
A thesis submitted in partial fulfilment

of the requirements of the degree of

Doctor of Philosophy

Applications of the operator Schmidt

decomposition in the quantification and

exploitation of correlations

Matteo Caiaffa

University of Strathclyde

Department Physics

October 11, 2018



This thesis is the result of the author’s original research. It has been

composed by the author and has not been previously submitted for

examination which has led to the award of a degree.

The copyright of this thesis belongs to the author under the terms of the

United Kingdom Copyright Acts as qualified by University of Strathclyde

Regulation 3.50. Due acknowledgement must always be made of the use of

any material contained in, or derived from, this thesis.



Acknowledgements

I am greatly thankful to Marco, for his guidance was constant. I will benefit from our

countless discussions on the Method hereafter. His passion and care, together with our

newly discovered closeness, brought us to bond far beyond any mere professional affair.

I cannot forget Luca, his attitude towards life eased mine, and it always reminded me

of what it does matter and what it does not. Thanks to friends and colleagues from the

seventh floor, especially to whom I do not even need to name. Lastly, I salute Glasgow,

which ‘gave me more than it ever took away’.1

To Mom and Dad, thanks for paving the way of whatever road I have walked. To my

Brother, for always destroying the boundaries of my ambition. To Roberto and Enrico,

the foundations of a heretofore unrecognised consciousness. To my Girl, for her love

and strength, for our sacrifices. To our life.

Edit: I have often learned new things during exams. This thesis defense was not to be

outdone, thanks to the support and enlightening suggestions of the committee members.

I owe a debt of gratitude to the Convenor of the Viva Professor Brian McNeil and to

the examiners Doctor Paul Griffin and Professor Gerardo Adesso.

1Billy Connolly, I wish I was in Glasgow, 2012.



Abstract

In this thesis we analyse a particular decomposition of the density matrix into ten-

sor product terms – known as the operator Schmidt decomposition (OSD) – showing

how it can be used in order to measure and exploit correlations in bipartite quan-

tum systems. Correlations rest at the heart of Quantum Information theory for both

their foundational significance and their irreplaceable role in quantum computation

and communication. However, because of their difficult characterisation, detecting and

measuring correlations are usually believed arduous tasks. This is particularly true

in the mixed-state domain, where the diversity of potential correlations represents a

further complication. For these reasons, it would be advisable to define a common

framework for examining and quantifying correlations of all kinds and degrees, both

for pure and mixed states. Here we argue that the OSD is a powerful tool for this

purpose, in that it can be used to devise measures of correlations, whether classical or

quantum. In turn, these measures can be exploited in order to detect the presence of

entanglement and steering, for example. The first part of this work is devoted to the

definitions of such measures and the analysis of their properties. In the second part

instead we consider the possibility of taking advantage of the OSD in the context of

quantum process discrimination and tomography. These tasks are central to the im-

plementation of quantum technologies, since the actual realisation of any application

based upon quantum phenomena largely relies on the determination of quantum pro-

cesses. We provide a set of tools – based on the OSD – that could serve as a means by

which enabling or improving certain specific protocols of ancilla-assisted quantum pro-

cess discrimination (AAPD) and tomography (AAPT). First, we present a quantifier

for the performance of bipartite input states in AAPD. We show that the possibility
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Abstract

to improve the discrimination power of this protocol – or to enable it altogether – is

imprinted in the OSD of the input state. For what AAPT is concerned, we demonstrate

how the OSD of the input state can be exploited in order to allow a characterization of

an unknown local channel via a relatively small number of local transformations of the

input state. More in general, we provide several results which show a sharp connection

between the tasks of channel discrimination and tomography, the OSD of the input

state, and the degree of correlations carried by the latter. We conclude the thesis with

a collection of results of a seemingly different nature, but that were actually inspired by

the examination of the previously mentioned ancilla-assisted tasks. In short, we define

a family of state-dependent metrics on the space of quantum channels and show that

they are deeply connected to the OSD of the state defining them. As a byproduct, the

latest results entail a possible generalisation of the Choi–Jamio lkowski isomorphism,

thus providing an interesting motivation to the extension of this research project.
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Introduction

The novelty and significance of the phenomena unveiled by Quantum Mechanics at

the beginning of the last century have since prompted the interest of many scien-

tists in dissecting the very founding elements of the theory, namely the states of a

physical system, the correlations they possess, the measurement process and the rules

governing the physical transformations in the quantum regime. After the awe for the

conceptual revolution cooled down, and once the mathematical structure of the theory

was given a solid and final ground, the possibility of exploiting the newly discovered

features of nature with the purpose of conceiving technologies that would allegedly

enhance our lives came up. The promise of impressive advances in the field of com-

putation [5–8] and communication [9–11] was cast, encouraging the advent of new,

profitable technologies [12]. The variety and potential usefulness of such applications,

together with the early results supporting said promises, made Quantum Information

science one of the most prolific research areas – and a cornerstone indeed – of contem-

porary Physics [13, 14]. Paramount to the effective realisation of these advancements

is the study of correlations in quantum systems, as they underpin the whole library of

algorithms and protocols of Quantum Information. Another key factor enabling the

aforementioned applications is the ability to tell apart two or more physical processes,

and to reconstruct the action of an unknown process by looking at its action on a set of

quantum states [15,16]. Indeed, quantum technologies rely extensively on the determi-

nation of quantum channels [15–17], as well as on probing their actual implementation

versus their ideal description [18]. The study of correlations in quantum states and the

characterization of quantum processes – which are the motivations at the heart of this

theoretical thesis – will hopefully serve as a catalyst for the efficient implementation
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Introduction

of certain specific tasks of Quantum Information. Our work boils down to two ques-

tions, which, in a way, divide the thesis in two parts. The first concerns the problem of

measuring classical and quantum correlations in quantum systems, while the second,

to a certain extent, is about using them. The main tool at our disposal – and actually

the central object of our investigation – is the operator Schmidt decomposition (OSD),

which is nothing but a generalisation of the ordinary Schmidt decomposition of state

vectors to the case of bipartite density operators. Specifically, the OSD is a particular

factorization of the density matrix into tensor product terms. As is well–known, the

Schmidt decomposition characterises the set of entangled states in the pure case. Along

the same line, and due to the similarity between the ordinary and the operator Schmidt

decomposition at the algebraic level, one could wonder if the OSD can be used to make

sense of correlations in mixed states as well. This might not be as direct as it looks, as

mixed states exhibit several kinds of correlations, while pure states only comes in two

flavours: either they are separable, or they are not. Mixed states can be classically or

quantum correlated instead, or both at the same time. In their turn, quantum corre-

lations can be classified through different categories, the latter drawing lines between

steerable and non–steerable states, local and non–local states, and between bipartite

states which are classical or not with respect to their subsystems, namely states with

zero or non–zero discord. Trying to exploit the OSD in order to devise meaningful and

sensible measures of correlations, whether they be classical or quantum, was the ques-

tions which originated this project in the first place. As it turned out, this is possible

indeed: we are able to define several measures of total correlations based on the OSD,

to study their property and to discuss their application to entanglement and steering

detection. In the second part of this work we put into practice what we have learnt

about the OSD and its relations to correlations to tackle the tasks of discrimination

and tomography of quantum processes [1]. To be precise, the thesis is organized as

follows.

In Chapter 1 we lay down the mathematical framework and the necessary notation

needed to formulate the state of the art and the results of the research that we have

pursued over the last three years. Special attention will be given to the definition of

2
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the different kinds of correlations in the classical and quantum settings, and to several

useful representations of trace–preserving and completely–positive linear maps.

Chapter 2 is the literature review. We present several known results about the

OSD and its application to entanglement detection, and we rederive those theorems

that looked closer in spirit to the aims of our research project. We dedicate particular

care to the well–known realignment criterion for separability from different perspective,

including to its formulation in terms of the coefficients of the OSD, known as operator

Schmidt coefficients (OSC, to be defined later). Also, the appearance of the OSD in

the field of tensor networks is discussed.

Chapter 3, except for the first introductory sections, is the first original chapter.

Here we delineate in an axiomatic fashion the requirements that a measure of total

correlations must satisfy in order to be meaningful. Then, we define several measures.

The latter are based, respectively, on the operator Schmidt rank (OSR, that is the

number of terms in the OSD), on the OSC, on the distance between the square root of

a quantum states and the product of the square root of its marginals, and on the OSD

of the square root of a given state. We analyse their properties and their application

to the certification of correlations. Lastly, we provide a relational expression between

some of of the newly introduced quantities and the quantum mutual information. We

also discuss the subject of vector majorization and its connection to the monotonicity

of the elementary symmetric polynomial in the OSC. The content of this chapter is

part of [3].

In Chapter 4 we present the result contained in our paper [1]. This is about what

we have called channel discrimination power (CDP) of bipartite quantum states, and

it concerns the definition and analysis of a worst–case scenario quantifier for the per-

formance of a probe–ancilla state in channel discrimination. We provide general upper

and lower bounds to the CDP of a state in terms of its OSD, and we compute the

CDP of pure states exactly. Remarkably, we show that also correlated but separable

states can have non-zero CDP, as long as they posses a certain amount of discord.

More in general, we derive a non-trivial bound on the CDP of any state that passes

the realignment criterion for separability.
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In Chapter 5 we report the content of our second paper [2]. Here we prove that

the correlations of a fixed bipartite state, of whatever degree and as measured by the

logarithm of the OSR, can in principle be exploited to allow process tomography. In

particular, we show that any single bipartite input state can be used to perform chan-

nel tomography through the protocol of ancilla–assisted quantum process tomography

(AAPT). Indeed, even if an input state is not suitable for AAPT, it can be transformed

through local operations, in order to obtain a set of states which altogether provide

full tomography of any unknown channel. We argue that the number of local channels

allowing channel tomography depends upon the correlations of the initial input state.

For mixed states we provide examples showing how the presence of correlations dra-

matically reduces the number of local channels, when the latter are given by unitary

operators. In particular, for a two-qubit state we find that discord is necessary and suf-

ficient in order to attain channel tomography with less unitary than the ones required

by SQPT. For pure states we provide the optimal number of such local transforma-

tions. We conclude the chapter showing how our protocol can be used to enhance the

accuracy of channel tomography.

Chapter 6 concerns a possible genaralisation of the Choi-Jamio lkowski isomorphism,

and it is based on the observation (already highlighted in the previous chapter) that

in order to obtain a one–to–one mapping between bipartite operators and linear maps

acting on single–system operators, the bipartite operator must have maximal OSR. We

show how these state-dependent isomorphisms give rise to state-dependent metrics on

the space of quantum channels. On the other hand, states with non maximal OSR

cannot be bijectively associated to quantum channels. In turn, such states induces

pseudometrics, which can be lifted to proper metrics through the introduction of par-

ticular equivalence classes of quantum channels. The main result of this chapter is to

show that two equivalence classes of quantum channels induced by two different bipar-

tite states are equal if and only if the local operators in the OSD of the latter generate

the same subspaces. The content of this chapter is part of [4].
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Chapter 1

Elements of quantum information

This chapter introduces the basic concepts and the notation adopted in the entire thesis.

We first present the mathematical framework of quantum information, paying particular

attention to the definition of correlations in quantum states. Then we introduce the

mathematical representatives of quantum physical processes, together with several ways

of expressing them. Finally, in the last section we recall the definition of Schatten

p−norms and superoperator norms, which will be used often times in the thesis.

1.1 States and measurements

In quantum mechanics (QM) every physical system S is associated to a complex sepa-

rable Hilbert space H, known as the state space of the system [19]. We are interested

in finite-dimensional systems, then each Hilbert space H is isomorphic to Cd for some

finite dimension d, where C is the complex line. For every |ψ〉 , |ϕ〉 ∈ H, we denote by

〈ψ|ϕ〉 the inner product and by ‖ψ‖ =
√
〈ψ|ψ〉 the induced norm on H. In the original

formulation of QM the states of a quantum system S, i.e. the pure states of S, are

represented by unit length vectors of H [19–21]. In the modern interpretation of the

theory [22–26] pure states correspond to ensembles of equally prepared quantum sys-

tems, rather than to individual ones. To be precise, pure states represent equivalence

classes of preparation procedures, and in this framework the statistical operator (also

referred to as density operator or density matrix) represents the more general and ade-
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quate description of the possible states of a quantum system. In order to define the set

of statistical operators we first introduce the set T (H) of trace–class operators, which

is a subset of the set L(H) of all linear operators on H. A linear operator χ ∈ L(H)

belongs to T (H) if the trace of the absolute value |χ| = (χ†χ)1/2 is finite, where the

trace Tr[ · ] of an operator is defined as the linear mapping

Tr[χ] :=
∑
i

〈ui|χ|ui〉, (1.1)

with {|ui〉} being any orthonormal basis of H. Also notice that when d < ∞ the

definition of trace of an operator coincides with that of a matrix, hence every finite-

dimensional operator is trace class [27].

The set S(H) of statistical operators on H is that subset of T (H) made of positive

semi-definite, unit trace operators:

S(H) = {ρ ∈ T (H) | ρ ≥ 0,Tr[ρ] = 1}. (1.2)

The states space S(H) is convex, i.e. given a set of operators ρk ∈ S(H) and non-

negative numbers λk with
∑

k λk = 1, also
∑

k λkρk ∈ S(H). The extremal points of

S(H) are one-dimensional projectors of the form ρ = |ψ〉〈ψ|, with |ψ〉 ∈ H a pure state.

We refer to all the other states of S(H) as mixed states. Every mixed state ρ ∈ S(H)

admits a spectral decomposition

ρ =
∑
k

pk |ψk〉〈ψk| (1.3)

where the collection {|ψk〉} forms an orthogonal basis of H with 〈ψk|ψl〉 = δkl and {pk}

is a probability distribution. In other words, the mixed state in Eq. (1.3) represents an

ensemble of a large number N of quantum systems, ≈ Npk of which have been prepared

in the pure state |ψk〉.

If, on the one hand, quantum states are associated to preparation procedures, ob-

servables corresponds to registration procedures, usually associated to some macro-

scopic experimental apparatus able to measure the value of a definite quantity. Their

6
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mathematical counterpart is given by positive operator-valued measures (POVMs) [13,

28]. Let Ω be a set of possible outcome of a measurement, and let σ(Ω) be a σ−algebra

over Ω. A POVM is defined as the map sending any element of σ(Ω) into a positive

(bounded) operator:

E( · ) : σ(Ω)→ L(H)

Z 7→ E(Z). (1.4)

Notice that a POVM satisfies the relation 0 ≤ E(Z) ≤ 1, where it is understood that

E(∅) = 0 and E(Ω) = 1. In addition, POVMs are completely additive on disjoint

subset:

E(∪iZi) =
∑
i

E(Zi), if Zi ∩ Zj = ∅ for i 6= j. (1.5)

Given a quantum state ρ, the probability that the quantity described by E takes on

values in the subset Z is given by

p(E,Z) = Tr[ρE(Z)], (1.6)

which is a classical probability measure, thanks to the properties of POVMs.

Finally, Eq. (1.6) and the spectral theorem yield the usual formula for computing

the mean value of an observable associated to an Hermitian operator A when the system

of interest is in the state ρ, thus recovering the Born rule

〈A〉 = Tr[ρA]. (1.7)

1.2 Correlations in composite quantum systems

Consider two physical systems SA and SB associated with the Hilbert spaces HA and

HB, respectively. Then, the composite system SAB will be associated to the tensor

product HAB := HA⊗HB1, whose dimension is given by the product of the individual

1This axiom is usually substantiated [19, 29, 30] by the observation that if {|ψ〉Ai } and {|ϕ〉Bj } are
orthonormal basis of HA and HB , respectively, then any state of HAB can be expressed in the product
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dimensions, i.e. dAB = dA · dB (we indicate by dX the dimension of the subsystem

corresponding to HX). In general, a composite system SAB...N is associated with the

tensor productHA⊗HB⊗· · ·HN of the individual Hilbert spaces. We focus on bipartite

systems (i.e. systems comprising two subsystems) SAB and, unless otherwise stated,

we employ the notation d = min{dA, dB}. From now on, if there is no possibility of

confusion we write SX in place of S(HX) and SXY in place of S(HX ⊗HY ).

States in SAB given by the tensor product

ρAB = ρA ⊗ ρB (1.8)

with ρA ∈ SA and ρB ∈ SB are called product states. They represent the simplest kind

of state for composite quantum systems, portraying the physical situation of completely

uncorrelated subsystems. The absence of statistical dependence between A and B

means that product states can be obtained by independent preparation procedure on

the two subsystems, and that probabilities of the measurement outcomes of independent

experiments will always factorize [31]. In the language used throughout the thesis, we

say that product states can be prepared (or transformed to other product states) by the

means of local operations (LO) on the subsystems. If, besides LO, we also allow classical

communication in the preparation of A and B, then we are able to introduce classical

correlations between the subsystems. This preparation protocol is referred to as local

operations and classical communication (LOCC), and states prepared (and transformed

into one another) using said prescriptions are called separable states. Formally, they

are convex combination of product states:

ρAB =
∑
i

λiρ
i
A ⊗ ρiB, (1.9)

with λi ≥ 0 and
∑

i λi = 1. In the light of the definition above we are in a position

to introduce one of the main elements of QM: entanglement [32–36]. We say that

any state that cannot be expressed as Eq. (1.9) is an entangled state. As known,

basis given by {|ψ〉Ai ⊗ |ϕ〉
B
j }.

8



Chapter 1. Elements of quantum information

entanglement has a prominent status in Physics, being one of those peculiar features

of QM revealing an actual departure from classical mechanics [32, 37]. Along with its

foundational relevance, entanglement is a central resource in quantum information and

computation [5], from quantum teleportation [10] to superdense coding [9], as well as it

enables a plethora of applications in quantum comminication [11]. As such, the set of

entangled states is subject to a profound investigation. Nonetheless, despite the clear

definition Eq. (1.9), it is generally difficult to determine if a given mixed states is indeed

separable or not [38]. For pure state however, entanglement can be fully characterized.

This result is achieved thanks to the renowned Schmidt decomposition theorem, which

says that any state vector |ψ〉AB ∈ HA ⊗HB admits the decomposition [13]

|ψ〉AB =

SR(ψ)∑
i=1

√
pi |ai〉A ⊗ |bi〉B , (1.10)

where the {√pi} are positive numbers satisfying
∑SR(ψ)

i=1 (
√
pi)

2 =
∑SR(ψ)

i=1 pi = 1, and

{|ai〉} and {|bi〉} are some special and |ψ〉-dependent orthonormal bases for HA and

HB, respectively. As customary goes, the elements of the probability distribution {pi}

are usually taken to be ordered without loss of generality, so that we will assume

p1 ≥ p2 ≥ . . .. Here, SR(ψ) denotes the Schmidt rank of |ψ〉AB, which is the number

of non-zero pi’s, and satisfies SR(ψ) ≤ min{dA, dB}. Then, as well known, |ψ〉AB is

entangled if and only if SR(ψ) > 1. This result reveals the importance of the Schmidt

decomposition in QM, and has no analogue in the mixed states domain. Indeed, as

we shall see in details in the remainder of the thesis, despite the fact that the Schmidt

decomposition can be extended to the density operator formalism, the connection with

mixed-state entanglement is not so striking as for pure states.

So far we have partitioned the set of quantum states in the two broad classes of

separable and entangled ones. The former (strictly) contains the set of bipartite states

whose correlations between the parties are classical. The latter strictly contains the

subset of states whose correlations cannot be reproduced, loosely speaking, by any

local realistic model.2 As a matter of fact the situation is quite more involved, and one

2There are entangled states that are local in the sense that they do not give raise to any non–locality

9



Chapter 1. Elements of quantum information

recognises several degrees of quantumness. A finer classification of quantum correlations

– initiated by the observations of Einstein, Podolsky and Rosen in the famous paper [37]

– can be carried out by looking at the effects of local measurements on a given systems.

We consider this alternative viewpoint in the next section.

1.2.1 Steering and nonlocality

Here we classify the various bipartite quantum correlations by considering the effects of

local measurements performed on the components of a given bipartite system. To see

how this can be accomplished, we begin with redefining the concept of entangled states

in this framework. Let SAB be the states space of a given system and denote with DA
the set of all observables on HA, i.e. the set of Hermitian operators acting on the state

of the quantum system. For any observable OA ∈ DA, the set of its eigenvalues will be

denoted by {oA}. Moreover, P (oA|OA; ρAB) indicates the probability that an observer

in A will obtain the result oA when measuring the observable OA on a system in the

state 〉. Lastly, we denote with MA ⊂ DA the set of all measurements that Alice can

perform. The same notation is used for the respective quantities on B, and we make

use of the distant laboratories paradigm with Alice and Bob as observers.

We say that a state ρAB is separable if and only if for any oA ∈ {oA}, oB ∈ {oB},

and for any OA ∈MA, OB ∈MB, the following equation

P (oA, oB|OA, OB; ρAB) =
∑
λ

pλ P (oA|OA; ρAλ )P (oB|OB; ρBλ ) (1.11)

is satisfied. Here ρAλ , ρ
B
λ are quantum states on A,B respectively and pλ is some prob-

ability distribution which involves the local hidden variable (LHV) λ, namely a proba-

bility distribution which is consistent with a LHV model [39].

On the same ground we can characterize states exhibiting Bell nonlocality [40]. We

say that a state ρAB is Bell local if and only there exist OA ∈ MA, OB ∈ MB and

(the latter intended as non–locality of joint conditional probability distributions). Werner states were
introduced in [31] exactly to prove the difference between non–locality and entanglement.

10



Chapter 1. Elements of quantum information

oA ∈ {oA}, oB ∈ {oB} such that the following equation

P (oA, oB|OA, OB; ρAB) =
∑
λ

pλ p(oA|OA;λ)p(oB|OB;λ) (1.12)

is satisfied. Notice that here also p(oA|OA;λ) and p(oB|OB;λ) are probability distribu-

tions depending on the LHV λ . In other words, a state ρAB is Bell nonlocal if and only

if the correlations between oA and oB cannot be justified by an underlying LHV model,

i.e. if there exists a set of measurements MA ×MB for which Eq. (1.12) is falsified.

To introduce the concept of steering, let us consider the following quantum informa-

tion task. Alice can prepare a bipartite system and send a part to Bob, and repeats this

procedure many times. At each round, they can measure the respective subsystems and

communicate in a classical way. Alice’s task is to convince Bob that she can prepare

an entangled state, while Bob will not be convinced as long as there exists a particular

classical model explaining the nature of the correlations between the outcomes of the

respectively measured quantities. Such a model is called a local hidden state (LHS)

model for Bob, and it consists of any local theory able to explain the correlations be-

tween the parties, whilst maintaining that Bob’s system has a definite state (even if

unknown to him). On the other hand, if the correlation cannot be explained by any

such model, that would mean that Alice was able to create genuine entangled states,

and thus to steer Bob’s state with her measurements. This is the main idea behind the

operational definition of steering; we refer to [36] for a detailed exposition of the task.

For the purposes of this thesis, we settle for the formal characterization of steering,

which can be formulated in the language of Eqs. (1.11) and (1.12). We say that the set

of measurements MA ⊂ DA on a state ρAB exhibits steering if and only if there exist

OA ∈MA, OB ∈MB and oA ∈ {OA}, oB ∈ {OB} such that the following equation

P (oA, oB|OA, OB; ρAB) =
∑
λ

pλ p(oA|OA;λ)P (oB|OB; ρBλ ) (1.13)

is falsified. If such a subset MA – called Alice’s strategy – exists, then we say that ρAB

is steerable by Alice.

11



Chapter 1. Elements of quantum information

1.2.2 Quantum discord

Quantum discord is historically the last refinement of the hierarchy of correlations of

quantum states, and was introduced independently in [41,42] and [43].

A bipartite state is said to be classical on A (or to have zero discord on A) if there

exists a local basis on A in which an experimenter could perform measurements without

modifying the state. From a structural standpoint, states which are classical on A can

be expressed as

ρAB =
∑
i

pi |ai〉〈ai|A ⊗ ρBi (1.14)

for some orthonormal basis {|ai〉} (analogous definition holds for states which are clas-

sical on B). States that are not classical on A are said to have non-zero quantum

discord [41, 43, 44]. All entangled states necessarily possess discord, but also separable

states can.

Discord plays a basic role in quantum information processing, being linked to the

impossibility of local broadcasting of correlations and information [45], to quantum

data hiding [46], to quantum data locking [47], to entanglement distribution [48,49], to

quantum metrology [50], to quantum cryptography [51]. In this thesis we are interested

in the role role of discord in the channel discrimination and channel tomography, as

discussed in Chapter 4 and 5, respectively.

1.3 Quantum channels

Quantum channels are the mathematical objects describing the possible transforma-

tions of the states of a quantum system. They are given by linear maps acting between

spaces of linear operators. In particular we denote by C(H,H′) the set of quantum

channels from L(H) to L(H′). We are interested in one-step transformation, i.e. func-

tions requiring an input state and returning an output state, regardless of any specific

dynamical process. Such transformations are formally described by maps which must

be linear and must preserve the characterizing properties of a quantum state, i.e. her-

miticity, positivity and unit-trace condition. The linearity constraint makes the action

12



Chapter 1. Elements of quantum information

of the map consistent when applied to convex mixtures. The remaining requirements

preserve the probabilistic interpretation of the statistical operator. In addition, since

we cannot neglect possible interactions between our system and another one, e.g. an

external environment, we require our map to be positivity preserving3 even when act-

ing on a larger Hilbert space, namely when our system is only part of a larger one. In

particular we require Λ⊗ idd to be positive for any d ∈ N, where d is the dimension of

the supplementary Hilbert space. We have the following definition.

Definition 1.1. A linear map

Λ : L(H)→ L(H)

τ 7→ Λ[τ ], (1.15)

is called completely positive if and only if the map Λ⊗ idd defined as

Λ⊗ idd : L(H ⊗ Cd)→ L(H ⊗ Cd)

τ ⊗ ω 7→ Λ[τ ]⊗ ω, (1.16)

is positive for any d ∈ N, where idd is the identity operator on Cd and ω ∈ L(Cd).4

However, as proven by Choi in [52], completely positivity can be inferred just by

looking at an ancillary space of the same dimension as the original domain of the map:

Theorem 1.1. For H ≡ Cd, and with the notation of Definition Eq. (1.1), the positivity

of Λ⊗ idd is enough to guarantee the complete positivity of Λ.

In Sec. 1.3.1-1.3.3, different ways of representing completely positive (CP), trace

preserving (TP) maps will be discussed.

3As customary, we usually refer to positivity preserving maps just as positive maps. The same
convention will be employed for hermiticity preserving maps.

4Notice that τ and ω are generic operators of the respective linear spaces, not necessarily qauntum
states. Moreover, since there always exists a tensor product basis for L(H⊗Cd), then by linearity the
action of Λ – as fixed by Eq. (1.16) – is defined for all quantum states in L(H ⊗ Cd).
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1.3.1 Linear maps as matrices

The space of linear operators L(H) is an Hilbert space when equipped with the Hilbert-

Schmidt (HS) inner product. The latter is defined as

〈A,B〉 := Tr(A†B), A,B ∈ L(H). (1.17)

Then, any set of linear operators {Ai}d
2

i=1 orthonormal with respect to the product

above forms a basis of L(H). This means that any σ ∈ L(H) can be expressed as

σ =
∑
i

Tr(A†iσ)Ai. (1.18)

Analogously, any linear map Λ : L(H)→ L(H) can be written as

Λ[σ] =
∑
ij

Lij Tr(A†jσ)Ai, (1.19)

where

Lij = Tr(AiΛ[Aj ]). (1.20)

In conclusion, Eq. (1.18) enables the identification of L(Cd) with the vector space

Md×d(C) of complex matrices (which is itself a Hilbert space when equipped with the

Hilbert-Schmidt inner product). In the same way Eq. (1.20) gives the isomorphism

between the space of linear maps on L(Cd) and Md2×d2(C).

The construction above can be easily generalized to channels with different input

and output spaces, i.e. Λ : L(Cd) → L(Cd
′
). In such cases the associated matrix

algebra is given by Md′2×d2(C) and the transfer matrix of Λ is defined by the entries

Lij = Tr(A′iΛ[Aj ]), (1.21)

where {Ai} and {A′i} are HS orthonormal basis of L(Cd) and L(Cd
′
), respectively.

Definition 1.2. For any Λ : L(H) → L(H′), we refer to its matrix representation L

with entries given by Eq. (1.21) as the transfer matrix of Λ.

14



Chapter 1. Elements of quantum information

We will repeatedly make use of transformations Eqs. (1.18) and (1.21). The latter in

particular satisfies several properties which we mention here for future convenience. One

first observation is that composition of maps Λ2 ◦Λ1 translates into the multiplication

of the corresponding matrices L1 ·L2. Moreover, Eq. (1.21) implies that the dual Λ†

corresponds to L † if the map is Hermitian, and to L T if the bases are Hermitian.5

Also, if Λ is a quantum channel, then Λ = Λ† if and only if L = L †.

1.3.2 Choi-Jamio lkowski isomorphism

The Choi-Jamio lkowski isomorphism [52, 53] is one of the central results of quantum

information, establishing a correspondence between bipartite operators and linear maps

acting on single–system operators. It allows to effectively encode or parametrize quan-

tum transformations, with applications that go from the optimization of protocols in

quantum information, to the analysis of rates in quantum communication, all the way

to the consideration of the issue of causal order in physics (see, e.g., [54–56]). In par-

ticular, the isomorphism implies that for any channel Λ ∈ C(H,H′), the state obtained

by letting Λ acting on one part of the maximally entangles state encodes all the rele-

vant properties of the channel itself. To be more precise, let us consider the maximally

entangles state in L(H ⊗H) given by

∣∣ψ+
〉

=
1√
d

d∑
i=1

|ii〉 , (1.22)

where d is the dimension of the underlying Hilbert space. Then, we have the following:

Theorem 1.2 (Choi-Jamio lkowski isomorphism [52,53,57]). The relations below estab-

lish a one-to-one correspondence between bipartite linear operators χ := χ ∈ L(HA ⊗
5We recall that in finite–dimensional linear spaces the definition of dual map coincides with that of

adjoint operator. That is, for any Λ ∈ L(H), its adjoint Λ† is defined via

〈Λ†[τ ], ω〉 = 〈τ,Λ[ω]〉, ∀ τ, ω ∈ L(H).
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HB) and linear maps Λ ∈ C(HB,HA):

χ = (Λ⊗ id)
∣∣ψ+

〉〈
ψ+
∣∣ (1.23)

Tr(AΛ[B]) = dTr(χA⊗BT ), (1.24)

for all A ∈ Md′ and B ∈ Md (where d = dimH and d′ = dimH′) and |ψ+〉 as in

Eq. (1.22). Moreover, Eq. (1.23) and Eq. (1.24) are mutual inverse and satisfy what

follows:

i) χ = χ† if and only if Λ[B†] = Λ[B] for all B ∈Md, i.e. χ is Hermitian if and

only if Λ is hermiticity preserving,

ii) Λ is completely positive if and only if χ ≥ 0,

iii) Λ[1] = 1 if and only if TrB(χ) = 1d′/d,

iv) Λ†[1] = 1 if and only if TrA(χ) = 1d/d,

v) Tr(χ) = Tr(Λ†[1])/d.

The matrix χ is called the Choi matrix of Λ. It is interesting to notice that,

differently from the transfer matrix L , the Choi matrix gives a direct way for checking

the complete positivity of the associated channel. Lastly, let us notice that the Choi

matrix associated to Λ is the transfer matrix L represented in the basis made of matrix

units |i〉〈j|, where |i〉 and |j〉 are elements of the computational basis. In particular,

for any Λ the correspondence between χ and L is given by

L = dχR, (1.25)

where the map χ 7→ χR is defined as6

〈m,n|χR|k, l〉 = 〈m, k|χ|n, l〉. (1.26)

6The involution R of Eq. (1.26) is sometime called reshuffling operation (cf. Sec 2.2).
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1.3.3 Operator-sum representation

We have seen that the duality between quantum states and channels provides a direct

way to infer the properties of a linear map by looking at the associated bipartite matrix,

and vice versa. Beyond that, the relevance of the Choi-Jamio lkowski isomorphismy

relies also upon a very useful representation known as Kraus decomposition (or operator

sum representation) [52,58] of completely positive maps.

Theorem 1.3 (Kraus decomposition [52,57,58]). A linear map Λ ∈ C(H,H′) is com-

pletely positive if and only if it admits a decomposition of the form

Λ[A] =
n∑
i=1

KiAK
†
i . (1.27)

Given a completely positive linear map Λ, the associated set of Kraus operators

satisfies the following properties:

i) Λ is trace preserving if and only if
∑

iK
†
iKi = 1, and it is unital if and only if∑

iKiK
†
i = 1,

ii) the minimal number of operators in the decomposition, called the Kraus rank r,

satisfies r ≤ dd′,

iii) there always exists a representation with r HS orthogonal Kraus operators, i.e.

such that Tr(K†iKj) = δij ,

iv) given two sets of Kraus operators {Ki} and {Fj}, they represent the same map

Λ if and only if there exists a unitary U such that Ki =
∑

j UijFj (the smaller

set is padded with zeroes).

The Kraus representation can be derived directly from the famous Stinespring’s

dilation theorem [59]. It asserts that the action of a quantum channel Λ on a state

ρ can be simulated by introducing an auxiliary system E (sometimes referred to as

the environment), applying a unitary interaction between the system and E, and then

discarding the ancillary system. To be precise, we have the following:
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Theorem 1.4 (Stinespring’s dilation [59]). Let Λ ∈ C(H,H′) be a quantum channel.

Then there exist a Hilbert space HE and a unitary operation U on L(H ⊗ HE) such

that

Λ[ρ] = TrE [U(ρ⊗ |0〉〈0|E)U †], (1.28)

for all ρ ∈ S(H), where TrE [ · ] denotes the partial trace over HE.

1.4 Norms

In the remainder of the thesis we shall make an extensive use of norms. In particular,

we will consider the family of Schatten p−norms, defined as

‖L‖p :=
[

Tr
(
(L†L)

p
2
)] 1

p
, (1.29)

with 1 ≤ p ≤ ∞ and with L a generic linear operator [60].7 In particular, we are

interested in the special cases p = 1, 2,∞.

The Schatten p−norms satisfies a series of interesting properties, which we list

here for future reference. First of all, they are monotonic in p, meaning that for

1 ≤ p ≤ p′ ≤ ∞ one has

‖L‖1 ≥ ‖L‖p ≥ ‖L‖p′ ≥ ‖L‖∞. (1.30)

Moreover, they are isometrically invariant: for any two isometries U and V , it holds

that ‖ULV ‖p = ‖L‖p for any 1 ≤ p ≤ ∞. Finally, it is convenient to recall that the

p−norms are submultiplicative, i.e.

‖LR‖p ≤ ‖L‖p‖R‖p (1.31)

7Notice that the norms in Eq. (1.29) can be equivalently expressed in terms of the singular values
of L.
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and satisfy the Hölder inequality:

‖LR‖1 ≤ ‖L‖p‖R‖q (1.32)

where 1/p+ 1/q = 1 and L, T ∈ C(H,H′).

The norms above appear in different context in quantum information, and some

of them possess a particular physical meaning. For example, let us consider the trace

distance between two density matrices ρ and σ , which is defined in terms of the 1−norm

as D(ρ, σ) := 1
2‖ρ − σ‖1 [13]. Its operational meaning is that of bias in the optimal

discrimination of the two states: the probability of correctly identifying the state of

a system that is a priori in the state ρ or σ each with 50% chance, in the single-shot

scenario when one is given one copy of the state to measure, is (1 +D(ρ, σ)) /2. The

trace distance varies between 0 (for identical states) to 1 (for perfectly distinguishable

states, which are mathematically orthogonal, Tr(ρσ) = 0).

A similar notion of distance can be attributed to pairs of channels too [61]. For

this, one needs the notion of superoperator norms, defined for any Λ ∈ C(H,H′) and

any 1 ≤ p, q ≤ ∞ as

‖Λ‖q→p = sup
X 6=0

‖Λ[X]‖p
‖X‖q

. (1.33)

In the particular case when the supremum is taken over Hermitian operators, the norm

above will be denoted with ‖ · ‖Hq→p. Given two channels Λ,Γ ∈ C(H,H′), the quan-

tity ‖Λ − Γ‖H1→1 represents a way to measure the distance between the channels. In

particular, since

‖Λ− Γ‖H1→1 = max
‖|ψ〉‖2=1

{‖Λ[|ψ〉〈ψ|]− Γ[|ψ〉〈ψ|]‖1} , (1.34)

it characterizes the maximum probability of distinguishing the two channels over all

pure states. However, Kitaev showed in [62] that this norm is not stable with respect to

the tensorization with the identity superoperator. In other words, there exist quantum

channels Λ′,Γ′ such that ‖Λ′−Γ′‖H1→1 < ‖Λ′⊗ id−Γ′⊗ id‖H1→1. To resolve this problem,
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he introduced the so-called diamond norm, defined as

‖Λ‖� = ‖Λ⊗ id‖1→1, (1.35)

where the identity superoperator is defined on a space of the same dimension as the

domain of Λ. We will make use of the diamond norm in Sec. 4.1.
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Operator Schmidt decomposition

In this chapter we introduce the central object of our investigation, i.e. the operator

Schmidt decomposition (OSD). This is nothing but a generalization of the ordinary

Schmidt decomposition for state vectors, sketched in Sec. 1.2, to the case of density

matrices. As already said, the Schmidt decomposition plays a central role in the char-

acterization of pure state entanglement, in that it explicitly discriminates between

separable and entangled state. However, in the general case of density operators the

situation is more involved, since entanglement is not the only correlation which the state

can exhibit, as discussed in Sec. 1.2. We argue that the OSD accounts for this variety

of correlations and it offers means by which meaningful measures of total correlations

can be devised.

We begin with the derivation of the OSD itself, which takes advantage of the vector

space structure of L(HA⊗HB). Then, the principal results concerning the exploitation

of the OSD in the detection and quantification of entanglement will be discussed in

detail. In this chapter we review the main results contained in [63–69].

2.1 Operator Schmidt decomposition

The ordinary Schmidt decomposition is a consequence of a critical result from linear

algebra known as the singular value decomposition. This is nothing but a particular

factorization of complex matrices and, as such, it does apply to the elements of any
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vector space. This also means that density matrices – vectors of L(HA⊗HB) – can be

decomposed using the singular value decomposition (see [65,67] and references therein).

Here we provide an explicit derivation of the OSD. Before that however, an impor-

tant definition that will be used repeatedly throughout the thesis is needed.

Definition 2.1 (Correlation matrix). Let ρAB ∈ SAB be a bipartite state, and let {Ci}

and {Di} be HS orthonormal bases of L(HA) and L(HB), respectively. We define the

correlation matrix C(ρAB) of ρAB as the matrix with entries

C(ρAB)kl = Tr(C†k ⊗D
†
l ρAB), (2.1)

for k = 1, . . . , d2
A and l = 1, . . . , d2

B.

It is worth noticing that a change in the choice of the orthonormal bases {Ci} and

{Di} induces only a unitary change in the correlation matrix. This implies that the

value of unitarily invariant functionals of the correlation matrix will not be affected by

the choice of the local bases.

Theorem 2.1 (Operator Schmidt decomposition). Any bipartite state ρAB ∈ SAB
admits a decomposition of the form

ρAB =

m∑
i=1

riAi ⊗Bi, (2.2)

where {Ai}
d2A
i=1 and {Bi}

d2B
i=1 form (ρAB-dependent) bases of L(HA) and L(HB), re-

spectively, orthonormal with respect to the HS inner product. Moreover, the ri are

nonnegative real numbers and m ≤ min{d2
A, d

2
B}.

Proof. Fix HS orthonormal bases {Ci} and {Di} on L(HA) and L(HB), respectively.

In view of Definition 2.1, ρAB can be expressed as

ρAB =
∑
kl

C(ρAB)kl Ck ⊗Dl. (2.3)

Consider the singular value decomposition of the correlation matrix C(ρAB) = UΣV ,
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where U, V are unitary and Σii = ri. One has

ρAB =
∑
kl

∑
i

UkiriVilCk ⊗Dl

=
∑
i

ri

(∑
k

UkiCk

)
⊗

(∑
l

VilDl

)
. (2.4)

Thus, upon defining Ai :=
∑

k UkiCk and Bi :=
∑

l VilDl one gets the wanted decompo-

sition (2.2). Indeed, the new bases Ai and Bi are orthonormal since the original bases

were orthonormal and the coefficients of the linear combination form unitary matrices.

Finally, the orthonormality requirement on the operators Ai and Bi just defined implies

that the number of terms m in Eq. (2.4) is bounded by min{d2
A, d

2
B}.

Definition 2.2. From now on, we refer to the ri of Eq. (2.2) as the operator Schmidt

coefficients (OSC) of ρAB, and we assume that they are ordered: r1 ≥ r2 ≥ . . . ≥

rOSR(ρAB). Moreover, we indicate by OSR(ρAB) the operator Schmidt rank (OSR) of

ρAB. Notice that the OSR is the minimum number of terms necessary to decompose ρAB

in the form
∑

iCi⊗Di (here the local operators need not be necessarily orthonormal).

Finally, let us report an immediate but important fact about the OSC, here stated

in the form of a proposition for future reference.

Proposition 2.1. The sum of the squares of the OSC of any ρAB ∈ SAB equals its

purity: ∑
i

r2
i = ‖ρAB‖22. (2.5)

Remark. Since ρAB is Hermitian, one can argue that the two orthonormal operator

bases in (2.2) can be (but need not be) chosen to be made of Hermitian operators.

Also, notice that the SD of a pure state |ψ〉AB given in Eq. (1.10) and the OSD of the

corresponding density matrix |ψ〉〈ψ|AB are related: ri =
√
pk
√
pl, Ai = |ak〉〈al|, and

Bi = |bk〉〈bl|, for i = (k, l) a multi-index. It follows in particular that OSR(|ψ〉〈ψ|AB) =

SR(ψAB)2.
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2.2 The realignment criterion for separability

A well-known application of the OSD is the so-called computable cross norm (CCN)

criterion for separability, also known as the realignment criterion [63, 64], which es-

tablishes a necessary condition satisfied by separable states. This feature is achieved

by the identification of an upper bound to a particular functional, when the latter is

evaluated on separable states. As the names suggest, this result was originally derived

in two different settings: as a bound on a particular norm, the CCN [64, 70] indeed,

and in the context of matrix reordering [63]. For completeness, here we state and prove

this result in the two original settings. After that, we argue how the two forms of the

criteria – henceforth simply called the realignment criterion (RC) – can be restated in

terms of the OSC only.

We begin by defining the CCN of a linear operator.

Definition 2.3 (Computable cross norm [64]). The CCN of an operator1 τ ∈ L(HA⊗

HB) is given by

‖τ‖CC := inf

{
k∑
i=1

‖Ai‖2‖Bi‖2

∣∣∣∣∣ τ =
k∑
i=1

Ai ⊗Bi

}
, (2.6)

where Ai ∈ L(HA), Bi ∈ L(HB). The infimum is taken over all the decompositions of

τ into a finite sum of tensor products of local operators. We refer to the single elements

Ai ⊗Bi of the decomposition, for for any i, as simple tensors.

In view of the definition above we can prove what follows.

Theorem 2.2 (CCN criterion for separability [64]). Let ρAB ∈ SAB be separable.

Then, ‖ρAB‖CC ≤ 1.

Proof. The subadditvity of the Hilbert-Schmidt norm together with Definition 2.3 yield

‖ρAB‖CC ≥ ‖ρAB‖2, and the inequality is saturated for simple tensors, i.e. ‖Ai ⊗

Bi‖CC = ‖Ai‖2‖Bi‖2. On the other hand, for any simple tensorAi⊗Bi the monotonicity

1Notice that it is not required for the operator to be positive semidefinite.
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of the Schatten p-norms implies

‖Ai ⊗Bi‖CC = ‖Ai‖2‖Bi‖2

≤ ‖Ai‖1‖Bi‖1. (2.7)

The property above is known as subcross property.2 In conclusion, for a separable state

σAB =
∑r

i λiσ
A
i ⊗ σBi , subadditivity and subcross property imply

‖σAB‖CC ≤
r∑
i

λi‖σAi ⊗ σBi ‖CC ≤
r∑
i

λi‖σAi ‖1‖σBi ‖1 = 1. (2.8)

We now prove the criterion above from another perspective, i.e. in terms of a simple

inspection of the density matrix entries. To do so, the author of [63] made use of an

operation known as vectorization of a matrix [71].

Definition 2.4. For any m× n matrix A = [aij ], where aij is the entry corresponding

to the i−th row and j−th column, we define the vectorization |A〉〉 of A as the following

vector:

|A〉〉 = [a11, . . . , am1, a12, . . . , am2, . . . , a1n, . . . , amn]T , (2.9)

were T denotes transposition. Moreover, if G is a m×m block matrix with blocks Gi,j ,

of size n× n, we define the realigned matrix GR as the following m2 × n2 matrix:

GR =



|G1,1〉〉T
...

|Gm,1〉〉T
...

|G1,m〉〉T
...

|Gm,m〉〉T


. (2.10)

2To be more specific, we say that the CCN satisfies the subcross property with respect to the trace
norm.
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In order to give a concrete example of this representation, consider a 4×4 bipartite

density matrix ρAB. Then, Eqs. (2.9) and (2.10) yield the transformation below:

ρAB =


ρ11 ρ12 ρ13 ρ14

ρ21 ρ22 ρ23 ρ24

ρ31 ρ32 ρ33 ρ34

ρ41 ρ42 ρ43 ρ44

 → (ρAB)R =


ρ11 ρ21 ρ12 ρ22

ρ31 ρ41 ρ32 ρ42

ρ13 ρ23 ρ14 ρ24

ρ33 ρ43 ρ34 ρ44

 . (2.11)

We have the following.

Theorem 2.3 (Realignment criterion for separability [63]). Let ρAB ∈ SAB be separa-

ble. Then, ‖(ρAB)R‖1 ≤ 1.

Proof. Let ρAB ∈ SAB, with dA = m, dB = n, and assume that it admits the de-

composition ρAB =
∑

i λiρ
A
i ⊗ ρBi . In addition, let Ui and Vi be the unitary matrices

that diagonalise ρAi and ρBi , respectively. Then, by denoting with E
(k,l)
11 the k × l

matrix with a one in the (1, 1) position and zeros elsewhere, ρAB can be written as

ρAB =
∑

i λi(UiE
(m,m)
11 U †i ) ⊗ (ViE

(n,n)
11 V †i ). By using the following properties of the

vectorization operation: (see [71–73])

|ABC〉〉 = (CT ⊗A) |B〉〉 (2.12)

(A⊗B)R = |A〉〉 |B〉〉T , (2.13)

one obtains

∥∥(ρAi ⊗ ρBi )R
∥∥

1
=

∥∥∥∥∥
(
U∗i ⊗ Ui

) ∣∣∣E(m,m)
11

〉〉 ∣∣∣E(n,n)
11

〉〉T (
V ∗i ⊗ Vi

)†∥∥∥∥∥
1

=
∥∥∥(U∗i ⊗ Ui)E

(m2,n2)
11 (V ∗i ⊗ Vi)†

∥∥∥
1

=
∥∥∥E(m2,n2)

11

∥∥∥
1

= 1. (2.14)

The last two lines above depend upon the facts that the trace norm is unitarily invariant

and that by construction E
(m2,n2)
11 possesses a unique singular value equal to one. One
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concludes using subadditivity:

∥∥(ρAB)R
∥∥

1
≤
∑
i

λi
∥∥(ρAi ⊗ ρBi )R

∥∥
1

=
∑
i

λi

= 1. (2.15)

As anticipated, Theorems 2.2 and 2.3 can be restated in terms of the OSC. We have

what follows.

Theorem 2.4. Let ρAB ∈ SAB be separable. Then ‖C(ρAB)‖1 ≤ 1.

Proof. We give a sketch of the proof, which is straightforward. Notice that the corre-

lation matrix of a pure product state is just a rank one matrix with unit one–norm.

Then, the 1−norm of the correlation matrix of a pure product state is equal to one.

One concludes by using the linearity of the correlation matrix in the state and the

convexity of the 1−norms.

We observe that the result above holds for any Schatten norm: separable states are

such that ‖C(ρAB)‖p ≤ 1 for any p. However, the monotonicity of the p−norms implies

that the criterion corresponding to p = 1 is the more stringent.

The connection between this new form of the criterion involving only the OSC

and the CCN criterion is somewhat lengthy, and for convenience we refer to [70] for a

detailed discussion. Of course, what it is proved there is that the CCN of a quantum

state equals the sum of its OSC, ensuring the equivalence between the two approaches.

On the other hand, the relationship between the sum of the OSC and the 1−norm

of the realigned matrix ρRAB is more interesting, and it comes from the comparison of

Eq. (2.1) with the transformation defined in Eq. (2.10). To be more precise, consider

a bipartite state ρAB ∈ SAB and let {Ei} and {Fj} be the basis of L(HA) and L(HB)
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given by matrix units of the form Ei = |k〉〈l|. It holds that [73,74]

[(ρAB)R]ij = Tr[ρAB(Ei ⊗ Fj)]. (2.16)

In other words, the realigned matrix (ρAB)R is nothing but the correlation matrix

C(ρAB) expressed with respect to a particular basis. Hence Eq. (2.16) implies that the

singular values of (ρAB)R equal the OSC of ρAB, so that ‖(ρAB)R‖1 =
∑

i ri and the

equivalence of Theorem 2.4 and 2.3 follows.

2.3 Realignment method for steering detection

Just as for entanglement, it is possible to devise a realignment method to detect steering.

This result was proved in [75], as a consequence of an operational form of steering

certification. To see how such certification takes place, let us define the uncertainty of

an observable OX in terms of its variance δ2(OX) = 〈O2
X〉−〈OX〉2, with 〈OX〉 = Tr(Xρ)

is the expectation of OX . Now assume that Alice and Bob share a bipartite state ρAB

and perform measurements {OA,i} and {OB,i} on the respective subsystems. Then we

have the following.

Proposition 2.2 (Local uncertainty relation for steering [75]). A bipartite state ρAB

is steerable (by A) if the inequality

∑
i

δ2[αi(OA,i ⊗ 1) + (1⊗OB,i)] ≥ min
ρB

∑
i

δ2(OB,i) (2.17)

is violated, with {αi} ∈ R.

Proof. It is a general fact from probability theory that for a random variable x ∈ X

with probability distribution p(X) =
∑

i pi p(x|i), its variance satisfies

δ2(X) ≥ pi
∑
i

δ2(X)i, (2.18)

where δ2(X)i is the variance of X with probability distribution p(x|i). On the other

hand, the defining condition for steering Eq. (1.13) implies that assuming a local hidden
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state for Bob means

δ2[αi(OA,i ⊗ 1) + (1⊗OB,i)] ≥
∑
λ

pλ δ
2[αi(OA,i ⊗ 1) + (1⊗OB,i)]λ

=
∑
λ

pλ [α2
i δ

2(OA,i)λ + δ2(OB,i)ρBλ
], (2.19)

where δ2(OA,i)k is the variance of OA,i with probability distribution p(oA,i|OA,i;λ),

while δ2(OB,i)ρB is the variance ofOB,i with probability distribution p(oB,i|OB,i; ρBλ ), cf.

Eq. (1.13). By applying Eq. (2.18) to the two terms in the last line of Eq. (2.19) we ob-

tain, on the one hand,
∑

i α
2
i δ

2(OA,i) ≥ 0, since Alice can prepare any probability distri-

bution. On the other hand, Bob’s local states satisfy
∑

i δ
2(OB,i) ≥ minρB

∑
i δ

2(OB,i).

Hence, Eq. (2.17) is satisfied for any unsteerable state and the claim follows.

Before proving the realignment criterion for steering, we need one last technical

proposition which sets a lower bound to the sum of the variances of a basis of observ-

ables.

Proposition 2.3. Let {Hi} be an HS orthonormal basis for the space L(H) of linear

operator on H = Cd and let Hi = H†i for any i. Then,

∑
i

δ2(Hi) ≥ d− 1 (2.20)

for any ρ ∈ S(H).

Proof. From the definition of variance, the claim above can be rewritten as
∑

i〈H2
i 〉 −

〈Hi〉2 ≥ d − 1. Observe that, since any ρ ∈ S(H) can be expressed as ρ =
∑

i〈Hi〉Hi,

one has
∑

i〈Hi〉2 = Tr(ρ2) ≤ 1. Then, it remains to prove
∑

i〈H2
i 〉 = d. To do so, let

us identify {Hi} with the Hermitian basis of L(H) given by the generalization of the

Pauli matrices, i.e. the basis given by the d(d − 1) matrices (|k〉〈l| + |l〉〈k|)/
√

2 and

(|k〉〈l| − |l〉〈k|)/i
√

2 with 1 ≤ k < l ≤ d, plus the d matrices |k〉〈k| with 1 ≤ k ≤ d.

With this choice one directly verifies that
∑

iH
2
i = d1, hence

∑
i〈H2

i 〉 = d. This result

is basis-independent because any other Hermitian basis {Fi} will be related to {Hi} by

Fi =
∑

k OikHk for an orthogonal O, thus
∑

i F
2
i =

∑
iklO

T
kiOilHkHl =

∑
kH

2
k .
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We can now prove the sought criterion.

Theorem 2.5 (Realignment criterion for steerability [75]). Let ρAB ∈ SAB be unsteer-

able and C(ρAB) its correlation matrix. Then, ‖C(ρAB)‖1 ≤
√
dB.

Proof. Let ρAB ∈ SAB and consider its OSD with respect to local orthonormal Hermi-

tian bases {HA,i} and {HB,i}, i.e. ρAB =
∑

i riHA,i⊗HB,i. Since HA,i and HB,i can be

thought to be Alice and Bob’s local observables, Propositions 2.2 and 2.3 imply that

the violation of the following inequality

∑
i

δ2[αi(HA,i ⊗ 1) + (1⊗HB,i)] ≥ dB − 1, (2.21)

with {αi} ∈ R, is a sufficient condition for ρAB to be steerable by Alice. By choosing

α := αi = −
∑

i ri/dB one sees that Eq. (2.21) will be violated anytime that

dBα
2 + 2α

∑
i

ri −
∑
i

(α〈HA,i〉+ 〈HB,i〉)2 < −1, (2.22)

where we have used 〈HA,i ⊗ HB,i〉 = ri. Then, by omitting the (positive) quadratic

term in Eq. (2.22), the violation witnessing the presence of steering takes place when

‖C(ρAB)‖ =
∑

i ri >
√
dB.

2.4 Symmetric polynomials in the Schmidt coefficients

As seen in the Sec. 2.2, the OSC can be successfully employed for entanglement de-

tection. This feature is achieved, e.g. through the evaluation of the 1−norm of the

correlation matrix, which reveals the entanglement of a subset of all entangled states.

One can easily check indeed that this criterion will leave certain entangled states un-

detected [64], and the natural question addressed in [65] is whether it is possible to

formulate separability criteria which are stronger than the RC while still relying, as the

latter, only on the OSC. An attempt in this direction was made with the introduction of

the elementary symmetric polynomials3 (ESP) in the OSC. In the following we review

3In commutative algebra, a symmetric polynomial is a polynomial p(x1, x2, . . . , xn) which is invariant
under the permutation of its n variables, i.e. p(x1, x2, . . . , xn) = p(xσ(1), xσ(2), . . . , xσ(n)), where σ(k)
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the main results obtained in [65–67].

Definition 2.5. Let ρAB ∈ SAB be a bipartite state and C(ρAB) its correlation matrix.

The lth−order elementary symmetric polynomials in the OSC of ρAB are defined as the

following quantities:

M [1](ρAB) =
∑

1≤k≤d2
rk

M [2](ρAB) =
∑

1≤k1<k2≤d2
rk1rk2

...

M [l](ρAB) =
∑

1≤k1<···<kl≤d2
rk1 · · · rkl (2.23)

...

M [d2](ρAB) =
∏

1≤k≤d2
rk.

By direct inspection it is clear that the RC can be equivalently reformulated in

term of the 1st−order ESP of the OSC, by saying that M [1](ρAB) ≤ 1 for a separable

ρAB. In general, the RC induces a family of criteria for separability which read, for

each 1 ≤ l ≤ d2,

ρAB separable ⇒M [l](ρAB) ≤
(
d2

l

)(
1

d2

)l
. (2.24)

This can be further refined by bringing into play the OSR of (ρAB), which here we

denote with K for convenience. We get

ρAB separable ⇒M [l](ρAB) ≤
(
K

l

)(
1

K

)l
(2.25)

if l ≤ K, and zero otherwise. Moreover, as for the case of Eq. (2.24), the RC is fully

recovered when l = 1.

denotes permutation [76]. Every symmetric polynomial can be expressed as a polynomial in the n
elementary symmetric polynomials ek(x1, x2, . . . , xn), defined as

ek(x1, x2, . . . , xn) =
∑

1≤j1<j2···<jk≤n

xj1xj2 · · ·xjk , for k = 1, 2, · · · , n.
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The separability criteria derived above are easily verifiable and, as the reader has

certainly noticed, they are weaker than (or equivalent to) the RC, having been derived

from it. Nonetheless, the authors of [65] argue that the approach through which these

results were obtained (the use of the set of the OSC as a whole) could hopefully provide

RC-independent separability criteria. The idea (then pursued in [77]) is based on the

question whether it is possible to derive an upper bound B̃(d,D) such that

M [1] ≤ 1 ⇒M [l](ρAB) ≤ B̃(d,D) <

(
K

l

)(
1

K

)l
(2.26)

where, consistently with the definition of d, we have set D := max{dA, dB}. In other

words, Eq. (2.26) establishes a strict upper bound for the symmetric polynomials in the

OSC of the states passing the RC. If Eq. (2.26) holds, then a fortiori also the following

criteria will be satisfied:

ρAB separable ⇒M [l](ρAB) ≤ B(d,D) <

(
K

l

)(
1

K

)l
, (2.27)

where B(d,D) ≤ B̃(d,D). It follows that if B̃(d,D) > B(d,D), then there exists

a state ρAB that satisfies the RC, but such that M [l](ρAB) > B(d,D). Thus, there

would be at least an entangled state detected as such by B(d,D) but not by the RC.

Numerical tests performed in [65] for the cases d = 2, D = 2 and d = 2, D = 3

suggest that B̃(2, 2) = B(2, 2) and B̃(2, 3) > B(2, 3). These estimations were partially

validated in [77], where the authors proved that B̃(n, n) = B(n, n) for any n, meaning

that when d = D the bound on the symmetric polynomial cannot be used to derive

separability criteria which are independent of the RC. Despite this negative result –

which by the way agrees with the numerical test of [65] – the possibility of deriving new

RC-independent criteria for other combination of d,D remains open. In particular, the

numerical results for d = 2, D = 3 still corroborates the plausibility of the approach

sketched so far, therefore making room for future studies.
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2.5 Beyond the realignment criterion

In this section we review a special result contained in [66], a special instance of which

was derived also in [78]. We start by reporting a technical theorem from [66], sum-

marised in the following. This is quite specific, and neglecting the proof will not com-

promise the understanding of the subsequent discussion. However, it will give us the

possibility to introduce an example that shows how the OSC of a particular transformed

operator can be used to detect entanglement beyond the RC.

Theorem 2.6. Let ρAB ∈ SAB and consider, for n ≥ 1, the set of 2n jointly linear

(or jointly antilinear) superoperators

ΓAi : HA → HA, ΓBi : HB → HB, for i = 1, . . . , n (2.28)

such that for some εA, εB ≥ 0 and for any σiA ∈ SA and σiB ∈ SB, with i = 1, . . . , n,

one has
n∑
i=1

∥∥ΓAi [σiA]
∥∥2

2
≤ n εA and

n∑
i=1

∥∥ΓBi [σiB]
∥∥2

2
≤ n εB. (2.29)

Moreover, define the following linear operator on SAB:

ρAB

(
Γ

(A,B)
1,...,n

)
:=

1

n

 n∑
i=1

ΓAi ⊗ ΓBi [ρAB] +
n∑
i 6=j

ΓAi ⊗ ΓBj [ρA ⊗ ρB],

 (2.30)

where ρA, ρB are the reduced density matrices of ρAB. If ρAB is separable, then

∥∥∥∥[ρAB (Γ
(A,B)
1,...,n

)]R∥∥∥∥
1

≤

εA +
1

n

∑
i<j

(
〈ΓAi [ρA],ΓAj [ρA]〉+ c.c.

)1/2

×

εB +
1

n

∑
i<j

(
〈ΓBi [ρB],ΓBj [ρB]〉+ c.c.

)1/2

, (2.31)

where c.c. stands for complex conjugate and 〈· , ·〉 is the HS inner product in L(HA(B)).

Proof. See Appendix A.
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Corollary 2.6.1 (Generalised RC [66]). Let ρAB ∈ SAB be separable, and define

τ :=

(
eiω + ei(ω+θ+φ)

2

)
ρAB +

(
ei(ω+θ) + ei(ω+φ)

2

)
ρA ⊗ ρB. (2.32)

Then, ∥∥τR∥∥
1
≤
√[

1 + cos θTr(ρ2
A)
] [

1 + cosφTr(ρ2
B)
]
, (2.33)

for any ω, θ, φ ∈ R.4 In particular, for ω = 0 and φ = −θ one has

∥∥[ρAB + cos θ(ρA ⊗ ρB)]R
∥∥

1
≤
√[

1 + cos θTr(ρ2
A)
] [

1 + cos θTr(ρ2
B)
]

(2.34)

for any θ ∈ [0, π].

The specific choice of ω and φ that yield the family of inequalities (2.34) is interesting

for two reasons. On the one hand, the RC is clearly recovered for θ = π/2. On the other

hand, depending on the value of θ, new criteria which in some cases (i.e. for certain

classes of quantum states) are stronger than the RC can be obtained. This result was

first proved in [78] for the specific choice θ = π , which gives the new criteria according

to which separable states ρAB ∈ SAB satisfy

∥∥[ρAB − ρA ⊗ ρB]R
∥∥

1
≤
√[

1− Tr(ρ2
A)
] [

1− Tr(ρ2
B)
]
. (2.35)

The example below gives a class of states violating inequality Eq. (2.35).

Example. Let us consider the one-parameter family of 3 × 3 bound entangled states

4Although the presence of the parameter ω in the definition of τ is trivial, it will be convenient for
deriving some specific inequalities. See [66,78] for a comprehensive discussion about the possible cases
encompassed by the inequalities (2.33).
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introduced in [79], i.e.

ρ(a) =
1

8a+ 1



a 0 0 0 a 0 0 0 a

0 a 0 0 0 0 0 0 0

0 0 a 0 0 0 0 0 0

0 0 0 a 0 0 0 0 0

a 0 0 0 a 0 0 0 a

0 0 0 0 0 a 0 0 0

0 0 0 0 0 0 1+a
2 0

√
1+a2

2

0 0 0 0 0 0 0 a 0

a 0 0 0 a 0
√

1+a2

2 0 1+a
2



(2.36)

with 0 ≤ a ≤ 1. Then let us consider the two-parameter family of states given by the

noisy version of the operators above, i.e.

ρ̂(p, a) = p ρ(a) + (1− p)1
9
, (2.37)

with 0 ≤ p ≤ 1. A straightforward application of the RC and inequality (2.35) shows

two things. First of all, all entangled states of the form Eq. (2.37) which are detected

by the RC are also detected by criterion (2.35). Furthermore one finds that there exist

values of p and a for which ρ̂(p, a) is entangled but only the new criterion (2.35) is able

to reveal it, while the RC fails.

Finally, let us remark that θ = π is not the only choice allowing to conceive new

criteria which outperforms the RC. For example, it is possible to show that also θ =

3π/4 works. Nonetheless, numerical tests carried out in [66] showed that as long as

the class of states of Eq. (2.37) is considered, θ = π returns the strongest separability

criteria.
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2.6 Operator Schmidt decomposition of transformed den-

sity operators

One of the aims of this thesis is to show that it is possible to exploit the OSD in

order to detect and measure correlations. So far we have discussed detection, while

throughout the next chapter we shall examine how to measures total correlations (TC)

by decomposing the state describing the system of interest. Nevertheless, there is an

instance in literature studying a measure which is not defined upon the OSD of the

state itself, but on the decomposition of a certain transformed density operator [68].

In particular, instead of ρAB ∈ SAB one can consider

ρ̃AB :=
(
1A ⊗ ρ−1/2

B

)
ρAB

(
ρ
−1/2
A ⊗ 1B

)
, (2.38)

where the inverse of the marginals ρA, ρB are defined on their supports. We refer to

ρ̃AB as the transformed operator associated to ρAB. Before stating the results of [68]

however, we first need to mention the most critical and indeed the defining features of

the generic measure of TC. Specifically, we say that a function f : SAB → R+ ∪ {0} is

a measure of total correlations if it does not increase under the action of local channels

and it if is minimal if and only it is evaluated on product states5. As a matter of fact,

it is possible to prove that the OSC {r̃i}di=1 of ρ̃AB are indeed monotonic under LO,

whilst the requirement about minimality is trivially satisfied whenever i ≥ 2 (since

r̃i = 0 for any i ≥ 2 when ρAB is a product).

Theorem 2.7 (total correlations from the OSD of the transformed operator [68]). For

any ρAB ∈ SAB, let {r̃i} and {s̃i} be the OSC of ρ̃AB and σ̃AB, i.e. of the transformed

operators associated to ρAB and σAB := (ΛA⊗ΛB)[ρAB], respectively. Then r̃i ≥ s̃i for

any i, and in particular r̃1 = s̃1 = 1.

In conclusion, except for the first OSC of the transformed operator, each other

coefficient can serve as a proper measures of TC.6

5A more rigorous characterisation of measures of total correlations can be found in Sec. 3.2.
6The second OSC of the transformed operator satisfies an additional, stronger result: it is not
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2.7 Operator Schmidt decomposition and tensor networks

In an attempt to review a relatively broad spectrum of occurrences of the OSD in the

literature, here we take a departure from the topics considered so far, i.e. detection

and quantification of correlations, and discuss the appearance of the OSD in the field

of tensor network (TN). In particular, we take a look at the description of quantum

many-body systems based on the formalism of matrix product states (MPS) and matrix

product density operators (MPDO) [80–87].

TN methods are a set of algebraic and computational tools which provide an effi-

cient way of approximating certain classes of quantum states. As well known in QM,

such approximations are particularly useful when the size of the system increases, as

this corresponds to an exponential growth of the Hilbert space that rapidly become

intractable. With the term MPS one refers to a particular instance of TN methods

whose significance mainly relies upon the existence of a canonical form [81], ensuring

the possibility of representing exactly any given quantum state. In particular, the MPS

representation is known to approximate a class of one–dimensional gapped systems

with remarkable accuracy [88]. For what mixed states are concerned, one can still de-

fine the class of MPDO [89, 90] by analogy with the pure state case, but no canonical

form has been found yet. One of the problems when dealing with MPDO is that in

general local truncations do not preserve the positivity of the total tensor. However,

if one consider the MPS representation of the purification of a mixed state instead of

the associated MPDO, then local positivity is preserved. Yet, one could still wonder

whether an efficient MPDO representing a mixed state implies the existence of efficient

MPS representation of the purifying state. This question was considered in [69] and

here we review the main results. To do so, let us rephrase the problem above in a

proper mathematical setting.

Let ρ be a one-dimensional mixed state of N d−level systems with open boundary

additive under tensor product. This fact yield a certain data process inequality, that in turn bounds
the set of states that can be generated under LO, when an arbitrary number of copies of a resource
state is given. For it goes beyond the focus of this chapter, the reader is advised to refer to [68] for
details.
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conditions:

ρ =
d∑

i1,...,iN=1
j1,...,jN=1

%j1,...,jNi1,...,iN
|i1, . . . , iN 〉〈j1, . . . , jN | . (2.39)

The MPDO representation of ρ is defined as

ρ =

K1∑
α1=1

K2∑
α2=1

· · ·
KN−1∑
αN−1=1

Mα1
1 ⊗M

α1,α2
2 ⊗ · · · ⊗MαN−1

N , (2.40)

where M
αi−1,αi
i , for 1 < i < N , are d×d matrices, Mα1

1 is a row vector and M
α,αN−1

N is

a column vector of size d. Moreover, Ki for 1 ≤ i ≤ N is the minimal dimension such

that Eq. (2.40) holds. In this multipartite setting, the OSR of ρ corresponds to

OSR(ρ) := max
i
Ki = K. (2.41)

Now we consider the representation of ρ as MPS of the local purification. The latter

is obtained by purifying the given state ρ ∈ SS into the pure state |ψ〉 ∈ (HS ⊗HE),

i.e. ρ = TrE |ψ〉〈ψ| and consider the MPS of the purifying state:

|ψ〉 =

K′1∑
β1=1

K′2∑
β2=1

· · ·
K′N−1∑
βN−1=1

Aβ11 ⊗A
β1,β2
2 ⊗ · · · ⊗AβN−1

N , (2.42)

where A
βi−1,αi
i , for 1 < i < N , are d × dEi matrices where dEi is the size of the i−th

ancilla, Aβ11 is a row vector of size d·dE1 and A
β,βN−1

N is a column vector of size d·dEN−1
.

The purification rank of ρ is defined as

rankp(ρ) := max
i
K ′i = K ′. (2.43)

We are now able to rephrase the original question in a more concrete way. Are the

MPDO representation of ρ and the MPS description of the purifying state |ψ〉 equivalent

by any means? Or can the latter be arbitrarily more costly (computationally speaking)

than the former? In other words, we wonder if it is possible to find an upper bound to

K ′ as a function of K only. The answer to this question is negative, and was proved
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through a counterexample in [69]. Without going into the detail, here it is enough to

say that it is possible to construct a family of classical bipartite states such that their

OSR is constant, while the purification rank grows unboundedly with the (arbitrary)

dimension of the Hilbert space of the system.

Despite the negative result sketched above, [69] provides also two constructive pu-

rification methods which indeed return the sought upper bound, with the clause of

considering also the eigenvalues of ρ. Specifically, these two constructions (that we do

not review here for brevity) imply, respectively, that

K ′ ≤ Dn2, (2.44)

K ′ ≤ O(Dm−1), (2.45)

where n is the number of eigenvalues and m the number of different eigenvalues of ρ.

To conclude, the results just mentioned prove that it is impossible to find a descrip-

tion of mixed states in the MPDO formalism which is both efficient and locally positive

semidefinite. Nonetheless, there exist approximations which are good, provided that ρ

has a suitable spectrum in the sense of Eqs. (2.44) and (2.45).
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Chapter 3

Measuring total correlations

This chapter is devoted to the definition and the analysis of possible measures of total

correlation based on the OSD. As we have seen in the introductory chapter, correlations

in pure states are due to entanglement only. On the other hand, mixed states can

posses several kinds of quantum correlations, as well as several degrees of entanglement.

For example, one can easily picture a situation such that a mere classical statistical

dependency between the components of a bipartite quantum state is established. This

is the case, e.g., of Alice and Bob receiving two local states drawn according to a

probability distribution (which is known to both). The overall bipartite state is given

by convex combination of the products of the possible states. This kind of correlations

are fully classical in nature, and can appear either alone or in combination with quantum

correlations, as in Eq. (1.9). Together, classical and quantum correlations stand at the

basis of all the tasks and algorithms of quantum information theory [5,9–11,91–93]. For

this reason, it would be useful to have a common framework for quantifying correlations

altogether, and the OSD will turn out to be a suitable tool for this purpose.

This chapter is organized as follows. We first review some notions from classical and

quantum information theory, paving the way for the introduction to the most widely

used measure of total correlations in quantum information theory, i.e. the quantum

mutual information. After that, we identify the criteria for testing the candidate mea-

sures of total correlations proposed in the remainder of this chapter. In Sec. 3.3 we

recall some facts about the simplest measure based on the OSD that one can think
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of: (the logarithm of) the OSR, whose monotonicity under local channels and relation

with discord was already observed by [94–96]. In Sec. 3.4 we introduce our first novel

measure of total correlations based on the OSD, which has been defined along the lines

of an entangled measure known as the G-Concurrence. In Sec. 3.5 we analyse a new

possible measure based on the notion of affinity between quantum states. In Sec. 3.6,

our last measure obtained by exploiting the OSD of the square root of the density

matrix is presented. Lastly, in Sec. 3.7 we will compare the newly introduced measures

of total correlations of Secs. 3.5 and 3.6 with the quantum mutual information.

3.1 Entropy in classical and quantum information theory

Entropy is the central concept of any theory that attempts to formalize the idea of

information. Intuitively, a random variable X possesses a certain information content

which can be thought of as the amount of new knowledge obtained – or the amount

of previous uncertainty cleared away – once the value of X is unveiled. In classical

information theory the Shannon entropy is used to quantify such information content

carried by X. It is defined as H(X) := −
∑

x p(x) log p(x), where p(x) belongs to a

probability distribution and denotes the probability that X assumes the value x. More-

over, the logarithm is taken in base 2, and it is agreed that 0 log 0 = 0 (this convention

also holds for quantum versions of the Shannon entropy introduced in the remainder

of this section). A more concrete way to look at the Shannon entropy is to consider

some kind of source producing a string of independent, identically distributed random

variables. Then H estimates the minimum number of bits per symbol needed to en-

code the information produced by the source. The fundamental concept of the Shannon

can be exploited in order to obtain some means by which comparing the information

content of several variables. For example, the classical relative entropy measures the

similarity between two probability distributions p(x) and q(x) over a common index set,

and it is defined as H(p||q) :=
∑

x p(x) log(p(x)/q(x)). An interesting instance of the

relative entropy answers a more sophisticated questions about the mutual statistical

dependency between two random variables. In particular, given two random variables
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X and Y , their classical mutual information quantifies how much we can learn about

X, once we know Y . It is given by H(X : Y ) := H(X) + H(Y ) − H(X,Y ), where

H(X,Y ) := −
∑

x,y p(x, y) log p(x, y) is the joint entropy of X and Y , which expresses

the total uncertainty about the pair (X,Y ). Finally, notice that the mutual informa-

tion of X and Y equals the closeness (as measured by the classical relative entropy)

between their joint probability distribution pX,Y and the product of the two individual

ones pX and qY , i.e. H(X : Y ) = H(pXY ||pX · pY ).

The quantities defined above generalise readily to the quantum setting. Here, the

density operator takes on the role of a probability distribution, and the Shannon entropy

is replaced by the von Neumann entropy, defined as

S(ρ) := −Tr(ρ log ρ) = −
∑
i

λi log λi, (3.1)

where λi are the eigenvalues of ρ. The von Neumann entropy it is often said to mea-

sure the mixedness of a quantum state [97]. To make sense of this statement it is

enough to observe the values that S(ρ) assumes, and to recognise that they reflect the

degree of ignorance of an observer about the state of the system he/she is interested

in. Indeed, pure states (corresponding to the situation of an observer having com-

plete knowledge about the state of a quantum system) have zero entropy, while the

completely mixed state (corresponding to the situation of an observer having complete

ignorance about the state of a quantum system) returns the maximum value for S,

that is log d. The extremal values of S mirror one of the distinctive features of QM,

when coming to the maximally entangled state. Without a classical analog in fact,

the maximally entangled state has zero entropy, but it is such that the information

retained by the composite state is completely lost when one of the two subsystems is

traced out, revealing completely disordered marginals. Furthermore, the von Neumann

entropy satisfies a number of physically desirable properties, for a careful analysis of

which we recommend the usual, distinguished references [13] and [28].

As for classical probability distributions, the quantum version of the relative entropy

allows to compare the similarity between two states. It is defined, for any ρ and σ, as
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S(ρ||σ) := Tr(ρ log ρ)−Tr(ρ log σ).1 Now let ρAB ∈ SAB be bipartite and consider the

relative entropy between ρAB and the tensor product of its marginals, i.e. S(ρAB||ρA⊗

ρB). The departure of ρAB from being a product state gives the quantum mutual

information (QMI), which in general is defined as

I(A : B)ρAB = S(ρAB||ρA ⊗ ρB)

= S(A) + S(B)− S(AB), (3.2)

where S(X) denotes the von Neumann entropy of ρX .

The QMI satisfies several desirable properties. To name a few, the QMI is non

negative and it is symmetric under interchange of variables. Moreover, besides being

a natural measure of distance between a bipartite quantum state and the product of

its marginals (as already observed), it is possible to prove that the QMI is indeed the

minimum of the relative entropy between ρAB and any tensor product state [13]. Also,

the definition Eq. (3.2) directly implies that the QMI vanishes if and only if ρAB is a

product state [13,28]. Another important result concerns the monotonicity of the QMI:

Proposition 3.1 (Monotonicity of QMI [98]). For any ρAB ∈ SAB and quantum

channels ΛA,ΛB, one has

I(A : B)ρ′AB ≤ I(A : B)ρAB , (3.3)

where ρ′AB = (ΛA ⊗ ΛB)[ρAB].

Proof. We prove that the monotonicity of the QMI under local channels is equivalent to

its monotonicity under local trace, and for simplicity we do it for one local channel only,

say ΛA. Then, one can conclude the proof by noticing that the monotonicity under

local trace, in turn, corresponds to the strong subadditivity of the von Neuman entropy

(for a complete proof of the latter we refer to [13]). Thanks to Stinespring’s dilation

theorem 1.4, the action of ΛA on the subsystem A can be simulated by introducing a

1In both its classical and quantum version, the relative entropy between two probability distributions
p and q is finite if and only if the support of p is included in the support of q.
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third system C, initially in the state |0〉〈0|C , and a unitary interaction UAC between

A and C. Then, the action of ΛA on A is equivalent to the action of UAC followed by

tracing out the ancilla. It is convenient to define the states of the system of interest

at different stages, the latter corresponding to the operations used to characterise the

channels. Thus we denote the state after the tensorization as ρABC = ρAB ⊗ |0〉〈0|C ,

after the unitary operation as ρ′ABC = UAC(ρAB⊗|0〉〈0|C)U †AC , and the final state after

the partial trace as ρ′AB = TrC(ρ′ABC), that is ρ′AB = (ΛA ⊗ id)[ρAB]. Now since C

starts in a product state with AB, it follows that

I(A : B)ρAB = I(A : BC)ρABC = I(A : BC)ρ′ABC . (3.4)

On the other hand, since the partial trace cannot increase the QMI [13], one has

I(A : B)TrC(ρ′ABC) ≤ I(A : B)ρ′ABC . (3.5)

The last two observations together yield I(A : B)ρ′AB ≤ I(A : B)ρAB .

3.2 Requirements for a measures of total correlations

The QMI is used in QM as a measure of total correlation. As seen earlier, it satisfies

several properties, including being minimal if and only if it is evaluated on product

states and being non increasing under local channels. These two requirements assume

a central role in this chapter, since they can be considered as the minimal requirements

that any measure of total correlations must obey in order to be meaningful. To put it

more rigorously, let us first consider the following definition.

Definition 3.1. Given a function f from the set of quantum states to the (nonnegative)

real numbers, we say that f is a measure of correlations if the following conditions hold

true:

1. ρAB is a product state ⇒ f(ρAB) = 0,

2. f is monotonically non increasing under local operation, i.e. for any ρAB ∈ SAB
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and any local maps ΛA : L(HA)→ L(HA′) and ΛB : L(HB)→ L(HB′),

f(ρAB) ≥ f(ΛA ⊗ ΛB[ρAB]). (3.6)

Moreover, if f(ρAB) = 0 if and only if ρAB is a product state, we say that f is a measure

of total correlations or that is a faithful measure of correlations.

The first requirement follows from the statistical independence existing between the

parties of a product states. In other words, since product states carry no correlations

whatsoever, any measure of correlations – whether they be faithful or not – must ac-

count for this fact. The second requirement comes from the observation that local maps

cannot increase any global property of the state, e.g. cannot increase entanglement. On

the other hand, local operations alone cannot increase classical correlations either, since

some sort of communication between A and B would be needed for that, for example a

classical communication channel which allow the establishment of shared randomness

between the two parties. Eq. (3.6) reflects, mathematically, the observation above. Of

course, there are other plausible requirements that one might want to add to the list.

It would be reasonable, for example, to devise measures which are also completely ad-

ditive, indicating that the correlations of the product of several bipartite states would

equals the sum of the correlations of the individual states. Again, it looks fair to ask

that the sought measure of total correlation be maximal for the maximally entangled

state. However, these extra conditions do not qualify as necessary. For this reason, in

the reminder of this chapter we will test the proposed measures of correlations only

against the two necessary requirements given in Definition 3.1, while for the measures

of total correlations the additional requirement of being faithful will be demanded.
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3.3 The operator Schmidt rank

The simplest measure satisfying the desired requirements and which can be obtained

from the OSD is as a function of the OSR. In particular we claim that

O(ρAB) = log(OSR(ρAB)) (3.7)

is a meaningful measure of total correlations, i.e. the following theorem holds.

Theorem 3.1. O(ρAB) attains its minimum if and only if ρAB is a product state,

and it is non–increasing under local operations, i.e. for any ρAB ∈ SAB and any local

channels ΛA,ΛB one has

O(ΛA ⊗ ΛB[ρAB]) ≤ O(ρAB). (3.8)

Proof. The first claim follows trivially from the properties of the logarithm function,

being zero if and only if its argument (here the OSR) equals one, which happens only

for product states. For the monotonicity, let LA and LB be the transfer matrices

associated to ΛA and ΛB, respectively, cf. Definition 1.2. For simplicity, first consider

the case of one local map only, e.g. when ρ′AB = ΛA ⊗ idB[ρAB]. Let {Ck} and {Dl}

be local bases for the subsystem A and B, respectively, and consider the expansion of

ρAB on these bases, i.e. ρAB =
∑

kl C(ρAB)klCk ⊗Dl, with C(ρAB)kl the entries of the

correlations matrix for such a choice of local bases. Then, ρ′AB =
∑

kl C(ρAB)kl Λ[Ck]⊗

Dl. It follows that the generic element of the correlation matrix of ρ′AB reads

C(ρ′AB)ij = Tr

[
C†i ⊗D

†
j

(∑
kl

C(ρAB)kl ΛA[Ck]⊗Dl

)]

=
∑
kl

C(ρAB)kl Tr(C†i ΛA[Ck]) Tr(D†jDl)

=
∑
k

C(ρAB)kj(LA)ik, (3.9)
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where we have used (LA)ik = Tr(C†i ΛA[Ck]). Then,

C(ρ′AB) = LAC(ρAB). (3.10)

In a similar fashion, if we consider also the action of the local map on B we obtain

C(ρ′AB) = LAC(ρAB)LTB. (3.11)

We conclude by observing that since matrix multiplication cannot increase the rank,

then

OSR(ρ′AB) = rank[LAC(ρAB)LTB]

≤ rank[C(ρAB)]

= OSR(ρAB), (3.12)

and the claim follows from the monotonicity of the logarithm function.

Although the logarithm of the OSR gives a straightforward and direct way of making

sense of the amount of correlations of a given state, it suffers of a lack of sensitivity due

to its integer valued nature. Here we present an example of this fact which employs the

class of isotropic states, which we recall are given by convex mixtures of the completely

mixed and the maximally entangled state, parametrized by the relative weight of the

combination.

Example. Let us consider the generic isotropic state [99] in SAB

ρAB(p) = (1− p) 1
d2

+ p |ψ+〉〈ψ+|, (3.13)

where 0 ≤ p ≤ 1, 1 ≡ 1AB and |ψ+〉 = 1√
d

∑d
i |ii〉 is the maximally entangled state

in HAB. Further assume that d = dA = dB. In order to compute the OSC, consider

the orthonormal basis of L(HA) and (HB) given by the matrix units {|i〉〈j|}di,j=1 and
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{|k〉〈l|}dk,l=1. The correlation matrix elements of the state in Eq. (3.13) are easily found:

C[ρAB(p)]ij,kl = Tr [|j〉〈i| ⊗ |l〉〈k| ρAB(p)]

=
1− p
d2

Tr (|j〉〈i| ⊗ |l〉〈k|) +
p

d
Tr

|j〉〈i| ⊗ |l〉〈k| d∑
a,b=1

|a〉〈b| ⊗ |a〉〈b|


=

1− p
d2

δijδkl +
p

d

d∑
a,b=1

δiaδbjδkaδbl

=
1− p
d2

δijδkl +
p

d
δikδjl, (3.14)

where in the second equality we have used the fact that the maximally entangled state

can be expressed as
∑d

a,b=1 |a〉〈b| ⊗ |a〉〈b|. Then Eq. (3.14) returns

C[ρAB(p)] =
∑
ij,kl

[CρAB(p)]ij,kl |i〉〈j| ⊗ |k〉〈l|

=
1− p
d
|ψ+〉〈ψ+|+ p

d
1, (3.15)

which gives OSC[ρAB(p)] = (1/d, p/d, . . . , p/d). It is now clear why O(ρAB) is a very

coarse measure. In fact, it is zero for p = 1, i.e. for the maximally mixed state, while

it is always maximal for any p > 0,2. On the other hand, notice that isotropic states

are entangled only when p > 1/(d+ 1).

As a final remark, notice that since the OSR of a pure state |ψ〉〈ψ| equals the

square of the Schmidt rank of ψ, one concludes that the OSR of a pure state is as

coarse-grained as the corresponding SR.

3.4 The operator G-Concurrence

In this section we review the properties of a function of the OSC, which we call operator

G-concurrence (OGC), that is remarkably more sensitive3 than O(ρAB). We begin

2This observation can be rephrased by saying that when restricted to isotropic states, the OSR
coincides with an indicator function of correlations: it is constant and non-zero whenever there are
correlations (in the class).

3As we are going to see in the following, the OGC vanishes for any state with non–maximal OSR.
Nevertheless, when restricted to state with maximal OSR, the OGC varies smoothly with the OSC,
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by reporting the origin of the OGC, which was inspired by a family of entanglement

measures known as concurrence monotone [100], member of which is the renowned

G-Concurrence.

Definition 3.2 (Concurrence monotones [100]). Consider a d×d−dimensional bipartite

pure state |ψ〉 with Schmidt coefficients λi, with i = 0, . . . , d − 1. The concurrence

monotones Ck(ψ), with k = 1, . . . , d, of |ψ〉 are given by

Ck(ψ) :=

(
M [k](λ)

M [k](1/d)

)1/k

, (3.16)

where M [k](λ) are the kth−order elementary symmetric polynomial of λ0, λ1, . . . , λd−1

defined as in Eqs. (2.23). The normalizing factor M [k](1/d) is the kth−order elementary

symmetric polynomial when λi = 1/d for any i = 0, . . . , d−1. For bipartite mixed states

ρAB, the concurrence monotones C(ρAB) of ρAB are defined as the average Ck of the

pure states in the decomposition, minimized over all the possible decomposition of ρAB,

in formulae

Ck(ρAB) = min
i
piCk(|ψ〉), ρAB =

∑
i

pi |ψi〉〈ψi| . (3.17)

Finally, the G-concurrence is given by Ck(|ψ〉) with k = d, and it is equal to the

geometric mean of the Schmidt coefficients

Cd(ψ) = d(λ0λ1 . . . λd−1)1/d. (3.18)

By analogy with the definition above one could try to define a family of measures of

correlations which exploits the ESP in the OSC of a generic quantum states, instead of

using functions of the Schmidt coefficients and their convex roof extensions. However,

this is possible only for ESP of a certain order. For example, we will show at the end

of this section that the 1st−order ESP in the OSC is not monotone under LO, thus

it does not suit our purposes. On the other hand, the generalization of Eq. (3.18)

to a function involving the OSC looks promising and led us to consider the following

and can be considered a highly sensitive measure of correlations, especially if compared with O(ρAB).
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candidate measure of correlations.

Definition 3.3. The operator G-concurrence G(ρAB) of a bipartite state ρAB ∈ SAB
is the geometric mean of its OSC, i.e.

G(ρAB) :=

d2∏
i=1

r
1/d2

i , (3.19)

where the product runs over all the coefficients, including the null ones, and we are

denoting d = min{dA, dB}. Notice moreover that the OGC can be written as a function

of the correlation matrix:

G(ρAB) :=
[
det
(
C(ρAB)†C(ρAB)

)]1/(2d2)
, (3.20)

and as a function of the (d2)th−order ESP defined in Eq. (2.23):

G(ρAB) :=
[
M [d2](ρAB)

]1/d2

. (3.21)

That the OGC attains its minimum for product states follows trivially from having

included in its definition also the possible zero coefficients. This implies, in particular,

that any state with OSR strictly less than maximal has vanishing OGC. However, this

argument deserves a separate discussion which we reserve to deal with at the end of this

section, after assessing several properties of the OGC. To begin with, we demonstrate

here the monotonicity of the OGC under LO. We consider two cases. First, we regard

the action of the local maps as being deterministic, namely we consider the evolved

state as the result of one single transformation – described by ΛA ⊗ ΛB – applied to a

generic input state. Then, we investigate the monotonicity on average, namely when

the decomposition of a quantum channel into subchannels is taken into account. For

the sake of clarity, let us recall the following definition.

Definition 3.4. Given a channel Λ ∈ C(H,H′), a collection of linear maps {Λi} such

that Λ =
∑

i Λi is a channel is called an instrument, while the individual Λi are called
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subchannels.4

Then, given an instrument {Λi}, the evolution ρ under Λ =
∑

i Λi can be seen as

made of branches ρ 7→ Λi[ρ], each one occurring with probability qi := Tr(Λi[ρ]). On

the other hand, the global evolution Λ[ρ] can be regarded as the situation when the

information about which branch of the evolution the state went through is lost. With

this wording, a candidate measure of total correlations f is said to be monotonically

non increasing, on average, under LO when

f(ρ) ≥
∑
i

qif(Λi[ρ]). (3.22)

In what follows we show that the OGC does not increase under deterministic LO. On

the other hand, our reasoning allows to establish the monotonicity on average only

when the subchannels are given by single Kraus operators. Finally, we consider the

general case of arbitrary subchannels and show that the average monotonicity holds if

the LO are unital.

In order to tackle the monotonicity of the OGC under deterministic LO, certain

results about the spectral properties of quantum channels are needed. When we speak

about the spectrum of a quantum channel Λ : L(H)→ L(H′), we are tacitly implying

that its domain and range coincide, i.e. that dimH = dimH′. In this situation, the

transfer matrix of Λ is square, and it becomes meaningful to consider its eigenvalues.

From another perspective, one can see the eigenvalues of Λ are those complex numbers

λ such that

Λ[A] = λA, (3.23)

where the vector space structure of L(H) makes it possible to think of the operator

A ∈ L(H) as a vector – an eigenvector of Λ in fact. Another observation which will turn

useful is that since channels are hermiticity preserving, linearity implies Λ[A†] = λ̄A†.

For the sake of clarity we provide the following formal definition.

Definition 3.5 (Spectral radius of positive linear maps [57]). Given a linear map

4Observe that since channels are trace preserving, subchannels are trace non–increasing.
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Λ : L(H) → L(H), its spectrum spec(Λ) is defined as the set of eigenvalues of the

transfer matrix L associated to Λ. Moreover, its spectral radius is defined as %(Λ) :=

sup{|λ| | λ ∈ spec(Λ)}.

In view of the last definition, here we present a lemma which is necessary to prove

a useful result about the determinant of positive and trace non–increasing preserving

(PTN) linear maps.

Lemma 3.1 (Spectrum of positive maps [57]). For a positive linear map Λ : L(H)→

L(H), one has

%(Λ) ≤ ‖Λ[1]‖∞. (3.24)

In particular, if Λ is trace preserving or unital, then %(Λ) = 1.

Proof. The proof comes from a result of functional analysis, known as Russo-Dye theo-

rem [101], which implies that a positive map Λ is such that ‖Λ[A]‖∞ ≤ ‖Λ[1]‖∞‖A‖∞.

By comparing this fact with Eq. (3.23) one has |λ|‖A‖∞ ≤ ‖Λ[1]‖∞‖A‖∞, which in

turn implies Eq. (3.24). For the second part of the lemma observe that when Λ is

unital, i.e. Λ[1] = 1, there must be an eigenvalue equal to one. The same result holds

when Λ is trace preserving, i.e. Λ†[1] = 1, since the transfer matrix of Λ† is given

by L T (where L is the transfer matrix of Λ), and transposition does not change the

spectrum.

We finally have the following.

Theorem 3.2 (Determinant of PTN linear maps [57]). Let Λ : L(H) → L(H) be a

positive and trace preserving linear map. Then det(L ) ≤ 1, where L is the transfer

matrix of Λ.

Proof. Since Λ is hermiticity preserving, Eq. (3.23) together with its adjoint version

tell us that the eigenvalues of L are either real or come in complex conjugate pairs. It

follows that also their product, i.e. the determinant of Λ, must be real. In addition,

since Λ is trace preserving, Lemma 3.1 gives %(Λ) = 1, hence the claim.
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Theorem 3.3. G(ρAB) is non–increasing under LO, i.e. for any ρAB ∈ SAB and any

local channels ΛA : L(HA)→ L(HA) and ΛB : L(HB)→ L(HB), one has

G(ρAB) ≥ G(ΛA ⊗ ΛB[ρAB]). (3.25)

Proof. For notational convenience, we first prove the monotonicity under the action

of a local channel acting on A only, i.e. we show that G(ΛA ⊗ idB[ρAB]) ≤ G(ρAB).

Define ρ′AB := (ΛA ⊗ idB[ρAB]). Then, Eq. (3.10) gives

G(ρ′AB) =
[
det(C(ρ′AB)†C(ρ′AB))

]1/2(d2)

=
[
det(C(ρAB)†L †

ALAC(ρAB))
]1/(2d2)

= G(ρAB)| det(LA)|1/d2

≤ G(ρAB), (3.26)

where the last inequality comes from Theorem 3.2. In order to obtain the monotonicity

for local channels acting on both subsystems instead, it is enough to define ρ′AB :=

(ΛA ⊗ ΛB[ρAB]), invoke Eq. (3.11) rather than Eq. (3.10), and follow similar steps as

above.

In order to assess the average monotonicity of the OGC, we first consider the case

of a local instrument whose subchannels are given by single Kraus operators, as antic-

ipated. We conveniently define

ΛX [ · ] =
∑
i

ΛX,i[ · ] (3.27)

ΛX,i[ · ] = KX,i ·K
†
X,i, for any i, (3.28)

where X = A,B denote one part of a bipartite quantum system. We have the following

theorem.

Theorem 3.4. G(ρAB) is non–increasing, on average, under any LO whose subchan-
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nels are given by single Kraus operators, i.e.

G(ρAB) ≥
∑
ij

qijG(ρ′AB,ij), (3.29)

with qij = Tr(ΛA,i ⊗ ΛB,i[ρAB]), ρ′AB,ij = (ΛA,i ⊗ ΛB,j [ρAB])/qij, and ΛA,i,ΛB,j are as

in Eqs. (3.27)–(3.28).

Proof. For simplicity, we consider again the action of a local map acting on one sub-

system only – say A – hence we redefine qi = Tr(ΛA,i ⊗ idB[ρAB]) and ρ′AB,i =

(ΛA,i ⊗ idB[ρAB])/qi. Let ΛA =
∑

i ΛA,i. Moreover, let LA be the transfer matrix

of ΛA and, accordingly, let LA,i represents ΛA,i for any i. Similarly to the proof of

Theorem 3.3 and invoking again Eq. (3.10), observe that

C(ρ′AB,i) = C
(

ΛA,i ⊗ idB[ρAB]

qi

)
=

1

qi
LA,iC(ρAB). (3.30)

Then, by using

det
(
C(ρ′AB,i)

†C(ρ′AB,i)
)

= q−2d2

i det
(
C(ρAB)†L †

A,iLA,iC(ρAB)
)

= q−2d2

i |det LA,i|2 det
(
C(ρAB)†C(ρAB),

)
(3.31)

one finds that

∑
i

qiG(ρ′AB,i) =
∑
i

qi

[
det
(
C(ρ′AB,i)

†C(ρ′AB,i)
)]1/(2d2)

=
∑
i

qi

[
q−2d2

i |det LA,i|2 det
(
C(ρAB)†C(ρAB),

)]1/(2d2)

=
∑
i

|det LA,i|1/d
2

G(ρAB). (3.32)

To conclude, it is enough to prove that
∑

i | det(LA,i)|1/d
2 ≤ 1. To do so one can use

the arithmetic-geometric mean inequality [102–104], which says that for any positive
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definite matrix M of dimension d2 × d2 one has

det(M)1/d2 ≤ Tr(M)

d2
. (3.33)

By applying the inequality above to our context, and recalling that the matrix repre-

sentation of each ΛA,i is given by LA,i =
∑

iKA,i ⊗KA,i, we find:

∑
i

[
det
(
L †
A,iLA,i

)]1/2d2

≤ 1

d

∑
i

√
Tr
(
L †
A,iLA,i

)
=

1

d

∑
i

√
Tr
[(
KA,i ⊗KA,i

)† (
KA,i ⊗KA,i

)]
=

1

d

∑
i

Tr(K†A,iKA,i)

= 1, (3.34)

where in the last line the trace preserving property of ΛA, corresponding to
∑

iK
†
iKi =

I, has have been used.

It remains to study the case of local instruments whose subchannels are given by

an arbitrary combination of Kraus operators. In particular, here we consider maps of

the form

ΛX [ · ] =
∑
m

ΛX,m[ · ] (3.35)

ΛX,m[ · ] =
∑
i∈Im

KX,i ·K
†
X,i, (3.36)

where the index sets Im are arbitrary but satisfy Im ∩ Im′ = ∅, for m 6= m′. We have

the following.

Theorem 3.5. G(ρAB) is non–increasing, on average, under any unital LO, i.e.

G(ρAB) ≥
∑
mn

qmnG(ρ′AB,mn), (3.37)

where qmn = Tr(ΛA,m ⊗ ΛB,n[ρAB]), ρ′AB,mn = (ΛA,m ⊗ ΛB,n[ρAB])/qmn, and ΛA[1] =
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ΛB[1] = 1.

Proof. As before, we prove the claim for a local channel acting on A, i.e. we consider

qm =
∑

m Tr(ΛA,m ⊗ idB[ρAB]) and ρ′AB,m = (ΛA,m ⊗ idB[ρAB])/qm. The extension to

general two-sided LO is trivial and easily attainable using Eq. (3.11). Following similar

steps as in Theorem 3.4 [cf. Eq. (3.32)] we obtain

∑
m

qmG(ρ′AB,m) =
∑
m

|det(LA,m)|1/d2G(ρAB), (3.38)

thus the theorem is proven if we show that
∑

m | det(LA,m)|1/d2 ≤ 1.

Let ΛA and ΛA,m be as in Eqs. (3.35) and Eqs. (3.36), respectively, and define

Λ̂A = Λ†AΛA =
∑
m

Λ†A,m

∑
n

ΛA,n

=
∑
m=n

Λ†A,mΛA,n +
∑
m6=n

Λ†A,mΛA,n, (3.39)

where the composition of maps Λ†AΛA ≡ Λ†A ◦ΛA is understood. Since both ΛA and Λ†A

are CPTP maps, also Λ̂A is CPTP. Hence, the two sums on the rhs of Eq.(3.39) can be

regarded as subchannels. In particular, this implies that
∑

m Λ†A,mΛA,m[ · ] is a CP trace

non-increasing maps. Every ΛA,m is Hermiticity preserving, and the matrix associated

to Λ†A,m is given by L †
A,m. Furthermore, since composition of maps translates into the

product of the associated matrices, the matrix representation of
∑

m Λ†A,mΛA,m[ · ] is

given by
∑

m L †
A,mLA,m. Then Theorem 3.2 applies, giving

det

(∑
m

L †
A,mLA,m

)
≤ 1. (3.40)

We conclude by enforcing the Brunn–Minkowski inequality [105,106] for determinants,

saying that for any pair of positive semidefinite n × n matrices A and B, one has

(det(A+B))1/n ≥ (detA)1/n + (detB)1/n. This means that

∑
m

det(L †
A,mLA,m)1/2d2 ≤ det

(∑
m

L †
A,mLA,m

)1/2d2

, (3.41)
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which together with Eq. (3.40) concludes the proof.

3.4.1 Properties of the OGC

We have seen that a necessary condition that a measure of correlations must satisfy is

to be zero for product states, the latter carrying no correlation whatsoever. However,

it is also of interest to know the maximum value that a measure can attain. For what

the logarithm of the OSR is concerned the result is trivial, as O(ρAB) is maximal for

any state with maximal OSR, regardless of the presence of entanglement. The OGC

shows instead a more compelling behaviour regarding the states for which it reaches

its maximum value. We have the following.

Proposition 3.2. G(ρAB) is maximal if and only if ρAB is the maximally entangled

state.

Proof. The proof is divided in two parts. We first show that G(ρAB) is maximal if and

only if the OSC of ρAB are all equal to 1/d. In the second part we prove that a state

gives rise to such OSC if and only it is a maximally entangled state.

For the first part, recall that G(ρAB) is non-zero only when OSR is maximal, then

ri > 0 for any i. Furthermore, we argue that the maximum of G(ρAB) is achieved for

pure states. To see this, let {ai}ni=1 and {bi}ni=1 be two sets of positive numbers with∑
i ai ≤

∑
i bi. The arithmetic–geometric mean inequality [cf. Eq. (3.33)] implies that

n∏
i=1

ai ≤

(
n∑
i=1

ai
n

)n
≤

(
n∑
i=1

bi
n

)n
≤

n∏
i=1

bi. (3.42)

In other words, the set of coefficients with the larger sum will return the larger product.

This means that we can restrict our maximization problem to pure states, for which∑
i r

2
i is maximal (see Proposition 2.1). In conclusion, finding the maximum value of

G(ρAB) over pure states translates into maximising a sequence of d2 positive numbers

ri subject to the constraint
∑

i r
2
i = 1. Using the method of Lagrange multipliers, we

set

L(ri, λ) =

d2∏
i=1

ri − λ
( d2∑
i=1

r2
i − 1

)
(3.43)
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and solve the system of equations


∂

∂rj
L(ri, λ) = r−1

j

d2∏
i=1

ri − 2rjλ = 0 ∀ j ∈ {1, . . . , d2}

∂

∂λ
L(ri, λ) =

d2∑
i=1

r2
i − 1 = 0,

(3.44)

which gives ri = 1/d for all i ∈ {1, . . . , d2}.

For the second part, first observe that from the definition of maximally entangled

state it is direct to see that its OSC are all equal to 1/d. For the reverse implication,

we show that if OSC(ρAB) = (1/d, . . . , 1/d), then ρAB is pure and has completely

mixed marginals, namely ρAB is maximally entangled. Purity is a consequence of

Prop. 2.1, which gives Tr(ρ2
AB) =

∑d2

i=1 d
−2 = 1. To compute the marginals instead,

consider orthonormal basis {Ai}, {Bi} of L(HA),L(HB), respectively, so that ρAB =

1
d

∑d2

i=1Ai ⊗ Bi. Since ρAB is pure, ρA = TrB(ρAB) = TrB(ρ2
AB), thus we can obtain

the value of Tr(ρ2
A) by computing

Tr(ρ2
A) = Tr

 d2∑
i,j=1

1

d2
TrB[(Ai ⊗Bi)†(Aj ⊗Bj)]

2
= Tr

 1

d2

d2∑
i,j=1

A†iAj ⊗ TrB(B†iBj)

2
= Tr

 1

d2

d2∑
i=1

A†iAi

2
=

1

d
. (3.45)

It follows that ρA is completely mixed (and the same holds for ρB). The equality in the

last line of Eq. (3.45) is due to
∑n2

i=1A
†
iAi = d1, which can be proved as follows. Let

Ai = |k〉〈l|, where we are identifying the index i with the couple (k, l), with i = 1, . . . , n2
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and k, l = 1, . . . , n. Then one has

d2∑
i=1

A†iAi =

d∑
k,l=1

|l〉〈k|k〉〈l| = d1. (3.46)

To show that Eq. (3.46) is independent of the chosen basis, let Fj =
∑

i ujiAi be a new

orthonormal basis, where uji = Tr(A†iFj). The result
∑d2

i=1A
†
iAi =

∑d2

j=1 F
†
j Fj follows

from the unitarity of U .

Here we focus on the possibility of detecting entanglement and steering in bipartite

quantum states by looking at their OGC. The following result is consequence of the

realignment criterion for separability given in Theorem 2.4.

Theorem 3.6. A bipartite state ρAB ∈ SAB is entangled if G(ρAB) > d−2, and it is

steerable if G(ρAB) > d−3/2, where d = min{dA, dB}.

Proof. To prove the first claim we show that G(ρAB) is upper bounded by d−2 on the

set of separable states. To do so, it is enough to reformulate the maximization problem

in Eqs. (3.43) and (3.44) of Proposition 3.2 with the new constraint
∑d2

i=1 ri ≤ 1, that is

nothing but the RC (see Theorem 2.4). As discussed in Proposition 3.2, we can restrict

the maximization problems to states such that
∑d2

i=1 ri is exactly one, cf. Eq. (3.42)

The new Lagrangian reads

L(ri, λ) =

d2∏
i=1

ri − λ
( d2∑
i=1

ri − 1

)
. (3.47)

Solving the system of equations ∂
∂rj
L(ri, λ) = ∂

∂λL(ri, λ) = 0 gives ri = d−2 for any

i = 1, . . . , d2, implying that

sup{G(ρ) | ρ is separable} ≤ d−2. (3.48)

The claim about steerable states is proven in the same way, with the exception of

the constraint, which is dictated by Theorem 2.5 and takes on the form
∑d2

i=1 ri ≤
√
d.
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The optimization here yields

sup{G(ρ) | ρ is unsteerable} ≤ d−3/2. (3.49)

Remark. The results in Theorem 3.6 depend on the general fact that, given a sequence

of positive numbers with finite sum, their product is maximized when they are all equal.

However, there is no ρ which saturates the bounds of Eqs. (3.48) and (3.49). Indeed,

the maximally entangled state |ψ+〉〈ψ+| is the only state having maximal OSR and such

that the OSCs are all equal to each other. The proof of this fact is by contradiction.

Assume there exists a density matrix σAB with OSC(σAB) = (1/c, . . . , 1/c) and such

that c 6= d, i.e. there exist local orthonormal bases {Ai} and {Bi} such that

σAB =
1

c

∑
i

Ai ⊗Bi, σAB 6=
∣∣ψ+

〉〈
ψ+
∣∣ . (3.50)

On the one hand, if we assume c < d, Proposition 2.1 would imply Tr(σ2
AB) = d2c−2 >

1. On the other hand, c > d returns Tr(σA) = Tr(σB) = dc−2 < 1/d. To see this

last point, first notice that σAB must be pure in order to be a possible solution to the

maximization problems of Theorem 3.6 (as argued before). This means σAB = σ2
AB,

which implies

Tr(σA) = Tr
[
TrB(σ2

AB)
]

=
1

c2
Tr

∑
ij

A†iAj ⊗ Tr(B†iBj)


=

d

c2
, (3.51)

where we have used
∑

i Tr(A†iAi) = d, see the discussion after Eq. (3.45). Soth assump-

tions c < d and c > d give absurd conditions, in that they violate the bounds on the

purity of a quantum state and the unit trace condition, respectively. Hence, we con-

clude that the only open possibility is c = d, which is actually realized by any maximally
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entangled state.

As anticipated, an issue with the OGC is that it vanishes for any state with OSR

less than maximal, even if highly correlated. This means that the OGC is a measure

of correlations, i.e. it is not faithful. Loosely speaking, we could argue that the OGC

qualifies as a measure of total correlations only for state with maximal OSR. Although

the set of OSR-deficient states has zero measure, from a theoretical perspective it is

advisable to look for a generalization of the OGC which would measure the amount

of total correlations for every possible state in the Hilbert space. One is tempted to

consider the other ESP of Eqs. (2.23), as they don’t vanish like the OGC as soon as

a state is OSR–deficient. In particular, if a quantum state ρAB has OSR(ρAB) = K,

then all the lth−order ESP with l ≤ K are nonzero. Moreover, the ESP are Schur-

convex [107], meaning that the monotonicity of the single coefficients would imply the

monotonicity of all the ESP. However, the monotonicity of the individual OSC under

LO does not hold in general. To see this point it is enough to consider two product

state ρAB and σAB with different purities, i.e. such that r1 6= si, where r1 and s1 are

the single OSC of ρAB and σAB, respectively (see Proposition 2.1). Then, since we can

always map ρAB into σAB and vice versa by means of an opportune LO, the first OSC –

hence the 1st−order ESP – is not monotonic and cannot be used to define any measure

of total correlations. We were able to find a counterexample only to the monotonicity

of the 1st−order ESP. The possibility of considering the other ones remains open.

In Sec. 3.5 we introduce two new measures which do not suffer of the drawbacks of

O(ρ) and G(ρ), i.e. they depend smoothly on the OSC and do not vanish for OSR-rank

deficient states.

3.4.2 Majorization and local operations

One of the central problems of QM is to find conditions under which an entangled state

can be transformed into another one by local operations and classical communication

(see Sec. 1.2). In particular, identifying the set of quantum states that can be prepared

through LOCC starting form a given state ultimately translates to the question of

61



Chapter 3. Measuring total correlations

what tasks can be accomplished using a given physical resource [108]. In this section

we introduce a result showing how the theory of entanglement transformation is closely

related to the algebraic concept of majorization, which is a preorder relations on vectors

of real numbers [109–111] and it is defined as follows.

Definition 3.6 (Majorization of vectors [112]). Let us consider two vectors of real

numbers p = (pq, p2, . . . , pn) and q = (q1, q2, . . . , qn). We say that a is weakly majorized

by b (equivalently, b weakly majorizes a), written as a ≺w b, if and only if

k∑
i=1

a↓i ≤
k∑
i=1

b↓i for any k = 1, 2, . . . , n, (3.52)

where ↓ indicates that the components of the vectors are taken in decreasing order.

Moreover, if the additional condition
∑d

i=1 ai =
∑d

i=1 bi holds, we say that a is ma-

jorized by b (equivalently, b majorizes a), written as a ≺ b.5

The connection between majorization and entanglement was given in [108],6 where

the following theorem for pure states was derived:

Theorem 3.7 (Majorization and entanglement [108]). Let us consider two bipartite

vector |ψ〉 , |ϕ〉 ∈ HA ⊗HB. Let λφ and λϕ be the vectors of eigenvalues of TrB |ψ〉〈ψ|

and TrB |ϕ〉〈ϕ|, respectively. Then, |ψ〉 can be transformed to |ϕ〉 using local operations

and classical communication if and only if λψ is majorized by λϕ, in formulae

|ψ〉 −−−−→
LOCC

|ϕ〉 ⇔ λψ ≺ λϕ. (3.53)

The theorem above certainly is of major importance in QM, as it gives necessary

and sufficient conditions for entanglement transformation to be possible. It would be

interesting to see if such characterisation is attainable also in our context, namely

we wonder if the vector of the OSC of states transformed under LO – rather than

5Notice that majorization is not a partial order since a ≺ b and b ≺ a do not imply that the two
vectors are equal. We can only imply that a and b have the same components, but not necessarily in
the same order.

6The reader is referred to [113] (and reference therein) for an extensive review of the various appli-
cations of majorization in QM.
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LOCC – satisfies similar conditions to Theorem 3.7. In particular, we are looking for

majorization relations between certain normalized versions of the vector of the OSC. If

we denote by {ri} and {pi} the OSC of an arbitrary–dimensional bipartite state ρAB

and of its square root
√
ρAB, respectively, the normalized vectors we are considering

are given by

v1(ρAB) =

(
r1∑
i ri

,
r2∑
i ri

, . . . ,
rd2∑
i ri

)
(3.54)

v2(ρAB) =

(
r2

1∑
i r

2
i

,
r2

2∑
i r

2
i

, . . . ,
rd2∑
i r

2
i

)
(3.55)

v3(ρAB) = (p1, p2, . . . , pd2), (3.56)

where the usual convention about the dimensions of the subsystems is in force.

We can finally formulate our question rigorously. Given two quantum states related

by LO, i.e. σAB = (ΛA ⊗ ΛB)[ρAB], is it true that vi(ρAB) is majorized by vi(σAB),

for some i = 1, 2, 3?

Here we show that for i = 1, 2 we can find two quantum states connected by LO

but such that no majorization relation between the corresponding vectors vi is in place.

To see this, we reason as follows. First, for simplicity let us consider the action of one

local map only, e.g σAB = (ΛA⊗ idB)[ρAB], since the extension to two–sided operations

follows easily from their independence. Thanks to Stinespring dilation theorem 1.4, the

action of any channel ΛA can be characterized by introducing an auxiliary Hilbert space

HE and a particular protocol. In our context such protocol reads as follows. We say that

for any channel ΛA ∈ C(H,H′) there exists a Hilbert space HE and a unitary operation

U on L(H ⊗ HE) such that σAB = (ΛA ⊗ idB)[ρAB] = TrE [U(ρAB ⊗ |0〉〈0|E)U †], for

all ρAB ∈ SAB. In other words, the action of any channel can be simulated through

the operations of tensorization, unitary evolution and partial trace. Now notice that

since both the tensorization with the pure state in HE and the unitary operation are

performed locally, the OSC of ρAB are left unchanged by them. Then, if the OSC of

σAB are different from the OSC of ρAB, it can only depend upon the application of

the partial trace. In turn, looking for a majorization relation between the OSC (or
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between the vectors vi) of two quantum states related by LO translates into looking for

a majorization relation between the OSC (or between the vectors vi) of two quantum

states related by the partial trace. We are now in a position to introduce the sought

example. Consider the following state vector

|ψ〉 =
1√
3

(|001〉+ |110〉+ |111〉) , (3.57)

and write ρABC = |ψ〉〈ψ| and ρAB = TrC(ρABC). Moreover, consider the OSD of ρABC

with respect to the bipartition A : BC (and, of course, decompose ρAB with respect to

the bipartition A : B). Then, one easily verifies that

vi(ρABC) 6≺ vi(ρAB), for i = 1, 2. (3.58)

We can conclude that the fact that two states are related by LO does not imply that

the respective vectors defined by Eqs. (3.55)–(3.56) satisfy the supposed majorization

relation. On the other hand, we have run several numerical tests which corroborate the

plausibility of the majorization assumption for i = 3, i.e. no counterexample has been

found yet to the conjecture

ρ −−→
LO

σ ⇒ v1(ρ) ≺ v1(ρ). (3.59)

The absence of counterexample compels us to look for an analytic way to prove the

conjecture above. Moreover, other kinds of vectors based on the OSC can be taken into

consideration. These possibilities remain open and a represent an interesting starting

point for future research.

3.5 A fidelity–based measure

The measure of total correlation introduced in this section is based on a measure of

proximity between quantum states. The latter is defined as follows.

Definition 3.7. (Holevo’s Fidelity [114,115]) Given any two quantum states ρ and σ,
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the function

FH(ρ, σ) := [Tr(
√
ρ
√
σ)]2 (3.60)

is known as Holevo’s fidelity, also called Holevo“just-as-good fidelity”.

The function above was first introduced in [114] (without the square), where it was

proved that
√
FH is a measure of proximity for quantum states just as good as the

trace distance (from which the name), since

1−
√
FH(ρ, σ) ≤ 1

2
‖ρ− σ‖1 ≤

√
1− FH(ρ, σ). (3.61)

Proposition 3.3. FH satisfies the following properties:

i) 0 ≤ FH(ρ, σ) ≤ 1;

ii) FH(ρ, σ) = 1 iff ρ = σ;

iii) FH(ρ, σ) = 0 iff ρ ⊥ σ;

iv) FH is jointly concave. Using Uhlmann [116] and Stinespring theorems [59] (see

Theorem 1.4), one shows that the joint concavity of FH is equivalent to its mono-

tonicity under quantum operation, i.e.

FH(ρ, σ) ≤ FH(Λ[ρ]Λ[σ]), for any channel Λ. (3.62)

By using the Holevo’s fidelity and taking advantage of its properties, we define a

new measure of total correlations as a function of the proximity between a quantum

states and the state given by the products of its marginals.

Definition 3.8. For any bipartite state ρAB with marginals ρA and ρB, we define the

function

F(ρAB) := − log[FH(ρAB, ρA ⊗ ρB)]. (3.63)

We argue that F is a meaningful measure of total correlations.7

7The quantity F is equal to a particular instance of the quantum Rényi relative entropy. This fact
is proven in Sec. 3.7.
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Theorem 3.8. F(ρAB) attains its minimum for product states, in particular F(ρAB) =

0 if and only if ρAB is a product state. Moreover, F(ρAB) does not increase under local

operations, i.e. F(ρAB) ≥ F(ΛA ⊗ ΛB[ρAB]).

Proof. To see the first claim, notice that F(ρAB) = 0 if and only if FH(ρAB, ρA⊗ρB) =

1, which happens if and only if ρAB is the product of its own marginals (cf. properties

(ii) of Proposition 3.3).

The see the second claim observe that

F(ΛA ⊗ ΛB[ρAB]) = − log[FH(ΛA ⊗ ΛB[ρAB],ΛA[ρA]⊗ ΛB[ρB])]

≥ − log[FH(ρAB, ρA ⊗ ρB)]

= F([ρAB]), (3.64)

where the inequality is a consequence of properties (iv) of Proposition 3.3 together with

the monotonicity of the (minus) logarithm function.

3.5.1 Properties of F

Here we list some facts about F(ρAB) and its application to entanglement detection.

Proposition 3.4. Let us consider the state space SAB and denote d = min{dA, dB}.

F(ρAB) satisfies the following properties:

i) for any quantum state ρAB ∈ SAB, F(ρAB) ≤ log(d);

ii) F(ρAB) attains its maximum for the maximally entangled state ρAB = |ψ+〉〈ψ+|,

i.e. F(|ψ+〉〈ψ+|) = log(d).

Proof. i) Given a quantum state ρAB, let us consider the Schmidt decomposition of the

purification ρABC , which is given by

|ψ〉ABC =
∑
i

√
pi |ai〉A |bi〉BC . (3.65)

Notice that the marginals ρA and ρBC are diagonal in the respective local bases, then

we can easily consider their square roots (as for pure states). By using the monotonicity
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of FH one has

FH (ρAB, ρA ⊗ ρB) ≥ FH (|ψ〉〈ψ|ABC , ρA ⊗ ρBC)

= FH

(∑
kl

√
pkpl |ak〉〈al|A ⊗ |ak〉〈al|BC ,

∑
i

pi |ai〉〈ai|A ⊗
∑
j

pj |bj〉〈bj |BC

)
=
∑
ijkl

√
pipjpkpl Tr

(
|ak〉〈al|A ⊗ |bk〉〈bl|BC |ai〉〈ai|A ⊗ |bj〉〈bj |BC

)
=
∑
i

p2
i

= Tr
(
ρ2
A

)
. (3.66)

On the other hand, if we were to purify ρAB by attaching the ancilla on the subsystem

A, we would get FH (ρAB, ρA ⊗ ρB) ≥ Tr(ρ2
B). Then, in general we can conclude that

FH (ρAB, ρA ⊗ ρB) ≥ max
{

Tr
(
ρ2
A

)
,Tr

(
ρ2
B

)}
=

1

d
. (3.67)

ii) By definition of F(ρAB), its maximum correspond to the minimum of the Holevo

fidelity between ρAB and the product of the reduced states which, because of the joint

concavity of FH , is attained for pure states. By following similar steps as in Eq. (3.66)

one finds that for a pure state |ψ〉〈ψ|AB ∈ SAB with marginals ρA and ρB it holds that

FH (|ψ〉〈ψ|AB , ρA ⊗ ρB) = FH

(∑
kl

√
pkpl |ak〉〈al|A ⊗ |ak〉〈al|B ,

∑
i

pi |ai〉〈ai|A ⊗
∑
j

pj |bj〉〈bj |B

)
=
∑
ijkl

√
pipjpkpl Tr

(
|ak〉〈al|A ⊗ |bk〉〈bl|B |ai〉〈ai|A ⊗ |bj〉〈bj |B

)
=
∑
i

p2
i

= Tr
(
ρ2
A(B)

)
. (3.68)
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The theorem follows by recalling that the purity of the reduced density matrices is

minimal for the maximally entangled state, which has completely mixed marginals

To conclude, here we find an upper bound for F on the set of separable states. In

turn, this can be used for entanglement detection.

Proposition 3.5. For any separable state ρAB ∈ SAB, one has F(ρAB) ≤ log(
√
d).

Proof. Consider a generic separable state ρAB =
∑

i pi |ai〉〈ai| ⊗ |bi〉〈bi|. As before, we

study the Holevo’s fidelity between ρAB and the product of its reduced density matrices.

FH(ρAB, ρA ⊗ ρB) = FH

(∑
i

pi |αi〉〈αi|A ⊗ |βi〉〈βi|B , (3.69)

∑
i

pi |αi〉〈αi|A ⊗
∑
j

pj |βj〉〈βj |B

)
≥
∑
i

piFH(|αi〉〈αi|A ⊗ |βi〉〈βi|B , |αi〉〈αi|A ⊗ ρB)

=
∑
i

piFH(|βi〉〈βi|B , ρB)

= Tr

(∑
i

pi |βi〉〈βi|B
√
ρB

)

= Tr
(
ρ

3/2
B

)
=
∑
k

λ
3/2
k

≥ d
(

1

d

)3/2

=
1√
d
. (3.70)

The first inequality above comes from the joint concavity of the Holevo’s fidelity, while

the λi’s of the second to last line are the eigenvalues of ρB, so
∑

k λk = 1. The equality

in the third line is justified by the fact that adding or removing a fixed state (in this

case removing |α〉〈α|A) form the argument of FH does not change its value. Finally, the

last inequality follow from the fact that a uniform probability distribution is majorized

by any other, and the sum of power 3/2 is Schur convex. To conclude, we apply the

definition of F and get the claim.
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3.6 Decomposing the square root of a quantum state

The measure F(ρAB) introduced in the last section employs the square root of ρAB,

as well as of its marginals, via the application of the Holevo’s fidelity. Here we take a

closer look at the square root of a quantum state by making use of its OSD. We write

√
ρAB =

d2∑
i=1

√
piAi ⊗Bi, (3.71)

where d = min{dA, dB},
∑d2

i=1 pi = 1 and Tr(A†iAj) = Tr(B†iBj) = δij and the coeffi-

cients are sorted in decreasing order. Also, we consider the square root of the reduced

density matrices
√
ρA,
√
ρB and expand them over the bases {Ai}, {Bi}, respectively.

We obtain

√
ρA =

d2∑
i=1

Tr(
√
ρAAi)Ai (3.72)

√
ρB =

d2∑
i=1

Tr(
√
ρBBi)Bi. (3.73)

Notice that the OSC in Eq. (3.71) are denoted with pi instead of ri to highlight the

fact that they form a probability distribution. Moreover, the OSC of ρAB and
√
ρAB

are generally different, and the relationship between the two sets of coefficients is not

entirely clear.

The interesting feature of the decomposition (3.71) is that the largest OSC
√
pmax

of
√
ρAB – which can be expressed as the uniform norm of the correlation matrix

‖C(
√
ρAB)‖∞ – is monotonic, as we are going to see in Theorem 3.9. This allows for

the definition of an interesting measure of total correlations.

Definition 3.9. For any bipartite state ρAB, we define the function

C(ρAB) := − log ‖C(
√
ρAB)‖2∞. (3.74)

C(ρAB) satisfies the desired requirements:
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Theorem 3.9. C(ρAB) attains its minimum for product states, in particular C(ρAB) =

0 if and only if ρAB is a product state. Moreover, C(ρAB) does not increase under local

operations, i.e. C(ρAB) ≥ C(ΛA ⊗ ΛB[ρAB]).

Proof. Let us start by observing observing that the largest OSC
√
p1 of

√
ρAB is equiva-

lent to Tr(A†1⊗B
†
1
√
ρAB), according to Eq. (3.71). Moreover, since ‖A1‖22 = ‖B1‖22 = 1,

we can characterize ‖C(ρAB)‖∞ ≡
√
p1 as

‖C(
√
ρAB)‖∞ = max

M,N
‖M‖22=‖N‖22=1

∣∣Tr(M ⊗N√ρAB)
∣∣. (3.75)

We already know that Ai and Bi, thus M and N , can be chosen to be Hermitian. This

implies

Tr(M2) = Tr[(M+ −M−)2]

= [Tr(M+)2] + [Tr(M−)2]

= Tr(|M |2). (3.76)

In other words, M and N can be chosen to be square roots of quantum states (they

are positive semidefinite trace one operators), say M =
√
σ̃A, N =

√
σ̃B. Then, using

Eq. (3.75) and invoking the monotonicity of FH , one gets

‖C(
√
ρAB)‖∞ = Tr

(√
σ̃A ⊗

√
σ̃B
√
ρAB

)
≤ Tr

(√
ΛA[σ̃A]⊗

√
ΛB[σ̃B]

√
ΛA ⊗ ΛB[ρAB]

)
≤ max

M ′,N ′

‖M ′‖22=‖N ′‖22=1

∣∣∣∣Tr
(
M ′ ⊗N ′

√
ΛA ⊗ ΛB[ρAB]

) ∣∣∣∣
= ‖C

(√
ΛA ⊗ ΛB[ρAB]

)
‖∞. (3.77)
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3.7 Comparison between measures of total correlations

In this section we look for a relation between the measure of total correlations intro-

duced in the previous sections, i.e. F and C, and the quantum mutual information.

Before that, here we prove that the fidelity–based measure considered in Sec. 3.5 cor-

responds to a particular instance of the quantum Rényi relative entropy [117]. To see

this, we recall that the latter is defined as

Dα(ρ||σ) :=
1

α− 1
log Tr

(
ρασ1−α) , (3.78)

for α ∈ (0, 1) ∪ (1,∞). Among the several properties satisfied by the quantum Rényi

relative entropy, it is convenient to recall that α 7→ Dα(ρ||σ) is a monotonically in-

creasing function of α and, in particular, for α→ 1 one recovers the quantum relative

entropy defined in Sec. 3.1.

In order to compare the quantum mutual information with our fidelity–based mea-

sure of total correlations introduced in Sec. 3.5, we first notice that the latter is nothing

but the quantum Rényi relative entropy Dα(ρ||σ) for α = 1/2:

D1/2(ρ||σ) =
1

1/2− 1
log Tr(ρ1/2σ1/2)

= −2 log Tr(
√
ρ
√
σ)

= − log Tr(
√
ρ
√
σ)2

= − logFH(ρ, σ). (3.79)

Then, thanks to the monotonicity of Dα(ρ||σ) with respect to α, we are able to connect

our fidelity–based measure F(ρAB) to the quantum mutual information:

F(ρAB) := D1/2(ρAB||ρA ⊗ ρB)

≤ lim
α→1

Dα(ρAB||ρA ⊗ ρB)

= S(ρAB||ρA ⊗ ρB)

= I(ρAB) (3.80)
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For what the comparison between C and F is concerned instead, notice that

C(ρAB) := − log ‖C(ρAB)‖2∞

= min
σA,σB

D1/2(ρAB||σA ⊗ σB)

≤ D1/2(ρAB||ρA ⊗ ρB)

= F(ρAB). (3.81)

So, from Eqs. (3.80) and (3.81), we conclude that

C ≤ F ≤ I. (3.82)

The relational expression above is the final result of this chapter, and it validates

one more time the hypothesis that the OSD can offer useful tools in the study of total

correlations. It would be interesting to check if C and F are lower bounded by some

function of the QMI as well. In fact, this would imply that our measures are, in a sense,

equivalent to the QMI. We lastly notice that even if C and F might not be easier to

compute than the QMI, they surely enrich our knowledge about the OSD, its role in

the quantification of total correlations (which is the original motivation of this chapter)

and its relation to the most relevant measure of TC in Quantum Information theory.

3.8 Conclusion

By taking advantage of the operator Schmidt decomposition of a bipartite operator and

of its square root, we have introduced in this chapter several measures of correlations,

some of which have been shown to be faithful in the sense of Definition 3.1. Our results

validate the initial intuition that, in a similar manner to what happens at the pure

states level, the tensor product expression of bipartite density matrices carries valuable

information on the amount of correlation exhibited by quantum states. Furthermore,

we have also seen how such measures can be used to detect entanglement and discord.

Besides that, it is also remarkable that – thanks to the result of the last section –
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the measures of total correlations from Sec. 3.5 and 3.6 are in a sense equivalent to

the quantum mutual information. In order to give meaning to this statement, it looks

worthwhile to investigate further the properties of F and C, trying to learn to what

extent they can be employed alternatively to the QMI. However, other questions are

still open. In particular, it would be interesting to understand the behaviour of the

lth−order elementary symmetric polynomial in the OSC under the action of local maps

for 1 < l < d2, as well as to check the conjectured average monotonicity of the Operator

G-concurrence studied in Sec. 3.4. These issues are still under consideration, their

clarification being beneficial to the completion of [3].

This concludes the first part of our research project. In what follows, we change

our perspective and show how the degree of correlations possessed by a quantum state,

estimated through the OSD and the theory presented so far, can be exploited to allow,

and in certain cases enhance, some specific protocols actualizing the tasks of channel

discrimination and tomography.
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Channel discrimination

Channel discrimination is a fundamental task that falls under the umbrella of quan-

tum metrology [118, 119] and consists in the attempt to tell apart two or more known

channels; think of the situation where we want to probe the presence or absence of a

magnetic field. In the prototypical and simplest case, one of two channels is applied

once to a probe, and we try to identify the channel by performing a measurement on the

output probe. Channel discrimination is typically performed by tailoring the state of

the input probe to the channels to be discriminated. The wrong choice of input might

make the probability of correct identification less than optimal or even not better than

a random guess.

There can be advantages in channel discrimination by making use of correlations

between the probe and a reference ancilla. One possible advantage is that correlations

may lead to a probability of success in the discrimination that is higher than what pos-

sible without the use of an ancillary system [18,62,118,120–129]. In general, achieving

such a higher probability of success requires (i) to tailor the probe–ancilla input state

to the specific channels to be discriminated and (ii) input entanglement between probe

and ancilla. Another advantage provided by probe–ancilla correlations, on which we

focus in this thesis, is that they may allow to discriminate between an arbitrary pair

of known channels, without the need to tailor the input probe–ancilla state to avoid

‘being blind’ to the difference between the channels. This fact is at the basis of the

celebrated Choi-Jamio lkowski isomorphism [52,53] between linear maps and linear op-
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erators presented in Sec. 1.3.2. . The use of an ancilla allows one to perform channel

tomography – that is, to identify an unknown channel with many uses of the unknown

channel – with a fixed input state [15]. Such a feat can be achieved even in the absence

of entanglement, and Ref. [15] already identified the operator Schmidt rank (OSR) of

the probe–ancilla input state as the key property determining whether such state makes

ancilla-assisted tomography possible. An equivalent result was independently derived

in [130], where the faithfulnees of bipartite quantum states was introduced. A bipartite

state used in ancilla-assisted channel tomography is faithful if the action of the channel

on the probe leads to an output probe–ancilla state that is uniquely associated with the

specific channel. Nonetheless, the study of the usefulness of correlations in fixed-input

ancilla-assisted channel discrimination and channel tomography has been limited [131].

In this chapter we shed light on ancilla-assisted channel discrimination, providing an

analysis of how the operator Schmidt decomposition (OSD) of the probe–ancilla input

state affects the quality of the discrimination. In particular, we introduce a worst-case

quantifier for the performance of a probe–ancilla state in channel discrimination, the

Channel Discrimination Power (CDP). We provide general upper and lower bounds to

the CDP of a state in terms of the OSD of the state. We compute the exact CDP of

pure states. Remarkably, we show that, while correlated but unentangled states can

have non-zero CDP, and allow the discrimination of any pair of channels as long as

they have maximal OSR, they cannot have maximal CDP. More in general, we pro-

vide a non-trivial bound on the channel discrimination power of any state – entangled

or unentangled – that passes the realignment criterion for separability (see Sec. 2.2).

Furthermore, we prove that quantum discord provides a bound for the channel discrim-

ination power of a bipartite state.

4.1 Channel discrimination power

Channel discrimination is a generalization of state discrimination, where the objects to

tell apart are now channels. One can define a physically meaningful notion of distance

between two channels Λ0 and Λ1 via [128] D(Λ0,Λ1) := maxρ∈D(HS)D (Λ0[ρ],Λ1[ρ]),
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that is by considering the trace distance of the output states of a probe upon acting on

the same input state of the probe. One fundamental—and relevant for applications—

way in which quantum physics differs from classical physics, is that the distinguisha-

bility of two channels, as captured by D(Λ0,Λ1), can be enhanced by the use of en-

tanglement between the input probe and an ancilla [18, 62, 118, 120–129]. One can

prove that the best ancilla system can be chosen to be a copy S′ of the input probe

system S, so that we can introduce the diamond distance between Λ0 and Λ1 as

D�(Λ0,Λ1) := D(Λ0,S ⊗ idS′ ,Λ1,S ⊗ idS′), where idX indicates the identity map on

system X (cf. Sec. 1.4). The diamond distance formalizes the notion of best possible

one-shot distinguishability of two quantum channels.

{ρk} {Λα} M

(a)

ρAB

A
{Λα}

MB

(b)

Figure 4.1: Two strategies for distinguishing channels. (a) No ancilla is used: a probe
undergoes one of many possible quantum evolutions described by channels {Λα}, and
is later measured (box M). Many different input states {ρk} are in general needed to
discriminate between arbitrary channels, if one cannot tailor the input to the channels.
(b) ancilla–assisted: the probe A is correlated with an ancilla B; the output probe and
the ancilla are jointly measured. Depending on the initial probe–ancilla correlations, it
might be possible to distinguish between arbitrary evolutions, without modifying the
input.

In general, it is not possible to distinguish arbitrary quantum channels in T (HX ,

HY ) by means of their action on an input state ρ ∈ D(HX) of the probe alone that

is independent of the channels considered 1. Nonetheless, it is always possible to tell

two arbitrary channels in T (HX ,HY ) apart by ‘feeding’ them with many different

input states ρk. As long as {ρk} constitutes a basis for L(HX), and as long as an

arbitrary number of uses of the channel are allowed, one can even perform a tomographic

reconstruction of a channel Λ [see Figure 4.1a] [13].

1For example, consider the case where Λ0 is the identity channel, so that Λ0[σ] = σ for all σ, and
Λ1 is the channel with fixed output ρ. Then, obviously, D(Λ0[ρ],Λ1[ρ]) = 0, even if the two channels
are very different, and even having many copies of Λi[ρ] we cannot tell the two channels apart.
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Remarkably, it is possible to perform tomography of the channel, or the non-

trivial discrimination of an arbitrary number of channels, even with just a fixed in-

put state, as long as one uses an ancilla: this constitutes the framework of ancilla-

assisted channel discrimination and channel tomography [see Figure 4.1b]. Ref. [15]

proves both theoretically and experimentally that channel tomography is possible also

when the state ρAB of probe A and ancilla B is separable. The key condition that

permits channel tomography on A with ρAB is that OSR(ρAB) = d2
A. Indeed, one

has ΛA[ρAB] =
∑OSR(ρ)

i=1 riΛ[Ai] ⊗ Bi, and, as long as the state has OSR(ρ) = d2
A,

one can reconstruct the action of the map Λ on an arbitrary state σ ∈ D(HA) as

Λ[σ] =
∑d2A

i=1
1
ri
〈〈Ai|σ〉〉TrB(1A ⊗ B†i,BΛA[ρAB]). We improve on this basic observa-

tion, by introducing and studying a simple and meaningful measure of merit for the

usefulness of a fixed probe–ancilla state in channel discrimination.

For any quantum state ρAB ∈ D(HA ⊗HB), we define the channel discrimination

power (CDP) of ρAB on A (and similarly on B) as

CDPA(ρAB) := inf
Λ0,Λ1

D(Λ0,A[ρAB],Λ1,A[ρAB])

D�(Λ0,Λ1).
(4.1)

The infimum is taken over all pairs Λ0,Λ1 of quantum channels with input in L(HA),

and we have used the notation Λi,A := Λi,A⊗ idB. The parameter CDPA(ρAB) captures

how suitable ρAB is for ancilla-assisted channel discrimination as compared with the

optimal distinguishability of those two channels, in a worst-case scenario approach.

In the following we report a number of results about the channel discrimination

power. As notation goes, we will indicate the difference of two channels Λ0 and Λ1 as

∆ = Λ0 − Λ1. The channel discrimination power can then be expressed as

CDPA(ρAB) = inf
∆

‖∆A ⊗ idB[ρAB]‖1
‖∆‖�

. (4.2)

4.2 Properties of the CDP

One can easily prove that CDPA(ρAB) is continuous in its argument. To show that, first

notice that by definition of (Hermitian) super-operator 1-norm we have the following.
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Proposition 4.1. Let Γ be any Hermiticity preserving map, and XAB Hermitian.

Then

‖ΓA ⊗ idB[XAB]‖1 ≤ ‖Γ‖� ‖XAB‖1 . (4.3)

Proposition 4.2. CDPA(ρ) is continuous:

|CDPA(ρAB)− CDPA(σAB)| ≤ ‖ρAB − σAB‖1 , (4.4)

for any two states ρAB and σAB.

Proof. Because of the triangle inequality and Proposition 4.1, one has

‖∆⊗ id[ρAB]‖1 = ‖∆⊗ id[σAB] + ∆⊗ id[ρAB − σAB]‖1

≤ ‖∆⊗ id[σAB]‖1 + ‖∆‖� ‖ρAB − σAB‖1 , (4.5)

that is
‖∆⊗ id[ρAB]‖1 − ‖∆⊗ id[σAB]‖1

‖∆‖�
≤ ‖ρAB − σAB‖1 . (4.6)

The claim follows immediately.

Proposition 4.3. CDPA(ρ) is monotone under local channels on B:

CDPA(idA ⊗ ΛB[ρAB]) ≤ CDPA(ρAB). (4.7)

Proof. This comes directly from the monotonicity of the trace norm of Hermitian op-

erators under channels, i.e. from ‖Λ[X]‖1 ≤ ‖X‖1. One has

‖∆A ⊗ idB[idA ⊗ ΛB[ρAB]]‖1 = ‖∆A ⊗ idB[idA ⊗ ΛB[ρAB]]‖1

= ‖idA ⊗ ΛB[∆A ⊗ idB[ρAB]]‖1

≤ ‖∆A ⊗ idB[ρAB]‖1 , (4.8)

for any ∆ = Λ0 − Λ1, and the claim follows.
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Proposition 4.4. The channel discrimination power CDPA is invariant under local

unitaries on A.

Proof. For any map Λ on A and any unitary U on A we can consider the map Λ′[·] =

Λ[U † · U ] such that (ΛA ⊗ idB)[ρAB] = (Λ′A ⊗ idB)[UAρABU
†
A]. Given the freedom in

the minimization through which CDPA is defined, the claim follows immediately.

Notice that Proposition 4.3 immediately implies that, for fixed dimension of A,

the CDP assumes maximal value for pure states, as any bipartite state ρAB can be

seen as the reduced state of a pure state ψABB′ , with B′ a purifying system, and BB′

considered together as one ancilla. Furthermore, this fact together with Proposition 4.7

imply that the CDP of a pure state only depends on its Schmidt coefficients.

4.3 CDP of pure states

We find that for pure states the CDP can be computed exactly. We will need the

following lemma, which is a slight generalization of observations in, e.g., Ref. [132].

Lemma 4.1. Let |ψ〉AA′ =
∑d

k=1

√
pk |ak〉A⊗|bk〉A′ be a pure state with d = dA = dA′,

and the Schmidt coefficients ordered as p1 ≥ p2 ≥ . . . ≥ pd. Then

pd ‖∆‖� ≤ ‖∆⊗ id[|ψ〉〈ψ|]‖1 . (4.9)

Proof. We use the fact that any pure state |ψ〉AA′ can be expressed as

|ψ〉AA′ = (1⊗ C)
∣∣∣ψ̃+

〉
AA′

, (4.10)

with
∣∣∣ψ̃+

〉
AA′

=
∑d

k=1 |k〉A ⊗ |k〉A′ , and C =
∑d

l=1

√
pl |bl〉 〈a∗l |, where |a∗l 〉 is the basis

state whose coefficients in the basis |k〉 are the complex conjugates of those of |al〉.

Notice that the singular values of C coincide with the Schmidt coefficients of |ψ〉, and

the fact that |ψ〉 is normalized implies ‖C‖2 = 1, hence ‖C‖∞ ≤ 1.

The claim is trivial if pd = 0. If pd > 0, then C is invertible, and we can express
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any other state |φ〉AA′ = (1⊗D)
∣∣∣ψ̃+

〉
AA′

as

|φ〉AA′ = (1⊗DC−1) |ψ〉AA′ . (4.11)

Let |φ〉AA′ be the state that achieves the diamond norm ‖∆‖�, that is ‖∆‖� = ‖∆A ⊗

idA′ [|φ〉〈φ|AA′ ]‖1. Then

‖∆‖� = ‖∆A ⊗ idA′ [|φ〉〈φ|AA′ ]‖1

= ‖(1⊗DC−1)
(
∆A ⊗ idA′ [|ψ〉〈ψ|AA′ ]

)
(1⊗DC−1)†‖1

≤‖1⊗DC−1‖2∞‖∆A ⊗ idA′ [|ψ〉〈ψ|AA′ ]‖1

≤‖D‖2∞‖C−1‖2∞‖∆A ⊗ idA′ [|ψ〉〈ψ|AA′ ]‖1

= p−1
d ‖∆A ⊗ idA′ [|ψ〉〈ψ|AA′ ]‖1, (4.12)

where in the first inequality we have used Hölder’s inequality, |Tr(XY )| ≤ ‖X‖∞‖Y ‖1,

twice. For the last line, just observe that the largest singular value of C−1 is the

reciprocal of the smallest singular value of C.

Theorem 4.1. Let |ψ〉AB be a pure state with Schmidt decomposition as in (1.10).

Then, if dmin = dA = dB, CDPA(ψAB) = CDPB(ψAB) = pdmin
, while, if dmin = dA <

dB, CDPA(ψAB) = pdmin
and CDPB(ψAB) = 0.

Notice that it might be that pdmin
= 0, in which case both CDPA(ψAB) and

CDPB(ψAB) vanish. We remark that pdmin
is a quantifier of the entanglement of

|ψ〉AB [133]. Having already established that CDPA is maximal for pure states, we

find that it achieves its maximum, 1/dA, for maximally entangled states, e.g., for

|ψ+〉AB = 1√
dA

∑dA
i=1 |i〉A |i〉B. Note that it is reasonable that the maximum of the

channel discrimination power, being defined as in Eq. (4.1), decreases with dA, since

the number of parameters describing an arbitrary channel with input in A increases

with the size of A.

Proof. (of Theorem 4.1) Lemma 4.1 implies immediately CDPA(|ψ〉〈ψ|) ≥ pdA . We

will prove the inequality in the other direction, that is, CDPA(|ψ〉〈ψ|) ≤ pdA , by con-
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structing a pair of perfectly distinguishable channels that are hard to distinguish by

means of |ψ〉. We observe that, because in the case of pure states CDPA only depends

on the Schmidt coefficients, we can assume |ak〉 = |bk〉 = |k〉, without loss of generality.

Let us introduce the channels

Λ0[X] = Tr[PX] |2〉〈2|+ Tr[(1− P )X] |0〉〈0| , (4.13)

Λ1[X] = Tr[PX] |2〉〈2|+ Tr[(1− P )X] |1〉〈1| , (4.14)

with P =
∑dA−1

i=1 |i〉〈i| and 1−P = |dA〉〈dA|. Then, ∆[X] = 〈dA|X |dA〉 (|0〉〈0|−|1〉〈1|).

It is clear by their definition that the two channels are perfectly distinguishable, even

without the use of an ancilla, since

Λ0[|dA〉〈dA|] = |0〉〈0| , Λ1[|dA〉〈dA|] = |1〉〈1| , (4.15)

so that ‖Λ0 − Λ1‖� = ‖Λ0 − Λ1‖1 = 2. On the other hand,

‖(Λ0 − Λ1)⊗ id |ψ〉〈ψ|‖1 = ‖(|0〉〈0| − |1〉〈1|)⊗ TrA(|dA〉〈dA|A |ψ〉〈ψ|AB)‖1

= pdA ‖(|0〉〈0| − |1〉〈1|)⊗ |dA〉〈dA|)‖1

= 2pdA . (4.16)

Thus, we have proven that it must be CDPA(|ψ〉〈ψ|) ≤ pdA .

We now show that the CDP attains its maximum for the maximally entangles states.

Theorem 4.2. The channel discrimination power CDPA is maximal for maximally

entangled states, for which it is equal to 1/dA.

Proof. Given Propositions 4.3, it is clear that the maximum of the channel discrimina-

tion power is achieved by pure states. On the other hand, Theorem 4.1 tells us that

the CDP of a pure state is equivalent to the (square) of the last Schmidt coefficient.

The latter cannot be bigger than 1/dA, which is achieved for a maximally entangled

state.
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4.4 Bounds for mixed states

We now present general bounds for the CDP.

Theorem 4.3. Let ρAB ∈ SAB, with {Ai}, {Bi} the Hermitian local orthonormal bases

appearing in its OSD, cf. Eq. (2.2). Then

rd2A

d
5/2
A

≤ CDPA(ρAB) ≤ min
i

{
ri
‖Bi‖1
‖Ai‖∞

}
≤ rd2A

√
dAdB. (4.17)

Proof. We first prove rd2A
/d

5/2
A ≤ CDPA(ρAB).

We start by finding a lower bound for the numerator in the definition of the

CDPA(ρAB) [cf. Eq. (4.2)]. First, observe that

‖∆⊗ id[ρAB]‖1 =

∥∥∥∥∥∑
i

ri∆(Ai)⊗Bi

∥∥∥∥∥
1

= max
−1≤MAB≤1

∣∣∣∣∣Tr

(
MAB

∑
i

ri∆(Ai)⊗Bi

)∣∣∣∣∣
≥ max
−1≤MA≤1
−1≤MB≤1

∣∣∣∣∣Tr

(
MA ⊗MB

∑
i

ri∆(Ai)⊗Bi

)∣∣∣∣∣
≥ max

i

{
ri
‖∆[Ai]‖1
‖Bi‖∞

}
≥ rd2A max

i
‖∆[Ai]‖1. (4.18)

The first inequality is due to restricting the class of operators MAB to be prod-

uct. The second inequality is due to further choosing MA such that ‖∆[Ak]‖1 =

|Tr(MA∆[Ak])| and MB = Bk/‖Bk‖∞, with k the index such that the maximum over

i in the last line is achieved. Notice that, because of the orthonormality of the B′is,

this choice for MB selects only one term in the OSD of ρAB. The last inequality is due

to the fact that ‖Bi‖∞ ≤ ‖Bi‖2 = 1, and that ri ≥ rd2A by assumption.

The maximally entangled state can be expressed as |ψ+〉〈ψ+| = 1
dA

∑d2A
i=1Ci ⊗ C∗i

for any orthonormal operator basis {Ck} ⊂ L(HA), in particular for the one appearing
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in the OSD of ρAB. Thus, using Lemma 4.1,

‖∆‖� ≤ dA
∥∥∆⊗ id[

∣∣ψ+
〉〈
ψ+
∣∣]∥∥

1

= dA

∥∥∥∥∥ 1

dA

∑
i

∆ [Ai]⊗A∗i

∥∥∥∥∥
1

≤
∑
i

‖∆ [Ai] ‖1‖A∗i ‖1

≤ d5/2
A max

i
‖∆[Ai]‖1 ,

having used the triangle inequality, the fact that there are d2
A terms in the sum, and

that ‖A∗i ‖1 = ‖Ai‖1 ≤
√
dA‖Ai‖2 =

√
dA. Thus, combining the above,

CDPA(ρAB) = inf
∆

‖∆⊗ id[ρAB]‖1
‖∆‖�

≥
rd2A

d
5/2
A

,

which completes the first part of the theorem.

We now show how to upper bound the CDP. To do that, let us consider the following

channels:

Λi[X] = Tr(X)
1

dA
+ εTr(AlX)Yi, (4.19)

for i = 0, 1, with traceless Hermitian operators Y0 and Y1, and where Al is the local

basis operator of the OSD of ρAB corresponding to the lth OSC rl. Such maps are

trace-preserving by construction, and completely positive for ε small enough, e.g. for

ε ≤ 1/(dA‖Al‖∞‖max{‖Y0‖∞, ‖Y1‖∞}). Then,

∆[X] = εTr(AlX)(Y0 − Y1), (4.20)

and

‖∆⊗ id[ρAB]‖1 = ε

∥∥∥∥∥∑
i

ri Tr(AlAi)(Y0 − Y1)⊗Bi

∥∥∥∥∥
1

= ε ‖rl(Y0 − Y1)⊗Bl‖1

= rlε ‖Y0 − Y1‖1 ‖Bl‖1 . (4.21)
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On the other hand, we claim that

‖∆‖� = ε ‖Y0 − Y1‖1 ‖Al‖∞ . (4.22)

Before proving such claim, let us notice that Eqs. (4.21) and (4.22) complete the proof

of the theorem. Indeed, by recalling the definition of the CDP and using Eqs. (4.21)

and (4.22), one gets

CDPA(ρAB) ≤ rl
‖Bl‖1
‖Al‖∞

, (4.23)

for any l, that is

CDPA(ρAB) ≤ min
i

{
ri
‖Bi‖1
‖Ai‖∞

}
.

We observe that the right-hand side can be itself upper bounded:

min
i

{
ri
‖Bi‖1
‖Ai‖∞

}
≤ rd2A

‖Bd‖1
‖Ad‖∞

≤ rd2A
d

1/2
B ‖Bd‖2

d
−1/2
A ‖Ad‖2

= rd2A
(dAdB)1/2, (4.24)

where we have used properties of the p-norms in the second inequality.

We now prove Eq. (4.22). To do so, let us consider an arbitrary

|ψ〉 =
∑
i

√
pi |ai〉 |bi〉

= (1⊗ C)
∣∣∣ψ̃+

〉
(4.25)

where ‖C‖2 = 1 for |ψ〉 to be normalized (see the proof of Lemma 4.1). Notice that

‖∆⊗ id[|ψ〉〈ψ|]‖1 = ‖(1⊗ C)(∆⊗ id[
∣∣∣ψ̃+

〉〈
ψ̃+
∣∣∣])(1⊗ C)†‖1

= ‖ε(Y0 − Y1)⊗ CATl C†‖1

= ε‖Y0 − Y1‖1‖CATl C†‖1. (4.26)
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Thus, it is sufficient to prove that, for a given X = X†,

max
‖C‖2=1

‖CXC†‖1 = ‖X‖∞. (4.27)

Notice that ‖X‖∞ = ‖XT ‖∞. Let |x〉 be the eigenvector of X corresponding to the

largest eigenvalue (in modulus) ‖X‖∞. Choosing C = |x〉〈x| we have ‖CXC†‖1 =

‖ |x〉〈x|X |x〉〈x| ‖1 = ‖X‖∞, thus max‖C‖2=1 ‖CXC†‖1 ≥ ‖X‖∞.

To prove the other direction it is enough to prove that

‖CXC†‖1 ≤ ‖X‖∞Tr(C†C) = ‖X‖∞‖C‖22 = ‖X‖∞, (4.28)

for X = X† and C satisfying ‖C‖2 = 1. The inequality can be seen as a trivial

consequence of the fact that, for any vector |ψ〉, one has

| 〈ψ|CXC† |ψ〉 | = | 〈ψ|C(X+ −X−)C† |ψ〉 |

≤ 〈ψ|C(X+ +X−)C† |ψ〉

≤ ‖X‖∞ 〈ψ|CC† |ψ〉 , (4.29)

where we have used that any Hermitian matrix can be expressed as the difference

of two positive semidefinite matrices with orthogonal support,

X = X+ −X−, (4.30)

with X± ≥ 0, X+X− = X−X+ = 0, and that

X+ +X− ≤ ‖X‖∞1. (4.31)

We have proved the claim in Eq. (4.22), hence the theorem.

The bounds above are not tight in general, as proven by the results about pure

states. Nonetheless, they capture quantitatively, rather than purely qualitatively, the

fact that the necessary and sufficient condition for ρAB to always enable ancilla-assisted
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discrimination and tomography of an arbitrary channel on A is that OSR(ρ) = d2
A.

4.5 Bound for separable states

We recall that mixed unentangled states may have maximal OSR, that is OSR(ρAB) =

d2
A, so that, according to Eq. (4.17), they have non-zero CDP. This is the case, for

example, of isotropic states, considered more in detail below.

We now focus on the case dA = dB = d. As we have seen, CDP can be as high as

1/d. We prove that such a value cannot be achieved by states passing the realignment

criterion for separability [63, 134] (cf. Sec. 2.2). The proof makes use of the following

bounds, which characterize the correlations present in a state in terms of its purity,

and may be of independent interest.

Lemma 4.2. For any ρAB and any product state σA ⊗ σB, one has
∑

i≥2 r
2
i (ρAB) =

Tr(ρ2)− r2
1 ≤ ‖ρAB − σA ⊗ σB‖22.

Proof. We recall that the OSC ri(ρAB) are the singular values of the correlation matrix

[Cij(ρAB)]ij , with

Cij(ρAB) := 〈〈Fi ⊗Gj |ρAB〉〉, (4.32)

where {Fi} and {Gj} are arbitrary local orthonormal bases for operators. We will use

that, for any two matrices M and N , with ordered singular values σi(M) and σi(N),

respectively, it holds (see Corollary 7.3.5 in [60]),

∑
i

(σi(M)− σi(N))2 ≤ ‖M −N‖22. (4.33)

Notice that ri(σA ⊗ σB) = 0, for i ≥ 2. Thus,

∑
i≥2

r2
i (ρAB) =

∑
i≥2

(ri(ρAB)− ri(σA ⊗ σB))2

≤
∑
i

(ri(ρAB)− ri(σA ⊗ σB))2

≤ ‖C(ρAB)− C(σA ⊗ σB)‖22
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= ‖C(ρAB − σA ⊗ σB)‖22

= ‖ρAB − σA ⊗ σB‖22, (4.34)

having used that ‖C(X)‖2 = ‖X‖2 for any X.

Proposition 4.5. For any state ρAB on Cd ⊗ Cd, the smallest operator Schmidt coef-

ficient obeys

rd2 ≤
√

Tr(ρ2)− 1

d2
. (4.35)

Proof. Immediate, by using Lemma 4.2 in the case σA⊗σB = 1
d ⊗

1
d , and the fact that

∥∥∥∥ρAB − 1d ⊗ 1d
∥∥∥∥2

2

= Tr

((
ρAB −

1

d
⊗ 1
d

)2
)

= Tr(ρ2)− 1

d2
. (4.36)

Applying these bounds, we obtain the following.

Theorem 4.4. If the OSC of ρAB satisfy
∑

i ri ≤ 1, then rd ≤ rCN with

rCN =
d(d2 − 1)−

√
d2 − 1

d(d2 − 1)2 + d3
<

1

d2
. (4.37)

Proof. We want to find the maximal value rd2 can assume under the condition

∑
i

ri ≤ 1. (4.38)

We notice that Proposition 4.5 implies that the OSC of every state respect

r2
d2 ≤

∑
i

r2
i −

1

d2
(4.39)

(recall that Tr(ρ2) =
∑

i r
2
i ). We want aim to find the maximum of rd2 under conditions

(4.38) and (4.39), irrespectively of the physicality of the choice coefficient—as long as
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they respect (4.38) and (4.39). Notice that, by definition, ri ≥ 0, and r1 ≥ r2 ≥ . . . ≥ r2
d.

It it clear that the maximum rd2 will be found for the condition (4.38) being satisfied

with equality, since, if the left-hand side of (4.38) was smaller than 1, then we could

increase all the OSC, including rd2 , to make it equal to 1. Moreover, for fixed rd2 , the

largest value of
∑

i r
2
i is achieved for r2 = r3 = . . . = rd2 = r and r1 = 1−r. This is due

to the fact that
∑

i r
2
i is Schur convex. Thus, we can find the maximal rd2 compatible

with the constraints, by finding the largest r such that

r2 ≤ (d2 − 1)r2 + (1− (d2 − 1)r)2 − 1

d2
. (4.40)

One finds that such a value is given by

rCN =
d(d2 − 1)−

√
d2 − 1

d(d2 − 1)2 + d3
<

1

d2
. (4.41)

By combining Theorem 4.4 with Theorem 4.3 we prove that, if the OSC of ρAB

satisfy
∑

i ri ≤ 1, then CDP(ρAB) ≤ rCNd < 1/d. We remark that the realignment

criterion for separability is satisfied by all separable states, and by many (weakly)

entangled states [11,63,134].

4.6 Relation with discord

As we have just seen, entanglement is needed to achieve the maximal possible CDP.

Nonetheless, separable states can have non-vanishing CDP, when they have maximal

OSR. As pointed out in Ref. [94], this is not possible for states that do not exhibit

quantum discord. As seen in Sec.1.2.2, a bipartite state is classical on A if it can be

expressed as ρAB =
∑

i pi |ai〉〈ai|A⊗ρBi , for some orthonormal basis {|ai〉}. Such states

manifestly have OSR ≤ dA. On the contrary, states which are not classical on A may

be detected as discordant by looking at their OSR [94,96].

In this section we shed light on the role of discord in channel discrimination. To do
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so, it will be convenient to first study the behaviour of the CDP under the action of

maps that reduce the OSR.

Theorem 4.5. We have

CDPA(ρAB) ≤ min
Λ s.t.

OSR(Λ⊗id[ρAB ])<d2A

‖ρAB − Λ⊗ id[ρAB]‖1 (4.42)

where the minimization is over all channels that acting on A reduce the OSR of ρAB

to less than maximal.

Proof. It holds

‖∆⊗ id[ρAB]‖1 ≤ ‖∆⊗ id[ρAB − Λ⊗ id[ρAB]]‖1 + ‖(∆ ◦ Λ)⊗ id[ρAB]‖1

≤ ‖∆‖� ‖ρAB − Λ⊗ id[ρAB]‖1 + ‖∆⊗ id[Λ⊗ id[ρAB]]‖1 , (4.43)

having used Proposition 4.1. Then,

inf
∆

‖∆⊗ id[ρAB]‖1
‖∆‖�

≤ ‖ρAB − Λ⊗ id[ρAB]‖1 + inf
∆

‖∆⊗ id[Λ⊗ id[ρAB]]‖1
‖∆‖�

= ‖ρAB − Λ⊗ id[ρAB]‖1 , (4.44)

(4.45)

where we have used that the CDP of Λ ⊗ id[ρAB] (the second term on the right-hand

side of the inequality) vanishes under the assumption OSR (Λ⊗ id [ρAB]) < d2
A. The

claim then follows.

As a particular example involving the last theorem, let Π[X] =
∑d

i=1 |i〉〈i|X |i〉〈i|

be the channel which dephases in an arbitrary basis. Then

CDPA(ρAB) ≤ min
ΠA⊗idB

‖ρAB −ΠA ⊗ idB[ρAB]‖1 . (4.46)
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In the light of the last theorem, we find that

CDPA(ρAB) ≤ min
ΛA s.t.

OSR(ΛA[ρAB ])<d2A

2D(ρAB,ΛA[ρAB])

≤ min
ΠA

2D(ρAB,ΠA[ρAB]). (4.47)

The first minimization is over channels that reduce the OSR of ρAB to less than max-

imal. The second minimization is over projective measurements of the form Π[L] =∑
i |ai〉〈ai|L |ai〉〈ai|, for a choice of basis {|ai〉} to be optimized over. The quantity on

the second line is a known geometric discord quantifier [135]. Thus, we see that the

bipartite state ρAB must be contain a large amount of discord in order for ρAB to be

useful in one-shot, worst-case ancilla-assisted channel discrimination.

4.7 CDP of isotropic states

As an example that goes beyond pure states, here we consider the class of isotropic

states [99] defined in Eq. (3.13). As already observed, this is a paradigmatic class of

noisy states that interpolates between an uncorrelated state (for p = 0) and a maximally

entangled state (for p = 1). Isotropic states are separable for 0 ≤ p ≤ 1
d+1 and entangled

for 1
d+1 < p ≤ 1. This is also the class of states used in Ref. [15] in the context of

ancilla-assisted channel tomography, where it was already observed that this class of

states enables channel tomography as soon as p > 0. It is known and immediate to

check that ∣∣ψ+
〉〈
ψ+
∣∣ =

1

d

d2∑
k=1

Ak ⊗A∗k (4.48)

for any orthonormal operator basis {Ak}, with complex conjugation taken in the local

Schmidt basis of the maximally entangled state. We can choose A1 = 1√
d
, and find

immediately

ρAB(p) =
1

d

1√
d
⊗ 1√

d
+
p

d

d2∑
k=2

Ak ⊗A∗k, (4.49)
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where {Ak} is any collection of d2− 1 traceless orthonormal operators. Thus, the OSC

of ρAB(p) are evidently (1/d, p/d, . . . , p/d). Notice that rd2 = p/d, so that the general

bounds (4.17) become p/d7/2 ≤ CDP(ρAB(p)) ≤ p; we are able to prove the following

bounds, which reproduce the correct value for CDP in the limit in which the isotropic

states become maximally entangled.

Theorem 4.6. For the isotropic state it holds

p

d+ 1− p
≤ CDPA(ρAB(p)) ≤ min

{
2
p

d
,

1

d

}
. (4.50)

Proof. We start by proving the upper bound. That CDPA(ρAB(p)) ≤ 1/d can be

straightforwardly be verified by using the same two maps (4.13) and (4.14) that were

used to prove the upper bound for pure states. In order to prove CDPA(ρAB(p)) ≤ 2p/d,

we will use the bound CDPA(ρAB) ≤ mini

{
ri
‖Bi‖1
‖Ai‖∞

}
from Theorem 4.3, exploiting

the freedom in choosing the decomposition (4.49). E.g., we can choose A2 = (|1〉 〈2|+

|2〉 〈1|)/
√

2, with B2 = A∗2 = A2, so that ‖A2‖∞ = 1/
√

2 and ‖B2‖1 =
√

2. Thus,

CDPA(ρAB(p)) ≤ r2
‖B2‖1
‖A2‖∞

=
p

d

‖A2‖1
‖A2‖∞

=
p

d
2.

For the lower bound, we generalize the approach of Lemma 4.1. Given two arbitrary

channels, let |ψ〉〈ψ| be optimal for the diamond norm of their difference, i.e.

‖∆‖� = sup
ρ
‖∆⊗ id[ρ]‖1 = ‖∆⊗ id[|ψ〉〈ψ|]‖1 (4.51)

and let us consider C such that

|ψ〉AA′ = (1⊗ C)
∣∣∣ψ̃+

〉
AA′

(4.52)

Notice that TrA(|ψ〉〈ψ|) = CC†, with CC† ≥ 0 a normalized state.

Let us define the state

σ(p) := (1− p)1
d
⊗ CC† + p |ψ〉〈ψ|
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= d(1⊗ C)

[
(1− p)1

d
⊗ 1
d

+ p
∣∣ψ+

〉〈
ψ+
∣∣] (1⊗ C†)

= d(1⊗ C) ρAB(p) (1⊗ C†). (4.53)

Then,

|ψ〉〈ψ| = 1

p

[
σ(p)− (1− p)1

d
⊗ CC†

]
, (4.54)

and

‖∆‖� = ‖∆⊗ id[|ψ〉〈ψ|]‖1

=

∥∥∥∥1

p

[
∆⊗ id[σ(p)]− (1− p)∆

[
1

d

]
⊗ CC†

]∥∥∥∥
1

≤ 1

p
‖∆⊗ id[σ(p)]‖1 +

1− p
p

∥∥∥∥∆

[
1

d

]∥∥∥∥
1

=
d

p

∥∥∥(1⊗ C) ∆⊗ id[ρAB(p)] (1⊗ C†)
∥∥∥

1
+

1− p
p

∥∥∥∥∆

[
1

d

]∥∥∥∥
1

≤ d

p
‖C‖2∞ ‖∆⊗ id[ρAB(p)]‖1 +

1− p
p

∥∥∥∥∆

[
1

d

]∥∥∥∥
1

≤ d

p
‖∆⊗ id[ρAB(p)‖1 +

1− p
p

∥∥∥∥∆

[
1

d

]∥∥∥∥
1

. (4.55)

Lastly, since 1
d = TrB(ρAB(p)) and the partial trace is a channel, the monotonicity of

the trace distance implies

∥∥∥∥∆

[
1

d

]∥∥∥∥
1

= ‖∆A [TrB(ρAB(p))]‖1

= ‖TrB (∆A[ρAB(p)])‖1

≤ ‖∆⊗ id[ρAB(p)]‖1 . (4.56)

Thus,

‖∆‖� ≤
(
d+ 1− p

p

)
‖∆⊗ id[ρAB(p)]‖1 , (4.57)

from which we obtain

CDPA(ρAB(p)) ≥ p

d+ 1− p
. (4.58)
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4.8 Conclusion

In this chapter we focused on the usefulness of quantum correlations for ancilla-assisted

channel discrimination with fixed input, introducing the channel discrimination power

(CDP) of the input state. We argued that the key factor that dictates the CDP of a

state is its smallest operator Schmidt coefficient. We proved that the CDP is maximal

for maximally entangled states. This can be seen as an argument to consider the Choi-

Jamio lkowski isomorphism [52, 53] as the best possible one-to-one mapping between

states and maps. We derived general bounds for the CDP that allowed us to prove that

highly entangled states outperform—in the sense of having a larger CDP—all states

that pass the so-called realignment criterion of separability [63, 134]. We added to the

list of quantum information processing tasks for which the quantum discord provides

a bound on the performance: we proved that a disturbance-based discord quantifier

bounds the CDP. Several questions remain open, like whether the CDP is equal to the

lowest operator-Schmidt-coefficient of the state, and which channels are the hardest

to discriminate for a given input state. Finally, while the CDP is defined in terms of

optimal probability of channel discrimination, it would be interesting to consider more

in general how a probe–ancilla state induces a mapping between a metric on the space

of channels and a metric in the space of output probe–ancilla states (see Chapter 6).
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Correlation–assisted process

tomography

One critical element in accomplishing the progress promised by quantum information

is the ability to completely and accurately characterize quantum physical processes. In

the extensive literature upon the subject, one recognises two major, extreme examples

of quantum process tomography: standard quantum process tomography (SPT) and

ancilla–assisted quantum process tomography (AAPT). In the general case of SPT, an

unknown quantum channel Λ acting on a d-level system (also called a qudit) can be

reconstructed through its action on an ensemble of linearly independent input states

[13, 16, 17]. In particular, a probe is prepared in a fixed set of d2 input states {ρi},

which form a basis for the space of qudit linear operators. Each of the ρi states goes

through the process Λ to be characterized, and the outputs Λ[ρi] are determined using

quantum state tomography [13,136,137] (see Figure 5.1). Once the outputs are known,

{ρi} Λ M

Figure 5.1: Standard quantum process tomography. To reconstruct the action of a
channel Λ acting on a d-dimensional system A, d2 linearly independent input states {ρi}
are needed, with state tomography done on the outputs by means of measurement(s)
M . Time goes from left to right. Single lines represent quantum systems, and boxes
represent operations: a square box has quantum input and quantum output, while a
D-shaped (reverse-D-shaped) box has only quantum input (quantum output).
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ρAB

A
Λ

MB

Figure 5.2: Ancilla-assisted quantum process tomography. One input state ρAB suffices,
as long as it has Operator Schmidt Rank equal to the square of the input dimension of
the channel.

the evolution under Λ of any arbitrary operator can be determined uniquely by linearity,

thus characterizing the channel. An alternative tomographic technique is offered by the

renowned AAPT [15,130,138] which, in contrast to SPT, needs only one single bipartite

input state. As seen in the previous chapter, the possibility of performing AAPT can be

seen as a consequence of the correspondence between linear maps and linear operators

established by the well-known Choi-Jamio lkowski isomorphism [52, 53]. In general, an

ancillary system B is prepared in a correlated state ρAB with the quantum system

subject to the channel to be determined, the probe A. Complete information about

the channel can be imprinted on the global state by the action of the process on the

probe alone, and then extracted by state tomography on the bipartite output state (see

Figure 5.2).

An input enabling enabling AAPT is the maximally entangled state |Φ〉AB =∑d
i=1 d

−1/2 |i〉 ⊗ |i〉, with the output ρΛ = (Λ ⊗ id)[|Φ〉〈Φ|AB] simply being the Choi-

Jamio lkowski state isomorphic to Λ [52,53,138].

However, it was observed [15,130] that the key property for a bipartite input to en-

able AAPT is that of having maximal Operator Schmidt Rank (OSR), with a refining

of this observation being that the channel discrimination power of a bipartite state is

dictated by its smallest operator Schmidt coefficient [1]. It follows that, in principle,

also non-entangled but correlated states can be used to perform AAPT. Bipartite states

carrying a complete imprinting of a channel acting on one of the two subsystems were

defined as faithful in Ref. [130]. Nonetheless, non-faithful states can still be used to ob-

tain substantial albeit partial information on the action of a channel. This observation

suggests that the property of being faithful can be associated with a set of bipartite

states, the latter being faithful when any unknown channel can be fully retrieved from
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the tomographic reconstruction of the corresponding output states [130]. Indeed, SPT

can be seen as an extreme case of such a situation, where the presence of an ancilla

is actually irrelevant, and one just uses a faithful set of probe states. We remark that

the correlations present in one or more of the bipartite states of a faithful set can

be deemed as effectively assisting process tomography as long as the faithful set com-

prises less than d2 states. The results in this chapter lie between the two archetypical

techniques sketched above, and focus on the exploitation of correlations to reduce the

number of distinct inputs needed for what we could call in general correlation-assisted

process tomography (CAPT).

5.1 Correlation-assisted process tomography

The tomographic scheme proposed in this section arises from the question of whether

and how a faithful set can be generated by means of local actions {Γi} on a fixed input

state (see Figure 5.3). In the case where there is no ancilla (or, if there is an ancilla,

where there are no probe–ancilla correlations), a local action is not very different from

simply considering d2 inputs, but one may need strictly less than d2 local operations

on the input if correlations are present between probe and ancilla. That is, our results

may be interpreted as an interpolation between the use of fully uncorrelated or fully

correlated (that is, having maximum OSR) input states.

We show in general that a faithful set can always be generated via
⌈

d2

OSR(ρAB)

⌉
local

transformations on a fixed bipartite state. Notice that this is optimal, as it is clearly

impossible to generate a faithful set with less local operations. We also consider the

ρAB

A
{Γi} Λ

MB

Figure 5.3: Correlation-assisted quantum process tomography. Any bipartite state ρAB
can be used in this scheme. The presence of correlations in the state may substantially
reduce the number of known channels {Γi} that need to be applied so that {Γi,A[ρAB]}
is a faithful set. Standard process tomography and ancilla-assisted process tomography
are extreme cases of this more general scenario.
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case where such local transformations are constrained to be unitary. For pure fixed

states, we find that such a constraint does not change the result: any pure bipartite

state of Schmidt rank k (hence with OSR equal to k2) can be used to generate a

faithful set with
⌈
d2

k2

⌉
unitaries. For mixed states, the constraint can actually be limit-

ing: we exhibit a class of qudit-qudit states with OSR equal to two but such that one

still needs d2 local unitaries to generate a faithful set. We conjecture that in general

one may need
⌈

d2

OSR(ρAB)−1

⌉
local unitaries to generate a faithful set. On the other

hand, the mixed-state case can display a highly “efficient” (in terms of local unitaries

employed) generation of a faithful set; specifically, we exhibit a family of qudit-qudit

states with OSR ≈ d2/2 where only two unitaries are needed to achieve faithfulness;

notice that such a case is impossible in the pure-state case. Finally, by exploiting the

relation between SO(3) and SU(2) (that is, in a sense, the Bloch ball qubit repre-

sentation), we fully characterize the qubit-qudit case for qubit channels, once more

highlighting the importance of discord in the issue of correlation-assisted channel to-

mography/discrimination: a two-qubit state gives rise to a faithful set with at most

two local unitaries if an only if it exhibits discord on the probe side.

5.2 Generating a faithful set of inputs with general local

channels

As anticipated, AAPT requires the preparation of a bipartite system in a single bipartite

state ρAB. One subsystem (the probe) is sent through the channel Λ to be characterized.

Using Eq. (2.2), the output ρΛ := (Λ⊗ id)[ρAB] reads

ρΛ =

OSR(ρAB)∑
l=1

rlΛ[Al]⊗Bl. (5.1)

Then, by reconstructing ρΛ, one recovers the action of the channel on the basis element

Al via Λ[Al] = TrB((1⊗B†l )ρΛ)/rl (for rl > 0). It follows that inputs with maximal OSR

enable complete characterization of the channel, since its action on a complete operator

basis of L(HA) can be reconstructed [15, 130]. It is clear that input states defined as
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faithful are states with maximal OSR, more precisely with OSR = d2
A. Correspondingly,

a set of (potentially unfaithful, when considered individually) bipartite states {ρAB,i}

is called faithful if the local operators {Al,i}
OSR(ρAB,i)
l=1 of OSD(ρAB,i), when considered

together, generate the whole L(HA), i.e., if span({Al,i}l,i) = L(HA).

The core idea of this chapter is to show that the correlations of a fixed bipartite

state, of whatever degree, can in principle be exploited to allow “more efficient” process

tomography. Such correlations can be measured through the logarithm of the OSR (see

Sec. 3.3). Indeed, the OSR is minimal for and only for non correlated (product) states,

and it is monotone under local channels. Not relying on correlations, like in SPT, is

the same as considering minimal OSR – that is, OSR equal to one – for the inputs. On

the other hand, fully relying on correlations, like in AAPT, means requiring maximal

OSR for a single bipartite input. These considerations legitimate the intuition that

intermediate values for the OSR should be consistent with the use of an intermediate

number of inputs.

In this section we analyze how we can achieve the condition span({Al,i}) = L(HA)

indicated earlier, where each set {Al,i}l is a local orthonormal basis for (Γi ⊗ id)[ρAB],

for Γi the local operations applied on the probe before it is subject to the channel Λ

(see Figure 5.3).

Let us first remark why channel tomography is certainly possible in this setup.

The reason is simple: each channel Γi may simply be taken to have constant output

corresponding to one of the input states ρiA used in standard channel tomography

(Figure 5.1). With this “trivial” strategy, we do not make use of correlations at all,

but we certainly achieve the task at hand. Having established this, let us move to the

issue of “optimizing” the Γi’s, at least with respect to their number.

Let {Al}d
2

l=1 be a Hermitian local orthonormal basis for the operator Schmidt de-

composition for ρAB, comprising the OSR(ρAB) elements corresponding to non-zero

OSCs. It is clear that span({Al,i}l) = span({Γi[Al]}l), so that span({Al,i}l,i) = span

({Γi[Al]}l,i). Thus, our goal is the following: given {Al}
OSR(ρAB)
l=1 , find a (minimal)

way of choosing the local maps Γi so that span({Γi[Al]}l,i) = L(HA). By minimal, we

mean that we want to identify the smallest possible number of local channels Γi that
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are needed to achieve such a condition. In the following we provide a construction to

achieve this.

Let us consider the following family of maps,

Γi[X] := (1− ε) Tr(X)
1
d

+ ε Γ̃i[X], (5.2)

which are each a convex combination (for 0 ≤ ε ≤ 1) of the totally depolarizing channel

X 7→ Tr(X)1
d and of

Γ̃i[X] :=
∑
j

Tr(AjX)Aγj,i +

Tr(X)−
∑
j

Tr(AjX) Tr(Aγj,i)

 1
d
. (5.3)

Notice that Γ̃i is not necessarily a channel, but it is a linear map that is trace preserving

by construction. Here we denote γj,i := j ⊕ (i · OSR(ρAB)), and the Ai’s form a local

orthonormal basis that is a superset of the local operators of the OSD of ρAB. The

symbol ⊕ indicates addition modulo d2, and we let i = 1, 2, 3 . . .. By construction,

the maps Γi[X] are trace preserving, and, for 0 < ε < 1 small enough, completely

positive. This is because, within the set of linear trace-preserving maps, there is a ball

of completely positive maps around the totally depolarizing channel. Notice that, in

principle, we could consider any other channel with full-rank fixed output, at the “cost”

of considering some other ε. Such full-rank fixed output (as well as ε) could even be

made to depend on i.

It is easy to recognize the action of Γi on the generic basis element An:

Γi[An] =
(

Tr(An − εAγn,i)
)1
d

+ εAγn,i , (5.4)

i.e. the i−th map, acting upon the n-th element of the local basis, returns a linear com-

bination of the basis element indexed as n⊕(i ·OSR(ρAB)) and of the identity. To make

the action of the channels clearer, let us consider the action of, e.g., Γ1. The latter would

map the set {An}OSR(ρAB)
n=1 to {

(
Tr(An − εAn⊕OSR(ρAB))

)
1
d + εAn⊕OSR(ρAB)}

OSR(ρAB)
n=1 .

Thus, it should be clear that – up to the detail of whether we need to choose a fixed
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state different from the maximally mixed one in (5.2) and (5.3) in order to certainly

obtain a set whose elements are all linearly independent from the other generated sets –

given an incomplete set of basis elements {An}OSR(ρAB)
n=1 , we are able to obtain operators

spanning the same space as the remaining d2
A−OSR(ρAB) ones through the application

of d d2A
OSR(ρAB)e − 1 channels. This leads directly to the following theorem.

Theorem 5.1. Let ρAB be a bipartite state with OSR(ρAB) = k. Then there is a set

of quantum channels Γi, with i = 1, . . . , dd
2
A
k e, such that {(Γi ⊗ id)[ρAB]}i is faithful.

Without loss of generality, one of the channels can be taken to be identity channel.

5.3 Generating a faithful set of inputs with unitary local

channels

In this section we consider constraining the local channels Γi that act on the probe

in Fig. 5.3 to be unitary. The question we address is that of determining how many

unitary rotations Ui are needed in order to obtain a faithful set of input states {Ui ⊗

1ρABU
†
i ⊗1}i. As discussed in the case of general local operations, this corresponds to

finding out how many unitary rotations are needed so that {UiAlU †i }i,l spans the entire

space L(HA), where {Al}l is a set of orthonormal local OSD operators corresponding

to non-zero operator Schmidt coefficients.

We remark that in the case where we impose the constraint that the channels be

unitary, the fact that process tomography is possible at all is not immediate. Indeed,

it is not anymore the case that this is possible for all input states ρAB. Nonetheless,

we prove that it is possible for all states that are not of the form 1A
d ⊗ ρB: notice that

the latter states are not only uncorrelated, but such that the state of the probe A is

maximally mixed. Notice also that this means that any form of correlations is enough

to make process tomography by local unitaries possible.

Let us first establish this result.
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5.4 Process tomography via local unitary rotation of al-

most any input

It is convenient to recall the definition of frame [139]. Such a concept is generally

defined for families of vectors in inner product spaces. In our framework we exploit the

inner product structure of L(H) and define a frame as a collection {Pk} of operators

such that there are real numbers 0 < a ≤ b <∞ satisfying

a‖X‖22 ≤
∑
k

|Tr(PkX)|2 ≤ b‖X‖22 (5.5)

for any X ∈ L(H). A frame generalizes the notion of basis. Notice in particular that,

if the frame is actually an orthonormal basis, that is, if Tr(P †kPl) = δkl, then the frame

condition (5.5) is satisfied with a = b = 1. In finite dimensions, a finite collection

{Pk} is a frame for L(H) if and only if it is a spanning set for L(H), while an infinite

collection {Pk}, even when a spanning set, may not constitute a frame, as there might

not be a finite b that satisfies (5.5). The lower bound in (5.5), for a > 0, ensures that X

can be reconstructed from the values Tr(PkX). It should be clear that, given a frame,

one can always consider a subset of the elements of the frame, so that such subset forms

a basis, that is, a spanning set of linearly independent operators.

What we will prove is that it is possible to choose d2 unitaries {Ui}d
2

i=1 (with U1 = 1

without loss of generality) so that {UiρU †i }i is a frame and a basis for the space of

operators of the input ancilla, initially prepared in the state ρ, as long as ρ 6∝ 1. To

prove this, we will need the notion of twirling, or twirl operation [31]. The latter is the

linear projection T on bipartite operators Y ∈ L(Cd ⊗ Cd) defined as

T (Y ) =

∫
U

(U ⊗ U)Y (U † ⊗ U †)dU, (5.6)

where the integral is taken with respect to the Haar measure of the unitary group in

Cd. Since any operator commuting with all unitaries of the form U ⊗U can be written

as a linear combination of 1 and V (where V is the flip operator, defined implicitly by
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its action V |ψ〉 ⊗ |ϕ〉 = |ϕ〉 ⊗ |ψ〉, for all |ψ〉 , |ϕ〉 ∈ Cd), it follows that [31]

T (Y ) = α(Y )1 + β(Y )V.

The coefficients α(Y ) and β(Y ) are fixed by the conditions

Tr(T (Y )) = Tr(Y ) (5.7)

Tr(T (Y )V ) = Tr(Y V ), (5.8)

solved by

α(Y ) =
dTr(Y )− Tr(Y V )

d3 − d
, (5.9)

β(Y ) =
dTr(Y V )− Tr(Y )

d3 − d
. (5.10)

We will use the fact that the twirling can be approximated by a unitary 2-design, that

is by a finite set of n unitaries {Ui}ni=1 such that [31]

T (Y ) =
1

n

n∑
i=1

Ui ⊗ UiY U †i ⊗ U
†
i . (5.11)

We will obtain our frame by taking d2 of such unitaries.

Let {Ui}ni=1 be a unitary 2-design (without loss of generality, one of the unitaries

can be taken to be the identity). Let us check the frame conditions (5.5) of {UiAU †i }ni=1,

for an arbitrary A ∈ L(Cd). One has

n∑
i=1

|Tr(UiAU
†
iX)|2

=

n∑
i=1

Tr(UiAU
†
iX) Tr(UiA

†U †iX
†)

=
n∑
i=1

Tr
(

(Ui ⊗ Ui)(A⊗A†)(U †i ⊗ U
†
i )(X ⊗X†)

)
∝ Tr(T (A⊗A†)X ⊗X†)
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= Tr((α(A⊗A†)1 + β(A⊗A†)V )X ⊗X†)

= α(A⊗A†) Tr(X ⊗X†) + β(A⊗A†) Tr(V X ⊗X†)

= α(A⊗A†)|Tr(X)|2 + β(A⊗A†)‖X‖22, (5.12)

where α(A⊗A†) and β(A⊗A†) are given by Eqs. (5.9) and (5.10) applied to the case

Y = A⊗A†, so that

α(A⊗A) =
d|Tr(A)|2 − ‖A‖22

d3 − d
, (5.13)

β(A⊗A) =
d‖A‖22 − |Tr(A)|2

d3 − d
. (5.14)

Working in finite dimensions, we see that the frame condition (5.5) is achieved as long

as α(A⊗A†) > 0, β(A⊗A†) > 0, which means as long as

d|Tr(A)|2 ≥ ‖A‖22 (5.15)

and

|Tr(A)|2 < d‖A‖22. (5.16)

Let us assume that A is the state ρA, specifically the reduced state ρA of the probe.

Then, the first inequality is automatically satisfied. Moreover, the Cauchy-Schwartz

inequality implies that |Tr(A)|2 ≤ |Tr(1)|‖A‖22 = d‖A‖22, with equality if and only if

A ∝ 1. Having assumed that A is the state ρA, this is the condition that ρA is not

maximally mixed.

Thus, we have found that, independently of the presence of an ancilla, as long as

the reduced state ρA of the probe is not maximally mixed, we can find d2 unitaries,

one of which is the identity, such that {UiρAU †i }ni=1 is a tomographically faithful set. If

we assume that A is a state, specifically the reduced state ρA of the probe, this is the

condition that ρA is not maximally mixed.

We can extend this result to the case where there are non-vanishing correlations.

The operator A for which we want that {UiAU †i }d
2

i=1 be a tomographically complete set
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can be taken to be any linear combination of the Hermitian operator Schmidt operators

{Al}l corresponding to non-zero operator Schmidt coefficients (one example being the

reduced state ρA). Suppose ρAB is not product. Then there are at least two terms

in its OSD, and at least one between one of the Ai’s and the reduced state ρA is

not proportional to the identity; we can then consider A in the above construction of

the frame some linear combination of the latter two operators that respect conditions

(5.15)–(5.16).

On the other hand, since a state of the form 1A
d ⊗ρB is invariant under local unitary

transformation on A, we have proven our statement:

Theorem 5.2. For all non product bipartite states and for all product states ρAB such

that ρA 6= 1A/d, there always exist d2 unitary operators Ui ∈ SU(d) such that the set

{(Ui ⊗ id)ρAB(Ui ⊗ id)†}d2i=1 is faithful.

5.5 Pure probe–ancilla state

For pure states we are able to find the optimal number of local unitaries needed to

construct a faithful set starting from a fixed pure state of Schmidt rank k:

|ψ〉〈ψ|AB =

k∑
i,j=1

√
pipj |i〉〈j|A ⊗ |i〉〈j|B . (5.17)

Theorem 5.3. Let |ψ〉〈ψ|AB be as in Eq. (5.17). Then, there are n :=
⌈
d
k

⌉2
local

unitaries Ui such that the set given by {(Ui ⊗ 1) |ψ〉〈ψ|AB (Ui ⊗ 1)†}n−1
i=0 , with U0 = 1,

is faithful.

Proof. Let |ψ0〉 = |ψ〉. State tomography of the output (Λ ⊗ id) |ψ0〉〈ψ0| determines

the channel Λ partially, i.e., its action on {|i〉〈j|} only for i, j = 1, . . . , k. To obtain the

image under Λ of the remaining |i〉〈j| elements, it is convenient to consider the case

when k divides d.

WE will start by analyzing how it is possible to reconstruct the action of Λ on all
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of {|i〉〈j|} for i, j?1, . . . , 2k. Let us define the set of operators

Aij = |i〉〈j| , (5.18)

Bij = |i+ k〉〈j + k| , (5.19)

Cij = |i+ k〉〈j| , (5.20)

Dij = |i〉〈j + k| (5.21)

for i, j = 1, . . . , k, and where sums within kets should be in general understood modulus

d. Also, let us introduce unitary operators whose action restricted to the vectors |n〉,

for n = 1, . . . , k, is given by

X |n〉 = |n+ k〉 ,

U |n〉 = 2−1/2(|n〉+ |n+ k〉),

V |n〉 = 2−1/2(|n〉+ i |n+ k〉).

Acting locally on |ψ〉〈ψ|, such operators produce the following states

|ψ1〉〈ψ1| :=(X ⊗ 1) |ψ〉〈ψ| (X ⊗ 1)†

|ψ2〉〈ψ2| :=(U ⊗ 1) |ψ〉〈ψ| (U ⊗ 1)†

|ψ3〉〈ψ3| :=(V ⊗ 1) |ψ〉〈ψ| (V ⊗ 1)†.

Define Λ[Y ] = [Λ[Yij ]]
k
i,j=1, for X = A,B,C,D. Then Λ[A] is reconstructed through

tomography of (Λ⊗ id) |ψ0〉〈ψ0| (as already noticed), while Λ[B] is obtained from (Λ⊗

id) |ψ1〉〈ψ1|. On the other hand, Λ[C] and Λ[D] can be reconstructed by measuring the

four outputs (i.e. (Λ⊗ id) |ψl〉〈ψl| for l = 0, . . . , 3) and then combining the results. To

be more precise, since

Cij = UAijU
† + iV AijV

† − 1 + i

2
(Aij +XAijX

†) (5.22)

Dij = iV AijV
† − UAijU † −

i− 1

2
(Aij +XAijX

†), (5.23)
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linearity implies

Λ[Cij ] = Λ[UAijU
†] + iΛ[V AijV

†]− 1 + i

2
(Λ[Aij ] + Λ[XAijX

†]) (5.24)

Λ[Dij ] = iΛ[V AijV
†]− Λ[UAijU

†]− i− 1

2
(Λ[Aij ] + Λ[XAijX

†]). (5.25)

Thus, we see that we have reconstructed Λ[|i〉〈j|] for i, j = 1, . . . , 2k with four local

unitaries.

Information on the remaining Λ[|i〉〈j|] can be reconstructed similarly. The theorem

follows by reiterating this procedure, until recovering the action of Λ on all the blocks.

More explicitly, it is possible to reconstruct Λ[|i〉〈j|] for i, j ∈ {1 + p · k, . . . , k + p · k}

and p = 0, . . . , d/k− 1 by considering the action of p−labelled d/k unitaries (one being

the identity) each performing one of the transformations

|n〉 7→ |n+ p · k〉 . (5.26)

Once these ‘on-diagonal blocks’ have been reconstructed, it is then possible to further

reconstruct the ‘off-diagonal blocks’ Λ[|i〉〈j|] for i ∈ {1 + p · k, . . . , k + p · k} and j ∈

{1 + q · k, . . . k + q · k}, p 6= q by the use of (d/k(d/k − 1))/2 pairs of unitaries that

perform the transformations

|n〉 = 2−1/2(|n+ p · k〉+ |n+ q · k〉) (5.27)

|n〉 = 2−1/2(|n+ p · k〉+ i |n+ q · k〉). (5.28)

This gives a total of d/k + 2 · (d/k(d/k − 1))/2 = (d/k)2 unitaries.

If k does not divide exactly d, then one needs to consider an additional set of

unitaries, but obviously the cost (in terms of unitaries) cannot be larger than in the

case where we imagine the A system embedded in a d′ dimensional system, with d′ =

d dke · k.

In the light of the last theorem we see that the higher the correlations (in terms of the

OSR) of the fixed pure state, the less Ui are required. As expected, when the fixed pure
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state has maximal OSR, one recovers completely the AAPT scenario. For pure states

with OSR = 1, the number of experimental settings to perform channel tomography is

again the one of SPT. As a final remark we observe, by looking at the proof of Theorem

5.3, that one can derive the specific form of a particular set of Ui, besides establishing

their existence.

Contrary to the pure state case, for the case where the fixed state is mixed, we

have not derived a formula which directly links the OSR of the input to the number

of unitaries needed to reach faithfulness. However, in the following we gives specif

examples that show that also when the fixed state is mixed, the presence of correla-

tions dramatically reduces the number of local unitaries required to perform channel

tomography.

5.6 Mixed probe-ancilla state: qubit-qudit inputs

The first example involves a qubit-qudit system, for qubit channel tomography. We

show that reducing the cardinality of the faithful set created by local unitaries on the

qubit depends strongly on the quantumness of correlations on the qubit side. Before

going into the details it is convenient to recall that a bipartite state is called classical on

A if it can be expressed as ρAB =
∑

i pi |ai〉〈ai|A⊗ρBi for some orthonormal basis {|ai〉},

and that states that are not classical on A are said to have non-zero quantum discord,

cf. Sec. 1.2.2. Also, we will make use of the following Lemma, in which we use the

notion of Bloch vector for a generic Hermitian operator L = L†, given by ~l = (l1, l2, l3),

with li = Tr(σiL) and σi, i = 1, 2, 3, the Pauli operators.

Lemma 5.1. Consider Hermitian operators A,B ∈ L(C2). Then, A and B commute

if and only if their Bloch vectors are proportional.

Proof. Let σ0 = 1 and denote a0 = Tr(A), b0 = Tr(B). Let also ~a = (a1, a2, a3) and

~b = (b1, b2, b3) be the Bloch vectors of A and B, respectively, so that A = 1
2

∑3
i=0 aiσi

107



Chapter 5. Correlation–assisted process tomography

and B = 1
2

∑3
i=0 biσi. Observe that

[A,B] =

[
1

2

3∑
i=0

aiσi,
1

2

3∑
i=0

biσi

]

=
1

4

3∑
i,j=0

aibj [σi, σj ]

=
1

4

3∑
i,j,k=1

aibj 2iεijkσk

=
i

2

3∑
k=1

 3∑
i,j=1

aibjεijk

σk

=
i

2
(~a×~b) · ~σ, (5.29)

where we used the Levi-Civita symbol εijk, and × indicates the standard cross prod-

uct between three-dimensional vectors. Since σ1, σ2, σ3 are linearly independent, the

expression in the last line above is zero if and only if the cross product ~a×~b vanishes,

which happens if and only if ~a = λ~b, with λ ∈ R.

We are now in the position to state as follows.

Theorem 5.4. Let A be a qubit. Then, ρAB has quantum discord on A if and only

if ρAB allows correlation-assisted process tomography on A with at most two unitary

rotations.

Proof. We recall that a qubit-qudit state has zero discord on the qubit side if and

only if ρAB = p |a1〉〈a1|A ⊗ ρB1 + (1 − p) |a2〉〈a2|A ⊗ ρB2 , with {|a1〉 , |a2〉} some or-

thonormal basis for A. While this is not necessarily the operator Schmidt decom-

position, it is clear that the state only allows to reconstruct the action of a chan-

nel Λ on span({|a1〉〈a1| , |a2〉〈a2|}) = span({1, |a1〉〈a1|}). Overall, a single additional

unitary rotation U allows us to reconstruct only the action of the same map on

span({1, |a1〉〈a1| , U |a1〉〈a1|U †}), which is not enough to tomographically reconstruct

the channel. A geometric way of thinking about this is that the resulting four Bloch

vectors are necessarily coplanar, and do not span affinely R3 (see Fig. 5.4a).
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On the other hand, assume that ρAB has non-zero discord on A. This implies that

there are some correlations, that is, that OSR(ρAB) ≥ 2. Without loss of generality,

we can assume that the OSD of ρ must nontrivially contain A1 and A2 that do not

commute, since, if all the non-trivialAi’s that appear in the OSD of ρAB commuted pair-

wise, they would all commute, and there would not be any discord. From Lemma 5.1,

the Bloch vectors of A1 and A2 are not collinear. This means that there is a rotation R

of such vectors such that the resulting four vectors identify affinely independent points

which span R3, (see Fig. 5.4b). Via the homomorphism between SO(2) and SU(3), the

rotation R corresponds to unitary rotation U such that {ρAB, UA⊗1BρABU †A⊗1B} is

faithful.

(a) With no discord (b) With discord

Figure 5.4: Bloch representation of two local operators for system A before (blue dots)
and after (red dots) a local unitary rotation, for the case of a two-qubit state ρAB. (a) In
the case of no discord, the blue dots correspond to the representation of two orthogonal
pure states; red dots and blue dots are necessarily coplanar, independently of the
unitary transformation, and hence do not span the entire three-dimensional (Bloch)
space: channel tomography is not possible. (b) In the case with discord, the blue
dots represent the (rescaled) Bloch component of two orthonormal (with respect to the
Hilbert-Schmidt inner product) operators A1 and A2 that enter the OSD decomposition
of ρAB not trivially, and that do not commute; there is a unitary such that red dots and
blue dots are not coplanar, and hence span the entire three-dimensional space: channel
tomography is possible.
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5.7 Mixed probe–ancilla state: examples of efficient gen-

eration of faithful sets

In this example we present a family of mixed states of two qudits which generate

faithful sets with even only two local unitaries, one being the identity. In order to

construct the example we will make use of the Weyl (or generalized Pauli) basis for the

space of d× d linear operators, which is given by XkZ l with k, l = 0, . . . , d− 1, where

X =
∑d−1

p=0 |p+ 1〉〈p|, Z =
∑d−1

q=0 ω
q |q〉〈q| and ω = e2πi/d is a root of unity. Both X and

Z are unitary, so that X† = X−1 (similarly for Z). Since Xd = Zd = 1, the sets {Xk}k
and {Z l}l form cyclic groups under multiplication, and we can think that the exponent

is taken modulus d. Let F = 1√
d

∑d−1
k,l=0w

kl |k〉〈l| be the discrete Fourier transform

unitary. One has FXF † = Z, FZF † = X†, and the braiding relation ZX = ωXZ,

from which one deduces FXkZ lF † = ZkX−l = ω−klX−lZk, and that the action of F ·F †

on the basis elements XkZ l induces closed and disjoint orbits within {XkZ l}k,l (up to

irrelevant phases), defined as O(k, l) = {FnXkZ lF †n | n = 0, . . . , 3}. Specifically, one

has

FXkZ lF † = ω−klX−lZk, (5.30)

F 2XkZ lF †2 = X−kZ−l, (5.31)

F 3XkZ lF †3 = ω−klX lZ−k, (5.32)

while F 4 = 1 so that obviously F 4XkZ lF †4 = XkZ l. Such orbits contains either

one, two, or four distinct elements. The only orbits with a single element are the one

including the identity, corresponding to (k, l) = (0, 0), for both d even and odd, and the

one corresponding to the element Xd/2Zd/2 for d even. No orbit can contain exactly

three distinct elements, as this would require that one of such elements is invariant

under F ·F †, which is a contradiction for an orbit that contains more than one element

and that is known to close necessarily under four repeated actions of F · F †.

Consider the set O = {O(k, l)} of orbits (up to irrelevant phases). We identify

O(k, l) = O(k′, l′) if XkZ l is in the same orbit as Xk′Z l
′

(up to irrelevant phases). Con-

110



Chapter 5. Correlation–assisted process tomography

sider the set P(1) = {W (1)(O)|O ∈ O} composed of one Weyl-operator representative

W (1)(O) per orbit O (the exact choice of representative is irrelevant in this case). It is

clear that ∪3
i=0F

iP(1)F †i = {XkZ l}k,l up to irrelevant phases, where we have have used

the shorthand notation Λ{Km} for the image {Λ[Km]} of a set {Km} under the action

of a map Λ. In particular, span(∪3
i=0F

iP(1)F †i) = span({XkZ l}k,l). Furthermore, it is

also clear that there is a choice of pairs of representatives (the two representatives may

be chosen to coincide, in the case of 1-element and 2-element orbits) per orbit, forming

a set P(2) = {W (2)
1 (O),W

(2)
2 (O)|O ∈ O}, such that ∪1

i=0F
iP(2)F †i = {XkZ l}k,l (up

to irrelevant phases).

Let us be more concrete, providing a specific choice for the set P(1). We consider

two cases, according to the parity of d. First, let d = 2m+1 be odd. It is easy to verify

that (up to irrelevant phases) we can pick

P(1) = {XkZ l | k = 0, . . . ,m; l = 1, . . . ,m} ∪ {1}. (5.33)

If d = 2m is instead even, then we can choose (again, up to irrelevant phases)

P(1) = {XkZ l | k = 0, . . . ,m− 1; l = 1, . . . ,m} ∪ {1, XmZm}. (5.34)

Notice the the above sets P(1) contain (d2 + 3)/4 and (d2 + 8)/4 elements, for odd and

even dimension respectively, thus scaling approximately as d2/4.

One can similarly construct a set P(2) ⊂ {XkZ l}k,l, with approximately ≈ d2/2

elements, such that P(2) ∪ FP(2)F † spans the entire operator space. For example,

one can take P(2) = P(1) ∪FP(1)F †, where elements that are identical up to a phase

factor are equated.

The issue we still have to face is how to use the facts above to construct, e.g., a

state σAB ∈ L(Cd⊗Cd) with OSD(σAB) ≈ d2/2 such that {σAB, UA⊗1AσABU †A⊗1A}

is a faithful set for channel tomography on qudit A. This is easily done by considering
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the Hermitian operators

Hk,l =
1√
2

(
XkZ l + (XkZ l)†

)
=

1√
2

(
XkZ l + ωklF 2(XkZ l)F †2

)
, (5.35)

Jk,l =
1

i
√

2

(
XkZ l − (XkZ l)†

)
=

1

i
√

2

(
XkZ l − ωklF 2(XkZ l)F †2

)
(5.36)

where we have used the relation F 2XkZ lF †2 = X−kZ−l and the braiding relation of

X and Z. The operators Hk,l and Jk,l obviously span the same operator subspace as

XkZ l and F 2(XkZ l)F †2. Furthermore, we will use the fact that, given any Hermitian

operator H in finite dimensions, there is ε > 0 small enough (more precisely, it is

enough that ε|λ−(H)| ≤ 1, with λ−(H) the most negative eigenvalue of H) such that

1 + εH is positive semidefinite. Thus, for example, given our choice of P(1) above, it

is clear that, for, say, d odd (the even case is handled similarly), we can take

σAB ∝
1A

d
⊗ 1B

d
+ ε

(d−1)/2∑
k=0

(d−1)/2∑
l=1

(Hk,l ⊗Hk,l + Jk,l ⊗ Jk,l) . (5.37)

with ε > 0 small enough. Then, by construction,
{
σAB , (FA ⊗ 1B)σAB(FA ⊗ 1B)†

}
is

a faithful set. Notice that σAB has OSR less or equal to 2d−1
2

(
d−1

2 + 1
)

+ 1 = d2+1
2 .

5.8 Conclusion

In this chapter we have introduced and analyzed some properties of a framework for

process tomography assisted by correlations. Our framework interpolates between stan-

dard process tomography and ancilla-assisted process tomography, and it is based on

applying local transformations on the input probe—part of an probe-ancilla bipartite

system—before the probe undergoes the process to be reconstructed. In particular,

we focused on determining how the correlation properties of the starting probe-ancilla

state ρAB affect such a number. We proved that essentially all correlations can be help-

ful, in the sense of reducing such a number from d2 for standard process tomography

to roughly d2/OSR(ρAB), with OSR(ρAB) the operator Schmidt rank of ρAB, which is

necessarily optimal. We proved that this holds true in the pure-input case even if the
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local transformations are restricted to be unitary. In the mixed-state case, we pointed

out the role of discord in the case of qubit probes and unitary local transformations,

and gave “extreme” examples where just one additional initial local unitary rotation

suffices for process tomography, even if the initial state has operator Schmidt rank

approximately d2/2. It would be interesting to fully understand the mixed-state case

for unitary local rotations, which appears to be related to studying and applying the

adjoint representation of the unitary group, and will be investigated in future work.
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Chapter 6

Metric and pseudometric spaces

of quantum channels

In this chapter we collect a number of results about a possible generalisation of the

Choi-Jamio lkowski isomorphism [52, 53, 57]. As it is clear from Chapters 4 and 5, the

output of a channel acting on one part of a bipartite state having maximal OSR contains

all the information about the channel itself, allowing e.g. process tomography. On the

other hand, when the input states has OSR strictly less than maximal, the channel can

be reconstructed only partially. As a consequence, there exist channels which cannot

be distinguished if we probe their action only on a OSR-deficient input state (or on

a non faithful set of inputs; cf. Chapter 4). In particular, we will show that for any

channel Λ1,Λ2 with difference ∆ := Λ0 − Λ1 the quantity ‖(∆A ⊗ idB)[ρAB]‖1 defines

a metric on the space of quantum channels when OSR(ρAB) = d2
A, while it defines

a pseudometric (to be defined later) when OSR(ρAB) < d2
A. The latter give rise to

pseudometric spaces which can be completed to ordinary metric spaces if we regard as

equivalent all the channels which cannot be distinguished, e.g., only by looking at the

outputs of the ancilla–assisted quantum process tomography (AAPT) scheme.
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6.1 Metrics and pseudometrics

In order to articulate more rigorously what introduced so far, we need some preliminary

definitions and results.

Definition 6.1 (Metric and pseudometric). Let X be a set. A map D : X × X →

[0,+∞) is called a pseudometric if, for any x, y, z ∈ X,

i) D(x, x) = 0

ii) D(x, y) = D(y, x)

iii) D(x, z) ≤ D(x, y) +D(y, z)

Moreover, the map D defines a metric if the first condition is restricted to D(x, y) =

0⇔ x = y.

Theorem 6.1 (Every pseudometric induces a metric [140]). Let X be a set a and

D : X × X → [0,+∞) a pseudometric. For any x, y ∈ X, consider the equivalence

relation x ∼ y if and only if D(x, y) = 0.1 Denote by [x] := {y ∈ X|y ∼ x} the

equivalence class of x under ∼ and by X̄ the quotient space of X with respect to ∼.

Then, the map D̄ : X̄ × X̄ → [0,+∞) defined as

D̄([x], [y]) = D(x, y) (6.1)

is a metric, hence (X̄, D̄) a metric space.

Proposition 6.1 (State-dependent pseudometric). Let D(ρ, σ) be any metric on the

space of quantum states. In particular, we are assuming that D(ρ, σ) is the metric

induced by the one–norm D(ρ, σ) := ‖ρ − σ‖1, but the construction can be generalized

to any metric on the space of (bipartite) states. Then the mapping

DρAB (Λ1,Λ2) := D(JρAB (Λ1), JρAB (Λ2)) (6.2)

1Notice that the relation ∼ introduced in the definition is a proper equivalence relation, i.e. it is
reflexive, symmetric and transitive.
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with

JρAB (Λ) := (Λ⊗ id)[ρAB]. (6.3)

is a pseudometric, and it is a metric if and only if OSR(ρ) = d2
A.

Proof. Let us start by considering a bipartite state ρAB ∈ SAB with OSR(ρAB) < d2,

where d := min{dA, dB}. It is easy to see that the properties satisfied by the 1−norm

are inherited by the induced map DρAB (Λ1,Λ2), which in turn is nonnegative, satisfies

the triangle inequality and, by direct inspection, it is zero when Λ1 ≡ Λ2. To convince

ourselves that DρAB is only a pseudometric when ρAB is OSR–deficient it remains to

prove that there are at least two channels Γ1,Γ2 such that Γ1 6= Γ2 but DρAB (Γ1,Γ2)

vanishes. To see that, assume without loss of generality that OSR(ρAB) = d2 − 1, i.e.

d2−1∑
i=1

riAi ⊗Bi. (6.4)

Moreover, similarly to what we have defined in Eq. (4.19), let us consider the following

maps:

Γi[X] = Tr(X)
1

d
+ εTr(AdX)Yi, i = 0, 1, (6.5)

where Y0, Y1 are traceless Hermitian operators with Y0 6= Y2.2 To conclude, it is enough

to see that the two maps act the same on the first d2 − 1 local operators of ρAB, while

they produce different outputs only when acting on Ad2 , i.e. on the local operator

corresponding to the only vanishing OSC of ρAB. Then it is easy to calculate

DρAB (Γ0,Γ1) = ‖(Γ0 − Γ1)A ⊗ idB[ρAB]‖1

= rd2‖(Γ0 − Γ1)[Ad2 ]⊗Bd2‖1

= 0 (6.6)

Observe that in general two maps which differ only by their action on those subspaces

spanned by local channels corresponding to null coefficients cannot be distinguished.

2We recall that the maps defined through Eq. (6.5) are trace-preserving by construction, and com-
pletely positive for ε small enough, e.g. for ε ≤ (d‖Ad2‖∞‖max{‖Y0‖∞, ‖Y1‖∞})−1.
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On the other hand, if ρAB has maximal OSR, one has ‖Γ0[Ai] − Γ1[Ai]‖1 6= 0 for

at least one i = 1, . . . , d2 (in this case i = d2), since the two maps are different by

assumption.

Remark. Notice that when the input state in Proposition 6.1 is maximally entangled,

one recovers the so-called Jamio lkowski distance [18, 141].

6.2 Equivalence classes of quantum channels

In order to obtain a proper metric starting from the pseudometric induced by OSR–

deficient states, we introduce the following equivalence classes:

Definition 6.2. For any ρAB and any Λ ∈ T (H) we define the equivalence classes

[Λ]ρAB := {Γ ∈ T (H) | DρAB (Λ,Γ) := ‖(Λ− Γ)A ⊗ idB [ρAB]‖1 = 0}, (6.7)

i.e. the set of all channels which, under the pseudometric induced by ρAB, are at zero

distance from Λ).

In the following we provide a series of results characterising the equivalence classes

just introduced.

Proposition 6.2. Let ρAB, σAB be two bipartite quantum states with α := OSR(ρAB) ≤

OSR(σAB) =: β and OSD given, respectively, by

ρAB =
α∑
i=1

riAi ⊗Bi, σAB =

β∑
i=1

siAi ⊗ Ci, (6.8)

i.e. the local basis of ρAB on A equals the first α elements of the local basis of σAB on

A. Then [Λ]σAB ⊆ [Λ]ρAB for any Λ. Moreover, the inclusion is strict if α < β.

Proof. Let Λ1,Λ2 be two arbitrary channels such that Λ2 ∈ [Λ1]σAB and denote ∆ :=

Λ1 − Λ2. Then, since

0 = ‖∆⊗ id[σAB]‖1
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≥ ‖∆⊗ id[σAB]‖2

=

∥∥∥∥∥
β∑
i=1

si∆(Ai)⊗ Ci

∥∥∥∥∥
2

=

(
β∑
i=1

s2
i ‖∆(Ai)‖22

)1/2

, (6.9)

and since the terms in the last parenthesis are non-negative, one concludes that all the

‖∆(Ai)‖2 must be zero. This fact implies that all the singular values of ∆(Ai), for any

i ∈ {1, . . . , β}, must be zero. Moreover, from the monotonicity of the Schatten p-norms

follows that also ‖∆(Ai)‖1 = 0 for any 1 ≤ i ≤ α ≤ β, hence

‖∆⊗ id[ρAB]‖1 =

∥∥∥∥∥
α∑
i=1

ri∆(Ai)⊗Bi

∥∥∥∥∥
1

≤
α∑
i=1

ri‖∆(Ai)‖1‖Bi‖1 = 0. (6.10)

We have proved that if Λ2 ∈ [Λ1]σAB then Λ2 ∈ [Λ1]ρAB , so that [Λ1]σAB ⊆ [Λ1]ρAB .

To prove that the inclusion is strict, we show that ∃Γ1,Γ2 such that Γ1 ∈ [Γ2]ρAB

but Γ1 6= [Γ2]σAB . Let

Γi[X] = Tr(X)
1
dA

+ εTr(AβX)Yi (i = 1, 2), (6.11)

where ε > 0 is small enough in order for Γi[ · ] to be a channel, and Yi are traceless

Hermitian operators (see the proof of Proposition 6.1). Define, as Ξ := Γ1 − Γ2 and

observe that

DσAB (Γ1Γ2) = ‖Ξ⊗ idσAB‖1 = ‖Y1 − Y2‖‖Cβ‖εsβ > 0, (6.12)

while

DρAB (Γ1,Γ2) = ‖Ξ⊗ id[ρAB]‖1 = 0. (6.13)
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Proposition 6.3. There are states which are not comparable, in the sense that there

exist ρAB, σAB and channels Λ1,Λ2 which are distinguished by DρAB but not by DσAB ,

and there are channels Γ1,Γ2 such that the opposite holds.

Proof. The possible states and the channels that prove the claim are the following:

ρAB = |0〉〈0| ⊗ |1〉〈1| (6.14)

σAB = |x+〉〈x+| ⊗ |x+〉〈x+| (6.15)

Λ1[X] = σxXσx (6.16)

Λ2[X] = σyXσy (6.17)

Γ1[X] = σyXσy (6.18)

Γ2[X] = σzXσz, (6.19)

where |x+〉 := 2−1/2(|0〉+ |1〉) and σi are the usual Pauli matrices. Then, it is straight-

forward to see that

DρAB (Λ1,Λ2) = ‖(σx |0〉〈0|σx − σy |0〉〈0|σy)⊗ |0〉〈0| ‖1

= ‖(|1〉〈1| − |1〉〈1|)⊗ |0〉〈0| ‖1 = 0 (6.20)

DσAB (Λ1,Λ2) = ‖(σx |x+〉〈x+|σx − σy |x+〉〈x+|σy)⊗ |x+〉〈x+| ‖1

= ‖(|x+〉〈x+| − |x−〉〈x−|)⊗ |x+〉〈x+| ‖1 = 2 (6.21)

DρAB (Γ1,Γ2) = ‖(σy |0〉〈0|σy − σz |0〉〈0|σz)⊗ |0〉〈0| ‖1

= ‖(|1〉〈1| − |0〉〈0|)⊗ |0〉〈0| ‖1 = 2 (6.22)

DσAB (Γ1,Γ2) = ‖(σy |x+〉〈x+|σy − σz |x+〉〈x+|σz)⊗ |x+〉〈x+| ‖1

= ‖(|x−〉〈x−| − |x−〉〈x−|)⊗ |x+〉〈x+| ‖1 = 0. (6.23)

In the next two propositions we provide two results proving some properties satisfied

by all the equivalence classes.

Proposition 6.4. Given two different channels Λ1,Λ2, the distance between arbitrary
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elements of the classes (generated by the same input state) [Λ1]ρAB , [Λ2]ρAB is constant

and equals the distance between representatives: DρAB (Γ̄1, Γ̄2) = DρAB (Λ1,Λ2).

Proof. We first prove the ≤. Let Γ̄1 ∈ [Λ1]ρAB := {Γ1 | DρAB (Λ1,Γ1) = 0} and Γ̄2 ∈

[Λ2]ρAB := {Γ2 |DρAB (Λ2,Γ2) = 0}; then, using the triangle inequality, DρAB(Γ̄1, Γ̄2) ≤

DρAB (Γ̄1,Λ1) + DρAB (Λ1,Λ2) + DρAB (Λ2, Γ̄2) = DρAB (Λ1,Λ2). Finally, since to say

that Γ̄i ∈ [Λi]ρAB is equivalent to say that Λi ∈ [Γ̄i]ρAB , for i = 1, 2, we can invert the

previous inequality and obtain the desired result.

Proposition 6.5. For any channel Λ and any input state ρAB, [Λ]ρAB is a convex

set, i.e. ∀Λ1,Λ2 ∈ [Λ]ρAB , ∀ t ∈ [0, 1], the channel Λc := tΛ1 + (1 − t)Λ2 ∈ [Λ]ρAB

(equivalently, ∃Γ ∈ [Λ]ρAB s.t. DρAB (Λc,Γ) = 0).

Proof. Let Γ := Λ1 ∈ [Λ]ρAB ; then DρAB (Λc,Γ) = ‖(tΛ1 +(1− t)Λ2−Λ1)⊗ id[ρAB]‖1 =

(t− 1)‖(Λ1 − Λ2)⊗ id[ρAB]‖1 = 0, by hypothesis.

In the light of the previous result we can now state and prove our main theorem

about the characterisation of the equivalence classes of quantum channels.

Theorem 6.2 (Characterisation of equivalence classes). Let

ρAB =

OSR(ρAB)∑
i=1

riAi ⊗Bi (6.24)

σAB =

OSR(σAB)∑
i=1

siCi ⊗Di (6.25)

and

LA,ρAB : = span{Ai | i = 1, . . . , OSR(ρAB)} (6.26)

LA,σAB : = span{Ci | i = 1, . . . , OSR(σAB)}. (6.27)

Moreover, we assume without loss of generality that OSR(ρAB) ≤ OSR(σAB). Then,

∀Λ ∈ C(HA,HA), [Λ]ρAB ≡ [Λ]σAB ⇔ LA,ρAB ≡ LA,σAB . (6.28)
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Proof. We first prove sufficiency. Notice that this is equivalent to prove

LA,ρAB 6= LA,σAB ⇒ ∃ Λ̄ ∈ T (H) s.t. [Λ̄]ρAB 6= [Λ̄]σAB . (6.29)

The assumption LA,ρAB 6= LA,σAB implies that there exists at least one Cj in the OSD

of σAB, i.e. with j ≤ OSR(σAB), which cannot be expressed as a linear combination

of the Ai defining LA,ρAB only. That is (recall that {Ai} is a basis),

Cj =

OSR(ρAB)∑
i=1

〈Ai, Cj〉Ai︸ ︷︷ ︸
=:C

‖
j

+
d2∑

i=OSR(ρAB)+1

〈Ai, Cj〉Ai︸ ︷︷ ︸
=:C⊥j

(6.30)

with C⊥j 6= 0. Then, there must exists an Ak with k ∈ {OSR(ρAB) + 1, . . . , d2} such

that 〈Ak, Cj〉 6= 0, i.e. Tr(Ak, Cj) 6= 0 (assuming hermiticity). Now define

Λi[X] = Tr(X)
1
dA

+ εTr(AkX)Yi (i = 1, 2), (6.31)

which gives ∆[X] := (Λ0 − Λ1)[X] = ε(Y0 − Y1) Tr(Ak, X), and notice that

DρAB (Λ1,Λ2) = ‖∆⊗ idρAB‖1 =

∥∥∥∥∥∥
OSR(ρAB)∑

i=1

∆(Ai)⊗ riBi

∥∥∥∥∥∥
1

= ε‖Y0 − Y1‖1

∥∥∥∥∥∥
OSR(ρAB)∑

i=1

Tr(AkAi)riBi

∥∥∥∥∥∥
1

= ε‖Y0 − Y1‖1

∥∥∥∥∥∥
OSR(ρAB)∑

i=1

δk,i riBi

∥∥∥∥∥∥
1

= 0, (6.32)

because δk,i = 0 for any i < OSR(ρAB) + 1. On the other hand,

DσAB (Λ1,Λ2) = ‖∆⊗ idσAB‖1 =

∥∥∥∥∥∥
OSR(σAB)∑

i=1

∆(Ci)⊗ riDi

∥∥∥∥∥∥
1

= ε‖Y0 − Y1‖1

∥∥∥∥∥∥
OSR(σAB)∑

i=1

Tr(AkCi)riDi

∥∥∥∥∥∥
1
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≥ ε‖Y0 − Y1‖1

∥∥∥∥∥∥
OSR(σAB)∑

i=1

Tr(AkCi)riDi

∥∥∥∥∥∥
2

> 0, (6.33)

where we have used the fact that the riDi are linear independent and, for at least one

i, there is a nonzero coefficient Tr(AkCi) by hypothesis.

To prove necessity, one can observe that if the two spans generate the same sub-

space, then each Ci in the OSD of σAB can be expressed as a function of the first Ai,

i.e. with i = 1, . . . , OSR(ρAB). Assume Λ1 ∈ [Λ0]ρAB and define ∆ := Λ0 − Λ1. If

DρAB (Λ0,Λ1) = 0, i.e. if ∆(Ai) = 0 for any 1 ≤ i ≤ OSR(ρAB), then

DσAB (Λ0,Λ1) = ‖∆⊗ id[σAB]‖1 =

∥∥∥∥∥∥
OSR(σAB)∑

i=1

∆(Ci)⊗ riDi

∥∥∥∥∥∥
1

=

∥∥∥∥∥∥
OSR(σAB)∑

i=1

∆

OSR(ρAB)∑
j=1

Tr(AjCi)Aj

⊗ riDi

∥∥∥∥∥∥
1

=

∥∥∥∥∥∥
OSR(σAB)∑

i=1

OSR(ρAB)∑
j=1

Tr(AjCi)∆(Aj)⊗ riDi

∥∥∥∥∥∥
1

= 0,

(6.34)

that is [Λ0]ρAB ⊆ [Λ0]σAB . To obtain the reverse inclusion and conclude the proof, it

is enough to exploit the hypothesis in order to express the Ai as a function of the first

Ci, i.e. i ∈ {1, . . . ,OSR(σAB)}.

6.3 Conclusion

The theory introduced in this chapter is preliminary and part of an ongoing research

project [4]. The essence of the matter discussed hitherto is that the Jamio lkowski

distance for quantum channels [18, 141] can be actually seen as a particular instance

of a more general mapping, the latter giving a whole family of state-dependent metric

functions. In the spirit of this entire thesis, another central result was to show how the
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metric space of quantum channels induced by a given quantum state can be identified

with the operator Schmidt decomposition of the latter, specifically, by the span of its

operator Schmidt local operators. These result are manifestly theoretical, but they do

have an appealing practical consequence. Indeed, the content of this chapter can be

employed in order to show that the discrimination of certain pairs of quantum channels

can be facilitated by tailoring the input in an ancilla-assisted quantum discrimination

protocol (as the AAPT of Chapter 4), where such tailoring is controlled according to

the OSD of the input itself.3

3For a fully developed discussion on this result, we refer the reader to our soon-to-be submitted
paper [4].
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In this thesis we have examined in details the operator Schmidt decomposition (OSD)

of bipartite operators. We have shown that the operator Schmidt rank (OSR), as well

as the operator Schmidt coefficients (OSC) of quantum states and of its square root,

can be exploited in order to devise measures of correlations and of total correlations.

In particular, in Chapter 3 we have defined a measure of correlations and several mea-

sures of total correlations, we have analysed their properties and their application to

entanglement and steering detection. Moreover, we have provided a relational expres-

sion between two of our measures of total correlations (which have been defined by

taking advantage of the square root of quantum states and its OSD) and the quantum

mutual information. However, our analysis leaves some unanswered questions, like, for

example, the conjectured average monotonicity of the operator G–Concurrence from

Sec. 3.4. Another open problem is whether the lth−order elementary symmetric poly-

nomial (ESN) in the OSC are monotonic for any l 6= 1 (cf. Sec. 3.4.2). Since the ESN

are Schur–convex functions of the OSC, the monotonicity of the latter in the sense of

Eq. (3.6), for OSR 6= 1, would be enough in order for the respective ESN to define

a family of meaningful measures of correlations. Lastly, since the OSD of the square

root of a quantum state looks like carrying valuable information about the degree of

correlations of the original state (as seen in Sec. 3.5 and 3.6), it would be interesting

to look for an explicit relationship between the OSD of a state and of its square root,

and specifically between the two sets of operator Schmidt coefficients. Chapter 3 in its

entirety, together with a possible answer to the open questions outlined above, might

constitute the content of a future scientific publication.

The second part of the thesis has a more practical connotation, albeit still of the-
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oretical nature. Here we have discussed the role played by the OSD in the tasks of

channel discrimination and tomography. In particular, in Chapter 4 we have examined

the scheme of ancilla–assisted quantum process discrimination and defined a worst–case

scenario quantifier for the performance of the bipartite input states in such protocol:

the channel discrimination power (CDP). We have computed general upper and lower

bounds to the CDP of a state in terms of its OSD, and we have shown that the CDP

of a pure state corresponds to its smallest OSC. Moreover, we have provided a lower

bound on the CDP of any state that passes the realignment criterion for separability.

The central observation of this chapter was to notice that also certain correlated but

separable states can have non-zero CDP, as long as they posses a certain amount of

discord. The main open problem remains to compute the CDP of a general mixed state,

that we conjecture corresponds again to the smallest OSC. The general bounds to the

CDP of mixed states given in Sec. 4.4 do not falsify such conjecture, making room for a

possible generalization of the exact result obtained in the pure state scenario. The tasks

of channel discrimination and channel tomography are closely related. For this reason

some of the observations and results from Chapter 4 readily transition to Chapter 5,

where we have proved that the correlations of a fixed bipartite state measured by the

logarithm of the OSR can be employed to allow process tomography. We have shown

that any single bipartite input state can be used to perform ancilla–assisted channel

tomography. In fact, only states with non maximal OSR are inadequate to perform

AAPT. Nevertheless, they can be transformed through local operations, in order to

obtain a set of states which altogether provide a full tomographic reconstruction of any

given channel. We have also considered the particular case of quantum channels given

by local unitaries, and shown that the number of unitary operators allowing channel

tomography depends upon the correlations of the initial input state. For pure states

this number scales as the inverse of the OSR: the more correlated the input, the less

unitaries are needed. For mixed states instead, examples showing how the presence

of correlations efficiently reduces the number of local unitaries were provided, but the

optimal number of such unitaries remains unknown, offering a hint for further research.

The analysis of the relationship between the OSD and the tasks of ancilla–assisted
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quantum process discrimination and tomography have led us to some interesting obser-

vations of purely theoretical character, which were summarised in Chapter 6. We have

observed that any operator with maximal OSR gives rise to a state–dependent metric

on the space of quantum channels, while OSR-deficient states induces pseudometrics.

The latter generate pseudometric spaces of channels, which can be lifted to proper met-

ric spaces by taking the quotient of the space of quantum channels with respect to a

specific equivalence relation. Our contribution was to show that two equivalence classes

of quantum channels (induced by two different bipartite states) are equal if and only if

the spans of the local operators in the OSD of the two states coincide. The results of

Chapter 6 are part of an ongoing research project that is unfolding on the application

side as well, returning promising results which can be employed, again, in the context

of channel discrimination, giving means by which improving the distinguishability of

certain pairs of quantum maps [4].

In conclusion, this work validated our initial assumptions about the value of the

OSD in the quantification and detection of classical and quantum correlations. This

naturally brought us to face the more pragmatic side of the coin, with the analysis

of the tasks of channel discrimination and tomography. Finally, we have initiated a

geometrical theory of metric spaces of quantum channels which, albeit preliminary,

endowed this research project with a renewed, wholehearted strength. What remains,

together with an investigation of the open questions arisen during the last three years,

is to study any potential usefulness of the OSD for the implementation of other specific

tasks in the context, for example, of quantum communication and cryptography. Also,

the closeness of the topics studied hitherto with the field of quantum metrology deserves

a try, as well as the evident connection of our results with the study and the evaluation

of correlations in quantum many-body systems.

All in all, by addressing several problems which may be of interests to the specialists

of the subject, this thesis may be considered as a first step towards a deeper under-

standing of the role played by the OSD in Quantum Physics, but most importantly

it hatched new, unforeseen questions, suggesting several routes for the continuation of

the present research project.
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Appendix A

Proof of Theorem 2.6

For the reader convenience, we first restate the theorem in question.

Theorem 2.6. Let ρAB ∈ SAB and consider, for n ≥ 1, the set of 2n jointly linear

(or jointly antilinear) superoperators

ΓAi : HA → HA, ΓBi : HB → HB, for i = 1, . . . , n (A.1)

such that for some εA, εB ≥ 0 and for any σiA ∈ SA and σiB ∈ SB, with i = 1, . . . , n,

one has
n∑
i=1

∥∥ΓAi [σiA]
∥∥2

2
≤ n εA and

n∑
i=1

∥∥ΓBi [σiB]
∥∥2

2
≤ n εB. (A.2)

Moreover, define the following linear operator on SAB:

ρAB

(
Γ

(A,B)
1,...,n

)
:=

1

n

 n∑
i=1

ΓAi ⊗ ΓBi [ρAB] +

n∑
i 6=j

ΓAi ⊗ ΓBj [ρA ⊗ ρB],

 (A.3)

where ρA, ρB are the reduced density matrices of ρAB. If ρAB is separable, then

∥∥∥∥[ρAB (Γ
(A,B)
1,...,n

)]R∥∥∥∥
1

≤

εA +
1

n

∑
i<j

(
〈ΓAi [ρA],ΓAj [ρA]〉+ c.c.

)1/2

×

εB +
1

n

∑
i<j

(
〈ΓBi [ρB],ΓBj [ρB]〉+ c.c.

)1/2

, (A.4)
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where c.c. stands for complex conjugate and 〈· , ·〉 is the HS inner product in L(HA(B)).

Proof. Let ρAB ∈ SAB be a separable bipartite state with decomposition ρAB =∑
i piρ

i
A⊗ρiB. Then ρA(B) =

∑
i piρ

i
A(B). For notational convenience here we prove the

theorem for the operator ρAB

(
Γ

(A,B)
1,2

)
; the extension to ρAB

(
Γ

(A,B)
1,...,n

)
is straightfor-

ward. Let us start by observing that

∥∥∥∥[ρAB (Γ
(A,B)
1,...,n

)]R∥∥∥∥
1

=
1

2

∥∥∥∥∥∥
∑
i,j

pipj

[
(ΓA1 [ρiA] + ΓA2 [ρjA])⊗ (ΓB1 [ρiB] + ΓB2 [ρjB])

]R∥∥∥∥∥∥
1

≤ 1

2

∑
i,j

pipj

∥∥∥∥[(ΓA1 [ρiA] + ΓA2 [ρjA])⊗ (ΓB1 [ρiB] + ΓB2 [ρjB])
]R∥∥∥∥

1

.

(A.5)

where the second follows from the triangle inequality. Now notice that the linear

operator ρ̃ := (ΓA1 [ρiA] + ΓA2 [ρjA])⊗ (ΓB1 [ρiB] + ΓB2 [ρjB]) has a single product term, hence

a single nonzero OSC λ1 = ‖ρ̃‖2, cf. Proposition 2.1. It follows that

∥∥ρ̃R∥∥
1

=
∥∥∥ΓA1 [ρiA] + ΓA2 [ρjA]

∥∥∥
2

∥∥∥ΓB1 [ρiB] + ΓB2 [ρjB]
∥∥∥

2

=
(
〈ΓA1 [ρiA],ΓA1 [ρiA]〉+ 〈ΓA2 [ρjA],ΓA2 [ρjA] + 〈ΓA1 [ρiA],ΓA2 [ρjA] + c.c.

)1/2

×
(
〈ΓB1 [ρiB],ΓB1 [ρiB]〉+ 〈ΓB2 [ρjB],ΓB2 [ρjB] + 〈ΓB1 [ρiB],ΓB2 [ρjB] + c.c.

)1/2
. (A.6)

Then, if we assume that there exist εA, εB ≥ 0 such that

∥∥Γ1[σ1
A]
∥∥2

2
+
∥∥Γ2[σ2

A]
∥∥2

2
≤ 2εA and

∥∥Γ1[σ1
B]
∥∥2

2
+
∥∥Γ2[σ2

B]
∥∥2

2
≤ 2εB (A.7)

for any σ
1(2)
A ∈ SA and σ

1(2)
B ∈ SA, it follows from Eq. (A.6) that

‖ρ̃R‖1 ≤ 2

√(
εA +

1

2

(
〈ΓA1 [ρiA],ΓA2 [ρjA] + c.c.

))(
εB +

1

2

(
〈ΓB1 [ρiB],ΓB2 [ρjB] + c.c.

))
.

(A.8)
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Finally, from Eqs. (A.5) and (A.8) and using the Cauchy–Schwarz inequality one obtains

∥∥∥∥[ρAB (Γ
(A,B)
1,...,n

)]R∥∥∥∥
1

≤
∑
ij

√
pipj

(
εA +

1

2

(
〈ΓA1 [ρiA],ΓA2 [ρjA] + c.c.

))

×

√
pipj

(
εB +

1

2

(
〈ΓA1 [ρiB],ΓB2 [ρjB] + c.c.

))

≤

√√√√√
εA +

1

2

∑
ij

pipj〈ΓA1 [ρiA],ΓA2 [ρjA] + c.c.



×

√√√√√
εB +

1

2

∑
ij

pipj〈ΓA1 [ρiB],ΓB2 [ρjB] + c.c.

. (A.9)

Then, for every separable state one has

∥∥∥∥[ρAB (Γ
(A,B)
1,...,n

)]R∥∥∥∥
1

≤
(
εA +

1

2

(
〈ΓA1 [ρA],ΓA2 [ρA]〉+ c.c.

))1/2

×
(
εB +

1

2

(
〈ΓB1 [ρB],ΓB2 [ρB]〉+ c.c.

))1/2

. (A.10)

The claim follows from generalising the above reasoning to a generic n.
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Evaluating the Operator

G-Concurrence

B.1 Operator G-Concurrence of isotropic states

In this section we compute the OGC of isotropic states, as defined in Eq. (3.13). Then

we will prove that the bound Eq. (3.48) given in Theorem 3.6 is tight.

We have seen in Sec. 3.3 that the OSC of the generic isotropic state ρAB(p) are gien

by {1/d, p/d, . . . , p/d}. Then, according to the definition of the OGC one finds

G(ρAB(p)) =

(
1

d

)
p1−1/d2 . (B.1)

Now, since isotropic states are entangled if and only if p > 1/(d+1) [99], it follows that

sup{G(ρAB(p)) | (ρAB(p)) is separable} ≤ 1

d

(
1

d+ 1

)1−1/d2

. (B.2)

By comparing Eq. (3.48) with Eq. (B.2) we observe that

sup
sep

G(ρAB)− sup
sep

G(ρAB(p)) ≈ O
(
d−3
)
, (B.3)

hence we can conclude that the bound of Eq. (3.48) is tight (since the gap between the

two upper bounds inEq. (B.3) shrinks faster than supsep G(ρAB) approaches zero).
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The same argument does not help us to check if the upper bound of the OGC on the

set of unsteerable states, expressed by Eq. (3.49), is tight too. Indeed, as shown in [36],

isotropic states are steerable if and only if p > (Hd−1)/(d−1), where Hd =
∑d

k=1(1/k)

is the Harmonic series. It follows that

sup{G(ρAB(p)) | (ρAB(p)) is unsteerable} ≤ 1

d

(
Hd − 1

d− 1

)1−1/d2

(B.4)

and

sup
non steer

G(ρAB)− sup
non steer

G(ρAB(p)) ≈ O
(
d−3/2

)
, (B.5)

i.e. the gap between the two upper bounds shrinks as fast as supnon steer G(ρAB) ap-

proaches zero.

B.2 Operator G-Concurrence of Werner states

Firstly introduced in [31], Werner states in SAB can be parametrized as

ρwAB(p) =

(
d− 1 + p

d− 1

)
I

d2
−
(

p

d− 1

)
V

d
, (B.6)

with 0 ≤ p ≤ 1 and V (ϕ1 ⊗ ϕ2) = ϕ2 ⊗ ϕ1 is the so-called flip operator. Let us define

αd,p =
d− 1 + p

d2(d− 1)
, βd,p =

p

d(d− 1)

and recall that the flip operator can be expressed as V =
∑d

a,b=1 |ab〉〈ba|. In analogy

to what we did for isotropic states in Sec. 3.3, we compute the entries of the correlation

matrix:

C(ρwAB(p))ij,kl = Tr

(
|j〉〈i| ⊗ |l〉〈k|

(
ρwAB(p)

))
= αd,p Tr

(
|j〉〈i| ⊗ |l〉〈k| I

)
− βd,p Tr

(
|j〉〈i| ⊗ |l〉〈k|

d∑
a,b=1

|a〉〈b| ⊗ |b〉〈a|
)
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= αd,p δij δkl − βd,p
d∑
a,b1

δiaδbjδkbδal

= αd,p δijδkl − βd,p δilδjk.

Thus,

C(ρwAB(p)) =
∑
ij,kl

ρwAB(p) |ij〉〈kl|

= dαd,p|ψ+〉〈ψ+| − βd,p V,

from which we conclude

OSC(ρwAB(p)) =

(
1

d
,

p

d(d− 1)
, . . . ,

p

d(d− 1)

)
(B.7)

and

G(ρwAB(p)) =
1

d

(
p

d− 1

)1−1/d2

. (B.8)

Werner states are entangled if and only if p > 1/(d + 1) [31] and steerable if and

only if p > 1− 1/d [36]. By substituting these limit values in Eq. (B.8), we found the

upper bounds for G(ρwAB(p)) on the subset of separable and non-steerable states:

sup{G(ρwAB(p)) | (ρwAB(p)) is separable} ≤ 1

d

(
1

d2 − 1

)1−1/d2

, (B.9)

sup{G(ρwAB(p)) | (ρwAB(p)) is unsteerable} ≤
(

1

d

)2−1/d2

. (B.10)

As for isotropic state, we would like to know if these bounds are tight in the sense

of Eq. (B.3). However, the argument used in the previous section is not helpful in this

case, in that

sup
non steer

G(ρwAB)− sup
non steer

G(ρwAB(p)) ≈ O
(
d−2
)
, (B.11)

sup
non steer

G(ρwAB)− sup
non steer

G(ρwAB(p)) ≈ O
(
d−3/2

)
. (B.12)
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[84] U. Schollwöck, “The density-matrix renormalization group in the age of matrix

product states,” Annals of Physics, vol. 326, no. 1, pp. 96–192, 2011.

[85] J. Eisert, “Entanglement and tensor network states,” arXiv preprint

arXiv:1308.3318, 2013.

140



Bibliography

[86] Y.-Y. Shi, L.-M. Duan, and G. Vidal, “Classical simulation of quantum many-

body systems with a tree tensor network,” Physical Review A, vol. 74, no. 2,

p. 022320, 2006.

[87] S. Singh, R. N. Pfeifer, and G. Vidal, “Tensor network decompositions in the

presence of a global symmetry,” Physical Review A, vol. 82, no. 5, p. 050301,

2010.

[88] M. B. Hastings, “An area law for one-dimensional quantum systems,” Journal

of Statistical Mechanics: Theory and Experiment, vol. 2007, no. 08, p. P08024,

2007.

[89] F. Verstraete, J. J. Garcia-Ripoll, and J. I. Cirac, “Matrix product density opera-

tors: Simulation of finite-temperature and dissipative systems,” Physical Review

Letters, vol. 93, no. 20, p. 207204, 2004.

[90] M. Zwolak and G. Vidal, “Mixed-state dynamics in one-dimensional quantum lat-

tice systems: a time-dependent superoperator renormalization algorithm,” Phys-

ical Review Letters, vol. 93, no. 20, p. 207205, 2004.

[91] P. W. Shor, “Algorithms for quantum computation: Discrete logarithms and

factoring,” in Foundations of Computer Science, 1994 Proceedings., 35th Annual

Symposium on, pp. 124–134, Ieee, 1994.

[92] A. Datta and G. Vidal, “Role of entanglement and correlations in mixed-state

quantum computation,” Physical Review A, vol. 75, no. 4, p. 042310, 2007.

[93] B. Lanyon, M. Barbieri, M. Almeida, and A. White, “Experimental quantum

computing without entanglement,” Physical Review Letters, vol. 101, no. 20,

p. 200501, 2008.

[94] B. Dakić, V. Vedral, and Č. Brukner, “Necessary and sufficient condition for

nonzero quantum discord,” Physical Review Letters, vol. 105, no. 19, p. 190502,

2010.

141



Bibliography

[95] M. Gessner, E.-M. Laine, H.-P. Breuer, and J. Piilo, “Correlations in quantum

states and the local creation of quantum discord,” Physical Review A, vol. 85,

no. 5, p. 052122, 2012.

[96] B. Lanyon, P. Jurcevic, C. Hempel, M. Gessner, V. Vedral, R. Blatt, and C. Roos,

“Experimental generation of quantum discord via noisy processes,” Physical Re-

view Letters, vol. 111, no. 10, p. 100504, 2013.

[97] M. A. Schlosshauer, Decoherence: and the quantum-to-classical transition.

Springer Science & Business Media, 2007.

[98] G. Lindblad, “Completely positive maps and entropy inequalities,” Communica-

tions in Mathematical Physics, vol. 40, no. 2, pp. 147–151, 1975.

[99] M. Horodecki and P. Horodecki, “Reduction criterion of separability and limits

for a class of distillation protocols,” Physical Review A, vol. 59, no. 6, p. 4206,

1999.

[100] G. Gour, “Family of concurrence monotones and its applications,” Physical Re-

view A, vol. 71, no. 1, p. 012318, 2005.

[101] R. Doran, Characterizations of C* Algebras: the Gelfand Naimark Theorems,

vol. 101. CRC press, 1986.

[102] A. McIntosh, “Heinz inequalities and perturbation of spectral families,” Macqau-

rie Mathematical Reports, 1979.

[103] R. Bhatia, “Interpolating the arithmetic–geometric mean inequality and its oper-

ator version,” Linear Algebra and its Applications, vol. 413, no. 2-3, pp. 355–363,

2006.

[104] T. Ando, “Majorizations and inequalities in matrix theory,” Linear Algebra and

its Applications, vol. 199, pp. 17–67, 1994.
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