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SYNOPSIS 

The various structural forms commonly adopted for the construct- 
ion of multi-storey structures are outlined and the advantages of the 

use of shear walls as the load bearing elements in such structures 

are indicated. It is shown that, although a considerable amount of 

research has been devoted to the analysis of multi-storey structures, 

very little attention has been paid to the effects of foundation 

deformations on these structures. Three methods for the analysis of 

shear wall structures are indicated and the suitability of the 

continuous connection technique for the investigation of the effects 
of foundation deformations is shown. 

Two-dimensional coupled shear wall systems and single walls or 

box cores, all of which may be based on elastic foundations are 

analysed subjected to either of two generalised distributions of 
horizontal forces. The expressions derived for plane coupled shear 

walls are adapted to produce methods whereby design curves may be 

drawn for the rapid evaluation of stresses and deflections. 

The relationships derived for the two-dimensional analysis are 
used to derive a method for the analysis of the load distribution in 

three-dimensional multi-storey shear wall structures subjected to any 

system of lateral loads which may produce bending and torsion of the 

structure. 

The suitability of the analytical methods for the numerical 

computation of problems involving shear wall structures is discussed 

with particular reference to the feasibility of hand calculations and 
the development of a useful system of programs for computer analysis. 

The results of a number of numerical studies, carried out with 
the aid of the computer programs, are given to illustrate various 

aspects of the theory. The importance of accurately determining the 

extent and nature of the lateral load bearing systems within a 

structure is illustrated. The convergence of solutions obtained 

using the two load distributions are compared and the applications 
of each are discussed. The effects of varying the flexibility of 
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the foundations, both of a two-dimensional coupled wall system and 

of specific walls in three-dimensional structures are illustrated by 

examples. 

A description is given of an experimental investigation carried 

out to study the effects of the elastic deformation of foundations on 

model shear wall structures constructed from "Perspex" sheets. The 

results of a comprehensive series of tests on the models are compared 

with the corresponding analytical solutions in order to assess the 

validity of the assumptions which were made in the derivation of the 

analytical methods. 
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NOTATION 

The following symbols, used in this thesis, are introduced under 

four headings as follows: 

1. Dimensions and properties of shear walls 

A1 A2 

Ab 

b 

b 
c 

d1 d2d3d4 

E1E2 

E 
c 

G 
c 

h 

H 

1112 

I 

I b 

Cross sectional areas of walls 1 and 2 

Cross sectional area of connecting beam or 

effective floor slab 

Clear distance between walls in line 

Effective span of connecting beam or slab 

Dimensions from centroids of walls to extreme fibres 

Moduli of elasticity for walls 1 and 2 

Modulus of elasticity'for connecting beams or slabs 

Modulus of rigidity for connecting beams or slabs 

Storey height 

Total height of walls 

Moments of inertia of walls 1 and 2 

Moment of inertia of combined section of walls 

Moment of inertia of connecting beam or effective 

floor slab 

I 
c 

Ke 

K 
V 

R 

Moment of inertia, Ib, reduced to account for shear 

deformations 

Rotational Flexibility Modulus for foundations 

Vertical Flexibility Modulus for foundations 

Distance between centroids of walls in line 

kk Distance between centroid of wall 1 and centroid 

of combined section of walls 

v Poisson's Ratio for connecting beams or slabs 
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a11 

Y 

A 

Dimensionless groups 

Dimensionless foundation coefficient of rotation 

Dimensionless foundation coefficient of vertical 

deflection 

2. Two-dimensional analysis 

a0a1 -- an -- am 

Constant coefficients of shear function series 

C1, C2, C3, CO D1, D2, D3 

Dimensionless constant terms 

Fi4 Shear force in i'th connecting beam or slab 

Fit Axial force in i'th connecting beam or slab 

i Suffix denoting storey number 

I 

K1 to K8 

L, U 

N0 

Total number of storeys, suffix denoting top storey 

Constants of integration 

Suffices denoting levels below and above level of 

a point load 

Total base moment 

M01' M02 Base moments on walls 1 and 2 

MA(x) Moment of applied load at level x 

M(x) Sum of bending moments on walls 1 and 2 

M1(x), M2(X) Bending moments on walls 1 and 2 

Mc(x) Moment of the axial forces in connecting medium 

MT1(x), MT2(x) Moment of the shear forces in connecting medium 

about centroids of walls 1 and 2 

m Largest exponent in polynomial series / total number 
of point loads 

n Particular exponent, / 
suffix of particular point load 

pn Polynomial load coefficient /point load 

P(x) Intensity of applied load at level x 
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PA(x) Sum of applied load above level x 

p C(x) 
Sum of axial forces in connecting medium above 

level x 

q(x) Intensity of shear force in connecting medium 

Q1(x), Q2(x) Shear forces in walls-1 and 2 

Q Shear force at top of walls 

r Any integer 

t(x) Intensity of axial force in connecting medium 

T0 Axial force on base of shear walls 

T(x) Axial force at level x 

x Dimensionless level above base, as a proportion of H 

xi Level of i'th connecting beam 

xn Level of a particular point load 

y(x) Horizontal deflection 

19 
d 

2, 
d 

3,6 4 Partial relative deflections of the 'cut' 

ends of connecting lamina 

ae 
a V 

X 

Ti 

Tr 

I 

Rotation of foundations 

Relative vertical deflection of foundations 

Height above base 

Supplementary variable of height 

3.14159 

Factorial 

Summation 

3. Design methods 

K1K2 

K3 

K4 

a 
1 

Wall bending stress factors 

Connecting beam shear force factor 

Maximum wall deflection factor 

Axial force factor 

x 



a 
2 

cr 

Applied force factor 

Stress 

4. Analysis of complete structure 

B1 , 82,83 

C 

f. 
in 

fý in 

F. 
-J 

F' 
-J 

i 

3 

3 

£1. 
i 

ý 

P. 
1 

P. 
-J 

ýý 

in 

S 

t n 
T(x) 

Ti 

Tý 

t3 

Constant matrices of stiffness coefficients 

Torsional stiffness of wall assembly 

Flexibility coefficient for deflection 

Flexibility coefficient for rotation 

Matrix of flexibility coefficients fin for the j'th 

wall assembly 

Matrix of rotation flexibility coefficients 
f 

in 
for the j'th wall assembly 

Suffix denoting reference level number 

Suffix denoting wall assembly number 

Number of wall assemblies 

Moment of applied load at reference level i, 

about datum position 

Vector of moments Mi 

Shear force on wall at level i 

Vector of shear forces Pi on wall j 

Vector of polynomial coefficients, /point loads on 

wall j 

Integration coefficient / step coefficient 

Matrix of coefficients sin 

Polynomial torque coefficient, / point torque 

Intensity of applied torque at level x 

Total torque on wall at level i 

Vector of total torquesTi on wall j 

Vector of torque coefficients, / 
point torques on 

wall j 

xi 



W. 
1 

W 

x. i 

yij 

yi 

Yj 

y 

zj 

e. 1 
8 

Sum of loading applied above level i, acting 

at datum position 

Vector of loads Wi 

Relative height of i'th reference level 

Deflection of wall j at reference level i 

Deflection of structure at datum position at level i 

Vector of deflections yij of wall j 

Vector of structure deflections y. i 
Distance of wall j from datum position 

Rotation of structure at level i 

Vector of structure rotations B. 
i 
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1. 

CHAPTER 1 

INTRODUCTION 

1.1 MULTI-STOREY STRUCTURES 

In the centres of large industrial cities land for residential 

and commercial building purposes has for long been at a premium. 

With the rapid increase of land costs a greater number of multi- 

storey structures are being built every year, and it is becoming 

more economical to make use of sites where poor ground conditions 

formerly ensured their use for low-rise construction. In the 

suburbs the high price of land linked with the social demands for 

open recreational space within residential areas and the preservation 

of "green belts" around cities ensures the continued use of medium- 

and high-rise construction for residential purposes. 

With the increase in the use of light partitioning and high 

strength concrete and steel reinforcement., resulting in an overall 

reduction in weight, the effects of wind or seismic loading have 

become a major factor in the design of tall structures, and some 
form of bracing must be incorporated to resist these lateral forces. 

The structural systems currently in use are of several distinct 

types and the one adopted as most economical in a particular 

situation depends, to a large extent on the number of storeys and 
the magnitude of the expected lateral forces. 

Within earthquake zones the use of concrete frames as bracing 

may be restricted to medium-rise buildings. Outwith seismic regions 
the maximum economic height of concrete frame buildings is generally 
between fifteen to twenty storeys. Buildings which derive the 

whole of their lateral strength from shear walls are feasible up to 
between thirty and forty storeys. Above these heights systems 
comprising frames interacting with shear walls, framed tube systems, 
or multiple framed tube systems may be adopted depending on the 
height and the functional requirements of the building, as discussed 
by Khan and Iyengar(1). 

Structures comprising shear walls may be planned such that these 



2. 

vertical- and lateral-load bearing elements are so disposed as to 

simultaneously partition floor areas, enclose stair-wells, lifts 

and service cores, and provide a degree of both fire resistance and 

accoustic insulation. 

The functional and practical requirements of the planning and 

construction of multi-storey buildings, (including such aspects as 

daylighting regulations, access corridors, simplicity of layout, 

repetition of structural elements to enable the use of industrial 

building methods, etc. ) tend to evolve buildings of long rectangular 

plan in which the structural elements take the form of similar 

assemblies of walls coupled by floor slabs or lintel beams with 

their common planes at right angles to the length of the building. 

The object of the research embodied in this thesis is to examine 

the' distribution of forces within such structural systems under the 

action of lateral loads. 

1.2 PREVIOUS RESEARCH 

In recent years there has been considerable interest in the 

topic of multi-storey structures, as witnessed by the vast array of 

published works devoted to various aspects of the subject. The 

extent of work on shear wall structures published prior to 1965 was 

reviewed by Coull and Stafford Smith(2). The majority of the 

earlier studies and many of the more recent works deal exclusively 

with two-dimensional systems, with built-in foundations, and 

subjected to specific, simple lateral load forms in their own plane. 
Latterly, more attention has been devoted to the problems of 

analysing complete three-dimensional structures. Present techniques 

for the analysis of two- and three-dimensional systems were reviewed 
by a committee of the American Concrete Institute 

(3) 
and by Stamato(4). 

Both sources give comprehensive lists of the more readily available 
literature. 

1.3 DEFORMATION OF FOUNDATIONS 

Published works which deal with the effects of foundation 
deformations on multi-storey structures are few in number, and deal 
in the main with two-dimensional systems. Coull investigated the 

effects of a finite differential settlement between the foundations 
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of two coupled walls(5), and presented an analysis for coupled shear 

walls supported on elastic foundations and subjected to the simple 

lateral load cases of a uniformly and a triangularly distributed 

load and a point load at the top(6). In view of the nature of wind 

and seismic forces the duration of the stressing of foundations will 
be short and the assumption that the subgrade behaves in an elastic 

manner will be sufficiently reasonable to give an insight into the 

effects of foundation movements. 

Information on the effects of foundation deformations in three- 

dimensional shear wall structures, either from measurements of 

actual buildings or from laboratory tests on models is very limited. 

There is therefore scope for both analytical and laboratory investiga- 

tion in this field. The development of a method whereby rapid 

quantitative solutions to problems of a variety of structures with 
varying foundation characteristics would enable a qualitative 
assessment of the effects involved. 

1.4 METHODS OF ANALYSIS 

The relative merits and the limitations of the three methods 
which are generally adopted for the analysis of coupled shear walls 
are well documented in, for example, references (3) and (4). In 
the frame analogy the coupled wall system is analysed as a frame in 

which the width of the walls is incorporated by the use of rigid 
joints of finite dimensions to link the ends of the connecting beams 
to the columns. The finite element method considers the structure 
to be divided into a mesh of two-dimensional elements in plane stress 
which is solved, subject to the appropriate boundary conditions, by 

matrix techniques. In the third method, the continuum approach, 
the individual connecting beams are replaced by a continuous connection 
of laminae of equivalent stiffness, in which it is assumed that the 
point of contraflexure of each lamina is at its mid-span. The 
effects of foundation deformations may be incorporated in each of the 
methods. 

Of the three methods, the frame analogy and the finite element 
technique are basically discrete analyses and are readily adaptable to 
the variations in geometry encountered in actual structures. However, 
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the amount of computation involved in these methods increases with, 
height and makes them less suitable for the investigation of the 

basic behaviour of coupled wall systems. The accuracy of the 

continuous connection technique, on the other hand, increases with 
height without additional computation. Although the use is 

restricted to systems with regular dimensions throughout their height, 

analysis by hand or with a desk calculator is feasible in many 
instances, and the method is readily adaptable for use on a digital 

computer of limited size. The continuous connection technique is 

therefore adopted in this thesis to develop a method whereby the 

behaviour of two- and three-dimensional shear wall systems, which are 

able to undergo foundation deformation, may be assessed both on a 
general qualitative approach and, in specific cases, as part of the 

intermediate design prior to a more rigorous analysis. 

1.5 SCHEME OF THE THESIS 

This thesis is concerned with the investigation of multi-storey 
structures essentially comprising parallel assemblies of two- 
dimensional shear walls of various forms, under the action of lateral 

wind and seismic loads. Particular attention is paid to the effects 
of foundation deformations which are assumed to be elastic. The 

material contained in the thesis may conveniently be classified as 
either analytical or experimental. 

The first section of analysis deals with two-dimensional shear 
wall systems, and covers both isolated and coupled walls, the latter 
being analysed by means of the continuous connection technique. 
Walls are loaded in their own plane by horizontal forces of two 

generalised forms and foundations are assumed to undergo simultaneous 
rotational and vertical elastic deformations. The expressions 
derived for plane coupled shear walls are then adapted to produce 
methods whereby design curves may be drawn for the rapid evaluation 
of stresses and deflections in the two-dimensional system. 

The force-deflection relationships derived for two-dimensional 
structures are used in the development of two similar methods for 
the analysis of the distribution of forces amongst the component 
plane systems of complete multi-storey buildings subjected to any 
system of lateral wind or seismic forces which causes bending and 
torsion of the structure, and which has been reduced to a statically 
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equivalent load form. The two methods differ only in the assumed 
form of the forces distributed to the plane systems, and the results 

obtained from both are suitable for use in the further evaluation , 
of the expressions for forces and deformations in the two-dimensional 

analysis. 

Numerical computation of the analytical methods is discussed 

with reference to the feasibility of hand calculations, the 

development of a useful system of programs for computer analysis and 
the convergence of the two methods. 

A description is given of an experimental investigation carried 

out to study the effects of the elastic deformation of foundations 

on perspex models of shear wall structures. The results of the 
tests are compared with the relevant analytical solutions in order to 

assess the validity of the latter. 

The results of numerical studies, carried out with the aid of 
the computer programs, are given to illustrate the effects of varying 
the flexibility of the foundations, both of a two-dimensional coupled 
wall system, and of specific walls in complete structures. 

1.5.1 LAYOUT OF THE MANUSCRIPT 

The expressions derived in the analysis of Chapters 2,3 and 4 

are referred to numerically in eight groups. These and the 

expressions relevant to each are numbered sequentially throughout. 
The symbols used in the analysis are defined locally as each is 
introduced, and a general list of the notation is included at the 
beginning of the thesis. 

Figures, tables and graphs are referred to by chapter number 
and are included at the end of the relevant chapter. 
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CHAPTER 2 

THE ANALYSIS OF TWO-DIMENSIONAL SHEAR WALL SYSTEMS 

2.1 INTRODUCTION 

2.1.1 TYPES OF WALLS 

The configurations of shear walls for which the analysis is 

presented fall into three groups.. 

The first of these consists of a pair of shear walls of equal 

height, in the plane common to the applied load, and structurally 

connected throughout their height by a regular array of beams or 

floor slabs. The individual walls may be of various configurations, 

typical of which are rectangular walls, walls with flanges, lift 

shafts and service cores. The two walls need not be of the same 

configuration. 

The second group consists of three shear walls again of equal 

height and in the same plane. The two outer walls must be of 

identical section and symmetrically spaced about the centre wall. 

The outer walls are connected to the inner wall by identical arrays 

of regularly spaced beams or floor slabs. 

Included in the third group are single shear walls, lift shafts 

and service cores where they cannot be considered as being structurally 

connected to other elements in the same plane. 

2.1.2 FOUNDATIONS 

The analysis is basically presented for shear walls which have 

elastic foundations. Walls are able to undergo rotation and vertical 
deflection, depending on the elastic properties of the foundation 

medium. In the limit either rotation or vertical deflection or both 

may be prevented. In addition to the general elastic foundation, 

equations are presented for the fully rigid case. 

2.1.3 APPLIED LOADING 

In general the shear wall system is loaded with any lateral 

horizontal force distribution in the plane being considered. In 
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the analysis the load distribution is represented in two ways. 

In the first instance the load is expressed by a polynomial 

series of the general form, 

P(x) =p0+ P1x + P2x2 + .... + Pn xn + .... + Pmxm (1.1) 

x is the dimensionless relative height above the base, as 

given by 

X 
x-H 

X is the absolute height above base datum 

H is the total height of the shear wall system. 

(1.2) 

The non-dimensional height co-ordinate is used throughout the 

analysis and ensures that all the polynomial coefficients, p have 

the same dimensional units of force/unit height. 

Secondly, the applied load distribution is represented by a 

suitable array of discrete point loads denoted by 

P1' P2' P3' .... Pn, .... Pm 

acting at any convenient set of relative heights 

x1, x2, x3, .... xn, .... xm 

respectively. 

(1.3) 

(1.4) 

2.2 GENERAL ASSUMPTIONS 

2.2.1 STRUCTURAL 

The general assumptions relating to the structural action of all 

the shear wall systems are as follows: 

1. All shear wall elements are of uniform section 
throughout their height, and perpendicular to 

the base. 

2. All material is both homogeneous and isotropic. 

3. No part of any shear wall system is stressed 
beyond its elastic limit. 
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4. All sections which are plane initially remain plane 

under load. 

2.2.2 FOUNDATION 

The foundation of any shear wall element is assumed to be 

perfectly elastic in both tension and compression, -and is able to 

deform in two mutually independent ways. 

1. VERTICAL DEFORMATION. 

The axial force at foundation level of any element is denoted 

by To , tension being assumed positive. TU is directly 

proportional to the vertical deflection, dv 
, which it causes, as 

given by 
6v=KT 

D 

Kv will be termed the Vertical Flexibility Modulus of the 

foundation. 

2. ROTATIONAL DEFORMATION 

(1.5) 

The moment imposed by any element on its foundation is denoted 
by M0 , clockwise being assumed positive. M0 causes a rotation of 
the foundation, öe 

, to which it is directly proportional, as 
given by 

68=K8 MU (1.6) 

K6 will be termed the Rotational Flexibility Modulus of the 
foundation. 

Both moduli are constant for any given foundation. In the 

limit either Kv or KB are made zero to give complete rigidity in 
the vertical or rotational sense, respectively. A fully built-in 
foundation condition is represented by 

Kv = K8 =0 (1.7) 

2.3 PAIR OF COUPLED SHEAR WALLS ON ELASTIC FOUNDATIONS 

2.3.1 GENERAL ANALYSIS 

The typical configuration of a pair of coupled shear walls, on 
elastic foundations, as shown in figure 2.1 will be analysed for the 
general load distribution P(x). The continuous connection technique 
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is used to derive the differential equations which govern the system. 

I CONTINUOUS CONNECTION ASSUMPTIONS 

The basic assumptions which are made to enable the use of the 

continuous connection technique are: - 

1. The beams connecting the shear walls are of equal length, area 

and stiffness, and are regularly spaced throughout the height of the 

walls. 

2. The discrete connecting beams, which have an effective moment of 

inertia, as reduced for shear deformation, of Ic, are replaced by a 

continuous system of laminae with the equivalent inertia IJh per 

unit height, where h is the constant storey height. 

3. Each connecting beam and each lamina bends with a point of 

contraflexure midway between the shear walls. 

4. The shear forces, F4 and the axial forces, Ft at the points 

of contraflexure of the discrete beams are replaced by continuous 
distributions of shear, q(x) and axial force, t(x), acting at the 

points of contraflexure of the continuous medium. 

5. The axial deformation of the connecting beams and of the 

continuous medium is negligible. 

6. At any height the two walls deflect equally and with equal 

curvatures. 

II ACTION OF CONNECTING LAMINA 

In order to investigate the action of the connection between the 

shear walls, the system is assumed to be cut through the points of 

contraflexure. The shear and axial forces are the only forces 

acting on the cut ends of the beams or laminae as shown in figure 2.2. 

Consider a typical lamina, at an absolute height, X, relative 
height, x. The cut ends of the laminae undergo relative deflections 
due to the forces acting on them, as follows: - 

1. ROTATION OF SHEAR WALLS 

The elastic rotation of the foundations and the curvature of the 

shear walls deflect the cut ends of the lamina relative to each 
other by 
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a dy_Z dy. 
1- ý' 

dX 
-H dx 

2. DEFORMATION OF CONNECTION 

(2.1) 

The shear, q(x), on the cut ends of the lamina causes deflections 

due to shear and bending of the laminae, and deformation of the beam- 

or slab-to-wall connection. The flexibility of the beam- or slab- 
to-wall connection may be allowed for by assuming the effective span, 
bc, of the beam or slab, to be increased from the clear span, b, 

by the depth of the connecting beams or slabs, as suggested by 

Michael(7). The shearing action may be accounted for by reducing 
the moment of inertia of the connecting beams, Ib , to 

I= 
C 

Ib 

1+12c Ab 
cbc 

(2.2) 

The relative deflection between the cut ends of the lamina due 
to the shear and bending of the lamina and deformation of the wall 
connection is then given by 

62= 
b3 h 

c 
12 EI 

cc 
q(x) (2.3) 

3. AXIAL DEFORMATION OF SHEAR WALLS 

Axial forces, T, in the two walls are, by the condition of 
vertical equilibrium, equal in magnitude and opposite in sense. 
Assuming tension positive in wall 1, the relative deflection of the 

cut ends of the laminae due to the axial forces deforming the walls 
is 

x 
s3 =- AE+AEHf 

T(ý ) d7 (2.4) 
11220 

4. VERTICAL DISPLACEMENT OF THE FOUNDATIONS 

The axial forces in the two walls cause the foundations to 
deflect vertically relative to each other by dv. The cut ends of 
the laminae are consequently deflected by 

64=-6v (2.5) 
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III COMPATIBILITY OF CONNECTING MEDIUM 

For continuity at the point of contraflexure there must be no 

relative deflection at the cut ends of the laminae, thus 

6ý+62+6+64=o (2.6) 

Substituting the expressions (2.1), (2.3), (2.4) and (2.5) into 

(2.6) gives the compatibility condition 

1,3k r1x 
11 ý- uC1 1 

H dx 12EcIc q(x) - [A1E1 + A2E2 
H 

0 
dx 12E I 

(2.7) 

The derivatives of (2.7) with respect to x are used later in 

the analysis and are 

bah 
yS= 

H 
dx2 12EeIe dx A1E1 ' A2E2 

H T(x) 0 (2.8) 

b 3h 
dy_cd11 dT ) 

H 
dx3 12EcIc dx2 A1E1 +A2E1H dx =0 (2.9 

IV EQUILIBRIUM OF SHEAR WALLS 

The conditions of equilibrium of the system are firstly 

considered separately for each wall and then for the wall assembly. 
The forces acting on the two walls above a section x are as shown 

in figure 2.3. The force at and the moment about the centroid of 
the section of the appropriate wall at level x are found for each 
force action on the wall. 

WALL 1 

The total force, PA(x), due to the applied load distribution, 
P(x), and its moment, MA(x), are found by integrating P(x) from the 

section x to the top of the wall as follows 

0 T(q ) d7 - 
av = 

1 
pA(x) =HJ p(7 ) dý (2.10) 

x 
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1 

ýA(x) = H2 
((ý- 

x) P(7 ) d7 

Differentiating (2.11), with respect to x, gives 

d MA 

dx -H PA(x) 

(2.11) 

(2.12) 

d2A 
=- 

d PA 
= H2 P(x) (2.13) 

dx 2H dx 

From the condition of vertical equilibrium on wall 1, the total 

of the shear force distribution, q(x) above the section x is 

balanced by the axial force, T(x) on the wall at that level, as 

given by 

1 

T(x) =H g(7 ) d2 (2.14) 

x 

The derivatives of (2.14) with respect to x are 

dT 
dx - -H q(x) 

d2TH dg 

dx2 dx 

The moment of the shear distribution about the centroid of 

wall 1 is 

MTl(x) =1 d2 +21 T(x) 

(2.15) 

(2.16) 

(2.17) 

The total force, P (x) 
, and moment, Mc (x) 

, due to the force 

distribution, t(x) , acting axially on the cut ends of the 

connecting medium above the section x are found by integrating t 

as follows 

Pc(x) =H 

x1 
/ j t(ý )d (2.18) 

1 

ýC(x) = H2 (- x) t(9 ) dý (2.19) 
/ 
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The derivatives of (2.19) with respect to x are 

dM 
c 

dx -H PC(x) 

d2m dP 
c--Hc= H2 t(x) 

dx2 dx 

(2.20) 

(2.21) 

From the conditions of horizontal and rotational equilibrium 
the shear force, Q1(x) , and bending moment, 111(x) , on wall 1 at 
level x are respectively 

Qý(x) = PA(x) + Pc (x) +Q (2.22) 

M1(x) = MA(x) + MT1(x) + Mc(x) + QH(1-x) (2.23) 

Q is the concentrated interactive force acting between the tops 

of the walls, which, in general, is required to fulfil the conditions 
of equilibrium on the individual walls. In the continuous system Q 
is a discrete axial force at the top of the connecting medium and in 
the real system it exists as a component of the axial force in the 
top connecting beam. 

WALL 2 

The axial force on wall 2, being equal to that on wall 1 is 

given by (2.14). 

The moment of the shear distribution about the centroid of wall 
2 is 

mT2(x) =-I.. + dal T(x) (2.24) 

The force and moment due to the axial force distribution, t 
acting on wall 2 are equal and opposite to those on wall 1, as given 
by (2.18) and (2.19) respectively. 

From the conditions of horizontal and rotational equilibrium 
the shear force, Q2(x) 

, and bending moment, M2(x) , on wall 2 at 
level x are respectively 

ß2(x) =- PC(x) -Q (2.25) 
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P12(x) = MT2(x) - Mo(x) - QH(1-x) (2.26) 

The total moment of restraint, [1(x) , on the two shear walls 

at level x is given by 

m(x) =m1 (x) +m 2(x) 
(2.27) 

Substituting the expressions (2.23) and (2.26) for M1(x) and 
M2(x) respectively, subsequently inserting the expressions (2.17) 

and (2.24) for MT1(x) and MT2(x) respectively and simplifying gives 

M(x) = MA(x) - RT(x) (2.28) 

V MOMENT-CURVATURE RELATIONSHIPS 

The curvature at any level is the same for the two walls as 
given by 

d2 y_ 
_1d2y 

dX2 H2 dx2 
(2.29) 

The moments of restraint on the walls are related to the 

curvature by their respective stiffnesses, ElI1 and E212, as 
follows, 

M1(x) - 

E121 1 d_Y 

H dx 2 

m2(x) 
- 

E21 
2ý 

H2 dx 

(2.30) 

(2.31) 

The summation of equations (2.30) and (2.31) gives a second 
expression for the total moment of restraint as 

M(X) = 
E1 I1 

H2 

ý 

dx2 
(2.32) 

Expressions (2.28) and (2.32) are equated to give the moment 
curvature relationship for the shear wall assembly as 

M(x) = 
+ E2I2 

H2 

2 dý 
_ M(x) - XT(x) (2.33) 
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The derivatives of (2.33) with respect to x are 

E1 I1 E212 ý_- H PA(x) £ dx H2 dx 

EýI1 2 E2I2 ý= 
H2 P(x) -ý 

d22 T 

H dx 
4 dx 

(2.34) 

(2.35) 

Substituting (2.33) into (2.30) and (2.31) gives the moments on 
the two walls in the form 

1(x) =E IE11 
M EI 

(x) -ß T(x) 
11+22A 

r1 m 2(x) =EI L+LE 
Im A(x) R T(x) 

1122 

(2.36) 

(2.37) 

VI GOVERNING DIFFERENTIAL EQUATIONS 

Equations (2.7), (2.14) and (2.33), together with their 

respective derivatives, interrelate the three functions q(x), T(x) 

and y(x). By selecting any of the functions as redundant and 
eliminating the other two a governing differential equation may be 

set up in terms of the selected function. 

Consider q(x) as the redundant function. Substituting (2.15) 

into (2.34) and rearranging in terms of the third derivative of y 
gives 

El 

dx3 
H3 

+E 2I 
q(x) - PA(X) (2.38) 

2 

Substituting (2.38) and (2.15) into (2.9) eliminates y(x) and T(x), 
and by rearranging and simplifying the resultant equation reduces to 

ZR 

-22 q(x) =-a aP (x) 
dx uk A 

The dimensionless constants u and a are defined by 

u= 1+ 
E1I1 + E? 2,2 11 

27 
1E1 

+ A2E2 

E2 I2 

(2.39) 

(2.40) 
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12 H2 z2EcIc 

b3 hE111+E212 
c 

"u 
(2.41) 

Consider T(x) as the redundant function. Rearranging (2.33) 

in terms of the-second derivative of y gives 

dY 
_ 

H2 
dx2 

-E111+E212 MA(x) -R T(x) (2.42) 

Substituting (2.42) and (2.16) into (2.8) eliminates q(x) and 

y(x). The resultant equation reduces to 

d22 T- 
a2 T(x) =-uß MA(x) 

dx 
(2.43) 

Finally consider y(x) as the redundant function. Rearranging 
(2.33) in terms of T(x) gives 

T(x) =k1 mA(x) - 

E1 I1 +E212d 2y 

H2 dx2 
(2.44) 

Rearranging (2.35) in terms of the second derivative of T(x) and 
substituting into (2.16) gives 

dq 
_E 

I+ EI 

dx - H1ý 
1 1H2 22 dx4 

- H2 P(x) (2.45) 

Substituting (2.44) and (2.45) into (2.8) eliminates q(x) and T(x). 
The resultant equation reduces to 

442 
ý 

a2 ý2 
-EHEI P(x) - 2ým A(x) dx dx 1I1+22H 

(2.46) 

Any of the equations (2.39), (2.43) and (2.46) may be solved, 
subject to the boundary conditions, for any particular load case. 

VII BOUNDARY CONDITIONS 

The terms in which each of the boundary conditions are best 
expressed will depend an which of the governing differential 
equations is chosen, in a particular case. In general there are 
four boundary conditions as follows 

1. At the base of the shear walls there can be no lateral deflection, 

HZ dx2 
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Y(O) =0 
2. The slope of the shear walls at the base is equal to the 

rotation of the foundations, 

1 gz 
H dx (°) °6 e 

(2.47) 

(2.48) 

Evaluating (2.33) at x=0 gives expressions for the moment 

on the walls at the base as 

EýI1 +22 d2 
0=2 

(0) = MA(0) - XT 
O 

(2.49) 
H dx 

The rotation of the foundations is proportional to the moment 

at the base of the walls as given in (1.6). The second boundary 

condition can be expressed by any suitable combination of (1.6) (2.48) 

and (2.49). 

3. The compatibility condition, (2.7), must be fulfilled for all 
levels. In particular, at the base equation (2.7) reduces to, 

91 b3h 
d(0) 

- 12E I q(0) -dv=0 (2.50) 
CC 

At the base the vertical deflection is related to the axial 
force by (1.5). By using (1.5) together with the relationships of 
(1.6), (2.48) and (2.49) the third boundary condition can be 

expressed in the form, 

9(0) =HQ MA(0) -YHý TO (2.51) 

Y and A are dimensionless foundation coefficients of rotation 
and vertical deflection respectively as defined by 

12EcIcH R2 
Y= 

bah 
K6 (2.52) 

c 

ý_ 
12EIH 

bah 
c 

K 
v 

(2.53) 

4. At the top of the shear walls there can be no bending moment, 
hence from (2.33) 
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d. ý 

dx 
11) -n 2-.. 

(2.54) 

Also there can be no axial force at the top of the walls. 
Substituting T(1) =0 and (2.54) into (2.8) evaluated at x=1, 
the fourth boundary condition may be expressed as 

d (1) -0 

VIII FORCES ON THE SHEAR WALLS 

(2.55) 

Having solved a selected differential equation for q(x), T(x) 

or y(x), the remaining two functions may be found directly from the 

relationships previously deduced. Thereafter these functions may 
be used to evaluate other force actions in the system. 

Substituting (2.37) and (2.24) into (2.26) and rearranging the 
terms gives 

ýý(x) 
E 

E22E 

Im A(x) +E IE22E Iß -2 - d3 T(x) 
111+2211+22 

- QH(1 - x) (2.56) 

Differentiating (2.56) with respect to x, substituting (2.20), 
(2.12) and (2.15) into the result and evaluating (2.22) and (2.25) 

gives the shear forces on the two walls as 

Q ix) = 
E1I1 

P (x) + 
E2I2 

R- b-d 
q(x) ý E1I1 + E2I2 A E1I1 + E212 23 

(2.57) 

2(x) E IE2+1 
2E 

I PA(x) - 
tEll1 

E21 2E 
I-2- d3 

112+22 

(2.58) 

The shear force Q at the top of the walls may be found by 
evaluating (2.57) or (2.58) at x=1 to be 

Q= Q1i1) _- Q2(1) = IE2+2E 'ý -2- d3 gi1) (2.59) 
112,2 
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Substituting expression (2.25) for Q2(x) into (2.58), 

differentiating and substituting (2.21) and (2.13) into the result 

gives the expression for the axial force distribution in the 

connecting medium in the form 

t(x) 
E2I2 

p(x) -1 

E2I2 
R-b-dý. q 

E7, + E2I2 H EI 11+E21223 dx 

(2.60) 

IX FORCES IN THE CONNECTING BEAMS 

Having found the shear and axial force distribution functions 

in the continuous medium, the discrete forces at the point of 

contraflexure of any connecting beam may be evaluated. 

The action of any beam is assumed to be replaced by that part 

of the continuous medium contained within half a storey height above 

and below the level of the beam. It follows that the forces in 

any beam at level x. i are obtained by integrating the relevant force 
distributions between these limits, as follows 

h 
. x_ + - 

ý Fy =HI q(x) dx (2.6? ) 
ý 

} 
F; =HI t(x) dx (2.62) 

1 

h 
xi 2H 

I zh 

h 

h 
r X, + -. . i zh 

h h 
xi 2H 

By Utilising equations (2.14), (2.18) and (2.25) the beam forces 
may be stated as the differences of the relevant wall forces at the 
above limits, as 

Fi 
q=-T 

xi + 2N +T xi - 2H 
(2.63) 

thh 
Fi = Q2 I xi + 2H - Q2 xi - 2H (2.64) 

E2 12 
ni.. % -1 

J 
E2I2 

o aL 
3 

The relevant limits of integration for the top beam are the top 
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of the walls and half a storey height below. 
t 

and FI in the top beam may be expressed as 

FI =T 1 
h 
2H 

th 
FI =-Q- Q2 1_ 2H 

2.3.2 POLYNOMIAL LOAD CASE 

1 
(2.65) 

(2.66) 

The load distribution on the system is that given in (1.1). 

For simplicity the action of any particular load term, Pn xn is 

considered, that is 

x Pýx) =p 
(3.1) 

Equations (2.10) and (2.11) may be evaluated explicitly as 

_1- 
Xn+1 PAýx) - Pn H 

n+ 1 
(3.2) 

21_ xn+2 1_ xn+1 mA(x) = Pn H 
n+ 2xn+1 

(3.3) 

Selecting q(x) as the redundant function and substituting (3.2) 

into (2.39) gives the governing differential equation as 

d2922H1 n+1 
=-a-x 

dx2 u! ý pn n+1 
(3.4) 

The equation (3.4) is a second order linear differential 

equation with constant coefficients, and may be solved by the method 

of complementary and particular functions. The complementary 

function, qc(x), being the solution of (3.4) with the right hand 

side made equal to zero, is given by 

qc(x) = K1 cosh ax+ K2 sinh ax (3.5) 

The particular function, qp (x) 
f is any solution which 

satisfies (3.4). It is assumed to be of the form 

qP(x) = aý + a1x + a2x2+.... + arxr + .... + anxý 

The beam forces, FI 

+ an+1 x n+1 
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Substituting for q(x) and its second derivative into (3.4) 

gives 

r 
2a2 + 2(3)a3x + .... + (r - 1)r arxr-2 + .... + (P - 1)n anxn-2 

r 

Pn H 
nt sin2 Iw(n- 2)/21 
2! 

a n-1 

-a21 a0 + alx +9 2x2 + .... + arxr + .... + anxn + an+lxn+l 

2p 
aHn11- xn+1 (3.6) 
pt n+ 

Equation (3.6) is an identity and must be satisfied for all 

values of x. It follows that the algebraic sum of the coefficients 

of each power of x must be zero. Beginning with the highest power 
the coefficients are systematically evaluated to give 

pn H 
an+1 - n+1 lit 

an -ý 

an-1 - 
a2 

an-2 -0 

an-3 =- (n - 2)(n - 1) 

Pn H 
nl sin2 

l7T(n 
- 1)/2ý 

9 an-4 -0..... 

By introducing a suitable sine function the zero terms may be 
included in a general term of the form 

a=- 
Pn H 

nl sin2 

17r(n(n 

r)/2) 
r pt rl n-r+1 

(3.7) 

Using the form of (3.7) the coefficients of the lower powers of 
x are 

a2 = 

a1 

a0 

n pnH 

lit 
r pn H11 

+ n(n + 1)an+lxn" ,1 

n Pn 

a4 lit 

n a 

n! sin2 
f 

nn/21 l u9. I n+1 -6 -1 
an+1 

ýJ 

Consequently the particular function may be expressed in the 
farm 
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Hn+12 
(7r 

( 
qP(x) _ 

ut 1-n 
-I 

sin n- r2 xr 
n+1 rl an-r+1 

r=0 
(3.8) 

The general solution for the shear distribution is the sum of 

the complementary and particular functions as expressed in (3.5) and 
(3.8) respectively, 

q(x) = K1 cosh ax+ K2 sinh ax 

n+ -i Pn H1 
nl sin2(7t (n 

- r)/2) r 
+ 

lit n+ 1T rl n-r+1 
x 

r-n 

(3.9) 

Two boundary conditions are required to evaluate the constants 
K1 and K2. 

Differentiating (3.9) and applying the fourth boundary condition 
as given by (2.55) gives 

pH 
K1 a sinh a+ K2 a cosh a= 

pt 
C1 (3.10) 

n+1 
where C1 n! sin2 

(Tr 1(n 

- r)/2] (3.11) 

r=1 
(r 1! 

an-r+1 

Substituting (3.9) into (2.14) and evaluating the integral for 

x=0 gives the axial force at the base, 

.oH It 
2 

TK -U sinh a+Kh (cosh a- 1) +nc (3.12) 01a2a, lit 2 

where ý2 

r=0 

Evaluating (3.3) at x=0 gives the moment of the applied 
load at the base as 

Mq(0) = 
pýn 

2+2 

(3.14) 

n+1 
1 nl sin2 

(7r(n 

- r)/2 
n+ -1E r+ 1; 

a 
n-r+1 

(3.13) 

r-n 
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Using (3.9), evaluated at x=0, together with (3.12) and 
(3.14) to apply the third boundary condition, in the form of equation 
(2.51) gives a second equation relating K1 and K2 as 

K1 1+ yä0 
sinh a 

l+ 
K2 YaAl cosh a 1 

= 
PukH In 

u+r2 (Y+A )C2 + C3 

9... 
n! sin` ( Trn/2) I 

wnere ý3 = n+1 

n+2 

n+ 1 

Equations (3.10) and (3.15) solve simultaneously to give the 

constants in the form 

pH 
K1 =nD 

pH 
and K2 = 

üý D2 

D1 and D2 are dimensionless constants, defined by 

Ic3 uY ý y+a 
cosh a 

D_aC1+- 
(Y+ý) C4+ 

n+ 2 (3.17) 
a cosh a+(y + A) sinh a 

-(c, -( Y+ A) c4 +nia sinh a 
2 

a cosh a+(y+) sinh a 
C 

where C4 = -2 +C 
a 

form, 

1 
n+2 

(3.15) 

(3.16) 

(3.18) 

(3.19) 

The shear force function can now be written in the explicit 

Pn H 
q(x) 

pt 
D1 cosh ax+ D2 sinh ax+1 

n+ 1 

I n! sin2 (IT(n 
- r)/2) xr (3.20) r1 

an-r+1 
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The derivative of (3.20) with respect to x is 

d9 
_ 

Pn H 

dx - ut 
- fn cinh Hvin rnch - vi dx - uR Iu.., l .. _.... u ,. T `"2 ..,,,,.. u .., 

r= 1 

(3.21) 

Substituting (3.20) into (2.14) and evaluating the integral 

gives the axial force in the shear walls as 

T/_.. 
Pn H Zr 

I-1.. ... x 

n+ 

_n 
sin2 

[Tr (n - r)/2) r+1 
(r 11 

ry n-r+1 x 

as 

L4a 

n+1 

- 

7, 

n r=0 
(3.22) 

Evaluating (3.22) at x=0 gives the axial force at the base 

Pn H2 
2 TD = (3.23) 

u2, 
C4 

a 

Substituting (3.3) and (3.22) into (2.33) and integrating the 
latter gives 

dy 
_pnH4x- x2 nl xn+3 

dx -E111 +E2I2 n+2 2(n + 1) + n+ 31 +K3 

r DD2 
-ü cox -2 cosh ax-2 sinh ax-2 nx+ 1 

aa 

.ý 
n+1 
E 

r=0 r=0 

n! 
r+2 )1 

sin2 
(Tr (n - r)/2ý xr+2 n-r+1 
a 

(3.24) 

Combining (1.6), (2.48) and (2.49) gives the second boundary 
condition in the form 

dx (0) = HKe 
( 

MA(0) - lCTO 
ý 

(3.25) 

n+1 

-ý 
nl sin2 (IT (n - r)/2] xr-1 

r-1l n-r+1 
�_, a a 

2 
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Substituting for MA(0) and TO as in (3.14) and (3.23) 

respectively and equating (3.25). to (3.24) evaluated at x=0 gives 

the constant K3 as 

K3- 2 n+2 
ý4+ 

a 
a 

Substituting K3 into (3.24) gives 

dy 
dx 

Hý Pn 

Eý1 1+ E2I2 
sinh a { 1 

2 
pct 

D1 

pct 
2 

[Di(cosh ax- 1) + D2 

ýx x2 nl xn+3 [n+2 
_ 2(n + 1] + 

n+3)! 

n+1 
nl sin2 

(7r(n-r)/21 

xr+2 
u 

: ii: 
(r + 2)1 

an-r+1 
r=-1 

+--ý 2n+2 
a 

C4 + 
D? 

a 

x] 

(3.26) 

Equation (3.26) is integrated subject to the first boundary 

condition as given in (2.47) to give the deflection at level x as 

E4: 

212 
y(x) E1I1n-g LDa 

x+ D2 (cosh ax- 1)] 

x2 
_ 

x3 nt xn+4 
+uu[ 2(n T2 6(n +1+ n+ 41 

nl sin2 
fý 

n- r)/21 r+3 1Iý 
n7-11 

+ 

1 L_. 
_i_ 

I r+ 3! n-r+1 
r- '1 L 
r= -I 

jr DD 
a2 

YIn 
11 

- C4 +äü 
(3.27) 

The remaining forces in the system may be found by substituting 
the values of the relevant polynomial actions into the required 
general expressions. 

The total of any force action or deflection due to the complete 
load distribution is obtained by summing the corresponding actions 
due to all the load terms of equation (1.1) 
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2.3.3 POINT LOAD CASE 

The load on the system in this case is defined by the array of 
discrete point loads (1.3) acting at their respective heights (1.4). 

The action of any particular point load pn acting at level xn 
is considered. 

Due to the discrete nature of the load the expressions describing 

the actions of the system above and below the load point will generally 
be different. This is accounted for by the use of a suffix notation, 
U and L denoting the upper and lower regions of the system, 

respectively. 

Other than at the load point the loading on the system can be 

described by 

P(x) =o 

By inspection equations (2.10) and (2.11) take the form 

pAU(x) =0 

pAL(x) = pn 

m AU(x) =0 

m AL(x) = pn H (xn - x) 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

Selecting the deflection, y(x), as the redundant function and 
substituting (4.1), together with one of (4.4) and (4.5) into (2.46) 

gives the governing differential equations for the upper and lower 
regions in terms of yU and yL respectively as 

d yU 2 d2 yU 
=0 (4.6) 

dx4 
-a 

dx2 

d yL 2 d2 yL Pn H3 a2 
dx4 a 

dx E1I1 + E2I2 u 
(xn - x) 

(4.7) 

Both the equations (4.6) and (4.7) are fourth order linear 
differential equations with constant coefficients, and can be solved 
by the standard method. 
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The complementary function of (4.6) is also its general solution 

as given by 

yU(x) = K1 + K2x + K3 cosh ax+ K4 sinh ax (4.8) 

The derivatives of (4.8) with respect to x follow directly as 

dyU 
x- K2 + K3 a sinh ax+ K4 a cosh ax (4.9) 

- 
lC n2 rnch nv .i IC . r2 inh .,, v i/i_9f1% 

dx2 

d2yU 

Substituting (4.4) and (4.10) into (2.33) gives the axial force 

in the walls as 

TU(x) = 
H2 k 

a2 cosh a x+" K4 a2 sinh a x) 

(4.11) 

Differentiating (4.11) with respect to x and substituting the 
result into (2.15) gives the shear distribution function as 

q, j(x) = E113 +E212 
(K3 a3 sinh ax+ K4 a 

cosh a x) 1HR (4.12) 

The complementary function for (4.7) takes a similar form to 
that of (4.6). By assuming a particular function of the form 
a2x2 + a3x3 and using (4.7) to evaluate the coefficients, the 
general solution of (4.7) is found to be 

YL(x) = K5 

Eý1 1+ E2 

+ K6x + K7 cosh ax+ K8 sinh ax 

4. 
. EýIý + E2I2 

The derivatives of (4.13) with respect to x are 

dyL 

dx = K6 + 

Pn H3 
u-1 x2Xn 

_ 
x3 

1+ E2I2 26 

K7 a sinh ax+ K8 a cosh ax 

(4.13) 

Pn H3 2 
+ E1I1--+- E2 I2 

uu1 
xxn -2 (4.14) 

u 
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d2Y L 

dx2 
K7 a2 cash ax+ K8 a2 sinh ax 

H3 
+ E1P1 + E2I2 -ýý 

1 (xý - x) (4.15) 

Substituting (4.5) and (4.15) into (2.33) gives the axial force 

in the walls as 

Týýx) =uß (xý - x) 

Eý1 1+ E2I2 

H2 ß 
(Ký a2 cosh 

(4.16) 

Substituting x=0 into (4.16) gives the axial force at the 

base as 

pn H xn E111+E2122 
Tý =uý_ 

H2 ý 
K7 a (4.17) 

Differentiating (4.16) with respect to x and substituting the 

result into (2.15) gives the shear distribution function as 

qL(x) 
Pn 

=uQ 

+ 
EýI3 1+ E2I2 

(K7 a3 sinh 
Hk 

BOUNDARY CONDITIONS 

ax+ K8 a2 sinh a x) 

ax+ K8 

(4.18) 

Eight boundary conditions are required to evaluate the constants 
K, to K8. These comprise the four general conditions together with 
an additional four which refer to the level of the point load, and 
are as follows. 

1. Applying the first condition, (2.47) to equation (4.13) 

evaluated at x=0 gives 

a3 cosh a x) 

K5 + K7 =0 (4.19) 
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2. Combining (1.6), (2.48) and (2.49) gives the second condition 

in the form 

2 

dx (0) _ (E1I1 + E2I2) 
Fie 

d y2 
(0) 

dx 
(4.20) 

Evaluating (4.14) and (4.15) at x=0, substituting into (4.20) 

and using the definitions of a and y gives 
3 

K5 -uy K7 +a K8 =E In 

HYx(u- 
1) (4.21) 

11+E212a2 

3. Substituting (4.17), together with (4.5) and (4.18), evaluated 

at x=0, into (2.51) gives the third boundary condition in the 

form 

( Y+ p )K7 -a K8 =2 
Pn 

(1 - C1 xn) (4.22) 

a 11 (E1I1 + E2I2) 

where 

C1 =Y(u- 1) -& 
(4.23) 

4. Applying the fourth condition in the form of (2.54) to equation 
(4.10) evaluated at x=1 gives 

K3 cosh a+ K4 sinh a=0 (4.24) 

5. At the level at which the point load is applied the deflection 

as given by (4. B) and (4.13) must be the same, 

Yu(xn) = YL ix (4.25) 

Substituting x=xn into (4.8) and (4.13) gives the condition 

K1 + K2 xn + K3 cosh a xn + K4 sinh a xn - K5 - K6 xn 

33 

- K7 cosh a xn - K8 sinh ax= 
Pn Hu xn 

nE111+E2123 
(4.26) 

6. Also at the load point the slope of the walls as given by (4.9) 

and (4.14) must be the same, 
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ddx 
(xn) = 

ddx 
(xn) (4.27) 

Substituting x= xn into (4.9) and (4.14) gives the condition 

K2 + K3 a sinh a xn + K4 a cosh a xn - K6 - K7 ä sinh 

32x 
Pn 11 

H-1 

- K8 a cosh a xn = E1 11+E2122 

ax n 

(4.28) 

7. A third condition at the load point is that the axial forces as 

given by (4.11) and (4.16) must be the same, 

Tu(xý) = Tý(xý) (4.29) 

Substituting x=xn into (4.11) and (4.16) gives the condition 

K3 cosh a xn + K4 sinh a xn - K7 cosh a xn - K8 sinh a xn =0 

(4.30) 

8. At the load point the compatibility condition, (2.7) must be 

satisfied for the expressions which refer to both above and below 

the load point. (2.7) may be expressed, firstly in terms of YU9 

qU and TU and then in terms of yL' qL and TL, both sets being 

evaluated at x=xX. If the difference of the two equations is 

taken and use made of the previous conditions, (4.27) and (4.29) the 

resultant equation reduces to 

ýxý) =0 (xn )- 4L 

Substituting x= 
condition 

(4.31) 

xn into (4.12) and (4.18) gives the final 

K3 sinh a xn + K4 cosh a xn - K? sinh a xn - K8 cosh axn 

pn H3 
_ (4.32) 

a3u(E,, I, + E�I�) 

The equations 

ýcc 

(4.19), (4.21), (4.22), (4.24), (4.26), (4.28), 
(4.30) and (4.32) are solved to give the constants K1 .... K8 which 

are then substituted into the various equations of the system. To 

simplify the resultant expressions the following dimensionless 
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constants are defined, 

Dl = 

D2 = 

03 = 

(4.34) 

(4.35) 

(4.36) 

ý)2 + A (4.33) 

sinh a (1 - xn) - (1 - C1 xn) sinh 

a cosh ä+( Y+ A) sinh a 

+A 
sinh a (1 -x)+ (1 -Cx) cosh a 

an1n 

a cosh a+( Y+ A) sinh a 

cosh a xn +YaA sinh a xn - (1 - C1 

a cosh a+( Y+ p) sinh a 

The equations for deflection, (4.8) and (4.13) can then be 

expressed in the form 

vu(x) = 
a2 11 (E1I1 

pý H3 2 xýx 
a (u 1) 2 

u(E1I1 + E2I2) 

+ xn(1 + C2 x) - D3 sinh a (1 - x) 

vL(x) = 
H Pn 

a2 u (E1 11+ E2I2) 
a2( 11 1) 

3 
x 2+ D1(1 - Cl x) 

} 
x2x3 nx 

26 

+ x(1 + C2 xn)- D1 cash ax- D2 sinh ax 

(4.37) 

+ D1(1 - C1 x) 

(4.38) 

The derivatives of (4.37) and (4.3B) with respect to x are 

dyU 

dx 
Pn H3 

a2 11 (E1 11+ E2I2) 

+ D3 a cosh a I (1 

2 

a2( u- 1) 
x2- 

C1 D + C2 xý 

x) } (4.39) 

dyL Pn H3 2 
dx 

a2 u (E1I1 + E2I2) 
ä(u- 

1) 
[xxn 

-2- C1 D1 + 1+C 
2 xn 

-Da sinh a D2 a cosh ax (4.40) 

+ E2I 
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d2YU Pn H3 
D sinh a (1 - x) dx --u (E1I1 +" E21 2) 3 

d2yL pn H3 

dx u(E1 11 +"E2I2 
(u ý)(xn x) 

(4.41) 

- D1 cosh ax- D2 sinh ax 

The axial forces in the shear walls are expressed as 

(4.42) 

H 
TO(x) =pü9, D3 sinh a (1 - x) (4.43) 

H 
Tý(x) = 

pný 
xn -x+0 cosh ax+ 02 sinh ax 

p(4.44) 

The axial force on the foundations is given by 

pý H 
+pý Tp =ýX 11 n 

The shear force distribution is given by 

pn a 
qu (x) =uQ D3 cash a (1 - x) 

(4.45) 

(4.46) 

qL (x) =p 
ß 1- D1 a sinh ax- D2 a cosh ax (4.47) 

The derivatives of (4.46) and (4.47) are 

dqU 

dx 

dqL 

dx 

2 
pn a 

_-üZ D3 sinh a (1 - x) (4.48) 

Pn a2 

uxD, cosh ax+ D2 sinh ax (4.49) 

The other forces in the system may be found by substituting the 
values of the relevant point load actions into the required general 
expressions. 

Any total force or deflection due to the complete array of point 
loads, (1.3) is obtained by summing the actions of the individual loads. 
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2.4 PAIR OF COUPLED SHEAR WALLS ON RIGID FOUNDATIONS 

2.4.1 INTRODUCTION 

The analysis, by the continuous connection technique, of the 

two-dimensional system of a pair of coupled shear walls with fully 

built in foundations has been presented by other authors for a 

variety of load configurations. All these load configurations are 

definite cases of either of the load cases employed in this thesis. 

As outlined in 2.2.2 the conditions for rigid foundations are 

the limiting case of the general elastic analysis of 2.3. For the 

foundations to be rigid the relative deflection, S 
v, and the base 

rotation, Se , must at all times be zero. This is achieved by 

making the foundation flexibility moduli, Kv and Ke, both zero, 

as stated in relations (1.7). 

The general analysis of the system is thereafter unchanged, 

although, if only the rigid foundation analysis was required, 

considerable simplification of the boundary conditions would be 

possible. By substitution of (1.7) into the definitions of the 

dimensionless foundation coefficients, y and A as given in (2.52) 

and (2.53) it is obvious that 

Y=0=ý (5.1) 

The effects which the conditions for rigid foundations have on 
the various force and deflection expressions are discussed for the 

two load cases. 

2.4.2 POLYNOMIAL LOAD CASE 

In the case of a polynomial load distribution the constants C19 
C2, C3 and C4, as defined in (3.11), (3.13), (3.16) and (3.19) 

respectively, are independent of the foundation conditions. 
Constants D1 and D2 as given by (3.17) and (3.18) are dependent 

on the foundations and may be simplified in the rigid case as follows 

ýý = C3 

02 
ýý - C3 a sinh a 

(5.2) 

(5.3) 
a cosh a 
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The expressions for the shear distribution in the connecting 

medium, (3.20), and the axial force in the shear walls, (3.22), are 

unchanged. The only effect on the slope and deflection functions 

(3.26) and (3.27) is that the term containing y may be removed 

from both. 

2.4.3 POINT LOAD CASE 

In this case the constants C1 and C2 as defined by (4.23) 

and (4.33) are dependent on foundation conditions and are both found 

to be zero for the conditions of rigid foundations. 

Cý = C2 =0 (5.4) 

Constants D1, D2 and D3 as given by (4.34), (4.35) and (4.36), 

respectively, are also dependent on the foundation conditions, and 

may be simplified in the built-in case to give 

D2 = 

D3 = 

sinh a (1 -xn)- sinh a 

a cosh a 

1 
a 

cosh ax-1 
n 

a cash a 

(5.5) 

(5.6) 

(5.7) 

Expressions (4.37) to (4.40), inclusive, for the deflection 

and slope of the shear walls may be simplified by inspection in that 

terms containing C1 and C2 as multipliers may be removed. 

Otherwise the expressions for shear distribution and axial force 

are unchanged. 

2.5 THREE SYMMETRICAL COUPLED SHEAR WALLS 

In buildings where the functional layout requires that one or 
more of the two-dimensional shear wall systems contains two bands 

of openings, it is often the case that these openings will be 

situated symmetrically about the centre line of the system. In 
the resultant three wall system the outer shear walls are identical, 

as are the two bands of connecting beams. 
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The symmetry of the system requires that the shear distribution, 

q, is identical in the two connecting systems and that there is no 

resultant axial force in the central wall. If the procedure of 

section 2.3.1 is followed it is found that the forms of the 

governing differential equations, (2.39), (2.43) and (2.46) are the 

same provided that the dimensionless parameters p and a are 

redefined as 

11 = 9 -1- 

2E1I1 

_ ! C2 A1 E1 

12 H2 Q, 
2 Eclc 

b3h 2E 111+ E2I2 u 

(5.8) 

(5.9) 

In this case suffix "1" refers to the identical outer walls, 
suffix "2" to the central wall, and R is the distance between the 

centroid of either outer wall and that of the central wall. In 

equation (2.46) the additional substitution of (2E1I1 +E212) for the 
term (E1I1 +E21 2) must be made. The resultant solutions of the 

governing differential equations for any particular load case are 
then identical to the two wall case provided the above substitutions 
are made where necessary. 

The effects of foundation deformations may also be included, as 
in the two-wall case. The vertical flexibility modulus, Kv, is 

as defined in (1.5) where, in this case, Sv is the vertical 
deflection of an outer wall relative to the central wall, which does 

not deflect vertically, and T0 is the axial force at the base of 
each outer wall. The rotational flexibility modulus, K8, is as 
defined in (1.6) where M0 is the sum of the base moments on all 
three walls. 

With care, in respect of the correspondence of the dimensions in 
the two and three-wall systems, the force actions, stresses and 
deflections of the shear walls and connecting beams may be evaluated 
as before. 

2.6 SINGLE SHEAR WALLS 

A shear wall, or an access and service core, which is not 
coupled to any other shear-bearing element, deforms as a simple 
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cantilever. The configuration of a single cantilever on an elastic 

foundation is analysed for the general lateral load distribution 

P(x). 

The moment of restraint on the wall at a section x is 

equivalent to the moment of the load applied to the wall above x 

and is given as before in equation (2.11). The moment is related 

to the curvature of the wall by its-stiffness as given by 

(9(x) = H2 

dY 2 

dx2 
(6.1) 

Equation (6.1) may be solved for y(x) for any particular load 

distribution subject to the following boundary conditions: - 

1. At the base of the wall there can be no lateral deflection, 

y(o) =o 
(6.2) 

2. The slope of the wall at the base is equal to the notation of 

its foundation, as given previously in (2.48). Substituting (1.6) 

into (2.48) gives 

dx (0) =H KB M 0 

The case of a rigid foundation is 
(6.3). 

2.6.1 POLYNOMIAL LOAD CASE 

The action of the particular load 

(6.3) 

given by making K8 zero in 

term, pn xn is again 

considered. The expression for M(x) is that given in (3.3). 

Equation (6.1) becomes 

d-2 
_ 

pý H 

dx2 E1I1 
n+1 

1 

Evaluating (3.3) at x=0 and substituting the 
(6.3) gives the second boundary 

9x (0) = 
Pn H3 K8 

{ n+2 
-x 1-x 

n+2n+1 

n+2 

-Y 

condition in the form 

un 

(6.4) 

result into 

(6.5) 

The solution of (6.4) subject to (6.2) and (6.5) is 
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Y(x) = 
Pn H4 

E1I1 
yx x2 x3 nl xn+4 

2(n 

(6.6) 

The dimensionless foundation coefficient of notation, y, for 

a single wall is defined as 

1= 
1 E1 1 

H 
KB (6.7) 

Y takes zero value in the case of a rigid foundation. 

2.6.2 POINT LOAD CASE 

The action of any point load, pn acting at level xn is again 

considered. The moments of the applied load at a section x above 

and below the load point are given by (4.4) and (4.5) respectively. 

The two forms of (6.1) are thus 

d yU 

dx2 =o 

d YL pn H3 

dx2 
E111 

ýxn - x) 

(6.8) 

(6.9) 

Evaluating (4.5) at x=0 and substituting the result into 

(6.3) gives the second boundary condition in the form 

dy 
xn K13 (6.10) 

Two additional boundary conditions which are required to solve 
equations (6.8) and (6.9), refer to the level of the load point at 
which the slope and deflection must be continuous. These conditions 
were stated previously in (4.27) and (4.25) respectively. 

The solutions of (6.8) and (6.9) subject to the boundary 

conditions (6.2), (6.10), (4.27) and (4.25) are 
323H 

n 
x 

YU(x) 
PE 

IY xn x+ 
x2 x-6 

(6.11) 
11 
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H3 x x2 
Yý(x) =ný 

1Yxx 

ý+ 
n- x3 

E116 (6.12) 

where y is of the form given in (6.7). 
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CHAPTER 3 

DESIGN METHODS-FOR'000PLED SHEAR WALLS 

3.1 INTRODUCTION 

The modern approach to the design of a structure, in particular 

a multi-storey apartment- or office-style concrete building of the 

type being considered, demands an overall economy in the function of 
its constituent parts. The multiple employment of components to 

bear the dead weight and vertical imposed loading, to resist lateral 

wind forces, to provide internal partitioning of the floor plan and 
to give a degree of protection against fire, reduces the quantity of 

material involved, and leads to an open and more versatile layout. 

It is important that an accurate assessment of the effects of 
the lateral loading is made at an early stage in the design of such 
buildings. Preliminary outline designs do not justify the cost of 
using a digital computer and the evaluation of the expressions, 
presented in Chapter 2, without computer facilities is both tedious 

and time consuming in all but the most simple cases. There is, 
therefore, a requirement for procedures for the rapid evaluation of 
wall stresses, beam shear forces (and hence bending moments), and 
the maximum deflection in two-dimensional shear wall systems, to be 

used by the design engineer who possesses an understanding of the 
limitations of the procedures used. 

Methods are presented whereby design curves may be prepared to 

cover a wide variety of configurations of pairs of coupled shear 
walls on foundations of known elastic properties. These semi- 
graphical procedures were used by Coull and Choudhury 

(8'9) 
for the 

cases of uniform and triangular distributed loads and a point load 
at the top, applied to a pair of coupled walls built in at their 
bases. 

As a greater knowledge of wind behaviour becomes available, a 
more accurate representation of the loading on tall buildings becomes 
possible. The pressure distribution may then be represented by a 
power series. The above graphical techniques are extended to 
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encompass any lateral load which is representable by a polynomial 

series, in the height co-ordinate, of the general form (1.1). The 

general point load case is also included, and the limitations on 
its use are discussed. 

The expressions derived in the present chapter are for the 

general pair of coupled walls in which the two walls may possess 
distinct elastic properties which may also be different from those 

of the connecting beams. 

Examples of the curves which may be prepared from the expressions 

are given in Appendix 1. 

3.2 STRESSES IN WALLS 

The stress distribution on the section, shown in figure 3.1(a), 

of a pair of coupled shear walls, at any level x, is shown in 
figure 3.1(b). The distribution on each of the walls consists of 
the superposition of a uniform axial stress and a linear bending 

stress, induced by the axial force T(x) and the bending moment, 
M1(x) or M2(x), respectively. The stresses at points A, B, 

and C, as shown in figure 3.1(a), may be expressed in terms of 
the moment of the applied load, MA(x), and the axial force by 

substitution of (2.36) for M1(x) as follows, 

cr AE I1 +d 
1E 

I 
(M 

p(x) - R, T(x)l + 
T(X) 

p 
(7.1) 

112lJ 21 

v=Tx 6 A1 

Q 
C 

1 
+d 

2E 
I 

(M 
p(x) -k T(x) + 

T(X) 
AE11122l1 

(7.2) 

(7.3) 

The corresponding expressions may be derived for wall 2 by using 
equation (2.37). 

For the purpose of this design method, the total distribution 
may be derived from an alternative superposition of two pure bending 
stress distributions as follows: - 
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1. Two linear stress distributions obtained on the assumption 
that the two walls act as independent cantilevers, with a neutral 

axis at the centroid of each wall as shown in figure 3.1(c). 

2. A single bending stress distribution based on the assumption 
that the wall system acts as a single composite cantilever with the 

neutral axis at the equivalent centroid of the composite section of 
the two walls, as shown in figure 3.1(d). 

The validity of this procedure is well established(8'9) and may 
be verified by setting up the constituent linear moment- and axial 
force-stress relationships for each system, together with the 

equilibrium conditions relating the externally applied moment and 
internal stresses. By equating the corresponding stresses at any 
four points such as the extreme edges of the walls it may be shown 
that the actual stress distribution may always be achieved by a 
superposition of the two alternative distributions. 

By using this superposition procedure, the solution of the 

complex coupled structure is reduced, in the general case, to the 

problem of two simple vertical cantilevers together with one vertical 
cantilever composed of two parts possessing different elastic 
properties, for which simple solutions exist(1O). In the case which 
will most often be encountered, both walls will possess identical 

material properties and the problem is then that of three simple 
vertical cantilevers. 

Let K1 and K2 be the percentages of the applied moment, 
MA(X), which are carried by independent and composite cantilever 

action, respectively, in which case it is a condition that, 

K1 + K2 = 100 (7.4) 

For any general lateral loading the applied moment is found 
from equation (2.11), which, for any polynomial distribution with 
exponent n is given by (3.3). The latter expression may be 
stated as, 

m p(X) = Pn H2 x1 (n, x) (7.5) 

where, 
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xn+2 
-x1- 

xn+1 
1- n+ 2 n+ 1 

(7.6) 

Similarly the axial force, T(x), for any polynomial exponent n 

is given by (3.22), which may be stated in the form, 

2 

T(x) = 
Pn A2(n, x, at u, Y, A) (7.7) 

H 

where 

a2= C4 -ý (D1 sinh ax+ D2 cosh a x) -x n+1 

n! sin` LTr(n - r)/2J xr+1l (7.8) ýl 
(r 11a n-r+1 Jý 

n+1_ 17 r_, ýý 

r=0 

1. INDIVIDUAL CANTILEVER ACTION 

The total moment carried by this mode is MA(x) K1/100. 

Since the two walls are assumed to deflect equally, the bending 

moment carried by the walls will be in proportion to their flexural 

stiffnesses. The moment carried by wall 1 is then 

K1 E111 
M1(x) = MA(x) 100 E111+ E2I2 

The stresses at points A, B and C are given by 

K1 E1d1 
QA = MA(x) 

100 E111+ E2I2 

QB =0 

cr0 =- mA(x) 
100 E1I1, +ýE2I2 

Similar expressions hold for wall 2. 

(7.9) 

(7.10) 

(7.11) 

(7.12) 

2. COMPOSITE CANTILEVER ACTION 

The total moment carried by this mode is MA(x) K2/100. 

In the general case being considered the composite cantilever 

consists of two parts with distinct Young's Moduli, E1 and E2. 

In order to find the neutral axis of the composite section a 

Ký E1d2 
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transformation is made to both parts such that each sectional 
dimension at right angles to the plane of the shear wall system is 

factored by its respective Young's Modulus; a procedure outlined 
by Timoshenko(10). The transformed section of wall 1 has an area 
Al E1 and inertia E1I1 and, with a Young's Modulus of unity will 
deform in bending in the plane of the shear-walls, and under axial 
forces exactly as would the real section. The corresponding 

statement is valid for wall 2. 

The centre of area of the transformed composite section is then 

found in the normal way, and is such that 

A2E2 

A1 E1 + A2E2 
(7.13) 

where kp is the distance from the centroid of wall 1 to the centre 
of area of the transformed section as shown in figure 3.1(d). 

The moment of inertia of the transformed section is given by 

I=E,, I. + E-I- + k2 
A1E1A2E2 

IILL 
+ A2E2 

(7.14) 

The stress distribution on the transformed section is linear and 
the stress at any point is found in the usual way. In transforming 
back to the real sections the stresses are factored by the relevant 
Young's Modulus to give the composite stress distribution shown in 
figure 3.1(d). The stresses at points A, 0 and C on wall 1 are 

QA = 
MA 

IX) 1 
(k ß+ d1)E1 (7.15) 

00 

ýAýX) K2 
= ýB _1 100 

kß E1 

Aýx) K2 
ýC =_I 100 

(k Z- d2)E1 

(7.16) 

(7.17) 

Similar expressions may be derived for wall 2 

CORRESPONDENCE BETWEEN STRESSES 

On equating the actual stress at the extreme fibres of wall 1, 
(7.1) and (7.3), to the corresponding stresses derived from the 
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alternative superposition, (7.10), (7.12), (7.15) and (7.17), the 

composite action proportional function is found to be 

A2(n, 
K2 = 100 ) 

(7.18) 
1 n, x) 

The proportions of individual and composite cantilever action 

required to produce the true stress distribution at any particular 
level, for a given exponent n are thus functions of the 

geometrical parameters a and u, and of the foundation coefficients 
y and A. 

It is invisaged that in the normal procedure to design such a 
structure, the initial layout and preliminary design would be made 
on the assumption that rigid foundation conditions exist. At a 
later stage the design would be checked to evaluate the effects of 
possible foundation deformation. Where more information is 

available as to the nature of the ground conditions and the type of 
foundations which will be adopted, slab footings, piles, etc. an 
estimate of y and A may be made at a much earlier stage in the 
design. In either case where the coefficients y and 0 have been 

set the variation of K2 for any n depends only on the relative 
height and the geometrical parameters, p and a. The rigid 
foundation case is independent of p and hence a set of curves may 
be prepared to show the variation of K2 with a at different 
levels x, for each relevant exponent n. 

The above design procedure has been developed for the case of a 
polynomial load distribution. The mathematics are the same for the 

point load case in which only the forms of Al and A2 differ. 
The expressions for Al and A2 depend on whether the level 

concerned is above or below the load point and may be found by 

referring to (4.4), (4.5), (4.43) and (4.44). From (4.4) it is 

seen that for levels above the load point A1 is zero, and hence 
K2 is indeterminate. The alternative superposition procedure is 
therefore of limited use in dealing with point loads. 

Where only the stresses at lower levels are required the 

majority of an array of point loads will be above these levels and 
the method may be used with confidence, in which case A. and A2 

are found from equations (4.5) and (4.44) to be 
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a1 (xn, x) = xn -x 

For rigid foundation conditions the variation of K2 may be 

plotted for different values of a, for levels below any particular 

point load. In evaluating stresses by this method the effecth of 
loads applied below the level considered are neglected and it is 

obvious that the values of stresses found for all but the lowest 

levels will be unreliable. 

Having determined the values of coefficients K1 and K2 

relevant to the load and wall configuration under investigation the 
bending stresses in the walls may be obtained by superposition of 
the individual and composite stresses evaluated from ordinary beam 
theory. 

3.3 FORCES IN CONNECTING BEAMS 

In the case of any polynomial exponent n, the shear force per 
unit height, obtained from equation (3.20), may be expressed in the 
form 

where 

K3 

al sin2 
[Tr(n 

- r)/2 ( 

rl an-r+1 

(7.19) 

(7.21) 

xrl (7.22) 

Similarly, for a point load at any level, xn, the shear force 

distributions of (4.46) and (4.47) may be expressed as 

pn 
q =-`- pt 

where 

1 

Ix 2 
(xn, x, Cl , 11 ,y, 0)= xn -x+ D1 cosh ax+ D2 sinh ax 

(7.20) 

q 

= D1 cosh ax+ D2 sinh ax+ n+ 1 

pn H 
_ ý- K3 

K3 

KU3 - D3 a cosh a (1 - x) 

(7.23) 

(7.24) 



KL3 =1- D1 a sinh ax- D2 a cosh ax (7.25) 

The form of K3 depends on whether the level considered lies, 

respectively, above or below the load point. 

The shear force factor, K3 , depends on the relative height, 

the geometrical parameters, a and u and the foundation coefficients, 

y and A, for any polynomial exponent or particular load point. 
In the initial design, assuming rigid foundations, K3 depends only 

on x and a, and a family of curves may be plotted to show its 

variation for each exponent or load point. 

For any particular case the value of the shear force and hence 

the bending moment in any particular connecting beam is found by 

evaluating the area under the curve of K3 between half a storey 
height above and below the level of the beam and multiplying it by 

2 
Pn H/ ut or pn H/ Pt in the polynomial and point load cases 
respectively. 

The position of the beam which carries the greatest shear force 

will be obvious from the shape of the relevant curve. 

3.4 DEFLECTIONS 

The deflection at any level is given by equations (3.27) and 
(4.27) or (4.28) for the polynomial and point load cases respectively. 

The maximum deflection, at the top, in the case of a polynomial 
distribution may be expressed in the form 

H4 pn 
'max = EýIý + E2I2 

K4 

where 

a- 1) K4 =1 
{D1 

sinh a+ D2 (cash 
Ua 

+ 
p11 {2 

2(n 6n1+1 + nn+4 1 

n+11 
nl sin2 

CTr (n - r)/21 
[(r 

+ 3)1 an-r+1 

(7.27) 
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For a point load at any level, the deflection at the top may be 

stated as 

where 

H3 
_ 

Pn 
ymax - 

a2 11 
E1 11+E21 2K4 

x2x3 
K4 = a2(u-1) 26 

+ D1(1 - C1) + xn (1 + C2) 

(7.28) 

(7.29) 

In each case, for any exponent n or a particular load point, 
the deflection factor K4 depends on u, a, y and A. In the 

initial design approach, with known or assumed foundation conditions 
K4 depends on u and a and curves may be prepared to show its 

variation for each relevant exponent or load point. 



F 3.1 

A 

Wall 1 

B 

0 

c. g. of composite section. 

(a) Section through shear walls. 

(b) Actual stress distribution. 

(c) Individual cantilever stresses. 

(d) Composite cantilever stresses. 

Alternative superposition of stesses. 

Wall 2 

Figure 3.1 



48 

CHAPTER 4 

THE ANALYSIS OF COMPLETE STRUCTURES 

4.1 INTRODUCTION 

The typical three-dimensional structure for which the analysis 
is presented may consist of various forms of load bearing elements, 
such as coupled and single shear walls of different dimensions 
together with cores of box type construction surrounding access and 
service shafts. In many structures the arrangement of these shear 
resisting elements in plan is asymmetrical. In the general case 
the lateral wind loading on the structure may also be asymmetrical. 

Except in a symmetrically loaded symmetrical structure comprising 
parallel wall assemblies possessing identical stiffness matrices, 
there will be redistribution of the lateral load between the various 
structural elements throughout the height of the building. The 

redistribution will be considerable in structures which contain 
elements which exhibit different modes of deformation, such as 
coupled shear walls which tend to bend with double curvature and 
single elements which normally deflect in single curvature. The 

redistribution of lateral forces may also be considerable where 
torsional deformations of the walls or elastic deflections in 
foundations occur. 

The analysis puts forward two simple methods of evaluating the 
distribution of shear loading within a complete multi-storey building 

whose wind resisting structure essentially consists of parallel 
systems of plane shear walls and box core elements of the types 

analysed in Chapter 2. Although basically similar, the two methods 
differ in respect of the form of distribution which the load is 

assumed to take on the individual shear resisting structures within 
the building. 

4.2 ASSUMPTIONS 

1. The building consists of a number, 3, of parallelshear- 
resisting structures, connected at regularly spaced storey levels by 



49 

lintel beams and floor slabs. 

2. The stiffness of the floor slabs in their own plane is large 

enough that they undergo only rigid body displacements. 

Consequently, under the action of the wind forces, the structure will 

deform in plan view, at any particular level xi., as shown in 

figure 4.1. The movement of that level may be described by the 

deflection, yi of any suitable datum position and the rotation 8 

The displacement, at level xi, of any wall assembly IJ1 at a 
distance zj from the datum will consist of a deflection given by 

yi3 = yi + 8i zi (8.1) 

together with the rotation 8i. 

3. Any form of wind pressure distribution may be considered. 
Since the floor slabs are assumed rigid in their own plane, the 

effect of the wind load above the level xi may be represented by a 

resultant horizontal load W. and a twisting moment Mi acting at 
the datum position, as shown in figure 4.1. 

4. The resultant force and moment at any level are resisted by a 

combination of the shearing action and the torsional moment of the 

3 shear wall assemblies. The amount of the total load carried by 

any particular wall assembly will depend on the load-deflection and 

moment-rotation characteristics of that assembly. 

5. The shear force carried by any wall assembly may be adequately 

described by either of the load forms (1.1) or (1.3). 

4.3 POLYNOMIAL LOAD CASE 

For any form of lateral wind loading on the structure it is 

assumed, in this case, that the direct load distributed to any shear 

wall assembly is in the form of the polynomial series (1.1), i. e. 

P(x) _ 
n x n 

(8.2) 

The distribution of twisting moment on the assembly is assumed 
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to be of the analogous form 

m 

T(x) = 
ý 

tn x 
n=0 

n 

m 

The total shear force, P., and twisting moment, Ti, carried 
by any particular wall assembly at the level xi are 

Fi 

T. 
1 

=H 

=H 

1 

x. 
1 

1 

x. 1 

P(x) dx = 

T(x) dx = 

in Pn 

(8.3) 

(8.4) 
n= 

m 

>1 in to (8.5) 
n-0 

sin is an integration coefficient which is independent of any 
particular wall assembly and is given by 

1_ x_n+1 
sin =Hn +11 

(8.6) 

The deflection and rotation of the j'th wall assembly at level 
xi can be expressed in the forms 

yij =)I pin Pn 
n=0 

(8.7) 

(8.8) 

In expressions (8.7) and (8.8) it is assumed that the direct 
force produces no rotation of the wall assembly and likewise the 
twisting moment causes no lateral displacement. This will be a 
realistic assumption in buildings where the parallel assemblies 
consist of simple open shapes of the types analysed in Chapter 2. 

The influence coefficients fin and fin depend on the 
configuration of the wall assembly, including its foundations, to 
which they refer. The direct load coefficients fin are obtained 
directly from the relevant equation, (3.27) or (6.6). The torque 
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coefficients 

of materials" 

sophisticated 
(Michael12ý 

fin may be evaluated from straightforward "strength 

formulae, for example Den Hartog(11) or by a more 

analysis which includes warping effects, for example 

The torsional moment on any element is related to the resultant 
twist by 

T= C d0 
_C 

de 
dX -H dx 

where C is the torsional stiffness of the element. 

Substituting the torque of equation (8.5) into (8.9) 

integrating, subject to the boundary condition that there 

(8.9) 

and 
is zero 

rotation at the base gives the twisting moment-rotation relationship 
in the form 

e. = 
1 

H2 
m tn xln+2 

CEn n+ 1 

[xi 

n+2 

The influence coefficients for any level xi 
given by 

ý ýTL 

i H2 1 xi 
f 

in -C 77 1 

I'i 
- n+ 2 

4.4 POINT LOAD CASE 

(B. 10) 

are therefore 

(8.11) 

In this case, it is assumed that the direct loading which is 

distributed to any shear wall assembly is in the form of a series 

of m point loads, (1.3) which act at any suitable set of m 

reference levels (1.4). The twisting moment carried by the assembly 
is assumed to be of the analogous form of a series of m point 
torques acting at the same set of m reference levels, i. e. 

t., t_. t_. ..., t 1,42, "3, .... . ny .... t m 
(8.12) 

The total shear force and twisting moment carried by any 
particular assembly at the reference level xi are simply the sum 
of the point loads and point torques at and above that level as 
given by m 

pi =Z sin Pn 

n= 1 

n+2 

(8.13) 
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Ti - Sin to 

n-1 

(8.14) 

In this case s in 
takes the form of a step function in order to 

give a single solution for the entire height. s in 
takes unit value 

when xn is greater than or equal to xi , otherwise it is zero. 

The deflection and rotation of the j'th wall assembly at level 
xi can be expressed in the forms 

yij =% fin pn 

m 
8_Z 01 
i- in 

to 

n= 1 

(8.15) 

(8.16) 

Once again it is assumed that the direct load produces no 
rotation and the torque no lateral displacement. 

In this case the direct load influence coefficients fin are 
obtained from the relevant equations, (4.37), (4.38), (6.11) or 
(6.12). 

Substituting the torque of equation (8.14) into (8.9) and 
integrating subject to the boundary conditions that there is zero 

rotation, in plan, at the base and that there is continuity at each 
load point gives the twisting moment-rotation relationship in the 

form 

e 
i 

H 
C 

n= 

xn - sin (xn - xi) (8.17) 

The influence coefficients for any level xi are therefore 

given by 

ýH fin = JE xn - sin (xn - xi) 

4.5 GENERAL ANALYSIS 

(8.18) 

The remainder of the analysis of a three-dimensional structure 
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follows a very similar course for both polynomial and point load 

cases. 

In the polynomial case, the shear forces Pi , on wall j, 

at any suitable set of (m + 1) reference levels may be related to 
the (m + 1) load coefficients pn by the matrix equation 

Pi =SE. (8.19) 

Similarly, the twisting moments Ti , on the same wall, at the 

same set of reference levels are related to the moment coefficients 
to by 

Tý =S tý 

Pj and T. are column vectors of the shear forces and 
twisting moments on wall j at each reference level. 

Pj and ti are column vectors of the load and moment 

coefficients on the wall. 

(8.20) 

S is the square matrix of integration coefficients as 

given by equation (8.6). 

In the point load case, the shear forces and twisting moments, 
on wall j, at the m load points are related to the m point 
loads and twisting moments by the same matrix equations (8.19) and 
(8.20), provided the matrices pj, tj and S are redefined. 

Pj and t3 are column vectors of the point loads and 

point torques acting on wall J. 

S is the square matrix of step coefficients sin as 

defined in section 4.4. 

The load-deflection and moment-rotation relationships for the 
i'th wall assembly may be expressed in the form of matrix equations 
as 

Yý =Y+ Z 8 ý Fi Pi (8.21) 

13 =F t3 (8.22) 



54 

yi is a column vector of the deflections yi3, of wall j, 

at each reference level. 

Y and B are column vectors of the deflections yi at 
the datum position and rotations Bi of the building, 

respectively, at each reference level. 

Fj and Fý are square matrices of the influence coefficients, 
fin and fin, respectively, for the j'th wall assembly, 
found as described in either section 4.3 or 4.4 according 
to the form of load distribution being considered. 

The matrices F and F1 can be evaluated for all the J wall 
assmeblies comprising the building. In many buildings there are 
sets of identical wall assemblies which occur more than once. For 

each set of identical walls the matrices F and F" are respectively 
the same and need only be evaluated once. 

Equations (8.21) and (8.22) may be solved for and tj 

respectively, to give 

EJ = (Fj)-1 YJ = (f. )-1 (Y + (3 z3) (8.23) 

ti = (r/)-1 a (8.24) 

The conditions of overall equilibrium of the building at level 

Xi are 

Wi pia 

j=1 

Mi Pij zJ + T13 

i=1 

(8.25) 

(8.26) 

For the whole set of reference levels being considered the 

equilibrium conditions may be written in matrix form as 

3 

W= Pý (8.27) 

(8.28) 
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W and M are column vectors of the resultant horizontal 

loads and twisting moments Wi and MI respectively 

at each level x.. I 
Substituting equations (8.19) and (8.20) into equations (8.27) 

and (8.28) and subsequently substituting (8.23) and (8.24) into the 

results gives the equilibrium conditions in the form 

i 

W=S (F3)-ß (Y +e z3) 

i= S 

- 82 83 (22)-l B1 

)-1 Z3ý Z3 + (Fi 

a} Equations (8.29) and (8.30) are solved simultaneously to give 

Y 
. 1-1 

13 1 82 - al (82)-l 133 
1-1 

IM 

1W 

83 

Bý 

(82)-ý W1 
ý82)-ý ml 

The matrices Bý' B2 and B3 are defined as follows 

82 =S 
j=1 

-1 (v_ +e 

(F3)-l zj 

(8.29) 

(8.30) 

(8.31) 

(8.32) 

(8.33) 

(8.34) 

83 =Sý (Fj)-1 z32 + (8.35) 

S-A 

Having determined the deflections and rotations of the structure 

at all the reference levels, the force and moment coefficients in the 

polynomial case or the point loads and point torques in the point 

load case may be found, for each of the wall assemblies in the 

structure, by substituting Y and 8 into (8.23) and (8.24). 

The force coefficients or point loads may then be used to 
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evaluate the forces and stresses in each individual wall assembly, 
using the formulae of the relevant sections of Chapter 2. The 

moment coefficients or point torques may be used to evaluate 
torsional stresses in the walls, by using established theory. 

In many examples of shear wall buildings most of the wall 
assemblies consist of simple open shapes, often of narrow rectangular 
form. In such buildings it can be assumed that the torsional 

moments carried by the individual wall units considered in isolation 

are small compared to the moments carried by the walls in differential 
bending, the latter moments being given by the product of the shear 
force on a wall and its distance from the datum position. This 
being the case the matrix F' is zero and the solution is again 
given by (8.31) and (8.32) provided 6 3, is redefined as 

J 

83 =Sý (Fj)-l zj2 (8.36) 

j=1 

In cases where both the structure and the applied lateral 
loading are reasonably symmetrical, the rotations 8 will be small. 
If the torsional deformation can be neglected in comparison with the 
bending deformations, the 8 terms vanish and the equilibrium 
conditions reduce to 

i 

The solution of (8.37) is then 

Y= (B, )-I 

(8.37) 

(8.38) 

where B1 is as given previously in (8.33). 

The force coefficients or the point loads are then found for 

each wall assembly from equation (8.23) as before, but with 8 made 

equal to zero. 



F 4.1 

datum 

w. 

M. 
ý 

z. 
i 0 

P 
i 

Rigid body movement of floor stab. 

Figure 4.1 

1 



57 

CHAPTER 5 

NUMERICAL COMPUTATION 

5.1 INTRODUCTION 

Any analysis, no matter how complex, is more readily understood 
and more simply executed once the various stages of the problem have 
been defined. Provided that the relationships between the other 
stages are considered and their effects included, each stage of the 

analysis may be treated as a separate problem. This is particularly 
so with the analysis of shear wall structures of the types being 

considered. 

Primarily the design of any structure may be divided into three 

parts as follows: 

1. Planning 

2. Structural design to support vertical loads 
3. Structural design to resist lateral loads 

The three divisions are inter-related to varying degrees depending on 
the project. 

It is normally the responsibility of an architect to plan the 

structure to fulfil the functional requirements of the client. The 

structural engineer uses the functional layout, as supplied by the 

architect, as the basis of the design for vertical and lateral loads. 
BY the utilisation of dividing walls in simple structures it is often 
unnecessary to introduce additional-load bearing members to a structure. 
However in more complex buildings the structural design often 
imposes severe restraints on the functional layout and must be 

considered early in the planning stage. In low-rise buildings the 
design of the structure to resist vertical forces is the dominant 

consideration. However, as the height increases, the effects of 
lateral loads become more important and must be taken into account 
at an earlier stage in the design. 

The present chapter is concerned with the application of the 
methods of analysis and the analytical expressions presented in 
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Chapters 2,3 and 4, to evaluate the forces, stresses and deflections 
due to lateral loads on a shear wall system. Numerical computations 
involving the above analyses may be divided into a number of well 
defined stages which are depicted in the form of a flow chart in 
Figure 5.1. The various stages and their relationships are 
discussed in the following section, 5.2. 

The application of the computer in the analysis of shear wall 
structures is discussed and a description is given of a system of 
programs developed utilising the present analyses. 

5.2 STAGES OF COMPUTATION 

5.2.1 IDENTIFICATION OF STRUCTURE 

The configuration of the lateral load bearing systems within a 
building is closely linked with the planning and vertical force 
design stages as indicated on the flow chart, figure 5.1. The 

evaluation of the lateral load carrying capacity of a building must 
begin with the identification of those parts of the structure which 
are capable of resisting such loads. The choice of lateral load 
resisting systems will depend on the direction of the applied forces 

and will often be a matter of engineering judgement, based on 
experience. Although only general effects on the structural elements 
of the building as a whole are discussed here, the local effects on 
cladding must also be considered in practice. 

In multi-storey shear wall structures of the types being 

considered, the identification of the general structural systems 
capable of resisting the lateral loads in any particular direction is 

reasonably straightforward since, in these buildings, such systems 

are normally deliberately incorporated in the early stages of planning 
and design. However difficulties often arise in the determination 

of the precise strength of these systems. The most commonly 
encountered problems have been discussed by Popoff(13) and are 
summarised as follows: 

1. In systems which include shear walls with flanges at right 
angles to the direction of the applied loading, such as the examples 
of figure 5.2, the portion of the flange which is effective in 
resisting lateral loads is often uncertain. In figure 5.2, 
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comparison of the flanges in (a), (b) and (c), each of a common 
breadth, would indicate different proportions of the seemingly 
equivalent flanges to be effective in each case. The configuration 
of neighbouring shear walls may also influence the proportion of a 
flange which is effective, as illustrated by comparing (d) and (a) in 
figure 5.2. 

2. In shear walls coupled by beams or slabs the beam- or slab-to- 
wall connection is subject to local deformations which reduce the 
fixity of the connection and affect the overall stiffness of coupled 
systems, as discussed by Michael(7). Provision for inceasing the 
effective span of connecting beams, as suggested by Michael is 
incorporated in the analysis in Chapter 2. 

3. In systems where the shear walls are coupled wholly or 
partially by the action of the floor slabs, the stiffness of the 

system depends on the width of slab which is effective in coupling 
the walls. One method which has been used to estimate the effective 
width of a slab coupling is to project lines, on the plan of the slab, 
from the interior corners of the walls, at 45 degrees to the line of 
the walls and to consider the width of slab between the intersections 
of the lines to be effective. 

Various experimental investigations have shown that different 
proportions of the above-defined width of a slab coupling may be 

effective depending on the configuration. Qadeer and Stafford Smith 

give proportions less than the above width, Coull(15) shows that 

(14) 

Proportions greater than the above width may be effective, while tests 

by Barnard and Schwaighofer(16) show that the entire width is effective 

under the given circumstances. 

An illustration of the effects of different slab widths on the 

stiffness of a pair of coupled shear walls is given in Chapter 6. 

The identification of the precise nature of the lateral load 
bearing system of a structure is therefore of fundamental importance if 
the response of the building to wind and seismic forces is to be 

accurately evaluated. 

5.2.2 DESIGN LOADING 

The evaluation of the magnitude and distribution of the wind 
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forces which may be expected to act on a building is normally achieved 
by the use of the standard code of practice relative to the country 
in which the building is to be constructed, for example the relevant 
British Code of Practice 

(17). 

The wind forces generally depend on such factors as the location 

and exposure of the building, its relationship to surrounding 
structures, the height and shape of the building and its projected 
area. All of these factors are direct results of the planning of 
the building as indicated in figure 5.1. 

5.2.3 DISTRIBUTION OF LOADING 

The load deflection relationships of the various lateral load 
bearing systems may be calculated by the use of the relevant 
equations in Chapter 2. The design forces may then be distributed 
to the individual wall systems according to their respective stiff- 
nesses by the use of the methods of Chapter 4. 

The method entails an initial choice of the number and position 
of the reference levels which will have an effect, both on the 

accuracy of the solution and on the amount of computation required. 
Where a high degree of accuracy is required a large number of reference 
levels should be used and resort must be made to computer programs, 
since the matrices, although small compared to those encountered in 
finite element or frame solutions, are too large for hand computa- 
tion. However where accuracy is not quite so important, such as 
during early design work a solution may be obtained using a limited 

number of reference levels, in which case the matrices are smaller 
and hand calculations become feasible. The effects of using varying 

numbers of reference levels are discussed in Chapter 6. 

"The positions of the reference levels may. have an effect on the 

solution, particularly where the applied forces change rapidly with 
height. In the normal situation, where the load distribution is 

reasonably regular, showing no sudden changes, the reference levels 

are conveniently positioned evenly throughout the height of the 
building. In cases where rapid variations of applied force occur 
the accuracy of the solution may be increased by grouping the 

reference levels more closely in the vicinity of these sudden changes. 
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The datum position on the plan of the structure, to which all 

walls and forces are referred, may be selected at any point, within 

or outwith the bounds of the structure. However, a careful choice 

of origin, in certain circumstances, may considerably reduce the 

amount of computation required to reach a solution. For example, 
in the case of a symmetrical structure, in which the origin is chosen 

at the centroid of the plan, matrix 82, (8.34), is zero and the 

deflections and rotations at the datum position are independent of 

each other but dependent, respectively, on the direct load and the 

twisting moment applied at the datum. The problem may thus be 

solved and their respective effects superimposed. However, with 
the same problem, but where the origin is chosen at a position other 
than the centroid, matrix B2 is non-zero and the full computation 

must be carried through. 

In a general unsymmetrical structure it is worth noting that 

there will be a position of the datum where the terms of matrix B2 

will be at their smallest; mathematically, the determinant of 8 

Will be at a minimum. It is normally impractical to find the exact 

position of this "centre of stiffness", however its approximate 

position may be ascertained by considering the disposition of the 

various wall assemblies on plan, a good guide being given by the 

centroid of the areas of the wall sections. Where the datum is 

chosen in the vicinity of the "centre of stiffness", the numerical 

values within the matrices 82 and 83, (8.34) and (8.35) respectively, 

Will tend to be smaller than with other datum positions. The matrix 

B19 (8.33) is unaffected by the position of the datum, and is 

principally concerned with the bending effects on the structure. 

Thus, where it is possible to use smaller values in matrices 82 and 

B3, besides facilitating the manipulation of the matrix equations, 

the resultant solution will tend to favour the bending of the walls 

rather than their torsion. This is especially important in hand 

computation where rounding errors may have a large effect on the 

accuracy of the solution. 

Having chosen a suitable origin and set of reference levels the 

load-deflection relationships in the form of the flexibility 

coefficients, f, are calculated for each wall assembly, at each 

reference level by using the relevant expressions, contained in 

Chapter 2. The fact that the flexibility coefficients are the same 
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for identical wall assemblies allows a considerable reduction in the 

amount of computation required for buildings in which wall config- 
urations are repeated. The flexibility coefficients for each wall 
assembly form the flexibility matrix, F, which is then inverted to 

give the stiffness matrix for that assembly. 

The resultant effects of the applied loading, both the direct 
forces and the moments about the datum, at each reference level are 
evaluated by a suitable integration of the load distribution above 
the relevant level. The vectors of forces and moments, W and M 

respectively, together with the stiffness matrices of all the wall 
assemblies are used to evaluate the deflection and rotation of the 
datum position at each reference level, by means of the matrix 
equations (8.31) and (8.32). The deflections of each wall assembly 
at each reference level follow immediately by employing equation (8.1). 

The forces or force coefficients relevant to each wall assembly are 
then found by multiplying the relevant stiffness matrix by the vector 
of deflections for that assembly as described by equation (8.23). 

For general unsymmetrical structures, the evaluation of the 
loads distributed to each wall assembly involves a number of matrix 
manipulations. Other than in the specific symmetrical case, all the 

elements of these matrices are non-zero, and hence none of the 
techniques developed for manipulating banded matrices are of use in 

cutting down the amount of computation. However, the size of all 
the matrices is the same and is identical to the number of reference 
levels. In consequence, by choosing a small number of levels, the 

computations may be carried out by hand or by desk calculator, the 

computer only being resorted to where a high degree of accuracy is 

required. 

5.2.4 EVALUATION OF INDIVIDUAL WALL ACTIONS 

Once the forces acting on the wall assemblies are known, each 
assembly may be considered as a separate unit and its forces, stresses 
and deflections evaluated directly by the use of those expressions 
of Chapter 2 which are relevant to the particular configuration of 
structure and load. These actions may be found at any desired 
position, irrespective of the positions of the reference levels used 
in the load distribution stage. 
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The amount of detail required from any particular analysis will 

generally dictate the method of computation adopted. In a 
preliminary design calculation, which employs a small number of 
reference levels, the distributed load is expressed as the first 
terms of a polynomial series, or as a small number of point loads. 
Where stresses and deflections are only required at critical points, 
for example at the base and top respectively, these may be evaluated 
by means of the graphical methods of Chapter 3. Otherwise the 

actions at particular positions may be found by hand or by desk 

calculator from the relevant expressions. In the light of these 

outline calculations the projected lateral load bearing structure 
may require to be modified and the revised system analysed again, 
as depicted on the flow chart, Figure 5.1. 

Once the general outline design has been finalised an accurate 
load distribution will be carried out using a larger number of 
reference levels and a comprehensive evaluation of forces, stresses 
and deflections will be required for the detailed design of the 

structure. At this stage the amount of computation involved is 

substantial and hand calculations are tedious, so that it is more 

practical to make use of the computer programs. 

5.3 COMPUTER ANALYSIS 

During the course of the present research, much use was made of 
the available computer facilities and a system of programs was 
developed for the rapid evaluation of laterally loaded two and three 

dimensional shear wall systems of a wide variety of configurations. 
The programs were invaluable when used to study the effects of 

varying specified parameters of typical systems, where large numbers 

of similar analyses are required. Although the computer system and 
the programs themselves were specifically developed for the present 

study and consequently reflect the purposes for which they were 
designed, for example the qualitative parameter studies and the tests 

on the convergence and stability of the solutions discussed later, the 

end result was a versatile system which is readily usable by the 

structural engineer with very limited experience of computers. 

Since the range of facilities available in the University 

Computer Centre had a significant effect on the form of the system for 
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running the programs a brief description of the facilities is included. 
Discussion of the system and of the programs is limited to a general 
outline since detailed descriptions would be lengthy and only of 
interest to a specialist programmer. 

5.3.1 COMPUTER FACILITIES 

During the earlier part of the present research, the University 

computer installation consisted of an I. C. L. 1905 machine with a core 
capacity of 32K, up to 25K of which could be made available for the 

running of programs. Additional backing storage could be obtained 
by the use of magnetic discs or magentic tapes. The transfer of 
programs and data to and from the computer was achieved by punched 
paper tape, punched cards, line printer or graph plotter, either 
directly or by the intermediate use of files held on magnetic tape or 
on an area of magnetic disc. The running of sequences of programs 
was facilitated by the use of the Lancaster Command Language Processor, 

a system developed at the University of Lancaster. Files stored on 
magnetic disc were readily altered by the use of one of a number of 
teletypes linked either directly or by telephone to the computer 
system. 

Latterly the University has installed an I. C. L. 1904S machine 
which has a core capacity of 128K words, and is approximately 
2.5 times faster than the 1905. Much of the peripheral equipment 
of the 1905 has been retained, and has been enhanced by, noteably, 
greater backing storage provided by three additional magnetic disc 

units and a magnetic drum which give a total on-line storage in the 

region of 200 million characters. 

The computer is currently controlled by the operating system, 
GEORGE 3 Mark 7 (GEneral ORGanisational Environment). The system 

allows simultaneous running of a number of programs and the editing 

of files held in the computer's file store. 

5.3.2 PROGRAMMING LANGUAGE 

The two languages most widely used for the programming of 
scientific and engineering problems are Fortran and Algol, both of 
which are provided on the University computer. Both are "high level" 
languages, in that the programmer need know nothing of the internal 
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workings of the computer. Scientific formulae are easily programmed 
and the program instructions are written using standard words whose 
actions correspond to their English meanings. Programs written in 

either language are therefore easy to read and alter. 

Both Fortran and Algol have advantages and disadvantages relative 
to each other. For the present purposes a major consideration was 
the need to vary the number of reference levels readily in the studies 
of the convergence and stability of the solutions. The existence 
in Algol of the facility to change the dimensions of arrays of 
variables, e. g. matrices, during the running of programs, a facility 
not available in Fortran, made the former language the obvious choice. 
Consequently programs were exclusively written in Algol, specifically 
the I. C. L. implementation of Algol 60. 

5.3.3 COMPUTER PROGRAMS 

The programs were originally developed on the 1905 computer 
whose small storage capacity limited the size of programs which could 
be used. While it is being run, a program, in the form of instruc- 
tions in machine code, occupies part of the available core, and the 

remainder may be used to store numerical data. In order to employ 
the maximum amount of core for the storage of data, thus enabling 
larger structures to be analysed, it was decided at an early stage to 
divide the computations into a sequence of small programs. Inform- 

ation could then be transferred between successive programs by 

utilising the backing storage facilities. 

Each program in the sequence closely corresponds to one of the 

stages of the computation discussed in section 5.2. Where necessary, 

alternative programs were developed to deal with each of the two 

forms of load distribution, polynomial and point load, for which the 

analysis was developed. The general arrangement of the sequence 
of programs is shown in the form of a flow chart in figure 5.3. The 

system may be used for the solution both of complete buildings and of 
individual two-dimensional systems. An advantage of using a number of 
small programs is that only those programs relevant to any particular 
problem need be included. 

There follows a brief description of each of the programs, 
together with the approximate core occupied by the program compiled in 
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machine code, in units of K words. 1K word is equivalent to 1024 

units of core, each capable of storing one real number or two integers. 

PROGRAM 1 STRUCTURAL DATA (11K) 

Program 1 is used to read in the data which defines the 

dimensions and elastic properties of the wall assemblies, the founda- 

tion conditions for each wall and the layout of the walls in a 
complete structure. In problems where only a two-dimensional 

analysis is required the data is identical and is interpreted as a 
number of separate wall assemblies, each with the same height and 
number of storeys. In the latter case the data relevant to defining 
the layout of the walls is read but ignored in subsequent programs. 

The program describes and prints each item of data as it is 

read, firstly to enable a check on the data to be made and secondly 
to furnish a documented definition of the structure at the head of the 

results for future reference. The data and structural constants 

a, u, etc. ) which are computed from the data, along with a text 
title, are stored on a backing store file to be read by subsequent 
programs. 

PROGRAM 2 LOADING ON COMPLETE STRUCTURE (10K) 

Program 2 is used exclusively in the analysis of complete 
structures to read in the data relevant to the applied loading. The 

data is presented in the form of three functions in terms of the height 

coordinate, X, whereby almost any type of loading may be represented. 
Any of the functions may be zero or constant or any mathematical 
function so long as it is piecewise continuous throughout the height 

of the structure. 

The first function represents the resultant intensity per unit 
height of the loading throughout the height of the building. The 

second represents the position of the resultant, which may vary, with 

respect to the datum position, from which the moment of the resultant 

about the datum is calculated. As an alternative the third function 

may be used to represent the applied moment per unit height about the 
datum, in which case the second function would normally be zero. A 

pure torque may be represented by the moment function with the load and 
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Position functions both zero. Where all three functions are non 
zero the total moment is given by the sum of the applied moment 
function and the moment of the resultant load about the datum. 

The data for Program 2 includes a text title which is stored and 
used to identify the particular load configuration in the output. 

Different sets of reference levels may be processed simulta- 
neously in one run of the program, a facility which was used to 

advantage in the tests on convergence and stability. The program 
reads the number of sets of levels, the number of levels in each set 
and the method of positioning the levels, which may be evenly spaced 
throughout, either including or excluding the top or may be generally 
placed according to data supplied for each set. 

For each set of levels the total direct and moment effects of the 
force distribution above each level are found by integrating the three 
functions using a Simpson's rule procedure and the results printed and 
stored on the backing store file. 

PROGRAM 3 LOAD DISTRIBUTION (11K) 

There are two versions of Program 3, relevant to the two types of 
load distribution employed in the analysis. In each version the data 

stored by Programs 1 and 2 is read and a load distribution is carried 
out for each of the sets of reference levels defined by the data. 

The program deals with the general case of an unsymmetrical 

'structure subjected to unsymmetrical loading. By referring to the 

flow chart in figure 5.4, it can be seen that the program closely 
follows the steps outlined in the latter part of section 5.2.3. 

During the development of the two versions of Program 3 each 

matrix was printed out in full as it was calculated. In the final 

working program only the deflection and rotation of the datum point, 

at each reference level, are printed out, while the load coefficients 

are output to the backing store file for use in subsequent programs. 

PROGRAM 4 EVALUATION OF WALL ACTIONS (13K) 

Once again there are two versions of Program 4, relevant to 

Polynomial and point load cases respectively. 
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By means of a simple code, supplied as data, the particular 
levels at which the various wall actions are required are defined. 
Typical arrangements of levels are; at each storey, evenly throughout 
the height and at general, specified levels. 

The data stored by previous programs is read from the backing 

store file and the forces, stresses and deflections at the required 
levels are calculated and printed in a table for each wall assembly 
subjected in turn to each load function relevant to it. The general 
sequence of Program 4 is given in the form of the flow chart in 
figure 5.5. 

PROGRAM 5 PERCENTAGE DISTRIBUTION OF LOADING (8K) 

Program 5 evaluates the percentages of the total applied load 

which are carried by each wall assembly in a structure at various 
levels throughout its height. The loads on all the wall assemblies 
in the structure for each set of reference levels are read in turn 
from the backing store file. The shear on each assembly is calculated 
in the polynomial case by the integration of the load function by 
Simpson's rule between the level concerned and the top, and, in the 

case of point loads by simple addition of the load at each level. 
From the shears at any level the percentage of the applied load 
carried by each wall is calculated and printed out in the form of a 
table. 

The two versions of the program were developed to give a 
convenient method of illustrating the load redistribution in shear 
wall structures and was useful in the consideration of the effects of 
varying foundation conditions as presented in Chapter 6. 

PROGRAM 6 LOADING ON TWO DIMENSIONAL SYSTEMS (9K) 

Program 6 was developed so that individual two-dimensional shear 
wall assemblies could be analysed, subject to known load distributions. 
The program handles a number of wall assemblies, of equal height and 
number of storeys, simultaneously. The structural data, as supplied 
by Program 1, is read from backing store file. The loading data is 

supplied to the program as a number of load functions on each wall 
assembly, each in the form of a list of either polynomial or point 
load coefficients. The lists of load coefficients are placed on the 
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backing store file for direct use by the relevant form of Program 4. 

OTHER PROGRAMS 

Various other programs were developed for specific tasks, for 

example to evaluate the design parameters of Chapter 3 for wide 
ranges of values of their respective dependent variables, in order to 

prepare the design curves of Appendix 1. 

5.3.4 COMMAND SYSTEM FOR RUNNING PROGRAMS 

As indicated in section 5.3.3 the various computer programs may 
be used for the solution of both two-dimensional wall assemblies and 
complete three-dimensional structures. Either the polynomial 
distribution or the point load methods may be used. It was necessary, 
therefore, to be able to run the programs in the various sequences 
depicted in figure 5.3. 

While the 1905 computer was in operation the Lancaster Command 
Language was employed to write simple instructions for the running of 
specific sequences of programs. On the 1904S computer, the GEORGE 3 

operating system includes a language called the GEORGE 3 Command 
Language, in which similar sets of instructions may be written. The 

greater versatility of the GEORGE 3 Command Language enabled a more 
general system of instructions to be developed to handle all of the 

program sequences referred to above. 

The general system of instructions, as outlined in figure 5.6, 

was stored in the computer on a file which then became a command 
system known as a MACRO. In order to compile and execute any 
desired program sequence all that was required was to state the MACRO 

name as a command, followed by a list of parameters which indicated 
the particular sequence of programs and the sources of all the 

relevant data. These parameters took the form of keywords which 
specified the various alternative sequences, such as POLYNOMIAL or 
POINT, STRUCTURE or WALL, etc. All the programs were stored on 
files and only those relevant to any particular problem, as defined 
by the parameters, were compiled using the standard MACRO'S, SALGOL 

and CONSOLIDATE. The compiled programs, in the form of machine code 
instructions, were each stored temporarily on files for subsequent 
execution. 
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All data was supplied in the form of files, stored in the 

computer. The names of the files were included in the list of 
parameters, each prefixed by a code character which identified the 
type of data contained in each, for example, structural, load, and a code 
to specify at which levels the wall actions were required. 

The compiled programs were executed by the MACRO, in the required 
sequence, using the data file relevant to each. Results were 
collected together on a file created by the MACRO, output on the 
lineprinter as one document and the results file erased. 

As indicated on figure 5.6, after the execution of the sequence 
of programs was complete the parameter specifying the structural data 
file was deleted from the list. The MACRO then determined if there 

was another file of structural data specified and continued to execute 
the sequence of programs until all such files had been used. This 

ability to recycle the programs for different data enabled a number of 
structures to be analysed, subjected to the same loads, within one 
call of the MACRO, and was widely used in the parameter studies of 
Chapter 6. 

Figure 5.6 shows how the MACRO deals with various forms of errors 
by stopping itself, thus saving valuable computer time. The MACRO 

also erases all the working files created during each run before it 
terminates for any reason, thus enabling a series of problems to be 

run without interference between successive MACRO calls. 

The use of the MACRO command system greatly simplified computa- 
tions using the computer, the workload being reduced to the supply of 
data on files and single line calls of the MACRO with the relevant 

parameter list. 
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CHAPTER 6 

NUMERICAL PARAMETER STUDIES 

6.1 INTRODUCTION 

The following sections of the present-chapter each contain 'a 
numerical investigation into a different facet of the analysis and 
structural behaviour of shear wall structures. In each section a 
particular example of coupled shear walls or a shear wall structure 
is analysed by the methods of Chapters 2 and 4, as incorporated in the 

computer programs discussed in Chapter 5. A specific parameter, 
either analytical or structural, is varied and the effects on the 

results of the analysis presented in graphical form. 

In the case of an analytical parameter, namely the number of 
reference levels used in the analysis, the purpose of the numerical 
study is to investigate the reliability of the two methods of analysis 
and to compare the results with those obtained using other methods. 
The purpose of the structural parameter studies is to illustrate the 

general behaviour of the structural systems involved and to assess 
the importance of the particular parameter under investigation. 

6.2 EFFECTS OF VARYING THE WIDTH OF A FLOOR SLAB EFFECTIVE AS A 

COUPLING BETWEEN SHEAR WALLS 

As outlined in section. 5.2.1 there are discrepancies between the 

methods available for estimating the width of a floor slab which is 

effective as a structural coupling between a pair of shear walls. 

To illustrate the nature of the errors which may occur in the 

analysis of a pair of shear walls where the floor slabs are either 

partly or wholly the means of structural coupling, a series of 

computations was carried out on the typical connected shear wall 

system shown in figure 6.1. The example chosen had earlier formed the 

basis of a three-dimensional model constructed from Perspex sheets and 
tested under the action of lateral loads by Irwin(18). In a three- 

dimensional structure the stiffness of the floor slabs depends, in 

part, 'on the proximity of the adjoining shear resisting systems. 
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However, for the purpose of the present study, the coupled walls shown 
in figure 6.1, were idealised as an independent two-dimensional system. 

The width of floor slab effective as the structural coupling was 
varied in each of a number of calculations and the deflection at the 
top, the maximum stress at the base and the shear force in the most 
highly stressed floor slab determined in each case with the system 
subjected to a uniform loading of 0.5 Kg. per storey (0.0965 N/mm 
height). The results are presented in graphical form in figures 6.2 

and 6.3. 

While the curves of figures 6.2 and 6.3 are drawn for the specific 
example of figure 6.1, they are nevertheless typical and are sufficient 
to indicate that small differences in an assumed or estimated width of 
effective floor slab may appreciably influence the calculated values of 
the force actions and deflections of the entire coupled system. It 

can be seen, for example, that any overestimation of the slab width 
effective in such a system gives rise to lower values for stress and 
deflection in the walls, and would lead to the walls being underdesigned. 
In such a case, although the total shear in any slab is greater, the 

shear force per unit width is less, and reinforcement placed across 
the overestimated width of slab to resist the lower stresses would be 
ineffective in resisting the larger stresses actually present within 
a narrower width. 

" In calculations involving a three-dimensional structure, the 

effect of overestimating the slab widths of coupled shear wall systems, 
thus overestimating their capacity to carry load, would be to produce 

results which would indicate a greater share of the load being carried 
by the coupled systems and a corresponding reduction in the load 

calculated as being carried by single wall systems such as access and 

service cores. Such a core system, designed to carry the calculated 
loads would consequently be overstressed. 

It is thus important, in the analysis and design of structures 

which incorporate shear walls coupled by floor slabs that the true 

coupling effect of the slabs be accurately determined. 

6.3 EFFECTS OF VARYING THE NUMBER OF REFERENCE LEVELS USED 

IN THE ANALYSIS 

It is possible to solve many engineering problems by a variety of 
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methods. Often the choice of a particular scheme is made by 

consideration of the amount and complexity of the calculations 
involved in its analysis. The chosen scheme may not be the most 
economical in the use of materials and manpower if there is a 
sufficient reduction in computation over more sophisticated approaches 
to the problem. With the wider use of computers and the availability 
of commercial structural analysis programs it is becoming more common 
to make use of more sophisticated design techniques where they 
introduce definite economies. To use the computer in the early 
design stages is costly, especially where a number of schemes are 
being compared. There is still a need, therefore, for less complex 
analytical techniques. 

In the present study the complexity of the two methods of 
analysis depends, almost entirely, on the number of reference levels 

chosen, as discussed in section 5.2.3. The number of levels chosen 
in any particular problem in turn depends on a variety of factors 

amongst which are the required degree of accuracy and the availability 
and relative costs of the methods of carrying out the calculations, 
that is by hand, graphical means, desk calculator, etc. Approximate 

analyses, such as those being considered are only of use if they are 
reliable, by which is inferred that any inaccuracies, with respect to 
the true solution, are reasonably predictable for a wide range of 
problems. 

In order to investigate the degree to which and the conditions 

under which the present methods of analysis are predictable, two 

simple structures were each analysed by the two methods of distributing 

the applied loads, with varying numbers of reference levels being used. 

The reference levels used were spaced throughout the height of the 

structure such that the distances from the base to the lowest level, 

between all adjacent levels and from the uppermost level to the top of 

the structure were equal. The structures considered were the two 

twenty-storey models which were constructed for the experimental 

investigation discussed in Chapter 7. The models, the dimensions of 

which are shown in figures 7.1 to 7.3 inclusive, were considered in 

their basic form, that is with all the foundations assumed to be fully 

rigid. Each structure was analysed subjected to a uniform load 

equivalent to 1 Kg per storey, firstly positioned centrally to produce 
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no torsion and secondly positioned eccentrically to produce 
considerable torsion and hence rotation of the structure. The 

variation of the critical wall actions, namely the deflection at the 
top of the walls, the maximum rotation (where applicable), the 

maximum stress at the base of the walls, and the maximum shear force 
in the connecting beams were considered in each case. The results 
are presented graphically in figures 6.4 to 6.20 inclusive. 

The structures were also analysed by the method given by Coull(19) 

and the results indicated on the relevant figures. The structures 
used for the present study are symmetrical and sufficiently regular in 
form that Coull's analysis yields the exact solution in cases where no 
torsional deformation of the walls takes place. In addition Coull's 

solution is not dependent on a system of reference levels and hence 
furnishes a useful datum for the comparison of the present methods of 
analyses under the various conditions of the four cases as follows. 

Case 1. Model 1, which, for the purposes of this study, consisted of 
three identical pairs of coupled shear walls, symmetrically disposed 
in plan, was analysed subject to the symmetrical load described above. 
The variation of the critical wall actions are plotted in figures 6.4 
to 6.6. Since the wall systems are identical and the load is 

symmetrical each wall pair carries an equal proportion of the load at 
all levels and there is no redistribution of load within the structure. 

In the polynomial case the solution using one reference level 

produces an equal uniform load distribution on each coupled pair of 

walls, equivalent to one third of the applied load and is therefore 

the correct distribution for this case. Using a greater number of 

reference levels does not alter the solution until eight or more levels 

are used when the method produces an unstable solution and hence 

unreliable results. 

The graphs of deflection at the top, figure 6.4, and maximum 

stress at the base, figure 6.5, show that the polynomial solution for 
these actions using less than eight levels of reference is in exact 
agreement with Coull's solution. This is to be expected for this 

symmetrical case and exhibits the validity of Coull's solution as a 
basis for comparison. Figure 6.6 shows a close agreement between the 

polynomial solution and Coullts solution for the maximum shear force 

v 
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in the connecting beams, in this case within one per cent. 

In the case of the point load solution it requires a greater 

number of point loads, and hence more reference levels, to give a 

reasonable approximation to a uniform load on each wall. It can be 

seen from the plots of the point load solutions in figures 6.4 to 6.6 

that the wall actions shown approach Coull's solution as more 

reference levels are employed. By using twenty reference levels the 

results given by the point load analysis are each within six per cent 

of Coull's solution. Unlike the polynomial analysis the point load 

method does not become unstable as a greater number of reference levels 

are employed. 

Figure 6.7 was plotted to illustrate the nature of the instability 

which occurs in higher order solutions using the polynomial method. 
It can be seen that the use of up to six reference levels produces no 

perceptable change to the calculated distribution of load. The use 

of seven reference levels produces a very slight change of distributed 
load near the base. At eight reference levels the distribution only 
generally approximates to the true solution except near the base but 

with more levels the distribution fluctuates widely producing 
unreliable results for the wall actions. This generally renders the 

polynomial method of analysis unacceptable when more than seven 
reference levels are employed. 

Case 2. Model 1 was analysed subject to the asymmetrical load and 
the results are presented in figures 6.8 to 6.11. The rotations, in 

plan, of the top of the structure were calculated from the deflections 

of the two outer pairs of walls. 

Since all the coupled shear wall systems in the structure are 

identical there is little redistribution of load between the wall 

assemblies. Each two-dimensional system assumes a fairly constant 

proportion of the load at any level depending on its distance from a 

point of rotation. The results of the polynomial distribution 

quickly reach stable values until the solution itself becomes unstable, 

again at eight reference levels. The results of the point load 

analysis exhibit the same characteristics as those in case 1. 

The main difference between the two cases is the degree of 

agreement with Coull's solution. Since the latter takes no account 

of the torsional stiffness of the individual elements comprising the 
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structure it results in a higher value for the rotation of the 

structure than given by either the polynomial or point load solutions, 

as shown in figure 6.9. The effects that the differences in rotation 
between the solutions have on the other wall actions is shown in 
figures 6.8,6.10 and 6.11. It can be seen that the results for 

wall 2 are similar to those for case 1, (identical by Coull's 

solution). The extra rotation given by Coull's solution gives lower 

results for wall 1 and higher results for wall 3 than would otherwise 
be anticipated. 

Case 3. Model 2, comprising two identical coupled wall pairs 
symmetrically disposed about a single shear wall of comparable stiffness 
was analysed subject to the symmetrical load distribution and the 

results plotted in figures 6.12 to 6.16. 

In this case there is considerable force redistribution between 

the coupled wall and the single wall systems, due to their different 

modes of deformation. 

In figure 6.12 it can be seen, especially where only a few 

reference levels are used, that there is a difference between the 

corresponding values of deflection given for the two types of walls, 

although the structure is symmetrical and is symmetrically loaded. 
The fact that the results for the deflection at the top of the two 

outer coupled walls are the same but differ from those for the central 

wall appears to suggest a violation of the condition that floor slabs 

are assumed to be rigid in plane. This apparent anomaly serves to 

illustrate the limitations of these analyses, in that the condition of 
in-plane rigidity is only satisfied at the reference levels. Between 

reference levels wall systems are free to deform naturally. Where 

few reference levels are used the height of the structure above the 

uppermost level may be a considerable proportion of the total. In 

the analyses these parts of the wall systems are not constrained to 

act with one another hence the differences in the calculated deflections 

at the top. 

In general the results generally follow a similar pattern to case 
1, although the values for stresses at the base given by the 

polynomial solution between four and eight reference levels fluctuate 

slightly rather than achieve a steady result. There being no torsion 

involved in this case the results show close agreement with Coull's 



77 

solution. 

Figures 6.15 and 6.16 firstly illustrate the way in which the 

force distribution on a shear wall system is represented by a 
polynomial series and the way in which it is altered by considering 
successive numbers of reference levels. Secondly the above figures 
indicate the transfer of lateral forces between the two types of 

shear wall systems throughout the height of the structure. 

Case 4. Model 2 was analysed subject to the asymmetrical load and 
the results presented in figures 6.17 to 6.20, structure rotations 
being calculated as for case 2. 

Although this is the most complex of the four cases, involving 
both torsion of the structure and redistribution of forces between 

walls the results exhibit the same general behaviour as in the other 
cases and there is good agreement with Coullts solution. 

In general the graphs of figures 6.4 to 6.20 show that'the 

polynomial solution rapidly reaches an "optimum" value by using very 
few, in the order of two to four, reference levels, depending on the 

complexity of the structure and the amount of load redistribution. 
BY using up to eight levels the solutions fluctuate about this 
"optimum" while the use of more than eight levels produces an unstable 

result. 

The instability of the polynomial case may be explained by 

considering the forms of two consecutive polynomial terms. For terms 

near the beginning of the series, that is with low exponents, the 

plots of the two terms in non-dimensional height coordinates are of 
distinct shape, for example, triangular and parabolic, or parabolic 

and cubic. Similar plots of higher order terms become less distinct, 

and hence their corresponding load-deflection coefficients tend to be 

alike. Successive lines in the matrix of flexibility coefficients 
become increasingly similar for higher order terms, the matrix tends 

towards singularity and the solution becomes unstable. 

The point load solutions generally progress towards an "optimum" 

value more evenly but more slowly than in the polynomial case. The 

point load case requires the use of a greater number of reference 
levels, in excess of ten, to produce results which are reliably within 
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a few per cent of the "optimum" value. The main reason for this is 
that a reasonable number of finite point loads are required to give an 
acceptable approximation to a distributed load form. 

It may be concluded that the polynomial solution is generally 
reliable for solutions using up to eight reference levels. The 
lowest number of reference levels which are reliable depends on the 

complexity of the structure and could be determined in any particular 
case. The point load solution, on the other hand, became more 
reliable as more reference levels were used and did not exhibit any 
instability up to twenty levels. This would suggest that the 
polynomial method is more suitable for rapid approximate evaluation 
by hand using a small number of reference levels, whereas the point 
load method is more suited to a more accurate treatment using the 

computer. 

The "optimum" solutions for the polynomial case were generally 
slightly greater than the corresponding solutions for the point load 

case. The relationship of the two solutions to each other and to 

experimental results is discussed in Chapter 8. 

6.4 EFFECTS OF FLEXIBLE FOUNDATIONS ON A PAIR OF COUPLED SHEAR WALLS 

In a complex structural system it is seldom immediately obvious 
which actions are most closely related and which of them dominate the 
behaviour of the system. This is particularly the case in systems, 
such as those at present under investigation, where the structure may 

. not be supported on completely unyielding foundations. For the 

purpose of an analysis it is frequently assumed that the foundations 

of a structure are perfectly rigid. In many cases this may be a 

valid assumption, especially where precautions are taken during the 

design to provide a rigid foundation system. However, it is 

conceivable that particular structures may not be adversely affected 
by movements of their foundations, in which case the provision of an 

exceptionally stiff foundation system may not be economic. In order 
that such a fundamental decision as to the founding of a structure may 
be taken it is imperative to possess a clear understanding of the 

effects that a more flexible foundation will have on the structure as 
a whole. 
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In order to investigate the effects of foundation deformations 
on coupled shear walls a series of computations was- carried out on 
the typical system shown in figure 6.21. To reduce the problem to 
that of a single pair of coupled walls, it was assumed that the walls 
shown formed part of a structure which consisted of a number of 
equally spaced identical assemblies based on identical foundation 
systems. For the case in which the wind load acts in the plane of 
the coupled walls and is distributed in the same manner throughout the 
length of the building there will be no redistribution of load between 
the wall assemblies and hence the problem may be solved as that of one 
pair of coupled walls acted on by the relevant proportion of the total 
load on the structure. 

Since the particular example of figure 6.21 was devised to be of 
practical dimensions it was possible to derive a realistic wind 
Pressure distribution for the structure using the relevant British 
Code of Practice(17). It was assumed that the building was situated 
within the built up area at the centre of a city for which the basic 
wind speed is 51 metres/second, and the dynamic pressure on the 
building at different heights was calculated using the rules of the 
Code. The distance between adjacent wall assemblies was taken to 
be 7 metres and hence the wind force distribution on one pair of shear 
walls was calculated at a number of heights and expressed as the 
horizontal force per unit height on the walls. The force distribution 
is shown graphically in figures 6.22 and 6.23. 

Between calculated values the load distribution was assumed to be 
linear and preliminary computations were carried out with the programs 
used for three-dimensional structures whereby suitable approximations 
to the load form were found. The polynomial approximation using the 
first four terms of the series follows the load distribution very 
closely as shown in figure 6.22. In the case of the point load 

method, twenty point loads, equally spaced throughout the height of 
the walls, were evaluated to approximate the load form. These are 
shown as a series of uniformly distributed loads in figure 6.23, where 
it can be seen that the approximation to the load distribution is 

again reasonable. 

The polynomial and point load approximations were used in the 
relevant programs for analysing two-dimensional systems to carry out a 
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series of computations on the pair of coupled walls shown in figure 
6.21. 

, In the calculations the rotational and vertical flexibility of 
the foundations of the walls were independently varied over a wide 
range and the value of a number of critical deflections and force 

actions was found for each foundation configuration. The results, 
expressed as the variation of these wall actions, namely the - 
deflection at the top of the walls, the axial force, bending moment 
and maximum stress at the base of the walls and the maximum shear 
force in the connecting beams, are shown in graphical form in figures 
6.24 to 6.33 inclusively. Each set of results is presented twice in 

order to illustrate the relationships of the particular wall action to 

rotational and vertical deformations respectively. 

The ranges of the two foundation parameters K8 and Kv used in the 

present study are intended to represent the complete spectrum of 
foundation 

conditions from the case of perfect rigidity, through rocks, 
sands and clays to the opposite extreme of a very flexible substrata. 
In reality both foundation parameters will lie within corresponding 
regions of their respective ranges for any particular case, since they 

are principally dependent on the nature of the sub-base material. 
Their precise relationship will be determined by the configuration of 
the foundation system. For the present study it has been assumed 
that KB and Kv are mutually independent. This assumption gives rise 
to the improbable concepts of foundations possessing great vertical 
stiffness whilst being weak in resisting rotational deformations, and 

vice versa. However the assumption has merit in as much as it 

enables the effects that either foundation parameter has on the 

coupled walls to be more readily illustrated. 

In the previous section, 6.3, it was shown that the values of 
deflections, forces and stresses for a structure based on rigid 
foundations 

as calculated using the point load solution were consist- 

ently smaller in magnitude by a few per cent compared to the correspond- 
ing values calculated by the polynomial solution. The values of the 

two solutions for the present structure are shown in each of the 

figures 6.24 to 6.33. In each case it can be seen that the solutions 

again bear a similar consistent relationship to each other throughout 

the ranges of both rotational and vertical flexibility considered. 

Figures 6.24 and 6.25, respectively, show the effects of 
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rotational and vertical flexibility of the foundations on the 
deflection of the walls at the top. As would be anticipated, an 
increase in either K8 or Kv produces an increased deflection. It is 
of note that the deflection produced in a case where rotational and 
vertical deformations occur-simultaneously is considerably greater 
than the sum of the deflections produced as a result of considering 
either mode of foundation deformation to take place while the other 
is held rigid. The explanation for this is that, as the foundation 
system becomes more flexible to one mode of deformation relative to 
the second, the latter is comparatively more able to resist the applied 
lateral load and the proportions of the load carried by the resistance 
of the foundation system., to rotational and vertical deformation 
changesaccordingly. This effect appears in the figures as a decrease 
in the slope of the graphs as either K8 or Kv is increased while the 
other is held at a constant value. 

From consideration of the state of equilibrium of the shear wall 
assembly, the moment of the applied lateral load about the base is 
resisted by the sum of the moments at the base due to the bending 
action of the individual walls and the couple formed by the axial 
forces induced in the walls by the connecting beams. For any 
particular load configuration the above sum is constant irrespective of 
the foundation conditions. This results in'the compensating effects 
which accompany changes in one mode of foundation deformation as 
described in the preceding paragraph. The effects of changing the 

relationship between rotational and vertical flexibility are more 
marked when the axial forces and bending moments in the walls are 
considered. 

Figures 6.26 and 6.27 show the relationship of the flexibility of 
the foundations to the axial force in the walls at base level. 
Figure 6.26 shows that, for any particular vertical flexibility, the 

axial force at the base increases as K8 increases, while figure 6.27 

shows that the axial force decreases with increasing Kv for a constant 
rotational flexibility. The converse situation is shown in figures 
6.28 and 6.29 for the bending moments in the walls at the base. The 
explanation for these results follows directly from the previous 
paragraph. Where K6 is increased with a constant vertical flexibility, 
the proportion of the load carried by the vertical resistance of the 
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foundations increases, hence the axial force at the base of the walls 
is increased (figure 6.26). The proportion of the load carried by 
the rotational resistance-of the foundations correspondingly decreases 

and the bending moment at the base of the walls decreases (figure 6.28). 
The situation is reversed where Kv is increased for any constant 
rotational flexibility. 

Figures 6.30 and 6.31 show the effects that varying foundation 

conditions have on the stresses at the base. Although the stress 
distribution in the walls is dependent on both the direct axial force 

and the bending moments it can be seen from the graphs that the stress 
at the base is affected by changes in foundation flexibility in a 
similar manner to the bending moments in figures 6.28 and 6.29. This 

will not be so in every case. In the particular structural system 
being considered the connecting system, i. e. the lintel beams between 
the shear walls, is relatively flexible, as shown by the low value of 
the parameter a (in this case a=2.6946). The major proportion 
of the load is therefore carried by the bending action of the walls 
rather than by the axial wall forces induced by the coupling action 
of the beams. The stress distribution, therefore, is, in this case, 
more dependent on the bending action of the walls as shown by the form 

of the graphs. 

The shear forces in the connecting beams, as typified by the 

maximum shear force shown in figures 6.32 and 6.33 follow the same 

pattern as the axial forces in the shear walls. This is reasonable 

since it is the shear coupling effect of the beams which induces the 

axial forces in the walls. 

For a pair of coupled shear walls based on perfectly rigid 
foundations the parameter a gives a good indication as to the way 
by which the lateral load is resisted. Lower values of a indicate 

a flexible beam or slab connection and a greater proportion of the 

load carried by the bending action of the individual walls. As the 

value of a is increased the connecting action becomes more effective 

and a greater proportion of the load is carried by the coupling of the 

axial forces induced in the two walls. The presence of deformable 

foundations 
alters the effectiveness of the connecting beams or slabs. 

Any structural system which is supported elastically is by definition 

more flexible than its rigid counterpart. However it can be seen 
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that the two modes of deformation in this case affect the structure in 
different ways. It was noted earlier that, in reality rotational and 
vertical deflections generally occur simultaneously. Which of the 
two is the dominant factor in any structure depends on the config- 
uration of the foundations. Where the foundations are relatively 
more flexible to rotation the connection between the shear walls 
becomes more effective and a greater proportion of the load is 

resisted by the axial forces in the walls than is the case for the 

same walls based on a rigid foundation system. 

6.5 EFFECTS OF FLEXIBLE FOUNDATIONS ON SHEAR WALL STRUCTURES 

The preceding section illustrated the effects which flexible 
foundations have on the interaction between a pair of coupled walls. 
The two-dimensional system was considered in isolation. In the 

present section the effects that flexible foundations have on the 

lateral load bearing units of a three-dimensional structure are 
investigated by means of two examples. 

It can be appreciated that in complex three-dimensional structures 
the results of there being a number of deformable foundations would be 

extremely difficult to follow. It was decided therefore to limit the 

number of walls on elastic foundations to those of a single assembly 
and to plot the effects on the complete structure of varying the 
flexibility of those foundations from complete rigidity to extreme 
flexibility. 

The layout and dimensions of the two structures are shown in 

figures 6.34 and 6.40 respectively. Both structures are of the same 

overall dimensions and proportions as that which was assumed for the 

two-dimensional 
study of section 6.4. The force distribution 

previously derived is again used, integrated over the larger face of the 

building (resulting in a total force seven times that used in section 
6.4) to represent the lateral wind force on each structure. In their 

basic form, with the foundations of all walls rigid, both the structures 

are symmetrical with a regular arrangement of wall assemblies. Since 

the load is also symmetrical the redistribution of load within the 

structure is reasonably straightforward. The structures were devised 

in this manner as a further aid to the clear illustration of the 

changes brought about by the introduction of flexible foundations. 
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Since the relationship between the results given using the 

polynomial and the point load solutions is consistent in previous 
sections, and in order to simplify presentation of results and avoid 
confusion, the results of the analyses of the following examples are 
given only for the polynomial solution. 

The first example analysed, as shown in figure 6.34, comprises 
six identical pairs of coupled shear walls symmetrically disposed 

about a considerably stiffer central core which consists of two 
identical channel shaped walls coupled together in a similar manner as 
are the shear walls. The effects on the structure of increasingly 

varying the flexibility of the foundations of the central coupled 
core walls are presented graphically in figures 6.35 to 6.39 inclu- 

sively. For the purposes of this study the rotational and vertical 
flexibility of the central cores are increased simultaneously to give 
an approximation to the behaviour which could be expected in a real 
case. On the graphs the flexibility parameters, K. and Kv, are 
plotted to a logarithmic scale whereby one unit on either the 

rotational or vertical flexibility axis represents a tenfold increase 
in the relevant parameter. 

Figure 6.35 shows the maximum deflection at the top of the 

structure. As the foundations of the core walls become more 
flexible the structure undergoes increased deflection. However once 

a certain stage of flexibility is reached there is a marked tailing 

off in the rate of increase of deflection. 

Figures 6.36 and 6.37 respectively show the effects that the 

flexible foundations of the core walls have on the axial forces and 
bending moments at the base of the structure. As the flexibility of 
their foundations increases the core walls become progressively less 

effective in resisting the loads on the structure. Both the axial 
force and the bending moment at base level of the core walls decrease, 

ultimately to zero while there is a compensating increase in force 

and moment at the bases of walls on rigid foundations. As was the 

case in the two-dimensional study of section 6.4 the parameter a for 

the coupled shear walls is again low (here a=2.756), indicating 

that a greater proportion of the load is resisted by the bending action 
of the individual walls rather than through the coupling action of 
the connecting beams. This factor is apparent from figures 6.36 and 
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6.37 where the bending moment on the shear walls when the core walls 
are totally ineffective at the base is approximately twice that when 
they are rigid, whereas there is only a corresponding increase of 
less than a third in the axial forces on the shear walls at the base. 

As shown in figure 6.38 the effect of a more flexible foundation 

at the core walls, causing a greater proportion of the load to be 

carried by the shear walls is to increase the stresses in the latter 

as the stresses in the core walls decrease. Figure 6.38 is, in 
effect a combination of the results of the changes shown by figures 

X6.36 
and 6.37. 

Although, in the case of extreme flexibility of their foundations, 
the core walls resist none of the lateral load at the base they have 
not become entirely useless. Figure 6.39 shows the proportion of 
the total lateral load carried, throughout the height of the building, 
both by the coupled cores and by each pair of shear walls, for three 

particular cases of flexibility of the foundation of the core walls. 
In the case of intermediate flexibility, the core walls carry a 
similar proportion of the load above the third storey as they do in 
the case of rigid foundations. Even in the case of extreme flexibil- 
ity the core walls carry a considerable proportion of the load for 

much of their height. The core walls therefore form a strong central 
spine to the structure even when their foundations are suspect. 

The second example of a shear wall structure which was analysed 
is shown in figure 6.40 and consists of six identical pairs of coupled 

shear walls regularly spaced with a single channel shaped core wall 
symmetrically placed at each end. The shear walls are identical to 
those used for the first example. The effects on the structure of 
increasing the flexibility of the foundations of one of the end cores, 

core 1, while the other foundations remain rigid, are presented 

graphically in figures 6.41 to 6.46 inclusively. As was the case 
for the first example the flexibilities are plotted to a logarithmic 

scale. 

Figure 6.41 shows the deflection at the top of each wall, plotted 
against the flexibility of the foundation of core 1. As the foundation 
flexibility of core 1 increases, the deflection of the core wall 
increases and, in order to permit this increased deflection the 

structure undergoes a rotation in the horizontal plane in this case 



86 

centred in the vicinity of wall 6. When the foundation of core 1 

becomes extremely flexible the core wall no longer resists any of 

the turning effect of the lateral load at the base level and there 

is no further change in the deflection of the structure. This 

effect is similar to that shown for the first example. 

Figures 6.42 to 6.44 respectively show the effects that the 

flexible foundation of core 1 has on the axial force, bending moment 

and maximum stress at the base of each wall assembly. The results 

are similar to those for the first example but with the additional 
factor of the horizontal rotation of the structure. The bending 

moment at the base of core I decreases, eventually to zero, as the 

flexibility of its foundation increases. There is a net increase in 

the axial force and bending moment at the base of the other walls to 

compensate for the reduction in the stiffness of core 1. However, 

due to the general rotation of the structure, the walls closest to 

core 1 bear the greater part of the increase while the force and 

moment on wall 7 and core 8 at the opposite end actually decrease. 

Figures 6.45 and 6.46 show the proportion of the total lateral 

load carried throughout the height of the structure by core 1, walls 

2 and 7, and core 8 for three cases of flexibility of the foundations 

of core 1. Once again the majority of the redistribution of load 

caused by the flexibility of the foundation at core 1 occurs below 

the third storey level and, above that level, the load distribution 

approximately follows that obtained when all the foundations are rigid. 

The two preceding examples have been used to yield a general 

indication of the effects that the presence of elastic foundations 

have on the behaviour of three-dimensional shear wall structures. 

Increased flexibility of a foundation system will produce a general 

increase in the deflection of the structure accompanied by a change of 

horizontal rotation in cases where the flexible foundation system is 

not on the centroid or line of symmetry of the structure. The forces, 

moments and stresses in the vicinity of the base of the walls which 

have the flexible foundations decrease with increased flexibility 

accompanied by a compensating increase in the general level of the 

actions of walls elsewhere in the structure. The proportion of 
increased action borne by the individual walls depends on the 

particular configuration and in cases when large rotations occur may 
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include a reduction in the stresses in some walls, as shown by the 

second example, although these walls still have rigid foundations. 

The majority of the redistribution of the lateral load explicitly 

due to the presence of elastic foundations takes place within the 

first few storeys. At higher levels the proportion of the total 

load carried by any wall assembly is largely unaffected by the 

presence of elastic foundations. 

In cases of extreme flexibility a point is reached when any 

further increase in flexibility of a particular foundation system no 

longer affects the structure. In cases such as this the foundation 

may be said to have failed completely as far as resisting the lateral 

loads by its bending and coupling actions are concerned. However 

even in this extreme case that particular wall assembly still resists 

a considerable proportion of the lateral load at higher levels, 

comparable with that which it would carry had its foundations been 

rigid and hence the wall assembly itself, as distinct from its 

foundation cannot be regarded as having failed. It follows that, 

where foundation conditions beneath a building are suspect, the 

presence of lintel beams and floor slabs forming couplings between 

walls and inducing interaction between wall assemblies tie the various 

elements of the structure together to overcome local weaknesses in the 

foundations. 
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CHAPTER 7 

EXPERIMENTAL'INUESTIGATION 

7.1 INTRODUCTION 

The reliability of solutions obtained using either of the methods 

of analysis was discussed in Chapter 6, section 6.3. It was shown 
that both methods of distributing the applied lateral load to the 

shear walls of a multi-storey building gave results which were 

reasonably consistent for a known range of numbers of reference levels 

peculiar to each method. These convergence and stability studies gave 

no indication of the accuracy of the methods as applied to real 

structures. 

The experimental investigation described in the present chapter 

was undertaken to substantantiate the validity of the assumptions made 

in the derivation of the methods of analysis of Chapters 2 and 4, in 

particular where they relate to the effects, on three-dimensional shear 

wall structures, of the elastic deformation of foundations. 

7.2 SCALE OF TESTS 

The scope of any program of experimental tests depends on the 

resources available, both in terms of finance and facilities. Other 

factors which must be considered include the time available and the 

uses to which the results will be put. An experimental investigation 

should be designed to yield sufficient information to enable meaningful 

conclusions to be drawn as to the behaviour of the subject of the tests 

in as simple a way as possible by making the best use of the facilities 

available. There is no merit in designing and testing elaborate 

systems when a simple test procedure will yield adequate results for 

the purpose at less expense and with little loss of accuracy. 

The costs involved in installing and monitoring equipment within 
the structure of a building, capable of adequately recording the short 
term effects of lateral forces on a building are prohibitive. Although 

there do exist multi-storey buildings which had gauging equipment 
installed at the time of construction detailed readings from such 
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buildings are not readily available. Were they available such 

results would be of limited use due to a number of factors. Lateral 

forces on buildings, wind or seismic are of a time dependent nature. 

Difficulties arise in the measurement of such dynamic effects, in 

their representation as equivalent static forces and in their 

correlation with the measured strains and deflections of the structure 

due to time lag in the response of the structure to the transient 

loading. Due to the complexity of most buildings it is difficult to 

identify accurately and isolate the extent of the wind resisting 

systems within them or to evaluate the secondary effects of other 

systems. There is also a lack of data from such installations which 

includes information on the effects of short term foundation deforma- 

tions. 

It is of more use in the present study to represent a multi- 

storey building in the laboratory by its essential wind resisting 

systems in such a way that there can be as little ambiguity as 

possible in the measurement of their effects. By the use of static 
loads many of the difficulties encountered with real wind forces are 

overcome and greater control may be exercised over the loading on the 

structure. 

Tests on large scale models constructed from similar materials to 

those used in practice, that is reinforced concrete, would be desirable. 

However the facilities necessary for such tests are seldom available 
due to the considerable costs involved. 

In studies such as the present one, where a number of tests were 
invisaged, the only practical and economic solution was to use small- 

scale models, in this case of an overall height of onemetri 
However by careful consideration of the design of the models and by 

taking precautions during tests the results obtained were considered 
to be of significance. 

7.3 MODEL SHEAR WALL STRUCTURES 

7.3.1 CHOICE OF MATERIAL 

Ideally the models used in an experimental investigation should 
be constructed from materials which give a good representation, 

allowing for the effects of scale, of those used in practice. With a 



90 , 

material of the complex nature of reinforced concrete, this scaling 

down is only possible with relatively large scale models. Concrete 

was unsuitable for the small scale of the models used in the present 

study and an adequate substitute had to be chosen. 

A major factor affecting the choice of material for an elastic 

model is the requirement that the deflections and strains induced by 

a reasonable test load should be of sufficient magnitude to be 

accurately measured without overstraining the material. High 

strength materials such as metals, for example steel and aluminium 

which require both large loads to produce measurable deflections and 

exceptionally strong test equipment to provide adequate restraint. at 

supports are consequently unsuitable for use in small scale models. 

Although their properties are far removed from those of concrete, 

plastic materials manufactured in the form of sheets are often used in 

the construction of models because of their low elastic stiffness. 

Of the available plastic materials "Araldite" and "Perspex" are 

the most commonly used for shear wall models. Araldite is the more 

suitable of the two as it is readily machined and exhibits negligible 

creep under loads which produce stresses in its elastic range. It is 

however expensive, especially for the construction of complex models 

which require large amounts of material with considerable wastage. 
For this reason it was decided to construct the models using the less 

expensive alternative, Perspex acrylic sheets. The properties of 

Perspex, which are affected by changes in temperature and humidity, 

are often anisotropic and vary from sheet to sheet. Perspex sheets 

may vary in thickness across any sheet; they are difficult to 

machine; and are subject to creep under load. However, by careful 

choice of the direction in which sheets are cut to minimise the 

difference in thickness for any component, by accurate measurement of 

that thickness, and of the elastic properties of the material, and by 

taking care during the testing of models, results of reasonable 

(_,, 
ccuracy may be obtained using Perspex. 

7.3.2 DESIGN 

Previous experimental investigations, for example reference (18), 

have substantiated the continuous connection technique as a valid 

method of analysing multi-storey shear wall structures of various 
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complexities, generally on rigid foundations. 

For the present study it was decided to test two twenty-storey 

models. In order that the effects of varying the foundation flexibil- 

ities could be readily identified the models were based on a simple 

symmetrical layout, each comprising three parallel wall assemblies of 

small torsional stiffness. Model 1 was designed to exhibit little 

redistribution of forces within the structure and consisted of three 

similar pairs of coupled shear walls, while-Model 2, which was 

designed to produce considerable force redistribution between the wall 

assemblies, consisted of two similar pairs of coupled shear walls 

symmetrically disposed about a single shear wall of comparable stiff- 

ness. Figurü 7.1 shows the disposition of the wall units in plan for 

the two models. 

To avoid the difficulties inherent in the evaluation of the width 

of floor slabs effective as a connection between shear walls, as 

discussed in section 5.2.1, shear walls in the same assembly were 

connected by beams rather than by the floor slabs. Figure 7.2 shows 

the configuration which was used for all coupled wall assemblies in 

both models. To ensure that the floor slabs had the minimum effect 

possible in connecting shear walls in the same plane, while retaining 
their function of maintaining the dimensions of the structure in plan 

at every. storey level, the slab configuration shown in Figure 7.3 was 

developed. The bending stiffness of the slabs was minimised by the 

use of thin Perspex, nominally 1/16 inch, and by cutting out the 

material in the area around the connecting beams. The continuity 

and general in-plane rigidity of the slabs were ensured by providing a 

20 mm. minimum width of material around the perimeter and between the 

positions of the shear wall assemblies. 

To maintain the overall simplicity of the tests on each model, 

wall assembly numbers 1 and 2, as shown in Figure 7.1, were based on 

rigid foundations while the flexibility of the foundations of wall 

assembly number 3 was varied for different tests. 

7.3.3 CONSTRUCTION 

Two-dimensional components for the models were cut by band saw to 
their approximate size from Perspex sheets of the required nominal 



92 

thickness, 3/16 inch for coupled wall assemblies, 1/8 inch for the 

single shear wall and 1/16 inch for floor slabs. The sheets were 

then milled to the correct profile. 

Openings in the shear walls were formed with a5 mm. diameter 

cutting tool leaving connecting beams of the required depth with 

2.5 mm. radius fillets at all internal corners. The fillets help to 

prevent stress concentrations and the resultant cracks developing at 

beam-wall connections. All wall components were made with an extra 

length of material at the base for fixing to their foundations. 

The openings in the floor slabs were cut in a similar way to 

those in the shear walls except that a number of slabs were machined 

at once, clamped together in a pack to prevent cracking of the thinner 

Perspex. The slots required to accommodate the shear walls were cut 

slightly oversize to allow full penetration of cement on assembly. 

Tensol No. 7 cement, which has properties similar to those of 

Perspex once it has cured, was used throughout the assembly of the 

models. 

The rigid foundations required for two wall assemblies of each 

model were provided by cementing the extra length of each wall into 

slots cut in 1 inch thick Perspex base plates. The walls were held 

perpendicular to the base plate and at the correct level while the 

slots were completely filled with cement and until the cement had 

hardened. 

Starting with the lowest, each floor slab was slid on to the two 

walls from the top so that the slots for the third wall overhung the 

edge of the base plate as shown in figure 7.4. Each floor slab was 

supported from the previous level by spacers which were adjusted to 

make the slab level and at the correct height, measured from the top 

of the base, before it was fixed to the two wall assemblies by cement- 

ing around the perimeters of the relevant slots. 

Once all twenty floor slabs were in place and the cement had 

hardened the remaining wall assembly was slotted into place and held 

at the correct level overhanging the Perspex base while it was 

cemented to each floor slab, which was supported from the previous 
level so that it was neither bent nor twisted. The longer extensions 

of the third wall assembly below base level permitted the foundation 
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mechanism to be firmly fitted during the testing of models incorporat- 

ing flexible foundations. 

Plate 7.1 shows a completed model undergoing a test and plate 7.2 

shows the model on the testing frame, with parts of the frame removed 

to give an unobstructed view of the model. 

For the final tests on each model, for which the foundations of 

all walls were required to be rigid, the base extensions on the third 

wall assembly were shortened. A1 inch thick extension piece was 

cemented to the existing base plate and-the shortened bases of the 

third assembly cemented into slots cut in the extension piece., 

7.4 FOUNDATION MECHANISM 

7.4.1 DESIGN CONSIDERATIONS 

The design of the mechanism for the elastic foundations was 

developed as a practical simulation of the theoretical conditions used 

in the analysis. The considerations which influenced the design are 

summarised as follows: 

1. Above base datum level the sectional properties and dimensions 

of the walls are constant. 

2. At base datum level lateral deflection of the shear walls is 

prevented. 

3. Deformations of the foundation, both vertical and rotational are 

elastic. 

4. As a consequence of the assumption that coupled shear walls 

undergo equal lateral deflections the rotation of their foundations 

are equal. 

5. Each of a pair of coupled shear walls is assumed to rotate about 

the centroid of its sectional area at base datum level. 

6. The vertical deflection of the foundations of a pair of coupled 

walls is taken as the relative deflection, in a direction perpendicular 

to the base datum, of the centroids of the two walls at the level of 
the base datum. 

7.4.2 DESCRIPTION 

The foundation mechanism is shown in place on the test frame from 
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three viewpoints in plates 7.3,7.4 and 7.5. The details of the 

mechanism are shown in figure 7.5. In figure 7.6 the deformations 

of the foundations have been greatly exaggerated in order to illustrate 

the action of the system of levers and restraints for both vertical 

and rotational movement. In the description which follows the 

numbers in parenthises are key numbers, all of which appear in 

figure 7.5. Where applicable the key numbers are repeated on the 

plates and in figure 7.6. 

The direct forces and bending moments at the bases of the coupled 

shear walls(1) were transmitted by means of four identical components, 

each of which comprised two steel plates(2) and 
(3) 

welded together. 

They were firmly bolted 
(4) 

in pairs to both sides of the extended 
bases of the shear wall assembly, positioned symmetrically so that the 

upper edge of each location plate 
(2) 

lay along the base datum of the 

wall assembly. The surface of each location plate which was in 

contact with the perspex base extension was textured to resist 

movement between the steel components and the perspex. 

At base datum lateral deflection of the shear wall assembly was 

prevented by a roller bearing(s) supported on the test frame. Due 

to congestion around the base of the model it was not practical to 

provide individual lateral restraint to the two walls. 

Circular bearings 
(6) 

, set into the crank plates 
(3) 

permitted 

each shear wall to rotate about its centroid at base datum. The 

turning effect about this point of rotation caused by the bending 

moment on the walls at base datum was resisted by a lateral force 

applied at the lower end of the crank plates, at 80 mm distance from 

the pivots. This lateral resisting force on each shear wall was 
transmitted by the shaft 

(7) 
and the circular bearing(8) to a common 

link plate(9). The link plate was held in the plane of the shear 

walls by ferrule spacers(10) on the shaft(7). The resultant force 

along the axis of the link plate was transmitted to the steel canti- 
lever bar(11) by two steel ball bearings(12). These were held in 

position between the link plate and the cantilever bar by a groove cut 
in each, by virtue of which there was no resistance to "vertical" 

movement, that is movement perpendicular to the base, between the two 

components. The axial force in the link plate was resisted by the 
bending action of the cantilever bar, which deformed in proportion to 
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the force and therefore to the bending moment in the base of the shear 

walls. The flexibility of the foundation to rotational deformations 

therefore-depended on the dimensions and properties of the cantilevers. 

The axial force in the base of each shear wall was transmitted 

by the location plates(2), the crank plates 
(3) 

and the circular 
bearings 

(6) 
to the halt shafts(13) which were each fitted by locknuts 

to an upper end of one of the vertical link forks(14) and 
(15). 

The 

axial forces in the forks were transmitted by ball bearings 
(16) 

to the 

ends of the cantilever bars(17) and 
(18) 

respectively. The ball 

bearings were held in position between the base of the link fork and 
the end of the cantilever bar by a small circular depression set 

symmetrically in each. The axial force at the base of each shear 

wall was therefore resisted by the bending action of the relevant 

cantilever bar, which in turn deformed in proportion to the force. 

By changing the configurations of the three cantilevers 
(11), (17) 

and 
(1B) 

, it, was possible to alter the rotational flexibility and the 

vertical flexibility of the shear wall assembly independently. 

7.4.3 CONSTRUCTION 

The components of the foundation mechanism were manufactured 
from pieces of mild steel cut from standard 1/4 inch thick bars 
(1" x 1/4", 1-1/4" x 1/4" and 2" x 1/4"). The inner face of each 
location plate(2) was ground flat before being centre-punched to 

provide the plane textured surface with which to grip the perspex 

shear walls. The location plates were welded to their respective 

crank plates before the holes in the latter were drilled, in case any 
distortion of the bars occurred due to the heat of welding. The 

holes in the crank plates were accurately set out and drilled on a 

milling machine to ensure that the lever arm for the rotational 

restraint force was precisely the required 80 mm. The holes to take 

the bearings 
(6) 

and 
(8) 

in the crank plates 
(3) 

and in the link 

plate(9) respectively were drilled accurately to provide a press 
tight fit to the outer race. The shafts() and 

(13) 
were turned on a 

lathe to provide a similar fit to the inner race of the bearings. 

The vertical link forks(14) and 
(15) 

were each formed by welding two 

steel bars to the ends of a short piece of 2" x 1" rectangular hollow 

section. 
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The complete mechanism was assembled, using two separate pieces 

of scrap Perspex in place of the base extensions of the shear walls 
in the models, to ensure that all the bearings turned freely. 

The three cantilever bars 
(11), (17) 

and 
(18) 

forming the elastic 

restraints were made from 1" x 1/4" thick mild steel bar. The 

profile of each bar was made perfectly rectangular and identical to 

the others by grinding all three symultaneously by machine. A datum 

line was lightly scribed close to one end of each bar and similar 
lines were set out and scribed at intervals along the bar by a 
vernier gauge. The groove in the bar(11) and the circular depression 

in the bars 
(17) 

and 
(18) 

were centred on the datum line at the end of 

each. 

The cantilever action of the vertical restraints was achieved by 

placing one end of the bar between two ground plates and bolting the 

outer plate to a 1/2 inch thick steel backing plate thereby holding 

the bar firmly with its free and forming the cantilever. The 

flexibility of the cantilever was adjusted by altering the free 

length of the bar, as measured from the scribed datum line to the 

leading edge of the clamping plates. 

The cantilever bar forming the rotational restraint was similarly 
clamped between the ground flanges of two pieces of steel angle 

section , the other flanges being bolted to a 1/2 inch steel backing 

plate. The backing plates were each provided with a number of holes 

to allow adjustment of the positions of the cantilevers and for 

mounting the plates on the test frame. 

7.5 TEST FRAME 

The frame on which the models were mounted during the tests is 

shown in plate 7.1. Although constructed for the present test 

program it was designed as a modular system which could be easily 

adapted for other purposes and could be dismantled to save storage 

space. 

The modular system consisted of a pair of vertical mounting 

units which could be set parallel at any desired distance apart and 
connected by horizontal and inclined bracing to form a stiff self 
supporting box frame. Since the model was mounted within the box, 
the system was very stable and the model was protected from accidental 
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damage by the frame. By the use of additional mounting units and 

bracing a series of such boxes could be built up for testing models 

back to back, etc. 

Mounting units consisted of two 1/2 inch thick by 6 inch wide 

steel plates, provided with a regular array of holes for use in 

fixing models and other equipment to the frame. The plates were 

set near the upper ends of their supporting legs to provide adequate 

clearance below models to hang weights and at different distances 

apart on the various units to enable models with a wide range of 
base size to be used. The ends of each plate were welded to the 

vertical legs which consisted of 3" x 1-1/2" steel channels welded to 

6" square base plates. The bracing consisted of cut lengths of 

2" x 1" rectangular hollow section with welded end plates which were 

tapped for bolting to the vertical channels. 

The configuration in which the frame was used in the present 

study, as shown in plate 7.1, comprised two mounting units braced 

together a short distance apart to which the model and the backing 

plates of the foundation mechanism could be attached and a third 

unit placed one metre distant and braced to the other two to form the 

box and give the frame its stability. 

The frame was itself tested prior to mounting the model by 

loading up a jib arrangement fixed to the mounting unit to be used 

in the tests, in order to investigate the effects which the loaded 

model would have on the frame. No general movement of the frame 

could be detected, but there was a slight local deflection of the two 

plates to which the model would be bolted, just detectable on a dial 

gauge reading to 0.002 mm. 

To strengthen these plates similar 1/2 inch plates were placed 

vertically across them before the base of the model was positioned. 

The model was orientated using a plumb line so that the planes of its 

walls were exactly vertical and the base extensions for fixing to the 

foundation mechanism projected through between the plates of the 

mounting unit. The Perspex base was further strengthened by placing 

pieces of hollow section vertically between the walls and horizontally 

above and below the model in the form of a grillage. The hollow 

sections, the base of the model and the steel plates were firmly 

attached to the mounting unit by 1/2 inch diameter screwed rods to 
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form an inflexible foundation for the walls of the models assumed to 

be built in at the base. 

The foundation mechanism was assembled on to the base extensions 

and lay within the space between the two mounting units at the base 

of the model. The backing plates for the cantilever restraints were 

bolted in place and the three cantilever bars were clamped to them. 

Care was taken that the datum lines on the bars were correctly lined 

up with the foundation mechanism and the precise unsupported length 

of each cantilever bar required for the particular test was obtained 

by lining up the relevant scribed mark on the bar with the edge of 

the clamp plates. Finally the ball bearings were inserted between 

the ends of the cantilever bars and their corresponding positions on 

the foundation mechanism. By using oversized bearings, any play in 

the mechanism and the initial rotation and deflection of the base of 

the third wall assembly were removed to ensure that all three wall 

assemblies were level before each test. 

7.6 MEASUREMENT OF STRAIN AND DEFLECTION 

7.6.1 STRAIN 

The strains induced in the model by the applied loads were 

measured by electrical resistance strain gauges. The gauges were 

placed 5 mm from, and parallel to the edge of each wall of the model 

at a height of 175 mm above the base. This position was selected 

close to the base to give measurable strains but far enough above 

the base to be outwith any local effects caused by the base-to-wall 

connection. The position of the gauges was also midway between 

floors, the third and fourth, in order to minimise distortions caused 

locally by wall-beam interaction. Gauges were generally placed on 

one side of a wall assembly, but at one position on each wall an 

extra gauge was placed on the opposite side to provide a check that 

bending occurred in the plane of the wall. 

The strain gauges, Japanese type PL. 10, and the terminal strips 

for the wire leads were glued to the Perspex by Eastman 710 adhesive 

and varnished over for insulation and protection. The resistance of 

each gauge was measured prior to use to ensure that the leads were 

correctly connected and there was no fault in the gauge. 
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Each strain gauge was wired to the indicator equipment with an 

identical gauge, provided by the model not under test, to compensate 

both for temperature changes in the laboratory during tests and for 

local heating of the Perspex caused by the current passing through 

the gauge during the actual measurement of strain. 

Baldwin-Lima-Hamilton BLH 1200 series strain indicator equipment 

was used to measure the change of resistance of the gauges and hence 

the strain of the Perspex during the tests. Each gauge and its 

compensator were wired to one channel of a ten-gang switching unit, 

each channel of which was provided with a control whereby the initial 

value of strain could be set to zero. The switching units were in 

turn connected to the indicator unit which measured the resistance 

of the channel selected by the switching unit and provided an instant 

digital display directly in units of microstrains. The power 

required for the indicator equipment was supplied from the mains to 

the indicator unit which converted the 240 volt A. C. source to a low 

voltage controlled direct current suitable for the strain gauges. 

7.6.2 DEFLECTION 

Deflections were measured by "John Bull" dial gauges, manufactured 

by British Indicators Ltd. The deflections of the model under test 

were measured by gauges supported on a light "Dexion" framework 

bolted to the test frame. The gauges were positioned directly above 

the walls, midway between floor slabs at five positions on each wall 

assembly. At the lower three positions, half a storey above the 

third, seventh and eleventh floors, the gauges used were type 2U 

which incorporated jewelled pivots and were sensitive to 0.002mm 

per division of the dial, with a maximum travel of 12.7mm. The 

gauges at the upper positions, above the fifteenth and nineteenth 

floors, were type 2S with a longer range, 25.4 mm, and a sensitivity 

of 0.01 mm per division. 

The deflections of the foundation restraint cantilevers were 

measured by gauges type 2U held in position by magnetic stands 

clamped to their respective backing plates. Gauges type 2U were also 

used to detect any deformation of the Perspex base plate at the 

positions of the built in walls. In this case the gauges were 

supported by magnetic stands positioned close to each other on the 
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outer mounting unit of the test frame in order to include any local 

rotation of the plates of the unit on which the model was mounted. 

7.7 DETERMINATION OF ELASTIC PROPERTIES OF PERSPEX 

In order to evaluate the stresses induced in the models from the 

strain gauge readings, and to compare the experimental results with 

those calculated using the theoretical analyses, the elastic 

constants, namely Young's Modulus, E, and Poisson's Ratio, \' , were 

evaluated for the two thicknesses of Perspex, nominally 3/16 inch and 

1/8 inch, used to construct the shear walls of the models. 

Two rectangular specimens, nominally 1.5 inches by 10 inches, of 

each thickness were cut from the same sheets of Perspex as were the 

walls. Their long edges were milled parallel and two electrical 

resistance strain gauges, as used on the models, were fixed near the 

mid point of each specimen. On one specimen of each size of Perspex 

the gauges were both positioned longitudinally on opposite faces, 

while on the other specimens the gauges were placed, one longitud- 

inally and one transversely, on the same face. The precise width 

and thickness of the specimens in the region around the gauges were 

measured by means of a vernier and a micrometer respectively. 

The specimens were each tested in bending, between level supports, 

240 mm apart, equal loading being applied at the third points of the 

span to produce constant bending, with no shear, in the region of the 

strain gauges. During tests on one specimen the gauges on the other 

specimen of the same thickness were used as dummy temperature 

compensators. 

Specimens were loaded and unloaded progressively by small 

increments, the maximum loading in any test being that which produced 

a strain similar to those encountered in tests on the models. The 

best linear strains were evaluated for the loading and the unloading 

processes by the procedure outlined in section 7.10. Each specimen 

was tested four times, twice on each face, the specimen being turned 

end for end between successive tests in an attempt to avoid errors 

due to misalignment of the specimen, the supports or the strain 

gauges. 

The stress at the position of the longitudinal gauges was found 
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by statics using the accurate dimensions of each specimen. The 

average of the strain results for each specimen was evaluated and 

the Young's Modulus for each thickness of Perspex found. Poisson's 

Ratio was evaluated by dividing the strain of the lateral gauge by 

the corresponding strain of the longitudinal gauge and an average 

found for each thickness of Perspex. 

The average values of Young's Modulus and Poisson's ratio, which 

were used in the computer analysis of the model structures and for 

the evaluation of stresses in the tests are given in Table 7.1. 

7.8 CALIBRATION OF FOUNDATION CANTILEVERS 

In order to relate the deflections measured at the foundation 

mechanism to the forces and bending moments on the base of the shear 

walls, the flexibility of the steel cantilever bars were determined 

for each of the settings, i. e. free length, at which the models were 

tested. 

Each cantilever bar was tested with the same clamping arrangement 

as would be used in the tests. The rotational cantilever was placed, 

with the groove for the ball bearings upwards, between the two angle 

pieces and clamped in position on the tests frame. The backing 

plate for the vertical restraint cantilevers was removed from the 

frame and bolted horizontally to a firm support. The relevant 

cantilevers were clamped in their positions on the plate with the 

circular recess in each facing upwards. 

The bars were each tested, bending in the same direction as 

would occur during the model tests, by suspending weights on a hanger 

centred on the datum line of each. The bars were loaded and 

unloaded progressively by one kilogramme increments. The maximum 

load depended on the length at which the bar was set. The 

deflection caused by a 10 Kg weight was found by the method outlined 
in section 7.10 for the loading and unloading processes. Each 

specimen was tested five times at each. setting and an average 
deflection for each bar at each setting was evaluated. 

The flexibility of each bar at each setting was found as the 

deflection in millimetres caused by a force of one Newton applied at 
the datum line. The rotational flexibility coefficient, K69 for the 
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shear wall assembly follows directly by considering the geometry of 

the foundation mechanism as shown in figure 7.5 and is given on 

dividing the flexibility of the rotational restraint cantilever by 

the square of the effective lever arm (80 mm) of the crank plates. 

The vertical flexibility coefficient, Kv, being the relative 

deflection between the bases of the two walls caused by an equal 

. axial force of one Newton in the two walls is given as the sum of the 

individual flexibilities of the two vertical cantilevers at the 

setting considered. The values of KB and Kv for the lengths used 

in the model tests are shown in table 7.2. 

7.9 TEST PROCEDURE 

The model was bolted to the test frame, the foundation mechanism 

assembled and the cantilever bars set at the lengths required for the 

particular tests, as described in section 7.5. Uniform loads were 

simulated by applying a point load at each storey in the form of 

100 gramme and 200 gramme weights on light alloy hangers suspended by 

"Terylene" cord from the floor slabs. The cord was accurately 

positioned relative to the shear walls and held by adhesive tape to 

prevent accidentally changing its position when weights were placed 

on the hangers. 

Prior to each test the model was loaded and unloaded to ensure 
that all the components, particularly the foundation mechanism had 

fully settled after being mounted or reset. 

With no weight an the hangers the reading for each strain gauge 

was set approximately to zero and noted and the dial gauges read. 

The load was applied in increments of 0.2 Kg per storey to a 

maximum equivalent to 1 Kg per storey. A standard time, 10 minutes, 

was allowed after the addition of each load increment before the 

readings were taken to permit the gauges to settle to reasonably 

stable values. A set order of reading the gauges was adopted 
throughout the test program. 

In an attempt to eliminate errors due to creep in the Perspex 

the model was unloaded by increments and a separate set of readings 
taken. The mean of the results obtained from the loading and 

unloading procedures was used in the comparison of the experimental 
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and the analytical results. 

7.10 EVALUATION OF TEST RESULTS 

In all the loading tests on the models, the perspex specimens 

and the cantilever bars, the results were evaluated by the same 

method. The readings taken from any gauge during a test were 

plotted to scale against the load increments and the best straight 

line was drawn by eye, ignoring any obvious misread points and the 

typical non-linear portion at the beginning of each plot. The 

value of strain or deflection for the total applied load was 

evaluated from the slope of the line. 
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(a) Vertical foundation movement 

(b) Foundation rotation 

Action of foundation mechanism 

Figure 7.6 



T7.1 

Nominal Sheet Young's Modulus 
Thickness N/mm2 Poissonts Ratio 

3/16 inch 3103 0.366 

1/8 inch 3155 0.352 

Elastic properties of Perspex used for Models 

Table 7.1 



_T7.2 

Effective length Rotational Flexibility Vertical Flexibility 

of cantilever Coefficient Coefficient 

mm K8 radians/N. mm Kv mm/N 

30 - 0.370 x 10-3 

40 0.0607 x 10-6 - 

80 0.364 x 10-6 4.586 x 10-3 

Values of the Foundation Flexibility Coefficients 

used in the Model Tests 

Table 7.2 
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CHAPTER 8 

EXPERIMENTAL RESULTS 

8.1 INTRODUCTION 

The present chapter deals with the presentation of the results 

of the experimental investigation carried out as described in 

Chapter 7. The results of the series of tests on the two three- 

dimensional shear-wall models are given in comprehensive tabular 

form for reference purposes. In addition, the results are presented 

graphically together with the analytical solutions corresponding to 

each particular test. The experimental results are discussed and 

are compared with the analytical solutions by referring to the graphs. 

8.2 PRESENTATION OF RESULTS 

The two models, the layout and dimensions of which are shown in 

figures 7.1 to 7.3 inclusive, were each tested under the action of the 

uniformly distributed load, simulated as described in section 7.9. 

The two alternative positions adopted for the load are shown relative 
to the walls of the models in figure 8.1. Load position number 1 

was symmetrical with respect to the plan layout of the models while 
load position number 2 was asymmetrical, placed midway between wall 

assemblies numbers 2 and 3. 

A detailed account of the load position and the setting of the 

foundation mechanism at the base of wall assembly number 3, as used 

for each of the twenty tests is given in table 8.1. Each of the 

models was tested under the action of the distributed load in each 

of its two positions, with five different foundation conditions at 

the base of wall assembly number 3. These foundation conditions were 

chosen to simulate the following combinations of rotational and 

vertical flexibility: - 

1. Relatively stiff to both rotational and vertical 
deformations - as used in tests 1,2,11 and 12. 

2. Relatively flexible to rotation and stiff to vertical 
deformations - as used in tests 3,4,13 and 14. 
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3. Relatively flexible to both rotational and vertical 
deformations - as used in tests 5,6,15 and 16. 

4. Relatively stiff to rotation and flexible to vertical 
deformations - as used in tests 7,8,17 and 18. 

5. "Rigidly" built in to the 'Perspex' base plate - as 
used in tests 9,10,19 and 20. 

The deflection of each wall assembly at the positions of the dial 

gauges, as derived from the experimental readings, are given in tables 

8.2 to 8.5 inclusive. The values given have been adjusted where 

applicable to allow for the measured deflections of the steel base 

plates supporting the models. The rotation of the models in plan at 
the levels of the dial gauges, as calculated from the relevant results 

of deflection of wall assemblies 1 and 3, are also given in the above 

tables. 

The vertical stress at each of the positions shown on plan in 

figure 8.1, at a height of 175mm above the base, as derived from the 

results of the strain gauge readings taken during the tests, is given 

in tables 8.6 to 8.9 inclusive. The convention that tensile stresses 

are considered positive is adopted throughout the tables.. 

The measured deformations of the foundation system of wall 

assembly number 3 are given in table 8.10 for those tests where the 

flexible foundation mechanism was used. 

The computer programs discussed in Chapter 5 were used to 

evaluate analytical solutions corresponding to the conditions of each 

test. The measured dimensions of the individual walls and the 

relevant flexibility coefficients of the foundation mechanism of wall 

assembly number 3 were used to define the structure. The bases of 

wall assemblies 1 and 2 were assumed to be rigid in all analytical 

computations. The load used in the programs was a uniform line load 

equivalent to 1 Kg per storey at the relevant position. Six 

reference levels were used for the polynomial solution and twenty 

for the point load solution. The results of the computer evaluations 

of the deflections of the wall assemblies throughout the height of 
the models are presented graphically with polynomial and point load 

results for any one test being shown on the same graph onto which 
the experimental results are superimposed. With the exception of 
tests numbers 9 and 19, where theoretically there should be no 
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rotation of the model in plan, a graph of the rotation of the model 
throughout its height is given for each test, again with the two 

analytical solutions and the experimental results being shown on the 

one graph. A third graph is given for each test which shows the 

two analytical stress distributions at the level of the strain gauges, 

together with the experimental stresses derived from the strain gauge 

readings. 

The percentage of the total shear load distributed to each wall 

assembly throughout its height, as evaluated by the analytical 

methods, is shown on separate graphs for the two methods, for each 
test, with the exception of test number 9 where each of the three wall 

assemblies carries an equal proportion of the load at all heights. 

The graphs described above are presented in figures 8.2 to 8.97 

inclusive at the end of the chapter. They are arranged according 
to the numerical order of the tests, with all the graphs relating to 

a particular test appearing in consecutive figures. 

The analytical solutions for the rotation and relative vertical 
deflection of the bases of the walls of assembly number 3 are compared 

with the corresponding experimental results in table 8.10. 

8.3 DISCUSSION OF RESULTS 

8.3.1 EXPERIMENTAL RESULTS 

In any practical experimental investigation it is inevitable 

that a number of sources of error are present, for example 
deficiencies in the apparatus or in the model materials. 

The experimental apparatus described in Chapter 7 was designed 

to be as inflexible compared to the models as the practical 

considerations of available techniques and materials would permit. 

Nevertheless, the apparatus could not be considered rigid. The test 

procedure described in section 7.9 was adopted to reduce any loss of 

accuracy of the results arising from deficiencies in the apparatus 

or in the model material. The same procedure was adhered to 

throughout the test program in order that any residual errors which 

were not determinable would be relatively consistent, thus enabling 

meaningful comparisons to be drawn between the results of the various 
tests. 
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Random errors, such as the misreading of gauges, and systematic 

errors, in this case for example the typically small changes of strain 

and deflection found during the first load increments of each test, 

occur in any experimental program. The method of evaluating the 

test results described in section 7.10, was used to enable such errors 

to be eliminated. However the experimental results were derived by 

drawing the best straight line by eye through the test readings, 

excluding those eliminated above. This procedure, although enabling 

many errors in the readings to be eliminated, relies on the judgement 

of the individual and inevitably there is some degree of error involved. 

However, a full mathematical treatment of the results whereby the 

best straight line is found by a "least squares" method would not be 

able to eliminate the random and systematic errors described above. 
A more ideal treatment of the test readings might be to subject them 

to an initial graphical plot whereby the obviously erroneous points 

may be eliminated and thereafter the best straight line through the 

remaining points could be found by mathematical methods. In the 

present case it was considered that the large amount of work involved 

in the latter two-part technique did not justify the small increase 

in accuracy which might be achieved. 

When the individual weights were placed on the hangers the model 

underwent rapid changes of deflection. Great care was taken to 

ensure that each load increment was applied as smoothly as possible to 

minimise any impact effect of the load on the model. The weights 

were placed on or taken off the hangers, as applicable, in the same 

order throughout all the tests, beginning in each case with the 

hanger at the top of the model and working towards the base. By 

adopting this procedure it was intended that any over-reaction of the 

model caused by the addition of weights near the top, where a unit 

increment of load has the largest effect, would be compensated for 

when the weights were added near the base, where they have a relatively 

small effect. The impact of adding and removing weights to the 

model during the tests should not be of importance provided that the 

material of the model is elastic and its yield stress is nowhere 

exceeded during the tests. However 'Perspex' is prone to creep 
under load and is hence imperfectly elastic, so that some error in 
the results may be expected from this source. 
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The dial gauges are precision instruments and any error 
introduced by them will be negligible, especially in the relatively 
large deflections encountered at the higher levels of the models. 
Small errors may be introduced where the ball at the point of the 

gauge bears on an uneven surface.. However, the components of the 

model were machined to close tolerances and given a good finish to 

avoid such errors. The dial gauges used to record the deflections 

of the model were mounted on a framework consisting of 'Dexion' 

angles, securely bolted to the test rig. The 'Dexion' is comparatively 
flexible and could lead to errors were it to be disturbed during a 
test. The dial gauges are constructed so that the spring force 

exerted by the point of the gauge on the model is constant throughout 

the travel of the gauge. Therefore the resultant force of the 

gauges on the mounting frame and on the model should remain constant 
throughout the tests and provided that the frame is not disturbed by, 

for example, an accidental jolt, little error should be introduced as 

a consequence of the flexibility of the 'Dexion' frame. 

The electrical resistance strain gauges and the indicator 

equipment are once again items of precision scientific equipment, 
designed to give results of high accuracy. However, to take 

advantage of their potential great care must be taken in the 

application and use of the gauges. To this end compensating gauges 

were used as described in section 7.6.1. To avoid any errors in the 

readings of the strain gauges caused by the wires connecting the 

gauges to the indicator equipment straining under their own weight 
these wires were hanked together and supported at close centres 
throughout their length. 

The conditions at the bases of those walls which are considered 
to be rigid introduce a further source of error encountered in all 

experimental studies where rigid conditions of fixity are required. 
During each test the deflection of the underside of the 'Perspex' 

base plate of the model was measured at the position of the centre 
of each built-in wall, whereby the rotation of the base between the 
two walls of each assembly was calculated. From this the deflection 

at the height of each dial gauge position caused by the base rotation 
was calculated and the results for the deflection of the walls 
adjusted accordingly. The presence of elastic foundations at wall 
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assembly number 3 caused some difficulty in this respect. Obviously 

the rotation at the bases of the "built-in" walls must have an effect 

on the deflections of assembly number 3. The corrections applied to 

the deflections of the wall assemblies with "built-in" bases were 

extrapolated to give an estimate of that part of the deflection of 

wall assembly number 3 caused by the rotation of the base under the 

other "built-in" walls. This "rule of thumb" method was used to 

adjust the results for the deflections of wall assembly number 3. 

The adjustments made using the above procedure were comparable with 

those obtained from measurements of the base rotation of wall assembly 

number 3 in those tests where the latter walls were built in to the 

"Perspex" base plate. 

\L%formations occur within the depth of the "Perspex" base, local 

to the foot of each wall. It was not practical to position gauges 

on the "Perspex" base plate from above so that these deformations are 

not accounted for in the measurements taken below the base and must 
have an effect on the accuracy of the results. The tendency will be 

to produce results for deflection and rotation of the model rather 
larger than would be the case if the bases were truly rigid. 

During the tests the models were not prevented from moving at 

right angles to the planes of the shear wall assemblies. Although 

the applied load was in every case parallel to the planes of the 

walls some movement at right angles must be expected, particularly 

where a large rotation of the model is present. This movement will 
tend to produce different strains on opposing faces of the same wall. 
However, at those positions where gauges were fixed to both sides of 

a wall at the same position, the difference in results was in no 
instance greater than three percent. 

The floor slabs were designed to be flexible in bending, 

particularly in the locality of the lintel beams connecting shear 

walls, while maintaining a high degree of stiffness in their own 

plane. The configuration used is largely justified by the results 

obtained, namely that the deflections of the three wall assemblies at 
any level bear a close linear relationship throughout the tests. 

However it was not practical to measure deflections at the levels of 
the lowest floor slabs where the largest redistribution of forces 
between wall assemblies may be expected., The greatest tendency for 
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the floor slabs to deform, therefore, exists at the lowest levels and 

some inaccuracy must be expected from this source. 

- 
When the applied load is asymmetrical the structure undergoes 

rotation in plan and the deflected forms of the wall assemblies 

are unequal. At any height above the base the slopes of the wall 

assemblies are thus unequal. It follows that the inclination of a 

floor slab to the horizontal, as determined by the walls to which it 

is fixed, varies across its length. This warping effect of floor 

slabs will mobilise the torsional stiffness of the slabs which was 

assumed negligible in the analysis, thus introducing a further source 

of inaccuracy between the experimental results and the analytical 

solutions. 

As noted in section 7.3.1, one of the disadvantages encountered 
in using "Perspex" to construct model structures is that this material 
is subject to considerable creep under sustained loading conditions. 
Since the model creeps in the same direction as the applied load the 

procedure of repeating each test during the unloading of the model 

was adopted. During the loading sequence the creep is in the same 
direction as the changes of deflection of the model, while during the 

subsequent unloading sequence the creep is in the opposite direction, 

to the changes of deflection of the model. Since the average load 

on the model during the loading sequence was the same as that during 
the unloading sequence and the length of time required to carry out 

each operation was approximately equal, it can be argued that the 

magnitude of the creep would be approximately the same in each case. 
Hence, by taking the mean of the results for deflections obtained for 
the loading and unloading of the model, the errors contributed by 

creep in the "Perspex" will be accounted for to a considerable extent. 

The value of the modulus of elasticity, as used to evaluate the 

stresses in the model from the results of the strain gauge readings, 

was assumed to be constant in tension and compression throughout 

Perspex cut from a common sheet. This assumption will introduce 

errors in the results since the elastic properties of "Perspex" are 
known to differ in tension and compression and also to vary within 
single sheets. 

As indicated at the beginning of this section the apparatus and 
procedure adopted for this experimental investigation were designed 
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to reduce or eliminate as many of the sources of error as practical 

considerations permitted. The precise degree of accuracy of the 

experimental results achieved for any particular test is very 

difficult to estimate. Any figures quoted would be a matter of 

conjecture. However, the fact that a rigorous test procedure was 

adhered to throughout the program ensures that errors in the results 

of the various tests are consistent and that the results may be used 

with confidence for comparative purposes. 

8.3.2 ANALYTICAL SOLUTIONS 

The analytical solutions presented in graphical form at the end 

of this chapter were derived using the physical dimensions and 

structural conditions which most accurately represented the models 

within the limitations of the assumptions used in the derivation of 

the analytical methods. The fact that these assumptions were 

carefully considered in the design of the models ensures that 

analytical representation of the models is well defined. However it 

cannot be considered complete for a number of reasons. 

As indicated previously each "Perspex" sheet comprising the 

components of the models varies in thickness. For the analysis the 

mean thickness of each shear wall was used. Differences in thickness 

local to the foot of any wall will have a greater influence on the 

results for the deflection of the wall than would differences near 
the top. The analytical methods assume that the walls are of 

constant cross section throughout their height, and the analytical 

solutions, therefore, fail to represent the model completely in this 

respect. In order to represent the model as accurately as possible 
the dimensions of each component as used in the analytical solutions 

were those found as the mean of a number of measurements on the 

components. 

A similar discrepancy in the representation of the models by 

the theory arises from the assumption of constant elastic properties 
throughout any component of the models. The analytical methods are 

again unable to accommodate the undefined variations of these 

properties in the model material. 

Factors which increase the accuracy of the analytical 

representation of the behaviour of the models have been considered in 
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the analysis. Amongst these is the inclusion in the analysis of the 

effects of shear deformations in the connecting beams. The flexibility 

of the beam to wall connections in the shear wall assemblies had also 

been taken into account by using an effective span for the connecting 

beams greater than the clear span by the depth of the beams, as 
(suggested 

by Michael 
7ý. 

8.3.3 COMPARISON BETWEEN EXPERIMENTAL RESULTS AND 

ANALYTICAL SOLUTIONS 

DEFLECTIONS 

Generally, the experimental results for the deflections of the 

models throughout the twenty tests follow a consistent pattern which 

is in close agreement with the two analytical solutions. A 

relationship between the polynomial and point load solutions similar 

to that discussed in Chapter 6 is again shown in the graphs; that 

is, the polynomial solution is consistently larger than the corresponding 

point load solution. 

The graphs are largely self explanatory and hence only general 

features are indicated as follows: - 

1. The plots of the experimental deflections closely follow 

the characteristic form of curve obtained from the analytical 

solutions. 

2. The experimental results are generally greater than both 

analytical solutions. 

3. In any particular test the difference between the experime- 

ntal deflection of a wall assembly and the corresponding analytical 

solution is approximately proportional to the height above base datum. 

4. In those tests where the applied load was symmetrical and 

hence the deflected forms of the three wall assemblies were approxi- 

mately the same the difference between the experimental deflection 

of each wall assembly at a particular height and either corresponding 

analytical solution tended to be in proportion to the deflection of 
that wall measured at the relevant height. However, the difference 

between experimental results and analytical solutions varied from 

test to test. The difference between the experimental results and 
the polynomial solutions was generally less than 10%, while'the 
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difference between the experimental results and the point load 

solution was generally less than 16%. 

S. In the tests where the applied load was asymmetrical and 

hence the deflections of the wall assemblies at any height were 

greatly different, the differences between the experimental results 

and the analytical solutions were not generally in proportion to the 

deflection of the wall assembly at that height. The differences 

between the experimental results for wall assembly number 3 and the 

polynomial and point load solutions were generally in the same range 

as those for the symmetrical loading, that is below 10% and 16% 

respectively. The experimental results for wall assembly number 1 

were, in many instances, many times larger than the corresponding 

analytical solutions. However the maximum deflection of wall 

assembly' number 1, under asymmetrical load was small compared to the 

deflection of wall assembly number 3 and the numerical magnitude of 

the differences between the experimental results and the analytical 

solutions for wall assembly number 1 were comparable to the 

corresponding differences for wall assembly number 3. 

ROTATIONS 

Both the experimental results and the analytical solutions for 

the rotations of the models in plan under the various combinations 

of load and foundation conditions are related directly to the 

corresponding deflections of the wall assemblies. Since the 

relationship between experimental deflections and the corresponding 

analytical solutions was reasonably close and consistent it is 

logical to expect a similar relationship to exist between experimental 

and analytical rotations. The graphs of rotations relevant to the 

various tests generally show this to be the case. 

The general comments on the graphs of rotation which follow are, 
in cases, necessarily similar to the comments made in the previous 

section on deflections: - 

1. The plots of the experimental results of rotations of the 

models are of similar form to the graphs obtained from the analysis. 

I 

2. Although the majority of the experimental results for 

rotation are again greater than both analytical solutions, there is a 
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significant number of instances where the experimental results lie 

between the polynomial and point load solutions. 

3. Whereas it was the case that the difference between 

experimental and analytical deflections was generally proportional to 

the height above the base, the corresponding differences in rotations 

are not generally proportional in all the tests. Although there are 

cases where the difference between the experimental rotation and the 

analytical solution increases with height, there are also cases where 
the above difference is numerically constant or even decreases with 
height. 

4. Where either the asymmetrical loading case or the more 
flexible foundation conditions produced larger rotations of the 

models the agreement between the experimental results for rotation 

and the analytical solutions was generally better than the figures 

of 10% and 16% as quoted for the polynomial and point load deflection 

respectively. 

5. Where symmetrical loading combined with less flexible 

foundation conditions produced little rotation of the models as 

shown in figures 8.3,8.13,8.50 and 8.60, the percentage agreement 

between experimental results and analytical solutions was in cases 

markedly poor, the experimental results being up to approximately 50% 

in excess of the analytical solution on occasion. However, in such 

cases the rotations were very small in magnitude and the actual 

numerical discrepancy between experimental and analytical results 

was also numerically small compared to those encountered in other 

tests. 

STRESSES 

The stresses in the walls of the models, as derived from the 

strain gauge readings taken during the tests, yield a general form of 

stress distribution which bears a very consistent relationship to the 

stress distributions predicted by the analytical solutions. The 

maximum stresses in each wall assembly at the level of the strain 

gauges are invariably at the outer extreme fibres of the walls, 
that is adjacent to gauge positions A and D, as defined in figure 8.1. 
The experimental stresses at positions A and D are in very close 
agreement with the analytical solutions throughout the series of twenty 
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tests. The stresses at the inner extreme fibres of the walls, that 

is adjacent to gauge positions B and C, are generally much smaller 
than the corresponding values at positions A and D, and in this 

instance the agreement between experimental results and the analytical 

solutions is not so marked. There is however a consistent relation- 

ship between experimental results and analytical solutions namely, 
that the experimental results for stresses at positions B and C 

invariably lie to that side of the analytical solutions which is 

towards the result at the outer edge of the same wall. In cases 

where there is a reversal of stress across an individual wall'the 

above relationship is shown as a smaller experimental stress than, or 

one of opposite sense to that predicted by the analytical solutions 

at positions B and C. In cases where there is no stress reversal the 

experimental streses at B and C are invariably larger in magnitude 
than the corresponding analytical solutions. 

The lack of agreement between the experimental results and the 

analytical solutions for stresses at the inner extreme fibres of coupled 

wall assemblies may be a result of, firstly, the assumptions made in 

the development of the analyses or, secondly, the estimation of the 

flexibility of the connections between beams and shear walls, or, 
finally, local stiffening of the Perspex by the strain gauges. In 

the first alternative the analysis was developed on the assumption 
that the connection between the walls was of a continuous nature 

whereas, in reality, it-consists of a number of discrete beams, whose 

presence will necessarily affect the distribution of stress in 

particular near the inner edges of the walls. In a similar fashion 

an error in the estimation of the flexibility of the beam-to-wall 

connections will affect the stress distributions predicted by the 

analytical solutions. The presence of a strain gauge on the Perspex 

surface thickens the material in the vicinity of the gauge thus 

stiffening it locally. The strain reading taken by means of the 

gauge will be correspondingly affected. The effect becomes more 
important on thinner sheets of Perspex. 

FOUNDATION DEFORMATIONS 

The experimental results for the rotation and relative vertical 
deflection of the bases of wall assembly number 3 are compared with 
the corresponding analytical solutions in table 8.10. The general 
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level of agreement is very close considering the extremely small 

movements encountered in the tests. The analytical solutions take 

no account of deformations of the bases of wall assemblies 1 and 2 

which are considered rigid throughout the analysis but which do tend 

to deform under test conditions as discussed in section 8.3.1. 

8.3.4 LOAD DISTRIBUTION 

The load distribution graphs are included as a further illustration 

of the effects of flexible foundations as previously discussed in 

section 6.5. As was the case in the previous section one wall 

assembly, in this case number 3, is considered to have flexible 

foundations and the effects of different foundation configurations 

on the distribution of the applied load are shown in the graphs. 

The general conclusions drawn from the previous examples are 

again valid in the present case. The majority of the redistribution 

of load within the structure caused by changes in foundation conditions 

again takes place within the lowest storeys, and the proportion of load 

resisted by the walls at higher levels is not so dependent on the 

foundation conditions. The latter effect is not so marked in the 

present cases as in the previous examples. In the examples of 

section 6.5 the wall assembly considered to have elastic foundations 

was one of seven or eight assemblies in the structure and even under 

rigid foundation conditions assumed a small proportion of the total 

load. However, in the case of the experimental models there are 

only three wall assemblies in each structure and individually they 

play a proportionally larger part. In the present case, therefore, 

flexible foundations at the base of one wall assembly will have a 

greater effect on the distribution of load in the upper storeys. 

It is of note that, although the polynomial and point load 

solutions give similar values for the load distribution in each case, 
the form of the load function used is reflected in the resultant 

graphs. The distributions in the polynomial case follow smooth 

curves of a polynomial nature whereas the point load graphs are 

angular, reflecting the discrete nature of the solution. 
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T8.1 

Effective length of 
Foundation flexibility 

foundation cantilevers 
co effici ents 

Test Model Load 
mm Number Number Position Rotational Vertical 

Ke radians/Nmm K mm/N Rotation al Vertical v 

1 1 1 40 30 0.0607 x 10-6 0.370 x 10-3 

2 1 2 40 30 0.0607 x 10-6 0.370 x 10-3 

3 1 1 80 30 0.364 x 10-6 0.370 x 10-3 

4 1 2 80 30 0.364 x 10-6 0.370 x 10-3 

5 1 1 80 80 0.364 x 10-6 4.586 x 10-3 

6 1 2 80 80 0.364 x 10-6 4.586 x 10-3 

7 1 1 40 80 0.0607 x 10-6 4.586 x 10-3 

8 1 2 40 80 0.0607 x 10-6 4.586 x 10-3 

9 1 1 Base built in 0 0 

10 1 2 Base built in 0 0 

11 2 1 40 30 0.0607 x 10-6 0.370 x 10-3 

12 2 2 40 30 0.0607 x 10-6 0.370 x 10-3 

13 2 1 80 30 0.364 x 10-6 0.370 x 10-3 

14 2 2 80 30 0.364 x 10-6 0.370 x 10-3 

15 2 1 80 80 0.364 X 
, 10- 6 4.586 x 10-3 

16 2 2 80 80 0.364 x 10-6 4.586 x 10-3 

17 2 1 40 BO 0.0607 x 10_6 4.586 x 10-3 

18 2 2 40 80 0.0607 x 10-6 4.586 x 10-3 

19 2 1 Base built in 0 0 

20 2 2 Base built in 0 0 

Foundation conditions at wall assembly number 3 and 
load position as used in tests on model structures 

Table 8.1 



T8.2 

Test 
N b Above 

Height 
Base 

Horizontal deflection of wall 
assemblies mm 

Rotation of 
Structure 

um er mm Wall 1 Wall 2 Wall 3 radians 

1 175 0.421 0.485 0.545 0.00062 
375 1.262 1.368 1.526 0.00132 
575 2.153 2.349 2.54 0.00199 
775 3.01 3.28 3.60 0.00295 
975 3.83 4.14 4.42 0.00295 

3 175 0.396 0.538 0.676 0.00140 
375 1.213 1.44 1.69 0.00239 
575 2.14 2.46 2.79 0.00325 
775 2.97 3.42 3.83 0.00430 
975 3.78 4.30 4.81 0.00515 

5 175 0.282 0.645 1.015 0.00367 
375 0.951 1.725 2.57 0.0081 
575 1.719 2.94 4.20 0.01241 
775 2.45 4.14 5.75 0.0165 
975 3.16 5.20 7.25 0.02045 

7 175 0.305 0.596 0.773 0.00234 
375 1.001 1.64 2.293 0.00646 
575 1.774 2.81 3.875 0.01051 
775 2.56 3.94 5.32 0.0138 
975 3.30 4.99 6.745 0.01723 

9 175 0.379 0.387 0.378 - 
375 1.163 1.173 1.17 - 
575 2.065 2.03 2.035 - 
775 2.86 2.88 2.87 - 
975 3.65 3.67 3.65 - 

Model number 1- Load position number I 

Deflection of wall assemblies and rotation of structure 

Table 8.2 



T8.3 

Test Height 
Above Base 

Horizontal deflection of wall 
assemblies mm 

Rotation of 
Structure 

Number 
mm Wall 1 Wall 2 Wall 3 radians 

2 175 0.062 0.551 1.009 0.00474 
375 0.298 1.473 2.68 0.01193 
575 0.563 2.47 4.40 0.0192 
775 0.783 3.45 6.15 0.0268 
975 1.144 4.36 7.67 0.0326 

4 175 0.039 0.603 1.167 0.00564 
375 0.259 1.548 2.92 0.0133 
575 0.512 2.60 4.66 0.0208 
775 0.751 3.55 6.43 0.0284 
975 1.073 4.54 8.12 0.0353 

6 175 -0.045 0.867 1.795 0.0092 
375 0.050 2.213 4.383 0.0217 
575 0.204 3.75 7.10 0.0345 
775 0.407 5.167 9.81 0.0470 
975 0.617 6.537 12.43 0.0591 

8 175 0.0 0.753 1.497 0.00749 
375 0.144 1.999 3.87 0.01863 
575 0.363 3.36 6.33 0.0298 
775 0.539 4.783 8.95 0.0421 
975 0.785 6.05 11.31 0.0526 

10 175 0.1215 0.404 0.676 0.00277 
375 0.386 1.198 2.013 0.00814 
575 0.702 2.057 3.46 0.01378 
775 1.025 2.92 4.86 0.0192 
975 1.334 3.68 6.06 0.0236 

Model number 1- Load position number 2 

Deflection of wall assemblies and rotation of structure 

Table B. 3 



T8.4 

Test Height 
Above Base 

Horizontal deflection of wall 
assemblies mm 

Rotation of 
Structure Number 

mm Wall 1 Wall 2 Wall 3 radians 

11 175 0.245 0.329 0.413 0.00084 
375 0.905 1.079 1.240 0.00168 
575 1.744 1.995 2.24 0.00248 
775 2.65 2.96 3.33 0.00341 
975 3.48 3.96 4.365 0.00441 

13 175 0.225 0.333 0.445 0.00110 
375 0.867 1.103 1.265 0.00199 
575 1.679 2.04 2.25 0.00285 
775 2.52 2.98 3.41 0.00446 
975 3.385 3.92 4.41 0.00513 

15 175 0.145 0.433 0.720 0.00288 
375 0.686 1.387 2.019 0.00667 
575 1.436 2.536 3.64 0.0110 
775 2.319 3.73 5.18 0.0143 
975 3.15 4.94 6.78 0.0182 

17 175 0.178 0.434 0.650 0.00236 
375 0.748 1.344 1.909 0.00582 
575 1.501 2.496 3.46 0.0098 
775 2.364 3.67 5.03 0.0133 
975 3.25 4.88 6.61 O. o168 

19 175 0.282 0.304 0.309 0.00014 
375 0.984 0.996 1.009 0.00013 
575 1.862 1.876 1.904 0.00021 
775 2.79 2.83 2.85 0.00031 
975 3.69 3.72 3.77 0.0004 

Model number 2- Load position number 1 

Deflection of wall assemblies and rotation of structure 

Table 8.4 



T8.5 

Test Height 
Above Base 

Horizontal deflection of wall 
assemblies mm 

Rotation of 
Structure 

Number 
mm Wall 1 Wall 2 Wall 3 radians 

12 175 -0.084 0.375 0.844 0.00464 
375 -0.035 1.187 2.396 0.0122 
575 0.155 2.190 4.16 0.020 
775 0.438 3.115 6.02 0.0279 
975 0.819 4.10 7.75 0.0347 

14 175 -0.124 0.390 0.914 0.00519 
375 0.004 1.212 2.498 0.0125 
575 0.063 2.187 4.28 0.0212 
775 0.328 3.13 6.09 0.0288 
975 0.707 4.13 7.79 0.0354 

16 175 -0.200 0.635 1.454 0.00827 
375 -0.276 1.886 3.85 0.0206 
575 -0.142 3.40 6.72 0.0343 
775 0.241 4.85 9.60 0.0468 
975 0.636 6.39 12.56 0.0596 

18 175 -0.159 0.592 1.276 0.00718 
375 -0.211 1.774 3.70 0.0195 
575 -0.065 3.25 6.44 0.0325 
775 0.272 4.63 9.21 0.0447 
975 0.687 6.12 11.98 0.0565 

20 175 0.026 0.344 0.603 0.00289 
375 0.178 1.062 1.938 0.0088 
575 0.445 1.930 3.43 0.0149 
775 0.798 2.825 5.02 0.0211 
975 1.204 3.77 6.49 0.0265 

Model number 2- Load position number 2 

Deflection of wall assemblies and rotation of structure 

Table 8.5 



Test 
Number 

Strain gauge 
position 

Stresses on horizontal plane 
175 mm above base N/mm2 

Wall 1 Wall 2 Wall 3 

1 A +1.394 +1.523 +1.50 
B +0.257 +0.573 +0.368 
C -0.432 -0.423 -0.228 D -1.537 -1.452 -1.285 

3 A +1.425 +1.515 +1.403 
B +0.315 +0.616 +0.453 
C -0.334 -0.511 -0.315 D -1.505 -1.419 -1.25 

5 A +1.387 +1.78 +1.331 
8 +0.224 +0.759 -0.082 
C -0.226 -0.691 +0.109 
D -1.408 -1.77 -1.25 

7 A +1.351 +1.81 +1.48= 
B +0.242 +0.714 -0.138 C -0.351 -0.544 +0.243 
D -1.48 -1.72 -1.30 

9 A +1.462 +1.407 +1.394 
B +0.386 +0.372 +0.375 
C -0.378 -0.376 -0.395 D -1.439 -1.419 -1.41 

Tensile stresses positive 

Model number 1- Load position number 1 
Stresses in wall assemblies 

Table 8.6 



T8.7 

Test 
N b 

Strain gauge 
iti 

Stresses on horizontal plane 
175mm above base N/mm2 

um er pos on 
Wall 1 Wall 2 Wall 3 

2 A +0.505 +1.50 +2.26 
B +0.010 +0.639 +0.484 
C -0.105 -0.513 -0.423 
D -0.609 -1.42 -2.12 

4 A +0.576 +1.426 +2.15 
8 0 +0.689 +0.599 
C -0.026 -0.656 -0.645 
D -0,557 -1.439 -2.13 

6 A +0.354 +1.89 +2.058 
B -0.149 +0.917 -0.323 
C +0.089 -0.904 +0.206 
D -0.503 -1.918 -2.075 

8 A +0.380 +1.936 +2.32 
B -0.120 +0.840 -0.319 
C -0.057 -0.666 +0.337 
D -0.495 -1.828 -2.145 

10 A +0.479 +1.364 +2.33 
B +0.137 +0.358 +0.616 
C -0.156 -0.384 -0.629 
D -0.492 -1.357 -2.32 

Tensile stresses positive 

Model number 1- Load position number 2 

Stresses in wall assemblies 

Table 8.7 



T8.8 

Test 
Number 

Strain gauge 
position 

Stresses on horizontal plane 
175 mm above base N/mm2 

Wall 1 Wall 2 Wall 3 

11 A +1.49 +2.28 +1.478 
B +0.324 - +0.260 
C -0.262 - -0.274 
D -1.43 -2.215 -1.467 

13 A +1.47 +2.315 +1.395 
B +0.271 - +0.292 
C -0.279 - -0.345 
D -1.48 -2.16 -1.44 

15 A +1.452 +2.74 +1.422 
B +0.279 - -0.195 
C -0.214 - +0.160 
D -1.36 -2.64 -1.438 

17 A +1.363 +2.78 +1.504 
B +0.269 - -0.254 
C -0.274 - +0.233 
D -1.378 -2.63 -1.473 

19 A +1.473 +2.15 +1.475 
B +0.371 - +0.355 
C -0.341 - -0.351 D -1.438 -2.11 -1.484 

Tensile stresses positive 

Model number 2- Load position number 1 

Stresses in wall assemblies 

Table 8.8 



T8.9 

Test 
Number 

Strain gauge 
position 

Stresses on horizontal plane 
175 mm above base N/mm2 

Wall I Wall 2 Wall 3 

12 A +0.462 +2.42 +2.43 
B +0.043 - +0.374 
C +0.004 - -0.451 
D -0.448 -2.30 -2.44 

14 A +0.537 +2.36 +2.33 
8 -0.066 - +0.495 
C +0.075 - -0.551 
0 -0.444 -2.29 -2.36 

16 A +0.364 +3.285 +2.42 
B -0.129 - -0.353 C +0.146 - +0.291 
D -0.368 -3.13 -2.41 

18 A +0.305 +3.18 +2.54 
B -0.065 - -0.521 
C +0.049 - +0.403 
D -0.274 -3.06 -2.57 

20 A +0.435 +2.21 +2.47 
B +0.121 - +0.601 
C -0.158 - -0.591 0 -0.467 -2.085 -2.51 

Tensile stresses positive 

Model number 2- Load position number 2 

Stresses in wall assemblies 

Table 8.9 



Test 

Rotation at base of walls 
radians 

Relative vertical deflection 
at base of walls mm 

umber Experimental Polynomial Point Load Experimental Polynomial Point Load 
Results Solution Solution Results Solution Solution 

1 0.00058 0.00057 0.00051 0.0820 0.0781 0.0737 
2 0.00101 0.00099 0.00087 0.1490 0.1332 0.1257 

3 0.00185 0.00182 0.00137 0.0997 0.0847 0.0782 
4 0.00319 0.00315 0.00238 0.1588 0.1446 0.1335 

5 0.00301 0.00295 0.00217 0.495 0.541 0.492 
6 0.00508 0.00507 0.00374 0.814 0.923 0.839 

7 0.00079 0.00088 0.00077 0.453 0.476 0.448 
8 0.00129 0.00151 0.00133 0.733 0.812 0.764 

11 0.00044 0.00029 0.00024 0.0680 0.0670 0.0630 
12 0.00082 0.00066 0.00054 0.1149 0.1212 0.1146 

13 0.00128 0.00078 0.00051 0.0679 0.0690 0.0641 
14 0.00247 0.00176 0.00114 0.1203 0.1263 0.1170 

15 0.00215 0.00130 0.00083 0.451 0.427 0.392 
16 0.00410 0.00272 0.00172 0.794 0.782 0.716 

17 0.00056 0.00048 0.00039 0.436 0.407 0.382 
18 0.00107 0.00100 0.00081 0.765 0.739 0.694 

Comparison of experimental results and 
theoretical solutions for rotation and deflection 

of foundations of wall assembly number three 

Table 8.10 
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CHAPTER 9 

CONCLUSIONS 

Approximate analytical methods have been presented for the 

solution of structural problems concerning-laterally loaded two- 

and three-dimensional multi-storey shear wall systems, whose structural 

form consists of parallel assemblies of shear walls and box cores. 

The methods may have wider application in more complex systems since 

it is, frequently possible, for analytical purposes to divide them into 

discrete units whose form approximates to that for which the analysis 

was developed. 

Two-dimensional assemblies consisting of a pair of shear walls 

coupled by a regular array of lintel beams or floor slabs have been 

analysed using the widely accepted continuous-connection technique to 

provide explicit solutions suitable to be incorporated into the three- 

dimensional analysis. Single shear walls or isolated box cores have 

been analysed by means of elementary bending theory. Solutions were 

given both for any polynomial load distribution and for any system 

of discrete point loads acting in the plane of the wall assembly. 
. ý2 

Provision was included in both solutions for elastic deformations to 

take place in the foundations of the walls and cores. 

The three-dimensional analysis was achieved by satisfying the 

conditions of equilibrium and compatibility of the structure at a 

discrete number of reference levels throughout the height of the 

structure, whereby the load resisted by each two-dimensional wall 

assembly may be evaluated in either of the forms employed for the two- 

dimensional analysis. These loads may then be used to evaluate the 

stresses and deflections at any point on the constituent wall 

assemblies in the structure by employing the relevant expressions 

from the two-dimensional analysis. The method is general in that 

any load form acting on a structure parallel to the wall assemblies 

may be solved using any suitably spaced system of reference levels. 

Although the analysis has been presented such that the load 

distributed to two-dimensional wall assemblies takes the form of 



118 

either a polynomial distribution or a system of point loads the 

method may be extended to include any load form for which an explicit 

solution for the horizontal deflection of an assembly may be found 

at any level. However, either of the above load forms will yield 

an adequate solution in the majority of cases. The method may also 

be extended to encompass any structural form for which the above 

explicit solution for deflection may be derived. 

The results of the two-dimensional analysis for coupled shear 

wall assemblies have been adapted to produce expressions whereby 

design curves have been drawn for the rapid semi-graphical evaluation 

of stresses and deflections. These design methods were developed 

previously using rigid foundation conditions for the cases of a 

uniform load distribution(8), a triangular load distribution(9) and 

a load distribution in the form of any term in the polynomial series(20). 

In the present thesis the methods have been expanded to include 

elastic foundation conditions and, with reservations, the additional 

load form, namely a point load at any height. 

The design methods do not deal with elastic foundation conditions 

entirely satisfactorily since a complete set of curves is required 

for each combination of foundation flexibilities. The number of 

curves required for a design where foundation conditions are doubtful 

would therefore become prohibitive. The amount of work involved in 

compiling a comprehensive set of curves in such a case would negate 

the advantages of time and labour savings derived from using the 

curves, unless a large number of structures were involved. A practical 

solution to this problem has been put forward in Chapter 3, namely 

that the initial designs to determine the layout and dimensions of a 

structure may be carried out graphically using a standard set of 

curves based on the assumption that walls have rigid foundations. 

Thereafter the structure may be checked for the effects of possible 

foundation deformations using the computer programs. 

The design method put forward in Chapter 3 for the graphical 

evaluation of the stress distribution in a pair of coupled shear 

walls is not suitable where walls are loaded with a system of point 
loads. Since the parameters for the evaluation of the stresses at 

any level are expressed as a percentage of the total moment acting at 
that level the method is unable to take account of the effects of those 
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point loads which act below the level under investigation. The 

method could therefore only deal effectively with levels immediately 

above the base and below the position of the lowest load point. 
There is scope therefore for an alternative method to deal with a 

system of point loads. Such a method might be achieved by expressing 
the parameters either as a proportion of the moment induced at the 

level under consideration by a unit point load at the top or as a 

proportion of the moment at the base caused by the load acting at its 

point of application. 

The application of the analytical methods to obtain numerical 

solutions for three-dimensional multi-storey shear wall structures 

subject to any system of lateral loads has been discussed in Chapter 5. 

In order that the analysis may be applied to solve any structural 

problem successfully it must be ensured that the values which are 

substituted for the various parameters of the analytical expressions 

adequately represent the behaviour of the structure under consideration. 
To this end it is important that the precise nature of all the lateral 

load bearing systems within a structure may be accurately defined. 

Three of the problems which'are most often encountered in the 

determination of the strength of such systems have been stated, 

namely the proportion of the flange which may be considered as 

effective in a wide flanged wall system; the effects of local 

deformations at beam- and slab-to-wall connections; and the width 

of a floor slab which is effective in the coupling action between 

shear walls. The latter case has been illustrated by an example in 

section 6.2 whereby the importance of accurately determining the true 

coupling effects of floor slabs has been shown. There is scope for further 

investigation into these parameters particularly in the case of the 

coupling effect of floor slabs since previously published investi- 

gations on the subject are not in agreement. 

The methods of analysis may be used both for preliminary design 

calculations and for more detailed calculations at a later stage. 
Depending on the degree of accuracy required, any number of reference 
levels may be used, and if only a limited number of levels are 
employed the computation may be performed using a desk calculator. 
Of the two the polynomial solution is the more suitable for use with 
a desk calculator since reliable results may be obtained using very 
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few reference levels, thus keeping the amount of computation to a 

minimum. Even where a large number of reference levels are used the 

calculations required to find a solution may be performed in a short 

time uping a small capacity computer. In this context the point 

load solution is more suitable since the results obtained by its use 

converge towards a stable value as more reference levels are employed, 

whereas the polynomial solution becomes unstable when more than seven 

or eight levels are used. 

The reference levels may be positioned at any suitable levels to 

take account of variations in the lateral load on the structure. 

Irrespective of the positions of the reference levels used, -the forces, 

deflections, etc. on the two-dimensional wall assemblies may be 

evaluated at any desired level. 

The numerical examples of sections 6.4 and 6.5 have been presented 

to illustrate various effects of elastic foundations on multi-storey 

shear wall structures. Within a two-dimensional coupled shear wall 

assembly it was found that where any foundation system became more 

flexible to one mode of deformation, i. e. rotation or vertical 

movement, the proportions of the applied moment carried by bending 

moments and direct axial forces in the shear walls changed to compensate. 

In three-dimensional structures in which elastic foundations are 

present there is a general redistribution of lateral load form the 

more flexible foundations to other more securely founded systems. In 

a case of extreme flexibility of a foundation virtually no load may 

be resisted by that foundation. Even in this latter case, however, 

the majority of the redistribution caused by the foundation conditions 

takes place within the lowest few storeys and at higher levels the 

distribution of the load is only slightly affected by the foundation 

conditions. 

The results of the experimental investigation followed a 

consistent pattern which was generally in reasonable agreement with 

the analytical solutions. The experimental deflections of the 

models were typically in excess of the analytical solutions. While 

the stress distribution measured on the models was not-in agreement 

with'the analytical solutions at the inner edges of coupled walls, 
the maximum stresses, which occurred at the outer edges, were in close 

agreement throughout. 
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Since the models were specifically designed to test the validity 

of the assumptions made in the analysis the form adopted for the 

models was necessarily a compromise between theory and reality. It 

cannot therefore be claimed that the experimental investigation 

enables any direct conclusions to be drawn about real structures. 

However it is considered that the methods may be used with confidence 

for the rapid analysis of the regular structures of the type 

considered, particularly in the early stages of design. Because of 

their speed in use, either with a desk calculator or a small computer, 

the methods lend themselves to an iterative approach to design, 

enabling more economical schemes to be decided upon before recourse 

is made to a more complex, and more costly analysis by, for example, 

finite element techniques. Bearing in mind the degree of accuracy to 

which the expected wind forces may be predicted, it may be the case 

that the continuous connection technique, carefully applied, could 

yield results of sufficient accuracy to enable final designs to be 

prepared. If these analytical methods were suitable for use in 

this context it would represent considerable cost savings in such 

projects. There is scope therefore for comparison studies between 

the various methods of analysis available to determine, on the bases 

of accuracy and economy, the full potential of the continuous 

connection technique as a design aid. 

The major potential of the continuous connection technique lies 

in the investigation of the behaviour of two- and three-dimensional 

shear wall systems particularly where interaction with deformable 

foundations is involved. With the aid of the computer wide ranging 

parameter studies may be undertaken whereby qualitative assessments 

of shear wall behaviour may be made without the use of experimental 

investigation. Practical tests, which are both time consuming and 

expensive, particularly when deformable foundations are involved may 

then be reserved to check the validity of the analytical findings for 

a small number of critical configurations. 

The application of the methods to the design of realistic 

structures is limited by the fact that the analysis was developed on 

the assumption of regular systems throughout the height of the 

structure. With difficulty a very limited number of changes in 

structural configuration may be allowed for in the analysis but the 

resultant expressions would be extremely cumbersome. The 
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analytical methods, therefore, may only be used with success for 

regular structural systems or for those which may be assumed regular 

for analytical purposes. 
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APPENDIX 1 

DESIGN CHARTS 

Design charts, prepared using the expressions developed in 

Chapter 3, are presented in figures A. 1 to A. 51 inclusive for ranges 

of both polynomial and point load cases. The charts, for the semi- 

graphical evaluation of wall stresses, forces in connecting beams 

and maximum deflection, are given for the case in which the foundations 

of both walls of the coupled wall assembly are rigidly built in. For 

polynomial loads a separate chart is presented for each exponent from 

0 to 6 inclusive. In the case of point loads charts are given to 

cover single point loads acting at ten levels evenly spaced throughout 

the height of the walls. 

The charts are arranged as follows: - 

Figure 

A. 1 to A.? Variation of wall bending stress factors, K1 and K2 

- Polynomial load (1 - 7) 

A. 8 to A. 17 Variation of wall bending stress factors, K1 and K2 

- Point load (1 - 10) 

A. 18 to A. 24 Variation of connecting medium shear stress factor, K3 

- Polynomial load (1 - 7) 

A. 25 to A. 34 Variation of connecting medium shear stress factor, K3 

- Point load (1 - 10) 

A. 35 to A. 41 Variation of maximum deflection factor, K4 

- Polynomial load (1 - 7) 

A. 42 to A. 51 Variation of maximum deflection factor, K4 

- Point load (1 - 10) 



A. 1 

0 LO 
ý 

uoiJOo JanajQuoO lonpinipui JO a6o}uaOJad 
0 
0 0 

ý 0 

lý 

o. 
0 
ýý 

a° 
n 

Q.. 

v 
a 
0 J 

ý 
,O f 

A 
ý 

co to ý. N. ý. o 
0ÖO 00 O, 

X 

ý. ý, 

C3 00 
LO 0 Ln 
NN ý- 

0 
r 

0 LO 

N 

uoi}oD JanaliIuDO a}isodwoo jo a6DluaDJad 
Z> 

%-j N 

LO 
a- 

0 

LC) 

0 

r- 

v 
0 
0 

ö 
E 
0 
c 
a 
0 CL 

I 

N 
Y. 

V 
C 
0 

ý Y 

a 
L- 0 
u 
d 
ý 

aý 
ý ... In 

rn 
c 
v 
c 
v 
ý 

ö 
3 

ý 0 

0 
::. 
0 
` 
0 

> 

F 

4 

aý 
ý 
rn 
iTL 



A. 2 

C) Lr) 

uoIJOD JanajQuoD )Dnpinipul Jo a6DluaDJad 
C3 
C) .,, r- u" 

Ia 
0 LO 

C) 
0 
ý^ L) 

N 

X 
ar 
q 

ß.. 

O 
0 

0l ý lD lfý ýO 
0- pOO ýX Ö 

' 

C) N 
N 

C) 
u°) 

ÖO 
lf C) ) 

N 

0 

r- 

l>1 

7 

>1 uoiJoo JanajijuDO a}isodwoo jo a6o4uaoJad ` 

Lfl 

r- 

0 
ý 

LO 

ä 

0 
Q 

N 

v 
O 
0 

ö 
E 
0 
c 
2, 
0 CL 

I 

N 
Y 

C 
C7 ý 

r- Y 

N 
Q 

U) 
ý 0 
,. U 
d 

4 
N 
N 
41 

U) 

1) 
L. 
ý 
rn 
LL 

rn 
c 
ti 
c 
a 
jo 

ö 
ý 

N- 

0 

C 
O 

O 
` 
O 

ý 

I 



A. 3 

uoi;: )D Janali}uD3 
C3 
0 
ý 

Cl Lr) 

lonpinipui 10 a6o}ua3Jad 

CD 0 ý 

l 
N 

O 
O 
ýý-, 

N 
X 

11 
- 

d 

O 
0 

CO NO 
öox 

ýýý 

.N 

LO 

0 
ý 

*F-; 

'O 

0 
0 

ö 
E 
0 
ý 

ö 
a 

I 

N 
Y 

v 
C 
v 

. - Y ch 
Q 

Ul N 

OD 

U ý1 

O 
iz 

. ý.. 

N 

a 
ý 
N 

rn 
c 
T) 
c 
ai Lin 0 

0 
ý 

0 
ý C 

O 

ý 
L 
ý 

0 OOOOO 
N l1 O U) 

uoiJoo Janali; uD: ) alisoduto: ) jo a6oluao-lad 
ZN 

> 



A. 4 

uoi}OD Janali}uDO lDnpinipui 10 a6D}uaDJad 
O 

lf) 
O 

0 0 LS-) 
CD O 

co 
x 
ä 

11 

CL 

0 
0 

OD c0 
Ö ºt Ö 

N 
O 

O 

"x 

C) 000 
o ,no U) 
N ý" r 

LN 

7 

N 

v 

v 
0 
0 

LO 

O 
r 

ö 
E 
0 
ý 
ö 

I 

N 
Y 

v 
C 
d 

I- 

Yý 
4 

a, N I- 
L_ ý 
o rn 
. ý. u -tLL. 0 

N 
N 
N 
ý 

in 
rn 
C 
'0 
C 
N 

ý Ln 

ö 
3 

Ö 
w 0 
C 
O 

: _. 
O 

.L 
O 

7 

0 
0 

uoi}oD Janaj!; uD: ) apsodwoa jo a6DluaDjad `'N 



A. 5 

uoi}OD Janali; uDO iDnpinipui ;o )6D; uaDJad 
0 
0 0 0 LO 

C) 
ý 

Lý 

0 0 ý-ý.. 

v x 

a. r 

u 

v 
0 
0 

ý 
0 
n 

ýp 
O 

J 
0 

O 
ýý 
X 

8 LOf) 
ö 

tý 
N ý- ý 

uoiJoD JanaJiJuDO a; isodwoo jo a6o4uaorad 

v 
N 

LO 

ý 

0 
ý 

LO 

Ö 

0 
Q 

Zý 

LI) 

v 
0 
0 

Z 
E 
0 
c 
ý 
0 CL 

N 
X 

c 
0 

ý- Y 

a 
0 
ý U 
C3 

ý 

(A ý 

w 
rn 
c 

v 
c 
a, 
.0 

ä 
ý 

ý 0 

G 
O 

ý 
O 

C1 
> 

Lr) 

Q 

°J 
L. ý 
rn 
Ii- 



A. 6 

uoI}OD Janali}uD: ) iDnpinipui JO a6D}uaDJad 
Op 

0 C) 
LO 

0 
Cl 

- v 
N 

in 
x 

a`n 

n 

v 

0 J 

OOO ýc 

C) u°ý 
ö° 

--- LO ýý IN 
UOI; OD Janali)uDO a}isodwoo 10 a6D}uaoJad 

Z 

lN 

U') 

Cl 

Lr) 

0 
C) 

to 

v 
0 
0 

ö 
ý 
0 
c 
ý 
0 
CL 

I 

N 
Y 

v 
c 
0 

ý Y 

ý L. 

0 
. 4- u d 
V... 

Ul 
N 
aa ý 

w 
U) 

rn 
C 
v 
C 
aý 
a 

0 
3 

ý 0 

C 
O 

. a. 
ý 
` 

v 

co 
4 

GJ 
L 
ý 
rn 
IL 



A. 7 

uoi3oD Janali; uDO ]DnpinipuI 10 a6Djua3Jad 
O 
O 

C) 
U7 0 0 In 

lX 

C) 
0 
ý_ 

X 

aco 

n 
4. 

v 
a 
0 J 

CD t0 
Ö O O 

"X 

0 
0 
N 

000 
LO 0 u) 

CJ 
N 

LI) 

ý 

0 
ý 

U') 

0 
0 

ZSi .- r- uoiJOo JanaliIuoo a; isodwoo jo a6n}uaoJad 

iz 
V 
0 
0 

d 
E 
0 
c 
ý 
0 
CL 

I 
N 

Y 

T) 
c 

ýn x" 
4 

tn 
L- 0 
.... u 
0 

ý 7 
rn 
iz 

N 
ý 
a 
ý 
. ý. ý 

rn 
c 
T) c 
a, 
ý 

a 
3" 

- 0 

C 
O 

i-. 
O 
` 
O 

> 



Ä. 8 

uoi; 7D Janaji; UDO IDnpinipui 

00 C) 00 N f'ý) ýt 
O 
LO ý 

10 a6oluao-lad L >1 
OOOO 
ta n Co O 

N 

O 
O 

O 

11 

X 

> 

U 

en 
ý 
O 

U 

tn 
N 
d) 
ý 

. N . a- 

om _s cn. 
O 0 C. A. 

O tt ýO OO G. 

tt x 
X ýd 

"O 
O 
j 

ýý, 

C) OO) o°o t°° 
ý0 

ý 

v 
0 
0 

LO 
-- c 
0 CL 

I 

N 
Y 

v 
C 
0 

r- Y 
ao 

C) ý r- L 

Q 

.ýý U '- 
oý 

v... O1 

LL. 

ý 
ý 
v 

a 

U) 

ö 

O 
00000 
.t (V) N 

rn 
C v 
C 
a) 
n 

Ö 

3 

C 
O 

y: 
- 

O 

O 
> 

uoi; oa Janal! }uD: ) alisodwoo jo a6o; uaWad Zm 



A. 9 

uoi}oD Janal! luDz lonpinipui ;o a6DluaoJad >{ 

0 C3 
ý M 

N0 000009 
ý -4 LO 

x 

> 

ö 

a 
ý. 0 
U 
O 

N 
N 
N 
ý 

. a.. 
N 

\C7 

V 

. 3. + 

CP. 
p. p ýN 
p7 . d/ 

a G q _ 

. ý 

ý QC: 
) CD 
1 Co 

Oý 
t0 
CD C: ) 

lOONQ 

uo!; 7D ranaIiluDD a}isodwoD 10 a6D}uaDJad ZN 

Q) v n co 
ýý N 

N 

'0 
v 
0 

LO 

ý 

0 
ý 

4-. 

c 
0 ý 

8 

YN 

C 
0 

rn 
Y'- Q 

N I- 0 
ý U 
d 

. r.. 

N 
in a, 
in 

rn 
c 

c 
v LO .0 

ö 

0 
0 

0 
3 

Y- 

0 

C 
O 

: ý. 
O 

U 
ý 

a, 
ý D 
rn 
E 



A . 10 

uoi}oo janaii; uno Ionpinipui jo a6oluaojäd lA 

0 
ý 0 NOOO0 C) 

0 
ý 

OOO 
n co 01 

N 
Ö 

u 
X 

N 
> 

d 

ý 
ý- 
O 

U 

..,. 

ý 
N 
v 
ý 

OýO 

00 

C) 0 

C) N 

LO 

0 
r- 

0 
ä 
CDO 

a°o° tý 0Ü°(ý `) 
°°° 

uoiJoo Janal! }uD: ) apsodwoo 10 a6o; ua3jad ZA 

C') 

v 
0 
0 

c 
0 
CL 

I 
N 

X 

v 
C a 

'ý O X . - 
Q 

`N 
o I- 

'N ý U rn 
°ý 

tn 
ý 
a 

N 

rn 
c 
v 
c 
4) 

J3 

ID 
3 

y- 

0 

c 
0 
ý 

` 
0 > 



All 

C) 
N 0 

uol}OD . tanall}uo: ) lonplnlput JO a6oluaaJad 

0 CD C) tV 
C) 
Cl) 0 

-4 
o0 tf) co 

0 
ý 

C) 
CC) 

C) 
C: )- 

v 
N 

O 

x 

äý 
Ul 

... 0 

ý ö 
.. V U 

O' O 
ý u 

C 
X N 

N 
N 

ý 
O 
O 

J 

ý" 

'9 . 

ý" 

0 
N 0 

ý r- 
000000000 0 rn Co t- co Ln -4 (1) Ný 

uoiloD Jana)iluDz aiisodwoo JO a6o}uaoJad Z>I 

lý 

LO 

0 
.- 

Li) 

ö 

0 

-4 

v 
0 
0 

-4- c 
ý 

I 

N 
Y 

v 
c 
0 

rý ýý 
Q 

Om 
.... U LL 
C3 

..... 

V1 
N 
ý 
I" 

-a 
In 

rn 
c 

c 

d 
3 

N- 0 

C 
O 

O 
L 
0 

> 



A. 12 

uoi; Oo JanaiiIuoo Ionpinipui 10 a6olua: ). Jad 
O 
U) 

I 0 C) Lr) 

tý 

0 
0 
ýý 

C5 
n 
x 

> 
ý 

ö 

ý 
0 
U 
O 

N 
N 
C/ 
ý 

N 

ý 
O 

G 

to 
ý O 

ý°n 
ö 

L°n 

v 
N 

I!, 

ý 

CD 
r- 

ý 

0 C3 

Lr) 

v 
0 
0 

c 
0 CL 

I 

N 
Y 

M 
c 
0 

tV 

_ý e- 
Y 

tn 
L- 0 
U 
a 

.... 

4 
aJ 
L 
ý (71 

ý 

ý 
v 
` 
in 

rn 
C 

v 
C 
C/ 
ý 

O 
3 

ý 0 

C 
0 

7- 

cl .` 
iJ 
> 

uol; Oo Janal! Iuno allsodwoo 10 a6o; uaoJad Z>1 



A. 13 

uoi}OD Janali; UD7 lonp! nipui 10 a6DjuaOJad 

LO Olp 

ý 
.o 

n 
x 

� ä) 
> a) 

ö 

ý O 
U 
O 

w 

N 
N 
a) 

ý 

to 

ý 

)f 

XC 

ý 

` 

U 

O 
ý n 

Ö Ali 

c 

O 

0. 

N 

ý to 

v 
0 
0 

to 

D r 

c 
0 
0_ 

I 
N 

Y 

v' 
c 
0 

M 
ýý Y 

N 
L 
O 

++ 
U 
O 

.... 

w 
in 
a, 

V) 

cm 
v 
c (L) 

Ln 0 

0 
CD 000 ln V Lf7 
ý-- ý 7 

O 
ý 

w 0 

C 
O 

ý 

v 
` 
d 
> 

Q 

a1 L- 

ý 
rn 
U- 

uoiJOO Janaj!; uDO alisodwoo jo a6o}uaOJad `A 



A. 14 

uoiJaD JanaliluDD IDnpinipui 10 a6D; uaDJad 
C) 0 C3 ,, ý us 

II 0 
0 
LO 

IN 

CQ 
O 
. -- t-% 

(D 
ö 
u 

> 

ö 

tn L- 0 
.. U 
O 

N 

ul 
L 

.. ý 
N 

II 

xC 
CC? 

0 0 
rn 
ö 

OOOOO 
O lf) O lf) 
N 

uojjoD Janaji; uDO a; isodwoo 40 ä6D}uaojad Z>1 

N 

iz 

v 
d 
0 

0 IL 

I 

0 
ý- 

N 
X 

v 
c 
0 

r- Y 

Ln L. 

0 
u 
0 
w 
N 
U) 
0) 
6. 

N 

im 
c 
: Ei 
c 
a Lr) 

.0 

O 
ý 

M- 

n 

Ö C 
O 

: -. 
O 
` 
0 ý 

0 

ý 
ý Q 

C) 
ý ý 
rn 
Ü. 



A. 15 

UOI;: )D . tanaliluo3 jonpinipui 10 a6D)ua: )Jad 
C) 0 oý 0 C) Ljr) 

lý 

0 
0 

ý 
ö 

x 

ý 
> ý 

0 
N 

O 
ü 
0 

a 
ý 
a 
ý ý V) 

4 

a 
kc 

ý 

`o rn Ö 
D 
Q 

C) 000 0 Ln 0 U) Ný ý ý 

v 
N 

LO 

0 
ý 

Ö 

0 

cv 

T] 
0 
0 

ý c 
0 
CL 

I 

ý 
Y 

v 
c 
Cl 

N 

xä 

(n I- 

0 
.. U 
0 

w 

a) I-. 

ý 
rn 
LL 

tn 
VI 
a 
` 
in 

cm 
c 

c 

.a 

d 3 

w 0 

G 
O 

ý 
O 
` 
ý 

> 

uoi}ao Janal!; uoo a)isodwoo jo a6oIuaaJad `X 



A. 16 

uoi; oo . lanaliIuD3 IDnpinipui 10 a6ojuaoJad 
O 
O 
"-- 

C) 
LO 0 0 LO 

C) 
C3, 

co 

C5 
It 
x 

äý 
> 

. º. 

N 
ý 
O 

r.. 
U 
v 

.... 

N 
N 
41 

.,.. ý 

O) 

O 

n 
xc o 

ý 

ý 

ý 
0 J 

C) 
0 
N 

000 
in 0 LO 
ýý 

IA 

N 

O 
ý 

N 

Ö 

0 0 

rn 

v 
U 
0 

.. c 
ö 
a 

I 

N 
Y 

0 
C 
0 
. - Y 

in 
L- 0 
,.. v 

0 

iß vi °J 
ý ... 

rn 
c 
v 
c 
aý 
n 

0 ý 

ý 0 
C 
O 

. º+ 
d 

O 
ý 

to 

v L 

ý 
rn 
lL 

uoIJOD Janaj!; uDO a}isodwoO jo a6D1uaOJad Zi1 



A. 17 

uoi; oD Jan31! }uD3 lonpinipui jo a6Dlua3Jad >{ 
00 
,n00 LO o 

Q) 
Ö 

It 
x 

n, 
> 
ný 

., r 0 
V1 
L- 0 
ü 
0 
ý 

C" uº 
N a 

u ý ý c ý 
x 

> 
a 

0 
0 J 

ýýl) 
ö 

lOt) 

N 

ö 
ý 

v d 
0 

.. C 
0 
0 L 

tr) 

I 

N 
Y 

V 
C 
0 

rt- 
Id 

0 ý- N 
I- 
0 
ý U 
0 
w 

aý 
ý ý Ch E 

tA 

ý ... ý 

rn 
c 

c 
aý 

Ln ýD 

a ý 

Y- 

0 

C 
O 

O 
? 

0 CD 

uoi; oD Janali; uDO a; isodwoD ;o a6D; uaoJad ZN 



A. 18 

Top 1.0 

C, 
> 
C, 

J 

Base 

0.9 

0.8 

0.7 

0.6 

x 

0.5 

0.4 

0.3 

0.2 

K3 0.2 Oh 0.6 0.8 
Variation of connecting medium shear stress factor 

. 
K3 

- Polynomial load (1) 

41 Load P= p0 

II= 

I" 
ý\ iI ý 

I 
ý" ýý, 

I 

! ý \ : \ 
x 

aC 1 /2 
/// 

0 j15 20 

/ .f 
oop 

. ý" .ý 

1.0 

Figure A. 18 



A. 19 

-Top 1.0 

0.9 

. 0.8 

0.7 

0.6 

x 

ý 
0.5 

a, > a, 
J 

0.4 

0.3 

0.2 

0.1 

Base 0 

! 
' 

.. ý"ý ; 

Load p p1 x 

" 

`. 

I \ýý 

ýý I 
ý \ 

I \ 

. " 
/ I 

ý 
// 

2 /3 4 /5 /75//10 i 

/ 
//" / 

. -" .ý., 
' 

"/' 
ý ''20 

ý" 

i/ 

. . -. 
"ý''ý ý,, ý. - 

ý ý. - 

K3 0.1 0.2 0.3 0.4 0.5 

Variation of connecting medium shear stress factor. K3 

- Polynomial load (2) 

Figure A. 19 



A. 20 

Top 1.0 

0.9 

0.8 

0.7 

0.6 

x 

ä 0.5 
> a 

J" 

0.4 

0.3 

0.2 

0.1 

gase 0 

Load P =p x2 2 
. .ýý 

" 
\ . . 

1 ` 
ý ý. 

' \ `"\\ 
\\ 

:. I 
\ 'ý. \ 

I 
ý `ý 

`" 
. I \ ý 

. 
ýý 

" 
' 

i 
` 

1 ý \ ý" I 
1 , ; ý 

1 ý 

/ 

I 

15 

ý ; ý «. ý1 /2 34 5 
,, " 

7.5 
"ý 

20 
i / . ý 

. 01 ý 

" .ý ýý 
ý"- / 

/- 
_ýý. -"ý' - 

K3 0.1 0.2 0.3 

Variation of connecting medium shear stress factor . K3 
Polynomial load (3) 

Figure A. 20 



A. 21 

Top 1.0 

0.9 

. 0.8 

0.7 

0.6 

x 

o. s 
> 

J 

0.4 

0.3 

0.2 

0.1 

Base 0 

i 

. Load p =p x3 

1" 
\ 

\ý 

ý 1 
I ý ý 

1 ! 

=1 3 
/4/5 

75 / 
*". / ý oo, "Z 15 

ýý fý ý r/ ý "'20 
ý/ ý" ý 

ý` iý _ 
ý 

0 K3 0.1 0.2 

Variation of connecting medium shear stress factor 

- Polynomial load (4) 
K3 

Figure A. 21 



A. 22 

Top 1.0 

0.9 

- 0.8 

0.7 

0.6 

X 

0.5 
> 

J 

0.4 

0.3 

02 

0.1 

Base 0 

1 I 

ý" . 
. :\f 

Load P=p4x4 

I'\ 
ý` " ý 

I ` \\ \ 

. 
I 
I 

\ 
ý 

i V º : ;, 

1 
1 

ý I1 

o[- 1 /ý 23 45 
/ 

ý / 

. 01 

1 % 

10 . 
0 

/. 

ý" 
lol'15 20 

/ý 
/' "=-' 

"ýý_% 

K3 0.1 0.2 

Variation of connecting medium shear stress factor 

- Polynomial load (5) 

Figure A. 22 



A. 23 

Top 1.0 

0.9 

0.8 

0.7 

0.6 

X 

Z 0.5 
> v 

J 

0.4 

0.3 

0.2 

0.1 

Base 0 

l\ ` Load P= p5x5 

I 

I 
\`\ 

ý 
"ý` 

I Iý 

ý " I 
II 

i 
. 

ý I 

/ a=1 
" 

23 45 / 

/ 

ý 
ý /// 

i 
/V 

i i 10 f 

15 
ýjý ý" ýý"' 

/"ý 20 

ý ý , " 

0 K3 0.1 0.2 
Variation of connecting medium shear stress factor 

- Polynomial load (61 
K3 

Figure A. 23 



A. 24 

Top 1.0 

0.9 

0.8 

0.7 

0.6 

X 

N 

> N 
J 

0.5 

0.4 

0.3 

0.2 

0.1 

Base 0 

1' 
1" ýI 

: \\ "ý º 

d 6 i Loa p= ps x 

\ 

I ºý 

º 

ýº l ýý i I :. 

, 
C40 , 

2 
3 5ý 

/ 
/ 

// º 

/ 
/ ý, 7 

ýý 
"% 
. ý"ý ý 

10 

. 

, 
i" 

// 

/ 
ýý"ý"" "' 20 

/ýý ý 

K3 0.1 0.2 

Variation of connecting medium shear stress factor , K3 

- Polynomial load (7) 

Figure A. 24 



A. 25 

Top 1.0 

0.9 

o. s 

0.7 

0.6 

x 
0.5 

> d 
J 

0.4 

0.3 

0.2 

0.1 

Base 0 

I Lo ad level x = 0.1 
n 

ý 

t 

4ý 
ý 

. 
ý . 

º ýý " 

º 'ý 
ý ý 

. 

ia=2 5 . 110 15 ý20 

- " - 
I 

!' 
r==- ý 

_-- 

0 K 0.1 
3 

0.2 0.3 0.4 0.5 

Variation of connecting medium shear stress factor , K3 

- Point load (11 

Figure A. 25 



A. 26 

Top 1.0 

0.9 

0.8 

0.7 

0.6 

x 

w > N 

.. J 

0.5 

0.4 

0.3 

02 

0.1 

Base 0 

Load l evel x = 0.2 
n 

i 
- . 

ý . 
t 

\ 
\ I 

I 
ý` 

ý ýý 
. 

110 )15 
120 

1 ý 

1 f ' 
ý'' ýý. "' 

ý °,.. 
ý -"ý 

ý 
_- 

K3 0.2. " 0.4 0.6 D. 8 1.0 

Variation of connecting medium shear stress factor . K3 

- Point load (2) 

Figure A. 26 



A. 27 

Top 1.0 

OD 

0.8 

0.7 

0.6 

X 

-Z; 0.5 
> C) 

J 

0.4 

0.3 

0.2 

o. i 

Base 0 

ý. ý 

Load level x = 0.3 
n 

I! 
_ 

: 1. 

ý . 

l1 - 

ý ", . "ý , 1 1 "ý 
º 

oc 
ý2 

I 
45 

; 
7.5 

i 

J10 
, 

J1 )20 > 

ý" -' 

"' "'' /.. 
ý . 

., 
K0.2 

3 
0.4 0.6 o. s 1.0 

Variation of connecting medium shear stress factor 

- Point toad (3) 
K3 

Figure A. 27 



A, 28 

Top 1.0 

0.9 

" 0.8 

0.7 

0.6 

x 

0.5 

ý 

0.4 

0.3 

0.2 

0.1 

Base 0 

Load le vel xn = 0.4 

. 

ý . 

ý ý. 

ý.. 

ý I ý "ý ýý ý'ý 
20 

°C=1 12 
.3 

45 75 10 5 

r I i 
: 

/ " ý' 
ý 

" ý . ý/ 
"ýýý' 

/ 
ý"- //ý 

iý" ý 
f 

/ _ 
K3 0.2 0.4 0.6 o. a 1.0 

Variation of connecting medium shear stress factor 
Point load (4) 

K3 

Figure A. 28 



A. 29 

Top 1.0 

0.9 

0.8 

0.7 

0.6 

x 
0.5 ä, 

> CJ 
J 

0.4 

0.3 

0.2 

0.1 

Base 0 

ý 

iý 

.I II 

Load le vel xn = 0.5 

1! ' 
1 ' 

1 
º ý 

ý" I 

"ý . 
ý ". 

ý\ I 
\\ 

oc 
/2 

"3 4 5 75! J 

" 15 1 
/ J-10 ý 20 

/ ' ýý " / ` / / 

/ý r-- 
..; ý. ". ,j 

0 K3 0.2 0.4. 0.6 0.8 1.0 

Variation of connecting medium shear stress factor 

- Point toad (5) 
K3 

Figure A. 29 



A. 30 

Top 1.0 

0.9 

0.8 

0.7 

0.6 

X 

Z 0.5 
> aý J 

0.4 

0.3 

0.2 

0.1 

Base 

º" ý ý .. 
Load l evel xn = 0.6 

' ý, .` º 

f '. 

.. 
º ,. ', 

\ ý ,. ý` ̀. .' . º \ ` 
. ̀ 

. . 
"` 

º , ý 
ý, 

"`ý 

/ ; 2 34 iý 
/ 

, 

ý 

. 
. 

j 

, ý" 
ý. , ý- 

." 
"ý.. ý =: _ - 

K3 0.2 0.4 0.6 0.8 1A 

Variation of connecting medium shear stress factor 
, 

K3 

- Point load (6) 

Figure A. 30 



A, 31 

Top 1.0 

0.9 

0.8 

0.7 

x 

ä, 
> 
a, 
J 

0.6 

0.5 

Q4 

0.3 

0.2 

0.1 

Base 0 

º 

ý I" 
Load l evel xn = 0.7 

!ý I 

\ý 

ý "ýý 

, 
º 
º 

\7N 

N, ý` 
. " ý ' ` 

ý ý 

1 ý ý , \ º 

ý 

º 1. 

/ 
ý 

II 

1 

/o=1 /2 /3 4 5 / 
75/ i 

10 '. 
" 

1 
/ 

10 
10 

ý ý. 

ý 
/ 20 

ý 
ý/ . ý- 

"ý/ý . 
/ý... 

ýý- 
_ý-., - 

o. 0.2 0.4 0.6 0.8 1.0 

Variation of connecting medium shear stress factor 
, K3 

- Point load (7) 

Figure A. 31 



A. 32 

Top 1.0 

0.9 

0.8 

0.7 

0.6 

x 

0.5 
> ý 

J 

0.4 

0.3 

0.2 

0.1 

I 
Base 0 

ý f 
L oad level x=0.8 n ý", ". ý \ 

º 
, 

,., ý, `\ . 
` º ` 

I 
I 

\ ' \ý 
ý" \` 

\ 
i ý. 

t 
I 

1 

/ 
I I 

i 
. 

º I 

/o. 
= 1 /2 /3 45 

. 
7.5, 

/ 
.j 

" /)71 

ý ý 
ý 

/ZOO 
". ýý" ý" ý ý. 

20 

0 K3 0.2 0.4 " 0.6 0.8 1.0 

Variation of connecting medium shear stress factor 

- Point load (8) 
K3 

Figure A. 32 



A. 33 

Top 1.0 

0.9 

0.6 

0.7 

0.6 

x 

0.5 
> a, J 

0.4 

0.3 

0.2 

0.1 

Base 0 

ýý ` 
. f 

f 
ý ý 

ll 

Load I 
level 

` xn= 0.9 " ' \ 

ý\\ 

º I 

1 
1 

"1 

ý I 

/ 

oC= 12 /3 4 /5 
% 

/ 

i 75 

10 
/ 

i ." i' 15 / , 

/ 
// 

20 

// 
ý" 

,0 K3 02 0.4 0.6 0.8 1.0 

Variation of connecting medium shear stress factor . K3 

- Point load (9) 

Figure A. 33 



A. 34 

Top t. 0 

0.9 

0.8 

0.7 

Qb 

0.5 

d J 

0.4 

0.3 

0.2 

0.1 

Load 
level 
xn=10 

ý 1 
Il ý 

l 

a-, I i � 
,2 

/ 

/3 

4 

/_ ,,. ' 
. 

7.5 
i 

' 

,/ / ý" 
20 

ý// ý ý, 

Base 0 
K3 0.2 0.4 0.6 0.8 

Variation of connecting medium shear stress factor 

- Point load (10) 

1.0 

. K3 

Figure A. 34 



A, 35 

:fo Co 
N s- 

cý 
ý r- 

N 0" 
ý 

QO 

[L 

'a 
a 0 

J 

co 

C) 0ý. 

JO}ODJ 

U3 
0 
6 

uoi; oaljap 

v 0 
0 

UJnWIXDw 

fV 
O 
O 

7N 

v 
N 

ll) 

O 
.- 

0 

0 

.= 

M 
C) 
0 

Z 

r- 01 
c 
21 
ö 
tL 

I 
tr) 

Y ci 

ý 0 
u 
d 
ý 

Q 

ý 
Q1 

ij-_ 

c 
0 
::. 
cý 
aý 

aý 
ID 

E 
ý 
_E X 
U 
E 

Y- 

0 
C 
O 

::. 
O 
ý 
O 

> 



A. 36 

o co cq 111 N= r- 
ý ý 

N a 
ý_ 0 

N 

x 
CL 

it 
a 

v 
ti 

.o -J 

. 

. -"ý 

CO (D -t N OOOOO 

O6ÖOÖ 

J043DI uoi}: )aljap wnwixo4I 
7N 

O 
ý 

Lr) 

Ö 

0 
Cl 

04 

v 
0 
0 

ö 
E 
0 
c 
2. 
0 
CL 

I 

Y12 

co 
L ;h 
oQ 
... U 
2 

ei 
ý 

C CJ) 

. "- 

.: _. 

v 

E 
ý E 
X 
O 
E 

w 0 

c 
0 
::. 
0 

0 



A. 37 

co 
V-: 

(C) 1ý 
ý 

N 
ý 

i 
000 
oÖÖ 

ýo}ýoý 

('M N 
OOO 
OOO 

uoiloallap wnwixow 
7ý 

ý 

0 

Q 

crM 

ß 
0 
0 

ö 
E 
0 
c 
ý 
0 
CL 

I 

v Y 

L- 

0 
,.. ý C3 

C 

w 
U 

a) 

.,.. 
a) 
.o 

E 
ý 
E_ 
X 
a 
E 

y- 

0 

C 
O 

: i.. 
0 
L 
0 
> 

N. 
M 
4 

aý L. 

ý 
rn 
! 1. 



A. 38 

o ca 
(V 

co 
.- 

-4 ý 
N 
ý 0 ý_ 

M 
X 

ä 

n . 
n. 

v 
0 
0 J 

" " 

ýw s'ýý 

0N -4 000 öÖÖ 

. io}ooj 

M 
O 
O 

uoi; oa] )ap 

a-- 
OO 
ÖO 

wnwixow 7N 

v 
N 

-4 

v 
0 
0 

ln 
. 
°_ 

O 
"-- 

Lr) 

2S 

0 

0 

E 
oc 
ý 
0 
CL 

I 

ý co 
Y Ch 

L 
O Ql 
Vý 

V.. Qi 

C 
0 

. r. u 
aý 

v 

LI 

E 
D 
E 

O 
ý" 

w 
0 

C 
O 

ý 
O 

O 
ý 



A. 39 

ýO co cD 
(V - 

'4 ý 
N 
. -: 

0 

CL 

v 
0 
0 J 

11 

un -4 M 
o00 
0ö0 

N ý'- 
Oý 
ÖO 

7 

0 tV 

N 

0 

Lo 

ý 

0 
0 

ý 

v 
0 
0 

O 

E 
0 
c 
ý 
0 

I 

rn 
c+') 

L 
O 

. º.. 
U 

d ý 

C 
O 

ý.. 
U 

OJ 
.0 

E 
ý E 
X 
O 
E 

ý 0 

C 
0 

-F. 

v 
` 
V 

> 

ý D 
rn 
LL 

Jo}ODJ uoi; oaljap wnwixoW . >1 



A. 40 

o co co 
: 1, N- 

e- 
ý 
ý 

N 
. -: 

Lf) 
x 
ä 

u 
" 

v" 

. f= 
ý, _ 

v 
0 
0 

N . -- Op 

000 
ýo; oo; uoi; oal; ap wnwixojV 7ý 

0 
ý_ V 

fV 

U-) 
1 

0 
ý 

U) 

iS 

0 
0 

c0 

v 
0 
0 

I 

ý Y 

LL 

0 
... U 
tl 

C 
O 

+. 
U 
N 

N 
.ý 

E 
D 
E 
X 

E 

ý 0 

C 
O 

. «.. 
C7 
.` 
Q 

ý 

0 
-4 Q 

a 
c. 

t71 
lL 



A. 41 

C) 

-4 ý ý 
0 
V_: 

l0 
x 

at° 
11 ' 

a 

v 
0 
0 J ' 

ý- 

v 
ö r-i 

O QO co 11 N 
-- V-- 

CD 
C) ö 

JO}ODJ u0140all6p 

r- 0 Ö 

wnwixDW 
7 
x 

0 C'4 

N 
ý 

0 
r- 

U) 

0 
0 

ý 

v 
0 
0 

Z 

E 
0 
c 
ý 
0 
IL 

I 

14 a 

L- 0 
U 
0 

w 

c 
0 
U 
Q1 

a 

E 
a 
E 
X 
v 
E 

ý 0 

C 
O 

... 
ý 

ý 
> 

r 

ý Q 

a, 
ý ý 
rn 
w 



A. 42 

0 ýfV CC) 
ý 

N 
ý 

(0 s 
ý ý 

. - 
0 
u 

C 
X 

ý ý O 
O ' 

r.. 
, ýý 

O 

U1 
> 
C1 

J 

O lf) p N ._.: 
LO 
ö 

Jo; ao) uoi}aaljap wnWixoW 

0 

7 >1 

O 
(V 

LI) 

ý 

0 

LO 

ý 

.- 

v 
0 
0 

... c 
0 CL 

I 

N 
Yý 

ä 

L- 
0 
U 
Cf 

.... 

N 
L. 
ý 
rn 
Li- 

c 
0 
ý 
u 
v 

a, 
v 

E 
ý 
E 
X 
O 
E 

ý 0 

0 
Z 
0 
` 
d 
> 



A. 4. S 

41 O 
fV 

CD 
. -i 

lD 

ý v ý 
N 
V--: 

U 
ý 

0 tV 

(V 

O 

u 
C 

X 

O 

O a 

U1 
> 
0) 

J 

Co c. c0 V) v m (V ý 

U, 
ý- 

0 
ý 

LO 

ö 

N 

v 
0 
0 

c 
0 CL 

I 

v Y 

ý 
0 
w. U 
a 
r.. 

C 
O 

ý 
U 
O1 

ý 

ý 

E 

X 
O 
E 

ý 0 
G 
0 

C7 
` 
C7 

ý 

CY) 

a) L 

ý 
rn 
Li 

JOIDD) uO11Dal)ap wnwixDW 7>1 



A. 44 

: xl o (0 
-i 

ý ý 
c0 
ý 

ri 
0 
u 

x 

v 
ci 
0 

w 0 

> 
v 

CD in o N r- ý- 
ll') 

joloDl uoi; oallap wnwixDW 
7>l 

U) 
ý 

0 

11) 

ý 

0 
0 

co 

v 
0 
0 

- c 
0 
ci 

I 

ýý 

L 

0 
... u 
C7 

G 
O 

+. 
U 
N 

ý 

a 
0 

E 
ý E 
X 
0 

E 

N. - 
0 

C 
O 

O 

O 
ý 

s 
-4 
4 
ý 

I- D 
0i 
ý 



A. 45 

: 11 0 
tV 

CD 
ý 

eD 
ý ý ý 

N 
. -j 0 

ý_ 

. 

.v ö 
u ' 

c 
x 

v 
0 
0 

w 0 
ý 

> 
aý J . 

O 
M 

ir) 
N C) C4 Ln 

.- 
C3 V- Ln 

0 
N 

LI) 
ý 

0 

LO 

Ö 

0 
0 

-4 

v. 
a 
0 

0 
CL 

I 

ý Ln Y ,s 

I- 0 
ý v 
0 
ý 

N 
L 

ý 
(7) 

IL 

C 
O 

. ý.. 
U 
a 

.:.. 41 
ý 

E 
ý E_ 
X 
d 
E 

ý 0 

c 
0 

o_ "4 

d 
ý 

JoIDD) uoiloallap wnwixow 
7>1 



A. 46 

co lD 
.- 

v ý 
N 
"-- 

0 

.-_ 

Ui ö 
a 
c x 

v 
0 
0 

0 i 

0ý ý11 
> 
aý 

0 Cl 00 
I Cl) N .. 

. to; DD) u0140a1jap wnwixnw 

v 
N 

U") 

O 

LO 

iS 

o 
n 

7 >1 

F) 

ý 
o" 

0 
CL 

I 

x. 4 o 
v 
Q 

L 

0 
U 

a 

C1 

rn 
tz 

C 
O 

a. + 
U 
0) 

w 

a, 
v 
E 
ý 
_E X 
0 

E 

ý 0 

C 
O 

C7 

O 
ý 



A. 47 

: 11 O 
N 

CD 

V-: 
co 
-i 

s ý 
N 
. -: 

0 
V. - 

c0 
Ö 

c 
x 

v 
0 
0 

0 

ä 
I 

> 
a 

O 
(D 

0 
U') 000 

vMNý 

Cl 04 

co 

V 
0 
0 

Lr) 

O 

.. c 
ý 

4. 

I 

v 
Y 

C 
O 

r+ 
U 
C 

w 

O 
. «. 
U 
N 

.:.. 
O 

'C7 

E 
ý 
E 
X 

lf) O 

E 

ö 

N... 

0 

c 
0 

0 
` 
0 
> 

0 
0 

N 
v 
Q 

a, 

rn 
i7L 

j0p [)} uoiaý}ap wnwixgW 7N 



A. 48 

O ý 

lr-: 
lD ý r N 0 

Q 
N 

V- 

0 
n 
c 

v 

ö 

ti 
, > 

W 'J "- . 

O 
Co 

0 
ý 

C) 
to 

O 
U7 0 

v 
ý CD 0 M-N ý- 

I 

n 

v 
a 
0 

If) 
ý- 

L 
OO 

+. 
C_ 
O 

CL 

I 

ý Y 
Co ý 

"ýQ 

ýý 

U') 

?S 

0 
CD 

U 
O 

.... 

C 
a 

U 
N 

.:.. 
C/ 

E 
ý 
_E X 
C7 
E 

ý 0 

C 
O 

... 
O 

O 
ý 

aý 
ý 
rn 
iz 

Jo}onI uoiloaljap wnwixow 7ý 



A. 49 

ýN co 
1-: 

co ý 
s 
ý 

C14 
V-: 

0 

N 
ý 

ý ö 
u 
c 

x 

v 
v 
0 

- 0 

J 

O 
C) C) C3 

O co 
O 

to U') )0 
Co C) NO 

"- 

Jo}on1 uoipal I ap wnwixoW 7>1 

z 

LO 

Q 
ý 

v 
0 
0 

.c 
0 
d 

i 

-1 Y 

ý 

rn 
v 
Q 

L 

o aý 
U .7 
a aý 

C 
O 
.,:. 
u 
a, 

w 

E 
D E 

to 

ö 

0 
0 

E 

a- 

0 

C 
O 

:. _. 

v 
0 > 

iT 



A. 50 

0 co ýO 
. -i 

-3 
. -- 

N 
ý 0 ý 

0 N 

N- 

0) 

ö 
u 
c 

x 

0 
0 

0 

aý 

_ 
1 

C) 
N 
"-- 

0 
0 

000 
co 0v cv 

JoIaqI uoi; oallap wnwixoW 7>1 

LO 

D 

Ö 

0 
Q 

CT) 

-v 
v 
0 

4- 
c 
0 

d 

I 

0 
LO 

Q 

L- 0 
u 

aý 

rn 
E 

C 
O 

. i-. 

u 
aý 

N 
M 

E 
ý E 
X 

d 
E 

ý 0 

C 
0 

O 
` 

0 
> 



A. 51 

ý Co (D 

V-Z 
ý 
ý 

N 
r 0 ý 

d 
O 

. ̀ .. 

O 
. -- 
u 

C 
. X 

'o 
0 O 

.ý O 
Iý 

> 
d 

J . 

0 
(V 

O 
N 
I- 

O 
O 
"-- 

0 
Co 

0N 
lD 

0 
(V 

ö 
ý 

v 
d 
0 

ý 
ý- 

ý c 
0 

n. 

I 

.4 Y 

0 
e- 

L- 0 
u 
d 

C 
O 

7- 
U 
d 

.... 
GJ 

.D 

E 
=1 
E 

LO X 
v 
E 

Ö 

0 
0 

V+ 

0 

C 
O 

+. 
O 
` 
O 

ý 

Ln 
Q 

a, 
ý 
rn 
i7L 

JDI: )Dj uDi}aallap wnwixDW 


