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Abstract

Ultracold atoms in optical lattices have proven to be an ideal testbed for simulat-

ing strongly correlated condensed matter physics. The microscopic understanding

of the underlying Hamiltonian and precise control over the Hamiltonian parame-

ters via external fields allow faithful realisation of interesting many-body systems

that are otherwise hard to study theoretically or experimentally.

This thesis addresses the issue of many-body decoherence, using analytical and

numerical techniques, in these optical lattice experiments that arises due to cou-

pling to the environment. We specifically study fermionic systems to investigate

the effects of incoherent light scattering on the dynamics. Starting from the

atomic structure of fermionic species that are experimentally relevant we provide

a framework to derive a microscopic master equation and look at the regimes of

strong interactions. The interplay between the atomic physics and many-body

physics is found to give rise to interesting observations like suppression of the

decoherence effect for magnetically ordered insulators that occur for strong re-

pulsive interactions and an enhancement of the decoherence effect for the case of

superfluid pairs that occur for strong attractive interactions. The master equa-

tion framework is then applied to a recent experiment looking at the effect of

controlled decoherence on a many-body localised system of ultracold fermions in

an optical lattice. We determine the dissipative processes in the system looking

at the atomic structure of the fermionic species.

Lastly we study a system of two species bosons to investigate the effect of inter-

species interaction in terms of bipartite entanglement between the species, and

how this impacts upon the visibility of the momentum distribution. This study

proposes a solution to a recent experimental observation of effects on the momen-

tum distribution of impurity atoms in a Bose-Einstein condensate that would not

be explained by polaronic behaviour alone.
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Chapter 1

Introduction

1.1 Background and overview

For many of the quantum systems we are interested in, it is often possible to

deduce a microscopic model and write down the Schrödinger equation that would

describe the system. Unfortunately that ability alone usually does not allow us to

extract most of the interesting properties about these systems as only a minute

fraction of them are analytically solvable. Therefore, in most of the cases, one

has to look for numerical solutions. Even there, exact numerical solutions usually

exist only for very small system sizes as the size of the Hilbert space generally

grows very quickly with the system size. To have a clearer idea about this, one

can think of a spin-chain of length M with spin-half particles. The size of the

Hilbert space here is 2M and to store a general quantum state on a classical

computer with double precision numbers the memory needed is 2M+4 bytes. For

a modest-sized chain of 100 spins this number is already huge, approximately 1016

PB, and beyond the capacity of any classical hardware in the foreseeable future.

Therefore, it is not possible to carry out simulations of such systems on classical

computers as we run out of space very quickly, to store the states and perform

operations on them, as the system size grows beyond a few particles.

1



Chapter 1. Introduction 2

To study the most interesting many-body systems in the strongly interacting

regime, often it is sufficient to replace the exact Hamiltonian with a simpler

effective Hamiltonian that takes into account the necessary physical properties to

capture the essential features. A relevant example of this, in the context of this

thesis, can be found in the (Fermi) Hubbard model. This model was devised to

understand the system of strongly correlated electrons moving in a periodic lattice

[1]. The essential physics is described by only two parameters, the tunnelling rate

J and the interaction energy U . Along with a successful explanation of the Mott

insulator-metal transitions in these systems the Hubbard model is considered to be

a widely accepted model for various strongly interacting systems, including being

a strong candidate to capture the basic physics of the high-Tc superconductors

in cuprates [2, 3]. Despite the simplicity of the model, the exact solution in

more than one dimension is still intractable [4]. Numerical techniques also fail to

exactly simulate the model for reasons stated earlier. In this case a modest 40

site lattice with 20 spin-up and 20 spin-down fermions has a very large Hilbert

space dimension of approximately 2× 1022.

An alternative method is to work with well-controlled quantum systems that

simulate the Hamiltonian in question. This is the idea of the quantum simulator,

first discussed by Feynman [5]. We specifically refer here to so-called analogue

quantum simulators which are systems that obey the same Hamiltonian as our

original systems of interest but are a lot easier to be controlled, manipulated and

probed [6]. This is where the experimental toolbox with ultracold atoms in optical

lattices becomes very important as a simulator of strongly correlated condensed

matter physics [7–10].

The modern history of the field of ultracold atoms started in 1995 with Bose Ein-

stein condensation [11] being realised in experiments, independently, by groups

in Colorado [12], at MIT [13] and at Rice University [14], using Rb, Na and Li

respectively. The cooling schemes that had been developed prior to these exper-

iments include, among others, laser cooling [15], which was heavily contributed

to by Chu, Cohen-Tannoudji, and Phillips (Nobel prize 1997), and evaporative

cooling methods [16]. Combinations of these cooling techniques made it possible

to reach temperatures in the sub-microKelvin range, needed for realising BEC
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in these dilute systems with a density of the order of 1013 − 1015 cc−1. In these

temperature and density ranges the system is weakly interacting. With further de-

velopments in the areas of precision control and measurements, realising strongly

interacting systems was also possible [17, 18]. In 1998 Jaksch et al. showed that

it is possible to realise the Bose-Hubbard model with ultracold atoms by loading

them into optical lattices [19], and to study not only ground state but also far-

from-equilibrium dynamics. An optical lattice, formed by counter-propagating

lasers that produce a standing wave where a sinusoidal potential is created for

the atoms via an AC-Stark shift [20], can be regarded as an especially clean lattice

system. This is due to the absence of any impurity and defects that are mostly

unavoidable in a solid state system. Also unlike naturally occurring crystals the

lattice sites are very stable, and as the lattice itself is not formed by an assem-

bly of particles, atom-phonon interactions are absent. Another big advantage

of optical lattices is the precise control over the Hamiltonian parameters that is

achieved by controlling external fields. The laser intensity determines the relative

values of the tunnelling rate and interaction energy. Using Feshbach resonances

[21] it is further possible to tune the interaction energy independently over a wide

range of strengths and also to modify its sign, resulting in attractive or repulsive

interactions. The typical values of these Hamiltonian parameters are low enough

(around hundreds of Hertz) to produce slow dynamics and therefore it is possible

to track non-equilibrium dynamics. The coherent evolution is possible to observe

for a long time in these setups as the interactions with the environment are very

weak. These favourable qualities in optical lattices make them a viable candidate

for realising and studying condensed matter systems [22].

The first experimental demonstration of such effectiveness of optical lattice se-

tups came in 2001 by Greiner et al. [23] who observed the superfluid to Mott

insulator phase transition [24] by implementing a Bose-Hubbard Hamiltonian in

a 3D optical lattice. Since then, optical lattices have been used in an extensive

range of experiments including the realisation of Fermi-Hubbard models [25, 26],

investigation of the properties of Bose-Fermi mixtures [27], studies of quantum

quenches [28, 29], formation of repulsively bound pairs [30], and site-resolved ma-

nipulation of atomic states [31–34]. Atoms in optical lattices can also be coupled
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to a large BEC system to perform experiments on local non-destructive probing

[35], qubit cooling [36], and the creation of bath-mediated long-range interaction

[37]. The small number of particles in the optical lattices can behave like impuri-

ties. These impurities along with the Bogoliubov excitations created in the BEC

demonstrate polaronic behaviour [30, 38–48]. Due to the BEC-mediated effective

interaction [37, 49–51] and an increase in effective mass [52–54] induced by the

interaction with BEC, there is a resulting decrease in mobility of the impurities.

In experiments with optical lattices the versatile lattice setups allow changing

the relative directions of propagation of the lattice beams and their polarisations,

resulting in the realisation of various lattice geometries [22]. Different dimension-

alities can be achieved by making the lattice deeper in certain directions [55, 56].

It is also possible to create energy offsets at chosen sites in an optical lattice by

using a commensurate superlattice as well as produce pseudo-random disorder by

applying an incommensurate superlattice. The latter technique has been used to

observe many-body localisation (MBL) recently using two-species fermions which

has opened up a novel direction to explore [57].

Another area of extreme importance is the aforementioned prediction of realising

a d-wave superfluid state with the Fermi-Hubbard model which can lead to a

much better understanding of high-Tc superconductors in cuprates [2, 3]. The

temperature scale required to access the strongly correlated phases of a two species

Fermi-Hubbard model has to be well below the so-called Néel temperature [58].

In the strongly interacting regime this temperature is set by the spin exchange

energy [59], which is the second order correction to the ground state of the Fermi-

Hubbard Hamiltonian where the tunnelling term is treated perturbatively, and

is of the order of J2/U . This energy scale, being much smaller than the system

parameters, corresponds to a temperature which is near to what is achieved in

modern experiments [60, 61]. It is therefore extremely important to explore in

detail the heating mechanisms in these experimental situations.

Noise sources that generate heating in optical lattices can be of a classical nature,

e.g., the case where the intensity of the coherent laser field fluctuates inherently

due to noisy electrical circuits of the device [62, 63]. The noise can also be of purely
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quantum nature, e.g., due to incoherent scattering of light [64–66]. In the lattice,

coupling to external radiation modes gives rise to quantum noise that introduces

decoherence in the system. The associated characteristic decoherence rates can

be made relatively small but they will often remain comparable to the above

mentioned exchange energy scale. Theoretically, these so-called open quantum

systems can be studied by writing down a master equation that describes the

microscopic dynamics induced by dissipation.

Solving the master equation by exact numerical simulation is possible only for

very small systems, due to exponential scaling of the Hilbert space dimension.

A state-of-the-art numerical method that has been extremely successful for sim-

ulations in 1D systems is the Density Matrix Renormalisation Group (DMRG)

method. Originally introduced in 1992 by S. White [67, 68], the DMRG algorithm

works on systems with low bipartite entanglement and calculates the ground state

by truncating the Hilbert space and retaining the relevant fraction of it. Vidal’s

Time Evolved Block Decimation (TEBD) algorithm [69, 70], proposed in 2003,

generalises this concept to enable as optimal truncation procedure to dynami-

cally track the time evolution of the quantum state. These algorithms can be

combined with techniques like quantum trajectory methods [71–73] to take care

of the dissipative channels and to evolve the master equation. Apart from carry-

ing out theoretical investigations these numerical methods are powerful tools to

benchmark the optical lattice experiments.

1.2 Objective of thesis

With ultracold atoms in optical lattices providing an ideal testbed for a wide range

of strongly correlated condensed matter physics problems, it is very important to

address issues like dissipation resulting from interactions with the environment

that set a fundamental limit on the coherent evolution of the system. The objec-

tive of this thesis is to explore the dynamical properties of quantum many-body

systems affected by dissipative mechanisms that emerge in ongoing experiments

with ultracold atoms in optical lattices. We particularly focus on the decoherence
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caused by incoherent scattering of laser light in these setups. We especially study

fermionic atoms, deriving the equations of motion starting from first principles.

We use both analytical methods and numerical techniques such as TEBD algo-

rithms and quantum trajectory methods to investigate the effects of dissipation

on the dynamical properties. Along with providing the framework for a master

equation derivation of a multi-species fermionic system, the role of the atomic

physics in determining the decoherence effects is quite interesting from an exper-

imental point of view. We extend this work to analyse and explain the details

of the decoherence mechanisms, again by starting with the atomic structure, in

a recent experiment that investigates the effect of controlled decoherence on the

MBL realised in a system of fermions in optical lattices. We further study a two

species bosonic system to quantify the effect of inter-species entanglement on the

smaller system, that can be thought of as coupled with a bath, in the context of

recent experiments that look at polaronic behaviour in such systems.

1.3 Outline of thesis

With the objectives mentioned above the remainder of this thesis is organised as

follows. We start in Chapter 2 with a brief introduction on the technical back-

ground necessary to understand optical lattice setups and the Hubbard models

that can be realised in these experiments. The coupling to the radiation bath and

the decoherence caused by spontaneous emission events are addressed in Chapter

3 where we give an overview on the master equation formalism that describes the

system dynamics. The calculations to find the ground state in such systems and

to evolve the system in the presence of decoherence require sophisticated numer-

ical methods. In Chapter 4 we discuss the TEBD algorithm under the DMRG

framework in this regard. We also briefly review the quantum trajectory method

that deals with the evolution of the master equation under decohering effects.

After this we move to the main results of the research work carried out in this the-

sis. In Chapter 5 we present a detailed study of dissipative dynamics of fermions

in a far-detuned optical lattice due to incoherent light scattering. We derive a
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many-body master equation of such a system taking into consideration the details

of the atomic structure of the experimentally relevant group-I and group-II species

and then present our results obtained using analytical and numerical techniques.

While the derivation of the master equation for the multi-species fermions is of

theoretical interest, the connection between the atomic physics and the many-

body physics in these systems of strongly interacting multi-species mixtures offer

new directions in experiments. The dissipative model developed here is used

in our discussion in Chapter 6 where we report the findings from the analysis

of experimental work carried out by our collaborators to investigate the effects

of controlled dissipation on MBL realised with ultracold fermions in an optical

lattice experiment. This work presents a detailed framework of studying the dis-

sipative channels starting from the basic atomic structure in an experiment that

establishes a novel scheme of studying MBL in an open quantum system. We

then move to Chapter 7 to present a slightly different approach towards open

quantum systems where we study two species bosons in optical lattices where one

of the species acts as an impurity system while the other behaves like a bath.

We report the connection between the bipartite entanglement and the visibility

of the momentum distribution in such systems. We conclude in Chapter 8 and

mention possible directions for future work .

1.4 Outputs from the thesis

Publications

• Light scattering and dissipative dynamics of many fermionic atoms in an

optical lattice,

Saubhik Sarkar, Stephan Langer, Johannes Schachenmayer, and Andrew J.

Daley

Phys. Rev. A, 90, 023618, (2014).

• Signatures of many-body localization in a controlled open quantum system,

Henrik P. Lüschen, Pranjal Bordia, Sean S. Hodgman, Michael Schreiber,
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Saubhik Sarkar, Andrew J. Daley, Mark H. Fischer, Ehud Altman, Im-

manuel Bloch, and Ulrich Schneider

Phys. Rev. X, 7, 011034, (2017).

• Effect of entanglement in two species bosonic systems,

Saubhik Sarkar, Suzanne McEndoo and Andrew J. Daley

(in preparation)

Talk presentations by the author of the thesis

• APS March meeting, March 18-22, 2013, Baltimore, USA

• DAMOP meeting, June 2-6, 2014, Madison, USA

Poster presentations by the author of the thesis

• DARPA OLE Review meeting, 2012 (Miami, USA), 2013 (San Francisco,

USA), 2014 (Arlington, USA)

• International Conference on Atomic Physics, August 3-8, 2014, Washington

D.C. USA

• DOQS workshop, October 20-22, 2014, Glasgow, UK

• CCPQ Workshop, August 3-6, 2015, Windsor, UK



Chapter 2

Optical lattices: closed quantum

systems

The goal in this chapter is to give an outline of the underlying physics that even-

tually leads to the derivation of the many-body Hamiltonians for neutral atoms in

an optical lattice, especially the Hubbard Hamiltonian. In Sec. 2.1 we start from

a single atom interacting with electromagnetic field and then focus on the case

of a laser-driven atom. This is followed by the derivation of the optical lattice

potential generated by the laser light. In Sec. 2.2 the inter-atomic interaction

is added to the treatment. We summarise the essential elastic scattering prop-

erties and discuss the two-body contact potential that describes the interactions

under typical experimental conditions. In Sec. 2.3 we show the band structure

created by the periodic potential of the optical lattice, which helps us to arrive

at the Hubbard Hamiltonian [19]. The standard approximations with respect to

the full many-body Hamiltonian are indicated, resulting in simplification of the

model. We conclude this chapter with brief discussions on the Fermi-Hubbard and

Bose-Hubbard Hamiltonians. We consider quantum noise, especially from light

scattering, and the detailed discussion of this is presented in the next chapter.

9
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2.1 Atom-light interaction

In this section we start with an overview of the Hamiltonian describing a single

atom coupled to an electromagnetic field. In the relevant limit the atom-field

interaction is then shown to be governed by a dipole coupling. We then focus on

experimentally relevant situation where the atomic system is driven by a standing

laser wave with an optical frequency detuned from an atomic transition. The atom

can be considered as a two-level system when the laser predominantly couples two

particular atomic states. We give an overview of the exact solution of the resulting

Rabi problem. We then outline the basic properties of an optical lattice formed

by the laser light in terms of AC Stark shift.

2.1.1 Single atom Hamiltonian

To derive the Hamiltonian for a single neutral atom interacting with the electro-

magnetic field (see, for example, [74]) one can start with classical electrodynamics

where the field dynamics obey Maxwell’s equations and the atomic dynamics is

governed by the Newton-Lorentz equations. The field variables are the vector

potential A and its time derivative. As we will deal only with non-relativistic

situations, we choose to work in the Coulomb gauge, i.e. ∇ · A = 0. The field

variables are further expressed in terms of normal variables which upon canon-

ical quantisation become the photon mode annihilation and creation operators

bk,λ and b†k,λ respectively where, k is the wavevector and λ is the polarisation

of the photon mode. With ~ωk as the excitation energy in each mode, the field

hamiltonian is then written as HField =
∑

k,λ ~ωkb
†
k,λbk,λ, where the zero-point

energy has been omitted. This is a free field Hamiltonian as the atom is globally

neutral.

Now for the atom a canonical quantisation is carried out on the conjugated po-

sition and momentum variables. For an atom with atomic number Z, comprised

of a composite nucleus (mass mn, charge qn) and electrons (mass me, charge qe),

coupled to electromagnetic field, the Hamiltonian for the full system can then be
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written as

H =
(pn − qnA(rn))2

2mn

+
Z∑
i=1

(pi − qeA(ri))
2

2me

+ VCoulomb +HField , (2.1)

where the first term describes the kinetic energy of the nucleus which can be taken

to be the centre of mass of the atom as it is much heavier than the electrons.

The second term is the kinetic energy of the electrons. The Coulomb potential

VCoulomb is the third term. We now make use of the following observation: the

relevant radiation wavelengths for the atomic system fall in the optical region

and therefore are typically three orders of magnitude larger than the atomic size

which is around a few Bohr radii. Therefore, for an atom located at r0 we can

neglect the spatial variation of the field and approximate A(r) by A(r0). This is

known as the long wavelength approximation. Using this we can now carry out

the unitary transformation U = e−i/~
∑
j qjrj ·A(r0) on the Hamiltonian H, resulting

in

H → H ′ = UHU †

=
p2
n

2mn

+
Z∑
i=1

p2
i

2me

+ VCoulomb −
∑
j

qjrj · E(r0) +HField , (2.2)

where a dipolar self-energy term (arising from the unitary transformation) has

been omitted as it only adds a constant to the Hamiltonian. Now, for reasons

stated above, the first term can be approximated as the kinetic energy of the

centre of mass P2
CM/2MCM , with total momentum PCM = pn +

∑Z
i=1 pi and

total mass MCM = mn + Zme. The first term in Eq. 2.2 therefore can be taken

to be P2
CM/2MCM , giving the kinetic energy of the atom.

The kinetic energy of the electrons and Coulomb potential in Eq. 2.2 together

form the internal Hamiltonian of the atom, Hatom. The atomic Hamiltonian is in

principle diagonalisable and we can write Hatom = ~ωa|a〉〈a|, with internal energy
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levels |a〉 and respective energy eigenvalues ~ωa. This enables us to write,

Hatom =
Z∑
i=1

p2
i

2me

+ VCoulomb ≡ ~ωa|a〉〈a| . (2.3)

Noting that the total dipole moment operator for the atom is d =
∑
j

qjrj, the

interaction Hamiltonian can be written as

Hint = −
∑
j

qjrj · E(r0) = −d · E(r0) . (2.4)

Combining all these terms, the Hamiltonian in Eq. 2.2 can be rewritten to give

the complete picture,

H ′ =
P2
CM

2MCM

+Hatom +Hint +HField

=
P2
CM

2MCM

+ ~ωa|a〉〈a| − d · E(r0) +HField . (2.5)

The interaction Hamiltonian Hint contains the most interesting physics in this ex-

pression and tells us that the atom and the field interact through dipole coupling.

This arises from the long wavelength approximation, which is also known as the

dipole approximation. Neglecting the spatial dependance of the field results in

this lowest-order consideration of the extent of the atom. The next order terms

are the magnetic dipole and electric quadrupole couplings, strengths of which are

smaller by of the order of α2 compared to the dipole term, where α is the fine

structure constant, (≈ 1/137).

2.1.2 Mollow transformation

We now look at a case where, for the sake of simplicity, the atom is taken to be

fixed in its position r0. This means we can neglect the first term in Eq. (2.5). The

atom is now driven by a laser at frequency wL which is detuned from the transition

frequency ωe,g between the ground state of the atom |g〉 and an excited state |e〉.
We also assume that the laser frequency is very far away from any other atomic
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transition and that the laser intensity also low enough so that we can neglect

any other internal atomic level in a perturbation theory approach. The laser

polarisation can also be set to select a particular dipole transition element to

couple two particular states of choice. The atom is therefore a two-level system

for our purposes. We wish to treat the electric field generated by the laser in a

classical way, which is often referred to as the semi-classical approach. This can

be done as the mean occupation number of photons in the laser mode for typical

laser intensities is so large that the non-commutativity of the photon creation and

annihilation operators can be ignored. Therefore it is possible to treat the laser

field as a complex function instead of an operator in the interaction Hamiltonian

for the purposes of coherent dynamics. To see this we first consider the atom as

being prepared in the ground state and subject to a multi-mode coherent wave

packet which is a model of the laser field [75]. The combined system of the atom

and the radiation field obeys the following Schrödinger equation,

i~
d

dt
|ψ(t)〉 = H|ψ(t)〉

=

(∑
a

~ωa|a〉〈a| − d · E(r0) +
∑
k,λ

~ωkb†k,λbk,λ

)
|ψ(t)〉 , (2.6)

where the quantum mechanical electric field operator is defined in terms of a

discrete mode expansion with unit polarisation vector ελ and frequency ωk in a

quantisation volume V and assuming periodic boundary condition,

E(r0) =
∑
k,λ

i

√
~ωk
2ε0V

bk,λe
ik·r0ελ + h.c. . (2.7)

The initial condition is given by

|ψ(t)〉 t→−∞−−−−→ |g〉 ⊗D
({
αk,λe

−iωkt}) |vac〉 . (2.8)
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Here the multimode coherent state |coh〉 is produced by the action of the unitary

displacement operator on the vacuum state |vac〉 i.e.

|coh〉 = D
({
αk,λe

−iωkt}) |vac〉

= exp

[∑
k,λ

b†k,λαk,λe
−iωkt − bk,λα∗k,λeiωkt

]
|vac〉 . (2.9)

This state corresponds to a classical field Ecl(r0, t) in the sense that

〈{
αk,λe

−iωkt} |E(r0)|
{
αk,λe

−iωkt}〉
=
∑
k,λ

i

√
~ωk
2ε0V

αk,λe
i(k·r0−ωkt)ελ + h.c.

= Ecl(r0, t) . (2.10)

The Mollow transformation [76] is a unitary transformation which allows for the

atomic system to be perceived as being coupled to this classical field representing

the laser with an additional coupling to the radiation field which can be taken

in the vacuum state initially. In the transformed picture, the new wavefunction

|ψ̃(t)〉 = D† ({αk,λe
−iωkt}) |ψ(t)〉. This leads to the desired new initial condition,

lim
t→−∞

|ψ̃(t)〉 = |g〉 ⊗ |vac〉 . (2.11)

The transformed time-dependent Hamiltonian is

H̃ = D†HD + i~Ḋ†D

=
∑
a

~ωa|a〉〈a| − d · (E(r0) + Ecl(r0, t)) +
∑
k,λ

~ωkb†k,λbk,λ , (2.12)

which retains the form of the Schrödinger equation, i~| ˙̃ψ(t)〉 = H̃|ψ̃(t)〉. For the

rest of this chapter we will not take the radiation field into account and only

focus on the coupling with a classical field. This is a semi-classical treatment and

gives quite a faithful description of the system at timescales short enough so that

the coherent dynamics can be considered not to be disturbed by the decohering
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effects introduced by the radiation field. The full quantum mechanical picture

will be covered in the next chapter.

2.1.3 Semi-classical approach

With the objective to focus on the coherent dynamics we now look at the Rabi

problem where a localised two level atom is driven by a single mode laser field

[20]. To describe the system we use the the Hamiltonian in Eq. 2.12 after omitting

the coupling to the quantised radiation field and the field Hamiltonian. The

laser produces a scalar electric field, Ecl(t) = εE0(t)e−iωLt+ c.c., where position

dependence is absent as the atom is taken to be fixed at the origin. The mode

of the laser is given by its frequency ωL and polarisation ε. The laser frequency

differs from the atomic transition frequency by the detuning, ∆ = ωL − ωe,g.

We also define the following transition operators, σ+ = |e〉〈g|, σ− = |g〉〈e|. The

Hamiltonian for this two level atomic system driven by the laser therefore becomes

Hsemi-cl = ~ωe,g|e〉〈e| − de,g (σ+ + σ−)
(
E0(t)e−iωLt + c.c.

)
, (2.13)

where de,g = 〈e|d · ε|g〉 is the dipole transition matrix element and can be chosen

to be real. In the following let us consider a square pulse for which E0(t) = E0

between time 0 and T and zero otherwise. Defining Rabi frequency Ω = 2de,gE0/~
and using the unitary transformation U = eiωLt|e〉〈e|, we rewrite the Hamiltonian

in this rotating frame,

Hsemi-cl → H ′semi-cl = UHU † + i~U̇U †

= −~∆|e〉〈e| − ~Ω

2
σ+

(
1 + ei2ωLt

)
− ~Ω

2
σ−
(
1 + e−i2ωLt

)
.

(2.14)

The rapidly rotating terms in this Hamiltonian can be neglected if the timescales

we are interested are much longer than the optical time-scale set by the laser

frequency. The typical relevant time-scale t in the experiments is such that

in the time-evolution operator, obtained by integrating the Hamiltonian, the
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contribution from the rotating terms averages out to zero. Quantitatively, for

t� 1/ωL, 1/ωe,g, we can write a simplified version of the Hamiltonian under the

rotating wave approximation (RWA),

HRWA = −~∆|e〉〈e| − ~Ω

2
σ+ −

~Ω

2
σ− . (2.15)

The eigenstates of this Hamiltonian, which are known as the dressed states, are

|φ1〉 = cos θ|g〉 − sin θ|e〉 and |φ2〉 = sin θ|g〉 + cos θ|e〉 with respective energies

−~∆/2 ± ~Ωeff/2. Here θ is given by cos(2θ) = −∆/Ωeff and the effective Rabi

frequency Ωeff =
√

Ω2 + ∆2. If the atom starts in one of two levels, the population

in each level oscillates with Ωeff, which in the resonant case (∆ = 0) is simply the

normal Rabi frequency Ω.

When the detuning is small, with the use of the RWA and a two level atom, the

Hamiltonian can be exactly diagonalised. However we sometimes work in regimes

of large detuning where the RWA and the two-level approximation break down.

In the following section we first show how a spatially-varying optical potential is

formed by the laser field by using perturbation theory (as coupling to the laser

field is small compared to optical frequencies) for the two level atoms. We then

also mention the behaviour when the treatment is expanded beyond the two-level

approximation.

2.1.4 Optical lattice potential

In this section we give an overview of how an optical lattice potential is formed.

To do so we again consider the two level atom described by the wavefunction

|ψ(t)〉 = cg(t) + ce(t)e
−iωegt|e〉. In the presence of a classical electric field varying

in both time and space, Ecl(r, t) = εE0(r)e−iωLt+ c.c., we use time-dependent

perturbation theory to write down the coupled equations for the amplitudes,

ċg = −iceeiωe,gt
(

Ω(r)

2
e−iωLt +

Ω∗(r)

2
eiωLt

)
ċe = −icge−iωe,gt

(
Ω∗(r)

2
e−iωLt +

Ω(r)

2
eiωLt

)
. (2.16)
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Initially the atom is taken to be in the ground state |g〉, i.e. cg(0) = 1, and

ce(0) = 0. Now to first order in perturbation we can write the wavefunction as,

|ψ(t)〉(1) = |g〉+

[
Ω(r)

2

e−iωLt − 1

ωe,g − ωL
+

Ω∗(r)

2

eiωLt − 1

ωe,g + ωL

]
|e〉 . (2.17)

We can now write down the second-order equation for the amplitude associated

with the ground state,

ċg
(2)(t)

=ie−iωe,gt
(

Ω(r)

2
eiωLt +

Ω∗

2
e−iωLt

)[
Ωr)

2

e−iωLt − 1

ωe,g − ωL
+

Ω∗(r)

2

eiωLt − 1

ωe,g + ωL

]
. (2.18)

We can write the solution to be of the form cg(t) = eiφ(t), with a complex phase

φ in general. Averaging over one cycle of oscillation of the electric field and

neglecting the fast rotating terms we obtain,

〈φ̇〉T= 2π
ωL

=
|Ω(r)|2

4

[
1

ωe,g + ωL
+

1

ωe,g − ωL

]
, (2.19)

where on the right hand side cg is replaced by unity as we are working to the

second-order in perturbation. Eq. (2.19) corresponds to an energy shift in the

ground state due to an oscillating electric field, ∆Eg = −~〈φ̇〉T=2π/ωL which is

known as the AC Stark shift [20]. The perturbative approach is valid as long as

ωL is far-detuned from any of the transition frequencies and all the excited state

amplitudes remain small. The ground state energy shift is then given by

∆Eg = −|Ω(r)|2
4

2~ωe,g
ω2
e,g − ω2

L

. (2.20)

A simple optical lattice in 1D can be formed by retro-reflecting a laser beam

to construct a standing wave, which gives rise to a sinusoidal Rabi frequency,

Ω(x) = 2〈e|d · ε|g〉E0 sin (kLx)/~ ≡ Ω0 sin (kLx), where kL is the laser wave

number. The resulting potential seen by atoms loaded in the ground state is the

1D optical lattice potential, Vopt(x) = (Ω2
0/4∆) sin2 (kLx) ≡ V0 sin2 (kLx). This

is also the basic potential for dipole traps. For blue detuning (∆ > 0) the the
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atoms prepared in the ground state are trapped at the intensity minimum and

for red detuning (∆ < 0) the the atoms are trapped at the intensity maximum.

In higher dimensions, periodic optical potentials can be formed by increasing the

number of laser beams. For example, in 2D a simple square lattice is formed

by superimposing two orthogonal standing waves with orthogonal polarisations.

Similarly a simple cubic lattice in 3D can be formed by standing waves which are

orthogonal both in spatial directions and in polarisations.

Now in the case where the classical electric field is chosen in such a way that not

a single transition frequency can be picked out to be significantly less detuned

than the others, we have to take other exited levels into account. This multi-level

treatment is a straight-forward generalisation of the two level case where the shift

in the ground state energy is given by,

∆Eg = −
∑
n6=g

|Ωn,g(r)|2
4

2~ωn,g
ω2
n,g − ω2

L

= −
∑
n6=g

|〈n|d · ε|g〉E0(r)|2
~

2ωn,g
ω2
n,g − ω2

L

≡ −1

2
α(ωL)|E0(r)|2 , (2.21)

where ωn,g is the energy of the excited level n and the position dependent Rabi

frequency between levels n and g is defined as Ωn,g(r) = 2〈n|d ·ε|g〉E0(r)/~. This

expression gives an intuitive picture of the energy shift in terms of a product of

the classical light intensity and a polarisability.

2.2 Inter-atomic interactions

To go from a single atom picture to the many-body picture inter-atomic inter-

actions must be taken into account. For a very dilute gas of atoms at ultracold

temperatures the interaction can be described by two-body elastic collision at low

energies. Therefore we first summarise the main results for the elastic scattering

of two particles [77] separated by r under the action of the spherically symmetric

potential V (r = |r|). In relative coordinates the motion is governed by the Hamil-

tonian, Hrel = p2/2µ+ V (r) where the relative momentum p = p1 − p2, and the
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reduced mass µ = m1m2/(m1 + m2) = m/2 (for similar particles). The incom-

ing plane wave and the scattering state are then incorporated in the asymptotic

relative wavefunction which can be written as an integral solution,

ψ(r)
large r−−−→eik·r − µ

2π~2

eikr

r

∫
d3r′e−ikr̂·r

′
V (r′)ψ(r′)

≡eik·r + f(k, r)
eikr

r
, (2.22)

where the scattering amplitude f(k, r) only depends on k and the scattering angle

θ, between k and r. Taking advantage of the spherical symmetry of the problem

one can write the wavefunction in a basis of spherical waves. When the incoming

wave direction is taken along the z-direction, this partial wave expansion enables

one to rewrite the scattering amplitude as

f(k, θ) =
∞∑
l=0

2l + 1

k cot δl − ik
Pl (cos θ) , (2.23)

where δl are the scattering phase shifts associated the l-th partial wave and Pl

are the Legendre polynomials. The total scattering cross-section is then given by

σ =
4π

k2

∞∑
l=0

(2l + 1) sin2 δl . (2.24)

In the next step an approximation based on the low energy limit ( kr0 � 1) is

used. In this limit it can be shown that δl ∼ k2l+1, for small l values and for

short range potentials. Therefore only l = 0 i.e. s-wave scattering is important

in terms of contribution to the total scattering rate at low energies. This allows

us to write the expansion, k cot δ0 ≈ −1/as + r0k
2/2. Here, as is the scattering

length which determines the strength and the nature of the interaction and r0

is the effective range of the scattering potential. Using this we then get for the

scattering amplitude in the far field

f(k) ≈
1

− 1
as
− ik + 1

2
r0k2

→ −as (as k → 0) . (2.25)
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Therefore the scattering length as is the only parameter to which the description of

a low energy scattering process reduces to. The total scattering cross-section then

essentially analogous to a low-energy hard-sphere potential problem, σ ∼ 4πa2
s.

It is important to note that so far we have considered the case of distinguishable

particles. For identical bosons and indistinguishable fermions with different spin

states only the even l terms enter in the sum (2.24) , with twice the strength.

The total s-wave scattering cross-section is therefore 8πa2
s. For identical fermions,

where only odd l terms matter in the sum (2.24), the total s-wave scattering cross-

section is zero.

For a dilute cold gas loaded into optical lattices the diluteness is characterised

by two parameters: the inter-particle distance ρ1/3 (ρ is the density) and the

scattering length as. When the condition ρ1/3as � 1 is met, elastic two-body

scattering theory gives a good description of the interaction. In typical experi-

mental situations we are also interested in very low-energy particles, which means

it is sufficient to consider only s-wave scattering. This condition is satisfied when

kr0 � 1 where k is the incoming wavenumber. In cold atom experiments the

interaction potential at long distances, where the electronic wavefunctions of the

atom barely overlap, can be modelled as a van der Waals potential. In this case,

the effective range is given by the van der Waals length [11]. At short distances the

overlap between the electronic wavefunctions gives rise to quantum mechanical

exchange interactions. The exact inter-atomic potential is difficult to determine

and to perform calculations with. However, detailed knowledge of the exact po-

tential is not necessary to describe the cold atom experiments as the diluteness

and the low temperatures ensure that the average separation and the thermal de

Broglie wavelength are much larger than the effective range of inter-atomic po-

tential. Therefore, a model potential that is convenient to work with can be used

as long as it produces the same scattering results in these parameter regimes. As

we have shown, the only relevant scattering parameter under these experimen-

tal conditions is the scattering length, which therefore characterises the effect of

the scattering potential. In experimental situations the scattering length can be

widely tuned e.g. using Feshbach resonances [21], and varied from negative values

(attractive interactions) to positive values (repulsive interactions).
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Now, to model the real inter-atomic potential with a pseudo-potential that pro-

duces exact same scattering properties and is treatable in Born approximation, we

use a two-body contact potential along with a regularising operator, introduced

by Fermi [77, 78]. For identical particles of mass m this pseudo-potential acts on

the relative wavefunction in the following way,

Vp(r)ψ(r) ≡ 4π~2as
m

δ(r)

[
∂[rψ(r)]

∂r

]
r=0

. (2.26)

Using this pseudo-potential for the two-body interaction we can write the second

quantised many-body Hamiltonian, with an external potential Vext(|r|), as

H =

∫
d3rψ†(r)

[
−∇

2

2m
+ Vext(r)

]
ψ(r) +

1

2

∫
d3rd3r′ψ†(r)ψ†(r′)Vp(r− r′)ψ(r′)ψ(r) ,

(2.27)

with field operators ψ(r). In the weak interaction limit (k|as| � 1), when Born

approximation is valid this Hamiltonian can be rewritten with a coupling constant

g = 4π~2as/m as [77]

H =

∫
d3rψ†(r)

[
−∇

2

2m
+ Vext(r)

]
ψ(r) +

g

2

∫
d3rψ†(r)ψ†(r)ψ(r)ψ(r) . (2.28)

2.3 Lattice Hamiltonian

In order to derive a convenient many-body Hamiltonian for cold atoms loaded in

an optical lattice we first investigate the band structure for a single atom which

is the characteristic of a periodic potential. This will help in the construction of a

convenient basis in terms of the eigenfunctions of the single-particle Hamiltonian.

2.3.1 Bloch functions

Based on our discussions in Sec. 2.1, we can write down the Hamiltonian for a

cold atom with mass m in a far-detuned 1D optical lattice, H = p2/2m+ Vopt(x)
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where Vopt(x) = V0 sin2 (kLx), and the periodicity is given by the lattice constant

a = π/kL. For such a periodic potential the eigenfunctions of the Hamiltonian

can be obtained by applying Bloch’s theorem [79] and can be written as

φ[n]
q (x) = eiqxu[n]

q (x) , (2.29)

where n is the band index and q is the quasi-momentum which resides in the

first Brilloiun zone (−π/a, π/a]. u
[n]
q (x) are the Bloch functions and have the

same periodicity as the lattice potential. They are the eigenfunctions of the

Hamiltonian, Hq = (p+ ~q)2/2m+ Vopt(x) and are normalised as follows:∫ a

0

|u[n]
q (x)|2dx =

a

2π
, (2.30)

which is applicable to φ
[n]
q (x) as well. The eigenvalues of H or Hq are the band

energies E
[n]
q and they give rise to the band structure.

For a simple sinusoidal lattice potential the Bloch functions can be determined

analytically by rewriting the eigenvalue equation in a Mathieu equation form, the

solution to which is known, but is quite a complicated function. For this reason

and for non-sinusoidal lattice potentials it is often more convenient to calculate

them numerically. To do so we first write them as a Fourier expansion,

u[n]
q (x) =

∑
l

c
[n,q]
l ei2kLxl , (2.31)

where the complex coefficients c
[n,q]
l obey the linear eigenvalue equation,

N∑
l′=−N

Hl,l′c
[n,q]
l′ = E[n]

q c
[n,q]
l . (2.32)

The matrix elements are defined as,

Hl,l′ =


(2l + q/kL)2ER + V0

2
l = l′

−V0

4
|l − l′| = 1

0 |l − l′| ≥ 1

, (2.33)
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where ER = ~2k2
L/2m and is called the recoil energy which is a natural energy scale

in the lattice problem. The name comes from the kinetic energy that is imparted

on the particle if it emits a photon with the lattice frequency. Strictly speaking for

exact results, the value of N should be infinity but in practice very small values

like N ∼ 10 produce quite accurate results for the lowest few bands. We show

the band structure in Fig. 2.1 where E
[n]
q is plotted against q for two different

values of the potential depth V0 = ER and V0 = ER. One of the important and

useful features of the band structure is that the band gap between the lowest

two bands increases with the depth of the potential. This gap is almost uniform

for lattices that are deep enough and is approximately given by the trapping

frequency, ωT = 2
√
V0ER/~. In experiments with cold atoms all the other energy

scales are usually made at least two orders magnitude smaller than ωT . The

essential physics therefore generally takes place in the lowest Bloch band.

2.3.2 Wannier functions

For the lattice model it is quite convenient to introduce a second set of complete

orthonormal functions for the single particle Hilbert space, called Wannier func-

tions [80], as they are localised around each lattice site. They are defined by a

transformation of the Bloch function basis,

w[n](x− xj) =

√
a

2π

∫ π/a

−π/a
e−iqxjφ[n]

q (x)dq , (2.34)

where xj is the primitive translational vector of the lattice, denoting the posi-

tion of the j-th lattice site, given by the energy minima of the lattice poten-

tial. This definition suffers from an ambiguity arising from the arbitrariness

of the global phase factor of the Bloch functions. We choose to work with

a prescribed method as shown in Ref. [81]. This proper choice of phase en-

sures the existence of a unique real and exponentially localised Wannier func-

tion that is either symmetric or antisymmetric at the position of a particu-

lar site. These are known as maximally localised Wannier functions and will
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Figure 2.1: Band Structure and maximally localised Wannier functions,
computed numerically. As the optical lattice potential becomes deeper, from
V0 = 4ER (left panels) to V0 = 16ER (right panels), the band gap between the
lowest two bands become larger and the bands get flatter (top panels) and the
Wannier functions get more localised around the lattice sites (bottom panels).
The Wannier functions are symmetric (antisymmetric) for even (odd) band
index.

be used for all our calculations here onwards. We plot such Wannier func-

tions in Fig. 2.1, again for two different values of the potential depth. The

Wannier functions are more localised in the deep lattice limit i.e. V0 � ER,

and they can be approximated by simple harmonic oscillator (SHO) wavefunc-

tions. For a deep lattice the potential near the minima can be approximated by

Vopt(x) = V0 sin2 (kLx) ≈ V0 (kLx)2 = (1/2)mω2
Tx

2, with ωT = 2
√
V0ER/~. The

ground state for this SHO potential is ψ
[0]
SHO = (1/(πa2

0)1/4)e−x
2/2a2

0 . The oscil-

lator length a0 =
√
~/mωT denotes the extension of the wavefunction. This is

a good approximation of the Wannier function in the lowest band if the Lamb

Dicke parameter η = kLa0 � 1.
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Any single particle state can be written in the basis of Wannier states defined as,

|w[n]
j 〉 =

∫
w[n](x− xj)|x〉dx . (2.35)

In 3D this is easily generalisable to |w[n]
j 〉 = |w[n]

jx
〉 ⊗ |w[n]

jy
〉 ⊗ |w[n]

jz
〉. The vector

of indices j can accommodate different lattice constants in general. We will use

this Wannier basis expansion in the following subsection to arrive at the Hubbard

Hamiltonian for many cold atoms in optical lattices.

2.3.3 Hubbard Hamiltonian

To derive the many-body Hamiltonian for a 3D optical lattice system [19, 22]

we consider a general bosonic or fermionic species of cold atoms experiencing

the lattice potential Vopt(r) and an external potential Vext(r) which, for example,

can be a trap potential in an experiment. The microscopic description of such

a system with two-body contact interaction modelled by a pseudo-potential as

discussed in Sec. 2.2 is given by the following second quantised Hamiltonian,

H =
∑
σ

∫
d3rψ†σ(r)

[
− ~2

2m
∇2 + Vopt(r) + Vext(r)

]
ψσ(r)

+
g

2

∑
σ,σ′

∫
d3rψ†σ(r)ψ†σ′(r)ψσ′(r)ψσ(r) , (2.36)

where the field operators ψσ(r) carry a spin index σ and obey the standard canoni-

cal commutation or anti-commutation relations for bosonic and fermionic systems

respectively. The field operator at position r ≡ (x, y, z) and spin σ is then written

in the Wannier function basis,

ψσ(r) =
∑
n,i,σ

w[n](x− xix)w[n](y − yiy)w[n](z − ziz)a[n]
i,σ , (2.37)

with the particle annihilation (creation) operators a
[n]
i,σ

(
a

[n]†
i,σ

)
at site i ≡ (ix, iy, iz)

for the n-th Bloch band obeying commutation or anti-commutation relations for

bosons and fermions respectively.
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With the Wannier expansion the multi-band Hamiltonian can be written as

H = −
∑
m,n
i,j,σ

Jm,ni,j a
[m]†
i,σ a

[n]
j,σ +

∑
k,l,m,n

i,j,p,q,σ,σ′

Uk,l,m,n
i,j,p,q

2
a

[k]†
i,σ a

[l]†
j,σ′a

[m]
p,σ′a

[n]
j,σ +

∑
m,n
i,j,σ

a
[m]†
i,σ a

[n]
j,σ ,

(2.38)

where the generic tunnelling term, interaction term and energy-offset term are

respectively given by,

Jni,j = −
∫
d3rw[n]∗(r− ri)

[
− ~2

2m
∇2 + Vopt(r)

]
w[n](r− rj) , (2.39)

Uk,l,m,n
i,j,p,q = g

∫
d3rw[k]∗(r− ri)w

[l]∗(r− rj)w
[m](r− rp)w[n](r− rq) , (2.40)

εm,ni,j =

∫
d3rw[m]∗(r− ri)Vext(r)w[n](r− rj) . (2.41)

We now focus on the 1D case which we primarily deal with analytically and nu-

merically for the research projects in this thesis. Experimentally quasi-1D regimes

are created by confining the optical lattice along the two transverse directions,

for example along y and z for the lattice along x direction. This can be done

by making the optical lattice potential very deep along the y and z directions.

So for the potential, Vopt(r) = V0x sin2 (kLxx) + V0y sin2
(
kLyy

)
+ V0z sin2 (kLzz)

one takes V0y, V0z � V0x. Taking V0y = V0z = V0⊥ and kLy = kLz = kL⊥ we can

approximate the deep transverse part of the lattice for a single 1D tube as,

V⊥(y, z) = V0⊥
(
sin2 (k⊥y) + sin2 (k⊥z)

)
≈ 1

2
mω2

⊥
(
y2 + z2

)
, (2.42)

with the definition ω⊥ =
√

2V0⊥k2
⊥/m. From this we can define the quasi 1D

version of the two-body coupling constant g as g[1] = 2~ω⊥as. We now go on

to make the first simplification on the Hamiltonian where we restrict the system

to the lowest Bloch band. Contributions from all the other higher bands can be

neglected if all the other energy terms such as the temperature, tunnelling term

and the interaction energy are much smaller the band separation energy ~ωT .

This condition is readily met when the potential depth V0 is greater than several

ER. Also, in this deep lattice limit, the Wannier functions are better localised
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which results in another simplification given by the tight binding approximation.

Here we take the effects coming from nearest-neighbour interaction terms and

next-nearest-neighbour tunnelling terms to be negligible. Now we can write the

single band Hamiltonian, with the band index omitted,

H = −J
∑
〈i,j〉,σ

a†i,σaj,σ +
U

2

∑
i,σ

a†i,σa
†
i,σ′ai,σ′ai,σ +

∑
i,σ

εia
†
i,σai,σ , (2.43)

with the following definitions for the nearest-neighbour tunnelling term J , onsite

interaction term U and onsite energy offset εi, respectively,

J = −
∫
dxw∗(x)

[
− ~2

2m

d

dx2
+ Vopt(x)

]
w(x− a) , (2.44)

U = g[1]

∫
dx|w(x)|4 , (2.45)

εi =

∫
dxVext(x)|w(x− xi)|2 . (2.46)

The derivation of the Hubbard model is the major objective of this chapter where

we have shown that if a dilute ultracold gas where we can model the interaction by

two-body contact potential, is trapped in a sufficiently deep optical lattice setup,

then the essential physics can be explained by this single band Hamiltonian.

So far we have not elaborated on the particle statistics which give rise to very

interesting phenomena even in the ground states of these systems. In the following

subsections we give a brief overview of fermionic and bosonic systems.

2.3.4 Fermi-Hubbard Hamiltonian

The Hubbard Hamiltonian was historically developed for fermions first, partic-

ularly in the context of strongly correlated electrons moving in a lattice [1]. A

simple single band homogeneous (εi = 0) Fermi-Hubbard Hamiltonian in the

backdrop of experiments with optical lattices with two spin degrees of freedom
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σ ∈ {↑, ↓} is given by

HFH = −J
∑
〈i,j〉,σ

c†i,σcj,σ + U
∑
i

ni,↑ni,↓ , (2.47)

where the fermionic annihilation and creation operators ci,σ, and c†i,σ obey the anti-

commutation relation
{
ci,σ, c

†
j,σ′

}
= δi,jδσ,σ′ . The number operator at the i-th site,

ni,σ = c†i,σci,σ can have eigenvalues 0 and 1 due to the Pauli exclusion principle.

In the non-interacting case (U = 0) and for unity filling the system therefore is a

band insulator. For average filling factor less than 1, the behaviour of the system

is metallic. The Fermi-Hubbard model is exactly solvable in 1D, using Bethe

ansatz [82]. The lack of general analytical and exact numerical solutions in higher

dimensions prevents us from having the definite phase diagram, especially in 2D.

A more theoretically well understood regime is the case of half filling. A schematic

version of the phase diagram is presented in the Fig. 2.2, adapted from Ref. [59],

for a three dimensional homogeneous Fermi-Hubbard model at half filling. In this

case, when the interactions are attractive, then for sufficiently low temperature

the system is in a superfluid regime which shows a BEC-BCS crossover [83]. For

weak attractive interactions loosely bound pairs are formed analogous to BCS

pairing in superconductors. For large values of attractive interaction (beyond a

critical value of (|U |/J)) tightly bound pairs of fermions appear which behave

as composite bosons, with repulsive hard-core interactions. Their tunnelling rate

can be calculated in second-order perturbation theory and is proportional to J2/U

[84]. Below a critical temperature set by their tunnelling rate, these composite

bosons undergo Bose-Einstein condensation. Above this temperature a phase of

uncondensed and preformed pairs is predicted [85].

Now on the repulsive side of the interaction at higher temperature and weak re-

pulsion the system is in a delocalised metallic Fermi liquid phase. As the repulsion

is increased a transition into a paramagnetic Mott insulator phase appears which

does not display any spin order. As the temperature is decreased, below a critical

Néel temperature an antiferromagnetic phase with spin order sets in [58]. The

value of Néel temperature decreases exponentially with J/U for weak repulsions
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Figure 2.2: Schematic phase diagram for the ground state of the homogeneous
Fermi-Hubbard Hamiltonian at half filling in three dimension (adapted from
[59]). The abbreviations used are the following: BEC for Bose Einstein Conden-
sation, BCS for Bardeen-Cooper-Schrieffer, AFM for anti-ferromagnetic phase.

and is proportional to J2/U for strong repulsions [86], making the order detection

harder in experiments [33, 34, 60, 61].

2.3.5 Bose-Hubbard Hamiltonian

For a homogenous system of single-species bosons in an optical lattice we can

write down the Bose-Hubbard Hamiltonian. This Hamiltonian predicts a quan-

tum phase transition from a superfluid phase to a Mott insulator phase [24].

Experimental observation of this transition set a benchmark for quantum sim-

ulation with cold atoms [23]. As a guide to the essential behaviour the zero

temperature phase boundaries can be computed in a grand canonical formalism.

In order to ensure that the particle number is fixed we have to add a chemical

potential term to the Hamiltonian, i.e.,

HBH = −J
∑
〈i,j〉

b†ibj +
U

2

∑
i

ni (ni − 1)− µ
∑
i

ni , (2.48)
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where the bosonic annihilation and creation operators bi, and b†i obey the com-

mutation relation
[
bi, b

†
j

]
= δi,j, and ni = b†ibi is the number operator at the i-th

site. The two quantum phases are the ground states of the system depending

on the interplay of the strength of U and J values. When the tunnelling term

dominates i.e. (U/J)→ 0 then the particles are in a superfluid state, delocalised

over the lattice. This state shows an off-diagonal long range order, where the

off-diagonal single particle density matrix elements fall off polynomially (in 1D)

with the distance between the sites. For a lattice of M sites with N bosons on

it, the superfluid ground state would be

|ψSF〉
U/J→0−−−−→

(
1

M

M∑
i=1

b†i

)N

|0〉 . (2.49)

In the thermodynamic limit (M,N → ∞, N/M finite) this state approaches a

product of local coherent states

|ψSF〉
U/J→0−−−−→

M∏
i=1

[
exp

(√
N

M
b†i

)
|0〉i
]
, (2.50)

showing Poisson number statistics. In the other limit i.e. (J/U)→ 0 the interac-

tion term dominates, and to avoid the energy penalty to have more than the mean

number of particles at each site for a commensurate lattice, at all sites particles

are exponentially localised. In this Mott insulator state the off-diagonal single

particle density matrix elements decay exponentially with the distance between

the sites. With the average filling factor n = N/M being an integer, this state is

|ψMI〉
J/U→0−−−−→

M∏
i=1

(
b†i

)n
|0〉 . (2.51)

Mean-field calculations [87] show that for the critical value of phase transition

(U/J)c = 5.8z for n̄ = 1 and (U/J)c = 4n̄z for n̄ > 1, z being the coordination

number. The mean field estimations suffer from large deviations in 1D where

the numerical results [88] show that (U/J)c = 3.37 for n̄ = 1 and (U/J)c = 2n̄

for n̄ > 1. In Ref. [89] a second order perturbation theory approach within the
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Figure 2.3: Zero-temperature mean-field phase transition in Bose-Hubbard
model between the superfluid (SF) and Mott insulator (MI) state. For each
integer filling factor n the MI phase resides inside the Mott lobes denoted by
the blue phase boundaries.

mean field treatment gives the critical (J/U)c value that forms the boundary of

the phase transition (shown in Fig. 2.3),(
J

U

)
c

=
(n− µ/U) (1− n+ µ/U)

z (1 + µ/U)
, (2.52)

where the filling factor n follows n− 1 < µ/U < n.

We now conclude this chapter where an overview of the derivation of the Hubbard

Hamiltonian that can be realised with cold atoms in optical lattices is presented.

The steps to achieve this include discussions on atom-light interaction, inter-

atomic interactions and the band structure in the optical lattices. In the next

chapter we will discuss the coupling of the optical lattice systems to the quantised

radiation fields.



Chapter 3

Optical lattices: open quantum

systems

We have so far described neutral atoms in optical lattices as an isolated system,

setting aside the coupling to the radiation bath given by the field Hamiltonian.

In this chapter we are going to discuss the effects of including the field operators

that are taken to be the sources of decoherence in this thesis. In Sec. 3.1 we take

the simpler case of an atom that is static and interacts with both the driving laser

field and the radiation field. After deriving the master equation that describes the

dynamics of the atomic density operator, we move to a many-atom picture where

the atoms are static at their positions in Sec. 3.2. A discussion of the many-body

master equation where the atomic motion is also taken into account is presented

in Sec. 3.3.

3.1 Single atom master equation

We consider a single atom, static at the origin, subject to a classical driving laser

field and also interacting with the external quantised radiation field. As derived

in the last chapter the Hamiltonian of this system is given by Eq. (2.12). Before

we attempt to solve this full Hamiltonian let us first look at the effect of the

32
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radiation field that acts as a bath in this open quantum system. Coupling to

the bath modes gives rise to spontaneous emission, which disrupts the coherent

dynamics of the atomic system. We discuss the issue of spontaneous emission in

the following using the Wigner-Weisskopf treatment [90].

3.1.1 Spontaneous decay rate

Here we consider a static atom at the origin. The atom is taken as a two level

system where the ground state |g〉 and one particular excited state |e〉 are con-

sidered. Populations in all the other excited states is neglected. With the energy

difference between the two states ωeg, the Hamiltonian is

H = ~ωeg|e〉〈e| −
∑
k,λ

(
ξk,λ|e〉〈g|bk,λ + ξ∗k,λ|g〉〈e|b†k,λ

)
+
∑
k,λ

~ωkb†k,λbk,λ , (3.1)

where, as in the last chapter, the quantum mechanical electric field operator is

defined in terms of a discrete mode expansion with unit polarisation vector ελ

and angular frequency ωk in a quantisation volume V , giving rise to the dipole

coupling strength,

ξk,λ = i

√
~ωk
2ε0V

〈e|d · ελ|g〉 . (3.2)

We also have not kept the interaction terms that give rise to rapidly oscillating

terms and therefore can be neglected under the rotating wave approximation.

Initially we take the atom to be in the excited state and the field to be in the

vacuum state, without any photons present. The wavefunction at t = 0 therefore

is |ψ(t = 0)〉 = |e〉 ⊗ |vac〉. At a later time the atom has finite probability of

descending to the ground state by spontaneous decay, which generates a photon

mode. This means,

|ψ(t)〉 = ce(t)e
−iωegt|e〉 ⊗ |vac〉+

∑
k,λ

ck,λ(t)e
−iωkt|g〉 ⊗ b†k,λ|vac〉 , (3.3)
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where ce and ck,λ are the respective probability amplitudes of no photon emis-

sion and one photon emission in (k, λ) mode in time between 0 and t. Using

the Schrödinger equation we can write the coupled equations for the probability

amplitudes,

ċe(t) = −
∑
k,λ

∣∣∣∣ξk,λ~
∣∣∣∣2 ∫ t

0

dt′e−i(ωk−ωeg)(t−t′)ce(t
′) . (3.4)

Now going to the continuum limit where we take V → ∞ and using spherical

coordinates in k-space with the axis along the dipole vector de,g = 〈e|d|g〉 we

arrive at

ċe(t) = − |de,g|
2

6π2ε0~c3

∫ ∞
0

dωkω
3
k

∫ t

0

dt′e−i(ωk−ωeg)(t−t′)ce(t
′) . (3.5)

The treatment so far has been exact. Now we apply the Wigner-Weisskopf ap-

proximation where the coefficient ce(t) is taken to be slowly varying in time. Due

to the presence of the rapidly oscillating term in the time integral, the dominant

contribution only comes from the region t′ ≈ t. We can therefore evaluate ce(t
′)

only at time t and take it out of the integral. This is essentially treating the

atomic decay as a Markov process where the dynamics of ce(t) only depends on

the current time and not on the past. As t′ ≈ t is the only relevant region the

upper limit in the time integral can be taken to be infinity. Analytical integration

can now be carried out resulting in,

ċe(t) = −
(
−i∆ωL +

Γ

2

)
ce(t) . (3.6)

Here the frequency shift, which is defined through Cauchy principal value,

∆ωL =
1

4πε0

|de,g|2
3π~c3

P
(∫ ∞

0

dωk
ω3
k

ωk − ωeg

)
, (3.7)

is a contribution to the Lamb shift [91]. Due to the diverging nature of the

integral a cutoff frequency is usually introduced which enables one to carry out

the integration and renormalise the atomic transition frequency by absorbing this

relatively small shift. The spontaneous decay rate, on the other hand, is defined
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as,

Γ =
|de,g|2ω3

eg

3π~ε0c3
, (3.8)

which is also known as the Einstein A coefficient. Note that this decay rate can

also be deduced for short times in time-dependent perturbation theory which

leads to Fermi’s golden rule [92]. In the presence of a driving laser field the atom

can be re-excited following a spontaneous decay. We will now look at this problem

with multiple photon emission events in the master equation formalism where the

dynamics of system density operator are governed by optical Bloch equations.

3.1.2 Optical Bloch equations

The Hamiltonian for a laser-driven atom static at the origin and interacting with

external radiation field, as discussed in the last chapter, consists of three terms,

H = Hsys +Hint +HField. Here, Hsys describes the combined system of the atom

driven by the classical laser field, and therefore,

Hsys = ~ωeg|e〉〈e| − σ+de,g ·E+
cl(0, t)− de,g ·E−cl(0, t)σ− , (3.9)

where the classical driving field E+
cl(0, t) = εE0(t)e−iωLt. The Hamiltonian for

external radiation field is described by,

HField =
∑
k,λ

~ωkb†k,λbk,λ . (3.10)

The interaction between the atom and the radiation field is described by,

Hint = −σ+de,g ·E+(0)− de,g ·E−(0)σ− , (3.11)

where the electric field operator, in the continuum limit where we would integrate
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in k-space, is,

E+(r) = i
∑
λ

∫
d3k

√
~ωk

2ε0(2π)3
bk,λe

ik·rεk,λ . (3.12)

In this Hamiltonian we have again used the rotating wave approximation and

therefore the energetically non-conserving terms are absent.

Now in the Heisenberg picture the field mode operators obey,

ḃk,λ(t) = −iωkbk,λ(t) + de,g · εk,λ
√

ωk
2~ε0(2π)3

σ−(t) , (3.13)

which leads to

bk,λ(t) = bk,λ(0)e−iωkt + de,g · εk,λ
√

ωk
2~ε0(2π)3

∫ t

0

dt′e−iωk(t−t′)σ−(t′) . (3.14)

Here in the second term the atomic operator σ−(t) works as a source term. With-

out this source term, the free input field is generated by the first term, which

is,

E+
in(0, t) = i

∑
λ

∫
d3k
√
~ωk/2ε0(2π)3bk,λ(0)e−iωktεk,λ . (3.15)

Now for the terms in Hint the following expression can be used,

−de,g ·E+(0, t) = −de,g ·E+
in(0, t)

− i

~
∑
λ

∫
d3k

~ωk
2ε0(2π)3

|de,g · εk,λ|2
∫ t

0

dt′e−iωk(t−t′)σ−(t′) .

(3.16)

In order to simplify this expression, a standard set of approximations needs to

be applied here. The first one is the Born approximation [93] where the inter-

action coupling strength is taken to be much weaker than the energy scales of

both the system and the environment, which in this case is given by the optical

frequencies. This enables us to neglect the deviation from an uncorrelated state

of the system and bath, where the total density operator can always be written



Chapter 3. Optical Lattices: open quantum systems 37

as a product of their respective density operator when the initial state was also

factorable. In our case the initial state is taken to be |g〉 ⊗ |vac〉. Moreover, the

bath being much larger, we can also assume it to be practically unaffected by

the weak coupling and therefore the bath density operator to remain unchanged.

The next major approximation is the Markov approximation [93], where the sta-

tistical bath parameters are assumed to rapidly return to their equilibrium value

following any possible changes due to interaction with the system. The bath cor-

relation times, set by the optical time scales, are much shorter than the relevant

time steps needed to integrate for the system dynamics, depending on the Rabi

frequency, detuning and spontaneous decay rate, all of which are much shorter

than the optical frequencies. Therefore the current knowledge of the system den-

sity operator is sufficient to determine the future behaviour. In the Born-Markov

approximation we can take σ−(t′) → σ−(t)eiωeg(t−t′) which, along with the sim-

ilar treatment that was carried out in the last subsection lead to the following

simplification, with an expected introduction of a Lamb shift,

−de,g ·E+(0, t) = −de,g ·E+
in(0, t)− i~

(
−i∆ωL +

Γ

2

)
σ−(t) . (3.17)

We can now write down the quantum Langevin equation which is the Heisenberg

equation for the atomic operator,

ȧ(t) =
i

~
[Hsys, a(t)] +

i

~
[σ+(t), a(t)]

(
−de,g ·E+

in(0, t)− ~∆ωLσ−(t)− i~Γ

2
σ−(t)

)
+
i

~

(
−de,g ·E−in(0, t)− ~∆ωLσ+(t) + i~

Γ

2
σ+(t)

)
[σ−(t), a(t)]

=
i

~
[Hsys, a(t)] + Γ

(
σ+(t)a(t)σ−(t)− 1

2
a(t)σ+(t)σ−(t)− 1

2
σ+(t)σ−(t)a(t)

)
− i

~
[σ+(t), a(t)]

(
de,g ·E+

in(0, t)
)
− i

~
(
de,g ·E−in(0, t)

)
[σ−(t), a(t)] , (3.18)

where in the second line the Lamb shift has been absorbed in the redefinition

of the atomic transition frequency. Now to write down the equivalent master

equation we move from the Heisenberg picture to the optical Bloch equations for

the atomic density operator ρ(t) (obtained from the total density operator ρtot
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by tracing over the field) in the Schrödinger picture,

Trsys (aρ̇(t))

=〈ȧ(t)〉

=Trsys⊕Field

{(
i

~
[Hsys, a(t)]

+ Γ

(
σ+(t)a(t)σ−(t)− 1

2
a(t)σ+(t)σ−(t)− 1

2
σ+(t)σ−(t)a(t)

)
− i

~
[σ+(t), a(t)]

(
de,g ·E+

in(0, t)
)
− i

~
(
de,g ·E−in(0, t)

)
[σ−(t), a(t)]

)
ρtot(0)

}

=Trsys

{
a

(
− i

~
[Hsys + β∗(t)σ− − β(t)σ+, ρ(t)]

+ Γ

(
σ−ρ(t)σ+ −

1

2
ρ(t)σ+σ− −

1

2
σ+σ−ρ(t)

))}
, (3.19)

where β(t)ρ(0) = de,g ·E+
in(0, t)ρ(0). Unitarity of the time evolution operator and

invariance of trace under cyclic permutations have been used to arrive at the last

line. As mentioned before, we take the initial state as |g〉 ⊗ |vac〉, which means

β = 0, and we get the following master equation,

ρ̇(t) = − i
~

[Hsys, ρ(t)] + Γ

(
σ−ρ(t)σ+ −

1

2
ρ(t)σ+σ− −

1

2
σ+σ−ρ(t)

)
. (3.20)

The first part in the master equation corresponds to the coherent dynamics and

the dissipative dynamics due to the spontaneous emission is described by the

second part. After a transformation to the rotating frame with ρ̃ = eiωLtρe−iωLt,

this master equation can be alternatively written as

˙̃ρ(t) = − i
~

(
Heff

˜ρ(t)− ˜ρ(t)H†eff

)
+ Γσ− ˜ρ(t)σ+ . (3.21)

The non-Hermitian effective Hamiltonian is defined as

Heff = ~
(
−∆− iΓ

2

)
|e〉〈e| − ~Ω(t)

2
σ+ −

~Ω∗(t)

2
σ− , (3.22)
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with detuning ∆ and Rabi frequency Ω as discussed in the previous chapter. We

now go on to the subject of deriving the master equation for a many-atom system.

3.2 Many-body master equation without motion

The generalisation to the derivation of the master equation for many atoms with

fixed positions is quite straightforward and the result displays different aspects of

many-body physics [94]. In this case for identical two level atoms, the components

of the total Hamiltonian are,

Hsys =
∑
i

(
~ωeg|e〉i〈e| − σ+

i de,g ·E+
cl(ri, t)− de,g ·E−cl(ri, t)σ

−
i

)
(3.23)

Hint =
∑
i

(
−σ+

i de,g ·E+(ri)− de,g ·E−(ri)σ
−
i

)
(3.24)

HField =
∑
λ

∫
d3k~ωkb†k,λbk,λ . (3.25)

For the coupling terms in the interaction Hamiltonian for the many-body case we

write the expression as,

−de,g ·E+(r, t) = −de,g ·E+
in(r, t)

− i

~
∑
λ

∫
d3k

~ωk
2ε0(2π)3

|de,g · εk,λ|2
∫ t

0

dt′e−iωk(t−t′)
∑
i

eik·(r−ri)σ−i (t′) .

(3.26)

The quantum Langevin equation in this case also takes a form that is similar to

the previous single atom case. The effect of the many-body physics is explicitly

displayed by the presence of photon mediated dipole-dipole interaction terms

and spontaneous emission events that can connect two separate atoms. After

absorbing the Lamb shifts in the redefinition of the atomic transition frequencies
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we obtain,

ȧ(t) =
i

~

[
Hsys + ~Γ

∑
i 6=j

Gijσ
+
i (t)σ−j (t), a(t)

]

+ Γ
∑
i,j

Fij

(
σ+
i (t)a(t)σ−j (t)− 1

2
a(t)σ+

i (t)σ−j (t)− 1

2
σ+
i (t)σ−j (t)a(t)

)
− i

~
∑
i

[
σ+
i (t), a(t)

] (
de,g ·E+

in(ri, t)
)
− i

~
∑
i

(
de,g ·E−in(ri, t)

) [
σ−i (t), a(t)

]
,

(3.27)

with F and G defined as a function of the scaled separations ξij = ωeg(ri−rj)/c,

Fij =
3

2

{
[1− (ξ̂ij · d̂eg)2]

sin ξij
ξij

+ [1− 3(ξ̂ij · d̂eg)2]

(
cos ξij
ξ2
ij

− sin ξij
ξ3
ij

)}
(3.28)

Gij =
3

4

{
−[1− (ξ̂ij · d̂eg)2]

cos ξij
ξij

+ [1− 3(ξ̂ij · d̂eg)2]

(
sin ξij
ξ2
ij

+
cos ξij
ξ3
ij

)}
.

(3.29)

The master equation now can be written as,

ρ̇(t) =− i

~

[
Hsys + ~Γ

∑
i 6=j

Gijσ
+
i σ
−
j , ρ(t)

]

+ Γ
∑
i,j

Fij

(
σ−i ρ(t)σ+

j −
1

2
ρ(t)σ+

i σ
−
j −

1

2
σ+
i σ
−
j ρ(t)

)
. (3.30)

The dipole-dipole interaction strength, given by Gij, falls off in an oscillatory way

with the distance |ri−rj| on a length scale of the wavelength of the emitted pho-

ton, and at short distances approaches the static ∼ 1/r3 dipole-dipole behaviour.

The F function also falls off in a similar fashion and we will discuss in chapter 5

the details of the effects of this term in the dissipative part of the master equa-

tion, which is responsible for the very interesting behaviour of collective radiation,

giving rise to superradiance and subradiance. For now we move on to the topic

of the master equation for many atoms when they are allowed to move.
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3.3 Many-body master equation with motion

In this section we will only outline the derivation of the many-body master equa-

tion that includes atomic motion for the bosonic case as was done in Ref. [65].

In chapter 5 we will present a detailed derivation of the master equation for

fermions, starting from a microscopic picture based on the atomic structure of

the experimentally relevant atomic species.

Before we indulge in the discussion of many-body master equation formalism for

bosons, a brief overview of the case of a single atom with motion is presented to

provide a useful insight. For this we consider the system Hamiltonian again for a

laser-driven atom that is allowed to move,

Hsys =
p2

2m
+ ~ωeg|e〉〈e| − σ+de,g ·E+

cl(0, t)− de,g ·E−cl(0, t)σ− . (3.31)

In this case a spontaneous emission of a photon along the direction u results

in a momentum kick. The jump operator corresponding to the transition and

momentum recoil is given by cu = e−ikegu·r|g〉〈e| with keg as the wavenumber

corresponding to the atomic transition frequency. The master equation for the

atomic density operator, under the standard approximations as the previous cases,

has the following form (see, for example, [65, 95] ),

ρ̇(t) =− i

~
[Hsys, ρ(t)] + Γ

∫
duN(u)

(
cuρ(t)c†u −

1

2
c†ucuρ(t)− 1

2
ρ(t)c†ucu

)
,

(3.32)

where the distribution function for the spontaneously emitted photons is given by

N(u) = 3[1−(d̂e,g ·u)2]/8π. In the case of a far-detuned lattice (∆� Ω,Γ, kinetic

energy) one can systematically perform adiabatic elimination of the population in

the excited state and write the effective equation of motion for the ground state

only,

ρ̇gg =− i

~

[
p2

2m
+
|Ω(r)|2

4∆
, ρgg

]
+ Γ

(∫
duN(u)c̃uρgg c̃

†
u −

1

2
c̃†uc̃uρgg −

1

2
ρgg c̃

†
uc̃u

)
.

(3.33)
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Here the optical potential (|Ω(r)|2/4∆) in the coherent evolution section comes

from the AC-Stark shift of the two-level atom. The modified jump operator

c̃u = e−ikegu·rΩ(r)/2∆ is now associated with an absorption of a laser photon

followed by a spontaneous emission along u, resulting in a momentum recoil. An

effective spontaneous emission rate is given by the combined operators in the

following way, Γeff = Γc̃†uc̃u = Γ(|Ω(r)|2/4∆2).

A generalisation of the procedure described above for many bosons was carried

out in Ref. [65]. In that work a two-level bosonic atom is described in second

quantisation by the field operators ψg and ψe, obeying bosonic commutation rela-

tions. At the starting point one can neglect the inter-atomic interaction described

by the short-range physics. Now the master equation can be obtained in a similar

way as was described in the last section, using the Born-Markov approximation

and the rotating wave approximation. As before the master equation contains a

coherent part and a dissipative part, given by Lρ [65],

ρ̇(t) =− i

~
[Hsys +Hdipole, ρ(t)] + Lρ(t) . (3.34)

The atomic motion and atomic structure is included in the system Hamiltonian

Hsys. The dipole-dipole interaction part is given by Hdipole. In the limit of large

detuning (i.e. detuning is much larger than the other atomic energy scales, like

Rabi frequency, spontaneous decay rate etc.), one can neglect the population in

the excited state as the atom is essentially always in the ground state. In a

perturbative approach the atomic structure in Hsys therefore can be eliminated

and the AC Stark shift for the ground state is included which gives the optical

lattice potential. As the strength of the dipole-dipole interaction falls off rapidly

for bosons on different lattice sites the off-site interaction can be neglected. The

on-site dipole-dipole interaction can be absorbed as a small correction to the short-

range collisional interaction, which in experimental situations is parameterised by

the s-wave scattering length in the low energy limit.

The dissipative term Lρ describes the different processes arising from the single-

atom photon emission following an absorption, a collective two-atom process of

absorption and emission, and also a recycling term that is modulated by the F
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function as discussed in the last section. The localising effect of a spontaneous

emission event is due to the presence of this term containing the F function, on

a length-scale set by the wavelength of the emitted photon. Now in the periodic

optical lattice potential it is possible to expand the ground state field operators in

terms of Wannier functions which leads to a description of the coherent dynamics

of the bosons by a multi-band Bose-Hubbard Hamiltonian. In the experiments it

is often relevant to work in lattices deep enough so that it suffices to take only the

lowest band into account. In this case the master equation takes a simpler form

in terms of a single band Bose-Hubbard Hamiltonian HBH and number operators

at each site ni are the dissipative operators. This Lindblad form of the master

equation is:

ρ̇ = − i
~

[HBH , ρ] + γ
∑
i

(
niρni −

1

2
niniρ−

1

2
ρnini

)
. (3.35)

In an event of spontaneous emission the action of a local particle number operator

ni at a particular site i on a coherent wavefunction |ψ0〉 can be thought of a

quantum jump causing onsite localisation:

|ψ0〉 →
ni|ψ0〉
||ni|ψ0〉||

. (3.36)

The initial occupations for a single atom at different sites in the coherent state

prior to the spontaneous emission determine the probabilities of it being localised

at different sites, which results in a mixed state with unchanged occupations.

We now conclude this chapter where an overview of a stepwise derivation of a

many-body master equation is presented for cold atoms in optical lattices in the

presence of spontaneous emission as the source of decoherence, due to coupling

to the quantised vacuum modes of radiation. The numerical techniques to deal

with such many-body systems, with and without decoherence, will be discussed

in the next chapter.
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Numerical techniques

4.1 Introduction

As a method to simulate quantum many-body systems, exact diagonalisation

of the Hamiltonian on the full Hilbert space fails beyond a very small system

size. This is due to the exponential growth of the Hilbert space size with the

system size and therefore our inability to store the state of the system and operate

on the state on a classical computer. For instance, for a two-species Fermi-

Hubbard model at half-filling with M sites and M/2 number of fermions from

each species, the size of the total Hilbert space is (MCM/2)2 (assuming even M).

Even for a 50 site lattice this number is around 1028. Storing this state with double

precision numbers will therefore require around 1014 PB of memory which is far

beyond the largest computational storage capacity even in the foreseeable future.

Furthermore to compute a single time evolution step on this state would require

multiplication by a matrix of which the number of elements is the square of the

Hilbert space size. The number of basic floating point operations (FLOPs) for

the time step is of the order of 1056 which, even with the fastest supercomputers

of present time, would take a time much longer than the age of the universe.

The only way to numerically simulate these systems is therefore to use justified

approximations. In this chapter we present the well established approximate

44
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methods used to numerically compute the ground state of systems of ultracold

atoms on one dimensional optical lattices and also simulate the time evolution of

these systems in the presence of sources that cause decoherence. In Sec. 4.2 we

describe the Density Matrix Renormalisation Group (DMRG) methods, focussing

on the Time Evolving Block Decimation (TEBD) algorithm that we use to carry

out time evolution (Reviews [96, 97]). In Sec.4.3 we review the quantum trajectory

algorithm (Review [73]) which is used in combination with TEBD methods to

tackle the time evolution of open quantum systems.

4.2 TEBD algorithm

DMRG techniques, introduced in 1992 by Steven White, enable us to calculate

the ground state of a wide class of large 1D systems up to a very high precision

[67, 68]. This method overcomes the difficulty of dealing with an exponentially

large Hilbert space by retaining only a computationally tractable fraction of states

that does not change the representation of the state of the system significantly.

Extension of this central idea of DMRG for time evolving problems was attempted

in 2002 by M. Cazalilla [98]. The major breakthrough however came in 2003 with

G. Vidal developing the TEBD algorithm [69, 70]. Unlike the static decimation

of the Hilbert space performed by the DMRG algorithm, this method adaptively

truncates the Hilbert space during time evolution. The relation between DMRG

and TEBD methods was established in 2004 in two articles [99, 100], enabling op-

timisation of the TEBD method by implementing conservation laws from DMRG

language. In this thesis we have primarily worked with the TEBD algorithm for

ground state search and time evolution of quantum many-body states of systems

where the number of particles were conserved. An overview of various aspects of

the TEBD algorithm is presented in this section.
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4.2.1 Schmidt decomposition

The goal of the TEBD method is to compute the time evolution of a many-body

quantum system that can be written as a product of M local Hilbert spaces, i.e.

the state,

|ψ〉 =
d∑

i1,i2,...,iM=1

ci1,i2,...,iM |i1, i2, ..., iM〉 , (4.1)

where ik are the basis for subsystem k. The dimension of the space, dim(H) = dM

as we have taken, for simplicity, a uniform local dimension d. The Schmidt

decomposition is then needed to represent this state as a series of tensors which

is the basis of TEBD algorithm.

A bipartite quantum state comprising of two subsystems A and B, with dimen-

sions dA and dB respectively, can be very generally written as

|ψAB〉 =

dA∑
i=1

dB∑
j=1

ci,j|i〉A ⊗ |j〉B . (4.2)

Using the singular value decomposition (SVD) of matrices in linear algebra, the

coefficient matrix ci,j matrix can be decomposed into

ci,j =

χAB∑
a=1

Ui,aSa,aVa,j , (4.3)

where U and V are unitary matrices of sizes dA× dA and dB × dB respectively, S

is a dA× dB diagonal matrix with non-negative entries known as singular values,

and χAB is the number of such non-zero entries. Denoting λa ≡ Sa,a we can

rewrite the state as a Schmidt decomposition,

|ψAB〉 =

χAB∑
a=1

λa|φAa 〉 ⊗ |φBa 〉 , (4.4)
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where the Schmidt vectors

|φAa 〉 =
∑
i

Ui,a|i〉A , (4.5)

|φBa 〉 =
∑
j

Va,j|j〉B , (4.6)

form orthonormal bases in the two subsystems A and B respectively, due to the

unitarity of U and V . Here χAB is known as the Schmidt rank of this bipartite

system. It is bounded from above by min(dA, dB). Also, λa are known as Schmidt

coefficients and they satisfy the normalisation condition

∑
a

λ2
a = 1 . (4.7)

4.2.2 State representation

At the starting point of the application of TEBD method we write the coefficients

in Eq. (4.1) as a product of M tensors and M − 1 vectors:

ci1,i2,...,iM =

χ1∑
a1

χ2∑
a2

...

χM−1∑
aM−1

Γ[1]i1
a1

λ[1]
a1

Γ[2]i2
a1a2

...Γ[M ]iM
aM−1

, (4.8)

where the Γ tensors and the λ vectors are constructed in such a way that when

a Schmidt decomposition is performed at the l-th bond i.e. between the l-th and

(l + 1)-th site, one gets λ
[l]
al as the Schmidt coefficients of that bipartite splitting.

The orthonormal sets of eigenvectors also turn out to be

|φ[1...l]
al
〉 =

d∑
i1,i2,...,il

χ1∑
a1

χ2∑
a2

...

χl−1∑
al−1

Γ[1]i1
a1

λ[1]
a1

Γ[2]i2
a1a2

...Γ[l]il
al−1al

|i1, i2, ..., il〉 , (4.9)
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and

|φ[l+1...M ]
al

〉

=
d∑

il+1,il+2,...,iM

χl+1∑
al+1

χl+2∑
al+2

...

χM−1∑
aM−1

Γ[l+1]il+1
alal+1

λ[l+1]
al+1

Γ[l+2]il+2
al+1al+2

...Γ[M ]iM
aM−1

|il+1, il+2, ..., iM〉 ,

(4.10)

so that one can write the state as:

|ψ〉 =

χl∑
al

λ[l]
al
|φ[1...l]
al
〉 ⊗ |φ[l+1...M ]

al
〉 . (4.11)

This particular form of state representation is achieved by iterative Schmidt de-

compositions. We start at bond 1:

|ψ〉 =

χ1∑
a1

λ[1]
a1
|φ[1]
a1
〉 ⊗ |φ[2...M ]

a1
〉 . (4.12)

The Schmidt vectors
{
|φ[1]
a1〉
}

can be written as a superposition of local basis

states {|i1〉},

|φ[1]
a1
〉 =

d∑
i1

Γ[1]i1
a1
|i1〉 . (4.13)

For the other set of Schmidt vectors
{
|φ[2...M ]
a1 〉

}
, the local basis states {|i2〉} can

be factored out,

|φ[2...M ]
a1

〉 =
d∑
i2

|i2〉 ⊗ |j[3...M ]
a1,i2

〉 , (4.14)

where
{
|j[3...M ]
a1,i2

〉
}

are unnormalised states, in general. They can be expanded as

a superposition of the Schmidt vectors on the sites that are to the right of site 2,
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obtained by a Schmidt decomposition at bond 2, i.e.

|j[3...M ]
a1,i2

〉 =

χ2∑
a2

C [2]j2
a1a2
|φ[3...M ]
a2

〉 , (4.15)

where C is the coefficient tensor. C can be written as a product of a Γ tensor and

the Schmidt coefficient vector for bond 2, λ
[2]
a2 . This leads to C

[2]j2
a1a2 = Γ

[2]j2
a1a2λ

[2]
a2 .

Now we can rewrite Eq. (4.12), using Eq. (4.13) and Eq. (4.14),

|ψ〉 =
d∑

i1,i2

χ1∑
a1

χ2∑
a2

Γ[1]i1
a1

λ[1]
a1

Γ[2]i2
a1a2

λ[2]
a2
|i1, i2〉 ⊗ |φ[3...M ]

a2
〉 . (4.16)

These steps, when iterated for the remaining M − 3 bonds, lead to the desired

representation in Eq. (4.8) which is denoted as a matrix product state (MPS)

[101]. It is an exact representation of the state where we have replaced the dM

coefficients by (dχ2 + χ)M coefficients. Here χ = maxl(χl) is known as the

Schmidt number. As χ can grow exponentially with system size, for practically

working with the MPS a systematic truncation formalism must exist. We discuss

the truncation procedure and the reasons why it works in the next subsection.

4.2.3 Truncation and validity

Considering the bipartite system in Eq. (4.4), we can write down the reduced

density operators:

ρA =

χAB∑
a=1

λ2
a|φAa 〉〈φAa | , (4.17)

ρB =

χAB∑
a=1

λ2
a|φBa 〉〈φBa | . (4.18)

The eigenspectra of these matrices are thus given by the squares of the Schmidt

coefficients. The central idea of the DMRG method is to keep only those Schmidt

vectors which correspond to the D largest eigenvalues. D is known as the bond
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dimension. A good assessment of this approximation is given by how the eigen-

values decrease, when written in descending order. For certain classes of gapped

systems in 1D the eigenvalues have been observed to decay exponentially [102].

Therefore, the true state can be approximated by reducing the Hilbert space to

D which is computationally tractable. The truncation error at each bond for

a many-body state, which is an indicator of the difference between the actual

state and the truncated state, is quantified using the normalisation of Schmidt

coefficients (4.7):

εl = 1−
D∑
al=1

(
λ[l]
al

)2
. (4.19)

The accuracy of this method of keeping only a fixed number of Schmidt vectors

is better for systems containing smaller bipartite entanglement, quantified, for

example, by the von Neumann entropy,

SAB = −Tr(ρAlog2ρA) = −
χAB∑
a=1

λ2
alog2

(
λ2
a

)
. (4.20)

To have an intuitive insight into the connection between the bipartite entangle-

ment and the bond dimension, one can look at the maximally entangled state of

the bipartite system. The number of basis states required to represent this state

exactly is 2SAB . This gives an idea about the value of bond dimension needed for

an exact expression of the state. This truncation method therefore works best for

systems containing small bipartite entanglement [103]. It has been shown that for

gapped 1D systems governed by short-range Hamiltonians and away from criti-

cality, the von Neumann entropy in the ground state saturates as the size of the

system grows [104]. At critical points the von Neumann entropy is shown to be

diverging logarithmically with the system size in 1D. These results follow from

the so-called area laws of entanglement entropy which predict that for the ground

states of Hamiltonians with short-range interaction and gap to excitations, the

bipartite entanglement entropy is proportional to the surface of the boundary

[104]. Hence for the 1D Hamiltonians of interest, a finite value of D can represent

the states away from criticality. At critical points the bond dimension needed for
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a faithful representation diverges polynomially. In practice the numerical results

are always checked for convergence with increasing D systematically and for small

enough system sizes this method works out quite well in general. Along with this

the truncation errors are also checked to ensure that they remain small.

4.2.4 Local expectation value

After the truncation the quantum many-body state can be conveniently stored

with at most D Schmidt coefficients at each bond. Now it is quite straightfor-

ward to calculate physically interesting quantities. In order to evaluate one such

quantity, namely a local expectation value, in the first step a local operator of

the form V [l] ≡∑il,jl
V

[l]il
jl
|il〉〈jl| acts on the state (4.8). We can express the state

in terms of local Schmidt basis representations at site l, using the definition from

(4.9) and (4.10),

|ψ〉 =
d∑
il

min(χl−1,D)∑
al−1

min(χl,D)∑
al

λ[l−1]
al−1

Γ[l]il
al−1al

λ[l]
al
|φ[1...l−1]
al−1

〉 ⊗ |il〉 ⊗ |φ[l+1...M ]
al

〉 . (4.21)

To obtain the resulting state |ψ̃〉 after the action of the local operator, only the

Γ tensor need to be updated,

Γ̃[l]il
al−1al

=
∑
jl

V
[l]il
jl

Γ[l]jl
al−1al

. (4.22)

This step requires ∼ D2d2 basic operations. The orthonormality of the Schmidt

basis reduces the task in the second step of calculating the expectation value to

this summation,

〈ψ|V [l]|ψ〉 =
∑
il

∑
al−1,al

(
λ[l−1]
al−1

)2

Γ∗[l]ilal−1al
Γ̃[l]il
al−1al

(
λ[l]
al

)2
. (4.23)

This step requires ∼ D2d basic operations. Any local observable e.g. number of

particles at a site can be evaluated in this way.
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4.2.5 Off-Site correlation

Other observables of immense importance are off-site correlation functions, e.g.

the single particle density matrix. In this case in the first step an operator acting

on two different sites, V [l,l′] ≡ V [l]V [l′] operates on the following representation of

the state,

|ψ〉 =
∑

il,il+1,...,il′

∑
al−1,al,...,al′

λ[l−1]
al−1

Γ[l]il
al−1al

λ[l]
al

Γ[l+1]il+1
alal+1

...λ[l′−1]
al′−1

Γ
[l′]il′
al′−1a

′
l
λ[l′]
al′

|φ[1...l−1]
al−1

〉 ⊗ |il, il+1, ..., il′〉 ⊗ |φ[l′+1...M ]
al′

〉 , (4.24)

where l′ > l. After the Γ tensors are updated as in the previous case the correla-

tion elements then can be calculated:

〈ψ|V [l,l′]|ψ〉 =
∑

il,il+1,...,il′

∑
al−1,al,...,al′

∑
bl−1,bl,...,bl′−1

(
λ[l−1]
al−1

)2

Γ
∗[l]il
al−1bl

Γ̃[l]il
al−1al

λ
[l]
bl
λ[l]
al

Γ
∗[l+1]il+1

blbl+1
Γ̃[l+1]il+1
alal+1

λ
[l+1]
bl+1

λ[l+1]
al+1

...Γ
∗[l′]il′
bl′−1al′

Γ̃[l′]il′
al′−1al′

(
λ[l′]
al′

)2

, (4.25)

requiring ∼ (l′ − l)D3d basic operations.

4.2.6 Two-site gate

The main advantage of using TEBD method is to be able to work with operators

acting on adjacent sites. This becomes a necessary step for time evolution as we

deal with such Hamiltonians in this thesis. Such an operator can be written as

a two-site gate, V [l,l+1] ≡ V
ilil+1

jljl+1
|il, il+1〉〈jl, jl+1|. We write the state in terms of

local basis at sites l and l+1 and the Schmidt basis for the left and right of those

two sites:

|ψ〉 =
∑
il,il+1

∑
al−1,al,al+1

λ[l−1]
al−1

Γ[l]il
al−1al

λ[l]
al

Γ[l+1]il+1
alal+1

λ[l+1]
al+1
|φ[1...l−1]
al−1

〉 ⊗ |il, il+1〉 ⊗ |φ[l+2...M ]
al+1

〉 .

(4.26)
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After the action of the two-site gate the resulting state can be written as,

˜|ψ〉 =
∑
il,il+1

∑
al−1,al+1

Θilil+1
al−1al+1

|φ[1...l−1]
al−1

〉 ⊗ |il, il+1〉 ⊗ |φ[l+2...M ]
al+1

〉 , (4.27)

with the following definition,

Θilil+1
al−1al+1

=
∑
jl,jl+1

∑
al

V
ilil+1

jljl+1
λ[l−1]
al−1

Γ[l]jl
al−1al

λ[l]
al

Γ[l+1]jl+1
alal+1

λ[l+1]
al+1

. (4.28)

Building all the Θ tensors requires ∼ D3d4 basic operations. The central idea of

the TEBD algorithm is to then ensure orthonormality again at the l-th bond by

performing a SVD on the Θ tensor and keeping the D largest Schmidt coefficients.

To do so the elements of the Θ tensor are regrouped into (al−1×il, il+1×al) matrix,

which has at most (Dd,Dd) dimension. The number of basic operations to carry

out the SVD step on this matrix is ∼ D3d3. The SVD is followed by a truncation

procedure to keep only the D largest Schmidt coefficients. The new Schmidt

vectors that are retained form the adapted truncated Hilbert space at the l-th

bond. After reshaping the matrices obtained after SVD into tensor we get,

Θilil+1
al−1al+1

→
∑
al

Γ
′[l]il
al−1al

λ̃[l]
al

Γ
′[l+1]il+1
alal+1

. (4.29)

The action of the two-site operator is now conveyed through these new tensors

and Schmidt values. To recover the Schmidt values at the (l−1)-th and (l+1)-th

bonds the following operations need to be done,

Γ̃[l]il
al−1al

=
[
λ[l−1]
al−1

]−1

Γ
′[l]il
al−1al

, (4.30)

and

Γ̃[l+1]il+1
alal+1

= Γ
′[l+1]il
alal+1

[
λ[l−1]
al

]−1
. (4.31)

Here precautions must be taken to avoid division by very small Schmidt values.

In practice a cutoff is defined so that Schmidt values only greater than that are

considered to ensure numerical stability.
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4.2.7 Time evolution using Suzuki-Trotter decomposition

The Hamiltonians we are interested in in this thesis only contain local and next-

neighbour terms. Such a Hamiltonian with next-neighbour operators h
(2)
l,l+1 and

single site operators h
(1)
l is written as,

H =
M−1∑
l=1

h
(2)
l,l+1 +

M∑
l=1

h
(1)
l . (4.32)

This Hamiltonian can be expressed solely in terms of next-neighbour operators,

i.e. H =
∑M−1

l=1 hl,l+1, with the definition,

hl,l+1 = h
(2)
l,l+1 +

h
(1)
l

2
⊗ 1l+1 + 1l ⊗

h
(1)
l+1

2
+ δl,1

h
(1)
l

2
⊗ 1l+1 + δl,M−11l ⊗

h
(1)
M

2
.

(4.33)

Now the time evolution operator for a short time δt, U = e−iHδt can be written

in terms of two-site gates (~ ≡ 1). To do so we first write the Hamiltonian in

terms of even and odd operators, namely, H =
∑

l odd hl,l+1 +
∑

l even hl,l+1. This

allows for the following expression, correct up to second order in time step,

U =
∏
l odd

e−ihl,l+1δt
∏
l even

e−ihl,l+1δt e

− 1
2

∑
l odd

hl,l+1,
∑
l even

hl,l+1

δt2
, (4.34)

where we have used the compatibility of each of the even and odd terms with

each one of their own kind. To express the time evolution operator as a product

of two-site gates we use Suzuki-Trotter decompositions [105] which preserve the

unitarity of the time evolution operator. In the first-order expansion where the

error introduced is O (δt2), we get,

U =
∏
l even

e−ihl,l+1δt
∏
l odd

e−ihl,l+1δt +O
(
δt2
)
. (4.35)
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These gates acting on neighbouring sites can be sequentially applied on a quantum

state as explained in the previous subsection. The Trotter errors can be made

smaller by choosing smaller time steps. The other way of reducing the error is to

use higher order expansions [106]. For example, the second order Suzuki-Trotter

decomposition looks like,

U =
∏
l odd

e−ihl,l+1
δt
2

∏
l even

e−ihl,l+1δt
∏
l odd

e−ihl,l+1
δt
2 +O

(
δt3
)
, (4.36)

which produces O (δt3) error. Fourth order Suzuki-Trotter decompositions are

also widely used which give O (δt5) error. An application of the time evolution

operator on the quantum state where all the two-site gates act once on the quan-

tum state is known as a sweep. For evolution with imaginary time these gates

are non-unitary and therefore result in orthonormality problems. We address this

issue in the next subsection.

4.2.8 Imaginary time evolution

The ability to perform time evolution on a quantum state can be used to find

the ground state of the system using imaginary time during the simulation so

that the evolution operator becomes e−Ht. This operator when acted on the state

expanded in the eigenbases of the Hamiltonian H, can be seen to suppress all

states other than the ground state exponentially:

e−Ht|ψ〉 =
∑
n=0

e−Entcn|En〉

= e−E0t

(
c0|ψGS〉+

∑
n=1

e−(En−E0)t|En〉
)
, (4.37)

which will have more weight for the ground state if an energy gap exists between

the ground and first excited state. It is therefore clear to see that when simulated

for large enough time the system will be steered into the ground state provided

that the initial state has a non-zero overlap with the ground state. This method

of ground state search is quite robust against numerical noise. This is because
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any faulty intermediate state can potentially be regarded as a new starting state

for the search. Moreover the numerical noises help fulfilling the non-zero overlap

condition between the starting state and the ground state. In practice usually a

product state of the quantum many-body system is chosen to initiate the simu-

lation as it is very straightforward to be turned into an MPS form. The initial

product state,

|ψp〉 =
M∏
l=1

(
d∑

il=1

cil |il〉
)

(4.38)

can be expressed in the form of Eq. (4.8) by choosing to write λ
[l]
al = δal,1 and

Γ
[l]il
al−1al = cilδal−1,1δal,1. Now provided 〈ψp|ψGS〉 6= 0 the ground state can be

reached:

|ψGS〉 = lim
t→∞

e−Ht|ψp〉
‖ e−Ht|ψp〉 ‖

. (4.39)

The normalisation in practice is actually done by normalising the Θ tensor after

each two-site gate has been applied.

One important problem that arises here due to the non-unitarity of the gate is

that this operation at the sites (l, l + 1) explicitly orthonormalises the Schmidt

vectors
{
|φ[1...l]
al 〉

}
and

{
|φ[l+1...M ]
al 〉

}
but assumes that the Schmidt vectors at all

the other bonds stays orthonormal. While this is the case for a unitary operation,

a non-unitary operator can affect the orthonormality of the Schmidt vectors that

is connected to the part of the system where it acts. Therefore for these two sites

in question, on the left part
{
|φ[1...l+1]
al+1 〉

}
,
{
|φ[1...l+2]
al+2 〉

}
, ... and on the right part{

|φ[l...M ]
al−1 〉

}
,
{
|φ[l−1...M ]
al−2 〉

}
, ... may not remain orthonormal. This is unsuitable for

a sequential operation of two-site gates if in the next instance sites l+2 and l+3 are

acted on. A simple work-around this problem for Suzuki-Trotter decomposition

where the string of odd operators are followed by a string of even operators is

the following: odd operator acts on sites (1, 2), identity operator acts on (2, 3),

odd operator acts on (3, 4),..., odd operator acts on (M−1,M), identity operator

acts on (M − 1,M), even operator acts on (M − 2,M − 1),..., even operator acts
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on (2, 3), identity operator acts on (1, 2). Here we have assumed M to be even.

These forward and backward sweeps make sure at each step that the necessary

Schmidt vectors are orthonormal. After this another two way sweep is performed

with only identity operators to restore a completely orthonormal representation

of the quantum state.

4.2.9 Particle number conservation

Optimisation of the TEBD code is possible by importing several tools from the

DMRG language. One such instance would be the implementation of conserved

quantum numbers such as total particle numbers, total magnetisation etc. In this

thesis we deal with Hubbard models with fixed number of particles. In this case

if the total number of particles is N then the Θ
ilil+1
al−1al+1 obtained after the two-site

gate operation is only nonzero when N (al−1) +N (il) +N (il+1) +N (al+1) = N .

Defining NR as the number of particles on the right subsystem of site l we can

write the resulting state after the two-site gate operation, following Eq. (4.27),

˜|ψ〉 =
∑
NR

∑
al−1,il|N−NR

∑
il+1,al+1|NR

Θilil+1
al−1al+1

|φ[1...l−1]
al−1

〉 ⊗ |il, il+1〉 ⊗ |φ[l+2...M ]
al+1

〉 , (4.40)

where the state indices are such that they obey the particle conservation on

both left and right of the site l. Now for a particular value of NR the elements

of the Θ tensor can be regrouped into θ matrices of NR-dependant dimensions

((al−1 × il)NR , (il+1 × al)NR). We can then write,

˜|ψ〉 =
∑
NR

∑
(al−1×il)NR

∑
(il+1×al)NR

θNR(al−1×il)NR ,(il+1×al)NR
|φ[1...l−1]
al−1

〉 ⊗ |il, il+1〉 ⊗ |φ[l+2...M ]
al+1

〉 .

(4.41)

As we work with two-site gates that conserve the total number of particles on

those two sites, the matrix corresponding to the full Θ tensor is block-diagonal

with the θNR matrices making up the blocks for particular values of NR when

the basis states are appropriately ordered. Therefore instead of performing an

SVD on the full matrix we can separately work on the blocks and this is what
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optimises the algorithm by causing a noticeable speedup and also allowing for

larger bond dimensions. In practice for each site every particular quantum number

is tabulated starting from the initial state during a time evolution. This can be

done by storing each of the Γ tensors for all sites and for all possible values of

N l
R, i.e. with an extra index. These Γ[l,N l

R] tensors are then updated when the

corresponding θNR matrices go through SVD followed by truncation.

In case there is more than one conserved quantum number, we need to fulfil

the conservation of all of them simultaneously and correspondingly the single

quantum number NR would be replaced by a vector of quantum numbers.

4.3 Quantum trajectory algorithm

In this thesis we typically work with quantum systems that are not isolated from

the environment. Quantum trajectory methods [71–73, 107, 108], which were

developed in the early 1990s in the quantum optics context have proved to be

robust techniques to study general open quantum systems provided the master

equation can be written in Lindblad form. In this method the master equation

is essentially rewritten so that the quantum system evolves in time under an

effective Hamiltonian until it is affected by a particular type of decoherence at

a particular point of time. In the end a properly wighted stochastic average is

carried out over all these different types of decoherence and the time instances.

The master equation for the density operator ρ of an open quantum system writ-

ten in the Lindblad form is

d

dt
ρ = − i

~
[H, ρ] +

∑
m

γm

(
cmρc

†
m −

1

2
c†mcmρ−

1

2
c†mcmρ

)
, (4.42)

where H is the system Hamiltonian, γm is the rate of decoherence due to m-

th decay channel and cm is the Lindblad jump operator corresponding to that
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channel. This master equation can be rewritten as

d

dt
ρ = − i

~

(
Heffρ− ρH†eff

)
+
∑
m

γmcmρc
†
m , (4.43)

with the effective (non-hermitian) Hamiltonian defined as

Heff = H − i

2

∑
m

~γmc†mcm . (4.44)

In the quantum trajectory method the master equation is rewritten so that it

can be considered as a stochastic average over individual trajectories which are

numerical evolution as pure states. Evolving the full density operator requires

keeping track of D2
H elements, where DH is the Hilbert space dimension. Propa-

gating the state vector, on the other hand, only requires evolving DH elements.

This however comes with the burden of sampling over Ntraj number of quantum

trajectories. This would be numerically advantageous over the more expensive

propagation of the full density operator only when the number of the trajectories

sampled is smaller than the Hilbert space dimension.

The description of this method is presented in the following. If at time t, the den-

sity operator ρ(t) corresponds to the pure state ψ(t) (this can be easily generalised

to mixed states), then at time t+ ∆t, we take

|ψ̃(t+ ∆t)〉 = (1− i

~
Heff∆t)|ψ(t)〉 , (4.45)

resulting in loss of norm ∆p, that can be attributed to contributions from the

different decay channels ∆pm in the following way

∆p = 1− 〈ψ̃(t+ ∆t)|ψ̃(t+ ∆t)〉

= 〈ψ(t)| i
~

(
Heff −H†eff

)
|ψ(t)〉∆t

= 〈ψ(t)|
∑
m

γmc
†
mcm|ψ(t)〉∆t

=
∑
m

∆pm∆t , (4.46)
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A normalised |ψ(t+∆t)〉 is chosen to be evolved by Heff from the previous instance

of time with probability 1 − ∆p and acted upon by one of the jump operators

with probability ∆p. The particular jump operator cm is chosen with probability

∆pm∆t/∆p. Therefore, after normalisation we get,

|ψ(t+ ∆t)〉 =

{
(1− i

~Heff∆t)|ψ(t)〉√
1−∆p

with probability 1−∆p
√
γmcm|ψ(t)〉√

∆pm
with probability ∆p

. (4.47)

To see the how the ensemble average over theNtraj number of quantum trajectories

gives equivalent results to the master equation, we construct the corresponding

average density operator, ρav(t) = |ψ(t)〉〈ψ(t)|. At time t+ ∆t,

ρav(t+ ∆t) =(1−∆p)
(1− i

~Heff∆t)|ψ(t)〉〈ψ(t)|(1 + i
~H
†
eff∆t)

1−∆p

+ ∆p
∑
m

∆pm∆t

∆p
γm

cm|ψ(t)〉〈ψ(t)|c†m
∆pm

=ρav(t)−
i

~
∆t
(
Heffρav(t)− ρav(t)H†eff

)
+ ∆t

∑
m

γmcmρav(t)c
†
m ,

(4.48)

which is what the master equation Eq. (4.43) would produce in the first order

approximation in time step.

For an operator V , its dynamical expectation value 〈V 〉t can be obtained by the

following procedure. The trajectories can be taken to be statistically indepen-

dent under the assumption that the random numbers implemented in the time

evolution are truly random. Then 〈V 〉t is estimated by the trajectory-average,

V (t) =
1

Ntraj

Ntraj∑
i=1

Vi(t) =
1

Ntraj

Ntraj∑
i=1

〈ψi(t)|V |ψi(t)〉 . (4.49)

With the implementation of truly random numbers, {Vi(t)} can be taken to be

independent and identically distributed random variables with mean 〈V 〉t. Then

in the limit of large Ntraj, we can apply the central limit theorem and the prob-

ability distribution of V (t) can be well approximated by a normal distribution
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with mean 〈V 〉t. The standard deviation of this distribution is given by,

σV (t) =
σ〈V 〉t√
Ntraj

, (4.50)

where σ〈V 〉t is the true standard deviation for the distribution of 〈V 〉t. Hence the

statistical error of the estimation of 〈V 〉t, given by σV (t), goes as 1/
√
Ntraj. This

formalism of propagating the density operator therefore becomes more accurate

as Ntraj is increased. We would also achieve better results with smaller values of

∆t as this method is first order in time-step.

The quantum trajectory algorithm can be easily combined with the TEBD method

described in Sec. 4.2. Propagating the state under the effective Hamiltonian Heff

or applying a particular jump operator then can be straight-forwardly imple-

mented. For the time evolution normalisation of the state is carried out after a

Trotter gate has been applied locally and the normalisation factor is used to deter-

mine the nature of the evolution for the next time step as described by Eq. 4.47.

The effectiveness of the use of combination of quantum trajectory method with

TEBD depends on the behaviour of the entanglement growth in the system which

in turn strongly depends on the particular problem and the dynamics in the con-

text of the relevant quantum jumps. These jump operators essentially induce

local quantum quenches for individual trajectories which in principle leads to

slower growth of entanglement than a global quench [109]. It is advisable, in

practice, that the individual trajectories are monitored for the growth of entan-

glement as it can be significantly for different Hamiltonians and jump operators

and for different trajectories.

This brings us to the end of this chapter where we have given an overview of the

TEBD method under the DMRG framework to deal with the exponential growth

of the Hilbert space in many-body problems. This method can be combined with

quantum trajectory algorithm that is also discussed as a means to compute the

time evolution in an open quantum system. This particular combination is used

in the proceeding chapter to study the open system dynamics of many fermions

in optical lattices.



Chapter 5

Dynamics of fermions in optical

lattices with radiation bath

5.1 Introduction

This chapter is based on the paper “Light scattering and dissipative dynamics

of many fermionic atoms in an optical lattice”, Physical Review A, 90, 023618,

(2014) [110]. The objective of this study is to understand the dissipative dynamics

due to spontaneous emission in a system of fermionic atoms in an optical lattice

formed by far-detuned laser light. We derive the many-body master equation for

this system starting from the microscopic description of the atomic structures of

both group-I and group-II atoms. We see that the system dynamics is governed

by a two-species Fermi-Hubbard Hamiltonian, with tunnelling rate J and onsite

interaction energy U , and a master equation that describes light scattering. We

then compute the dynamics of the system in two different regimes of interaction

This work is taken in part from the publication Light scattering and dissipative dynamics
of many fermionic atoms in an optical lattice, S. Sarkar, S. Langer, J. Schachenmayer, and
A. J. Daley, Phys. Rev. A, 90, 023618, (2014). The author of this thesis made all of the
analytical calculations, and performed or collaborated on all of the numerical calculations, as
well as writing most of the article.
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that we are particularly interested in, namely, strongly repulsive and strongly

attractive. The scattering induced rate of decoherence γ is usually much smaller

than the energy scales in the Hamiltonian and in current experiments, γ can be

chosen to be around 0.001− 0.01J . The relevant dynamical energy scale for the

ordered states that are formed in these regimes however comes form spin super-

exchange processes in perturbation theory and is ∼ J2/U . This implies that

the system might be quite susceptible to the rate of decoherence in the strongly

interactive regime where U ∼ 10J . The contrasting results that we obtain for

the magnetically ordered ground state in the repulsive case and the ground state

comprising mostly of bound dimers in the attractive case are reported in the

following sections. In the first case we find the effect of decoherence is greatly

suppressed while in the second case the susceptibility of coherence in the system

is found to be enhanced. In this work along with analytical methods we also

use a combined approach of time-dependent DMRG methods and the quantum

trajectories algorithm for the numerical calculations. We start in Sec. 5.2 with an

introduction to the atomic physics of a single group-I atom or group-II atom and

justify the microscopic assumptions we use as a basis for describing the many-

body dynamics. In Sec. 5.3 we outline the derivation of the many-body master

equation for light scattering by fermionic atoms. Sec. 5.4 presents the intuitive

regime of atoms in a double-well potential, which leads to Sec. 5.5, where we

study the full many-body dynamics on a lattice. A brief summary is included in

Sec. 5.6.

5.2 Atomic physics

To provide the framework for the derivation of the master equation, we sum-

marise the relevant atomic physics for the atomic species predominantly used in

experiments with ultracold atoms. Group-I (alkali-metal) atoms have been used

widely, and recently group-II (alkaline-earth-metal) atoms have been established

for the realisation of systems with SU(N) symmetry [111, 112] . We consider

spontaneous emissions when an atom is trapped in an optical lattice created by
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a far-detuned laser field and show that the atom returns to the same state it

started from with very high probability. In addition the scattered photons are

also indistinguishable, resulting in low direct spin decoherence.

To compute the transition rates we start by solving the optical Bloch equations

for multi-level systems in the presence of a far-detuned laser field and radiation

bath. In the steady state the relative probability amplitude associated with the

ith excited level is Ωi/2∆i, where Ωi and ∆i are the Rabi frequency and detuning

for that level respectively. Therefore we take an atom consisting of ground states

(|g1〉, |g2〉, ...) that can be virtually excited to a set of excited states (|e1〉, |e2〉, ...)
due to the presence of a laser which, with respect to |gi〉 and |ej〉, is detuned by ∆ij

and gives rise to a Rabi frequency Ωij. If |gi〉 is the starting state of the atom then

the virtually excited state can be shown, by solving the optical Bloch equations,

to be |egi〉 ∝
∑

j(Ωij/∆ij)|ej〉. The spontaneous decay rate from |egi〉 to a ground

state |gf〉 is then given by Fermi’s golden rule and is ∝ |∑q〈gf |dq|egi〉|2 where dq

is the projection of the dipole operator along q, the polarisation of the emitted

photon. The dipole matrix elements between two hyperfine states states is given

by (see, for example Ref. [15]),

〈F ′,m′F |dq|F,mF 〉

= 〈F ′,m′F |
√

4π

3
erY q

1 |F,mF 〉

∝ Radial part× (−1)1+I+S+J+L′+J ′−m′F
√

(2J + 1)(2F + 1)(2J ′ + 1)(2F ′ + 1)(
F 1 F ′

mF q −m′F

){
L′ J ′ S

J L 1

}{
J ′ F ′ I

F J 1

}
, (5.1)

where the array of quantum numbers in parentheses denote the Wigner 3j symbols

and the array in curly braces denote Wigner 6j symbols. The radial part gives

the same multiplicative factor for the relevant calculations as we always look at

the ratio of dipole elements between S and P orbitals. One can also calculate the

dipole transition matrix between two |J,mJ ; I,mI〉 states and this matrix element
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is given by (see [15]),

〈J ′,m′J ; I,m′I |dq|J,mJ ; I,mI〉 ∝Radial part× (−1)L
′+J ′−m′J

√
(2J + 1)(2J ′ + 1)(

J 1 J ′

mJ q −m′J

){
L′ J ′ S

J L 1

}
δmI ,m′I .

(5.2)

Now we connect this result with the hyperfine atomic structures of group-I and

group-II atomic cases. Calculating the dipole matrix elements [15] enables us to

write down the excited state that a particular ground state would go to in the

presence of a laser with a particular polarisation q. In general the corresponding

excited state will be a superposition of different hyperfine states. The interference

between the decay channels from these states gives the resultant final decay rate

to any of the ground states. In the following we give two prototypical explicit

examples for both atomic species, 171Yb (group-II like) and 6Li (group-I).

5.2.1 Group-II like atoms

First we look at the case of group-II like atoms. We specifically choose 171Yb

[Fig. 5.1(a)] as it has similar electronic structure to group-II atoms with two va-

lence electrons in the outer shell. This atom has a ground state which is a spin

singlet, with zero total electronic angular momentum. Hence the ground states

differ only in the z-component of the nuclear spin, I = 1/2, and we have two

states in the lowest manifold. The electric field of the laser only couples directly

to the orbital motion of the electron, and we can define a detuning ∆ from the

most closely coupled excited level, e.g., 1P1 (using spectroscopic notation), as the

difference between the laser frequency and atomic transition frequency. If the

field is far detuned, i.e., ∆ is large compared with the hyperfine structure energy

splitting δhfs, then the individual hyperfine states cannot be resolved, and the

hyperfine coupling cannot be used to rotate the nuclear spin state during sponta-

neous emissions. Phrased in a different way, we can note that a particular choice

of ground state is always coupled to a superposition of excited hyperfine states,
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Figure 5.1: (a) Atomic structure of 171Yb (nuclear spin I = 1/2). We use the
spectroscopic notation for the sublevels and show hyperfine structure splittings
of the lowest singlet levels (energies are not drawn to scale). The ground states
have total electron spin of zero and states in this manifold essentially only
differ in the nuclear spin component mI . We write the two ground states as
spin down and spin up states for mF = −1, 1 respectively. (b) Reduction of
this hyperfine structure to an effective four-level system where, for very large
detuning (∆� δhfs, |ω↑− ω↓|), we can neglect the possibility of a spin flip and
can take the photons scattered from each spin system to be identical.

which depends on the detuning. For large detuning this superposition is such

that when the atoms return to the ground state, decay channels corresponding to

a spin flip interfere destructively and its relative rate is of the order ∼ (δhfs/∆)2 .

To give a concrete example, if we take the laser polarisation to be along the ẑ-axis

i.e. E = Eê0, and apply it on |g↑〉 [Fig. 5.1(a)], the atom, in the limit of large

detuning, goes to an excited state which is a superposition of 1P1 states with the

same mF (as polarisation is linear) and we have

|e〉 ∝
[

1

3∆
|e1,↑〉+

√
2

3(∆ + δhfs)
|e2,↑〉

]
. (5.3)

The prefactors come from the different dipole matrix elements. Expansion of

|F,mF 〉 basis into |L,mL;S,mS; I,mI〉 basis reveals that for very large detuning

|e〉 has the same nuclear spin as the starting ground state. Therefore to conserve

the nuclear spin under experimental timescales the relative decay rate for a spin

flip is suppressed and given by ∝ (δhfs/∆)2. In Table 5.1 we show the different

transition rates for different laser polarisations. There is an overall multiplicative

factor ∼ (1/∆)2 for all the rates given.
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q = 0 q = 1 q = −1
|g↑〉 |g↓〉 |g↑〉 |g↓〉 |g↑〉 |g↓〉

|g↑〉 1
(√

2
3
δhfs

∆

)2

1 0 1
(√

2
3
δhfs

∆

)2

Table 5.1: Matrix elements for the possible decay processes in Fig 5.1.

In typical experimental setups where δhfs ≈ 324 MHz [113, 114], and far-off-

resonance lattices can be detuned by tens or hundreds of nanometers (∼ 1014Hz),

this rate of spin flips is extremely small. In such a limit, the group-II atomic

system can be regarded as an assembly of two decoupled two-level systems for

the two different nuclear spin states [Fig. 5.1(b)]. Relative shifts of the transition

frequencies between the levels are small, but to account for any small difference,

we define transition frequencies ω↑ and ω↓, as shown in Fig. 5.1(b). For large

detuning, ∆ � |ω↑ − ω↓| and the relative frequencies of the scattered photons

cannot be resolved [115], resulting in suppression of direct spin decoherence. We

explore the differences between identical and non-identical photon scattering in

more detail in Sec. 5.3.

5.2.2 Group-I atoms

In addition to the considerations in the group-II case, group-I atoms such as 6Li

have nonzero electron spin in the ground state. We then need to consider the role

of fine structure coupling and include excited levels in 2P1/2 and 2P3/2 (as shown

in Fig. 5.2). These have a fine-structure energy difference δfs between them and

hyperfine-structure energy splittings δhfs,P1/2
and δhfs,P3/2

within each manifold of

states. Analogous to the group-II case, spin-flip processes that must change the

nuclear spin are suppressed if the detuning is much larger than the hyperfine-

structure splitting, and also spin-flip processes changing the electronic spin are

suppressed when the detuning is much larger than δfs. An example of a spin flip

between two ground states that have different electron spins is |gD〉 → |gE〉 in

Fig. 5.2. The relative rate of spin flip processes is ∝ (δfs/∆)2. An example of the

flip of a nuclear spin is |gD〉 → |gA〉, where the relative spin flip rate from a laser
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Figure 5.2: Diagram of the atomic structure of 6Li (nuclear spin I = 1)
showing the lowest hyperfine manifolds (energies not drawn to scale). The
ground states in the S sublevel are labeled by A,B, . . . , F and the excited
states in P sublevels are labeled by 1, 2, . . . , 18. These names will be used in
the text in discussing transitions between different levels.

polarised along z-axis is ∝ (δhfs,P1/2
/∆− δhfs,P3/2

/∆)2, with constants that can be

computed from the different dipole matrix elements.

For a detailed example of calculation of the spin flip rates let us look at the 6Li

atom starting at |gD〉 (Fig. 5.2) with a linearly polarised laser (q = 0). The

excited state would be a superposition of states in P sub levels with the same

nuclear-spin component:

|e〉 ∝ −2
√

2

9∆1

|e1〉 −
1

9∆1

|e4〉 −
1

9∆2

|e7〉 −
2

9
√

5∆2

|e10 +
1√
5∆2

|e15〉 , (5.4)

with ∆1 = ∆ and ∆2 = ∆1 + δfs. There are also possibilities of two different

types of spin flips here. Considering a decay towards |gA〉 we see that this state

is orthogonal to |gD〉 in terms of the combination of electron and nuclear spins,

namely, in the |L,mL;S,mS; I,mI〉,

|gD〉 ∝ |0, 0〉 ⊗
(
|1
2
,−1

2
; 1, 0〉+ α|1

2
,
1

2
; 1,−1〉

)
. (5.5)
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q = 1
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√

3
(β3)

)2

E 0
(

2
√

2
9

(β3)
)2

0 0 1
( √

2
3
√

3
β3

)2

F 0 0 0 0 0 1

q = 0
A B C D E F

B
(√

2
9
β3

)2

1 0
(

2
9
β3

)2
(

2
√

2
3

(β1 − β2)
)2 (

2
3
√

3
β3

)2

E
(

2
9
β3

)2
(

2
√

2
27

(β1 − β2)
)2

0
(

2
√

2
9
β3

)2

1
( √

2
3
√

3
β3

)2

F 0
(

2
9
√

3
β3

)2

0 0
( √

2
9
√

3
β3

)2

1

q = −1
A B C D E F

B
(√

2
9
β3

)2

1
(

2
√

2
9
√

3
(β1 − β2

)2 (
2
9
β3

)2
(

2
√

2
9
β3

)2

0

E
(

2
9
β3

)2
(

2
√

2
9
β3

)2 (
4

9
√

3
(β1 − β2)

)2 (
2
√

2
9
β3

)2

1 0

F
(

2
√

2
9
√

3
(β1 − β2)

)2 (
2

3
√

3
β3

)2

0
(

4
3
√

3

(
β1 − 4

5
β2

))2 ( √
2

3
√

3
β3

)2

1

Table 5.2: Matrix elements for the possible decay processes in Fig 5.2.

and,

|gA〉 ∝ |0, 0〉 ⊗
(
α|1

2
,−1

2
; 1, 0〉 − |1

2
,
1

2
; 1,−1〉

)
, (5.6)

whereas the spin part of the excited state inside each P sublevel looks like that

of |gD〉. Therefore the contributions from the hyperfine states in each P sublevel

cancel each other given the detuning is large compared to hyperfine structure

splitting. A different mechanism of cancellation occurs if we consider a spin flip

resulting in the state

|gE〉 ∝ |0, 0〉 ⊗
(
|1
2
,
1

2
; 1, 0〉+ β|1

2
,−1

2
; 1, 1〉

)
, (5.7)
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Figure 5.3: Zeeman diagram of the different hyperfine levels shows the lifting
of degeneracy obtained by numerical diagonalisation for qualitative values of
magnetic field. The electron and nuclear spins get decoupled in high enough
B field. (a) P1 sublevel in 171Yb (the S sublevel is already decoupled). (b)
Splitting of the S1/2 sublevel in 6Li. (c) P1/2 sublevel in 6Li needs weaker
B field to get decoupled than the previous case as the hyperfine coupling is
weaker. (d) Even smaller B field is needed for the even more weakly hyperfine-
coupled P3/2 sublevel in 6Li. Reprinted figure from S. Sarkar, S. Langer, J.
Schachenmayer, and A. J. Daley, Phys. Rev. A, 90, 023618, (2014) [110].

This is a matrix element for a transition to a state with different electron spin than

|gD〉. In this case the paths via the two sublevels cancel each other and we obtain

a suppression of spin flip as the detuning is large compared to the fine structure

splitting. Here also we give in Table 5.2 all the different transition rates for

different laser polarisations. There is an overall multiplicative factor ∼ (1/∆)2 for

all the rates given and we define β1 = δhfs,P1/2
/∆, β2 = δhfs,P3/2

/∆ and β3 = δfs/∆.

The starting states are chosen from the states with positive z-component of total

angular momentum in the ground state manifold, as we can perform the same

calculations for the other half symmetrically. For a hyperfine structure splitting

of δhfs = 26.1 MHz for P1/2 and 4.5 MHz for P3/2, and δfs = 10.05 GHz for the fine

structure splitting [116], we can again assume that the spin-flip processes are very

strongly suppressed in far-detuned lattices and are negligible on experimentally
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relevant timescales.

This conclusion also holds well when we consider the role of an external magnetic

field, included in the Paschen-Back regime. For both 171Yb and 6Li, the spin flip

rates stay negligibly small even when an external magnetic field is introduced.

For very high magnetic fields though the basic assumption ∆ � |ω↑ − ω↓| has

to be carefully revisited as the frequencies of the spontaneously emitted photons

from different spin states are different now. The field dependence of the energy

levels used is showcased in Fig. 5.3. We find that the probability of spin flip pro-

cesses stays negligible across the whole range of field strengths, provided that the

detuning is still much larger than the hyperfine coupling strength. Remarkably,

we find that these rates do not change substantially as a function of the magnetic

field.

5.3 Master equation for fermionic many-body

systems

We now derive the master equation describing fermionic atoms with two internal

states, trapped in an optical lattice created by a far-detuned laser field and un-

dergoing spontaneous emissions. We begin from the collective coupling of many

atoms to the external radiation field (which we consider as the reservoir or bath),

and obtain the equation of motion for the reduced atomic density operator for the

motion of the atoms, ρ (traced over the bath) in the form ρ̇ = −i[H, ρ] + Lρ (we

take ~ ≡ 1). Here the Hamiltonian H describes the coherent dynamics whereas

the Liouvillian Lρ corresponds to the dissipative dynamics due to spontaneous

emission events [93]. Note that this derivation is analogous to the case of a single

species of bosonic atoms treated in Ref. [65]. Despite the different particle statis-

tics and in the presence of an additional internal degree of freedom we remarkably

obtain qualitatively equivalent terms and a very similar overall structure to the

master equation. However, our generalisation now takes into account the effects

on the internal state dynamics for multiple electronic ground states, and below
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we will use this to investigate in detail the interplay between the motional dy-

namics and correlations in spin-ordered states. The master equation we derive

is, however, very general, and can be applied directly to describe fermions in

a rich variety of regimes in an optical lattice [117]. Furthermore, while we fo-

cus here on the two-species case, we see from the structure of our calculation

that both the master equation and the conclusions for spin-ordered states can be

straightforwardly generalized to SU(N) spin systems [118, 119].

In our treatment we take an ensemble of atoms, each with a mass m, and with

four accessible internal states, electronic ground and excited states |g〉 and |e〉
for each of two spin manifolds, giving rise to the four-level systems depicted in

Fig. 5.1(b). Initially, we will consider the limit where ω↑ = ω↓ = ωeg, denoting

the corresponding transition wavenumber by keg, so that the photons emitted

are indistinguishable between the different states. However, we will come back

to check this assumption at the end of this section. The system is driven by a

laser with frequency ωL (corresponding to a wavenumber kL), far detuned from

the transition frequency by an amount ∆ = ωL − ωeg. Therefore the interactions

between the atom and the laser light involve a spatially dependent Rabi frequency

Ω(x), which is proportional to the laser field strength and to the dipole moment

of the atom, deg. To write down the master equation in second quantisation

we define the spin (s) dependent field operators ψs(x) and they obey fermionic

anti-commutation relations {ψs(x), ψ†s′(y)} = δs,s′δ(x − y). In order to properly

account for interactions, as well as losses from short-range contributions, we use

standard arguments to separate the dominant contribution to the dynamics at

large distances from the short-range physics [77, 120]. This gives rise to inter-

action terms which for a dilute gas at low scattering energies can be completely

characterised by the s-wave scattering length, and for which losses, e.g., due to

laser-assisted collisions at short distances can be accounted for via a small imag-

inary part of this length [121]. In the following we present a detailed derivation

of the master equation.
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5.3.1 N-atom optical Bloch equation

To write down the second quantised Hamiltonian we use the fermionic field op-

erator ψ(x, t) (see Fig. 5.1 (b))

ψ(x, t) =


ψe,↑(x, t)

ψg,↑(x, t)

ψe,↓(x, t)

ψg,↓(x, t)

 ,

and raising and lowering operators for the different spins, σ±,s. For the radiation

bath the bosonic operators bλ,k (b†λ,k) annihilate (create) a photon in the mode

(k, λ). The derivation of the master equation is a generalisation of Lehmberg’s

treatment for deriving the N -atom optical Bloch equation [94], as discussed in

Sec. 3.2. Here we also include the atomic motion and fermionic spin into account.

The atomic Hamiltonian now contains a kinetic energy term in addition to the

internal atomic level structure and coupling to the classical laser field (3.2). The

interaction Hamiltonian, which is the dipole coupling with the quantised radiation

field, and the field Hamiltonian are similar to their counterparts in 3.2. Proceeding

like before we again write down the quantum Langevin equation for an atomic

operator, using the standard approximations (the rotating wave approximation

and the Born-Markov approximation). For coherent input states, corresponding

to the classical laser field, we can equivalently write the master equation for the

atomic density operator ρ,

d

dt
ρ = −i[H0 +Hcl +Hdip, ρ] + Lρ . (5.8)

Here, the first term describes the atomic Hamiltonian, consisting of the kinetic

energy term and the atomic structure,

H0 =

∫
d3xψ†(x, t)

(−∇2

2m
+ ωeg

∑
s=↑,↓
|es〉〈es|

)
ψ(x, t) . (5.9)
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The dipole coupling with the classical laser field is described by,

Hcl = −
∑
s=↑,↓

∫
d3xψ†(x, t)(σ+,sdeg · E+

cl(x, t) + σ−,sdeg · E−cl(x, t))ψ(x, t) .

(5.10)

The Hamiltonian for the dipole coupling with the quantised radiation field is,

Hdip =

∫
d3xd3yΓG(kegr)

( ∑
s=↑,↓

ψ†(y, t)σ−,s(t)ψ(y, t)
)( ∑

s′=↑,↓
ψ†(x, t)σ+,s′(t)ψ(x, t)

)
,

(5.11)

and the term describing the dissipative dynamics is,

Lρ =

∫
d3xd3y

Γ

2
F (kegr)

∑
s,s′=↑,↓

{
2
(
ψ†e,s(x, t)ψg,s(x, t)

)
ρ
(
ψ†g,s′(y, t)ψe,s′(y, t)

)
−
(
ψ†e,s(x, t)ψg,s(x, t)

)(
ψ†g,s′(y, t)ψe,s′(y, t)

)
ρ

− ρ
(
ψ†e,s(x, t)ψg,s(x, t)

)(
ψ†g,s′(y, t)ψe,s′(y, t)

)}
, (5.12)

where the F and G functions are defined in Sec. 3.2.

5.3.2 Adiabatic elimination

In the limit of large detuning the population in the excited states is negligi-

ble compared to that in the ground state and we can write down the master

equation solely in terms of ground-state field operators. The precise conditions

needed for this requires the detuning ∆ to be much larger than Rabi frequency

[Ω(x) = 2Ecl(x) · deg], spontaneous decay rate Γ, decay rate times the number

of particles in a volume λ3
L (Γ〈ψ†(x)ψ(x)〉λ3

L), particle kinetic energy and dipole-

dipole interaction between the particles.
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When these conditions are met we can solve the Heisenberg equation of motion

for ψ†g,+(x)ψe,+(x) and obtain

ψ†g,s(x)ψe,s(x) ≈− Ω(x)

2∆
e−iωLtψ†g,s(x)ψg,s(x) . (5.13)

Treating the other terms similarly we find a master equation for the atoms in the

ground state. From here onwards we will follow the convention of omitting the

index g in field operators.

In summary the far detuned laser drive allows adiabatic elimination of the atoms

in the excited states [94]. In this case working in a frame rotating with the laser

frequency we obtain a master equation of the form

d

dt
ρ = −i

(
Heffρ− ρH†eff

)
+ J ρ . (5.14)

Here the non-Hermitian effective Hamiltonian is:

Heff = H0 +H light
eff +H int

eff . (5.15)

This effective Hamiltonian describes in addition to the coherent dynamics and the

collisional processes also the scattering processes that transfer away the ground

state population (therefore not trace preserving). The first term, H0 is the Hamil-

tonian for non-interacting atoms in an optical lattice potential originating from

the AC-Stark shift [11] induced by a standing wave of laser light:

H0 =
∑
s

∫
d3xψ†s(x)

(
−∇

2

2m
+
|Ω(x)|2

4∆

)
ψs(x) . (5.16)

To model spontaneous emissions we couple the atoms to a radiation bath, namely

the vacuum modes of the laser field. The effective Hamiltonian describing the



Chapter 5. Dynamics of fermions in optical lattices with radiation bath 76

atom-light interaction is given by:

H light
eff =

∑
s,s′

Γ

∫
d3xd3yG(kegr)

Ω(y)Ω∗(x)

4∆2
ψ†s(x)ψ†s′(y)ψs′(y)ψs(x)

− iΓ
2

∑
s

∫
d3x
|Ω(x)|2

4∆2
ψ†s(x)ψs(x)

− iΓ
2

∑
s,s′

∫
d3xd3y

Ω(y)Ω∗(x)

4∆2
F (kegr)ψ†s(x)ψ†s′(y)ψs′(y)ψs(x) . (5.17)

5.3.3 Discussion

The first term in H light
eff gives the dipole-dipole (created by photon exchange)

interaction energy. The second term contains single-atom processes which absorb

and then emit laser photons. The third term describes a collective two-atom

excitation and de-excitation that can give rise to superradiance or subradiance in

appropriate limits [94, 122]. Now as G decays as a function of interatomic distance

we can focus only on interaction on a small scale set by the laser wavelength.

At very short distances (kegr → 0) it is possible to absorb the dipole-dipole

interaction as a small modification to the collisional interactions,

H int
eff =

∫
d3x g(x)ψ†↑(x)ψ†↓(x)ψ↓(x)ψ↑(x) . (5.18)

This term contains short range low-energy two-body scattering processes in the

atomic system, characterised by a single parameter, the scattering length as. The

same scattering length can be obtained using a pseudo-potential in H int
eff which is a

contact potential [77, 120] with g = 4π~2as/m. Now in the presence of laser light

we also need to take into account light assisted collisional interactions. A red-

detuned laser can give rise to optical Feshbach resonance resulting in modification

of the scattering length which will depend on the laser intensity [21, 121]. This

spatial dependence is reflected in g(x) and away from the resonance we would

get back g ∼ 4π~2as/m. Loss of atoms due to light assisted collisions can be

contained in an intensity dependent (and thus spatially dependent) imaginary

part to the scattering length. As the rate of such losses are much less than
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the scattering rate, we can work in a regime where such loss processes have not

occurred and can therefore leave out the imaginary part. Higher order corrections

such as three-body collisions have also not been considered in this Hamiltonian

as we work with dilute gases.

The last term in the master equation is the recycling term:

J ρ = Γ

∫
d3xd3y

Ω(y)Ω∗(x)

4∆2
F (kegr)

(∑
s

ψ†s(y)ψs(y)

)
ρ

(∑
s

ψ†s(x)ψs(x)

)
,

(5.19)

which contains Lindblad operators in the form of atomic densities [
∑

s ψ
†
s(x)ψs(x)].

As the function F (kegr) falls off on the length scale of laser wavelength, a spon-

taneous emission process will tend to localise a particle within this length scale,

decohering the many-body state. The term J ρ together with Heff also preserves

the trace of the density operator.

5.3.4 Fermi-Hubbard model

We can obtain a multi-band Fermi-Hubbard model for the coherent part of the

evolution in the master equation by expanding the field operators in a Wannier

basis [81],

ψs(x) =
∑
n,i

wn(x− xi)cn,i,s , (5.20)

under the assumptions of nearest neighbour tunnelling and local interaction in

a deep lattice. Here, for the i-th site of the n-th Bloch band, wn(x − xi) is the

Wannier function and cn,i,s is the fermionic annihilation operator for spin s. In

an isotropic three-dimensional (3D) cubic lattice we get,

d

dt
ρ = −i[H, ρ] + Lρ , (5.21)
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with the Fermi-Hubbard Hamiltonian,

H = −
∑

n,<i,j>,s

J
(n)
i,j,sc

(n)†
i,s c

(n)
j,s +

∑
n,i,s

ε
(n)
i,s c

(n)†
i,s c

(n)
i,s +

∑
i,k,l,m,n

U (k,l,m,n)c
(k)†
i,s c

(l)†
i,s′ c

(m)
i,s′ c

(n)
i,s .

(5.22)

Here J
(n)
i,j,s is the next neighbour tunnelling rate corresponding to the kinetic en-

ergy, U (k,l,m,n) is onsite interaction energy coming mainly from collisional interac-

tion with small modification from dipole interactions and ε
(n)
i,s is the onsite energy

offset. The Lindblad term describing the scattering of laser photons is

Lρ = −
∑

i,j,k,l,m,n,s,s′

γk,l,m,ni,j,s,s′

2

[
c

(k)†
i,s c

(l)
i,s,
[
c

(m)†
j,s′ c

(n)
j,s′ , ρ

]]
, (5.23)

and the matrix elements for different scattering processes is

γk,l,m,ni,j =Γ

∫
d3xd3y

F (keg(x− y))

4∆2
Ω∗(x)Ω(y)

wk(x− xi)wl(x− xi)wm(x− xj)wn(x− xj) . (5.24)

Note that the notation used in Eq. (5.21) is the result of a simple regrouping of

the terms in Eq. (5.14) and chosen to make the following arguments towards the

use of a single-band Fermi-Hubbard model more transparent. In the Lamb-Dicke

regime (i.e. Lamb-Dicke parameter, η = kLa0 � 1 with a0 as the extension of

the Wannier functions in the lowest band), for a red detuned lattice spontaneous

emissions dominantly return the atoms into the lowest Bloch band [65] as the

relative probability for the atom to return to the first excited band scales as η2.

Therefore we focus on the physics that arises from the treatment which is confined

only to the lowest band and write down the corresponding master equation,

ρ̇ = −i[HFH , ρ] + L1ρ . (5.25)
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We now only have a single-band Fermi-Hubbard Hamiltonian

HFH = −J
∑

<i,j>,s

c†i,scj,s + U
∑
i

ni,↑ni,↓ , (5.26)

where we have omitted the band indices for the fermionic operators and the

Liouvillian term is,

L1ρ =
γ

2

∑
i

(2niρni − niniρ− ρnini) . (5.27)

Here γ is the effective scattering rate obtained by keeping only the onsite elements

in Eq. (5.24) and the Lindblad operators ni are number operators at each site

(ni = ni,↑ + ni,↓ = c†i,↑ci,↑ + c†i,↓ci,↓). It is clear at this point that the dissipative

processes do not discriminate between the different spin orientations and can

only decohere the many-body state by treating the lattice sites with different

total particle numbers differently. In a system where particle numbers for each

species are conserved individually, the term in the Hamiltonian corresponding

to an energy offset is just a constant and thus can be neglected. Even though

we have derived the master equation with two component systems in mind, the

generalisation to any number of internal states is straightforward and we can

handle SU(N) magnetism with the same formalism. For simplicity, we will mainly

focus on the physics of systems with two internal states for the rest of this article.

5.3.5 Non-identical photon scattering

We now come back to the role of large detuning in avoiding direct spin decoherence

when the transition frequencies differ for the two two-level systems that represent

the different spin states, i.e., ω↑ 6= ω↓. We can modify the above derivation

of the master equation at the expense of generating additional terms and look

at the dynamics in this more general case. In the following we illustrate the

effect for a single particle fixed in space at x0 having only two internal degrees of

freedom, given by the spin s (with energy ωs associated with its excited state).
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The corresponding master equation is given by

d

dt
ρ(t) =− i

∑
s

[ωs|es〉〈es|, ρ] +
∑
s

γs,s
2

(2nsρns − nsnsρ− ρnsns)

+
∑
s 6=s′

γs,s′

2
(2nsρns′ − nsns′ρ− ρnsns′) , (5.28)

where the spin dependent scattering rates are defined as follows

γs,s′ = Γs

∫
d3x

Ω∗(x0)Ω(x0)

4∆s∆s′
|w0(x− x0)|4 . (5.29)

The general solution for the atomic density matrix can be obtained analytically

and is given by

ρ(t) =

(
ρ↑,↑(0) ρ↑,↓(0)e−(i4ε+γeff)t

ρ↓,↑(0)e(i4ε−γeff)t ρ↓,↓(0)

)
,

where γeff = (γ↑,↑ + γ↓,↓ − γ↑,↓ − γ↓,↑) /2 and 4ω = ω↑ − ω↓ and the associated

decay rates Γs can differ between spin states. The off-diagonal elements of the

density matrix decay in magnitude exponentially with an effective rate γeff. This

direct decoherence of the wave function is an effect of the spontaneous emission

processes. Now in the limit of large detuning (i.e. |ω↑ − ω↓|/∆ → 0) we now

show, by expressing all the γs,s′ in terms of γ↑,↑, that the decay rate γeff scales as

|ω↑ − ω↓|/∆.

To see this we define the small parameters ε = (ω↑−ω↓)/∆↑ and ε′ = (ω↑−ω↓)/ω↑.
Using them we can write ω↓ = (1−ε′)ω↑ and ∆↓ = ∆↑/(1−ε). The spin-dependent

decay rates now can be rewritten in terms of γ↑,↑ and we get,

γ↓,↓ = γ↑,↑(1− ε′)3(1− ε)2

γ↑,↓ = γ↑↑(1− ε)
γ↓,↓ = γ↑,↑(1− ε′)3(1− ε) . (5.30)
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The effective decay rate is therefore,

γeff =
(γ↑,↑ + γ↓,↓ − γ↑,↓ − γ↓,↑)

2
= εγ↑↑

(1− (1− ε)(1− ε′)3)

2
. (5.31)

Therefore, for large detuning as ε → 0 the off-diagonal elements of ρ(t) do not

decay as γeff → 0. This absence of direct spin decoherence in the system due

to spontaneous emission is caused by the fact that the master equation contains

cross terms of equal magnitude to the diagonal terms . On the technical level this

means the Liouvillian part in Eq. (5.28) reduces to a single particle and single-

site version of Eq. (5.27). This case of identical photon scattering is the standard

case for fermionic atoms both from group-I and group-II in far-detuned optical

lattices.

5.4 Decoherence in a double well

We now proceed to study the effects of spontaneous emissions as described by the

master equation derived in the previous section, focusing on the resulting many-

body dynamics. We primarily take examples from strongly interacting regimes so

that the spatial decoherence in the many body wave function due to localisation

of the spin particle following a spontaneous emission event is minimal [65]. We

want to investigate the robustness of anti-ferromagnetic spin order of two species

fermions in the repulsive case and of the correlation function of the composite

bosons [123–125] formed in the case of strong attractive interactions. Therefore we

start in the ground states of the strongly interacting Fermi-Hubbard Hamiltonian

which are particularly ordered states and investigate the effects of decoherence

by evolving with the master equation. Before we present our results for larger

lattice systems, we give an intuitive example discussing the decoherence in a

double well. For bosons, the dynamics of a related case is discussed in Ref. [126].

Here we particularly focus on the dynamics of the spin degree of freedom, which

we treat first by considering the case of an initial ground state with U > 0,

|U | � J . We then return to the case of delocalised doublons for strong attractive

interactions U < 0.
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5.4.1 Repulsive interactions

We consider an optical lattice chain with a length of two, containing one spin-

up particle and one spin-down particle. Now, in the limit of strong interaction

(U � J) the ground state would be a spin singlet with an admixture of states

having both spins in one of the sites. It is instructive to work in a particular basis

formed by a combination of Fock states given by |1〉 = (| ↑, ↓〉+ | ↓, ↑〉) /
√

2,

|2〉 = (| ↑, ↓〉 − | ↓, ↑〉) /
√

2, |3〉 = | ↑↓, 0〉, and |4〉 = |0, ↑↓〉. We first calculate the

ground state of the two site Fermi-Hubbard Hamiltonian which is nearly a spin

singlet with O(J2/U2) population in the manifold with double occupation at one

of the sites (Fig. 5.4). Evolving this initial state under the master equation shows

that the wave function of the system decoheres due to spontaneous emission until

it reaches a steady state (ρ̇ = 0) where population is equally distributed in all

three basis states that were populated at the initial time (Fig. 5.4). The rate at

which the spin correlation decays is proportional to that of the increase in the

population of doubly occupied states (for a doubly occupied site Sz = 0). We

calculate this rate in perturbation theory in J/U , where the coherences between

the manifolds are eliminated adiabatically to give the decay rate of the spin order.

We begin by calculating the decay rate of population in state |1〉, which is being

transferred to the doublet manifold spanned by |3〉 and |4〉. Now from the master

equation

d

dt
ρ1,1 = −

∑
k=3,4

2
√

2JRe (iρ1,k) . (5.32)

The coherences between state |1〉 and the doublet manifold obey

d

dt
ρ1,3 = i

√
2J (ρ3,3 + ρ4,3 − ρ1,1) + (iU − γ)ρ1,3 , (5.33)

and ρ1,4 follows an analogous equation. Now the coherence within the doublet

manifold is given by

d

dt
ρ3,4 = i

√
2J (ρ1,4 − ρ3,1)− 4γρ3,4 . (5.34)
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Figure 5.4: Decoherence of fermions in a double-well. In the limit of strong
interactions for U > 0, the ground state of the Fermi-Hubbard Hamiltonian
with strong repulsive interactions is primarily a spin singlet (therefore sym-
metric spatially across the double-well). The population of doubly occupied
sites is small [O(J2/U2)]. Now for U < 0, the initial ground state is a coherent
superposition of states with doubly occupied sites with O(J2/U2) population
in the spin singlet state. Spontaneous emission events over a significant period
of time lead to decoherence of virtual double-occupations, and populate states
in which the final steady-state population is evenly distributed in the state
with single occupancy and those with doubly occupied sites.

Now in the limit U � J, γ we can eliminate the coherences between state |1〉 and

the doublet manifold first and that leads us to

d

dt
ρ1,1 = −

(
4J2γ

U2 + γ2

)
(2ρ1,1 − ρ3,3 − ρ4,4) + 4J2Re

(
ρ3,4 + ρ4,3

γ − iU

)
, (5.35)

and

d

dt
ρ3,4 = −4γρ3,4 +

4J2γ

U2 + γ2
(ρ4,4 − ρ1,1 − ρ3,4) . (5.36)

Now we can eliminate the coherence in Eq. (5.36) as it contains a term propor-

tional to γ whereas all the other terms are suppressed by a factor of O(J2/U2).

We rewrite Eq. (5.35) as

d

dt
ρ1,1 ≈ −

(
4J2γ

U2 + γ2

)
(2ρ1,1 − ρ3,3 − ρ4,4) , (5.37)

which gives a decay rate proportional to β = 4J2γ/(U2 +γ2). The result obtained

by evolving the master equation using exact diagonalisation is in agreement with

this analytical value as illustrated in Fig. 5.5(a). The spatial average of the spin
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Figure 5.5: Decoherent dynamics starting from the ground state of one par-
ticle of each spin species interacting strongly in a double well (M = 2) for
γ = 0.1J , computed in both, our perturbative approach (red dots) and exact
diagonalisation (solid line): (a) decay of the rescaled spin correlations between
the sites [Eq. (5.39)] for U = 8J . The dashed line indicates the steady-state ex-
pectation value. (b) Time evolution of rescaled doublon correlation [Eq. (5.40)]
for U = −8J which vanishes in the final steady state.

correlation function is defined as

S(∆x, t) =
1

M

∑
i

〈Szi (t)Szi+∆x(t)〉 . (5.38)

Here, Szi is the z component of spin at lattice site i, defined as Szi = (ni,↑ − ni,↓) /2.

For the half filled Hubbard model, these spin correlations can also be interpreted

as a measure of density fluctuations. All spin components are equivalent due

to the SU(2) symmetry of the lattice Hamiltonian and the dissipative terms.

Therefore we focus on the z component of spin and for plotting purposes we also

consider the rescaled spatial average:

Sr(∆x, t) =
S(∆x, t)

S(∆x, t = 0)
. (5.39)

The physical process giving rise to the observed decay can be outlined as follows.

A spontaneous emission event does not differentiate between the different spin

states, but as we saw before, what it effectively detects is the occupation number

at the site involved as indicated by the Lindblad operators in Eq. (5.27). In

this sense, it distinguishes states with doubly occupied sites from states with

singly occupied sites, decohering virtual population of doubly occupied states.

This drives the system away from the initial spin ordered ground state which

has mostly singly occupied sites with very small doubly occupied population
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[O(J2/U2)] and transfers population from states with singly occupied sites to

states with doubly occupied sites. The resulting state is no longer an eigenstate

and the Hamiltonian therefore starts redistributing population coherently whereas

spontaneous emission events continue to disrupt rebuilding of coherence. This

interplay between the Hamiltonian and the dissipative dynamics gives rise to the

resulting decoherence and change in spin correlation. The rate of decoherence

depends on the effective scattering rate γ as well as on the relative population

in the doublet manifold which grows proportionally with its initial value. This is

the reason we have a term O(J2/U2) in the expression of β, and this reflects the

ability of the Hamiltonian to populate doubly occupied sites via tunnelling in the

presence of an energy gap. It also shows that the spin order decays much slower

than the scattering rate and can be quite robust against spontaneous decay for

strongly interacting systems. Alternatively one could argue that the initial state

is the ground state which is an eigenstate of the Hamiltonian, and hence the first

order of time-dependent perturbation theory is given solely by the action of the

dissipative part on the initial state. For the correlation function of interest, we

find a vanishing first order term as we don’t have direct spin decoherence. Hence

the leading order term in the decay rate has to be O(J2/U2).

5.4.2 Attractive interactions

We now consider the case of attractive interactions (U < 0), again for one atom

of each spin in a double-well, where we observe markedly different dynamics for

strong interactions. The ground state of the Hamiltonian now consists of states

with double occupation, because the attractive interactions favour the forma-

tion of a dimer. The key physical property is that the dimer is delocalised over

the two sites, i.e., the ground initial state is essentially a coherent superposition

(|3〉 + |4〉)/
√

2. Again, there is a small admixture of the singlet singly occupied

state, i.e., a population O(J2/U2) in |1〉. The final steady state of the master

equation at long times is the same with equal population in all these three basis

states. However, the initial dynamics towards the steady state begin by rapidly

removing the coherence between |3〉 and |4〉, markedly changing the state when
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we consider the dynamics of dimers. We can calculate the decay rate of the dou-

blon correlation functions, e.g., d†1d2 in perturbation theory like before. Defining

a spatially averaged and rescaled doublon correlation function analogous to the

spin case

Dr(∆x, t) =
1

M

∑
i〈d†i (t)di+4x(t)〉

〈d†i (t = 0)di+4x(t = 0)〉
, (5.40)

we check the agreement between results obtained in exact diagonalisation and

perturbation theory (Fig. 5.5(b)). The decay rate for the doublon correlations

turns out to be 4γ and is approximately independent of the system size and fill-

ing factor, as we show up to first order in time-dependent perturbation theory in

Sec. 5.5.3. In that section, we also discuss the enhancement factor, which arises

from a combination of having two atoms in a given site, and also having superra-

diant enhancement because of the scattering of identical photons. An instructive

way to check this enhancement factor is to look at the optical Bloch equations

for a system of identical two-level atoms fixed on lattice sites and solve for an

effective decay rate which is equivalent to calculating the rate of change in ground

state population when the excited states can be adiabatically eliminated in the

limit of large detuning (∆) of the driving laser field. For N atoms the atomic den-

sity operator (ρa) obeys the following equation where the non-Hermitian effective

Hamiltonian H ′, written in terms of Pauli matrices,

d

dt
ρa = −i[H ′, ρa] +

∑
k,l

Γklσ
−
k ρaσ

+
l , (5.41)

with

H ′ =
N∑
k=1

(
−∆σzk −

Ωk

2
(σ+

k + σ−k )

)
− i

2

∑
k,l

Γklσ
+
k σ
−
l . (5.42)

Here Ωk is the Rabi frequency for the k-th atom (which we will take to be position

independent) and Γkl = ΓF (kegrkl) where Γ is just the spontaneous decay rate

of the excited state of an atom and the function F introduces a localising effect

on the scattering element between kth and lth site (at a distance rkl) on a scale
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set by the atomic transition wavelength keg. We can determine an effective decay

rate in the ground-state population which initially (when the system is the ground

state |ψ0〉) is the rate of decrease in the norm for evolution under the effective

Hamiltonian, namely,

Γeff = − 1

δt
[〈ψ0|(eiH

′†δte−iH
′δt)|ψ0〉] ≈ 〈ψ0|

∑
k,l

Γklσ
−
k σ

+
l |ψ0〉 . (5.43)

In the single atom case, using second order time-dependent perturbation theory

(the dipole coupling with the laser field is the perturbative part of the Hamilto-

nian), it is easy to calculate this effective decay rate Γsingle = ΓΩ2/(4∆2). Now

for two atoms we look at two limiting cases. When the atoms are separated by

a distance much larger than the atomic transition wavelength, the scattering ele-

ments turn into on-site terms (Γkl → Γδk,l) and the effective rate is 2Γsingle. This

is what one would expect for the total decay rate of two independent entities.

In the opposite case, where the atomic distance is much smaller than the transi-

tion wavelength, all the scattering elements become independent of the distance

between the atoms (Γkl → Γ) and we indeed obtain an effective decay rate of

4Γsingle.

5.5 Dynamics for many atoms

In order to further quantify the impact of spontaneous emissions on many-body

correlations we discuss the full many-body problem using approximate analytic

and numerically exact solutions to the master equation derived in Sec. 5.3. First

we discuss the effects of spontaneous emission on the momentum distribution of

non-interacting fermions. Second we analyse the decoherence of antiferromagnetic

spin order in the case of strong repulsive interactions, comparing time-dependent

perturbation theory for J/U → 0 to numerical data. Depending on the system size

we use either exact diagonalisation or combine adaptive time-dependent DMRG

with the quantum trajectory approach [73], to capture the decoherence and time

dependence of first-order correlation functions in detail. While the first approach
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is exact, time-dependent DMRG is well established as a convenient means to

model the real-time dynamics induced by stochastic processes in one-dimensional

systems that remain close to equilibrium.

Our main results on the repulsive case are that the spin-correlation functions

are robust on experimentally relevant timescales and that the spin decoherence

is governed by a single decay rate which is suppressed by the number of double

occupancies in the initial state. In the limit of strong attractive interactions, both

the perturbation theory approach and the numerical simulations unveil decay

rates of the doublon correlation function enhanced by a factor of 4, which can be

understood as a consequence of superradiance [122, 127, 128].

As a first general result we calculate the rate of energy increase induced by the

spontaneous emissions for N atoms. This can be obtained analytically from the

master equation (5.14), as was done for bosons in Ref. [65], evaluating

d

dt
〈H〉 = Tr(L1ρH) . (5.44)

The final result strongly resembles the result for bosons [65] and is not only

independent of the interaction strength but also completely determined by single

particle physics [64]:

d

dt
〈H〉 =

ΓΩ2
0

4∆2

k2
L

2m
N (Ω = Ω0 cos kLx) . (5.45)

However, as in the case of bosons, this result does not properly characterise the

heating induced by spontaneous emissions as the energy increase predominantly

results from excitations to higher bands which will in general not thermalise on

experimental time-scales [65]. For bosons this has been quantified in Ref. [66].

Hence, even a qualitative analysis requires at least an analysis of first-order cor-

relation functions such as spin correlations, momentum distribution functions, or

the single particle density matrix. In the following we perform such an analysis,

first for free fermions, then for repulsive interactions and finally for attractive

interactions.
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5.5.1 Free fermions

The case of free fermions is another instructive example that can be dealt with

exactly. We here focus on the time dependence of the momentum distribution for

N fermions on M lattice sites

ñq =
∑
s

c̃†q,sc̃q,s, with c̃q,s =
M∑
l=1

1√
M
e−iqlcl,s . (5.46)

For U = 0 the Hamiltonian is diagonal in momentum space and hence the time-

evolution of 〈ñq〉 is solely given by the action of the dissipative part which results

in

d

dt
〈ñq〉 = Tr(ñqL1ρ) = −γ

2

∑
l

[nl, [nl, ñq]] = −γ〈ñq〉+
N

M
γ . (5.47)

Therefore the steady-state momentum distribution function 〈nk〉 → N/M for t→
∞, i.e., the momentum distribution corresponding to all particles being localised

in space by spontaneous emissions. The dynamics leading to this state occur

gradually, as particles are spread throughout the Brillouin zone via spontaneous

emissions.

5.5.2 Repulsive interactions

In the next step we focus on the repulsively interacting case of fermions which

is closely related to the rich physics of magnetic ordering. Spin correlations in

the 1D Fermi-Hubbard model is numerically investigated. The effect of different

decohering mechanisms on the characteristic correlation functions in this case are

essential to be understood and characterised in order to observe quantum mag-

netism in real experiments. Analytical results [82] and numerical computations

[99] show that in 1D interesting many-body effects like the absence of long-range

order emerge from strong correlation effects. For strong repulsive interactions a

perturbative approach in J/U reduces the Fermi-Hubbard model in 1D to Heisen-

berg model, a paradigm model of quantum magnetism [129]. This highlights the
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characteristic energy scale to observe quantum magnetism [32, 41, 130]. The an-

tiferromagnetic order has been measured in experiments and has been found to

persist for finite J/U [131]. The decay due to decoherence of the spatially aver-

aged spin correlation functions defined in Eq. (5.38) is investigated here for larger

lattice sizes.

In the perturbative approach for the double well in the previous section the deco-

herence rate was found out to be the scattering rate scaled by the initial popula-

tion in the doublet manifold. Here we show a generalisation of that behaviour for

a chain of length M . To see this we first calculate the decay of spin order using

adiabatic elimination process and then connect the pre-factor of scattering rate in

this decay rate to the population in the doublet manifold by making the connec-

tion between the Fermi-Hubbard Hamiltonian and the Heisenberg Hamiltonian

using degenerate perturbation theory, in the limit of strong interaction (U � J).

The Fermi-Hubbard Hamiltonian, in this limit, can be written as HFH = H0 +H1

with H0 = U
∑

i ni,↑ni,↓ and H1 = −J∑<i,j>,s c
†
i,scj,s. We take |n〉 as the zeroth

order ground state (which is just a particular superposition of all the fock states

with only singly occupied sites) and let |kµ〉 be a fock state with a doubly occupied

k-th site and an empty adjacent (k + µ)-th site (µ can be ±1, except at the

boundaries). Using the master equation we the write,

ρ̇n,n =
∑
kµ

2Re
(
ic∗kµρn,kµ

)
(ckµ = 〈n|H1|kµ〉) . (5.48)

The coherences between the singlet and doublet manifold is governed by,

ρ̇n,kµ = −i
(∑
k′µ′

ck′µ′ρk′µ′,kµ − ckµρn,n
)

+ (iU − γ)ρn,kµ , (5.49)
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and the coherences inside the doublet manifold obey,

ρ̇k′µ′,kµ

=− i
(
c∗k′µ′ρn,kµ − ckµρk′µ′,n

)
+
γ

2

∑
j

〈k′µ′|2njρnj − njnjρ− ρnjnj|kµ〉

=− i
(
c∗k′µ′ρn,kµ − ckµρk′µ′,n

)
− γαk′µ′,kµρk′µ′,kµ

αk′µ′,kµ =

0 if k = k′, µ = µ′

> 0 otherwise

 . (5.50)

Now in this strong interaction limit we first eliminate the coherence between the

singlet and doublet manifold and that leads to,

ρ̇n,n = −2
∑
kµ

(
γ|ckµ|2
U2 + γ2

)
(ρn,n − ρkµ,kµ) + 2

∑
k′µ′ 6=kµ

Re

(
c∗kµck′µ′

γ − iU ρk′µ′,kµ
)
,

(5.51)

and

ρ̇k′µ′,kµ = ic∗k′µ′

(
ickµ

iU − γ ρn,n +
∑
k′′µ′′

ick′′µ′′

iU − γ ρk′′µ′′,kµ
)

− ickµ
(

ic∗k′µ′

iU + γ
ρn,n −

∑
k′′µ′′

ic∗k′′µ′′

iU + γ
ρk′µ′,k′′µ′′

)
− γαk′µ′,kµρk′µ′,kµ . (5.52)

With further elimination of coherence in Eq. (5.52) we can now write for the

population in the singlet manifold as,

ρ̇n,n ≈ −2
∑
kµ

(
γ|ckµ|2
U2 + γ2

)
(ρn,n − ρkµ,kµ) (5.53)

This equation gives a population transfer rate of 2
∑

kµ γ|ckµ|2/(U2 + γ2). To see

the connection of this decay rate to the initial relative population in the doublet

manifold , ND = 1/N
∑

i d
†
idi (with di = ci,↑ci,↓ as the doublon annihilation

operator), we first recognise the Fermi-Hubbard Hamiltonian as a Heisenberg

Hamiltonian using degenerate perturbation theory in J/U [132, 133]. To see that,

let the ground state ofH0 belong to the degenerate subspace S, comprised of states
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with only singly occupied sites. Therefore we can use degenerate perturbation

theory to look at the first order correction to energy and wavefunction. In order

to do so we must know the correct zeroth order ground state in S subspace, which

can be obtained by diagonalising the tunnelling matrix in the said subspace. But

in our case, all these matrix elements are zero as they only connect the S subspace

with D, which is the subspace of states with one doubly occupied site adjacent to

an empty site. Therefore we have to include the second order processes. This will

enable us to build the wavefunction up to first order which is a good estimation

of the actual ground state obtained by diagonalising HFH . The ground state in

the zeroth order is the solution of the secular equation in the subspace S, given

by, V ψ(0) = δE(1)ψ(0) where matrix elements of V are,

Vn,n′ =
∑
k∈D

〈n|H1|k〉〈k|H1|n′〉
E0
n − E0

k

(n, n′ ∈ S)

=
J2

U
〈n|

∑
<k,l>

2

[
Sk · Sl −

1

4
1

]
|n′〉 (5.54)

The ground state of this Heisenberg-like Hamiltonian in subspace S is the cor-

rect zeroth order ground state of the Fermi-Hubbard Hamiltonian, ψ(0). Let the

eigenstates of V be denoted by |n〉, |n′〉, |n′′〉, . . . and let |n〉 = ψ(0). Now up to

the first order, the ground state of HFH is given by

ψ(1) = ψ(0) +
∑

m=n′,n′′,...

c(1)
m |m〉+

∑
k∈D

c
(1)
k |k〉 (5.55)

with

c(1)
m =

1

〈n|V |n〉 − 〈m|V |m〉
∑
k∈D

〈m|H1|k〉〈k|H1|n〉
E0
n − E0

k

and c
(1)
k =

〈k|H1|n〉
E0
n − E0

k

(5.56)

Therefore the double occupancy in this state

ND =
∑
k∈D

|c(1)
k |2
|ψ(1)|2 =

1

|ψ(1)|2
∑
k∈D

|〈k|H1|n〉|2
U2

, (5.57)

which, in the strong interaction limit, is proportional to the pre-factor of γ in the
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Figure 5.6: Comparison of the decay of spin correlations [see Eq. (5.38)] av-
eraged over the chain obtained from exact diagonalisation using the EXPOKIT
package [134] for M = 4, 8 and tDMRG with D = 128 for M = 32. (a) Decay
of the on-site contribution S(∆x = 0, t) for different system sizes M = 4, 8, 32
at U = 8J and γ = 0.1J using 500 trajectories for M = 4, 8 and 250 trajecto-
ries for M = 32. (b) Example fit to the data shown in panel (a) for M = 32.
(c) The decay rates β extracted from numerical fits as shown in panel (b) as a
function of NDγ. The dashed lines in (b) and (c) are linear fits to the data for
different system sizes [M=4 (black squares) and M=32 (red triangles), which
exhibit the scaling β ∼ NDγ predicted by perturbation theory. Panel (d) shows
the rescaled Sr(∆x, t) [Eq. (5.39)] for M = 32, U = 8J and different ∆x which
shows only a weak distance dependence, especially at larger times. Reprinted
figure from S. Sarkar, S. Langer, J. Schachenmayer, and A. J. Daley, Phys.
Rev. A, 90, 023618, (2014) [110].

expression obtained earlier for population transfer rate from singlet to doublet

manifold. Therefore within the same perturbative approach we can directly relate

our expression for the decay rate of the spin correlation, namely β ∝ γND. The

scaling predicted here are checked numerically for repulsive 1D systems up to

M = 32 lattice sites.

We report our numerical findings and comparison to perturbative results in Fig. 5.6.

Here (a) shows the on-site contribution S(∆x = 0, t) decaying with time for in-

teraction value U = 8J , γ = 0.1J , and system sizes M = 4, 8, 32, with time-step
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of dtJ = 0.01 and bond dimension of 8M in the DMRG calculations keeping the

discarded weight below 10−5 for M = 32 and up to tJ = 10. For the averaged

quantities finite size effects are found to be small for M ≥ 6. In Fig. 5.6(c)

we show the decay rate β, extracted from a numerical fit of a · e−βt + const.

to the plots shown in (a) for parameter ranges with U/J = 4, 6, 8, 10, 12 and

γ/J = 0.2, 0.1, 0.05, 0.025 as a function of the effective decay rate calculated with

perturbation theory, NDγ. Fig. 5.6(b) shows an explicit example for M = 32

and γ = 0.1J . The numerically obtained decay rates, within the error bars ob-

tained from the fits, scale linearly with NDγ. The system size dependence is

essentially captured in the values of ND. This result matches with our findings

from perturbation theory calculations, where we see that the effective decay rate

is suppressed with increase in U/J as it is proportional to the value of double

occupancies in the initial state. In Fig. 5.6(d) we show the result for Sr(∆x, t),

for distances ∆x = 0, 2, 4 with U = 8J and γ = 0.1J , at M = 32. Rescaling the

data according to Eq. (5.39) shows that the decay of the correlation functions is

independent of the distances. The alternating sign of S(∆x, 0), which is a nec-

essary condition for antiferromagnetic correlations, is unchanged during the time

evolution.

The numerical study presented above of the decay of spin correlation functions

for the repulsive Fermi Hubbard model undergoing spontaneous emissions shows

that changes in antiferromagnetic correlations are inhibited because the rate is

controlled by the number of double occupancies that can be formed. An impor-

tant role is played by the energy gap in suppressing the coherent processes that

form virtually doubly-occupied sites. This leads to a suppression of the decay of

magnetic correlations somewhat analogous to the inhibition of diffusion seen for

Bosons in Refs. [126, 135]. The fraction of doubly occupied sites is an experi-

mentally controllable parameter [60, 136], and the time-dependence of the spin

correlations should be directly measurable in experiments, e.g. using quantum

gas microscopes [32, 137]. This robustness shifts the typical rate of decay from

γ to NDγ ∼ (J2/U2)γ. This compares favourably with the energy scale J2/U

of typical dynamics in this regime. Due to this suppression, the new dominant
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effect of spontaneous emissions for large enough U will be transfer of particles to

higher Bloch bands, the timescales of which is given by 1/(η2γ).

5.5.3 Attractive interactions

This robustness in the repulsive case against the decay of spin correlation func-

tions is in strong contrast to the effects we observe for attractive interactions,

which was also seen in the case of the double-well previously. The analysis of

the characteristic correlation functions for many fermions with strong attractive

interactions is investigated here. With U < 0 and the focus on strong interactions

at moderate to low densities, we see that the ground state of the Fermi-Hubbard

model consists of bound dimers that behave as composite bosons, and condense

to allow condensation, and off-diagonal long-range order of dimers. In the regime

of strong attractive interactions doubly occupied sites would contribute heavily

in the ground state of our lattice model. This can be shown with the use of

degenerate perturbation theory in J/U , as was done in Ref. [138], to arrive at an

effective Hamiltonian HD, which clearly shows the dynamics of bound pairs,

HD =
2J2

U

∑
<i,j>

(
d†idj − n(D)

i n
(D)
j

)
. (5.58)

This Hamiltonian contains a doublon tunnelling term and a nearest neighbour

interaction term with the on-site number operator for doublons, n
(D)
i = d†idi.

This model prefers pair formation on alternative sites as the energy can then be

lowered through virtual tunnelling of doublons (U < 0). These pairs approxi-

mately behave as composite bosons and due to Pauli-exclusion principle, more

than one pair cannot occupy the same lattice site. This perturbative Hamilto-

nian therefore essentially describes hardcore bosons with next-nearest neighbour

interactions. The ground state at low densities is expected to be a superfluid of

pairs with the doublon correlation function decaying algebraically [Eq. (5.40)].

We now look at the decay of these correlation functions due to the dissipative

dynamics. The first order of time-dependent perturbation theory is given solely



Chapter 5. Dynamics of fermions in optical lattices with radiation bath 96

by the action of the dissipative part on the initial state as it is the ground state.

We calculate the following decay rates:

d

dt
〈d†idj〉 = Tr

(
d†idjL1ρ

)
=
γ

2

∑
k

〈2nkd†idjnk − nknkd†idj − d†idjnknk〉 , (5.59)

where nk = nk,↑ + nk,↓. We then compute

nkd
†
idj − d†idjnk

= −
(
c†i,↑c

†
i,↓cj,↓ck,↑ + c†i,↑c

†
i,↓ck,↓cj,↑

)
δk,j +

(
c†k,↑c

†
i,↓cj,↓cj,↑ + c†i,↑c

†
k,↓cj,↓cj,↑

)
δk,i ,

(5.60)

and use this identity to perform the sum over k and arrive at

d

dt
〈d†idj〉 = γ〈−2d†idj − 2d†idj〉 = −4γ〈d†idj〉 . (5.61)

The pair correlations therefore decay with a rate that is four times the scattering

rate. For the Bose-Hubbard model previously calculated rates of decay for off-

diagonal elements of the single particle density matrix for interacting bosons was

found to be γ [65]. From our calculations in a double well, one factor of 2 arises

as two particles form each dimer, whereas the other factor of 2 arises from the

superradiant enhancement discussed in Sec. 5.4.2. In a spontaneous emission

event from a doublon, the dimension of a single lattice site limits the spatial

separation, which is much smaller than the wavelength of the light. The atoms

therefore interact with the light in a coherent and collective way [127, 128]. For

Nl particles on site l the resulting spontaneous emission rate therefore becomes

N2
l γ.

Although the perturbative results are expected to be valid only on a short time-

scale, which is set by the tunnelling rate, our numerical findings for finite size

systems, reported in Fig. 5.7, show that the result persists for even longer times.

In Fig. 5.7 (a) we report the spatial dependence of Dr (Eq. (5.40)) for system

size M = 8 at U = −8J and γ = 0.05J . The results obtained with exact

diagonalisation (squares) method and tDMRG method (diamonds) are compared
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Figure 5.7: Comparison of doublon correlation obtained numerically and in
perturbation theory (dashed line) in the strong attractive interaction limit,
averaged over chain and rescaled by the initial value [Eq. (5.40)]. (a) Time
dependence of the doublon correlation at ∆x = 2, 5 for system size M = 8
at U = −8J and γ = 0.05J . We see that the quantum trajectory results
(diamonds) from tDMRG with D = 64 are in good agreement with the result
obtained by doing exact diagonalisation (squares) using the EXPOKIT package
[134] and that perturbation theory does not take into account the rebuilding
of correlations destroyed by spontaneous emissions and hence underestimates
the decay at short distances, but overestimates the decay at large distances.
Using same line symbols in panel (b) we show the quantum trajectory results
for spatial dependence for M = 32 at U = −8J and γ = 0.05J qualitatively
similar to M = 8. (c) Effects of different decay rates for M = 32 at U = −8J .
(d) Dependence on interaction strength for M = 32, γ = 0.05J . The time for
which our perturbation theory is reliable scales with U . Panels (b) to (d) show
tDMRG data using a bond dimension D=128 and the number of trajectories
used in all of the calculations here is 528. Reprinted figure from S. Sarkar, S.
Langer, J. Schachenmayer, and A. J. Daley, Phys. Rev. A, 90, 023618, (2014)
[110]

.

with the results calculated using first order time dependent perturbation theory.

The perturbative result, showing an exponential decay of the doublon correlation

function with a rate of 4γ, is found to be in accordance with the numerical result

not only for very short time but also for time up to ≈ 2/J . If we go to times longer
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than that, two different types of behaviour are found to be occurring, depending

strongly on the spatial separation of the pairs. This happens due to the coherent

dynamics, which is not taken into consideration in the first-order perturbation

theory. For small separations (∆x), following a spontaneous emission event, the

tunnelling terms induce the rebuilding of the correlations between the separated

sites relatively quickly, resulting the average decay to be slower than what is

expected from perturbation theory. This correlation rebuilding process requires

longer time as the distance ∆x between the sites is increased and therefore gets

affected by higher order processes. We move to a bigger system size and show

the similar plots in Fig. 5.7 (b) for M = 32, U = −8J and γ = 0.05J , using the

combination of t-DMRG methods with quantum trajectories techniques. Going

to a bigger system size shows clearly the separation dependance and for large

∆x the numerical results are closer to those obtained using perturbation theory.

The results of varying the decay rate γ are shown in Fig. 5.7 (c), for M = 32 at

U = −8J , which display the expected behaviour. The dependence on interaction

strength is reported in Fig. 5.7(d) for M = 32 and γ = 0.05J , where the time

during which perturbation theory produces reliable result was found to be scaling

with U .

The result found here is inherently different from exponential decay with a rate

γ, which we obtain for the single particle density matrix considering only singly

occupied lattice sites. As superradiance [122] does not depend on particle number

statistics, the same enhanced decay rate is predicted for bosonic pair correlations.

This is consistent with the bosonic version of the perturbative result stated by

Eq. (5.61). Also, here we are in a regime where the photons scattered by atoms of

different states are indistinguishable which is the key origin of the superradiance

in this case. This process does not change the total rate of increase in energy in

spite of changing the total scattering rate. However, ongoing experiments should

be able to measure the change in the correlation functions, which can be done

by measuring the off-diagonal correlations of dimers by associating two parti-

cles on a specific lattice site to molecules, followed by measuring the momentum

distribution of molecules.
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5.6 Summary

In this chapter we have taken an open system of two species fermions in a far-

detuned optical lattice setup that introduces spontaneous emissions as a deco-

herence channel in which the scattered photons are essentially indistinguishable.

After deriving a microscopic master equation for the fermionic system we investi-

gate the decoherence dynamics in strongly interacting regimes with perturbative

approach as well as numerically. The formalism used for this derivation can easily

be generalised for higher dimensions and also to group-II atoms with SU(N) mag-

netic order. The work in this chapter can be further continued in the directions of

thermalisation problems within the lattice, e.g. thermalisation between atoms in

the lowest Bloch band and those taken to higher bands due to spontaneous emis-

sions [66], as well as many-body localised states, as will be discussed in Chapter

6.

We find that for the strongly repulsive case the magnetic order in the ground state

is particularly robust against decoherence as the decay rate is suppressed by a

factor proportional to the population in doubly occupied sites. This is due to the

fact that the spontaneously emitted photons are unable to distinguish the two

different spins and can only detect the difference in the total number of particles

at each site. This is encouraging from an experimental point of view in the context

of detecting magnetic order. There is a stark contrast which is presented by the

strongly attractive case. Here the ground state is mostly made up by dimers

which dynamically exhibit a decay rate enhanced by superradiance. This means

it would be advantageous to use a blue detuned lattice over a red detuned lattice

as the spontaneous emission rate is much lower in the former case.



Chapter 6

Light scattering and state

localisation with fermions in

disordered optical lattices

6.1 Introduction

As discussed in previous chapters, decoherence for atoms in optical lattices due

to light scattering can be understood and controlled on a microscopic level. Our

work presented in Chapter 5 deals specifically with this issue and provides a

theoretical model for this particular experimental situation. In this chapter we

discuss the application of this theoretical framework in a recent experiment that

was carried out to study the effect of spontaneous emissions in a system realised

with ultracold two-species fermions in optical lattices, which exhibit persistent

This work is taken in part from the publication Signatures of many-body localization in a
controlled open quantum system, H. P. Lüschen, P. Bordia, S. S. Hodgman, M.Schreiber, S.
Sarkar, A.J. Daley, M. H. Fischer, E. Altman, I. Bloch, and U. Schneider, Phys. Rev. X, 7,
011034, (2017). The author of this thesis contributed the full analytical and numerical studies
for light scattering from a single atom, and the resulting understanding of the atomic physics,
that assisted in the design and the interpretation of the experiment, and was covered in details
in the appendices of the article.
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many-body localisation (MBL). The work was performed in collaboration with an

experimental team led by Immanuel Bloch and Ulrich Schneider. A peer reviewed

version of our work can be found in Physical Review X, 7, 011034 (2017), titled

“Signatures of Many-Body Localization in a Controlled Open Quantum System”

[139]. In this chapter, in Sec. 6.2 we present a brief overview of thermalisation

and many-body localisation. Sec. 6.3 presents the experimental details along

with the model Hamiltonian that is realised, as well as results for the case of no

decoherence. In Sec. 6.4 we focus on the fermionic atomic species that is used in

the experiment (40K) and compute the relevant level transition rates that lead to

the calculation of the decoherence rates arising from spontaneous emission events.

Sec. 6.5 shows the results and discusses the effect of decoherence on the stability

of the MBL. Sec. 6.6 presents a brief summary.

6.2 Overview of many-body localisation

The notion of thermalisation is usually relevant in the context of a system at

equilibrium with an external reservoir. However the expansion of the definition

thermalisation for closed systems is also of great importance for many experi-

ments. In a thermalisation process these closed systems reach a homogenised

state after a sufficient amount of time. However under the right conditions, al-

ternative possibilities exist, where a closed quantum system fails to thermalise.

Many-body localised states belong to a class where local quantum correlations

do not thermalise even after arbitrarily long times [57, 140–151]. In this sec-

tion we will briefly discuss some of the important concepts needed to understand

thermalisation and MBL.

6.2.1 Thermalisation

We start with the discussion of thermalisation in closed quantum systems. We

consider a finite subsystem S to which the rest of the system acts as a bath B.

With D being the total number of degrees of freedoms of the whole system, the
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density operator for the full system ρD(t) evolves under the total Hamiltonian HD

(usually consisting of local operators) according to i~ρ̇D(t) = [HD, ρD(t)]. Now

to define a thermal equilibrium, the thermodynamic limit is taken by increasing

D, which is done by adding more degrees of freedoms to B while keeping S fixed.

Using the canonical ensemble one can define an equilibrium density operator at

temperature T by, ρeqD = e−HD/kBT/Tr(e−HD/kBT ). The corresponding reduced

density operator for S is given by ρeqS,D = TrBρ
eq
D . The system is now chosen to

start in a set of initial states {ρD(t = 0)} of which the energy distribution falls

in a narrow range around the equilibrium average energy given by ρeqD . With

this choice of initial states, the system is considered to be in thermal equilibrium

at temperature T if, for all choices of finite subsystems S that are described by

ρS,D(t) = TrBρD(t), the following condition is satisfied,

lim
D→∞

lim
t→∞

ρS,D(t) = lim
D→∞

ρeqS,D , (6.1)

when both the thermodynamic limit and long-time limit are taken together [152–

154]. This definition of thermalisation also tells us although the information

about the initial state of the system is not lost as the evolution is unitary, it is in

general inaccessible by doing local operations on a subsystem as it gets more and

more entangled with the bath with progression of time.

6.2.2 Eigenstate thermalisation hypothesis

In conventional statistical mechanics, if a system thermalises in the long time

limit, it does so for all out-of-equilibrium initial states. For a closed quantum

system, a general initial state |ψ(0)〉, that is not necessarily an eigenstate of the

system, can be expanded in the eigenbases {|j〉} i.e. |ψ(0)〉 =
∑

j cj|j〉. The time-

evolution of this state is given by |ψ(t)〉 =
∑

j cje
−iEjt|j〉. The expectation value

of an operator V , as a function of time, is therefore,

V (t) =
∑
j,j′

c∗j′cje
i(Ej′−Ej)t〈j′|V |j〉 . (6.2)
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If the system thermalises, the expectation value of V in that steady state (Vthermal)

will be the long-time average of V (t), i.e.

Vthermal = lim
T→∞

1

T

∫
dt
∑
j,j′

c∗j′cje
i(Ej′−Ej)t〈j′|V |j〉 =

∑
j

|cj|2〈j|V |j〉 . (6.3)

The expectation value of an operator in the thermalised state is therefore deter-

mined by its expectation values with respect to the eigenstates and by the expan-

sion coefficients of the initial state. According to the eigenstate thermalisation

hypothesis (ETH), if the eigenstate expectation values (〈j|V |j〉) do not fluctuate

for eigenstates in a narrow energy window around the initial energy, determined

by the expansion coefficients cj, then the expectation value in the thermalised

state can be described by a microcanonical ensemble [152–154]. As the unitary

evolution for an initial state that is an eigenstate is trivial, i.e. ρD(t) = ρD(t = 0),

the eigenstates stay thermalised at all times. Considering a many-body eigenstate

of the full system |n〉 that correspond to a equilibrium temperature Tn under

ETH, in thermodynamic limit we have ρeqD = ρS,D = TrB|n〉〈n|. In this case the

bipartite entanglement between S and B, given by the von Neumann entropy,

SvN = −Tr(ρS,Dlog2ρS,D), is also the thermal entropy of S which is proportional

to its volume for non-zero Tn.

6.2.3 Single-particle localisation

An interesting class of systems where quantum thermalisation does not occur and

ETH is violated by the many-body eigenstates are Anderson localised systems.

The case of single particle localisation, introduced by Anderson [155], can be

essentially illustrated with the help of a tight-binding Hamiltonian describing a

single particle on an infinite lattice with next-neighbour tunnelling J and random

onsite interaction Ui at site i [147],

H = −J
∑
<ij>

(
c†icj + h.c.

)
+
∑
i

Uic
†
ici . (6.4)
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The random potential Ui can be chosen from a range [−W/2,W/2] with the

width W as a measure of the strength of the disorder. All the eigenstates of this

Hamiltonian in 1D and 2D are exponentially localised i.e. the wavefunctions have

an asymptotic form ψn(r) ∼ exp(−|r − rn|/ξ), localised around the position rn,

where the localisation length ξ depends on the disorder strength and energy. In

three or more dimensions for weak enough disorder the eigenstates give rise to

extended wavefunctions which have asymptotic form of ∼ 1/
√
V , where V is the

volume.

6.2.4 Many-body localisation

Localisation in the single particle scenario can also be expanded to the case of

multiple interacting particles, giving rise to MBL. One can illustrate this in terms

of a spin model [144],

H = J
∑
<ij>

σi · σj +
∑
i

hiσ
z
i , (6.5)

where J is the nearest neighbour interaction and hi is the onsite magnetic field,

chosen from a random distribution with width W . A single particle localisation

is said to be observed with this model if an initial state with a single spin up at

a particular site while all other spins are down can be preserved in the system

memory by the existence of a finite probability of having the spin up at that site

in the long time limit . In the many-body case the eigenstates show localisation

for high values of disorder which can be shown using perturbation theory [140].

Even for smaller values of disorder where perturbation theory is not valid, there is

numerical evidence of MBL in 1D for some of the many-body eigenstates [144]. A

quantum phase transition therefore occurs as disorder strength is varied where for

weak disorder all the eigenstates obey ETH and for strong disorder not all eigen-

states obey ETH. In addition to systems with static random disorder, systems

with quasiperiodicity also show MBL where the disorder potential has a period-

icity that is incommensurate with the underlying lattice [156]. We specifically

consider such systems in this chapter.



Chapter 6. Light scattering and state localisation with fermions in disordered
optical lattices 105

6.3 MBL experiment with cold atoms

In the case of non-interacting particles Anderson localisation has been observed

in experiments for various systems [157–159], including ultracold atom experi-

ments [160–163]. Conclusive evidence of MBL in experiments however only was

presented very recently, in 2015 [57] by our collaborators for the work presented

in this chapter. MBL affected by decoherence in the same physical system of

two species fermions with the same experimental techniques in the presence of

a controlled source of dissipation introduced by an extra laser was used for this

work. In this section we will discuss the experimental setup.

6.3.1 Aubry-André model

The system Hamiltonian describing the two-species fermions in a 1D optical lat-

tice is given by the Aubry-André model, in the presence of interactions [156, 164]:

HAA =− J
∑
i,σ

(
c†i,σci+1,σ + h.c.

)
+ U

∑
i

ni,↑ni,↓

+ ∆
∑
i

cos (2πβi+ φ) (ni,↑ + ni,↓) , (6.6)

which essentially is a two-species, single band Fermi-Hubbard Hamiltonian, as

discussed in the previous chapter, with a quasi-random disorder potential. As

before, J is the tunnelling rate, U is the onsite interaction energy with ci,σ(c†i,σ)

as annihilating (creating) a fermion at i-th site with spin index σ ∈ {↑, ↓} and

obeying the anti-commutation relation
{
ci,σ, c

†
j,σ′

}
= δi,jδσ,σ′ . The disorder poten-

tial with disorder strength ∆ is added by introducing an incommensurate lattice,

where β is the ratio of the lattice constants and φ is a phase offset.

This Aubry-André model was originally introduced in the context of showing

single particle localisation with quasiperiodicity instead of static random disor-

der. For the single particle version of the Hamiltonian in Eq. (6.6) with periodic

boundary condition and irrational β it can be mathematically shown for zero

phase offset to have a phase transition at ∆ = 2J [164, 165]. All single particle
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eigenstates are spatially localised for ∆ > 2J and spatially extended for ∆ < 2J .

This was checked in the experimental setup we are working with on this chapter

[57]. Numerical evidence of MBL with this model was established in Ref. [156]

which opened up the possibility to realise it in cold atom experiments.

6.3.2 Experimental details

The two species fermions are realised in the experiments with 40K atoms with the

two lowest hyperfine states as the two spin states, namely, |F,mF 〉 = |9/2,−9/2〉 ≡
| ↓〉, and |F,mF 〉 = |9/2,−7/2〉 ≡ | ↑〉. After the cooling sequence [166] a two

component degenerate Fermi gas is formed with equal mixtures of these two states

at an initial temperature of 0.15TF where TF is the Fermi temperature. The quasi

one-dimensional lattice consists of two deep orthogonal lattices (say, along y and

z directions) with wavelength λo = 738.2 nm and depth Vo = 36ERo and the pri-

mary, short lattice along x direction with λp = 532.2 nm and depth Vp = 8ERp.

Here ERlat stands for the recoil energy corresponding to the lattice laser with

wavelength λlat. The disorder potential in the Aubry-André model is realised

by superimposing the primary lattice with an disorder lattice with incommen-

surate wavelength λd = 738.2 nm and Vd = sdERd. Here sd gives the relative

strength of the disorder potential with ∆ ≈ 6.67sdJ where J in this experiment

was set around 500h Hz. While the lattice depths and relative phases set the

values of J,∆ and φ, the onsite interaction U is tuned via magnetic Feshbach res-

onance around 202.1 G. The relative wavelength gives the incommensurate ratio,

β = λp/λd = 532.2/738.2 ≈ 0.721. The controlled dissipation in this system is

introduced by applying a scattering laser pulse that is π-polarised and is detuned

below the D2 line of 40K by 1.3 GHz. To be more precise the scattering laser

wavelength λs is chosen such that it is blue detuned by 24 MHz to the transi-

tion between F = 7/2 in the S1/2 level and F = 9/2 in the P3/2 level. We will

discuss in detail the atomic structure and the dissipation channels due to photon

scattering in the next section.

The initial state of the system is chosen to be a charge density wave with particles

only in the even sites. This state is prepared with the help of a long lattice
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with wavelength λl = 2λp superimposed with the short lattice to create a tilted

superlattice that results in all the particles loading on the even sites. The long

lattice is then switched off during the desired evolution time in the experiments.

The observable used for all the measurements is the imbalance I between the

total atom numbers on even and odd sites, Ne and No respectively, and is defined

as I = (Ne−No)/(Ne +No). The initial value is quite close to unity. At the end

of the experiment the populations on the even and odd sites are measured using

a superlattice band-mapping technique.

6.3.3 Result without decoherence

The imbalance I is tracked with time for different values of U and ∆. In the

absence of the scattering laser, the coherent dynamics shows the following be-

haviour. For short times there is a fast decay of I followed by damped oscillatory

dynamics which approach a stationary value at longer times. In the absence of

disorder (∆ = 0) it is an ergodic system and I is expected to approach zero.

As the disorder is increased the ergodic behaviour dramatically ceases to exist

and the imbalance approaches a finite stationary value at long times. This es-

tablishes the signature of MBL persisting in the system. The stationary value

increases with increasing value of ∆/J . In the non-interacting case the transition

between the ergodic and the localised phase happens at ∆/J = 2. In presence of a

moderate interaction the degree of localisation slightly reduces and therefore the

transition happens at a higher value of ∆/J . For strong interactions however the

effective tunnelling rate decreases as the initial state can be thought of consisting

of doublons that tunnel with a second-order rate ∼ J2/U which is much smaller

than J . The transition therefore happens at smaller values of ∆/J .

Coupling to a thermal environment gives rise to decoherence effects which are

expected to destroy the MBL behaviour due to the relaxation of local observables.

To study this open quantum system we would like to write a master equation for

the system density operator in the Lindblad form as was done in the previous

chapters. In the next section we discuss the various decay channels in the 40K

atomic system due to spontaneous emission in the presence of a scattering laser.
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transition sets a sharp boundary between a macroscopic world showing
quantum phenomena and one governed by classical physics.

While Anderson localization of non-interacting particles has been
experimentally observed in a variety of systems, including light scat-
tering from semiconductor powders in 3D [25], photonic lattices in 1D
[26] and 2D [27] and cold atoms in 1D and 3D random [28, 29, 30]
and quasi-random [31] disorder, the interacting case has proven more
elusive. Initial experiments with interacting systems have focused on
the superfluid [32, 33] or metal [34] to insulator transition in the ground
state. Evidence for inhibited macroscopic mass transport was reported
even at elevated temperatures [34], but is hard to distinguish from ex-
ponentially slow motion expected from conventional activated transport
or effects stemming from the inhomogeneity of the cloud. Until now
conclusive experimental evidence for many-body localization at finite
energy density has thus been lacking.

In this paper we report the first experimental observation of ergod-
icity breaking due to many-body localization. Our experiments are
performed in a one-dimensional system of ultracold fermions in a bi-
chromatic, quasi-randomly disordered lattice potential. We identify the
many-body localized phase by monitoring the time evolution of local
observables following a quench of system parameters. Specifically,
we prepare a high-energy initial state with strong charge density wave
(CDW) order (as shown in Fig. 1A) and measure the relaxation of this
charge density wave in the ensuing unitary evolution. Our main observ-
able is the imbalance I between the respective atom numbers on even
(Ne) and odd (No) sites

I =
Ne � No

Ne + No
, (1)

which directly measures the CDW order. While the initial CDW (I &
0.9) will quickly relax to zero in the thermalizing case, this is not true in
a localized system, where ergodicity is broken and the system cannot act
as its own heat bath (Fig. 1B) [35]. Intuitively, if the system is strongly
localized, all particles will stay close to their original positions during
time evolution, thus only smearing out the CDW a little. A longer local-
ization length ⇠ corresponds to more extended states and will lead to a
lower steady state value of the CDW. The long-time stationary value thus
effectively serves as an order parameter of the MBL phase and allows us
to map the phase boundary between the ergodic and non-ergodic phases
in the parameter space of interaction versus disorder strength. In par-
ticular, in the non-interacting system the CDW vanishes asymptotically
as / 1/⇠2 [36]. In contrast to previous experiments, which studied the
effect of disorder on the global expansion dynamics [28, 31, 32, 34, 33],
the CDW order parameter acts as a purely local probe, directly capturing
the ergodicity breaking.

Our system can be described by the one-dimensional fermionic
Aubry-André model [37] with interactions [35], given by the Hamil-
tonian

Ĥ = � J
X

i,�

⇣
ĉ†

i,� ĉi+1,� + h.c.
⌘

+ �
X

i,�

cos(2⇡�i + �)ĉ†
i,� ĉi,� + U

X

i

n̂i,"n̂i,#.
(2)

Here, J is the tunneling matrix element between neighboring lattice sites
and ĉ†

i,� (ĉi,�) denotes the creation (annihilation) operator for a fermion
in spin state � 2 {", #} on site i. The second term describes the quasi-
random disorder, i.e. the shift of the on-site energy due to an additional
incommensurate lattice, characterized by the ratio of lattice periodicities

�, disorder strength � and phase offset �. Lastly, U represents the on-
site interaction energy and n̂i,� = ĉ†

i,� ĉi,� is the local number operator
(see Fig. 1C).
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Figure 2: Time evolution of an initial charge-density wave. A charge den-
sity wave, consisting of fermionic atoms occupying only even sites, is allowed
to evolve in a lattice with an additional quasi-random disorder potential. After
variable times the imbalance I between atoms on odd and even sites is measured.
Experimental time traces (circles) and DMRG calculations for a single homoge-
neous tube (lines) are shown for various disorder strengths �. Each experimental
datapoint denotes the average of six different realizations of the disorder potential
and the error bars show the standard deviation of the mean. The shaded region
indicates the time window used to characterise the stationary imbalance in the
rest of the analysis.
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for non-interacting atoms. The Aubry-André transition is at �/J = 2. Circles
show the experimental data, along with Exact Diagonalization (ED) calculations
with (red line) and without (grey line) trap effects. Each experimental data point
is the average of three different evolution times (13.7⌧ , 17.1⌧ and 20.5⌧ ) and
four different disorder phases �, for a total of 12 individual measurements per
point. To avoid any interaction effects, only a single spin component was used.
The ED calculations are averaged over similar evolutions times to the experiment
and 12 different phase realizations. Error bars show the standard deviation of the
mean.
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the other side quantum correlations persist indefinitely. Hence the MBL
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and quasi-random [31] disorder, the interacting case has proven more
elusive. Initial experiments with interacting systems have focused on
the superfluid [32, 33] or metal [34] to insulator transition in the ground
state. Evidence for inhibited macroscopic mass transport was reported
even at elevated temperatures [34], but is hard to distinguish from ex-
ponentially slow motion expected from conventional activated transport
or effects stemming from the inhomogeneity of the cloud. Until now
conclusive experimental evidence for many-body localization at finite
energy density has thus been lacking.

In this paper we report the first experimental observation of ergod-
icity breaking due to many-body localization. Our experiments are
performed in a one-dimensional system of ultracold fermions in a bi-
chromatic, quasi-randomly disordered lattice potential. We identify the
many-body localized phase by monitoring the time evolution of local
observables following a quench of system parameters. Specifically,
we prepare a high-energy initial state with strong charge density wave
(CDW) order (as shown in Fig. 1A) and measure the relaxation of this
charge density wave in the ensuing unitary evolution. Our main observ-
able is the imbalance I between the respective atom numbers on even
(Ne) and odd (No) sites
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which directly measures the CDW order. While the initial CDW (I &
0.9) will quickly relax to zero in the thermalizing case, this is not true in
a localized system, where ergodicity is broken and the system cannot act
as its own heat bath (Fig. 1B) [35]. Intuitively, if the system is strongly
localized, all particles will stay close to their original positions during
time evolution, thus only smearing out the CDW a little. A longer local-
ization length ⇠ corresponds to more extended states and will lead to a
lower steady state value of the CDW. The long-time stationary value thus
effectively serves as an order parameter of the MBL phase and allows us
to map the phase boundary between the ergodic and non-ergodic phases
in the parameter space of interaction versus disorder strength. In par-
ticular, in the non-interacting system the CDW vanishes asymptotically
as / 1/⇠2 [36]. In contrast to previous experiments, which studied the
effect of disorder on the global expansion dynamics [28, 31, 32, 34, 33],
the CDW order parameter acts as a purely local probe, directly capturing
the ergodicity breaking.

Our system can be described by the one-dimensional fermionic
Aubry-André model [37] with interactions [35], given by the Hamil-
tonian
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Here, J is the tunneling matrix element between neighboring lattice sites
and ĉ†

i,� (ĉi,�) denotes the creation (annihilation) operator for a fermion
in spin state � 2 {", #} on site i. The second term describes the quasi-
random disorder, i.e. the shift of the on-site energy due to an additional
incommensurate lattice, characterized by the ratio of lattice periodicities

�, disorder strength � and phase offset �. Lastly, U represents the on-
site interaction energy and n̂i,� = ĉ†

i,� ĉi,� is the local number operator
(see Fig. 1C).
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Figure 2: Time evolution of an initial charge-density wave. A charge den-
sity wave, consisting of fermionic atoms occupying only even sites, is allowed
to evolve in a lattice with an additional quasi-random disorder potential. After
variable times the imbalance I between atoms on odd and even sites is measured.
Experimental time traces (circles) and DMRG calculations for a single homoge-
neous tube (lines) are shown for various disorder strengths �. Each experimental
datapoint denotes the average of six different realizations of the disorder potential
and the error bars show the standard deviation of the mean. The shaded region
indicates the time window used to characterise the stationary imbalance in the
rest of the analysis.
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for non-interacting atoms. The Aubry-André transition is at �/J = 2. Circles
show the experimental data, along with Exact Diagonalization (ED) calculations
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four different disorder phases �, for a total of 12 individual measurements per
point. To avoid any interaction effects, only a single spin component was used.
The ED calculations are averaged over similar evolutions times to the experiment
and 12 different phase realizations. Error bars show the standard deviation of the
mean.
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the other side quantum correlations persist indefinitely. Hence the MBL
transition sets a sharp boundary between a macroscopic world showing
quantum phenomena and one governed by classical physics.

While Anderson localization of non-interacting particles has been
experimentally observed in a variety of systems, including light scat-
tering from semiconductor powders in 3D [25], photonic lattices in 1D
[26] and 2D [27] and cold atoms in 1D and 3D random [28, 29, 30]
and quasi-random [31] disorder, the interacting case has proven more
elusive. Initial experiments with interacting systems have focused on
the superfluid [32, 33] or metal [34] to insulator transition in the ground
state. Evidence for inhibited macroscopic mass transport was reported
even at elevated temperatures [34], but is hard to distinguish from ex-
ponentially slow motion expected from conventional activated transport
or effects stemming from the inhomogeneity of the cloud. Until now
conclusive experimental evidence for many-body localization at finite
energy density has thus been lacking.

In this paper we report the first experimental observation of ergod-
icity breaking due to many-body localization. Our experiments are
performed in a one-dimensional system of ultracold fermions in a bi-
chromatic, quasi-randomly disordered lattice potential. We identify the
many-body localized phase by monitoring the time evolution of local
observables following a quench of system parameters. Specifically,
we prepare a high-energy initial state with strong charge density wave
(CDW) order (as shown in Fig. 1A) and measure the relaxation of this
charge density wave in the ensuing unitary evolution. Our main observ-
able is the imbalance I between the respective atom numbers on even
(Ne) and odd (No) sites

I =
Ne � No

Ne + No
, (1)

which directly measures the CDW order. While the initial CDW (I &
0.9) will quickly relax to zero in the thermalizing case, this is not true in
a localized system, where ergodicity is broken and the system cannot act
as its own heat bath (Fig. 1B) [35]. Intuitively, if the system is strongly
localized, all particles will stay close to their original positions during
time evolution, thus only smearing out the CDW a little. A longer local-
ization length ⇠ corresponds to more extended states and will lead to a
lower steady state value of the CDW. The long-time stationary value thus
effectively serves as an order parameter of the MBL phase and allows us
to map the phase boundary between the ergodic and non-ergodic phases
in the parameter space of interaction versus disorder strength. In par-
ticular, in the non-interacting system the CDW vanishes asymptotically
as / 1/⇠2 [36]. In contrast to previous experiments, which studied the
effect of disorder on the global expansion dynamics [28, 31, 32, 34, 33],
the CDW order parameter acts as a purely local probe, directly capturing
the ergodicity breaking.

Our system can be described by the one-dimensional fermionic
Aubry-André model [37] with interactions [35], given by the Hamil-
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Here, J is the tunneling matrix element between neighboring lattice sites
and ĉ†

i,� (ĉi,�) denotes the creation (annihilation) operator for a fermion
in spin state � 2 {", #} on site i. The second term describes the quasi-
random disorder, i.e. the shift of the on-site energy due to an additional
incommensurate lattice, characterized by the ratio of lattice periodicities

�, disorder strength � and phase offset �. Lastly, U represents the on-
site interaction energy and n̂i,� = ĉ†
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Figure 2: Time evolution of an initial charge-density wave. A charge den-
sity wave, consisting of fermionic atoms occupying only even sites, is allowed
to evolve in a lattice with an additional quasi-random disorder potential. After
variable times the imbalance I between atoms on odd and even sites is measured.
Experimental time traces (circles) and DMRG calculations for a single homoge-
neous tube (lines) are shown for various disorder strengths �. Each experimental
datapoint denotes the average of six different realizations of the disorder potential
and the error bars show the standard deviation of the mean. The shaded region
indicates the time window used to characterise the stationary imbalance in the
rest of the analysis.
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This quasi-random model is special in that, for almost all irrational
� [36], all single particle states become localized at the same critical
disorder strength �/J = 2 [37]. For larger disorder strengths the lo-
calization length decreases monotonically. Such a transition was indeed

2

� = 0

� > 2J

Figure 6.1: Schematic diagram showing the imbalance I as a function of time
(adapted from [57]). In the initial state I is 1 and in absence of disorder it
relaxes to 0 (Blue line). For strong enough disorder (∆ > 2J) the system fails
to thermalise and I approaches a positive stationary value at long times (red
line).

6.4 Level scheme in 40K and scattering bursts

For the 40K atoms in an optical lattice and driven by a dedicated detuned laser,

spontaneous emission events can give rise to two dissipative processes. The atom,

initially in a localised superposition of Wannier states becomes localised on a

length scale set by the scattered photon’s wavenumber, which dephases the co-

herent superposition to an incoherent mixture of single Wannier states [65, 110].

Also the atom can be excited to a higher band, which can result in a loss process

due to weak trapping and higher tunnelling rates in higher bands. The total

scattering rate γ therefore consists of two parts, rate of dephasing γdp, and rate

of excitations to higher bands γex. In this section we provide the details of the

calculations that lead to the determination of the fractional loss to excited bands

i.e. γex/γdp.

To do so we first focus on the hyperfine splitting of the fine-structure levels of 40K

relevant to the experiment. In spectroscopic notation the fine-structure is given

by 2S1/2 as the ground level, 2P1/2 as the first excited level or D1 transition and
2P3/2 as the next excited level or D2 transition. The hyperfine Hamiltonian for
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Figure 6.2: Schematic diagram showing the lowest hyperfine manifolds of
40K in the absence of magnetic field (adapted from [167]). In the context of
the experiment we focus on the S and D2 manifold.

40K is added by taking the nuclear spin into account (I = 4),

Hhfs = AhfsI · J +
B

~
(µBgJmJ + µNgImI) , (6.7)

which, upon diagonalisation in the absence of B-field, gives rise to the hyperfine

structure shown in Fig. 6.2. The constants appearing in the Hamiltonian can

be found in Ref. [167]. From an experimental point of view, we will look at a

situation where the π polarised laser is blue detuned by 24 MHz to the transition

between F = 7/2 in the 2S1/2 level and F = 9/2 in the 2P3/2 level and at a

magnetic field around 200G. As the D1 level is far away we do not take its effect

into account. For the experimentally relevant lowest two states in the 2S1/2 level

i.e. |F,mF 〉 = |9/2,−9/2〉 ≡ | ↓〉, and |F,mF 〉 = |9/2,−7/2〉 ≡ | ↑〉, we compute

the transition rates and determine the relative probabilities to return to different

spin states upon de-excitation. Recalling the general scheme used for calculating

decay rates in a multilevel atom summarised in the previous chapter (Sec. 5.2) we

compute these different transition rates between atomic levels of 40K numerically
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for arbitrary magnetic field strengths. Before tabulating the interesting findings,

we discuss briefly the behaviour of the transition rates for limiting values of the

magnetic field.

Discussion on the low field behaviour

For small magnetic fields |F,mF 〉 is the suitable choice of basis to work with. We

look at the situation where the atom starts out in the lowest energy state in the

S manifold i.e. at |9/2,−9/2〉S, gets excited to the D2 manifold and subsequently

decays back to any of the allowed states in the S manifold. For a π polarised

laser, the excited state is given by

|eπ〉 ∝
〈(
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Now |eπ〉 can decay to |9/2,−9/2〉S, causing no spin flip, and also can decay

to |9/2,−7/2〉S or |7/2,−7/2〉S which result in spin flips. We can compute the

relative probabilities

probability of spin flip

probability of no spin flip
=
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Discussion on strong field behaviour

In the presence of a strong magnetic field the degeneracy in the hyperfine manifold

is broken and the suitable choice of basis to work with is |J,mJ ; I,mI〉. We again

look at the situation where the atom starts at the lowest energy state in S manifold

i.e. at |1/2,−1/2; 4,−4〉S, is excited to the D2 manifold and subsequently decays

back to any of the allowed states in the S manifold. If the laser is π polarised then

the excited state is |3/2,−1/2; 4,−4〉D2 and the ratio of transition rates of coming

back to the other possible state (i.e. |1/2, 1/2; 4,−4〉S) to that of coming back to

the starting state (i.e. |1/2,−1/2; 4,−4〉S ) is basically the ratio of squares of the
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respective Wigner 3j functions (see Eq. (5.2)), and therefore,

probability of spin flip

probability of no spin flip
=

∣∣∣∣∣∣∣∣∣∣∣

(
3
2

1 1
2

−1
2

1 −1
2

)
(

3
2

1 1
2

−1
2

0 1
2

)
∣∣∣∣∣∣∣∣∣∣∣

2

=
1

2
. (6.10)

Therefore we see for the lowest energy ground state (| ↓〉), changing the magnetic

field does not have any significant effect on the relative spin flip rates for a π

polarised laser. This result also holds for the second lowest state in the S manifold

(| ↑〉). We check this by numerically diagonalising the Hamiltonian in Eq. (6.7)

for a range of B-field and computing the relative spin flip rates. Therefore we

can deduce that for both the lowest energy states in the F = 9/2 ground state

manifold, in a spontaneous emission event, the probability to come back to the

starting state is almost 2/3 and the probability to return to other spin states is

almost 1/3. Investigating the nature of the flipped spin states we find that there is

only one state in the F = 7/2 ground state manifold that the spin flip dominantly

leads to for the magnetic field regime we work in. This is an expected behaviour

as for these values of magnetic fields the atomic level structure is close to the

Paschen-Back regime and therefore mJ and mI are good quantum numbers. As

the coupling to the nuclear spin is much smaller than the coupling to electron

spin, the transition between different mI states is suppressed. The spin flip for

the | ↓〉 state therefore happens to the highest state in the F = 7/2 ground state

manifold (|1/2, 1/2; 4,−4〉S). Due to weak coupling to the nuclear spin there is

only 4% chance of returning to another mI state in the case of a spin flip. Another

interesting experimental situation occurs in this case where the spin flipped state

in the F = 7/2 ground state manifold is found to be resonantly coupled with a

particular state in the F = 7/2 D2 manifold which is the highest energy state in

that particular manifold. The atom therefore will be quickly excited to F = 7/2 in

the D2 manifold. Computing the transition rates from this excited states again

show a probability close to 2/3 to return to the highest state in the F = 7/2

ground state manifold and a probability close to 1/3 to return to the lowest

energy ground state (| ↓〉).
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All the results presented above are also applicable to the second-lowest energy

state in the S manifold (| ↑〉). In this case also a spontaneous emission event

returns the atom with probability close to 2/3 to the starting state and with

probability close to 1/3 to a spin-flipped state which is the second highest state

in the F = 7/2 in ground state manifold (|1/2, 1/2; 4,−3〉S). There is although

around 10% chance of flipping into another state due to weak coupling to nuclear

spin. The spin flipped state is resonantly coupled to the second highest state in

the F = 7/2 D2 manifold and would be readily excited to it. The probabilities

to come back to the second highest state in the F = 7/2 ground state manifold

and to the second lowest energy ground state (| ↑〉) are close to 2/3 and 1/3

respectively.

These findings are summarised in Fig. 6.2. The resonant coupling between the

spin flipped state and F = 7/2 in the D2 manifold results in multiple photons

being scattered on a very short time-scale. We define a scattering burst as the

following sequence of photon absorptions and reemissions: the atom starts in

the F = 9/2 ground state manifold and following absorption of a scattering

laser photon decays, to the same state with probability 2/3 and to F = 7/2

in ground state manifold with probability 1/3. The resonant coupling causes

multiple photon scattering in quick succession until all the population is back in

the starting state in the F = 9/2 ground state manifold, ending the scattering

burst. This full event of scattering can essentially be taken as a single scattering

event as the timescale of the resonant scattering events are much smaller compared

to the tunnelling time.

6.4.1 Band excitation for single photon emission

Along with the dephasing mechanism, a spontaneous emission event can intro-

duce atom loss in the system via excitation to higher bands. In order to compute

the atom excitation rate in a scattering burst event we first discuss a single pho-

ton process where the atomic population transfer is computed in a spontaneous

emission that follows a stimulated absorption. Although in the experiment the

3D lattice is inseparable, we take them to be mutually orthogonal to numerically
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Figure 6.3: Schematics of the scattering burst for 40K. In the presence of a
π-polarised detuned scattering laser and in the Paschen-Back regime for the
atomic levels, the atom in the lower lying F = 9/2 manifold is virtually excited
(red line). This is followed by reemission (green line) back to the starting state
and to the lower lying F = 7/2 level which is resonantly connected to the upper
(D2) lying F = 7/2 level. This leads to resonant multi-photon scattering (blue
line) until the atom is back in the ground state manifold. Reprinted figure
from H. Lüschen et. al, Phys. Rev. X, 7, 011034, (2017) [139].

compute the Wannier functions along the three axes. These separately formed

bands are then combined to approximate the tabulations of the bands in the ac-

tual lattice. This approximation becomes worse as we go to higher bands but

should give a decent estimation of the atomic excitation rate as long as we con-

sider only a few of the lower bands. Also, as the disorder lattice potential is weak

compared to the primary lattice, we can neglect its presence, assuming its influ-

ence on the band structure to be very small. Using the experimental parameters

reported in the previous section we calculate the band structure and Wannier

functions for the lattice system. We assume that the atom in a particular lat-

tice site in band (jx, jy, jz) in the three dimensional case is represented by the

Wannier wavefunction |wjx , wjy , wjz〉 around that lattice site. Here we make a

simplification by using a Wannier state for a starting state where we should be

using a localised function given by a superposition of several Wannier states. This

might ask for some corrections but carrying out these calculations with simple
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(jx, jy, jz)
=(0,0,0)

(1,0,0) (0,1,0) (0,0,1) (2,0,0)

(ix, iy, iz)
=(0,0,0)

0.823 0.103 0.023 0.023 0.016

(1,0,0) 0.103 0.582 0.003 0.003 0.229
(0,1,0) 0.023 0.003 0.772 0.000 0.000
(0,0,1) 0.023 0.003 0.000 0.772 0.000
(2,0,0) 0.016 0.229 0.000 0.000 0.406
higher 0.011 0.080 0.201 0.201 0.348

Table 6.1: Here we show the probability table to start in band (jx, jy, jz)
and coming back to band (ix, iy, iz) (Eq. (6.11)) following the absorption of a
photon with wave number kν along the x-direction and subsequent spontaneous
emission in any direction uniformly. The index (0,0,0) refers to the lowest
band and higher indices to the i-th (j-th) excited band along the given spatial
direction.

harmonic oscillator wavefunctions does not make a drastic change in the end re-

sult. For the coupling between bands, the probability to start in band (jx, jy, jz)

and coming back to band (ix, iy, iz) following the absorption of a photon with

wave number kν along x-direction and subsequent spontaneous emission in any

direction uniformly,

Pi,j =
∑

r∈lattice

∫
kν sphere

k2
ν sin θdθdφ

∣∣〈wix , wiy , wiz |e−ik·reikνx|wjx , wjy , wjz〉∣∣2 .
(6.11)

Based on the definition, for a particular j, the sum of Pi,j-s over all i values and

over an infinite lattice with the starting state at the middle of the lattice should

be 4πk2
ν (kν is normalised by the lattice constant in x-direction). As we make a

cut-off at a certain nband, we have to take care of the fact that there is a loss rate

to the bands that we do not consider. We are allowed to do this as the atoms in

the higher bands are not trapped. To imply this we renormalise the Pi,j matrix

by demanding that the sum of the each column is 4πk2
ν . Following this Pnband+1,j

is added by hand that takes care of transition to all the higher bands and upon

division by 4πk2
ν we obtain

∑
i Pi,j = 1. The result of these calculations is shown

in Table 6.1. The symmetry of the orthogonal lattices result in equal excitation
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probabilities of population transfer and as they are deeper lattices the probability

values are also lower.

6.4.2 Band excitation for scattering bursts

The calculation of the population transfer probability to higher bands in the single

photon process paves the way to calculate the average band excitation probabil-

ities in a scattering burst. As explained before, here the atom in the F = 9/2

ground state manifold at first absorbs a photon from the scattering laser and

emits a (small) n number of photons due to resonant coupling between F = 7/2

in ground state and D2 manifold with n ∈ [0, 1, 2, 3, ...] before returning to the

starting state in the F = 9/2 ground state manifold. The band excitation prob-

abilities therefore explicitly depends on number of resonantly emitted photons,

n. We compute an average band excitation probability considering all possible

values of n, properly weighed by the probability factor of scattering n resonant

photons, which is given by P (n) = (1/3).(2/3)n−1. As this geometric sequence

approaches 0 quickly we see the band excitation probabilities converges only after

a few photon emissions with the limiting value (n→∞) giving the average value.

With this ab-initio calculation we obtain the relative probability of population

transfer in excited bands in a spontaneous emission event to be around 30%, as

can be seen in Fig. 6.4. This gives the ratio γdp/γex ≈ 2.3, which is used for fur-

ther calculations including a potential numerical time evolution of the full master

equation of the atomic density operator in the Lindblad form,

ρ̇ = −i[HAA, ρ]+γdp

∑
i

(
niρni −

1

2
niniρ−

1

2
ρnini

)
+γex

∑
i,σ

(
ci,σρc

†
i,σ −

1

2
c†i,σci,σρ−

1

2
ρc†i,σci,σ

)
, (6.12)

where the jump operators ni and ci,σ introduce the two dissipative processes

dephasing and atom loss by band excitation respectively. In the numerical work

done for this work, however, only the dephasing mechanism could be handled in

DMRG calculations using TEBD framework.



Chapter 6. Light scattering and state localisation with fermions in disordered
optical lattices 116

0 2 4 6 8
Maximum number of photons in burst

0.0

0.4

0.8

P
b

an
d

ground
band

1st excited
band along x

higher
bands

0 4 8
Number of scattering bursts

0.0

0.4

0.8

P
b

an
d

(a)

(b)

Figure 6.4: Band excitation probabilities in the lowest and 1st excited band,
and the cumulative probabilities in all the higher bands (i.e. from 2nd excited
band onwards). (a) Probabilities calculated in the faster timescale are shown
here with number of resonant photons n, until steady values are reached which
are the average band excitation probabilities. (b) Properly weighted band
excitation probabilities as a function of number of scattering bursts, i.e. in
the long timescale after the steady values are reached through the spontaneous
emission events in the faster timescale. Reprinted figure from H. Lüschen et. al,
Phys. Rev. X, 7, 011034, (2017) [139].

6.5 Results

For different values of scattering rate γ with a moderate interaction value U = 2J

and a moderate disorder value ∆ = 4J the imbalance I is shown in Fig. 6.5 as a

function of time. In the absence of a scattering laser (γ = 0 case) the imbalance

approaches a steady value at intermediate times as observed before [57] but in the

long time limit goes to a thermalised value i.e. zero. This happens due to residual

coupling with neighbouring 1D tubes in the experiment and due to off-resonant

lattice photons present in the setup [150]. For finite γ values the relaxation of

I is faster along with faster atom loss which is expected from our microscopic
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Figure 6.5: Imbalance I as a function of time in units of τ = ~/J , in the
presence of photon scattering. Upper panel: For an initial state, with fermionic
atoms occupying only even sites on an optical lattice, with an additional quasir-
andom disorder potential with strength ∆ = 4J and interaction U = 2J , time
evolution under different scattering rates γ show faster decay of I for higher
values of γ. The solid lines are the stretched exponential fits to the experi-
mental data points (circles) each of which is an average over six different phase
offset realisations. The grey shaded region show the TEBD calculation for
no scattering (dashed line is an extrapolation of the mean stationary value)
which differs from the experimental result as the numerical work does not take
into account the coupling to neighbouring 1D tubes and off-resonant scattering
of lattice photons present in the experiment that causes a long-time decay of
I. The lower panel shows the corresponding time evolution of the normalised
atom number with simple exponentials used as fit functions. Reprinted figure
from H. Lüschen et. al, Phys. Rev. X, 7, 011034, (2017) [139].

understanding of the scattering processes discussed in the previous section. The

relaxation of I matches the theoretical prediction of a stretched exponential decay

[168, 169] of the form e−(ΓIt)
β

with a global imbalance relaxation rate ΓI and a

stretching exponent β with typical fit values between 1/2 and 1. The effect of

the scattering rate can be parameterised by introducing a susceptibility χ defined

as χ = dΓI/dγ. A measure for the stability of the MBL phase in these systems
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Figure 6.6: Susceptibility with disorder strength in the non-interacting sys-
tem: The upper bound of the susceptibility given by pdp = γdp/γ is shown
by the black dashed line. The experimental data (circle) is compared to the
predictions of a rate model (brown line) introduced in [169]. In the inset the
imbalance relaxation rate ΓI is plotted with scattering rate γ. The slope that
gives the susceptibility χ is similar for the experimental result and the rate
model. A constant experimental background decay Γbg is the reason for the
offset. Reprinted figure from H. Lüschen et. al, Phys. Rev. X, 7, 011034,
(2017) [139].

against the dissipative effects due to the photon scattering can then be given

by 1/χ. In the following we discuss the behaviour of this susceptibility for the

non-interacting and interacting system respectively.

6.5.1 Non-interacting case

In the non-interacting case we look at the localised phase that happens for ∆ >

2J . As shown in Fig. 6.6 the susceptibility χ significantly goes down as the

disorder strength ∆ increases. This can be intuitively understood by considering

a single particle in a localised phase around at a particular site. For large ∆ the

deep localisation allows one to think of the state of the particle as a Wannier

state, which upon spontaneous emission gets hardly affected. The excitations

to higher bands does not in general have any effect in the non-interacting case

as they are equally probable to occur at any site. The susceptibility however
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Figure 6.7: Susceptibilities in the interacting system for different disorder
strengths. The experimental results (circles) are compared to numerical calcu-
lations using TEBD simulations that do not include particle loss (triangles).
The grey shaded region indicates the statistical uncertainty of the TEBD re-
sults and the solid lines serve as guides to the eye. The squares are theoretical
values for the non-interacting case calculated with the rate model [169]. The
interaction has a significant effect on the susceptibility deep in the localised
phase (∆ = 6J) but a very weak effect as one moves close to phase transition
(∆ = 4J). Reprinted figure from H. Lüschen et. al, Phys. Rev. X, 7, 011034,
(2017) [139].

increases as ∆ is decreased as the moderate localisation of a particle implies

finite overlap with neighbouring sites which can result in shifting it away after an

event of spontaneous emission. The susceptibility has thus an upper limit which

would occur close to the phase transition where the localisation length diverges,

implying that each dephasing event can shift the particle to an even or odd site

with same probability. The decay rate of imbalance is therefore γdp and the upper

limit of χ is γdp/γ. This is experimentally not possible to check though as near

the phase transition the localisation length is divergent and the imbalance is zero.

6.5.2 Interacting case

When the particles interact they are affected by a dephasing event even in the

vicinity. Atom losses also affect the sites nearby. The delocalised atoms in higher
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bands can interact with those in the ground bands too. For these reasons the sus-

ceptibility is expected to increase in the interacting case. Moreover, without the

presence of an upper bound the susceptibility might show a diverging behaviour

near the MBL transition. As we see in Fig. 6.7 though, in the deep localised

phase with ∆ = 6J , that the interaction only has a very weak effect on χ which

is expected for strong localisation. As one moves towards smaller disorder values,

increasing interaction has a strong influence on χ which grows rapidly. This can

only be attributed to the dissipative effects introduced by atom loss due to band

excitation. A sudden change of potential caused by loss of atoms that acts on the

neighbouring particles is a dephasing mechanism that reduces the imbalance and

therefore makes the system more susceptible as interaction increases.

6.6 Summary

In this chapter we have applied our understanding from Chapter 5 of a two-

species fermionic systems undergoing dissipative dynamics due to the presence of

a detuned laser that gives rise to incoherent light scattering to a recent experiment

that investigates MBL in such systems. To study the effect of the controlled

coupling to an environment we look at the atomic structure of the fermionic

species used in the experiment. We determine the relative decay rates due to the

two decoherence processes associated with a spontaneous emission event. These

are dephasing due to localisation and atom loss processes due to excitations to

higher bands. These findings help us to quantify the effect of the dissipative

processes in the experiment and determine the susceptibility to the scattering

events. The susceptibility was found out to be not sensitive to interactions in

deeply localised phases but showed a steep rise with increase in interactions near

the MBL transition. Potential directions for further research on the theoretical

side include devising an analytical model to capture this interesting behaviour

qualitatively and optimisation of the numerical techniques to study the dynamics

with atom loss processes in these problems.



Chapter 7

Entanglement in two species

bosonic systems

7.1 Introduction

Recent experimental advances in the field of ultracold atoms to explore the realm

of many-body physics with microscopic control of Hamiltonian parameters and

the environment [7–10, 17, 18] have opened the door to realise a number of low-

temperature condensed matter phenomena. The presence of impurities in these

systems has been studied at length and are known to give rise to quite inter-

esting features, such as the Kondo effect [170], induced by localised magnetic

impurities, or the study of high-temperature superconductivity linked with the

transport of spin impurities [171–173]. Simulating such multi-species systems in

an ultracold gas experiment is feasible these days, as outlined in Chapter 2. A

particularly interesting type of such experiment is where the impurity system is

realised by a small number of particles loaded onto the lowest Bloch band of an

optical lattice and is coupled to a Bose-Einstein condensate (BEC) [41, 174, 175].

These experiments are used to achieve a range of objectives including local non-

destructive probing [35], qubit cooling [36] and creating bath-mediated long-range

interaction [37]. Also, the impurity particles along with the excitations created

121
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due to the coupling can demonstrate polaronic behaviour [30, 38–48] in terms

of an induced effective interaction [37, 49–51] and an increase in effective mass

[52–54], resulting a decrease in mobility of the impurities, as quantified by a

decrease in visibility in momentum distribution. In a recent experiment in the

group of Dominik Schneble (SUNY at Stony Brook) this decrease in visibility was

found to exceed the expected values with 87Rb BEC interacting with 87Rb atoms

in a different hyperfine state and loaded into an one-dimensional optical lattice

[176]. To possibly explain this interesting feature one can think of the minority

species acting as impurities in a two-component quantum system with the major-

ity species system acting as a reservoir. The coupling between the two systems

would generate decoherence effects for individual species which cannot be dealt in

a markovian treatment as we have done in the previous chapters. The effects of

the decoherence should be studied in terms of the entanglement between the two

species, which could enhance the decrease in visibility as seen in the experiments.

In this work we therefore focus on the ground state of coupled bosonic system

and try to connect the entanglement between them arising from the interaction

with the decrease in visibility in the single particle momentum distribution. To

achieve this we start by studying numerically a system of two number-imbalanced

species of bosons in an optical lattice setup, and then move on to the experimen-

tally relevant system of a BEC coupled with a small number of bosons in an

optical lattice. Specifically, in Sec. 7.2 we look at the effects of interaction on

the ground state quasi-momentum distribution in the simplest many-body case

of two particles on a lattice. In Sec 7.3 we move on to the many body case where

two different species of bosonic particles are loaded on an optical lattice obeying

the two species Bose-Hubbard Hamiltonian in the parameter regime that can be

realised in experiments. Here we also give an outline of the different numerical

techniques used to compute the ground state before discussing the results. In

Sec 7.4 we look at the ground state of the experimental relevant system of one

impurity boson coupled to a large BEC and subsequently look at a system of two

coupled and length-imbalanced optical lattices to have an analytical insight. We

summarise the results of this study in Sec 7.5.
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7.2 Two particles on a 1D lattice

Here we start by analysing the simple case of two similar but distinguishable

bosons on a large 1D lattice [30, 177], and quantify the changes in the ground

state properties as a function of the interaction strength between the bosons. In

particular we choose to look at the (quasi) momentum distribution for the fol-

lowing reasons. For a single boson on an infinitely long lattice the lowest energy

state is a definite momentum state as the Hamiltonian describing the boson only

consists of the kinetic energy. The momentum distribution in this case will be

a delta function at zero quasi-momentum. This is identical to the single parti-

cle momentum distribution of two non-interacting bosons. If we go to the other

limit where the interactions, as opposed to being zero, are infinitely attractive,

the lowest energy state is a uniform superposition of wavefunctions with the two

particles on the same site, which means the particles are completely entangled

in position space. The single particle density matrix for this case will then cor-

respond to a mixed state comprising of wavefunctions localised at each lattice

site. The single particle momentum distribution therefore becomes completely

flat. To analyse the behaviour for arbitrary interaction strengths we have to look

at the discrete Schrödinger equation for two bosons moving on a infinitely long

1D lattice (the lattice constant is unity and ~ = 1) with individual tunnelling

rate J and a contact interaction U , namely,[
−J
(
4̃x + 4̃y

)
+ Uδx,y

]
ψ(x, y) = Eψ(x, y) , (7.1)

where ψ(x, y) is defined as the two-particle wavefunction with x and y being site

indices. The difference operator is defined as

4̃xψ(x, y) = ψ(x+ 1, y) + ψ(x− 1, y)− 2ψ(x, y) . (7.2)

We can turn this into a single particle problem by rewriting the equation in

the centre of mass coordinates R = (x + y)/2 and the relative coordinates r

defined with periodic boundary conditions such that its value can only go from

−L to L which are also the indices of the lattice sites. We then use an ansatz
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where the centre of mass moves with a constant momentum K (as there is no

external potential), and a relative wavefunction ψK(r) carries all the necessary

information:

ψ(x, y) =

√
1

M
eiKRψK(r) , (7.3)

where total number of sites, M = 2L + 1. With a redefined tunnelling rate

JK = 2J cos (K/2) and K-mode energy EK we now have

−JK (ψK(r + 1) + ψK(r − 1)) + Uδr,0ψK(r) = (EK − 4J)ψK(r) . (7.4)

In the attractive case (U < 0) we start with a trial symmetric (about r = 0)

wavefunction ψK(r) = AKe
−ik|r|+BKe

ik|r|. Plugging this in Eq. (7.4) for nonzero

r yields, cos k = (4J −EK)/2JK , absolute value of which is always bigger than 1

as the condition for a bound solution is EK < 0. Therefore we take k = iq. Using

the continuity at r = 0 and boundedness of the solution we get ψK = AKe
−q|r|

with energy EK = −
√
U2 + 16J2 cos2K/2 + 4J . Now K is set to be zero since

we are looking for the lowest energy state. Using normalisation condition we now

obtain the following relative wavefunction for the lowest energy bound state,

ψ(r) =

√
1− e−2q

1 + e−2q − 2e−q(M+1)
e−q|r| , (7.5)

where q is real and is the solution of e−q =
(√

U2 + 16J2 − U
)
/4J and the bound

state energy E = −
√
U2 + 16J2 + 4J .

In the repulsive case (U > 0) we again start with a trial symmetric (about r = 0)

wavefunction ψ(r) = Ae−ik|r| +Beik|r|. The lowest energy state can be computed

making use of the continuity of the wavefunction at r = 0 and the periodic

boundary conditions. The normalised relative wavefunction is then given by,

ψ(r) =
e−ik|r| + e−i2kLeik|r|√

2 (M + cos (2kL)) + 2Re
(
e−i(M+1)k−e−i2Mk

1−e−i2k
) , (7.6)
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where k is given by tan (kL+ π/2) + (4J/U) sin k = 0. The ground state energy

E = 4J(1− cos k).

From this we can look at the limiting values of the single particle von Neumann

entropy SvN = −Tr(ρ1log2ρ1) where ρ1 is the single particle reduced density

matrix. For the attractive case, as U → −∞, we have eq → 0 and therefore

ψ(x, y) →
√

1/Mδx,y. Therefore we can show that SvN → log2M which is ex-

pected as this is the case of a maximally entangled state. For the repulsive case

as U → ∞, we have k → π/2L and ψ(x, y) →
√

1/M sin (π|x− y|/2L). In this

case we have

SvN → −
∑
x,x′

(
1

M

∑
y

sin (k|x− y|) sin (k|x′ − y|)
)

log2

(
1

M

∑
y

sin (k|x− y|) sin (k|x′ − y|)
)
. (7.7)

Once we have the ground state wavefunction we can also compute the single

particle quasi momentum distribution on a lattice of M sites

n1(p) =
∑
x,x′,y

1

M
eip(x−x

′)ψ∗(x, y)ψ(x′, y) . (7.8)

Naturally, in addition to finding analytical solutions, we can solve this problem

numerically, with exact diagonalisation (ED) calculations (with periodic bound-

ary conditions) for the two particle wavefunctions. The relative wavefunctions

are shown in Fig. 7.1(a). The squares and triangles represent the ED results that

match with the analytical solutions, which are the solid lines. We see that the

peak of the bound pair solutions gets sharper as the interaction strength is in-

creased. The single particle momentum distributions (computed using Eq. (7.8))

displayed in Fig. 7.1(b) show clearly the effect of interactions in this two particle

system. As expected for the ground state (for U < 0) with increasing interaction

strength each particle is more likely to stay closer to the other and due to this con-

strained behaviour in the position space, single particle momentum distribution

broaden. The lowering of the peak of the momentum distribution with increasing
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Figure 7.1: Ground state for two bosons (similar but distinguishable) on
an 1D lattice which is a 101 site chain with periodic boundary conditions.
(a) The relative wavefunction ψ(r) for attractive interaction where r is the
inter-particle separation. Here we plot the two cases where the interaction
U = −3J and U = −30J . The solid lines show the analytical results based on
Eq. (7.5) and the red squares and black triangles show the calculations using
exact diagonalisation. (b) The momentum distributions for U = −3J and
U = −30J , based on Eq. (7.8). Here again the solid lines show the analytical
results and the red squares and black triangles show the calculations using exact
diagonalisation. (c) The single particle von Neumann entropy SvN, which is a
measure of entanglement as a function of interaction. (d) The single particle
visibility V1, which is the height of the momentum distribution peak, as a
function of interaction. For (c) and (d) the blue lines show the analytical
results and the red triangles show the exact diagonalisation results.

interaction strength is the signature of the effect of the entanglement between the

two particles and it is for this reason we are going to use the height of the mo-

mentum peak as a indicator or visibility of the effect of interaction in many body

versions of this problem that we deal with in the proceeding sections. To have a

direct look at the entanglement we calculate the single particle von Neumann en-

tropy SvN = −Tr(ρ1log2ρ1) where ρ1 is the single particle reduced density matrix.

Fig. 7.1(c) shows the entanglement as a function of the interaction strength. On

the attractive side (U < 0) the entanglement grows very sharply as a consequence

of the direct pairing of the particles in position space that creates the bound state
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and reaches the saturation value shortly (which is log2(M) as M is the size of the

single particle Hilbert space). The entanglement in position space enforced by the

repulsion between the particles although does not increase indefinitely with the

interaction strength. This happens because the constraint in the position space

created by the repulsive interaction is not as definitive as in the previous case.

The interaction being an on-site phenomenon does not have greater effect with

increasing strength as long as the particles stay away from each other by a certain

number of sites. Therefore, the entanglement slowly increases and goes towards

a steady asymptotic value as the repulsion is increased. The same behaviour

can be seen in Fig. 7.1(d), where the single particle visibility V1 is plotted as a

function of interaction. Here we also see that the visibility falls very sharply on

the attractive side as the particles become highly entangled in position space as a

result of which the single particle momentum distribution becomes very flat quite

fast. On the repulsive side also the slight drop of the visibility profile followed by

a steady value reflects the partial entanglement of the particles in the position

space caused by repulsion and the fact that increasing interaction strength cannot

do much to increase the entanglement due to its on-site nature.

7.3 Many atoms on a lattice

In the next step we look at the ground state of an assembly of two different

species of bosons, denoted by 1 and 2, in an optical lattice setup and study

the properties in parameter regimes that are well within the reach of ongoing

experiments. The nearest-neighbour tunnelling rates are J1 and J2 respectively.

The intra-species onsite interaction strengths for species 1 and 2 are U1 and U2

respectively along with the presence of an inter-species interaction energy (onsite)

U12. Concentrating on the lowest Bloch band in the optical lattice potential we

write down the two-species Bose-Hubbard Hamiltonian,

HBH =
∑
σ=1,2

(
−
∑
<i,j>

Jσb
†
σ,ibσ,j +

∑
i

Uσ
2
nσ,i(nσ,i − 1)

)
+
∑
i

U12n1,in2,i , (7.9)
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where b†σ,i (bσ,i) and nσ,i are the creation(annihilation) operator and number op-

erator for species σ (σ = 1, 2) on the i-th site of a chain of total M sites. For

our treatment of such a system we look at a number imbalanced situation where

species 1 is at unity filling i.e. number of species 1 bosons, N1 = M and the

species 2 is at quarter filling (unless otherwise stated) i.e. number of species 2

bosons, N2 = M/4 so that it can be a representative of the minority impurity

species whereas the species 2 particles stand for the majority reservoir species.

The impurities are taken to be heavier by choosing J1 = J = 10J2 and all the

other energy scales are measured in units of J . Now the ground state of such a

system can be found using exact diagonalisation but only for a very small size

(upto M ≈ 6). For larger systems we use the well established numerical technique

of density matrix renormalisation group (DMRG) method [70, 96, 97, 99, 100].

Before giving an account of that we take a look at a mean-field treatment using

the Gutzwiller ansatz [178].

7.3.1 Mean-field treatment

Using Gutzwiller ansatz we approximate the ground state of the two species Bose-

Hubbard Hamiltonian in (7.9) on a M -site chain as,

|ψ〉 =
M∏
i=1

|φi〉 , (7.10)

where |φi〉, localised at i-th site, takes the form of a superposition of number

states:

|φi〉 =
∑

n1=0...N1,n2=0...N2

f (i)
n1,n2
|n1, n2〉 . (7.11)

Here f
(i)
n1,n2 is the amplitude associated with the i-th site having n1 and n2 number

of species 1 and 2 bosons respectively. Imposing a normalisation condition on

each |φi〉 we can write
∑

n1,n2
|f (i)
n1,n2|2 = 1. Further, H in (7.9) is replaced by a
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mean-field Hamiltonian HMF which is just a sum of local operators:

HMF =
∑
i

( ∑
σ=1,2

(
− Jσ

(
b†σ,iΨσ,i + Ψ∗σ,ibσ,i

)
+
Uσ
2
nσ,i(nσ,i − 1)− µσnσ,i

)
+ U12n1,in2,i

)
, (7.12)

where the order parameter

Ψσ,i =
∑
j|i
〈φj|bσ,j|φj〉 =

∑
j|i

∑
nσ ,nσ′

√
nσ,jf

(j)∗
(nσ ,nσ′ )

f
(j)
(nσ+1,nσ′ )

(7.13)

serves as the variational parameter. Here j|i denotes that the sum is over j which

is a neighbouring site to i and σ 6= σ′. The fixed numbers of bosons of two different

species are taken into account by computing the correct chemical potential values

(µσ) for each. Thereafter the ground state is determined through a self-consistent

loop initialized by the order parameters. The results of this mean-field treatment

are reported along with the DMRG results in the proceeding sub-section.

7.3.2 Numerical simulation

The ground states of Eq. (7.9) computed using DMRG (except for the 6-site

results which have been computed with exact diagonalisation) are compared in

this sub-section with those obtained using mean-field methods earlier based on

Eq. (7.12). Fig. 7.2, 7.3 and 7.4 show these comparisons. As discussed before,

we use the height of the peak of the quasi-momentum distribution per particle,

denoted by Vσ, for the species σ, for visibility. Similarly the von Neumann en-

tropy SvN shows the effect of entanglement between the two species. For the ED

calculations (with periodic boundary condition) the lattice consists of 6 sites (M),

and for the mean-field and DMRG calculations we used M = 32 and M = 16

respectively with bond dimension D = 128 in the later case. In all cases the

number-dominant reservoir species is at unit filling (N1 = M) and the impurity

species is at quarter filling (N2 = M/4), except for M = 6 where we have taken

N2 = M/3. In the following, for each figure showing the numerical results, we
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present a short discussion of the main features arising in this many-body system,

followed by detailed descriptions of the plots.

In Fig. 7.2 we show the entanglement of the species 1 in terms of the von Neumann

entropy SvN as a function of inter-species interaction for the ED results in (a), the

visibility profiles from the DMRG calculations in (b) and mean-field calculations

in (d). We notice increase in entanglement and equivalently decrease in visibility

as the inter-species interaction U12 is changed from zero to non-zero values, as

was seen in the previous section for the system of two bosons on an optical lattice.

A change in U2 does not have significant effect on the general entanglement or

the visibility profiles, so we fix the value to be U2 = 32J . We also report the

visibility V2 of the species 2 in (c) for identical parameters, computed with DMRG

calculations. The main characteristic feature that comes out of this figure is the

equivalence of the messages conveyed by the entanglement plots and the visibility

plots, as was seen in the two-particle case. Similar to the two-particle case, the

entanglement rises as the inter-species coupling increases and correspondingly the

visibility of the species 1 particles decreases. The interesting many-body effect

takes over when the species 1 particles are strongly repulsive and go into a Mott

insulator state. The visibility as well as entanglement stays low until the inter-

species coupling is strong enough for the species 2 particles to disturb this localised

state and then the particles from both species are entangled at a particular site.

This causes increase in entanglement but due to the delocalisation possible for

the species 1 particles, their visibility goes up as well, creating a contrast to the

general trend of entanglement and visibility correspondance. In the following we

discuss these behaviours in detail.

When the species 1 particles are not interacting among themselves (U1 = 0) they

are in an ideal superfluid state at U12 = 0 and we see a high visibility in this non

entangled state in Fig. 7.2(b) (blue line). When U12 is turned on the visibility

starts to decrease as entanglement grows between the two species. For negative

U12 this happens due to localising effect imposed by species 2. For positive U12 the

repulsion between the two species causes restriction in the complete delocalisation

of the superfluid state and entanglement goes up but at a slower rate than that

on the attractive U12 side. However the effect of this imposed restriction does
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Figure 7.2: The von Neumann entropy between the two species, SvN is shown
in (a) extracted from ED calculations (with periodic boundary condition) for
M = 6, N1 = M,N2 = M/3 and U2 = 32J . The visibility V1 of the species 1 as
a function of inter-species interaction U12 for a lattice chain length M = 16 and
M = 32 is shown in (b) and (d) respectively where N1 = M,N2 = M/4 and
U2 = 32J . (b) shows the results of DMRG calculations with bond dimension
D = 128 for a range of U1 values depicted in the legend. In (d) we also show
the results carried out using mean-field calculations in a homogeneous lattice
with Gutzwiller ansatz for the same values of U1. We report the visibility V2 of
the species 2 in (c) for identical parameters as in (b), computed with DMRG
calculations.

not increase arbitrarily and we expect the visibility reaching an asymptotic finite

value for very large values of U12.

On the repulsive side we first look at U1 = 2J in Fig. 7.2(b) (green line) where

the particles of species 1 are still largely delocalised at U12 = 0 as they still are

in the superfluid regime. The finite U1 value however results in slight decrease of

the visibility as it creates some constraints on the complete delocalisation that

is possible at U1 = 0 (blue line). As U12 is turned on we see similar behaviour

for both the visibility and von Neumann entropy as was seen in the U1 = 0

case, but now a repulsive U12 induces further constraints on the delocalisation

resulting in further decrease of visibility. An attractive U12 however competes
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this delocalisation process due to the presence of the second species and the

decrease in visibility is less than the U1 = 0 case.

The interplay between the different interaction parameters give rise to a noticeable

increase in the value of von Neumann entropy which happens at around the value

U12 = −9J , as can be seen in Fig. 7.2(a) (green line). This happens due to

drastic changes in the nature of the ground states. Around U12 = −10J it is

energetically favourable to have all the species 1 and species 2 particles at one

single site. In Fig. 7.2(a), this can happen in 6 possible ways as we look at a 6

site system with periodic boundary condition. On the other side of the peak-like

structure, around U12 = −8J , it is energetically favourable to have the 2 of the

species 2 particles on adjacent sites, and this configuration can also achieved in

6 different ways. The von Neumann entropy is therefore indeed log2 6 on both

sides of the peak. Now around the peak, which is near U12 = −9J all the 12

configurations become important and the von Neumann entropy becomes log2 12.

Carrying out Schmidt decomposition reveals that the ground state is very close to

a maximally entangled states with 6 almost equal singular values for U12 = −10J

and U12 = −8J , and 12 almost equal singular values for U12 = −9J . The other

singular values are suppressed by at least three orders of magnitude. Looking

at the energy levels of the composite system we can also see that the lowest six

levels are very close to each other at U12 = −10J and U12 = −8J whereas there

is an avoided crossing with second lowest six levels at around U12 = −9J .

Another very interesting feature can be observed in the contrasting nature of

the visibility profiles as we keep increasing U1 from 2J and go to, for example,

U1 = 8J in Fig. 7.2(b) where we see the visibility going through a minimum

at zero inter-species interaction. As species 1 is at unit filling and goes into a

deep Mott insulator regime when U1 value is changed from 2J to 8J , the physical

intuition is that the particles become localised at the lattice sites. This results in a

broadening of their momentum distribution that causes the dip in the height of the

momentum peak. For low inter-species interaction the particles from the species

2 do not have sufficiently strong effect on them to change their position in space

which can be seen in the entanglement picture also as the rise of von Neumann

entropy is much slower here than the U1 = 2J case (Fig. 7.2(a)). Note that the
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Figure 7.3: The visibility V1 of the species 1 as a function of inter-species
interaction U12 for a lattice chain length M where N1 = M,N2 = M/4 and
U2 = 32J . (a) shows the results of DMRG calculations with M = 16 and
bond dimension D = 128. We fix U2 and look at different U1 values depicted
in the legend which are close to a critical value where one can see a change
in the behaviour of the visibility profile which changes from going through
a maximum for zero inter-species interaction to a minimum. In (b) we also
show the results in the same interaction parameter regimes carried out with
mean-field calculations in a homogeneous lattice with M = 32 using Gutzwiller
ansatz where the U1 values shown in the figure which shows a different value
of U1 where the characteristic behaviour change occurs for systems with open
boundary conditions used with DMRG computations.

critical value for a crossover for species 1 from superfluid regime to Mott insulator

regime in 1D occurs at U1 = 3.37J which falls in between the U1 values we are

looking at here. We therefore study this region around U12 = 0 for suitable U1

values in greater detail in the next paragraph. In mean-field treatment the phase

transition occurs at U1 = 11.6J in 1D for unit filling but our argument should still

hold as U1 = 8J would still favour a state with unity as site occupation number.

If we look at the U1 = 8J line in Fig. 7.2(b) the subsequent local maximums on

the both sides of the minimum occurring at U12 = 0 happen due the increase in

U12 where the effect of the presence of a second species becomes stronger. As U12

becomes comparable to U1, the energy input due to the presence of a species 2

particle disrupts the localised phase as the energy penalty for having a double

occupation of species 1 is comparable to the energy required to put two particles

from the different species on a single site. Thus the species 1 particles begin to

delocalise and the visibility starts to go up. However the increasing U12 imposes

a restriction on this delocalisation process which causes a drop in the visibility

again.
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For U1 = 32J the particles in species 1 are in the deep Mott insulator regime and

in the range of U12 that we are looking at here the energy input in the system by

the presence of the particles of species 2 cannot affect the Mott insulator as U12

is always much smaller than U1 . Since varying the interaction strength does not

entangle species 1 with the other the von Neumann entropy stays at zero. The

visibility of these highly site-localised species 1 particles also stays constant at

a very low value which is smaller for the mean-field treatment as we can see in

Fig. 7.2(c). This is because in mean-field treatment the off-site spatial correlations

in a Mott insulator are exactly zero and in a numerically exact treatment they

fall exponentially with the spatial distance. Therefore when we take a Fourier

transform of the spatial correlations to get to the momentum distribution, in the

mean-field treatment we should get zero and slightly larger values for the DMRG

results which we see in terms of the visibilities in Fig. 7.2(b).

In Fig. 7.3 we take a closer look at the transition-like feature, namely the be-

haviour of the visibility profile which changes from going through a maximum at

zero inter-species interaction (for example, the U1 = 1.7J line in Fig. 7.3(a)) to a

minimum (for example, the U1 = 2.9J line in Fig. 7.3(a)) for a certain critical U1

value. Here we notice the transition like feature which is the characteristic of a

superfluid to Mott insulator phase transition in 1D occurring at around U1 = 2J

when computed using DMRG. However the same transition like behaviour occurs

at double of the previous value i.e. around U1 = 4J in Fig. 7.3(b) which is a

homogeneous mean-field calculation that imposes a periodic boundary conditions

on a 32 site system.

Now we move on to Fig. 7.4 where we mainly look at the particles of the second

species. The properties of these impurity particles should depend strongly on the

many-body state of the species 1 particles and therefore should be affected by the

choice of U1 values. The visibility of species 2 as a function of U12 in general has a

peak around U12 = 0 that dies down on both sides. This peak-like structure starts

broadening as we keep increasing U1 starting from zero. The visibility profiles are

quite similar to that seen in the previous section for the system of two bosons on

an optical lattice in terms of the mechanisms that create a maximum at U12 = 0

and a slower decrease for repulsive U12. The value of the maximum visibility
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also follows similar trend as a function of U2 and falls sharply for attractive U2

whereas falls much slowly on the repulsive side. This particular behaviour is

reported in Fig. 7.2(c). For very large and positive U1 values however we notice

some interesting features emerging that are reported in the following paragraphs

and Fig. 7.4(a), (b) and (d). In Fig. 7.4(c) we report the visibility V1 of the

species 1 for identical parameters, computed with DMRG calculations. In this

case as we look at the strongly interacting regime for the species 1 particles, they

are deeply in a localised state and therefore show low entanglement and visibility.

The species 2 particles show high visibility as their motion is not affected by the

species 1 particles until the inter-species coupling is strong enough to disturb the

localised state and force the particles from both species to be highly correlated

in position space that results in sharp increase of entanglement and visibility of

the species 1 particles due to delocalisation, accompanied by sharp decrease in

visibility of the species 2 particles. Details of this mechanism is described in the

following paragraphs.

As U1 is increased to 32J species 1 particles are in the deep Mott insulator regime

as they also have unit filling. Now for U2 = 0 the impurity particles cannot

sense the presence of each other and the presence of the Mott insulator for small

U12 effectively only can create a small change in the optical lattice potential

uniformly at each site. Therefore we basically expect the impurities to behave

like free particles on a modified lattice and see them almost not entangled at all

to species 1, causing a strong visibility that sustains on both sides of U12 = 0 as

shown in Fig. 7.4(b). As U12 becomes large enough on the positive side after a

particular point it becomes energetically favourable for the impurity particles to

stay together at one single lattice site and push out the species 1 particle to the

neighbouring site, thereby creating a hole in the Mott insulator. The impurity

particles get localised in position space by the species 1 particles through this

process and therefore we see a sharp rise in entanglement that results in a sudden

fall in the visibility of species 2. The value of U12 at which this fall starts to

happen depends on the number of impurity particles and expectedly we notice

this value to be U1/N2 in Fig. 7.4. Now on the attractive side of U12 around the

same magnitude (U1/N2) it also becomes energetically favourable to create a hole



Chapter 7. Entanglement in two species bosonic systems 136

-30 -15 0 15 30
U

12
/J

0

1

2

S
v
N

U
2
=-2J

U
2
=0

U
2
=2J

U
2
=8J

U
2
=32J

(a)

-30 -15 0 15 30
U

12
/J

0

0.5

V
2

(b)

-30 -15 0 15 30
U

12
/J

0.1

0.2

V
1

(c)

-30 -20 -10 0 10 20 30
U

12
/J

0

0.4

0.8

V
2

(d)

Figure 7.4: The von Neumann entropy between the two species, SvN is shown
in (a) extracted from ED calculations (with periodic boundary condition) for
M = 6, N1 = M,N2 = M/3 and U1 = 32J . The visibility V2 of the species 2 as
a function of inter-species interaction U12 for a lattice chain length M = 16 and
M = 32 is shown in (b) and (d) respectively where N1 = M,N2 = M/4 and
U1 = 32J . (b) shows the results of DMRG calculations with bond dimension
D = 128 for a range of U2 values depicted in the legend. In (d) we also show
the results carried out using mean-field calculations in a homogeneous lattice
with Gutzwiller ansatz for the same values of U2. We report the visibility V1 of
the species 1 in (c) for identical parameters as in (b), computed with DMRG
calculations.

in the Mott insulator and to have all the impurity particles on that neighbouring

site of the hole where the species 1 particle has tunnelled to. Due to this similar

localisation the two species become highly entangled and the visibility V2 again

fall drastically. For an infinite lattice system (which is the case when one treats

the problem in mean-field theory) this localisation process causes the visibility

to completely vanish, as shown in Fig. 7.4(d). For a finite system (Fig. 7.4(b))

the visibility falls down and takes a constant value and that value decrease as we

increase the system size.

Now for U2 = 2J the visibility at U12 = 0 will be smaller than the previous case

as the impurity particles repulsively interact among themselves. This decrease
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in height of the visibility persists as we increase U2 value but not arbitrarily

as we have discussed before. For small values of U12 the visibility again stay

unchanged and we also see the same localisation effect causing a drop in visibility

at sufficiently high U12 as before. The magnitude of U12 at which the drop happens

increases with increase in U2 as the repulsion between the impurity particles also

need to be overcome. We see this for U2 = 2J, 8J and 32J in Fig. 7.4(b).

For attractive U2 we expect the similar plateau-like visibility profile but with

much smaller value to start with (at and around U12 = 0) and we see that in

Fig. 7.4(b) for U2 = −2J although the plateau-like structure is hardly visible

due to such small value of the peak. The value of visibility (for all the profiles)

after the drop tends to go to 1/M which is lower limit for the peak of a single

particle momentum distribution on a lattice with M sites (one can think about

two particles on a lattice with infinitely strong inter-particle potential where the

single particle momentum distribution is completely flat in the ground state).

7.4 Effect of the size of the reservoir

So far we have looked at setups where the impurity particles and reservoir particles

are on the same optical lattice. Now for the next step we consider the experimental

situation that was the motivation for this study. We look at a single bosonic

impurity atom which is confined in an one-dimensional optical lattice where it

is allowed to tunnel to the neighbouring lattice site. The optical lattice setup is

immersed in a much larger one-dimensional BEC. We can consider a single bosonic

impurity atom with mass mB which is confined in an one-dimensional optical

lattice with M sites where it is allowed to tunnel to the neighbouring lattice site

with a rate JB. The optical lattice setup is immersed in a much larger BEC which

is also restricted to one spatial dimension. The BEC without the coupling to the

impurity atom can be described by the mean-field macroscopic condensate wave
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function ψ(x, t) which obeys the Gross-Pitaevskii equation (GPE):

i~
∂ψ

∂t
=

(
− ~2

2mA

∂2

∂x2
+ gA|ψ(x, t)|2

)
ψ(x, t) , (7.14)

where mA is mass of an condensate atom, gA is a positive condensate coupling

constant and total number of condensate atoms NA =
∫
dx|ψ|2. The time in-

dependent form of the equation (7.14) enables us to compute the ground state

numerically. Now if the total length of the optical lattice is negligible compared to

that the BEC and the ratio of impurity-BEC coupling gAB (which is also positive)

and coupling within the BEC gA is small enough we can still describe the BEC by

a mean-field condensate wave function. This is also the desired description of the

BEC as we would like to work in the context of non-destructive probing by the im-

purity system. Therefore we find the ground state solution φi(x) corresponding to

the presence of an impurity boson located at the i-th site by numerically perform-

ing an imaginary time evolution of the GPE similar to equation (7.14) but taking

into account the presence of the impurity using split-step Crank-Nicolson scheme

[179]. Now we can write down the ground state as |ψGS〉 =
∑M

i=1 ci|i〉B|φi〉A. The

coefficients ci-s can be found by using the norm preservation and minimisation of

the total energy which consists of three parts, namely, the condensate energy,

EA =
M∑
i=1

|ci|2
∫
dxφ∗i (x)

(
− ~2

2mA

∂2

∂x2
+ gA|φi(x)|2

)
φi(x) , (7.15)

energy of the impurity atom

EB = −JB
M∑
i=1

c∗i cj

∫
dxφ∗i (x)φj(x) , (7.16)

and the interaction energy

EAB = gAB

M∑
i=1

∫
dx|φi(x)|2ω2

i (x) , (7.17)

where we have used a harmonic oscillator approximation for the impurity wave

function localised on the ith site at the position xi, ωi(x) = e−(x−xi)2/2a2
0/π1/4√a0
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with oscillator length a0 = (mB~2/2VLk
2
L)1/4. Here VL is the lattice depth and

kL is the laser wave-number that generates the lattice. This approximation is

valid for lattices deep enough so that the Lamb-Dicke parameter kLa0 � 1. After

finding the ground state we look for the effect of changing the interaction strength

gAB on the visibility of the momentum distribution of the impurity atom. As the

BEC is much larger than the optical lattice, for repulsive interaction the small

changes in the strength does not change ground state appreciably and we do not

observe the visibility to be affected. In other words the visibility of the impurity

species hardly changes when we turn on the inter-species interaction from zero to

a small finite value.

To estimate the effect the largeness of the BEC compared to the lattice we first

look at a simplified and discrete version of this problem. We look at a system

where NA non-interacting particles can move in an optical lattice with MA sites

and only next neighbour tunnelling is allowed with a rate JA. We also include

an impurity atom that is only allowed to move in the central MB number of

sites (out of MA). The onsite interaction energy between the two species is UAB.

We look for the effect of the ratio MB/MA on the visibility associated with the

impurity for different values of UAB. We first solve the case where we only have

two particles moving on this lattice system, i.e. NA = 1. They are also taken to be

of same mass (we later discuss the effect of having heavier impurities) inducing

same tunnelling rate J for both particles. We can numerically diagonalise the

two-particle Hamiltonian,

H = −J
∑

σ=A,B;<i,j>

b†σ,ibσ,j +
∑
i

UABnA,inB,i . (7.18)

to find the normalised lowest energy state |ψ〉 =
∑

i=1,...,MA;j=1,...,MB
ci,j|i〉A|j〉B.

We use periodic boundary conditions on both lattice systems. The single particle

density matrix for the impurity species B is

〈b†ibj〉B =
∑

k=1,...,MA

c∗k,ick,j , (7.19)
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from which we can build up the momentum distribution

nB(q) =
1

MB

∑
i,j=1,...,MB

eiq(i−j)〈b†ibj〉B . (7.20)

We look at the maximum of the momentum distribution as the visibility of the

impurity species as before. As we like to infer the effect of the size differences

in MA and MB and in particular to figure out the existence of a possible scaling

factor after which the growth of MA cease to have an impact on the visibility

for different interaction, we look at the characteristic differences in visibilities VB

(for species B) for UAB = 0 and UAB = 8J for increasing MA and for different

MB values. As seen in Fig. 7.5(a), VB increases steadily for smaller values of

MA for a given MB and following what looks like a quite universal scaling factor

MA/MB = 3 (red line in Fig. 7.5(b)) stops increasing any more and becomes same

as what the visibility would be in the absence of any interaction i.e. unity. This

gives us an idea that if size of the bigger lattice is at least three times the size

of the impurity lattice system the effect of repulsive interaction on its visibility

becomes quite negligible.

Now we explore the effect of having a heavier impurity particle in the lattice

system so that its tunnelling rate JB is smaller than JA. In particular we would

like to find out how small JB should be compared to JA so that we can treat the

tunnelling term for the impurity particles in perturbation theory. In Fig. 7.5(b)

we report the exact diagonalisation results where we plot the visibilities for the

value UAB = 8JA, denoted by VB, against MA/MB for descending values of JB/JA.

As we can see JB/JA = 10−3 is where the result matches with the perturbation

theory results which are shown by black circles.

7.5 Summary

In this work, which is motivated by the discrepancy found in a recent experiment

on a system of coupled bosonic impurities immersed in a BEC, we have proposed a

possible reasoning behind the enhancement beyond the expected drop in observed
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Figure 7.5: (a) Visibility of the impurity particle VB for UAB = 0 and UAB =
8J is shown here for different MB values while increasing MA. We see for
UAB = 8J , VB increases up to a certain value of MA/MB following which
it seems to stay unchanged and close to 1 which is its value for UAB = 0.
This scaling factor MA/MB is found be around 3 as shown by the red line
in the right half of the figure. (b) The visibility of the impurity particle VB
for UAB = 8JA is shown here for different MA/MB values while decreasing
JB/JA. We see JB/JA = 10−3 is where the result matches with the result
obtained from calculations using the tunnelling term for the impurity particle
as a perturbation, shown by the black circles.. We have taken MB = 5 for this
calculation. In both (a) and (b) we have used periodic boundary conditions on
both lattice systems for exact diagonalisation.

visibility to be arising from the entanglement between the two systems. We have

seen that indeed the visibility profiles for a two-species bosonic system show

qualitatively the similar features as the inter-species entanglement profiles do as

a function of the coupling strength. Looking at a simple system of just two bosons

on a lattice gives us a nice analytical and exact-numerical insight for the decrease

of visibility due to increase in entanglement. This feature in general is observed

for a wide range of parameters when we move to a many-boson system on an

optical lattice, treating the bosonic species minority in number as the impurities

acted upon by the reservoir of the majority species. This is a nice result that

matches our expectations.

In certain strong interaction regimes, many-body effects produce some very in-

teresting features that can be realistically investigated in experiments. When the

impurity bosons are in the strongly repulsive regime they are capable of disrupt-

ing the Mott insulator state formed by the reservoir bosons at certain coupling

strength set by the relative interaction strengths. Therefore the visibility of the

reservoir bosons show sudden increase for particular coupling values although the
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entanglement characteristically increases. Similarly when the intra-species inter-

action strength in the reservoir bosons is very high and a Mott insulator is formed,

the impurity bosons can only affect this state for strong enough coupling values

where we see sudden drop in impurity visibilities accompanied by sudden rise of

entanglement correspondingly.

In the context of non-destructive probing experiments, we have also found that an

impurity boson cannot alter the wavefunction of a large BEC for small coupling

and hence there is no change in visibility of the impurity solely due to coupling.

A numerical estimation, carried out on an optical lattice setup with two species

bosons as before, of the largeness of the bath system to produce this null result

gives a factor of around 3 for the relative size.



Chapter 8

Conclusion

Our main objective in this thesis was to study the dynamics of open quantum sys-

tems in the presence of sources of quantum decoherence that are highly relevant

in the context of present day experiments with ultracold atoms in optical lattices.

Understanding the dissipative dynamics is absolutely necessary in order to be

able to control heating and to find new ways to reach lower temperatures as well

as use controlled dissipation to drive the system in the desired many-body state.

In Chapter 5 we have considered the experimentally relevant atomic species and

developed, based on our microscopic understanding of the atoms in the optical

lattice setup, a master equation for two-species fermions to model the dynamics

under the dissipative effects caused by the incoherent scattering of the photons

from a far-detuned laser. The findings of this work can be used to characterise

heating in ongoing experiments which is extremely important for the realisation

of magnetic order. In this context the suppression of spin order is indeed an en-

couraging factor. From the theoretical point of view this work can be extended,

using our microscopic understanding of the underlying physics, to study the ther-

malisation while taking transfer to higher bands due to spontaneous emissions

into account as this will further enrich our understanding of heating mechanisms

in these experiments.

The master equation derived for the two-species fermions is then applied, in

Chapter 6, to a recent experiment that looks at the stability of already established

143
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many-body localisation (MBL) with ultracold fermions in optical lattices, but

with controlled dissipation due to a detuned laser dedicated to induce a higher

scattering rate. Looking at the experimental atomic species we determined the

relative decay rates of the two possible decohering mechanisms, namely, dephasing

due to localisation and atom loss due to excitation to higher bands. The resulting

dynamics in terms of quantities relevant to MBL are found to be in agreement

with the theoretical predictions. The susceptibility to the scattering incidents

is not appreciably affected by the interaction strength in deeply localised phase

but close to the MBL transition, increasing inter-particle interactions results in

a dramatic rise in susceptibility to decoherence. This work, on the theoretical

side, has potential expansion direction towards an analytical design of a model

to see the behaviour of the susceptibility qualitatively with both the dissipative

channels as well as numerical optimisation to take into account the atom loss

mechanism. Another possible direction to explore is the delocalised side of the

MBL transition and to study the effect of spontaneous emission events on the

imbalance decay.

In Chapter 7 we proposed an explanation for a recent experimental finding on

a system of coupled bosonic impurities immersed in a BEC, in terms of a drop

in observed visibility beyond the expected value. We link this enhancement to

the entanglement between the two species in this coupled system which can be

thought of comprising of an open system of minority species acted on by a reser-

voir of the majority species. Our numerical findings support this proposal by

revealing similar qualitative behaviour of the entanglement and the visibility pro-

files. Along with these results we observe some very interesting many-body fea-

tures in strongly interacting regimes that relate directly to entanglement between

the two species, and would be observable in experiments. A future direction to

work on would be to have better analytical support for these numerical findings,

qualitatively. We also present a numerical study of these two-species systems to

estimate the relative size of the reservoir that would be a minimal requirement

to be unaffected by small couplings to the impurity system. This forms a basis

for establishing better analytical insight of the impurity-BEC system in order to

help design non-destructive probing experiments.
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from a strongly interacting 1D superfluid to a Mott insulator. Phys. Rev.

Lett., 92:130403, 2004.

[56] B. Paredes, A. Widera, V Murg, O. Mandel, S. Fölling, I. Cirac, G.V.
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