesised that in a strongly seasonal environment the SSQ mechanism 
contributes towards synchronisation by producing a temporal convergence of 
developmental trajectories. Clearly, the potential for synchronisation through such a 
mechanism is self-evident

Gurney et al (1994) constructed a stage specific model to test the hypothesis that 
SSQ alone may synchronise life cycles. The model incorporated a simple 
representation of the SSQ mechanism and closely resembled the development data 
obtained by Lutz (1968) for a North American damselfly. They found that such a 
mechanism produces a 'quiescence lens' which acts to 'condense' developmental 
trajectories stemming from those stages that remain dormant during the winter period. 
Thus, repeated passage through the quiescence lens of developmental trajectories that 
emanate from successive generations can (in turn) produce the temporal convergence 
of lineages that leads to synchronisation of emergence. Diagram 4.1(a) shows a circle 
map plot of the Corbet model (Gurney et al 1994). Observe that the effect of the SSQ 
mechanism is to produce a segment that deviates away from 45° .

The Norling Model
Unlike Corbet (1957), Norling (1984a,b,c) in his studies on the Scandinavian odonata 
observed that several species exhibited the special dormant state of facultative 
diapause over the winter period. Facultative (as opposed to obligatory) diapause 
differs in two main respects from quiescence. Firstly, it is induced by environmental 
signals before the onset of adverse conditions and secondly, once entered such 
dormancy is not easily reversed (Danilevskii 1965, Saunders 1982, Hodek et al 1983).

Norling proposed a simple mechanism by which odonata exhibiting facultative 
diapause may achieve synchronisation of emergence. He postulated the existence of a 
critical stage and a critical time of year (CST) during development, at which entry to 
diapause is determined (or not). Individuals reaching the critical stage before the 
critical rime of year continue their development to maturity, whereas those that reach 
the critical stage after the critical time, enter diapause and suspend development until 
^rie following spring. Photoperiod is much the most reliable cue for insects 
(Danilevskii 1965, Beck 1980, Mordue et al 1980, Corbet 1989, Tanaka 1992) and in 
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line with this, Norling believed that diapause was induced by a critical photoperiod 
associated with the critical time of year (Norling 1984a,b,c).

Gurney et al (1992) demonstrated that a very simple two stage model of a briefly 
semelparous organism based on the Norling CST mechanism always synchronised to a 
periodic variation in environment or to some harmonic or subharmonic of the 
variation. The life cycle was represented by two contiguous stages, A (first) and B 
(second). Any individual that reached the critical size (arbritrarily chosen to occur at 
the end of the A stage) before the pre-determined critical time of year, continued 
development through the B stage. Any individuals that reached the critical size after 
the critical time of year immediately entered diapause and recommenced development 
(in the B stage) at the start of the next year. Either way, reproduction occurred 
instantaneously at the time of emergence from the B stage and progeny were assumed 
to immediately re-enter the life-cycle. The CST mechanism therefore gives rise to a 
selective period of delay (situated between the critical time of year and the year end) 
through which lineages stemming from individuals failing to reach the critical size 
'accumulate' at the year end. Thus, the emergences of all successive generations 
stemming from these individuals are thereafter perfectly synchronised. Diagram 4.1(b) 
shows a circle map plot of the Norling model (Gurney et al 1994). The CST 
mechanism produces a horizontal segment corresponding to the period of delay.
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DIAGRAM 4.1.Typical circle map plots of (a) the Corbet Model and (b) the Norling 
Model (Gurney et al 1994,1992)

An obvious but severe limitation of both the Corbet and Norling mechanisms is that 
they are abstractions which may resemble relatively few of the diverse natural means 
by which organisms achieve life cycle synchronisation. In nature, hybrid mechanisms 
abound which combine features of both, such as the 'eudiapause' described by Muller
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(1970) where diapause is terminated by quiescence, the increasing stage thresholds for 
quiescence that follow after the spring emergence from diapause in arctic chironomids 
(Danks and Oliver 1972) or the characteristic quiescence to be found in late winter 
after diapause has ended in many typical temperate insect species (Danks 1987). All of 
these would require separate treatments.

The most general two stage life cycle which would encompass all such permutations 
(and more) is that where, quite simply, each stage exhibits a different development 
response. The way forward is by formulating a more general model. I shall now 
formulate such a model.

82



4.2 A GENERAL TWO STAGE MODEL

I consider an organism whose life-cycle is composed of two contiguous stages A and 
B which occur in that chronological order and in each of which the development rate 
(§a’ Sb) is dependent only on time t. In all interesting cases, these development rate 
functions will represent reactions to different combinations of environmental variables 
and will thus have different time dependence. I make the assumption that 
instantaneous promotion to the B stage occurs at the end of the A stage. As with the 
one stage model, to represent the underlying regularity to which synchronisation may 
be possible (that is a seasonal or daily cycle) I regard each function as strictly periodic 
with period T.

I define a cumulative development function for each stage i by

Ci(t) = Jgi(x)dx ie{A,B) (4.1)

and hence stage-specific physiological times

0i(t) =
Cj(t)
Q(T)

ie{A,B) (4.2)

Here 0/0 represents the total stage i development achieved by time t as a fraction of 

the total development achievable in that stage during a single environmental repeat 
cycle. For each stage, I naturally define a stage-specific relative physiological time, 
hereafter known as stage-i phase, by

Oid) S ^(t) = 0/0 modi ie{A,B}. (4.3)

Because of the 'normalisation' of equation (4.2), these phases match each other at real 
times t=mT (m integer) that is, at each turn of the year. Observe also that each stage-i 
physiological time 0/t) is a lift of its own phase 0£ (t) (Chapter 3 Definition 3).

From Chapter 2, I recall that an individual recruited to stage A at an A-stage phase 
0^ must complete its passage through the stage at an A-stage phase 0^ given by

^ = Ra(0A) (4.4a)
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where Ra is a simple rotation, and a is the A stage physiological time duration of the 

A stage. An exactly parallel treatment shows that if p is the B-stage physiological time 
required to traverse the stage B then, in terms of that stage's own physiological time, 
the phases of recruitment 0" and completion 0| are related by

e|=Rp(^) (4.4b)

Re-enters

STAGE A
0Ü erB

STAGE B
Recruitment

Duration a
Promotion

Duration 3
Maturation

DIAGRAM 4.2 Representation of the General Two-Stage Life Cycle Model 
operating in physiological time

Although equations (4.4) show that passage through either stage is simple when 
considered in its own physiological time, if I am to consider the whole life-cycle I 
need to work with a single measure of time. How can the single stage phase 
description of Chapter 2 be extended to an organism whose life history is made up of 
two stages?

I solve this by performing a 'conversion' between the stage-i phases 0^ To achieve 
this, I require two maps f^ and f^ which map A-stage phase 0A into the 'equivalent' 
B-stage phase 9B and vice-versa. I define these maps in the natural way, namely so 

that any point in either stage-phase is mapped to its image point (in the other phase) 
via its correspondance with real time t.

Definition 4.1
The forward interphase map f^rS’-^S1 which takes 0A^0B and reverse 

interphase map f^rS1 -> S1 which takes 0B -> 0A are defined respectively by

fAB(0A(t))^B(t) (4.5a)
(4.5b)
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The existence of both and fBA (in a well-defined mathematical sense) is dependent 
on the nature of the relationship between each phase 0t (t) and real time t that is, as 
revealed by the shapes of the associated pair of phase plots 0t (t) vs t for i= A and B. 

I shall return to the important question on the circumstances under which these maps 
exist in section 4.3.

Equipped with such maps, I can easily derive the relation between the phases of 
recruitment (to) and promotion (from) the life cycle in terms of either stage phase. 
Without loss of generality I shall choose to describe the entire life-cycle in terms of A- 
stage phase.

Since I make the assumption that passage between the stages occurs instantaneously, 
promotion from the A stage to the B stage corresponds with recruitment to the B 
stage so that

o'b^ab^)
= f»[R«(e;)] by (4.4a),

= (4.6)

In a similar fashion, I deduce that an individual who is recruited into stage A at an A- 
stage phase 0A will complete its passage through stage B (and therefore emerge) at an 
A-stage phase 0A given by

^baW

= fBARp(0B) by (4.4b),
= fBARp(fABR«(0k)) by (4.6)

For compactness I write this expression as

(4-7a>

where the map Fa>p is defined by

RoSfrARsfABRa- (4’7b)

I now assume that when an individual reaches the end of stage B it, or its progeny, 
immediately re-enter stage A. Such a description would apply as a reasonable 
approximation to a Ing bang' insect (see Chapter 0) such as the briefly semelparous 
Catops Nigricans (Topp 1990) of Chapter 1, where the end of stage B would 
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represent emergence as a mature adult and the beginning of stage A would represent 
oviposition. It would apply exactly to successive divisions of a cell-line reproducing 
by binary fission, where the end of stage B would represent the instant of division, 
after which both two daughter cells would immediately re-start the cell cycle at the 
beginning of stage A. Classic examples of such a life cycle are to be found in the 
complete cell cycle of several species of phytoplankton (Sweeney & Hastings 1958, 
Bernstein 1960, Spudich & Sager 1980, Heath & Spencer 1985, Heath 1988).

Denoting the value of A stage phase at the n111 entry to stage A by 0n , the relation 

between the phases at recruitment of generations n and n+1 is then

en+1 = F^(6n). (4.8)

Since the phase 0n is topologically a position on the circle Sl, I shall refer to the map 
as a two-stage circle map. Thus, the two-stage circle map Fa ? gives the phase at 

which recruitment to generation n+1 occurs in terms of the phase of recruitment to 
generation n, expressed soley in terms of the A stage phase .
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4.3 THE INTERPHASE MAP

I primarily seek to investigate synchronisation between the life-cycle of successive 
"generations" and the underlying periodicity of the environmental variation. Such 
synchronisation is indicated by the existence of stable, fixed or periodic points of the 
circle map F^p. The maps (Ra, R^) representing passage through each individual stage 
in its own physiological time (see equations (4.4)) are pure rotations and so cannot 
play any significant role in creating such points. The critical properties of the two- 
stage circle map are thus determined by the relationship between the two phases that 
is by the properties of the forward and reverse interphase maps f^ and f^. Do both 
of these necessarily exist?

Notice first that equations (4.1) to (4.3) show that both stage-specific phases must be 
zero at t=mT and must tend to 1" as t—>mT* (integer m). The Euclidean plot of f^x) 

( or ) vs x thus always passes through the origin, and approaches arbitrarily 
close to (1,1). I return to the question on the existence of such maps by considering a 
critical pathological example.
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(b) FORWARD INTER-PHASE MAP (d) FORWARD INTER-PHASE MAP

DIAGRAM 4.3 Relationships between stage phases and forward interphase map 
Sequence (a to b) plots where both stages are diffeomorphisms, (c tod) 
where B-stage phase is not.

Diagram 4.3 shows two situations represented by pairs of phase plots (a) and (c) 
respectively. For clarity, 0A is the same diffeomorphism in both situations.

In the first situation shown in 4.3(a), 0B is also a diffeomorphism. The forward or 

reverse interphase map (4.3(b)) is thus well-defined and is a diffeomorphism. 
However, in the second situation (4.3(c)) the phase plot of 0B(t) vs t reveals a Tank' 
produced by 0B doubling back on itself. This kink is passed on to the corresponding 
forward interphase map f^ and surfaces in the plot of f^ (0A) vs 0A (4.3(d)). Thus, 

the forward interphase map f^ is non-invertible and the reverse interphase map 

does not exist.

The kink problem will occur whenever a development rate goes below zero. Such a 
problem can be avoided by making the biologically reasonable assumption that 
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development is irreversible. This ensures that development rate either proceeds 
forward at a strictly positive rate or at worse reaches zero.

If development rate falls to zero (other than at the origin) the corresponding 
interphase map is no longer single-valued and consequently is not a homeomorphism. 
Thus, if a zero development rate occurs in the model, theoretical complications arise. 
Fortunately these complications are of hypothetical interest only, since an organism's 
development rate can be effectively zero (arbritrarily small) without actually reaching 
zero (beyond the accuracy of any measuring device) in the real world.

If the development rate functions gA and gB are both strictly positive and bounded 
above then both stage-specific phases are continuous monotone increasing functions 
of time. This in turn implies that the forward interphase map f^ must be a continuous 
monotone increasing function of A-stage phase, and is therefore a homeomorphism. 
The reverse interphase map fBA is just its inverse so that fABfBA(x)=x is assured for all 
x. A plot of ^(x) vs x is thus a reflection of the plot of f^fx) vs x in the leading 45° 
diagonal. I shall refer to such interphase maps as continuous interphase maps.

I observe further that development rate functions gA and gB need only be continuous 
to ensure that the forward interphase map is everywhere differentiable. Thus, where 
both development rate functions are also continuous the (forward or reverse) 
interphase map is everywhere differentiable, and is a diffeomorphism. I refer to 
interphase maps in this class as differentiable interphase maps. I neatly produce a 

definition which summarises this.

Definition 4.2 A continuous (differentiable) interphase map is a strictly increasing 
homeomeorphism (diffeomorphism) on S1 which satisfies f(0)=0 [and f(l)=l in the 

plot].

Henceforth in the remainder of this Chapter and throughout Chapter 5, I shall focus 
on the important broad class of biologically feasible life cycles whose development 
rate functions are strictly positive, finite and continuous. For compactness I shall 
denote the forward interphase map f^ simply by f and the reverse interphase map fBA 
by rk The two-stage circle map defined in equation (4.7b) then becomes
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Since f and F1 are continuous and monotone increasing the associated two-stage circle 

maP has the same property and is thus a homeomorphism. Similarly, if f and f1 
are differentiable then still retains the same property and is a diffeomorphism. I 
summarise this in a definition.

Definition 4.3 A continuous (differentiable) two stage circle map is a strictly 
increasing homeomeorphism (diffeomorphism) on S1 composed from a continuous 
(differentiable) interphase map.

Notice that because is (at worst) a homeomorphism, F“p exists and thus F^ is 

always invertible. Since non-invertibility is a necessary condition for chaos (e.g. see 
Arnold 1973) no chaos can occur in the system described in equation (4.8) whenever 
F^p is the beast of Definition 4.3.

I easily show that the extension of the physiological time formulation to two stages is 
consistent with the previous (one stage) theoretical framework. Suppose that stages A 
and B exhibit the same developmental response. This implies that 0A = 0B so that the 
plot of the interphase map is simply the leading 45° diagonal. Hence f (x) = f-1 (x) = x 

so that

Fa.p ^R pf Ra = RpRa = Rf^ (^D

which corresponds to two consecutive rotations. Thus, in this case the two stage 
model behaves as a one stage model and no synchronisation occurs (Chapter 2 ).
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4.4 GENERIC INTERPHASE MAP SHAPE: TWO FREQUENT SITUATIONS

In this section I shall illustrate how generic shape of the interphase map can be 
related to a biological context. I restrict our consideration to a frequent life cycle 
situation, namely that in which the development rate functions gA and gB have a single 
maximum within the repeat period T.

DIAGRAM 4.4 Patterns of development, (a and d) Development rates with respective 
plots of (b and e) Phase and (c and f) Interphase maps.
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In such cases the forward interphase map f (that is, f^) has only a small repertoire of 
possible shapes, which are illustrated in Diagram 4.4. Development rate functions are 
shown in normalised form for convenience (the altitude of development rate functions 
has no effect on interphase map shape because of the normalisation of the cumulative 
development functions in equation (4.1), but note that the values of a and Pare 
dependent on altitude).

Diagram 4.4 sequence (a) to (c) shows the behaviour of a life cycle with equal width 
Gaussian development rate functions (s.d.=0.1T) with a lag between stage-A and 
stage-B development peaks equal to one standard deviation. Sequence (d) to (f) 
shows the behaviour of a life cycle with two Gaussian development functions both 
peaking at the same point but with the stage-A development function having twice the 
width of the stage-B function. In both sequences the first frame ((a) and (d) ) shows 
the development rates as a function of time, the second frame ((b) and (e)) shows the 
two stage specific phases as a function of time, and the third frame ( (c) and (f) ) 
shows the forward interphase map. I shall categorise these patterns of development as 
two generic cases.

Case 1 (lag between development rate functions)
Stage A development takes place earlier in the repeat period than stage B 
development (as in 4.4(a)). This implies that the A-stage phase leads the B-stage 
phase at all times (4.4(b)) and the forward interphase map is a monotone increasing, 
strictly concave function (4.4(c)).

Case 2 (different length of growing season)
The riming of the maximum development is much the same for both stages, but the A- 
stage is capable of rapid development over a larger part of the repeat time than the B- 
stage (as in 4.4(d)). This implies that the A-stage phase leads the B-stage phase in the 
early part of the cycle but lags it in the later part ( 4.4(e)). In this case the forward 
interphase map adopts a characteristic S-shape (4.4(f)).

In both cases, gj(t) is a Gaussian function truncated at 0 and 1 thereby ensuring that 
strict continuity is maintained in the periodic form. In Case 1 the lag of the B stage ( a 
horizontal shift parallel to the x-axis) may imply that the ratio of the gradients of the 
stage specific phase dOj,^ at the point 0 e S1 tend to different values from below 
and above thus producing a non-differentiable point. In other words, although the 
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resulting interphase map must still be continuous and differentiable for 0<x<l, we are 
no longer guaranteed that

^\gA(x)J ^\gA(x)J 

so it may contain a non-differentiable point at x=0. In this case I refer to it as an 
interior differentiable interphase map.

Diagram 4.5 shows the corresponding two-stage circle map plots for each pattern of 
development Observe that the plots differ significantly from those associated with the 
Corbet and Norling models in that they are made up of nonlinear (curved) sections.

Other than curvature, the plots of for Casel and Case 2 have some notable 
features imputed by the interphase map f and its inverse f-1.

In Case 1 the non-differentiable point at x=0 in f (discontinuity in Df) is subject to 
displacements ('modulo 1 translations'- see Definition 5.1) of 1-a* horizontally and 0* 
vertically by the pure rotations Ra and Rp and corresponds to the point ?! in Diagram 

4.5(a). Similarly, the non-differentiable point at x=0 in f-1 is carried through to so 
that it appears at the point P2. The steepness of the section P2Pj actually results from 
the parameter choice of a and 0 used in the plot

In Case 2 the interphase map has no non-differentiable points but the gradient of f is 
zero at x=0 thus implying that the gradient of f -1 achieves infinity at x=0. This 
appears at the point P3 in the plot, displacement away from x=0 again being due to 
the rotations Ra and Rp within the composite map F^.

It is essential to the subsequent analysis that I distinguish between two-stage circle 
maps containing linear segments parallel to the leading 45° diagonal and those without 
such features. It is clear from equation (4.10) that such linear segments in the circle 
map can only arise as a consequence of linear 45° segments in the interphase map. 
These in turn must indicate that the development rate functions have equal values 
over intervals (rather than at a finite set of points). I shall refer to the class of 
continuous two-stage circle maps which excludes those containing 45° line segments 

as continuous non-diagonal two-stage circle maps.
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DIAGRAM 4.5. Plots of two-stage circle map corresponding to Diagram 4.4
(a) first pattern of development [sequence 4.4(a to d)]
(b) second pattern of development [sequence 4.4(d to f)]



4.5 DISCUSSION

At the core of the general two stage model formulation lies the interphase map. This 
homeomorphism provides an elegant means of encapsulating the relationship between 
the two stage phases. Furthermore, it enables a concise circle map description of the 
general two stage model to be obtained in physiological rime

The shape of the interphase map gives a simple visual measure by which the stage 
difference in developmental response (the stage specificity) can be immediately 
assessed. Paradoxically, it gives a continuous perspective on the extent of 
discontinuity present in the development process. I now know that where no such 
discontinuity exists, no synchronisation is possible (cf section 4.3) That stage 
specificity is vitally important in determining synchronisation behaviour is thus readily 
apparent.

Although I have indicated that the multi-stage way ahead is clear, I shall not attempt 
to expand the current description beyond two stages. I also argue that chaos has no 
biologically meaningful role to play in the current formulation because this can only 
occur if development proceeds 'backwards'. Neither of these considerations are 
covered in this thesis in an attempt to keep the system as simple as possible and to 
study the key synchronising effects of stage specificity in isolation.

Instead, I prefer to focus on the key role that the interphase map plays in determining 
the dynamic outcome of the system. In the next chapter, I will show that interphase 
map shape (and in particular its deviation from the leading 45° diagonal) largely 
determines the synchronisation properties of the general two stage model.
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CHAPTER 5

GENERAL PROPERTIES OF TWO STAGE 
CIRCLE MAPS
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5.0 INTRODUCTION

I shall conduct an in-depth investigation of the key role that the interphase map f plays 
in determining the synchronisation behaviour of the general two stage model. I gain 
initial insight into the importance of interphase map shape by conducting explorations 
through simple transformations T(f) of the interphase map. By establishing topological 
conjugacy between F^ and (composed from interphase map g = T(f) ), I show 

that the dynamic behaviour of is invariant to certain transformations of the 
interphase map from which it is composed. For simplicity, I choose to focus on those 
transformations which result in a simple visual geometric effect (such as a reflection) 
of the plot of f on the plane. I compactly summarise the fruits of these explorations in 
the form of a collection of respective Theorems for each transformation g = T(f) 

investigated. These Theorems later prove invaluable in developing a more general 
understanding of the synchronisation behaviour of F^.

More profoundly, I ask about the general synchronisation behaviour of F^. When do 
the orbits of F^ form (asymptotically) stable q-cycles? As with any circle map, the 
dynamic behaviour of F^p is dependent on its shape and configuration which (in the 
case of a two stage circle map) is dependent on the shape of the interphase map f from 
which it is composed and the values of the parameters a and P. Because is a 

circle homeomorphism, I already know from section 3.3 that stable q-cycles must 
exist if F^ has any periodic points. Thus the question posed at the start of the 
paragraph simplifies to asking under what conditions periodic points of Fap 
necessarily exist. I provide a fast general answer to this question by a numerical 
approach which generates a behaviour portrait. This picture also concisely shows 
the general robustness of any two stage circle map model.

The most visually spectacular property of the behaviour portrait is its twofold 
rotational symmetry about its centre point In Theorem 5.5 I prove the powerful result 
that when F^ is a diffeomorphism (which it will be if the development rate functions 
gA and gB are strictly positive and continuous) the number of stable q-cycles that 
occur must equal the number of unstable q-cycles. Because it turns out that only one 
such stable cycle ever occurs, the general rotational symmetry property of F^ follows 
as an easy corollary and thus holds for any differentiable two-stage circle map.

I initially began algebraic explorations by seeking general analytic conditions for a 
general q lock to occur that is, conditions to be satisfied for repeated iteration of the 
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map Fa.p to eventually yield a stable q-cycle of recruitment phases. I derived such 
analytic 1 lock conditions in the two broad classes of situations where the plot of f 
has either of the two generic shapes outlined in the previous section (4.4). Beyond a 1 
lock, these workings rapidly deterioate into gruelling intractability.

In section 5.41 carry out some numerical investigations via the behaviour portrait into 
the specific pair of patterns of development where the development rate functions are 
shaped like truncated Normal distributions (Case 1 and Case 2 of section 4.4). For 
both situations, I construct a sequence of behaviour portraits which immediately 
illustrate the strong action of stage specificity as a general locking agent. These 
sequences demonstrate the depth of insight into synchronisation behaviour that can be 
gathered from a simply visual survey of the behaviour portrait
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5.1 INTERPHASE MAP TRANSFORMATIONS

I now ask what happens to the qualitative nature of the orbits produced by iterating a 
two-stage circle-map when certain transformations are applied to the interphase 
map f from which it is composed. The key to all but one of the following proofs is 
topological conjugacy (see 3.2). Recall from Definition 3.8 that to prove two circle 
maps F and G are dynamically equivalent I need only show that they are topologically 
conjugate that is, 3 a homeomorphism h rS1 S1 such that G = hF h"1.

In all the theorems that follow the interphase map f need only be a homeomorphism h 
:S’‘ —> S1. Observe first that the pure rotation map R^has the general property that

R^ (x) = R_y (x) = (x - y)* = (x + (1 - y))‘ = RH (x) (5.1)

and that for any map composed of homeomorphisms F,G, (FG)-1 = G-1F-1.

Theorem 5.1
Let f and g be circle homeomorphisms related by g(x)sf(Rs(x)). If F^ and G^ are 
continuous two-stage circle maps composed from f and g respectively according to 
equation (4.10), then they are topologically conjugate.

Proof
Gap = W’RpifR^Ra = R_8r1RpfRaR6 = R„sF^(R_5r'

Theorem 5.2
Let f and g be circle homeomorphisms related by g(x)=Rs(f(x)). If F^ and G^ are 
continuous two-stage circle maps composed from f and g respectively according to 

equation (4.10), then F^p=G^p.
Proof
GaP = (R8f r1 Rp (Rsf )Ra = r'R^RpRs^ = r 1RpfR« = f^

Theorem 5.3
Let f and g be circle homeomorphisms, with g=F'- If F^ and G^ are continuous two- 
stage circle maps composed from f and g respectively according to equation (4.10), 

then G^ and Fp a are topologically conjugate.

Proof , , .
= fRpf’Ra = Ra f (f-^Ra^Rp _1Ra = <Ra f f>’
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Theorem 5.4
Let f and g be circle homeomorphisms with g(x)sl-fil-x). If and are 
continuous two-stage circle maps composed from f and g respectively according to 
equation (4.10), then and F^^ are topologically conjugate.
Proof
I choose h to be the (monotone decreasing) circle homeomorphism defined by 

h(x)=(l-x) (52)

so that g=hfh. I note h'^h and hR^h’1 = R.y.

Now Ga^ =(hfh)-1Rp(hfh)Ra =hf-1hRphfhRa but h(h(x))=x so

Ga^ = h(r1hRphfhRah)h = h(f’1R_pfR_a)h = tfif-’R^fR^Jh

and thus Gap = h(F1^_p)h = h(F1_al_p)h’1

Theorems 5.1 and 5.2 demonstrate that the qualitative dynamics of a continuous two- 
stage circle-map F^ are unchanged if I alter the associated interphase map in such a 
way that the plot of f(x) vs x is translated (modulo 1) parallel to either the x or the 
fix) axis. I introduce the concept of a mod 1 translation.

Definition 5.1
Let (x,y) be a point in the unit square and let (x',y') be the image of (x,y) under a 
translation in the usual geometric sense. The image of (x,y) under a translation 
modulo 1 is defined as the point ( (x')*, (y')* ).

Thus a translation modulo 1 is the same as a translation in the usual geometric sense 
when both x' and y’ are less than 1, but otherwise has the property that any points of a 
curve that are translated 'off' a given edge of the unit square 'reappear' at the opposite 
edge. Such points then continue being translated in the same direction as previously. 
In simple terms this means that the image graph of any curve under a translation 
modulo 1 will in general be a permutation of the original, consisting of a 
rearrangement of certain segments. Diagram 5.1 shows the effect of a translation 
modulo 1 parallel to the x axis, on the plot of an S shaped interphase map.
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DIAGRAM 5.1 The effect of a translation modulo 1 parallel to the x axis on the plot 
of an interphase map.
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In fact Theorem 5.2 goes further and shows that a pure rotation transformation T 
(where T^R^ff)) applied to the interphase map f has no effect on the resulting iterative 

dynamic behaviour of F^.

Theorem 5.3 shows that if the interphase map f from which is composed is 
interchanged with its own inverse (so that the plot of f is reflected in the leading 45° 
diagonal) the dynamic behaviour of F^ is equivalent to that when the parameters a 
and p are simply interchanged. Theorem 5.4 shows that a transformation of the 
interphase map resulting in the plot of mapped phase against original phase being 
rotated 180° about the point (16,16) is equivalent to changing the parameters a and p 
to 1-a and 1-P respectively. For two special classes of interphase map shape, these 
last two theorems also give insight into how the parameters a and p may be 

interchanged without affecting the dynamic behaviour of F^ .

I next enquire about the sensitivity of composed from a general interphase map, to 
changes in value of the parameters a and p.
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5.2 THE BEHAVIOUR PORTRAIT

Since is a circle homeomorphism, one way of establishing when synchronisation 
occurs (periodic points exist) would be to determine whether the associated rotation 
number is rational or irrational (see 3.3. on how this was done for the pure rotation 
map Ra)- However, algebraic evaluation of this limit can be extremely protracted. 

Instead, I prefer a faster numerical approach which, as we shall see, has the bonus of 
generating a visual feel for the overall robustness of the model.

Extensive simulation studies show that all the maps with which I shall be concerned, 
possess at most one stable cycle for each set of parameter values. A central tool in my 
investigation of the generic properties of such maps is the behaviour portrait. This is 
a picture on the (a,p)-plane, constructed with any ancilliary parameters held constant, 
in which (to a pre-determined resolution) each point is marked with a colour 
characteristic of the repeat-length of the cycle implied by the attractor, or by a null 
marker if no attractor exists. The behaviour portrait of therefore shows the 
complete range of dynamic behaviour of F^ in terms of stable cycles or otherwise. 
At the same time it shows the general sensitivity of F^ to changes in value of the 
parameters a* and P’ and therefore gives extensive insight into robustness. It follows 

from the definition of the rotation operator (equation (2.6)) that the behaviour of the 
map F^ depends only on the values of a and p modulo 1 (hereafter denoted by a‘ 
and p*). Thus the behaviour portrait replicates itself in every complete adjacent unit 

square situated on the (a,P)-plane.

I can calculate good approximations to behaviour portraits very efficiently using a 
straightforward numerical approach, by first dividing up the unit square into small 
squares of finite width termed 'pixels'. The position of each pixel is then used to 
complete the definition of the circle map which is then iterated (to an accuracy of 1 
part in 105) until either a stable q-cycle is found, or if this does not occur, until a pre­
defined number (104) of iterations are performed. If a stable q-cycle is found then an 
appropriate colour dependent on the value of q is used to illuminate the pixel. For 
brevity I shall refer to q, which actually represents the number of generations between 
each stationary phase, as the lock number. If no such stable q-cycle is found the pixel 
is left unilluminated and therefore appears black in the behaviour portrait Several 
examples are shown in Portraits 1 to 3 below. I shall now seek to identify generic 

properties of the behaviour portrait.
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By Theorem 5.4, I observe first that a transformation of the interphase map f which 
results in the plot of f(x) vs x being rotated 180° about (16,16) is equivalent to 
interchanging the parameters a—>(l-a), p—>(l-£). Thus, such a transformation of f 
effects an equivalent rotation of the behaviour portrait.

Where the plot of f(x) vs x is invariant against such rotation (e.g. Diagram 4.4f) this 
has the corollary that the behaviour portrait for the associated two-stage circle map 
must have two-fold rotational symmetry about (16,16).

Corollary to Theorem 5.4
If the plot of the interphase map f has rotational symmetry of 2 about (16,16) (that is 
f(l-x)=l-f(x) V x) then its associated behaviour portrait P also has rotational 
symmetry of 2 about its centre point (16,16).
Proof
Let the transformation T(f) of the interphase map f be defined by 
T(f(1 - x)) = 1 - f(x). If f(1—x)=l—f(x) then

T(f (x)) = 1 - f (1 - x) = 1 - (1 - f (x)) = f (x)

so that f is invariant under T which implies that the behaviour portraits P of f and P' of 
g=T(f) are identical. But by Theorem 5.4, T(f) effects a half turn rotation of the 
behaviour portrait of f about its centre point (16,16). Hence P has a rotational 
symmetry of 2 about its centre point (16,16).

Remarkably, it turns out that rotational symmetry is not restricted to the special case 
described above. I shall now show that the behaviour portraits yielded by all 
continuous non-diagonal two-stage circle maps with stable cycles only of order q 
for each value of the parameters must have two-fold rotational symmetry about the 
point (16,16). I shall first prove that F^^ has the same number of stable q-cycles as 

Fa p and for this I require two Lemmas. Lemma 5.1 is encompassed by the result of 
Theorem 3.6 (Chapter3 ) for cocycles but I give a separate more compact version here 

for a q-periodic point.
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Lemma 5.1
If x* is a stable (unstable) q-periodic point of a continuous non-diagonal two-stage 
circle map F^p then it is an unstable (stable) q-periodic point of F^.

Proof
F^(x-) = x « « (^'(x^x*

x* a q-periodic point under F^p <=> x* a q-periodic point under F”!

Since the stability of the point x* is defined Fa p and F~p must be differentiable at x*.
Hence F^ and are differentiable at x* and so

DF^(x*)<l DF~^(x*)>1

x* stable (unstable) under F^p <=> x* unstable (stable) under F~^

Lemma 5.2
The continuous two-stage circle maps F^^ and F~p are topologically conjugate.

Proof
= f'R^fR= r'R^fR-, 

and =(r’RpfRa)’1 = R^f'R^f

R^XR.)-' = R«(IJi)R^ = r'R^®^, = F,^

Theorem 5.5
Let Fa p be a continuous non-diagonal two-stage circle map. Fa p and F^.p have the 

same number of stable q-cycles.

Proof
Since F^p is everywhere differentiable it must cross the leading 45° diagonal an even 

number of times, each pair of crossings corresponding to one stable and one unstable 

q-periodic point of F^p
The first line in Lemma 5.1 above shows that F^p and have the same set of q- 
periodic points [revealed in the plots of interphase maps by the fact that (F“p)q is the 

reflection of F’p in the leading 45° diagonal].

By Lemma 5.1 any stable q-penodic point of F^p must be an unstable q-penodic 
point of FJ^ and vice versa. Hence Fa>p and F~| must have the same number of stable 

q-cycles.
Since by Lemma 5.2, F^ and F^^ are topologically conjugate they each have the 

same number of stable q-cycles and hence F^phas the same number of stable q-cycles 

as
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Theorem 5.5 tells us that for any continuous non-diagonal two-stage circle map, 
substitution of the parameters a and p respectively with 1-a and 1 -P, leaves the 

number of stable q-cycles unaffected. If there are only stable cycles of order q (in fact 
empirical studies show that only one stable cycle occurs) it immediately follows that

Corollary to Theorem 5.5 (general rotational symmetry of the behaviour portrait) 
The behaviour portrait of any continuous non-diagonal two stage circle map is always 
rotationally symmetric about its central point (|,|).

The above Corollary is stated in terms of a theoretical behaviour portrait. In practice 
the behaviour portrait is constructed using a numerical procedure so that the fine- 
scale detail can only be as precise as the rounding accuracy implemented within the 
procedure. The chosen procedure operates with sequences of iterations. Starting with 
an initial point located at the centre point of the pixel, an initial run of 10 iterations is 
made in which each member of the sequence is checked to the specified accuracy (1 
part in 105) with the value of the initial point. If no member is found to be equal with 
the initial point, a second run is commenced, this time starting with the last value of 
the previous sequence. The same checking procedure is re-performed with the second 
sequence for a run of up to 20 iterations and the whole process is repeated, run 
lengths of consecutive sequences being doubled until either a repeat is found or the 
maximum number of iterations (104) is exceeded (in which case a 'no lock' is 
registered and the pixel is illuminated in black). Optimal accuracies in terms of 
minimising the calculation time without loss of resolution of visual detail were 
empirically found to be those stated above. Greater calculative precision beyond these 
levels served neither to enhance the finer resolution of the zones outside the lock 
regions nor their overall form (the resolution is, in any case, limited by the actual 
minimum size of the pixel).

Locks were formally (and correctly) detected in both the 'near graze' and 'actual 
graze' situations where the plot of Fqp crossed and touched with the leading 45° 

diagonal even where the two-stage circle map was not Morse-Smale (that is, a 
diffeomorphism with rational rotation number [and hence periodic points by Theorem 
3.4] with |Dfq (x* )| * 1 where x* is a periodic point of prime order q (Devaney 1986)) 

(see Bifurcations' on page 109 and Sketch 1(a) and (b) respectively). Whenever a 
'gap' (e.g Sketch 1(c)) occurs, I find that the chosen levels of accuracy for the 
behaviour portrait are still correct beyond the visual resolution of the corresponding 
plot of for a given parameter pair (a,p).
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5.3 CONDITIONS FOR SYNCHRONISATION

Observe that because two-stage circle-map Fa p is a circle homeomorphism, I need 

only show that a periodic point exists to establish that all orbits must converge 
asymptotically towards periodic points and thus that synchronisation to a q-cycle must 
eventually occur (e.g de Melo & van Strien 1992 or see Section 3.3).

^a,p has a stable fixed point (i.e. only one periodic point) then the orbits produced 

by iterating it tend towards a state in which each generation of a particular lineage is 
replaced by its successor at the same point in the environmental cycle. If Fap has a 

stable q-periodic point then the orbits tend towards a stable cycle in which the 
changeover between generations takes place at the same phase every q generations. 
The existence of this form of attractor (a stable q-cycle) is indicated by the q^1 iterate 
of the map (F£p) possessing a group of q (distinct) stable periodic points, each of 
which is a solution of 0 = (0) and represents the phase at which one generation
gives way to its successor. When F^p and hence F^ are strictly increasing non­

diagonal homeomorphisms, each stable periodic point must be accompanied by a 
companion unstable periodic point. Thus if Fap exhibits m q-cycles the defining 
equation 0 = FJ^ (0) must have exactly 2mq solutions.

In line with empirical observations, I henceforth assume that any particular instance of 
a class of maps Fa p derived from a given interphase map f has at most only a single 

stable q-cycle (m=l). I shall characterise the properties of that instance by the lock­
number (the number of periodic points in that single stable q-cycle). Under what 
conditions does Fap have such periodic points that is, 3 0‘ such that 0* = F^(0*)?

Case 1 and Case 2 generic patterns of development revisited
I now state two theorems which give necessary and sufficient conditions on the stage 
durations a and p in order for two-stage circle maps derived from the two broad 
classes of interphase map corresponding to Case 1 and Case 2 in section 4.4 to have a 
stable one-lock (that is a stable fixed point (periodic point of period 1)). The plots of 
the interphase maps for each Case are shown in Diagrams 5.2(a) and (b) respectively. 
The proof of these theorems is given in the Appendix A5.1.

Let Fap be a two-stage circle map composed from f according to equation 4.10.
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Theorem 5.6 (Case 1)
Let f be an interior differentiable inteiphase map satisfying Df >0 and >0 V x. Fa p 

has a stable fixed point iff

l-f(a‘)>p* >f(l-a‘) (5.3)

Theorem 5.7 (Case 2)
Let f be a differentiable interphase map satisfying f(l-x)=l-f(x) V x ; Df(x)>0 V x; 
D^x)^, 0<x<16; D^x^O, 16<x<L Fap has a stable fixed point iff

l-2f(a’/2)>p*>2f((l-a‘)/2) (5.4)

Theorem 5.6 gives the condition for a one-lock in any two-stage circle map derived 
from an interphase map which is strictly increasing and strictly concave (i.e. has 
positive curvature and lies below the leading 45° diagonal). Diagram 4.4 (sequence (a) 
to (c) ) shows that this interphase map shape results from a simple lag between the 
season of peak development rate for the B-stage and that for the A-stage. The 
converse biological situation, in which A-stage development lags B-stage 
development, will produce an interphase map which is strictly increasing and strictly 
convex. Any such interphase map can be changed into one to which Theorem 5.6 
applies by reflection in the 45° diagonal. It is a corollary of Theorem 5.6 that the one- 
lock condition for such a map is simply inequality (5.3) with the inequalities reversed.

Corollary to Theorem 5.6
If D2f <0 V x in Theorem 5.6 then Fa p has a stable fixed point iff

l-f(a‘)<P‘ <f(l-a) (5.5)

Proof
By Theorem 5.3, interchanging f with f -1 and substituting a and p with p and a 
respectively in inequality (5.3) leaves the dynamic behaviour of Fop unaltered.

Now D2f < 0 <=> D2f-1 > Oso that by Theorem 5.6

l-f-1(P*)>a*>f-1(l-P‘)

l-a‘>f-1(p’) and f(a‘)>l-p’ 

f(l-a’) > p* >l-f(a‘) 

or l-f(a*)<p* <f(l-a‘)
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Theorem 5.7 gives the one-lock condition for a two-stage circle map derived from an 
interphase map which is a symmetrical, initially concave S-shape (i.e. the interphase 
map is rotationally symmetrical about (16,16), lies below the leading diagonal for 0<x< 

16, crosses the diagonal at x=16 and lies above the diagonal for 16<x<l). This 

interphase map shape arises when B-stage development occurs over a more restricted 
portion of the environmental repeat cycle than A-stage development, but peak 
development rates occur at more or less the same time as shown in Diagram 4.4 
sequence (d) to (f). Clearly, the converse situation, in which A-stage development is 
possible for only a brief part of the cycle, and B-stage development for a more 
extended period, can be represented by inverting the generic interphase map. This 
again leads to a one-lock condition identical to that of Theorem 5.7 with the 
inequalities reversed.
Corollary to Theorem 5.7
If D2f(x)<0, 0<x<16; D^x)^ 16<x<l in Theorem 5.7 then Fap has a

stable fixed point iff

l-2f(a*/2)<P* < 2f((l-a’)/2) (5.6)

Proof
By Theorem 5.3, interchanging f with f-1 and substituting a and P with P and a 
respectively in inequality (5.4) leaves the dynamic behaviour of F^p unaltered.

Now D2f < (>)0 <=> D2f-1 > (<)0 so that by Theorem 5.7
1-2^^ l>a*>f-1i—- 1

12 ) I 2 J

2ff—’\p’and ff^
I 2 ) {2 ) { 2 )

or l-2f(|’^<p‘<2f^y^

I note that both the regions of one-lock defined by inequalities (5.3) and (5.4) display 
the rotational symmetry about (16,16) implied by Theorem 5.5, for if I 
write h(a*) = 1 - f (a*) in the LHS of (5.3) then the RHS

f(l-a*) = l-(l-f(l-a‘))=l-h(l-a•)

which proves that the one lock boundary in the lower part of the behaviour portrait is 
the rotational image of the upper boundary. By a similar argument, the same is true 

for (5.4).

108



Phase n+1

Sketch 1



I note furthermore that the width of the region which each inequality defines is 
determined in a general sense by the non-linearity of the interphase map. In particular, 
if the interphase map becomes the 45° diagonal, (that is A-stage and B-stage 
physiological times become identical) the one-lock region formally disappears. 
However, if I extend Theorems 5.6 and 5.7 to include neutrally stable fixed points (by 
allowing equality in inequalities (5.3) and (5.4)) then the identity interphase map 
causes the non-unstable one-lock" region to collapse to the line p*=l-a*, which is 
the condition for a neutrally stable fixed point in a single stage model with stage 
length a*+P*.

Bifurcations
Where bifurcations occur that is, where the dynamics change suddenly for small 
changes in the values of a* and P* (near the boundaries of lock regions), the 

distinction between (biologically less interesting) higher ordered lock and no lock 
(yellow or black for colour choice of associated pixel) is dependent on the levels of 
calculative accuracy chosen. Such bifurcations correspond to the plot of passing 
through a transition as a* and 3* are varied in which a 'graze' of some part of the plot 
occurs with the leading 45° diagonal. Passage through such a transition is helpfully 
envisaged in three stages with the use of "cobwebs" as shown in the example of 
Sketch 1. Note that is not Morse-Smale here (Devaney 1986).
In (a) Pj is a stable (attracting) fixed point because DF^Pj) <1 and P2 is an unstable 
(repelling) fixed point because DFap(P2) >1. A small change in the parameter P* 
results in the two points Pj and P2 'fusing' together to form a plot which just grazes 
the leading 45° diagonal at the single point P3 as shown in (b). Simple cobwebs 
starting with an initial point located on either side of P3 easily show that it is stable 
from the left but unstable from the right Effectively this is a stable point because the 
closed topology of the circle ensures that the trajectory eventually returns from the 
left and is ultimately attracted to P3. As P* is changed by a further small increment, 
situation (c) occurs in which a gap appears in the plot between the curve and the 
leading 45° diagonal so that a low-ordered lock is no longer possible and the 
corresponding pixel is either illuminated in yellow (if a lock occurs within 105 

iterations) or black (if not).

Portraits 1 Associated behaviour portraits of Diagram 52 (a) Case 1 for systems 
with both development rate functions having a standard deviation ofO.1T and a lag 
0.1T (b) Case 2 for systems where both development rate functions are centered at 
OST with the stage-A development rate function having a standard deviation ofO.1T 
and stage-B having a standard deviation of 02T.
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5.4 NUMERICAL INVESTIGATIONS OF CASE 1 AND CASE 2

In the previous section I discussed necessary and sufficient conditions for the orbits 
generated by two-stage circle maps composed from a subset of possible interphase 
map shapes, to converge ultimately to a single fixed point. However, even for this 
sub-set I have been unable to derive equivalent results for more complex locking 
behaviour. Special forms of the interphase map sometimes make it possible to derive 
such conditions but the resulting expressions are seldom very illuminating. I shall now 
utilise the associated behaviour portrait to circumnavigate this analytic intractability

(a) CASE 1 (Lag between development functions)
I first reconsider the earlier case in which the stage A and stage B development rate 
functions are shaped like truncated Gaussians (Normal distributions), each with the 
same width, but with a time lag between the peaks. In the specific example illustrated 
earlier in Diagram 4.4(a) the standard deviation of each distribution is 10% of the 
environmental period, leading to significant growth over some 50% of the 
environmental cycle. When the stage B development rate peak lags the stage A peak 
the resulting interphase map is strictly concave as shown reproduced in Diagram 
5.2(a). The converse situation (stage B leads stage A) would produce an interphase 
map whose plot is the reflection of Diagram 5.2(a) in the 45° diagonal. Theorem 5.3 
shows that I do not need to study this case separately.

Although I cannot write down a closed form for the interphase map in this case, the 
range of over which one-lock occurs can be obtained from Diagram 5.2(a) and 
Theorem 5.6 for any desired value of a*, thus allowing me to confirm the accuracy of 
my computational method. Portrait 1(a) shows the behaviour portrait obtained for the 
interphase map of Diagram 5.2(a) which corresponds to a lag of 10% of the 

environmental cycle.

I observe first that the whole behaviour portrait shows the two-fold rotational 
symmetry required by Theorem 5.5, so I restrict further consideration to the triangle 
below the diagonal running from (0,1) to (1,0). Outside the one-lock region I see that 
virtually the whole of the remaining area is filled with colors indicating lock-numbers 
in the range 2-12, with the most significant regions being 2- and 3-locks. Only very 
small areas near the borders produce very complex locks (>12 iterations per cycle) 
and the only observable failures to detect an attractor occur on or very close to the 
boundaries of lock regions, where we expect neutral stability.
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In Portraits 2 I show the variation of the behaviour portrait as the lag between two 
otherwise identical Gaussian development functions is varied. Portrait 2(b) shows the 
behaviour portrait first displayed in Portrait 1(a).

In Portraits 2(a) and (c) I show the result of respectively halving and doubling the lag. 
As I would expect, doubling the lag (and increasing the non-linearity of the interphase 

map) greatly increases the area over which one-locks occur. The remainder (<25%) of 
the (ct,p) plane is mainly occupied with 2- and 3-locks. Halving the lag (Portrait 2(a)) 

causes the expected reduction in the area of the 1-, 2- and 3-lock regions, with a very 
significant proportion of the total area exhibiting complex locks with greater than 12 
iterations. This reduction in the "strength" of the synchronisation is accompanied by 
the appearance of a significant concentration of points (marked in black) at which no 
repeat cycle can be detected. Since the two-stage circle maps discussed in this paper 
are all invertible and thus cannot produce chaos, this behaviour must indicate neutral 
stability, cycles longer than 103 or so points, or transients longer than 104 iterations. 

Detailed numerical investigation of a sub-set of these points indicates that they occur 
at or very close to points of neutral stability.

Finally I investigated the robustness of the results shown in Portraits 2. As I would 
expect from Theorem 1, lateral displacement of both growth peaks modulo T 
(equivalent to a change of the origin of timescale) has no effect on the behaviour 
portrait. Likewise, lateral displacement with simple truncation at zero and one (rather 
than a true modulo T displacement) has no detectable effect until intersection with the 
beginning or end of the environmental period begins to make a significant alteration in 
the overall shape of the development peaks. Lastly, I find that (again as one would 
expect) the nature of the behaviour portrait is dependent only on the ratio of the lag to 
the half-width rather than on the value of these two quantities separately.

Portraits 2 The effect of changes in development lag on a system with two 
equal-width Gaussian development rate functions. All frames show behaviour 
portraits for systems with both development functions having a standard deviation of 
0.1T. Top left frame: lag=0.05T, Top right frame: lag 0.1T, Bottom frame: lag 0.2T.
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(b) CASE 2 (Differing length of growing season)
I next investigated the second biological situation illustrated earlier in Case 2 
(Diagram 4.4(d)-(f)). Here the two development rate functions are still shaped like 
truncated Gaussians, but their peaks are at the same point, and they differ in width. In 
the situation illustrated, the B-stage development peak is narrower than that for the 
A-stage, leading to an intially concave, symmetrical S-shaped interphase map shown 
earlier in Diagram 4.4(f) (now reproduced in Diagram 5.2(b). Reversing the position, 
simply turns the interphase map into its own inverse. Theorem 5.3 again tells us that 
we need not investigate this possibility separately. Portrait 1(b) shows the behaviour 
portrait obtained for the interphase map shown in Diagram 5.2(b).

As we might expect from a comparison of Diagrams 5.2(a) and 5.2(b) the size of the 
one-lock region for this case is slightly smaller than the equivalent region in Portrait 
1(a), with a somewhat greater reduction being evident in the areas of the 2-lock and 
3-lock regions. However, the most noticeable difference between Portraits 1(a) and 
1(b) is that the S-shaped interphase map gives rise to a noticeably greater area of 
complex locks, and shows a number of high concentrations of neutrally stable points, 
especially close to the a=0 and a=l borders.

Portraits 3 shows the effect of varying the width of the A-stage growing season with 
the B-stage peak width held constant. Portrait 3(b) shows the behavour portrait first 
displayed in Portrait 1(b). Changes in the relative width of the two development peaks 
shown in Portraits 3(a) and 3(c) produce the expected changes in the strength of 
synchronisation, with increasing (decreasing) A-stage width increasing (decreasing) 
the area of the 1-, 2- and 3-lock regions. However, I notice that in all cases the ratio 
of the size of the multiple-lock regions to the size of the one-lock region is lower and 
the concentration of neutrally stable points is higher than that shown by circle-maps 
composed from a purely concave interphase map.

Portraits 3 The effect of changes in relative development function width on a 
system with two Gaussian development rate functions. All frames show behaviour 
portraits for systems with both development functions centered at OST and with the 
stage-A development function having a standard deviation of 0.IT. Top left frame, 
s.d. A=0.15. Top right frame s.d. A=0.2, Bottom frame s.d. A=0.4.
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5.5 DISCUSSION

Although the physiological time formulation has yielded a very concise model 
description, the dimensionless parameters a and p 'feel' inherently uncomfortable. 

This discomfort stems from the fact they do not easily translate into directly 
meaningful biological terms. In this chapter I have shown that the discomfort can 
nevertheless be alleviated by digesting a behaviour portrait which has the ubiquitous 
merit of displaying the full range of dynamic behaviour of as a single snapshot in 
the (a,P)-plane. The behaviour portrait grants us that desired biological feel in 

accordance with the Usher (1976) guidelines of Section 0.4. Each individual lock 
region clearly shows the values of a and P for which (asymptotically) stable cycles 

exist and hence when synchronization occurs in the model. I have conjectured that 
neutral stability only occurs on the boundaries of these regions.

Whereas the two stage circle maps Fapand its inverse F^ must always have the same 

identical set of periodic points (because they are both continuous), when F^p is a 
diffeomorphism this entire set necessarily partitions into two equal size sets made up 
of stable and unstable periodic points respectively. Because only one stable cycle 
exists, the set of stable (unstable) periodic points collectively forms the stable 
(unstable) cycle and since Fa^ is topologically conjugate to F^^ this automatically 

implies that the behaviour portrait must be rotationally symmetric. I conjecture that 
this geometric property also extends to the more general situation in which Fa^ is a 
homeomorphism or the limiting case of one (that is when either of the development 
rate functions gA or gB are held at zero for a finite interval of real time). In the next 
chapter we shall see that this is indeed so for a particular two stage life cycle model 
composed from such an interphase map.

I still wish to investigate higher ordered locking behaviour more fully. Most of the 
analytic intractability that has been encountered so far, results from the nonlinearity of 
the interphase map. In classic fashion I shall first carry out a more complete 
investigation of higher ordered locking behaviour by appealling to the simpler 
situation in which the interphase map is reduced to a simple linear case.
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CHAPTER 6

AN INVESTIGATION OF THE SLIM 
CIRCLE MAP MODEL
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6.0 INTRODUCTION

The numerical investigations of section 5.4 have revealed that the behaviour portrait 
in the (a,(3)-plane is made up of separate lock regions together with areas or points of 
no lock inbetween. The shape of the lock regions was found to be related to the 
shape of the interphase map. In two separate but broad classes of nonlinear interphase 
map, we have seen that the corresponding region for the simplest lock (a 1 lock), 
consists of the interior of a central zone situated between a pair of boundary 
conditions. I have proved that this whole zone corresponds to conditions which are 
expressable concisely in terms of the interphase map.

Although higher lock regions can be readily obtained by numerical procedures for any 
two stage circle map composed from a nonlinear interphase map, beyond a 1 lock 
their algebraic derivation rapidly becomes intractable. Progress in the analysis of 
higher ordered locking behaviour can be achieved without arduous algebraic tedium 
by focusing on the dynamics that result when the interphase map is reduced to a single 
straight line. However this necessitates a relaxation of the previously held 
(homeomorphic) requirement that zero development rate over a finite interval cannot 
occur. In this Chapter I investigate a circle map model which is composed from such 
an interphase map whose plot consists of a single straight line. Without loss of 
generality I choose the slope S >1 as shown in Diagram 6.1(c) and henceforth refer to 

the model as the SLIM (Single Line Interphase Map) circle map. I show that for this 
model, higher-order conditions and associated lock regions can be derived in 
straightforward algebraic terms. I also show that whole classes of itineraries 
correspond with separate regions of the associated behaviour portrait and these in 
turn give insight into the biological implications of various life cycle strategies.

Strictly speaking, the single line 'interphase map' is not an interphase map in the true 
sense (Chapter 4) since it is not single valued (one-to-one) throughout the entire unit 
phase circle. Consequently, neither it nor the SLIM circle map are invertible and 
(consequently also) neither of these maps are homeomorphisms. The SLIM circle map 
is therefore not a two stage circle map in the usual sense so that much of the theory 
developed over the past few chapters does not automatically apply. However, I 
circumnavigate most of these potential difficulties by viewing SLIM as the limiting 
case of a two piece linear homeomorphism TLIM (Two Line Interphase Map). I am 
then able to show that the SLIM circle map model still obeys the more salient 

properties of a continuous two stage circle map.
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Diagram 6.1

(c) Forward Interphase Map



6.1 BIOLOGICAL INTERPRETATION

An immediate benefit of reducing the interphase map to a straight line is the 

transparency with which the life cycle can be related to its constituent development 
rate functions. The SLIM circle map model corresponds to a life cycle in which the 
development rate in each stage takes the form of "top-hat" functions which match 
each other at the same point in the periodic cycle as illustrated in Diagram 6.1(a). 
Observe that altering the (strictly positive) height of the top hats would have no effect 
on the interphase map and also that only the ratio of their widths affects the slope S. 
Without loss of generality, I henceforth assume that the width of the A stage 
development function is the greater of the two stages which implies that the slope S of 
the forward interphase map (A—>B) is greater than 1. Observe that in both stages 

development during the periodic cycle must either proceed at a fixed positive value or 
not at all (zero). This kind of developmental response is exhibited in the life cycles of 
many photosynthetic cells when exposed to alternating periods of light and dark 
(Nelson & Bland 1979, Spudich & Sager 1980).

Intuitively it is clear how life cycle synchronisation can be induced in a population of 
individuals that exhibit such a response to external periodic forcing. The key 
synchronising effect is produced by the intervals during which development rate is 
held at zero. These ensure that an individual's development is held back until a single 
point in time (the endpoint of the interval) is reached. A group of individuals recruited 
to a stage in such an interval are thus promoted from it simultaneously and lineages 
which stem from their progeny are thereafter perfectly synchronised. I observe that 
this can happen in two ways depending on whether the stage recruitment occurs in the 
A stage ot B stage interval. Those individuals commencing their life cycle during the 
interval when A stage development rate is zero must wait until the start of the next 
environmental repeat cycle at which point they all begin their life cycles together. 
Alternatively, those individuals promoted out of the A stage during the interval when 
B stage development rate is zero, simultaneously restart development in the B stage, 
together. In both cases, emergences of all subsequent progeny are thereafter perfectly 

synchronised.

The intuitive argument of the above paragraph does not give the complete picture. In 
particular it is not clear whether synchronisation must (if at all) occur in all sequences 
or permutations of emergences. I do not know whether the progeny in every lineage 
must necessarily emerge within an interval of zero development and so eventually 
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become synchronised. Even where synchronisation does occur, I am unable to 
determine the repeat length of the respective cycle of emergences and have only a 
limited understanding of the overall qualitative or quantitative dynamics which may 
occur. In due course I shall address these aspects in the following analysis.
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6.2 THE SLIM CIRCLE MAP

I compose the SLIM circle map Fap in usual two stage circle map fashion (by 

equation 4.10) from the SLIM map f together with an appropriate 'inverse' f-1. I 
shall now establish an algebraic relationship between the phase emergences of 
successive generations.

Choosing to work in A-stage phase 0A , I shall now derive an expression for the 
relationship between the emergences of successive generations at phases 9^ and 0A(n+1)

By definition of the SLIM circle map

6 A(n+1) = An ) (6.0)

with Fap = r1RpfRa (6.1)

and f defined by
fseA o<eA

eB=f(9A) = ( , , (6.2)B A [o |<eA <1 k 7

where S > 1 is the gradient of the single line. I observe that f is not invertible because 
it is not one-to-one over the entire second segment [y,l) (all points in this part of the 

domain are contracted to a single point). Because this segment corresponds with that 
part of the environmental repeat cycle during which B stage development rate is held 
at zero, emergence from the life cycle into it is (in any event) not biologically possible. 
I shall henceforth refer to the segment [|,1) as the 'non-emergence' phase segment

For the first segment [0,|) however, I can still define an 'inverse' map f-1 which will 
have the invertible property f f-1 (x) = f-1f(x) = x, V x e[0,|)by

eA = f'1(0B)=i0B . o<eB<i (6.3)

Substituting for f and f 1 in equation (6.1), I obtain the circle map
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® A(0+l) — Fa3 An )

= s[^ + S(0An +a)*)*] 
=£.

s

for O<(0A+a)‘<|

for | < (0A + a)‘ < 1

(6.4)

(6.5a)

(6.5b)

But
(P + SCO^ +a)‘)‘ =(p* + 8(0^ +a*r)‘ (6.6a)

= P’+s(0An + «*)* for (0^+a*)’<^- (6.6b)
= P’+S(0An+a’)*-l for (0^+a*)‘(6.6c)

so that equations (6.5) can be written as

0A(n+i) = ~ + (0^ + a)* for 0 < (0,t + a')1 < 4 (6.7a)

= + (0An + a)* for < (0^ + a*)’ < t (6.7b)

B*
= V for (6.7c)

Equations (6.7) show that the SLIM circle map has the virtuous feature of a single 
contractive segment in which contraction occurs to a single point (the phase 4" in 

term 6.7(c)). We shall shortly see that it is this feature, together with the fact that over 
the rest of the domain Fap is neither contractive nor expansive, which permits 

tractable calculation of lock conditions up to a high order.

The plot of Fap consists of separate straight lines which are either slanted at an angle 

of exactly 45° when corresponding to equations (6.7a) or (6.7b) or horizontal when 
corresponding to equation (6.7c). I notice that equations (6.7) also imply that the 
precise configuration of these lines in the plot is dependent on the value of the 
parameter a‘. Diagram 6.2 shows the three generic plot configurations which I define 
in terms of the parameter d = a* +4" (see Appendix A6.1) as Form 1 when d < | , 
Form 2 when | < d < or Form 3 when < d < 1+V- 1 observe that the three 

Forms are topologically equivalent and are related by a simple modulo 1 translation by 
an amount a’ parallel to the x axis. If equality holds then an associated slanted 45° 
line in the plot ties exactly on the leading 45° diagonal. Complete synchronisation to a
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q-cycle in this situation is therefore impossible since the circle map must have a 
neutrally stable segment

Without loss of generality, I shall henceforth focus on the Form 1 configuration. This 
is characterised by a formation that consists of a single horizontal line attached 
between a leftmost and rightmost 45° line, together with a single disconnected 45° 

line situated at the far left as shown in Diagram 6.2(a) and featured in greater detail in 
Diagram 6.3 below.

DIAGRAM 6.3 Plot of the SLIM FORM 1 circle map

Itinerary nomenclature
I divide the circle S1 into the 4 segments associated with each of the 4 separate lines in 
the Form 1 plot, and label them as U, b, H, a, as shown in Diagram 6;3. The lineage 
produced from an initial recruitment phase by subsequent iterations of F^p can then be 

described by a sequence of letters with reference to the phase segment from which 
each successive generation is recruited. Such a sequence is referred to as an itinerary 
in the language of symbolic dynamics (e.g. Zheng 1989, 1991).
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I base my nomenclature on the following life cycle features which characterise 
recruitment within each segment. For clarity I employ the term "year" to mean 
environmental repeat cycle.

U i/ninterrupted life cycle modulo 1 (uninterrupted if d < 1/S) 

b Life cycle passes through turn of year at least once in the B stage 
H Life cycle Held at zero development rate at the start of the B stage 
a Life cycle passes through turn of year at least once in the A stage

I see that recruitment of successive generations within the A stage (real time) interval 
in development is impossible because it is completely contained within the wider B 
stage (real time) interval (from which emergences from the life cycle are not possible). 
Thus the A stage interval is effectively redundant as a synchronising influence (unlike 
the B stage interval). I am therefore unsurprised that there is no phase segment in the 
SLIM circle map which corresponds to emergences in this (real time) interval (unlike 
segment H for the B stage).

I observe that a 1 lock cannot occur in the Form 1 configuration because segment H 
never intersects with the leading 45° diagonal in the plot. However, a 1 lock will

Q ♦

occur in either of Forms 2 or 3 whenever 1 - a* > ^- because H then cuts across the 
o

leading 45° diagonal. Thus l-a’>—<=>d<l is a necessary condition for a 1 lock 
S

(see equation (6.8)).

121



6.3 CONDITIONS FOR SYNCHRONISATION

I wish to find the long term ergodicity of Fa p and thus determine the synchronisation 

behaviour of the lineage which stems from any initial recruit. To calculate lock 
conditions up to a high order, I make use of the fact the segment H is the sole 
contractive part of Fa p and that such contraction occurs to a point

I first observe that the phase segment H=(R_a(-^),R_a(l)) of the circle map has the 

same finite width (! — -§-) as the non-emergence segment [yl) of the interphase map 

f . In plain english, as I would expect, the horizontal part of the circle map is directly 
related to the horizontal part of the interphase map. I see that because emergence 
from the life cycle into the 'non-emergence' phase segment is not possible, no sections 
of the circle map are above altitude 1/S.

Observe that any individual who commences its life cycle within segment H emerges 
at phase -y. Thereafter, successive emergences of progeny from all lineages which 

pass through H are perfectly synchronised. Since a synchronising effect can only 
occur to those orbits which pass through H, any lineage which synchronises to a q- 
cycle must pass through (have an emergence phase within) this segment. Hence every 
stable q-cycle must have the emergence phase -y as a periodic point

Because a q-cycle contains exactly q distinct points (section 3.2), successive 
emergences at -y must occur every q iterations (generations) . Thus the itinerary 

produced by a q-cycle must also pass through H every q iterations. I shall use this 
property to deduce the complete itinerary of the q-cycle and to derive the 
corresponding conditions that must be satisfied. Although-1 shall give expressions for 
locks up to order 5, I only present calculations up to a 3 lock to save monotonous 

repetition .

Let us thus assume that an emergence occurs at phase -y- I choose (arbitrarily) to 

label all itineraries with H as the first letter.

1 Lock conditions
Conditions for a 1 lock follow immediately from the observation that after emerging 
at y the next generation must also emerge at -y. Thus the associated itinerary must 
pass through segment H , which implies that the condition |-a < V <l-a must 

be satisfied. For compactness I write this as
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I see that this condition is consistent with the 1 lock conditions derived in the last 
Chapter (Theorem 5.6) and page 121 when the interphase map is strictly convex 
(Casel), for

l-f(a*)< p‘<f(i-a‘) (69)

1 - Sa* < p* < s(1 - a*) (6.10)

/.i< a’4 <1 (6J1)

I now introduce an intuitive general rule which all lineages (itineraries) must obey.

Itinerary Rule
If emergence from the life cycle occurs in a part of the plot situated below (above) the 
leading 451 diagonal then the next generation must commence its life cycle at an earlier 
(later) phase than the previous one.

Thus it follows that all itineraries must steer left (right) after each emergence below 
(above) the leading 45° diagonal. In the case of the Form 1 configuration, the next 
emergence after phase 4 must occur either in segments U or b situated to the left of 

segment H. Therefore all itineraries which synchronise to locks of order higher than 
one must pass through segment U at least once so as to return (steer right) back 
through H at the completion of the q-cycle. Returns back to H can only be 
accomplished when an emergence of the last generation in the repeat cycle occurs 
within either of the 'inward deflecting' segments U or a.

2 Lock conditions
(a) Form 1
I must first calculate those itineraries which return to segment H and emerge at phase 
4 after two further iterations. By the above, any candidate itinerary must pass 

through segment U in the next iteration to achieve this (passage through segment b 
would steer it left, away from segment H). Thus, only the itinerary HU can produce a 
2 lock. The corresponding lock conditions can be deduced by observing that the 
itinerary must satisfy two separate criteria. Firstly, to return to H the total phase 
duration of itinerary HU must fall within the interval (j-a*, l-a‘) and thus the 

condition
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zl . P*
(s a ) < ~r~ + d < (1-a’)

(6.12)

must be satisfied. Secondly to pass through segment U immediately after leaving 
segment H the condition

(6.13)

must be satisfied. Hence conditions for a 2 lock are given by (6.12) and (6.13) 
together that is

(b) Form 2 and Form 3

In these configurations (Diagram 6.2 (b) and (c)) the intuitive argument is 
complicated by the fact that section H may 'split' into two separate parts in the plot 
(strictly speaking 'straddle' across the leading 45° diagonal). I choose to calculate the 

possible lock itineraries algebraically (Appendix A6.2). By a parallel argument to the 
above I then obtain that the associated conditions for a 2 lock to occur are given by

(6.15)

( see Appendix A6.2).

3 Lock conditions
(a) Form 1
By the Itinerary Rule, I deduce that there are 3 itineraries which can re-emerge at 
phase 4 after three further iterations. These are HUU, HbU, HUa. To save tedium I 

only present the calculation of associated lock conditions for itinerary HUU here, 
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preferring to show respective calculations for itineraries HbU and HUa in Appendix 
A6.3.

(i) Itinerary HUU

The total phase duration of itinerary HUU must satisfy

(i-a‘)<

(6.16)

Also, to pass through U consecutively after leaving segment H, the earlier inequality 
(6.13) together with the inequality

=> d <-----—
2S (6.17)

must be satisfied. Given that inequality (6.17) must hold, inequality (6.13) is 
redundant so that necessary and sufficient conditions for a 3 lock are inequalities 
(6.16) and (6.17) together namely

1 1 1-ß
— < d < — and d < __ 
3S 3 2S (6.18)

(ii) HbU (See Appendix A6.3 for calculation)

3S
1 1—I----- and
3 3S

1-ß 
S

2-ß
2S

(6.19)2

(iii) HUa (see Appendix A6.3 for calculation)

1 1 . 2 , h 1-ß*
—d-----<d<— and d<—-—
3 3S 3 S

(6.20)

(b) Form 2 and Form 3
By an exactly parallel treatment I obtain that a 3 lock also occurs when the conditions
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Table 1 shows all the itineraries and associated lock conditions for the Form 1 SLIM 
circle map up to locks of order 5.

2 1 2
—<d<l+—
3 S 3S

. i 2-B* and 1 + — <d
2S

(6.21)

or 2 2 i
3 3SC <1 + ^i , , 1-B* i-R*and 1+——<d< 1+—t-

2S S
(6.22)

or H<a<^ 
3 S 3 3S

. , 1-P*and 1 + —— <d 
S

(6.23)

are satisfied.

LOCK NUMBER ITINERARY CORRESPONDING LOCK CONDITIONS
PARALLEL LINES 1 CROSS LINES

2 HU ^<d<| d<^
3 HUU ■^ < d < -j- d<^

RIGHTMOST 
BLOCK

HbU
HUa

À<d<i+^- 

i+^<d<f

hF<d<^ 

d<24"

4 HUUU d <LL
u 3S

RIGHTMOST 
BLOCK

HbbU 
HbUa 
HUaa

^<d<^+^

4+«<¿<1+  ̂

i+^cdcl

1-
 “li

 

a.
 ri. e

x 
ri

 A ri
5 HUUUU d<^

HUbUU
HUUaU + A «F

 ri- 
ri

 A n. A
 t tin

de1#

HbUbU 
HUabU 
HUaUa

-<d<4-+-2-5S U 5 5S

"5 + Îs < d < ‘5 + 5S 

i+ss <d<f

— <d<^- 
2S u V 4S

-L + Üld< —3 T 3S U s

d<i+^

RIGHTMOST 
BLOCK HbbbU

HbbUa
«r< d < 5’+A 

5’ + is<d<'5+‘3s

^<d<^

2-8’ j 3-8*
HbUaa
HUaaa

-5- + ^-<d<y + -^ 

i+À<d<|

b 
ïb

 

y 
+ 

v
 

3 
H

" 
"Q

 
h £Th

TABLE 1
Lock conditions and associated itineraries up to lock number 5 for the Form 1 SLIM circle map.

126



6.4 THE SLIM BEHAVIOUR PORTRAIT

Diagram 6.4 shows plots of SLIM for a selection of increasing values of the slope 
parameter S. The associated behaviour portaits for each value are shown in Portraits 

4. I observe that the SLIM behaviour portrait also has twofold rotational symmetry 
about its centre. By considering SLIM as the limiting case of a two-piece linear 
homeomorphism TLIM (Two Line Interphase Map), I will show in Chapter 7 (and 
Appendix 6.3) that I would indeed expect this generic property (of any two stage 
circle map) to be preserved.

DIAGRAM 6.4 Plots of SLIM for increasing slope parameter S.

Since segment H has an interval width of 1-| it follows that as the slope S increases, 
this width must also increase (l-|-»lasS-»+<~). Thus the plot of the SLIM circle 

map must tend towards a single horizontal line which in turn implies that the 1 lock 
region of the ST IM behaviour portrait must ultimately expand to engulf the entire 
frame in the upper limit situation when SLIM reaches verticality. Portraits 4 confirm 
that the trend towards an entirely green behaviour portrait, does indeed occur as S 

increases in value.
Portraits 4 SUM behaviour portraits associated with the above values of slope 

parameter S in Diagram 6.4
Portrait 5 Enlarged SUM behaviour portrait associated with slope parameter S=l.l
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Conversely, as S —> 1 the SLIM model must tend towards a state in which each stage 
phase is identical throughout the entire unit phase circle. This time H contracts 
towards zero width and the plot of the SLIM circle map tends towards the leading 
45° diagonal. In the lower limit situation (when S=l), the model would be equivalent 

to the one-stage model of Chapter 2 in which no synchronisation is possible. Portraits 
4 also confirm that as S-»l all lock regions diminish in area, a trend which if 
continued must result in all regions disappearing when S=1 is reached.

I observe that the 1 lock region of the behaviour portrait consists of a single central 
diagonal zone situated between the straight diagonal lines d = | and d = l. Each of 

the 3 circle map plot configurations defined earlier can be associated with 3 adjacent 
portions of the complete behaviour portrait. The Form 1 (d < •§■) configuration is 

associated with that portion which lies below the central 1 lock zone. The separate 
lock regions in this portion of the behaviour portrait correspond with itineraries which 
produce locks under the Form 1 configuration (as the parameters a* and p’ are 

varied). For example the Form 1 3 lock conditions consist of 3 separate sets of 
expressions each of which corresponds to an itinerary HUU, HbU or HUa and an 
associated region in the behaviour portrait situated below the central zone. These are 
labelled up to lock number 4 on the behaviour portrait shown in Diagram 6.5.

Form 2 (^ < d < ^-) occurs within and above the central zone but to the left of the 
vertical line a* = £ whilst Form 3 (-^ < d < 1+V) occurs in the rightmost portion, 

namely that to the right of the line a* = f.

Relationship between Form 1 and (Form 2 and Form 3) lock conditions
Since the SLIM behaviour portrait has twofold rotational symmetry about its centre, 
those lock conditions for regions within the portion that lie above the 1 lock zone 
(that is those derived for Forms 2 and 3) are rotational half turn images of the Form 1 
conditions situated below. The complete infoi mation content of the SLIM behaviour 
portrait is thus contained in the lower left portion (corresponding to the Form 1 circle 
map configuration) together with the central 1 lock zone. Hence all lock conditions 
associated with Forms 2 and 3 are in fact 'rotational half turn images of Form 1 
conditions and can therefore be obtained directly (without performing separate 

calculations) by making the substitutions

a*->(a*)' = l-a* (6.24)

p‘^(P’)' = l-p’.
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DIAGRAM 6.5
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in the appropriate Form 1 expressions. I shall verify that the property holds for the 2 
lock conditions associated with itinerary HU obtained earlier.

For itinerary HU

2S<d<2 ^<(1-0*)+^-^ (6-25)

anddc-^- -> (!-«•)(626)

Inequality (6.25) simplifies to

ri<d<i+
(6.27)

Inequality (6.26) simplifies to

d>l
(6.28)

Thus the image conditions are inequalities (6.27) and (6.28) together namely

— + — < d < 1 + — and d > 1 +
2 S 2S

(6.29)

in agreement with the Form 2 and Form 3 conditions for a 2 lock already derived 
(equation 6.15).

Lines of Neutral Stability
I have observed that neutral stability occurs when equality holds in the expressions for 
lock conditions and that such dynamic behaviour is associated with the black 
boundary lines of lock regions in the behaviour portrait. These boundaries are made 
up of straight lines which connect together to produce the bounded polygonal areas 
that I have called lock regions. Fa ß fads to synchronise (not every orbit converges
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(condenses) towards a q-cycle) when parameterised with any parameter pair (a*,|3’) 
lying on such a boundary.

Examination of the SLIM behaviour portrait also reveals that these boundary lines fall 

into two categories. Namely, they are either parallel lines (which correspond to 
conditions of the form d=constant in the first column of Table 1) or alternatively, lines 
which cross them and which I shall refer to as 'cross lines' (which correspond to other 
conditions in the second column of Table 1). I observe that the cross lines emanate 
from some point situated on the a-axis and cut across the parallel lines producing a 
strip of lock region inbetween. For any given lock number, the associated lock regions 
in the behaviour portrait occur in connected blocks which span diagonally between the 
x and y axes.

Relationship of Lock Regions with The Farey Tree
Examination of Table 1 reveals a sequential pattern in the constants corresponding to 
parallel line boundaries of lock regions (conditions). I extract these rational constants 
and place them in rows of ascending magnitude characterised by outermost terms 
m/nS and m/n where m and n are integers (in which the denominator n is the 
associated lock number) to produce pyramids as shown in Table 2. Empirical studies 
show that the pattern continues to hold for an arbitrarily large lock number. Where 
such rows have outermost terms m/nS and m/n in which the integers m and n are 
NOT relatively prime (for example row 2 of lock number 4) they can be cancelled 
down to a similar pair with a lower associated lock number. This implies (because all 
the lock conditions are necessary and sufficient) that in such cases the parallel 
boundaries of the corresponding lock region must be contained within a region of 
lower lock number. Alternatively, where any overlap of a lock region occurs, low 
locking behaviour must dominate over high locking. Thus m and n must be relatively 
prime to ensure that the associated individual lock region(s) exist in their entirety.

Because the horizontal width (between the associated parallel boundaries) of any 
given lock region is dependent on the parameter S, a second necessary requirement 
for the region to exist in entirety is that S be small enough to ensure overlap with 
neighbouring regions does not occur. So how can the complete set of parallel 
boundary line coefficients be placed in ascending order of magnitude? I now 

introduce the Farey tree.
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TABLE 2
Pattern of parallel lock condition coefficients for the Forml SLIM Circle Map. 
n= level in Farey Tree. S= slope of SLIM.

LOCK
NUMBER

ROW COEFFICIENTS d= CONSTANT OF PARALLEL LINES 
_ (BOUNDARY CONDITIONS^-

2 n=l J- X2S 2

3 1

n=2

J_ 13S t

-X Xj. 1 23S 3 + 3S ~

4 1

2

n=3

_L_ 1
4S T

_2_ jil 2 __ 11 .1 J
4S____4 4S 4 ~ is î+ 4s 2 parallels are within the
3 j 2 lock parallels.

4S + ■4 + 4S 4'

5 1

2

3

n=4

£ i

À I

_X i+X ¿ + X X5S 5 * 5S 5 + 5S 5

— Xj-_2- X-l_X Xj__L 45S 5 ’ 5S 5 + 5S 5 + 5S 5

<7

n=

1

2

3

q-1

-L X
«s ?

-2- X +J_ X
9s 4 9s q

-3- X + -2_ X + _L X
«S q^qS qS q

• • • •

Xi X-L Xzl X-Lizl 3.9-4 j . 9-0+1) 9-1
9S 9 9$ q qS q ~ qS q qS ’ q
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DIAGRAM 6.6 The Farey Tree (to Level 4)

DIAGRAM 6.7 The SLIM Farey Tree (to Level 3). The last (rightmost) branch is 
arrowed —

The Farey tree is an orderly arrangement of rational numbers p/q where p and q are 
relatively prime integers (e.g. Kim & Ostlund 1989, Zheng 1989). The structure of the 
tree is imposed by taking the Farey sum of parent rationals p/q and p’/q' to produce 

the relatively prime daughter rational

P , P' = P + P' 
q q' q+q'
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located (in value) between the two parent rationals. Diagram 6.6 shows the Farey tree 
to level 4. For my purposes the Farey tree provides a means of placing the rational 
coefficients d=constant of parallel boundaries (as shown in Table 2) into ascending 
order. I show how a related structure, which I shall refer to as the SLIM Farey tree, 
can be constructed in Diagram 6.7.

The SLIM Farey tree tells us that the number of non-overlapping regions can be made 
arbitrarily large by choosing the parameter S to be small enough. For example, 
consider the set of parallel boundary coefficients (-^ ■i+'i" y) which occur at

level 3 in Diagram 6.7 For the parallel boundaries associated with these coefficients 
to be outside the boundaries of the lock regions which correspond with the above 
levels (2 and 1) and thus to ensure that these regions do not overlap, the slope S must 
satisfy

A lock of order q has an associated pyramid of parallel coefficients with (q—1) rows 
the last of which appears at the nth level of the SLIM Farey tree. Thus I find that q- 
1= n. All lock regions of a given lock number q appear must appear in the behaviour 
portrait if S is small enough for the (q-l)th row of the SLIM Farey tree to be reached.

Without venturing further into mathematical niceties, I state another interesting 
property of the SLIM behaviour portrait obtained through empirical observation. The 
relationship between the number of lock regions in any block and the lock number of 

the block is given by

p _ Number of connected regions 
q Lock number of the block

where p and q are relatively prime integers.
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6.5 TRAILS INVESTIGATION

One of the most visually striking features of the SLIM behaviour portrait (and indeed 
all those thus far encountered) are the black clouds or 'blackness' that surface between 
the lock regions. Often these appear to form dark trails which traverse across the 
(a’,p‘) plane as can be clearly seen in Portrait 5. Outwardly they have the 

appearrance of vapour trails left in a bubble chamber by a charged particle. Their 
existence raises two main questions.

(1) What dynamic behaviour corresponds to the 'no lock' black points which make up 
these clouds or trails ?

(2) Are the trails actually lines or are they composed from sequences of separate 
'islands' or points that are situated on a line?

In answer to the first question I conjecture that only two types of dynamic behaviour 
can occur in the SLIM circle map, namely synchronisation (asymptotic stability) or 
neutral stability (but not quasi-periodicity). An intuitive sketch proof follows 
immediately from the observation that the configuration of any SLIM circle map plot 
is entirely composed from exactly 45° or exactly horizontal straight lines. 
Synchronisation occurs iff every orbit eventually passes through the contractive 
segment H. Synchronisation does not occur iff there exist orbits which never pass 
through H in which case they must continually pass through 45° segments. This can 
only happen if there exists at least one such segment which is displaced from the 
leading 45° diagonal by a rational number (otherwise if all the segments are displaced 
by an irrational amount, the orbit would eventually 'cobweb' its way of all such 
segments into the contractive segment H ). In this case the orbit must eventually 
return back to the rationally displaced segment and the whole process repeats again 

producing neutrally stable dynamic behaviour.

In answer to the second question I note that empirical studies indicate that these trails 
always pass through the nodes of lock regions and this leads me to conjecture that 
they are entirely composed from them. To test this hypothesis I shall investigate the 
nodes produced by the intersections of a particular family of cross lines and parallels. 
Consider the family of cross lines which correspond to the conditions of the last 
(rightmost) block for every lock number that is, on choosing n as the level in the Slim 

Farey Tree, the conditions (see Table 1 right column)
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(6.30)

which I write as

(n-l)a* + n^ = ^Zl for n = 1,2,3,4,... 
o S

The family of cross Unes 'fan out' from the point (|,0) in the Slim behaviour portrait 

(1) FIRST TRAIL OF FAMILY

First, consider the intersections of the family with parallels that correspond with 
coefficients situated 'one-in' from the left of the Slim Farey Tree at level n

d-CL + — 
S

1 n-1
n + 1 (n + l)S

for n = 1,2,3,... (6.32)

The nodes located at such intersections are therefore the solutions of the pairs of 
simultaneous equations in a‘ and p*

/ * P’ n — 1(n-l)a + n^- = ——

. P‘ 1 n-1
a +—=------ +-----------

S n + 1 (n + l)S

for n = 1,2,3,... (6.33)

I solved equation 6.33 and find that the solutions (a’,P*) for n = 1,2,3,... are

* nS — n + 1
(n + l)S

(W-1)(2-S)
P" (n + D .

for n = 1,2,3,... (6.34)

In passing I observe that there exists a one-to-one correspondance between each node 
and level (a natural number) in the Farey tree so that the total number of nodes in the 
trail can only be countable. Denoting the kth node by (ttk, Pk ) I see that the straight
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line upon which any two successive nodes «, ft) , (a;„, ft,,) lie has the equation 
P* = ma* + c where

and

c = P* - ma* (6.36)

Solving equations (6.35) and (6.36) as a simultaneous pair in c and m I obtain after 
simplification that m=—2S and c=S so that the straight line which passes through any 
two successive nodes is given by

p* =-2Sa* + S = S(1 - 2a* ) (6.37)

I observe that because equation (6.37) is independent of k the same straight line must 
pass through all successive pairs of nodes and hence all such nodes for n=l,2,3, ... 
produce a trail which lies on a straight line.

(2) A FAMILY OF TRAILS

Now consider the family of intersections which are produced by intersections of cross 
lines with parallels that correspond with coefficients situated 'j - in' from the left of the 
Slim Farey Tree (for j = 1,2,3,... ) that is the parallel lines

(6.38)

[n = q-l orq = n + l]

Nodes located at the intersection of the /th parallel line with the nth cross line are thus
given by the solutions in a* and p* of the simultaneous equations

, P* «-1
(«-l)a 4-«— =------

S 
n-j

• for « = 1,2,3,... (6.39)

S « + 1 («4-1)5,
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These solutions (a‘ ,B‘ ) forn = l 2 3 and;-1^0 r . ,• .v nj Wnjt ri 1,z, □,... and j — 1,2,3,... after much tedium simplify 
to

p;

_ ((n + l)S-n)y + (i-S)/ 
(n + l)S 

_U-j)((l-S)y + l
(n + D

' for n = 1,2,3,... j = 1,2,3...(6.40)

I happily observe with some relief that this agrees (as it must do) with equations 
(6.34) when j=l. Again, consider two successive nodes (a* ,B* )(a‘ n ,B* n ) this 

time located on the yth parallel line. After arduous algebra I find that the equation of 
the line which passes through these two consecutive nodes simplifies to

I j
for j=l,2,3,... (6.44)

Since this expression is independent of k, the same line must pass through every such 
pair of nodes and hence all such nodes form a corresponding trail for each value of j 
which must lie on a straight line. The family of trails formed by all such nodes is 
therefore also a countable set of points (a countable set of sets containing at most a 
countable number of elements is at most countable e.g. see Kamke (1950)). Each trail 
in the family is therefore not a straight line but rather is made up of a set of ’islands' 
which are situated on a fine as hypothesised.

This leads me to the further conjecture that the total number of nodes in the SLIM 
behaviour portrait is at most countable so there cannot really be any black regions but 
only particulate clouds. Since parallels are matched one-to-one to the Farey tree and 
each parallel has an associated block of countable terms it follows that the total 
number of parallels is at most countable (a countable set of sets containing at most a 
countable number of elements is at most countable). If the cross lines are also at most 
countable (as I believe they are) the truth of the conjecture follows.
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6.6 DISCUSSION

The SLIM model demonstrates two important properties of the relationship between 

interphase map and behaviour portrait. Firstly, low locking behaviour dominates over 
high locking behaviour. Secondly this dominance becomes more acute as the slope S 
increases which in turn implies that as maximum deviation away from the leading 45° 
diagonal is increased, higher ordered locks become less prevalent. This property is 
reflected in the SLIM behaviour portrait by the expansion of low lock regions to the 
detriment of those of higher order. In the next Chapter I shall further explore the 
importance of these themes in the light of nonlinearity .

Whereas the SLIM behaviour portrait has the superficial appearance of a fractal it is 
not a true fractal because enclosed regions of all the same lock value (within which 
the global structure is no more) must exist for any S>1. Alternatively a true fractal 
structure could only exist for S=1 since by definition of a fractal structutre, an 
arbitrarily small region must also have the same structure (Devaney 1990).

Because of its inherent linearity, SLIM is not a realistically shaped interphase map for 
the development response exhibited by most organisms. However the SLIM model 
can serve as a good approximation to the cell division cycle occuring in several 
species of marine phytoplankton (Heath & Spencer 1985). I shall show the closeness 
of the model by constructing associated behaviour portraits in Section 7.4
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CHAPTER 7

THE GENERAL EFFECT OF INTERPHASE 
MAP SHAPE ON SYNCHRONIZATION

139



7.0 INTRODUCTION

In this Chapter I present the results of a selection of surveys which explore the general 
relationship between synchronisation behaviour of and the interphase map from 
which it is composed. The mainly visual approach exploits the behaviour portrait as a 
tool for uncovering the relationship between interphase map shape and the dynamic 
behaviour of its corresponding class of two stage circle maps. In a variety of different 
scenarios, I demonstrate the effect of gradual changes in interphase map shape by 
examining the incumbent effect on the associated sequence of behaviour portraits. 
Impressed by the transparency of the SLIM model, I also choose to venture further 
into the more general top hat family of life cycle systems in which (more realistically) 
the top hat development rate functions need not be situated on a zero background' 
level.

I start by examining a simple (homeomorphic) two stage circle map composed from a 
two-piecewise lineate interphase map, TLIM. I deduce that this model is dynamically 
equivalent to a companion model composed from a three-piecewise lineate (lefthand Z 
shaped) interphase map THLIM. The influence of curvature in the interphase map is 
examined by gradually imposing rounded comers onto the THLIM shape. I see (as 
expected) that the resulting reduction in lineness' permeates through to the associated 
behaviour portrait. An unexpected outcome, which occurs concurrently, is that 
blackness becomes increasingly prevalent over regions of higher lock. This leads me 
to postulate that high order locks are more acutely affected by the close presence of 
portions of the interphase map to the leading 45° diagonal.

Motivated by the realisation that TLIM and THLIM are essentially the same thing, I 
endeavour to discover whether a similar transformation exists between their 
respective curved analogues, namely the Case 1 and Case 2 interphase maps. I 
(predictably) find that these are not essentially the same, Case 2 being equivalent to a 
non-strictly convex (or concave) shaped intermediate companion. However, the 
comparison also re-enforces the twin hypotheses that close presence of portions to 
and 'maximum deviation from' the leading 45° diagonal are the major interphase map 

shape determinants of behaviour portrait design.

I exemplify the general results obtained with strategic models by showing their 
application to two diversely different real world organisms, namely the now familiar 
beetle Catops and an aquatic micro-organism, phytoplankton.
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7.1 TLIM AND THLIM

TLIM
Consider a simple continuous Two Line Interphase Map (TLIM) defined by two 
parameters Sj and S2 (where St >1, S2>0, Sj >S2) which respectively correspond to 

the slopes of the left and right lines of the TLIM plot, as shown in Diagram 7.1. In 
addition to being continuous and onto, TLIM (unlike SLIM) is a one-to-one map 
throughout the entire circle domain and thus is a homeomorphism. The interphase 
map transformation theorems derived in section 5.1 (other than Theorem 5.5) must 
hold for TLIM.

DIAGRAM 7.1 The TLIM interphase map
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SLIM as a Limiting Case of TLIM
My main interest in TLIM is as a simple interphase map which (for small enough S2) 
can be made arbitrarily close to SLIM. I illustrate this in Diagram 7.2 with a sequence 
of TLIM plots for diminishing slope S2 where the horizontal displacement P is fixed. 
Clearly, SLIM is the limiting case of TLIM as the slope S2 of the rightmost line falls to 
zero.

DIAGRAM 7.2 TLIM approaches SLIM

I also formally deduce that the SLIM circle map model is the limiting situation of the 
TLIM circle map (which I derive in a parallel manner to the SLIM circle map, in 

Appendix A7.1) which is
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by evaluating the limit of expressions (7.1) as S2 —> 0 for fixed parameter P.
1 —S 1

I observe first that because P = — P —> —— as S2 —» 0. Dealing with each term 
bl ~ O2 Sj

of expressions (7.1) separately:

(7.1a) RHS inequality —> 0< (0n +a)‘ < -—— 
Si

(7.1b) RHS inequality collapses to zero width and thus the LHS term vanishes
1-B* . 1

(7.1c) RHS inequality —> ——<(0n+a) < —- 
Sj Sj

(7.Id) RHS inequality collapses to zero width and thus the LHS term vanishes 

(7. Ie) RHS inequality expands —> ^-<(0n+a)*<l

P* 
s2 s

and LHS term

(7.If) RHS inequality collapses to zero width, thus LHS term vanishes.

Hence only terms (7.1a) (7.1c) and (7.1e) will ultimately remain so that the limiting 

expression of the TLIM circle map is
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which (as I would expect) is none other than the SLIM circle map on taking Sj = S 
(equations 6.7).

I show the accompanying sequence of associated behaviour portraits for the 
interphase map plots of Diagram 7.2 in Portraits 6. As expected, the TLIM behaviour 
portrait evolves towards the SLIM behaviour portrait. I see that the main effect of 
such a transition occurs by way of the dominating expansion of low numbered lock 
regions (1 and 2 in particular). In particular, the 1 lock quadrilateral expands towards 
the top and bottom edges to ultimately touch the top and bottom edges of the 
surrounding frame. I happily witness that twofold rotational symmetry of the whole 
behaviour portrait about the centre point (7,7) is maintained throughout this 

progression.

Portraits 6 Behaviour portraits associated with the TLIM plots of Diagram 7.2
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tlim =thlim
I choose to transform TLIM by applying a translation modulo 1 parallel to the leading 
45° diagonal so that its plot is transformed into a THree Line Interphase Map 
(THLIM) which has twofold rotational symmetry about the centre point (1,1) as 

shown in Diagram 7.3.

Diagram 7.3 The THLIM interphase map

Because TLIM is a homeomorphism, by Theorems 5.1 and 5.2 such a transformation 
has no effect on the dynamic behaviour of the TLIM two stage circle map. Hence I 
deduce that TLIM and companion THLIM behaviour portraits must be identical.

Since THLIM has twofold rotational symmetry about its centre point, it follows by 
the corollary to Theorem 5.4 that the THLIM behaviour portrait (and consequently 
the TLIM behaviour portrait also) must likewise have twofold rotational symmetry 
about the centre point (1,1)- Thus even though TLIM and THLIM are not 

diffeomorphisms, the generic twofold rotational symmetry property established earlier 
for behaviour portraits derived from differentiable interphase maps, still holds for 

these special cases.
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I make the observation that the shape of the separate plots of TLIM and THLIM 
resemble lineated' versions of the interphase maps associated with Case 1 and Case 2 
respectively (see Diagram 5.2). This leads me to ask whether there exists a translation 
modulo 1 between the Case 1 and Case 2 interphase maps. I shall return to this 
question in due course in section 7.3..
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7.2 DEVELOPMENT FUNCTION AND INTERPHASE MAP SHAPE

More Top Hats
We saw in Chapter 6 that SLIM corresponds to a life cycle resulting from a pair of 
top hat development rate functions situated on a zero background level which match 
each other at the leftmost upright edge. What are the development rate functions that 
underly TLIM and THLIM life cycles? Intuitively it is easy to see that the stage 
development rate functions gA and gB that give rise to the TLIM (and THUM) model 
are still of top hat form but with the hat 'rims' elevated above the zero background 
level. Both TLIM and THLIM are members of the universal family of all interphase 
maps which result from development rate functions g, of top-hat shape, that is

gi(O
1.0

YBack

T^ — TWi < t < T,^ + TWi
otherwise

ie{A,B) (7.3)

with peaks at TMA and respectively and half-widths TWA and T^ respectively.

SLIM is a particular member of the special subfamily which consists of all interphase 
maps which result from top hats set on a zero background development rate (7^=0). 
Although none of the theorems derived in Chapter 5 are strictly applicable to any 
member of this subfamily, such systems can be viewed as a limiting case of a series of 
systems to which Theorems 5.1 through to 5.7 do apply. In the same way that I have 
shown SLIM to be the limit situation of TLIM, their behaviour can be empirically 
confirmed to be an orderly limiting case of the appropriate non-zero background 
situation. My interest in setting yBlck to zero (as previously for SLIM) is that the 
interphase map is then related to the parameters defining the development functions 
and hence to the biological context in a demonstrably clear way. Two further cases 

from the zero background subfamily are especially instructive.

When both development functions are identical in width W-ZT^-ZT^ but the B- 
stage peak lags the A-stage peak by a time I^T^—T^ , elementary algebra shows 
that the plots of the two stage specific phases are given as functions of normalised 

real time t by a part of the pair of straight lines

e.=
t 1 _ Tmì 

W + 2~ W
ie {A,B} (7.4)
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Also, when
_ w T

t ~ 7“, 0B = 0 and 6. = —2 A W ’
m w T

1 ~ Tma + , 6a = 1 and 0B =1------
2 B w

Thus the plot of the interphase map must pass through the points (^,0) and (1,1--^-)

which together with the fact that it is linear inbetween implies that

0
0B = f(eA) = eAA w

o<eA<£
W < oA < i (7.5)

Substituting this expression into inequality (5.3) given in Theorem 5.6, as my 
empirical studies indicate that I can safely do, then gives the one-lock condition as

(7.6)

I see immediately that the deviation of the interphase map from the leading 45° 
diagonal and the width of the one-lock region are both directly proportional to the 
ratio of the lag between the two development peaks to their (common) width. I note 
that when the lag is 30% of the development peak width, the one-lock region covers 
almost 50% of the total (a,|3) plane.

For the second special case, namely where the two development functions have the 
same peak position but different half-widths, the two stage specific stages are given 

by parts of the pair of straight lines 
r 1 i A*0 = —[t-Tm] + 4 ie {A,B} (7.7)1 1 MJ 2 J

Also, when
t^-T^, 0B=0 and 0A = 2(1-^)’

t^+T^, 0A=1 and 0A =|(l + fe)

which this time imply that the interphase map f is given by

eB = f(eA) = otherwise
(7.8)
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Here the interphase map is a symmetrical lefthand Z-shape analogous to the initially 
concave S-shape of Case 2 analysed earlier. The slope of the stroke of the Z, and 
hence the deviation from the diagonal depends on the ratio of the widths of the 
development functions. The width of the one-lock region is determined by the same 
ratio.

I observe that interphase maps resulting from this second special case only differ from 
SLIM (for which S = ) by a modulo 1 translation parallel to the x axis by an
amount i(l-^) (seen by replacing 0A with 0'A + 1(1-^-) in expressions (7.8)). I 

would thus anticipate from Theorem 5.1 that the class of circle maps composed from 
them are dynamically equivalent to the SLIM model, with identical companion 
behaviour portraits. Empirical studies show this to be so and I am overjoyed to find 
that the one-lock region given by inequality (5.4) in Theorem 5.7 is

(7”

identical to that obtained earlier for SLIM (inequality 6.10).

Empirical studies have also confirmed the accuracy of equations (7.6) and (7.9) and 
show that all the theorems derived in section 5.1 also hold (at least to graphical 
accuracy) for the above zero-background cases (that is, when YBac;k=0)- The efficacy of 
inequality (7.6) as a predictor of the extent of the one-lock region when yBlck is small 
may be gauged by comparison with the results shown in Portraits 8 (lower right 

frame).

When lines go to curves
I show the effect of moving away from 'fineness' (absence of curvature) by featuring a 
curved comer version of THLIM whose plot has both comers rounded off by 
tangential circular arcs. I define the imposed curvature in terms of a single parameter 
P which represents the distance of the tangential circle's centre from the original 
comer. Thus, curvature is defined simply as an increasing function of P. Diagram 7.4 
shows 4 superimposed plots of curved comer THLIM interphase maps for increasing 
curvature parameter P. The associated behaviour portraits are shown in Portraits 7.
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A Stage Phase

DIAGRAM 7.4 THLIM with curved comers for increasing curvature parameter P

I observe that as P increases and the interphase map smoothly curves away from 
lineness, the same effect is carried through to the separate lock regions of the 
behaviour portrait (sequence from top left to lower right frame). Interestingly, I also 
see that the previously diffuse no-lock blackness prevails over regions of higher 
locking. When P reaches the value of 0.2 (lower right frame), there are virtually no 
lock regions beyond lock number 4. I observe that increasing curvature 
simultaneously imposes a flattening of the overall interphase map shape. This leads me 
to conjecture that the closeness of portions of the interphase map to the leading 45° 

diagonal interferes with higher locking behaviour.

In passing, I note that because the curved comer THLIM is a diffeomorphism, by 
Theorem 5.5 its associated behaviour portrait must have twofold rotational symmetry 
about its centre. I see that as P^O, the above limiting approach can serve as an 
alternative method (to using the corollary to Theorem 5.4 on THLIM in section 7.1 
above) for establishing that the THLIM (and TLIM) behaviour portrait must have 
rotational symmetry of 2 about the centre point (7,7).

Portraits 7 Behaviour portraits associated with the curved corner THUM plots of 

Diagram 7.4
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13 CLOSENESS TO THE LEADING 45- DIAGONAL

„ “ the closeness of portions of .he in^hase
map .0 the leaing 45» d.agonal and hence on *e system dynanucs I explo^T .wo 

suge model m which bod. stages had developmen. functions shaped like Cauchy 
distributions.

Cauchy development distributions
These are defined by 

gi(O = ie{A,B) (7.10)

with peaks at and T^ respectively and half-widths TWA and respectively. 

The Cauchy distribution looks superficially similar to a Gaussian, but is more strongly 

peaked and has much longer tails. For the parameters used in this work, the 
appearance within the finite domain [0,1) is similar to that of a Gaussian distribution 
sitting on a non-zero background. Although it is possible to write down a closed form 
expression for the interphase map the result is both bulky and unilluminating and I 
shall not reproduce it here. Instead I show a typical example in Portraits 8 (top left 
frame-red line), in this case resulting from a simple lag (with a lag/width ratio of 1.5.) 
between two otherwise identical Cauchy development functions. The right frame 
shows the resulting behaviour portrait. Parameters are chosen so as to give an 
approximately equal "average" deviation from the leading 45° diagonal as the plot of 
the interphase map derived earlier in Diagram 5.2(a) from a lagged pair of Gaussians 
(blue line). Comparison of the two shows that the extended tails of the Cauchy 
distribution lead to an interphase map which has the desired closeness towards the 
leading 45 “diagonal at the two ends (i.e. non-strictly concave shape).

Comparison of the Cauchy associated behaviour portrait with that associated with the 
strictly concave (Gaussian) Case 1 interphase map (Portraits 2 top right frame), shows 
that while the region of one-lock is larger in the Cauchy case than for the Gaussian,

Portraits 8 Closeness to the leading 45 ° diagonal.The left hand frame shows the 
interphase map (red line) used to construct the behaviour portrait shown in the right 
hand frame. Comparison is made with the Case 1 interphase map (left hand frames, 
blue line) shown earlier in Diagram 52(a).
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the regions of higher lock-number are much reduced in size and the density of points 

of neutral or near-neutral stability is much increased.

I am thus led to fervendy hypothesise that the size of the one-lock region reflects the 
maximum deviation of the interphase map from the leading 45» diagonal, whereas the 
size of the higher lock-number regions (in agreement with the curved comer THLIM 

model) is heavily influenced by the presence of portions of the interphase map lying 
close to the leading 45° diagonal.

To emphasise this hypothesis even further I returned to the top hat family and 
examined the dynamics of a number of classes of two-stage circle maps composed 
from the resulting interphase maps.

For the case 7^=0.005, the resulting interphase map is shown in Portraits 8 (lower 

left frame (red line)). This map may be compared with the Gaussian case interphase 
map with a similar average deviation from the leading 45° diagonal, (again shown by 
the blue line) in the same figure. I see that the interphase map from the top-hat case 
has a smaller maximum deviation from the diagonal than the Gaussian case, but 
diverges more rapidly near the origin and (1,1). I would expect this to produce a 
smaller one-lock region than the Gaussian case surrounded by larger regions of higher 
lock number and fewer neutrally stable points. Comparison of Portraits 8 (lower right 
frame) and Portraits 2 (top right frame) confirms that this is the case.

A comparison between Case 1 and Case 2
A somewhat baffling property of the earlier Case 1 and Case 2 models, is that the 
contrastingly different shape of their associated interphase maps seems to be 
inadequately represented in their associated behaviour portraits. I shall employ a 
purposeful translation modulo 1 to demonstrate why they turn out to be more similar 
than I might expect. In this context, I find it helpful to think of Case 1 and Case 2 
interphase maps as the respective curved analogues of TLIM and THLIM.

I first observe that Theorems 5.1 and 5.2 together tell us that the behaviour portrait 
associated with the two stage circle map is unaffected by any translation 
(modulol) applied to the interphase map f from which F^ is composed. For any f, 
this species of transformation thus gives rise to an associated 'equivalence class' of 
inteiphase maps, each member of which (when incorporated within gives rise to 
the same behaviour portrait. I helpfully visualise the entire infinite set of such
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interphase map plots as those curves which appear within the unit square as it is 
shifted about the graph of the lift f(x) of the original interphase map f. I see that under 
such translations modulo 1, the complete set consists of all such plots obtained by 
confining the displacement of the unit square so that the line y=x must pass through 

its interior.

Realising this, I apply a modulo 1 translation to the Case 2 interphase map by a 
positive amount 5 <1 parallel to the x-axis and an amount f(8) parallel to the y-axis as 

shown in Diagram 7.5. I now see that composed from the Case 2 interphase map
has the same dynamic behaviour as composed from an interphase map whose
shape is no longer strictly concave rather like the Cauchy interphase map above. I 
spot that the overall quality of the behaviour portrait associated with the Case 2 
interphase map (seen in Portraits 3) is closer to the above Cauchy case (e.g Portraits 8 
top right frame) than any derived from the Case 1 interphase map (Portraits 2). In line 
with the above hypotheses, this is particularly true in terms of both general blackness 

and low lock region shape.
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7.4 PRACTICAL BIOLOGICAL IMPLICATIONS

In this final section I give two divert „ k* u •«6 c iwo uiverse examples which illustrate the biological scope 
of the current model formulation.
(a) Catops Nigricans revisited
I return to the two stage Catops model of Chapter 1. How does the preceding analysis 

help us to understand the observed dynamic behaviour of this model and thus gain 
insight into the biological context? Portraits 9 (top left frame) shows plots of 
interphase maps between the Pre-adult and Immature Adult stages obtained under 3 
consecutively wider ranges of annual temperature variation, together with the 
respective behaviour portrait (top right, lower left, and lower right frames).

None of the interphase map plots have rotational symmetry because the 1 month time 

lag in temperature (the constant Tshift in equation 1.1) buckles their curves away 
from the centre point (y,). Because the stage specific phase of the Immature Adult 

(B stage) initially leads the stage specific phase of the pre-adult (A stage), all the plots 
have the shape of an (albeit distorted) lefthand S, in other words an (initially) strictly 
convex rather than an (initially) strictly concave curve. I observe that the main effect 
of widening the range of annual temperature variation (and thus accentuating the 
difference between the development response exhibited by each stage) is to amplify 
the maximum deflection of the interphase map away from the leading 45° diagonal 
and (at the same time) to reduce the closeness of portions to it. In turn, this governs 
the design of the corresponding behaviour portrait.

I first see that in all cases (as I would expect) the associated behaviour portrait has the 
required generic twofold rotational symmetry property about the centre point (y , t )• 

When the range of variation about the Koln mean of 11.5C is very narrow (10-13C), I 
see that the interphase map (orange line) deviates only very slightly from the leading 
45° diagonal and the majority of it remains very close to it. Thus (in support of the 
'closeness' hypothesis) I find that the associated behaviour portrait (top right frame) is 
almost completely made up of black no-lock regions with surfacing speckles of yellow 
high order (13+) lock. Only a narrow window region of (green) 1 lock together with 

fine strips of (red) 2 lock occur.

Portraits 9 Interphase maps and associated behaviour portraits for the Catops 
two stage model al 3 different ranges of annual temperature sanation The top left 

° to- mnnc (nranve blue, red lines) used to constructhand frame shows the 3 interphase maps (orange, o ut, reu , 
the respective behaviour portraits (top right, lower left, lower right frame).
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In the next frame in the sequence (lower left) the annual range of variation is 
expanded to 8 15C and the interphase map (blue line) deviates further from the 

leading 45 diagonal. The associated behaviour portrait now takes on the more 

familiar appearance of a green central diagonal zone surrounded by satellite regions 
whose separate area diminishes as the lock number increases. In the final frame when 

the temperature range is the Koln average of 2-21C, the 1 lock zone takes up 
approximately 50% of the total behaviour portrait. Using the numerically pre­
calculated look up table (as in Appendix A 1.2), I find that the physiological rime 
durations of each stage in the (1 lock) synchronised life cycle are then 0.169, and

0.395. Recalling that a 1 lock was only just achievable when the Catops Default 

Model was exposed to this range of temperature variation (see Table 2, Chapter 1), I 
am therefore unsurprised to find that the corresponding point in the related behaviour 
portrait is to be found located only just within the 1 lock zone (at the lower left hand 
comer).

(b) Phytoplankton
It is well established that some components of the cell cycles of both freshwater and 
marine phytoplankton require an incident flux of photons whilst others proceed at a 
rate which depends only on nutrients and temperature (e.g. Spudich & Sager 1980). 
Heath & Spencer (1985) have constructed a simulation model of marine 
phytoplankton based on the differentiation between light sensitive and light 
insensitive stages and have demonstrated synchronisation to an imposed light-dark 
cycle. The effects of stage specificity are thus implicated in the synchronisation of 
the life-cycles of such photosynthetic cells to the daily cycle in irradiance. Heath & 
Spencer (1985) demonstrated that the life cycle may be thought of as consisting of 

two successive stages:

(i) A stage- light dependent where duration at constant temperature in constant 

illumination is inversely proportional to the light intensity,
(ii) B stage- light independent but (possibly) dependent on temperature and nutrient 

status.

Using the general two stage model, I shall now construct an alternative 
representation. I make the assumption that the effects of temperature variation and 
nutrient status on development are negligible in comparison to the effects of hght 

intensity.
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Because the A stage is light dependent, I set up a development index which measures 
development in terms of the photon dosage absorbed by the organism during this 

stage of the life cycle. Development rate is then proportional to the rate of absorption 

of photons, which I assume to be direcdy proportional to the light intensity at the 
surface (sea level). This enables me to define an A stage phase 6A(t) directly in terms 

of the proportion of daily photon dose delivered by (normalised) time of day t.

I assume that B stage development proceeds independently, at a constant 
development velocity measured in an (other) appropriate index. It immediately 
follows that the stage specific plot of B stage phase 0B vs (normalised) real time t is 
the leading 45° degree diagonal.

Hence the separate physiological time durations of each stage in this model are:

«^quantity of 'daily photon doses' required to traverse the A stage, 
[^quantity of daily development increments required to traverse the B stage.

Diagram 7.6 (top frame) shows monthly graphs, with linear interpolations between 
hourly placed data points, of the mean daily irradiation intensities recorded in the 
coastal town of Oban (west Scotland) for the calendar year 1991 (data from Heath). 
By the above assumptions, these graphs depict the mean daily development rate of the 
A stage for each month of the year.

For the most extreme months of January and July I used numerical integration to 
obtain the A stage phase 0A(t) and the respective forward (A—>B) interphase map f 
associated with each month. Diagram 7.6 (middle and lower frames) shows the plots 
of f for each month together with the monthly irradiation data (superimposed plot) 
from which it is derived. In this model because B stage phase 0B(t)=t, the interphase 
map plot 0B (=f(0A)) vs 0A is simply the mirror image (in the leading 45° diagonal) of 
the stage specific plot of the A stage phase: 0B = f (0A) — —
As with Catops each interphase map plot is thus a lefthand S.

Portraits 10 Behaviour portraits associated with the January and July 
interphase maps
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Because of the virtual zero background troughs occurring between the peaks, the 

development rate functions have an innate top hat quality which (in turn) produces the 
strongly lineated appearance of the resulting interphase map plots. In particular, the 
January interphase map plot is almost the mirror image (in the leading 45° diagonal) 

of an interphase map which results from the second special case of top hat systems 
outlined above (expressions 7.8). Also as with Catops, both plots buckle away from 
the centre point (2,2 )• Although this again is the resultant effect of a slight rightward 

shift of the underlying development rate peaks, the shift is really an artefact produced 
by the statistical method employed in calculating the hourly mean irradiation 
intensities. (For example, the data point reading at 1300 hrs represents the mean value 
of the irradiation intensity taken over the hour interval 1200 hrs to 1300hrs averaged 
over the entire month).

Portraits 10 show the respective behaviour portraits for both chosen months. I see 
that they have a similar overall texture to that of a SLIM behaviour portrait. The 
January portrait is almost a reflection (as Theorem 5.3 would lead me to predict from 
its interphase map) of the SLIM behaviour portrait in the leading 45° diagonal.

I see that the two behaviour portraits differ most visibly in the comparative size of 
their (green) 1 lock region. Thinking of the A stage development rate function as an 
approximate top hat from the zero background subfamily (second special case) again 
would lead me to predict this. It follows that because the B stage top hat width is 1, 
the ratio of the A and B stage widths is directly governed by the width of the A 
stage. In January, the A stage width is much narrower than in July so that by the 1 
lock conditions given in inequality (7.9) the converse would be expected of the 
respective regions in the January and July behaviour portraits. This is indeed the case.

For a given species of phytoplankton I now need only calculate the physiological time 
durations a and 0 for each stage to find what the synchronisation behaviour of a 
population of such individuals will be. A rough estimatory calculation is helpful to get 

a feel for the approach.
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Example
Utilising the January behaviour portrait, I shall estimate the synchronisation behaviour 
of the phytoplankton species Thalassiorira pseudonana in January, by approximating 
the development function shown in Diagram 7.5 (middle frame) with a zero 
background top hat of altitude 150 pEm^s"1 (vertical scale, micro-Einsteins, per 

square metre, per second) and a base width of 0.25 days (6 hours). This implies that a 
is given by the simple ratio;

oc=duration of the A stage /duration of the daily illumination period

where durations are measured as proportions of 1 day.

Heath obtained that for the above species:
(i) At a constant light intensity of 150 |iEm’2s"1 the real time duration of the (light 
dependent) A stage is 1.85 hours=0.077 days. Thus I calculate a= 0.077/0.25= 0.31.
(ii) For the (light independent) B stage the real time duration is 5.5 hours=O.23 days 

and therefore (3=0.23.

Viewing the January behaviour portrait, I see that the parameter pair (0.31, 0.23) lies 
within the green 1 lock region and thus I estimate that during the winter this species 
will exhibit a synchronised life cycle, with one division occurring each day.
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7.5 DISCUSSION

The key result which comes out of the foregoing analysis is that stage-specificity of 
developmental response is a powerful mechanism for synchronising life-cycles to 

periodic environmental forcing. The determinant of the power of the synchronising 

force, and hence its capacity for maintaining synchrony in the face of cycle-on-cycle 

variability in both environment and organism, depends on the extent of the stage­
specificity. In a nutshell, the essence of synchronization behaviour in the general two 
stage model is determined by the amount of discontinuity (in a broad 'fuzzy' sense) 
present within the exhibited development response to the environment

The shape of the interphase map gives an immediate visual measure of the amount of 
such discontinuity present. It serves to foresee (by the extent of the maximum 
deviation of its plot away from the leading 45° diagonal) the expected robustness and 
dominance of low lock behaviour. It can also indicate the likelihood of a sparsity of 
high lock behaviour, by the presence of plot portions close to the leading 45° 
diagonal. My investigations have also shown that (in any event) high lock regions 
become decreasingly smaller in separate area as the lock number increases and 
therefore, because of the inevitable presence of real world 'noise', biologically less 

significant

The examples included in the final section give weight to the argument (previously 
outlined in section 4.1) that development dormancy, that is a period of the 
environmental repeat cycle when some life history-stages exhibit reduced 
development rates, is important in the maintenance of life cycle synchrony (e.g. 
Lacey 1986, Tauber et al 1986, Danks 1987). They powerfully re-enforce the 
strategic observation that relatively small differences in either the timing or the width 
of the growing season for the two stages can result in an interphase map sufficiently 
perturbed from the leading diagonal to imply that a majority of possible life-cycle 

lengths will result in observable (as opposed to formal) synchronisation.
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DISCUSSION
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'Studies including more than one life stage are rare and those .here the life history 

of the species studied is also reasonably .ell kno.n are rarer still'. (Wolda 1988)

That stage specificity can lead to life cycle synchronisation would probably pass 
unnoticed in many quarters were it not for motivational data sets such as those 
obtained by Topp (1990). Perhaps the more exciting evolutionary aspects of the 
influence of periodic environments on life cycle phenomena have yet to be realised. I 

believe that simple models such as the general two stage model of this thesis have a 
key role to play in accumulating evidence about the dynamic properties of widely 
occurring biological systems. To ensure continual progress however, such models 

must be tested against real world data (Logan & Allen 1992). Sadly and in line with 
many other authors (e.g. Wolda 1988, Gilbert 1990), I report shortage of data in the 
life cycle context . Wolda (1988) has urged practical researchers in temperate areas 
"to concentrate on gathering data on all life stages together with the appropriate life 
history information". In the seasonal context, comparison of future investigations will 
need to rely upon data obtained from populations located at a variety of different 
latitudes.

A key message to emerge from Chapter 1 is that a relative modicum of behavioural 
data can go a long way towards promoting understanding of powerful underlying 
mechanisms. Stage specificity is the key synchronisational mechanism in the Catops 
default model. As well as having major generic implications, such a description has 
the quintessential robustness demanded of any model that purports to describe a 
biological process (Usher 1976). Equally impressive is the innate general property that 
a greater amplification of stage specificity implies a greater robustness of low ordered 
locking behaviour (visible in the revealing behaviour portraits of Catops in Portraits 

9).

The introduction of the concept of physiological time in Chapter 2 provides the 
building block formulation from which the interphase map description later emerges in 
Chapter 4. This fundamental component provides a tangible instrument by which 
stage specificity can be gauged, both visually through the shape of its plot and 
analytically as a homeomorphism in the realm of dynamical systems theory. The phase 
description is powerful because it permits synchronisation behaviour to be analysed 

directly in terms of a dynamic outcome. 1 point out however, that there are some 

inevitable limitations of carrying out such an analysts m tsolation.
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Essentially the phase formulation tells us about types of dynamic behaviour that occur 
over the complete range of separate stage phase durations a’ and f. Because the 

values of these durations are (by definition) modulo 1, no information can be gleaned 
on the absolute durations of the component stages of the life cycle and therefore on 

the life cycle total duration. Consequently, although the model encompassses species 
with sub-annual life-cycle lengths as well as species with multi-annual lifecycles it 
does not distinguish results between them.

Whereas the behaviour portrait tells us for what values of a and synchronisation 

occurs (and what the lock numbers are), it does not show the actual emergence (or 
recruitment) phases to which the life cycle locks. Hence (for example) the formulation 
cannot tells us anything about cohort splitting. This is exemplified in the simulation 
with the Catops default model where the model was found to synchronise to a 1 lock, 
lineages for an arbitrary cohort being shown in Diagram 1.7. Although the total life 
cycle duration is equal to 1 year, the initial cohort splits in two. In an extreme case, 
many cohorts could arise which, though synchronised in terms of emergence time of 
year, may actually emerge in different years.

The physiological time description has an innate robustness which stems from the fact 
that changes in the shape of development response graph vs environmental driving 
parameter result in a lesser change in the shape of the interphase map plot. Despite 
the multitude of subtly different graphs of development velocity vs temperature 
function reported in the literature, it turns out that their finer details bear little 
influence on the current model's synchronisation behaviour. The work of Chapter 7 
goes some way to unifying the results of investigations into lineate and curved 
interphase maps by developing the (expected) robust theme that curves (as in 
elementary calculus) can be thought of as the limiting case of a staircase of adjacent 

horizontal lines.

There is scope for investigation into important related areas. Computationally easy 
explorations into the selection pressures exerted by adverse conditions could be 
carried out by incorporating appropriate stage threshold criteria such as those 
suggested by Watt (1968) (see section 1.5). These would produce penods in the year 
termed holes' (as in the investigations of Gurney et al 1992), any lineages emerging 
into which would terminate. Prospects for a population surviving extinction in a given 
environment could thus be explored. To be fully productive such investigations would 

greatly benefit from diverse sources of data.
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Attempts at constructing rigid proofs of some of the empirically verified results could 
be rewarding. In particular, I would anticipate the statement and proof of Theorem 
5.5 (on twofold rotational symmetry of the behaviour portrait) to extend to the 

situation tn which the interphase map need only be a homeomorphism. I have shown 
that this is fully supported by the results of empirical investigations.

As it now stands, the model addresses the fundamental question of the influence of 
stage specificity on life cycle synchronisation. The current description could be 
profitably extended to the more general n-stage life cycle scenario by adopting a 
parallel approach through the use of n-1 appropriate interphase maps. Such a model 

would become conceptually more difficult to handle because the associated behaviour 
portrait would move beyond a 3 dimensional representation. An interesting open 

question would be what influence the location of maximum stage specificity within the 
life cycle exerts on overall synchronisation behaviour. The idea of an optimal life cycle 
for a given organism in a given environment is an evolutionary interesting one, but 
derivation of optimal conditions is frequently not trivial, even for relatively 
straightforward biological models (e.g. Grist & Maghsoodi 1995). Is there an optimal 
stage specific strategy in terms of achieving greatest robustness of synchronisational 
outcome?

The current formulation could be extended to allow further exploration of the 
influences of a variety of diapause responses or forms of dormancy on life cycle 
synchronisation. Phil Crowley has suggested an interesting alternative diapause which 
may occur in some organisms. The speculative distinguishing feature is a 'switch' type 
mechanism invoked at the start of diapause whereby development rate becomes set by 
environmental conditions prevailing at that point in the repeat cycle. In the Catops 
model the mechanism could be implanted in the Immature Adult stage so that an 
individual's diapause development rate remains fixed at the associated start value 
(instead of being continually dependent on temperature and photopenod). The plot of 
seasonal development rate vs time would thus be a horizontal straight line whose 
altitude would vary according to the temperature and photoperiod conditions present 
at the point of eclosion. By this mechanism, before the peak in the growing season, 
those individuals commencing their development at a later date become committed to 
a faster development rate than those commencing before them. Since the initial rate is 
maintained throughout the entire stage, they would have a greater opportunity to 
complete development and so reproduce before seasonally earlier individuals than in
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the current model set up. The great potential for cohort overlap in this situation is self 
evident. Inclusion of the Crowleyesque mechanism can thus easily produce the kink' 
in the associated circle map plot (between the emergences of successive generations) 
required for non-invertibility and iterative chaotic behaviour.

In fact, chaos is conspicious by its absence in the current model dynamics. I have 
observed intriguingly (in Chapter 4) that chaotic behaviour could occur in the 
description, but only if development is permitted to proceed backwards. Because it 
would contravene the laws of entropy, such (hypothetical) reverse development never 
occurs in nature. For example, no creature has been found which 'undevelops' back 
into the egg from whence it came. Does the model have inadvertent potential to 
contribute to the lively philosophical debate on the role of chaos in evolutionary 
ecology (Logan & Allen 1992) ?

In nature there will be a degree of blurring of the physiological characteristics of the 
individual through heterogeneity in terms of its development response to the 
environment Further, the environment itself will generally be 'noisy' and therefore 
subject to a degree of unpredictability. In an effort to make the current description 
more realistic, a stochastic element could be introduced into the model by making the 
assumption that the physiological durations a and P of each stage are random 
variables drawn from some probability distribution. These stochastic parameters could 
be incorporated into the computational statement of the two stage circle map, 
investigations with which would then centre on the time evolution of an emergence 
phase distribution rather than on the dynamic behaviour of orbits. In their 
investigations with the Corbet model, Gurney et al (1994) found that inclusion of a 
narrow range (5-10%) of random variability in the individual development rate and 
duration of reproductive period did not alter their previously held deterministic 
conclusions. Encouragingly, they found that the emergence phase (probability) 
distribution of a lineage ultimately tended towards sharp stationary peaks that centred 

on the stationary phases of the deterministic model.

A reasonable operational definition of observable synchrony is that in the presence of 
realistic individual and environmental variability, an observer should be able to detect 
a finite number of distinguishable abundance peaks (of individuals at the key life­
history stage) within a single environmental repeat cycle. My simulation studies 
suggest that locks with repeat lengths greater than ten or so generations, and hence 
with more than ten peaks of abundance within an environmental repeat cycle, do not 
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represent observable synchrony. This suggests that the (small) region of very high 

lock-numbers and near neutral stability shown in some of my investigations should be 
regarded as predicting effectively „„synchronised behaviour. However, even 
discounting ad regions with lock numbers greater than twelve (shown in yellow on my 
plots) as well as all neutrally stable points (shown in black) I still conclude that quite 
subtle differences m developmental response to environmental forcing will imply low 

lock-number (and hence observable) synchrony for most life-cycle lengths.

As well as establishing the answer to the strategic question about the relation between 
stage specificity and synchronisation, the present work has also established a number 
of clear empirical relations between synchronisation behaviour and interphase-map 

shape. I suggest that experimental investigations of these questions can now proceed 
directly from developmental response measurements to (approximate) determination 
of synchronisation behaviour by visual analysis of the interphase map Simple 
graphical techniques will suffice to construct the first few iterates of the two-stage 
circle map and hence to determine the stationary phases for observable locks.
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APPENDIX Al (to Chapter 1)

A1.1 Construction of Photoperiod-compensated L3 Stage Development Rate
I define functions wu(P) and z^P) whose graph coincides with L3 stage SD and LD 
loglinear regresston lines for P=Pmin and P=Pmax respectively. Thus when P= Pmin

wu (Pmin) = wUSD 
z u (Pmin) = zIJSD

where w^p , z^p were obtained from the SD loglinear regression line 
yu(T) = Ln [gu (T,Pmin)] = Ln (w^) + z^T, and when P=Pmax

wu (Pmax) = wULD 
z u (Pmax) = z^

(Al. la)

(Al.lb)

(A 1.2a)
(A 1.2b)

where wULD , z^^ were obtained from the LD loglinear regression line 
yu(T) = Ln [gjj(T,Pmax)] = Ln (Wjj^) + z^^j T .

For intermediate photophases Pmin < P < Pmax , wj (P) then takes values between 

wIJSD and Wuld and zj (P) takes values between z,^ and . The photophase 
function in equation (1.2) (pg. 127) then 'pushes' the wu and z^ coefficients obtained 
from regression of SD data to respective coefficients obtained from regression of LD 
data in a periodic manner. In Diagram 1.2(a) the effect would be to continuously 
oscillate the L3 stage development curve between the outermost SD and LD 
regression curves. The SD and LD curves would be 'reached' at the desired 

photophases of Pmin and Pmax respectively.
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A1.2 The Fast 'Look Up Table' Method
This numerical technique exploits the periodic nature of the seasonal development rate 
functions. Si is calculated in tenns of time of year i.e. for a period of one year only 

Use is then made of the fact that Time of year = (Time in years) Modulo 1 year, in 
order to evaluate Sj for all stages i for any time t in years.

(a) Divide the year into n evenly-spaced intervals.

(b) Using a numerical integration technique such as Simpson's Rule, evaluate the 
integrals

k

Gj (k) Si(t)dt for k=0 to n. 
o

(A1.3)

The set of ordered pairs ( k, Gj (k)) for k=0 to n is referred to as the Look Up Table' 
for the stage i. Clearly,the larger the value for n the greater the accuracy of the 
following interpolations.*

(c) The function Gj has now been calculated at discrete times of year tk for k= 0 to 
n. For more general intermediate times t^ falling between discrete times and t^

GJt^) = InterpolationX ( t^, tk+1 ,0(^1, Gf^) ) (A 1.4)

The stage i then completes development at time t^ where t^ is given by

G, (1») = G, (t„) + 1 <A1'5)

by definition of development index.

(d) In general, G, (tM ) will Ue between G, (t,) and G, (U ). so provided that 

QiUeG/l)

tM = InterpolationY (t,, Vt »GJt, ).G; (twl)) (A 1.6)

(e) If G. (L.) > G (1) Interpolationy would 'go off the end' of the Look-Up Table. 
Full use* is then made of the periodic nature of S, so that G, (tM) can be replaced by 

Gi (U = G> (t^) - G, (1) in (A 1.5) above , so that instead
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= InterpolationY (t,, twl ,Gj (t5 ),G. (tM1))
(A 1.7)

is then given by 

where N is the non-zero integer number of years required for Gi to achieve an 
increase of at least 1.

Since all stages here (for all temperature ranges under consideration) complete their 
development in under a year, Gi always attains a higher value then 1 in one year so 
that it turned out that N=1 for all stages of development.

*1 found that n=100 gave indistinguishable results from n=1000 for all simulations. In 
order to gauge the accuracy of the Look Up Table Method employed, simulations for 
other, analytically integrable S; [e.g obtained by defining linear gj ] were compared 
with results obtained by the Look Up Table technique. No detectable differences 
could be found after 100 years of run time. This gave a good indication of the high 
accuracy of the simulation results obtained even with n=100.
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APPENDIX AS (to Chapter 5)

Proofs of Theorem 5.6 (Case 1) and Theorem 5.7 (Case 2)
I seek necessary and sufficient conditions on a and p such that the map F has a 
stable fixed point. That is, as established in the proof of Theorem 5.5,1 seek nSessary 
and sufficient conditions for there to be at least two solutions to

6=^(6) i.e. f(0) = RpfRa(0)
(A5.1)

The interphase map f from which the man F isdifferentiable, and strictly increasing s7 P “ connnu°“s. everywhere

f(0)=0;
Df(x)>0

x-»r => f(x)-^r
o <x < 1

(A5.2)
(A5.3)

I write (A5.1) as

fO)=(p’ +f[(e + a‘)-])*
(A5.4)

which can be re-expressed as

f(0) = P* + f(0 + a‘) for 0< 0< r’a-H-a* (A5.5)
= P‘+ f(0 + a*) —1 for f-1(l-P*)-a* < 0< 1-a* (A5.6)
= p*+f(0 + a*-1) for l-a* <0<l-a* + f’1(l-p*)(A5.7)
= p* + f(0 + a*-l)-l for l-a*+f1(l-p’)<0<l (A5.8)

and re-arranged to give P* as

Yo(0) = f(0)-f(0+a‘)
Y1(0) = f(0)-f(0 + a*) + l
Y2(0) = f(0)-f(0-(l-a))
Y3(0) = f(0)-f(0-(l-a*)) + l

0 < 0 < 0L
0L <0< 1-a*

1-a* <0<0R
0R < 0 < 1

(A5.9)

where
0L = r1 (1-p*) -a‘ ; 0R = f’1 (l-p*)-a*+l (A5.10)

The monotone increasing property of f implies that

Yo(0)<O
Y3(0)>1

O<0<1-a* 
1—a’<0<l

(A5.ll)
(A5.12)

so, given that p’ must lie in [0,1), I need only investigate the functions Yj and Y2.

183



For functions Yj and Y2 the following general properties hold-
Y1(0)=Y2(l)=l-f(a‘) (A5.13)
Y1(l-a‘)=Y2(l-<x,)=f(l-a‘) (A5.14)

Y1(ej=p*+f(eI)>p* o<eL<i (A5.i5)
Y2(0R)=p’+f(eR)-l<p- 0<eR<l (A5.16)

P’<l-f(a‘) => eL>0, eR>l (A5.17)
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¡“S1 “S fM * - for a general concave

By smcr concavity off (that is D^x) >o), =. DfX1)> D(X|)V X], s,

DY1(9) = Df(e)-Df(e+a-) <0 0<e<i-a-
DY2(0) = Df(0)-Df(0-(l-a’)) >0 l-a-<9<:1 (A5.18)

and hence Y/0) is a monotone decreasing function for 0< 0< i-a- and Y (0) is a 
monotone increasing function for 1 — a' < 0 < 1.

However, my interest lies in

Y/0) (O<)0L <0<l-a* 
y2(e) i-a* <0<eR(< i)

(A5.19a)
(A5.19b)

that is, the continuous bowl shaped function Z(0) with dip (minimum) at 0=l-a*

P*(0) = Z(0) =
0L <0< l-a* 

l-a* <0<0R (A5.20)

By inequalities (A5.15), (A5.14) and (A5.16) respectively the altitude of the bowl

Z^Y^^f^ >3’ by(A5.15)at the left 'rim' 0L is 
at the minimum l-a’ is 
at the right 'rim' 0R is 
and hence

ZQ-a^Y/l-a’^Y^l-a*) =f(l-a*)
Z(0R)=Y2(0R)=0‘+f(0R)-l <p’ by(A5.16)

f(l-a*)<P*< Z(0J <l-f(a’) 
f(l-a*)< Z(0R) < P*<l-f(a‘)

(A5.21a)
(A5.22b)

The horizontal line Z=£* 'cuts across' this curve at two points and thus has two 
fixed points iff f(l-a*)<3*<l—f(a*), a single fixed point iff p*=f(l-a*) or p*=l-f(a*) 
and none otherwise. Since F^p is a strictly increasing homeomorphism a single fixed 
point must be neutrally stable and each pair of fixed points must contain one stable 
and one unstable member. This completes the proof of Theorem 5.6.

185



A5.2 Proof of Theorem 5.7 (Case 2 conditions for a one lock for „ ■ a „ .
concave (or convex) general 'S' shaped interphase map) mnally stnc,ly

I now have

D^x)^ x<^; D2^)^; D2f(x)<o x>i/> 
and by S shape

f(l-x)=l-f(x)
F‘(l-x>l-f-i(x)

(A5.24a)
(A5.24b)

Also now

Y/O^d^^Y/l-^^d) (A5.25)

I see that

DY1(0) = f'(0)-f'(0+a*)

so
DY/O) = f'(0)- f'(a*) <0
DY^l-a*) = f'(l-a*)-f'(l) >0

(A5.26)

(A5.27a)
(A5.27b)

and therefore Yt (0) has one turning point (minimum) in O<0<l-a‘ at 0=0T1=(1—a*)/2 

[by (A5.26), f'(0T1) = f'(6Ti + a‘) => l-0n +a* = 0T1 => 0T1 = is

not possible)]

By a parallel argument, Y2(0) has one turning point (maximum) in l-a’<0<l , namely 
at 0=0^=1-0172.

The altitude of the minimum is

fd-a)^ /(l-a)^
^(0^) = ^ — =f —-------- f —+a I+1

< 2 ' ' > z .
(il — (x*)A ( ((1 + a ) ।

= f V a 2 + f 1- by(A5.24a)
k 2 J V I 2 J)

= 2ff^-v^l (A5.28a)

k 2 7

By similar simple algebra the altitude of the maximum is
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1 —2f (1-a*)
2 (A5.28b)

My interest now lies in the continuous ’sideways S’ shaped function Z(0) defined by

P‘(0) = Z(0) =
, YJ0)
Iy2(0)

0L <0<l-a* 
l-a‘ <0<0R (A5.29)

which has its point of inflection at 0=1-«-, and respective minimum and maximum 
altitudes as in equations (A5.28a) and (A5.28b) above. Thus for the horizontal line 
Z=p- to 'cut across' this curve and hence for to have two fixed points it is a 
necessary condition that

2f ■ 
k

(1-oQ 
2 (A5.30)

and for a single solution to exist it is necessary that

7, ( ‘A
P‘=2f —- or P‘=l-2f 

k 2 7 k 2 7
(A5.31)

However, these conditions are not sufficient unless 0T<0T1 and 0^<0V.

But I see that

(1-a ) (1-a*) 
2

by (A5.24b)

and

l-a‘
2

p‘<l-2f^- =>p‘<l-f ~ by (A5.24a)
UJ U J 2J

a a

Hence conditions (A5.30) and (A5.31) are also sufficient
Since is a strictly increasing diffeomorphism, each pair of fixed points must 
contain one stable and one unstable member and a single fixed point must be neutrally 

stable. This completes the proof of Theorem 5.7.
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APPENDIX A6 (to Chapter 6)

A6.1 The 3 FORMS (plot configurations) of the SLIM circle map

From equations 6.7, I have that the SLIM circle map 0A(„„ = F^) is given by

$A(n+i) +a) for 0 5(9^ +a’)‘ (6.7a)
Q ♦ _  ।

= ~y +(0An+a)‘ for ^<(0^ +a*y< f (6.7b)

P*
= y for +a*r<l (6.7c)

I shall express equations (6.7) as a circle map solely in terms of 0^ . I note first that

(6^+«.).= 0/V+a for eAn+a‘<l (A6.1a)
(0An+a*)‘=0An+«’“1 for 0^ + a’> 1 (A6.1b)

Hence when 0 < (0^ + a* ) < 1 in equations (6.7)

0A(n+i)=0An+a‘+v for O^0An «^-a* (A6.2a)

o . P‘-l
= 0An+a +—— foro

s

and when 1 < (0^ + a* ) < 2

0Afn+n = 0An +a‘+ —-1 forA(n+1) An çj

= 0^ +«’ +-   -Ifor An

= -&- for
S

“ 0An <i-a‘ (A6.2b)

I-a* <0^ <l-a‘ (A6.2c)

l-a* <0^ a‘ + l (A6.2d)

—a‘ + l <0^ <f-a*+l (A6.2e) 

|-a‘+ 1 <0^ <2-a* (A6.2f)

I now define three possible generic configurations of the circle map plot, in terms of 
o •

the value of the constant d = a + - j- .

(a) Form 7: 0 < d < f
If d < | then i ~ a* _ £ > 0

^-a’+l>l

and since 0. < 1 ,An
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®An --- a* +1

Hence the Form 1 configuration occurs whensatisfied. WhCn étions (A6.2a) to (A6.2d) are

(b) Form 2 : | < d <
ff « < d then 1 / a’ < 0 so condition (A6.2a) 

0^ > 0). Also, s - a‘ +1 < 1 so that condition (A6 2d) 
the nghtmost segment. '

no longer applies (because 
no longer suffices to 'cover'

1+B’
Because d< — it follows that ¿-n' >n ,. .Ato S “ >0Md “conation (A6.2b) still applies.

|-a‘ + l>i
0An < i -- a* + 1

so that condition (A6.2e) now holds. Hence the Form 2 
conditions (A6.2b) to (A6.2e) are satisfied. configuration occurs when

(c) Form 3: -^-<d< 1+-|"

If 1y-<d then f-a’<0 and so condition (A6.2b) no longer applies. Now 
however, 1-a’ > 0 so that condition (A6.2c) still applies, and |-a‘ +1 < 1 so that 
condition (A6.2e) no longer suffices to cover the rightmost segment. Dearly 
9Ao<2-a’ in condition (A6.2f) holds, because a‘<l. Hence the Form 3 
configuration occurs when conditions (A6.2c) to (A6.2f) are satisfied.
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A6.2 Conditions for a 2 lock: FORM 2 and FORM 3 configurations

I label the rightmost segment with the letter E.

(a) Itinerary Hb: passage through segment b after H requires that

R
-I

which contradicts d > 1/S. Thus itinerary Hb is impossible.

(b) Itinerary Ha: passage through segment a after H requires that

^<14 
s s

Also, phase duration of Ha must satisfy

ß1 . ß’
--a < —+ (d-l) <l-a

S

which contradicts (A6.4b) above. Thus itinerary Ha is impossible.

(c) Itinerary HE: passage through E requires that

2 
s S

S

Phase duration must satisfy

i
s“a

1 1
2 + S

ß* 1 ,^-+(d-l--) <l-a

i<1+2S

(A6.3a)

(A6.3b)

(A6.4a)

(A6.4b)

(A65a)

(A65b)

(A6.6a)

(A6.6b)

(A6.7a)

(A6.7b)
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Hence a 2 lock occurs iff (A6.6b) and (A6.7b) are both satisfied that is

^ + 7<d<1+^ and d>l + ^^-
2 S 2S 3

EQBM_3-(i¥"<d<1+‘s’)

The horizontal section is now split into two parts which I shall label as H 
and H2 (rightmost).

(al) Itinerary H]a . by the same argument as in Form 2(b) passage 
after H, implies that d>l . Phase duration must this time satisfy

—+(d-l) <l-aO

d< 1

(A6.8)

Oeftmost) 

segment a

(A6.9a)

(A6.9b)

contradicting d>l above. Thus itinerary Hi a is impossible.

(a2) Itinerary H2a : passage through a requires that

, . ß* 11-a <-^-<(1 + —-d)

and phase duration must satisfy

1 . ß‘
1 + --0C < ç +(d —1) <1 

b lb

1 1
>1-a +2S > 2S

(A6.10a)

(A6.10b)

(A6.11a)

(A6.11b)

(A6.11C)

(A6.11d)

But from (A6.10b)
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12ß

S
JL 1 , 1
2S 2S S <1 + ïi

(A6.12a)

(A6.12b)
d < 1 +

s

since p- > This contradicts (A6.1 lb). Thus H2a is impossible.

(bl) Itinerary : passage through E requires that

1 ß* 1 
s"d< s <1+s 
^<d<l+l

s s
Phase duration must satisfy

S
2 
s

(A6.13a)

(A6.13b)

(A6.14)

which re-arranges to condition (A6.12b) above.

(A6.13b) and (A6.14) together imply that a 2 lock occurs when the conditions

(A6.15)

are satisfied.
(b2) Itinerary H2E : passage through E requires that inequality (A6.13b) must be 
satisfied. Phase duration must now satisfy

■T“'*
iß' 1 I^-+(d-l--) <1
k a 0 7

(A6.16a)

(A6.16b)

which contradicts d < 1 + — (by definition of FORM 3). Thus H2E is impossible. 
S «

Conditions (A6.8) and (A6.15) taken together imply that a 2 lock occurs iff

11 1 1— P*
- + -<d<l + — and d>l + -^—
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A6J Conditions for a 3 lock : two other FORM 1 itineraries

(ii) Itinerary HbU
Repeating the same logical argument, phase duration must now satisfy

+ (d-i) + d <(l-a‘)
S

2 11
3S < < 3+ 3S

(A6.17a)

(A6.17b)

Topass through b and then U successively after H respectively requires that

<s ) S \s a J (A6.18a)

1-P’
=> —o— < dS (A6.18b)

and

d <=> 2-P
2S

(A6.19a)

(A6.19b)

must be satisfied. Combining inequalities (A6.17b) , (A6.18b) and (A6.19b) the 
conditions for a 3 lock are thus

3S
1 1 

31X1
i-p’ 2-P*

2S (A6.20)

2
s < d <

(iii) Itinerary HU a
Phase duration must satisfy

(i-a )< ~^ + d+(d-l) <(l-a) 
t b t

2 1
3+3S

(A621a)

(A621b)

To pass through U immediately after H requires that d < $ (by earlier inequality

(6.13)), and then to continue passage through segment a requires that
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(A622a)

(A622b)

must be satisfied. The RHS of condition .
, £ <■ ç , _ 2b) ‘S red™dant, because
d< c < 1 o ’ since S>1. The LHS of (A6 ■„ S „ , , S * 6 * 1S “lso redundant, because if
d<l/2 a lock occurs (by earlier inequality (6.12) ). The conditions for a a ! u 

thus inequality (A6.21b) and earlier inequality (6.13) together namely

1 1 a 2 l-B*
7+7^<d<T and d<-----—
3 3S 3 ç

(A6.23)
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Appendix A7 (to Chapter 7)

J Derivation of the TLIM circle map

The two line interphase map TLIM is defined by

6b = f (0A) =
St6A 
i-s2(i-eA)

0 < 0A < P 
p^eA<i (A7.1)

where 0A = P is the phase where segments L and R meet

Observe that at the point (P,Q) where the two corresponding lines of the plot meet 

iQ = S1P 

,Q = 1-S2(1-P) (A72)

which together imply that

1 —S2
P =------- -

s>-s2 (A7.3)

Clearly, this interphase map is a homeomorphism, with its inverse defined by

eA=f (6b) =
Si B

d2

o<eB <SiP

s,p<eB < i
(A7.4)

®A(n+l) = Fa.3(0An) =
f^RpiS^+a)’]

f-1Rp(l-S2[l-(eAn+a)*])

• - —1 -

The TLIM Circle map Fa,p = f Rp f Ra is thus

O<(0n+a*)<P  (A7 3a)

P<(9n+a)*<l  (A7 5b)

Dropping the A-stage suffix for clarity (so that 0^ = 0n), I observe that

Rp[S1(0n+a)‘] =
P*+S](0 n+a)‘ for p’+Sj(0n+a)’< 1

P*-l  + S^ + a)’ for p*+S 1(0n+a)’>1
(A7.6)
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< p

Equation (A7.5a) thus becomes 

pSA*«*)*  <1

Lz22. + ^2.(0n +a)- o< p* -S2(l-(en +a)*) < S,p (A7.10a)
Sj S1

^+(e.+a)- S1P£p’-S2(l-(eD+ar)<l (A7.10b)

• $2

0

|-+(en+ar O^+S^+a)*  <8^

B*  -1 S.
l+-^- + ^(en+a) S1P<p*+s 1(0n+a)‘<l 

(A7.7a)

(A7.7b)

y+s1(en+a)> >1

p*-i
— +(6n+a) O< p‘-1 + S1(6n+a)‘<SjP (A7.8a)

= 1
B*-2  S,

i + + +a) S^p’-l + S^+a)^! (A7.8b)

P<(en+a)*  <1

By a similar (though more protracted) argument. Equation (A7.5b) becomes

P*+l-S 2(l-(0n+a)*)  < 1

+a)' O<p‘ + l-S2(l-(e.+a)-)<S,P (A7.9a) 
e = S‘ S‘

n+1 R’
—+ (0n+a)‘ S1P<p*+l-S 2(l-(0n+a)’)<l (A7.9b)

• $2

p- + l-s2(l-(0n +a),)> 1
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saw .
O^P’+S^+a)* <S,P

« i<(0„+a)* < P-^l
S1 Sj

<=> O<(0n+a)‘ <P-^- since (0n +a)‘ >0

This gives an expression consisting of 8 terms:

|-+(0n+a)* O<(0n+a)■<p-£
S, (A7.11a)

l+ps +s1(°»+a)’
d2 ^2

p-ls
(A7.11b)

~^+(0n+a)’ V
I 

co. 
„ 

1 
V 

T-̂

(9n+ar <P + ^ 
Si (A7.11c)

B*-2 S, „
1+ s, +S!<e-+a)

1-B p+ sP <(0n+a)’ <P (A7.1 Id)
9*1“' B'+l-S2 S,

S1 +s>+a) P < (0 a+a) <1- K
k d2 J

s
+ ^-P (A7.11e)

|"+(On+ar 
d2

, 0+1'1
I S, >

s
+ ^-P < (0n +ay < 1-^- (A7.11D

p -S2 S2 :(0n+a)* <1-|-+ 
^2

^P (A7.11g)
^2s, 1 s/0-1“’

+(en+a)‘ P* Sil-7-+^P^(0n+a) <1O2 ^2
(A7.11h)

However, not all of these terms can exist given the constraints on 
1-S2

St,S2 andP [namely Sj > S2, Sj,S2 >0, St > 1, S2 < 1, P-„ ]•
□ 1 o2

(A7.11d) Since
S.

> 0, the RHS inequality is impossible. Hence the left hand

term does not exist.
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(A7.1 le) The RHS inequality, right limit

S2

Hence the left hand term does not exist.

This leaves terms (A7.11a) to (A7.11c) and (A7.11f) to (A7.11h).

The TLIM circle map is therefore

—+ (0n+a)*

^2 ^2

O<(0n+a)‘<P-j-

1-p 
SiS

—+(0n+a)‘

6n+i =
S

^+(0n+a) P < (0n + a)* < 1-f-

P‘-s2
S

s2
+^(0n+a)

+ (0n+a)‘

S2

S2 S2

S2 s2
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