TRIP GENERATION, MODAL CHOICE
 AND TRAFFIC ASSIGNMENT
 IN URBAN TRANSPORTATION PLANNING

BY

ABDUL HAMID AHMED AL-SARRAJ
 B.Sc., M.Sc., M.I.H.E.

A thesis presented for the degree of
Doctor of Philosophy
in the Department of Civil Engineering of the University of Strathclyde.

SYNOPSIS

This research work attempts to construct econometric models of the demand for travel. Basically, the models depend on a relationship between the amounts of travel demand and household income, but there is an inbuilt sensitivity to the level of service provided by different transport systems. To achieve this, a new method of valuing non-working time was developed. By applying the principle that the amount of travel is governed by household budgets of time and money it is possible to estimate the effect on the numbers of trips and their lengths caused by modifying the road system or by otherwise changing the costof travel. The models therefore depart from the traditional four stage transportation planning techniques and they effectively combine modal choice with trip generation.

To complement these travel demand models a new approach to traffic assignment has been developed. The method uses concepts of "relative attractiveness" and "accessibility" of routes to simulate drivers' choice of route. Additionally, this process provides estimated values of parameters required as "feedback" to the travel demand models. An important feature of the work is that all models are simple in concept and application and they require relatively small amounts of data to be collected.

ACKNOWLEDGMENTS.

The author wishes to express his deep gratitude to his supervisor Mr. J. M. Aitken for his inspiration, encouragement and constructive suggestions throughout the period of this research, and for developing a new computer program used in this study.

Thanks are also due to Mr. P.B. Green, Head of Highway and Traffic Engineering Section for his help and guidance.

My thanks are extended to Professor D.J. McKinlay, Head of Civil Engineering Department, for providing the facilities for carring out this project.

Thanks are also due to Iraqi Government, (Ministry of Planning) for their financial support.

Finally, thanks are due to Mrs. M. Aird for the effort taken in typing this dissertation.

CONTENTS

3.7
3.6 Household Income Groups.See5.2.1 p. 77

Trip Distribution Models.
2.5.1 Introduction.
2.5.2 Growth-Factor Models.
2.5.3 Gravity Models.
2.5.4 Comments on Gravity Models.

Modal Choice Models.
2.6.1 Introduction.
2.6.2 Trip-end Models.
2.6.3 Trip-interchange Modal Choice Models.
2.6.4 Comments on Modal Choice Models.

Traffic Assignment.
2.7.1 Introduction.
2.7.2 All-or-nothing Assignment.
2.7.3 Multi-path Assignment.
2.7.4 \quad Capacity Restrained Assignment.

Summary.
THE ECONOMICS OF TRAVEL, 138

DEMAND FOR TRAVEL.
Introduction.38

Economic Analysis of Traveller's 39
Behaviour.
The Measurement of Benefits.41

Elasticity of Demand.42
3.4.1 Introduction.
3.4.2 Price Elasticity.
3.4.3 Significance of Elasticity Measures.
3.4.4 Income Elasticity of Demand.

$$
0
$$

Demand and Income.

Value of Time (VOT).
3.7.1 Introduction.
3.7.2 Methods used in Evaluating of time.
3.7.3 (VOT) in Cost-Benefit Analysis.
3.7.5 Daily Travel Time.
3.7.4 Time in Network Description.

5.7 Analysis of Total Travel.
5.8 Travel Characteristics.
5.8.1 Introduction.
5.8.2 Trip Purpose.
5.8.3 Trip Length.

Findings and Conclutions
CHAPTER 6
6.1
6.2 Generated Trips.
6.3 Factors Affecting Trip Generation. 101
6.4 Budget Models of Travel Models 102 for Generated Traffic.
6.5 Value of Time (VOT). 108
6.6 Generalised Cost Model. 111
6.7 Models for Trip Generation. 113
6.7.1 Introduction.
6.7.2 General Share Model (GSM).
6.8

Summary and Conclusions.

			Page No.
CHAPTER	9	TRAVEL PREDICTION, 4	
		PUBLIC TRANSPORT TRIPS	181
		(BUS AND RAIL)	
	9.1	Introduction.	181
	9.2	Public Transport Characteristics	182
		9.2.1 Reliability of Public	
		Transport Service.	
		9.2.2 Energy Considerations.	
		9.2.3 Environmental Consideration.	
	9.3	Conventional Methods Used in Public Trnasport Travel Predictions.;	185
	9.4	Household Share in Travel by Public Transport.	187
		9.4.1 Introduction.	
		9.4.2 Household Expenditure on Travel by PT.	
		9.4.3 Bus Travel, Average Househol	d.
		9.4.4 Bus Travel, Household by Income Group.	
		9.4.5 Rail Travel, Average Househ	1 d
		9.4.6 Rail Travel, Household by	
		Income Group.	
		9.4.7 Bus Plus Rail.	
	9.5	Price Indices and Travel.	190
	9.6	Travel Prediction.	192
		9.6.1 Bus Trip Rate.	
		9.6.2 Rail Trip Rate.	
		9.6.3 Long Term Public Transport Travel Prediction.	
	9.7	Summary and Conclusions.	197
CHAPTER	10	TRAFFIC ASSIGNMENT	
		RELATIVE AT RACTIVENESS METHOD.	200
	10.1	Introduction.	200
	10.2	Load List and Zone Centroid.	201
	10.3	Network Description for Computer Analysis.	204
	10.4	Journey Units used in Network Description.	205
	10.5	Measures of Accessibility in	206
		Transportation Planning.	
		10.5.1 Accessibility Index of a Poin	int.
		10.5.2 Accessibility Index of a Rour	ute.

Page
CHAPTER ll.lo General Share Model (GSM) 240
ll.ll Analysis of Car Travel 240
11.12 Analysis of Bus and Rail Travel 241
11.13 Long Term Travel Forecast 241
11.14 Generated Trips 243
ll.l5 Value of Time (VOT) Found in this Study 245
11.16 Traffic Assignment 246
References 248

The tables can be found at the end of the text. There are some tables within the text, these are labelled with letters, for example Table 5.3 is at the end of the text while Table 5.h is within the text.

TABLE 4.1

5.1. a	Expenditure of all Household on Transport for year 1965.
5.1.b	Expenditure of all Household on Transport for year 1968.
5.1.c	Expenditure of all Household on Transport for year 1972.
5.1.d	Expenditure of all household on Transport for year 1975 .
5.2.a	Expenditure of all Household on Transport for year 1965.
5.2.b	Expenditure of all Household on Transport for year 1968.
5.2.c	Expenditure of all Household on Transport for year 1972.
5.2.d	Expenditure of all Household on Transport for year 1975 .
5.3	Summary of Household Expenditure on Transport.
7.1	Money and Time Saved for Different Values of P.
7.2	Rate of Generated Trip for Different Speeds.
7.3	P Values for High Range of Improvement.
7.4	Household Travel Characteristics and Trip Generation Models.
9.1	Passenger Transport Energy Consumption (cal. per passenger mile).
9.2	Comparison of Petrol Price Index with other Items.
9.3	Weekly Household Bus Trip Rate by Household Income Group.

TABLE	10.1	Hamilton Load List
	10.2	Distance Route Distribution.
	10.3	Time Route Distribution.
	10.4	Generalised Cost Route Distribution.
	10.5	Accessibility Indices for Hamilton Network.
	10.6	Example of One and Two, Routes between a pair of 0-D with 10% Allowable Deviation from Shortest Route.
	10.7	Example of Three and Four Routes.
	10.8	Example of Five Routes.
	10.9	Maximum Number of Routes between a pair of O-D.
	10.10	Sample of Relative Attractiveness Assignment Computer Output.

LIST OF FIGURES

The figures can be found at the end of the text. There are some figures within the text, these are named diagrams instead of figures.

FIGURE 1.1 Transport Model.
1.2 Role of models in planning process.
1.3 Passenger kilometres and petrol price index.
1.4 Vehicle distance travelled by different vehicles.on all roads in U.K. as percentage of total travel.
1.5 Typical internal and external zoning system.

FIGURE 2.1 Transportation planning process.
2.2 Traffic on a network.
2.3 Example of work-trip model split relationship.
2.4 Speed-flow relationship (Urban roads)

FIGURE 3.1 Effect of income on number of trips and car-ownership.
3.2 Category space as an analytical adjunct.
3.3 Path and budget because of station.
3.4 Travel time and residential density.

FIGURE 4.1 Cumulative distribution of sped.
4.2 Theoretical speed, flow and density relationship.

FIGURE 5.1 Variation of expenditure pattern with income of household.
5.2 Variation of expenditure pattern over time.
5.3 Average weekly household income and expenditure on running of car, shown cumulatively.

```
FIGURE 5.4.a Expenditure on maintenance and
        running of motor vehicle as % of
        average household income.
        5.4.b Total household expenditure on
        transport and on maintenance
        running motor vehicle.
        5.5 Average household expenditure on four
        main items of transport.
    5.6 Trend of income groups in expenditure
        on four items of transport.
        5.7 Expenditure on rail fares by
        household income group.
    5.8 Expenditure on bus fares by
        household income group.
        5.9.a Percentage share of car purchase by
        household income group.
        5.9.b Percentage share of travel by car by
        household income group.
        5.9.c Percentage share on travel by public
        transport by household income group.
        5.9.d Percentage share on travel (private and
        public) by household income group.
    5.10 Average household expenditure on travel
        by private (car) and publicc (rail and bus)
    5.11 Average household expenditure on travel
        by private car and public transport (bus
        and rail) by household income group.
    5.12 Car journey characteristics.
    5.13 Car trip length distribution.
FIGURE 6.1 Modified Transport Model.
FIGURE 7.1 Demand and supply curve (time constraint)
    7.2 Time saved and extra money spent for
        different levels of improvement.
    7.3 Demand and supply curve(money constraint)
    7.4 Rate of generated trip for different
        levels of improvement(money constraint).
        7.5 Demand and supply curve (generalised
        cost constraint).
    7.6 Rate of generated trip for different
        levels of improvement (generalised
        cost constraint).
    7.7 P values with }\mp@subsup{\phi}{m}{}\mathrm{ and }\mp@subsup{\phi}{t}{
```

FIGURE	7.8	Effect of change in petrol price and speed on generated trip rate (generalised cost constraint).
	7.9	Response surface for generated trip (generalised cost constraint).
FIGURE	8. 1	Car trip rate 1972/73.
	8.2	Car trip rate 1972/73.
FIGURE	9.1. a	Glasgow fare rate per mile for P.T.E.,S.B.G. and independent operator (Mid 1975).
	9.1.b	Glasgow fare structure.
	9.1	Cumulative household expenditure on travel and income - 1965 .
	9.2	Cumulative household expenditure on travel and income - 1968 .
	9.3	Cumulative household expenditure on travel and income - 1972 .
	9.4	Cumulative household expenditure on travel and income - 1975 .
	9.5	Cumulative household expenditure on travel and income - 1965-1975.
	9.6	Expenditure on travel by bus and rail per household per week.
	9.7	Expenditure on travel by bus as \% of average household income.
	9.8	Expenditure on travel by rail as \% of average household income.
	9.9	Expenditure on travel by public transport as \% of average household income.
	9.10	Total expenditure on travel - car, bus and rail.
	9.11	Household trip rate by car, bus and rail.
	9. 12	All goods and services index compared with other indices.
	9.13	All goods and services index compared with other indices.
	9.14	Bus trip rate.
FIGURE	10.1	Location of Hamilton.
	10.2	Hamilton zonning system.
	10.3	Hamilton external zones.

FIGURE 10.4 Hamilton road network10.5 Accessibility contour linesfor Hamilton.
10.6 Average number of routes between a pair of O-D for deviation by different percentages from shortest path.
10.7 Route frequency distribution.
10.8 Number of possible routes between pairs of O-D for different allowable deviation from shortest path.

```
NETWORK 10.1 One route example.
    10.2 Two route example.
    10.3 Three route example.
    10.4 Four route example.
    10.5 Five route example.
```


APPENDEX

3 Value of time used in recent British transport studies.

4 Example of current valuation of travel time saving.
$5 \quad$ Car operating costs.
6 Breakdown of the operating cost formula.

7 Transport and vehicles references in FES.

8 Flowchart of Relative Attractiveness Assignment Method.

CHAPTER 1

STANDARD URBAN TRANSPORTATION PLANNING PROCESS
1.1 INTRODUCTION.

Transportation improvements lessen transportation costs. This lowers the cost of goods and services thereby saving fixed available resources for application towards other needs.

Transportation improvements also generate broad social benefits by making a larger variety of goods, services and activities accessible to people. Thus, transportation has an influence on the form of urban developments and on the life style of urban citizens. People gain greater freedom to choose where they live, work and shop, they gain a wider range of choice in educational, cultural and recreational activities.

Transportation planning objectives must be to provide for the safe, rapid, comfortable, convenient, and economic movement of people and goods. To achieve this, acceptable methods are needed for forecasting and evaluation.

Like many other systems, urban transportation planning changes constantly. A twenty year transportation plan, based on the best forecasts and analyses available just a few years ago may be almost obsolete today. The main reasons for this are the unexpected changes in land use distribution and development and unexpected travel demands due to higher personal incomes.
1.2 HISTORICAL BACKGROUND OF TRANSPORTATION PLANNING.

Although the current methodology in transporation planning is relatively new, the problem of trafic congestion has existed for a long time; but it never grew so seriously until the car age. Both the size and pattern of
urban development have been affected extensively by the existing transport technology (Stopher and Mayburg, 1975) .

Undoubtediy the most revolutionary development in the whole field of transport occurred in thefirst half of the twentieth century with the growth of motor transport. Within the matter of a few decades the motor vehicle had become an integral part of the British transportsystem and it produced significant changes in the economic and social life of the country. In fact, not since the railway has any form of transporthad such far-reaching effects. Not only did motor transport create a wide range of new opportunities, but it also brought with it many problems, solutions to some of which have still not been found today (Dyos and Alcroft, 1974).

A private car which cost £500 in 1922 could be bought for $£ 325$ in 1926 and the price of commercial vehicles fell by $£ 100$ during the same period. This rapid fall in price and improvement in the technical performance of motor vehicle together with the rise in real incomes were undoubtedly the main factors contributing to the growth of motor transport in the inter-war-years.

The necessity for transportation planning became obvious when increasing personal income, greater vehicle ownership, and associated increase in personal mobility gave rise to an increase level of congestion and delay. Planners came to realise that cities, in their traditional physical form, simply could not cope with the new mobility.

Before the early 1950's the method of forecasting was straight line projections of traffic counts; and planning depended on the comparison of the forecasted volumes with the existing capacities.

Serious attempts at urban transportation planning started in U.S.A. in the early 50's and later in Europe. The collected data was utilised to help develop methods for forecasting travel for as much as 25 years into the future. At this time the problems that face transportation today such as pollution were not recognised.

The changes of the 1960's saw an extension of pre war trends and brought about many new and sophisticated methods used in urban transportation studies. Large scale land use/transportation studies in major metropolitan areas were launched in North America during the years 1959-1968 (Batty, 1976). These studies led to the recognition of the problems in providing an adequate system of public transport services; urban areas are frequently faced with lack of financial support.

In the mid 70's the problems of energy shortage and higher oil prices seriously shook the economic balance of many countries. Some reconsideration of development programmes was undertaken and consideration of energy conservation began.. In the future, it is likely there will be more restrictions on energy consumption, and research will concentrate on alternative energy sources, which may produce new concepts in transport.

1.3 TRANSPORTATION PLANNING STUDIES

Two main categories can be identified in transportation planning.

1. Short range studies (5 to 10 year plan)

Such projects tend to be specialised for a single site, a single mode, a single route or a single link in the network. Usually this deals with bottlenecks and congestion problems which occur in part of the network.
2. Long range studies (20 to 25 year plan)

These include those associated with developing transportation facilities for the long term needs. Such calls for integrated and continuous planning process. The fundmanetal objective of the long range study is to develop a plan to serve the community of the future and also to serve the changing needs of the community, the plan takes time to implement and communities will develop new requirements over time. The plan usually includes all transport networks together with parking facilities and terminals.

The method of long range study usually includes the following :
(a) Inventory
(b) Summary and analysis
(c) Forecast
(d) Testing of alternatives and proposals.
(a) The inventory stage deals with origin-destination survey, and data is collected by such methods as the home interview and the roadside interview. Other data needed concerns land use, bus services, rail facilities, parking spaces, road capacities, etc, on the network for the base year (year of survey).
(b) Summary and analysis often yields the base year travel characteristics in the form of O-D table and cost matrix which is based on speed measurement and network analysis. These two sets of information (O-D table and cost matrix) are used for calibrating the forecasting models in the following stage.
(c) Forecasting is necessarily an inexact science. However, forecasts are, in use constantly and must be revised in the light of new information and new policies.
(d) Future development alternatives for the region become specific in terms of activities on zonal level. Different methods are used to forecast demographic and economic characteristics. Traffic forecasting is usually done by using models as deseribed in the following section.

In order to obtain some guidance in preparing proposals for future transportation systems an estimation is first made of how the existing network is loaded when exposed to both the observed and forecasted traffic. The network proposals and testing of alternatives usually emerge from comparison of "demand" and "supply"; from objectives, and from engineering experience and judgement. An economic assessment can be a guide as to which alternative offers the better benefit.

However, the credibility of transportation planning is being taxed by the evidence of increased congestion and
adverse environmental consequences of transport systems (McGrath, 1972). The increasing difficulty in implementing long. range transportation plans in urban areas, particularly during periods of rapidly changing human values, requires the planning process to be brought down from the regional long-range scale to shorter time frames and smaller areas (Wickstrom and Grant, 1972).

1.4 MODELS IN TRANSPORTATION PLANNING

In practical terms, models have generally been used to calculate future traffic on the road network. This calculation shows the bottlenecks and gives an idea of where. the road network should be improved.

Models as used in transportation planning are mathematical equations and procedures which simulate relationships between socio -economic characteristics and land use. They also include transportation system parameters and resulting travel patterns. Not all such relationships are reduced to mathematical equations, e.g., most existing land use forecasting techniques are sequential procedures which are based on experience and knowledge. Models are developed and verified by applying them to existing parameters to "reproduce" current travel pattern. If the basic relationships are assumed to hold over a period of time, the planner can use the model sequence to test future alternative land use and transportation systems which may be developed. These are then evaluated in the light of the objectives to determine the best course of action.

The processes of modelling are :-

1. Model theory.
2. Data collection.
3. Calibration.
4. Testing.
5. Prediction.

Properties of a good model are : simplicity, sensitivity, stability and validity.

The model must be simple in concept and application.

The process of transportation planning with conventional models has become unwieldiy inflexible and slow and it's not certain that the level of detail and accuracy is well matched to the planning phase concerned (OECD Report 1974). The model must be sensitive to the parameters involved. This will naturally call for using parameters which can be measured or estimated fairly accurately.

Besides stability and consistency, validity is the most important feature of the model; a model to have validity, must specify the causal sequence in which events occur. In other words, the range and applicability of the model must be known. It follows from requirements of prediction that not only a relation form, but "correct" cause and effect are needed for a valid model.

Traditionally, transportation planning consists of four stages, each treated separately by a model especially formulated to deal with that stage (Figure 1.1). The stages are :

1. Trip generation.
2. Trip distribution.
3. Model split.
4. Assignment of traffic to facility pattern.

Each stage will be described in detaillater.
The distinct problem which limits the accuracy of transportation forecasting models is the cost. A transportation model is a cumbersome exercise in repetitive mathematics, made possible only by thedevelopment of computers. It is not a cheap process and in many instances a decrease in accuracy has to be accepted to save excessive expenditure on computation (Lane et al, 1971).

However sophisticated the model, it is essentially an aid to decision-making rather than an answer in itself. The results of a transport model are normally of little use without someone trained to interpret them and combine them with good engineering judgement.

Model building processes are complex and transportation models are actually a part of system analysis or urban
planning, land use and transportation as in figure 1.2. When objectives and resources are changed, new considerations must be put forward and because these two inputs (objectives and resources) are always changing, continuous transport planning is needed.

1.5 URBAN TRAVEL CHARACTERIATICS

The social, demographic and land use characteristics of the modern urban region influence the travel behavior of its residents and the demand for transportation facilities. The modern urban region is usualy characterised by a continuing rapid rate of growth both in population and area of urbanisation, a proliferation of commercial and industrial centres, and increase in car ownership which outpaces population growth, and a relative decine in many types of CBD attraction (Levinson, 1976).

Each urban area reflects historical, social, and economic antecedents. Likenesses and differences among cities mainly relate to economic base, topography and age. Population density patterns generally reflect city age and the modes of interurban transport that prevailed during formative years. Consequently cities in Europe, Asia and South Americagenerally exhibit higher densities and lower car ownership than American cities. In most cities, net residential density declines with increasing distance from city centre. Car ownership increases with rising income and with decreasing density.

In most American cities more than threequarters of all personal trips are made by car. The proportion of trips made by public transport tends to increase as the population and/or density increases. (Levinson, 1976). In $20 y e a r s i n$ Britain the total amount of passenger transporthas grown by more than 300percent (Transport Policy U.K., 1976), with the largest share of the total and all of the growth coming from the use of cars. By 1974 cars and taxis accounted for 79 percent of all passenger travel (measured in passenger kilometres), and 90 percent for vehicle kilometres (Figures 1.3 and 1.4).

From these figures the following effects may be observed:

1. The trend of car and van use rose almost continuously throughout the last twenty years reaching about 90% of total vehicle kilometres travelledon all roads by 1974)
2. The use of other modes, especially buses, is declining and it represented a small amount, only about 1.5% of total vehicle distance in 1974. This relatively small distance travelled by buses contributed a greater amount expressed in passenger journeys and passenger distance. In 1974 buses and coaches accounted for about 24 percent of all passenger journeys and around 12 percent of total passenger kilometres (Ball and Percival, 1978).
3. The use of car related to economic growth (Gross Domestic Product $G D P$ and national disposable income and their reflections on personal income and retail prices. The effect of petrol price oni car usage can be realised by the fact that when petrol price index started to rise sharply in 1973/74 the car passenger kilometres fell down correspondingly.
1.6 ZONING SYSTEM

Commonly in transportation planning processes, the area under study is divided into a number of zones, the reasons for this are :

1. To simplify the presentation and collection of data.
2. To reduce computation and minimise the computer time and storage needed for processing.
3. To understand better the structures of the area in terms of land use and activity.

First the region would be circumscribed by a cordon line. The cordoned region is then divided into zones (internal zones) whose areas are small enough for most problems to be pinpointed fairly accurately, and yet large enough so that the study does not become inundated with data. The suriounding area represents a number of external zones. The type and intensity of land use must be considered in zone size definition, as general rule and the average radius of
internal zones should be less than the mean trip (Broadbent, 1969(. The size of zones, if it is done on this basis, will appear as irregular shapes, smaller zones concentrated in Central Business District (CBD) area and large zones in outskirts of the city (figure 1.5). Apart from the nature of the study the size and shape of zones depend on : administrative boundaries, topgraphy, population, trip generation potentials, together with existing and proposed road network. However, there are possibilities of zoning on arid system using ordnance survey maps.

To facilitate rapid identification and machine processing of detailed trip information collected in the surveys, the traffic zones must be delineated and coded numerically.

1.7 DATA COLLECTION

Data is collected in each transportation study mainly for the following :

1. to calibrate models
2. to identify more precisely problems, domains, objectives and constraints
3. to yield some travel characteristics which may help identifying and solving the problem. The data collected usually consists of :
4. Origin-Destination (OD) Survey, which yields matrices of travel between zones, classified by journey purpose, type of vehicle and by time of day.
5. Cordon and Screen line counts relate to the number and type of vehicle passing certain points of Cordon and Screen line.

Figures are recorded on daily, or preferably on an hour basis.
3. Speed and flow measurement, for as many links as possible of the network, delays at junctions. Parking spaces and related aspects must be listed.
4. Land use survey related to the type and intensity of land use in each zone needed for analysis. Associated
surveys also needed concern demographic and economic status, population car-ownership, employment, retail sales, number of dwelling units and income of households etc.

1.8 DATA CHECKS

After the survey work has been completed it is necessary to tabulate and check the information recorded to determine thereliability of sample information. Planning data checks, screen line and cordon line checks are necessary to fulfil this aim.

In planning data checks, a comparison between 0-D survey data and independently derived estimates (which can be obtained from recent census) of population, dweling units and labour force etc. is made. Screen line checks are the best means of determining the completeness and accuracy of trip reporting. In this check the number of trips from one part of the study area to another across natural barifers, as determined from actual ground counts, is compared with the number of trips having origin on one side and destination on the other as determined from survey data. The cordon line accuracy. check involves the comparison of expanded data for trips made by study area residents crosing the cordon line as recorded in the survey with roadside counts.

The pattern and amount of work trips, by length distribution shows a greater degree of stability than for other trip purposes. In respect of the reliability of data, it is possible to place greater emphasis on work trips.

I. 9 TRIP PURPOSES

Different considerations have led transporation planners to define "trip purpose" which are groups of activities that may require travel from home for their excursion. These trip purposes are defined first as a basis for determining the price and utility of activities. Secondy, they form a means of identifying activities that have fairly common response patterns to transport system changes. The set of trip purposes usually employed by the transporation planner is:

1. Work trip
2. Shopping trip
3. Business trip
4. Social trip
5. Educational trip
6. Recreational trip
7. Other personal travel
Since "trips" are defined as one-way movements, an additional purpose of "home" is added to this set. Finally, other intermediate trip purposes may be defined, these relate to changes of travel mode.
1.10 HOUSEHOLD AS BASIC UNIT FOR TRIP GENERATION.
Characterisation of travel behaviour at the individual level, and related aggregation questions, led most transportation planners to define the behaviour unit of analysis to be a household.
A "household is a collection of individuals who choose to reside together". Oi and Schuldiner (1967) postulated that the household is the major decision making unit, as opposed to an individual person or an individual tripmaker. In this work the consumer unit is household.

1.11 SUMMARY.

The conventional "four-step" transportation process framework has been briefly presented in this chapter, and the current state of art in urban transportation models outlined. Some emphasis has been put on the basic data and requirements for such study.
Attention has been drawn to the behavioural unit "household" and its travel characteristics. The effectof income, general national economic growth and oil price change on travel is also introduced.
In the following chapter, the conventional transport models will be discussed. Their practicability and shortcomings will be highlighted.

CHAPTER 2

REVIEW OF CONVENTIONAL TRANSPORT MODELS

2.1 INTRODUCTION

Transportation planning as currently pract-
iced is extremely cumbersome, and very expensive. It is inflexible, and it is static rather than dynamic. That is, it is based upon measurements and estimated relationships from a single point in time, with an assumpion that these relationships and estimates will not change over time except as may be specified by extraneous changes in total population, in wealth, and in similar characteristics.

Transportation planning processes involve the collection and analysis of large volumes of data and runing of complex and costly computer models. This process is unideldly, inflexible and'slow and it is not certain that the level of detail and accuracy is well matched to the planning phase concerned (OECD Report 1974).

The four-step transport models as presented in Chapter 1, and shown graphically in figure 2.1 derive their general name from the presence of the above four distinctive steps. The key question is whether the increased level of detail, complexity and cost is justified by a corresponding increase in the accuracy and validity of the models relative to what could be achieved by a more simplified approach.

In this chapter each model is critically reviewed in order to provide a background against which a new approach can be assessed.

2.2
 TRIP GENERATION DEFINITION

According to the American manual on O-D Surveys a trip means a single journey with a certain purpose between two points made by a specified means of transport by a person aged at least 5. Journeys by motor cycle, bicycle or by foot do not count as trips according to this definition.

In principle any stop is considered the end of one trip and the start of another trip. Stops which have "secondary" purposes and which do not determine the choice of route e.g. depositing mail, buying petrol etc.) are disregarded (Overgaard, 1966).

Trip generation is a general term usually applied to both origin end (O) and destination end of a trip (D). Consequently generation has to be classified into trip production (origin end) and trip attraction (destination end) (Wooten and Pick, 1967).

Most British studies divided the trip into two groups :

1. Trips which have one terminal point at home ("home based").
2. Trips which have no terminal point at home ("nonhome based").
 in the second group are considered generated at the origin. Home based trips are generally between 85 percent and 90 percent of all trips, this percentage is fairly constant.

In this study, trip generation is defined as the average number of one-way journeys generated by a household per week. The return journey is a complementary one which occurs within 24 hours of the day.
2.3 TRIP GENERATION COMPONENTS

Figure 2.2 shows how traffic on a new improvedroad may develop. The total traffic consists of the following components :

1. Present traffic: This is composed of traffic on the old roads which can be found by survey. The present traffic characteristics are usually needed for calibrating the models constructed to describe the travel pattern in the study area.
2. Normal growth : This is due to increasing population and income, and consequent increasing in car usage.
3. Diverted traffic : Improvement of one highway will
often result in the immediate attraction or diversion to it of some of the traffic formerly using parallel or alternative routes. On the other hand, if the road is a new one the whole of its traffic upon completion will have been diverted from other links. This traffic already exists so it is not part of the trip generation components; it is an amount required only at the last stage of planning, i.e., the "assignment stage".
4. Generated traffic : when there is a reduction in the cost of travelling between two points as a result of road improvement, certain journeys which were possibly not worthwhile before the improvement, become worthwhile afterwards. Thus traffic between the two points will increase (Dawson, 1968) . This component accounts for up to 30 percent of present trafic.
5. Development traffic : is another type of generated traffic caused by providing a new and convenient level of accessibility for land not previously served adequately by highways. Building and new development are then likely to occur. Moreover, intensified commercial, industrial and residential use can be expected (Matsonetal, 1955). 2.4 CONVENTIONAL TRIP GENERATION MODELS 2.4.1 Introduction
"Trip end forecasting" is based on the principle that "land use generates traffic". The level of traffic generation, and in particular the mode of travel, depend on a large number of factors which can be conveniently divided into the following groups : (Douglas and Lewis, 1970).
6. Socio-economic variables. Socio-economic variables largely measure the desire and potential of any household to make a trip. The variables normally considered include car ownership, household income, household size, wage earners per household and occupational status.
7. Location variables. Location variables reflect the surrounding environment and should ideally measure the spatial separation of households from each of the amenities which
they desire, e.g., schools, shops and workplaces.
Conventional methods of modelling trips are
"Regression Analysis" and "Category Analysis".
Both models are discussed below.
2.4.2 Regression analysis

Regression analysis in a general sense simply assumes that some variable 'Y' responds to changes in other ' X^{\prime} variables. The Y-variable is the quantity under study (here, number of trips) and is known as the "dependent" variable. The X-variables are those which exhibit a causal effecton the
 (car ownership, household income, etc.).

The most commonly used method has been that of "least squares" regression. For computational purpose the response surface has generally been assumed to be linear. The model can be expressed by :

$$
\begin{equation*}
Y=a_{0}+a_{1} X_{1}+\ldots+a_{n} X_{n} \tag{2.1}
\end{equation*}
$$

where

$$
\begin{aligned}
& Y \text { is the dependent variable (numberof } \\
& \text { trips } \\
& X_{1} \ldots X_{n} \text { socio-economic variables } \\
& a_{0} \text { is the intercept term } \\
& a_{1} \ldots a_{n} \text { parameters (regression coefficients) }
\end{aligned}
$$

The use of least-square regression analysis involves a number of assumptions relating to the distribution of the "distrubance term" (the difference between observed Y and that estimated by the model), the independence and accuracy of the explanatory variables, and the shape of response surface. The various statistical tests associated with the least-square model may become invalid if the basic assumptions are not fulfilled.

The intercept term (a, and the regression coefficients $a_{1}, a_{2} \ldots a_{n}$) are calculated from observed data by using the principle of least-square, i.e., the sum of the squares of residuals or deviations from the estimated line is minimised.

After fitting the best equation, the model is applied to find Y of a future year using X values which are independently estimated for the future year. Their corresponding coefficients are assumed to remain constant throughout the period.

Different levels of aggregation are usualy checked as a unit of observation. In formulating zonal regression models, there is an apparent choice between the use of "aggregate" and 'rate" variables. "Aggregate"variables express total zonal values such as trip/zone and person/zone, while "rate variables" express mean zonal values, such as trips/ household/zone and person/householdzone. On the other hand disaggregate models which make no reference to zone boundaries considers households as basic trip making
units. It should be noted, however, that the ultimate aim is to produce an estimate of total zonal trips. Consequently any disaggregate model must be capable of expansion to the zonal level. The level of disaggregation can be based on mode of travel and trip purposes, particularly when data is available for such classification.

Widespread computer availability allows flexibility in the development and testing of the regression models. A stepwise procedure is used for selecting different combination of independent variables. The output from a typical stepwise regression program is shown in Table 2.a.

It must be emphasised that the regression method can be used to calculate both trip generation and trip attraction.

The typical equations (Table 2.a) can be tested statistically. The statistics usually considered are the coefficient of simple correlation (R) which is a measure of association of variables. R^{2} is the proportion of variability explained by the equation.

Other tests are "t" tests to see whether acoefficient value differs significantly from zero or not; the "F" test is used to test the significance of relationship between the
dependent variable (Y) and the independent variables X_{1}, X_{2}.. X_{n}; the "confidence interval" for the regression ine is another way of showing one usefulness of the model for forecasting. A summary of procedure for both linear simple and multiple regression analysis presented in Appendices 。1 and 2 .

Table 2.a.

```
person trip/zone = = 翇
person trip/household/zone = 3.2 X_
```



```
Vehicle trip/zone = = .5 ( 
vehicle trip/household/zone= 1.3 ( 
vehicle trip/household = 1.1 + 1.5 X 
X_ = person over 5 years/zone
X ( person over 5 years/household/zone
X = cars/household
X4 = worker/household
X 
\mp@subsup{x}{6}{}}=\quad=\quad\mathrm{ worker/zone
X_ = cars/household/zone
X ( worker/household/zone
\mp@subsup{X}{9}{}}=\quad=\quadcars/househol
X ( w wage earner/household
```


2.4.3 Category analysis

This method is based on determining the average number of trips (dependent variable) for defined categories of households. Unlike the regression method, category analysis does not require the formulation of any kind of equation
directly. It requires the allocation of households to different categories; those categories are however arbitrary. In British transportation studies, households were allocated to 108 categories as in the following table:

Table 2.b

X_{1}	X_{2}	X_{3}
Cars/ household	Household structure	Household income/ per year
0	0 employed residents and 1 unemployed adult	Less than £500
1	0 employed residents and $2+$ unemployed adults	$£ 500$ to $£ 1000$
$2+$	1 employed resident and 1- unemployed adult	$£ 100$ to $£ 1500$
	1 employed resident and $2+$ unemployed adult	$£ 1500$ to $£ 2000$
	$2+$ employed residents and 1- unemployed adult	£2000 to £2500
	$2+e m p l o y e d$ resident and $2+$ unemployed adults	£2500 or more

The combination of these three variables (X_{1}, X_{2}, X_{3}) make $3 \times 6 \times 6=108$ categories.

Furthermore, trips generated per day by a household of a given category include trips of several types, so that the total number of trips is broken down by the mode of travel and purpose of the trip.

Three modes and six purposes are isolated as
follows_ :
Modes :

1. Driver of cars
2. Public transport passenger
3. Car passenger

Purposes:

1. Work
2. Business
3. Education
4. Shopping
5. Social
6. Non home based

Purposes 1 to 5 have their origin or destination at home and are defined as home-based; this distinguishes them from purpose 6.

Each of the 108 categories of household has associated with it a trip rate for each of the $6 \times 3=18$ modes and purpose combinations. From the base year data, an average rate can be found for each category. Knowing the number of each household category in each zone for target year, the task of predicting future zonal tripsis confined to a simplepror cedure obtained by multiplying the rate of trips of acertain category by the number of households in that category. All categories can then be summed to yield the total number of trips for the zone under consideration.

The assumption in this method that these trip rates are stable over time, so long as factors external to the household remain the same. It is assumed that the tripmaking activity of a household will not change unless it aquires another car, another member, or greater income, and that when it does it willemulate those households already in the category it moves into (Wootton and Pick, 1967).

The problem is to predict the number of households, in each category in each zone, for a future year. For this purpose, different probability distributions are used, mainly the following :

The distribution of households by income.
The average and standard deviation of income for the study area traffic zone is assumed to be known, and the households are classified into income groups by assuming that the income distribution is represented by a continuous p bability density function $\phi(X)$, the number of households having income X such that $a<x \leqslant b$ is given by

$$
\begin{equation*}
N \int_{b}^{a} \phi(x) \cdot d x \tag{2.1a}
\end{equation*}
$$

where N is the number of household in the zone, the function $\phi(x)$ is defined so that its mean and standard deviation are equal to the known values. A Gamma distribution is used so that:

$$
\begin{aligned}
\phi(x) & =\frac{\alpha^{n+1}}{n!} \cdot x^{n} \cdot e^{-x} \\
\alpha & =\frac{\bar{x}}{\sigma^{2}} \\
n & =\alpha \bar{x}-1
\end{aligned}
$$

This distribution was found to fit the base year data of West Midland Transport Study (Wootton and Pick, 1967), for forward projection of income distribution α was recalculated according to

$$
\bar{\alpha}=\alpha(1+g)^{y}
$$

where g is the annul growth rate of income relative to the cost of living. $\bar{\alpha} i s$ the calculated value of α and y is the number of years for which the projection is required. This process results in the average income increasing by a factor of ($1+g)^{y}$ during the projection period, while leaving the ratio of average to standard deviation unchanged. However, if resultant synthesised household income distribution is different from observed values, it is necessary to apply a correction factor to each income group.

Household car ownership distribution.
The distribution of household by car ownership has been found to be related closely to the distribution of households by income. Hence"conditional probability" functions have been formulated which express the probabilities of owning n cars 'given' the household income (x) relative to the price of cars. Gamma functions as before might be fitted to the data, the form is :-

$$
p(n / x)=a_{n} X \cdot m_{n} \cdot e^{-\frac{b}{n}}
$$

where a_{n}, m_{n} and b_{n} are constants.
This conditional probability can be found
for the average values of constants for each level of car ownership mainly 0,1 and. 1 . For projection purposes it is assumed that the function $p(n / x)$ is stable with respect to time and that the income distribution relative to the price of cars will change i.e., lowering the price of cars relative to income increases the probability of owning acar.

Family structure distribution.
Total family size and the number of employees in the family are used to define the family structure groups. Family size is synthesised by the "Poisson"distribution. The probability that a household has n members of whom (r) are employed is then given by :

$$
P(n, r)^{\prime}=\frac{e^{-\alpha} \alpha^{n} n!}{r!(n-r)!(n-1)!} P_{n}\left(1-P_{n}\right)^{n-r}
$$

where
P_{n} :is the probability that a member of an member household is employed;
α : average family size-1 (Douglas and Lewis, 1971).
Using the above expression it is possible to predict for each zone the number of households falling into various family structure groups. The only input required is the average family size and average number of wage earners. Reiteration is then used to combine the separate distributions by income, car ownership and family structure in order to obtain the allocation of households to the 108 categories.

2.4.4 Comments on trip generation models.

Regression analysis suffers from the disadvantage that a inear relationship is usually assumed between the dependent and independent variables, that the independent variables are assumed to be uncorrelated with each other
and continuous. When two or more independent variables are highly correlated "Multicollinearity" exists. The practical interpretation of multicollinearity is that two or more correlated variables are explaining largely the same effect and may therefore be considered alternative causes. For example, in the Table ${ }_{5}^{2}$.c examination of a simple correlation matrix, produced from the data of Glamorgan land use/transport study, indicates that employees per household has a highly significant correlation (0.685) with householdincome. The income is also correlated with other variables. Consequently the individual effects of these variables on tripmaking behaviour would be somewhat obscure if both were

> Table 2.c

Simple correlation matrix.

	Trips	Employee	Person	Cars	Income
Trips	1	.529	.420	.476	.505
Employee		1	.542	.441	.685
Person				1	.294
Cars				1	.431
Income					

Source: Douglas and Lewis, 1971 .
included in the regression equation. In fact, in many studies the maincause of tripmaking behaviour, i.e., the income level, is discardedin final equation for this reason.

Category analysis has freed the analyst from many of the assumptions and problems inherent in the regression analysis. This technique does, however, present problems of its own, particularly relating to statistical distribution theory and sample size.

Both methods involve many independent variables.
This implies costly and time consuming study processes. Furthermore, these variables represent factors outside the character of the transport network and level of service. The structural deficiency of these methods is their failure to establish an inter-relationship between the
number of trips made and the character and price of transportation service actually available. This typeof forecast s uggests, or at least implies, that the total amount of travel is in no way related to the existence of congestion. Clearly such an assumption is questionable if not incorrect (Wohl and Martin, 1967).

There is evidence that reduction in the time and money costs of a trip will increase the number of trips demanded daily (Wilson, 1974). Studies made on both old and new facilities show a substantial increase using both roads when the new facility is completed. These increases continue for several years but at diminishing rates (Matson, 1975) .

The conventional trip generation methods largely ignored "generated traffic" which arises from a greater level of service and consequently greater use of vehicle.

In conclusion, the method of trip generation estimation will be more realistic if one considers the ease of travel which will produce more trips, and alsofocus on the real cause of travel behaviour i.e., the household income. In this study a great emphasis is put on formulating a new method of trip generation based on sound economic theory of demand and supply.

2.5 TRIP DISTRIBUTION MODELS.
 2.5.1 Introduction.

Trip distribution techniques are used to estimate the number of trips made between pairs of zones once the total number of trips starting from, and ending in, each zone is known. In other words, each zone is taken one at a time, and a determination made of the zones to which its produced trips will be attracted.

Distribution is made on the basis of the attractiveness of potential destination zones and costsor "impedence" of travel. To fulfil this aim, models are used as described below.

In general it is assumed in trip distribution that there is an existing $0-D$ table. That defines the number of trips between the sets of origin (i) and destination zones (j). There is also an existing network of links and nodes defining the time, distance or cost of travel between the zonal centres for all origin zones (i) and destination zones (j). Additionally, estimates have been made of future zonal trip productions and attractions, (O_{i}) and (A_{j}), for each zone, produced in trip generation stage. As estimate has also been made of the future network travel impedences and it is then required to find, on the basis of these measurements, the future equilibrium flows ($\mathrm{T}_{\mathrm{i} j}$) between the zones.

The basic method that is used by all the models commences with a calibration phase, in which the model is set up to replicate the current pattern of travel. The calibrated model is then used to extrapolate into the future by applying it to estimates of new O_{i} and A_{j} and the travel impedence for the design year. Two basic trip distribution models are commonly used : "growth-factor models" and "gravity models" as outlined below.

2.5.1 Growth-factor models.

The growth-factor models represent the simplest form of trip-distribution based on a simple expansion of existing interzonal trips by means of zonal growth factors. Growth-factor models are still used in current studies for the forecasting of those trips that have one or both ends outside the study area. This is because for such trips, there is a lack of the detailed characterisation of both origin and destination needed for more sophisticated models. (Stopher and Meyberg, 1977).

There are many types of growth-factor models, for example, the "uniform-factor model", the "average-factor model", the "fratar model" the "Detroit model" and the "Furness model". The growth-factor models assume that the future interzonal trip movements can be predicted by using some measurement of the anticipated growth of trip making
within the area being studied. It is assumed that the interzonal trip transfers will be independent of changes in the. network. The primary differences between each of these techniques lie in the complexity with which the growth factors are applied.

The Furness method presented here is a typical
growth-factor model. It is, however, necessary to firstof all introduce the appropriate notation.

List of symbols used in the statements:-
$t_{i j}=$ number of trips from zone ito zone j
$t_{\text {ji }}=$ number of trips from zone j to zone i
$g_{i} \quad=\quad$ number of trips generated by zone i

gTi. ${ }^{*}$. estimated number of "trip ends" at origin zone at forecast year.
$a T_{i}^{*}=$ estimated number of "trip ends" at destination zone
at forecast year.
gF_{i} and $a F_{i}$ grow'th factor at origin end and at detination end.
Step $1: \quad g F_{i}=\frac{g T_{i}{ }^{*}}{g T_{i}}$
Step $2: \quad a F_{i}=\frac{a T_{i}{ }^{*}}{a T_{i}}$
Step $3: t_{i j}^{\prime}=t_{i j} \quad \underline{g} F_{i}$
Step $4: \quad a F_{i}^{\prime}=\frac{a T_{i}{ }^{*}}{a T_{i}^{\prime}}=\frac{a T_{i}{ }^{*}}{\sum t_{j i}^{\prime}}$
$j \neq 1$
Step $5: t_{j i}^{\prime \prime}=t_{j i}^{\prime} X_{i}{ }_{i}^{\prime}$
Step $6: \quad g F_{i}{ }^{\prime}=\frac{g T_{i}{ }^{*}}{g T_{i}{ }^{\prime \prime}}=\frac{g T_{i}{ }^{*}}{\sum_{i \neq j}{ }^{\prime \prime}{ }_{i j}}$
Repeat from step 3 till stable results obtained.

The statement given for Furness method deals with directional movements from one zone to another. Themethod may also be applied to non-directional movements. The accuracy required of these calculations in practice should not be more than 5%. The method achieves a smaller improvement in accuracy with each successive iteration (Aitken, 1965).

2.5.3 Gravity models.

The gravity model is in fact the best known model of spatial interaction which is defined as the flow of activity between different zones. For almost 100 years researchers have used analogies to Newtonian gravity to explain the movement of groups of people. This concept can be used to describe person trips of vehicle trips especially in urban areas.

In mathematical terms the model is based on the hypothesis that the interaction between an origin zone i and a destination zone j is :
(i) directly proprtional to the demand generated (or produced) at the origin zone i;
(ii) directly proportional to the number or size of the opportunity (or attractions) in the destination zone, j;
(iii) proportional to some function of the separation, distance, time or cost of travelling. The function being one which decreases with increased costor distance. Based on the above hypothesis, there is a family of models rather than one model.

According to assumptions made above, the general
form of the gravity model can be stated as :

$$
\begin{equation*}
T_{i j}=K D_{j} O_{i} f\left(c_{i j}\right) \tag{2.1ヶ}
\end{equation*}
$$

$T_{i j}$: is the interaction between zone i and zone j, (number of trips),
$0_{i} \quad$: is the activity in the origin (total number of trips produced by zone i),
$D_{j} \quad$: is the activity in the destination (total number of trips attracted to zone j),
$f\left(c_{i j}\right)$: is some function of generalised travel costor impedence between i and j,

K : is a constant of proportionality.
A well known form for the function of generalised travel cost has been Tanner's function.

$$
\begin{equation*}
f\left(c_{i j}\right)=\frac{e^{-\lambda} c_{i j}}{c_{i j}} \tag{2.2}
\end{equation*}
$$

where λ and n represent parameters or coefficients of calibration, to be found from base year data and assumed to remain constant for future years.

The model presented in equation (2.1) represents the unconstrained situation for there are no constraints on the origin or destination of trips. However, the model is usually subject to an overall accounting constraint of the form.

$$
\begin{equation*}
\Sigma_{\mathbf{i}} \quad \Sigma_{\mathbf{j}} \mathrm{T}_{\mathbf{i} \mathbf{j}}=\mathrm{T} \tag{2.3}
\end{equation*}
$$

(see Table 2.e)
where T is the total number of trips in the area.
The gravity model has to satisfy constaints, either at one end, origin or destination (single constraint), or at both production and attraction ends (doubly constrained). These constraints can be stated as follows:

$$
\begin{align*}
& \sum_{\mathbf{j}} T_{i j}=0_{i} \tag{2.4}\\
& \sum_{i} T_{i j}=D_{j} \tag{2.5}
\end{align*}
$$

and note that

$$
\sum_{i} \quad \sum_{j} T_{i j}=\sum_{i} 0_{i}=\sum_{j} D_{j}=T
$$

The appropriate model satisfying constarint equations (2.4)
and (2.5) is written as :-

Table 2.e
TRIP MATRIX

Note : It is necessary in any study to provide a Trip cost Matrix corresponding to the above Trip Matrix.

$$
\begin{equation*}
\left.T_{i j}=A_{i} B_{j} O_{i} D_{j} f_{i j}\right) \tag{2.6}
\end{equation*}
$$

In this case the term A_{i} and B_{j}, which are called "balancing" or "normalising" factors, replace the constant K, in (2.1) A_{i} and B_{j} can be found by summing (2.6) over j and i respectively and these terms evaluated as :

$$
\begin{align*}
A_{i} & =\frac{1}{\sum_{j} B_{j} D_{j} f\left(c_{i j}\right)} \tag{2.7}\\
B_{j} & =\frac{1}{\sum_{i} A_{i} 0_{i} f\left(c_{i j}\right)} \tag{2.8}
\end{align*}
$$

for doubly constrained situation the production-constrained model is subject to constrained equation (2.4) and is written as :

$$
\begin{align*}
& T_{i j}=A_{i} 0_{i} D_{j} f\left(c_{i j}\right) \tag{2.9}\\
& A_{i}=\frac{1}{\sum_{j} D_{j} f\left(c_{i j}\right)}
\end{align*}
$$

As there are no constraints on the destination in (2.9), then in general the predicted and actual amounts of trip in j are not equal, that is:

$$
\sum_{j} \mathrm{~T}_{\mathrm{i} j} \neq \mathrm{D}_{\mathrm{j}}
$$

In a similar way, the attraction-constrained model is only subject to constraint equation (2.5), and the model is written as :

$$
\begin{align*}
& T_{i j}=B_{j} 0_{i} D_{j} f\left(c_{i j}\right) \tag{2.10}\\
& B_{j}=\frac{1}{\sum_{i} 0_{i} f\left(c_{i j}\right)} \tag{2.11}
\end{align*}
$$

"The equation describing the frequencies of different trip distributions can be interpreted as an entropy of the system, and Wilson's method is referred to as the method of "entropymaximising". Entropy is maximised subject to accounting
constraints such as those in (2.4) and (2.5) and also subject to a constraint on the cost of travel C. In the case of production-attraction constrained model, this constraint is of the form, (Batty, 1976).

$$
\begin{equation*}
T_{i j} c_{i j}=C \tag{2.12}
\end{equation*}
$$

Although the original application of this approach was in the field of transport, Wilson has extended the method for residential location behaviour and housing. The cost constraint as in formula (2.12) assumes that there is a total cost budget for travel.
2.5.4 Comments on gravity models.
"All forms of the gravity model make the assumption that size of origin, size of destination and distance between these places are independent variables. parameter values obtained should consequently have meaning and a general factor, which we may call friction of distance, should be available for interpretation. However, it is fairly obvious that flows will depend on the spatial distribution of jobs and homes and one wonders how the gravity model takes this into account" (Sayer, 1977).

Regarding the dynamic of the society, and the nature of space-economy, and change in map pattern of almost all activities in urban areas in long-term, one cannotexpect the parameters of the model to hold constant during the process of urban change. Because of lack of time series data a firm conclusion cannot be stated about stability of the parameters over a period of time.

The gravity model does not take into account the behaviour of the "analysis unit" i.e., the household. The phenomenon of higher income people to make longer trips both for work and other purposes is a real life fact . If this is taken into consideration the trip distribution model should be applied by household income group.
2.6

MODAL CHOICE MODELS.
2.6.1

Introduction.
The modeling stage termed "modal choice" or modal
"split" is concerned primarily with an attempt to allocate person trips to the various alternative modes available. It is usually concerned in practice with dividing trips between cars and public transport (buses, etc.). The basic interpretation of modal split is the assumptions that travellers make rational choice between the available modes, based on :
(a) characteristics of those modes
(b) characteristics of the traveller himself.

It is assumed that this evaluation is performed within the constraints imposed by the purpose and destination of their trip.and their attitudes towards alternative transportation system characteristics.

There are basically two types of modal choice models, the type being determined by the point in the modeling process where they are considered to operate. These two types are presented in the following sections.
2.6.2 Trip-end models.

A"Trip-end model precedes trip distribution, and has
as its function the prediction of the split of total trips generated by each zone among the available modes. The tripdistribution phase, which follows the trip-end model-split model, involves the construction of separate distribution models for each mode" (Stopher and Meyburg, 1977).

Trip end models usualy estimate total public transport share of trips to all destinations from each origin zone. For this purpose the regression analysis is mostly used. In general, these kind of models are able to reproduce the survey data to an adequate level of accuracy. However, these models still leave a considerable amount to be desired in their ability to produce acceptableforecasts. This is largely a result of the fact that the models are
not based on sound reasoning of the actual processes that determine choice of transport mode. The independent variables used were not directly related to the level of service provided by public transport. Consequently results from most of the trip-end modelswere unsatisfactory. 2.6.3 Trip-interchange modal choice model.

The other principal type of modal choice model is termed trip interchange model, because it seeks to split each trip-interchange volume between the available modes.

The choice or "split" between two modes is seen in this model as a function of four variables which describe both the transportation alternatives between each pair of zones and the socio-economic characteristics of the people who avail themselves of the alternatives (Dickey, 1975). These variables are :

```
        i. relative travel time (TTR)
ii. relative travel cost (CR)
iii. economic status of the tripmaker (EC)
iv. relative travel service (L)
```

TTR represents the ratio of the door-to-door travel time by public transport to that by car.

CR represents the ratio of cost of the trip by public transport to that by car.

EC represents median income per worker in the zone of trip production.

L represents travel time ratio, other than "in-vehicle-time"
Having interpreted these variables in a definite manner, regression analysis might be utilised to relate the two variables of public transportshareof tripsand relative travel time (TTR). These were then constituted within each discrete stratification of CR, L and EC, and graphically presented in form of diversion curves (seefigure 2. 3). 2.6.4 Comments on modal choice models.

The division of trips between the modes of transport available can be done before, or after, the distribution stage. In the former case the effect of transportation
system efficiency on mode choice is lost and in the latter case movements between zone pairs cannot normally be affected by mode characteristics (OECD, 1974). A potentially fruitful approach may be based on economic background and historical behaviour of traveller in mode choice and consequently predicting the percentage share of public transport. In this consideration, relevance will have to be given to the level of service provided by each mode.
2.7 TRAFFIC ASSIGNMENT.
2.7.1

Introduction.
Traffic assignment constitutes the final stage in the travel forecasting process. This step involves the allocation of the distributed volumes of trips, by mode, to individual network links. It represents the choice of routes for a fixed journey between a pair of origin and destination points (or zones), to minimise certain criterion. This criterion may be distance, time, cost, convenience, or some other quantity - o'r indeed some quality - which is difficult to quantify. It is also possible to use as the criterion, "generalised cost", which depends on a certain combination of each of the individual variables.

Results of assignment calculations provide data for reviewing traffic flow, network efficiency and evaluation of the location of present and proposed transportion facilities together with economic feasibility of proposed changes in the network, etc.

The assignment of each vehicle journey to a route through the road network is a process which can be performed in many different ways. Three techniques are described : (1) all-or-nothing, (2) multipath and (3) capacity restrained assignment. 2.7.2 All-or-nothing assignment.

The basic principle of all-or-nothing assignment is that all drivers will follow the shortest route from origin to destination and no drivers will follow any other route. When two or more equally short routes exist for a
journey, then all traffic making in that journey is divided equally between the routes.

The principle of all-or-nothing, introduced by Wardrop, 1952, and its popularity in the fifties, was due to its simplicity in concept and application. However, this technique often leads to unrealistic over and under loading on some links, so theconcepts of multipath and capacityrestraint are evolved.
2.7.3 Multipath assignment.

The multi-path technique of trafic assignment has been developed from the "allor-nothing" method to allow for the effects of driver perception, and for almost equally short routes. The method consists of a sequence of "n" all-or-nothing calculations (iterations), each constructing its trees on the network with a (different) unique set of journey units. Each load is a proportion of $1 / n$ of the total traffic to its shortest path, trafic flows on each link, and are formed by the accumulation of journeys passing along the links each time they are part of a tree.

Journey unit values given in the original road network description for each pair of adjacent links and are taken as being the mean values of distribution of journey units. For each all-or-nothing calculation in the sequence, a particular journey unit value is selected by random sampling from each distribution. This sampling process produces some values greater than the mean and some less with a tendency to give a unique set of journey units for each iteration.

The most commonly used distribution is either "normal", with a spread of values defined by its standard deviation, or "rectangular" with a spread defined by its range. Actual value of the standard deviation or range may be constant for all distribution set, or it may be stated as a constant percentage of each distribution mean value. The assignment of traffic to a road system by multi-path technique implies that each section of road has an infinite
capacity. To improve the realism of the calculation, the capacity-restraint method is introduced.
2.7.4 Capacity-restrained assignment.

Different approaches are used to relate the amount of flow on each link with expected speed at that volume through "speed-flow" relationship, using an iterative method to adjust link time for the next iteration.

The method used in the University of Strathclyde is as follows:

If "n" iteration is specified, then $\frac{1}{n}$ of the traffic from each origin is assigned in each iteration. To applythe speed-flow relationship correction for the next iteration, the flow actually assigned to a link is "projected forward" to the end of the calculation. The object is usually to reach a stable result for all links in the network while using the smallest number of iterations possible.

One of speed flow relationship is formulated by the Bureau of Public Road (Assignment Manual, 1964).

$$
T N=T_{o}\left[\left(1+0.15(V / C)^{4}\right]\right.
$$

in which
$T N=$ the link travel time at the assignment volume $T_{0}=b a s e t r a v e l$ time at zero volume, and
$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{O}}+\left(\mathrm{T}_{\mathrm{N}}-\mathrm{T}\right) / 4$
Where T_{A} is the adjusted travel time for the next iteration (only one quarter of the adjusted difference is applied to minimise oscillations in loading through successive iterations.

In Britain, Department of the Environment, introduced a speed flow relationship for use in transportation studies as follows :

$$
V=\frac{V c}{1+\frac{V c}{8 L}(E-1)}
$$

where
 2.7.5 Comments on assignment techniques.

In general, all the techniques discussed in this section have been based on assignment to a minimum path through a network. The assignments are founded upon the hypothesis that the basis of route choice is a consideration of travel time only.

The simpler all-or-nothing assignments generally show problems of instability and lack of realismin that a very small difference between two alternative routes produces a mass switching to the shortest route. Although the other methods, multipath and capacity restraint, produce certain refinements in the assignments, procedure, they also introduce some artificiality into the process. Their structure of simulation makes the procedure of calibration less valid than is the case in other models.

A new method suggested in this study for assignment technique provides a better understanding of the characteristic unit of route choice.

2.8 SUMMARY.

Large-scale computerised models form the glamourous end of demand forecasting andhave accordingly attracted a great deal of attention. However, these models rely on behavioural hypotheses which are often much cruder than the apparent sohpistication of the main model. The calibration process, no matter how carefully carried out, rests on very simple assumptions such as the propensity to travel, modal choice, etc., and are related to a small set of easily
measured factors. Some assessments of the reliability of these assumptions can be achieved by examining their stability through historic time, (Bayliss, 1977). The sophistication of model technique is questionable until the behavioral basis is strengthened. This requires very careful in-depth analysis of travel behaviour of different types of people, in different circumstances and their response to change in transport service quality as well as their own income.

Moreover, this in-depth research reaches the point where land use/transport models, single mode demand models and measurements of elasticities of demand come together. Its success therefore contributes not only to the better performance of different families of models but to their linkage and therefore towards a generalisation of the theory of transport demand.

A research group of the Organisation for Economic Cooperation and DEvelopment (OECD) prepared áreport in 1974 on the possibilities for improvement and simplification of urban traffic models. The classical type of detailed transportation study takes too much time and money. It involves the collection and analysis of large volumes of data and the running of complex and costly computer models. This process is unwieldy, inflexible, slow, and it is not certain that the level of detail and accuracy is well matched to the planning phases concerned. The OECD stated that simple and reliable traffic models are urgently needed(Leibbrand, 1977).

THE ECONOMICS OF TRAVEL, 1
 DEMAND FOR TRAVEL

3.1

INTRODUCTION.

Basically any demand fortravelfrom the need to fulfil consumers satisfaction. Trips are usually intermediate goods, which are jointly demanded with other economic goods. The trip then forms an integral part of some larger activity such as shopping, work etc. (the usual trip-purpose classification presentedearlier in Chapter 2).

In the economic sense, demand is the quantity of a commodity or service which consumers wish, and are able to buy at a given price in a given period. Demand in economics thus goes beyond the every day notion of 'desire' or 'need' and unless the desire is made effective by ability and willingness to pay it is not 'demand'.
"The amount of a commodity that a consumer will be prepared to buy in a given period depends upon the price charged, the quality of the commodity, the service suppied with it, the price of related (substitute or complementary) commodities, his preferences between alternative commodoties, his income and his expectation (of future income and prices)". (Seldon and Pennance, 1975). To relate quantity demanded to so many variables at once it not practicable. The economist therefore attempts to isolate what he considers (either intuitively or from observation of events in the market) to be the most important variable and to relate the quantity of demand to any change in it, assuming all other things constant. In this way demand is generally expressed in relation to price. Observation of thebehaviour of buyers in the market then yields the following basic generalisation, or the law of demand" "That is, the greater
the amount to be sold, the smaller must be the price at which it is offered in order that it may find purchasers; or, in other words... the amount demanded increases with a fall in price, and diminishes with a rise in price" (Marshall, 1920). But demand can also be expressed as a function of income, service, quality, etc.

The movements of people within an urban area can be regarded as an economic good. The consumption of travel activities necessarily requires an allocation of scarce time and money resources. Although transport studies have recognised the economic nature of travel, they have in general, neglected the analytic techniques of economics. "The principle of economics, which provide explanations for other economic phenomena, should also apply to consumer behaviour in urban travel", (Walter and Shuldiner, 1967).

According to the law of demand, every fall however slight in the price of travel (for car, pence/Km) will, all other things being equal, increase the total travel distance of a household, and consequently the number of trips will increase. Obviously this phenomenon must be reflected in trip generation models.

It is instructive, and helpful, to express the law of demand in a graph. If price is measured vertically (on Y axis) and quantity horizontally (on X axis), then if the price is assumed to change continuously by small amounts, the law of demand given above would yield a sooth "demand curve", falling from left to right indicating that the lower the price the larger the demand. Diagram 3.a
3.2 ECONOMIC ANALYSIS OF TRAVELLERS' BEHAVIOUR.

The individual, in order to engage in some activities, is forced to spend some of his time in travel to work, to shop etc., and unless he walks, he must lay out money cost as well as time. The combination of time and money costs of travel is usually termed the "generalised cost" of travel.
"The time and the money, or generalised cost, which has to be spent traveling to engage in an activity or purchase of commodity, forms part of the price of the activity or commodity, just as much as the direct money outlay involved when the destination is reached and the activity enjoyed or commodity bought. This implies that the price of the activities the individual may wish to engage in, or commodities he may wish to buy, has two components:- first, that of access to them and second, the price at the destination", (Harrison, 1974).

Generalised cost of travel can be reduced by investment in a facility such as a road which reduces journey times as well as money costs of travel. For the traveller two basic consequencies follow:
(1) Because the generalised cost of his existing journeys are reduced, the income of the consumer is directly increased either by an increase in the money he has available to spend on other goods or services (if money costs have been reduced) or indirectly by an increase in the time he has available (if journey has been speeded up). This can be used to generate more income if additional employment opportunities are open to him. The time saved can alternatively be spent on activities which yield "utility" (utility in economics is the power of a commodity or service to give satisfaction by meeting a want) directly to him.
(2) The relative prices of the various commodities or activities to which he allocates his time and money are altered, because the components of their price to him consists of the generalised cost of travel which has changed. In general he may be expected to shift his behaviour in favour of those activities the price of which, in terms of generalised cost of access to them, has fallen most. That is, he will tend to change his travel pattern in favour of activities which are at further distances from his location, from activities he formally carried out at or near home. The frequency, destination and the length of the triphe makes will be increased as a result.

In diagram 3a the demand curve DD drawn for convenience as a straight line, shows the quantity of travel demanded with price.

At high prices very little transport would be demanded, and most activities would be carried out at home or within a very restricted radius which would often need only a walking trip (walking trips according to the definition put forward in transportation planning process are not considered as "trips"). As cost falls, demand for travel generally increases and journeys become longer and more frequent, reflecting the various adjustment of the traveller's behaviour.

A measure of the effect brought about by a road improvement can be defined by considering how a change in level of generalised cost from C_{1} to C_{2}. This leads to an
increase in the quantity of travel demand from Q_{1} to Q_{2}. A classical study of "consumers' surplus" is generally associated with the name of Alfred Marshall (Marshall, 1920) who defined the measure of a consumers'surplus as "the excess of money a consumer is willing to pay over the amount he does in fact pay". In this example, the area $C_{1} D_{1} A C_{2}$ represents the consumers' surplus. In Cost-Benefit analysis this area is usually regarded as a directbenefit due to reduction of cost from C_{1} to C_{2}, I Itepresents a fall in the generalised cost of travel currentlybeing carried out on those trips made before the cost change. The second component area $D_{1} A D_{2}$ corresponds to the second type of response to a change in generalised cost, the various shifts of behaviour of those activities which involve more travel, longer trips, more frequent trips or new trips (generated trips). The amount of benefit gained per vehicle kilometer travelled is not the same for this source of benefit as it is for the first. The amount varies, just to the right of the point D_{1}, in Diagram 3a, the extra unit distance of travel induced by the reduction in generalised cost lead to a benefit, but as a point D_{2} approached,thebenefit diminishes until at point D_{2} it disappears entirely. The average benefit thus can be seen to be half the cost change.

The quantity of travel demand can be considered in terms of number of trips or total distance travelledfor the consumer while generalised cost can be expressedin terms of pence/km.
3.4 ELASTICITY OF DEMAND.
3.4.1 Introduction.

The rate at which the quantity demanded changes in response to changes in any of the determining factors is described in terms of a series of elasticity concepts.
Alfred Marshall, 1920, introduced the conceptof elasticity of demand into economic theory. He said that "the elasticity (or responsiveness) of demand in a market is great or small according to the amount demanded increases much or
little for a given fall in price, and diminishes much or little for a given rise in price".
3.4.2

Price Elasticity.

The price elasticity of demand (ef may be expressed according to the above definition as :

$$
\begin{aligned}
\mathbf{e}_{\mathbf{p}} & =\frac{\text { proportionate change in amount demanded }}{\text { proportionate change in price }} \\
& =\frac{\text { change in amount demanded }}{\operatorname{amount~demanded}} \div \frac{\text { changein price }}{\text { price }}
\end{aligned}
$$

in Diagram 3.a

$$
\begin{equation*}
e_{p}=\frac{Q_{1}-Q_{2}}{Q_{1}} \div \frac{C_{1}-C_{2}}{C_{1}} \tag{3.1}
\end{equation*}
$$

This formula in fact gives the point elasticity of demand on the demand curve, which measures the effect on the quantity demanded of an infinitesimally small change in price, if $p=p r i c e$ and $q=q u a n t i t y$ demanded, the general shape of the formula is:

$$
\begin{equation*}
\text { elasticity of demand }=\frac{d q}{q} \div \frac{d p}{p} \tag{3.2}
\end{equation*}
$$

for very small changes in price, with elasticity over arsmall (strictly infinitely small) range of the curve. The formula for measuring point elasticity of demand gives reasonable answers only if the changes in price and quantity are not too large. However, it is sometimes required to measure elasticity of demand over a substantial range of a demand curve, because a fairly large change in price has occurred. "A second formula for elasticity of demand is therefore used, which allows us to measure what is known as "arc" elasticity of demand. It measures elasticity of demand over a range, or an arc, of a demand curve". (Stonier and Hague, 1975), like the range of $D_{1} D_{2}$ in Diagram 3.a. The second formula is :
arcelasticity of demand $(e)=\frac{Q_{1}-Q_{2}}{C_{1}-C_{2}} \times \frac{C_{1}+C_{2}}{Q_{1}+Q_{2}}$

This formula actually gives the average of the old and new prices and the average of old and new quantities. It will be noticed that elasticity of demand should be represented by a nagative number because $Q_{1}-Q_{2}$ is negative.

3.4.3
 Significance of Elasticity Measures.

In formula 3.3

$$
\begin{equation*}
e=\frac{Q_{1}-Q_{2}}{C_{1}-C_{2}} \times \frac{C_{1}+C_{2}}{Q_{1}+Q_{2}} \tag{3.3}
\end{equation*}
$$

Assume $e=-1$.
then

$$
-1\left[\left(C_{1}-C_{2}\right)\left(Q_{1}+Q_{2}\right)\right]=\left(Q_{1}-Q_{2}\right)\left(C_{1}+C_{2}\right)
$$

the formula can be reduced to:

$$
\begin{equation*}
Q_{1} C_{1}=Q_{2} C_{2} \tag{3.4}
\end{equation*}
$$

This means that the rectangles $C_{1} O Q_{1} D_{1}$ and $C_{2} O Q_{2} D_{2}$ inscribed under the demand curve are both of exactly the same area, as shown in Diagram 3'. a. Looking at the economic significance of these rectangles, it is clear that the area of such arectiangle shows total expenditure, or total outlay, on the commodity at the price in question. In other words, it means that the percentage change in quantity demanded is just equal to the percentage change in price which gives rise to it. Otherwise elasticity would not be unity. Consequently, the total expenditure before equals total expenditure after. In formula 3.4 there are only two other possibilities;
1.

$$
\begin{equation*}
Q_{1} C_{1}>Q_{2} C_{2} \tag{3.5}
\end{equation*}
$$

In Diagram 3.b, Case 1 represents this condition given by formula 3.5. The total outlay before is more than total outlay after. The fall in price from C_{1} to C_{2} led to a small increase in quantity demanded, or the proportionate change in quantity demanded is less than proportionate change in fall in price. This implies that elasticity of demand is less than unity. In economic terms the demand is "inelastic".
2.

$$
\begin{equation*}
Q_{1} C_{1}<Q_{2} C_{2} \tag{3.6}
\end{equation*}
$$

Case 2 represents this condition given by formula 3.6. The total outlay before is less than total outlay after. The fall in price from C_{1} to C_{2} led to a large increase in quantity demanded. In other words, proportionate change in quantity demanded is larger than the proportionate change in fall in price. This implies that numerical elasticity of demand is more than one. In economic terms, the demand is "elastic"

To sum up the relationship :
"Whenever numerical elasticity of demand for a product is greater than one, a reduction in its price will increase total expenditure (outlay) on that product. Whenever numerical elasticity of demand for a product is less than one, a reduction in its price will reduce total outlay on it. And, whenever numerical elasticity of demand for a product is exactly equal to one, a reduction in its price will leave total outlay completely unchanged. It follows at once that similar relationships will hold for increase in price. $:-\boldsymbol{I f}$ theiprice of a product is increased, then total expenditure on it will fall if elasticity of demandisegreater than one, but will rise if elasticity is less than one. Again, total outlay will remain unchanged if elasticity of demand is just one (Stonier and Hague, 1975). 3.4.4 Income Elasticity of Demand.

Income elasticity of demand may be defined analogously to the price elasticity as :

$$
\begin{equation*}
e_{i}=\frac{d q}{q} \div \frac{d y}{y} \tag{3.7}
\end{equation*}
$$

where y is income and q is quantity demanded per period of time (Gwilliam and Mackie, 1975). The latter also stated that the income elasticity of demand for person movement is relatively high. This is partly because transport services themselves, and particularly the more expensive forms of transport, are viewed as a luxury and the consumption of which, by definition, increases more than in direct proportion to increase in income. However, it is partly because the demand for person movement is derived from the demands for other luxuries such as residential locations far removed from work places, recreational visits to distant parts and so on. 3.5 DEMAND AND INCOME.

Generally, personal money incomes take the form of, and are measured by, wages, salaries, interest, profits, dividends and rent. For any household, income represents
the total earnings of all its members. If income rises a consumer will tend to buy more of a commodity than before. In a graph, this relation would be represented by a shift of the whole demanded curve to the right. Diagram 3.c represents three demand curves, for low, medium and high income levels. A commodity demanded at any given price, by each income group, is shown by Q_{1}, Q_{2} and Q_{3} respectively.

An apparent contradiction is "inferior goods", which is defined as "the consumer consumes less when he is becoming richer". However, transport services themselves, particularly the more expensive forms of transport as mentioned earlier, are viewed as a luxury.

Income significantly affects the total amount of transport consumed at any given service level. "The higher
the income level, the greater the number of trips made" (Gwilliam and Mackie, 1975). The latter also stated that the effect of income on trip generation can be viewed as consisting of two components:

1. The average number of trips per household per day increases with income increases both for car-owning and for non car-owning households (see Figure 3.1.a)
2. For any given level, the number of trips per carowning is greater than that of a non car-owning household, as shown in Figure 3.1a. But, as Figure 3.1b shows, the proportion of car-owning households, with the higher trip generation rate, also increases with income. Accordingly, in this study the household as a unit of trip generation is classified into a number of income groups (Section 5.2.1). 3.7 VALUE OF TIME (VOT). 3.7.1 Introduction.

Time as a resource, is part of generalised cost of travel. To express generalised cost in a single index of cost, it is necessary for weighting to be given to time, or value of time, expressed in money terms. This section will be devoted to describing methods used in analysing the value of time and its use in transportation study.
3.7.2 Methods used in Evaluation of Time.

Many mode choices have a value of time implicit
in them. One example that has been much studied is the choice between a slow cheap mode and a faster expensive mode. If a person in such circumstances chooses to pay pence to save y minutes, then he is revealing an implicit valuation of his time of at least x / y pence per minute.

Most British studies have tried to explain the choice of travellers by equating time to money value.

Usually, because of the problem of data checks, attempts have been confined to commuter's behaviour. This situation offers a number of advantages for estimation purposes. This is beacuse travellers are repeating the journey regularly and may therefore be fairly well informed concerning the
alternatives. Genuine time/money trade-off situations frequently occur.

The technique used by Beesly (1965) in the analysis of the journey to work was by plotting on a graph the cost in money and time for each traveller showing the advantange or disadvantage of the chosen mode as in Diagram 3.d.

The travellers for whom the quickest mode is also the cheapest appear in quadrant (C) of the graph. For others, however, the quickest will be more expensive than the alternative. If they choose the cheaper, they will fall in quadrant (A).

An inspection for the best estimate of the value of time is easily undertaken on the graph. The slope of a
 a "trade-off" rate of value of time. To be explained as
rational, individuals need to be to the right of the line in both quadrant A and B.

Other studies of the value of non-working time shows that the value of time saving is related to income "falling between 15% and 50% of the average wage rate for the group" (Gwilliam and Mackie, 1975). It is generally agreed that the level of income will affect the choice of travel mode, the income variable has been handled in modal choice either by substratification or as variables. 3.7.3 (VOT) in Cost-benefit Analysis.

Cost-benefit analysis can be defined as an aid to decision making in the public sector; it attempts to make economic assessment of projects for which the market mechanism may not provide an optimum allocation of resources because of difficulties of deciding who the beneficiaries are and to what extent they benefit. The cost benefit analyst attempts to enumerate and evaluate benefits to those who may accrue such benefit and apportion costs to those who are deemed should pay. An agreed criterion is then used to make an economic judgement on individual projectsor to rank projects according to their economic worth.

COBA is a method frequently employed by The Depart-
ment of Environment (DOE) in the U.K.n for economic evaluation and appraisal of highway schemes. They state that:- "The returns to the community which are measured to set against the capital costs are simply the cost savings to the road users, which are divided into three components, viz., time saving, savings in the costs of vehicle operation and savings in accidents. By comparing the overall characteristics of the new road with what it has superceded, the relative distances and travel speeds (hence vehicle operating costs and time saving) are obtained, together with the expected accident saving, over a whole year. Of these three components of the total benefit, the most important generally is the time saved by travellers. For the typical scheme this constitutes something like 60% of the total benefit" (COBA, 1973).

Consequently, upon the application of Cost Benefit Analysis, as enunciated by (DOE) 1973, a morerecent analysis into the amount of time saving indicated that: "All time savings are taken to be of value and are divided between working and non-working time. On average, 80% of the quantified benefits from a typical trunk road scheme arederived from time saving. If working time is saved, it is assumed that opportunity arises for extraproductive activity which is of value to society as ahole. If leisure time is saved the benefits accrue to the individual, in as far as he finds this extra time of value to himself, it is counted as a social benefit in the analysis", (Leitch, 1977).

Working time is valued at its cost to the employer. This equates the employer's cost with the value of the extra output he gains from the employee. Thus savings of working time are assumed to be used by the employer in extra output. So a certain percentage of vericle occupants travelling in working time must be estimated.

Whilst'the value of working time is based on the gross wage rate of employees, no direct market values exist for non-working time savings. These encompass a wide range of activities from travel to work, shopping, leisure etc. The values adopted are therefore based on observation of peoples behaviour, on the view that in their day to day decisions they implicity reveal a valuation of their non-working time as described in Section 3.7.2.

In a sensitivity analysis of COBA carried out in the Leitch report the results of increasing and decreasing working time values by 20% are shown. The impact on scheme evaluations is fairly uniform and is significant. It follows from this that the values in use should be as accurate as possible and that the search for a correct figure has a practical importance.

Table 3.a shows the values of working time used
by DOE for 1976 as revealed in the Leitch Report. These values are assumed to grow over time in line with increases in Gross Domestic Product (GDP) per head.

Table 3.b is the value of non-working time as percentage of wage rate, presented by Watson, 1974 for different studies.

Table 3.a
Values of Working Time
(Pence per hour : 1976 prices)

Working time	Value
All workers	333
Car drivers	379
Car passengers	332
Bus passengers	196
Rail passengers	407
Underground passengers	360
Bus drivers	191
Bus conductors	182
HGV occupants (1)	178
LGV occupants (1)	158

(1) Excludes $H G V$ and LGV drivers who are classified under "all workers" Source, Report of the Advisory Committee on Trunk Road Assessment (Leitch Report, 1977).

Table 3.b
Value of non-working time as of wage rate.

Study	(VOT) as \% of wage rate	Method of Analysis
Beesley	$31-37$ lower income	Time-cost trade-off
	$42-50$ higher income	behaviour.
Stopher	42	Logit analysis
Quarmby	$21-25$	Discriminantanalysis
L.G.O.R.U.	53.5	-
E.G.A.M.S.S.	67.5	Logit analysis

After Watson, 1974.

The value of non-working time quoted by Harrison and Quarmby (1970) in some countries were as follows: American Study by Lisco $40-50 \%$ of average hourly income French Study 75% of wage rate
values from other studies presented by Hills (1976) areshown in Appendices - 3 - and - 4- However, it is clear from Table 3.b and Appendix - 4 - that either a universal value of time does not exist, or the methods used in evaluation are not suitable.
3.7.4 Time in Network Description.

The term "behavioural cost" is an expression describing the totality of "cost" or disutility incurred by a traveller in making a zone-to-zone trip by a particular mode of travel. "It is simply that cost which best explains the traveller's behaviour within the framework of the model processes in use" (McIntosh and Quarmby, 1970). The object therefore is to define a cost function and to suggest parameter values for use in studies. The form of cost function suggested by later authors is :

$$
\begin{equation*}
b_{1}=B_{1} X_{1}+B_{2} X_{2}+\ldots+B_{n} X_{n} \tag{3.8}
\end{equation*}
$$

where b_{1} is the behavioural cost of travel along a ink "1" of a network by a particular travel mode. X_{1}, X_{2} etc. are values of factors which are important in determining the overall travel disutility as it affects behaviour. B_{1}, B_{2} etc. are the relative weights of thesefactors. The normal network manipulation and tree building programmes can then be used to find "cheapest" routes (using behavioural cost), instead of fastest routes as with time. Trees are "skimmed" to produce an inter-zonal behavioural cost matrix bij, instead of an inter-zonal travel time matrix. The behavioural cost matrix is then available for use in trip distribution modal split and assignment procedures.

Results of empirical works, recommended that the factors which should be included in a behavioural cost function are :- the in-vehicle travel time, walking time, waiting and transfer time, and the financial cost of travel.

The behavioural cost function for a network link is thus:

$$
\begin{aligned}
& b_{1}=B_{1}(i n-v e h i c l e t i m e)+B_{2}(w a l k i n g \text { time) }+ \\
& B_{3}\left(w a i t i n g \text { and transfer time)+ } B_{4}(t r a v e l \cos t)\right.
\end{aligned}
$$

It can also be seen that ${ }^{B_{\beta_{1}}}$ is the value in travel cost unit of in-vehicle time, ${ }^{B} \mathbf{2}_{B_{4}}$ the value of walking time and so on. For any particular study, therefore, the task is to estimate the relative values of the parameter, B, and to decide what units to express them in. If bis expressed thus in monetary units, the cost function is in fact representing a generalised cost of travel. 3.7.5 Daily Travel Time.

Thrift, 1977, stated the following : " Time and space are resources. We must realise that just as we use space as a resource, allocating particular portions to particular uses, so we use time as a resource allocating particular intervals to particular uses". (Thrift, 1977).

The classical time-budget approach is based on the notion that human activities take time and this activity can be measured in physical time units. And since time is a limited resource it can be budgeted and allocated etc. The time taken to perform tasks is empirically observed in various social and environmental settings, usually by asking a selected sample of peopletofill in diaries for somelength of time. It is then possible to make all kinds of observations and calculations on how activities are and can be performed.

In Figure 3.2 the daily path of each member of five households for different activities, work, recreation etc. is shown, while figure 3.3 represents a typical example of an individual path moving among four places with time spent on stationary versus mobile activities in a 24 hour period. The figure thus shows the relationship between time-space path and time-budget.

Analysis of National Travel Survey data by Goodwin, 1977, and of the National Personal Transport Study data (U.S.A.) by Zohavi, 1976 , suggests that, on average, people spend about an hour per day travelling by all modes as illustrated in Figure 3.4, which refers to the U.K. data. This amount represents approximately 6% of the time available for the individual for all activities. This suggests that there is a time budget for travel, so that as journeys become quicker people travel longer distances by car or public transport.
3.8

SCARCITY OF RESOURCES.
Money and time are resources, realising that just as money used, allocating particular portions to particular uses so the time as a resource allocating particular intervals to particular uses.

The simple act of moving from some point A to another point B in space will take a certain amount of money and time (depending on the mode of travel). Work is the main source of the indiyidual's income, "the capability constraints limit the activities of the individual through both his own biological make-up (for instance, the need to sleep) and also the capacity of the tools he can command", (Hagerstand, 1970). Other constraints on work activity are "coupling constraints". These arise because it is necessary that individuals, tools and materials are bound together at given places at given times, i.e., during working hours, and the contraints of authority which limitsand controlsthe acess. The influence of such constraints on individual activity is presented in Diagram 3.e.

While the time supply is reasonably obvious, i.e., 24 hours per day for each individual, the income supplycan only be detected by analysing the statistics of income for
groups of individuals at some level of aggregation. The amount of time spent on travelifig, while engaged in other activities. can be assessed by asking for a selected sample of people to complete questionnaire forms with an indication of time consumed in travel; (walking, waiting and in-vehicle time). Money spent on travel can easily be calculated from statistics of family expenditure survey which usually includes transport and vehicle expenditure.

Relation between leisure, gross working hours and sleep for a Swedish wage-earner in 1968. - After Lundah1

Source: Thrift, 1977
Diagram 3.e \qquad
3.9

SUMMARY AND CONCLUSIONS.

Travel can be considered as one of a typeof intermediate goods, which are jointly demanded with other goods. The trip forms an integrated part of some large activity such as shopping, work, etc.

In an economic sense, to make a trip is to buy a trip. Hence the principle of economics, as far as demand and supply is concerned (which provides explanations for other economic phenomena) should also apply to consumer behaviour in travel. According to the "law of demand" every fall in price of travel increases the total distance and consequently thenumber of trips will increase.

However, travel consumes not only money but time as well, improvement of transport facilities obviously will leadtoafallin both time and money costof travel, and because these two inputs (time and money) are regarded as scarce resources, both of them must be considered in any traveller's behaviour. While the users'monetary cost of travel can be defined, the monetary value of time as aconcept is more controversial and complicated.

Hills, (1976) postulated that "variations (in value of time) arise from the use of weighted and unweighted elapsed times and modified and unmodified wage rates, as well as basic differences in experimental technique. Much research remains to be done". Therefore, there is a need to find a simple concept to evaluate the saved time in a transportation study, and an attempt to do this is outlined in Chapter 6 .

Income significantly affects the amount of travel consumed at any given service level. The higher the income the greater the number of trips made. In the following chapters, the household income and expenditure on travel will be analysed, with factors affecting the rate of trips, with particular consideration of the effect of petrol price changes.

CHAPTER 4

THE ECONOMICS OF TRAVEL, 2.

VEHICLE SPEEDS AND OPERATING COST
4.1

INTRODUCTION.

Vehicular speed is an important consideration in highway transport. The rate of vehicle movement has significant economic, safety, time and service (comfort and convenience) implications. Because of its major role in transportation planning, the method of speed measurement and interpretation must be clearly specified in any study. Unfortunately the means of measurement and the method of interpretation is not usually specified in many studies.

Measuring vehicular speed at a specific location of the highway is called "spot speeds". Speed characteristics obtained from spot speed studies have many applications; e.g., assessing the speed on a section of highway, in fact means giving a (time) value to that link of the network. The mean journey time attached to each link is the most important parameter in many stages of any transportation study.

Vehicle operating costs are found to be a function of speed. In this chapter such a relationship will be discussed and a detailed concept of speed and speedmeasurement will be presented.
4.2. DEFINITIONS: (Highway Capacity Manual, 1965).
(1) Speed - the rate of movement of vehicular traffic or of specified components of traffic, expressedin kilometers per hour.
(2) Spot speed - the speed of vehicle as it passes a specified point on a roadway.
(3) Time mean speed - the average of the individual spot speeds of all vehicles, or a specifiedclass of vehicles at a specific point on a given roadway during a specified period of time.
(4) Space mean speed - the average of the speeds of vehicles within a given space or section of roadway at a given instant.
(5)

Overall travel speed - the total distance traversed divided by the toal time required, including all traffic delays.
(6) Running speed - the speed over a specified section of highway, this being the distance divided by running time. The average for all traffic, or a component thereof is the summation of distances divided by the summation of running times.
(7) Volume - the number of vehicles that pass over a given section of a lane or roadway during a time period of one hour or more. Volume can also be expressed in terms of daily traffic or annual traffic, as well as on an hourly basis.
(8) Capacity - the meaximum number of vehicles which pass over a given section of a lane or roadway in one direction (or in both directions for a two-lane or threelane highway) during a given time period under the prevailing roadway and traffic conditions.
4.3 TIME MEAN SPEED AND SPACE MEAN SPEED.
4.3.1

Time Mean Speed $\left(V_{t}\right)$
This can be a fixed time unit used for measurement or in interpreting the results, anditisthe sum of distances on a highway traversed by a set of vehicles divided by the total (overall vehicles) of the given intervals of time needed by each vehicle to traverse the corresponding distance. Stated symolically this definition becomes :

$$
\begin{equation*}
V_{t}=\frac{\sum_{i}^{N} D_{i}}{N T} \quad(f i x e d \quad t i m e) \tag{4.1}
\end{equation*}
$$

where
$T \quad=\quad$ Unit time of measurement or interpretation of time as a fixed unit time.
$D_{i}=$ Distance travelled by vehicle i in fixed interval T.
$=$ Total number of observed vehicles.

$$
\begin{equation*}
\overline{\mathrm{D}}=\frac{\sum_{i}^{N} D_{i}}{N} \tag{4.2.a}
\end{equation*}
$$

where
$\bar{D} \quad=\quad$ average distance per vehicle
substituting 4.2a into 4.1 :

$$
\begin{equation*}
V_{t}=\frac{\bar{D}}{T} \quad \text { (average distance per unit time) } \tag{4.2}
\end{equation*}
$$

For vehicle speed in groups, denoting (f) as the frequency or number of vehicles with the same speed : then,

$$
\begin{equation*}
N=\sum_{i}^{n} f_{i} \tag{4.2.b}
\end{equation*}
$$

where n is the number of groups, and equation 4.1 becomes :

$$
\begin{equation*}
\bar{v}_{t}=\frac{\sum_{i}^{n} f_{i} D_{i}}{t \sum_{i} f_{i}} \tag{4.3}
\end{equation*}
$$

but

$$
\begin{equation*}
D_{i}=t V_{i} \quad(t i m e \operatorname{constant}) \tag{4.3.a}
\end{equation*}
$$

Substitute 4.3.a into 4.3:

$$
\begin{equation*}
v_{t}=\frac{t \sum_{i}^{n} f_{i} v_{i}}{t \sum_{i}^{n} f_{i}}=\frac{i \stackrel{N}{=}_{1}^{n} f_{i} v_{i}}{\sum_{i=1}^{n} f_{i}} \tag{4.4}
\end{equation*}
$$

equations $4.1,4.2,4.3$ and 4.4 all give the same results, and can be applied to the data available.
4.3.2 Space Mean Speed (V_{S})
"This involves fixed distance instead of fixed time so can be defined as the total of given distances on a highway travelled by a set of vehicles divided by the sum of the times all vehicles take to traverse that distance" (Dickey, 1975). Stated symbolically this definition becomes:

$$
\begin{equation*}
V_{s}=\frac{N D}{\sum_{i} t_{i} f_{i}} \quad \text { (fixed distance) } \tag{4.5}
\end{equation*}
$$

where,
$D \quad=\quad a \quad$ fixed distance on a highway

In equation 4.5, divide both denominations, and numerator by N

$$
\begin{align*}
& v_{\mathbf{s}}=\frac{D}{\sum_{i}^{\eta} t_{i} f_{i}} \tag{4.6}\\
& N=\frac{\sum_{i}^{M} f_{i}}{\sum_{i}^{n} f_{i}} \tag{4.6.a}
\end{align*}
$$

$$
\begin{equation*}
\cdot V_{s}=\frac{D}{\bar{t}} \quad \text { (fixed distance per average time) } \tag{4.7}
\end{equation*}
$$

where \bar{t} is average or mean time for all vehicles to cover a fixed distance D.

Equation 4.5.

$$
\begin{equation*}
v_{s}=\frac{N D}{\sum_{i}^{n} t_{i} f_{i}} \tag{4.5}
\end{equation*}
$$

put

$$
\begin{align*}
& N=\sum_{i}^{n} f_{i} \tag{4.2.b}\\
& t_{i}=\frac{D}{V_{i}} \text { (distance constant) } \tag{4.7.b}
\end{align*}
$$

then,

$$
\begin{equation*}
v_{s}=\frac{D \sum_{i}^{n} f_{i}}{D \sum_{i}^{n} \frac{f_{i}}{V_{i}}}=\frac{\sum_{i}^{n} f_{i}}{\sum_{i}^{n} \frac{f_{i}}{V_{i}}} \tag{4.8}
\end{equation*}
$$

Therefore space mean speed in reality is a harmonic mean as in equation 4.8 , and the term $\frac{i}{V_{i}}$ represents the density, i : e.
number of vehicles per unit distance. On the other hand, time speed is an arithmetic mean as in equation 4.4.

The following hypothetical example makes the idea more clear :

Assume a stretch of highway is 1 km long; a observer measures the time needed for each vehicle to travel this distance by one of themethods listed in Section 4.5., the data and calculations are presented in Table 4.1., the point of interest is that, no matter what method is used in the measurements, (e.g., fixed distance in this example) to measure V_{s}, but as the analysis and method of interpretation shows in Table 4.1., V_{t} could be calculated as well.

This can be computed in the following manner : referring to Table 4.1 .

Table 4.a

fixed distance 1 km for (V_{s})	fixed time 1 min. for (V_{t})
10 vehicles, each need 1 min time.	10 vehicles, each cover 1 km distance
15 vehicles, each need 1.2 min	15 vehicles, each cover $\frac{1}{1.2} \mathrm{~km}$ distance
$20 \text { vehicles, each need } 1.5 \text { min }$	20 vehicles, each cover $\frac{1}{1.5} \mathrm{~km}$ distance
5 vehicle, each need 2 min time	5 vehicles, each cover $\frac{1}{2} \mathrm{~km}$

This indicates that although the original aim was to measure a mean speed over a fixed distance of lim of the highway, it is possible to work out the distances which will be travelled by each vehicle in a fixed time period of minute.

The point which must be stressed is that it is not only the method of measurement which must be included in reports on transportation study but also the method of analysis. 4.3.3

Relation between V_{t} and V_{s}.
General formula for variance can be written as
follows :

$$
\begin{equation*}
\sigma^{2}=\frac{\sum(x-\bar{x})^{2}}{n} \tag{4.9}
\end{equation*}
$$

$$
\begin{equation*}
=\frac{\sum_{i} f_{i} X^{2}}{\sum_{i} f_{i}}-\left(\frac{\sum f_{i} X}{\sum f_{i}}\right)^{2} \tag{4.9.a}
\end{equation*}
$$

where X is the variable under consideration variance for $V_{t}=\sigma_{t}^{2}$

$$
\sigma_{t}^{2}=\frac{\sum_{i} f_{i} V_{t i}^{2}}{\sum_{i} f_{i}}-\left(\frac{\sum_{f_{i}} V_{t i}}{\sum_{f_{i}}}\right)^{2}
$$

variance of $V_{s}=\sigma_{s}^{2}$

$$
\begin{equation*}
\sigma_{s}^{2}-\frac{\sum_{i}^{f_{i}} V_{V_{i j}} V_{s i}^{2}}{\sum \frac{f_{i}}{V_{s i}}}-\left(\frac{\sum \frac{f_{i}}{V_{s i}} V_{s i}}{\sum \frac{f_{i}}{V_{V_{i}}}}\right)^{2} \tag{4.11}
\end{equation*}
$$

Note that f_{i} in space mean speed replaced by $\frac{f_{i}}{V_{S i}}$ because of dealing with fixed distance. Equation 4.11 can be reduced to :

$$
\begin{equation*}
\sigma_{s}^{2}=\frac{f_{i} V_{s i}}{\frac{f_{i}}{V_{s i}}}-\left(\frac{f_{i}}{\left[\frac{f_{i}}{V_{s i}}\right.}\right)^{2} \tag{4.11.a}
\end{equation*}
$$

dividing both sides of equation 4.11.a by

$$
\begin{aligned}
& \frac{\sum f_{i}}{\sum \frac{f_{i}}{V_{s i}}} \quad \text { yields the following }
\end{aligned}
$$

but
but

$$
\begin{equation*}
v_{t}=\frac{\sum f_{i} v_{i}}{\sum f_{i}} \tag{4.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{V}_{\mathbf{s}}=\frac{\sum \mathbf{f}_{\mathbf{i}}}{\sum \frac{\mathbf{f}_{\mathbf{i}}}{\mathbf{V}_{i}}} \tag{4.8}
\end{equation*}
$$

$$
\begin{align*}
& \frac{\sigma_{s}^{2}}{v_{s}}=v_{t}-v_{s} \tag{4.11.c}\\
& v_{t}=v_{s}+\frac{\sigma_{s}^{2}}{v_{s}} \tag{4.12}
\end{align*}
$$

The relation given in equation 4.12 is originally obtained by Wardrop (1952) using a different procedure. This relation indicates that time mean sped is always greater than space mean speed unless the variance of space mean speed equals zero.

To check the relation on the data given in Table 4.1 when

$$
\begin{aligned}
& v_{t}=46, \sigma_{s}^{2}=83.05 \text { and } v_{s}=44.12 \\
& v_{t}=44.12+\frac{33.05}{44.12}=46 \mathrm{kph}, \text { which is the }
\end{aligned}
$$

same as computed in the table.
The existence of V_{t} and V_{s} indicates that their distributions are different, one in time (V_{t}) and one in space (V_{s}) (see Figure 4.1).

To find which mean speeds V_{t} or V_{s} can yield the original information, i.e., total time and distance covered, referring to Table 4.1.

$$
\begin{aligned}
& \mathbf{v}_{\mathbf{t}}=46 \quad \mathrm{kph} \\
& \mathbf{v}_{\mathbf{s}}=44.12 \mathrm{kph}
\end{aligned}
$$

fixed distance $=1 \mathrm{~km}$
total time spent by all vehicles $=\Sigma f_{i} t_{i}=68 \mathrm{mins}$.

Assuming mean speed $=46 \mathrm{kph}$ (i.e., V_{t}) 50 vehicles as in in example needs:

Total time $=50 \frac{1}{46} 60=65.2 \mathrm{~min}$.
Using $V_{S}=44.12$
Total time $=50 \frac{-1}{44.12} 60=68 \mathrm{~min}$.
which is the same amount of time consumed by all vhicles.
From this it is clear that space mean speed V_{s} will reproduce the total amount of time and not time mean speed $\left(V_{t}\right)$, and the distance is the same, i.e., 1 km for each vehicle in both cases.
4.4 THEORETICAL SPEED-FLOW RELATIONSHIP.

The theoretical speed-flow relationship is depicted in Figure 4.2 in general, speed decreases as the flow increases until the capacity flow, q_{m} is reached. In the congested portion of the curve, both flow and speed decrease.

Speed-Density Relationship.
Density, or concentration is defined as the number of vehicles per. unit distance of the road. The speeddensity relationship is presented in figure 4.2. In general speed decreases as density increases.

Flow-Density Relationship.
In general, density increases as flow increases until the capacity of the roadway is reached. From this point on flow decreases as density increases until "jam density" is reached and flow equals zero. Figure 4.2.

A dimensional analysis of the variables suggests the following relationship: (Wattleworth, 1976).

$$
\begin{equation*}
q(\text { vehicle/hour) }=v(k m / h o u r) k(v e h . / k m) \tag{4.13}
\end{equation*}
$$

where
q = mean rate of flow
$\nabla=$ space mean speed
$k=$ mean density
For practical purposes, however, a simple relation as discussed in Chapter 2, is presented in Figure 2.4.

4.5
 MEASUREMENT OF SPEED.

The measurement of sample of vehicular speeds at a specific location is called a spot speed study. Spot speed studies are conducted to determine the speed distribution of all vehicles passing a particular location under the condition prevailing at the time of study (Kell, 1965). The data obtained usually contains information about the traffic flow, which is also needed in transportation studies.

Two major techniques are used to obtain speed data. One method consists of measuring the time required by a vehicle to traverse a measured distance. The other method utilises a radio wave reflected from the moving vehicle. The following methods are used in speed studies :
(a) Moving observer method (Wardrop,Charlesworth (1954)
(b) Registration number method (licence-matching method)
(c) Radar speed meter (TRRL, Research on Road Traffic, 1975)
(d) Enoscope (- do -)
(e) Aerial photographs.
(f) Pneumatic tubes (Salter, 1974).
(g) Loop detectors.

Vehicle cost estimates are used for a variety of different purposes by both central and local government, industry and research institutions. These users require such statistics for a variety of purposes, e.g., reimbursing employee's travelling expenses, economic assessment of transport projects, indices, market forecasts, etc.

These different objectives are of a very specific nature, and so cost estimates made with one of these objectives in mind may be inappropriate if used for a different objective.

The cost of operating a vehicle consists of running costs and fixed costs. Running costs are those which are a function of vehicle use and include fuel, oil, tyres and maintenance. Fixed costs are those costs which are not a function of vehicle use and include such items as insurance, and road tax.

However, the inclusion of any item into operating cost depends mainly on the objective of the analysis, e.g., whether or not fixed costs, petrol excise duty is included as a component of consumer's cost. In this study, the analysis of vehicle operating cost includes only runing costs including fuel tax, for reasons which will be outined later in the following chapters.

Three major categories of cost estimates are readily identifiable :
(a) Empirical expenditure estimates.
(b) Fixed assumptions, cost estimates.
(c) Speed related cost estimates.

Empirical expenditure estimates can take a number of forms. The most usual is a household survey, recording what a household spends on motoring broken down into various categories of capital and runing costs. The latter are usually mileage related. The data collected in family Expenditure Survey (FES) records the amount spent by each
household on cars, broken down into detailed categories. Unfortunately no details of mileage is recorded.

Theoretical (fixed assumptions) cost estimates have a different conceptual base. For some price indices and when estimating the long term expenditure in costs, there is a need for a set of estimates with rigid behavioural assumptions from which an index of costs may be constructed.

Theoretical cost estimate indices will thus show how vehicle running costs are changing and the empirical surveys will show how people are reacting to such costs.

The Automobile Association (AA) publish two estimates on motoring costs which are prepared by separate departments within the Association. Since spring 1974 the AA's magazine 'Drive' has published an'Index of Motoring Costs' based on a continuous national survey of some 1,000 motorists per month. This examines all costsexcept depreciation. However, more known is the Technical Service Department's 'Schedule of Estimated Running Costs'. This has been issued annually for many years. The Royal Automobile Club (RAC) also produce a similar 'Schedule of Estimated Vehicle Running Costs'. Both of these schedules are theoretical (fixed assumptions) cost estimates. However, it is argued that the fixed assumptions in these schedules means that they bear very little relation toactual expenditure on motoring (Potter, 1978), and consequently the AA Schedule over-estimates the cost per mile. The speed related cost estimated can be based on an empirical survey combined with data collected from a vehicle test, especially the relation of fuel consumption with vehicle speed. The Road Research Laboratory (RRL) issued car operating cost formula which has been widely used in transport research and will also be used in this study.

4.6.2
 Fuel Consumption.

Fuel consumption per unit of distanceby vehicle in speed $<60 \mathrm{kph}$ (which is the case in urban traffic flow) could be expressed approximately as a linear function of the reciprocal of the average trip speed, that is:

$$
\begin{equation*}
\phi=k_{1}+\frac{k_{2}}{\bar{v}}(\overline{\mathrm{v}}<60 \mathrm{~km} / \mathrm{hr}) \tag{4.14}
\end{equation*}
$$

where
$\phi \quad$: is fuel consumption per unit of distance
$\bar{\nabla}$: is the average speed, defined as the trip distance divided by the total trip time including stop time. k_{1} and k_{2} are vehicle dependent parameters (Evans and Herman, 1976) The parameters k_{1} can be associated with the fuel consumed per unit distance to overcome rolling resistance and is consequently approximately proportional to the vehicle mass, i.e.,

$$
\mathbf{k}_{1}=\alpha \mathbf{m}
$$

where
α : is a constant of proportionality
m : is the vehicle mass
the parameter k_{2} may be associated with various time dependent frictional losses, and it is approximately proportional to the "idle" fuel flow rate. This formula indicates that to save fuel and energy, requires reduction in the mass of the vehicle and an increase in the average speed. 4.6.3

Air Resistance.
Air resistance will obviously increase fuel consumption. Air resistance is composed of the direct effect of air in the pathway of vehicles, the frictional force of air passing over the surface of vehicles (including the under surface), and the partial vaculm behind the vehicle. Formula 4.15) give the air resistance force acting on arar.

$$
\begin{equation*}
R_{a}=0.0011 \mathrm{AV}^{2} \quad(C 1 a f f e y, 1976) \tag{4.15}
\end{equation*}
$$

where
$R_{a}=a i r$ resistance in kilograms

A $=$ frontal cross-section area in meters
$V=$ speed inkilometers per hour.
4.6.4

Maintenance, Oil, Tyre and Depreciation Costs.
Maintenance Cost.
Maintenance cost includes periodical service rerequired and other non-periodical items such as brakes, exhaust systems etc.

Oil consumption.

Oil consumption results from oil contamination by use and oil losses through leakage consumption.

Tyre Wear.
Tyre wear results from rollingresistance, the frictional slip between tyre surface and the road.

Depreciation.
The magnitude of motor vehicle depreciation costs can be defined as the quotient resulting from dividing the difference between original cost and scrap value by life time mileage, it depends largely on non-highway factors (new and used car market values and user travel desires).

However, there are "standing charges" such as road tax, insurance etc. whichare not affected by the use, hence these factors are not reflected by vehicle operating costs (See Appendix-5 -) .
4.7 OPERATING COST FORMULA.
4.7.1 Vehicle Operating Cost Formula.

The total operating costs presented by (Charlesworth and Paisley, 1952) was in the form:

$$
\begin{equation*}
c_{0}=a_{0}+a_{1} t+a_{2} t+a_{3} t \tag{4.16}
\end{equation*}
$$

where
$C_{0}=$ total operating costs per mile
$a_{0}=$ costs \quad per mile independent of journey time,
$a_{1} t, a_{2} t$ and $a_{3} t$, represent costs of fuel, tyres and wear and tear respectively which vary with journey time. $t=$ journey time/unit distance.

Combining the results of various available data with assumptions about average vehicle engine capacity, a formula presented by the above was:

$$
\begin{equation*}
\mathbf{C}=\mathbf{a}+\frac{\mathbf{b}}{\mathbf{v}} \tag{4.17}
\end{equation*}
$$

where
C $=$ total cost per unit distance (labour, vehicle-time and operating cost)
v = average speed
a and b are parameters, which can be found from available data for certain years by vehicle types.

The DOE has found that the function which best fits the data can be expressed :-

$$
\begin{equation*}
c=a+\frac{b}{v}+c v^{2} \tag{4.18}
\end{equation*}
$$

where
C = operating cost per unit distance pence/km
$v=$ average speed km/hr.
 other words, separate values are calculated for car, light goods vehicle, heavy goods vehicle and buses. However, value of time (pence/hr) can be added to the parameters (b) to calculate the generalised cost of travel (pence/km).
4.7.2 Car Operating Cost Formula.

Table 4.b gives the 1973 values of each of these parameters for cars with 1400 cc - this represents the average size of cars licensed in 1973.

Table 4.b

Item	Weight per kilometre		
	a	b	c
Fuel gross			
Oil			
Tyres			
Maintenance	0.41	21.4	0.000053
Depreciation etc	0.05	-	-
Operating cost	0.08	-	-
Time	1.29	26.5	0.000063

Note : a, b and c as expressed in formula 4.18.
Car occupant's time was valued at 81 pence per hour assuming that 16 percent of car travel was in working time and 32 percent in commuting time (Dawson and Vass, 1974), the formula for 1973 can be written in terms of operating cost as:

$$
\begin{equation*}
C=1.29+\frac{26.5}{\nu}+0.000063 v^{2} \tag{4.19}
\end{equation*}
$$

and in terms of generalised cost as:

$$
\begin{equation*}
c=1.29+\frac{107.5}{v}+0.000063 v^{2} \tag{4.20}
\end{equation*}
$$

where the terms are as defined above.
4.7.3
Fuel in Operating Cost Formula.

Referring to Table 4.b, the role of fuel consumption in the formula 4.19 expressed as percentages of fuel consumption contributes to parameters a, and c as follows:

$$
\begin{aligned}
& \mathbf{a}=32 \% \\
& \mathbf{b}=81 \% \\
& \mathbf{c}=84 \%
\end{aligned}
$$

The analysis of operating cost at different speeds, and contribution of fuel cost as percentage of total operating cost shown in Table 4.c shows that the cost of fuel represents almost 50 percent of total operating cost. The fuel cost was 50 pence per gallon in 1973, and increased sharply afterwards, indicating that the percentage of fuel cost to toal running cost may be even higher. Consequently other items, oil, tyres, maintenance andeven depreciation are all subject to relative increase. The wage increase which followed after 1973 made vehicle labour and materials costs more expensive, and the net effect was that the cost of fuel as percentage of total cost remained constant at about 50 percent.

Table 4.c

$\begin{aligned} & \text { Speed } \\ & \mathbf{k} / \mathrm{m} / \mathrm{hr} \end{aligned}$	Total cost pence/km	Fuel cost				Cost of fuel
		a	b	c	Cost/km	Total cost \%
20	2.615	. 41	1.053	. 021	1.485	56
40	2.04	. 41	. 521	. 084	1.02	50
60	1.95	. 41	. 351	. 190	. 95	49
80	2.018	. 41	. 263	. 338	1.011	50
100	2.413	. 41	. 210	. 529	1.15	48

Note : the breakdown of cost formula by vehicle type is presented in Appendix-6-for year 1973.
4.8

SUMMARY AND CONCLUSIONS.
Vehicular speed is an important consideration in transportation study. The rate of vehicle movement has significant economic, safety, time and service (comfort and convenience) implications.

Two mean speeds generally can be obtained from measurement of vehicle speeds. Firstly, time mean speed $\left(V_{t}\right)$ which is defined as "average distance per unit time" Secondly, space mean speed which is defined as "fixed
distance per average time".
It has been found that space mean speed is more consistent and can reproduce both original amounts of time and distance.

Vehicle running cost has been used as a function of vehicle speed. The fuel costs are found to represent almost 50 percent of total runing cost at different speeds with the remaining 50 percent accounted for by material and labour. This relationship is assumed to remain stable even for higher fuel prices; for simplicity in modeling, thè fuel price index is taken as being the single best measure of travel cost.

The formula given in TRRL report concerning vehicle operating cost can be used for determining cost per unit distance, mainly for private transport. However, average cost per unit distance for public transport can be found from statistical returns from public transportoperator and farestructures.

Having established the cost per unit distance by modes as outlined here, the next chapter will deal with the amount of money paid by a household expressed as a cost for travel by each mode.

THE ECONOMICS OF TRAVEL, 3
HOUSEHOLD INCOME AND EXPENDITURE ON TRAVEL
5.1

FAMILY EXPENDITURE AND INCOME.
5.1.1

Introduction.
Household expenditure usually includes such items as housing, fuel, light and power, food, drinks and tobacco, clothing, durable household goods, transport and vehicles etc. In this chapter the analysis of household expenditure on transport and vehicles will be investigated. The source of data for such analysis are the Annul Reports of the Family Expenditure Survey (FES).

The $F E S$ originates from a recommendation of the Cost of Living Advisory Committee (now The Retail Price Index Advisory Committee) in an interim report pubished in 1951. A large scale household expenditure enquiry was undertaken in 1975 (FES 1975). However, full reports of these have been published annually from the 1962 survey onwards. FES reports provide an important economic and social data. Information from the survey indicates how the expenditure patterns of many different kinds of household vary. It also throws light on the relationship between household income and amount of expenditure on different goods and services.

Although in this study emphasis is put on the relationship between household income and expenditure on travel, expenditure on each mode of travel is related to the attitude of travellers, which seems to be coloured by the quality of service provided by the different modes. 5.1.2

Definitions.
The definition as enunciated in FES reports
are as follows:

Household.

A household comprises one person living alone or a group of people living at the same address and having meals prepared together and with common housekeeping.

Expenditure.

Any definition of expenditure is to some extent arbitrary, and the inclusion or exclusion of certain types of payment is a matter of convenience or convention, depending on the purpose for which the information is to be used. In FES reports, total expenditure representsexpenditure on goods and services. Total expenditure, defined in this way excludes those recorded payments which are really savings or investments (e.g. national insurance contributions, mortgage, income tax payment etc.).

Income.
The concept of income is, as far as possible, that of gross weekly cash income at the time of interview, i.e., before the deduction of income tax, national insurance contributions and other deductions at source. Although information about most types of income is obtained on a current basis, some data, principally incomes from investment and from self-employment, is estimated over a twleve-month period.

5.1.3 Main Features of Family Expenditure Survey (FES) Annual Reports.

All types of private households in the United Kingdom are covered by the survey. In 1975 for example 11, 000 addresses in the U. K. were selected. Households at the selected addresses were visited in turn and occupants asked to co-operate by providing interviewrs with information about the household, relating to incomes, certain payments which recur fairly regularly. In order to obtain a representative picture they were asked to make an expenditure record of such items for a period of 14 days.

The sample is designed so that each household has an equal chance of selection, and also so that
the sample is spread evenly throughout the year. "Comparison of the results of the surveys over successive years, however, justifies confidence in their general reliability, and an examination of the characteristics of expenditure and income pattern of various groups of household shows 'a high degree of internal consistency'l', (FES, 1975). Like all estimates based on samples, the results of the survey are subject to chance variations. A numerical measure of the possible margin of error, due to the limited size of the sample, is provided by "standard error". A true mean value is almost certain to lie within two standarderrors on each side of the estimated mean values. The standard error on the item of transport and vehicle was 2% in FES 1975 reports.

Figure 5.1 shows variation of expenditure patterns related to incomes for the year 1975, with average household's expenditure on each individual item. Figure 5.2 shows variation of expenditure pattern over a period of time. It must be emphasised that of the two main items in household expenditure, housing, transport and vehicles are the only items which show an increasing trend over time. Transport and vehicle costs consume the highest share of income after food in average households budget.

It can be observed that household expenditure as presented in FES reports represent users cost as far as transportation is concerned.
5.2 HOUSEHOLD INCOME.
5.2.1 Household Income Groups.

Grouping of household into a number of income groups is found to be necessary because the amount of transport consumed by each group is different, as has been outlined in Chapter 3.

Household can be classified by income into different categories depending on the type of data available and purpose of analysis. However, there are two
recognised methods used in transportation studies :

1. To choose arbitrarily a lower and upper boundary of each income group, with a corresponding number of households in each group.
2. To choose arbitrarily a fixed percentage of households in each income group and find their average income.

As an example of the first type, discrete income classes were used by Wootton and Pick (1967) in trip generation (Category Analysis - see Chapter 2). In the second approach used in Transport Policy (1976). The analysis of distribution of expenditure on transportby households, is by categorising households into five income groups; there are some 20% of households in each income group.

In this study, however, the latter method is used, and the income considered is the gross income i.e., before taxation. 5.2.2 Household Income Trends.

The data available from fes reports permits analysis of household income groups from 1962 onwards. However, for this study, a ten year period was chosen (1965-1975) and only four annual reports are analysed,i.e. FES reports of 1965, 1968, 1972 and 1975. It is thought that those four points in time will give sufficient information relating to both income and expenditure on travel. Furthermore, for some intermediate yearschecked, it is found that the results are compatible and consistency exists for the whole of the ten year period.

Tables 5.1.a,b, and dare an abstract from FES for the years 1965, 1968, 1972 and 1975, and they are represented graphically on a semi-log scale in Figure 5.3 with (Y) as ordinate and X_{1} as abscissa. From this figure, the average household income is computed, as well. as average income by income groups for the years under consideration.

Despite the effect of inflation, the distribution of household incomes remain constant over the years. As income forecasting is a major contribution to the transportation planning process, this method of representation (Figure 5.3) is of considerable benefit.

Tables 5.2.a, b, cand d, extracted from Figure 5.3 stratify households into five income groups with $\mathbf{2 0 \%}$ of households in each income group.

The following table shows average hosehold income and total expenditure on all items including transport and vehicle based on average weekly data..

Table 5.a

Year	Income (£)	Total expenditure (£)
1965	24.56	21.22
1968	29.88	24.93
1972,	42.82	35.06
1975	72.46	54.58

Source : FES reports, 1965, 1968, 1972 and 1975, 5.2:3 Income and Socio-economic Characteristics.

I
Income and car ownership.
Great promise was expected in earlier studies in using car ownership variables for trafic predictions, thus much major work was directed into forecasting car ownership.

While it became obvious in this study that car ownership is a characteristic of households as a group, related directly to the income of that group, nevertheless it is misleading to use car ownership as a measure of mobility. Furthermore, household groups with higher percentage of car ownership spend more money on travel by bus and train than households with lower percent of car ownership.

Table.5.b

Annual income (f)	Percent owning car households
500	10
1500	60
3500	80

Source : (Gwilliam and Mackie, 1975) - see also Figure 3.1
The above figures were originally abstracted from "Movements in London". Other studies by Hillman, Henderson and Whalley (1973, 1976), concluded that household car ownership was an "inadequate measure of mobility". A survey in the outer London (an area of high car ownership) produced the same conclusion (Ball and Percival, 1978) .

This picture is also consistent with American cities. The following table is an abstract from the Pittsburg Area TRansportation Study (1960).

Table 5.c

Annual income	
$(\$ 1000)$	Car/household
$0-2$	0.25
$2-4$	0.50
$4-6$	0.85
$6-8$	1.0
$10-12$	1.2
$12-14$	1.3
14	1.5
Average	1.7

(After Wohl and Martin, 1967)

The figures indicate that the same trend is universal, i.e., car ownership increases when income increases, and there are a substantial number of households without a car, from average figure (0.9) : Even if average equals 1.0 or more there will be households without car.

II Household composition and number of wage earners.

The following table shows the correlation which exists between these variables and income.

Table 5.d

Income Per week (£)	Per Person	
household	Wage earner/household	
$15-20$	1.105	0.107
$45-50$	$2: 702$	1.136
$100-120$	3.434	2.096

Source: FES, 1975 .
The above figures show clearly that all factors which were previously regarded as important to trip generation, are in fact a function of householdincome. Moreover an examination of the simple correlation matrix produced by Douglas and Lewiss (1971), see Table 5.e, indicates that employees per household, persons per household andcars per household, have a highly significant correlation with household income.

Table 5.e

	Trips	Emps.	Persons	Cars	Income
Trips	1	.529	.420	.476	.505
Emps.		1	.542	.441	.685
Persons			1	.294	.431
Cars				1	.630
Income					1

Simple correlation matrix. After Douglas and Lewiss 1971.

Item Classification.

In the FES, six items can be considered to cover all transport and vehicle expenditure. These items are:

Table 5.f

Item No.	
77	Net purchase of motor vehicles, spares and accessories.
78	Maintenance and running of motor vehicles.
79	purchase and maintenance of other vehicles and boats.
80	Railway fares.
81	Bus and coach fares.
82	Other travel and transport

(Note : for components of these items see App-7-)
These six items can be combined into five classes, comprising the main features of expenditure on transport. As referred to in this study, these are as follows:

Table 5.g

Class	Item	Reference
1	77, $78,79,80,81,82$	Total transport and vehicle
2	77, $78,80,81$	Transport
3	78,80, 81	Total travel
4	78	Travel by car (private transport)
5	80,81	Travel by bus and rail (public transport)

The anlysis of the items and classes are presented in Tables 5.1.a, b, c and d and 5.2.a, b, c and d, for the year 1965, 1968, 1972 and 1975 .

This class includes all items as presented in $F E S$ reports under the name of "Transport and Vehicle". The total household expenditure on transport and vehicle as shown in Table 5.h, and presented graphically in figure 5.4.b is as follows:

Table 5.h

Year	Money spent on transport and vehicle (M)f	(M) as \% of total expenditure $\%$	(M) as \% income of $\%$
1965	2.63	12.40	10.71
1968	3.27	13.12	10.95
1972	4.96	14.17	11.59
197	7.53	13.80	10.40

Source : FES report.
Household expenditure on transport and vehicle
In Figure 5.4.b, Curve 1 is total household expenditure on all items of transport and vehicle as percentage of total household expenditure. The slightly increasing trend is a logical result of thelast decade, resulting from the improvement and building of new roads.

Since Curve 2 is based on household income, this curve obviously falls below Curve 1, because gross income (before taxation) is more than a total (household) expenditure.

The difference between income and expenditure is supposed to represent income tax and saving. However, as commented in FES reports, the net saving cannot be measured directly from the two amounts of income and expenditure.

These two curves (1\&2) are expressed in (f) per week. The trend here is more obvious - apart from the inflation effect - total money outlay is increasing for the period shown by the figures.

The average household expenditure on car purchase for the period under study, expressed as of household income was as follows :-

Table $5 . i$

Year	$\%$
1965	3.86
1978	4.06
1972	4.57
1975	3.45

There is no significant conclusion to be attached to these figures apart from the fact that average
household expenditure for this item is about 4% of the total income. This is equivalent to a large amount on a national basis, and thus has an important impact on the car industry.

This study is not considering car ownership and non-car ownership, because as discussed earifer in Chapter 3, car ownership is a function of household income (see Figure 3.1.b). The relevant relationship used in this study is that of expenditure with car travel. So the whole analysis is based on all households irrespective of whether or not they own a car.
5.4
5.4.1

TRAVEL BY CAR (PRIVATE TRANSPORT).
Expenditure on Maintenance and Running of Motor Vehicle (Item 78).

This item is the most important part of the household's expenditure, and as can be seen from (Figure 5.4) the slightly, increasing trend is clear; the average figures for the period under consideration expressed as percent of household income is as follows :

Table 5.j

Year	\% of Expenditure on travel by car
1965	3.89
1968	4.48
1972	4.57
1975	4.87

Item (78) maintenance and running of motor vehicles is also represented in Figure 5 . 3 for the same period (Y-from Table 5.1-as ordinate and X_{2} as abscissa) for the sake of comparison.

The similarity and consistency in trend between the two sets of curves, income, and expenditure on running a car for those years which are selected randomly,
can be of a great help to modelling and forecasting of expenditure on travel by car. A forecast for the year 1985 of Item 78 is made on the same diagram, using the concept that increase in wages is a reflection of energy prices. In item 78 - running of a car - 50% is taken up by fuel cost and 50% by labour cost, which is indirectly a function of fuel price as outlined in Chapter 4 .

In Figure 5.4.b, curve 4, shows expenditure on maintenance and running motor vehicle as a percentage of total household expenditure.

Curve 5 is the same but as percentage of household income. This curve can do a great deal in modelling car trip generation. Because of its consistency over that decade, the forecast task is to find what percent of the household's income is spent on this item for the target year. Curve 6 is a combination of these two cur s in (£).

The trend of household expenditure on running a car as percentage by income group is shown in figure 5.4.a. The lowest income group, throughout this period (1965-1975) showed a constant decline with a faling in spending on travel by car. On the other hand other groups, mainly 2 , 3 and 4 are better off and the increasing trend is clear as far as expenditure on travel by car is concerned.

Group 5 did not necessarily lie above other income groups. It almost fell below group for the whole period, and from 1971 fell below group 3, and from 1973 fell below group 2 .

The reason for this may be explained as :
(a) The share of group 5 in travel by car is
always the highest of all the groups, in terms on money spent. Even if the above curve falls under the othergroups when expressed as percent of income, the percent share of group 5 (the top 20%) is always the highest share (see Figure 5.9.b).
(b) This group is travelling more by air and first class trains, or using firm's car.
5.5
TRAVEL BY PUBLIC TRANSPORT.
5.5.1

Expenditure on Travel by Train (Item 80).
One main feature of the expenditure of the average household on rail fare is that almost a constant percent of average household income is spent on this item. These figures were as follows for the year under study:

Table 5.k

Year	\% of Expenditure on rail fare
1965	.546
1968	.468
1972	.513
1975	.483

Unfortunately, not all items are so consistent and fixed as this item, as far as the average household is concerned. However, the disaggregation into five income groups still shows different trends in that period (see Figure 5.7).

But these fluctuations are around 0.1% for some income groups and it was an almost negligible amount for others.
5.5.2 Expenditure on Travel by Bus (Item 81).

The trend of the average household on travel by bus as a percent of household income for the period shown is as follows :

Table 5.1

Year	\% of Expenditure on bus fare
1965	1.612
1968	1.325
1972	1.167
1975	0.855

From these figures it appears the expenditure on travel by bus, as far as the user was concerned, declined continuously throughout this period.

As well as disaggregation into income groups, it is not surprising that the deciine in each income group is clear (figure 5.8). Moreover as was expected, the lower income groups spent more - as percentage of householdincome - on travel by bus than those of higher income groups, in contrast to what we have seen on travel by car and rail. However, this still does not mean that the lower household income groups are spending more money on travel by bus (Figure 5.9c).
5.6

PERCENTAGE USER'S SHARE ON EXPENDITURE ON TRAVEL.

Without exception, the money spent by a household in a higher income group - for any item, is more than that of a lower group, Figure 5.9.a, b, and d.

This can be expressed as "Propensity" or percentage share of expenditure on travel which is also an indication of the level of trip making by a household. Fluctuation results for the year 1965 was mainly due to smaller samples compared with other years under study (Table 5.1) where the total household number for that year was 3392 households, while for the years 1968, 1972 and 1975 were 7184 , 7017 and 7203 respectively. For this reason 1965 data is not shown graphically in some figures. Apart from that year percentage sharefor household by income group was almost stable. This is also an indication of income impact on travel behaviour and the realtively small fluctuation in trend of household income group to travel by one mode, will be absorbed by the other mode, resulting in fluctuation in opposite direction.

This can be regarded as the basis of modal choice, i.e., the switching of a traveller from one mode to another (or demand for that mode) will be according to how much he is prepared to allocate from his money budget for travel by each mode. This mainly depends on the
level of service associated with supplying the mode. Figure 5.9.d shows the perecentage share of each household income group on travel by all modes jointly (car, bus and rail). This figure shows the trend of household income groups for that period. Group 5 (the highest 20%) is declining in propensity, mainly as mentioned earlier, due to more travel by air and use of afirm's car.

Groups 2, 3 and 4 are showing some increasing trends in propesity to total travel for this period.

Group (the lowest 20%) is deciining in trend, but unlike group 5 they have no chance to travel by air or use a firm's car so widely. This indicates that the lowest 20% income groups are the most travel deprived. Moreover, most of the unemployed and pensioners are in this group. Any kind of subsidy to public transport mustinclude this group of people before any other. This may be a guide for decision making as far as social justice is concerned.

However, all household income groups, showed a great deal of consistency throughout the period. Table 5.n, on travel by all modes, car, bus and rail. The little difference for the same household income group in their share of total travel is mainly due to the effect of other price indices compared to their income indices, as well as the possibility of using firm's car by different amount for the same income group throughout the period.

Table 5.n

Income group	1965	1968	1972	1975
1	3.87	4.71	4.1	3.44
2	12.27	11.75	11.94	13.95
3	17.36	17.59	19.02	20.00
4	25.00	27.18	25.74	27.33
5	40.78	38.75	39.18	35.24
Total	100	100	100	100

Household income group share on travel by all modes, car, bus and rail.

The important aspect of trends in expenditure on total travel can be seen in the combination of the expenditure on all modes, see Table 5.3, and following table. Table 5.m
Household expenditure on travel
as percentage $Q f$ income.

Year	Car	Rail	Bus	Total
1965	3.89	.546	1.612	6.05
1968	4.48	.468	1.325	6.27
1972	4.57	.513	1.167	6.25
1975	4.87	.483	.855	6.21
-				

These figures can be shown diagrammatically as in Figure 5.10. The total expenditure on travel (private and public transport) represents a fixed amount of a household's expenditure expressed as percent of household income.

Therefore, any decline in this trend in public transport expenditure will be accompanied by rising trend in travel by private transport.

On the other hand, if better service is provided by public transport, the increasing trend of expenditure on travel by public transport is more likely to produce a decline in private transport.

However, (Figure 5.10) shows clearly that the total expenditure on travel is constant throughout this period, and the increase in trend - by different amounts in expenditure on travel by car, is accompanied by the same amount of deciine on travel by public transport.

These trends of expenditure on travel match the trends of passenger - distance travelled on all roads (see Figure 1.3). The consistency also exists on the amount of expenditure on travel (private ancipublic transport) by income groups (Figure 11) and Table 5.p. Although there is some fluctuation for the same household income
group throughout the period of 1965-1975, but the difference between any two consecutive periods is less than 1%.

The overall picture is that expenditure on
travel for all households on average (including car and non-car ownership) is a fixed percentage of income, and that the allocation of certain portions of this amount to any mode depends on the level of service provided by that mode.

Table 5.p

Income group	1965	1968	1972	1975
1	3.69	4.61	4.23	3.87
2	5.62	5.79	6.15	7.08
3	6.19	6.21	6.59	6.91
4	6.20	7.27	6.86	6.38
5	6.44	6.10	6.10	5.55

Household expenditure on travel by all modes, car, bus and rail as percentage of income group.

5.8 TRAVEL CHARACTERISTICS. 5.8.1
 Introduction.

The primary source of information used in this study concerning travel characteristics is the National TRavel Survey 1972/1973. (NTS). "The NTS 1972/73 is the latest in a series of comprehensive enquiries about people's travelling habits", (NTS 1972/73).

This survey was commissioned by the Department of the Environment between April 1972 and March 1973 and published in 1976 in three volumes.

The first volume, entitled "Cross Sectional analysis of passenger travel in Great Britain", was intended to provide a broad picture of travel patterns and to describe relationships between households, e.g., their personal characteristics and different aspects of travel, passenger mileage, vehicle ownership and parking etc.

The second volume was entitled "Number of journeys per week by different types of households, individuals and vehicles", its objective was to illustrate travel frequencies for different purposes, on different modes and by different types of individual, household and vehicle.

The third volume compared the results of the 1965 and $1972 / 73$ surveys. The data was collected from 7113 households by means of travel diaries lasting one week, with the finishing dates for the recording periods being spread evenly throughout the year. The journey in NTS is defined as 'any travel for a single main purpose'. 5.8.2 Trip Purpose.

The classification of trip purpose as in
(NTS 1972/73) is as follows :-

1. To and from work.
2. In course of work.
3. Shopping and personal business.
4. Entertainment, sport; eating and drinking.
5. Personal - social travel.
6. Other personal travel (holiday, pleasure etc.)

This classification can be regarded as
adequate, because it includes all significant trips which account for a considerable amount of total travel.
5.8.3

Average Trip Length.
The following table on trip length distribut-
ion for all purposes shows clearly that there is not any significant difference in trip distance distribution between the two surveys, 1966 and 1972/73. This indicates that on average, trip length distances stay quite stable over time, for the main modes of travel, car, bus and train.

Table 5.q
Trip length distribution

Source: NTS 1972/73, Table 2, page 2
(A comparison of 1966 and $1972 / 73$ survey).
Average trip length by purpose can be found
if data is available. Table 5.r is an abstract from "An analysis of travel patterns using the 1972/73 National Travel Survey", (Rigby, 1977) . The analysis includes only one day out of the seven days of the survey. The following results are obtained :

> Table $5 . r$
> Average trip length (km)

Mode	Purpose		
	Work	Shopping	Social
Car	10.43	7.74	11.02
Bus	7.97	6.05	9.54
Rail	22.07	16.35	16.85

This table shows only a sample calculation of trip length distance by mode and purpose (and the same procedure can be applied for all other purposes). Table 5.4 is the trip length distribution by mode and purpose. Knowing total distance by mode covered by a household per
week for each purpose (see Figure 5.12). The number of trips can be found simply by dividing mileage by average trip length for corresponding mode and appropriate purpose. If it is thought that different household income groups have different trip length distribution for the same journey purpose, then the adequate categorisation mightinclude analysis for each household income group separately. 5.9

FINDINGS AND CONCLUSIONS.
Household expenditure on travel shows some fluctuation by household income groups (Figure 5.11), but still the difference - apart from lowestincome group - is on average less than 1% for a certain year, expressed as percentage of household income. Group 4 in 1968 is the single exception. Furthermore, the fluctuation of the expenditure by the same household income groups is less than 1% for any two consecutive periods under consideration. These minor fluctuations could reasonably be expected, because the relative wage and price indices do not always increase simultaneously. In addition, there is the possibility of using firm's cars by different amounts by household income groups in different periods.

The other fact reflected in household trends by income group is that group 1 (the lowest 20\%) decifines in travel making. The main reason for this, as mentioned earlier, is that this group can barely afford the basic essentials e.g., food, clothing, houseing etc. Consequentiy this group is left with little money for travel. They are obliged to make more walking trips, despite the fact that this group includes more pensioners (50\% of household income group 1 is old age pensioners, Transport policy 1976). This is also clear from their percentage share of travel (Figure 5.9.d); while they show a deciine in spending on travel by all modes, their 'percentage share' is almost constant throughout the period, indicating that they are only making trips of an essential nature, while
groups 2 and 3 are still seeking "saturation" as far as travel is concerned. Their trend of expenditure (as percentage of income), and their percentage share of total travel is still increasing, indicating that these two groups can afford to pay more for travel.

By contrast, household income groups 4 and 5, the highest income groups, have been "saturated" (Figure 5.11), and they show a decline in their trend as well as propensity to travel indictaing they are either using a firm's car frequently, or using air transport for business purposes as well as some leisure activities.

These ideas can help to fix the expenditure of households by income group on travel, which is needed in trip generation models in the following chapters. This also has a relevance for other aspects of travel expenses, particularly parking and toll charges. For example, introducing higher parking charges in CBD area will mean less traffic to the town centre - if there is only a fixed amount of money available to spend on travel - or "user may prefer to switch to an out-of-town location rather than change to bưs", (Harrison, 1974) to maintain the same level of trip making.

The trend of household income as revealed in
this study (Figure 5.3) shows that one can forecast for a target year - say year 1985 - with reasonable accuracy, simply because the curves for different years are almost parallel, and only the lowest 20% is fluctuating, which is in practice of a little propensity in travel (Figure 5.9.d). Having fixed household income, Figure 5. 10 showed clearly that householdexpenditure (on average) on travel (private and public transport) is a fixed amount of household's income (6.2% is a money budget of travel).

The consistency of trends on each single item of travel, car, train and bus, can be viewed as follows: Expenditure on train remained almost constant (0.5%) of household's income. The deciine in bus expenditure from 1.6% to 0.85% over the period 1965 to 1975 was absorbed by increasing trend in expenditure on travel by car (an increase from 3.89% to 4.87% over the same period). This
leaves the total expenditure on travel constant (Table 5.m).
Using this concept, the percentage of household income spent on each item can be assessed. Furthermore, it has been possible to eliminate the effectofinflation on wage rates and incomes. As an examplefor such forecast, income and expenditure on maintenance and running of car is shown on Figure 5.3, assuming that on average 5% of household's income will be spent on this item by the year 1985.

However, for more detailed study, these percentages of household income must be done on the basis of household income groups. The consistency which is found in this study in propensity (i.e., percentage share), of each household income group can be used as a guide for determining the percentage of household income on any mode of travel (Figure 5.9).

Summing up the discussion the following picture emerges:

It became clear from the analysis of household expenditure on travel by all modes available, car, bus and rail, that a fixed amount of a household's income (6.2\%) is allocated for tripmaking. (see Table 5.mand Figure 5.10). This amount can be called household's "money travel budget". From this fixed amount each mode takes its share according to the level of service provided by that particular mode as well as traveller's attitude towards.the mode of travel.

The trend was clear; travel by car rises throughout the period under study (1965-1975). This rising trend of travel by car is accompanded by a commensurate decifne in travel by bus, while leaving the trend on rail travel fairly constant (Table 5.j, k and l).

Having fixed the amount of household expenditure on travel by each mode, the method of translating this amount into total distance which can be travelled, is evaluated by simply dividing the household expenditure (by mode of travel) by cost per unit distance for that particular mode, as presented in Chapter 4 .

On the other hand, (from NTS 1972/73), the trip length distribution in 1965 and $1972 / 73$ remains almost stable, indicating that average trip length remains almost unchanged for different modes. This concept can also be applied in urban areas, which exhibits more specific characteristics than on a national scale.

Figure 5.12 shows percentage of total distance on average covered by a household for each purpose. There was no corresponding figures for 1965, but in spite of this it seems reasonable to assume that little change will occur in these percentages over time. Figure 5 . 13 is average car trip length based on NTS 1972/73.

Finally, total number of trips made by a household can be computed by dividing total distance travelled by each mode by average trip length.

As far as car-ownership is concerned by far the most important factor has always been found to be income. Other factors, especially the nature of the household's neighbourhood, which is represented by residential density, household structure - the number of old and young. The number of workers in the household etc. are all shown to be highly related to the household's income.

The concentrated researches in the past on car-ownership was in fact required for forecasting purposes of car use and it was therefore necessary to translate the forecasts of car-ownership into forecasts of use by determining the number of kilometres per unit time that the number of cars would undertake.

In this study, the stratification of all household by income group implicitly include different level of car-ownership, which is found to be the main character of the level of income - thus there is no need for model of car-ownership and other variables, if the main objective could be achived without it.

In the following chapters, the concepts presented here areformulated in mathematical terms.

TRAVEL PREDICTION: 1

BUDGET MODELS

6.1

INTRODUCTION

The minimisation of travel time or cost is gen erally an objective in transportation planning. However, transport models usually ignore the fact that when travel time or cost is reduced, the number of trips will rise. In other words, the provision of a new or improved transport facility may well result in a greater amount of travel activity than previously existed. Whol and Martin, 1967, commented that this situation - more travel - means more trips result, then presumably more community desires are being satisfied. This situation is closely analogous with the economic theory of demand and the associated concept of consumer surplus.

The major structural deficiency of traffic forecasting models is their failure to establish an interrelationship between the number of trips made, or travel volume, and the character and price of the transportation service actually available.

In the four-step conventional transport model
(diagram 6.a) there is a feed-back from a network analysis box to only three steps, i.e., trip distribution, modal choice and traffic assignment. In other words, the change in the network definitely affects these steps. There is a missing feed-back arrow between network analysis and trip generation-step.

\longleftarrow direct process
廿---- feedback
sllll/ missing arrow

Transport model

Diagram 6.a

Wilson, 1974, stated that "it would be theoreticaliy correct to connect the network analysis box, (diagram 6.a) with an arrow to the trip-generation box. Since we would expect trip generation rate to vary with ease of travel (as presented by travel time). Unfortunately, no one has yet succeeded in building an effective elastic trip generation model of this kind".

The main objective of this study is to introduce a new and simpler approach, with relatively little
effort needed for data collection. Based on economical theory of consumer's behaviour, it is possible to put back "the missing arrow" mentioned by Wilson (as discussed in Chapter 2).

The modified transport models can be represented as in Figure 6.1. Trip generation modelshave absorbed modal split models, and from the start of transport planning process, private travel-car trips, as well as public transport - person trips by bus - are predicted separately. Others, like external trips, which use the network and commercial vehicles are also treated separately, and total load on each link of the network is checked at assignment stage.

Trip distribution might give better results if separated on the same basis of disaggregation, i.e., by household income groups by purpose, on the assumption that different household income groups possess different average trip lengths, and average trip length for the same household income group differ by purpose.

6. 2 GENERATED TRIPS.

It is commonly accepted that each new transport
facility or each improved facility may cause induced or generated traffic to appear along the section of road directly or indirectly affected by the improvement, with other traffic being diverted, because the new level of attractiveness of such a particular route containing improved links.

This additional traffic is observed with the opening of the new facility, and has continued as a stable and slightly increasing component for at least the first four or five years as revealed by records covering this period (Shmidt and Campbell, 1956).

In time it becomes increasingly difficult to isolate and measure this component, and it possibly diminishes as the other components grow and crowd it out.
inhibited by inadequencies in quality and operational characteristics of the existing facilities. Little consideration has been given to the issue of "frustrated travel", i.e., those journeys which people would like to make but do not, because they are deterred by the shortcomings of transport facilities, including good roads (Stephen, 1972).

The trip generation model introduced here will take account of generated trips as well as trip generation. 6.3 FACTORS AFFECTING TRIP GENERATION.

Having predicted the amount of money a household is prepared to pay for travel by a certain mode per unit time, as well as average trip length for each purpose (Chapter 5), the factors affecting number of trips for a particular mode are:
(i) the type of facility available and the level of service as far as road users are concerned. Level of service can be best defined by average speed and cost of travel,
(ii) the amount of change. This extent of change is the percentage of the route improved, between a pair of origin and destination. Thus the existence of two situations, before the change and after the change will be discussed.

Category (i) indicates the demand curve while category (ii) is the supply curve, Diagram 6.b.

6.4

BUDGET' MODELS OF TRAVEL
Model for Generated Traffic.
Consider a part of a network which is used for journeys from origin A to destination B. The total length of journey from A to B is L units. Part of the route, a length L_{1}, is improved (where $L_{1} \leqslant L$), then the part which is not improved can be denoted by $L_{2}\left(w h e r e L_{2}=L-L_{1}\right.$), hence $L_{1}=D L, L_{2}=L-D L$ (Diagram 6.c).

The assumption about consumer's behaviour is that he is trying to save time from his time budget for travel after improvement. Also, he is attracted by the new situation to make more trips, and he is prepared to increase his amount of money outlay by some amount against his time saving if his income allows this.

If he makes n_{b} trip. Before per unit time, his allocated time budget will be:

$$
\begin{equation*}
t_{b}=n_{b} \frac{L}{v_{b}} \tag{6.1}
\end{equation*}
$$

where
t_{b} : is time spent on a trip, before improvement
L : is the total length of the route between origin and destination
V_{b} : is the average speed on (L) before improvement
n_{b} : is number of trips before improvement per unit time

L

After improvement of part of L which is L_{1}

$$
\begin{equation*}
t_{a}=n_{a}\left[\frac{L_{1}}{V_{a}}+\frac{L_{2}}{V_{b}}\right] \tag{6.2}
\end{equation*}
$$

where
t_{a} : is time spent on a trip after improvement
L_{1} : is part of route L which is improved
V_{a} : is speed on L_{1} after improvement
na : is number of trips after improvement per unit time
$\mathrm{L}_{2}: \mathrm{L} \mathrm{L}_{1}$
To utilise fully the travel time budget:-

$$
\begin{equation*}
t_{\mathbf{a}}=\mathrm{t}_{\mathbf{b}} \tag{6.3}
\end{equation*}
$$

Substituting 6.1 and 6.2 into 6.3

$$
\begin{gathered}
n_{b} \frac{L^{\prime}}{V_{b}}=n_{a}\left[\frac{L_{1}}{V_{a}}+\frac{L_{2}}{V_{b}}\right] \\
\frac{n_{a}}{n_{b}}=\frac{\frac{L}{V_{b}}}{\left[\frac{L_{1}}{V_{a}}+\frac{L_{2}}{V_{b}}\right]}
\end{gathered}
$$

set

$$
\begin{gather*}
R_{t}=\frac{n_{a}}{n_{b}} \tag{6.4}\\
R_{t}=\frac{\frac{L}{V_{b}}}{\left[\frac{L_{1}}{V_{a}}+\frac{L_{2}}{V_{b}}\right]} \tag{6.5}
\end{gather*}
$$

where
R_{t} : is the rate of trip change, for time budget.
Similarly, for money budget:-

$$
\begin{equation*}
M_{b}=n_{b} \cdot B \cdot L \tag{6.6}
\end{equation*}
$$

where
M_{b} : is money spent before improvement
B : running cost per unit distance, before improvement Other notations as before.

After change on L_{1} took place

$$
\begin{equation*}
M_{a}=n_{a}\left[A \cdot L_{1}+B \cdot L_{2}\right] \tag{6.7}
\end{equation*}
$$

where
M_{a} : is money spent, after change
A : is running cost per unit distance after change
Other notations as before.
To utilise fully travel money budget:

$$
\begin{equation*}
M_{a}=M_{b} \tag{6.8}
\end{equation*}
$$

Substituting 6.6 and 6.7 into 6.8

$$
\begin{equation*}
n_{b} B L=n_{a}\left[A L_{1}+B L_{2}\right] \tag{6.9}
\end{equation*}
$$

$$
\begin{equation*}
\frac{n_{a}}{n_{b}}=\frac{B L}{\left[A L_{1}+B L_{2}\right]} \tag{6.10}
\end{equation*}
$$

Set

$$
\begin{gather*}
R_{m}=\frac{n_{a}}{n_{b}} \tag{6.11}\\
R_{m}=\frac{B L_{m}}{A L_{1}+B L_{2}} \tag{6.12}
\end{gather*}
$$

Set $h=\frac{V_{a}}{V_{b}}(6.12 a) \quad D=\frac{L_{1}}{L}$ and $L_{2}=L-L_{1}=L-D L$

$$
R_{t}=\frac{h L_{1}}{h L_{2}+L_{1}}=\frac{h L_{1}}{h\left(L-L_{1}\right)+L_{1}}=\frac{h L_{1}}{h L-h L_{1}+L_{1}}
$$

for $D=1$
$R_{t}=h$
$R_{m}=\frac{B L}{A L_{1}+B L_{2}}=\frac{B L_{1}}{A L_{1}+B L-B L_{1}}$
$R_{m}=\frac{B L}{B L+L_{1}(A-B)}$

$$
\begin{equation*}
R_{m}=\frac{B}{B+(A-B) D} \quad \text { Money budget } \tag{6.14}
\end{equation*}
$$

for $D=1$
$R_{m}=\frac{B}{A}$
Time budget formula as in 6.13. Rate of trip change is a function of speed ratio (h) and percentage of route improved. While for money budget (6.14), the rate is a function of cost (before) as well as percentage of route improved. It is also obvious that B and A are a function of sped, this means that money budget model takes account of both the quality and quantity of the change.

To ensure that the time budget will not be exceeded for any value of R (rate of change of trips per unit time), and to spend more money according to the criteria explained earlier, then value of R actually ifes between R_{t} and R_{m} 。
then
or

$$
\begin{align*}
& R=R_{m}+\left(R_{t}-R_{m}\right) P \tag{6.15}\\
& P=\frac{R-R_{m}}{R_{t}-R_{m}} \tag{6.15a}
\end{align*}
$$

where
P : is the proportion of difference between R_{t} and R_{m}

```
for P = +1 elasticity of time ( (ef) = -1.0
    R= R t time after = time before (Time budget)
for P = 0 elasticity of money ( (em)=-1.0
    R= Rm money after = money before (Money budget)
```

.. P values are between - 1 and 1 or :

$$
\begin{equation*}
-1<\mathrm{P}<+1 \tag{6.18}
\end{equation*}
$$

Considering the scarcity of resources of both time and money, the value of (P) will be such that the consumers settle at a new equilibrium point as far as time and money are concerned, i.e., the percentage increase of his money outlay is equal to percentage increase of his time saving. Then we proceed as follows:

$$
\phi_{t}=\frac{\text { Timesaved }}{\text { Time before }} 100=\frac{\text { Time before-Time after }}{\text { Time bfore }} 100 \text { (6.19 }
$$

$$
\begin{equation*}
\phi_{t}=\frac{\frac{L}{V_{b}}-R\left(\frac{D L}{h V_{b}}+\frac{L-D L}{V_{b}}\right.}{\frac{L}{V_{b}}} \tag{6.19a}
\end{equation*}
$$

$$
=1-R \frac{D}{h}+1-D
$$

$$
=1-R \frac{D+h-D h}{h}
$$

$$
\begin{equation*}
\phi_{t}=\frac{h-R D-R h+R D h}{h}= \tag{6.20}
\end{equation*}
$$

for

$$
\mathrm{D}=1
$$

$$
\begin{equation*}
\phi_{t}=\frac{h-\mathbf{R}}{h} \tag{6.21}
\end{equation*}
$$

$\phi_{m}=\frac{\text { extramoney outlay }}{\text { money before }} 100=\frac{\text { Money after-money before }}{\text { Money before }} 100$ (6.22)

$$
\begin{equation*}
=\frac{R[A D L+B(L-D L)]-B L}{L B} 100 \tag{6.22a}
\end{equation*}
$$

$$
\begin{equation*}
\phi_{m}=\frac{R A D+R B-R B D-B}{B} 100 \tag{6.23}
\end{equation*}
$$

for $D=1$
if

$$
\begin{equation*}
\phi_{m}=\frac{R A-B}{B} 100 \tag{6.24}
\end{equation*}
$$

$$
\begin{equation*}
\phi_{t}=\phi_{\mathrm{m}} \tag{6.25}
\end{equation*}
$$

$$
\begin{gather*}
\frac{h-R D-R h+R D h}{h}=\frac{R A D+R B-R B D-B}{B} \\
R=\frac{2 B H}{2 B h+(B-2 B h+A h) D} \tag{6.27}
\end{gather*}
$$

for $D=1$

$$
R=\frac{2 B h}{B+A h}
$$

Formula 6.28 indicates that the rate of trip change depends on cost of trip before and after, as well as the ratio of speed.
Therefore,

$$
\begin{gather*}
P=\frac{R-R_{m}}{R_{t}-R_{m}} \tag{6.15a}\\
P=\frac{\frac{2 B h}{2 B h+(B-2 B h+A h) D}-\frac{B}{B+(A-B) D}}{\frac{h}{h+(1-h)} D}
\end{gather*}
$$

for $D=1$

$$
P=\frac{\frac{2 B h}{B+A h}-\frac{B}{A}}{h-\frac{B}{A}}
$$

All formulas for $D=1$, i.e., all the route has been improved, however, these formulas are also applicable (for $D=1$) when $D<1$, taking new values for h, along the whole route. The analysis for D 1 criteria is more meaningful in applying cost formula than using $D=1$ and making correction for h values.
6.5 VALUE OF TIME (VOT).

In Diagram 6.d, K represents the resources needed for travel, "time budget" : Before can be denoted by K_{b} where b stands for "before" and tor "time" at speed V_{b} 。 Similarly $K_{b m}$ represents money budget before wherem stands for money.

According to formulas given earlier, there is the possibilities of consuming the resources in after situationat speed $\left(h V_{b}\right)$ as follows:

1. consuming time budget:

$$
\begin{align*}
& R=n R_{t}=n h^{\prime} \quad \text { time before }=\text { time after (6.13a) } \tag{6.13a}\\
& \begin{aligned}
\therefore . e_{\mathrm{t}} & =-1.0 \\
\phi_{\mathrm{t}} & =0.0
\end{aligned}
\end{align*}
$$

2. consuming money budget:

$$
\begin{aligned}
R=n R_{m}=n \frac{B}{A} \quad \text { money before } & =\text { money after } \quad \text { (6.14a) } \\
& =-1.0 \\
& =0.0
\end{aligned}
$$

3. consuming a combination of time and money budgets:

$$
\begin{array}{lll}
R=n & 2 B & \\
\frac{B}{h}+A & & =-1.0 \\
& \phi_{t} & \phi_{m}
\end{array}
$$

Accepting the criteria that the traveller will behave as in case 3 above, i.e., the trip rate will be increased by an amount such that the percentage time saved from time budget (ϕ_{t}) is the same as percentage of extra money (ϕ_{m}), then the following emerge:

The value of time can be represented by notion that in after situation, the time and money budget is changed. The extra money paid is directly related to the
amount of time saved.
In Diagram 6.d, the consumer originally made (n) trips and consumed k units of his resources, "before". To bring the consumer into a new point of equilibrium $R_{G C}$, and to ensure that the two budgets of time and money will not be violated (which is represented by case 1 and case 2 above). The constraint $\phi_{t}=\phi_{m}$ must be satisfied. This point $R_{G C}$ as can be seen in the following sections is also the point of consuming generalised costof resources.

The value of time on this basis can be found from the fact that the consumer paid K_{3} (money units) to save K_{4} (time units) as shown in Diagram 6.d.

NUMBER OF TRIPS

Diagram 6.d

$$
\begin{equation*}
\because V O T=\frac{K_{3 m}}{K_{4 t}} \tag{6.31}
\end{equation*}
$$

where
VOT = monetary value of time
$K_{3 m}=$ extra money paid
$K_{4 t}=$ timesaved
$\therefore K_{3 m}=$ money needed for ($n R$) trips - money budget.
$=K_{6 m}-K_{5 m}$
Similarly,

$$
\begin{align*}
K_{4 t} & =t i m e b u d g e t-t i m e ~ n e e d e d ~ f o r ~(n R) ~ t r i p s . ~ \\
& =K_{t}-K_{6 t} \tag{6.33}
\end{align*}
$$

$. \operatorname{VOT}=\frac{K_{6 m}-K_{5 m}}{K_{t}-K_{6 t}}$
Assuming a trip length of (L) and cost per unit distance B and A for before and after situations, and V_{b} and V_{a} speeds, where $V_{a}=h V_{b}$, where h is the amount of change in V_{b}, then:

$$
\begin{align*}
& K_{6 m}=\text { LAnR money needed after } \\
& K_{5 m}=L B n \quad \text { money needed before } \\
& K_{t}=\frac{L}{V_{b}} n \quad \text { time before } \\
& K_{6 t}=\frac{L}{V_{a}} n R \quad \text { time after } \\
& V O T=\frac{L A R n-L B n}{\frac{L n}{V_{b}}-\frac{L R n}{V_{a}}} \tag{6.34}\\
& \operatorname{VOT}:=\frac{R A-B}{\frac{1}{V_{b}}-\frac{R}{h V_{b}}} \tag{6.35}\\
& R=\frac{2 B h}{B+A h} \tag{6.28}\\
& V O T=\frac{\frac{2 B h}{B+A h} A-B}{\frac{1}{V_{b}}-\frac{2 B h}{B+A h} \frac{1}{h V_{b}}} \tag{6.36}
\end{align*}
$$

$$
=B V_{b} \frac{\frac{2 h A}{B+A h}-1}{1-\frac{2 B}{B+A h}}
$$

But

$$
\frac{2 H A}{B+A h}-1=\frac{2 h A-B-A h}{B+A h}=\frac{h A-B}{h A+B}
$$

and

$$
1-\frac{2 B}{B+h A}=\frac{B+h A-2 B}{B+h A}=\frac{h A-B}{h A+B}
$$

. VOT $=$ BV $_{b}$
i.e., value of time saved equals to cost per unit distance (before - at speed V_{b}) multiplied by average vehicle speed (before) for each of the occupants. 6.6

GENERALISED COST MODEL.

Usually the vehicle operating cost formula used in economic assessment includes value of time as described in Section 3.7.3 using the formula 6.37 for VOT we proceed as follows:

Generalised cost (GC) = Money cost + monetary value of time Money cost $=a+\frac{b}{v_{b}}+c v_{b}^{2}=B \quad$ Before

Time cost $=$ time X (VOT)

$$
\begin{equation*}
=\frac{1}{V_{b}} \times V_{b} \cdot B \quad B \quad \text { Before } \tag{6.38}
\end{equation*}
$$

$\cdots(G C)_{b}=B+B=2 B$
Money cost $=a+\frac{b}{h V_{b}}+C\left(V_{b}\right)^{2}=A \quad$ After
Time cost $=\frac{1}{h V_{b}} \times V_{b} . B \quad=\frac{B}{h} \quad$ After
$\cdots(G C)_{a}=\frac{B}{h}+A$
where
$(G C)_{b}$: Generalised cost before
(GC) a_{a} Generalised cost after

$$
\begin{equation*}
\frac{1}{R}=\left[\frac{G C_{b}}{G C_{a}}\right]^{e} \quad \operatorname{from}(3.3) \tag{6.43}
\end{equation*}
$$

or

$$
\begin{align*}
R & =\left|\frac{G C_{b}}{G C_{a}}\right|^{-e} \tag{6.44}\\
& =\left|\frac{2 B}{\frac{B}{h}+A}\right|^{-e} \quad \begin{array}{l}
\text { substitute } 39 \\
\text { and } 42 \text { into } 44
\end{array} \tag{6.44}
\end{align*}
$$

Assuming elasticity of generalised cost is (-1.0), i.e., the amount of outlay in terms of money and monetary cost of time is constant (after = before).

$$
\begin{equation*}
R=\frac{2 B}{\frac{B}{h}+A}=\frac{2 B h}{B+h A} \tag{6.46}
\end{equation*}
$$

which is the same formula as in (22)
Therefore, percentage increase in money outlay is equal
percentage time saved, i.e., $\phi_{m}=\phi_{t}$.
Formula 6.46 can be modified to include average trip distance, and car occupancy.
$(G C)_{b}=\left[\right.$ Car occupancy x (Time before x VOT) + Cost before] \bar{L}_{b}

$$
=\left[Y \times \frac{1}{V_{b}} \cdot V_{b} B+B\right] \bar{L}_{b}
$$

$$
\begin{equation*}
=[B(1+Y)] \bar{L}_{b} \tag{6.47}
\end{equation*}
$$

$\left(G C_{a}\right)=\left[\begin{array}{lll}Y & X \frac{1}{h V_{b}} & V_{b} B+A\end{array} \bar{L}_{a}\right.$

$$
\begin{equation*}
=\left[\frac{Y B}{h}+A\right] \bar{L}_{a} \tag{6.48}
\end{equation*}
$$

where
$Y \quad: \quad$ is car occupancy
\bar{L}_{b} and \bar{L}_{a} : are average trip distance before and after respectively.

$$
\begin{equation*}
R=\frac{[B(1+Y)] \bar{L}_{b}}{\left[\frac{\bar{Y} B}{\bar{h}}+A\right] \bar{L}_{a}} \tag{6.49}
\end{equation*}
$$

in formula 6.49 if average trip distance remains constant, $\operatorname{then} \bar{L}_{b}=\bar{L}_{a}$.

$$
\begin{align*}
R & =\frac{B(1+Y)}{\frac{Y B}{h}+A} \tag{6.50}\\
& =\frac{h B(1+Y)}{B Y+h A} \tag{6.51}
\end{align*}
$$

6.7 MODELS FOR TRIP GENERATION.

6.7.1 Introduction.

The main finding in Chapter 5 is that "Households on average are prepared to pay a fixed percentage of their income for travel by all modes. From this fixed percentage, a certain percentage of income is allocated for travel by each mode, depending on the level of service provided by that particular mode".

The trend of the period (1965-1975) in fact reflects this situation. Considering the trend of household expenditure on travel by car and bus, Table 6.a.

	Expenditure on running of car as \% of house- hold income	Expenditure on travel by bus as \% of house- hold income
1965	3.89	1.612
1968	4.48	1.325
1972		4.57
1975		4.87

See Table 5.3
The increase in car travel resulted in the provision of better roads. Hence the consumer experienced higher speed of travel, (i.e., less time needed for the same trip after than before) appreciating the value of time saved. The consumer paid more in after situation (years 1968, 1972 and 1975) than before (year 1965) in monetary terms.

On contrary, the level of service was decing in bus travel with the real cost per tripin 1972 being
more than that of 1965, but with no improvement in level of service as far as time is concerned. The net effect was less expenditure by household on travel by bus.

According to this concept, a general share model can be formulated on the assumption that the percentage of household income needed for travel by each mode can be predicted according to the past trends in travel behaviour, considering also expected changes in level of service combined with travel characteristics of the area under study. 6.7.2 General Share Model (GSM).

The General Share Model (GSM) can be formulated according to the fact that a household allocate a certain percentage of his income to travel by each mode, part of which in turn will be allocated for certain purposes. Assuming,

```
k modes k = 1, 2 .... h (car, bus, train, etc.)
\ell purposes l = 1, 2 .... r (work,shopping, etc.)
i income groups i, = 1, 2 ... q (i=1,for lowest household
                                    income)
O zones 0=1,2\ldots n ( O=1, for zone 1)
```

From household income and expenditure analysis in Chapter 5, the following relationship can be formulated. (Number of trips per household for all purposes per unit time by mode k) (Average trip cost) = Householdexpenditure on travel by mode k per unit time.
-. $\quad t_{k} \overline{\mathbf{C}}_{k}=E_{K}$
\cdot •

$$
\begin{equation*}
t_{k}=\frac{E_{K}}{\bar{C}_{k}} \tag{6.52a}
\end{equation*}
$$

on the same basis, disaggregation by trip purpose for each mode, the formula becomes:

$$
\begin{equation*}
t_{k \ell}=\frac{E_{K} P_{k \ell}}{\overline{\mathbf{C}}_{k \ell}} \tag{6.52b}
\end{equation*}
$$

where :
F_{ℓ}^{-}: is percentage of E, spent on travel for purpose ℓ
\bar{C}_{ℓ} : is average trip cost for purpose ℓ
Disaggregation by income group, formula 6.52b becomes :

$$
\begin{equation*}
t_{i K \ell}=\frac{E_{i K} \cdot P_{i \ell K}}{\bar{C}_{i \ell K}} \tag{6.52c}
\end{equation*}
$$

where :
$t_{i \ell K}=$ Number of trips, by household income group i, by mode K for purposel.
$E_{i K} \quad=$ Expenditure on travel by mode K, for household income group i, all purposes.
$P_{i \ell K} \quad=$ percentage money allocated for purpose ℓ, by household income group i.
$\overline{\mathrm{C}}_{\mathrm{i}_{\ell} \mathrm{K}} \quad=\mathrm{trip}$ cost by mode K for purpose ℓ, by household income group i..
These terms can be computed as fotlows :

$$
\begin{equation*}
E_{K}=M N_{K} \tag{6.53}
\end{equation*}
$$

$$
\begin{equation*}
E_{i K}=M_{i}{ }_{i K} \tag{6.53a}
\end{equation*}
$$

where :
M : average household income
N_{K} : percentage of M allocated for travel by mode K
M_{i} : household income, in group i
$N_{i K}$: percentage of household income spent on travel by mode K, all purposes.

$$
\begin{equation*}
P_{i \ell K}=S_{i \ell K} F \tag{6.54}
\end{equation*}
$$

where :
$S_{i \ell K}$: percentage (from total distance for all purposes) of purpose \&

$$
\begin{align*}
& S_{i \ell K}=\frac{D_{i \ell K}}{\sum_{\ell=1}^{D_{i \ell K}}} \tag{6.55}\\
& F=\frac{C_{i \ell K}}{C_{a}} \frac{\sum_{i \ell K}}{\sum_{\ell} S_{i \ell K} C_{i \ell K}^{C_{a}}} \tag{6.55a}
\end{align*}
$$

where :
$D_{i \ell k}$: distance travelled for purpose ℓ
$C_{i \ell K}$: cost per unit distance for purpose ℓ, by mode K household income group i

Ca : average cost per unit distance for all purposes.
F: correctionfactor

$$
\begin{equation*}
C_{a}=\frac{\sum_{i}^{r} C_{i \ell K}}{r} \tag{6.56}
\end{equation*}
$$

Average trip cost, by made K, purpose, by household income group (i) is :

$$
\begin{equation*}
\bar{c}_{i \ell K}=\bar{x}_{i \ell K} c_{i \ell K} \tag{6.57}
\end{equation*}
$$

where :
$\bar{X}_{i \ell K}=$ average trip distance $b y$ mode K for
purpose ℓ, by household income group i
$C_{i \ell K}$ as defined above
The model as presented by formula 6.5Zcis simplycomputing the average' number of trips per week for household income group i, by mode, by purpose. Total trips per week for household income group i is simply the summation over all purposes.

$$
\begin{equation*}
T_{i K}=\sum_{\ell=1}^{r} t_{i K \ell}=\sum_{\ell=1}^{r} \frac{E_{i K} P_{i K \ell}}{\bar{c}_{i \ell K}} \tag{6.58}
\end{equation*}
$$

where :
$T_{i K}=$ total trips per week made by household income group
i by mode K, for all purposes.
Knowing number of households in each income group;

$$
\begin{equation*}
T_{i K}=H_{i} \sum_{\ell=1}^{r} \frac{E_{i K} P_{i K \ell}}{\bar{C}_{i K \ell}} \tag{6.59}
\end{equation*}
$$

where:
$T_{i K}$: total number of trips by all households in income group i by mode K,
H_{i} : number of households in income groupi.

To compute the total number of trips for all household income groups in zone 0 , by mode K :

$$
\begin{equation*}
\mathrm{TT}_{K}=\sum_{i=1}^{q} \mathrm{H}_{\mathrm{i}} \sum_{\ell=1}^{\mathrm{r}} \frac{\mathrm{E}_{i K} \mathrm{P}_{i K \ell}}{\overline{\mathrm{C}}_{\mathrm{iK}} \mathrm{~K} \ell} \tag{6.60}
\end{equation*}
$$

where :
TTK : Total number of trips made by all households from zone 0 .

This total number of trips, which is originated in zone 0 , can be found for all zones in the study area, and the model applied separately to compute trips from each origin zone O for each mode. The input to trip distribution can be on the basis of total trips by mode k for purposel.

$$
\begin{equation*}
Q_{\ell K}=\sum_{i=1}^{q} H_{i} \frac{E_{i K} P_{i K \ell}}{\bar{C}_{i K \ell}} \quad \sum_{\ell=1}^{r} Q \ell=Q \tag{6.61}
\end{equation*}
$$

$\sum_{i=1}^{q} H_{i}=H_{0}$ total number of households in zone
where :
$Q_{\ell K}=$ total number of trips made by all households in zone 0 , for purpose ℓ, and mode K.
i.e., total work trips for all households in each zone made by car, distributed first, then shopping trips, and so on. This might give better results for any type of distribution models to be used. Because the measure of attraction can be more meaningful and constraints can be put to facilitate calibration of distribution model, such as average trip length for purpose ℓ in zone 0 is constant and its value is already available.

$$
\begin{equation*}
\bar{x}_{\ell}=c_{1} \tag{6.62}
\end{equation*}
$$

A further constraint which can be introduced is that the total cost of all trips by mode K for purpose ℓ is constant according to original assumption.

```
q
    \(\mathrm{t}_{1} \mathrm{~K} \ell \cdot \overline{\mathrm{C}}_{\mathrm{i} \ell \mathrm{K}}=\mathrm{C}_{2}\)
\(i=1\)
```

the value of C_{2} can be computed from:

$$
C_{2}=E_{i=1} E_{i K \ell}
$$

This constraint is the same as used by Wilson, l974, when he introduced the concept of entropy maximization and the concept that total cost of trips is constant. In this model, explicitly one can introduce such a constraint as an outcome of trip generation model. However, there is a family of General Shape Models (GSM) introduced into transportation studies, each has its own characteristics. In this model households are only distinguished on the basis of income. All other variables which previous studies regarded as important, such as car-ownership, are no longer needed. Furthermore, this model considers at the generation stage the different land uses at possible destinations. Previously, these factors were used as measures of attraction in distribution models. In other words, given a certain threshold of development, people have a necessity for travel and the fulfilment of their desire (for each trip purpose) is a matter of choosing one destination rather than another.

The concept of accessibility can also be introduced to this model by considering the travel characteristics at a zonal level, i.e., average trip length for work trips for a household living and workind in CBD area is different from one living in the outskirts and working in CBD area.

The application of GSM for car trips can be found in Chapter 8, while in Chapter 9 bus travel is dealt with.

Amongst the list of recommendations on traffic forecasting by a committee on trunk roads assessment (Leitch, 1977), is "There should be further study of the relationship between kilometres travelled per car and the price of fuel (including tax), income and different journey purposes for different sections of the population".

The translation of this statement is dealt with, not on the basis of trunk roads, but on the basis of urban areas. The mathematical models formulated for traffic prediction are on two levels; first for short term change when generated (induced) traffic also contributes to a large amount of total traffic on the road system, the generalised cost model can be applied. However, for longrange forecasting, the general share model can be applied, which takes account of both trip generation as well as generated trips.

The value of time (VOT) found in this study, derived from basic economic notions of consumer's behaviour in utilising the two main scarce resources needed for travel (time and money) and also the conceptof "trade off" between these two variables. However, the (VOT) found in this study is also relevant in cost-benefit analysis.

Comparing these types of cost models, as a trip generation model, with category analysis, the superiority of budget models can be realised by recognising that category analysis is only a special case (which is highly improbable) of budget model, i.e., category analysis assumed no change whatsoever in level of service in the target year. Moreover, it assumes no relative change in income and cost of travel indices at all.

Applying the budget model, even for "do-nothing" situations, the rate of travel still depends on relative changes in household income and cost of trip. On theother hand, if level of service changes, assuming all price and income indices remain constant, still budget models will
predict change in the amount of travel. However, the general case is that all these variables are changing. This will be the focus of attention in the application of budget models in the next chapter.

CHAPTER 7

TRAVEL PREDICTION, 2
BUDGET MODELS APPLICATION FOR PRIVATE TRAVEL
GENERATED CAR TRIPS

7.1

INTRODUCTION.

"When there is a reduction in the costof travelling between two points, possibly as a result of road improvements, certain journeys, which were not worthwhile before the improvement, became worthwhile afterwards; traffic between the two points will therefore increase. The new traffic is usually known as 'generated traffic' " (Dawson, 1968). Furthermore, it is possible to attempt some quantification of this generated traffic. "This new traffic normally increases through a couple of years to a figure of about $5 \mathbf{- 3 0 \%}$ of the current traffic". (Overgaard, 1966).

This increase in trip rate might also result in providing better car performance. The desire to produce generally smaller capacity engines, which will give better fuel economy, will not inevitably produce energy conservation in the long term for fixed real petrol price. This is because the greater fuel economy on miles-per-galion basis (associated with use of smaller engined cars) may be cancelled out by new trips which may possibly resultin the same total fuel consumption.

In the economic assessment of road improvements, a new motorway or new river crossing which leads to large reduction in journey times and cost may resultin a considerable amount of generated traffic. It is argued that benefits to generated traffic are half the rate applicable to existing and diverted traffic, and on this basis some allowance was usually included in the calculation.

It is possible to suggest, however, that the criteria employed havebeen inadequate to sufficiently justify the predicted amount of generated traffic.

The work presented here on generated trips, and the differentiation of the behavioural unit "houshold" by income groups is completely new and provides for the first time a theoretical framework for further investigation. It also provides the basis for much comprehensive analysis of real household's travel behaviour and their response, as well as their attitude towards changes in the level of service.

The level of service, for car trips, in the suggested budget models are based only on quantitative physical parameters, which include speed, operating costs and especially fuel prices which are directly related to operating cost as mentioned earlier. However, a subjective appreciation of environmental factors has been omitted from the model.

The application of budget models, in this chapter, is to assess the trip rate changes caused by proving different levels of service.
7.2 RESOURCES NEEDED FOR CAR TRIPS.

In Diagram 7.1b, a traveller consumes K units of
resources needed for travel, in terms of time and money, at speed V_{b}, which represents the "before"situation. Increasing the speed to a new level of $h V_{b}$ which represents the"after" situation where $V_{a}=h V_{b}$, the consumer will spend different amounts of K in the after situation, depending on economic status and background, which act as constraints on him.

7.2.1

Operating cost formula.
The vehicle operating cost formulagivenfor 1973, is

$$
\begin{equation*}
c=1.29+\frac{26}{v}+.000063 \mathrm{v}^{2} \tag{4.19}
\end{equation*}
$$

where
C : cost per unit distance, pence per kilometre V : average speed, kph.

As an example of the application of 'budget models', assume the existence of a road between two points, with length \dot{H} kilometers and in a unit of time (in) trips travel between these two points at an average speed $V_{b}=$ 20 kph .

It was ascertained from analysis of models in Chapter 6 that dealing with (n) trips and fixed average trip length, is relatively the same as dealing with unit distance and analysing the rate of trip change R.

Two ranges of improvement are suggested for after situation :

1. High range
speed from 20 kph to 40 60, 80 , and 100 kph .
2. Low range
speed from 20 kph to 22, 24 , ... 40 kph .
Thecost and time needed per unit distance is shown in Table $7 . a$ for high level improvement.

Table 7.a
$\left.\begin{array}{|ccc|}\hline \begin{array}{l}\text { Speed } \\ \text { kph }\end{array} & \begin{array}{l}\text { Cost } \\ \text { pence/km }\end{array} & \begin{array}{l}\text { Time } \\ \text { min./km }\end{array} \\ \hline 20 & 2.615 & 3.0\end{array}\right] \mathrm{B}$

Note: B : Before: A : After
7.2.2 Travel Time Constraint.

People who are constrained by travel time, con-
sume K units of the resources in the after situation. For a change of speed from 20 to 40 kph , the following values for K in Diagram 7.b can be obtained :
$K\left\{\begin{array}{l}=T=\frac{1}{V_{b}}=\frac{60}{20}=3 \mathrm{mins} . \\ =R=\frac{V_{b}}{V_{a}}=h=\frac{40}{20}=2 \mathrm{~km} \\ =E=R . A=2 \times 2.04=4.08 \text { pence }\end{array}\right.$
$e_{t}=-1.0$
where
T : is the time used before, (Time budget)
V_{b} : speed before
v_{a} : speed after
h : ratio of the two speeds
$R \quad$: rate of trip change
E : expenditure after
A : cost per unit distance after (Table 7.a)
e_{t} : elasticity of travel time.
Time required originally (before) for a
journey at speed 20 kph is 3 mins., which is the time budget for the traveller. This is represented by the upper bar in Diagram 7.b. The company time required to make a journey at speed 40 kph is 1.5 mins .

However, if the time surplus is to be consumed by travelling more, i.e. at speed 40 kph , traversing 2 km instead of 1 km at the original speed of 20 kph this would represent 100% increase in the amount of travel. Similarly, for speeds 60,80 and 100 kph fully utilising the time budget of 3 mins. would result in journeys of 3, 4 and 5 km respectively, corresponding to formula $R_{t}=h(6.13 . a)$.

The distances which can be covered by the same time budget for different speeds is shown in Diagram 7.a. Joining the points of distance covered gives a straight line result which represents time budget constraint.

Referring back to the formulation of time budget model

$$
\begin{align*}
& R=R_{m}+\left(R_{t}-R_{m}\right) P \tag{6.15}\\
& \text { for } P=1 \quad \phi_{t}=0
\end{align*}
$$

(time before $=$ time after, elasticity of time $e_{t}=-1.0$) (6.16)
$\cdots R=R_{t}$
$R=R$ (100% of the route improved) (6.13.a)
$R_{t}=\frac{h}{h+(1-h) D}$ (for different amount of the (6.13) route improvement)
where $h=\frac{V_{a}}{V_{b}}$,
and $D=\frac{\text { length improved }}{\text { total length of the route }}=\frac{L_{1}}{L}$
Figure 7.1 is an application of the formula 6.13 assuming different lengths of the route to be improved to allow speeds of $40,60,80$ and 100 kph , The resulting curves are a set of demand curves and with them are shown a set of supply curves. In all points, the amount of time consumed is the total 3 mins. time budget irrespective of the amount of travel and money paid.

The group of people behaving according to formula 6.13, i.e., using their total time budget for travelling after route improvement, most spend extramoney to do so, as denoted by ($M+T o$). Such a group has the highest rate of generated trips. They aremainly from the 20% highest income group and/or households using a firm's car (the cost of running paid by employer). There is no money constraint, only a constraint from their own time budget. Such a group can be regarded as "saturated" as far as travel is concerned, (Model in inale 7.4) and this accounts for about 35% of total users expenditure on travel (Figure 5.9b).

Figure 7.2 shows that for this model time saved is zero, while extra money increases continuously until it reached 1.46 pence for speed change from 20 to 40 kph . This corresponds to maximum value of R_{t} at this range of h, which is defined by

$$
h=\frac{v_{a}}{v_{b}}=\frac{40}{20}=2
$$

$. . R_{t}=2$
The rate of generated trips will be increased by 100% for time budget constraint, when speed changed from 20 to 40 kph between a pair of $0-\mathrm{D}$;
and

$$
\begin{aligned}
\text { Extra money paid } & =R_{t} A-B \\
& =2(2.041)-2.615)=1.46 \text { pence }
\end{aligned}
$$

where

Income Constraint.
In Diagram 7.a some people behave according to the total income constraint. This group spends K_{1} resources in after situation where:

$$
K_{1} \quad\left\{\begin{array}{l}
=t_{a}=\frac{1}{V_{a}}=\frac{1}{40} 60=1.5 \text { mins. } \\
=R=1 \quad(f i x e d \text { travel rate) } \\
=E=R A=1 \times 2.04=2.04
\end{array}\right.
$$

where
t_{a} : is time after
and all other notations are as defined before.
There will be net savings of money and time, and the rate of generated trip is unity, i.e. no extra trips are wide. The group of people constrained by their income denoted by ($M-T$) (save money \& time after route improvement), conventional trip generation models, implicitly, used this concept, because the effect of level of service has been ignored. This might occur only when the traveller feels that he is paying for travel more than he can afford, or the price indices for cost of travel are so high that he is looking for an opportunity to cut the costof it. Hence there will be a new money budget, to bring him back to point of equilibrium as far as his total expenditure and income is concerned. This applies to households with a lower income, and mainly to the lowest 20% income group which can be regarded as "travel frustrated." More likely this group contains a high percentage of old, unemployed and pensioners (50\% of OAP is included within the lowest income group, Transport Policy, 1976) (Model 2 in Table 7.4). The share of this group of households is only 4% of total users expenditure (Figure 5.9b) on car travel.

7.2.4 Travel Money Constraint.

The group of people who are constrained by the amount of money availablefor car travel consume K_{5} units of the resources in the after situation, for a change of sped from 20 to 40 kph , the following values for K_{5} in Diagram 7.b can be obtained :

$$
\begin{aligned}
& \mathrm{K}_{5}\left\{\begin{array}{l}
=\mathrm{B}=2.615 \text { pence } \\
\\
=R=\frac{B}{A}=\frac{2.615}{2.04}=1.28 \mathrm{~km} \\
\\
=\mathrm{T}_{\mathrm{a}}=\mathrm{Rt}_{\mathrm{a}}=1.28 \times 1.5=1.92 \mathrm{mins} .
\end{array}\right. \\
& e_{m}=-1.0
\end{aligned}
$$

where
B : cost at speed V_{b}, in Table 7.a
T_{a} : travel time after
t_{a} : travel time after per unit distance
e_{m} : money elasticity of travel
All other notations as defined before.
From Table 7.a, if one km cost (at speed 20 kph)
is 2.615 pence (money budget), fully utilising this money budget, corresponding to formula 6.14a

$$
\begin{equation*}
R_{m}=\frac{B}{A} \tag{6.14a}
\end{equation*}
$$

the procedure of plotting a curve is repeated for money budget constraint in the same way as for time, and is shown in Diagram 7.a for different speeds.

$$
\begin{aligned}
R & =R_{m}+\left(R_{t}-R_{m}\right) P \\
\text { for } P & =0 \quad \phi_{m}=0 \quad e_{m}=-1.0
\end{aligned}
$$

(money before $=$ money after)

$$
\begin{aligned}
& R=R_{m} \\
& R_{m}=\frac{B}{A}(100 \% \text { of the route improved) }
\end{aligned}
$$

for different portions of the route to be improved.

$$
\begin{equation*}
R_{m}=\frac{B}{B+(A-B) D} \tag{6.14}
\end{equation*}
$$

Figure 7.3 is an application of formula 6.14. The same procedure is applied as for time budget, but for low range improvement (i.e., speed from 20 to 22,24 40 kph). The values of (trip rate change) for different values of D (percentage of the improvementin the route) is shown in Figure 7.4, while Figure 7.2 shows that for \quad (the parameter in formula 6.15) equalszero, i.e., ϕ_{m} (percentage of extra money) equals zero there is always saving in time.

This model may be applied to people who will naturally take all opportunities to increase their amount of travel to the limit of their financial circumstances. If they were willing to pay a certain proportion of their income (before) towards satisfying their desire for travel, then the improvement brought about by a new level of service will encourage them to make more trips. This group can be households in income group 2, which is mostly transferred from group 1, and obviously seeking higher amount of travel, but they are deterred by their money budget constrains (Model 3 in Table 7.4).

Figure 7.2 shows that for this model extra money paid is zero, while time saved increases continuously until it reaches 65 seconds for speed change from 20 to 40 kph when the whole route is improved, i.e., $D=1$ and at this point

$$
R=\frac{B}{A}=\frac{2.615}{2.04}=1.28
$$

therefore each trip before becomes 1.28 trips after at the same cost, and

$$
\begin{aligned}
\text { Time saved } & =K_{t}-R_{a} t_{a} \\
& =[3-(1.28 \times 1.5)] 60=65 \text { seconds }
\end{aligned}
$$

where
$K_{t} \quad$: time spent before
R : rate of trip change
t_{a} : time per unit distance at speed $V_{a}=40 \mathrm{kph}$

7.2.5 Generalised Cost Constraint.

The group of people who are constrained by generalised cost budget consume K_{6} in terms of time and money in Figure 7.a.

$$
K_{6}\left\{\begin{array}{llll}
= & R & t_{a} & \text { mins } \\
= & R & & k m \\
& R & x & \\
& & \text { pence }
\end{array}\right.
$$

where
$R=\frac{2 B h}{B+A h} \quad$ (Generalised cost budget)
$t_{a}=\frac{1}{v_{a}}$
at speed 40 kph .
$R=\frac{2 \mathrm{x} 2.615 \mathrm{x} 2}{2.615+2.041 \times 2}=1.56$
$t_{a}=1.5$ mins.

- .
$K_{6}=1.56 \times 1.5=2.343$ mins.
$\mathrm{K}_{6}=1.56 \quad \mathrm{~km}$
$K_{6}=1.56 \mathrm{x} 2.04=3.187$ pence
$E=-1.0$
e is elasticity of generalised cost of travel.

$$
\begin{equation*}
R=R_{m}+\left(R_{t}-R_{m}\right) P \tag{6.15}
\end{equation*}
$$

for generalised cost formula, at any level of improvement,

$$
\begin{gather*}
\phi_{t}=\phi_{n} \tag{6.25}\\
P=\frac{\frac{2 B h}{B+A h}-\frac{B}{A}}{h-\frac{B}{A}} \tag{6.30}
\end{gather*}
$$

values for P to satisfy 6.25 found in Table 7.1 for maximum low range of improvement of $20 \rightarrow 40 \mathrm{kph}$).
when

$$
p=\frac{2}{5} \quad e=-1.0
$$

(generalised cost before = generalised cost after, generalised cost elasticity $=-1.0$

$$
\phi_{t}=\phi_{m}=22 \%
$$

on this basis Figure 7.5 represents a generalised cost demand curve, while Figure 7.6 represents the value of R for different values of D.

In Diagram 7.a, the curve R represents the rate of trip change for generalised cost model, which lies between the money constraint (R_{m}) and time constraint (R_{t}).

Figure 7.2 shows three curves, for low range speed increase (20 to 40 kph) . The case of generalised cost, $P=\frac{2}{5}$ lies between the two extremes; $P=1, P=0$ which corresponds to time and money budget. In this situation the rate of generalised trip given by

$$
\begin{equation*}
R=\frac{2 B h}{B+A h} \tag{6.28}
\end{equation*}
$$

for speed and cost at 20 to 40 kph .

$$
\begin{align*}
R & =\frac{-2(2.615) 2}{2.615+(2.041) 2}=1.56 \\
\phi_{m} & =\frac{\text { extramoney paid }}{\text { money before }}=\frac{R A-B}{B} 100= \tag{6.24}\\
& =\frac{1.56(2.041)-2.615}{2.615}=22 \% \\
\phi_{t} & =\frac{\text { timesaved }}{\text { time before }}=\frac{h-R}{h} \tag{6.21}\\
& =\frac{2-1.56}{2}=22 \%
\end{align*}
$$

$\therefore \phi_{t}=\phi_{m}$ satisfies the constraint given by 6.25 consequently, the value of time saved equals to $V_{b} B$,

$$
\begin{equation*}
\text { VOT }=2.615 \times 20=52 \text { pence } / \mathrm{hr} \tag{6.37}
\end{equation*}
$$

$\operatorname{VOT}=\frac{\text { extra money paid }}{\text { timesaved }}=\frac{R A-B}{\frac{1}{V_{b}}-\frac{R}{V_{b}} h^{20}}=\frac{1.56(2.041)-2.615)}{\frac{1}{20}-\frac{1.56}{20 \times 2}}=\frac{52}{\text { pence/hr. }}$

It is clear from Figure 7.2 that the
generalised cost, represents a compromise between the two extreme cases (case 1 and 2). Furthermore, any percentage increase in money outlay (ϕ_{m}) is always equalled by the \%age of time saved (ϕ_{t}). The traveller, to behave as in case 3 implicitly values his time in monetary terms as given in formula 6.37, i.e., his value of time equals the cost per unit distance times speed as measured in the "before" situation.

Analysis of the high range of speed increas (20 to 40, 60, 80, and 100 kph) is shown on Figure 7.7. Y axis as ϕ_{m} and X axis as ϕ_{t}.

when

$\begin{array}{lll}P=1 \cdot & \phi_{t}=0 & \text { Time budget } \\ P=0 \cdot & \phi_{m}=0 & \text { Money budget }\end{array}$
The 45° line intersection with p-lines represent the generalised cost model, and it is clear from this figure that p has different values to satisfy $\phi_{t}=\phi_{m}$ for different speeds. Valuesfor \quad with corresponding P values shown on the figure are presented in Table 7.2 and 7.3 .

Using this formula means that the position of the point of equilibrium $\quad K_{3}$ is such that it makes $\phi_{m}=\phi_{t}$ i.e., the extra money paid as a percentage of money before is the same amount of time saved as percentage of the total time before. This applies to those households ingroup 3 and 4 which are able, or willing, to pay extra money on top of their original money budget without violating their time budget. They have also, in actual fact, saved an amount of time which is worth the extra money paid (Model 4 in Table 7.4)

One can now draw a clear picture of household behaviour in terms of travel by car, income group, and their responsiveness to the change in resources needed for travel, together with their attitudes towards utilisation of available sources,

As far as generated trips are concerned, different models can be applied to different household income groups.

Table 7.1 represents the effect of values of " on the general formulá:

$$
\begin{equation*}
R=R_{m}+\left(R_{t}-T_{m}\right) P \tag{6.15}
\end{equation*}
$$

For low range improvement. The values of R are shown using 1972 car operating cost formula. It is interesting to note that there is the possibility for the value of f to be below unity, i.e., the after situation will yieldfewer trips than thebefore situation. This might occur due to the introduction of higher parking charges in city centros. For example, for $P=-\frac{3}{2}$, the value of $R=0.86$, i.e., each 100 trips made before machine, only 86 trips weremade afterwards. This represents a situation where the cost per trip before is less than the cost per trip after charge. Other values of p, resulting in different values of R are as follows:

Table 7.b

, Budget	P	R
Income constraint	$-\frac{2}{5}$	1
Travel money constraint	0	1.28
Travel time constraint	1	2.0
Generalised cost constraint	$+\frac{2}{5}$	1.56

The values of R found by this procedure lead to a conclusion that each household income group has different palues. When an improvement takes place on a certain network, the mechanism for determining total generated trips inevitably calls for an estimation of the number of households using the network, classified by income group, with their corresponding position on the trip rate curve. For example, a household in income group 3 or 4 , is assumed to behave according to the generalised cost model. If all the routen used by this household is improved from origin to destination (for low range, i.e., speed 20 to 40 kph) it will increase its trip rate by 56%. However, if only half of the route is improved to
allow a speedof 40 kph , thetriprate wil be increased onlyby 20%, as shown in Figure 7.6. This fact must be reflected in any generated trip prediction to assess not only the type and amount of households using an improved route, but also the proportions which the improved route forms of all the origin to destination journeys.

```
7.3 COMMENTS ON VALUE OF TIME (VOT)
FOUND IN THIS STUDY.
```

The value of time found in this studyis represented by the formula 6.37 given by

$$
\begin{equation*}
(\text { VOT })=B V_{b} \text { pence/hour } \tag{6.37}
\end{equation*}
$$

where
(VOT) : value of non-working time
B : cost per unit distance (before)
$V_{b} \quad$: the speed (before)
The consistency and general agreement with conventional value of non-working time can be presented as follows, bearing in mind the term (before) is relative in this concept, i.e., what is regarded as (after) will become (before) for the next point in time, and this means that there is no fixed value of non-working time even for a The formula, although originally derived for car trips, will also deal with other modes like bus and train on the same basis.

In conventional cost/benefit analysis it is agreed that the value of non-working time grows $\mathbf{3} \%$ per annum. In the model gresented here this assumption is replaced by a combination of
(a) average speed is increasing on all
roads by $1.5 \mathrm{~km} / \mathrm{year}$, and
(b) the cost per unit distance is increasing with time.

Income.

It is also agreed that value of time for people of higher incomes is more than that for lower income groups. This phenomenon can be implicitly recognisedif one considers both elements of the formula, cost per unit distance and average speed. Usually, people with higher incomes use larger cars with an enginecapacity higher than $1400 c c$ which is used in operating cost formula, and will obviously lead to a higher running cost. Moreover, there is the ability of this type of car to run at higher speds.

If this kind of approach is used, many difficulties can be overcome in making assumptions on values attached to time in conventional trip modelling methods.

Vans.
For light vans the value of time is usually higher than that for car occupants, and it is obvious that van operating costs are higher than average car costs (see Appendix-6-).
If cost per km for average car = 2.615 pence/km in 1973
then " $" \quad " \quad$ van $=4.00$ pence/km in 1973
The value of time as shown in the Appendix 6 is 81 pence/hour for cars and 120 pence/hour for vans, assuming both cars and vans have the same average speed, the ratio of the cost of van to that of car must then equal the ratio of van occupants to car occupants

$$
\frac{4.0}{2.615}=\frac{120}{81} \text { which is almost the case }
$$

Moreover, if the value of time of car occupants is 81 pence/ hour, then

$$
\operatorname{VOT}=B V_{b}=2.04 \times 40=81 \text { pence/hour }
$$

This means that the cost formula, implicitly assumed average car speeds for the year 1973 is $40 \mathrm{~km} / \mathrm{hour}$. The (VOT) on the same basis, for other modes, can be the cost per unit distance times the speed of the mode.

In terms of transportation planning, people in a lower speed region do not value their time as highly as those with a higher average speed.

- If a person living in a zone (A) from which residents can travel with an average speed of $20 \mathrm{~km} / \mathrm{hour}$ in 1970, is compared with another person in the same year living in another zone (B) from which the average speed of travel is $40 \mathrm{~km} / \mathrm{hour}$, then the value of time of person in zone A is
$2.615 \times 20=52$ pence/hour
and the value of time of person in zone B is

$$
2.04 \times 40=81 \text { pence } / \text { hour }
$$

This reflects the socio economic status of the individual in a zone, relating also to their choice of residence. That is, people living in the CBD area with its low average speed, value their time less, and have a different standard of living, to those living outside the CBD. 7.4

APPLICATION OF GENERALISED COST MODEL.
The formula given in 6.40 is a generalised cost formula, including the effects of car occupancy.

$$
\begin{equation*}
R=\frac{h B(1+Y)}{B Y+h A} \tag{6.51}
\end{equation*}
$$

The main assumption behind this model is that the money budget plus monetary value of time budget is the same before and after change, i.e.e $=-1.0$. The total outlay of money plus the monetary value of time for the traveller is constant. R in the formula can be regarded as the number of trips per unit time (person trips). Alternatively, it can be regarded as total distance covered by travellers per unit time.
7.4.1 Thomson's Work, 1967.

Thomson notes that from 1952 to 1964 the vehicledistance of private traffic in urban areas, andin Great Britain as ahole, rose from 100 to 270 units, while in central London the corresponding change was from 100 to 180 units. Vehicle registration growth outside central London had increased at a rate very similar to that elsewhere.

Therefore, he assumed that an increase in generalised cost peculiar to car travel to central London over that period must have accounted for the smaller growth of traffic in central London, i.e., 180 units instead of 270 .(Oldfield, 1974)

The increased travel cost in London is ascribed to lower journey speeds because of congestion and the imposition of parking charges. Using this assumption the demand elasticity (e) was calculated to be (-1.0) as follows: Peak-hour travel cost of average marginal motorist entering central London :

Value of time 44 pence per hour
Car occupany $\quad 1.4$
Cost of car journey at speed $V, C=1.0+73.3 / V$ pence per km (including car running costs and occupant's time at speed V km/hour).

Journey length:
9.6 km comprising the following:
2.4 km in central area at $16.9 \mathrm{~km} / \mathrm{hr}$ in 1952 , and at
$13.7 \mathrm{~km} / \mathrm{hr}$. in 1964 .
\$. 6 km in inner London at $30.6 \mathrm{~km} / \mathrm{hr}$. in 1952 , and at
$24.2 \mathrm{~km} / \mathrm{hr}$. in 1964 .
1.6 km in outer London at $30.6 \mathrm{~km} / \mathrm{hr}$. in 1952, and at

$$
30.6 \mathrm{~km} / \mathrm{hr} . \quad \text { in } 1964
$$

(these speeds are based on GLC's London Traffic Surveys 1964) Cost of journey in 1952 (pence) Cost of journey in 1964 (pence)

Total with return journey
74.2
111.6

For the 1964 travel cost Thomson uses a medium all-day parking charge of 25 p . The crux of Thomson's argument i that had the cost of $111.6 p$. per peak car journey been reduced to 74.2p (the same as it was in 1952) then 100 units of traffic would have increased to 270 (as in other urban areas) instead of 180. Therefore a fall in cost from 111.6p. to 74.2 p . should produce an increase in traffic of 50% and the elasticity of demand is deduced from

$$
\begin{aligned}
\frac{100}{150} & =\left[\frac{111.6}{74.2}\right]^{e} \\
\text { i.e.,e e} & =-1.0
\end{aligned}
$$

The point of interest here is that it is clear from this example that elasticity of demand is (-1.0). But obviously Thomson used a value of tine of 44 pence/hr which is different from the findings of the present work that the value of time is equal to speed in "before" situation times cost of travelling one kilometer. (Oldfield, l974) commented on Thomson's-work, "Another parameter is the value of travel time". Here Thomson used 44 pence per person hour. Investigation to determine this parameter has given rise to values which vary widely (the value recommended by D.O.E. is less than half of Thomson's value), and it is interesting to consider the effect of using another value.

The elasticity values shown in Table 7.c were obtained using values of time of 44 pence and 22 pence per
hour and with urban area generalised car cost changing by 10 and 20 per cent over 1952 to 1964. Two central London parking charges are assumed 25 p . and 20p.)

Table 7.c

	-			lasticity		
urban area generated car cost,1952-1964	-20	-10	0	+10	+20	Central London parking charges
Value of time $44 \mathrm{p} / \mathrm{h}$ Value of time $22 \mathrm{p} / \mathrm{h}$	$\begin{aligned} & -0.6 \\ & -0.6 \end{aligned}$	$\begin{aligned} & -0.8 \\ & -0.7 \end{aligned}$	$\begin{aligned} & -1.0 \\ & -0.8 \end{aligned}$	$\begin{aligned} & -1.3 \\ & -1.0 \end{aligned}$	$\begin{aligned} & -1.8 \\ & -1.3 \end{aligned}$	25 p.
Value of time $44 \mathrm{p} / \mathrm{h}$ Value of time $22 \mathrm{p} / \mathrm{h}$	$\begin{aligned} & -0.7 \\ & -0.7 \end{aligned}$	$\begin{aligned} & -0.9 \\ & -0.8 \end{aligned}$	$\begin{aligned} & -1.1 \\ & -1.0 \end{aligned}$	$\begin{aligned} & -1.5 \\ & -1.2 \end{aligned}$	$\begin{aligned} & -2.3 \\ & -1.7 \end{aligned}$	20 p .

Source: TRRL 116 UC
It may be commented that even
if Thomson had used the value of time which is found in this study and given by,

$$
\begin{equation*}
(\text { VOT })=V_{b} B \tag{6.37}
\end{equation*}
$$

the same result concerning the unitary generalised cost of elasticity can be obtained as follows : the cost formula used by Thomson is

$$
C=1.0+\frac{73.3}{V} \text { pence per kilometre }
$$

(this value includes car running cost and occupants time at speed V kph). Car occupancy assumed by Thomson was 1.4, to remove value of time suggested by Thomson, 44 pence/hr/person

$$
\begin{equation*}
c=1.0+\frac{73.3-1.4(44)}{V}=1.0+\frac{11.7}{V} \tag{7.3}
\end{equation*}
$$

using this cost formula for cost of both after (A) and before (B) as in the following table, using the formula given by 6.49

$$
\begin{equation*}
R=\frac{[B(1+Y)] \bar{L}_{b}}{\left[\frac{Y B}{h}+A\right] \bar{L}_{a}} \tag{6.69}
\end{equation*}
$$

Table 7.d

After (1952)
$\left[\frac{1.4 B}{h}+A\right] \times \operatorname{Length}$
$\frac{1.4 \times 1.85}{1.23}+1.692 .4=9.112 .4 \times 1.85 \times 2.4=10.68$
$\frac{1.4 \times 1.48}{1.26}+1.385 .6=16.942 .4 \times 1.83 \times 5.6=19.94$
$\frac{1.4 \times 1.38}{1}+1.38$

$$
1.6=\frac{5.3}{31.36}
$$

Parking charges
Total two way
$2.4 \times 1.36 \times 1.6=$ 5.3
35.95

Before (1964)
$[2.4$ B] x Length
25.00
96.85

$$
R={\frac{G C_{b}}{G C_{a}}=\frac{96.85}{62.72}}^{.94}=1.5
$$

In other words, elasticity of demand using the method and (VOT) formulated in this study is -0.94 instead of - 1.0 found by Thomson.
where
Y : is car occupancy
\bar{L}_{b} : average trip length (before)
\bar{L}_{a} : average trip length (after)
Other notations as defined before.
Costs at different speeds given in 7.3
for values of A and B in operating cost formula given above arefound as in Table 7.d with corresponding trip lengths. In this example, 1964 situation is before, because the assumption is that if the speed increased and parking charges are eliminated, there will be 50% increase of trafic i.e., $R=1.5$. The figures used in this example are all probably expanded from a sample size; the original figures used are:

Table 7.e

1952	1964	Traffic index in:
100	270	Urban area
100	180	Central London
	90	Difference
	$\frac{90}{180}$	$=50 \%$

These are the indices used. It is possible to use the following values instead :

Table 7.f

1952	1964	Traffic index in:
100	272	Urban area
100	177	Central London
	95	Difference
	$\frac{95}{177}$	54\%

Here there is an alteration of less than $\pm 2 \%$ in 1964 indices, errors due to sampling expansion will probably be greater than this.

If the new values as in Table 7.f are used,
then:
$R=1.54$ and elasticity $=-1.0$
Oldfield (1974) stated that "Car user's elasticity relative to generalised costs were more closely grouped about the value -1.0".

In order to produce more evidence, and to give extra confidence in the reliability and applicability of thegeneralised cost model, examination was made on the effect of the energy shortage on transportation patterns and attitudes to car usage.

> A study of Dutch Fork area in Columbia, South Carolina (Sacco and Hajji, 1976) found that for a petrol price change from about \$0.35 to \$0.55/gallon between October 1973 and May 1974 , the average reduction of traffic on a certain highway reached 12.7 percent.

Applying the model given by formula 6.46 where

$$
\begin{equation*}
R=\frac{2 B}{\frac{B}{h}+A} \tag{6.46}
\end{equation*}
$$

To find elasticity of generalised cost :

$$
\begin{align*}
& R=1-0.127=0.873 \\
& h=\frac{V_{b}}{V_{b}}=1 \text { assuming no increase in speed } \\
& \text { for this amount of volume change. } \\
& B=2 P_{b} \tag{7.1}
\end{align*}
$$

where
P_{b} : petrol price before, and on basis 50% of B is petrol price.
$\because 2 B=4 P_{b}$
Substitute the values of R, h and B in 6.46

$$
\begin{equation*}
\cdot .373=\frac{4 P_{b}}{\frac{P_{b}}{1}+A} \tag{7.2}
\end{equation*}
$$

$$
\begin{equation*}
\therefore \quad A \quad=2.582 P_{b} \tag{7.3}
\end{equation*}
$$

(A) consists of two elements,fuel cost and labour and materials. The increase in petrol price in the short period between October 1973 and May 1974 did not change the labour element of A.

Set

$$
\begin{equation*}
A=\left(X_{p}+X_{L}\right) A \tag{7.4}
\end{equation*}
$$

where
X_{p} : petrol cost element of A
X_{L} : labour cost element of A
and

$$
\begin{equation*}
x_{p}+x_{L}=1 \tag{7.5}
\end{equation*}
$$

The new situation brought about by petrol price increase changed the values of these two elements.
Assuming :

$$
\begin{equation*}
\frac{x_{p}}{x_{L}}=1.5 \tag{7.6}
\end{equation*}
$$

from 7.5 and 7.6

$$
\begin{align*}
& X_{p}=.6 \text { After } \tag{7.7}\\
& X_{L}=.4 \text { After } \tag{7.8}\\
& \text { while for before } X_{p}=.5 \text { and } X_{L}=.5 \\
& \mathbf{P}_{\mathbf{a}}=\mathrm{AX}_{\mathrm{p}} \quad \text { from (7.4) } \\
& \text { ••. } 6 \mathrm{~A}=\mathrm{P}_{\mathbf{a}} \tag{7.9}\\
& \text { and } .4 A=.67 \mathrm{P}_{\mathrm{a}} \tag{7.10}\\
& \therefore A=P_{a}+.67 P_{a}=1.67 \mathrm{P}_{a} \tag{7.11}
\end{align*}
$$

from 7.3 and 7.11

$$
\begin{align*}
\bullet . & 1.67 \mathrm{P}_{\mathrm{a}} & =1.252 \mathrm{P}_{\mathrm{b}} \\
\cdots & \mathrm{P}_{\mathrm{a}} & =1.55 \mathrm{P}_{\mathrm{b}} \tag{7.12}
\end{align*}
$$

In other words, petrol price after must equal 1.55 time petrol price before, so that 12.7% of traffic would bereduced.

$$
\begin{aligned}
& P_{a}=\text { Petrol price after }=55 \text { cent/gal. } 1974 \\
& \mathbf{P}_{\mathbf{b}}=\text { Petrol price before= } 35 \text { cent/gal. } 1973
\end{aligned}
$$

$$
\because \quad P_{a}=\frac{55}{35} P_{b}=1.56 P_{b}
$$

These two values (1.55 and 1.56) are close enough to
conclude the validity of the model and the assumpion about unity of generalised cost elasticity of demand.

Another finding of the study of Sacco and Hajj was the respondent's assessment of their reduction in driving as shown in the following table.

Table 7.g

Reduction		Respondent
Amount	Percent	
considerable	30	15.8
moderate	10 to 30	40.6
little	2 to 10	28.1
none	0	to
Total		

Average reduction $=15 \%$
Source : Sacco and Hajj, 1976 .
The respondents were asked how much the change in petrol price made to their personal or family driving habits. Average respondent's reduction is 15% against observed reduction of 12.7% revealed by traffic volume counting as shown in Table 7. The respondents have different attitudes towards reduction in car travel. This confirms clearly the impact of householdincome on such a policy as increasing petrol price.

Table 7.h

Change in average traffic volume

Month	Year	Average daily traffic change
October	1973	-
November	1973	-2.8
December	1973	-10.7
January	1974	-12.7
February	1974	-8.5
March	1974	-8.6
April	1974	-3.1

Source : Sacco and Hajj, 1976.
Table 7. shows that the observed reduction was gradual, indicating that the perceived price of petrol is also gradual, and it diminishes after some time because the wage increase at later stages will cancel out this effect.

7.5 EXAMPLES OF SUDDEN PETROL PRICE CHANGE ON TRAFFIC.

Consider if it is wanted to reduce the traffic on the roads by 50%, then by how much must the cost of travel be increased? Knowing that 50% of the operating cost comprises the price of fuel.

Formula 6.46

$$
\begin{align*}
& R=1.0-0.5=0.5 \\
& h=\frac{V_{a}}{V_{b}}=1.5 \text { (increase in speed because of } \\
& \text { speed-flow relationship) } \\
& 5=\frac{2 B}{\frac{B}{1.5}+A} \tag{6.46}\\
& .33 B+.5 A=2 B \\
& \mathrm{~A}=\frac{1.57}{.5} \mathrm{~B}=3.34 \mathrm{~B} \\
& =6.68 \mathrm{P}_{\mathrm{b}} \quad\left(\mathrm{~B}=2 \mathrm{P}_{\mathrm{b}}\right)
\end{align*}
$$

$x_{p}+x_{L}=1$
$\frac{X_{p}}{X_{L}}=3$ (assumed)
$X_{p} \quad=.75$
$\mathrm{X}_{\underline{\mathrm{L}}}=\mathbf{=} 25$
$\mathrm{P}_{\mathrm{a}} \quad=\mathrm{AX}_{\mathrm{p}}$ (from . 7.4)
$. \cdot .75 \mathrm{~A}=\mathrm{P}_{\mathrm{a}}$
$.25 \mathrm{~A}=.33 \mathrm{P}$
that is to say the petrol price must be increased fivefold to reduce traffic by 50% on the roads.

This is confirmed by Webster, 1977 and we quote the following from TRRL 771. "One way of transferring people from cars to buses if this was desired, would be to make all car travel expensive irrespective of destination. This could be achieved by raising fuel prices but the use of the TRRL model LUTE indicated that fuel price would have to be increased five-fold before the mean journey distance by car was halved". If the policy of increasing petrol price by five-fold is not practical, what will be the petrol price for 20% reduction in traffic?

$$
\begin{aligned}
& R=1-.2=.8 \\
& h=1.2 \quad \text { (assumed) } \\
& . .8=\frac{2 B}{\frac{B}{1.2}+A} \\
& .67 B+.8 A=2 B \\
& A=3.33 \mathrm{P}_{\mathrm{b}} \\
& X_{p}+\mathbf{X}_{L}=\mathbf{1} \\
& \frac{X_{p}}{X_{L}} \quad=1.25 \quad \text { (assumed) }
\end{aligned}
$$

$$
\begin{aligned}
\therefore \quad x_{p} & =.55 \\
x_{L} & =.45 \\
\because .55 A & =P_{a} \\
\therefore .45 A & =.8 P_{s} \\
A=P_{a}+.8 P_{a} & =1.8 P_{a} \\
\therefore \quad 1.8 P_{a} & =3.33 P_{b} \\
P_{a} & =1.85 P_{b}
\end{aligned}
$$

This indicates, that for petrol price to be altered from 75 pence per gallon to 138 pence per galion one might expect 20% reduction in car trips. However, this situation might lead to some transference of people from cars to other modes. For increasing R by 50%

$$
\begin{aligned}
\mathrm{R} & =1.5 \\
\mathrm{~h} & =.8 \\
1.5 & =\frac{2 \mathrm{~B}}{\frac{\mathrm{~B}}{.8}+\mathrm{A}} \\
1.5 \mathrm{~A} & =.125 \mathrm{~B} \\
\mathrm{~A} & =0.0833 \mathrm{~B} \\
& =.1666 \mathrm{P}_{\mathrm{b}}
\end{aligned}
$$

$$
x_{p}+x_{L}=1
$$

$$
\frac{x_{p}}{x_{L}} \quad=4
$$

$$
x_{p}=.8
$$

$$
x_{L} \quad=.2
$$

$$
.8 \mathrm{~A} \quad=\mathrm{P}_{\mathrm{a}}
$$

$$
.2 \mathrm{~A} \quad=.25 \mathrm{P}_{\mathrm{a}}
$$

$$
\therefore A=P_{a}+.25 P_{a}=1.25 P_{a}
$$

$$
\therefore \quad 1.25 \mathrm{P}_{\mathrm{a}}=.1666 \mathrm{p}_{\mathrm{b}}
$$

$$
\because \quad P_{a}=0.133 P_{b}
$$

to 10 pence/gallon, the traffic will increase by 50%. Alternatively, what happens if petrol price is reduced by 20\%

$$
\begin{aligned}
& R=\text { ? } \\
& h=1 \\
& B=4 P_{b} \\
& R=\frac{4 P_{b}}{\frac{2 P_{b}}{1}+A} \\
& X_{p}+X_{L}=1 \\
& \frac{X_{p}}{X_{L}}=.8 \\
& X_{p}=.445 \\
& X_{L}=.555 \\
& .445 \mathrm{~A}=\mathrm{P}_{\mathrm{a}} \\
& .555 \mathrm{~A}=1.25 \mathrm{P} \text { a } \\
& A=P_{a}+1.25 P_{a}=2.25 P_{a} \\
& P_{a}=.8 P_{b} \\
& A=1.8 \mathrm{P}_{\mathrm{b}} \\
& R=\frac{4 P_{b}}{2 P_{b}+1,8 P_{b}}=\frac{4}{3.8}=1.05
\end{aligned}
$$

The traffic will be increased by only 5% for 20% reduction in petrol price.

The changes in petrol price and in speed for the two situations Before and After as outlined in this section use the generalised cost formula. The car operating cost formula for 1973 is presented diagramatically in Figure 7.8, with the resultant change in value of (R) rate of trip change. In Figure 7.9 a perspective response surface is shown for generated trips with the variation of sped from 20 kph to 40 kph and with different amounts of the route improvement, based on the 1973 data.

It must be noticed that households will lie on different points of the response surface, each according to its position in the study area with respect to the route improved.

The two main factors in the model are the effect of monetary change in the cost of trip, \& changein the speed of travel on the network (reflected in the values of both (A) and (h)). While the increase in petrol prices (in real term and introducing parking charges reduce the amount of car travel, the provision of higher speed will increase it.

Both situations represent present day frustrations, firstlyconcerning the environmental impact of car trips on CBD areas, and secondly the poor quality of roads which exist in many areas. This is the important fact of urban life, which is why people ask for better roads. These increase trips by such amount that both user and nonuser may suffer afterwards.

There is no simple solution for this paradox inherent in transportation planning. An examination of the model (formula 6.46) reflects exactly this confict, i.e., it shows how to increase (number of trips), wanted by a group of people, but in consequence the same group of people, and others also, request a reduction of (R). The compromise between a fair amount of travel without disturbing the environment, needs more than just planning aspects into modelifig, which has not yet been investigated.
7.6 SUMMARY AND CONCLUSIONS.

The resources needed for travel consist of both time and money. Each household has a fixed amount of money allocated for travel (travel money budget). The share of travel by each mode depends on the level of service provided by that mode. In addition, there is a travel time budget. These two budgets are interrelated and by different amounts according to household economic status.

Network improvement yields higher speeds for car travellers. Consequently there is a saving in time for the traveller and this implies an increase to his real income if he places any monetary value in time savings. This may encourage the traveller to increase his number of trips, which results in a willingness to pay some extra money by
an amount to bring him to a new equilibrium point in the trade-off between time and money.

Any network change affects the relative price of the various commodities or activities to which he allocates his time and money. This is because the components of their price to him, which consists of the generalised cost of travel, has changed. In general, he may be expected to shift his behavior in favour of those activities whose price, in terms of generalised cost, has fallen most. That is, he will tend to change his travel patterns in favour of activities which are at further distances from his location and away from activities which he formally carried out at or near home. The frequency, destination and length of the trips he makes will be increased as a result. These were the various possible reactions to change in the users cost of the transport network as outlined in this chapter.

From the summary on Table 7.4 the following points can be concluded:

Households behave differently in their desire for tripmaking and their response to changes in the lvel of service provided. In order to be precise, different generated trip models must be applied appropriately for each household income group. For example; that group of people who have access to firm's car, the expense of which is borne by the employer, have only the constraint of their own time. This would typically be a high income group, with a consequent characteristic of high appreciation of time, i.e., their time budget will be the same Before and After (Model 1) 1). By contrast, there is the lowest 20% income group who are more transport deprived - especially in car travel. This is shown by their trends of household income and expenditure on running a car. This group will take the opportunity of saving money by not increasing their rate of trips Before and After. They may even lessen their trips if costs go up as with a fuel price increase (Model 2).

Households in group are likely to continue spending the same money budget on travel by car Before and

After. If there was real improvement, i.e., decrease in cost and time of trip, this group would tend to increase trip rate to a limit permitted by money budget (Model 3).

Lastly, there are the households in the third and fourth income groups. Here the time saved may be appreciated as extra money, even if used for leisure; the rate of trips will rise according to generalised cost budget (Model 4). This indicates clearly that people with different economic backgrounds respond differently to the level of service provided by a transport facility, andeach group will behave according to the constraint put on them.

The generated trip models can be a gide for predicting traffic for short range periods, i.e., opening a new motorway, bridge, etc., or investigating the effect of petrol price change on behaviour of travellers in tripmaking.

It has been recognised that possibly the generated trip diminishes as the other components grow and crowd it out. Therefore, for long range planning, the model applicable is "General Share Model" which takes acceunt of bothgenerated trips and trip generation, which effectively means joining the trip generation box (as discussed in Chapter 1 (see Figure 1.1.)) with network analysis box. (i.e., the missing arrow mentioned by Wilson (section 6.1) has thus been put back). A further discussion of this concept follows in the next chapter.

TRAVEL PREDICTION, 3

APPLICATION OF GENERAL SHARE MODEL (GSM)

CAR TRIPS
8.1

INTRODUCTION

For long term planning the trip generation could be based on application of GSM to private travel (car trips) and public transport (person trips).

The GSM as formulated in Chapter 6 is applied to compute average trip rate made by households of different income for different trip purpose. The results are presented in the form of tables and diagrams which could be used as a guide for predicting total trip origins at a zonal level.

In this chapter, only car trips are considered, so eventually the subscript used for type of mode (K) is dropped from the formula. The discussion is based on a time unit of one week and trip rates are thus "average weekly" trips. For more specific daily, peak and offopeak trips, the past trend in travel variations can be related to average weekly rates.

The data given in FES reports, 1972, concerns income and expenditure on running a car. Information about travel characteristics is given in NTS 1972/73. These two sets of data can be combined to produce average trip rates. Other important information about car operating costs, given in TRRL report 661 for year 1973, are usedalthough assumptions are made concerning average speeds The availabledataisused at different levels of disaggregation: First, on average household with only one average sped for all trip purposes : Second, by householdincome group both on one average speed and for different average speeds by purpose of trip.

Car trip characteristics as given by NTS for year 1972/73 are shown in Table 8.a.

Table 8.a

Source : NTS 1972/73

8.2 NOTATIONS AND TABLES

The notations used in application of General
Share Model (GSM) for car trip generation are composed of three parts : first the notation for observed data, second the notationfor predicted values of observed data and finally the common notations.
$H_{o} \quad$: Total number of households in zone of origin, 0
H_{i} : Number of households in zone 0 , with income group i
P_{i} : Percentage of households in zone 0 , wtih income i
$Z_{1} \quad: \quad$ Total distance travelled by H_{0}
$Z_{1 i \ell}$: Distance travelled by household in income group i for purpose ℓ
$Z_{1 \ell}$: Distance travelled by average household, for purpose ℓ

E : Money spent on running of car for average household
$E_{i} \quad$: Money spent on running of car by income group i
$P_{\ell} \quad$: Percentage of E or E_{i} spent on travel for purpose ℓ

F : Correction factor

Q : Total trip rate

1 - for these values see Tables 8.a, band c, as well as Table 8.1

2 - Predicted values of these notations will appear with additional superscriptof (P) for example, predicted value of S_{ℓ} will be $S_{\ell} P^{\prime}$

From this notation it is clear that the
level of disaggregation is given on three levels:

1. Average overall for the zone, i.e., assuming
all trips is of the same nature. The same trip length and average speed is assumed for all purposes. This means only one value for each variable.
2. For household in income groups by purpose of trip, it is possible that there exists different average trip lengths (for same trip purpose) for differenthousehold income groups, and different speeds for different purpose and so on. This means different matrices can be constructed for each variable.
3. For average household, it is convenient to produce variables for each trip purpose.

However, the level of disaggregation depends mainly on the data availability and the nature of the study.

The combination of these three levels of disagregation might be adequate in some circumstances. For example disaggregation of householdsinto income groups, and different timelengths for each purpose, common to all householdincome groups might be appropriatefor some calculations.

Although variables are based on an average for the whole area, there is a possibility that each zone or group of zones has its own trip characteristics reflecting its accessibility. For amore detailed study it would be appropriate to deal with each zone in the study area separately.

Table 8.b

$\begin{gathered} \quad i \\ \text { Income } \\ \text { group } \end{gathered}$	$\begin{aligned} & M_{i}^{i} \\ & \text { Incóme } \\ & \text { per week } \\ & \text { £ } \end{aligned}$	$\begin{gathered} N_{i} \\ \text { Expen } \\ \text { for a } \\ \% \end{gathered}$	E_{i} car £
1	13	2.1	0.28
2	26	4.11	1.07
3	38.7	4.87	1.85
4	50.3	5.16	2.60
5	86.1	4.65	4.00
Average	42.82	4.57	1.96

Source: FES 1972

Table 8.c

Purpose ℓ	Trip purpose	$\%$ of total mileage S_{ℓ}	$\begin{gathered} \% \text { of } \\ \text { total } \\ \text { trip } \\ K_{\ell} \end{gathered}$	Average trip length $\overline{\mathrm{X}}_{\ell}(\mathrm{km})$
1	Work	25	31	9.7
2	In course of work	19	9	25.3
3	Shopping	13	20	7.8
4	Entertainment	7	8	10.5
5	Personal, social	17	15	13.6
6	Holiday, pleasure	19	17	13.4
	Total	100	100	

Source: NTS 1972/73
To evaluate P, percentage of expenditure allocated to travel for purpose ℓ, a correction must be applied to the values of S_{ℓ} (percentage distance travelled for purpose \&) as follows :

$$
\begin{align*}
\mathbf{P}_{\ell} & =\mathbf{S}_{\ell} \mathbf{F}^{\prime} \tag{6.54}\\
\mathbf{F} & =\frac{\mathbf{C}_{\ell}}{\mathbf{C}_{\mathbf{a}}} \frac{\sum_{\ell}^{\mathbf{S}_{\ell}}}{\sum_{\ell} \mathbf{S}_{\ell} \frac{\mathbf{C}_{\ell}}{\mathbf{C}_{\mathbf{a}}}} \tag{6.55a}
\end{align*}
$$

The notations are as given before. The value of F is in reality a weighted factor applied to the value of S_{ℓ} in cases only when cost per unit distance is different for different purposes. The value of P_{ℓ} on this basis, may be calculated using the values of S_{ℓ} given in Table 8.c, with other values for costs obtained from the operating cost formula for 1973 as given in TRRL 661, and Table 8.d constructed.

Table 8.d

$\begin{aligned} & \text { Average cost/unit distance } C_{a}=\frac{\sum C_{\ell}}{r} \\ &= \frac{2.615+2.37+2.15+2.11+2.04+1.95}{6}=2.206 \text { pence }\end{aligned}$
$\%$ expenditure on work trip $=S_{1} \frac{C_{1}}{1 C_{a}}=25 \frac{2.615}{2.206}=29.6 \quad \frac{P_{\ell}=S_{\ell} F}{29}$

$$
" \quad \text { " purpose } 2=S_{2} \frac{C_{2}}{2 C_{a}}=19 \frac{2.37}{2.206}=20.4
$$

$$
" \quad " \quad 3=S_{3} \frac{C_{3}}{C_{a}}=13 \frac{2.15}{2.206}=12: 7 \quad 12.4
$$

$$
" \quad 4 \quad 4=S \frac{C_{4}}{4 C_{a}}=7 \frac{2.11}{2.206}=6.7 \quad 6.6
$$

$$
" \quad n \quad 5=S_{3} \frac{C_{5}}{C_{a}}=17 \frac{2.04}{2.206}=15.7
$$

15.5

$$
6=S_{6} \frac{C_{6}}{C_{a}}=19 \frac{1.95}{2.206}=16.8 \quad 16.5
$$

$$
\sum_{1}^{r} S_{\ell} \frac{C_{\ell}}{C_{a}} \quad=101.9 \quad \Sigma=100
$$

Values of $C_{1}, C_{2}, C_{3}, C_{4}, C_{5}$ and C_{6} are from car operating cost formula for 1973, given by $C=1.29+\frac{26}{v}+0.000045 v^{2}$, speeds assumed are $20,25,30,35,40$ and 60 kph for purpose 1 to 6 respectively.

From these notations, the following expressions are true: (Note that the unit time is a week).

Average trip length $=\frac{\text { Total distance travelled in zone } 0}{\text { Total number of trips in zone } 0}$

$$
\begin{equation*}
\therefore \quad \bar{X}=\frac{Z_{1}}{Z_{2}} \text { (observed, all purposes) } \tag{8.1}
\end{equation*}
$$

Average trip length for $=\frac{\text { Distance travelled for purpose }}{\text { Number of trips for purpose } \ell}$ purpose ℓ

$$
\begin{equation*}
\bar{X}_{\ell}=\frac{Z_{1} S_{\ell}}{Z_{2} K_{\ell}}=\overline{\bar{X}} \frac{S_{\ell}}{K_{\ell}} \quad \text { (observed) } \tag{8.2}
\end{equation*}
$$

where values of S_{ℓ}, K_{ℓ} and \bar{X}_{ℓ} can, be found in Table 8.c. Cost per trip for $=$ Average trip length for purpose ℓ purpose $\ell \quad$ Cost per unit distance for purpore ℓ

$$
\begin{array}{ll}
\cdot \overline{\mathbf{C}}_{\ell}=\overline{\mathbf{x}}_{\ell} \cdot \mathbf{C}_{\ell} \\
\text { and } & \overline{\mathbf{c}}=\mathbf{c}_{\mathbf{a}} \cdot \overline{\mathrm{X}} \tag{8.3a}
\end{array}
$$

Money spent on running of car by householdincome group i $=$ Average household income in group $\quad x$ percentahe of expenditure on running of car
$\therefore \quad E_{i}=M_{i} N_{i} \quad($ see Table 8.b)
Average cost per unit distance for all purposes

$$
\begin{align*}
& =\frac{\text { summation of cost per unit distance for all purposes }}{\text { number of purposes }} \\
& \qquad C_{a}=\frac{\sum_{\ell=1} C_{\ell}}{r} \tag{8.4}
\end{align*}
$$

for equal cost per unit distance for all trip purposes $C_{a}=C_{\ell}$. percentage distance travelled for purpose ℓ (8.4a)
$=\frac{\text { distance travelled for purposel }}{\text { total distance for all purposes }} 100$
$\because S_{\ell}=\frac{Z_{1 \ell}}{Z_{1}} 100$
percentage trips made for purpose ℓ

$$
=\frac{\text { number of trips for purpose } \ell}{\text { total number of trips }} 100
$$

$\cdots K_{\ell}=\frac{Z_{2 \ell}}{Z_{2}} 100 \quad$ (observed)
percentage expenditure on running of car for purposel
$\begin{aligned}= & (p e r c e n t a g e ~ d i s t a n c e ~ t r a v e l l e d ~ f o r ~ p u r p o s e l) ~\end{aligned}$

$$
\begin{equation*}
\mathbf{P}_{\ell}=S_{\ell} \mathbf{F}_{\ell} \tag{8.7}
\end{equation*}
$$

and

$$
\begin{align*}
& F_{\ell}=\frac{c_{\ell}}{C_{a}} \cdot \frac{\sum_{i} S_{\ell}}{\sum_{1} S_{\ell} \frac{c_{\ell}}{c_{-}}}(\text {see Table 8.c) } \tag{8.9}
\end{align*}
$$

Car trip rate for purpose ℓ by household income group i
= Expenditure of household income group i on running of car x
percentage expenditure for purpose ℓ
cost per trip for purpose ℓ

$$
\begin{equation*}
\mathrm{t}_{\mathbf{i} \ell}=\frac{\mathrm{E}_{\mathrm{i}} \mathrm{P}_{\ell}}{\overline{\mathbf{c}}_{\ell}} \tag{6.41b}
\end{equation*}
$$

Car trip rate for, all households, all purposes

$$
\begin{align*}
& =\frac{\text { expenditure on car travel }}{\text { average overall trip cost }} \\
t^{P} & =\frac{E}{\bar{c}} \quad \text { (predicted) } \tag{6.41a}
\end{align*}
$$

From observations
trip rate $=\frac{\text { total number of trips }}{\text { number of households }}$

$$
\begin{equation*}
t=\frac{z_{2}}{H_{0}} \quad \text { (observed) } \tag{8.11}
\end{equation*}
$$

In Table 8.1
Total car trip rate for purpose ℓ by all households
$=$ summation of trip rate for purposel for all
households income groups
$\therefore Q_{\ell}=\sum_{i=1}^{a} t_{i} \quad(\operatorname{col} u m n$ summation) \quad (8.12)
Average car trip rate for purpose l
$=\frac{\text { total car trip rate for purpose } \ell}{\text { number of households }}$
$\because \because \quad \bar{Q} \quad=\frac{Q_{e}}{\sum i}$
Predicted total car trip rate by household income group i for all purposes.
$=$ summation of trip rate for all purposes by household income group i

$$
\begin{equation*}
\cdots T_{i}=\sum_{\ell=1}^{r} t_{i \ell} \quad(\text { row summation) } \tag{8.14}
\end{equation*}
$$

then

$$
\begin{equation*}
\sum_{\ell} \mathbf{Q}_{\ell}=\sum_{\mathbf{i}}^{\sum \mathbf{T}} \mathbf{i}=\mathbf{T} \tag{8.15}
\end{equation*}
$$

and

$$
\mathbf{K}_{\ell}^{\mathbf{P}}=\frac{Q_{\ell}}{\mathbf{T}} 100
$$

(see 8.6 for observed)
Predicted total distance travelled by all households for all purposes

```
= (summation of trip rates of all purposes for all
    households) x
    (average trip léngth by purpose)
```

$$
\begin{equation*}
Z_{1}^{P}=\sum_{i} \sum_{\ell} t_{i \ell} \bar{X}_{i \ell}(\text { predicted) } \tag{8.17}
\end{equation*}
$$

predicted percentage distance travelled for purpose $\ell b y$ householdincome group $i=S_{\ell}^{P}$.

$$
\begin{equation*}
S_{\ell}^{P}=\frac{\sum_{i \ell}^{q} t_{i \ell}^{\bar{x}_{i \ell}}}{\sum_{i \sum_{i \ell}}^{\sum_{i}} \bar{x}_{\ell}} \quad 100 \tag{8.18}
\end{equation*}
$$

This formula tells that the percentage of distance travelled 'for purpose ℓ, is equal to summation over all income groups and over all purposes, of trip ratefor purpose ℓ, times average trip length for purpose for households in income group i, (because there is possibility of existence of different trip length for the same purposefor different household income group), divided by the summation over all trip rate for all purposes and all households. However, on the assumption that different household income groups have the same average trip length for the same trip purpose, equation 8.18 can be reduced to

$$
\begin{equation*}
S_{\ell}^{P}={\frac{Q_{\ell}}{\bar{X}_{\ell}}}_{\sum_{\ell} \bar{X}_{\ell}}^{100} \quad \text { (predicted) } \tag{8.19}
\end{equation*}
$$

predicted average trip length for all purposes.

$$
\begin{equation*}
\bar{X}^{P}=\frac{\sum_{i} \sum_{\ell} t_{i \ell} \bar{X}_{i \ell}}{T} \text { (predicted, } \tag{8.20}
\end{equation*}
$$

predicted average trip length for purposel.

$$
\begin{equation*}
\overline{\mathbf{X}}_{\ell}^{\mathbf{P}}=\overline{\mathbf{X}}^{\mathbf{P}} \frac{\mathbf{S}_{\ell}^{\mathbf{P}}}{\mathbf{K}_{\ell}^{\mathbf{P}}} \tag{8.21}
\end{equation*}
$$

8.3 .

TRIP RATES FOR AGGREGATE DATA
8.3.1

Trip Rates for Average Household, all purposes.

The observed data given in Table 8.a, b, cand d, all
all abstracted, from NTS $1972 / 73$ and FES 1972, on the basis of average household income. From these observations the following variables can be computed :-

Total distance travelled by
Average trip length $=$ all households (all
Total number of trips purposes)

$$
\begin{align*}
& \bar{X}=\frac{Z_{1}}{Z_{2}} \tag{8.1}\\
& \bar{X}=\frac{964,915}{78,593}=12 \mathrm{~km}(\text { Table 8.a) }
\end{align*}
$$

.. $\overline{\mathrm{X}}=\frac{964,915}{78,593}=12 \mathrm{~km}(\mathrm{Table} 8 . \mathrm{a})$
Average trip per household $=\frac{\text { Total number of trips }}{\text { Number of housenold }}$

$$
\begin{aligned}
& t=\frac{Z_{2}}{H_{0}} \\
& t=\frac{78,593}{7,113}=\begin{array}{l}
11 \text { trip/week } \\
\quad(\text { observed, Table 8.a) }
\end{array}
\end{aligned}
$$

Therefore the observed trip rate per household per week is equal to 11 trips for all purposes. On the other hand to predict the number of trips, by relating the household expenditure and trip cost with the number of trips made per
household per week, one can proceed as follows:

$$
\begin{align*}
\text { Average trip rate } & =\frac{\text { expenditureon travel }}{\text { average trip cost }} \\
\therefore \ddots & =\frac{E}{\bar{C}} \quad \text { (predicted) } \tag{6.41a}
\end{align*}
$$

\bar{C} can be found from operating cost formula for 1973 given by TRRL report 661 :
where

$$
\cos t=1.29+\frac{26}{v}+0.000063 v^{2} \text { pence/km }
$$

assuming average speed for the data given on national basis for all purposes, $\quad=40 \mathrm{~km} / \mathrm{hr}$.

$$
\cos t=2.041 \text { pence } / \mathrm{km}
$$

$$
\begin{aligned}
. \quad \bar{C} \quad & =\operatorname{cost} \text { per unit distance } \quad \\
& =2.041 \times 12=24.5 \text { pence/trip }
\end{aligned}
$$

This indicates that the average household spends 24.5 pence per trip in 1973 for average trip length of 12 km .

Expenditure.on car travel as given in Table 8.b.

$$
\begin{equation*}
\mathrm{E}=\mathrm{MN} \tag{6.42}
\end{equation*}
$$

where
M = average household income per week
$N=$ percentage of income spent on travel by car.
-. $E=42.82 \times(4.57 \%)=196$ pence/week.
.. $t=\frac{196}{24.5}=8$ trip/week (predicted)

Therefore, average predicted trip per household per week is equal to 8 trips for all purposes.
percentage explained $=\frac{\text { number of trips predicted }}{\text { number of trips observed }} 100$

$$
=\frac{8}{11} 100=72 \%
$$

This variation is mainly due to the fact that not all household trips which are observed are paid by the households. Firms and companies contribute substantially by giving help
towards car runing costs, or in some cases by actually providing a car for the exclusive use of their employees. In support of this, the following is quoted from Transport 2000, 1976 : "the National Travel Survey is helpful in indicating some of the benefits paid or provided by employers to car using employees. Business expenses of some sort or other were received by 28% of all car owners and 22% of privately registered car".

In 1972 there were 12.7 m cars in Britain. 40% 60% of all new cars are company registered. 65% of all British executives have company cars against $\mathbf{3 8 \%}$ in the United States (Hamer, 1974). However, other reasonsfor the discrepancy between 11 trips per week observed and 8 trips per week predicted are:

1. The speed is only assumed.
2. The vehicle operating cost formula is not applicable for periods outside its range. There is the possibility that household income groups might experience different cost per unit distance for the same trip purpose. The items included in operating cost are slightly different from that of FES.
3. The same percentage of distance, and number of trips were applied to all household income groups; these characteristics might differ by income group.
4. The NTS $1972 / 73$ contains data for two different fears, while application of expenditure based on FES Report considered only data for 1972.
5. Although the samples came from the same population, the sample of FES is different from that of NTS, i.e., implicitly it was assumed that households in NTS had the same income distribution (20% in each income group). If the income distribution of households in NTS sample is not similar to that in the FES survey then a bias can be expected.

It is worth remembering that the value of time used in TRRL Report 1973 is 81 pence per hour, on the basis of average speed $40 \mathrm{~km} / \mathrm{hr}$, the value of time according to
this study is $40 \times 2.041=81$ pence/hr. speed multiplied by cost per unit distance.
8.3.2 Trip Rate for Average Household by Purpose of Trip.

It became clear in Section 8.2 that average trip length for purpose ℓ is given by :-

$$
\begin{equation*}
\overline{\mathbf{x}}_{\ell}=\overline{\mathbf{x}}^{\mathrm{S}_{\ell}} \frac{\mathbf{K}_{\ell}}{} \tag{8.2}
\end{equation*}
$$

where all the terms are as defined before.
Table 8.c shows that average work trip length which is given by :-

$$
\begin{aligned}
\bar{X}_{\text {work }} & =\overline{\mathrm{X}} \frac{S_{\text {work }}}{K_{\text {work }}} \\
& =12 \frac{25}{31}=9.7 \mathrm{~km} \quad(\text { purpose } 1)
\end{aligned}
$$

on the same basis, average trip length is worked out for all other purposes.
The formula given'by 6.41b

$$
\begin{equation*}
\mathrm{t}_{\mathrm{K} \ell}=\frac{\mathrm{E} \mathrm{P}_{\mathrm{K} \ell}}{\overline{\mathrm{C}}_{\mathrm{K} \ell}} \tag{6.41b}
\end{equation*}
$$

This can be reduced to

$$
\mathrm{t}_{\ell}=\frac{\mathrm{E} \mathrm{P}_{\ell}}{\overline{\mathrm{C}}_{\ell}} \text { (for mode of car) }
$$

In the situation of only one sped assumed for all purposes, the value of P_{ℓ} can be shown to be equal to S_{ℓ}, i.e., percentage of E, allocated for travel for purpose $f_{\text {is }}$ equal to percentage distance travelled for purpose ℓ.
i.e., $P_{\ell}=S_{\ell}$ or $F=1$

This can be shown by : -

$$
\begin{equation*}
P_{\ell}=s_{\ell} \frac{C_{\ell}}{\frac{C_{a}}{C_{a}}} \frac{s_{\ell}}{\sum_{1}^{r}} s_{\ell} \frac{-C_{\ell}}{\mathbf{C}_{\ddot{a}}} \tag{8.10}
\end{equation*}
$$

Average cost per unit distance is equal for all trip purposes in this case.

$$
\begin{align*}
& \therefore c_{\ell}=c_{a} \tag{8.22}\\
& \therefore P_{\ell}=s_{\ell} \tag{8.23}
\end{align*}
$$

and

$$
\begin{array}{r}
\overline{\mathrm{c}}_{\ell}=\left(\overline{\mathrm{x}} \frac{\mathrm{~s}_{\ell}}{\mathrm{K}_{\ell}}\right) \mathrm{c}_{\ell} \\
\therefore \quad \mathrm{t}_{\ell}=\frac{\mathrm{E} \mathrm{~s}_{\ell}}{\overline{\mathrm{x}} \frac{\mathrm{~s}_{\ell}}{\mathrm{K}_{\ell}} \mathrm{c}_{\ell}=\frac{\mathrm{E}}{\mathrm{c}_{\ell} \overline{\mathrm{x}}} \mathrm{~K}_{\ell}} \\
\therefore \quad \mathrm{t}_{\ell}=\frac{1.96}{2.041 \times 12} \mathrm{~K}_{\ell}=8 \mathrm{~K}_{\ell} \tag{8.26}
\end{array}
$$

Where the values of $E=196$ pence obtained from Table $8 . b$ and $C_{\ell}=2.041$ from cost formula of 1973 , and $\bar{X}=12$ from observed data as given above. This formula indicates that average trip rate for each purpose equals 8 times (K_{ℓ}), where K_{ℓ} is the percentage of trip for purpose ℓ. If values of K_{ℓ} from Table 8.c are substituted in formula 8.26 the following trip rates for each purpose are obtained.
$t_{1}=8 \mathrm{x} .31=2.48$ average work trip/household/week
$t_{2}=8 \mathrm{x} .09=.72$ average in course of work trip
$t_{3}=8 \mathrm{x} .20=1.60$ average shopping trip
$t_{4}=8 \mathrm{x} .08=.64$ average entertainment trip
$t_{5}=8 \times .15=1.20$ average social trip
$t_{6}=8 \mathrm{x} .17=1.36$ average holiday trip
Total trip, $\bar{T}=8.00$ per household/week.
To check percentage of distance for each purpose:

$$
\begin{equation*}
\mathbf{s}_{\ell}^{\mathbf{P}}=\frac{Q_{\ell} \overline{\mathbf{x}}_{\ell}}{\sum_{\ell} \mathbf{Q}_{\ell} \overline{\mathbf{x}}_{\ell}} \tag{8.19}
\end{equation*}
$$

$S_{1}=\frac{(2.48) 9.7}{(2.48) 9.7+(.72) 25.3+(1.6) 7.8+.64(10.5)+}=\frac{24}{95.8}$
(1.2)13.6+(1.36)13.4
$=25 \%$ i.e., work trips represent 25% of all distances the values of $S_{2}, S_{3}, S_{4} S_{5}$ and S_{6} are $19,13,7,17$ and 19 respectively.

These values of S_{ℓ}^{P} are the same as shown in Table 8.c, which is originally assumed, furthermore, K_{ℓ} for each purpose us automatically satisfied.

To compute the number of trips per zone, the value of ($\bar{T}=8$) simply multiplied by the number of households in each zone.

$$
\begin{align*}
\mathbf{T T}_{\mathbf{c a r}} & =\mathrm{H}_{0} \sum_{\ell=1}^{\mathrm{r}} \frac{\mathrm{E} \cdot \mathrm{P}_{\ell}}{\overline{\mathrm{C}}_{\ell}} \text { Total trip by car } \tag{6.49}\\
& =8 \mathrm{H}{ }_{0} \text { for eachoriginzone }
\end{align*}
$$

These values will be an input for trip distribution. However, if trip distribution is made separately by purpose then

$$
\begin{aligned}
T_{\text {car }} & ={ }_{0}{ }_{0} t_{\ell} \\
& =2.48 H_{0} \text { for work trip and so } \\
& \text { on for other purposes. }
\end{aligned}
$$

This kind of disaggregation has some disadvantages. While it is evident that higher income groupsexhibit higher trip rates for each trip purpose, the application of these trip rates will over-estimate the total number of trips in zones whose average income is under the average of study area, while zones with higher average incomes than the study area will be under estimated. In these circumstances if analysis by household income groups could not be done because of lack of data, some corrections are needed to trip rates in zones believed to be highly prosperous as far as residents income is concerned, as well as to poor income zones.
8.4 TRIP RATES FOR DISAGGREGATE DATA.
8.4.1 Trip Rates by Household Income Group, the same Speed for all Purposes.

The availability of data is the major factor in considering the level of disaggregation of the analysis. The travel characteristics of household by income group
might be different, for example average work trip length for higher income groups probably is longer than for lower income groups. In addition, it is probable that percentage of work trips (as measured by K_{ℓ}) is different by household income groups, as well as percentage of distance travelled for work trip (as measured by S_{ℓ}). The data on this level of disaggregation is not available from NTS, therefore, the assumption is made that (\bar{X}_{ℓ}) average trip length by purpose is common for all household income groups. The same is assumed as far as values of S_{ℓ} and k_{ℓ} are concerned. In Table 8.1 the values of variables is as
follows:
Household income groups : $\quad=5$
Number of household in each income group $H_{i}=20$

$$
\sum_{i} H_{i} \quad=100
$$

Average weekly income $\quad M_{i} \quad=\quad a s$ shown in Table 8.b Percentage of income spenton $N_{i} \quad=\quad a s$ shown in Table 8.b travel by car

Money spent on trável by car $\quad E_{i} \quad=\quad a s$ shown in Table $8 . b$ where

$$
\begin{equation*}
E_{i}=M_{i} N_{i} \tag{6.42}
\end{equation*}
$$

Average trip length by purpose $\overline{\mathrm{X}}_{\ell}$
where

$$
\begin{equation*}
\overline{\mathbf{x}}_{\ell}=\overline{\mathbf{x}} \frac{S_{\ell}}{\mathbf{K}_{\ell}} \tag{8.2}
\end{equation*}
$$

Value of $\overline{\mathrm{X}}$ overall trip length from $N T S$ survey is 12 km and values of S_{ℓ} and K_{ℓ} from Table 8.c. Expenditure on car travel for purpose $\ell=P$ P values are given in Table 8.c.
Average speed for all purpose $\quad \nu \quad=40 \mathrm{~km} / \mathrm{hr}$.
Cost per unit distance

$$
=C_{\ell}
$$

C values found from operating cost formula for 1973.
Cost pertrip $=\overline{\mathbf{C}}_{\ell}$
where

$$
\begin{equation*}
\overline{\mathbf{C}}_{\ell}=\mathbf{C}_{\ell} \cdot \overline{\mathbf{x}}_{\ell} \tag{8.3}
\end{equation*}
$$

On this basis, i.e., one average speed for all purpose, the trip rates $t_{i \ell}$ is computed for each cell in Table 8. 1 , where

$$
\begin{equation*}
t_{i \ell}=\frac{\mathbf{E}_{i} \mathbf{P}_{\ell}}{\overline{\mathbf{c}}_{\ell}} \tag{6.41b}
\end{equation*}
$$

this formula can be reduced for this circumstance to:

$$
\begin{align*}
& P_{\ell}=S_{\ell} \text { for } F=1 \tag{8.7}\\
& \overline{\mathbf{c}}_{\ell}=\mathbf{c}_{\ell} \overline{\mathbf{x}}_{\ell} \tag{8.3}\\
& \overline{\mathbf{x}}_{\ell}=\overline{\mathbf{x}} \frac{\mathbf{S}_{\ell}}{\mathbf{K}_{\ell}} \tag{8.2}\\
& \cdots \overline{\mathbf{C}}_{\ell}=\mathbf{c}_{\ell} \overline{\mathbf{X}} \frac{\mathbf{S}_{\ell}}{\mathbf{K}_{\ell}}, \quad \overline{\mathbf{C}} \quad=\mathbf{c}_{\mathbf{a}} \overline{\mathbf{X}} \tag{8.3a}\\
& \cdots \overline{\mathbf{C}}_{\ell}=\overline{\mathbf{c}} \frac{\mathrm{S}_{\ell}}{\mathrm{K}_{\ell}} \tag{8.27}\\
& c_{a}=C_{\ell} \tag{8.4a}\\
& \cdots t_{i \ell}=\frac{E_{i} S_{\ell}}{\mathbf{c}_{\ell} \bar{X} \frac{S_{\ell}}{K_{\ell}}}=\frac{E_{i} K_{\ell}}{\overline{\mathbf{C}}} \tag{8.28}
\end{align*}
$$

For the same household, for different trip purposes

$$
\begin{equation*}
\frac{t_{i 1}}{t_{i 3}}=\frac{E_{i} K_{1}}{\bar{C}} \div \frac{E_{i} K_{3}}{\bar{C}}=\frac{K_{1}}{K_{3}} \tag{8.29}
\end{equation*}
$$

Where 1 and 3 denotes the work and shopping purpose. This indicates that the ratio of trips for two different purposes for the same household income group is the same as ratio of percentage of trips for each purpose (K_{ℓ}).

For two households in different income groups, for the same trip purpose the ratio is as follows:

$$
\begin{align*}
t_{i \ell} & =\frac{\mathrm{E}_{1} \mathrm{~K}_{\ell}}{\overline{\mathrm{c}}} \tag{8.30}\\
\mathrm{t}_{2 \ell} & =\frac{\mathrm{E}_{2} \mathrm{~K}_{\ell}}{\overline{\mathrm{c}}} \tag{8.31}\\
\therefore \quad \frac{t_{1 \ell}}{\mathrm{t}_{2 \ell}} & =\frac{\mathrm{E}_{1}}{\mathrm{E}_{2}} \tag{8.32}
\end{align*}
$$

This indicates that for the same trip purpose, the ratio of trip for household income group 1 and 2 are the same as ratio of their expenditure on running of car.

In Table 8.1 :

$$
\begin{align*}
& \text { Total trips }=\mathbf{Q} \\
& \mathbf{Q}=\Sigma Q_{\ell}=\Sigma T_{i} \tag{8.33}\\
& Q=40.0
\end{align*}
$$

Average for one household

$$
\begin{equation*}
\bar{T}=\frac{40}{5}=8 \mathrm{trips} \tag{8.34}
\end{equation*}
$$

Total distance travelled

$$
\begin{align*}
L & =\sum Q_{\ell} \bar{X}_{\ell} \tag{8.35}\\
& =480 \mathrm{~km} .
\end{align*}
$$

Checking for values of S_{ℓ}

$$
\begin{align*}
S_{\text {work }}^{P} & =\frac{L}{Q_{\text {work }} \bar{X}_{\text {work }}} \tag{8.5}\\
& =\frac{480}{12.36 \times 9.7} \quad 100=25 \%
\end{align*}
$$

This value is the same as observed value. Other values of (S_{ℓ}) also satisfy this constraint. Checking for values of K_{ℓ}

$$
\begin{equation*}
\mathrm{K}_{\text {work }}^{P}=\frac{Q_{Q_{\text {work }}}}{Q^{2.36}}=\frac{40}{12.31 \%} \tag{8.6}
\end{equation*}
$$

This value is the same as observed value.
Other values of (K_{ℓ}) also satisfy this constraint.
In Table 8.1 :
The trip rate for a household income group is
denoted by T_{i}, for all purposes. T_{i} ranges from 1.12 trips per week for lowest household income group to 16.33 trips for highest income group. This indicates the importance of the income on trip generation.

The values of \bar{Q}_{ℓ} is the same values as previously computed in Section 8. 3.2, which is given by t_{ℓ} 。
8.4.2 Trip Rates by Household Income Groups, with Different Speeds for each Purpose.

The same procedure is repeated as in Section 8.4.1 but assuming different speeds for each trip purpose. The speeds as shown in Table 8.2 are ranging from 20 kph to 60 kph , with lowest speed assumed for work trips on the basis that these trips are performed mostly during peak hours. Again the same formula(6.42)is applied for each cell and ($t_{i \ell}$) number of trips made by income group i for purpose ℓ is computed.

$$
\left(P_{\ell}\right) \quad \text { is used instead of } S_{\ell}
$$

because the (F) values are not unity as in previous section. The values of P_{ℓ} used are shown in Table 8.2. The value of ($\mathrm{t}_{\mathrm{i} \ell}$) for each cell is computed as follows:

$$
\begin{equation*}
t_{i \ell}=\frac{E_{i} P_{\ell}}{\overline{\mathbf{C}}_{\ell}} \tag{6.41c}
\end{equation*}
$$

For example, work trip rate for household income group 4, (i $=4$), for purpose work $(\ell=1)$ is:

$$
\begin{equation*}
t_{4,1}=\frac{260 x \cdot 29}{25.36}=2.97 \tag{6.41c}
\end{equation*}
$$

where
E : expenditure on travel by car $=185$ pence for household income group 4 (Table 8.b)
$P_{\ell} \quad$: percentage of E allocated for work trips $\quad=.29$ (Table 8.d)
\bar{C}_{ℓ} : average trip cost
$\overline{\mathbf{c}}_{\ell} \quad: \quad \mathbf{c}_{\ell} \cdot \overline{\mathbf{x}}_{\ell}$
where
$C_{\ell} \quad$: cost per unit distance, at assumed speed $v=$ 20 kph for work trip, from operating cost formula given in TRRL 661 where cost $=1.29+\frac{26}{\nu}+.000063 \nu^{2}=2.615$ pence/km and average trip length \bar{X}_{ℓ} is given by

$$
\begin{equation*}
\overline{\mathbf{x}}_{\ell}=\overline{\mathbf{x}} \frac{\mathbf{S}_{\ell}}{\mathbf{K}_{\ell}} \tag{8.2}
\end{equation*}
$$

where \bar{X} is average overall trip length and S_{ℓ} and K_{ℓ} is percentage of distance and percentage of trips for work purposes

$$
\bar{X}_{w o r k}=12 \frac{25}{31}=9.7 \mathrm{~km} .
$$

where 12 is computed on the basis of national average Average overall trip length $=\frac{\text { total distance travelled }}{\text { total number of trips }}$ $\therefore \overline{\mathrm{X}}=\frac{964,915}{78,593}=12 \mathrm{~km}$. (Table8.a)
values of S_{ℓ} and K_{ℓ} is given in Table 8.c where

$$
S_{\ell}=25 \%, K_{\ell}=31 \%
$$

In Table 8.2 :

$$
\begin{array}{ll}
\mathbf{T}_{i}=\sum_{\ell} t_{i \ell} & \text { (row summation) } \\
\mathbf{Q}_{\ell}=\sum_{i} t_{i \ell} & \text { (column summation) } \\
\bar{Q}_{\ell}=\frac{Q_{\ell}}{\sum_{i}} & \tag{8.38}
\end{array}
$$

where
T_{i} : is trip rate for household income group i
(all purposes)
$\bar{Q}_{\ell} \quad$: is trip rate of average household for purpose ℓ T_{i} is ranging from 1 trip per household for lowest income group to 14.8 trips per household for highest income group.

$$
\begin{align*}
\mathbf{T} & =\sum_{\mathbf{i}} \mathbf{T}_{\mathbf{i}}=\sum_{\ell} \mathbf{Q}_{\ell} \tag{8.39}\\
\overline{\mathbf{T}} & =\frac{\mathbf{T}}{\sum_{\mathbf{i}}} \tag{8.40}
\end{align*}
$$

where
T $\quad=$ total number of trips
$\bar{T} \quad=\quad$ average number of trips
$T=36.25$
. $T=\frac{36.25}{5}=7.24$
To satisfy the original constrains regarding
S_{ℓ} and K_{ℓ} :

$$
\begin{aligned}
\mathrm{K}_{\ell}^{\mathrm{P}} & =\frac{\mathrm{Q}_{\ell}}{\sum_{Q_{\ell}}} \\
& =\frac{11.19}{36.3}=31 \% \text { for work trip, } K=1
\end{aligned}
$$

$K_{2}, K_{3}, K_{4}, K_{5}$ and K_{6} can all be reproduced as original values, which is given in Table 8.a.

$$
\begin{align*}
S_{\ell}^{P} & =\frac{Q_{\cdot} \bar{X}_{\ell}}{\sum_{\ell Q_{\ell} \bar{X}_{\ell}}, \sum_{\ell} \bar{X}_{\ell}=434} \tag{8.42}\\
& =\frac{11.19(9.7)}{434}=25 \% \text { for work trip,K }=1
\end{align*}
$$

$S_{1,} S_{2}, S_{3}, S_{4}, S_{5}$ and S_{6} can all be reproduced as original values, which is given in Table 8.a.

This shows that the GSM models have the advantage that they are internally consistent.

The predicted average overall distance can also be reproduced as follows:

$$
\begin{align*}
\bar{X}^{P} & =\frac{\sum \sum t_{i \ell} \bar{X}_{i \ell}}{T}=\frac{\sum Q_{\ell, \ell \ell} \bar{X}_{\ell}}{T} \tag{8.2}\\
& =\frac{434}{36.2}=12 \mathrm{~km} .
\end{align*}
$$

By computing say different work trip lengths for different household income groups, as well as different values of S_{ℓ} and K_{ℓ} for different household income groups, the figures in Table 8.c are applied to all household income groups. In reality, however, household income group has its own trip characteristics, i.e. for a detailed study, base year travel characteristics (as in Table 8.c) must be provided for each household income group.

The other information needed relates to cost per unit distance, hence cost per trip for different purposes. The cost formula for 1973 is then applied and the results are shown in Table 8.2, after some assumptions were made about average speed for each purpose. However, the same argument is true for cost per unit distance for different purposes for different household income groups. The cost formula which appears in TRRL reports, usually takes arepresentative car engine size (1400 ccin 1973), but accepting the fact that households with higher income levels use larger cars, the cost of those will be higher than average. Therefore, there is a need to use different operating cost
formula, according to actual engine size by income group. The application of national data avoids any tendency towardsover or under estimation of total trip rates. This is because the aggregation of households into income groups is even (20% of household in each income group), but this by no means guarantees that the trip rates for individual householdincome group is not biased.

The results of trip rates by purpose of trip, from Table 8. 2 , are presented diagramatically in figures 8.1 and 8.2. It is evident that the work trips have a major impact on the amount of travel, and the higher income groups always exhibit higher trip rates for each travel purpose.

The scale of income is presented in these graphs both on the basis of discrete income and also on the basis of income groups. The aim of establishing such relationships is obvious, viz: the task of forecasting (number of trips) at a zonal level will be more meaningful if it is done on the basis of household income groups because the effect of inflation has been eliminated. Knowing the number of households in each income group (H_{i}), and multiplying by appropriate rate of trips by purpose, and summing overall household income groups, the resultant will be total number of tripsoriginated from zone 0 , which can be used as an input to a trip distribution model

It is also a fact that average household income and average trip rate fall on the same line for all purposes (Figure 8.1). This average can be used only if the household distribution by income (20% of householdin each income group) is spread evenly. These types of curves can be established for any particular area, which might be different from national average. However, for rough estimates, one can apply national trip rates after some correction regarding the character of households in the area under study. 8.5 TRIP RATE CHANGE DUE TO SPEED OR AVERAGE TRIP LENGTH FOR HOUSEHOLD INCOME GROUP i

The effect of change in speed and trip length on trip rate can be found as follows:

$$
\begin{equation*}
t_{\ell}=\frac{E_{i}{ }^{P_{\ell}}}{\overline{\mathbf{c}}_{\ell}} \tag{6.41c}
\end{equation*}
$$

$$
\begin{equation*}
\overline{\mathbf{c}}_{\ell}=\mathbf{c}_{\ell} \overline{\mathbf{x}}_{\ell} \tag{8.3}
\end{equation*}
$$

Two cases are presented :
Case 1 - Improvement : speed increase from 20 kph , with same average trip length

$$
\begin{equation*}
t_{\ell}=\frac{E_{i} P_{\ell}}{\mathbf{c}_{\ell} \overline{\mathbf{x}}_{\ell}}=\frac{\mathbf{E}_{i} P_{\ell}}{\overline{\mathbf{x}}_{\ell}} \quad \frac{1}{\mathbf{C}_{\ell}}=\frac{\pi_{1}}{\mathbf{C}_{\ell}} \tag{8.43}
\end{equation*}
$$

From speed 20 kph to 40 kph for any trip purpose

$$
\frac{t_{\ell 40}}{t_{\ell 20}}=\frac{{\frac{\pi}{\pi_{i}}}_{C_{\ell 40}}^{\pi_{1}}}{\bar{C}_{\ell 20}}=\frac{C_{\ell 20}}{C_{\ell 40}}=\frac{2.615}{2.041}=1.28 \quad \text { increase in rate }
$$

From speed 20 kph to 60 kph for any trip purpose

$$
\frac{t_{\ell 60}}{t_{\ell 20}}
$$

$$
=1.34 \text { increase in rate }
$$

From speed 40 kph to 60 kph

$$
\frac{t_{\ell 60}}{t_{\ell 40}}
$$

$=1.05$ increase in rate

Case 2- Improvement : building new links or change in land use: For change in average trip length, same speed

$$
\begin{equation*}
\bar{x}_{\ell \mathbf{a}}=\alpha \overline{\mathbf{x}}_{\ell b} \tag{8.44}
\end{equation*}
$$

where $\quad X_{\ell a}$: average trip length After
$X_{\ell b}$: average trip length Before

$$
\begin{equation*}
t_{\ell}=\frac{E_{i} P_{i}}{c_{\ell} \bar{x}_{\ell}} \tag{6.41}
\end{equation*}
$$

$$
\begin{equation*}
\frac{t_{\ell a}}{t_{\ell b}}=\frac{\bar{x}_{2}}{\overline{\bar{x}}_{\ell a}} \frac{\bar{x}_{2}}{\bar{x}_{\ell b}}=\frac{\bar{x}_{\ell b}}{\bar{x}_{\ell a}}=\alpha \tag{8.45}
\end{equation*}
$$

. . the trip rate increase is the same proportion of average trip length decrease, while triprate increase for change in speed is proportional to cost decrease.

As part of a transport planning process, it is usual to divide the area under consideration into a number of zones (Section 1.6), and the unit of analysis is household (Section 1.10). The information needed is the number of households, with their weekly income, in each zone. Collecting such planning data can be part of a travel survey, or can be obtained from other sources, such as the general cencus, the local department of planning etc. Alternatively, past trend information may be used to forecast for some future years ahead.

From Figure 5.3, the position of the income curve for 1985 can be estimated roughly. This forecast, however, even if it involves some error, may not cause much error in the amount of travel forecast by the General share Model. As outlined in Chapter 5, the average household income for each group can be found, then each household in the zone will lie in a certain group. This calls for the residential location to be assessed, which is the main task of each authority at each level of regional land use planning. While the number of households for the base year can be obtained from survey data, there always remains a tricky forecasting problem in allocating percentage of households for a zone in each income group. As a gide for such a distribution, a Gamma function can be used as outlined in Section 2.4.3.

Other data needed are travel characteristics, average trip length (see Figure 5.13), percentage of distance travelled (by household income group and by purpose of travel). This information can be computed from base year data (Figure 5.12) which is assumed to remain stable over time.

Cost of travel by private car can be found from operating costs formula for base year. Forecasting for target year involves some assumptions about fuel price indices relative to income indices.

The main element in predicting future travel is household income, as shown in Figure 5.3. The forecast of
average income for a household in U.K.in 1985 is $£ 200 \mathrm{p} / \mathrm{w}$. Regarding the past trend and the proposed programmes of road construction, there is no significant likelihood of any higher level of service being provided by 1985 for either car or bus travel. The amount of money which will be spent on travel is assumed to remain constant as percentage of household income (6.2\%). There is a slight increase in expenditure on travel by car between 1975 and 1985 , i.e., from 4.87% to 5.0% : the assumed expenditure on travel by rail remains constant at past period level of 0.5% : this will leave 0.7% for travel by bus. Knowing these figures, the problem of forecasting will be confined to translating fixed money spent on travel into number of trips by mode. This in depends on the future level of service provided and average trip length by mode, which can be predicted from base year travel characteristics, using a proper assignment technique, and the proposed target network.

The other important factor, as far as car trips are concerned, is'forecasting the operating cost. A considerable amount of knowledge is required in this concept regarding future economic growth and the probable petrol price index. However, it is sufficient if one assumes that the income indices are a reflection of petrol price indices. Accepting this criterion, the cost per unit distance of car travel at speed v can be presented by :

$$
C=\left[1.29+\frac{26}{v}+0.000063 v^{2}\right] X \frac{\text { income at } 1985}{\text { income at } 1973}
$$

For example, at speed $20 \mathrm{~km} / \mathrm{hr}$., cost/km. in 1985 is :

$$
C=2.615 \times \frac{200}{72.46}=7.12 \text { at } 1985 \text { prices. }
$$

The remaining procedure is a direct application of the General
Share Model, and this implies that petrol prices will not rise in real terms between 1973 and 1985

The object of the present study is to discuss in quantitative terms, so far as possible with the available data, the factors that determine the amount of travel in a given area. It has been seen how expenditure on private and public transport varies with income, it is also thought that the disaggregation of population by income level represents a logical stratification of the household whichis regarded as a basic unit of travel: making.

In this chapter the application of the General Share Model (GSM) as formulated in Chapter 6 is applied to car trips. Trip rate by household income group and by purpose of trip is based on average weeklytravel as shown in Tables 8.1 and 8.2 , and presented diagrammatically in figures 8.1 and 8.2. The GSM showed a great internal consistency in reproducing the original data. However, the performance of the model as a prediction tool can only be evaluated after its application to a certain urban area for long term transport planning. Its performance for such forecasts can only give adequate results if the related forecasts of involved parameters can be carried out accurately.

The data used is NTS 1972/73 and FES Report 1973, with operating cost formula given by TRRL Report 661 for year 1973. The procedure is elaborated and relaxed for different assumptions in the application of the model in this chapter. However, the backbone is the formula given by : -

$$
\begin{equation*}
t_{i \ell}=\frac{E_{i}{ }^{P_{\ell}}}{\overline{\mathbf{c}}_{\ell}} \tag{6.41~b}
\end{equation*}
$$

where
$t_{i \ell}=$ number of trips, by household income group ifor purpose ℓ (weekly)
$E_{i}=$ expenditure by household income group i on car trip
$P_{\ell}=$ percentage of expenditure allocated to purpose ℓ
$\overline{\mathbf{C}}_{\ell}=$ average cost per trip for purpose ℓ
The method of assessing value of E_{i} became quite clear in previous chapters through the analysis of household
income and expenditure trends;

$$
\begin{equation*}
E_{i}=N_{i} M_{i} \tag{6.42}
\end{equation*}
$$

where
$M_{i}=$ average weekly household income group i
$N_{i}=$ percentage expenditure on running of car
P is shown to be a function of S (percentage trip distance for purposel ; for the same cost per unit distancefor all purposes $\quad=S$ (S can be computed from base year travel characteristics) and for different cost per unit distance for each trip purpose

$$
\begin{equation*}
\mathrm{P}_{l}=\mathrm{S}_{l} \cdot \mathbf{F} \tag{8.7}
\end{equation*}
$$

where F is a correction factor
where
$C_{a}=$ average cost per unit distance for all trip purposes, the value of C_{ℓ} can be computed from operating cost formula which in turn is a function of sped of a particular trip purpose.

$$
\begin{equation*}
\overline{\mathbf{c}}_{\ell}=c_{\ell} \overline{\mathbf{x}}_{\ell} \tag{8.3}
\end{equation*}
$$

where C_{ℓ} can be found as shown above, \bar{X} average trip length for purpose ℓ is given by

$$
\begin{equation*}
\overline{\mathbf{x}}_{\ell}=\overline{\mathbf{x}} \frac{\mathbf{S}_{\ell}}{\mathbf{K}_{\ell}} \tag{8.2}
\end{equation*}
$$

where
$\bar{X} \quad$: is average overall trip length
K_{ℓ} : percentage of trips for purpose ℓ

It must be emphasised that \bar{X}_{ℓ} is directly related to land use distribution and accessibility in the zone under consideration. These parameters can also be computed frombase year travel characteristics.

The application of this model reproduced 72% of the amount of car trips on national basis. The remaining $\mathbf{2 8 \%}$ represents travel by firms'cars, the costof which is not paid by households (NTS 1972/73).

It is found that the number of trips for any particular purpose is higher for higher income group (see Figures 8.1 and 8.2) work trip rates are higher than other trip purposes. The average trip rate for all purposes ranges from 1 for lowest income group to 16 trips per week for highest income group, reflecting the impact of income on car tripmaking and consequently it is vital to predict accurately the household income distribution by income on zonal level.

The change in trip rates also examined due to change in average trip speed, or average trip length, by purpose of trip for certain household income group. It is found that the number of trips will be proportional to the cost per unit distance in comparing Before and After change in speed, and proportional to average trip length Before and After for change in land use or building new roads.

The level of disaggregation is found to be a function of data availability. The ideal application of the model will be on the basis of each zone, thus the accessibility gained by some zones which affect their trip characteristics is not suppressed. The prediction for long term trip generation is related to many side effects, such as prices and income indices. This obviously needs broad understanding of the whole economic situation. However, as a simple guide it has been suggested in this study that the best single item index related to income index is that of petrol price index.

CHAPTER 9

> TRAVEL PEEDICTION, 4.

PUBLIC TRANSPORT TRIPS

(BUS AND RAIL)
9.1

INTRODUCTION

Traditionally so called "comprehensive" urban area transportation studies have given little consideration to public transport planning. Early studies were very much car orientated. "The steadily increasing demand for space was apparent, highway construction funds were readily available and public transport was seen to be, and indeed was, a declining industry" (Constinett, 1970). Recently the role of public transport has been generally accepted in future transport systems:

In the U.K. since 1955 the decline has continued but at a decreasing rate. This can be confirmed by the trend of bus and coach travel as shown in Table 9.a.

Table 9.a

1955	1960	1065	1968	1972	1975
4.19	3.94	3.91	3.82	3.62	3.49

Bus and coach kilometres travelled on all roads (thousand million).

Source: Transport Policy, 1976.
These trends represent a real decrease in social equity, in that peoplewithout a car have become less mobile probably as a result of cuts in the service provided. In 1971 buses were running 10% less vehicle miles than in 1961 (Hamer, 1974) The nature of input to public transport passenger cost is responsible for this phenomenon. Cost is
mainly labour ($60 \%-70 \%$). In cities the privatecar and public transport competefor the same road space. "In London without the car, buses could cope with peakhour traffic flows" (London Transport annul report, 1973).

Data from other European countries indicates clearly that the decline in public transport passengerkilometres is unique in Britain. Furthermore, forecasts in those other countries envisage stable or increasing volumes of public transport despite rising car ownership.

The common modes for road public transport are mainly buses and coaches. "Public road passenger transport provided by buses and coaches can be divided into two sections, differing substantially in character. On the one hand there is the long distance market in which buses have a relatively small share but which is broadly profitable; on the other hand there is the local distribution market in which buses have a large, though declining share and which is distinctly unprofitable", (Gwillian and Mackie, 1975).

This is mainly due to the fact that this industry is very labour intensive and fuel accounts for less than 10% of total cost.
9.2 Public Transport Characteristics
9.2.1 Reliability of Public Transport Service

The main feature of reliable public transport provision is in its level of service, which includes :

1. Fares; in general, public transport faresmay be flat throughout a whole route, or graduated by distance travelled. A flat rate fare throughout a whole route, or on central major part of it, is self-descriptive. It tends to favour the longer passenger trip and penalizes the shorter one, but it is simple to collect. "Fares graduated by distance travelled provide the greatest equity to the passenger if distance travelled is the criterion" (Quinby, H.D., 1976). However, in many urban areas different fare structures exist, including season tickets (figure 9.la).
2. Time; the overall travel time for a given passenger trip may be thought of as door-to-door travel time, i.e. the time required for all components of the journey from origin to destination. (1) access time from point of trip origin to boarding stop, (2) waiting time for the vehicle, (3) in vehicle time and (4) walking time to destination. These various times needed for a trip are a function of the frequency of service vehicles on the route, accessibility and route configuration. Type and age of vehicles may also be important as far as passenger comfort and vehicleperformance is concerned. The problems of providing high frequency and more accessible routes contribute to increase the total cost of operating a public service which cannot be justified economically. Another inherent contradiction and conflocting dilemma in public transportservice is that when waiting time is reduced for some passengers, others will suffer from the result of extra in-vehicle time.

Beside the facts that the true costs of car
use are higher than those perceived by the users, and private car travel gives privacy and convenience, the total time needed (door-to-door) is higher for public transport than for car. In one study (Hillman et al, l973) it was found that the average time needed for short journeys of 3, 5 and 7 kilometres are as shown in Table 9.b.

Table 9.b

Distance in (km)	Car time $($ mins $)$	Bus time $(m i n s)$	Difference (mins)
3	11	15	4
5	14	20	6
7	17	28	11

9.2.2

Energy Consideration.
There is one main factor which might change the traveller's behaviour in favour of public transport. Inthe U.K., the transport sector accounts for some 16 percent of total primary fuel and energy consumption and of this about $\frac{1}{2}$ is consumed by cars, and only 3 percent by buses, coaches and taxis in 1974 (Department of Energy, 1976) . However, "buses and coaches accounted for about 24 percent of all passengerjourneys and around 12 percent of total passenger miles" (Ball and Percival, 1978). The point is that a very small expenditure on energy is used to produce so many passenger journeys. The efficiency with which buses can use energy can be confirmed from the following table :

Table 9.c

Use of fuel by cars and buses					
	Miles Average system load Peak loading				
Vehicle	per gall.	3eng	$\begin{aligned} & \text { pass-m } \\ & \text { per ga } \end{aligned}$	passen	$\begin{aligned} & \text { pass-m } \\ & \text { per ga } \end{aligned}$
Average U.K. motor car	30	1.3	39	4	120
U.K.9-ton bus	7	16	112	75	525

Source: Harman, 1974.
More details of energy consumption by mode, given in Table 9.1. From these tables an energy saving would result if many passengers transferred from private to public transport (bus and rail).

Almost the whole energy debate is concerned with how to solve the problem of an unexpected energy gap. If new sources of energy are not utilised efficiently and economically by the end of the century, the appreciation of the world's non-renewable energy resources will grow considerably, then there will be a decline in car usage and this essentially leads to higher public transport. 9.2.3

Environmental Consideration.

The growth of road transport has
been, at least in part, responsible for the destruction of many historical buildings, damage to properties and the spread of urban areas into countryside. Roads, and mainly motorways, requires more space than corridors for public transport.

Among many other effects, the relatively safer accident recordof public transport, compared with car, might also attract some consideration in future with other environmental side effects of vehicle use, such as noise, fume, etc.
9.3

Conventional Methods used in Public
Transport Travel Prediction.

Modal split models are used to estimate the percentage of travellers whorill use different types of transport.

There are basically three ways in which modal split is performed and they are referred to as:

1. pre-distribution
2. post-distribution
3. combination or inter-related modal split and distribution.

The type of model used ther eforedenendsonthepoint inthefore casting process at which the modal choice is made.

In the pre-distribution type procedure total
trips are allocated among available modes and separate trip distributions made for public transport and for car.

In the post-distribution procedure total person trips are distributed prior to the modal choice.

To overcome some shortcomings of these two techniques Wilson (1974) introduced a combined procedure in which trip distribution and modal choice are presentedin one model. The Ministry of Transport (U.K.) applied this approach for the first time in the SELNEC Transportation Study.

The generalised cost was used in SELNEC models, and the modal split model, followed the distribution modelinthatstudy The analysis involved the use of discriminant analysis to explain people's choice of travel mode. The model takes the following shape:

$$
\% P T=\frac{1}{1+e^{-\lambda\left(C_{1}-C_{2}\right)}}
$$

where
\%PT : percentage trips by public transport
C_{1} and C_{2} generalised cost of trip by car and public transport respecively. From this it can be seen that the percentage use of public transport is related to the generalised cost difference between the alternative modes via a logistic function. However, "recently attention has been drawn to the weaknesses in the extrapolative method and consider that the shape of the logistic curve currentiy used is not supported adequately by analysis" (Leitch, 1977)

Source : Wagon, 1976

> Diagram 9.a

The following criteria have been used to estimate the value of time, in early modal split studies: the value of traveling time in non-working hours equals 25% of the wage rate; the excess time equals twice the travelying time; travelling time in working hours equals the wage rate.

The modal choice approach in this study is somewhat different from these conventional methods. Application of General Share Model exactly on the same basis as applied for private trips can yield the number of pubic transport trips by household income group for each purpose. 9.4

HOUSEHOLD SHARE IN TRAVEL BY PUBLIC TRANSPORT.
9.4.1 Introduction

The share of household travel attracted by public transport depends mainly on how the members of each household divide the fixed percentage of income originally allocated for travel by all modes. Consequently, public transport usage and the amount of travel by other modes will be determined by the, level of service provided by each mode.

According to this concept, knowing the household income, and percentage of income allocated for travel by each mode, the General Share Model can be applied in the same way as for car trips (Chapter 8).

In the following sections the trends of household expenditure and travel characteristics are more rigorously analysed. All references are based on weekly income, expenditure and travel.

9.4.2 Household Expenditure on Travel by	

The method used in Chapter for representing household income and expenditure on travel by car, is repeated for households' expenditure on public transport (bus and rail) for the same period 1965-1968-1972 and 1975.

Figures 9.1 to 9.4 show household expenditure (cumulative) with cumulative household number based on data from FES, Tables 5.1 a;b; c;and d.: On the same graphs household income and expenditure on travel by cararesuperimposed for
comparison. This kind of presentation facilitates classification of nouseholds into
five income groups with 20% of the households in each group. Households in this study include all households, irrespective of whether they own ar or not.

The expenditure for the average household, as well as by income group, is then computed from these curves and. shown in Table

Figure 9.5 is the overlapping of Figures 9.1 and 9,4 for years 1965 and 1975 respectively, showing the consistent shift to the right, both for expenditure by mode and income.

Bus Travel,
Average Household.
Figure 9.6 shows average household expenditure on travel by bus for the years under consideration. Curve 3 represents the trend of expenditure on travel by bus as percentage of household income. It falls from 1.63 in 1965 to 0.855 by 1975 , which represents about a 50 percent decline in 10 years.
9.4.4 Bus Travel,

Household by income group.
Figure 9.6 shows the expenditure on bus travel for each income group of householders. The consistency of each income group is obvious; all income groups are decining in expenditure on travel by bus; a lower income group always spendsmore than a higher income groups (expressed as a percentage of the household income. The fluctuations throughout the 10 year period are more for the lower income groups than for the higher income groups. Although lower income groups spend a greater proportion of their income on bus travel than do higher income groups, in money terms the higher groups almays spend more than the lower groups. This was discussed in Chapter 5 where the real money spent was travel "propensity".

Table 9.d

Income Group	Household propensity		
	Bus	Rail	Car
1	8	5	3
2	16	9	12
3	21	14	19
4	25	22	28
5	29	50	37

9.4.5

Rail Travel,
Average Household expenditure.
In Figure 9.7, average house-
hold expenditure on travel by rail is shown. The fixed trend in the service provided by rail is
a pparent with an almost constant percentage of housekold income spent on travel by rail (0.5%) throughout the 10 year period.
9.4.6

Rail Travel,
Household expenditure by income group.
Figure 9.8 shows the expenditure:on travel by rail for each income group of householders.

The obvious conclusion from the curves is that there are relatively very small fluctuations for each household income group throughout the period. Additionally, in contrast to bus travel, households in higher income groups spend more than those in lower income groups (as a percentage of income), but still the propensity has the same ranking order, i.e., higher income groups have larger propensity than lower income group (see Table 9.d).
9.4.7
Bus and Rail Travel

In figure 9.9, the trend of household expenditure on both bus and rail are shown. The trend is declining, but a more stable trend is obtained when the expenditure on public transport is expressed as percentage of total household expenditure rather than in terms of household income.

In Figure 9.10, the total household expenditure on travel by car, bus and rail, expressed as a percentage of household income, shows a remarkable trend; that is, average household expenditure on travel is almost constant (as presented in Chapter 5), at a value of 6.2%.

- However, expenditure on travel by all modes, as percentage of total household expenditure, shows a rising trend throughout this period (Table 9.e)

The priority for expenditure in different modes of travel, measured both in monetary value and.as a percentage of total household income, shows the following travel order :
(1) CAR - (2) BUS - (3) RAIL

Table 9.e

Year	Expenditure on travel by all modes as \% of total household expenditure
1965	
1968	6.97
1972	7.50
1975	7.64
	8.24

9.5
 PRICE INDICES AND TRAVEL.

Table 9.2 shows values of indices for variables related to travel, over years between 1965 and 1975 . The base year is 1965 when all index values are loo. Thesefindices are also shown graphically in Figures 9.12 and 9.13.

Although the overall effect of inflation is included in this sort of representation, the relative comparison gives some indication as to the way some indices affect the amount of travel. Figure 9.12a represents indices of income, total household expenditure, and the index of expenditure on all goods and services. The trend. over the period 1965-1975 showed a consistent increase and in 1975 index values reached 295, 257 an。 224 respectively.

Figure 9.l2b represents indices of money spent on running a car, including petrol and service. Over the ten year period the trend is also continuously rising with the index values in 1975 to being 371 , 284 and 224 respectively. The petrol price index has a direct relation with the amount of travel by car. Thefigure shows that from 1973 onwards, the petrol price index increased above that for all goods and services. This additiaonal increase was also reflected in the trend of household expenditure on running of the car. The net effect despite the increased expenditure, was less travel, even though households had spent the same percentage, or more, of their income on travelling by car.

The figures in Table 9.f also confirm this conclusion. The total number of car-kilometrestravelled suddenly drops as consequence of the increase in petrol price indices.

Table 9.f

	Passenger journey	Car-kilometres
Year	by bus $\left(10^{6}\right)$	travelled $\left(10^{9}\right)$
1972	8.540	184.24
1973	8.490	194.54
1974	8.245	188.96

Source : Transport Policy, 1976 (data for Great Britain)
Figure 9.13a represents indices of bus fares, household expenditure on bus travel, and expenditure on all goods and services. The bus fare index is higher than the all goods and services index. This led (even with higher household expenditure on bus travel) to fewer passenger journeys by bus as in Table 9.f.

Figure 9.13b shows indices of household
expenditure on rail fares, and on all goods and services. The last two variables are almost the same throughout the period, leaving a stability in household expenditure on travel by rail. This resulted in an almost constant figurefor rail
passenger-kilometres (37×10^{9} for 196436×10^{9} by 1974 , Transport Policy, 1976).

As an example of the effect of these indices on the amount of travel, the following analysis is made :

Table $9 . e$

| | 1965 | 1975 |
| :--- | :--- | :--- | :--- |
| Bus fare (BF) | 100 | 265 |
| Household expenditure on bus (EB) | 100 | 155 |
| Rail fare (RF) | 100 | 221 |
| Householdexpenditure on rail (ER) | 100 | 261 |
| All goods and services (AG) | 100 | 224 |

For year 1975

$$
\begin{aligned}
& \frac{\mathrm{BF}}{\mathrm{AG}}=\frac{265}{224}=1.183 \\
& \frac{\mathrm{~EB}}{\mathrm{AG}}=\frac{155}{224}=0.61 \\
& \frac{\mathrm{RF}}{\mathrm{AG}}=\frac{221}{224}=1.0 \\
& \frac{\mathrm{ER}}{\mathrm{AG}}=\frac{261}{224}=1.165
\end{aligned}
$$

This analysis indicates that because the bus fare is higher than all goods and services, there is less demand by the household for this service (travel by bus).
9.6

TRAVEL PREDICTION.
9.6.1

Bus Trip Rate.
The General Share Model is applicable for travel
by public transport and the variables needed are as follows:

1. Household income group.
2. Percentage of income spent on travel for
certain modes.
3. Cost of travel per unit distance.
4. Average trip length by mode by purpose.
5. Percentage of trip distance by purpose.

Bus Travel Characteristic.

The data from NTS $1972 / 73$ gives the following information :

Total household in the sample $=H_{0}=7,113$
Total mileage/week
$=Z_{1}=150,485$
Total number of trips/week $\quad=Z_{2}=46,589$

$$
\text { Table } 9 . f
$$

J	Trip purpose	S_{ℓ}	K_{ℓ} $\%$	
1	To and from work	35	35	5.16
2	In course of work	1	1	5.16
E	Education	9	10	4.64
3	Shopping	26	28	4.79
4	Entertainment,sport) eating and drinking)	8	8	5.16
5	Personal social	18	16	5.80
6	Holiday, pleasure	4	3	6.88
	Total	100	100	

Source : NTS 1972/73
Average overall trip length $=\overline{\mathrm{X}}=\frac{\mathrm{Z}_{1}}{\mathrm{Z}_{2}}(1.6)=5.16 \mathrm{~km}$.
Average trip length by purpose in Table $9 . f$ found on the same basis.
From FES Report 1972, (Table 5.2c) average household expenditure on bus fare is (E) $=50$ pence
Cost/km. $=\frac{\text { total money spent on bus fare }}{\text { total distance travelled by bus }}$

$$
=\frac{H_{0} E}{Z_{1}}=\frac{7113 \times 50}{150,485(1.6)}=1.45 \text { pence } / \mathrm{km} .
$$

This means that the overall average trip length is not considerably different from the average trip lengths for each purpose. Moreover, for bus trips, assuming the flat fare rate throughout the whole day, the percentage by purpose does not need any correction. In other words, the percentage of expenditure on bus travel by purpose is the same as the percentage
of distance by purpose. However, for graduated fares by distance, the same procedure as for car trips is applicable (see Figure 9.1 for graduated fare structure).

Table 9.3 is the summary of household income and expenditure on bus travel for 1972, from FES Report. Bus travel characteristics, data from NTS 1972/73, and trip purposes are shown with their average trip length and percentage of total distance. The cost per kilometre, as computed above, is also shown. To compute the average number of trips per householdin any income group:

$$
\begin{equation*}
t_{i \ell}=\frac{E_{i} P_{i \ell}}{\bar{C}_{\ell}} \tag{6.41}
\end{equation*}
$$

where
$t_{i \ell}$: is the number of trips for household in income group i for purpose ℓ
$P_{i \ell}$: percentage money spent on travel by income group i for purpose ℓ
$\bar{C}_{\ell} \quad$: cost per trip for purpose ℓ
E_{i} : expenditure on bus travel by household income group i

For example, income group 3 spends 55 pence/week on travel by bus, rate of work trips, (purpose 1)

$$
t_{3,1}=\frac{.35 \times 55}{7.46}=2.58 \text { work } \operatorname{trip/week}
$$

All other trip rates found on the same basis. The results are shown diagramatically in Figure 9.14 and as is evident, the work trips exhibit greater rates than other purposes. The rates show - by purpose of trip - the frequency of trips for higher income groups is greater than that for the lower income groups. The procedure used in computing the number of trips will satisfy the original constraints put concerning distribution of distance, as well as number of trips for each purpose.

To check the total number of trips made by all
households: (Table 9.3)

Average trip rate $=\frac{\sum T_{i}}{\sum{ }_{i}}=\frac{33.83}{5}=6.7 \quad$ (predicted)
Average trip rate $=\frac{\mathrm{Z}_{2}}{\mathrm{H}_{0}}=\frac{46.589}{7113}=6.6$ (observed)
To check total distance travelled :
$\sum \bar{Q}_{\ell} \bar{X}_{\ell}=34.82$
$Z_{1}=34.82 \times 7113=247.660$ passenger-km.(predicted)
$Z_{1}=\quad=240.776$ passenger-km. (observed)
the discrepancies could come from rounding the figures. These values suggest that the model is relaible, and can predict the number of trips and passenger mileage fairly accurately.
9.6.2

Rail Trip Rate.
The same procedure as for bus trip rate is applicable to rail trip rate. The data from NTS 1972/73 for rail travel :

$$
\begin{array}{ll}
\text { Number of household } & =7,113 \\
\text { Number of trips } & =3,998 \\
\text { Total distance } & =92,419 \mathrm{miles} \\
\bar{X}=\frac{92419 \times 1.6}{3998} & =37 \mathrm{~km} .
\end{array}
$$

Average number of trip/household $=\frac{3998}{7113}=.562$ per week 37 x . 562

$$
=20.8 \quad \mathrm{~km} . / \text { week. }
$$

Average householdexpenditure on rail fare = 22 pence/week (FES 1972)

$$
\begin{aligned}
\because \text { Cost } / \mathrm{km} & =\frac{22}{20,8}=1.06 \text { pence } / \mathrm{km} \\
\text { Cost } / \mathrm{trip} & =37 \mathrm{x} 1.06=39.22 \text { pence. }
\end{aligned}
$$

According to this information the average trip rate by house hold income group for all purposes is computed as in Table 9.g.

Table 9.g

Household income group	Expenditure on rail fare pence	Average number of trips
1	9	.22
2	10	.25
3	15	.37
4	25	.64
5	55	.56
Averagentirip		

The values of trip rates as in Table 9.g is average for all purposes. Figure 9.11 shows these values with average car and bus trip rates. The shape of rail trip curve is different.from the car and bus curves. Its upward conca vity indicates that higher income groups spent proportionaly more than lower income groups. The fact that this curve is in a lower positión compared with the other two curves indicates that the rate trips are less. However, considering the trip length 37 km . for rail against 12 km . and 5.16 km . for car and bus respectively highlights the nature of rail as long distance mode on national basis.
9.6.3 Long-Term Public Transport Travel Prediction.

The assumptions of constant percentage of household's income to be allocated for travel by all modes (which was the case between 1965-75) is a reasonable one to be continued in the foreseable future.

The fixed figure concluded in previous chapters was 6.2\% of income. In Chapter 8 the assumption made was that 5% would be the share of car trips in 1985. With constant percentage of 0.5% for rail trips this will leave 0.7% for bus trips. The assumption about income in 1985 was also introduced in Chapter 8 (i.e., £200 average weekly income). These figures might not be correct but the relating factors, apart from funds available in future for public transport
service improvement, the possible fare increases, should be related to the average income increase. Thus the effect of wrong income prediction could be eliminated and the application of GSM might give accurate results.
9.7

COMMENTS AND CONCLUSIONS.
Urban problems such as energy shortages, congestion and increasing highway costs (both financially and environmentally) are prompting communities to re-assess the need for adequate public transport. The consumers encouragement to rely less on private car can only be achieved by providing appropriate public transportservice. The popularity of car is mainly due to the convenience, comfort, privacy and door-to-door journey, and these factors also explain why the perceived car cost is less than the actual cost. Apart from privacy (which is not needed for all kinds of trip purposes) all other factors can be achieved to a certain degree to improve the competitive position of pubictransport against car by encompassing various service alternatives such as conventional bus and rail, metro car and bus pooling, taxis, and dial-a-bus and park-and-ride, and shopper minibuses. The integration of some of these modes with high technology and well designed financed systems will provide fast, smooth, quiet and frequent public transportservice.

Identification of feasible transportation system alternatives to serve the community, not on the basis of profitability, will be achieved by adopting the community goals which provide guidelines including priorities on the role and importance of public transport for various community groups (e.g., old age pensioners, school children and commuters) and by investigating in depth the consumer attitudes and scale of preference of factors related to level of service, such as waiting time, walking time, invehicle time, number of transfers and fares. In addition to other factors, like comfort and seat availability.

The assumption in most early transport studies that car ownership is a major factor in the measure of mobility, is a misleading one.

In Europe the public transport share of travel,
measured in passenger-kilometers, is increasing at the same time as car-ownership. A study in the U.S.A. showed that in Orange County (1.7 million population), 97 percent of all households have at least one private vehicle, and 62 percent have more than one. The expansion of public transport from five buses in 1972 to a fleet of 103 buses in 1974 has resulted in passenger travel increasing from 25,000 to more than 520,000 a month. Another 111 buses were added during 1975. Of those 67 were for expansion of demand-responsive transportation (DRT) service and 44 for improved service on the fixed routes (Fielding et al, 1976). These authors added the comments that only 3 percent of households did not have access to a car, and even this minority had friends and relatives who provided essential transportation. Yet these statistics are deceiving; of l.7 million people residing in the Orange County, it is estimated that 500,000 do not drive, they are dependent on others for transportation.

In the U.K. very few examples exist of any sort of integrated public transport facilities. However, consideration of a range of options from high road investment with conventional bus services to low cost road improvement with massively extended public transport might result in much better solutions to urban transport problems.

Some unpublished reports show that the data from other European countries indicate clearly that the decline in public transport passenger-kilometres is unique in Britain. Furthermore, forecasts in these other countries envisage stable or increasing volumes of public transport despite rising car ownership.

In this chapter household share of public transport both by bus and rail on national level has been analysed. Throughout the period 1965 to 1975 there is a consistent trend of expenditure on travel by railof 0.5\% of the average household's income. There is also a constant percentage of the average household's income spent on travel by all modes (6.2%). By fixing the share of car travel, the
remainder will be the share of bus travel.
For bus travel, lower income groups spend a greater proportion of their incomes than higher income groups, but in money terms higher income groups spend more than the lower income groups. Thus households in higher income groups have a greater "propensity", and travel more, than households in lower income groups.

The indices of cost of travel by all modes except bus have increased at a slower rate than the general cost of living as measured by the "all goods and services" index. The bus cost index has risen at a faster rate than the general cost of living. The net effect of this is that there has been a decline in expenditure on bus travel.

The GSM was applied to rail trips. Compared to travel by other modes, the trip rate for travel by rail is very small. However, the average trip length is 37 km , which is much greater than the averages for car (12 km) and bus (5. 16 km) journeys. This reflects the nature of rail as a long distance mode of travel.

TRAFFIC ASSIGNMENT

RELATIVE ATTRACTIVENESS METHOD

10.1

INTRODUCTION.

"At a certain stage of traffic analysis and/or transporation planning, it becomes necessary to compare the demand for individual vehicular transportagainst the availability of existing networks. The demand for transportcan be presented by an origin/destination ($0 / D$) matrix in which the various trips between different zones are quantified. The trips may refer to an existing situation and be directly derived from O/D survey, or be obtained from generation and distribution models (Martin et al 1961) according to hypothesis of future territorial development" (Tagliacozzo, 1973).

The network is represented by a graph in which the various links and nodes indicate real or hyothetical roads and intersections, respectively. Each link or node is properly defined by one or more parameters describing its function characteristics. Thus "Traffic assignment is the transference or allocation of travel demand (in terms of a matrix displaying the number of persons or vehicle trips between origins and and destination in a particular area)to an existing or proposed road or transit network in order to determine coridor, route, link or intersection volumes in the planning process and for design of the system facilities" (Dulton and Harmelink, 1974).

Traffic assignment is usually the last major stage of analysis leading to the evaluation of future transportation proposals. With the advent of high speed computers the assignment of traffic volumes to large networks has been made possible. Since the late fifties many assignment techniques have been developed (Chapter 2). However, a common
fault lies in their lack of convergence to a given criterion (Lucas and Davidson, 1974).

In almost all studies, the journey unit used was time (minutes) for specifying the link length. This direct dependence on time and hence on speed on the network is the main reason why discrepancies exist between observed and predicted volumes.

Instability in the conventional assignment techniques becomes apparent when a slight, insignificant, change in input yields a significantly different output.

In this chapter a new method for traffic assignment is outlined which can be used independently of link time he model depends on relative attractiveness of each available route. A better understanding of the whole assignment process can be achieved by using this type of model, which is in fact a gravity type model (not used before in any form in assignment). The advantage of this type of model is that it can be calibratedseparately for peak hour, or formatwenty-four hour day. Such flexibility for calibration makes this model significantly different from conventional techniques. Another advantage of this method is that it values for the
provides the, parameters needed in a "feed-back" process requiredforthe tripgeneration models outlined in previous chapters. These parameters are "average trip
used in the modelling process. length" and "percentage distance travelled": for eachtrippurpose, Before formulation and application of the assignment model, it is necessary to define the assignment criteria. That is, to define the concepts which road users follow in selecting their urban paths with other related parameters used in network description. 10.2

LOAD LIST AND ZONE CENTROID.
Traffic assignment is that part of the transportation system analysis whereby the given set of trip interchanges (trip table) is allocated or loaded onto the specified route network. $\quad \therefore \quad$ network consistsof a set of links and nodes with the nodes representing intersections and the links the roadways between intersections.

Usually a study area is divided into zones and for each zone there is one or more points on the network where traffic originates and terminates. These points are called "zone centroids" and in this work each centroid is the midpoint of a suitable link. The diagram below is a simple example representing a two-zone study area with zones A and B.

Diagram 10.a

There are three possible centroids for each zone.
Table 10.a

From this table it is possible to observe that the centroid
has an effect on the assignment stage, because different centroids give different shortest paths. This suggests that it is desirable to have a very close look at the structure and housing systems, intensity of dwelings and feeder's of major links for each zone. By doing this, a proper portion of total traffic origins from each zone can be allocated to a certain centroid. A load list table can then be prepared to reflect this fact. Some studie's use the centre of gravity of a zone as the centroid and it is connected to nearby nodes. The links between the centroid and the nodes of the network are termed "Centroid Connectors". An estimated measure of travel time should be given to each centroid connector to reflect the average time required for trips beginning or ending in that zone to leave or reach the zone. The precise specification of these centroid connector links requires much care, attention and practical experience as their travel time allocation and geographical description can have considerable influence on the choice of route assumed to and from that zone (Lane et al, 1974).

This is a major difficulty in simulating the real situation, because vehicles, especially cars, originate at different points in space. The above procedure will inevitably lead to many details being omitted from the network description; many relatively unimportant links may not be included which will affect the routes of the shortest paths. This is one reason for invalidity of comparison between the predicted volumes with obzerved ones. Hutchison, 1974 stated that "there are a number of potential sources of error in this type of comparison and these include : (1) errors in the origin-destination matrix assigned to the traffic network, (2) errors due to over simplification of the coded network, (3) errors in the assignment technique, and (4) errors in the observed traffic volumes".

Most transportation planning studies use computer techniques to assign interzonal traffic to road networks. The techniques all require the road network to be described numerically, but the work involved in preparing a numerical description from a plan of the network is laborious and likely to suffer from inaccuracy.

The"Automatic Network Description"system has been devised to overcome these difficulties and to enable the user to prepare a numerical description quickly and accurately by using the $D-M A C$ analyser (1).

After storing the network description, it is easy to recover it and to produce as many alternatives as required in the assignment stage. This can be done by defining the "journey units" used in the network description. The sections (links) of the network can be valued for transportation plamning purpose in/ three units - distance, time and cost.

Considering one unit of distance of a section, as say 1 km , this can have many values in terms of time (mins.); if a vehicle is travelling at an average speed of $30 \mathrm{~km} / \mathrm{hr}$. then the time length of 1 km is 2 minutes.

A cost unit can also be used - either the
actual cost or that perceived by the user.

The basic network description which is fed into the computer is in the form of coordinates of the nodes represented by physical distance between nodes. To deal with the separation of any two points in terms of time, which is often done in conventional transportation planning, a weight can be given to each section according to the journey time of traffic on it. Many other facilities are available to modify network descriptions.
(1) For more detail see user's guide in the Traffic and Highway Section, University of Strathclyde.

After giving a proper journey unit to each link in the network, most transport models use an build a minimum tree from an origin zone to all destination zones, expressed in the same journey units as used in the network description. This important aspect of computer capacity, not only in storing such a huge amount of data but in producing the lengths of the shortest points (dij) for each origin destination pair in the O-D table, makes transportation planning possible.

The value of the computer must be emphasised in transportation planning, to investigate the effect of a single improvement as well as major improvements on the whole study area. This becomes possible only by using large computer capacity.
10.4 JOURNEY UNITS USED IN NETWORK DESCRIPTION

In this study three types of journey units are used for network description :

1. Distance
2. Time
3. Generalised cost

The length of a link in terms of distance is the physical distance between the two nodes connected by the link. However, for time units an assessment of the traffic speed on the links is required.

A generalised cost unit for network description
is obtained according to the following procedure: resources needed to traverse a unit distance at speed ()kphand

Money cost $\quad=B$ from operating cost formula
Time
Time cost
$=\frac{1}{v}$ hours
(VOT) $=\quad V B$
. Time cost $\quad=\frac{1}{\nu} \quad \nu B=B$
Generalised cost (GC) $=$ money cost + time cost

$$
=B+B=2 B
$$

2B represents the length in terms of (GC) for links with highest speed, for links with half of the highest speed

Money cost
Time

Time cost $\quad=$ time x value of time
$=\frac{2}{\nu} \nu A=2 A$

Generalised cost (GC) $=2 A+A=3 A$
Similarly at speed $\frac{1}{3}$ of highest speed

$$
(G C)=4 \mathrm{~A}
$$

Assuming highest average speed equals 60 kph , the following table presents the weights which can be used in network description.

Table 10.b

Type	Speed	Journey unit				Weight		
		Dist ance	Time	$\operatorname{Cos} t$GC		Dist.	Time	GC
	kph	km	min.	pence/km				
0	60	1	1	1.95	$2 \mathrm{~B}=3.95$	1	1	1
1	30	1	2	2.2	$3 A_{1}=6.60$	1	2	1.67
2	20	1	3	2.615	$4 A_{2}=10.46$	1	3	2.64
3	48	1	1.25	1.98	$2.25 \mathrm{~A}_{3}=4.45$	1	1.25	1.12

It is interesting to note that the length of the link in terms of generalised cost can easily be established. Its weight lies between weights of both time and money, as shown in Table 10.b.
10.5

MEASURES OF ACCESSIBILITY IN
TRANSPORTATION PLANNING.
10.5.1 Accessibility Index of a Point.

Accessibility (A) has played a major explanatory role in spatial economic theories of the city. It has been considered to be the key variable in the determination of urban rents, densities and land uses (Dalvi and Martin, 1976).

However, attention has centred on the role of accessibility in trip attraction as well as trip generation in urban areas, i.e., on the question of whether changes in accessibility associated with urban transportinvestment have any effect on travel demand. This is essentially a hypothesis about travel behaviour of certain groups of travellers.

In trip distribution models, the gravity models almost always include some measures of accessibility. In some studies by $W i l s o n(1974)$ the concept of accessibility was introduced jointly with competition for defining spatial interaction framework.

There are of course many possible ways of defining accessibility, according to the measure needed in the model.

The index of accessibility, which is not directly related to activity, is the one which is introduced here and used in the assignment stage. The index gives a weighting to a point in the, network according to its centrality with respect to all other points. From this it is possible to judge the relative importance of the node or section, or even the zone under consideration.

If this index is expressed as a percentage, of the total accessibility of the network any individual zone possesses a value of (A\%) which evaluates its centrality and the ease of reaching it from all other zones. Thus a more accessible link or zone is one with a higher (A) value and it can be found that: (A1-Sarraj, 1975)

$$
\begin{equation*}
A_{i}=\frac{\sum_{i}^{n} \sum_{i}^{n} d_{i j}}{\sum_{j}^{n} d_{i j}} / n^{2} 100 \tag{10.1}
\end{equation*}
$$

where

```
\(A_{i} \quad\) : accessibility index of point i
\(d_{i j}\) : minimum path fromito \(j\)
\(\sum_{j} \quad\) : the summation overall \(j\) s (row summation
\(\sum_{1} \quad\) : the summation overallis (column summation)
n : number of points or zones
```

In practice the accessibility index for a point represents the ease of reaching that point from all other points measured in terms of the journey units used. For example, a zone may be accessible in terms of time but less so in terms of distance.
10.5.2 Accessibility Index of a Route

The "A" as in formula 10.1 can be used to compute the accessibility of a route, which can be defined as the average accessibility of all links in a route. It can be shown that the decrease of "A" with increase of distance from the centre of town is similar to a regular decine in the intensity of land use development, as distancefrom CBD area increases. Since vehicle movement is a function of building activities in the town (Buchanan, l965) it is reasonable to expect most vehicle movement in the CBD area and the amount of traffic decreasing with the decrease in accessibility outwards from the town centre. Similarly, low speeds on links and more delay at intersections are experienced in the inner city compared with the suburbs. To avoid speed and delay measurements (needed for conventional assignment models) the primary objective of this work is to define the accessibility index of links in terms of distance, measured from the network geometry. This accessibility index, has been used as a proxy variable to relative speed and delays at intersections,in the assignment model.
10.6 DIAMETER OF NETWORK

The diameter of a network (DON), can be represented in many ways to serve the purpose for which it is constructed.

In this study the most suitable method is to use the distance journey units in the network description. Then if minimal trees are built for all zones, the maximum length of the shortest point journey on origin and destination (in journey units), represents the network description (DON).

If zone centroids or load lists are changed, the "DON" might change accordingly. If any new section is added to the network, again "DON" might be changed.

If the average trip length (by purpose) can be expressed as a percentage of "DON", then comparison of one area with another will be more meaningful. In these circumstances care must be taken in fixing boundary zones and the load list.

In mathematical notations

$$
\delta(G)=x^{M a x} y d(x, y) \quad(K a n s k y \quad)
$$

where
$\delta(G)$ is the diameter of the network (or graph) and the expression means the maximum shortest path between all O-D pairs.
10.7 BEST ROUTE BETWEEN A PAIR OF O-D

It is important to note that the engineer is
judging "best" in terms of quickest or cheapest route with reasonably accurate information available. The driver on the other hand is judging "best" based on number of travel and service variables and must guess about conditions of the whole route before making a trip. The engineer and the driver may be basing their judgment on different variables, and certainly basing their decisions on different information (Whole and Martin, 1967).

The engineer modelling the assignment process probably has incomplete information about traffic speds, flows and delays on the network. In many cases, the delays at individual junctions will be ignored or "averaged out" to give the effect thought to be required.

The driver is the main element in making a selection from a numer of paths linking his origin to his destination. He choses the path which will give him the "best" value for a number of variables characterising the network and his trip.

Whilst it is difficult to assess each driver's knowledge of his area network so that account may be taken of differences of behaviour due to personal variations in knowledge of available paths, it can be assumed that at least they are all familiar with some overall character of available routes for any particular trip purpose.

On this basis, it is thought that the best unit
of analysis is the driver. The criteria which motivates the driver's decision in making a route choice are those parameters which can be perceived easily and quantified to some extent in the driver's mind. This approach then requires the production of not only one path between a pair of O.D., but a number of (almost shortest) routes, each of which is thought to be the "best" for a group of drivers. This calls for not only a minimum path algorithm (which is well established and used in all conventional assignment techniques) but to find the (N) best path in the network. There have been many attempts to solve the problem of (N) best route, among them Hoffman and Pavley, 1959, and many others, no practical algorithm has yet been published for finding N best paths. A computer program prepared in the Traffic and Highway Section of the Civil Engineering Department, University of Strathclyde, was successful in finding N number of routes - according to the users criteria - between each pair of O-D. 10.8

DATA FOR ANALYSIS
Data for the town of Hamilton was available in the University of Strathclyde from a survey and analysis undertaken in 1969. The study area consists of the Burgh of Hamilton, and its location is shown in Figure 10.1. The population of Hamilton in the year of survey was about 46,000 comprising of 13,000 households. On average 52, 000 vehicles enter and leave the study area during the 12 hour working day. Two thirds of the vehicles are private cars.

Hamilton was divided into 76 traffic
zones (Figure lo.2). The area outside the study area was divided into 10 external zones (Figure lo.3). The existing network is shown in Figure lo. 4 , and it consists of about 200 links. Traffic was counted at certain points in the network to provide a check on the modeling process.

The accessibility contour lines shown in Figure 10.5 are based on formula 10.1 which was evaluated for each link. The results are presented in Table lo.5. The assignment model was applied to one data from Hamilton. The load list used is shown in Table 10.4.
10.9

NUMBER OF ROUTES BETWEEN A PAIR OF O-D IN A CERTAIN NETWORK

Theoretically, there are countless numbers of routes in a network between a pair of $0-D$, and the minimum path is only one of them.

A detailed work on Hamilton network (Figure 10.4) showed that the total number of routes (using distance as a journey unit) available for an average pair of $0-D$ (for total of 677 pairs of $0-D$ tables) changes with the value given to $C P$, where

$$
\begin{equation*}
C P=\frac{L_{\max }-L_{\min }}{L_{\min }} 100 \tag{10.2}
\end{equation*}
$$

where
CP : critical percentage allowed for deviation from minimum path
$L_{\text {min }}$: length of minimum path
$L_{\text {max }}$: length of maximum "allowable" path
The average number of routes found for different values of (CP) are shown in Table 10.c.

Table 10.c

Percentage over shortest route CP \%	Average number of routes for one pair of o-D
0	1
5	2
10	5
15	12
25	28

This table presented disgrammatically on a semi-log scale in Figure 10.6 gives a resultant straight line and made the task of extrapolation for higher values of (CP) relatively easy. Actual computer runs were made until CP = 20%. for $C P=25 \%$ and the values as shown in Table 10.c are only a projection because of time restriction on computer use.

However, this does indicate a definite conclusion, viz:- that the number of routes increases dramatically as CP increases beyond 10%.

It is interesting to note that within only 5\% deviation from the shortest path, there is on average a second alternative route available. There is no reason why this second alternative should not be one of the driver's choice, knowing that, in practice, as far as route length is concerned, any discrimination between these two routes (similar in other aspects apart from their length) generally is not possible. Especially this is so in urban areas with their relatively short trip lengths.

It is found that the number of routes is also a function of route length for the same value of (CP) i.e., the number of routes between a pair of O-D with minimum path of 5 km . is more than that for a pair of $0-D$ with
minimum path of 2 km . However, considering only the traffic movements in the study area, and the fact that movement between two zones is also a function of separation, this gives in the case of Hamilton a net effect of increasing the total number of routes for the whole study area as the cpalue increases, till a maximum is reached. Further increases in the $C P$ value cases a decrease in the number of routes.

Table lo.2 shows that for deviation of $C P=10 \%$ there is a total of 3405 routes in different bands for 677 pairs of O-D. All these routes have been analysed in terms of length, expressed as percentage of network diameter (DON) as already defined. The paths have been grouped in classes of intervals equal to $1 / 10$ of (DON) and for $C P=1 \%$ in 1% increments until $C P=10 \%$. Therefore, the first cell in the table is the number of routes including the paths having a length between 0 and 0.1 ($D O N$), which is l2, i.e., there are 12 routes from a total of 3405 routes used by all travellers with length of up to 10% of network diameter comprising shortest routes and 10% deviation from shortest route, and so on for other cells of the table. It is interesting to note that within the total of first column with 807 routes, 677 routes represent the minimum paths ($L_{m i n}$) and 130 routes differ by only 1% from that of $L_{m i n}$. The set $L_{m i n}$ route comprises only 20% of all routes.

Table lo.2 has been converted into a frequency table and this is presented diagrammatically in Figure 10.7 with the first column omitted to facilitate a better perspective view of the situation. This diagram illustrates that route distribution is characterised by both the network configuration and land-use in the study area.

Although the journey unit used in the network analysis is distance, time and generalised cost as a journey unit are also investigated. Table lo.3a shows a number of routes for each cell as before, in terms of time unit journeys. The total number of routes is 1985, which is substantially less than that for the distance journey unit calculation.

The first column shows a total of 729 routes,
of which 677 are $L_{m i n}$, 52 routes are within 1% increase over $L_{m i n}$, and the set of $L_{m i n}$ routes represents 34% of total number. Table 10.3b represents the several routes analysed in terms of "distance" length. The totals for each band (row and column) compared with those of Table 10.3a, shows that there are great differences between time and distance route frequency distributions.

Table 10.4 is based on generalised cost. The number of routes is 2200, and this value lies between the values for the distance reached and that for the time network. Furthermore, if all these three networks are thought of as in terms of speed in the network, then the distance network represents the ideal situation with the same speed on all links, and all 3405 routes have the same average speed. This number of routes then represents the maximum number of routes which can be found in this network for a given $C P$ value and $O-D$ table.

FACTORS AFFECTING THE DRIVER'S DECISION IN CHOOSING A CERTAIN ROUTE
10.10 .1

Introduction
In the present work the parameters considered to influence drivers in choosing a certain route are only those which can be measured fairly accuratelt. Other factors such as scenery and safety have not been considered. Nevertheless it is possible to give assumed values concerning these parameters if it is thought they are important factors in a driver's decision making. The factors considered here are :

1. Length of the alternative route compared to the length of the minimum path.
2. Average width of the route, which is a function of speed and flow.
3. Delay at intersections, which is a function of number, type and position of the intersection in the study area network.

The impact of these and other related factors
will be presented in the following section.
10.10.2 Length of Minimum Path Versus Alternative.

A study of comparison of driver's route choice criteria and those used in current assignment process was undertaken by Ractliffe, 1972). In home-based work trips by private car drivers, comparison was made between the chosen routes and calculated minimum routes by a numer of route choice criteria, viz: distance, time and cost. The conclusion of this study was "in general the majority of drivers attempt to minimise their routes with approximately threequarters succeeding in choosing a route not exceeding 10 per cent longer than the minimum route"

Among other findings of the study was that "the single routing assigneat technique is shown to be considerably less accurate than the multiple routing technique when simulating 'real' trip assignment".

In another study by Tagliacozzo, 1973, analysis of the paths is related to the users motivation in making a route choice, showed that only 55 per cent of the paths are of length between $L_{\text {min }}$ and $1.1 L_{m i n}$ and the ratios of $L_{\max }$ and $L_{\text {min }}$ for some routes was 1.5 .

In "Westminster route choice survey" (Wright, 1976) analysis of different samples of drivers' behaviour in choosing a route showed that about 65\% of drivers chose alternatives which were either the shortest route itself or routes whose length was greater by 10% of that of the shortest route.

Summarising: the number of available routes between a pairofzones depends on ${ }^{\text {the }} \mathrm{CP}$ value. Recognising the difficulty of "route following" survey process for assesing the drivers behaviour in deviating frompinimum path, the $C P$ value can only be assessed empirically basediormatifon frimer indes.

It is found that 10% represents a proper figure both for computational purpose and model calibration. 10.10.3 Average Width of the Route.

In a study area there is likely to be considerable variation in the of links in the road network,

Most probably, the travellers on any particular journey will use a combination of streets with different widths. Furthermore, the factors which reduce the effective width of the link, such as the number of pariked vehicles and/or one-way sections, are also appreciated by the motorist.

Traffic flow and speed are a function of roadway width, and the number of traffic lanes providedis realised by the motorist more readily than
theoretical speed-flow relationship. Narrow lanes have a lower capacity than the standard $12 f t$. lanes and overtaking is more restricted in narrow routes. Such restrictions affect drivers comfort and increase potential hazards.

Table lo.d gives the capacities of lanes from $9 f t$. to $12 f t$. in width expressed as percentage of the capacity of a $12 f t$ lane.

Table 10.d

Lane width (ft.)	\% of 12 ft (lane capacity	
	2-1ane	Multi-1ane
12	100	100
11	88	97
10	81	91
9	76	81

Source: Highway Capacity Manual, 1965, pp.89.
Although these percentages are derived from uninter rupted flow conditions, they may be used to represent "relative capacity" for each width of road, in a model. From observations before and after the imposition of waiting regulations in London, it has been estimated that traffic speed was increased by about 2.5 mph for every 100 parked vehicles per mile removed from streets in the central area with an average width of 40 ft. (Charles Worthet al, 1959). If substantial parking is observed in the study area, its effect can be taken into account by modifying the relative capacity of the appropriate links.

Table lo.e shows the relation of carriageway width to capacity and their weighted values. The "width"
as an attractiveness parameter can be built into the model as net physical dimensions which are easy to measure from city plans, or as capacity weights. The higher the value (as average of the route) the more attractive the route. Any difference in using width or weight of capacity only affects the calibrating parameters

Table $10 . e$

Carriageway width ft.	Capacity p.c.u./day	Weight of capacity	Weight of width
1	2	3	4
Dual 48 ft.	66,000	7.33	8.00
Dual $36 \mathrm{ft}$.	50,000	5.55	6.00
Dual 24 ft.	33,000	3.66	4.00
$33 \mathrm{ft}$.	15,000	1.66	1.37
$24 \mathrm{ft}$.	16,500	1.83	2.00 (one-way)
$24 \mathrm{ft}$.	9,00	1.00	1.00

Capacity of different carriageway width and their relative weights.

The model is based on comparing all available routes between a pair of $0-\mathrm{D}$ with shortest route. The comparison is based on factors affecting the driver's decision in choosing one route rather than the other.

Network description can be based on any journey unit of time, cost or distance. The difficulty of measuring time and speed in networks to a certain accuracy, and its sensitivity. led to using the length of the routes (in distance units) as a more appropriate measure. One main advantage of this is from the physical structure of the layout since the routes can be measured and scaled fairly accurately. The concept of the model is as follows : Assuming two routes available between a pair of O-D, shortest route with 10 journey unit, the alternative with 11 journey unit,

$$
\begin{aligned}
\mathrm{L}_{\mathrm{S}} & =10 \\
. \mathrm{L}_{1} & =11
\end{aligned}
$$

where L_{S} : length of shortest and L_{1} : length of first alternative.

Assuming total traffice travelling between this pair of O-D is 1000 vehicles, and it is found 600 vehicles traveling via shortest route, and 400 vehicles via the alternative. Then the model becomes :

$(A E F F)_{K}$	$=\left[\frac{L_{S}}{L_{K}}\right]^{\alpha}$
$(\text { Proportion })_{K}$	$=\frac{(A E F F)_{K}}{\sum_{K}(A E F F)}$
$(T R)_{K}$	$=T .\left(\right.$ Proportion $_{K}$

where

K	$=S$ for shortest route
	$=1$ for first alternative
	$=2$ for second alternative and so on
$\alpha \quad$	$=$ isalibrating factor

In this example
(AEFF) ${ }_{S}=\left[\frac{L_{S}}{L_{S}}\right]^{\frac{q}{:}}=\frac{10}{10}^{\alpha}=1$
$(A E F F)_{1}=\frac{10}{11}^{\alpha}=\frac{10}{11}^{\alpha}=(.909)^{\alpha}$
$\sum(A E F F)=1+(.909)^{\alpha}$
$(\text { Porportion })_{S}=\frac{(0.909)^{\alpha}}{1+(0.909)^{\alpha}}=\frac{600}{1000}=0.6$
$(\text { Proportion })_{1}=\frac{(0.909)^{\alpha}}{1+(0.909)^{\alpha}}=\frac{400}{1000}=0.4$
Value of α to satisfy this equation equals 4.25. This value is reproduced for the load on the route for base gear, therefore this value can be used for target year. The range of values for α is as follows:
$\alpha=0$: the traffic will be diverted equally between the routes available
$\alpha=1$: each route takes traffic in proportion to its length $\alpha=\infty$: all the traffic will travel via shortest route. (i.e., all-or-nothing)

The model in 10.3 dealt with comparison of length only, the other factors effect (as described earlier) can be put into the model on the same basis, the general shape of the model may be as follows:
(AEFF) $_{K}$

$$
\begin{equation*}
=\left[\frac{L_{S}}{L_{K}}\right]^{\alpha}\left[\sigma+\frac{A_{S}}{A_{K}}\right]\left[\frac{R_{S}}{R_{K}}\right]^{\beta}\left[\frac{Q_{K}}{Q_{S}}\right]^{\gamma} \tag{10.6}
\end{equation*}
$$

(Proportion) $K=\frac{(A E F F)_{K}}{\sum_{K}(A E F F)}$
$(T R)_{K} \quad=\quad T . \quad\left(\right.$ Proportion $_{K}$
where

```
(AEFF)
(Proportion) = Percentage of traffice diverted to route K
TR = Traffic via route K
```


where N number of availabe routes
L_{K}, A_{K}, R_{K} and Q_{K} are as above, for alternative route α, σ, β and $\gamma: c a l i b r a t i o n ~ p a r a m e t e r s$.

It is important to notice that the all-or-nothing method is a special case of the above model, i.e., by setting
 est path is allowed.

Formula 10.8 can be rewritten as :
$(T R)_{K}=T \cdot \frac{\left[\frac{L_{S}}{L_{K}}\right]^{\gamma}\left[\sigma+\frac{A_{S}}{A_{K}}\right]\left[\frac{R_{S}}{R_{K}}\right]^{\beta}\left[\frac{Q_{K}}{Q_{S}}\right]^{\gamma}}{\sum_{K}\left[\frac{L_{S}}{L_{K}}\right]^{\gamma}\left[\sigma+\frac{A_{S}}{A_{K}}\right]\left[\frac{R_{S}}{R_{K}}\right]^{\beta}\left[\frac{Q_{K}}{Q_{S}}\right]^{\gamma}}$
Formula 10.9 is in fact a gravity type model, i.e., total traffic between a pair of O-D is diverted to Kth best route, to the proportionally, relative attractiveness of that route.
This is analogous to:

$$
T_{i j}=0_{i} \frac{T_{i j} f\left(C_{i j}\right)}{\sum T_{i j} f\left(C_{i j}\right)}
$$

where

10.12.1 Introduction

The model given by equation 10.9 can be applied to predict the amount of traffic along each potential route between a given pair of origin and destination zones, and the total traffic on any link in the network will be the result of the accumulation of traffic for all pairs of 0 - D , i a all routes. This model was applied to Hamilton 0-D table, using all three types of unit journey, time, cost and distance. In each case satisfactory results were obtained, and any difference only occurs in the calibration parameters. The benefit of this model is that by using distance as the journey unit it can free the planner from collecting data concerning speed and delay measurements.

The procedure used is shown as a flowchart in Appendix -8-. the prerequisite for any assignment involves both the $0-D$ table and network. The value for (CP) as defined before is assumed to be 10%. The lengths of routes found between a pair of O-D are between the shortest route $9 L_{S}$) and l.l L_{S}. Thefirst alternative route is denoted by L_{1}, and the second by L_{2}, the K and N by L_{K} and the last by L_{N}, where N is the total number of routes between the given pair of 0-D .

The process of allocating traffic to each of the N routes is now carried out on the basis of equation 10.9.

Calibration is undertaken by assuming
various arbitrary values for the parameters involved
$(\alpha, \beta, \gamma$, and σ). Several computer runs are madefixing values foa all parameters and tracing the effect of change in each one of them in turn. The best values could be those which give as reasonable results as possible comparing the predicted and observed volumes (See Appendix 9). However, the exact matching of predicted with the observed, even if this could be attained, is nor necessarily the best criterion, for reasons which have been outlined earlier.

Conventional assignment techniques were also applied to the same data for Hamilton. Apart from one section (section 42) the volumes predicted by RATA in the last row of Appendix -9- (for values of CP = 10, $\alpha=1.0, \sigma=1.0, \gamma=2.0$ and $\beta=1.5$) are closer to the observed traffic than any volumes predicted by other methods.
10.12.2 Example of Route Availability

The procedure used by the computer programme is the same as given in Appendix -8-. As an example of route following procedure and the method of application of the model, some examples extracted from the computer output are presented here.

1. One one route available -

Origin-Section 161, ©estination -
Section 146 .
Origin-Section 165, Destination -
Section 104.
Table 10.6 shows two cases where there is no alternative to the shorter route between an origin and a destination. Consequently all traffic follows the shortest path; the first pair are relatively close to each other. However, the tendency of creating more routes following greater separation of $0-D$ points is shown in figure 10.6 and is
based on average values. In addition it is possiole that the network configuration might also permit the existence of only one route for a given value of cp. Theseroutes are shown on network 10.1. It must be emphasised that any other possible route between these two pair of $0-D$ is greater than $l^{\prime} L_{S}$. (where L_{S} is the shortest path length) it is discarded from analysis.
2. Two routes available - Origin-Section 161, - Destination Section 167 .

Origin-Section 165 ,- Destination -
Section 82.
 est route, an alternative route presentation is given here with a deviation of 10% from shortest route. Network 10.2 shows the routes for these pairs of $0-D$, and all other possible routes with lengths greater than l.l L_{S} is discarded from analysis.
3. Three routes available - Origin-Section 30, Destination Section 82.
In Table 10.7 there are only two routes with deviation from shortest route by not more than 10%. These routes are shown in Network 10.3.
4. Four routes available - Origin-Section 137 , Destination Section 170 .

In Table 10.7, four routes are found and presented in Network 10.4.
5. Five routes available - Origin-Section 177 , Destination Section 139.
In Table 10.8 there are five routes which are also presented in Network 10.5. An illogical diversion has formed in route 5 which is the same as the shortest route apart from a short variation as shown in the Network 5 . However, such unacceptable results can be eliminated by modifying the network layout.
6. N routes. The separation of Origin from Destination will determine the number of available routes for a given value of (CP) in a certain network. However, as an example of the maximum number of routes between a
pair of $0-\mathrm{D}$ in $\mathrm{Hamil} \mathrm{m}_{\mathrm{n}}$. It is found that 53 routes exist between Section 7 and 169 with only 10% deviation from shortest path (see Table 10.9) .
10.13 COMPUTATION PROCEDURE.

Referring back to Table 10.7 and the calculation for four route which exists between Origin Section 137 and Destination Section 170, the following information is abstracted from Table 10.7 .

Table 10.f

Route				
1	$L_{\text {L }}=3949$	$A_{S}=.5000$	$\mathrm{R}_{\mathrm{S}}=16$	$Q_{S}=16.31$
2	$L_{1}=4225$	$A_{1}=.4986$	$R_{1}=16$	$Q_{1}=14.81$
3	$L_{2}=4329$	$A_{2}=.5401$	$\mathrm{R}_{2}=16$	$Q_{2}=13.60$
4	$L_{4}=4089$	$A_{3}=.5211$	$\mathrm{R}_{3}=14$	$Q_{3}=13.46$

Critical route length given by

$$
L_{S}+0.1 L_{S}=3949+395=4344
$$

all routes are equal or less than critical route length
-•

$$
L_{K}=L_{S}+(C P){\underset{S}{S}}^{L_{S}}
$$

Number of intersections for each route is actually equal to number of links in the route minus 1 . However, \quad (-1) is omitted from the calculation. Accessibility index is computed as a mean value for all links in the route with the width ofeach route in feet. This also represents the mean value of all links in the route.

The speed shown in Table 10.7 is related to the journey units ingenetwork description; the time length and distance length is the same. Consequently the resultant speeds on all links are the same.

The model as in equation 10.9 applied to each route in turn gives the following result:

$$
\begin{aligned}
& \boldsymbol{(T R})_{K}=T \cdot \frac{\left[\frac{L_{S}}{L_{K}}\right]^{\alpha}\left[\sigma+\frac{A_{S}}{A_{K}}\right]\left[\frac{R_{S}}{R_{K}}\right]^{\beta}\left[\frac{Q_{K}}{Q_{S}}\right]^{\gamma}}{\left.\sum_{K}^{N} \frac{L_{S}}{L_{K}}\right]^{\alpha}\left[\sigma+\frac{{ }_{K} S}{A_{K}}\right]\left[\frac{R_{K}}{R_{K}}\right]^{\beta}\left[\frac{Q_{K}}{Q_{S}}\right]^{\gamma}} \\
& (E F F)_{S}=\left[\frac{3949}{3949}\right]^{1}\left[1+\frac{.5}{.5}\right]\left[\frac{16}{16}\right] \quad\left[\frac{16.31}{16.31}\right]^{2.0}=2.0 \\
& (E F F)_{1}=\left[\frac{3949}{4225}\right]^{1}\left[1+\frac{.5}{.4986}\right] \quad\left[\frac{16}{16}\right]^{1.5}\left[\frac{14.81}{16.31}\right]^{2.0}=1.5442 \\
& (E F F)_{2}=\left[\frac{3949}{4329}\right]^{1}\left[1+\frac{.5}{.5401}\right] \quad\left[\frac{16}{16}\right]^{1.5}\left[\frac{13.60}{16.31}\right]^{2.0}=1.2213 \\
& (E F F)_{3}=\left[\frac{3949}{4089}\right]^{1}\left[1+\frac{.5}{.5211}\right]\left[\frac{16}{14}\right]^{1.5}\left[\frac{13.46}{16.31}\right]^{2.0}=1.5751 \\
& \sum_{\mathrm{K}}^{\mathrm{EFF}}=6.3406
\end{aligned}
$$

(Proportion) ${ }_{S}=\frac{2.0}{6.3406}=\begin{gathered}\text { est route }\end{gathered}$ (Proportion $_{1}=\frac{1.5442}{6.3406}=$. $_{\text {alternative } 1}$ percentage traffic via (Proportion) ${ }_{2}=\frac{1.2213}{6.3406}=.1926$ percentage traffic via alternative 2
(Proportion) $_{3}=\frac{1.5751}{6.3406}=.2484$ percentage traffic via
(TR) $_{S}$
$=98 \mathrm{x} .3154=30.98$
(TR) ${ }_{1}$
$=98 \mathrm{x} .2435=23.92$
(TR) 2
$=98 \mathrm{x} .1926=18.92$
$(T R)_{3}$
$=98 \times .2484=24.40$
The values of (Proportion) via each route multiplied by 98 (the amount of traffic between the pair of $0-D$ under consideration) gives a result which is the trafic via each route and consequently via all links along that particular route.

Network 10.4 represents the routes found in this example.

The effect of one-way traffic on a link can be observed in the Hamilton network.

It is found theonemay this affects both the length of shortest path as well as the number of routes within each in the Hamilton CP value. Section 34, in this network is a one-way street and thus traffic is obliged to make a diversion around this section. However, the resultant load on any particular link will most probably accumulate to a greater extenton those links which appear in more routes. This argument essentially calls not for improvement to links which are already heavily loaded, but rather to improvements on other links. On building a new link care must be taken not to bring the heavily loaded links into the paths of those 0-D pairs which are now not using these heavily loaded links. Table 10.10 is a sample representing a final result of accumulation of trafic on each link.
10.14

AVERAGETRIP LENGTH
Using the RATA model a total number of 52,438 trips are assigned to the network using different journey units. The following information is obtained :-

	Network journey unit		
	Distance	$\begin{aligned} & \text { Generali } \\ & \text { cost } \end{aligned}$	Time
Total number of routes	3405	2200	1985
Total length of all routes	13.258	7.970	7.160×10^{6}
Total vehicle distance (A)	146.433	146.204	147.856×10^{6}
Total vehicle time (B)	148.115	220.109	289.084×10^{6}
Weight of journey unit (C)	289	289	289
Weight of journey unit(C)	$\overline{147.8}$	147.8	$\overline{147.8}$
Actual vehicle time (D)	286.3	285.8	289.084×10^{6}
$D=A \times C$			
Parameter values $\quad \sigma$	1.0	1.0	1.0
in the model (CP) \%	10	10	10
α	1.0	1.0	1.0
β	1.5	1.5	1.5
γ	2.0	0.0	0.0
Network diameter (ϕ	6650	6650	$\begin{gathered} 6650(\text { Distance } \\ \text { unit) } \end{gathered}$
Average trip length ($\overline{\mathrm{X}}$)	2793	2788	2820 (Distance unit)
\bar{X} as percentage ϕ	42	42	42.4

Note: there is a possibility of different network diameters existing if different journey units are used in the network description. (As seen in Tables 10.3 and 10.4). However, in Table 10.2 a distance journey unit network diameter is considered as standard for computing \bar{X} as percentage of 0

Tables 102, 103, 104 and $10 . g$ show that there is a possibility of using any desired journey unit in the network description. The routes between a certain pair of $0-D$ for different journey units in the network description not only changes the number of routes within any given CP value, but it might create entirely different routes. The results of using different values showed consistency in the total vehicle
distance, time and average trip length. The value of average trip length, expressed as the network diameter, is an important factor for comparing the variations of this parameter over time, as well as between two areas at the same point of time. The use of this parameter, and the related average trip length is needed for trip generation models outlined in previous chapters. However, the average trip length by purpose of trip can also be computed when the data for such disaggregation is available.

The value of γ which represents the capacity power in the model for cost and time unit journey in network description is set to zero to eliminate the effectof width of the link in question. 10.15 TRIP LENGTH DISTRIBUTION.

Percentage trip distance travelled on routes of different lengths is as follows:

Table 10.h

Journey unit in network description	Length of route as a percentage									
Distance	. 30	4.0	12	15	17	16	14	12	5.4	1.8
G.cost	. 3	4.0	13	15	20	15.	15	10	3.8	. 8
Time	. 3	4.7	16	16	17	18.	14	8	2.5	. 2

The differences between values in each column from the
 results fromexistence of different number of routes for the
same pair of o-D and same (CP) value for different journey same pair of $0-D$ and same (CP) value for different journey the
units in, network description. However, most journeys are confined between 30% and 80% of/network's diameter, and as shown previously, average journey length is about 0.4 $\boldsymbol{\phi}$. Therefore, most trips are of a length about halfof the maximum available shortest route in the network.
10.16 SUMMARY AND CONCLUSIONS.

The most fundamental element of any trafic
assignment technique is to select a criterion which explains
the choices made by drivers from the number of potential paths available between one origin and one destination.

Wardrop (1952) has identified two criteria which might be used to predict the paths taken between a pair of O-D by motorists. These are :

1. the trip times on all the routes actually used are equal and less than those which would be experienced by a single vehicle on any unused route.
2. the average journey times of all motorists is minimum, which implies that the aggregate vehicle hours spent in travelling is minimum.

Wardrop's first criterion suggests that the drivers act selfishly and attempt to minimise their individual travel times through a network. This criterion is equivalent to the average cost-pricing principle of economic theory. The second criterion suggests that drivers act so as to minimise total travel time spent by all drivers on the network. This implies that the individual drivers are aware of the way in which their choice of route influences the change in the total travel time experienced by all drivers. His second criterion is equivalent to the marginal cost-pricing principle of economic theory.

Almost all conventional assignment techniques used one of these principles. However, Hutchinson, (1974) observed that some limited empirical testing of these two criteria has been performed and the evidence available would suggest that motorists behave according to some intermediate criterion. The criterion used in this study suggests that the driver is not aware of the real speed-flow relationship on links which comprise his route. Rather more fundamentally he makes his decision to choose one route from a number of potential routes, and this decision relates to the relative attractiveness of the route. This implies that all drivers are seeking to experience the same speed, which is equivalent to using distance units in the network description.

The obvious measures of relative attractiveness which can easily be appreciated by the average driver are
 and location of intersections along the route. The assignment model then compares each available route as de-
 est route. Thus, the model assumes the shape of gravity type model. This model was applied here to the available data for Hamilton using three types of journey units in network description. All three types seem to yield satisfactory results because ${ }^{\circ}$ the flexibility of the model. The total number of routes found in the calculations using different journey units, revealed that the maximum number of routes occurred when the distance journey unit was used. The use of distance journey units unit implies the same'constant" speed for all journeys. Thus, the traffic flow could be distributed more evenly on the network through modifying the network to achieve virtually the same average speed on all links.

However, to avoid using time as a criterion, the with its inherent potential for distortion, as well as difficulty of data collection, the alternative parameters employed in (RATA) model are mostly physical characteristics of the network which can be measured fairly easily and accurately i.e., very sensitive parameters are changed to less sensitive parameters. Additionally, this model provides estimates for values of parameters required as "feedback" to the travel demand models (Chapter 6) concerning average trip length (\bar{x}) and also gives percentage distance travelled for each trip purpose (S_{ℓ}).

CHAPTER 11

SUMMARY AND CONCLUSIONS

11.1

Introduction.

The object of this study has been to discuss in quantitative terms, so far as possible with available data, the factors that determine the amount of travel, This is the basic information necessary for urban transportation planning.

The conventional "four-step" transportation
model framework (Figure 1.1) has been reviewed, and it is found that it involves the collection and analysis of large volumes of data. It is concluded that this process is static rather than dynamic, it is unwieldy inflexible and slow. Furthermore, it is by no means certain whether, with associated complexity and cost, the level of detail is well matched to the planning process concerned.

It may also be suggested that these conventional
models rely on behavioural hypothesis which are often much the cruder than, apparent sophistication of the main model. This sophistication of the model technique is questionable until the behavioural basis is strengthened (Baylsis, 1977). A further criticism is that the structural defficiency of conventional transport models is their failure to establish an inter-relationship between the number of trips made and the character and price of transportation service actually available (Whol and Martin, 1967).

This research has attemped to construct econometric models, in which demand for travel is made sensitive to the level of service provided by the transport system. The models set out in this study may provide an opportunity for effecting substantial improvements in urban area travel forecasting. An important feature of the work is that all models presented are simple in concept and application and they require relatively small amounts of data to be collected.

The prediction of future travel demand is centred around the use of consumer-behaviour theory fromeconomics. This theory leads to the attempt to build what may be referred to as "Budget Models" and" "General Share Model" (GSM). These models are formulated on the basis of making some assumptions about the elasticities of travel demand. There is an inbuilt sensitivity to the level of service provided by different transport systems. To achieve this, a new method of "value of non-working time" has been developed By applying the principle that the amount of travel is governed by household budgets of time and money, it is possible to estimate the effect on the numbers of trips and their length caused by modifying the road system, or by otherwise changing the costs of travel. The models therefore depart from the traditional four-stage transportation planning.

To complement these travel demand models a new approach to traffic assignment has been developed with methods using concepts of "relative attractiveness" and "accessibility" of routes to simulate drivers' choice of route. Additionaliy, this process provides estimated values of parameters required as "feed-back" to travel demand model 11.2

SOURCE OF DATA.

1. Family Expenditure Survey (FES) Annual Reports.
2. National Travel Survey (NTS) 1972/73.
3. Operating cost formula as presented by Road

Research Laboratory.
The FES and NTS are both based on national trends using average weekly as a unit of time. The data belongs to all households irrespective of car or non-car ownership. 11.3

HOUSEHOLD AS A UNIT OF DECISION-MAKING.
The attempt to identify firstly the decisionmaking unit conventionally led most transportation planners to define the behavioural unit of analysis to be a household. A convenient basis for their analysis involved using the household characteristics of travel behaviour at individual
level as well as aggregated into groups. It should be noted, however, that the terms "household" "individual" or "consumer" may be used interchangeably.
To justify the use of households as the behavioural travel unit required very careful indepth analysis of travel behaviour, both for average household and by householdincome groups. Moreover, this indepth research reached the point where the demand for transport models and measurement of income, cost and travel time elasticities came together. Its success therefore contributes not only to the better performance of different models but to their linkage and therefore towards a generalisation of the theory of transport demand.
11.4 DEMAND FOR TRAVEL.

Basically any demand for travel is
to fulfil the consumers satisfaction. Trips are usually intermediate goods, which are jointly demanded with other economic goods. The trip then forms an integral part of some larger activity.

In the economic sense, "the amount of commodity that a consumer will be prepared to buy in a given period depends upon the price charged, the quality of the commodity, the service supplied with it, the price of related (substitute or complementary) commodities, his preference between alternative commodities, his income and his expectation (of future income and prices)" (Seldometal, 1975). On this basis, the principle of economics, as far as demand and supply is concerned (which provides explanation for other economic phenomena) should also apply to consumer's behaviour in travel.
11.5 RESOURCES NEEDED FOR TRAVEL.

Time and money are the resources which are
needed for travel. The simple act of moving from point A to another point B in space will take a certain amount of money and time (depending on the mode of travel). And since time and money are limited resources they can be budgeted and allocated. In fact these two resources act as a
constraint one upon the other as far as travel is concerned. For example a person having the use of a company car, the cost of which is borne by the employer, is nevertheless constrained by his own time-budget factor which effectively restricts the amount of travel benefit which may be derived from such a facility. On the other hand, if a person is unemployed he can allocate most of his time to traveling if he wishes, but he is deterred by his money budget from so doing. These two examples are hypothetical and extreme. Nevertheless, all individuals are subject to these limitations.

Transport improvements normally lessen both time and cost of travel. Consequently there is a strong link between the amount of travel and transportation planning.
11.6. INCOME AND AMOUNT OF TRAVEL

To relate the quantity of travel demand to the many variables required for a general econometric model, as mentioned in Section ll. 4 , is not practicaable. Therefore, attempts have been made in many previous studies to isolate the variables considered to be the most important, and to relate the quantity of demand to any changes then. Most commonly, the factors are car-ownership, household size, and number of wage earners in the household, and urban density in the area of residence. All these factors, as revealed in this study, are significantly related to household income (Table 5.d and 5.e).

Values of these variables are ascertainable for time past but great uncertainties are attached to their values in future years. Consequently, in this study, the stratification of households is based only on the level of income. Implicitly these different household income legels show a stable relationship in so far as car-ownership and related variables are concerned.
11.7

HOUSEHOLD INCOME GROUPS.

Income significantly affects the total amount of transport consumed at any given service level. "The higher the income level, the greater number of trips made" (Gwilliam and Mackie, 1975) . Accordingly, grouping of households into a number of income groups is found to be necessary.

In this study difaggregationof households into five income groups was convenient for analysis purposes with $\mathbf{2 0 \%}$ of households in each income group. Consequently households in each income group contains both car and non-car ownership.
11.8 HOUSEHOLDS EXPENDITURE ON TRAVEL.

Family Expenditure Survey (FES) annual reports for years 1965-1968-1972 and 1975 were analysed.

In FES reports, total expenditure represents expenditure on goods and services, while income is a gross weekly amount before the deduction of income tax. Concerning the veracity of data involving "income" and "expenditure" it may be observed that "comparison of the results of the surveys over successive years justifies confidence in their general reliability" (FES, 1975). The data analysed in $F E S$ reports which cover all transport and vehicle expenditure: "On average, each household spends almost a constant percentage of income on travel by all modes".

The minimisation of travel time or cost is generally an objective in transportation planning. However, transport models usually ignore the fact that when travel time or cost is reduced, the number of trips will rise.

The provision of a new or improved transport facility may well result in a greater amount of travel activity than previously existed. Whol and Martin, 1967 commented that this situation - more travel - means more trips, and presumably more community desires are being satisfied. This situation is closely analogous with the economic theory of demand and the associated concept of consumer surplus.

The major structural deficiency of traffic forecasting models is their failure to establish an interrelationship between the number of trips made, or travel volume, and the character and price of the transportation service actually available.

In the four-step conventional transport model
(Diagram 11.a) there is a feed-back from a network analysis box to only three steps, i.e., trip distribution, model choice traffic assignment. However, Wilson, 1974 stated that "it would be theoretically correct to connect the network analysis box (Diagram 11.a) with an arrow to the tripgeneration box, since the rate of trip generation could be expected to vary with ease of travelas measured by travel time and cost. Unfortunately, no one has yet succeeded in building an effective elastic trip generation model of this kind".

The main objective of this study is to introduce a new and simpler approach, with relatively little effort needed for data collection. Based on economic theory of consumer's behaviour, it is possible to put back "themissing arrow" mentioned by Wilson (as discussed in Chapter 2). The value of inserting that "missing arrow" into the analysis process is that it enables a new degree of sensitivity to be

\longleftarrow direct process

- ---- feedback
c/lll/-missing arrow

Transport model

Diagram 11.a
achieved by the modified model which incorporates the effects of the service offered by each mode.

The modified transport models can be represented as in Figure 6.l. Trip generation models have absorbed modal split models, and from the start of the transport planning process, private travel - car trips, as well as public transport - person trips by bus - are predicted separately. Others, like external trips, which use the network and commercial vehicles are also treated separately, and total load on each link of the network is checked at the assignment stage.

Trip distribution might give better results if separated on the same basis of disaggregation, i.e. by household income groups by purpose, on the grounds that different household income groups show different average trip lengths for different purposes.
11.9.1

Household Expenditure on Travel
Analysis of household expenditure on different items of transport shows that "expenditure on total travel for all households (including car and non-car ownership) is a fixed 6.2 percent of household income. Allocation of this amount between different modes of travel depends on the levels of service provided by the modes".
11.9 .2

Vehicle Speed and Operating Cost
The speed of vehicles has significant economic, safety, time and service (comfort and convenience) implications. In this study vehicle speed is found to be a useful tool related to estimates of vehicle operating cost. The formula presented by Road Research Laboratory, "Vehicle Operating Cost" (TRRL 661).
11.9.3 $\quad \frac{\text { Travel Characteristics }}{\text { The primary source of information used in this }}$ study concerning travel characteristics is the National Travel Survey (NTS) $1972 / 73$ which is the latest in a series of comprehensive enquiries about people's travelifing habits. No significant differences were found between the 1972 survey and the earlier 1966 survey. This indicates that on average, trip length distance (\bar{X}) stays quite stable over time for the main modes of travel, car bus and train. This finding might also be applied in urban areas.
11.9.4 Observed.Trip Rates

The amount of travel expressed as number of trips per week for average household income is given by:

$$
\begin{equation*}
t=\frac{\text { Distance travelled by mode } k}{\text { Average trip length }}=\frac{Z}{\bar{X}} \tag{11.1}
\end{equation*}
$$

Number of trips by different modes is as follows:

$$
t_{c}=\frac{Z_{c}}{\bar{x}_{c}}=\frac{96}{12}=8 \quad \text { car trip/week }
$$

$$
\begin{aligned}
& t_{b}=\frac{Z_{b}}{\bar{x}_{b}}=\frac{34.5}{5.16}=6.69 \text { bus trip/week } \\
& t_{r}=\frac{Z_{r}}{X_{r}}=\frac{20.8}{40}=0.52 \text { rail } t r i p / w e e k
\end{aligned}
$$

Figure 5.12 shows percentage of total distance and percentage of trips on average, covered by a household for each trip purpose. There were no corresponding figures available for l965, but in spite of this it seems reasonabe to assume that little change has occurred in these percentages over time. The average trip lengths by purpose of trip are also shown on the same figure. The average overall trip length ($\overline{\mathrm{X}}$) equals 12 km for car trip.
11.10 GENERAL SHARE MODEL (GSM)

The trip rates and trip length distributions
have been unified in the General Share Model which enables forecasts to be made of the amounts of travel by different modes.

All input values required by the model can be computed from base year data. Evidence is presented to suggest that the parameter values remain stable over time. However, due to land use development some changes in parameter values might need to be examined. Such modifications can be easily carried out.

Applying this GSM model reproduced 72% of the
 represents travel by firms car, the cost of which is not paid by a household.

11.11
 ANALYSIS OF CAR TRAVEL

Analysis of car trip data shows the importance of household income in determining the amount of car travel. Consequently it is vital to predice accurately the household income distribution if adequate forecasts of travel are to be obtained.

11.12

Again the importance of household income is
emphasised. Although the amounts of travel by bus and rail are much less than by car, they show a similar relationship to the amount of money available.
11.13

Long Term Travel Forecast

The GSM, as formulated, and the method of its application based on national data, show internal consistency in reproducing observed travel amountsfor car, bus and rail. However, GSM can probably be applied to any particular study area as a travel forecast model, and its performance will depend mainly on the accuracy of forecasting the household income distribution of the area. The model may be applied for any level of disaggregation of household group or trip purpose. An important component determining the level of service of each mode is its vehicle speed and this will need to be measured locally.

The assumption behind GSM is that households, as a function of normal activity, are engaged in work, shopping, etc., and these activities involve traveling. Thus, travel can be regarded as an integral part of human activity which is bound by a 'time constraint' and this in turn also reinforces the concept of a "travel time budget", which in turn reacts as a constraint on the amount of travel itself. The effect of a time constraint (in the long term) results in a fixed percentage of household income being allocated for all travel. This fixed percentage of a household's income can beregarded as a "travel money budget" which jointly with "travel time budget" limits the time and money allocated for travel. The proportions of the budgets spent on each mode depends on the level of service provided by the modes.

Diagram ll.b represents the inter-relationships between the causal variables and the amount of travel by each mode.

Future travel demand involves many factors which essentially require assumptions about future income levels, fares, fuel costs, etc. Such trends could be better assessed through proper integration of economic planning and the provision of a transportinfrastructure. 11.14 GENERATED TRIPS

Network improvement yields higher speeds for car travellers. Consequently there is a saving in time for the traveller and this implies an increase to his real income if he places any monetary value in time savings. This may encourage the traveller to increase his number of trips, which results in a willingness to pay some extra money by an amount to bring him to a new equilibrium point in the tradeoff between time and money.

Any network change affects the relative price of the various commodities or activities to which he allocates his time and money. This is because the components of their price to him, which consists of the generalised cost of travel, has changed. In general, he may be expected to shift his behaviour in favour of those activities whose price, in terms of generalised cost, has fallen most. That is, he will tend to change his travel patterns in favour of activities which are at further distances from his location and away from activities which he formally carried out at or near home. The frequency, destination and length of the trips he makes will be increased as a result. These were the various possible reactions to change in the users cost of the transport network.

It is commonly accepted that each new transport facility or each improved facility may cause induced or generated traffic to appear along the section of road directly or indirectly affected by the improvement, with other traffic being diverted, because the new level of attractiveness of such a particular route contains improved inks.

This additional traffic is observed with the opening of the new facility, and has continued as a stable and slightly increasing component for at least thefirst four or five years as revealed by records covering this period (Schmidt and Campbell, 1956).

In time it becomes increasingly difficult to isolate and measure this component, and it possibly diminishes as the other components grow and crowd it out.

Generated traffic is composed of trips previously inhibited by inadequacies in quality and operational characteristics of the existing facilities. Little consideration has been given to the issue of "frustrated travel", i.e., those journeys which people would like to make but do not, because they are deterred by the shortcomings of transport facilities, including good roads (Stephen, 1972).

Using such criteria a family of "Budget Models" has been formulated in Chapter 6, and its application presented in Chapter 7. The main feature of these models is that they can be used as a guide to predict generated traffic for short range periods, i.e., opening a new motorway, bridge etc., or investigation into the effect of petrol price change on behaviour of travellers in trip-making.

VALUE OF TIME (VOT) FOUND IN THIS STUDY

While analysing the budget models, the VOT
emerged as a result of one assumption made, viz:; After improvement, percentage increase of consumer's money outlay is equal to percentage increase of his time saving. According to this assumption it is found that:

$$
\text { VOT }=\mathrm{BV}_{\mathbf{b}}
$$

i.e., value of time saved (not used in working) equals the cost per unit distance (before at speed V_{b}) multiplied by average vehicle speed for each of the occupants. This value, integrated into the models resulted in a "generalised cost model" which can have many meaningful applications (presented in Chapter 7).

In the Generalised Cost Model the two main
factors are the effect of monetary change in the cost of making trips and changes in the speed of travel on the network. While an increase in petrol prices (in real terms) and the introduction of parking charges reduce the amount of car travel, the provision of higher speed will increase it. See Figure 7.8.

Both situations represent present day frustrations. The first concerns the environmental impact of car trips on town centres; the second is a reflection of the poor quality roads which exist in many areas. These are important facts of urban life. Better roads are desired although they increase trips by such an amount that both user and non-user may suffer afterwards.

There is no simple solution to this paradox
which is inherent in transportation planning. The compromise between a fair amount of travel without disturbing the environment, needs more than just planning aspects into modelling, which has not yet been investigated.

TRAFFIC ASSIGNMENT

A new approach to traffic assignment has been developed using the concepts of "relative attractiveness" and "accessibility" of routes. This is in reality a gravity type of model which provides a better simulation of driver's behaviour in route choice. In addition, the model provides an estimation of parameters needed as a feed-back process required in trip generation stage.

The model is called here the Relative
Attractiveness Assignment Model (RATA). An important requisite for its application is a method of finding N best paths in the network. A program made availablefor this study carried out this task successfully.

It is found that the number of routes between a pair of $0-D$, mainly depends on the value of (CP) where CP represents the percentage deviation from minimum path. Evidence is presented to show that a value of $C P=10 \%$ is reasonable for practical purposes.

It is important to notice that the all-ornothing method is a special case of the RATA model.

The obvious measures of relative attractiveness which can easily be appreciated by the average driver are those related to \varnothing average width of the route, number, type and location of the intersections along the route. The assignment model then compares each available route as defined by its attractiveness parameters with that of shortest route. Thus, in fact the model assumes the shape of gravity type model. This model was applied here to the available data for Hamilton using three types of journey units in the network description. All three types yielded satisfactory results and demonstrated the flexibility of the model. The maximum number of acceptable different routes occurred only when "distance" journey units were used. This implies that the traffic flow could be distributed more evenly throughout the network by modifying the network to achieve virtually the the same speed on all inks.

However, to avoid using time as a criterion, with its inherent potential for distortion, as well as difficulty of data collection, the alternative parameters employed in (RATA) model are mostly physical characteristics of the network which can be measured fairly easily and accurately, i.e. the very sensitive parameters are changed to less sensitive parameters. Additionally, this model provides estimates for values of parameters required as "feed-back" to the travel demand models (Chapter 6) concerning average trip length ($\overline{\mathrm{X}}$) and also gives percentage distance travelled for each trip purpose (S_{ℓ}). (See Chapter 10).

REFERENCES

REFERENCES

Bell, R.R., and Percival, A.J.P., "Public Transport - the Uncertain Future" The Journal of the Institution of Highway Engineers, March 1978.

Batty, M., "Urban Modelling", Cambridge Press. 1976 .

Bayliss, D., "Urban Transport Research Priorities", Transportation, Amsterdam, Vol. 6, No.1. March

1977 .

Beesly, M.E., "The Value of Time Spent in Travelling, Some New Evidence". Economica, Vol. 31, May 1965.

Berry, D.S., "Traffic Characteristics", Traffic Engineering Handbook. Washington. 1965.

Blunden, W.R., "The Land-Use Transport System", Pergaman Press.
1971.

Bridle, R.J., and Cleary, S.M., "Accessibility and Traffic Synthesis" The Journal of the Institution of Highway Engineers, October, 1969.

Broadbent, T.A., "Zone Size and Spatial Interaction in Operational Models", Centre of Environment Studies, CES-WIN-106., London. 1969 .

Buchanan, C., et al, "TRaffic in Town" HMSO,
1963.

Burrell, J.E., "Multiple Route Assignment and its Application to Capacity Restraint" 4th International Symposium on Theory of Traffic, Karlsiuhe, Germany,

FES. 1965-1975, "Family Expenditure Survey", Dept. of Employment, HMSO

Fielding, G.J., Bankenship, D.P., and Tardift, T.,
"Consumer Attitude Towards Public Transport", Transportation Research 563, Washington, D.C.1976.

Forbes, J., "Mapping Accessibility", Scottish Geographic Magazine, LXXX 1964.

Garner, B.J., Charley, R., and Haggett, R., "Model of Urban Geography and Settlement Location", Mettuem, London,

1976 .
Goodwin, P.B., "Travel Choice \& Time Budget", PTRC Summer Annual Meeting, University of Warwick,
1976.

Gwilliam, P., and Mackie, J., "Economics and Transportation Policy", George Allen \& Unwin, London.

Hagerstrand, T., "What about people in regional Science", Regional Science Association, Vol. 24,pp.7-21.

Hamer, M., "Wheels within Wheels a Study of Road Layby", Published by Friends of the Earth, London

1974 .
Hansen, W.G., "How Accessibility Shapes Land
Use", Journal of American Institute of
Planning, Vol. 13.
Harrison, A.J., "The Economic of Transport Appraisal", Croon Helm,
1974.

Harman, R.G., "Fuel in Transport", Traffic Engineering and Control,Feb/March 1974 .

Highway Capacity Manual, Highway Research Board, Special Report 87, Washinton,D.C. 1965.

Hills, P., "Economic Evaluation", PTRC Spring Course in TRansportation Model Theory, 3-7 May,

Hoffman, W., and Pauley, R., "A Method for the Solution of the Nth best Path Problem" Journal of the Association for Computation and Machinery, Vol.6, pp.506-514. 1959 .

Johnson, D.B., "Efficient Algorith for Shortest Path in Sparse Network", Journal of Association for Computation Machinery.
Vol.24, No.1, pp.1-13. 1977 .

Overgaard, K.R., "Trafficestimation in Urban Transportation Planning", Acta Polytechnica Scandinavia, Copenhagen. 1966.	
Phibrick, A.T.C., "Transportation Gravity Models", University of Queensland, Dept. of Civ.Eng.	
Potter, S., "Counting the Cost", Transport Report, A Monthly Distillation of Transport	
News, Vol.2, No.4, April	1978
Quinby, H.D., "Mass Transportation Characteristics" Transportation and Traffic Handbook (Institution of Traffic Engineers) Prentice-Hall,	
Rigby, J.P., "An analysis of travel patterns using the 1972/73 National Travel Survey", TRRL Report 790	
Sacco, J.F., and Hajj, H.M., "Impact of Energy Shortage on Travel Pattern and Attitude", Transportation Research Record No. 561 .	
Salterm R.J., "Highway Traffic Analysis and Design", MacMillan.	1974
Sayer, R.A., "Gravity models and spatial auto correlation, or atrophy in urban and regional modelling", Area Vol.9 No. 3	1977 .
Shimbel, A., "Structural parameters of Communication Network", Bulletin of Mathematical and Biophysocs XV (1953) pp.501-507.	
Shmidt, R.E., and Campbell, M.E., "Highway Traffic Estimation", ENO.	1956 .
Stephen, P., "Town Against Traffic", Andre Deutch	1972.
Stonier, A.W., and Hague, D.C., "A textbook of Economic Theory", Longman	1975 .
Stopher, P.R., and Meyburg, A.H., "Urban Transportation Modelling and Planning" Lexington Books.	1977 .
Tanner, J.C., "Forecast of Vehicle and Traffic in Great Britain", TRRL Report LR 650 .	

Thomson, J.M., "An evaluation of two proposals
for traffic restraint in Central London
Journal of the Rotal Statistics Society
Series A, Vol. 130 Part 3 1967.

Thrift, N., "An introduction to Time-Geography" University of Norwich, East Anglia, CATMOG 13
1977.

Transport Policy, U.K.
1976.

Transport Statistics G.B. 1965-1975.
TRRL, Research on Road Traffic, HMSO 1975 .

Wabe, J.S., and Coles, O.B., "Cost of Providing Bus Transportation Urban Area", PTRC Semminal Proc.25-29, June 1973.

Wagon, D.J., "Public Transport Analysis" "TRC Spring Course, Transportation Mode Theory Lectures 10 and $11,3-7$ May
1976.

Wardrop, J.G., "Some theoretical aspects of Road Traffic Research", Proc.Inst.Civ.Eng. Vol.1 pp. 325.
1952.

Wardrop, J.G., and'Charlesworth, G., "A Method of Estimation speed and flow of Traffic from moving vehicle", Proc.Inst.Civ.Eng. pp.158-171, Fe.
1954.

Wattleworth, J.A., "Traffic Flow Theory", Transportation and TRaffic Engineering Handbook, Inst. of Traffic Engineers Prentice-Hall.
1976.

Webster, F.U., and Cabbe, B.M., "Road Research Technical Paper No. 56, HMSO 1965.

Webster, F.U., "Urban Passenger Transportation, some Trends and Prospects", TRRL Report LR 771 .

1977 .

Whol, M., and Martin, N., "Traffic System Analysis for Engineers and Planners", McGraw-Hill
1967.

Wickstrom, G.U., and Grant, A.A., "Planning for Implementation", Transportation, Amsterdam, Vol.1

1972 .

Wilson, A.G., "Urban and Regional Models in Geography and Planning", Wiley.

1974 .

```
Wooton, H.J., and Pick, G.W., "A Method for
    Trip Generated by Household", Journal
    Transport & Economics and Policy)
    Vol.1 No. 2, May 1967.
Wright, C., and Orrom, H., "The Westminster
    Route Choice Survey", Traffic Engineering
    and Controlm Aug./Sept.
1976.
Zahavi, Y., "Travel Time Budget and Mobility
    in Urban Areas", Federal Highway
    Administration, Washington, D.C., May 1974.
Zahavi, Y., "Travel Characteristics in Cities
    of Developing and Developed Countries",
    Staff Working Paper 230,Washington,D.C.
    March
    1976.
```


total income							EXPENDITURE ON TRANSPORT (E)							
Year	Range of Income (E)	Av. Wookly Hh. Income (£)	No. of Households	\% of Household	Cumulative Col. 4	Cumulative Col. $4 \times \mathrm{Col} .2$	ITEM				Cumulative Col $.4 \times \mathrm{Col}$.			
							77	78	80	81	77	78	80	81
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	Under 5	4.26	112	3.3	3.3	14.06	-	-	. 032	. 075	-	-	. 1	. 25
	5-10	7.20	401	11.82	15.12	100.22	. 01	. 04	. 033	. 134	. 118	. 47	. 49	1.83
	10-15	12.50	387	11.41	25.56	242.85	. 15	. 29	. 056	. 309	1.83	3.78	1.13	5.36
	15-20	17.49	529	15.60	42.13	515.69	. 30	. 59	. 067	. 355	6.51	12.98	2.18	10.87
6	20-25	22.43	553	16.30	58.43	883.30	44	. 88	. 120	. 411	13.68	27.32	4.13	17.56
	25-30	27.24	486	14.33	72.76	1271.65	63	1.01	. 136	. 494	22.71	41.79	6.08	24.64
5	30-40	34.21	515	15.18	87.94	-1789.96	2.20	1.58	. 19	. 534	56.11	65.75	9.0	32.75
	40-50	44.25	223	6.57	95.51	2081.68	4.32	2.22	. 279	. 545	84.49	80.36	10.9	36.33
	$50+$	69.53	183	5.39	100	2456.45	2.01	2.64	. 469	. 617	95.32	95.60	13.42	39.66
	Total		3392		γ	x_{1}		x_{2}						
1	Under 6	5.1	189	2.63	2.63	13.41	. 05	. 1	. 003	. 099	. 13	. 26	. 007	. 26
	6-8	6.87	374	5.20	7.83 .	49, 13	. 07	. 15	. 04	. 114	. 50	1.04	. 2	. 86
	8-10	9.04	273	3.80	11.63	83.48	. 125	. 20	. 02	. 141	. 97	1.80	. 29	1.39
	10-15	12.31	671	9.34	20.97	198.45	. 159	. 25	. 046	. 234	2.45	4.13	. 72	3.58
9	15-20	17.64	728	10.13	31.10	377.14	. 487	. 69	. 05	. 318	7.38	11.12	1.23	6.81.
	20-25	22.59	963	13.40	44.50	679.84	. 722	. 89	. 09	. 393	17.06	23.05	2.43	12.07
6	25-30	27.53	965	13.43	57.93	1049.57	1.0	1.25	. 086	. 450	30.49	39.83	3.56	18.18
	30-35	32.42	814	11.33	69.26	1416.89	1.58	1.64	. 12	. 426	48.39	58.42	5.01	22.95
8	35-40	37.31	6.15	8.53	77.79	1735.15	1.85	2.06	. 16	. 483	64.17	76.0	6.41	27.07
	40-50	44.35	765	10.64	88.43	2207.03	1.91	2.19	. 22	. 491	84.50	99.29	8.84	32.30
	50-60	54.27	385	5.36	93.79	2497.92	2.61	2.83	. 31	. 609	98.48	114.46	10.52	35.56
	$60+$	32.59	426	5.93	100	2987.68	3.88	3.39	. 58	. 535	121.50	134.56	14.00	39.60
	Total		7184		γ	x_{1}		x_{2}						
Sample Size														

TOTAL INCOME						EXPENDITURE ON TRANSPORT							
Range of	Av. Weekly Hh. Income (£)	No. of Household	$\begin{gathered} \text { \% of } \\ \text { Household } \end{gathered}$	Cumulative Col. 4	Cumulative Col. $4 \times \mathrm{Col} .2$	ITEM				Cumulative Col. $4 \times \mathrm{Col}$.			
Income (£)						77	78	80	81	77	78	80	81
1	2	3	4	5	6	7	8	9	10	11	12	13	14
Under 10	8.39	442	6.3	6.3	52.85	. 01	. 05	. 01	. 14	. 06	. 31	. 06	. 88
10-15	12.43	605	8.62	14.92	160.00	. 08	. 26	. 05	. 24	. 75	2.55	. 5	2.95
15-20	17.39	423	6.03	20.95	264.86	. 19	. 43	. 12	. 33	1.9	5.15	1.2	4.94
20-25	22.49	477	6.80	27.75	417.80	. 72	. 98	. 07	. 41	6.79	11.81	1.7	7.73
25-30	27.44	513	7.31	35.06	618.38	1.21	1.22	. 10	. 51	15.64	20.51	2.4	11.45
30-35	32.59	553	7.88	42.94	875.19	1.29	1.48	. 13	. 50	25.80	32.17	3.4	15.40
35-40	37.56	630	8.98	51.92	1212.48	1.66	1.79	. 15	. 49	40.71	48.24	4.8	19.80
40-45	42.46	656	8.05	59.96	1554.28	1.72	1.94	. 16	. 57	54.55	63.86	6.0	24.39
45-50	47.32	530	7.55	67.52	1911.55	2.26	2.46	. 20	. 57	71.62	82.43	7.6	28.69
50-60	54.73	833	11.87	79.39	2558.11	2.86	2.87	. 26	. 63	105.56	116.5	10.7	36.16
60-80	68.47	880	12.54	91.93	3416.72	3.66	3.34	. 39	. 68	151.46	158.38	15.6	44.69
80+	107.13	567	8.08	100	4282.33	5.55	4.68	. 83	. 66	196.31	196.2	22.2	50.02
Total		7017											
				Y	x_{1}		x_{2}						

Expenditure of all Households on Transport by Income of Household for

INCOME						EXPENDITURE (£)							
$\begin{gathered} \text { Range of } \\ \text { Income } \\ \text { (£) } \end{gathered}$	Av. Weakly Hh. Income (f)	No. of Houseliold	$\begin{aligned} & \% \text { of } \\ & \text { Houschold } \end{aligned}$	Cumulative Col. 4	Cumulative Col. $4 \times$ Col 2	IIEM				Cumulative Col. $4 \times \mathrm{Co}$			
						71	78	80	81	71	78	80	81
1	2	3	4	5	6	7	8	9	10	11	12	13	14
Under 15	12.79	${ }^{263}$	3.65	3.65	46.68	. 10	. 20	. 09	. 19	. 36	. 73	. 3	. 69
15-20	17.46	507	7.04	10.69	169.60	. 08	. 32	. 04	. 20	. 93	2.98	. 6	2.10
20-25	22.56	374	5.19	15.88	286.68	. 25	. 56	. 05	. 20	2.25	5.89	. 9	3.66
25-30	27.45	325	4.51	20.39	410.48	. 43	. 95	. 09	. 35	4.16	10.17	1.3	5.23
30-35	32.58	278	3.86	24.25	5.6. 24	. 83	1.23	. 26	. 46	4.41	14.92	2.2	7.01
35-40	37.53	258	3.58	27.83	670.60	. 87	2.02	.11	. 48	10.52	22.72	2.9	8.73
40-45	42.65	259	3.58	31.41	823.29	1.29	2.51	.17	. 62	15.14	31.70	3.5	10.95
45-50	47.57	258	3.58	34.99	993.59	1.14	2.87	. 21	. 49	19.22	41.46	4.2	12.70
50-60	55.28	640	${ }^{8.88}$	43.87	1484.47	1.61	2.67	. 23	. 56	33.51	65.36	6.3	17.67
60-70	65.09	703	9.76	53.63	2119.75	2.24	3.66	. 25	. 68	55.38	101.08	8.7	24.31
70-80	74.91	652	8.68	63.31	2770.23	3.09	3.87	. 38	. 66	82.76	134.68	11.2	30.16
80-90	84.9	583	8.09	70.40	3457.56	3.05	4.76	. 27	. 72	107.43	173.18	13.4	35.98
90-100	95.05	461	6.40	76.80	4065.88	3.09	4.85	. 39	. 76	127.20	204.22	15.9	40.85
100-120	108.93	691	9.59	86.39	5100.71	4.46	5.49	. 53	. 84	170.00	256.87	21.0	48.90
120-150	133.15	504	6.99	93.38	6031.43	5.08	6.53	. 84	. 95	205.50	302.52	26.8	55.55
$150+$	195.87	147	6.20	100.00	7245.82	7.11	8.16	1.29	1.04	250.00	353.11	35.0	62.00
$\begin{aligned} & \text { Yotal } \\ & \text { Average } \end{aligned}$	72.45	7203	100	γ	x_{1}	2.5	$\begin{gathered} 3.53 \\ x_{2} \end{gathered}$. 35	. 62				
Notas													
Hem 77 Car Purchose													
liem 78 Maintenonce ond Running of Car Expenditure of oll Households on Transport by Income of Household for													
Hom al fur Fore													
Y with X_{1} ond X_{2} are Columms 5,6 and 8 are represented groplically in													
(d)													
					TAB	E	5.1						

		Average weekly household expenditure																																	
		ITEM NUMBER j														$\operatorname{Pr}=\left(X_{i} / \Sigma_{i} X_{i}\right) 100$																			
		Expenditure (£) X_{i}							Expenditure \% of income $\mathrm{X}_{1 j} / \mathrm{M}_{1}$							Percentage share (propensity pr.)																			
		77	78	80	81	Total	$\begin{array}{\|c} 78,80 \\ 81 \end{array}$	80,81	77	78	80	81	total	[78,80,	80,81	77	78	80	81	Total	78,80 81	80,81													
1	13.0	. 14	. 28	. 09	. 22	. 69	. 55	. 27	1.083.34.525.265.11	$\begin{aligned} & 2.1 \\ & 4.11 \\ & 4.78 \\ & 5.16 \\ & 4.65 \end{aligned}$	$\begin{aligned} & .38 \\ & .38 \\ & .38 \\ & .49 \\ & .63 \end{aligned}$	1.70 5.30 1.65 9.46 1.42 11.11 1.19 12.12 .81 11.20		4.236.156.596.866.10	2.07 2.04 1.81 1.69 1.45	1.43	2.85	$\begin{array}{ll} 4.54 \\ 0 & 10 \end{array}$	8.8	2.97	4.1	7.5													
2	26.0	. 86	1.07	. 10	. 43	2.46	1.6	. 53						8.77		17.2			10.60	11.94	14.72														
3	38.7	1.75	1.85	. 15	. 55	4.30	2.55	. 70						17.85		18.87	9.10	22.0	18.53	19.02	19.44														
4	50.3	2.65	2.60	. 25	. 60	6.10	3.45	. 85						27.04		26.56	22.72	24.028.0	$\left\lvert\, \begin{aligned} & 26.29 \\ & 41.59\end{aligned}\right.$	$\begin{aligned} & 25.74 \\ & 39.18 \end{aligned}$	$\left\lvert\, \begin{aligned} & 23.61 \\ & 34.72 \end{aligned}\right.$														
5	86.1	4.4	4.0	. 55	. 70	9.65	5.25	1.25						44.90		40.81	50.0028 .0																		
$\sum \mathrm{x}_{i}$	214.1	9.8	9.8	1.10	2.50	23.2	13.4	3.6						100		100	100	100			100														
$\begin{aligned} & \overline{\mathrm{x}}=\frac{\Sigma}{42.82} \\ & \text { Av.in } \end{aligned}$		1.96	1.96	. 22	. 50	4.64	2.68	. 72	Notes Item 77 Car purchase							7																			
$\overline{\mathrm{X}}$ as	of \vec{M}	4.57	4.57	. 51	1.16	10.83	6.25	1.68	Item 78 Maintenance and running of car Item 80 Rail fare							Total expenditure on transport																			
Item 81 Bus fare																																			
$\begin{array}{cc}\text { Source : } & \text { FES Report } \\ \text { FIG. } 5.3\end{array}$																Total expenditure on travel Total expenditure on travel by public transport																			
Expenditure of all households on transport for year 1972																																			

Summary of Household Expenditure on Transport
 TABLE 5.3

Trip length distribution by mode by purpose

Source : Rigby, 1977 \quad| C $:$ car | |
| :--- | :--- |
| | NTS 1972/73 |

P	Max. (R-I) \%	$\begin{aligned} & \text { Lay Money } 100=\varnothing_{m} \\ & \text { Money Before } \\ & \text { Max. } \varnothing_{m} \% \end{aligned}$	$\begin{aligned} & \frac{\text { Time Saved }}{\text { Time Before }} 100=\varnothing_{t} \\ & \text { Max. } \varnothing_{\dagger} \end{aligned}$	Remarks
-3/5	-14	$\frac{.88}{2.615}=+33 \text { (save) }$	$\frac{3-1.5 \times .86}{3}=57$	$\begin{aligned} P= & -3 / 5, \text { Rate }=1-.14=.86 \\ & \text { (Deterioration) } \end{aligned}$
-2/5	0	$\frac{.58}{2.615}=+22 \text { (save) }$	$\frac{3-1.5 \times 1}{3}=50$	$\begin{aligned} P= & -2 / 5, \text { Rate }=1, \text { Save time } \\ & + \text { save money } \end{aligned}$
-1/5	14	$\frac{.29}{2.665}=+11 \text { (save) }$	$\frac{3-1.5 \times 1.14}{3} 100=43$	$\begin{aligned} P= & -1 / 5, \text { Rate }=1+.14=1.14 \\ & \text { (more trips and more time) } \end{aligned}$
0	28	$0=0$ (No save)	$\frac{3-1.5 \times 1.28}{3} 100=36$	$P=0, \text { Rate }=1+.28=1.28$ No save money, save time (Money Budget)
1/5	42	$\frac{.29}{2.615}=-11(\text { Lay }$	$\frac{3-1.4 \times 1.42}{3} 100=29$	$\begin{aligned} P= & 1 / 5, \text { Rate }=1+.42=1.42 \\ & (\text { Lay money and save time }) \end{aligned}$
2/5	56	$\frac{.58}{2.615}=-22$ (Lay)	$\frac{3-1.5 \times 1.57}{3} 100=22$	$P=2 / 5, \text { Rate }=1+.56=1.56$ (Lay money + save time with equal \% (Generalised Cost Budget)
3/5	71	$\frac{.88}{2.615}=-33 \text { (Lay) }$	$\frac{3-1.5 \times 1.71}{3} 100=14$	$\begin{aligned} P= & 3 / 5, \text { Rate }=1+.71=1.71 \\ & (\text { Lay Money and save time) } \end{aligned}$

TABLE 7.1 cont.

P	Max. $(R-I)$ $\%$	$\begin{aligned} & \frac{\text { Lay Money }}{\text { Money Before }} 100=\varnothing_{\mathrm{m}} \\ & \text { Max. } \varnothing_{\mathrm{m}} \% \end{aligned}$	$\begin{aligned} & \frac{\text { Time Saved }}{\text { Time Before }} 100=\varnothing_{t} \\ & \text { Max. } \varnothing_{\dagger} \% \end{aligned}$	Remarks
4/5	86	$\frac{1.17}{2.615}=-45(\text { Lay })$	$\frac{3-1.5 \times 1.86}{3} 100=7$	$\begin{aligned} P= & 4 / 5, \text { Rate }=1+.86=1.86 \\ & \text { (Lay money and save time) } \end{aligned}$
1	100	$\frac{1.46}{2.615}=-56 \text { (Lay) }$	$\frac{3-1.5 \times 2}{3}=0$	$P=1, \text { Rate }=1+1=2 \text { (Lay }$ more money, no time saved (Time Budget)
1	2	3	4	5
Money and Time Saved for- Different Values of P. (Low Range of Improvement Speed 20 to $40 \mathrm{Km} / \mathrm{h}$)*				

Speed	h	R_{t}	R_{m}	B	A	$R=\frac{2 B h}{h A+B}$	$P=\frac{R-R_{m}}{R_{t}-R_{m}}$
20	1	1	1	2.615	2.615	1	
40	2	2	1.28	2.615	2.04	1.56	$.388=2 / 5$
60	3	3	1.34	2.615	1.95	1.85	$.307=1.5 / 5$
80	4	4	1.30	2.615	2.018	1.96	$.244=1.25 / 5$
100	5	5	1.20	2.615	2.18	1.93	$.192=1 / 5$
120	6	6	1.085	2.615	2.41	1.84	$.153=.75 / 5$

Rate of Generated Trips for Different Speeds
TABLE 7.2

P	Max. (R - I)\%			
		Speed		
	40	60	80	100
-1	-42			
$-3 / 5$	-28	-100		
$-2 / 5$	0	-66	-128	-132
$-1 / 5$	14	0	-22	-56
0	28	33	31	20
$1 / 5$	42	67	84	96
$2 / 5$	57	100	137	172
$3 / 5$	71	133	191	248
$4 / 5$	85	107	246	324
1	100	200	300	400

(High Range of Improvement Speed 20 to $100 \mathrm{Km} / \mathrm{hr}$)
TABLE 7.3

Model	Consuming	Constraint resource	Pay Extra Money	Save Time	Applicable To:	Notation*
1	K	Time	Yes	No	20\% highest income group, mostly using firms cars, travel saturated, using Air Travel	$\mathrm{M}+$, T0
2	K_{1}	Money	No (save)	Yes	20\% Lowest income group, not travel frustrated, contains old, unemployed and pensioners	M-, T-
3	K_{5}	Money	No	Yes	Second 20\% income group, seeking saturation	MO,T-
4	K_{6}	Generated Cost	Yes	Yes	Third and Fourth income group, less saturated, less travel by air	$\mathrm{M}+\mathrm{T}-$

[^0]

Comparison of Petrol Price Index with Other Items
TABLE 9.2 *** Transport Statistics G.B. 1965-1975 Table 67(e)
Table 8
a
0
0
0
-0
**** Transport Statistics G.B. 1965-1975
*****Transport Statistics G.B. 1965-1975

		$\begin{aligned} & \text { 曾 } \\ & 0 \\ & 0 \end{aligned}$			Description common for all household income groups		Trip purpose						$\begin{aligned} & \text { Trip rate }\left(t_{i \ell}\right) \\ & t_{i_{\ell}}=\frac{E_{i} P_{\ell}}{\bar{x}_{\ell}} \end{aligned}$ ($\ell)$						
1		M	N	E			1	E	3	4	5	6	1	E	3	4	5	6	T ${ }_{1}$
1	2	3	4	5	6	7										9			10
1	20	13	1.7	22	Average trip length km	\bar{x}_{ℓ}	5.16	4.64	4.79	5.16	5.8	6.88	1.03	. 29	. 83	. 23	. 47	. 09	2.97
2	20	26	1.65	43	for purpose ℓ	\mathbf{P}_{ℓ}	35	9		8	28	4	2.02	. 58	1.61	. 43	. 92	. 17	5.79
					Cost per km	c_{ℓ}				5									
3	20	38.7	1.42	55	Cost per $\operatorname{trip}=\bar{X}_{\ell} \mathbf{c}_{\ell}$	$\overline{\mathbf{c}}_{\ell}$	7.46	6.71	6.93	7.46	8.39	9.95	2.58	. 74	2.06	. 59	1.18	. 22	7.47
4	20	50.3	1.19	60									2.81	. 80	2.25	. 64	1.29	$\cdots 24$	8.11
5	20	86.1	, 81	70									3.28	. 94	2.63	. 75	2.50	. 28	9.47
												$Q_{\ell}=$	1.72	3.35	9.38	2.68	5.36	1.0	33.83
		rage		50								$\bar{Q}_{\ell}=$	2.34	. 67	1.87	. 53	1.07	. 2	6.766

Weekly household bus trip rate, by household income group by trip purpose.
table 9.3

\therefore cenoionmino ∞
a coENGgNGON

OOMENigaoom N
a oomonENno = い

PERCENTAGE	OVER	SHORTEST ROUTE	
4	5	6	7
0	0	0	0
0	1	0	1
0	6	2	0
10	4	8	18
8	29	25	17
23	40	35	28
28	29	29	23
17	25	12	23
-10	3	13	22
0	0	0	5
96	137	124	137

ACCESSIBILITY INDEX FOR EACH SECTION

$$
\begin{aligned}
& 0.394 \\
& 0.411 \\
& 0.549 \\
& 0.737 \\
& 0.710 \\
& 0.532 \\
& 0.465 \\
& 0.552 \\
& 11.514 \\
& 11.564 \\
& 0.717 \\
& 0.684 \\
& 0.547 \\
& 0.490 \\
& 0.464 \\
& 0.576 \\
& 0.465 \\
& 0.572 \\
& 0.561 \\
& 0.000
\end{aligned}
$$

$$
\begin{aligned}
& 1.633 \\
& 11.416 \\
& 11.577 \\
& 0.610 \\
& 11.676 \\
& 1.673 \\
& 11.454 \\
& 1.454 \\
& 1.726 \\
& 11.542 \\
& 0.637 \\
& 11.434 \\
& 0.629 \\
& 0.379 \\
& 0.658 \\
& 0.570 \\
& 11.437 \\
& 11.535 \\
& 0.970 \\
& 0.010
\end{aligned}
$$

TABLE 10.6

BROUTES FRON ORIGIH 30 TO DESTINATION 82 CRITICAL ROUTE LENGTH $=2351$ TOTAL TRAFFIC $=46$

$$
\text { SUY } A(E F F)=36.9486
$$

$\left.\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]$
 \because

[^1]
ご

气

test sinanas
sARHAAS

Direct Process
Feedback
Li-i-i- Missing Arrow

FIG. 1.2

- a --

- b -

Passenger kilometres and petrol price index.
Note that only the period 1973-74 when petrol price index started to rise sharply, the car passenger kilometres fell down consequently.

Source : Transport Policy U.K. 1976, Vol.2, pp.4-5
Transport statistics G.B.1965-1975 Economic Trends No.2, $1976, \mathrm{U} . \mathrm{K}$.

FIG., 1.3

Vehicle distance travelled by different vehicles on all roads in U.K. as percentage of total travel.

Source: Transport Policy U.K. 1976 Vol. 2, pp. 130

FIG. 1.4

FIG. 1.5 Typical internal and external zoning system.

FIG. 2.1 Transportation planning process
(

SPEED/FLOW RELATIONSHIPS

Key FFL $=$ Free Flow Limit
Qc = "limiting capacity"
upcu $=$ urban pcu
rpcu $=$ rural pcu
Source: DoE. Advice Note No.IA
FIG. 2.4

(a)

(b)

Effect of income on number of trips and car ownership

Source: Movement in London Ch. 2.

FIG. 3.1

The daily path of each member of five households. Seven categories are
recognised: a) place of work b) place of services other than commercial
c) commercial services d) home e) recreational space f) other houses
g) schools. Members of each household are considered by age with the oldest
one to the left.

1. Man 43, car; wife 38; boy 10 ; boy 8
2.. Man 36, car; wife 36; boy 12; girl 10 ; boy 3 .
2. Man 44, car; wife 38, car; boy 11 ; boy 7
3. Man 37, car; wife 34, car; boy 9; giri'7; boy 5.
4. Man 81; wife 76.

Category space as an analytical adjunct after Martensen.

Source: Thrift, 1977 .

FIG. 3.2

One individual (line) moving from one station (tube) to another and back again. The slope of the individual's path in relation to plane indicates the time it takes to travel.

TIME - BUDGET

The relation between a) an individual's path moving among four stations, left, and b) time spent on stationary versus modile activities in a 24 hour period, right. The figure thus shows the relation oetween time-space path and "time-budget".

```
\(\therefore\) Path and Budget because of Station
- After Carlstein
Source: Thrift, 1977
FIG. 3.3
```


FIG. 3.4

Theoretical speed, flow and density relationship

NOTE: Percentages are expenditure on commodity or service group as a percentage of total household expenditure.

- Average for all households.

Source: FES;1975

FIG. 5.4 a

TOTAL HOUSEHOLD EXPENDITURE ON TRANSPORT(A) \&ON MAINTENANCE \& RUNNING MOTOR VEHICLE
(B)

FIG.5-4b

Average household expenditure on four main items of transport. FIG. 5.5

Trend of income groups in expenditure on four items on transport.

FIG. 5.6

FIG. 5.7

Expenditure on bus fares
by household income group
FIG. 5.8

FIG. 5.9a

FIG. 5.9b

Percentage share on travel by public tramsport by household income group.

FIG. 5.9c

Percentage share on all travel (private and public transport)by household income group.

FIG. 5.9d
 Average household expenditure on travel by private(car) and public (rail and bus). FIG. 5.10

Average household expenditure on travel by car, and public transport (bus and rail) by household income group.

FIG. 5.11

Carjourney characteristics
(All households)
sourse NTS 1972173

CAR TRIPLENGTH DISTRIBUTION

Source:NTS 1972/73

FIG.5. 13

FIG. 6.1 MODIFIED TRANSPORT MODEL

amount of travel
demand and supply curve
(Time constraint)
FIG. 7.1

time saved and extra money sfent for different levels of imgovement

FIG. 7.2

FIG. 7.3

FIG. 7.4

AMEJNT JE TRAVE:
demand anc suppiy こurve
(Generalised cost contraint)
FIG. 7.5

FIG. 7.6

P values with ϕ_{m} and ϕ_{t}
FIG. 7.7

EFFECT OFCHANGEINPETROLPRICE
AND SPEEDONGENERATEDTRIPRATE(R)
(Generalised Cost Constraint)
Values of A and B from 1973 Cost Formula;

$$
C=1.29+\frac{26}{v_{b} h}+.000063\left(v_{b} h\right)^{2}
$$

FIG. 7.8

RESPONSESURFACEFOR GENERATEDTRIP
(Generalised Cost Model)

GLASGOW FARE STRUCTURE FOR P.T.E.S.B.G. \& INDEPENDENT BUS OPERATORS (MID 1975).
FIG. 9.1 a

GLASGOW FARE RATE PER MILE FOR P.T.E, S.B.G. \& INDEPENDENT BUS OPERATORS (MID 1975). FIG.9.1b

FIG. 9.6

Expenditure on Travel by Train as \% of Average Household Income for Five Income Groups.

FIG. 9.7

> Expenditure on Travel by Public Transport per Household/Week (Bus and Train)

FIG. 9.8

Expenditure on Travel by Bus and Rail Per Household Per Week
FIG. 9.9

Total Expenditure on Travel - Car, Bus and Rail.
FIG. 9.10

Household trip rate by car, bus and rail
/ $1972 / 73$
See Tables 8.1, 9.2, 9.g.

FIG. 9.11

FIG. 9.12

(8) Household Expenditure on Rail Index
(9) Rail Fare Index
(i) All Goods and
1965 Index $\begin{aligned} & \text { (i) All Goods and Services Index } \\ & \end{aligned}$
965 Index $=100$
FIG. 9.13

FIG. 10.2 HAMILTON ZONING SYSTEM
(

Average number of routes
between a pair of O-D
(Hamilton Network)

FI/G. 10.6

Route length as percentage of network diameter
Note : the journey unit is in terms of distance
the minimum paths omitted (see Table 10.2)
FIG. 10.7 ROUTE FREQUENCY DISTRIBUTION (\%)

Number of possible routes between 677 pair of $0-D$ for
different allowable deviation from shortest path.

Traffic Engineani, Section
Applied Statristics - Summany of procedure for a ssimple Iniew nomed regression modl.

Constincer tosce thess

x	y	x^{2}	y^{2}	$x y$
x_{1}	y_{1}	x_{1}^{2}	y_{1}^{2}	$x_{1} y_{1}$
x_{2}	y_{2}	x_{2}^{2}	y_{2}^{2}	$x_{2} y_{2}$
\vdots				
\vdots	y_{n}	x_{n}^{2}	y_{n}^{2}	$x_{n} y_{n}$
$\sum x_{i}$	$\sum y_{i}$	$\sum x_{i}^{2}$	$\sum y_{i}^{2}$	$\sum x_{i} y_{i}$

$\Sigma x_{i}^{2}=\Sigma\left(x_{i}-\bar{x}\right)^{2}=\Sigma\left(x_{i}^{2}\right)-\frac{\left(\Sigma x_{i}\right)^{2}}{n}$

$$
\Sigma y_{i}^{2}=\Sigma\left(Y_{i}-\bar{Y}\right)^{2}=\Sigma\left(Y_{i}^{2}\right)-\frac{\left(\Sigma Y_{i}\right)^{2}}{n}
$$

$$
\sum x_{i} y_{i}=\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)=\sum\left(x_{i} y_{i}\right)-\frac{\sum x_{i} \sum y_{i}}{n} \quad S_{x y}=\frac{\sum x_{i} y_{i}}{n-1}
$$

$$
\hat{\beta}=\frac{\sum x_{i} y_{i}}{\sum x_{i}^{2}}=\frac{s x_{y}}{s_{x}^{2}}=r \cdot \frac{s y}{s x} \quad \hat{\alpha}=\bar{\gamma}-\hat{\beta} \bar{x}
$$

$$
95 \% \text { confidence interasss ave } \hat{\beta} \pm t_{0.25} \frac{s_{u}^{2}}{\sqrt{\sum x_{i}^{2}}}, \hat{\alpha} \pm \frac{\hat{\sigma}_{u} \sqrt{\sum x_{i}^{2}}}{\sqrt{n \sum x_{i}^{2}}}
$$

$$
\text { where } \hat{\sigma}_{n}^{2}=\sum e^{2} / n-2
$$

$$
r=\frac{S_{x y}}{S x \cdot S_{y}}=\frac{\sum x_{i} y_{i}}{\sqrt{2 x_{i}} \cdot \sqrt{\sum y_{i}^{2}}}
$$

$$
t=\frac{r \sqrt{n-2}}{\sqrt{1-r^{2}}} \text { int } n-2 \text { D.F. }
$$

$$
r^{2}=\frac{\text { exphined vaination }}{\text { totar vemination }}
$$

$$
1-r^{2}=\frac{\text { unexplained } \text { ramation }}{\text { total vaination }}
$$

$$
\Sigma y_{i}^{2}=\sum \hat{y}_{i}^{2}+\sum e_{i}^{2} \text { ie } T S S=R S S+E S S \text { ie } \sigma_{y}^{2}=\sigma_{y}^{2} \cdot r^{2}+\sigma_{y}^{2}\left(1-r^{2}\right)
$$

$$
\Sigma e_{i}^{2}=\Sigma y_{i}^{2}-\Sigma \hat{y}_{i}^{2}=\Sigma y_{i}^{2}-\hat{\beta}^{2} \sum x_{i}^{2}
$$

$$
\begin{aligned}
& z e_{i}=\angle y_{i}-2 y_{i}=2 y_{i} p \\
& \text { Analysis of raviance as sel out below } \\
& \text { \& squaves }
\end{aligned}
$$

Explainad by (RSS)
Regreviar lime

Residual (ESS)
Totor (TSS)

Brief summary of Linear Multiple Regression Model.

$$
\left.\begin{array}{c}
Y=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
Y_{n}
\end{array}\right] X=\left[\begin{array}{ccc}
1 & x_{21} & \cdots x_{k 1} \\
1 & x_{22} & \cdots \\
\vdots & x_{k 2} \\
\vdots & & \\
1 & x_{2 n} & \cdots
\end{array} x_{k n}\right.
\end{array}\right] \quad=\left[\begin{array}{c}
\beta_{1} \\
\beta_{2} \\
\vdots \\
\beta_{k}
\end{array}\right] \quad \hat{\beta}=\left[\begin{array}{c}
\hat{\beta}_{1} \\
\hat{\beta}_{2} \\
\vdots \\
\hat{\beta}_{k}
\end{array}\right] \quad u=\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right] \quad e=\left[\begin{array}{c}
e_{1} \\
e_{2} \\
\vdots \\
e_{n}
\end{array}\right]
$$

Least squares estimator of β is $\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} Y$ which is the best linear unbiased estimate with $\operatorname{var}(\hat{\beta})=\sigma^{2}$ Unbiased estimation of σ^{2} is $\hat{s}^{2}=e^{\prime} e /(n-k)$.

$$
R_{1.23 \ldots k}^{2}=\frac{\hat{\beta}^{\prime} X^{\prime} Y-\frac{1}{n}(\Sigma y)^{2}}{Y^{\prime} Y-\frac{1}{n}(\Sigma y)^{2}}
$$

Test of $\beta_{2}=\beta_{3}=\cdots=\beta_{k}=0$ is based on

$$
F=\frac{R^{2} /(k-1)}{\left(1-R^{2}\right) /(n-k)} \quad \text { with }(k-1, n-k) D F
$$

Test of $\beta_{i}=0$ share $i=1,2, \ldots, k$ is based on

$$
t=\frac{\hat{\beta}_{i}-\beta_{i}}{s \sqrt{a_{i i}}} \quad \text { win }(n-k) D F
$$

where $a_{i i}$ is on i in dement in the puceips diagor of

$$
\left(x^{\prime} x\right)^{-1}
$$

APPENDIX-3-
Values of Time Used in Recent British Transport Studies

Year of Study	Study	Price Level	Car drivers working time		Car passengers working time		Adults commuting time		Adults other non-working time	
			Pence per Hour	Annual Growth Factor (per:cent)	$\begin{array}{\|c} \hline \text { Pence } \\ \text { per } \\ \text { Hour } \end{array}$	Annual Growth Factor (per cent)	Pence per Hour	Annual Growth Factor (per cent)	Pence per Hour	Annual Growth Factor (per cent)
1968	Loindon	1966	50	2.80	50	2.80	17	2.80	17	2.80
1968	Oxford	1966	60	2.25	60	2.25	20	2.25	20	2.25
1969	W. Yorks	1966	15	2.50	15	2.50	15	2.50	15	2.50
1969	Merseyside	1967	67	3.00	67	3.00	15	3.00	15	3.00
1971	Slough	1968	123	3.25	123	3.25	16	3.00	16	3.00
1972	Edinburgh	1968	110	3.25	94.5	3.25	15	3.00	13.5	3.00
1972	Hull	1968	110	1.90	94.5	2.75	15	1.80	13.5	1.80
1970	Corby	1969	123	3.25	106	3.25	16	3.00	16	3.00
1971	Glasgow	1969	123	3.00	106	3.00	16	3.00	16	3.00
1972	Tyne-Wear	1969	16	3.00	16	3.00	16	3.00	16	3.00
1971	Selnec	1968/9	118	3.25	118	3.25	16	3.00	16	3.00

*Extract from WP 23 = "Urban Transport Evaluation Procedures" by M. Q. Dalvi and K. Martin, Institute for Transport
Studies, University of Leeds.
Source: PTRC Spring Course 1976, Transportation Model Theory, 3-7 May (P.Hills)

Other'non-work'trips-
Roskill
TAAL Assessment 22%
Satchwell (B.R.)

[^2]
 In oddinion a perceived weighting factor of
walking and walting time consumed within the system. $\frac{\text { Estimates of the growth of average incomes }}{\text { (in real terms) which will affect the overal }}$ value of travel time sovings vis-a-vis other benefits resulting from transport vary:
 The results of a number of behavioural studies involving the "trade-off"

between travel time and fravel cost have revealed various proportionote relationships between the value of 'non-work' time savings and average Commuting trips - Quarmby \& Stopher $\begin{aligned} & 20 \%-25 \% \\ & 15 \%-30 \%\end{aligned}$ $\begin{array}{ll}\text { Barnett \& Sailmans } & 15 \%-30 \% \\ \text { Lee \& Dolvi } & 15 \%-45 \% \\ & 30 \%-50 \%\end{array}$ $\begin{array}{ll}\text { Beesloy } & 30 \%-50 \% \\ \text { L.G.D.R. Unit } & 20 \%-25 \% \\ \text { G.L. }\end{array}$ $\% \varepsilon \varepsilon-\% \varsigma \tau$

APPENDIX 4
Examples of Current Voluations of Traval-Time

WINFREY, R.	(1969 prices)
"Reasonable" values for car users in U.S.A. for normal spread of journey purposes lie in the range $\$ 1.00-\$ 4.00$	
i.e. @ $\$ 2.40=\mathrm{El} .00$..	42p-£1.67 per hour
ROSKILI. COMMISSION	
The research team adopted the following figures for comparing "access" times to the four sites:	
Work trips - car users truck users	$\frac{\mathrm{El} .07 \text { per hour }}{0.47 \text { per hour }}$
Non-work trips - adults .. . children ..	$\frac{0.16 \text { per hour }}{0.05 \frac{1}{2} \text { per hour }}$

$$
\begin{aligned}
& \text { (1965 prices) } \\
& \text { Sample } 80 \% \text { lle limits for car-users in Japan for normal spread } \\
& \text { of journey purposes lie in the range } \$ 1.00-\$ 2.00 \text { per hour } \\
& \text { 1.e. @ } \$ 2.80=£ 1.00 \text {.. } 36-72 \text { p/hour } \\
& \begin{array}{l}
\text { The equivalent range for bus users was } \\
\text { reckoned to be } 0.20-\$ 1.00 \text { per hour }
\end{array} \\
& \text { i.e. @ } \$ 2.80=\mathrm{k} .00 \ldots \text {.. } 7 \text { - } 36 \text { p/hour } \\
& \text { R.R.L. TECH. PAPER } 75 \text { (} 1968 \text { prices) } \\
& \text { Based upon the T.A.L. (Traval and Accident Loss) Assessment, the }
\end{aligned}
$$

$\frac{67 \frac{1}{2} \mathrm{p} / \text { hour }}{15 \mathrm{p} / \text { hour }}$

Work trips - all persons
Non-work trips - all persons

APPENDIX - 5 -

Car Operating Costs, 1973

Fixed costs per annum (f)					
Engine capacity cc's	up to 1,000	$\begin{aligned} & 1,001- \\ & 1,500 \end{aligned}$	$\begin{aligned} & 1,501- \\ & 2,000 \end{aligned}$	$\begin{aligned} & 2,001- \\ & 3,000 \end{aligned}$	$\begin{aligned} & 3,001- \\ & 4,500 \end{aligned}$
Motor and driving licences	25.33	25.33	25.33	25.33	25.33
Insurance	79.16	90.50	103.55	164.42	174.10
Depreciation	95.78	128.08	169.88	257.76	329.21
Interest on capital	38.31	51.23	67.95	103.11	131.67
Garage/parking	52.00	52.00	52.00	52.00	5200
	290.58	347.14	418.71	602.62	712.31
Running costs (pence per mile)					
*Petrol	1.009	1.308	1.546	1.858	2.317
Oil	0.061	0.076	0.096	0.120	0.166
Tyres	0.111	0.129	0.152	0.219	0.286
Servicing	0.180	0.193	0.202	0.217	0.282
Repairs and replacements	0.650	0.698	0.816	1.039	1.318
Marginal costs	2011	2.404	2.812	3.453	4.369
* At 40p per gallon.					
For every penny more or less, add	0.025	0.033	0.039	0.046	0.059
Average costs (pence per mile)					
Running:					
5,000 miles per annum	7.823	9.346	11.186	15.505	18.615
10,000 miles pir annum	4.917	5.875	6.999	9.479	11.492
15,000 miles per annum	3.955	4.725	5.610	7.477	9.125
20,000 miles per annum	4.376	4.161	4.917	6.478	7.942

Source: AA Schedule of Estimated Running Costs, 1973.

APPENDIX-6-

Breaisdown of the operating cost formulae
1973

Vehicle	Item	Costs per kilometre			Costs per mile		
		a	b	c	a	b	c
Car	Fuel - net	0.25	13.5	0.000033	0.41	13.5	0.000139
	Fuel - gross	0.41	21.4	0.000053	0.65	21.4	0.000220
	Oi	0.05	-	-	0.08	-	. 000
	Tyres	0.08	-	-	0.13	-	-
	Maintenance	0.45	4.1	0.000010	0.72	4.1	0.000042
	Depreciation etc	0.30	1.0	-	0.49	1.0	_
	Time	-	81.0	-	-	81.0	-
	Total - net	1.13	99.6	0.000043	1.83	99.6	0.000181
	Total - gross	1.29	107.5	0.000063	2.07	107.5	0.000262
Van	Fuel - net	0.32	13.9	0.000036	0.52	13.9	0.000150
	Fuel - gross	0.52	22.9	0.000059	0.84	22.9	0.000247
	Oil	0.08	-	-	0.12	-	-
	Tyres	0.15	-	-	0.24	-	-
	Maintenance	0.87	7.1	0.000018	1.40	7.1	0.000077
	Depreciation etc	0.70	2.9	-	1.13	2.9	-
	Time	-	120.0	-	-	120.0	-
	Total - net	2.12	143.9	0.000054	3.41	143.9	0.000227
	Total - gross	2.32	152.9	0.000077	3.73	152.9	0.000324
Other goods vehicle	Fuel - net	1.11	15.8	0.000070	1.79	15.8	0.000290
	Fuel - gross	1.87	26.6	0.000117	3.01	26.6	0.000488
	Oil	0.11	-	-	0.18	-	-
	Tyres	0.61	-	-	0.98	-	-
	Maintenance	1.88	6.9	0.000030	3.02	6.9	0.000126
	Depreciation etc	1.02	7.5	-	1.64	7.5	-
	Time	-	128.0	-	-	128.0	-
	Total - net	4.73	158.2	0.000100	7.61	158.2	0.000416
	Total - gross	5.49	169.0	0.000147	8.83	169.0	0.000614
Public service vehicle	Fuel - net	1.37	22.1	0.000073	2.21	22.1	0.000304
	Fuel - gross	2.31	37.2	0.000122	3.72	-37.2	0.000512
	Oil	0.11	-	-	0.17	-	-
	Tyres	0.47	-	- ${ }^{-}$	0.75	-	-000 115
	Maintenance	2.74	11.3	0.000028	4.41	11.3	0.000115
	Depreciation etc	1.77	22.7	-	2.85	22.7	-
	Time	-	633.0	-	-	633.0	-
	Total - net	6.46	689.1	0.000101	10.39	689.1	0.000419
	Total - gross	7.40	704.2	0.000150	11.90	704.2	0.000627

Source: TRRL661

	References in Tables	Components Separately Identified
	Transport and Vehicles	
77	Net purchase of motor vehicles, spares and accessories	New cars Second-hand cars Car spares and accessories, new and second-hand Motor and motor-assisted cycles and scooters Motor and motor-assisted cycles and scooters
78	Maintenance and running of motor vehicles	Repairs and servicing of road motor vehicles Petrol, oil Driving licences Motor vehicle taxation Motor vehicle insurance Garage rent $A A, R A C$ etc. subscriptions Other road motor vehicle costs, eg cleaning materials, parking fees
79	Purchase and maintenance of other vehicles and boats	Bicycles, perambulators, boats etc. new and second-hand Accessories, repairs and other costs
80	Railway fares	Rail and tube fares, other than season tickets Rail and tube season tickets
81	Bus and coach fares	Bus and coach fares, other than season tickets Bus and coach season tickets
82	Other travel and transport	Taxis and hired cars with drivers Contribution towards cost of travel in friend's car etc. Hire of self-drive cars Water travel, including season tickets Air travel Other travel and transport, eg. household removals and storage, transport of luggage, animals etc.

[^3]APPENDIX 9

[^4] of the parameters as given in equation 10.9 can be chosen
observed and predicted traffic volume on Hamilton nework.

[^0]: *Sign + indicates to pay extra

 - indicates to save

 0 no pay no save
 M and T is Time and Money
 Household Travel Characteristics and Trip Generation Models Applicable for each
 Household Income Group
 TABLE 7.4

[^1]: 0

[^2]: Source : PTRC Spring Course 1976 Transportation Model Theory 3-7 May. (P.Hills)

[^3]: Relative Attractiveness Traffic Assignment Model.

[^4]: Note : Calibration of relative attractiveness assignment model can be caried out as shown abe and a

