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Abstract

Some of the key challenges faced in the oil/gas extraction and carbon dioxide injec-
tion/storage processes are the presence of complex geometries and the significant effect
of the capillary forces which arise at low capillary numbers. Therefore, the contact
angle needs to be carefully treated. Mesoscopic techniques such as lattice Boltzmann
methods are capable of dealing with lower capillary numbers as compared to the Navier-
Stokes solvers, which can also implicitly capture the interface between two fluids.

To investigate immiscible two-phase flows at low Reynolds and capillary numbers (Re<1
and Ca<1), the colour-fluid model is used i.e. the Rothman-Keller model [1]. This
model includes two steps: a perturbation operator from Lishchuk et al [2] (the contin-
uum surface force [3]) or Gunstensen et al [4] approaches and a recolouring operator [5].
However, the lattice Boltzmann implementation employs a Cartesian grid for domain
discretisation that is unable to conform with curved surfaces. It misinterprets those
curved surfaces as a series of stair-like patterns. On those surfaces, a non-physical
contact angle could be defined which may lead to a numerically flooding of the wetting
fluid inside the droplet for a non-spreading drop or outside for a spreading droplet.
To remove this unphysical behaviour and take into account the flow field effect on the
contact angle, interpolation techniques are employed to estimate the real contact angle
on the “stairs” boundaries. We also employ extrapolations to obtain more accurate
density on concave corners, thus the grid resolution can be reduced.

After the code is numerically validated on static droplets, on droplets deformed under
a simple shear, and on simple geometries. Finally, we perform simulations on a Berea
sandstone sample [6] to understand dynamics behaviour of immiscible fluids in porous

media.
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Chapter 1

Introduction

1.1 General concepts for reservoir studies

For this first section, an introduction of the oil and gas in petroleum reservoirs from

the geological point of view to the simulation of the extraction process will be presented.

1.1.1 General description of a petroleum reservoir

A petroleum reservoir is a field in the ground which contains oil and/or gas. A
petroleum reservoir will be simplified to a reservoir in the rest of this thesis. The
typical size of a reservoir is several km?. They are located around the world and each
field has different quantity of oil and/or gas. A representative figure of the known oil

& gas reservoir is shown in Figure 1.1.
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Figure 1.1: Oil & gas reserve in the world in 2016 [7].

The extraction process has three recovery steps: primary, secondary, and Enhanced



Oil Recovery (EOR). The cheapest primary step utilises the natural pressure inside
the reservoir and releases the oil and/or gas when the well is drilled. Less than 15%
can be recovered with the primary recovering. The secondary recovery needs water
flooding i.e. forced water injection and 15% more of oil can be extracted [13]. With
these two first conventional techniques, we can extract only 30% in the best scenario
but probably less than 15%. Extensive research has been done to increase extraction
rate with an additional step called EOR and the commonly used EOR techniques are

presented in [14].

1.1.2 Fluids in oil & gas reservoirs

The properties of oil & gas fluids extracted from reservoirs are very different which
strongly depend on temperature, the site of extraction and pressure. For instance,

Table 1.1 shows the different properties of heavy oils.

Viscosity (cp') | Density (kg/m?) API
Heavy oils 10% to 10? 903-945 18° to 25°
Extra-heavy 102 to 10* 930-1020 7° to 20°
Bitumen 10* to 10° 985-1020 7° to 12°
Oil shale more than 106

Table 1.1: Heavy oil properties at 60°F (=~ 16°C) [13].

The temperature in the ground can be very different depending on the location
principally due to the depth of the reservoir but it can also be affected by geothermal
activities. Indeed, it was reported the temperature can be between 57°C to 340°C
Celsius with a range of depth from 300[m] to 9000[m] [15]. The ground temperature of
crude oils can also be elevated due to microbial activities [16].

Knowing the ground temperature is highly important for the viscous properties of the
oil. Some examples of hydrocarbons are shown in Figure 1.2. As it can be seen, the
viscosity of liquids decreases due to the attractive interaction of atoms is weaker and

the viscosity of gas increases due to the collision frequency increases.

11 centipoise = 1072 Pa s
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Figure 1.2: Examples of the temperature evolution of the kinematic viscosity for liquid
and gas hydrocarbons under 1 atm [8] (Translated into English).

Therefore, in case of thermal EOR, the evolution of the fluid properties (viscosity,

density, heat capacity and so on) with the temperature must be taken into account.

1.1.3 Reservoir simulations

To simulate the two-phase flows in reservoirs, the first step is to characterise a sample
(pore-scale) then upscale the results to a Representative Elementary Volume (REV)
sample (homogenisation) then simulate the reservoir to evaluate the oil production as

shown in Figure 1.3. These three steps will be introduced.

Mapping Upscaling

Pore-scale Local scale Large scale

Figure 1.3: Representation of the different scales in a reservoir.

1.1.4 Pore-scale methods

Simulations at the pore-scale are common for single-phase flows since decades. With

the development of multiphase models and computer resources, pore-scale two-phase



flow simulations become popular. For single-phase flows, the results, obtained from
the pore-scale simulations, are quite well understood for conventional oil & gas at the
primary extraction step.

The behaviour of unconventional oil & gas e.g. oil sands, extra heavy oil, shale gas/oil,
etc. or even the secondary extraction step is not well understood. Indeed, the uncon-
ventional oil & gas is generally located in very narrow pores and rarefied gas conditions
can appear during the extraction. The major problematic is: how the rarefied gas
conditions affect the flow and when the rarefied gas conditions appear. The multiphase
phenomena, appearing in porous media at pore-scale, are not well understood and how
they affect the upper (local and large) scales? are even less known. In this thesis, we
are trying to bring more knowledge at the local scale with a more realistic contact angle

treatment.

1.1.4.1 Upscaling methods

As the reservoir size is too big to be represented at the local scale and most of the

geometry is unknown, a coarse mesh is needed and then the simulation of the reservoir
takes place at the large scale. Thus, up-scaling methods are used to homogenise the
pore-scale to the local scale (Figure 1.3).
The cells of the coarse mesh should be a REV. Marle [9] proposed to find the REV of the
sample by measuring the porosity as a function of radius as Quintard & Whitaker [17]
had shown the importance of the radius in averaging. When the radius is too small
(less than r1 in Figure 1.4), the calculated/measured porosity has a lot of dispersion
between two radius sizes. When the radius is too large (more than ry in Figure 1.4),
the porosity is not representative of the sample. A representation of this proposition is
shown in Figure 1.4. In practice, the size is often much larger for limiting the simulation
time. This consideration is for single-phase flow but there is not such as well-established
technique for two-phase flows. Thus, in multiphase flows, the REV becomes the same
by lack of knowledge.

For a real reservoir, many pore-scale samples are not known in the local scale. Thus,

2Local scale is also known as Darcy scale. If the sample is REV, the local scale is skipped. The
large scale is also known as reservoir scale.



there is a lack of flow properties to determine the local scale. A stochastic approach
is used to determine them based on the known samples [18]. Thus, errors in the pore-

scale simulations will directly impact the whole reservoir. However, the physics at the

Figure 1.4: Porosity in function of radius [9].

local and large scales are different. At the local scale, the Navier-Stokes or Boltzmann
equations are valid, but it is common to use the Darcy’s law at both scales. To upscale
from the pore-scale, an optimisation technique is commonly used. The idea is to define
an objective function and minimize it. This function has to take into account the
results/experiments at the pore-scale and find the correct parameters at the large scale
to reproduce the effect of the local scale. Thus, a new set of relative permeability
(Equation 2.18) is defined which are called pseudo-functions which can be static [18]

or dynamic [18,19].

1.1.4.2 Reservoir methods

To determine and optimise the oil production of the reservoir, it is common to simu-
late the flow with the Darcy’s law and a mass conservation equation, as in Open Porous
Media platform. Several models can be added such as polymer models for taking in

account of dead-pores, absorption and so on [20].

1.2 Why using Lattice Boltzmann Method?

The classical scheme for Computational Fluid Dynamic (CFD) is the Finite Volume

Method (FVM) which is a cell-based method. However, other schemes with a cell-based



method exist such as Finite Element Method (FEM) which is more appropriate for
morphed meshes, Spectral Element Method (SEM) which is more used for turbulence
analysis (high order schemes) or Finite Difference Method (FDM) which gets the most
accurate results for a mathematical point of view but needs a Cartesian mesh (high
calculation cost) for high order schemes. Therefore, the spectral methods are considered

as the reference of numerical schemes for classical CFD (continuum mechanics).

LBM is a mesoscopic particle-based method. Thus, it is a discrete method and not
a cell-based method as often used in continuum methods. In addition to macroscopic
flow properties, LBM can also provide some properties of the fluid at the microscopic
scale, so it works for nearly rarefied gas flow to continuum flow. This strength is very

useful for porous media and multiphase flow.

Indeed, the flow inside a porous medium could be classified as a rarefied gas flow due
to the size of pores which could be less than the micrometre. At this size of pores, the
molecular mean free path starts to be not negligible compared to the size of pores and
the fluid should be treated as a rarefied gas. For rarefied gas, the scheme changes in
order to capture the small variation of the fluid properties. A porous media contains
many walls and LBM treats wall boundary conditions in a straightforward and simple

manner.

LBM is suitable for multiphase flow as it is an interface capturing method. Thus,
we do not need to track the interface [21] which is one of the biggest challenges for

classical CFD for multiphase flow.

1.3 Multiphase flow

Research challenges on the numerical methods (e.g. diffuse interface, instability)
and the multi-physical phenomena (e.g. surface wetting, droplet coalescence, interface

instability) in porous media, are the focus of the present work.

In fact, multiphase flow is difficult to simulate as it often involves multi-scale flow

phenomena. For instance, the interaction between phases takes place at the microscopic



scale but their motion is at the macroscopic scale. To treat this kind of flow, we need

to classify them first. A short description of multiphase flow categories is shown in the

Table 1.2.

Continuous Fluid

Dispersed Fluid

Examples

Solid

Aerosol
Smoke

Suspensions
Fluidised bed

Gas

Liquid

Condensation
Sprays
Frogs
Clouds

Solid

Suspensions
Slugs

Liquid

Liquid (non miscible)

Emulsions

Gas

Foam

Liquid—Liquid

Oil extraction

Table 1.2: Multiphase flow categories.

The behaviour of the flow, called flow regime, changes depending on flow conditions

and fluid proprieties, which is shown in Figure 1.5. An example of fingering due to the

low surface tension is also shown in Figure 1.5.
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Figure 1.5: On the left, flow regime map for 2.5 cm diameter horizontal pipe air-water
flow at atmospheric conditions, Mandhane et al. [10] and on the right, the shape of
the interface in the xz—plane for a viscosity contrast r = 0.4 as a function of the scaled
capillary and Péclet numbers, Setu et al. [11].



For classical CFD to simulate two-phase flows, a front-tracking (Lagrangian) or front-
capturing (Eulerian)method must be applied. The classical techniques are: the marker-
based method for front-tracking and the Level-Set and Volume-Of-Fluid (VOF) meth-
ods and more recently the Immersed Boundary Method (IBM) for front-capturing. In
LBM, the method is an interface capturing method. Therefore, the method does not

need a front-tracking or front-capturing method.

1.4 Research objectives

This research is included in an oil & gas research project, collaborating with Heriot-
Watt University, and led by Professor Yonghao Zhang and Dr Tom Scanlon from James
Weir Fluid Laboratory at the University of Strathclyde in mechanical aerospace engi-

neering department.

My contribution to this project is mainly to develop a mesoscopic platform to simulate
flows in porous media. My platform is already used by another PhD student, Miss

Qingqging Gu and some undergraduate students.

The second objective is to use binary images to generate the mesh. Indeed, the
pre-treatment stage in CFD applications is long and not obvious for complex geome-
tries. Using the binary images, this stage is reduced to almost no time whatever the

complexity of the geometry.

The third challenge is to handle single and two-phase flows. Plenty of applications use
porous media for single or two-phase flows. In the future, more and more applications
will appear with new techniques to produce products more and more compact. Indeed,
porous exchangers started to replace traditional exchangers such as tube and shell
exchangers. For instance, we can find them in the car industry or heating systems for

buildings.

The fourth objective is to have a massive parallel platform to get quick results for

engineering domains. Solving a real engineering case requires a big domain (several


https://www.hw.ac.uk/
https://www.hw.ac.uk/
http://www.jwfl.ac.uk/profile_detail.cfm?pid=42FAA0E0-6025-4145-AA03-E14F5D52FF40
hhttp://www.jwfl.ac.uk/profile_detail.cfm?pid=0C954BD1-7567-4EC7-B063-1829D5567879
hhttp://www.jwfl.ac.uk
hhttp://www.jwfl.ac.uk
http://www.strath.ac.uk
http://www.strath.ac.uk/engineering/mechanicalaerospaceengineering
http://www.strath.ac.uk/engineering/mechanicalaerospaceengineering
http://www.jwfl.ac.uk/profiles.cfm
http://www.jwfl.ac.uk/profiles.cfm

million or billions of nodes) and a relatively long physical time (several million or
billions of iterations). To be able to get the result in a reasonable time-scale, we need
to use a massively parallel approach. We decided to use a full MPI approach to run on

HPC with a large number of processors (several hundred).

The last objective is to get efficient and accurate results. This is the reason we
choose to use LBM. It is an efficient method for two-phase flows and for a massively
parallel approach. The accuracy will greatly depend on the grid size. Compared to
Navier-Stokes solver, LBM needs a much finer mesh. Therefore, we could get some
discrepancy, especially in two-phase flows. However, LBM can handle smaller capillary
numbers compared to the Navier-Stokes solvers. For example, the solution with LBM
will be less affected by spurious currents. In other words, LBM produces less spurious

currents.

1.5 Thesis outline

This thesis is divided into four chapters.
In chapter 2, the fluid and porous media properties used will be described. This is
important to analyse correctly the results without violating the assumptions made in
the definition of the fluid and porous media properties.
In chapter 3, a short review of numerical methods is provided for classical methods and
more details are given for the lattice Boltzmann Methods and the different techniques
used in this thesis.
In chapter 4, the numerical methods will be discussed and analysed, especially on the
parallel efficiency, the improvement of the boundary treatment and the errors in two-
phase flows.
In chapter 5, the contact angle treatment will be presented, validated and applied on

a 2D Berea sandstones [6].



Chapter 2

Fluid and porous media

properties

This chapter covers all the characteristics needed to define the numerical parame-
ters. The first section covers briefly the characteristics of fluids used or presented
in porous media. The second section describes the physical characteristics of

porous media.

2.1 Fluid characteristics

In this section, the three major fluid properties which are density, viscosity and
surface tension, and the two-major dimensionless number which are the Reynolds and

the Capillary number, which will be described in detail.

LBM is based on a gas kinetic approach. However, the simulations in this thesis are
for liquids. Thus, we will keep a low Mach number 'to be near the incompressible limit.
To explain the effect on the fluid properties, the gas and liquid properties will be de-

scribed. The properties of the gas will be based on the hard sphere model with the

'M = u/c, where M, u, and ¢ are the Mach number, the velocity of the fluid, and the speed of
sound, respectively.
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ideal gas law and for liquid, it will be empirical laws due to lack of theory.

2.1.1 Density

This fluid property, density, represents the mass of molecules per unit volume. In

case of a gas (using the ideal gas law), the density can be determined as [22]:

p _ pm

=2 _ £ 2.1
P= T = AT (2.1)

where p, p, T,r,m, and kp are the density, the static pressure, the temperature, the
specific gas constant, the molecule mass, and the Boltzmann constant, respectively.
In a liquid, the fluid can be considered as incompressible?, thus the density is constant
with a variation of pressure, but the thermal expansion needs to be used to take into
account the change of density due to the temperature?.

In the thesis, we consider isothermal flows at low Mach number. As the density of oil is
close to the water (Table 1.1), we consider the oil and water to have the same density
here.*. Thus, we do not consider the change of density and a reference density set to 1

[lu].

2.1.2 Viscosity

The viscosity can be estimated for a simple (monatomic) gas by using the relation

of Maxwell [22]:

1

r=3 P Ump s (2:2)

2In case of pressure more than 500 bars, the fluid becomes compressible. In very deep reservoirs or
high-pressure systems as the common rails in diesel engines, the compressibility needs to be taken into
account especially for acoustic.

3If we consider a reservoir at 5000[m] of deep and the data from IAPWS-97, the density of water at
57° and 340°[c] and 500[bars] are 1005.36 and 711.785[kg/m?], respectively. The variation of density
due to pressure at 57°[c| for 1 and 500[bars] are 984.726 and 1005.36[kg/m?], respectively. Thus, it is
clear the temperature affects more than the pressure on the density.

4The density can be different due to Equation 2.1 but the interfacial forces do not take it into
consideration.
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where [1,0,Umpy, and A are the dynamic viscosity, the most probable velocity and the

mean free path, respectively. The mean free path can be estimated as

kpT kp

= = , 2.3
Ve2rnd?2p  2nd2pr (2:3)
and the most probable velocity as
2kpT
Umpv = m (24)

where d is the average molecule diameter. More complex formulations were developed
to have a better representation of the molecules. For instance, the empirical formula-
tion of Chung in 1984 [23] which provides quite accurate results utilising the kinetic
theory. Considering a constant density with the temperature, the variation of viscosity
is proportional to v/T' as shown in Figure 1.2.

In a liquid, the viscosity is commonly based on empirical correlations in a form as:

B
uzexp(A%—?—l—CT—l—DTQ). (2.5)

Physically, the viscosity of liquids decreases when the temperature increases which is
the opposite of gas. To get around this contradiction, the viscosity must be an input.
Thus, using a kinetic gas scheme such as LBM to simulate liquids leads to modify the
most probable velocity, the mean free path, and the mean collision rate (Umpy/A).

For two-phase flows, the viscosity ratio is defined as, for droplets,

Ao B

= (2.6)
for channels or serpentine,

MOUt
and for porous media,

uinv
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where ™, p?, pot, ", @™ and p are the dynamic viscosity of the matrix, the

droplet, outgoing, incoming, invading, and displaced fluids, respectively.

2.1.3 Surface tension

The surface tension represents the anisotropy of intermolecular forces at the interface
between two immiscible fluids and is equal to o = s, e where o, s,,, and e are the surface
tension, the normal stress, and the interface thickness (several Angstrom), respectively.
This property is dependent on the temperature. At high temperature, the surface
tension reduces drastically in most cases® [25,26]. However, in this thesis, we consider
only isothermal flow with homogeneous phases, so the surface tension will be constant

in our simulations.

2.1.4 Dimensionless number

For flow simulations, dimensionless numbers help to characterise the flow. In this the-
sis, only two well-known dimensionless numbers, the Reynolds and Capillary numbers,

are considered in the analysis.

2.1.4.1 Reynolds number

This number is mostly used in turbulence analysis. For instance, the production rate
of turbulence in different turbulence models is determined through a local Reynolds
number. However, this number is also important for low-speed multiphase flows. In-

deed, the Reynolds number compares the inertia forces with the viscous forces as:

Il

Re = UT, (29)

14

where Re, ﬁ,i, and v are the Reynolds number and the characteristic: velocity, length,
and kinematic viscosity, respectively.

Therefore, if the Reynolds number is larger than 1, the inertial forces are dominant
compared with their viscous forces. With an interface involving in the flow, the stress

seen between the two sides of the interface will differ. Indeed, with Re > 1, the

For molten metals, the tend can be the opposite [24].
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interface will deform due to the inertia, so the analysis will be different from Re < 1

i.e. a creeping flow.

In this thesis, the characteristic properties for channels or serpentine are the max-
imum velocity, the height and the dynamic viscosity of the red fluid. For a porous
medium, the characteristic length should be based on the pore sizes which are not
known for this study. Thus, only the local Reynolds number has been checked to be

less than 1 in several channels of the media.

2.1.4.2 Capillary number

In multiphase flow, the interfacial forces play a significant role especially when those
forces are larger than the viscous forces. By taking the energy per surface unity, we
get the Capillary number:

Ca=—, (2.10)

where 1,U, 0 and are the characteristic: dynamic viscosity, velocity, and surface tension,

respectively.

2.2 Porous media

This section describes porous media and defines the porosity, the tortuosity, and the

permeability.

2.2.1 What is a porous medium?

A porous medium is a material containing pores (voids). A pore is a small space
inside a solid or semi-solid matrix but free of matrix. For instance, a sponge is a porous
medium. However, not all porous media are concerned with fluid flows. In fact, a lot
of porous media are not permeable to fluids. Therefore, we will restrict the topic to

permeable porous media and solid matrix.

Porous media can be found in industrial environments or in nature. In nature, porous

media are almost everywhere. For instance, sands and most rocks are porous [27,28].
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In chemical engineering, porous media are often employed for filtering applications as

in NOy converters [29,30] or for reactors as in fluidized bed reactors [31].

The three major parameters to define a porous medium for fluid flow applications

are the porosity, the tortuosity and the permeability.

2.2.2 Porosity

The porosity is defined as
== (2.11)

where V,, is the volume occupied by the pores and V; is the volume of all material.
This number shows the proportion of void in the media. However, some pores are not
connected to the network and don’t contribute to the flow. Those pores should be

excluded, and we define the effective porosity as

Vep

Pe = 7, (2.12)

where ¢, Vep,and Vi are the porosity, the volume occupied by the only pores connected
to the network, and the volume of all material, respectively. This number represents
the amount of fluid which could be absorbed by the porous media. A small number
shows the material is dense and a small volume of fluid could go through it. However,
it is less straightforward to obtain this value. So, we will consider only the porosity

and not the effective porosity for the rest of the thesis.

2.2.3 Tortuosity

The porosity alone is not enough to indicate the capability of the flow to go through
the porous media. Indeed, the network could be well connected and straight, or the
opposite. The tortuosity represents this structure property. It is experimentally mea-
surable and two main techniques are often used such as geometrical and electrical con-
ductivity. However, there are several other techniques utilising differently the physical

properties.

5For a straight network of tubes, tortuosity and porosity are equal.
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2.2.3.1 Geometrical technique

From a geometrical point of view, tortuosity is the ratio between the mean length
from the inlet to the outlet and the length of the sample. So, the method needs to find
the “theoretical flow path” lengths between the inlet and outlet then average them. A
“theoretical flow path” length is the shortest distance to reach the outlet at a one inlet
location. Thus, several lengths exist along the inlet boundary and determining them
is not straightforward for a complex geometry. This way of determining the tortuosity
can be used to compare samples and understand their structures [32,33] but it is not

clearly relevant for hydrodynamic study.

2.2.3.2 Hydraulic/Electric techniques

The tortuosity can also be measured by using the electrical conductivity between the
inlet and the outlet of the porous media and comparing to the real electrical conduc-

tivity of the fluid. It is defined as
T=¢21, (2.13)

where T is the tortuosity, o is the electrical conductivity of the fluid and o) is the
electrical conductivity of the porous media. It can be also estimated with a heat flux
with the same principle.

The hydraulic tortuosity is more difficult to calculate. The idea is to calculate the
square of the ratio between the actual path length and the apparent path length. This
is not a simple task, which differs from the electrical or thermal calculations [34].

Due to the heterogeneity of the material, the flow takes a preferential path [32]. To
fill all the pores, the time is much higher than the time needed to evacuate of the

media [35].

2.2.4 Permeability

Another important parameter is the permeability that represents the difficulty for
the fluid to go through the porous media by an applied pressure. It was defined by

Darcy [36], when he sought a law to design the fountains and the running water in the
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city of Dijon where the water came directly from a source with pipes, as
K==-p— (2.14)

where K, @, S, L, and AP are the permeability, the volume flow, the section, the
length of the medium, and the pressure drop, respectively. This law is for a sample
with only one phase and usually called the absolute permeability. Thus, this law needs

to be generalised and extended to multiphase.

2.2.4.1 Generalised form

To take into account of anisotropy of the sample and be able to discretise, the perme-
ability needs to be generalised as:

Y

where Kj;j, u;, and P are the single-phase permeability, superficial velocity, and the
static pressure, respectively. This form of the permeability is a tensor of order 2 which
considers, everywhere, that the flow creeps ” with only one phase. However, it is

common to consider only low Reynolds number i.e. laminar flow.

2.2.4.2 Multiphase form

In order to add one or more phases to Equation 2.15, it needs to assumed that each

phase behaves as a single-phase so the equation becomes:

k k
u?

Kk —__2iF 2.16

K 8Pk/8xj’ ( )

where the superscript * is the phase index. However, the analysis of each phase is not

easy and a relative permeability K¥ is introduced as:

K Ry = (2.17)
rij 2 8Pk/6:nj' :

"Reynolds needs to be less than 1. So, the inlet /outlet can be reversed in single-phase flow.
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So, the relative permeability is:

k  k
(P 2.1
T ((3Pk/a.%']) Kij ( 8)

2.2.4.3 Extension of the definitions

The pressure gradient defined in the Equation 2.15 can be obtained by at least two

ways:

o Experimentally as in Equation 2.14

OPh _ AP
ij - L

e Finite volume so the average of the pressure gradient in the domain

apr S5 (Vi @P*ox))] )

. - n .
Ox; Vi

for n fluid nodes & and each fluid node has a volume V; 9,

The superficial velocity is the corresponding velocity for the same mass flow passing

through the volume of all material '° i.e. the void-only porous media. Therefore,

(2.19)

where

k

n .k
S (v k],
u; = n )
pore LV,

for n fluid nodes 8 and each fluid node has a volume V; 9,

(2.20)

However, the superficial velocity can be seen with the flow going inside or outside

(inlet/outlet) as in experiment:

uf = uf , (2.21)
inlet/outlet

but in multiphase flow, this definition can be problematic. For instance, a phase in the

domain can move only inside, be injected but not going out, or just go out.

8This assumes each node represents a volume and the velocity at the node is constant inside this
volume. Moreover, the flow needs to be incompressible.

92?:1 Vj is the volume occupies by the pores V.

10y from the definition of the porosity.
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Clearly, different definitions of Equation 2.18 can be created. If the idea is to compare
with experiments, the best method is to use the pressure gradient based on the difference
of pressure between inlet and outlet and use the superficial velocity by the flow going
inside or outside. However, if the aim is to use in upscale methods, the integration

method will be preferred.

2.2.5 Mobility

This property represents the ability of the fluid to move inside the porous media and

it is defined as:
KF. . Ky

_ B B
M = % (2.22)
We can define the mobility ratio as:
Mdis dis  iny
M;atio = =" a . (223)

inv inv ,dis
M K v

When the relative permeabilities are equal, the mobility ratio becomes the viscosity
ratio. Thus, it is an important parameter to evaluate the ability of the invading fluid
to flood the porous media. The oil & gas companies use this ratio to estimate the
extraction of oil & gas. The largest mobility ratio gives the best flooding i.e. the best

oil & gas production.

2.2.6 Saturation

The saturation is the volume fraction of one fluid which occupies the void of the

porous media. For the invading fluid, the saturation is:

Z?:l (VJ aj)

S’invading = Wa (224)
j=1"Yj

for n fluid nodes 8 and each fluid node has a volume V; 9, «; is the local mass fraction

of the invading fluid.
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Chapter 3

Numerical methods

This chapter covers the numerical methods from classical CFD to LBM for single-
phase and two immiscible fluids flow.

Different numerical methods can be chosen depending on the required accuracy
and the flow physics involved. A short review will be presented to introduce
the different methods. The second part describes the traditional methods for

continuum flows and the last part discusses the method used in this thesis.

3.1 Introduction

Experiments are not always easy to perform, and they can be time-consuming, costly,
and not feasible (no gravity, no interactions with walls, no measurement techniques,
etc.). Therefore, simulations can replace or complement experiments. It was more than
60 years ago that numerical methods were developed [37]. However, in the beginning,
the computer could not handle complex domains and complex equations. For instance,
simulations considering a potential flow were very common 20-30 years ago, which is
still of use for design optimisations. Indeed, the method is so quick to solve that can
be used to test a lot of configurations. However, the results are mainly qualitative and

not predictive.
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With the development of High-Performance Computing (HPC), the Direct Numerical
Simulation (DNS) with the Navier-Stokes (NS) solvers became popular. We are now
able to simulate a wing at the Reynolds number larger than 10°. However, simulation
of two-phase flows using DNS is still rare at moderate Reynolds number. Developing
numerical methods to handle this kind of flow efficiently, with a Massively Parallel

approach is consequently important.

The numerical methods should predict the physics involved in a specific domain
and they can use a model or the methods themselves to represent it. For instance, a
chemical reaction can be solved at the molecular level, the continuum level or others.
However, the calculation costs can be too high at the molecular level due to the number
of molecules involved in the system or the physical time is too large, typically more
than 1 ms. In case the number of molecules is reasonable as at very low pressure or
at very narrow channels and a physical time is small, it is possible to simulate at the
molecular level. Otherwise, a continuum approach with a model can be used.
However, using pure molecular or continuum approaches can show up limitations. So
mesoscopic or hybrid approaches become important. A general description of meso-

scopic methods for gas is given in the Appendix A.

3.1.1 From free molecular to continuum flow regimes

When the gas molecules rarely collide, the flow is in the free molecular regime.
When the molecules of fluid collide very frequently, it is in the continuum regime. If
the molecules are in constant collisions, the matter is in the solid state. To determine
the flow regime, it is common to use the dimensionless Knudsen number (Kn). The
most common definition for Kn (Kn = A/L) is to compare the mean free path with
a reference length of the domain as the height of a channel. However, this general
definition cannot take into account all the cases where the rarefaction appears for
instance, around a shock wave or a very small particle. Rarefaction due to shock waves
are more critical in liquids but it is rare due to the high speed of sound in liquid [38].
In this case, the reference length should be local and can be approximated by the

gradient of pressure or velocity. For a very small particle, the drag is reduced due to
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the rarefaction [39]. Cunningham proposed a model to take it into account and derive

from the Stokes’ law.

3.1.2 Macroscopic methods

Numerical methods for continuum flow regime have existed for several centuries [40—
42] such as the well-known Euler equations where the Eulerian description comes from.
Indeed, Euler used the spatial derivatives to represent the motion. At this time, the
Lagrangian description was the custom i.e. to represent a motion, the fluid particles
were followed in time and space. In order to solve it numerically, computer resources
were needed to be developed. Therefore, the development of codes to simulate a flow
with Navier-Stokes equations started around 1970. Recently, it is common to use
CFD methods to simulate continuum flows. The two main approaches are the Smooth

Particle Hydrodynamics and the Navier-Stokes.

3.1.2.1 Smooth Particle Hydrodynamics

The method was developed by Lucy [43] and Gingold and Monaghan [44] in 1977.
It is a Lagrangian method where the particles represent a volume of fluid (density)
and their velocities represent the fluid velocity. Other physical properties can be linked
with the particle such as the temperature.

The first step of the method is to initialise the domain with particles which have a
mass. Then the method is simple: moving the particles according to their macroscopic
properties, apply the boundary conditions and update the macroscopic properties by
solving the Euler, the Navier-Stokes, other laws, or other equations.

To enforce the law or the equation, a special operator is used to calculate the macro-
scopic properties based on a kernel. More details and applications can be found in the

references [45-47].

The advantage of this method is meshless and conservation of the mass due to its
Lagrangian formulation. However, a lot of drawbacks can show up including high

computation cost, low accuracy, instability, and slow convergence [47].
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3.1.2.2 Navier-Stokes approach

The Navier-Stokes equations were created, separately, by the engineer Henri Navier in
1823 and by the physicist and mathematician Sir George Stokes in 1845. The equations
represent the evolution of a fluid with a viscosity in a domain from classical conservation
laws (mass, momentum and energy) in a Eulerian description. It can be considered as

an extension of the work of Euler.

3.2 Navier-Stokes equations

Considering a Newtonian fluid with density p(p, T') and dynamic viscosity u(7") where
pand T are the pressure and the temperature respectively, the Navier-Stokes equations

can be written in the conservative form with Einstein notation as:

0
o+ ()i = 0, (3.1)
Opu;
gtz + (puinj) ;= =pi+ 7, (3.2)
dpe .
5+ pews) ;= —puj; — dj j + wigmij, (3.3)
where:
2
Ti = WSij = | Uij + Uji — Uk (3.4)
is the stress tensor and where
. Cp
g ==L, (3.5)

Pr Y

is the heat flux due to conduction in the direction x;. e, Cp and Pr are the internal

energy, the heat capacity at a constant pressure and the Prandtl number, respectively.
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3.2.0.3 Incompressible Navier-Stokes equations

Assuming the fluid is incompressible and isothermal, we can simplify the equations as:

uii =0, (3.6)
P (égf * (“i“j),j) = TPt i, (3.7)
or
%lzz + (uz'uj)J = —;p,i + vu i, (3.8)
and with the density equal to unity,
%Tf + (wig) ;= —pi + vu. (3.9)

3.2.1 Numerical methods

Several approaches can be used to solve Navier-Stokes equations. Here, the discussion
will be only on the discrete representation of the spatial derivative operators using the
Spectral Element Method (SEM) and the Finite Volume method (FVM) which, later,

will be used to validate the continuum flow simulations.

3.2.1.1 Spectral Element method

SEM is considered as a high-order method. Indeed, the method is based on FEM
(Galerkin) approach. Therefore, the integration and the spatial derivative operators
are based on an element.

SEM is a particular case of FEM due to the type of polynomials used. In SEM,
it is common to consider the basis and test functions from Gauss-Lobatto-Legendre
(GLL) and Gauss-Legendre (GL) polynomials [48,49] for the velocity and pressure
fields, respectively. The strong advantage of using that kind of polynomials is their
orthogonal properties. Thus, the error (residual) is directly obtained and the Navier-

Stokes equations (Equation 3.1 and Equation 3.8) are recovered.
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GLL or GL can exploit the advantages of the h and p refinements (mesh size and
polynomial order, respectively) to obtain exponential convergence rates [50]. Therefore,
to increase the accuracy, the order of the polynomials (commonly chosen between 5 to
15.) should be higher or the size of elements should be smaller. It is clear by using
this approach, the solution is integrating over all the elements and the integration is
calculated as a sum.

This method gives a very high resolution and provides very good performance for a
parallel approach. However, the method is less stable than FVM and requires more
calculations. An improvement is to use a Discontinue Galerkin approach to increase
the number of element and/or order locally [51]. However, this technique introduces
discrepancy between elements due to the interpolation technique between elements and
the convergence rates is reduced due to the integration per element instead of over all

the elements.

3.2.1.2 Finite Volume method

This method is the most used in the CFD community due to the geometric flexibility.
The method represents the properties of the fluid/flow in the cell-centre and each cell
represents a volume of fluid. Therefore, the integration is by a cell. By using the Gauss’

theorem, the volume integration can be transformed to a surface integral.

For each term in a Partial Differential Equation (PDE), an evaluation of the flux at
the boundaries of each cell has to be done. This creates the drawback of the method
which is difficult to increase the order of accuracy, especially on an unstructured grid.

The method tends to use a Cartesian grid for high-order approximations.

3.2.2 Interface-tracking with front-capturing or front-tracking meth-

ods

In this section, we consider an interface between two fluids which needs to be repre-
sented. Mainly, those kinds of flows are liquid-liquid or gas-liquid. The front-capturing

(Eulerian approach) or front-tracking (Lagrangian approach) is used to describe free-
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surface flow, stratified flow, droplets or bubbles dynamics'

. The front-capturing ap-
proach includes Volume Of Fluid and Level Set methods and the front-tracking includes

Marker-based method.

3.2.2.1 Volume Of Fluid

VOF is a Eulerian technique which considers the volume fraction v (z,t) of each

phase in each cell to be transported. The transport equation is

0
aqu + U¢,j =0 (310)

in case of no injection, well or phase change.
The macroscopic velocity w is calculated by the Navier-Stokes equations with a source
term for the interfacial forces. In case of incompressible fluids, the continuity equation

remains the same equation as Equation 3.1. The momentum Equation 3.8 is modified.

8ui
p( ot (“i“j),j> = —pi+ (e (wig +uia) ), + Fro (3.11)

where f, is the Continuum Surface Force (CSF) [3]

Iy = oknés. (3.12)

A reconstruction of the interface is needed for VOF. Several approximations can be
used. However, the reconstruction is based on the normal of the interface, which is
rarely calculated correctly, leading to spurious current and a wrong calculation of the
CSF.

It is possible to remove the reconstruction [52] by using a special approximation of the
viscosity and numerical schemes. The main advantage of this technique is to ensure

the mass conservation.

!The number of bubbles or droplets need to be limited due to computational cost.
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3.2.2.2 Level Set

This method uses the transport Equation 3.10 and defines the level set function
¥ (x,t) as a smooth function which is continuously differentiable and with the condition
at the interface

Y(x,t) = Cst. (3.13)

In the original work of Osher and Sethian [53], the constant was chosen to be zero. It is
usual to set the level set function as the distance (signed) to the interface. A Heaviside
distribution or a smooth Heaviside distribution is used to calculate the density and
viscosity at the interface. The smooth Heaviside distribution is used to take into account
the thickness of the interface. The momentum equation is the same as in VOF methods
(Equation 3.11). The CSF is based on the level set function v (z,t) and therefore,
the delta distribution needs to take into account the Heaviside or smooth Heaviside
distribution. Clearly, the Level set method does not ensure the mass conservation but
can represent the sharpness of the interface. It is also possible to combine VOF and
Level Set Methods to get the advantages of both methods i.e. the mass conservation

and the sharpness of the interface).

3.2.2.3 Marker-based method

This Lagrangian technique places markers (massless particles) on the interface and
which move them with the flow [54]. The interface is represented by a function between
two markers in two dimensional, generally a linear function and by several markers in
three dimensional, generally triangles [55]. Figure 3.1 represents a two-dimensional
example of the technique. The drawback of the method is that the mass conservation

is not guaranteed, and the calculation cost is high to track the markers.

3.3 Lattice Boltzmann method

This section describes the method used in this thesis. First, a synthetic explanation
where the method comes from will be described, then LBM itself from the Boltzmann

equation, LBM to Navier-Stokes, then the boundary conditions in LBM and the last
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Figure 3.1: Representation of the Front-Tracking technique [12]

part, the multiphase flow models in LBM framework.

3.3.1 Historical development

The LBM was originated from Lattice Gas Automata (LGA) which is a discrete
(Boolean variable) particle kinetic method. The aim of this method is to simulate the
gas (particle) kinetic by a simple way to investigate some of its proprieties such as mass
and momentum. The model is based on a lattice with a maximum of particles at each
lattice site and a Fermi-Dirac distribution. Each particle has one of the unit velocity
vectors and each particle must have a different velocity. Otherwise, those particles
are excluded. The evolution in time is realised by a streaming and a collision of the
particles.

The first (LGA) scheme was from Hardy, Pomeau, and Pazzis (HPP model) in 1973
[56] with an infinite square lattice, four-unit velocity vectors and a maximum of four
particles at each site. Frisch, Hasslacher, and Pommeau (FHP model) in 1986 [57]
used an equilateral triangular lattice, six-unit velocity vectors, and one particle at each
site. This symmetrical representation helps to recover NS. An extension in 3D (Face
Centered HyperCube model) was proposed by d’Humiere [58]. However, those models

are noisy by using Booleans variables and have a lack of Galilean invariant due to the
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Fermi-Dirac distribution.

The Lattice Boltzmann Method replaces the discrete particle (Boolean variables) by
single-particle distribution functions (real variables), the Fermi-Dirac distribution by
the Maxwell-Boltzmann distribution, and collide the particles by a Boltzmann approach
[59,60]. However, the collision operator stays non-linear. The modern LBM has shown

up by using the Bhatnagar-Gross-Krook operator (BGK) [61-65].

3.3.2 Principles of Lattice Boltzmann method

This subsection describes the LBM included the link between Boltzmann equation
and LBM, the major collision operators and equilibrium distribution, and the way to

recover NS from LBM.

3.3.2.1 From the Boltzmann equation to lattice Boltzmann method

The Boltzmann equation is the base of the kinetic theory for gases. In H space (also

known as phase space), the Boltzmann equation is written as

L[f] = Clf], (3.14)

where L is the Liouville operator, C is the collision operator and f is a single-particle

distribution function. In non-relativistic form, the Liouville operator is written as

) 9 F 0
Lyp =5 +u V4 o (3.15)

Therefore, the classical form for the non-relativistic form of the Boltzmann equations
is
of of _

F

where u is the free particle velocity, F is an external force and m is the mass of a
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particle.

To move from real gas (Boltzmann equation) to a simplified model (lattice Boltzmann
equation), a lattice network is defined, not necessary Cartesian, and particle velocities
are restricted to a set of discrete velocities. The general non-relativist? form of the

lattice Boltzmann equation is

Ofi Fi 0fi i,
E+ez'vf2+ﬁ'8ei —C[fz]a (3'17)

where e; is the particle velocities in the direction i of the set of discrete velocities, F;

is an external force in the direction i.

If we assume the particles have no external force® and cannot be off-lattice, we can

rewrite the equation as

fil@ + &Ax, t + At) = fi(Z,t) + Q(fi(Z, 1)), (3.18)

where €2; is the LBM collision operator.

3.3.2.2 Collision operators

The collision operator could be treated in several ways. The common collision oper-
ators for LBM are: Bhatnagar-Gross-Krook (BGK), Multiple Relaxation Time (MRT),
Central Moment (CM), and Entropic. However, the most common way is the BGK

collision operator [66].

BGK collision operator
The idea is to replace the non-linear collision operator by a linear collision* operator

based on a relaxation factor to simplify the collision term. Applying this to LBM, we

2Non-relativist will be used until the end of the review and will not be mentioned anymore.

3Which is wrong due to the gravity but in most cases, the gravity is insignificant in single-phase
flows but not in two-phase flows when the densities are not equal. Obviously, in two-phase flows, the
external force has to be added.

4Tt is linear when the relaxation time does not change i.e. when the viscosity is constant, otherwise
it is quasi-linear.
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get the LBGK model [61-63] and is written as

L i@ - fi'(@1)

fi(@ 4+ €;Ax, t + At) = fi(Z,¢t) - , (3.19)
where 7 is the relaxation factor and defined as
6- 1
= VTJF (3.20)

where v is the kinematic viscosity and f;? is the equilibrium distribution. The general

form [64] of the equilibrium distribution function with the second order (O(u?))is
£ = pu; [a+ba-ﬁ+c(a.ﬁ)2+da2]. (3.21)

Qian et al 1992 [63] gave an analytical solution® for the coefficients in Equation 3.21.

For the D2Q9 scheme, the coefficients are:

Ne)

T L 3
[ = pwi [1+36i-u+ Q(ei-u)2 - 2u2]. (3.22)

More details about the equilibrium distribution will be discussed later in subsubsec-

tion 3.3.2.3.

MRT collision operator

The MRT technique [67,68] was created to improve the stability of the BGK approach.
Globally, MRT can be seen as a BGK approach per discrete velocity. Indeed, the
method reduces to a linear relaxation for each discrete velocity.

In aeroacoustics, the MRT helps to keep the simulation stable with a low shear viscosity.
However, the drawback is the augmentation of the bulk viscosity which is in order of
the shear viscosity in gas and one or two orders higher in liquids [69]. Therefore, the

acoustic waves can be dissipated more than really absorbed.

5For a compressible gas at low speed and single-phase flows
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The calculation costs are higher than the BGK due to the fact that a matrix product

is needed.

Entropic collision operator

BGK and MRT have a wrong assumption: the moments relax at a fixed rate i.e. the
collision and the moments have the same basis and H space. However, the moments
move with the flow. At low-speed flow, this error is not important and can be balanced
by a finer mesh. For high Reynolds numbers, the calculation cost can be very high with
a very fine mesh and could give wrong results. In order to remove this non-desirable
behaviour, the relaxation coefficients of each moment are computed in each time step
and each grid point in order to minimize the discrete entropy function [70, 71].

The calculation cost is higher for low Reynolds number, but the main issue of this

operator is to define the boundary conditions.

Central Moment collision operator

The main idea of this operator is to improve the MRT method towards Entropic collision
operator without minimizing the discrete entropy function. To achieve this goal, the
MRT moments are shifted to the moving frame and using up to the fourth-order moment
to close the system [72]. Mathematically, it is a change of basis and a truncation at the
fifth-order moment.

Thus, the Galilean invariance strongly presented in the BGK or the MRT is almost
removed [73]. As for the Entropic collision operator, the boundary conditions are not
easy to define. Recently, some progress was made to include an external force [74] such

as the gravity term.

3.3.2.3 Equilibrium distributions

The equilibrium distribution is assumed to be based on the Maxwell-Boltzmann

equilibrium distribution®:

1= (277/2)[)/2exp [—2 (e; — u)2] , (3.23)

50ther choices can be used, for instance to take into account the van der Waals forces.
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where D is the spatial dimension and u is the normalised macroscopic velocity by vV3RT
with T the temperature. Originally, the equation is expressed in terms of energy and
not in a density of energy.

Using the above equation is numerically very costly. The most common approach to
reduce the cost is to develop the equation in the Taylor series to the second order in u.

Thus, we obtain the Equation 3.21 which is:
£29 = pwi|a + bé - @ + c(& - @) — di?|. (3.24)

Clearly, the equation is compressible, and the speed of sound is 1/ V3. By considering
the density as p = pg + dp and neglecting all density fluctuations with the velocity w,

the Equation 3.22 can be rewritten [75] as

pa + po <65¢-ﬁ+ c(é’i~ﬁ)2 —dﬁ2>], (3.25)

where pq is the reference and dp is the density fluctuation. Thus, we obtain the incom-

pressible form of the equilibrium distribution function.

Considering D2Q9 scheme (two-dimensional square lattice with 9 discrete velocities)

[63], the Equation 3.21 becomes the Equation 3.22 which is:

Lo 9 2 3
fit = pwi [1+3ei-u+2(€z"“)2_2uz]7 (3.26)
and the Equation 3.25 becomes [75]:
9 3
£t =w ,o+po(3a--a+ 2(@..@)2_2@2”, (3.27)

where eg = ¢(0,0),e; = ¢(1,0),e2 = ¢(0,1),e3 = ¢(—1,0),e4 = ¢(0,—1),e5 = ¢(1,1),e6 =
c(—1,1),e7 = c(—1,—1),es = ¢(1,—1) and wy = 4/9,w; = wy = w3 = wy = 1/Qws =

w6:w7:w8:1/36
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3.3.2.4 Recovery of the Navier-Stokes equations

Nowadays, the hydrodynamic limits of the Boltzmann equation are an open problem.
However, in some special conditions, the limits were proven as for the Incompressible
Navier-Stokes by Bardos and Ukai [76].

The first works for recovering the Navier-Stokes equations were done by Hilbert [77]
and Enskog [78]. Mathematically, their works are only a formal proof [79]. The Hilbert
method consists to seek a formal solution of the Boltzmann equation for a variable Kn

from this form

ft,x,u;e) = Z €"f(t,x,u),e = Kn. (3.28)

n=0

By identification, Hilbert obtained a system of equations for fo, fo +ef1, fo+ €efi + € fo
etc. The idea of Enskog is to identify f,, as a function of the hydrodynamic fields (mass,
momentum and energy). Both methods can recover (formally) Euler or Navier-Stokes.
More details of those approaches and their errors can be found [79-81]. More details

about the hydrodynamic limits of the Boltzmann equation can be found at [82].

However, Chapman-Enskog expansion is really used in LBM. Therefore, the principle
of the method for LBM with BGK is to use a Taylor expansion in € up to the second

order of the Lattice Boltzmann equation (Equation 3.19). We get

ored . M
8ft;1 +ei-Vifit = _LZT ) (3.29)
o 2\ | w|_
L 1 - - L 7" . = —17. .
ot + ( T> s +ei-Vif; - (3.30)

By using the properties of the moments, some linear algebra and the definition of the
equilibrium distribution (for instance, the Equation 3.22), the Equations 3.29 and 3.30

can be identified to the Navier-Stokes equations (Equations 3.1 and 3.2).
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3.3.3 Boundary conditions
3.3.3.1 Periodic boundary conditions

The periodic boundary condition is defined as a boundary connected to another
boundary which leads to a periodic domain. Thus, in LBM, the particles going outside
of the domain enter at the connected boundary.

The classical way to implement this boundary is to copy the particles going outside
and add them at the connected boundary. However, this adds a synchronised commu-
nication between processors. To improve this lack of efficiency, the periodic boundary
condition is implemented in an implicit manner i.e. the communication nodes are mod-
ified in the mesh generation to impose the boundary condition. This leads to remove
additional treatments usually used in a classical way and thus, periodic nodes behave
as interior nodes (inside the domain).

To implement this implicit manner, the node ghost layer of the connected boundary is
used and synchronised with the first layer of nodes toward the domain at the periodic
boundary condition. Thus, each domain sees the other domain as no boundary. An
example of the two ways is shown in Figure 3.2. A source term can be added to repre-
sent a pressure drop but the pressure needs to be fixed. This is done by imposing the
pressure at the inlet as the half pressure-drop by correcting fy of the distribution.

b) Implicit way

12 12

Y

Figure 3.2: Sketch of the left periodic boundary condition for two MPI processes and
where the green arrow becomes the red arrow. The red arrow is synchronised with the
green arrow for the classical way during applying the boundary condition whereas the
green arrow is synchronised with the purple arrow during the time step.
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3.3.3.2 Symmetry boundary conditions

This boundary condition is very straightforward. It is just a symmetry of the distri-
bution so naturally there is no flow through the boundary. This condition can be also

considered as a specular reflection on a wall.

3.3.3.3 Velocity or pressure boundary conditions

The pressure or velocity boundary conditions are a modification of the momentum.
The most common boundary condition for pressure (through the density with an equa-
tion of state) or velocity is given by Zou and He [83]. The idea, to determine the
unknown discrete velocity, is to consider the non-equilibrium part as a bounce-back on
the boundary. However, the method cannot apply at corners due to more unknown
variables than equations. In that case, an easy way proposed by Ho [84] is to impose
the velocity and the pressure to remove an unknown. For a moving wall, Ladd proposed
to use the bounce-back rules and add a source term [85].

More boundary conditions exist for imposing a velocity or a pressure and some other

schemes can be found in [86].

3.3.3.4 'Wall boundary condition

LBM is very suitable to treat the no-slip velocity conditions at walls due to the
simplified kinetic model. For instance, the simplest way to treat the wall is the so-
called bounce-back scheme [59,87]. The idea is that all the particles which hit a wall
will bounce-back in the opposite direction. The wall nodes can be also considered as
wet nodes, and thus, the collision operator is applied (section 4.2).

In case of rarefied gas, a diffuse boundary condition [88] is used. However, with the
low order scheme, the flow field is not captured accurately for a high or moderate
Knudsen number i.e. more than 0.1. Using an approach LBM higher order or DVM is
more appropriate [89]. Another way to treat the walls is to consider the boundary as
a velocity boundary condition. The boundary condition of the Zou and He [83] is used

with the velocity set to be zero.
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3.3.3.5 Corner treatment

The corners are treated in a relatively similar manner to wall boundary conditions,
however, at concave corners, the two discrete particle velocities pointing into the solid
in opposite directions represented by the dash lines in Figure 3.3 are unknown. These
two discrete particle velocities do not participate in the streaming process but affect the
collision process in the D2Q9 schemes i.e. the system of equations at the concave corners
are ill-posed. Thus, some choice has to be made to close the system. The simplest
approach is to set these to zero, but this leads to a loss of momentum. Another approach
is to extrapolate the distribution function at concave corners from the neighbouring
nodes [90]. In the present work, the set of equation is closed, specifically for low
Reynolds flows, by a macroscopic approach. The assumption of low Reynolds number
implies that the diffusive time scale is much greater than the convective ones i.e. the

inertia forces are negligible compared to the viscous forces. This enables us to consider

Z4

Figure 3.3: Simplify representation of the D2Q9 distribution at convex (1) and concave
(2) corners. Blue and green lines are the incoming and outgoing discrete particles,
respectively. The red lines represent the incoming and the outgoing discrete particles.
The green dash lines are the unknown discrete particles.

the gradient of density is small. Thus, the density at the concave corner is extrapolated

by the inverse distance weighting (subsubsection 3.3.5.2) of the three direct neighbours

37



and the two unknown discrete particles are defined by using the zeroth-moment and

assuming the two unknown discrete particles equal, as

2fun = /5 - (2pzn + fO); (331)

where, fun, P, pin, fo are the unknown discrete particle, the extrapolate density, the
sum of incoming discrete particles, and the static discrete particle, respectively. In
this way, the density at the concave corner is approximated to a realistic value which
produces quicker and better simulations(section 4.1 and section 4.2). Due to the ex-
trapolation uses the density values of the nearest neighbours i.e. the first layer of the
surrounding nodes, the parallel efficiency is not strongly impacted. The two incoming
and outgoing discrete particles represented by the red lines in Figure 3.3 are assumed
equal to enforce the no-slip boundary condition, thus, the incoming discrete particles
are summed and are equal to the sum of the outgoing discrete particles to conserve the

mass and momentum.

3.3.4 Multiphase flow treatments

Several models were created for multiphase flows in the LBM framework. All of those

models use at least two distributions and can be written as

FR@E + &0, t+ A1) = fE(E,8) + OF (Q’f (rh@n) + o (fh@, t>)) . (3.32)

where Qfl is the single-phase collision operator for the phase k described in the sub-
subsection 3.3.2.2, sz is the perturbation operator for the phase k& which represents
the interfacial forces between the two fluids, and Qf?’ is the separation operator for the
phase k between the distributions. The last operator is only needed for few multiphase
models.

A general description of the most used models will be presented and especially for the

colour fluid model.
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3.3.4.1 Colour fluid model

This model can be considered as a VOF model in the LBM Framework. Indeed, the
main idea introduced by Rothman and Keller [1] for LGA is to simulate two immiscible
liquids separately in the same domain and segregate them by a reconstruction operator.
Gunstensen et al [4] extended it to LBM.

The method can be extended to more than two fluids [91] but we will limit here to two
immiscible liquids. We also restrict our discussion to two fluids with the same density
although it can be used for fluids with different densities [92]. We call the first fluid
“Red” and the second fluid “Blue” and denote r and b, respectively. To simplify the

notation, we denote k for either r or b.

The fundamental steps of the model

Similar to VOF, the colour gradient is used to estimate the normal of the interface
and to evaluate the interface forces. However, the transport Equation 3.10 is implicit
due to LBM is an interface-capturing. Indeed, all properties needed to be evaluated
at each node are known thus, it is not necessary to calculate fluxes as in the Navier-
Stokes solvers. This reduces the spurious currents, no false diffusion and flux errors,
and enables lower Capillary numbers.

The Equation 3.32 can be seen for this model as:

% Single-phase collision

' = i@y + o (1@ ). (3.33)
#® Perturbation collision
k@0 = rhE 0+ of (1FE ). (3.34)
# Recolouring
fh@E o™ = @™ + o (@), (3.35)
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% Streaming

H@+ @Az, t + At) = fR(& 1) (3.36)

Due to the two immiscible liquids being simulated separately, their densities” are eval-

uated with the zeroth moment as

=1 (3.37)

The single-phase collision is resolved with the BGK approximation (section 3.3.2.2).
The perturbation is introduced by Grunau et al [93], Reis et al [92] and Lishchuk et
al [2]. The recolouring minimizes the Helmholtz free energy. However, this technique
is numerically time-consuming and creates spurious current due to the lattice pinning.
Latva-Kokko et al [5] proposed an approximation based on the work of Ortona et
al [94] and of T6lke et al [95] to remove the lattice pinning, smooth the interface and

low calculation cost:

3 R R B
(2F)" = 2 i+ 85wy cos() i,
p P (3.38)
3 pB pRpB ‘
(Qf) S A w; cos(p;) €3],
P p

where f; = fE + fP and cos(y;) is the angle between the discrete velocity and the
normal of the interface. It can be noticed the collision operator can be applied on f;
instead of fZ-R and fiB. We used the strategy of applying on f; in this thesis.

In the streaming step, particles hop from node to node. The total population is f; =
>k fzk so the total density p is p, + pp. The evaluation of the velocity depends on the

model for the interface forces (the perturbator operator QfQ)

Grunau approach
Grunau et al [93] extended the work of Gunstensen et al [4] to different density and

viscosity ratio and improved the perturbator operator. The colour gradient is the same

"pr can be seen as a partial density.
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as that defined by Gunstensen, i.e.

G = pr(T + €Az, t) — pp(T + €;Ax, 1)) e;|. 3.39
> (o )~ oo ) (3.3

The perturbation operator is based on the idea of Gunstensen to apply a force according
to the angle between the normal of the interface and the lattice direction. The model
works but it does not recover incompressible Navier-Stokes equations for the conserva-
tion of mass and momentum according to the Chapman-Enskog expansion technique.

The operator derived from the moments for D2Q6 (hexagonal lattice) is defined as:

(G-e)” e’) - 1] . (3.40)

02— Ag

Reis et al [92] extended to D2Q9 as

aF = *|G\

(C|;G|el) _ i] , (3.41)

A¥ is a parameter controlling the surface tension and define [92] as:
k_ 44k 2
o = §A Tc, (3.42)

k is the contribution to the surface tension from the phase k and ¢ is the

where o
lattice speed (Ax/At). From this perturbator approach, the calculus of the momentum

moment is:

pru=>_ (fikei> : (3.43)

i
Reis approach
Reis et al [92] proposed to modify slightly the approach of Grunau et al [93] to recover
the Navier-Stokes equations by using the Chapman-Enskog expansion. Indeed, the
authors have shown that the stress tensor from the Grunau et al approach does not

have the correct form of the Navier-Stokes equations. They proposed to rewrite the
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Equation 3.41 as:

k . 0.)2
Ok = ‘%m A Cala) —B,-] , (3.44)

GI*

where By = —55, Bj = 5= for i = 1,2,3,4 and B; = ;35 for i =5,6,7,8.

Lishchuk approach

Lishchuk et al [2] use the hydrodynamic approach to model the interface forces instead
of using the simplify kinetic approach as from Grunau et al or Reis et al. The main
advantage is to be able to use directly the equations for hydrodynamic approach, and
thus, the Continuum Surface Force from Brackbill [3]. However, Lishchuk does not
use the correct form to model the body force in the LBM Framework according to the
Chapman-Enskog expansion.

The model was extended to use the body force modelled by Guo [96] and the Brackbill

force [3].

() (i) =aea (=) [Ftes 0] om0

where Fy is the Continuum Surface Force [3]
(3.46)

where £ is the curvature, G is the colour gradient and [c] is the jump in colour. The

N _ Pr_Pb)

classical approach is to base the colour function on the normal density p™ (p oo

i.e. defined between -1 and 1. Thus, the variation of the normal density (jump in colour)

is 2 and we obtain this equation:
1 N
F, = —ymVp . (3.47)

The curvature is approximated by the norm of the second derivative of the colour
function but we use the derivative of the colour gradient to define it i.e. mathemat-
ically, the result is the same but numerically it can introduce a slight error. In sub-

subsection 3.3.5.1, the gradient calculation approximations are described. With this
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perturbation operator, it is necessary to take the contribution in the first moment i.e.

PrU = Z (fz-kei) + %Fs. (3.48)

)

3.3.4.2 Shan & Chen model

This model can be considered as an extension of the Colour fluid model. Indeed, it
starts with the same idea: each distribution represents one fluid. However, the idea
to model the segregation of the two phases is strongly different. In the Shan & Chen
model, the segregation is based on a repulsive force [97] which modifies the equilibrium
velocity. In that case, it does not need to reconstruct the interface.

This model reduces the spurious current compared to the colour fluid model. How-
ever, it is difficult to determine the repulsive force of many fluids through macroscopic
properties such as the surface tension. Moreover, the interface thickness and surface
tension are linked which can lead to errors. In academic research, this model is the

most used [98]. It is also used for boiling applications and reactive flows [99-101].

3.3.4.3 Free energy approach

This model is based on the Helmholtz free energy functional [102]. The Helmholtz
free energy is based on the internal energy whereas the Gibbs free energy is based on the
enthalpy. Clearly, the Gibbs approach is a better way of dealing with phase-change®. In
this thesis, we consider only isothermal and low-speed flow thus, the brief description of
the model is restricted to the Helmholtz free energy model with the Ginzburg—Landau

free energy density functional [103]:

v = / (1/) (T, p) + g (Vp)2> dv, (3.49)

where ¥, ¥ (T, p), and § (Vp)2 are the functional, the “bulk” free energy density from
Landau mean field theory, and the gradient term, respectively. For this approximation
to be valid small values of p are needed. From this functional, it is possible to obtain

the chemical potential by taking the variational derivative and determine the ther-

8Tt can occur at non-equilibrium thermodynamics
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modynamic pressure tensor with the Gibbs-Duhem relation. Using this macroscopic-
microscopic approach, we can incorporate into the LBM Framework through the three
first moments. This model creates a relative thick interface but it, almost, does not
produce spurious currents. The surface tension can be controlled directly [104]. More

details about the method can be found in the references [105-108].

3.3.5 Numerical techniques

After the description of the different multiphase models, the different numerical tech-
niques used in this thesis will be described in detail.
Let to consider a variable ¢ and the gradient of this variable V¢ on a Cartesian mesh
for the rest of this subsection. The subscripts ¢ and j refer to the directions x and y

respectively in this subsection.

3.3.5.1 Gradients

Accurate approximation of gradients plays an important role in the colour-fluid model
[109]. For a Cartesian grid saving in an unstructured manner i.e. the nodes are not
ordered and the connectivity is saved, we limit the gradient choices to: finite difference
(first order (decentred/biased) and second order (centred)) and fourth order compact

scheme.

Finite difference
At the boundary conditions (wall, inlet, outlet, etc.), the first order decentred gradient
in the normal direction of the boundary and the second order centred gradient in the
other direction is used based on Taylor’s theorem. For a node with a boundary in the
+y-direction, the gradient is set as:

Pitl,j—Pi—1,j

Vo ~ pw (3.50)

Pi,j+1—Pij
Ax :
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For a convex corner or in the domain, the second order centred is given as:

SOiJrl,j;%fl,j
2 ’
Vo~ ¢ (3.51)

Pij+1—Pij—1
2Ax :
For a concave corner oriented in the +x-direction and the +y-direction, the first order
decentred in both directions is used as:
Pit1,5—Pi,j

Vo ~ Ar 7 (3.52)

Pij+1—Pi,j
Az .

This method is anisotropic which removes the isotropic properties of physical phenom-

ena such as the colour gradient [109].

The fourth order compact scheme

This scheme is classically used for calculating the colour gradient. It is fourth and
second order in space for Cartesian and polar coordinates, respectively. In polar coor-
dinates, the gradient is also called isotropic gradient due to its isotropic conservation
properties. Using the weight function of LBM and for the D2Q9 scheme, the gradient
is calculated as:

V=3 Zwlelap (x+ Azey). (3.53)
!

Other higher-order schemes” can be used, and you can find more details in [109,112,113].
Obviously, this scheme cannot be used directly at the boundaries. To tackle this prob-
lem, two ways are proposed using the decentred finite difference or using an extrapola-
tion scheme. The decentred technique has no problem to be applied at the boundary.
However, the two different schemes between inside the domain and on the bound-
ary, change the representation of the colour gradient so the interface by the lack of
isotropy conservation with the decentred finite difference. In order to avoid two differ-

ent schemes, an extrapolation technique is used to define the variable ¢ at the nodes

9High-order schemes are built by using a linear operator between Taylor series and are explicits.
Compact schemes are the implicit version and, thus, a system of equations is needed to be solved
[110,111].
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outside of the boundary '°. Those nodes are ghost or solid nodes and thus, the fourth-
order scheme can be applied on the boundary. However, it cannot be considered as
fourth-order accuracy in this case due to the technique used for extrapolating affects
the order of accuracy for the gradient.

Therefore, the interest is not the accuracy but keeping the same scheme helps to smooth

the difference of accuracy at the boundary thus, the interface becomes smoother.

3.3.5.2 Extrapolations

In classical LBM schemes, extrapolations are not needed. However, to improve the
results, to reduce non-physical behaviour or simply not impose a boundary condition,
two kinds of extrapolation are used: one based on finite difference gradients described
in the previous subsection, and the other one based on the inverse distance weighting
interpolation.

Each extrapolation is defined to extrapolate at the boundary (wall, concave corner,
convex corner, pressure, velocity, etc.) or at the first layer of solid under the wall (wall,
concave corner or convex corner). To simplify, the first layer of solid under the wall is

called “in solid” for this subsection.

Finite difference

As for the gradients, the finite difference is based on Taylor’s theorem to approximate
a gradient. For extrapolation, the gradient is set to be zero to consider no flux. The
extrapolation at the boundaries uses only the first order discretisation and in the solid,
the second order discretisation. The first order can be considered as not accurate
however, the value cannot be non-physical, and it is used only to impose no flux at a
boundary for instance the pressure. The second order is rarely used in this research
due to its anisotropic properties. For a wall or a boundary node type oriented in the

+y-direction, the extrapolation at the boundary is:

Dij N Pij+s (3.54)

10Tt can be outside of the domain too.
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and in the solid:
Pij—1 ™ 20ij = Piji1- (3.55)
For a convex or concave corner oriented in +x-direction and +y-direction, the extrap-

olation at the boundary is:

Vi = Pitl,j+1s (3.56)

and in the solid:

Pi-1,j-1 F 20ij = Pit1j+1- (3.57)

Inverse distance weighting
This method is based on the weight by the inverse of the distance. Considering n nodes,

the extrapolation is:

Dok WEPk
ii N Tm 3.58
2 J Zk Wi ( )
where
1
wE = (3.59)

5

\/<w (o) — (%j))Q + (y (er) =y (%‘j))

For a wall node type oriented in the +y-direction, the extrapolation on the boundary

is:

1 1
¥i,j ~ Tz % <<Pz‘,j+1 + \ﬁ (@i—l,jﬂ =+ <Pi+1,j+1)> ) (3.60)
and in the solid:
1 1
Pij-1~ ﬁ pij+ NG (pic1j+ @it14) ) - (3.61)

For a convex corner oriented in the +x-direction and the +y-direction, the extrapolation

on the boundary is:

1

4+ 5

1
Pij = <<Pz'1,j + Yit1,j T Qij—1 + @ij+1 + ﬁ (901'714‘71 + pi—1+1 + 90i+1,j+1)> )

(3.62)
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and in the solid:

1 1
Pio1,j-1 ~ @ ﬁ%pi,j + (pi-1,j + @ij-1) | - (3.63)

For a concave corner oriented in the +x-direction and the +y-direction, the extrapola-

tion on the boundary is:

1
2+

1
Pij ~ (\/§@z‘+1,j+1 + (90¢+1,j + cpi,j+1)> ) (3.64)

S

and in the solid:

1 1
Yi-1,j ~ 1 (ﬁ%‘,jﬂ + %‘,j) )
T ﬁ@z-ﬁ-l,] +wijl, (3.65)

1
V2
1 2
Pi-1-1~ —F= | Yij T/ ¢ (‘PHLJ’ + ‘Pi,jﬂ) .
2 5
1+ \/;

Pij—1~

3.3.5.3 Interpolations

The interpolation is used to estimate the contact angle. Therefore, it is defined only
on surfaces i.e. walls and concave and convex corners. The interpolation uses the solid
and fluid nodes surrounding the node which needs to be interpolated. Only two kinds
of interpolations were implemented: the linear interpolation and the linear least-square

interpolation.

Linear interpolation
This interpolation is the average between the node connected to the normal direction

and the node connected to the opposite direction.

Linear Least-Square interpolation
This interpolation is statistical. Let’s define two variables z and ¥y, and we are seeking

a line of regression with the form y = ax + b.

48



By using the least-square method and for n nodes, the coefficient a is:

a= nnémj;—z(:g gzy, (3.66)

and b is:

,_TuSet -y
ny x?— (Zx)2

Using on a surface, z can be defined as a signed distance (positive for the fluid nodes

(3.67)

and negative for the solid nodes). Therefore, the method is restricted to seek b due to
the distance is null at the boundary. All the loops are vectorised, and the nodes are
marked in the pre-processing part. Thus, the calculation time is similar to the linear

interpolation.

3.3.6 Limits of the LBGK and colour-fluid models

The BGK is a linear or quasi-linear operator and assumes the relaxation rate is the
same for all the moments. Consequently, the minimum value of the relaxation time to
keep the solution stable is limited. The maximum value of the relaxation time is not
limited by the method. However, a high relaxation time (above 1.5) means a rarefied
flow due to the low collision rate. Therefore, the relaxation time should be between 0.6
and 1.5. In case of a low relaxation time needed, the Central Moment (CM) operator
should be more appropriate and also the grid resolution can be reduced.

The LBM as it is commonly used is an explicit time scheme. In two phase and low-
speed flow, the number of time step can be huge for a flow in a big domain as in porous
media. An implicit method should be used for an industrial case. To design it, it is
necessary to use transport equations with an iterative solver. Probably, using the CM
operator, it could be easier to establish a fully implicit scheme [74] due to its intrinsic
formulation and stability.

The colour-fluid model has several limitations. The model, until now, needs to have a
recolouring operator which is computationally expensive, creates spurious currents, and
Galilean invariance. The second problem is that the surface tension can be anisotropic

due to the colour gradient. At low capillary number or high surface tension, the model
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generates a lot of spurious currents, but it is better than the traditional VOF models in
term of Capillary number i.e. colour-fluid model can simulate until around 107° [114]

whereas VOF limits around 1073.

3.4 Validation of the colour fluid model: droplet defor-

mation

A quick 2D validation was done on droplet deformation under a simple shear at low
Reynolds number. The flow conditions for both fluids are: Re < 1 and Kn < 0.001.
This imposes a creeping flow for both fluids in the hydrodynamic flow regime. The
calculation stops when the error of the velocity in the Y-direction over the domain is
less than 1077,

As an initiated validation, the results will be compared to an analytical solution from
Shapira and Haber (SH) based on the Stokes flow around the droplet with a reflec-
tion method [115], the OpenFOAM VOF results from P. Capobianchi, other VOF
results [116], and the results obtained for the free energy [106] and phase-field ap-
proaches [116] LBM. Comparing with experimental works has no sense due to 2D
simulations.

The confinement (Diameter divided by the “channel” height) is set to 0.5 and the vis-
cosity ratio to 1. The empirical parameter of the SH model is set to 5.6996. The radius
of the droplet is set to 20[lu] as used in the previous validations [117], the length of the
domain is 16 times of the radius (320[lu]) and the viscosity is 0.08[lu]. The shear flow
is imposed with Zou and He boundary condition [83] and a periodic boundary is set
in the length of the domain. We used the CSF approach for the validation as in [117]
and the results are plotted in Figure 3.4 and they are in good agreement. We have

also evaluated the approach of Reis et al [92] and we did not find significant differences.
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Figure 3.4: Droplet deformation with a confinement of 0.5 and a viscosity ratio of 1.

3.5 Chapter summary

We have seen it is not an easy task to select the right method for simulating flows,
especially in case of two phases flows. NS approach can be seen as the classical one and
the equations can be solved by different numerical methods and different models.

The SEM is suitable to get accurate results or uses the strength of supercomputer
resources, but it can be easily unstable and the calculation costs can be high. The
FVM is commonly used for NS equations and performs very well in case of complex
systems but the accuracy or the parallel efficiency can be low.

For multiphase flow, the VOF model is a strict conservation of mass but it is costly
due to the interface reconstruction and generating of spurious currents. The Level-Set
model removes the reconstruction step and reduces spurious currents, but it is not mass
conservative. The Marker-based model represents the interface accurately, but it is not

mass conservative and can be very costly.

The LBM has been described with the collision operators and equilibrium distri-
butions commonly used by the community. More details were given for the BGK
approximation used in this work which is the cheapest, simplest, and the most used

collision operator. However, a more recent collision operator, Central Moment (CM),
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sounds promising in term of accuracy, stability, and relatively cheap.

To recover NS equations from Boltzmann equation, two approaches are commonly used:
Hilbert and Enskog but they are only a formal proof and not a rigorous demonstration.
This subject is still an open problem in the mathematics community.

Several classical boundary conditions have been discussed, especially the non-traditional
way to implement the periodic boundary condition. As the platform has been developed
for the massively parallel approach, the periodic boundary has been treated through
the domain decomposition which leads to being more efficient.

The choice of the multiphase models and the numerical approximations affects the
accuracy and limits the physics. Thus, the colour fluid model with the fourth order
compact scheme is the most relevant choice to simulate multiphase flows in porous
media. However, the recolouring operator generates spurious current at a low capillary
number.

The classical scheme used for LBGK employed here is an explicit march in time. There-

fore, the time step is limited, and the calculation can be very costly.

Finally, a validation case is shown on the droplet deformation. We got a good agree-
ment with the analytical. This case is a complicated case, compared usual validation
test case such as Laplace’s law, due to it is dynamic and the deformation comes from

the shear stress.
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Chapter 4

Analysis of numerical methods

The new platform created from scratch has to be validated, the performance
evaluated, the new techniques analysed, and the effects of the different models
described in subsubsection 3.3.4.1 compared. For the single-phase analysis, two
test cases were chosen: the lid-driven cavity and Poiseuille flows. The lid-driven
cavity is chosen due to it has corners, stationary walls, and a velocity (or moving
wall) boundary conditions and the flow is not driven by a pressure difference. The
Poiseuille flow is applied in a straight channel and inclined channels. For the two-
phase flows, the Laplace's law was chosen to evaluate the models in colour fluid

model (subsubsection 3.3.4.1).

4.1 The lid-driven cavity flow

4.1.1 Description

As the thesis is focused on 2D two-phase flows for porous media, this implies that
the simulation for the single-phase flows will be validated for a 2D case. However, the
flow cannot be easily compared with experimental results due to the 3D vortexes found

in experiments. Thus, this case is a pure numerical validation.
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In order to validate the results, they are compared with the literature [118,119] and
two NS approaches. The numerical methods used, and described in section 3.2, to
compare are: Finite Volume Method (FVM) with Code Saturne [120] and Spectral
Element Method (SEM) with Nek5000 [121]. The two methods should give the same
result but Code Saturne is a low-order spatial discretization solver and Nek5000 is a
high-order weighted residual solver. Spectral methods are considered as the reference
for numerical methods. However, Code Saturne is used in industrial contexts and
Nek5000 is mostly used in academic research due to the computational cost and the

not friendly user interface.

The boundary conditions, taken in the LBM simulations, are bounce-back for the
walls (left, right, and bottom side), Zou and He [83] for the Dirichlet velocity condition
(top side), Ho for the Velocity-Wall corners at the top side [84] , and bounce-back with

extrapolation for the two wall corners at the bottom side.

4.1.2 Effect of the Reynolds number

From Re=100 to Re=1000, only 3 vortices exist: one in the middle of the cavity
and two at the corners in the bottom of the cavity. From Re=1000 to Re=5000,
another vortex is generated at the top left corner. After Re=5000, the flow becomes
unsteady and vortexes travel along the walls. However, the transition between steady
and unsteady does not agree between numerical methods.In order to compare easily
with the literature, the study is limited from Re=100 to Re=3200 (steady).

The grid resolutions for the simulations are summarized in Table 4.1. The P, /P, _»
formulation, the Helmholtz solver convergence criterion of 107'2, and the divergence

criterion of 107! were used for the SEM simulations.

Re LBM FV SEM

100 100x100 50x50 10x10 and P=7
400 200x200 50x50 10x10 and P=7
1000 400x400  100x100 10x10 and P=7
3200 1000x1000 200x200 10x10 and P=12

Table 4.1: Grid resolutions and the polynomial order (SEM) for the lid-driven cavity
simulations.
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4.1.2.1 Flow field

For a qualitative analysis, the flow field will be analysed by comparing the streamline

of FVM and LBM results.

Re 100
Finite volume - Laminar - Steady

Velocity Magnitude

10002400
. Velocity Magritude
2 T ———

1.000+00

El

nmaRRRRE;

V-axis

0.000e+00 0.0000+00

Figure 4.1: The lid-driven cavity’s streamlines at Re=100 for FVM and LBM at the
left and right, respectively.
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Figure 4.2: The lid-driven cavity’s streamlines at Re=400 for FVM and LBM at the
left and right, respectively.
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Figure 4.3: The lid-driven cavity’s streamlines at Re=1000 for FVM and LBM at the

left and right, respectively.
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Figure 4.4: The lid-driven cavity’s streamlines at Re=3200 for FVM and LBM at the

left and right, respectively.

A small difference exists between the two methods, but we consider the results equiv-

alent.

4.1.2.2 Profiles

Analysis of velocity profiles on the X and Y central lines are more precise and permit

a quantitative analysis.
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Figure 4.5: Comparison of the u-velocity along the central vertical line.
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Figure 4.6: Comparison of the v-velocity along the central horizontal line.

All methods have a good agreement between them, thus the single-phase flow solver
is validated. However, there is still some small differences due to the difference of the
methods. The SEM enforces the continuity of the solution until the second derivative
whereas FVM is only the first derivative. Thus, the grid resolution for FVM needs a
fine mesh and is still less accurate for the high velocity gradients. The LBM has no

continuity for the velocity derivatives, thus, for continuum flows at moderate Reynolds
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number, the grid resolution needs to be higher than FVM. Consequently, the errors
increase at high velocity gradients. However, all methods tend to the same solution

when the cell/element /lattice size tends to 0.

4.1.3 Speed-up

An efficient code is essential to be able to produce quick results for large and complex
domain appeared in porous media. To allow running large jobs, we need to ensure the
efficiency of the code and the lid-driven cavity at Re=10,000 has been chosen for the
domain size needed (1924x1924) and for the complex flow involving (unsteady). In
order to compare the implementation of the method, we do not generate output during
the simulation due to the writing is fully parallel and the time for writing is very high

for few processors. The scaling obtained is:
35

30

0 100 200 300 400 500
Number of cores

—~-MVAPICH2 —-OpenMPI MPICH2 -e-linear

Figure 4.7: Speed-up at RE 10,000 with a mesh 1924x1924 up to 400 cores.

Figure 4.7 shows a very good scalability, especially with the MVAPICH2-2.1 library
(optimised library for InfiniBand networks) is used. However, beyond 400 cores, the

scaling is not enough, and it is shown in Figure 4.8 and in Table 4.2. Surprisingly, the
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MVAPICH2-2.1 library is based on the MPICH2-3.1.4 library and the MPICH2-3.1.4
library gives a low performance. This is probably due to the packing and unpacking
data for the network. Indeed, MPICH2 library has to convert the packing data to
the InfiniBand network configuration whereas the MVAPICH2 does not need due to
it is tuned for it. The OpenMPI-1.6 performed better but the tuning of the library is
unknown (Default MPI library installed on the HPC).
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Figure 4.8: Speed-up at RE 10,000 with a mesh 1924x1924 up to 600 cores.

As seen in Figure 4.8, the partitioning is not optimum for the code. Indeed, the un-
structured data storage, used for removing the solid in porous media, generates packing
and unpacking data before and after exchanging data, respectively. This creates an un-
balance of communication between the MPI processes. Moreover, the MPI blocking
communication limits the efficiency. This strategy was adopted to guarantee the data
was sent before using it. The implementation used dynamic classes in C++ and can
lead to losing the state of communicators. No more development works were done to
secure the unblocking communication due to the best way is to use the Remote Mem-
ory Access i.e. push and pull data without checking the state. The implementation is

tricky, and the research topic is not getting the best performance but understanding
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the flow in porous media.

The limitation of nodes per core (around 10,000 nodes per core) is quite high for an
LBM code i.e. the open-source Palabos is around 2,500 nodes per core. However, Pal-
abos is a Cartesian implementation per block (no solid removed in a block). In the
current LBM implementation, the indexes solid nodes are removed from the computa-
tional domain. By the lack of time, the solid nodes are still present. This improves the
efficiency for porous media but reduces for rectangular computational domain as this

lid-driven cavity case.

Simulation time in s
Cores Mean Speed-up | Efficiency Number of node
per processor
12 157873,32 1,0 100,0 308481
48 38253,06 4,1 103,2 77120
192 10440,53 15,1 94,5 19280
384 5411,21 29,2 91,2 9640
420 5358,52 29.5 84,2 8814
456 5960,36 26,5 69,7 8118
552 4559,08 34,6 75,3 6706
576 4497.3 35,1 73,1 6427

Table 4.2: Performance of the platform for the lid-driven cavity at Re=10,000.

As seen in the Table 4.2, the efficiency is very good at 576 cores compared to NS

solvers where generally the efficiency is less than 50% for 10,000 cells per processors

[122,123).

4.2 An improved boundary condition at a low grid reso-

lution and Reynolds number

Optimisation of existing system and designing new generation of products with com-
pactness in mind, it is a challenge. Achieving this kind of compactness is mostly carried
out by utilising porous media such as membranes, foams, etc. Therefore, the needs of
simulation for complex geometries have increased drastically. At the same time, the
accuracy of simulation has increased, thus, the simulations became more predictive.

Different methods have been developed for Computational Fluid Dynamics such as
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Lattice Boltzmann Method (LBM) which is a mesoscopic particle-based method de-
rived from Boltzmann equation and Lattice Gas Automata (LGA) [56]. The collision
between particles can be approximated by different operators such as Bhatnagar-Gross-
Krook (BGK) [66], the Multiple Relaxation Time (MRT) [67,68], the Central Moment
(CM) [72,74], the entropic [70,71], etc.

A large branch of wall boundary conditions has been developed. The full-way bounce-
back rule is the simplest rule, in which, each particle that hits the wall bounces in
the opposite direction instantaneously without being affected by a collision process.
This rule ensures the conservation of mass and the no-slip condition at the boundary.
Removing the collision operator at the wall nodes reduces drastically the accuracy which
results in great demand of finer mesh. An extension has been done by considering the
wall is located between two lattice nodes. Using the approximation of Chapman-Enskog
expansion, the full-way and half-way are first and second order, respectively [124].
The half-way bounce back rule can lead to a slip velocity at the wall. To tackle this
problem, several wall boundary conditions were proposed such as Inamuro et al in 1995
[125] which constructs a reflective and diffuse boundary by using the local equilibrium
function, Chen et al in 2007 [126] proposed to interpolate the equilibrium distribution,
Latt in 2007 [86,127] built a scheme based on the regularised LBM, Ginzburg [124],

Ladd [85], and Bouzidi [128] proposed to interpolate schemes.

Choosing LBM to treat porous media leads the walls to be not aligned with the
lattice. This generates “stairs” with a Cartesian grid and results in the generation
of corners. Using a classical scheme for the Lattice Boltzmann Method, the density
at a concave corner node is not correctly calculated due to the distribution being not
completely defined i.e. the discrete velocities perpendicular to the normal of the corner
are free. In other words, some mass is missed in the density calculation. Thus, it
leads to having sensible different densities with the neighbour nodes at the same time
step. We proposed to extrapolate the density in a suitable manner as explained in
subsubsection 3.3.3.5, to improve the accuracy and conserve the momentum for flows

at low Reynolds number.
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4.2.1 Simulation conditions

We define the boundary conditions treated with the standard full-way bounce-back as
“No Collision”. The new approach with the collision operator and the extrapolation
of the density from the neighbour nodes by the inverse distance weighting approach is
called the “New Technique”, whereas, without extrapolation the “No Extrapolation”.
Therefore, for walls aligned with the lattice, the “New Technique” and “No Extrapola-
tion” are the same and are called “With Collision”. We also compared to the standard
half-way bounce-back and named “Half-Way”. To analyse the new treatment, we use a
Poiseuille-like flow in straight and inclined channels. The inclined cases are compared
to Spectral Element Method (SEM) with Nek5000 [121]. Four elements with the poly-
nomial order of 7 in the cross-section of the channels, the P,/P,_o formulation, the
Helmholtz solver convergence criterion of 1072, and the divergence criterion of 10~
were used for the SEM simulations. The mesh for the SEM simulations cannot be the
same as LBM. In order to have the simulations as close as possible, we keep the same
volume of fluid and the straight walls are aligned, thus the walls for the stairs are lo-
cated in the middle as shown in Figure 4.9. The viscosity in LBM simulations is set to
0.1 [lu]. The pressure-drop is calculated by the difference of pressure between the centre
of the channels at the inlet and the outlet-imposed pressure. We run the simulations
for inclined channels with two grid resolutions and compared to the straight channels.
In case of high grid resolution, the height of the channel is 192[lu] and in case of low

resolution, the height of the channel is 19[lu].

The Reynolds number is defined as

Re , (4.1)

where, U™ is the maximum velocity in the channel, H the height of the channel and

v the kinematic viscosity.

In Figure 4.10, the velocity field is represented for two conditions of convergence: one

based on the density and one on the X component of the velocity. Both criteria lead
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Figure 4.9: Comparison of the LBM (Cartesian) and SEM meshes in red and black,
respectively.

to essentially the same results. In the following, the calculations will be terminated
when the evolution of density is lower than 10713 or 107! over the domain for low and
high grid resolution, respectively. Indeed, the convergence criterion needs to be smaller
for high grid resolution due to the velocity magnitude becomes extremely small, thus,
the pressure-drop too which is the important result of this study. Those criteria were

chosen after a sensitivity study.

4.2.2 Straight channels
4.2.2.1 Validation

The straight channels validate our code for a well-known flow with an analytical solution

which is
_ 8 Rev?

AP ==

L, (4.2)

where, H and L are the height and length of the channel, respectively. This length is
equal to two times the height of the channel.

A parabolic velocity profile is imposed at the inlet on the left side of the channel and
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Figure 4.10: Comparison of the x-velocity field for Re=10 and low grid resolution

a constant pressure set to 1/3 [lu] on the right side of the channel with Zou and He

boundary condition [83].

Pressure-drop analysis Table 4.3 shows the collision on the wall is needed to get a
more accurate pressure-drop. The error is calculated with the analytical solution as a
reference and normalised with the analytical solution. In Table 4.3, it can be noticed

Straight channels

Re With No Half-

Collision Collision Way

10 1.47% 18.75%  2.19%

Low 1 0.28% 14.43%  0.33%
Resolution (.1 0.39% 14.06%  0.20%
0.01 041% 14.02%  0.19%
10 0.014% 1.507%  0.021%
High 1 0.003% 1.285%  0.003%
Resolution (0.1 0.004% 1.249%  0.002%
0.01 0.007% 1.247%  0.004%

Table 4.3: Pressure-drop errors for a Poiseuille flow in the straight channels

the grid size is not enough for the low-resolution geometry to have an error less than
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1% for Re=10. Compared to the classical “No Collision” technique, the results of using
the collision operator on the walls (the “With Collision”) are in good agreement with

the analytical solution and similar to the “Half~-Way” results.

Velocity profile analysis We have extracted the velocity profiles at the outlet which
are shown in Figure 4.11. The Reynolds number has not strongly modified the velocity

profiles for the creeping flow regime. It can also be noticed that the incorrect wall shear

rate for the “No Collision” and thus, an overshoot of momentum is observed.

a) b)
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Figure 4.11: Velocity profiles at the outlet: a) low grid resolution and Re = 0.01 and
b) high grid resolution and Re = 1.
4.2.2.2 Convergence study
The simulations were carried out for the channel height from 4 to 256[lu], for “No Col-

lision”, “With Collision”, and “Half~-Way” wall boundary conditions, and for Reynolds
numbers of 0.01, 0.1, 1, and 10. However, the results for Re= 0.1 or 1 are similar to

0.01, thus, the results for Re=0.1 and 1 are not shown.
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Study of the errors versus channel height

Pressure-drop errors Figure 4.12 shows “No Collision” converges to the same
error for Re=0.01 or 10 whereas “With Collision” or “Half-Way” gives more accurate
results for lower Reynolds number. Moreover, “Half-Way” gives more accurate results

than “With Collision” when the Reynolds number is lower.
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1.0E-03

Pressure-drop error
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O Half-Way o

1.0E-05

1 NE-NR

Figure 4.12: The pressure-drop error versus channel height.

Velocity errors We have performed the calculus of the relative error ||E||; of the
velocity as
), = 20Tl (4.3
22" Ul
where, N is the number of points in the domain, U, and U, are the velocity along the
channel calculated from the LBM results and the analytical solution, respectively.
The Poiseuille-like flow can be imposed in a number of ways. In the current study, it is
imposed by a constant force in the domain [75] (CF) i.e. F; = 3w;e; - (OP/0x), the Guo
source term [96] (GF) i.e. F; = Atw; (1 —1/(27)) [((u-e;)/cd)ei + (e; — w)/c?] - (OP/0x),
Pressure at inlet and outlet by Zou and He [83] (PP), and as above Velocity at inlet

and Pressure at outlet by Zou and He [83] (VP).
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Figure 4.13 shows “No Collision” has a lower order of convergence. PP, GF, or CF
give the same results for “No Collision” whereas, VP gives the best accuracy. The
“Half-Way” technique with VP produces the most accurate one for creeping flows (Fig-
ure 4.13) but for a weak laminar flow (Figure 4.14), it is “With Collision” with GF.
Thus, the relative errors of velocity confirm the trend of the pressure-drop error that
“Half-Way” is better for Re < 1 otherwise “With Collision” produce more accurate
results. Figure 4.13 shows GF is preferable to CF for “Half~-Way” but the opposite for
“With Collision”. This rises from the fact GF is a body force (volumetric) whereas CF

is a discrete external force. Globally, PP gives errors between GF and CF. When the

1.00E+00
1.00E-01
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1.00E-03

Relative error || E||,

1.00E-04
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A With Collision
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----- Pressure-Pressure :----Guo force +-.+-Constant force -----Velocity-Pressure
1.00E-06

Figure 4.13: The relative error of velocity at Re=0.01 versus channel height.

inertia force becomes non-negligible, the errors rise and especially for a channel height
of 4 lattices (Figure 4.14) due to non-linearity of the flow appears. GF and PP give

the most and worst accurate, respectively.

The rate of convergence study Figures 4.12, 4.13, and 4.14 show a linear rate of
convergence (q) in log scale. Thus, we have extracted the rate of convergence between
the grid resolution of 8 and 256 lattices of channel height as

q = logs, (||E||1 (H=38)/ ||E||1 (H = 256)) . (4.4)
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Figure 4.14: The relative error of velocity at Re=10 versus channel height.

The results are summarized in Table 4.4. It is observed that the “No Collision” con-
verges as a first-order scheme whereas, “With Collision” or “Half-Way” converges as a
second order scheme. As expected, the collision is needed to obtain higher order rate

of convergence and achieves a second-order accuracy.

Rate of convergence

Re Pressure- Guo Constant Velocity-
Pressure force force Pressure
No Collision 0.96 0.96 0.96 0.95
0.01 With Collision 2.03 2.05 2.05 2.06
Half-Way 2.06 2.00 2.01 2.00
No Collision 0.99 0.99 0.98 1.06
10 With Collision 2.03 2.09 2.07 2.05
Half-Way 1.99 2.00 2.00 2.02

Table 4.4: The rate of convergence for straight channels.

4.2.3 Inclined channels

This case was designed in order to have a channel with two sections inclined by
45°and 5 equal “X” lengths of the centre line of the channel. Design Modeler from
ANSYS [129] was used to design it and an image was exported then Matlab from

MathWorks [130] was used to scale the image and export to a binary format.
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The original image before converting to a binary file at the right scale can be seen in
Figure 4.15. However, this geometry cannot keep the same mesh and the same height
of channel for full-way and half-way bounce-back treatments. We chose to keep the
same mesh to compare our results, thus, the heights of channel are 193 and 20 lattices

for the “Half-Way”.

Figure 4.15: The geometry of inclined channels where the dark blue, orange, green,
red, and purple lines represent the stations 1,2,3,4, and 5, respectively. The black lines
represent the limit of the inclined channels.

4.2.3.1 Effect on velocity and momentum

The accuracy of the velocity profile is critical in case of additional transport properties
such as chemical species or light solid particles. In two phase flow, the mass fraction
of one fluid needs to be transported. Thus, the inaccuracy of the velocity profile will
affect the position of the interface when the capillary number becomes high. Moreover,
dealing with a complex geometry and a big domain do not give the opportunity to use
a fine grid in each channel. A previous study mentioned at least 4[lu] in each channel
is needed to support Poiseuille-like behaviour [131]. However, we have noticed for this
case it needs at least 10[lu] to have an acceptable pressure-drop error (more or less

10%) i.e. similar to the straight channel.

Analysis at the outlet of the inclined channel In this first analysis, we seek to
obtain the parabolic velocity profile at the outlet for Reynolds number less than 1.
In Figure 4.16b, for high grid resolution, the outlet velocity profiles show the “New

Techniques”, “No Collision”, and “Half-Way” are able to get the velocity profile in ex-
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cellent agreement with SEM whereas, the “No Extrapolation” cannot provide accurate
profiles. In case of low grid resolution, the “No Collision” becomes inaccurate as seen

in Figure 4.16a.

a) b)

1 2 || I T I T I L I T I 1 1 L I T I T I T I T I 1
08k 4 o8 .
0.6 ————— New Technique A — 0.6}= ———— New Technique -

- ———— No Extrapolatio| \ - ——=—— No Extrapolation -

E .~ No Collision T, E L+ No Collision i
>' || ———<—— Half-Way /] ol I — Half-Way |
| ———— SEM / | SEM _
0'4_ — — — Poiseuille / i 0'4_ — — — Poiseuille |
0.2 - 0.2 -
0_|| Lo bbbl |7 0 i i T B TR B | |7

0 02 04 06 038 1 0 02 04 06 038 1

UIUmax V/Umax

Figure 4.16: Velocity profiles at the outlet: a) low grid resolution and Re = 0.01 and
b) high grid resolution and Re = 1.

The momentum is correctly conserved for the “New Technique”, “No Collision”, and
“Half-Way” approaches. However, a loss of momentum conservation appears with the
“No Extrapolation”. Using the high grid resolution, the loss of momentum is rela-
tively small as it can be seen in Figures 4.16b and 4.17. In case of low grid resolution,
the serious loss of momentum conservation is observed with the “No Extrapolation”
technique as seen in Figures 4.16a and 4.18. By a trapezoidal integration, the loss of
momentum for the “No Extrapolation” is more than 10% but for the other techniques,
it is less than 1073%. Therefore, the “New Technique” improves the velocity profile in
case of low grid resolution. Moreover, the normalised velocity profile is not affected by

the Reynolds number as expected for creeping flows.
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Figure 4.17: Velocity field for high grid resolution

Analysis in the interior of the inclined channel We have seen the “New Tech-
nique” conserves the momentum and the velocity profile is correctly captured at the
outlet. However, we need an accurate velocity profile everywhere in the domain, thus,
we have extracted the velocity profiles in 5 stations as shown in Figure 4.15 and have
calculated || E||, i.e. the relative error norm as in Equation 4.3 where N is the number
of extracted points and U, and U, are the magnitude velocity calculated from the LBM

results and the analytical solution, respectively.

Velocity profiles In Figure 4.19a, the velocity profiles at the station 2 for low
grid resolution show that the “Half-Way” agrees with both SEM and Poiseuille profiles,
but, the “No Collision” does not agree and has an overshoot at the centre line and
undershoot at the wall. The “No Extrapolation” exhibits a loss of momentum. The
“New Technique” agrees quite accurately, however, the height of the channel at the
station 2 is smaller than H owing to inclined nature of the channel. The reduced height

is due to the stair-like pattern used to represent inclined walls in this method. The
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Figure 4.18: Velocity filed for low grid resolution

effect of the geometry-imposed constriction results in a slight overestimation of the
velocity at the centre line in order to conserve momentum. Moreover, the deviation
of the velocity at the wall comes from the no-slip condition imposed by the full-way
bounce-back rule.

In Figure 4.20, the velocity profiles at station 3 is shown. This is the straight part at
the middle of the geometry. The constriction effect due to the stair-like pattern does
not influence this region i.e. the surface is aligned with the lattice. Thus, as seen in
straight channel analysis, Figure 4.20 shows a very good agreement between the “New
Technique”, “SEM”, “Half-Way” and the analytical result. For the “No Extrapolation”
and the “No Collision” shows inaccuracy.

Similar results to station 2 are observed for station 4 with more loss of momentum for

the “No Extrapolation” as shown in Figure 4.21.

Velocity profile errors Looking at the error norms based on the analytical so-
lution i.e. a parabolic profile, the error is reduced by a factor 0.1 between the low

resolution (Figure 4.22) and the high resolution (Figure 4.23) as expected i.e. linear
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Figure 4.19: Velocity profiles at station 2: a) low grid resolution and Re = 0.01 and b)
high grid resolution and Re = 1.

convergence.

The “Half-Way” and “SEM” results are essentially the same for Re= 0.01 or 1 and
the low or high grid resolutions. The “New Technique” has some discrepancy for the
inclined parts, however it is almost two times better than “No Collision” and four times
better than “No Extrapolation”.

At low grid resolution, the errors of each methods are similar for Re < 1 (Figures 4.22
and 4.24). However, the inertia starts to affect the solution at Re = 1 for the high grid
resolution (4.23, and4.25). Note that we have also extracted the errors for Re=0.1 and
the low or high grid resolutions with the similar results to Re=0.01.

The errors are accumulated for the “No Extrapolation” case due to the loss of mo-
mentum. We can notice the parabolic profile becomes less valid for Re=1 as shown in

Figure 4.25.
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Figure 4.20: Velocity profiles at station 3: a) low grid resolution and Re = 0.01 and b)
high grid resolution and Re = 1.

4.2.3.2 Effect on the pressure-drop

It is important to calculate the right pressure-drop, especially in low speed flows since
at the incompressible limit, the velocity and density are directly coupled. Indeed,
the Navier-Stokes equations become elliptical. However, in two phases flow, the local
pressure gradient is also important because this could change the shape and the dis-
placement of an interface between two immiscible fluids.

This “New Technique” improves the prediction of the pressure-drop in case of low res-
olution. In Figure 4.26, it can be clearly seen that the inaccurate value of density at
the walls is predicted for the “No Collision” case. The “No Extrapolation” technique

for the inclined parts yields very strange profiles (Figure 4.26).
In Table 4.5, the pressure-drop is compared to the results from SEM. It can be clearly

seen that the pressure-drop is not correctly calculated in case of “No Collision” while

the results of the “New Technique” and SEM are in good agreement. It can be no-
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Figure 4.21: Velocity profiles at station 4: a) low grid resolution and Re = 0.01 and b)
high grid resolution and Re = 1.
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Figure 4.22: ||E||, for low grid resolution and Re=0.01

ticed that the “Half-Way” technique cannot converge under 1% since the shear stress

is taken in account at half lattice from the wall which leads to errors when the flow is
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Figure 4.23: ||E||, for high grid resolution and Re=0.01
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Figure 4.24: | E||, for low grid resolution and Re=1

not parallel to the lattices.
Moreover, we notice the error without collisions on walls increases compared to a
straight channel. This suggests that for a single-phase flow with a very complex ge-

ometry such as porous media, the effect of the collision could be not negligible in a
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Figure 4.25: ||E||, for high grid resolution and Re=1
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Inclined channels

Re New No No Half-

Technique Extrapolation Collision Way

10 12.20% 2.74% 29.59%  3.45%

Low 1 6.17% 4.90% 21.04%  7.85%
Resolution (.1 5.66% 5.08% 20.32%  8.22%
0.01 5.61% 5.10% 20.25%  8.25%

10 0.36% 1.67% 0.91% 1.01%

High 1 0.31% 1.57% 0.70%  1.01%
Resolution (.1 0.30% 1.56% 0.68% 1.01%
0.01 0.28% 1.53% 0.68%  1.18%

Table 4.5: Pressure-drop errors for a Poiseuille-like flow in the inclined channels.

single-phase flow.

4.3 The Laplace’s law

The Laplace’s law [132] is a well-known relation between the jump of pressure at the

interface, surface tension and curvature for static droplets. In 2D, the Laplace’s law is

o
AP = — 4.5
R’ ( )
and in 3D,
20
AP = — 4.6
7 (4.6)

where R is the radius of the droplet. This law is also known as Young-Laplace equa-
tion due to Laplace created this law based on the theoretical formalism of Young (no
mathematics formalism) [133].

In order to keep Kn < 1, the radius of the droplet and the size of the domain are kept
to 20[lu] and 1002[lu], respectively and the dynamic viscosity of the droplet is kept to
1/36[lu]. The coefficient 3 (recolouring operator) is set to be 0.99. The boundary con-
ditions of the domain are set to wall boundary conditions. The surface tension varies
from 107%[lu] to 1072[lu].

The Lishchuk approach (CSF) and the Reis approach (Reis) will be compared, which
were described in subsubsection 3.3.4.1. The effect of the calculation of the gradient

will be also compared with the 2"-order finite difference and the 4*"-order compact
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scheme. The viscosity ratio is calculated as

A= (4.7)

where ™ and v¢ are the dynamic viscosity of the matrix and the droplet, respectively.
The calculation is stopped when the error of the density over the domain is less than
1071%. Only the case of ¢ = 0.01[lu] and A\ = 1 with the Reis’ model and 2°¢ order
colour gradient could not converge less than 21070, It is quite surprising to notice

this discrepancy only for a unity viscosity ratio.

4.3.1 Effect of the viscosity ratio
The viscosity ratio is set to 0.5, 1, 2, and 10. Firstly, we analyse the error of the
simulation for a viscosity ratio of unity. The error is defined as

APLe — AP

Error = —Apla (4.8)

where AP and AP are the difference of pressure of the Laplace’s law and the simula-
tion, respectively. The Figure 4.27 shows the very good agreement with the analytical
solution. However, we can notice a discrepancy for the Reis’ model with the 2"d-order
colour gradient due to the approach creates a lot of spurious currents and, thus, it could
not converge further. When the surface tension reduces, the accuracy reduces for the
27d_order case. This can be caused by the isotropic or the spatial errors of the gradient.
If we look more carefully at the results (Table 4.6), we can see the difference from the

Reis and CSF models are negligible compared to the accuracy of the gradient.

In case the droplet is two times more viscous than the matrix, the Table 4.7 shows
the errors is similar to the unit case (Table 4.6) or a little lower error. This arises from

the reduced collision rate in the matrix, so the matrix plays less role in the solution.

In case the viscosity of the matrix is higher than the viscosity of the droplet (Tables
4.8 and 4.9), the errors are globally higher than the unity viscosity ratio case. Surpris-

ingly for a surface tension of 10~3[lu], the errors for 2! order colour gradient are lower
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The Laplace’s | pois 2nd | Reis 4th | CSF 2nd | CSF 4th
law eis 2n eis 4t n t
Surface
tension [lu] AP [lu]
1.00E-02 5.00E-04 | 6.82E-04 | 5.06E-04 | 5.09E-04 | 5.06E-04
1.00E-03 5.00E-05 | 5.06E-05 | 5.05E-05 | 5.06E-05 | 5.06E-05
1.00E-04 5.00E-06 | 4.59E-06 | 5.03E-06 | 4.60E-06 | 5.03E-06
1.00E-05 5.00E-07 | 4.12E-07 | 5.01E-07 | 4.12E-07 | 5.01E-07
1.00E-06 5.00E-08 | 4.02E-08 | 5.00E-08 | 4.02E-08 | 5.00E-08
Surface
tension [lu] Errors
1.00E-02 36.45% 1.14% 1.82% 1.16%
1.00E-03 1.15% 1.10% 1.15% 1.13%
1.00E-04 8.23% 0.62% 8.10% 0.65%
1.00E-05 17.67% 0.15% 17.62% 0.19%
1.00E-06 19.60% 0.07% 19.57% 0.02%
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The Laplace’s | Reis 2nd | Reis 4th | CSF 2nd | CSF 4th
Surface
tension [lu] AP [lu]
1.00E-02 5.00E-04 5.35E-04 | 5.06E-04 5.09E-04 5.06E-04
1.00E-03 5.00E-05 5.09E-05 5.06E-05 5.08E-05 5.06E-05
1.00E-04 5.00E-06 4.75E-06 5.04E-06 4.75E-06 5.04E-06
1.00E-05 5.00E-07 4.28E-07 | 5.02E-07 4.28E-07 5.02E-07
1.00E-06 5.00E-08 4.18E-08 5.01E-08 4.17E-08 5.01E-08
Surface
tension [lu] Errors
1.00E-02 7.02% 1.15% 1.86% 1.16%
1.00E-03 1.73% 1.13% 1.65% 1.14%
1.00E-04 4.94% 0.78% 5.01% 0.80%
1.00E-05 14.33% 0.44% 14.46% 0.46%
1.00E-06 16.35% 0.22% 16.52% 0.25%

Table 4.7: Numerical errors and APs for the Laplace’s law with A = 0.5

than 4" order cases. No explanation has been found to explain it.

The Laplace’s | Reis 2nd | Reis 4th | CSF 2nd | CSF 4th
Surface
tension [lu] AP [lu]
1.00E-02 5.00E-04 5.12E-04 | 5.06E-04 5.09E-04 5.06E-04
1.00E-03 5.00E-05 5.02E-05 5.06E-05 5.04E-05 5.06E-05
1.00E-04 5.00E-06 4.34E-06 5.02E-06 4.36E-06 5.02E-06
1.00E-05 5.00E-07 3.99E-07 | 4.99E-07 4.00E-07 5.00E-07
1.00E-06 5.00E-08 3.91E-08 | 4.98E-08 3.93E-08 4.99E-08
Surface
tension [lu] Errors
1.00E-02 2.32% 1.13% 1.81% 1.16%
1.00E-03 0.49% 1.14% 0.74% 1.15%
1.00E-04 13.29% 0.41% 12.90% 0.43%
1.00E-05 20.26% 0.14% 20.00% 0.09%
1.00E-06 21.72% 0.32% 21.46% 0.27%

Table 4.8: Numerical errors and APs for the Laplace’s law with A = 2.

4.3.2 Spurious currents

In a static case, the velocity should vanish. However, spurious currents are seen due
to models and numerical techniques. Several studies were published, and the origin

of the spurious currents is still not clear. In the colour fluid model, the recolouring
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The Laplace’s | Reis 2nd | Reis 4th | CSF 2nd | CSF 4th
Surface
tension [lu] AP [lu]
1.00E-02 5.00E-04 5.36E-04 | 5.10E-04 5.32E-04 5.06E-04
1.00E-03 5.00E-05 4.77E-05 5.10E-05 4.73E-05 5.06E-05
1.00E-04 5.00E-06 4.10E-06 5.03E-06 4.12E-06 5.00E-06
1.00E-05 5.00E-07 3.96E-07 | 5.01E-07 3.98E-07 | 4.98E-07
1.00E-06 5.00E-08 3.95E-08 5.01E-08 3.96E-08 4.97E-08
Surface
tension [lu] Errors
1.00E-02 7.23% 1.94% 6.38% 1.13%
1.00E-03 4.64% 2.01% 5.31% 1.23%
1.00E-04 17.94% 0.68% 17.59% 0.08%
1.00E-05 20.73% 0.24% 20.47% 0.50%
1.00E-06 21.09% 0.18% 20.82% 0.56%

Table 4.9: Numerical errors and APs for the Laplace’s law with A = 10.

step is greatly responsible for the parasitic current generation. Leclaire, by modifying
the recolouring operator, has reduced the spurious current significantly for a static
case [134]. Meanwhile, higher-order Lattice Boltzmann can also reduce the spurious
current [135]. Lee also proposed to calculate the intermolecular force in the pressure
form [136], however, the momentum is not conserved. Moreover, the discretisation of
the colour gradient has an impact too through increased accuracy order of gradients in
the spatial and isotropic, but the spurious currents are not completely removed [109].
Here, we try to highlight the effect of the model and the choice of gradients on the
production of the parasitic current. We keep the same previous cases of the Laplace’s

law errors. All the next plots of this section have:

e The 2" and the 4" order colour gradients are on the two top and bottom quarters,

respectively.

The CSF and the Reis’ models are on the two left and right quarters, respectively.

4t order

The scale of the velocity magnitude is based on the CSF model with the

colour gradient.

The streamlines are represented in black and only on half of each quarter.

The dashed line represents the interface between the two fluids.
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As seen in Figure 4.28, the CSF and Reis’ models behave similarly when the viscosity
is unity and when the surface tension is quite low. When the surface tension increases,
the behaviour of the two models differ (Figure 4.29). The interface has minor effects on
the streamline for CSF. But for Reis’ model, two vortices at each side of the interface
can be seen which modify the droplet size due to the stress generated by the vortices.
Clearly, the 2°4 order colour gradient generates more spurious current due to only 279
order accuracy in space and the interface is not circular due to the anisotropy of the

gradient.
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Figure 4.28: Spurious currents for A = 1 and o = 10~4[lu] and 1075[lu] on the left and
right, respectively.
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Figure 4.29: Spurious currents for A = 1 and o = 10~2[[u] and 10~3[lu] on the left and
right, respectively.

83



When the viscosity ratio decreases (matrix with a lower viscosity), as shown in the
Figures 4.30 and 4.31, the CSF model produces less spurious current than Reis’ model,

but both produce more spurious current than the unity viscosity ratio case.
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Figure 4.30: Spurious currents for A = 0.5 and o = 10~ 4[lu] and 10~°[lu] on the left
and right, respectively.
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Figure 4.31: Spurious currents for A = 0.5 and ¢ = 10~2[[u] and 10~3[lu] on the left
and right, respectively.

When the droplet has a lower viscosity (Figures 4.32, 4.33, 4.34, and 4.35), the
spurious currents stay almost the same as the unity viscosity ratio case. It can be
observed that the Reis’ model generates a vortex in each part of the interface when the

viscosity ratio increases. However, the spurious current magnitude is higher compared

to the CSF model.
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Figure 4.32: Spurious currents for A = 2 and o = 10~4[u] and 1075[lu] on the left and
right, respectively.
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Figure 4.33: Spurious currents for A = 2 and o = 10~2[[u] and 10~3[lu] on the left and
right, respectively.

Velocity Mag Velocity Mag
7.57E-06 9.86E-07
6.84E-06 8.90E-07
6.11E-06 7.95E-07
5.38E-06 7.00E-07
4.64E-06 6.04E-07
3.91E-06 5.09E-07
3.18E-06 4.13E-07
2.44E-06 3.18E-07
1.71E-06 2.23E-07
9.77E-07 1.27E-07
2.44E-07 3.18E-08

20 40_ 60 __ 80

Figure 4.34: Spurious currents for A\ = 10 and ¢ = 107#[lu] and 10~°[lu] on the left
and right, respectively.
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Figure 4.35: Spurious currents for A = 10 and o = 1072[lu] and 1073[lu] on the left
and right, respectively.

During this test, we did not notice a big difference on computational cost due to we
used a limited number of processors (4 to 10). For more processors, CSF could perform

slower due to the calculation of curvature needs to synchronise the colour gradient.

4.4 Chapter summary

On the 2D lid-driven cavity with single-phase flow, the new platform performs well for
a relativity high number of cores and is accurate for a large range of Reynolds numbers
from 100 to 3200. The implementation of the boundary conditions employed (bounce

back, Zou and He and Ho) for the simulations have been considered as validating.

We successfully designed a new boundary condition to improve the velocity profile
and the pressure drop in complex geometries. This is based on the bounce-back rules
with the inverse distance weighting extrapolation of the density on concave corners and
a collision rule. In single-phase flow, the new technique achieves excellent results for a
low grid resolution and low Reynolds number.

The collision on surfaces was shown to play an important role in the redistribution of
the mass and momentum. In the collision process, the density value has to be the most

realistic to conserve the momentum which the “new technique” excels at low Reynolds.
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We have studied the Laplace’s law and compared the errors with the Reis and CSF
models and the classical FD 24 and 4" order gradients for the colour gradient. The
27d brings quite a lot of error in term of accuracy of the Laplace’s law, generates much

more spurious current and deform the interface. The two models give globally the same

accuracy for the Laplace’s law.
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Chapter 5

Contact angle treatment

This chapter describes the contact angle treatments implemented in our LBM plat-
form with the validations and an application on a sample of Berea sandstones [6].
We implemented a standard approach, commonly used in commercial software
such as Fluent from ANSYS [137], and created a smooth contact angle approach.
We validated for the static cases on flat and inclined walls and for the dynamic
cases on serpentine and inclined channels. We have extracted the relative perme-
ability, mobility ratio, capillary number and saturation from the Berea sandstone
sample with viscosity ratio of 2 and 5, and contact angles of 10°,45°,90°,170°

and free (no constraint on it).

5.1 Introduction

The phenomena of the contact angle have been studied for centuries. For instance,
the famous law of Jurin [138] was proposed in 1717, which describes the height of a
fluid rising in a capillary due to the contact angle. Young [133] created the concept
of equilibrium of forces acting on the triple line which generates the contact angle.
Dupré [139] added the energy to the concept of Young and created the well-known
Young-Dupré’s law

cos(f) = @, (5.1)
v
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where ~ are the interfacial tensions between two components, the subscripts 4,; and ,
are for solid, liquid and vapour, respectively. The vapour can be replaced by another
liquid.

Laplace worked also on this subject and described the variation of pressure between

the interface of two fluids. He created the Laplace’s law [132]

AP =0V -n. (5.2)

However, all this work was done for static contact angles, but the interface forces depend
on the fluid motion as well. Indeed, the shear stress changes the interface forces, so
the contact angle. The shear stress can be decomposed into two parts: the wall shear
stress (the adherence force) and the normal shear stress. The adherence force is mainly
due to the Van der Waals force. The normal shear stress is due to the fluid motion and

the viscosity.

Taylor in 1962 [140] may have been the first to study the invalid non-slip condition
at the triple line. He noticed the continuum hydrodynamic approach cannot deal with
the velocity singularity for a Taylor scraping flow (two-dimensional corner flow). With
the continuum fluid assumption, this “corner flow” generates an infinite shear and an
infinite force. The typical image to represent this phenomenon is a painter using his
spatula. Without a slip velocity, the painter would not be able to move the paint with

the spatula.

Different contact angles can be defined i.e. microscopic, dynamic, or apparent, which
need different models [141]. All has been wildly studied since decade in term of ex-
perimental, analytical, or numerical work [142-145]. With the new experimental tech-
niques, the dynamic of the contact lines has been more precise as in the work of Katoh
et al [146] where several dynamic experiments where performed (liquid-liquid contact
line in a capillary tube, liquid-gas of a two-dimensional meniscus, and an axisymmetric
droplet) and he highlighted the effect of roughness or impurities on the solid surface
to influence the dynamics of the triple line. Pore-scale experiments were performed by

Andrew et al [147] and they were able to measure the contact line inside an hetero-
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geneous structure (rock). Afkhami et al [141] proposed a new boundary condition for
Volume Of Fluid methods to improve the stress singularity at the contact line created
by the traditional slip condition. Later on, molecular dynamics has been used and

compared to VOF with quite good agreement [148].

Using Lattice Boltzmann Method (LBM) which is a mesoscopic particle-based method
derived from Boltzmann equation and Lattice Gas Automata (LGA) [56] and the colour
fluid model introduced by Rothman and Keller [1], different models can be found in
the literature to define the contact angle e.g. Guntensun [4] chose to use the Young-
Dupré’s law, Leclaire [149] used the secant method to redistribute the density between
the two fluids. The hysteresis approach has been also successfully used by Liu [114].
The method can also be extended to more than two fluids [91] but we will limit here
to two immiscible liquids. We also restrict our discussion to two fluids with the same

density although it can be used for fluids with different densities [92].

Choosing LBM to treat porous media can cause a misalignment between the geometry
(walls) and the Cartesian grid (lattice) [90]. Enforcing the alignment leads to the
generation of “stairs” which introduces concave and convex corners. Using a classical
scheme for the Lattice Boltzmann Method, the normal of the interface is not correctly
evaluated. We proposed to estimate it by using the mesh and a linear least-square

method.

5.2 Contact angle treatment

The key idea of all contact angle treatment is to define the normal of the interface ac-
cording to the contact angle. In the standard approach, the theoretical value is directly
used to define the normal of the interface. In the smooth treatment, an estimation of

the contact angle is used to define the normal of the interface.

5.2.1 Standard treatment of contact angle

This treatment is very simple and used in most CFD software such as Fluent from

ANSYS [137]. The contact angle is fixed between two fluids and set up at the beginning
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of the simulation. It can be extended to models for dynamic and/or hysteresis contact
angles where the contact angle can be defined by several approaches. A good review of
models was done by Eral et al [150].

In this chapter, we consider this as the standard approach, commonly used in VOF
models such as in Fluent [137], the modification of the normal direction of the interface
in the CSF and the recolouring step by the theoretical contact angle which can be the
equilibrium contact angle, the advancing or receding contact angle in case of hysteresis,
or the dynamic contact angle in case of dynamic models. Only the equilibrium contact

angle is used in this work due to other type of contact angles are not known.

5.2.2 Smooth treatment for complex geometries

In complex geometries, it is often difficult to have an accurate representation of the
walls. Indeed, the mesh needs to represent curves. Rarely, curved cells are used in CFD
(computationally very expensive). Therefore, the curves are represented with a linear
approach in the best cases for the NS solvers and “stairs” for LBM. Those approaches
can generate wrong contact angle behaviour when it used with the standard treatment.
In order to improve it, an estimator has to be defined and it can be done by several
ways. The first way is to refine the mesh, for the NS solvers, in order to reduce the
variation of the contact angle. However, it is not always possible to refine. In case
of low resolution of the geometry as in porous media, the refinement can change the
geometry. By refining, the contact angle type (microscopic, dynamic, or apparent) can
change which needs different models [141]. The refinement can break the continuum
fluid assumption too. Refinement also increases the computational cost and it can
become unaffordable. Moreover, in case of the Cartesian grid, as used in LBM, the

“stairs” will stay with the refinement.

Smooth approach

To treat walls misaligned with the lattice, a new approach needs to be used. Leclaire
[151] firstly proposed this approach by using a mathematical approach (circles, flat
plates, etc.) to define the real surface. For a complex geometry, this definition of the

surface can be complex for instance you could need to reconstruct the surface and use
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a large number of nodes to represent it. The idea of this improvement is to directly use
the mesh to define the real surface. This is made by the assumption the real surface
is somewhere below the wall. In this first approach, we define this real surface at the
first layer of nodes below the wall in the solid phase with the LBM Cartesian mesh.
This means the real surface is considered at most 1 lattice from the wall for full-way
bounce-back and 0.5 lattice for half-way bounce-back.

To smooth the orientation of the interface at the wall surface and take into account the
flow conditions, we need to interpolate between the real surface and the closest nodes in
the domain to define the approximate normal of the interface at the wall nodes. At this
interpolation step, different choices can be done. We implemented a linear interpolation
and a linear least-square interpolation. The linear least-square can recover the linear
interpolation in case of using only two nodes (one for the real surface and one for the
fluid nodes) for the interpolation. Therefore, only the linear least-square method will
be used.

As a quick reminder of the linear least-square method described in 3.3.5.3, we base the
least-square method on the signed distance (positive for the fluid nodes and negative
for the solid nodes). Therefore, the method is restricted to seek the normal when the
distance is null at the boundary i.e. the y-intercept of a linear regression. All the
loops are vectorised, and the nodes are marked in the pre-processing part. Thus, the

calculation time is similar to the linear interpolation.

Node selection
The drawback of this method is the selection of nodes for interpolation. Let us define

a case as in Figure 5.1.

The smooth approach is applied to the wall nodes (red). For each wall node, we
associate Ny number of fluid nodes (blue) and N, number of first solid layer nodes
(cyan). To select the fluid nodes, we first take the closest fluid node by using the
normal of the wall then we travel around this node. Finally, we sort the nodes found
by the distance from the wall node and we conserve only the N; number of the closest

nodes. For the first layer nodes, we travel on the wall and select the node at the
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Figure 5.1: Node representation for the smooth approach. The blue, red, cyan and
black points are the fluid, wall, first layer in solid and solid nodes, respectively.

opposite direction of the normal then we sort the nodes by distance and we conserve
only the Ns number of the closest nodes.
This step is done in the pre-treatment. Therefore, this method has a comparable CPU

cost with the standard approach.

5.2.3 Incorporated in Colour Fluid model

These two approaches (the standard or smooth treatment) can be used for different
multiphase simulation methods including VOF and Level-Set. In this chapter, only the
colour-fluid LBM model will be used.

The colour-fluid model can be used with different perturbation operators as seen in
subsubsection 3.3.4.1. The contact angle modifies the normal of the interface, in the
CSF model, the normal is directly used. So, no special treatment is needed. For the
other model, the colour gradient is directly used. Therefore, the contact angle treatment
modifies the components of the colour gradient but keeps the colour gradient norm.
Thus, the colour gradient is aligned with the normal.

The contact angle also modifies the recolouring step but without any special treatment
due to the recolouring from Latva-Kokko et al [5].

Other techniques exist such as the modification of the density on the wall [4] but this
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model considers the slip condition of the interface and models the balance of force
between shear force, interface force and fluid-structure interaction on the surface by

the Young-Dupré’s law (Equation 5.1).

5.3 Validation cases

Dealing with contact angle causes numerical problems. Therefore, the method needs
to be validated and analysed. Three cases are used: the standard validation on static

droplets, inclined channels and serpentine.

5.3.1 Static droplets

Two main kinds of static droplets are tested: a droplet on a wall which can be aligned
or not aligned with the lattice and a droplet on a circle. For those cases, a mesh size of
400%[lu], a coefficient 3 (recolouring operator) of 0.99 and a droplet radius of 50 lattices
are used. The fluids are considered to have the same kinematic viscosity of 1/36[lu] and
a surface tension of 0.001[lu] to keep a low mean free path and a low disturbance from
the source term. For instance, those parameters correspond to a droplet formation in
ink-jet printing [152] where the Ohnesorge number varies from 0.02 to 1.5 in this article

(equivalent to a Laplace number of 129).

Flat and inclined walls

The first validation of this new approach is carried out with the flat and inclined
walls. We expect to get the same result with these walls. An example of a droplet on
a wall is shown in Figure 5.2 where the red fluid is the droplet and the blue fluid is
the surrounding fluid. The improvement of the method can be clearly seen compared
with the standard approach. The contact angle does not affect in the same manner the
results. In Figure 5.3, the smooth treatment removes the spreading on the surface as
commonly seen in LBM when the surface is not aligned with the lattice [151] and keeps

wetting the wall for a quite large contact angle.
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Standard approach

Smooth approach

Figure 5.2: Static droplet on flat and inclined walls. the circle represents the theoretical
interface and the white part under the droplet is solid.
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Figure 5.3: Profiles of the static droplets on a surface with the smooth approach.
Each colour represents a contact angle, i.e. blue, yellow, green for 60°,80°,and90°,

respectively.

Moreover, non-symmetrical droplet was not observed in the static case, which can
be seen with the standard approach in Figure 5.4. In the dynamic case, the droplet
can be non-symmetrical due to the balance of force among the interface forces and the

shear stress, roughness, chemical reactions, etc.

Figure 5.4: Profiles of the static droplets on a surface with the standard approach.
Each colour represents a contact angle, i.e. blue, yellow, green for 60°,80°,and90°,

respectively.

With this approach, the droplet does not spread on the surface as commonly seen in
LBM when the surface is not aligned with the lattice [151]. It is similar results obtained
by a similar method used by Leclaire in [151]. However, he defined his real surface by

nodes regularly placed on an equation line i.e. the ideal scenario for the interpolation.
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Curved boundaries

The flat and inclined walls are quite simple even if is still challenging to obtain ac-
curate results. The curved boundary is more difficult, and the test case is defined as a
circle with the same diameter than the droplet. In Figure 5.5, it can be clearly seen the
improvement of the method. However, this new approach is not perfect for 80° because
that interpolation technique has difficulties to give a null value. For a contact angle

close to 90° one of the two components of the normal vector of the interface is close to 0.

Smooth approach Standard approach Smooth approach Standard approach

p': -09-0.7-05-0.3-0.1 0.1 0.3 0.5 0.7 0.9

Figure 5.5: Comparison of static droplets on a curved boundary
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5.3.2 Inclined channels

This simple geometry, seen in Figure 4.15, is created to analyse how an interface
moving inside a channel with flat and inclined walls behaves with this new approach.
The mesh size of 19 lattices for the channel height, and it was validated for a single-
phase flow with SEM results as it can be seen in subsection 4.2.3. The same boundary
conditions are used i.e. a parabolic velocity profile is imposed at the inlet and a con-
stant pressure (density set to 1) at the outlet with the classical Zou and He boundary
condition [83] and the wall treatment proposed in section 4.2 (full-way bounce-back
with BGK collision and density extrapolation). Thus, the contact line can be control
on the walls without the issue of the half-way bounce-back i.e. estimation of the posi-
tion of the contact line.

We based the dimensionless number, described in chapter 2, on the height of the chan-
nel, the maximum velocity at the inlet, the kinematic viscosity of the red fluid, and a
density of 1 [lu].

The smooth approach is compared to the standard approach in Figure 5.6 for a viscos-

ity ratio of 6 (the blue fluid is the highest viscous fluid). The method handles correctly

S Na of \a

) Smooth approach A = 6 ) Standard approach A = 6
ngh resolution (40 lu) Normal resolution (19 lu)
) Smooth approach A = 6 ) Smooth approach A = 6
ngh resolution (40 lu) Normal resolution (19 lu)

Figure 5.6: Validation of the approach in a channel for Re=1, Ca=0.04, and 6 = 90°

this kind of complex geometry for this specific flow. However, a deeper investigation
has to be done on the effect of the viscosity ratio, capillary number, contact angle and

choice of nodes.
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Effect of the viscosity ratio

The viscosity of the red fluid is kept constant with a value of 1/36[lu]. The Reynolds
number is kept to 1 to ensure the inertia forces are not prominent compared to the
viscous forces. For the first case, the capillary number is quite small (Ca = 0.04) thus
the interfacial forces are prominent in the domain and the interface stays almost flat
with a contact angle of 90°. Due to the low capillary number, the interface is almost

not affected by the viscosity ratio as seen in Figure 5.7.

of Y o

) Smooth approach A = 6 ¢) Smooth approach A =1

Figure 5.7: Effect of the viscosity ratio in a channel for H=19, Re=1, Ca=0.04, and
0 =90°.

When the inertia forces are less negligible, the non-uniform flow field can change

the interface position with the viscosity as represented in Figure 5.8.

Vmag: 7.40E-05 2.96E-04 5.18E-04 7.40E-04 9.63E-04 1.18E-03 1.41E-03

Figure 5.8: Effect of the viscosity ratio in a channel with inertia effect (Re=1, Ca=0.4,
and 6 = 90°). The black line represents the interface.

Effect of the capillary number

The capillary number affects the displacement of the interface in term of velocity and
deformation. It is difficult to predict the behaviour due to the effect is local along the
interface. However, it can be seen, in Figure 5.9, the inertial forces become stronger
with the increase of the capillary number in the inclined part. Therefore, the correct

behaviour of the interface is captured with the smooth approach.
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Figure 5.9: Effect of the capillary number in a channel for A = 1, Re=1, and 6 = 90°.

Effect of the contact angle

The inclined channel creates problems to get the correct contact angle as it can be
seen in Figures 5.4 and 5.6. The smooth approach works well on the static droplets
(Figure 5.3) but in dynamic cases, the contact angle changes due to the shear forces.
As it can be seen in Figure 5.10, the smooth approach handles the flow well on inclined
walls. The low grid resolution, needed to be able to simulate large simulation domains
for reservoir applications, creates some pinches of the interface but without altering the
physical behaviour. It can be noticed the capillary number needs to be higher for the

contact angle 150° due to the capillary pressure.

Ca=0.04 P
0.90
\ 06=30° 0.60
0.30
' 0.00
-0.30
Ca=0.4 Ca=0.04 -0.60

A 0=150° 0=90° -0.90
g

Figure 5.10: Effect of the contact angle in a channel for A = 1 and Re=1.

Node selection

The main issue of the smooth approach comes from the node selection (Figure 5.1)
which can affect the results. The selection is explained in subsection 5.2.2. For a contact

angle of 90°, the solid node selection does not affect greatly the results as it can see in
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Figure 5.11. The fluid nodes can have a modest influence with a large number of fluid
nodes. From this first test, it can be sufficient to limit the number of fluid nodes to a

maximum of the 3 closest nodes.

Steady flow Steady flow Steady flow Steady flow Steady flow Steady flow
1 node in solid 1 node in solid 1 node in solid 1 node in solid 1 node in solid 1 node in solid
1 node in fluid 3 nodesin flud 15 nodes in fluid 1 node in fluid 3 nodes in fluid 15 nodes in fluid
Steady flow Steady flow Steady flow N Steady flow Steady flow Steady flow
3nodesinsolid 3 nodesinsolid 3 nodes in solid =, 3 nodesinsolid 3nodesinsold 3 nodes in solid
1 node in fluid 3 nodesinflud 15 nodes in fluida o2 1 node in fluid 3 nodes in fluid 15 nodes in fluid
N "I "I
Steady flow Steady flow Steady flow Steady flow Steady flow Steady flow
4 nodes insolid 4 nodesinsolid 4 nodes in solid 4 nodes insolid 4 nodesinsolid 4 nodes in solid
1 node in fluid 3 nodesin flud 15 nodes in fluid 1 node in fluid 3 nodes in fluid 15 nodes in fluid

R T T “HE SR SEE

Figure 5.11: Node Selection for 90° contact angle, viscosity ratio 1 and Ca = 0.4 and
4 on the left and right, respectively.

When the wetting fluid is the incoming (red fluid), the choice of node affects more
the results as in Figure 5.12. Using 4 solid nodes is not a good idea due to the non-
symmetrical selection and using more is not a solution due to the theoretical contact
angle will be far from the contact angle set-up. Indeed, on a flat surface, using an even
number brings a non-symmetrical selection, thus, the contact angle will be anisotropy
i.e. an interface moving on a flat wall will be differently influenced if the interface is
before or after a node. This will change the contact angle even for a constant flow
condition and a perfect flat surface. Moreover, using a lot of node could give wrong
results due to the colour gradient is close to 0, so, the estimate contact angle would be
far from reality. A second interface can also influence it. Thus, the theoretical contact
angle would not be correctly estimated.

When the wetting fluid is the outgoing (blue fluid), unsteady phenomena of the contact
line can appear. In Figure 5.13 on the left, the unsteady behaviour was not expecting
for this case due to the Reynolds number is 1, the capillary number is not so low or
high, and the viscosity ratio is 1. Therefore, the selection of nodes can generate spurious

unsteady phenomena.
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Figure 5.12: Node Selection for 30° contact angle, C'a = 0.4 on the left and Ca = 4 on
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Figure 5.13: Node Selection for 150° contact angle, C'a = 0.4 on the left and Ca = 4
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5.3.3 Serpentine

The serpentine represents a non-straight channel with a constant height (H). The radius
(R) of curvatures at the central line is 1.25 H and the length is 10 R. Without external
forces such as gravity, magnetic field, etc. and with a Reynold number less or equal
to 1, the velocity profile is parabolic due to the well-known Poiseuille flow. Therefore,
an interface moving inside should be affected by the parabolic velocity profile and the
capillary number at the interface as for a straight channel and locally, the curvature of
the wall will also modify the interface shape.

The Reynolds, the capillary number, and the viscosity ratio are defined by the same

way than before for the straight channels.

J\ NS

a) Smooth approach High resolution (37 lu) b) Smooth approach Normal resolution (19 lu)

AN S\

c) Standard approach Normal resolution (37 Iu) Standard approach Normal resolution (19 Iu)

pNZ -09-0.8-0.7-06-05-04-03-02-01 0 0.1 02 03 04 05 06 07 0.8 0.9

f\

Figure 5.14: Validation of the approach for Re=1, Ca=0.04 and \=6.

Clearly, as shown in Figure 5.14, the standard approach does not represent correctly
the physics due to the low Reynolds and capillary numbers, the interface should not

break and stay almost straight with a contact angle of 90°.

Effect of the viscosity ratio

The viscous forces affect the displacement of interfaces by conserving the momentum.
As the momentum has to be conserved everywhere, the viscous forces affect the dis-
placement of the interface at any location of the flow field including the triple line which

is rarely taken into account. With this smooth contact angle approach, we can simulate
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interface displacement on the triple line with the viscous forces and the surface tension

force. The viscosity of the red fluid is kept constant.

A=2

A=12

Figure 5.15: Effect of the viscosity ratio on the interface displacement in a serpentine
for Re=1, Ca=0.04, and 8 = 90°.

As expected, the displacement interface moves almost at the same speed due to the
mass flow of the red fluid is the same between the simulations. With the increase of
the viscosity of the blue fluid, the interface deforms more due to the curvature of the
serpentine as shown in Figure 5.15. Moreover, the pressure gradient is corrected affect-

ing through the interface including the triple line as represented in Figure 5.16.

A=12 /

B [ ] [ [ e

Pressure: 0.0001 0.0002 0.0003 0.0005 0.0006 0.0007 0.0009 0.0010

Figure 5.16: Effect of the viscosity ratio on the pressure field in a serpentine for Re=1,
Ca=0.04, and 6 = 90°.

It can be noticed at this channel size (19[lu]), viscous and capillary fingerings do not
exist and should not exist. Moreover, the capillary fingerings cannot happen due to
the viscosity ratio more than 1. The viscosity ratio is relatively low, then the viscous

fingerings for a bigger height are unlucky to happen too [153,154].
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Effect of the capillary number

The capillary number is inversely proportional to the surface tension. When the cap-
illary number is less than 1, the interface forces are stronger than the viscous forces.
In other words, the interface does not deform due to the viscous force. For a contact
angle of 90°, the interface has to be flat for a capillary number tends to 0. Figure 5.17

shows the expected results.

Ca=4 Ca=0.4

- —

Ca=0.004

Figure 5.17: Effect of the capillary number in a serpentine for Re=1, A = 1, and
0 =90°.

Effect of the contact angle

In case of a curved boundary, it is difficult to define the normal of the surface so the
contact angle and also the analysis of the accuracy. However, the serpentine is very
close to a straight channel thus, we expect to get similar results than a straight channel

with negligible inertia.
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Figure 5.18: Effect of the contact angle in a serpentine.

The results should not be exactly the same as a straight channel because the wall
shear stress will be different, and the curvature of the wall will affect the velocity of
the contact line. However, the interface position at the centre of the channel should
be very similar to a straight channel. We get a very good match (Figure 5.19) and we

consider the displacement of the interface as correct even for a low grid resolution.

At a low or large contact angle, the approach does not perform perfectly for a channel
height of only 19 lattices as seen in Figure 5.18. The interface is pinched with the wall,

but the results become better if we increase the resolution (Figure 5.20).

5.3.4 Discussion

The smooth method shows a strong improvement of the results compared to the
standard approach for static droplets and dynamic interface without introducing a

sliding wall boundary condition [4]. The acceleration and deceleration of the velocity
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Figure 5.19: Comparison between the serpentine and straight channel. Re =1 for the
contact angles of 90° and 30° and Re = 10 for the contact angle of 150°.

of the contact line are captured with this new approach, however further validation
is needed to confirm the results quantitatively. As the serpentine is a channel with a
constant height, we have compared the results between the serpentine and the straight
channel. To reduce the effect of the curvature of the channel on the flow field, the
Reynolds number is fixed at 1. The inertia affects also the capillary number, so the
capillary number is kept less than 1 but more than 1073 to avoid a capillary fingering.
A good agreement was found and represented in Figure 5.19. The most useful part of
this method is to be able to handle complex geometry with poor resolution but keeps
the essence of the physics which is important to enable pore-scale simulations for REV

samples.

5.4 Berea sandstones

This Figure 5.22 represents a sample of Berea sandstones [6] and is read directly by
the code and an evaluation for each node is done to determine the solid or fluid nodes.

After this step, several methods add the walls and corners to the domain and remove
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Figure 5.20: Effect of the grid resolution in a serpentine for Re = 1, Ca = 0.4 and

A=6.

108



the incorrect solid nodes. To detect the walls and the concave and convex corners,
we detect the kind of node (fluid or solid) connected to all solid nodes and we define
the direct and diagonal connections to a solid node. A direct connection is the first
node in + x or + y direction. A diagonal connection is the first node in + x and + y
directions. The wall boundary conditions are detected as 3 solid direct connections, the
concave corners as 4 solid direct connections, and the convex corners as 2 solid direct
connections and 1 solid diagonal connection. A sketch is shown in Figure 5.21. The
code automatically removes the solid nodes (not physical and also cannot be computed)
connected to: no other solid node, the walls without thickness (one layer of solid nodes),
two concave corners at the same node, and the solid nodes connected to only one solid
node. In addition, the code is parallel through an MPI approach and including I/O

and pre-treatment. Another example of simulation is given in Appendix B.

Figure 5.21: Detection of walls and corners; The solid direct connections in black blue
arrows and the solid diagonal connection in green arrow.

Figure 5.22: Berea sandstones representation after imaging treatments.
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The sample has a porosity of 0.333634, a length of 1774[um], a height of 1418[um]
and a depth of 24.54[pum]. The size of the 2D simulation is 1323[lu] by 1059[lu]. A
pressure difference of 0.2/3[lu] is imposed using Zou and He boundary condition [83].
The wall is treated with the “New Technique” described in section 4.2 (full-way bounce-
back) and the contact angle with the smooth approach. The intrinsic permeability is
4.875[lu] so 8881mD. The 2D approach cannot be compared with the experimental
results [6] due to the depth is not taken into account.

The viscosity ratio is defined in subsection 2.1.2 and the dynamic viscosity of the
displaced fluid is kept constant at 0.125[lu]. For all simulations, the domain is initialised
with a linear pressure drop, a density at the outlet set to 1, and the velocity equals to
0. In two-phase flow simulations, the porous media is saturated by the invading fluid
for the 20 first lattices in the x-direction and the rest of the media is saturated with
the displaced fluid. This initialisation is used to avoid non-physical phenomena due to
the boundary conditions. Indeed, the normal of interface can be wrongly calculated at
the boundary condition.

A representation of the two-phase flow in the Berea sandstones is shown in Figure 5.23
where the blue fluid is the invading fluid and the red fluid is the displaced fluid. In
case of imbibition, the contact angle is less than 90°, so the blue fluid is defined as the
wetting fluid. For drainage, the contact angle is more than 90°. In Figure 5.23, it can

be noticed a lot of capillary trapping for a low contact angle.

0.0005 B ! - ! ] 0.0005 B 0.001 00015

Figure 5.23: Two-phases flow in Berea sandstones with A = 2, § = 45°, o0 = 0.001[lu]
and Ap = 0.2/3[lu].
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In the next two sections, the surface tension is set to 0.001[lu] to keep the magnitude
of spurious current negligible in comparison with the flow field. To investigate the
effect of the smooth approach on the Berea sandstones, the mobility, mobility ratio and
capillary number are based on the integration of velocity magnitude, and magnitude
of pressure drop over the domain and described in section 2.2. The average velocity
magnitude is scaled to the volume of the sample with the porosity. This means the
results are the maximum we could get, and they are not directional. Therefore, those
values can be difficult to compare to experimental data, but they are closer to the
values that are used in up-scaling methods for reservoir simulations [18,155]. Indeed,
up-scaling methods replace each REV by a volume, thus, the volume averaging is more

suitable.

5.4.1 Effect of the viscosity ratio

The viscosity ratio affects the permeability at the steady state but also the flow
fluctuation, unsteady behaviour due to the evolution of the gradient of pressure and/or
mass flow for a reservoir, or the evolution to towards the steady state which is mostly
neglected in single-phase flow through a porous media. Indeed, the inertia effect cannot
be negligible due to the Forchheimer effect [156] when the mass flow rate starts to be
important or when the flow is developing inside the porous media.

Firstly, the impact of the viscosity ratio is seen in Figure 5.24 by removing the contact
angle. This is done by using the same approach than inside the domain on the walls
and corners. Thus, the normal of the interface at the walls or corners is approximated
by the colour gradient. Physically, this represents an interface sliding on a wall with an
equilibrium of forces between Solid-Invading and Solid-Displaced. We call this contact
angle as “free”. As expected the mobility ratio increases with the viscosity ratio. As
it can be seen in Figure 5.24, the mobility ratio is 15% higher than the viscosity ratio
of 2 at the steady state which means the relative permeability of the invading fluid is
15% greater than the displaced fluid.

By increasing the viscosity ratio to 5, the displaced fluid has its mobility reduced to
the same as injecting water in a media filled with silicon oil or honey. The mobility

ratio is 20% less than the viscosity ratio. Thus, the invading fluid needs to sneak.
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Figure 5.24: Time evolution of the mobility ratio and the capillary number with free
contact angle for Berea sandstones.

When the Reynold number and the capillary number are low enough, the interface
moved at § = 90° in a channel with a free contact angle approach as explained above.
Figure 5.25 represents the same case as Figure 5.24 but with a defined contact angle
of 90°. There is no major difference between the two cases. The viscosity ratio has a
slightly more effect for A = 5, i.e. the mobility ratio is ~ 28% less than the viscosity

ratio.

If the displaced fluid is assigned as the wetting fluid, i.e. the drainage case seen
in Figure 5.26, the viscosity ratio plays an important role compared to the 6 = 90°
case. The mobility of the displaced fluid is a little less affected by the mobility ratio.
However, the invading fluid shows a strong influence. In oil recovery, the production of

oil will be lower.
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Figure 5.25: Time evolution of the mobility ratio and the capillary number with 6 = 90°
for Berea sandstones.
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Figure 5.26: Time evolution of the mobility ratio and the capillary number with 6 =
170° for Berea sandstones.

In Figure 5.27, the displaced fluid is drained outside. The mobility ratio is greatly
increased compared with the previous cases, so the viscosity ratio has an important

impact on the mobility of the displaced fluid.
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Figure 5.27: Time evolution of the mobility ratio and the capillary number with § = 10°
for Berea sandstones

5.4.2 Effect of the contact angle

Previously, we have seen the viscosity ratio plays a significant role and we have
noticed that the contact angle modified greatly the flow inside the Berea sandstones.
However, the viscosity ratio is fixed at each simulation, but the apparent contact angle
changes with the capillary number.

When the viscosity ratio is 2, the mobility ratio is similar for a contact angle of 45°,
90° or “free”. For a contact angle of 10° or 170°, a significant effect is noticed and
represented in Figure 5.28.

It can be deduced that the wall shear forces affect more than the interfacial forces. In
other words, the contact angle is closer to the orientation of the interface rather the
equilibrium contact angle. However, the capillary number is always affected by the
contact angle. Thus, the similar results for the mobility ratio come from the curvature

of the interface is around 0 for the contact angles: “free”, 90° and 45°.

When the viscosity ratio increases to 5 and shown in Figure 5.29, significant effects
are observed. First, the smooth approach does not perform well for a contact angle
of 170°. The mesh needs to be increased to represent correctly the fingers inside the

sample as it was shown in the serpentine case.
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Figure 5.28: Time evolution of the mobility ratio and the capillary number with A = 2
for Berea sandstones.

Second, for a contact angle of 90°, the mobility ratio is lower than a “free” contact
angle due to the wall shear forces. By decreasing the contact angle, the mobility ratio
is clearly increasing. Using Figures 5.27 and 5.25, it can be deduced this comes from
the relative permeability of the displaced fluid is decreasing. It can be noticed for a
contact angle of 45°, the mobility ratio is less than the viscosity ratio. Therefore, the

displaced fluid has the highest relative permeability.

The capillary number is also clearly affected by the contact angles. For a 90° contact
angle, the capillary number is the highest which means the shear forces contribute to
the capillary number. This is confirmed by the capillary number at the contact angle

of 170°.

5.4.3 Effect of the surface tension

The surface tension affects directly the capillary number and as we have seen it plays
a significant role in the Berea sandstones. To complete this study, we compared 3
different surface tensions at a relatively low viscosity ratio, 2, and a contact angle of
90°.

We can see in Figure 5.30, the capillary number increases by one order with a decrease
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Figure 5.29: Time evolution of the mobility ratio and the capillary number with A =5
for Berea sandstones.

of one order of the surface tension. Therefore, the inertia forces stay constant and the
changes of the mobility ratio are directly linked with the interfacial forces. Imposing a

surface tension of 0.01[lu] creates too high spurious current and gives noisy results.

5.4.4 Discussion

We have seen the smooth approach can be used to analyse the flow inside a Berea
sandstone sample. We have shown the capillary number can be used to characterise
the two-phase flows, but it is affected by the contact angle and the viscosity ratio.
For a low viscosity ratio of 2, the mobility ratio is similar for a contact angle of 45°,
90° and with a “free” approach. When the viscosity ratio increases to 5, the mobility
ratio becomes more dependent on the contact angle and also on the mesh size for the
high drainage case that was shown for a contact angle of 170°.

The capillary number obtained from the simulations for a range of 0.003 to 1. In
reservoir simulations, the capillary number usually varies from 1071 to 1075 [155].
Therefore, our simulations need a smaller capillary to be more realistic for reservoirs

simulations.
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Figure 5.30: Time evolution of the mobility ratio and the capillary number with A = 2
and 6§ = 90° for Berea sandstones.

Table 5.1 summarizes the results obtained for steady states from our simulations.
The intrinsic permeability, used to calculate the relative permeability, is calculated
with a single-phase flow with the same pressure drop than the two-phase flow and the
viscosity of the displaced fluid is kept constant for all simulations. This assumption is
done to keep a reference permeability constant. Indeed, the viscosity is linked with the
Knudsen number from the kinetic theory. Therefore, the permeability changes with the

viscosity. The variable S represents the saturation and described in subsection 2.2.6.

Table 5.1 shows the viscosity ratio reduces the relative permeability of the invading
fluid which represents a reduction of the production rate of the displaced fluid. The
relative permeability of the displaced fluid drops with decreasing the contact angle due
to the saturation of the displaced fluid drops. However, it stays almost constant for
contact angle more than 90°. The mobility is also affected as the viscosity of the fluids
is constant in the domain.

The saturation of the invading fluid and the mobility ratio increase when the contact
angle decreases. Therefore, the oil recovery will become more difficult when the sat-
uration of the oil becomes low. We observed when the viscosity ratio increases, the

capillary decreases. For high viscosity ratio, the interfacial forces will only play a role
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A 2
Contact angle
in degree

K, gisplaced 0.80 0.81 0.79 0.56 0.88
K, invading 0.92 0.93 0.91 0.91 0.91
Maisplaced 30.05 | 38.38 | 29.48 | 21.00 | 32.83
M;invading 69.01 | 69.41 | 68.02 | 67.92 | 67.82
Mratio 2.30 2.28 2.31 3.23 2.07
Ca 0.079 | 0.078 | 0.068 | 0.068 | 0.067
Sinvading 0.575 | 0.577 | 0.810 | 0.812 | 0.093

free 90 45 10 170

A 5
Contact angle | ¢ 90 45 10 170
in degree

K, displaced 0.73 | 0.85 | 0.64 | 037 | 085

K imvading 059 | 0.60 | 059 | 059 | 0.64
Misplaced 27.49 | 31.65 | 24.07 | 13.76 | 31.93
Minvading | 110.37 | 111.64 | 110.10 | 110.12 | 120.25

M, atio 4.02 | 353 | 457 | 800 | 3.77
Ca 0.113 | 0.117 | 0.079 | 0.078 | 0.104
Sinvading 0.666 | 0.622 | 0.851 | 0.856 | 0.137

Table 5.1: The Berea sandstone sample: the steady state results for ¢ = 0.001 and the
intrinsic permeability of 4.875[lu].
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in the transition when the flow starts to develop.

5.5 Chapter summary

The smooth treatment has improved the representation of the interface on complex
geometries compared to a standard approach. The non-physical behaviours, commonly
seen in literature, were almost completely removed. The contact line behaviour was
correctly captured on inclined channels and a serpentine. A good agreement was found
between the serpentine and a straight channel for a Reynold number of 1 and a capillary

number between 1 to 1073.

The smooth treatment is applied to a Berea sandstone sample. The capillary number
can characterise the two-phase flows. However, it is affected by the viscosity ratio and
the contact angle. For a low viscosity ratio (A = 2), the mobility ratio is relatively
not affected by the contact angle of 45° or 90°. For a higher viscosity ratio (A = 5),
the mobility ratio becomes more dependant of the contact angle but also of the grid
resolution. Our results have a capillary number between 0.003 to 1 and in reservoir
simulations, the capillary number varies from 107! to 10~°. Therefore, our simulations
need a smaller capillary to be more realistic for reservoirs simulations which is difficult
to obtain (spurious current, high capillary pressure, and extreme slow flow).

The relative permeability of the displaced fluid drops with decreasing contact angle due
to the saturation of the displaced fluid drops. However, it stays almost constant for
contact angle more than 90°. The saturation of the invading fluid and the mobility ratio
increase when the contact angle decreases. Therefore, the oil recovery will become more
difficult when the saturation of the oil becomes low. We observed when the viscosity
ratio increases, the capillary decreases. For high viscosity ratio, the interfacial forces

will only play a role in the transition when the flow starts to develop.
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Chapter 6

Conclusion

A review of the most used methods to simulate multiphase flows was presented. LBM
used in this thesis was described in more details, especially the colour fluid model.
LBGK limits the minimum relaxation time for numerical stability and the maximum
is limited by the Knudsen number (rarefaction). The classical scheme used for LBGK
employed here is an explicit march in time. Therefore, the time step is limited, and the
calculation can be very costly. The colour-fluid model used in this thesis have mainly
limitation due to the recolouring operator and the anisotropic properties of the colour
gradient.

A validation case is shown on the droplet deformation. We consider we got a good
agreement with the analytical. This case has been chosen for his complicated physics

due to the deformation comes from the shear stress.

We have validated the single-phase solver on a 2D Driven cavity, the new platform
performs well for a relativity high number of cores and is accurate for a large range of
Reynolds numbers from 100 to 3200. The implementation of the boundary conditions
employed (bounce back, Zou and He and Ho) for the simulations have been considered
as validating.

We successfully designed a new boundary condition to improve the velocity profile and
the pressure drop in complex geometries. This is based on the bounce-back rules with
a weight-distance extrapolation of the density on concave corners and the collision

operator. In single-phase flows, the new technique achieves excellent results for a low
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grid resolution and low Reynolds number. The collision on a surface was shown to play
an important role in the redistribution of the mass and momentum. In the collision
process, the density value has to be the most realistic to conserve the momentum which
the “new technique” excels at low Reynolds.

We have studied the Laplace’s law with the Reis and CSF models and the classical FD

2nd and 4™ order gradients for the colour gradient. The 279

brings quite a lot of error
in term of accuracy of the Laplace’s law, generates much more spurious current and
deform the interface. The two models give globally the same accuracy for the Laplace’s

law.

We have applied our new boundary condition for two-phase flows and we have added
a smooth treatment of the contact angle to improve the representation of the inter-
face on complex geometries compared to a standard approach. The non-physical be-
haviours, commonly seen in literature, were almost completely removed. The contact
line behaviour was correctly captured on inclined channels and a serpentine. A good
agreement was found between the serpentine and a straight channel for a Reynold num-
ber of 1 and a capillary number between 1 to 1073.
The smooth treatment is applied to a Berea sandstone sample. The capillary number
can characterise the two-phase flows. However, it is affected by the viscosity ratio and
the contact angle. For a low viscosity ratio (A = 2), the mobility ratio is relatively
not affected by the contact angle of 45° or 90°. For a higher viscosity ratio (A = 5),
the mobility ratio becomes more dependant of the contact angle but also of the grid
resolution. Our results have a capillary number between 0.003 to 1 and in reservoir
simulations, the capillary number varies from 1076 to 10. Therefore, our simulations
are realistic and can be used to improve the simulations at reservoir scale.
The relative permeability of the displaced fluid drops with decreasing contact angle
due to the saturation of the displaced fluid drops. However, it stays almost constant
for contact angle more than 90°. The saturation of the invading fluid and the mobility
ratio increase when the contact angle decreases. Therefore, the oil recovery will become
more difficult when the saturation of the oil becomes low. We observed when the vis-

cosity ratio increases, the capillary decreases. For high viscosity ratio, the interfacial
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forces will only play a role in the transition when the flow starts to develop.

Perspective

The calculation required a lot of CPU time. The 3D calculation would be too expensive.
However, using a Hele-Shaw approximation could tackle this problem. In single-phase
with a force driven flow has shown very good results [157] for LBM and a two-phase
flow approach was developed [13] for VOF. This needs to be extended and validated to
pressure driven flows.

In porous media for oil & gas extraction, the viscosity of the oil can be very high. Thus,
hot water or steam is used to reduce the viscosity of the oil. An extension of this work
for non-isothermal and 3D should be highly beneficial for oil & gas companies.

In order to improve the accuracy, grid resolution and stability of the simulations, it will
be interesting in the evaluation of the CM operator effect.

Another approach to reduce the computational cost would be to replace the FD scheme
(Cartesian grid) by a FVM or a SEM/SEDG scheme (Deformed mesh) [158] but the

parallel efficiency of the method would be drastically reduced.
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Appendix A

Mesoscopic Methods

Several methods have been developed to simulate the flow from the free molecular

to the continuum regimes. The most used is based on the Boltzmann equation.

Direct Simulation Monte-Carlo method

The method (particle-based) derives from the stochastic techniques used in the ki-
netic theory and is originate from Bird [22]. The domain is randomly filled with particles

and each particle represents a huge number of molecules of gas.

The most important steps, at each time step, are streaming, colliding and sampling.
During the streaming process, each particle is moved to the new position according to
their initial position, velocity and boundary conditions. The collision step uses binary
collisions. With the Monte-Carlo method, several collisions can be done at each time
step between two particles. The selection of the two particles is done by a random
draw from all particles in the simulation. The collision step is done when the criterion
of the number of collisions is satisfied. The sampling is used to get the macroscopic

properties.

However, the random selection process destroys the covariance in case of no corre-
lation between the macroscopic velocity seen by the two particles. A correction was
proposed by Fede [159].

In case of low covariance flow, a new technique was proposed by Baker [160]. The idea
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is to represent only the deviation to the equilibrium and so not all the distribution.
In order to conserve the mass, the particles have a signed. The method was extended
to multi-scale to be applied to high-aspect-ratio geometries [161] to take into account

different Knudsen number involving in the flow as in porous media.

LBM / DVM

LBM or Discrete Velocity Method (DVM) are deterministic methods and derived
from the Boltzmann equation. To be deterministic, those methods need a lattice and a
pre-deterministic velocity distribution (scheme). In LBM, the particles hop from node
to node, called in-lattice and so it is possible to integrate in time analytically using the
propriety of the hyperbolic equations. DVM needs to integrate in time the collision
term due to the particles are streamed by a transport equation and could not fully
arrive at another node, called off-lattice. Commonly, DVM is used from moderate to
highly rarefied conditions rather than LBM is used from continuum regime to moderate
rarefied conditions. A hybrid method exists to couple DSMC with LBM to take the

advantage of DSMC in rarefy condition and LBM in continuum regime [162].
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Appendix B

An example of simulations

around a complex geometry

During this study, I used my code to simulate flows in other cases. Indeed, my
laboratory colleagues found very useful the importation of images to simulate flows for
complex geometries in a relatively short time.

For instance, the 29th Scottish Fluid Dynamics meeting was organised by my laboratory
(JWFL) at the University of Strathclyde. We wanted nice images for the background
of the computers used for the presentation. I realised a simulation of the flow around

a famous monument of Glasgow: The Duke of Wellington and shown in Figure B.1.

Figure B.1: Duke of Wellington.
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In order to simulate this kind of flow, several steps need to be done. In this thesis,
Matlab was used to be easier to check the treatment from raw image to treated image.
First, the raw image (Figure B.2) needs to be cleaned with an image processing software
to have high contrast between the fluid part and the solid part. At this stage, the image
is read then the picture is scaled to change the grid resolution. To avoid to get sharp
and not physical edge, it is preferable to smooth the edges then transform to a binary
image. Finally, the image is cropped to keep the domain needed then write to a file
(Figure B.3). The small code is given bellow (Listing B.1). To import to LBM, each

pixel corresponds to a fluid or solid node (binary file), so it is straightforward.

Figure B.2: Raw image of the duke of Wellington.
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Figure B.3: Treated image of the duke of Wellington.

Listing B.1: Matlab image treatment code

%%Read image
OIm = imread(’input_image.jpg’);
Yiresize
RIm=imresize (Olm, scale );
%%smooth edges
h = fspecial (’disk’ ,1);
GRIm=imfilter (RIm,h, same’ );
%% Convert to binary image
BGRIm = im2bw (GRIm, level);
%%Crop Image
if x1 > size(BGRIm,2)
xl=size (BGRIm,2);
end
if yl> size (BGRIm,1)
yl=size (BGRIm,1);

end
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L=x1-—x0;

H=y1—y0;

Clm=imcrop (BGRIm, [x0 y0 L H]);
%% Write Crop image

imwrite (Clm, 'output_image.jpg’);
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