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 إهداء

ن و الصلاة و السلام على أكرم الخلق نبينا محمد عليه افضل الصلاة و اتم التسليم،  الحمد الله رب العالمي 

ي أحببت أن أهديها بحمد لله و توفيقه اتممت كتابة رسالة ا
ي أسأل الله لها القبول، و الت 

 لدكتوراه و الت 

 : ي
 لعائلت 

ً
 أولا

  
ً
 أو معنويا

ً
ي الدائمة. لوالدي الذي لم أكن لأجتاز هذه المرحلة لولا الله ثم دعمه اللامحدود سواءً ماديا

لروح أمي الطاهرة ملهمت 
 لي 

ً
 من القلب و جعلك الله ذخرا

ً
ي و أدام الله عليك  فشكرا

ي الحبيبه و ال أبنائ 
صحتك و عافيتك.كما أهديها ال زوجت 

ي 
. ولا انسى دعم أخوائ   لتحملكم المسؤولية و استيعابكم للظروف فكنتم نعم العون لي

ً
ي ملاذ، شكرا

ئ  أحمد،عبدالملك و صغي 
ي 
 لمراد شا و جميع أهلىي  وعمت 

ً
على قيل عمي و العم أنور حفظهم الله اللامحدود فالشكر و الإمتنان موصول لكم. الشكر ايضا

ي ستجد فيه اناة البعد و السؤال المتواصلدعمهم و تخفيفهم مع
ي مهند زرير، كل يوم من ايام ابتعائ 

ي و اخن
 صديق 

ُ
ا . و اخي 

ن فيها  ة،كل صفحة من هذه الرسالة و كنت لي خي  المعي  ي لك.  ،بصمة من بصماتك الخي 
 هذه الرسالة هي هديت 

 : ي
فيتن  أهديها لمشر

ً
 ثانيا

فسور  ، الاسكتلندي البشوش صاحب الروح الأبوية، آيفالير ي الرئيسىي
ن
ف ي الأول  منذ ن اندونوفيك، مشر

ي ألم عه و ملقائ 
شعر بأئن

ي 
 أن أتعلم كيف ابتن

ً
ي العملية و العلمية، كان حريصا

ب. كان تعامله معي كأحد افراد عائلته. كان حريص أن يصقل مهارائ  مغي 
ي ها بالطريقة العلمية. لم يكن هذا العمل ان ي  البيانات و كيف اجمعها ثم احلل

ي رحلائ 
ن
ي دعمي ف

ن
 ف
ً
 العلمية نجز لولا مرونته خاصتا

ي  و متابعته الدائمه لأداء البحث. أود ان اشكر 
ن
ي الدكتور روبرت اكتنسون على دعمه و تزويدي بالمصادر ف

ي الثائن
ن
ف  مشر

ً
ايضا

 لالسنة الأول 
ً
ي كل اجتماع او نقاش معه توسيع مداركي المعرفيه. كما أشكر ايضا

ن
ف الدكتور كرستيوس تكتاتزايس، ف ي  المشر

ن
ف
، اغلب المصادر    لي أيام من العتمة. كان كرمه لا محدود معي

ة الا انها تضت   ة قصي  ي اروقة الكلية وان كانت الفي 
ن
المكتب او حت  ف

، شكرا دكتور كرستيوس على هذا الدعم.  ي
ي بحت  ي بها لتي 

 للصد كان يزودئن
ً
ن زنقوطي على دشكرا ي يق و الزميل حسي 

ن
عمي ف

و لا أنسى أن اشكر الدكتور محمد آل سالم على توجيهاته القيمة و الثمينة و حرصه ان يكون البحث  مراحل البحث الأول. 
 .
ً
  داخل المملكة العربية السعودية لهدف الاستفادة من الدراسة مستقبلا

 ثالث
ً
ي استضافت و دعمت ال ا

: أهديها للجهات الت  ي
 بحث الميدائن

ها صاحب السمو الملكي الأمي  محمد بن ناصربن عبدالعزيز آل سعود. و نائب أمي   -1 أمارة منطقة جازان، ممثلة بأمي 
المنطقة الامي  محمد بن عبدالعزيز بن محمد بن عبدالعزيز آل سعود، على تبنيهم لهذا العمل و تسهيل جميع 

 لكم 
ً
 على هذا الدعم. الإجراءات و التصاري    ح اللازمة،فشكرا

ً
 جميعا

ن السابق:  -2  لسعادة الأمي 
ً
. شكرا

ً
 و معنويا

ً
ي و دعمه ماديا

أمانة منطقة جازان مستضيف البحث، اشكر لكم استضافة بحت 
ي كل 

ن
 للانسان الخلوق الداعم ف

ً
 الحالي الأستاذ نايف بن سعيدان، و شكرا

ن  لسعادة الأمي 
ً
م.عبدالله الدبيان، شكرا
. ولا انسى الاستاذ ماجد اسماعيل على حرصة بتوفي  كل الاحتياجات مرحلة من مراحل البحث  م.عبدالرحمن ساحلىي
 الاساسية لهذا البحث. 

وزارة البيئة و المياه و الزراعة فرع منطقة جازان ممثلة بمديرها و بالأستاذ عصام الحمزي على حسن التعامل و  -3
 . ي
ي البحث الميدائن

ن
 السماح لنا باستخدام أدواتهم ف

 
ُ
ا   أخي 

ً
ي لم تبخل علىي بشت   من دعم مادي أو ، وليس آخرا

ي الحبيب المملكة العربية السعودية الت 
أهدي هذا العمل لوطتن

ي لهذا البلد العظيم. 
 معنوي، فخري لا حدود له بإنتمائ 

 حفظ الله بلادي و حفظكم و أدام الله أمننا و أماننا

   إبراهيم بن أحمد إبرهيم عقيل
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ABSTRACT 

The Internet of Things (IoT) has evolved rapidly as the number of connected nodes continues 

to grow, projected to be in excess of Trillions worldwide by 2025. IoT enables a number of 

application and services that enhance the quality of life of citizens and business practice. The 

demand for IoT-like connectivity is set to continue; for example, the advent of LPWAN 

providing a combination of advantageous features such as long-range, low power 

connectivity gates the deployments of a range of hitherto costly implementations over 

extended areas of coverage. 

A spectrum of valuable real-world IoT applications such as tracking, are predicated on 

location information. However, the provision of a low power, cost effective engineered 

solution to provisioning location still remains a major challenge, especially within resource 

constrained IoT deployments. GPS-enabled solutions are power hungry and potentially 

prohibitively expensive within extensive IoT architectures. Furthermore, ranging-based 

network-centric methods lack accuracy because of the long distances subject to dynamically 

varying path characteristics and the ultra-narrow bandwidth. The prevailing state-of-the-art 

motivates investigations into low-complexity, energy-efficient technique for IoT node 

localisation. 

The Thesis presents an empirical investigation into the use of fingerprinting for IoT node 

localisation within a suburban region in Saudi Arabia subject to varying environmental 

conditions, ranging from clear sky to sandstorms. The approach is based on the use of 

Received Signal Strength Indicator (RSSI) within a LoRaWAN network setting. 
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The performance of LoRa transmission as a function of varying coding parameters is 

determined. The RSSI data gathered during the characterisation phase is exploited to 

estimate locations of IoT nodes using location fingerprinting. More specifically, k-Nearest 

Neighbour (KNN) algorithms are used to develop a baseline location model.  

The accuracy of the LoRaWAN based baseline node localisation is enhanced through the use 

of Machine Learning (ML). RSSI ratios between pairs of Gateways in conjunction with kernel-

based ML techniques - Support Vector Regression (SVR) and Gaussian Process Regression 

(GPR) – is proven to improve the node localisation models. Moreover, the impact of the 

kernel function on model performance is evaluated. Further, RSSI measurements at different 

spreading factors are combined to form more robust location features; two machine learning 

ensemble techniques - Gradient Boosting and Random Forest - are then employed to 

determine the impact on the accuracy of node localisation models using combined location 

features. Results indicate that ensemble-derived models improve accuracy compared to 

single regression tree methods. In addition, feature transformation is proven to be effective 

in improving localisation performance. 

Results confirm the feasibility of IoT network-derived localisation in sandstorm 

environments. Furthermore, it is demonstrated that the LoRaWAN spreading factor is 

central to optimising performance.  
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CHAPTER 1 INTRODUCTION 

 Introduction 

Recent advances in highly functional sensor nodes and wireless communication standards 

interfaces have resulted in the ready availability of a range of low-cost, high performance 

elements. A combination of such technologies integrated into systems classified as the 

‘’Internet of Things (IoT)” have, as a consequence, evolved at a rapid rate yielding 

demonstrable impact in many application scenarios throughout the world. 

IoT is characterised by highly inter-connected distributed networks of ‘things’ - whether 

physical or electronic - across environments at different locations, collaborating to execute 

on an application or monitor processes or citizens.  IoT technologies, systems and 

applications have been subject to a significant amount of research and development and IoT-

inspired solutions are currently experiencing increased levels of adoption.  Continual 

technology developments further stimulate the evolution of the discipline, allowing 

improved performance and efficiency of execution.  Interconnected nodes can exchange data 

and information from different locations [1] and can be controlled and monitored remotely, 

not necessarily requiring human intervention. The degree of inter-connection is continually 

increasing as technology progresses, the projection being, that by 2025, the number of IoT 

connected devices will rise to 75 billion translating to a net addressable market opportunity 

of >$11trillion per annum [2] [3]. Such potential is a significant driver in accelerating the 

transformation of the quality-of-life of citizens, management of the environment and 

industrial practices. The ability to automate certain tasks through the utilization of IoT-
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generated data coupled with the context of the task/goal/service better informs decision 

making.  

However, the further enhancement of the functionality of IoT implementations still presents 

a number of challenges. Location is one of the critical features with accuracy of estimation 

remaining a key challenge, if solved, unlocks many more applications in health monitoring, 

transportation, intrusion detection and environmental monitoring. IoT harnesses many 

communications technologies, such as WiFi, Bluetooth, ZigBee, infrared, GPRS, and more 

recently 5G, which not only provide robust connections between different entities but gate a 

number of mechanisms to obtain location information. 

A range of wireless sensor network localisation techniques have been developed for both 

indoor and outdoor environments. However, although existing location estimation 

techniques based on the Global Positioning System (GPS) achieve the desired accuracy with 

a 3 – 5 meters [4], their use is not only expensive due to a relatively sophisticated 

infrastructure but consume notable levels of energy. GPS-derived location information is 

thus limiting within the scope of IoT implementations, useful as a complementary solution 

but not in most large scale deployments. 

Other network-based methodologies for deriving location can be broadly categorised into 

range-based and range-free localisation [5] [6]. Range-based localisation consists of ranging 

with location computation. In the first phase, methods such as Time of Arrival (ToA) [7], 

Time Difference of Arrival (TDoA) [8], Angle of Arrival (AoA) [9], and Received Signal 

Strength Indicator (RSSI) [10] are utilised for ranging to obtain the distance between two 
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nodes. In the second phase, trilateration, triangulation or maximum likelihood estimation 

are used together with coordinate information of reference nodes and RSSI to estimate the 

location of any node in the network. 

Time based localisation methods (ToA and TDoA) require extra hardware to guarantee time 

synchronisation between transmitter and receiver; any small timing error may result in a 

large distance estimation and in turn, location error. Angle-based localisation (AoA) allows 

the estimation of distance according to relative angles, accomplished by suitable 

measurement equipment; the latter increases the cost of large-scale deployments. The 

Received Signal Strength Indicator (RSSI), on the other hand, does not require any additional 

hardware and utilises signal propagation models to translate a signal strength to distance. 

However, the technique suffers from multi-path propagation that compromise the accuracy 

of the ranging estimate. Moreover, the signal propagation models are generic and do not 

capture the complexities of the operational environment. These challenges have motivated 

further investigations into the use of the RSSI-based fingerprinting techniques for more 

accurate and cost-effective IoT node localisation. The approach can in addition, harness 

machine learning to capture the characteristics of the network connection patterns through 

a systematic range of RSSI measurements from different locations with the resultant model 

used to infer node location. 

 Research Objectives 

The need for an engineered network-derived node localisation for extensive IoT 

implementations in suburban environments subject to sandstorm conditions in Saudi Arabia 
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is the motivation underpinning the research. The proposed solution is based on the readily 

attainable Received Signal Strength Indicator (RSSI) acquired within a network of LoRaWAN 

nodes, enhanced through fingerprinting and machine learning. The localisation solution has 

the potential to gate an increased number of IoT applications and services as will proving 

the feasibility of an acceptable performance within the challenging operational environment 

under investigation. 

Specifically, the objectives of the research are to; 

 carry out a review on localisation techniques for IoT systems 

 develop a RSSI-based fingerprinting technique for node location estimation within 

extensive IoT deployments 

 investigate the effect of LoRaWAN parameters e.g. spreading factors on localisation 

performance 

 investigate feature transformation techniques for enhanced localisation 

 develop localisation models using machine learning 

 to confirm the feasibility of obtaining IoT network-derived localisation in sandstorm 

environments 

 Main Contributions 

The research reported contributes to knowledge in the following ways; 

 development and characterization of a LoRaWAN based IoT node localisation method 

using fingerprinting with machine learning within a sandstorm (suburban) 
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environment.  The solution demonstrates the attainable performance of RSSI-based 

localisation of IoT deployments in challenging environments through a limited 

number of Gateways and significant distances between nodes.  

 evaluation of the effect of spreading factors on the performance of localisation with 

fixed nodes.  

 engineering of new location features to improved node localisation; the improvement 

in using the ratios of RSSI received by Gateways and a combination of RSSIs for 

different spreading factors are evaluated. 

 development of new IoT node localisation models for sandstorm environments based 

on fingerprinting and machine learning techniques. Results are compared with 

reported performance and provide evidence that an acceptable accuracy in locating 

nodes in such a challenging environment can be obtained.  

 Thesis Structure 

The Thesis comprises seven Chapters. Chapter One is an introduction to the research, the 

aims and objectives of the study, capturing the main contributions to knowledge and 

summarizing the outline of the Thesis. 

Chapter Two is a review of related literature with emphasis on localisation methods within 

IoT, LPWAN and the application of machine learning to node location.  

In Chapter Three, the operational environment and the methodology for data collection 

using LoRaWAN is presented. Two data gathering phases executed are detailed; the first 

conducted during clear weather whilst the second during severe sandstorm periods. The two 
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phases were necessary to capture the effect of sand storms on radio propagation. Both the 

LoRaWAN nodes and Gateways are deployed at arbitrary but known locations in the chosen 

environment, a suburban area of the City of Jazan in Saudi Arabia. 

Chapter Four details an investigation into the use of RSSI-based fingerprinting for LoRaWAN 

based radio-location of IoT nodes in the chosen environment. Node location is determined 

by using RSSI as input to a localisation algorithm. K-Nearest Neighbour and its variant, 

weighted k-Nearest Neighbour algorithms are used as a baseline for the development of the 

node location models; a performance analysis of the developed location models is presented. 

Chapter Five discusses the implementation of kernel-based node localisation. More 

specifically, two kernel-based techniques, Support Vector Regression and Gaussian Process 

Regression are used to establish location models. Moreover, robust location features are 

computed and used as input to the models. The impact of the kernel function is investigated 

through a performance evaluation. 

Chapter Six focuses on methods to improve the accuracy of node location. Feature 

combination and ensemble machine learning techniques are explored. In feature 

combination, the RSSI values of different spreading factors are combined to form new 

location features used to infer node location. Furthermore, tree based machine learning 

ensemble methods viz. Random Forest and Gradient Boosting formulated as a regression 

problem are investigated and used to model the complex relationship between the features 

and node location; the models are then used to infer sensor location. A performance analysis 

of the techniques used to enhance node localisation is presented. 
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Chapter Seven is a summary of the findings of the research drawing conclusions on the 

feasibility of the approach and providing recommendations for future developments. 
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CHAPTER 2 REVIEW OF IOT NODE LOCATION ESTIMATION 

 Introduction 

The proliferation of inexpensive sensor nodes and wireless communication technologies 

with enhanced performance has enabled the rapid deployment of significant IoT applications 

and services for both citizens and industries, paving the way for the transformation of 

current practices [11] [12] [13]. Stimulated by the benefits owing to IoT solutions, the 

location of nodes or entities has become increasingly important in order to further increase 

the functionalities and application environments of such implementations [14] [15]. Several 

techniques have been developed in the goal of solving the challenges in obtaining network-

enabled localisation based on signal strength or angle, in some cases enhanced in 

performance through machine learning techniques.  

The Chapter provides a review of the state-of-the-art in IoT node location methods beginning 

with a general overview of wireless technologies (as it relates to IoT) and concluding with a 

review of reported localisation techniques. A case is made for one particular wireless 

standard - LoRaWAN – for the implementation of a localisation method applicable to 

extensive IoT deployments.  

 Wireless Technologies for IoT 

One of the important considerations for many IoT network implementations is the selection 

of the most appropriate communication technology that meets the requirements of the 

application at the lowest cost (Figure 2.1). While some IoT network applications require 



 

9 

short range (meters) (Bluetooth, ZigBee and NFC) [10] [16] others need long-range radio 

(kilometers); the suitability of a long-range communication technology varies with 

application. For example, 2G, 3G, 4G and LTE technologies support long-range operation but 

consume significant energy, however, Low Power Wide Area Network (LPWAN) radio 

presents a suitable candidate for IoT applications meeting the prime design requirements of 

low power consumption coupled to low cost [17] [18]. 

 

Figure 2.1: Communication technology for IoT [19]. 

Several LPWAN network standards have been designed to provide an appropriate solution 

to many deployment issues including Sigfox, LoRaWAN, NB-IoT, LTE-M and Weightless [20] 

[21] [22] [23]. All have their advantages and limitations, in terms of cost, power 

consumption, data rate, scalability etc. For applications requiring the transport of modest 

data rates, most wireless technologies are applicable. However, LoRaWAN offers the highest 

radio link budget and the best “cost vs. range vs. power” trade-off [24] [25]. Therefore, the 

Thesis adopts the LoRaWAN network standard to implement the proposed node localisation 

method for sandstorm environments. 
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 LoRaWAN 

Long Range Wide Area Network (LoRaWAN) is a low-power radio that enables long range, 

low power consumption networking at the expense of low data bandwidth (Figure 2.2). LoRa 

is thus suitable for networks that require longer range communications with feature 

constraints on the size of the nodes, power consumption and cost [26] [27] [28]. 

 

Figure 2.2: LoRa in comparison with other wireless technologies [29]. 

The LoRaWAN-layer structure is as shown in Figure 2.3, established upon the LoRa 

modulation scheme with an added network layer to manage data traffic between Base 

(central) Stations and end-user nodes [26]. The standard has been developed specifically for 

extensive IoT implementations, wide-area sensor networks, and machine-to-machine 

(M2M) applications. The radio interface is designed to enable extremely low signal levels to 

be received, extending the transmission path distance significantly. LoRa is the first 

commercially available wireless technology with the combined advantages of low cost, long 

transmission range, and low power consumption [30]. More specifically, LoRa has a stated 

line-of-sight range of up to 15km-36km, a data rate capability of up to 50kbps, and a 10-year 
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battery life [31] [32]. Although intended for use outdoors, its functionality can also be 

utilised for indoor applications [33]; given that LoRa operates in the sub-GHz frequencies, it 

has a greater penetration ability and is, thus, more resilient to noise and multi-path 

interference [34] . 

One of the added properties of LoRa is its ability to provide the foundation for the estimation 

of node location extending its use for example, within large facilities (e.g. multistory 

buildings, large warehouse) where multiple access points required to execute on the feature 

due to the short range of traditional wireless standards e.g. Bluetooth. With the extended 

range of LoRa, fewer access points can sustain similar operations [35]. 

In conclusion, LoRa offers an efficient, flexible and economical solution to real-world 

problems in outdoor and indoor use cases, overcoming the limitations of some other wireless 

based networks [24] [30]. 

Therefore, the focus of the research is the development and performance evaluation of an 

extensive IoT network localisation technique using LoRa technology. 

 

Figure 2.3 Layer structure of LoRaWAN [36].  
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 Network Architecture 

LoRaWAN is an open standard developed by the LoRa Alliance that enables numerous nodes 

(“End devices”) to communicate with receivers (“Gateways”) using the LoRa modulation 

[37].  A typical LoRa network consists of three entities: Gateways, nodes, and a network 

server as shown in Figure 2.4. 

 

Figure 2.4 LoRaWAN network architecture [38]. 

Typically, but not confined to, nodes may comprise sensors generating measurement data 

connected to the Gateways, where the latter is regarded as the ‘central node’. Nodes 

communicate with Gateways that then forward raw LoRaWAN frames to a network server 

over an interface with a greater throughput. Gateways are bi-directional [25] relays 

transferring packets to the server where they are decoded, or from the server where they 

are encoded, to the nodes.  The network architecture is a “star-of-stars” topology with a 

server as a central node and the Gateways intermediate nodes. Further, the nodes may form 
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part of the Internet of Things (IoT) where a network containing a variety of objects or 

“things” are connected to the Internet and are configured to provision a service or monitor 

an asset [39]. 

 LoRa Physical Layer Parameters 

A key factor in implementing LoRaWAN networks is the modulation format, a Chirp Spread 

Spectrum (CSS) scheme which creates a wideband linear frequency variation over time in 

order to encode the transmitted information [40]. A chirp is generated by modulating the 

phase of the signal.  An “up-chirp” as shown in Figure 2.5 progresses from a minimum to 

maximum frequency before wrapping around to the minimum; a “down-chirp” is the reverse. 

Data is encoded for transmission through discontinuities in individual chirps, as shown in 

the CSS transmission representation of Figure 2.6.  Each modulation is referred to as a ‘chip’ 

and the number of times per second the phase is modulated is referred to as the chip rate. 

The chip rate is equal to the spectral bandwidth of the signal which occupies a bandwidth of 

125 kHz, 250 kHz or 500 kHz. Given that the chirp spreads the spectrum, the entire 

bandwidth is utilised in the transmission of a signal, increasing the robustness to channel 

noise [41] and multi-path fading [20]. The time-varying frequency of the chirps also 

minimises the effect of the Doppler spread on the channel. 

High precision chirps are generated using inexpensive crystals leading to low chip cost. 

Furthermore, LoRa employs a Frequency-Hopping Spread Spectrum (FHSS) scheme to 

switch frequency between available channels determined by a pseudo-random distribution, 

helping further to mitigate against interference. The features outperform traditional 



 

14 

modulation schemes such as Frequency-Shift Keying (FSK), and makes LoRa particularly 

suited to low-power, long-range applications. LoRa provides a line-of-sight transmission 

range of 30km and a 15km range in non-line-of-sight scenarios [31]. 

 

Figure 2.5: Up- and down-chirp [42]. 

 

Figure 2.6: A typical chirp spread spectrum transmission [41]. 

There are three configurable parameters in LoRa modulation: Spreading Factor (SF), 

Bandwidth (BW), and Code Rate (CR).  The spreading factor is defined as the logarithm, in 

base 2, of the number of chips per chirp (or “symbol”).  A symbol comprises 2SF chips over 

the full bandwidth.  Given that there are 2SF chips per symbol, a symbol can effectively encode 
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SF bits of information. In turn, SF impacts the time of a transmission as it spreads the signal 

over time; hence spreading factor. The SF value can be set between 7 and 12 in increments 

of 1, where each increment approximately doubles the time taken to transmit the signal [43]. 

The bandwidth determines the chip rate (Rc), which is equal to one chip per second per hertz 

of bandwidth.  Consequently, an increase of one in SF divides the frequency span of a chip by 

two; thus the duration of a symbol is multiplied by two, as shown in Figure 2.7. 

 

Figure 2.7: Comparison of LoRa spreading factors [44]. 

The symbol rate and the bit rate are proportional to the bandwidth; therefore, an increase in 

the bandwidth produces a corresponding increase in the transmission rate.  Equation 2.1 

governs the relationship between symbol rate (RS), bandwidth (BW) and the spreading 

factor (SF) [45];  

𝑅𝑆 =
𝐵𝑊

2𝑆𝐹
 

Equation 2.1 
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LoRa features a forward error correction code (FEC); the code rate (CR) equals 4/(4 + n), 

where n ∈ {1, 2, 3, 4}.  Taking the CR into account and that SF bits of information are 

transmitted per symbol, the useful bit rate (Rb) is given as in Equation 2.2;  

𝑅𝑏 = 𝑆𝐹 ×
𝐵𝑊

2𝑆𝐹
× 𝐶𝑅 

Equation 2.2 

An increase in BW increases the bit rate whereas an increase in SF decreases the bit rate or 

data rate. These parameters also affect the sensitivity of the receiver. An increase in 

bandwidth lowers receiver sensitivity, whilst an increase in SF increases receiver sensitivity.  

A lower CR reduces the Packet Error Rate (PER) during which there are shorter bursts of 

interference [41]. 

Table 2.1 shows the receiver sensitivities for a Semtech SX1276. LoRaWAN provides an 

Adaptive Data Rate (ADR) mechanism which utilises different SFs and bandwidths for 

managing data rates, airtime, and energy consumption within the network. 

Table 2.1: RF sensitivity depending on BW and SF [46]. 

BW\SF 7 8 9 10 11 12 

125kHz -123dBm -126dBm -132dBm -132dBm -133dBm -136dBm 

250kHz -120dBm -120dBm -128dBm -128dBm -130dBm -133dBm 

500kHz -116dBm -119dBm -125dBm -125dBm -128dBm -130dBm 

       

In summary, a high SF offers a longer reach but at a lower data rate and increased 

transmission time; the inverse is true for a lower SF. Consequently, setting the SF for the 
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intended purpose is of great importance. SF is explored further in the design and 

development of the proposed localisation technique. 

 LoRa Frame Format 

A LoRa frame begins with a preamble that occupies the entire bandwidth and encodes a 

synchronisation word used to differentiate between networks that use the same frequency 

bands.  An optional header (transmitted at 4/8 code rate) follows the preamble indicating 

the size of the payload, the code rate, and whether there is a 16-bit cyclic redundancy check 

(CRC) at the end of the frame core to enabling the receiver to check packets with correct 

headers.  The payload size is stored using one byte, which limits the size of the payload to 

255 bytes.  The header is not required where payload length, coding rate, and CRC presence 

are already known.  The structure of a LoRa frame is presented in Figure 2.8. 

 

Figure 2.8: Structure of LoRa frame. 

 LoRaWAN Classes 

There are three classes of LoRaWAN devices: Class A, Class B and Class C, based on their load 

on the network [47]. All devices must have Class A functionality as a minimum to be 

considered LoRa-certified devices. 

 Class A, bi-directional: devices with the lowest power consumption as they can be 

inactive for a long periods of time to conserve battery power. Given the only process 
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for the Gateway to communicate downlink with the end-device is to wait for an uplink 

transmission and then respond, they are less flexible on downlink transmissions. 

 Class B, bi-directional with scheduled receive slots: in addition to the 

functionality of Class A, Class B devices have dedicated time slots for receiving 

downlink messages, and also periodically receive beacon messages in order to 

synchronise clocks. 

 Class C, bi-directional with maximal receive slots: devices with the highest power 

consumption, given their open receiver windows enabling continuous reception [48]. 

Direct device-to-device communications is not possible; data can only be transmitted device-

to-serve or server-to-device. Any device-to-device communication must be routed via the 

server. 

 Localisation of IoT Nodes 

As the number of connected entities continues to increase, geo-localisation of nodes is 

becoming increasingly important for many IoT applications. Accurate localisation of nodes 

can be prohibitively expensive especially as their number proliferates. Thus, there is 

continued interest in developing cost-effective engineered solutions for accurate localisation 

within extensive IoT implementations.  

 Satellite-Based Location 

A natural solution to localisation is to equip each device with a Global Navigation Satellite 

System (GNSS) – “Global Positioning System (GPS) [49] or "Global Navigation Satellite 
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System (GLONASS)” [50] - capability. The addition, for example, of GPS interfaces to nodes 

harness GNSS systems to provide high localisation accuracy but at the expense of complexity, 

significant power consumption and cost. Another drawback of satellite-based systems is the 

inability to function indoors (offices, homes, factories and malls) as the path from the 

satellite to the node is impaired by thick concrete and metal structures. The more visible the 

path between satellite and node, the more accurate the localisation. 

GPS is a widely used satellite constellation comprising 32 satellites [51] providing location 

and time information [52]; at least four satellites are visible simultaneously from any 

location across the globe. GPS uses signal timing in similar fashion to Time-of-Arrival (ToA) 

to determine the distance from the satellites, forming the basis for the estimation of location 

of the receiving node. GPS was introduced in 1973 by the Ministry of Defence of the United 

States Government to aid in military applications and subsequently has found extensive 

applications in civilian applications. In the early years of deployment, the military sector in 

particular, derived significant advantage through locating threats without being physically 

present at the location. It was also utilised in the monitoring of aggression and useful in 

informing on strategies to defeat enemies. The system attracted the interest of many 

countries and stimulated the launch of other satellite networks. Over the years, the scope of 

uses of GPS has grown increasingly owing to the advancement in technologies that have 

enabled the integration of receivers into devices such as mobile phones [53]. Other essential 

applications that mined GPS included time transfer for synchronisation and the timing 

control of traffic lights.  
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Although GPS consistently achieves high levels of positioning accuracy [54] through precise 

time synchronisation, its implementation requires a relatively high performance platform 

than routinely available in IoT systems; in the latter, nodes are usually equipped with very 

low-computing power that only perform basic operations. The power consumption 

requirements are onerous in this respect, multi-path can weaken GPS signals strength and 

obviates its use in indoor environments. Consequently, the operation of GPS for densely 

populated areas [55] is limited.  

GPS has been considered for IoT node positioning applications. However, implementations 

have significant power requirements and are relatively expensive.  Consequently, GPS-based 

solutions are generally not suitable for long-range, low-power IoT systems as the challenge 

is exacerbated given the available power on the sensor node is limited, compromising GPS 

accuracy and usability. [56] report that a device equipped with GPS and Global System for 

Mobile Communication (GSM) functionality consumed 30-40 times the power of a device 

equipped with LoRa only. In addition, as the GPS and GSM functions are separate, making 

miniaturisation difficult whilst also increasing costs. All these factors make GPS unsuitable 

for node localisation for the application considered in the research. 

Assisted GPS (Figure 2.9) - as the name suggests - is a modification of the GPS to supplement 

the already established functionalities of GPS by facilitating faster and more efficient signal 

interpretation. Assisted GPS (AGPS) harnesses network resources to locate and use the 

satellites in poor signal conditions [57]. AGPS was developed to manage the problem of call 

time to first fix caused by GPS systems on activation. GPS systems require time to acquire 

signals from the satellite, navigate data, and perform localisation; AGPS consists of partial 
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GPS receivers, AGPS servers, a wireless network of base stations and a mobile switching 

center (MSC). The location of the handset is obtained from the MSC identifying the cell 

location as well as the sector of the handset through directional antennas at the base stations. 

Since AGPS servers track and monitor the satellites, a prediction can be drawn on whether a 

signal to the cellular devices is ongoing, facilitating the acquisition of signals when the GPS 

is activated, thereby reducing the time to acquire location significantly.  Thus AGPS provides 

faster transmission of data and improves GPS satellite coverage. Currently the method is 

implemented mainly in environments with many obstructions such as high mountains and 

excessively deep valleys [58]. 

 

Figure 2.9: Assisted GPS [57]. 

IoT systems comprising nodes equipped with GPS to communicate and transmit information 

through an Internet connection have been implemented. Standalone towers transmit 

information from GPS satellites to areas deemed to be unreachable, facilitating faster 
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propagation of data, overcoming errors owing to multi-path [59]. The performance of the 

solution is enhanced by AGPS. 

Although GPS and AGPS are the most common used positioning systems, they are unsuitable 

for certain environments because the accuracy is dependent on many factors such as the 

position of the satellite during data recording, surrounding buildings, valleys, and trees as 

well as the weather.  

The main challenge for large scale IoT deployments in general, is power consumption and 

cost. The utilisation of a positioning technique derived from the network rather than a GNSS-

based technique, yields a more cost effective solution. Furthermore, many networks are 

designed for indoor use, extending the range of applications. 

 Network-Based Localisation Methods 

Network-based location estimation relies on measurable Location Dependent Parameters 

(LDPs) which are then used to estimate the distance between transmitter and receiver 

nodes. LDPs that are commonly used are Time of Arrival (ToA), Time Difference of Arrival 

(TDoA), Angle of Arrival (AoA) and Received Signal Strength (RSS), forming the foundation 

for a number of frameworks to calculate the distance between nodes.  Irrespective of the 

parameter considered, the model is configured to have certain nodes of known location 

known as “beacons”/“anchor nodes” or more commonly Gateways and other deployed nodes 

(the “end-devices”), the locations of which are to be determined.   
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2.3.2.1 Time of Arrival (ToA) 

Time of Arrival (ToA) represents an absolute time taken for signals to arrive from 

transmitters to receivers and has been used as the basis to determine the location of a node 

[60, 61]. The distance to the anchor and any node is derived from the time using the known 

speed of light 𝑐 = 2.98 × 108𝑚/𝑠, 𝑑 = 𝑐𝜏, where 𝜏 is the time of flight.  Under multiple 

anchor nodes scenarios, the position of any node can be determined through trilateration.  If 

the signal was transmitted at time 𝑡𝑀, the time to reception at anchor node 𝑖 would be 𝑡𝑖 as 

per Equation 2.3, where 𝑑𝑖 is the distance between the sensor node and anchor node. 𝑖, 𝑥𝑖 , 𝑦𝑖 

are the two-dimensional coordinates for anchor node 𝑖, and 𝑥, 𝑦 are the two-dimensional 

coordinates for a node; 

𝑡𝑖 = 𝜏𝑖 + 𝑡𝑀 

𝑡𝑖 − 𝑡𝑀 =
𝑑𝑖

𝑐
=

√(𝑥𝑖 − 𝑥)2 + (𝑦𝑖 − 𝑦)2

𝑐
 

Equation 2.3 

In the case of one anchor node only, the position of a node cannot be determined; with two 

anchor nodes, two nonlinear equations, Equation 2.4 and Equation 2.5 can be established: 

𝑡𝑖 − 𝑡𝑀 =
√(𝑥𝑖 − 𝑥)2 + (𝑦𝑖 − 𝑦)2

𝑐
 

Equation 2.4 

𝑡𝑗 − 𝑡𝑀 =
√(𝑥𝑗 − 𝑥)2 + (𝑦𝑗 − 𝑦)2

𝑐
 

Equation 2.5 
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In most cases, two solutions are evaluated i.e. locations, as depicted in Figure 2.10(a) (or one 

if the node is equidistant from the two base stations).  For three anchor nodes, one solution 

(location) is obtained, illustrated in Figure 2.10(b). 

  

a b 

Figure 2.10: Time of Arrival (ToA) position solutions [60]. 

However, it must be stressed that ToA measurements require the anchor and receiving 

nodes to be synchronised [7]; in order to achieve accurate distance measurements, 

synchronisation needs to be at the nanosecond scale. For low cost, low power consumption 

networks such as LPWAN where nodes are idle most of the time, maintaining 

synchronisation is a significant overhead and is subject to “clock drift”. 

2.3.2.2 Time Difference of Arrival (TDoA) 

Time Difference of Arrival (TDoA) [56] [62] is also a time-based localisation method 

introduced to circumvent the need for synchronisation of both Gateways and node clocks 

[60, 61].  TDoA is a measurement of the difference in the signal arrival times at two Gateways.  
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If the two Gateways have synchronised clocks, then multi-lateration can be used to locate the 

node. 

If the signal was transmitted at time 𝑡𝑀, the time to reception can be related to the distance 

between the sensor node and anchor node 𝑖 as in Equation 2.6; 

𝑡𝑖 = 𝜏𝑖 + 𝑡𝑀 

𝑡𝑖 =
𝑑𝑖

𝑐
+ 𝑡𝑀 =

√(𝑥𝑖 − 𝑥)2 + (𝑦𝑖 − 𝑦)2

𝑐
+ 𝑡𝑀𝑡𝑖 

Equation 2.6 

Of the three unknowns𝑥, 𝑦𝑖, and 𝑡𝑀, 𝑡𝑀 can be eliminated by taking the difference between 

two arrival time measurements at two Gateways as in Equation 2.7 where 𝑖 ≠ 𝑗; 

𝑡𝑖 − 𝑡𝑗 = 𝜏𝑖 + 𝑡𝑀 − (𝜏𝑗 − 𝑡𝑀) 

𝑡𝑖 − 𝑡𝑗 = 𝜏𝑖 − 𝜏𝑗  

𝑡𝑖 − 𝑡𝑗 =
𝑑𝑖

𝑐
−

𝑑𝑗

𝑐
 

𝑡𝑖 − 𝑡𝑗 =
√(𝑥𝑖 − 𝑥)2 + (𝑦𝑖 − 𝑦)2 − √(𝑥𝑗 − 𝑥)2 + (𝑦𝑗 − 𝑦)2

𝑐
 

Equation 2.7 

Rather than producing a circle of possible locations as in the ToA solution, the TDoA method 

produces a hyperbola of possible locations. 

Similar to the ToA position calculations, additional equations are required viz. Equation 2.8 

and Equation 2.9, which necessitate a third anchor node; 
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𝑡𝑖 − 𝑡𝑗 =
√(𝑥𝑖 − 𝑥)2 + (𝑦𝑖 − 𝑦)2 − √(𝑥𝑗 − 𝑥)2 + (𝑦𝑗 − 𝑦)2

𝑐
 

Equation 2.8 

𝑡𝑖 − 𝑡𝑘 =
√(𝑥𝑖 − 𝑥)2 + (𝑦𝑖 − 𝑦)2 − √(𝑥𝑘 − 𝑥)2 + (𝑦𝑘 − 𝑦)2

𝑐
 

Equation 2.9 

Two nonlinear equations with two unknowns may yield one or two solutions including the 

redundant hyperbola.   

 

Figure 2.11: Time Difference of Arrival (TDoA) solutions [63]. 

Therefore, in order to ensure a single solution, three (non-redundant) hyperbolas from three 

anchor nodes are required as in Figure 2.11. ToA and TDoA methods require nanosecond 

timestamping accuracy for accurate localisation [64] [63]. 
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2.3.2.3 Angle of Arrival (AoA) 

Angle of Arrival (AoA) can be used as a means for determining the direction of propagation 

of a radio-frequency signal incident on an antenna array. The direction of arrival is 

determined by measuring the time difference of arrival (TDoA) through the difference in 

received phase at each individual element in the antenna array; in effect beamforming in 

reverse. 

In beamforming, the signal from each element is weighted to "steer" the gain of the antenna 

array. In AoA, the delay of arrival at each element is measured and used to calculate the angle. 

Geo-location using AoA requires a minimum of two receivers. According to [65] , “AoA uses 

an antenna containing a multiple element array in which the exact location of each AoA 

element is known precisely.” The elements can receive separate signals that have different 

strengths. After measuring the strength of the signals, time of arrival, and different phases of 

every element, the path of a line of sight is calculated [66]. Another receiver with a similar 

antenna configuration is placed at different positions, and the procedure repeated such that 

the crossover of the two lines of sight indicates the location of the transmitter. Therefore, 

AoA uses triangulation founded on vector ranging. AoA-based solutions require large and 

complex antenna arrays, which also require complex periodic calibration [67] and are costly 

One common application of AoA is in the geo-location of cell phones, most impactful in the 

reporting of the location of an emergency call or to provide location services to the user or a 

remote manager of the phone. Multiple receivers at a base station can measure the AoA of 

the phone to determine the phone's geodesic location. AoA has also been used to discover 
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the location of pirate radio stations or military radio transmitter [68]. In submarine 

acoustics, AoA has been used to localize objects with active or passive ranging. 

2.3.2.4 Received Signal Strength Indicator (RSSI) 

An alternative method of estimating location is by use of a path loss model that predicts the 

signal attenuation over distance. The Receive Signal Strength Indicator (RSSI) measures the 

signal power level at the receiver [69]. The measure varies with the transmitter-receiver 

distance and is highly dependent on the free-space propagation environment.  The 

attenuation in RSSI is proportional to the inverse of the squared distance [70]; thus the 

distance to the sender can be estimated through the relationship of the strength of a signal 

against the model. 

The estimated distance depends on the chosen path loss model, an approximation subject to 

interference, obstructions, reflections, absorption and multi-path fading. For example, a 

receiver obstructed by a wall will experience a significant reduction in signal strength and 

the distance calculated by the model will be much greater than is the actual case. Due to the 

significant complexities in accounting for all the factors impacting signal strength, 

empirically derived models are most often used. Such models are explicitly created for a 

certain type of environment, thus making a generalised model for all environments 

irrelevant. The derivation of models in order to capture the propagation characteristics of 

any particular environment is challenging. 

A number of published path loss models are available for the determination of node location 

based on RSSI. The model is established by characterising the propagation of waves, 
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capturing the behaviour within a model and utilising a pattern matching method of the 

measured RSSI within a signal (radio) map. 

The RSSI proximity method [47] can also be used to determine location depending on 

proximity of Gateways and received signal sensitivity; evaluation of the decrease in signal 

intensity indicates the location of a LoRa node. They note that the location can be estimated 

more accurately through the measurement of the signal strength.  

RSSI based localisation methods are the most economical techniques for localisation since 

any additional infrastructure is not required and every radio chipset is equipped with a RSSI 

capability [71] [22] [16]. RSSI methods may lack the high accuracy of angle- and/or time-

based techniques but offer the low cost and power consumption required by extensive IoT 

implementations. The advantageous characteristics motivates an increased interest in 

investigating RSSI based localisation methods with improved accuracy. The Thesis focuses 

on the development of a RSSI based LoRa localisation using fingerprinting and machine 

learning techniques for enhanced accuracy.  

 Related Work 

Table 2.2 summarises reported developments using Received Signal Strength Indicator 

(RSSI) based fingerprinting for the estimation of node location in LoRaWAN and SigFox 

settings. [22] details the development of fingerprint localisation from SigFox and LoRaWAN 

datasets acquired in large, outdoor environments (52𝑘𝑚2); the fingerprint was enhanced 

through K-Nearest Neighbour  (KNN) methods. KNNs were also used to achieve a mean 
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distance error of Sigfox at 689 m and 398 m (LoRaWAN) form 84 and 68 base stations 

respectively , as part of Antwerp’s ‘City of Things Urban Environment’ [72].  

[71], which used the dataset of [22], provided analyses that proved the use of SVR for 

fingerprinting with LoRaWAN in urban deployments; the median accuracy of the SVR-

enhanced estimation localisation errors was 250m. Interestingly, the location of the (SigFox 

or LoRaWAN) base stations was not provided nor the SF (for LoRaWAN results) used in the 

development.  These 68 base stations were dispersed across city at unknown location with 

no detail on their relative positions. 

[16] focused on the development of an outdoor parking positioning system for a restricted 

coverage area (340m x 340m) utilising 4 LoRaWAN base stations transmitting at SF7. 

Maximum Likelihood analysis achieved a mean distance error at 24m. Gaussian Process 

Regression (GPR)-based fingerprinting model for localisation [73] achieved a mean distance 

error of 25m in a campus outdoor area (150m x 250m) utilising 10 LoRaWAN base stations 

transmitting at SF12.  These two studies focused solutions for relatively modest outdoor 

coverage areas. 

The research reported in the Thesis extends the state-of-the-art by considering more 

extensive coverage areas (in the order of kms), harnessing the spreading factor in isolation 

or in combination - to optimise the estimation of location. 
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Table 2.2: Related work in location fingerprinting. 

Reference Localisation 

Model/technique 

Test 

environment 

Technology No. of 

Gateways 

Spreading 

Factor  

Estimation 

Error 

(Aernouts, 

et al., 2018) 

[22] 

Fingerprinting 

(KNN) 

Outdoor       

(52 𝑘𝑚2) 

SigFox 84 --- Mean       

(689 m) 

(Aernouts, 

et al., 2018) 

[22] 

Fingerprinting 

(KNN) 

Outdoor       

(52 𝑘𝑚2) 

LoRaWAN 68 SF= 7 to 12 Mean     

(398 m) 

(Choi, et al., 

2018) [16]   

Fingerprinting 

(Maximum 

Likelihood) 

Outdoor 

Parking 

(340mx340m) 

LoRaWAN 4 SF=7 Mean        

(24 m) 

(Zhe, et al., 

2019) [73] 

Fingerprinting 

(Gaussian process) 

Outdoor 

(150mx250m) 

LoRaWAN 10 SF=12 Mean        

(25 m) 

(Lemic, et 

al., 2019) 

[71] 

Fingerprinting 

(SVR) 

Outdoor       

(52 𝑘𝑚2) 

LoRaWAN 68 SF= 7 to 12 Median  

(250 m) 

       

 Summary 

The background and review of technologies for IoT-based node location applications are 

discussed. A case has been made for the use of the LoRaWAN, developed for long-range, low 

power applications, as the most suitable technology for the proposed localisation 

application. 

A general review of localisation techniques applicable for use within LoRa deployments is 

presented. A comparison of characteristics for three commonly used localisation techniques; 
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GPS, AGPS, ToA, TDoA and AoA are outlined; in the context of the focus of the research 

application, most are considered to be prohibitively complex and costly. 

Thus the localisation approach adopted is the use of the routinely available RSSI to infer node 

location, detailed in subsequent Chapters. 
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CHAPTER 3 RSSI MAPPING FOR PATH-LOSS 
CHARACTERISATION OF LORA 

 Introduction  

The Chapter presents the methodology in executing a series of measurements for data 

acquisition in order to characterise the radio propagation of LoRa in clear and sandstorm 

environments across a suburban area of Jazan City, Saudi Arabia. The aim is to capture the 

transmission performance of a network of LoRa nodes, the basis for the determination of the 

feasibility and performance of RSSI-based estimation of node location.  

The propagation of electro-magnetic (EM) waves is severely affected by objects in the path 

of the signal inducing increased levels of attenuation. There is a growing interest in the effect 

of dust particles on the propagation of radio/microwave signals brought about by the 

increasing number of terrestrial and satellite links for medium to long-range connectivity in 

regions dominated by dust and/or sandstorm [74]. In sandstorm conditions winds agitate 

significant quantities of sand particles and consequently the path visibility between receiver 

and transmitter is reduced at speeds between 10km/hr to 40 km/hr. Characterisation of 

these effects require knowledge of the properties of the scattering particles and climate 

conditions of the application environment.  

The Kingdom of Saudi Arabia (KSA) occupies an extensive area of land and is regarded as a 

country subject to a severe climate. Wireless communication networks installed in such 

environments suffer from attenuation owing to scattering and absorption [75], resulting in 

significant path loss as more packets strengths fall below the receiver sensitivity. 



 

34 

In order to determine the path loss characteristics within KSA environments for medium to 

long-range connectivity applications, a series of systematic measurements was undertaken 

for two weather conditions; clear condition and sandstorm. LoRa nodes and Gateways were 

deployed across the evaluation site to gather real time measurements. The measured RSSI 

then forms the input parameter that models the effects of a sandstorm on signal propagation, 

the foundation for the proposed solution for node location estimation.  

The Chapter details the propagation model to be evaluated together with the detail of the 

experimental infrastructure with focus on the characteristic of the deployed LoRa nodes, the 

experimental configuration and the spectrum of data captured. Finally, a comparison of path-

loss in clear and sandstorm conditions is presented to illustrate the impact of the latter on 

signal propagation. 

 Propagation Models 

Radio propagation models - otherwise known as path loss models - are empirical 

mathematical formulations based on measurements taken within a specific scenario or 

environment and are representative of radio wave propagation as a function of frequency, 

distance from point of measurement and environmental factors. The models predict the 

reduction in power of a signal as it propagates through a medium (communication channel) 

subject to specific constraints. In other words, the models capture the level that the 

transmitted radio signal is affected by the environment, frequency of transmission, the 

distance between and the height of, transmitter and receiver. The path loss is as a 

consequence of reflections, scattering, diffraction and absorption, central in the prediction 
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of the strength of the signal at the receiver. Therefore, radio propagation models are 

fundamental in the design of wireless communication systems [76]; the propagation paths 

in IoT networks place limits on the extent of the implementation. Three main factors which 

affect radio propagation in are; 

1. Environment: buildings, trees, dust particles, fog causes multipath propagation of 

radio waves, which contributes to background noise, degrading the power fo the 

signal at the receiver.  

2. Interference: due to other sources generating electromagnetic waves within the 

area, and the concurrent signal transmissions by different nodes.  

3. Transceivers: transceivers sensitivity set by internal noise processes.  

Low power signals of wireless are also more vulnerable to multi-path distortion.  

The radio propagation model must account for all factors that affect the quality of signal. 

However, this is not a trivial task. A number of path loss models that approximate different 

propagation scenarios have been reported; here, path loss is modeled using a two-ray 

ground reflection model.  

 Two-Ray Ground Reflection Model 

A two-ray ground reflection model treats path loss of a signal between transmitter and the 

receiver in Line-of-Sight (LoS) scenarios. Figure 3.1 shows a typical two-ray ground 

reflection model consisting of two components; a LoS and a multi-path component, the latter 

as a result of a ground reflection. The two-ray model is considered because it has been 
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proven to provide a better prediction at long distances as compared to other models [77]. 

The two-ray ground reflection path loss model is expressed as in Equation 3.1;  

𝑃𝑟(𝑑) =
𝑃𝑡𝐺𝑡𝐺𝑟ℎ𝑡

2ℎ𝑟
2

𝑑4
 

𝑃𝐿 (𝑑𝐵) = 10 log
𝑃𝑡

𝑃𝑟
  

𝑃𝐿 (𝑑𝐵) = 10 log
𝑃𝑡

𝑃𝑡𝐺𝑡𝐺𝑟ℎ𝑡
2ℎ𝑟

2

𝑑4

 

𝑑 = 10
𝑃𝐿(𝑑𝐵)+20 log(ℎ𝑡 ℎ𝑟)+10 log(𝐺𝑡𝐺𝑟)

40  

ℎ𝑡 = height of transmitter 

ℎ𝑟 = height of receiver 

Equation 3.1 

   

where d is the distance in meters between the receiver and transmitter and Pr(d) is the 

power received at a distance d. Equation 3.1 is used to accurately predict the power received 

at distance d between the transmitter and the receiver.  The model is a derivative of the well-

known free space Friis transmission model given in Equation 3.2: 

𝑃𝑟(𝑑) =
𝑃𝑡𝐺𝑡𝐺𝑟𝜆2

(4𝜋)2𝑑2𝐿
 

𝑃𝑟(𝑑) = received power 

𝑃𝑡 = transmitted power 

𝐺𝑡 = transmitter antenna gain 

𝐺𝑟 = receiver antenna gain 

𝑑 = antenna horizontal distance 

𝐿 =system loss factor 

Equation 3.2 
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Figure 3.1: The two-ray ground-reflection model. 

The two-ray model does not provide good predictions for short distances due to the 

oscillation caused by the constructive and destructive combination of the two rays. Instead, 

the free space model is still used when 𝑑 is small. Therefore, a breakpoint distance 𝑑𝑏 is 

calculated in this model. When 𝑑 < 𝑑𝑏, Equation 3.2 is used. When 𝑑 > 𝑑𝑏, Equation 3.1 is 

used. At the breakpoint distance, Equations 3.1 and 3.2 give the same result. So 𝑑𝑏 can be 

calculated as 𝑑𝑏 =
(4𝜋ℎ𝑡ℎ𝑟)

𝜆
⁄    where 𝜆 is the wavelength. 

 Data Acquisition 

The series of measurements were conducted in a representative environment in Saudi 

Arabia - on the outskirts of Jazan near Jazan University – to characterise the radio 

propagation of LoRa in sandstorm conditions; Figure 3.2 shows the measurement area.  
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A receiver was placed on the roof of a car (approximately 2m above ground); the location of 

the transmitter node is taken with reference to the receiver (16.9610,42.5685). The 

transmitter node was placed in a car (approximately 1m above ground level) and moved to 

pre-defined positions of varying distances from the receiver. The extent of the area within 

which the measurements were recorded is characterised by direct paths; “Line-of-Sight 

(LOS)” paths were maintained throughout the measurements (actual visibility varied). 

The Base Station (BS) comprised an iC880ASPI LoRaWAN 868MHz concentrator connected 

to a WiFi-enabled Raspberry Pi 3 Model B SBC platform (with 16GB micro SD card) and an 

SMA antenna 2 dBi (Figure 3.3.) The BS was housed in a TEMBO ABS Enclosure with a USB 

power connector and powered by a Wopow USB 5V 5000mAh battery. The Raspberry Pi is 

connected to the Internet via a Zain Speed MIFI CAT6 4G dongle with a laptop using PuTTY 

SSH Telnet client software monitoring the BS whilst receiving data and to subsequently 

download the data.  

The transmitting node device was a Sodaq One LoRaWAN node with an Anaren 868MHz 

antenna 3 dBi powered via a USB port (in a car). The sensor was pre-programmed to 

transmit constant packets of data when connected to power; transmission was controlled 

crudely by connecting/disconnecting with the USB port. The transmitter power was set at 

14dBm, initially at a Spreading Factor (SF) of 7 and the bandwidth 125 kHz.  

In LoRa, the receiver sensitivity depends on the SF. Table 3.1 shows the receiver sensitivities 

for LoRaWAN, at each spreading factor for at a bandwidth of 125 kHz [46]. The total airtime 

to send the full packet at SF7 is 71.9 ms and the interval between two packets (at 1% duty 
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cycle) is 7.19 s. LoRa implements long-range connectivity by utilising a coding gain derived 

through spread spectrum modulation viz. a chirp spread spectrum (CSS) is used to modulate 

symbols over a fixed bandwidth. The SF governs the number of chips and range can be 

improved by increasing the SF. However, increasing the SF, reduces the data rate and the 

time on air is increased, requiring greater energy consumption. Consequently, the LoRa 

modulation permits a trade-off between range and energy consumption through selection of 

the SF. 

 

Figure 3.2: The location where the series of measurements were recorded. 

Table 3.1: Receiver sensitivity as a function of SF. 

 SF7 SF8 SF9 SF10 SF11 SF12 

Sensitivity (dBm) -123 -126 -132 -132 -133 -136 
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Figure 3.3: LoRA Transmitter and Receiver modules. 

 Data Acquisition Methodology 

Measurements were carried out under two conditions; Figure 3.4 shows the two 

environmental conditions, clear and sandstorm. RSSI measurements were collected over two 

days under the two scenarios. For the clear condition, RSSIs were measured in the morning 

hours because during this period of the day, the wind speed are low.  

The visibility between receiver and transmitter is compromised in sandstorm conditions. 

Thus RSSIs were obtained during afternoon hours, when the temperature was high, and the 

wind speed gave rise to sandstorms. Wind speed is the most critical environmental 

parameter that impacts signal propagation in this context. The wind stirs particles into the 
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air and as the strength of the wind increases, the density of the particles increases and the 

impact on the propagation of the radio signals becomes more significant.  

  

a – clear b – sandstorm 

Figure 3.4: Environmental conditions (a) clear; (b) sandstorm conditions. 

At each location, the transmitter was connected to power until more than ten packets were 

received.  If no packets were received, the transmitter remained powered for five minutes 

before the car-mounted transmitter was moved to the next location. 

Table 3.2 and Table 3.3 show the number of packets successfully received at transmitter-

receiver distances every 100m up to 3km under clear and sandstorm conditions. Evident is 

a significant decrease in the number of packets received with respect to distance from 1 km 

at clear and 1.5 km at sandstorm condition. Eventually no packet is received in the case of 

sandstorm, and as same as clear condition expect one packet at 2km. 
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 Analysis and Discussion 

The Two Ray Ground Reflection Model defined in Equation 3.1 is used to estimate 

transmitter-receiver distance from the measured RSSIs in order to evaluate the path loss of 

the link. The mean of RSSI values shown in Table 3.2 and Table 3.3 are used as representative 

in the estimatation of the distances. Figure 3.5 (with raw data in Table 3.2 and Table 3.3) 

shows the variation in the actual and estimated distances with respect to measured RSSI. 

Evident, is the significantly higher signal attenuation in sandstorm conditions compared to 

clear condition.  A radio signal in the presence of the sandstorm encounters an increase of 

the propagation path loss. The effect could be quite significant, depending on the location 

and weather condition at the time of measurement. The sudden drop after 500 m could be 

due to a sudden increase in the sandstorm given that measurements were taken at different 

times. Similar results have been obtained in [75]. Authors in [78] investigated the 

relationship between frequency and sand particles to determine the level of attenuation of 

radio signals in sandstorm conditions. They observed that the attenuation of microwave 

signals increases with increase in frequency for specific particle size.  The attenuation varies 

from 0.0045 to 0.66dB/km at C-band and X-band frequencies when the humidity is equal to 

0 %. While at humidity 60%, the attenuation varies from 0.023 to 3.93 dB/km. For Ku-band 

frequencies, the attenuation varies from 0.05 to 0.66 dB/km with a humidity equal to 0%, 

and from 0.13 to 9.78dB/km at humidity 60%.  [78] established that attenuation due to 

sandstorm vary between 0.0045 to 9.78 dB/km at different frequencies (4 – 18 GHz) when 

humidity is 0 and 60% respectively. In [75], it has been found that attnuation between clear 

and sand storm condtions can be more than 10 dB/km for microwave radioations.  
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In [79],the authors investigated the expected attenuation at different frequency bands with 

respect to visibility and particle size in Saudi Arabia and Sudan. Their work shows that the 

attenuation varies from 0.22 dB/km to 0.0025 dB/km at S-band frequencies (2 – 4 GHz) for 

particle size of 50 micro-metre and visibility from 10 m to 500 m attenuation.  At X-band (8 

– 12 GHz), for same particle size and visibility range, the attenuation varies from 0.79 dB/km 

to 0.005 dB/km.  

At Ku-band frequency (12 - 18 GHz) for particle size of 50 micro-metre and visibility from 

10 m to 500 m attenuation varies from 3.8 dB/km to 0.01 dB/km. At frequencies in the K-

band (18 – 26.5 GHz) the attenuation varies from 6.8 dB/km to 0.05 dB/km. At Ka-band (26.5 

- 40 GHz) for particle size of 50 micro-metre and visibility from 10 m to 500 m attenuation 

varies from 13 dB/km to 0.2 dB/km. Also, at higher frequencies in the W-band (56 - 100 

GHz), the attenuation varies from 47 dB/km to 2 dB/km for same particle size and visibility 

range. 

However, in both scenarios, the signal attenuation appears to plateau within a certain range 

at longer distances.  For the clear condition, the RSSI sensitivity is approximately -106dBm 

at 600m and greater; for sandstorm conditions, RSSI sensitivity is approximately -112dBm 

at 900m and greater. Consequently, a large proportion of estimated distances for clear and 

sandstorm conditions “plateau” at 600m to 700m and 900m to 1000m, respectively. It is also 

observed that in the sandstorm environment packets up to a distance of 2000m only can be 

recovered. Significantly higher attenuation of RSSI values are recorded in sandstorm 

conditions that in turn impact the estimation of distance. 
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a – clear 

 

b – sandstorm 

Figure 3.5: Measured and estimated distances based on measured RSSIs using the two-ray 

propagation model. 

In sandstorm conditions, the path loss model (two-ray propagation) yields inaccurate 

estimates at shorter distances of up to 200m after which the estimated distances plateau and 

are significantly greater than actual distances. Even in clear condition, reasonable estimates 

are obtained up to 600m after which the estimated distances cluster around 650m, a 

significant underestimate of the actual distances. 
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Table 3.2: Estimated distance error under clear conditions. 

Actual Distance 
(m) 

Mean 
Measure RSSI 

Estimate Distance 
(m) 

Est. Distance Error 

(m) 

100 -77.85 124.93 +24.93 

200 -85.75 196.91 -3.09 

300 -95.06 336.50 +36.50 

400 -101.41 485.00 +85.00 

500 -102.89 528.13 +28.13 

600 -105.85 626.27 +26.27 

700 -106.60 653.91 -46.09 

800 -106.16 637.55 -162.45 

900 -106.69 657.39 -242.61 

1000 -106.25 640.86 -359.14 

1200 - - - 

1500 - - - 

2000 -112.00 892.31 -1107.69 

2500 - - - 

3000 - - - 
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Table 3.3: Estimated distance error under sandstorm conditions. 

Actual Distance (m) 
Mean Measure 

RSSI 
Estimate Distance 

(m) 
Est. Distance Error 

(m) 

100 -85.90 198.62 +98.62 

200 -98.10 400.88 +200.88 

300 -105.71 621.40 +321.40 

400 -108.08 711.93 +311.93 

500 -108.46 727.87 +227.87 

600 -111.89 886.62 +286.62 

700 -112.00 892.31 +192.31 

800 -112.76 932.47 +132.47 

900 -114.00 1001.19 +101.19 

1000 -113.78 988.46 -11.54 

1200 -113.50 972.78 -227.22 

1500 -113.00 945.18 -554.82 

2000 - - - 

2500 - - - 

3000 - - - 

    

RSSI-based localisation methods require knowledge of the underlying radio environment 

such that a suitable propagation model that defines the relationship between RSS and 

distance between the transmitter and the receiver can be built. Detailed RF propagation 

modelling is non-trivial. However, there are standard propagation models such as log-

distance that can be used to estimate source location [80]. 
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In this work, it has been observed that the use of the two-ray propagation model with RSSI 

measurements to determine distances - and hence the basis for the estimation of the location 

of a node - under clear condition and sandstorm conditions only produces reasonable results 

up to 600m and inaccurate estimates at shorter distances of up to 200m respectively. This is 

grossly inadequate for the long-range sensor location applications considered in the Thesis. 

This motivates an investigation into an alternate method that does not depend on the two-

ray propagation model.  

 Conclusions 

A study that characterised the path loss of LoRa links in sandstorm conditions has been 

conducted. Two series of measurement were undertaken in Jazan City of Saudi Arabia to 

acquire representative coverage data in order to establish the effect of sandstorms on signal 

propagation. RSSI measurements were recorded at different transmitter-receiver distances 

in both clear condition and sandstorm conditions using commercially available LoRa devices. 

As expected, a higher path loss is experienced (higher levels of packets lost) during 

sandstorms. Results indicate that that two-ray propagation model can only estimate 

distances up to 600m in clear condition and the model fails at shorter distances of less than 

200m in sandstorm environments. 

In conclusion, the use of the two-ray path loss model is not a viable approach for LoRa 

localisation for extensive IoT implementations, the target distance being 3km. The results 

motivate an investigation into the use of fingerprinting for node location, to be discussed in 

the next Chapter.  
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CHAPTER 4 RSSI-BASED FINGERPRINTING FOR IOT NODE 
LOCALISATION 

 Introduction 

The Chapter investigates the use of a Received Signal Strength Indicator (RSSI) based 

fingerprinting technique for the estimation of the location of nodes within LoRaWAN in a 

sand storm environment.  Results from the Characterisation of the path loss  detailed in 

Chapter 3 confirm that the Two-Ray Reflection Model yields meaningful estimates a distance 

of less than 100m due to multipath, shadowing and reflection and is thus not appropriate for 

more extensive application scenarios.  Thus the use of fingerprinting in the goal of location 

estimation in extensive IoT networks is formulated. The results of experiment/field trial 

carried out in sand storm conditions in the city of Jazan in Saudi Arabia for this investigation 

are presented. 

RSSI is used as location fingerprints for node localisation. Machine learning algorithms have 

been identified and employed to model the complex RSSI-location relationship and hence 

enhance the accuracy of estimating node location. Furthermore, an investigation into the 

impact of different spreading factors in the estimation of localisation is carried out. Finally, 

the results of a performance evaluation of the developed solution presented with a particular 

emphasis on accuracy. 
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 Problem Statement 

Several techniques used for sensor localisation are based on Time of Arrival (ToA) [7] Time 

Difference of Arrival (TDoA) [56], Angle of Arrival (AoA) [81] or RSSI [82]. These methods 

(ToA, TDoA, AoA or RSSI) are used to estimate the transmitter distance from the receiver 

and trilaterate or triangulate for location. ToA and TDoA are techniques that require 

stringent time synchronisation, a costly overhead on the implementation; both ToA and AoA 

techniques require Line-of-Sight (LoS) paths for acceptable accuracy. The radio propagation 

dynamics in the environment under study suffer from different degrees of multipath fading, 

shadowing and interference. The environment is best described as sub-urban and rural 

governed by the type of terrain, therefore, the requirement for LoS may be difficult to 

maintain in this application. RSSI uses a defined path-loss model to estimate location, 

however at the cost of location accuracy, demonstrated in Chapter 3. The limitations of these 

techniques motivates an investigation into the feasibility of the RSSI-based fingerprinting for 

long-range node localisation. Radio fingerprinting based location estimation techniques 

have been proven to be more reliable because the ‘fingerprints’ explicitly capture the 

dynamic of the environment for which the system is being designed. In the Chapter, an 

investigation into node localisation in sand storm environment based on RSSI-fingerprinting 

in conjunction with the nearest neighbour algorithm [26]  and its variants are presented.  

 Experimental Procedure 

A series of field measurements was executed using LoRaWAN devices deployed in Jazan City 

in Saudi Arabia to acquire the necessary data for the development and evaluation of the 
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proposed RSSI-based fingerprinting technique for sensor localisation in sand storm 

environments.  

 The Environment 

Jazan City is located along the Red Sea coast in the south west of Saudi Arabia. The region is 

categorised by sand dunes, mountains, as well as coastal areas resulting in significant climate 

diversity. The climate is affected by the tropical wind and varies owing the diversity of the 

surface and geographical characteristics of the region. The coastal plain (Jazan City) is 

temperate in winter, hot and humid and subject to frequent sand storms in the summer. The 

temperature rises from June to September, the mean temperature ranging between 25°C in 

January and 40°C in September, with a maximum of 46°C. The Relative Humidity (RH) 

increases from the eastern part of the plains to the west, ranging between 61% In July to 

79% in December, the maximum reaching 99% with a minimum of 27%.   

Monsoon winds last between June to September creating sand storms during the summer, 

rising to over 37 km/h. During strong sand storms, visibility is less than 100 m; so, any IoT 

location system will be most challenged in dust environments, the signal strength impacted 

most significantly due to increased levels of scattering owing to dust particles in the air. Most 

environments in Saudi Arabia are similar to the Jazan region.  

Given these yearly geographical trends, measurements were carried out during the months 

of July and August, the most challenging season, characterised by dust, high temperature and 

humidity. Apart from the climatic factors, the propagation environment also features trees 

and buildings. 
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Table 4.1 represents the weather conditions during measurement in the month of July and 

August. 

Table 4.1: the weather conditions during measurement (July-August) 

 Humidity (% ) Temperature (˚C)  Wind speed (km/h) 

Dust sky 60 - 85 35 - 45 5 - 10 

Sandstorm sky 60 - 85 35 - 45 13 -27 

Strong Sand storm  60 - 85 35 - 45 37 

    

The propagation path between the test area and the gateways is characterized by buildings 

of different elevations (9 m - 30 m). Specifically, the path leading to gateway 2 comprises 

many buildings with higher elevation compare to the other gateways. 

 Data Acquisition 

The data acquisition system consisted of four LoRaWAN transceiver Gateways and 

transmitter accessing the Internet through laptops. The Gateways comprise iC880ASPI 

LoRaWAN 868MHz concentrators connected to a Wi-Fi enabled host (Raspberry Pi 3 Model B 

SBC platform with 16 GB micro SD card) via a SMA antenna and are housed in TEMBO ABS 

Enclosures with mains electrical power supply. The enclosures are designed to guarantee 

operation between -5°C to +55°C, meeting the requirements of the operational 

environmental conditions. Gateways are the data collectors of the architecture utilising 868 

MHz channels for data transmission. Packets can be received from different nodes with 

different spreading factors, up to 8 channels in parallel. Gateways are also equipped with an 
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external control microprocessor and an RPi 3 unit is connected to the IMST concentrator via 

the SPI bus. The RPi 3 is Wi-Fi enabled and connected to 4G connectors in order to receive 

and transmit data to the server (‘The Things Network’ server [83]). Transmitter nodes are a 

Sodaq One v2 LoRaWAN device with an 868 MHz antenna connected to a GPS module (Ublox 

Eva 7M). The node consists of an RN2483 transceiver with 14 dBm transmission power and 

bandwidth of 125 KHz powered by an 800 mAh lithium battery. An annotated photograph of 

a transceiver Gateway and transmitter is as shown in Figure 4.1. 

 

Figure 4.1 LoRaWAN Receiver and transmitter. 

The Things Network (TTN), an open-source, de-centralised network designed to enable low 

power devices using long-range Gateways to exchange data with applications, was used to 

manage the received data from the Gateways.  TTN permits a large variety of third-party 
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devices to be connected and provides a web interface to visualise data. However, 

communication with a third-party application is required if the objective is to process and 

analyse the data; to this end, an MQTT client forwarded the data to a third-party application. 

TTN uses MQTT to publish device activations and messages. However, a subscription 

developed in Python with appropriate device identifiers captured all packets from Gateways. 

The third-party application contained two principle components; Local MQTT Porker and 

PostgreSQL database. The main functions are to obtain data from the TTN; parse and insert 

the data into the specific Local MQTT Porker; then insert the data to the final destination the 

PostgreSQL database for processing. Local MQTT brokers organised the data flow and 

prevented packet collisions before storage in the database. The architecture of the deployed 

system interconnection is as shown in Figure 4.2. 

Two laptops were utilised; the first as system server contained the PostgreSQL database 

where all the data fingerprints were stored. These data came from three MQTT local brokers 

(three RPi) connected through Wi-Fi. The first laptop also contains PuTTY software that 

issues commands and receives text responses over a TCP/IP secure socket (SSH)). PuTTY 

enables effective control of the system.  The second laptop connected to the Internet 

(through a mobile phone) was used in the field to monitor node behaviours. PuTTY software 

was also installed on the second laptop for connection to the first laptop (server) to monitor 

and track transmitted packets and to ensure data is stored in the database. In addition, the 

three RPi 3 containing local brokers were checked periodically. Arduino board IDE software 

was used to program the node (Sodaq One v2). 
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Figure 4.2 Data acquisition system architecture. 

 Field Experimental Set-Up 

The deployed configuration for the field trial is a non-uniform grid given the cluttered terrain 

(buildings, trees) of the environment. The map of the layout is as shown in Figure 4.3. The 

Gateways are placed on the outskirts of the City on four elevated sites shown in Figure 4.4 

with their respective heights provided in Table 4.2. 
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Figure 4.3 Test field map. 

    

GW_1 GW_2 GW_3 GW_4 

Figure 4.4: Gateway locations. 
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Table 4.2: Gateway locations. 

Receiver Location Elevation (m) 

GW1 Top of University tower 100 

GW2 Communication tower (1) 90 

GW3 Communication tower (2) 70 

GW4 Top of Water tower 40 

   

Gateways are placed on elevated platforms to extend the range of the network that would 

otherwise be reduced due to the built environment and natural obstacles that influence the 

RSSI. The transmitter is fixed at one location when acquiring measurement data and then 

moved between measurement locations within the target area. Two series of measurements 

were carried out; the first set of measurements were taken from 40 locations using SF of 7; 

the second set were taken from all the 150 locations using SFs of 9, 10, 11 and 12. The 

distance between locations is approximately 100m. The distance between the closest point 

and Gateways is 4 km and the furthest is 7 km, the area of this experimental is 30𝑘𝑚2. 20 

RSSI packets are collected from each measurement point. Therefore, the two sets consist of 

a total of 800 and 3000 measurements respectively. The choice of SF=7 used for the first 

experiment was to test the suitability of the default SF in the LoRa device used for the study 

reported in this thesis. Higher SFs of 9, 10, 11 and 12 were chosen for the second experiment 
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with the expectation that they will provide the needed transmission and reception at long 

range. 

 Data Collection 

In the first set of measurements, the data collected utilises the LoRaWAN default Spreading 

Factor (SF) of 7. At each location, two transmitters were active simultaneously, broadcasting 

packets of data with the GPS location coordinates as a payload. Gateways that successfully 

acquired messages acknowledged receipt. The total airtime to transmit a packet at SF7 is 

71.9 ms and the interval between two packets at 1% duty cycle is 7.19 s. The RSSI of the 

received packets is measured at each receiver and uploaded to TTN server along with the 

payload information. 20 packets were transmitted at each location at a transmission power 

of 14 dBm. (Table 3.1) shows the sensitivities for LoRaWAN, at each spreading factor for 

bandwidth 125 kHz. 

The total number of packets acquired by each receiver for all 40 locations is shown in 

Figure 4.5; it is worth noting that just 6 packets were received by GW2.  The significant loss 

of packets at GW2 may be due to the relatively long distance between the transmitter and 

receivers characterised by Non-Line-of-Sight (NLOS) paths. The Spreading Factor (7) also 

impacts reception; therefore, an investigation into the use of different SFs to improve 

reception was carried out. 
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Figure 4.5 Packets received by Gateway. 

 Data collection as a function of Spreading Factor 

In order to understand further the context of the acquired data, consideration was given to 

the effects of Spreading Factor and the implications of The Things Network (TTN) usage 

policy. 

The TTN Fair Access Policy limits the data each end-device can transmit, by allowing a mean 

of 30 seconds uplink time on-air, per day, per device [84]. A Spreading Factor (SF) can be set 

before each signal is transmitted, effectively spreading the signal over a wider spectrum 

range. As noted in the design, the basic principle of spread spectrum is that each bit of 

information is encoded as multiple chips [85]. As the SF increases, the time on-air, or symbol 

duration, for each packet also increase, as per the Equation 4.1.  The effect of the TNN policy 

as a function of SF is shown in Table 4.3. 

𝑇𝑆 =
2𝑆𝐹

𝐵𝑊
 

Equation 4.1 
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Table 4.3: The implication of LoRaWAN airtime policy as a function of spreading factor. 

Spreading Factor  SF12 SF11 SF10 SF9 

Packet duration (ms) 1482.752 823.296 370.688 205.824 

Duty Cycle 1% (s) 148.275 82.329 37.068 20.582 

Interval Time (mins) 2.47125 1.37215 0.6178 0.343033 

Mean Number of 

Messages (/hour) 20 36 80 145 

     

For example, at the lowest data rate (SF12 and BW125 kHz), an 11-byte payload would need 

1482.75ms of total airtime to transmit a full packet [86].  The 1% duty cycle limits the 

transmission of one packet every 148.275 seconds (or 2.47 mins); so the node needs to wait 

2.47 mins before it may attempt to send another packet (in the same sub-band), and in 

tandem with the 30 seconds/day Fair Access Policy, only 20 packets can be sent per hour. 

Packet size varies between 51 bytes for the slowest data rate (SF=12) and 222 bytes for 

fastest rates (SF=7).  Therefore, it is beneficial to keep the application payload under 12 bytes 

and the interval between messages to be at least several minutes. Consequently, a 

conservative approach is not to transmit more than the smallest maximum payload size, 

which is 36 bytes; however, a loss of capacity results if a large amount of data has to be 

transmitted as well as lower throughput. 

For the data collection, therefore, in order to use SF12, the payload was set to 11 bytes 

consisting of the GPS coordinates only, giving a time between packets of 2.47 minutes.  

https://www.thethingsnetwork.org/forum/t/spreadsheet-for-lora-airtime-calculation/1190
https://www.thethingsnetwork.org/forum/t/spreadsheet-for-lora-airtime-calculation/1190
https://www.thethingsnetwork.org/forum/t/limitations-data-rate-packet-size-30-seconds-day-fair-access-policy-nodes-per-gateway/1300
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Therefore, in order to collect the volume of data required to train machine learning 

algorithms, the number of nodes/transmitters was increased. 

The second series of measurements - conducted in a sand storm condition - acquired the 

RSSI of received packets at 150 different known locations using different SFs (9, 10, 11, and 

12) referred henceforth as SF9, SF10, SF11 and SF12 respectively. As shown in Figure 4.3, 

the Gateway (black circles) were located at various points 4km to 7km around the area 

where the nodes were positioned (blue markers). As before, the Gateways were located on 

elevated platforms (Figure 4.4). 

At each transmission location, 20 end-nodes were transmitting simultaneously at various 

spreading factors; three at SF9, three at SF10, six at SF11, and eight at SF12. The nodes 

transmitted packets containing GPS location coordinates as a payload.  The RSSI of the 

received packets were recorded at each Gateway and uploaded to The Things Network 

server (along with the payload information; each was 11 bytes).  20 packets were 

transmitted at each location at each spreading factor value. 

The total number of lost packets at each Gateway for each spreading factor for all locations 

is shown in Figure 4.6.; the blue, red, grey and yellow bars represent SF9, SF10, SF11 and 

SF12 respectively. A clear trend in the number of packets received as the SF value increases 

is evident; for each Gateway (GW1, GW2, GW3, GW4) the number of lost packets decreases 

as the SF increases. The differences are significant at GW2, GW3, and GW4. Although the 

trend is still evident at GW1, the difference is minimal for different SF values, potentially 
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owing to the fact that GW1 is located at the highest elevation (100 m) in the city providing 

relatively clear LOS paths with limited obstacles between GW1 and transmitter nodes. 

 

Figure 4.6 Missing packets at each gateway  

 Data Preparation 

The first stage in the process of preparing the data acquired for localisation is cleansing. 

These data comprise a range of information such as port, SNR, channel, frequency, which are 

not relevant for the purposes of the study; such entries are removed. The datasets are filtered 

such that only the necessary data viz. time, RSSI_Gateway1, RSSI_Gateway3, RSSI_Gateway3, 

RSSI_Gateway4, longitude and latitude are retained. RSSI values and their known locations 

(longitude and latitude) are central to the proposed node localisation techniques reliant on 

machine learning. The locations are core to partitioning the data into training and testing 

sets.  
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In the case of missing data, represented in Figure 4.6, the mean imputation method [87] is 

applied for filling such data since it has been proven to be more efficient than other methods 

such as Hot-Deck, Cold-Deck, Maximum-Likelihood, and no unit is sacrificed. In addition, if 

the observed data contain useful information for predicting missing values, an imputation 

procedure can exploit it and maintain integrity with high precision. Imputation provides a 

complete data set amenable to analysis by standard methods [88]. 

Imputation reconstitutes missing data as follows: 

Step 1; Separation of each group of 20 packets by location.  

Step 2; Examination of all data for each Gateway in isolation. Two issues are faced in respect 

of dealing with missing data: 

1. In the case of loss of all the RSSI (lost packets) at a specific Gateway (referred to as 

Monotone) with the same location, missing RSSI values are replaced with the 

specified value, assigned as the high sensitivity value of -132 dBm.  

2. In the case of a partial missing data at a specific Gateway (referred to as Non-

Monotone) with the same location, the mean of observed RSSI values are calculated 

(not Null) of the 𝐺𝑗  for each location, where  𝐺𝑗 denotes the number of the Gateway 

i.e. these missing value are replaced with the mean value in 𝐺𝑗  for each location. 

The resulting data contains 6 columns [RSSI_Gatewy1, RSSI_Gatewy2, RSSI_Gatewy3, 

RSSI_Gatewy4, Longitude, Latitude] and 150 rows where RSSI’s are measured using 4 

Gateways (receivers) from 150 different locations (longitude and latitude). 
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The study reported in this thesis was carried out using the open source scikit-learn machine 

learning library for the Python language. scikit-learn provide various tools for model fitting 

and prediction. Table 4.4presents the scikit-learn and python library with the algorithms 

used in this study. 

Table 4.4: Python Library and models 

 Library Model 

1 python Numpy, pandas, math, scipy,  

matplotlib.pyplot 

2 sklearn.model_selection KFold 

3 sklearn.neighbors  KNeighborsRegressor 

4 sklearn.svm  SVR, NuSVR 

5 sklearn.gaussian_process GaussianProcessRegressor 

6 sklearn.gaussian_process.kernel RBF, Matern, RationalQuadratic, 

ExpSineSquared, DotProduct, 

ConstantKernel 

7 sklearn. tree DecisionTreeRegressor 

8 sklearn.ensemble  GradientBoostingRegressor,  

RandomForestRegressor 

   

The machine learning methodology, separate datasets are needed to train and validate the 

model. Here, the RSSI /location data were collected by four gateways from 150 locations, and 

then randomly divided into 80% for training and 20% for testing. The RSSI/location in the 
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training data were used as input/output feature for training the machine learning model. To 

validate the model the RSSI measurements from unknown location were used in the model 

to estimate the unknown locations. The accuracy of the models is measured by the Haversian 

distance metric between the estimated location and the true location of a node. 

 Location Fingerprinting 

Location Fingerprinting (LF) is a technique that utilises any unique characteristic of radio 

signals that can be differentiated to infer the location of a node. LF exploits the relationship 

between radio signal transmission behaviour and known spatial locations to establish a 

model that can in turn be used to determine unknown locations of other signals. The 

commonly used signal parameter is absolute RSSI from multiple receivers. RSSI is known to 

have an inverse relationship with distance from transmitter to receiver [89]. 

In dynamic environments, such as the one under study, signal propagation is especially 

affected by multipath, limiting approaches to localisation that largely depend on LOS 

ineffective; conversely, multipath in the case of LF creates unique signatures for different 

locations. The development of LF can be crudely divided into two phases; an ‘off-line’ stage, 

also known as database creation and an ‘on-line’ stage known as location estimation [90] . A 

schematic diagram of fingerprinting localisation is as shown in Figure 4.7. 
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Figure 4.7: Schematic of the Location Fingerprinting technique. 

First, a set of pre-defined grid points referred to as reference points are selected. During the 

off-line stage, a survey is carried out and multiple measurements are taken at each grid point 

throughout a time interval. The database of measurements recorded from all grid points 

allows the creation of a radio map for the area. In the location estimation stage, new 

measurements from other locations assumed to be unknown are taken and a location 

algorithm is used to match these measurements to the radio map entries to find similar 

fingerprints and the reference locations of those fingerprints are then used to estimate the 

locations of the new measurements.  An important feature of location fingerprinting is that the 

locations of the receivers do not need to be known; only the received signal/packets for known 

transmitter node locations need to be known (in off-line stage). 
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Variations in the propagation environment is a huge challenge in the location fingerprinting. A 

periodic update strategy for the created database and refresh the radio map is implemented to 

cater for the changes that arise in the operating environment. 

 RSSI Location Fingerprint 

RSSI is selected as the fingerprint parameter to implement localisation. Given that the radio 

propagation characterisation for the sand storm environment under investigation confirms 

that packets that contain RSSI information are subject to significant loss, the number of 

returned RSSI values is lower as is temporal variations in the RSSI values; this constitutes 

noise in the data. Therefore, in order to obtain a high-quality dataset, the RSSI information 

collected during the experiment is pre-processed to obtain a robust set of features to enable 

models for node localisation to be established.  

Here, the mean of the 20 individual measurements taken from each Gateway  𝐺𝑗  (where j is 

the number of the Gateway at each location) at each reference location is used as the input 

to a fingerprint. The measure of the mean RSSI is robust in the presence of outlier values [91] 

and is computed for packets/RSSI (r)  𝑖 to 𝑛 in  𝐺𝑗  as in Equation 4.2; 

𝑅𝑆𝑆𝐼 𝑚𝑒𝑎𝑛 𝑓𝑜𝑟 𝑙 =  
∑ 𝑟

𝑖

𝐺𝑗𝑛=20
𝑖=1

𝑛
 

Equation 4.2 

Where 𝑙 is the location measurment. Therefore, the mean RSSI values is used as location 

fingerprints.  
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 Machine Learning Algorithms 

 K-Nearest Neighbour 

K-Nearest Neighbour (KNN) has been proven to be one of the simplest and most widely used 

algorithms in location fingerprinting [92] [93] [94].  KNN is applied as a regression problem 

that maps signal input features (RSSI) onto dual outputs representing location coordinates 

(longitude and latitude).  The KNN algorithm relies on the assumption of locality in the 

feature space. 

The KNN training phase is equivalent to creating a database (radio map) with reference 

LoRaWAN location patterns.  The location pattern consists of a known location and a feature 

value.  In this case, the feature value is the Received Signal Strength Indicator (RSSI) and each 

RSSI-location pair constitutes a training data point for the algorithm. 

In the location estimation phase, the dataset composed RSSI values only. The distance 

between RSSI values and each stored neighbour is calculated in feature sub-space using the 

Euclidean distance metric [95] taking into account k nearest neighbours with the shortest 

distances, as in Equation 4.3. 

𝑑 = √∑(𝑅𝑆𝑆𝐼𝑡𝑒𝑠𝑡 − 𝑅𝑆𝑆𝐼𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔)
2

 

Equation 4.3 

The unknown LoRaWAN location coordinate is then calculated as the mean of the 

coordinates of the k nearest neighbours, as in Equation 4.4. 
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(𝑙𝑛𝑔,̂ 𝑙𝑎�̂�) =
1

𝑁
∑(𝑙𝑛𝑔𝑖, 𝑙𝑎𝑡𝑖 )

𝑁

𝑖=1

 
Equation 4.4 

 Weighted k-Nearest Neighbour 

The KNN can be modified such that the selected neighbours used in the final prediction are 

given weights leading to the Weighted k-Nearest Neighbour (WKNN) algorithm. The 

modification is proven to smooth out outliers. Neighbours closest to the query location are 

weighted more hence contributing more to the final prediction than further away 

neighbours, which potentially improves the model. The computed distances in feature space 

are often used to calculate the weight in each instance. 

A variety of weight functions can be used [96, 97]. However, here, a simple weight function 

based on the inverse of the feature distance is adopted and will be used in subsequent 

analysis (Equation 4.5). 

𝑊𝑒𝑖𝑔ℎ𝑡 =
1

𝑑
 

𝑑 =  is the Euclidean distance Equation 4.5 

It is important to note that in the machine learning technique, separate datasets are needed 

to train and validate the model. Here, the RSSI/location data collected during from 150 

locations is randomly divided into training and test sets. A total of 120 x 4 (Gateways) 

randomly selected RSSIs with reference locations are used for training the model and 30 x 4 

remaining RSSIs without reference locations to validate the developed models.  The value of 

k affects the performance of KNN algorithm; the optimal value of k is determined using cross-

validation. 
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 Performance Analysis 

 Performance Metrics 

The performance of the developed node localisation models is evaluated based on the 

following metrics:  

a) Accuracy 

Accuracy is the deviation of the estimated location from the ground truth location of a node. 

The accuracy of the models is measured as the mean of the Haversian distance metric 

between the estimated location and the true location of a node given in Equation 4.6 

𝑑 = 2𝑟 sin−1 (√sin2 (
𝜑 − 𝜑0

2
) + cos(𝜑0) cos(𝜑) sin2 (

𝜆 − 𝜆0

2
)) 

Equation 4.6 

where, 𝜑0 = latitude of real location 

 𝜑 = latitude of estimated location 

 𝜆0 = longitude of real location 

 𝜆 = longitude of estimated location 

 

b) Cumulative Distribution Function (CDF) 

The CDF determines the probability that the localisation error is less than or equal to a 

certain user-defined value. For example, the CDF of localisation error X is defined as in 

Equation 4.7. 
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𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑅 Equation 4.7 

c) RMSE 

RMSE is defined as the square root of the mean squared difference between the estimated 

location and the true location of a node; the localisation error in terms of RMSE is given by 

Equation 4.8; 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑑𝑖)2

𝑛

𝑖=1

  

Equation 4.8 

where 𝑑𝑖, is the Haversian distance, the distance difference between real and estimated 

locations (Equation 4.6). The RMSE gives a measurement of how the data concentrated 

around the line of the best fit. 

 Effect of k 

The parameter k impacts the performance of the KNN. Larger values of k, render the model 

less sensitive to noise and much smoother. Here, cross-validation technique [98] is employed 

to determine the optimal value of k because it results in less bias. In general, cross-validation 

is a resampling procedure used to evaluate machine learning models on a limited data 

sample. The procedure has a single parameter called v that refers to the number of groups 

that a given data sample is to be split into. As such, the procedure is often called v-fold cross-

validation. This involves randomly dividing the set of observation into v folds, of 

approximately equal size. In tuning for the optimal value of k parameter in KNN, the common 

value to use for v is 5. That is 5-fold cross-validation. Figure 4.8 shows a diagrammatic 
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representation of the 5-fold cross validation method. The first fold is treated as a validation 

set, and the remaining v-1 folds are used to train the model. The general procedure is as 

follows: 

1. Shuffle the dataset randomly. 

2. Split the dataset into v folds 

3. For each unique fold and unique value of k: 

a. Take the fold as a hold out or test dataset 

b. Take the remaining folds as a training dataset 

c. Train the model and evaluate on the test set 

d. Retain the testing accuracy and discard the model 

4. Take the mean of these test accuracy as the accuracy of the sample. 

5. Finally, the k value with the best test accuracy is selected as optimal. 

 

Figure 4.8: v-fold cross-validation [99]. 

A 5-fold cross validation is used to determine the optimal k for each dataset collected for 

different spread factors (SF9, SF10, SF11, SF12). Figure 4.9 shown the effect of k on the 
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performance of the KNN for SF9, SF10, SF11 and SF12. The optimal value of k for the different 

datasets is presented in Table 4.5. 

  

  

Figure 4.9: K Graphs of kNN model for different spreading factors. 

Table 4.5: Optimal k for different spreading factors. 

Dataset SF9 SF10 SF11 SF12 

Optimal k 5 7 5 6 
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 Impact of Spreading Factor (SF) 

In order to evaluate the performance of KNN and WKNN used in locating node position, the 

data gathered detailed in Section 4.3.5 is used. The training data (120 x 4) and their 

corresponding ground truth locations are used to train the algorithms to establish the node 

localisation models for the sandstorm environment. The location estimation error is defined 

as the distance between the real location coordinates and the estimated location coordinates 

using the Haversian distance metric (Equation 4.6). 

The performance of the models is given in terms of their Cumulative Distribution Function 

(CDF) and statistical operators of location error [100]. The CDF describes the probability of 

locating the transmitter node within a localisation error range. Table 4.6 shows the statistical 

indices in the performance of each model on the different datasets based on the SF used.  The 

comparison of the cumulative probability of localisation error between the models for 

different SF is presented in Figure 4.10. 

  

Figure 4.10: Cumulative probability of localisation error for kNN and WkNN. 
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Table 4.6: Localisation performance of kNN and WkNN. 

Model SF9 (m)         SF10 (m) SF11 (m) SF12 (m) 

kNN (min) 65 142 68 109 

kNN (max) 978 1017 839 908 

kNN (mean) 476 440 459 326 

kNN (median) 454 408 469 316 

kNN (RMSE) 534 485 495 372 

WkNN (min) 122 106 117 19 

WkNN (max) 977 1382 1335 1019 

WkNN (mean) 475 468 530 338 

WkNN (median) 492 346 428 315 

WkNN (RMSE) 525 561 622 391 

     

It is evident from Table 4.6 that the localisation accuracy of the models improves as the 

spreading factor increases from 9 to 12. Specifically, the WKNN with SF12 can provide a 

median error in 315m, enhancing the precision of node localisation by 35.98 % over the 

performance of WKNN with SF9. Furthermore, WKNN with SF12 also provides a minimum 

localisation error of 19m. The trade-off between latency and accuracy in this application is a 

design factor e.g. at SF12 the node exhibit latency issues (delays in transfer of packets). At a 

low SF, shadowing and reflection will impact through reducing the reception at transmission 

node locations that would otherwise have been received at higher SFs.   
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 Impact of Localisation Algorithm  

KNN and its weighted version, WKNN are used to model the RSSI-location relation and hence 

infer locations of new observed RSSIs. For each dataset harvested at different SFs during the 

foundation series of measurements, the optimal value of k was chosen empirically 

(Section 4.7.2). Table 4.6 summarises the performance comparison between KNN and WKNN 

in terms of RMSE, mean, median, maximum and minimum location error indicating that the 

localisation accuracy of the two models are comparable. The best mean localisation accuracy 

of KNN and WKNN is 326m and 338m, respectively. Although the minimum location error of 

KNN is inferior to that of WKNN, the maximum location error of KNN is less than that of 

WKNN in all cases. 

 Summary 

An investigation into the use of RSSI based fingerprinting for LoRa node localisation in sand 

storm environments has been carried out. The mean RSSI at each location was used as the 

location feature. 

Two machine learning algorithms, KNN and WKNN have been used to develop localisation 

models. An investigation into the impact of different spreading factors on node localisation 

performance has also been conducted.  

The analysis conducted for both KNN and W-KNN is based on using the same distance measure 

(Euclidean) and same neigbour counts for all the datasets. Based on the obtained results, it is 

concluded that the performance of the models depends on the dataset. For dataset obtained using 

SF10, SF11and SF12, W-KNN shows improvement over KNN in terms of median localization error 
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with the least minimum error but fails to improve the overall performance. On the other hand, for 

SF9 dataset, KNN outperforms W-KNN. In both cases, the differences are not overwhelming. In this 

work, the expectation that W-KNN will improve results obtained by KNN was not achieved. This is 

due to the measured dataset, the constraint of distance measure and neighbor counts. At SF12, both 

models provide acceptable localisation accuracy in comparison to lower SFs (9, 10 and 11). 

The results contribute to informing on the feasibility of any localisation-based application 

for these environments.  

The next Chapter will detail the use of new features derived from the RSSI data in conjunction 

with machine learning to improve node localisation performance. 
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CHAPTER 5 KERNEL-BASED NODE LOCALISATION USING RSSI 
RATIOS 

 Introduction 

In the previous Chapter, the use of RSSI as an input to develop simple machine learning 

models for localisation in sand storm environment was detailed. In this Chapter, more 

advanced machine learning algorithms and feature transformation is explored to enhance 

models for node location. 

The RSSI values are transformed into ratios from pairs of Gateways. Two kernel based 

algorithms - Support Vector Regression (SVR) and Gaussian Process Regression (GPR) - are 

then used to model the relationship between the RSSI ratios and location; as in the previous 

Chapter, these models are then used to infer node locations.  

Firstly, the location fingerprints are computed. The theoretical background of Gaussian 

Process Regression (GPR) and two versions of SVR, epsilon SVR and Nu SVR are discussed. 

Different kernel functions are used to developed several SVR and GPR models for node 

localisation. Finally, the Chapter concludes with a performance evaluation on the use of 

Kernel based methods in conjunction with RSSI ratios for LoRa node localisation in the 

selected environment. 

 RSSI Ratio Location Fingerprint 

The highly unpredictable nature of absolute RSSI values used in location fingerprinting in 

environments characterised by reflections and obstructions introduces noise to the input 
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features and consequently adversely impacts the accuracy of localisation. Here, ratios of RSSI 

between pairs of receivers are used in order to limit the impact of the variations in the 

absolute RSSI values and provide more robust location fingerprints. The premise motivating 

the use of the RSSI ratio is that the location of the node can be uniquely determined if there 

are more than three spatially separated receivers which observed the RSSI readings from 

that transmission node. 

Assuming 𝐺 = {𝑔1, 𝑔2, . . . , 𝑔𝑛} is a set of Gateways deployed in the area under consideration 

and 𝐿 = {𝑙1, . . . , 𝑙𝑚} represents the reference node locations. The location feature space, 

𝑙𝑖 can then be represented by Gateways and measured RSSI values 𝑟 ∈ 𝑅 where 𝑅 =

{𝑟1, 𝑟2, . . . , 𝑟𝑛}. The RSSI ratio is defined at each location for a unique pair of Gateways.  

The received signal strength ratio for the gateways 𝑔𝑖 and 𝑔𝑗  can be computed for 

measurement taken at location 𝑙= [(𝑔𝑖; 𝑟𝑖); (𝑔𝑗; 𝑟𝑗)] as in Equation 5.1; 

𝑹𝑺𝑺𝑰𝒓𝒂𝒕𝒊𝒐(𝒈𝒊, 𝒈𝒋) =
𝒓𝒊

𝒓𝒋
 With 𝑖 < 𝑗 for uniqueness. 

    Where 𝑟 is absolute RSSI. 

Equation 5.1 

The mean of the RSSI ratios for each location were computed as in Equation 5.2; 

𝑀𝑒𝑎𝑛 𝑅𝑆𝑆𝐼𝑟𝑎𝑡𝑖𝑜  =  

∑
𝑟𝑖

𝑟𝑗

𝑛=20
𝑖,𝑗=1

𝑛
 

Equation 5.2 

where  𝑔𝑖,𝑗 denotes the number of unique pair of Gateways that measures the signal strength 

of the node at location 𝑙𝑖.  Mean RSSI ratios will be used in the subsequent analysis. The 

proposed node localisation technique is shown in Figure 5.1. 
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Figure 5.1: Node localisation based on RSSI ratios. 

 Kernel Methods 

 Support Vector Regression (SVR) 

SVR [101] [102] is a variant of the well-known Support Vector Machine (SVM) algorithm 

dedicated to regression problems. SVR is based on the same principles as SVM [103] for 

classification, using nonlinear mapping to transforming the data into a high dimensional 

feature space; linear regression is then executed in this space. The Kernel functions perform 

the nonlinear transform of the data into higher dimensional feature space that then enables 

the linear separation. The linear regression in a high dimensional space corresponds to a 

nonlinear regression in the low-dimensional input space [104]. 
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Generally, regression methods derive a function (say) 𝑓(𝒙) with the least deviation between 

predicted and observed data for all training data. In SVR, the goal remains the same; to 

minimise the deviation or error, as shown in Figure 5.2. Given that the SVR output is a real 

number, it becomes very difficult to derive a prediction. Consequently, a tolerance margin 

epsilon is set in an approximation to the SVM.  

 

Figure 5.2: Schematic of the one-dimensional Support Vector Regression (SVR) model [105].  

Two basic types of SVR are explored: epsilon-SVR and nu-SVR [106] [107], differing in the 

manner the parameters therein are controlled. In epsilon-SVR, no control on how many data 

vectors from the dataset become support vectors is invoked. Nonetheless, total control of 

how much error is allowed and anything beyond the specific epsilon is penalised in 

proportion to C, the regularisation parameter. On the other hand, nu-SVR determines the 

proportion of the number of support vectors with respect to the total number of samples in 

the dataset. In other words, nu represents an upper bound on the proportion of training 

samples that are errors and a lower bound on the proportion of samples that are support 

vectors. In nu-SVR, the parameter epsilon is introduced into the optimisation problem 
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formulation and is automatically estimated. The linear case of SVR is modeled as shown in 

Equation 5.3; 

𝑓(𝒙) = ⟨𝒘 ∙ 𝒙⟩ + 𝑏 Equation 5.3 

The SVR problem can be written as a convex optimisation as stated in Equation 5.4 [108]; 

Minimise 
1

2
‖𝒘‖2 

Subject to {
𝑦𝑖 − ⟨𝒘 ∙ 𝒙𝒊⟩ − 𝑏 ≤ 𝜀
⟨𝒘 ∙ 𝒙𝒊⟩ + 𝑏 − 𝑦𝑖 ≤ 𝜀

 

Equation 5.4 

ε – is the acceptable deviation of estimated locations from actual location. 

An implicit assumption is that the function 𝑓(𝒙) can approximate all input pairs (𝒙𝒊, 𝑦𝑖) with 

𝜀 precision, i.e. it is assumed optimisation is feasible.  In order to accommodate errors, slack 

variables 𝜉𝑖, 𝜉𝑖
∗ are introduced to cope with otherwise infeasible optimisation constraints 

giving Equation 5.5 [109], where the constant 𝐶 > 0 determines the degree to which 

deviations larger than 𝜉 are tolerated with 𝑙 being the number of samples; 

Minimise 
1

2
‖𝒘‖2 + 𝐶 ∑ (𝜉𝑖 + 𝜉𝑖

∗)𝑙
𝑖=1  

Subject to {

𝑦𝑖 − ⟨𝒘 ∙ 𝒙𝒊⟩ − 𝑏 ≤ 𝜀 + 𝜉𝑖

⟨𝒘 ∙ 𝒙𝒊⟩ + 𝑏 − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖
∗

𝜉𝑖, 𝜉𝑖
∗ ≥ 0 

 

Equation 5.5 

𝜉𝑖, 𝜉𝑖
∗ - The slack variables make allowance for the localisation errors to exist up to the value 

of 𝜉𝑖 and 𝜉𝑖
∗ without degrading performance.  C - is the box constraint, a positive numeric 

value that controls the penalty imposed on data points that lie outside the ε margin and helps 

to prevent overfitting. 
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A standard dualisation method with Lagrange multipliers 𝛼𝑖, 𝛼𝑖
∗ can be used [110] to solve 

the problem in Equation 5.5 and 𝝎 can be expanded to Equation 5.6 [104]; 

𝒘 = ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝒙𝑖

𝑙
𝑖=1  ;  Where 𝛼𝑖 ≥ 0 and 𝛼𝑖

∗ ≥ 0 Equation 5.6 

Substituting Equation 5.6 into Equation 5.3 and Equation 5.5 produces Equation 5.7 [111]; 

𝑓(𝒙) = ∑(𝛼𝑖 − 𝛼𝑖
∗)

𝑙

𝑖=1

⟨𝒙𝒊 ∙ 𝒙⟩ + 𝑏 
Equation 5.7 

A variant of Equation 5.7 can be applied to develop nonlinear solutions by replacing the dot 

product of the input vectors with their nonlinear transformation, known as the Kernel 

function, represented by 𝑘(𝒙𝑖, 𝒙) as in Equation 5.8 [111]; 

𝑓(𝒙) = ∑(𝛼𝑖 − 𝛼𝑖
∗)

𝑙

𝑖=1

𝑘(𝒙𝑖, 𝒙) + 𝑏 
Equation 5.8 

The use of Kernel functions makes SVR applicable to both linear and nonlinear 

approximations.  

SVR gives a reasonable generalisation performance because it uses only the support vectors 

for prediction and is based on structural risk minimisation that seeks to minimise the 

generalisation rather than the training error [112]. 

 Gaussian Process Regression (GPR) 

The Gaussian process is a probabilistic Kernel based machine learning technique that has 

been applied in many practical problems including estimation, classification, prediction and 
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prognosis due to its advantages of being flexible, probabilistic, and non-parametric [73] 

[106]. A Gaussian Process (GP) can model any system or process according to a normal or 

Gaussian distribution, where the mean and covariance function depends on the training 

data; the process is a collection of random variables with a joint Gaussian distribution [113]. 

Any function sample from the GP has a Gaussian distribution defined by its mean function 

𝑚(𝑥) and covariance function 𝑘(𝑥, 𝑥′).  

The GP model assumes that the output is a realisation of a GP with joint probability density 

function given as Equation 5.9 [73]; 

𝑓(𝑥) ~ 𝐺𝑃(𝑚(𝑥), 𝑘(𝑥, 𝑥′)) 

 where,  𝑚(𝑥) = 𝐸(𝑓(𝑥)) 

   𝑘(𝑥, 𝑥′) = 𝐸[(𝑓(𝑥) − 𝑚(𝑥))(𝑓(𝑥′) − 𝑚(𝑥′))] 

   𝑘(𝑥, 𝑥′) = 𝑐𝑜𝑣(𝑓(𝑥), 𝑓(𝑥′)) 

Equation 5.9 

Here, GP is applied to a regression problem. 

Assume 𝑋 = [𝑥1, 𝑥2, . . . , 𝑥𝑁] represents N by 6-dimensional RSSI ratio input vectors, and the 

corresponding outputs are 𝑦 = [𝑦1, 𝑦2, . . . , 𝑦𝑁] representing the dual location coordinates. 

When a new input vector 𝑥∗ is given, the aim is to predict the corresponding output  𝑦∗ 

(location coordinates). The relationship between the input variable and the expected output 

can be modeled as Equation 5.10; 

𝑦𝑖 = 𝜑(𝑥𝑖; 𝑊) +  𝜀, 𝜀 ~ 𝑁(0, 𝜎𝑛
2 ), 𝑖 = 1, . . . , 𝑁 Equation 5.10 
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where 𝜑 is a function parameterized by vector 𝑊;  𝜀 is assumed to be the noise caused by 

disturbances or distributed Gaussian distribution N with zero mean and variance 𝜎𝑛
2. 

The prior probability on y is given by Equation 5.11 [106]; 

𝐸[𝑦] = 𝐸[𝜑(𝑥; 𝑊) +  𝜀] = 0 

𝑐𝑜𝑣[𝑦] = 𝐾(𝑋, 𝑋) + 𝜎𝑛
2𝐼 

Equation 5.11 

where E is the mean function, cov is the variance function. 

The distribution with the new input can be expressed by Equation 5.12 [113]; 

[
𝑦
𝑦∗] ~ 𝐺𝑃 (0, [

𝐾(𝑋, 𝑋) + 𝜎𝑛
2𝐼 𝐾(𝑋, 𝑥∗)

𝐾(𝑋, 𝑥∗)𝑇 𝐾(𝑥∗, 𝑥∗)
]) 

Equation 5.12 

where 𝐾(𝑋, 𝑥∗) = [𝑘(𝑥1, 𝑥∗), . . . , 𝑘(𝑥𝑁 , 𝑥∗)]  can be written as 𝑘∗. The prediction can be 

presented by Equation 5.13 and Equation 5.14 [73]; 

𝐸(𝑦∗) =  𝑘∗𝑇(𝐾 + 𝜎𝑛
2𝐼)−1𝑦𝑇 Equation 5.13 

𝑐𝑜𝑣[𝑦∗] = 𝐾(𝑥∗, 𝑥∗) − 𝑘∗𝑇(𝐾 + 𝜎𝑛
2𝐼)−1𝐾∗ Equation 5.14 

 Kernel Function 

In machine learning, a Kernel is normally used to refer to a technique using a linear model to 

solve a nonlinear problem, implying the transformation of linearly inseparable to linearly 

separable data. The Kernel function is a function applied on each data point to map the 

original nonlinear observations into a higher dimensional space in which they become 
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separable. In simple terms, Kernel functions compute similarities between samples in the 

data. 

A number of Kernel functions can be used in SVR and GPR algorithms. Here, commonly used 

Kernel functions are considered and new Kernels by combining kernel functions derived. 

The list of Kernel functions used are given in Table 5.1  [113] [114] [115]. 

Table 5.1: Common Kernel functions [113] [114] [115]. 

1 Linear 𝑘(𝒙, 𝒙′) = 𝒙𝑻𝒙′ 

2 Polynomial 𝑘(𝒙, 𝒙′) = ⟨𝒙 ∙ 𝒙′⟩𝑑 

3 Radial Basis Function (RBF) 

𝑘(𝒙, 𝒙′) = 𝑒
(−

‖𝒙−𝒙′‖
2

2𝜎2 )

 

4 Sigmoid 𝑘(𝒙, 𝒙′) = tanh (γ𝒙𝑻 ∙ 𝒙′) 

5 Rational Quadratic (RQ) 
𝑘(𝒙, 𝒙′) = (1 +

𝑑(𝒙, 𝒙′)2

2𝛼𝑙2
)−𝛼 

6 Matern 
𝑘(𝒙, 𝒙′) = 𝜎2

1

𝛤(𝜈)2𝜈−1
(𝛾√2𝜈𝑑(

𝒙

𝑙
,
𝒙′

𝑙
))𝜈  𝑘𝑣(𝛾√2𝜈𝑑(

𝒙

𝑙
,
𝒙′

𝑙
)) 

7 ExpSineSquared 𝑘(𝒙, 𝒙′) = exp (−2(sin (
𝜋

𝑝
∗ 𝑑(𝒙, 𝒙′))/𝑙2)2) 

   

 Performance Analysis 

 Performance Evaluation Metrics 

Performance evaluation metrics provide the basis for a comparison of the developed node 

localisation models. SVR and GPR models are evaluated and the comparison is based on the 
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following metrics: accuracy, Cumulative Distribution Function (CDF) and Root Mean Square 

Error (RMSE). 

a) Accuracy 

Accuracy represents the deviation of the estimated location from the ground truth location 

of a node. The accuracy of the models is measured as the mean of the Haversian distance 

metric between the estimated location and the true location of a node given in Equation 5.15; 

𝑑 = 2𝑟 sin−1 (√sin2 (
𝜑 − 𝜑0

2
) + cos(𝜑0) cos(𝜑) sin2 (

𝜆 − 𝜆0

2
)) 

  where, 𝜑0 = 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑟𝑒𝑎𝑙 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 

   𝜑 = 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 

   𝜆0 = 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑟𝑒𝑎𝑙 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 

   𝜆 = 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 

Equation 5.15 

b) Cumulative Distribution Function (CDF) 

The CDF is used to determine the probability that the localisation error is less than or equal 

to a certain user defined value. For example, the CDF of localisation error X is defined by 

Equation 5.16; 

𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑅 Equation 5.16 
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c) RMSE 

RMSE is defined as the square root of the mean squared difference between the estimated 

location and the true location of a node. The localisation error in terms of RMSE is given by 

Equation 5.17, where 𝑑 is defined in Equation 5.15; 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑑𝑖)2

𝑛

𝑖=1

 

Equation 5.17 

 Parameter Tuning 

The hyper-parameters associated with the machine learning algorithms affect overall 

performance when applied to a particular dataset. It is therefore imperative that these 

hyper-parameters be properly tuned in order to build an optimal model for the problem. The 

hyper-parameters are tuned for each dataset (RSSI ratios of SF9, SF10, SF11, and SF12 data), 

with the optimal model hyper-parameters for one particular dataset will not be the optimum 

across all datasets. 

The random search method is used to select the optimal parameters of epsilon-SVR, nu-SVR 

and GPR algorithms. A grid of hyper-parameters values are established and a random 

combination of the values selected to train the model; here for SVR algorithm, hyper-

parameter C, regularisation constant, epsilon and nu for nu-SVR; for GPR, the only hyper-

parameter to tune is alpha. Some Kernels such as Matern has a parameter that is also 

optimised. 
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Figure 5.3 to Figure 5.6 show the elbow curves for tuning the epsilon parameter in SVR. 

Detail curves for other parameters can be found in the Appendix. The summary of the 

optimal parameters used in each algorithm for each dataset is given in Table 5.2. 

 

Figure 5.3: Impact of epsilon on SVR performance using a linear Kernel. 

 

Figure 5.4: Impact of epsilon on SVR performance using a polynomial Kernel. 
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Figure 5.5: Impact of epsilon on SVR performance using RBF Kernel. 

 

Figure 5.6: Impact of epsilon on SVR performance using a rational quadratic kernel. 
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Table 5.2: Optimal parameters for each algorithm. 

 

 Impact of Kernel Function 

The effect of Kernel function used (see Table 5.2) in transforming data in original space into 

the higher dimension on the performance of the algorithm used for localisation is 

investigated. The RSSI ratio data derived from measured RSSI values and the corresponding 

location coordinates summarized in Table 5.3 are used as training inputs to the algorithms. 

It is important to note that only data of SF11 and SF12 are the focus since the preceding 

analyses have indicated that their performance is superior. While the data used for training 

remain constant, the Kernel function is varied in order to test the impact of the Kernel on the 

performance of each algorithm. 

Table 5.3: Summary of RSSI ratio data. 

Dataset No. of train No. of test Dimension of 
RSSI-Ratio 

Dimension of Location 
Coordinate 

RSSI Ratios 120 30 6 2 
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Result with different Kernel functions for each algorithm - epsilon-SVR, nu-SVR and GPR - is 

shown in Table 5.4, Table 5.5, and Table 5.6 respectively. It is evident that the combined 

Kernel functions outperform the commonly used Kernels on the same dataset for all the 

three algorithms. More specifically, Rational Quadratic + Matern Kernel has the lowest 

median error of 303m in the epsilon-SVR algorithm viz. the epsilon-SVR model locates node 

with error less than 303m for 50% of the time. For the ExpSineSquared + Matern Kernel in 

nu-SVR, the median location error is 309m. In GPR, the RBF + Matern Kernel function gives 

a median error of 317 m with mean location error above 400 m. 

Table 5.4: Performance of different kernels on epsilon-SVR. 

Epsilon_SVR 
Kernels  

SF 11_Ratio RSSI SF 12_Ratio RSSI 

Min 
(m) 

Median 
(m) 

Mean 
(m) 

RMSE 
(m) 

Min 
(m) 

Median 
(m) 

Mean 
(m) 

RMSE 
(m) 

RBF 124 487 511 579 50 364 421 482 

Linear 150 518 528 583 55 355 421 485 

Polynomial 84 492 540 605 35 363 420 481 

Sigmoid 74 491 534 606 77 462 524 589 

RationalQuadratic 119 458 502 579 94 371 388 439 

Matern 78 318 448 564 21 346 403 461 

ExpSineSquared 115 390 481 575 49 342 395 451 

Ex.+Matren 84 326 453 588 97 329 393 447 

RBF+Matern 84 313 453 583 42 323 385 440 

RQ+Matern 85 303 451 573 70 346 378 431 
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Table 5.5: Performance of different kernels on nu-SVR.  

nu_SVR 
Kernels  

SF 11_Ratio RSSI SF 12_Ratio RSSI 

Min 
(m) 

Median 
(m) 

Mean 
(m) 

RMSE 
(m) 

Min 
(m) 

Median 
(m) 

Mean 
(m) 

RMSE 
(m) 

RBF 96 464 519 582 44 358 415 476 

Linear 132 492 526 588 52 351 422 497 

polynomial 126 471 500 562 31 357 413 474 

Sigmoid 72 459 541 621 101 465 528 593 

RationalQuadratic 85 417 506 581 89 363 400 450 

Matern 143 337 454 559 80 327 401 450 

ExpSineSquared 139 392 484 555 146 336 399 449 

RBF+Matern 129 336 454 567 83 320 396 443 

RQ+Matern 109 338 463 555 121 324 391 444 

Exp.+M 111 338 474 612 116 309 404 459 
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Table 5.6: Performance of different kernels on GPR.  

GPR 
Kernels 

SF 11: Ratio_RSSI SF 12: Ratio_RSSI 

Min 
(m) 

Median 
(m) 

Mean 
(m) 

RMSE 
(m) 

Min 
(m) 

Median 
(m) 

Mean 
(m) 

RMSE 
(m) 

RBF 21 395 483 595 100 364 432 513 

RationalQuadratic 51 418 427 485 91 394 435 490 

Matern 30 387 519 700 114 379 444 534 

ExpSineSquared 68 400 445 498 87 397 418 475 

Exp.+Matern 32 392 488 595 62 379 424 481 

RBF+Matern 32 392 488 595 49 317 425 491 

RQ+Matern 35 387 490 678 22 361 385 433 

         

 Evaluating Model Accuracy 

In order to evaluate the performance of the three algorithms (epsilon-SVR, nu-SVR and GPR), 

the RSSI ratio data detailed in Section 5.2 was used in tandem with the combined (derived) 

Kernels owing to their superior performance. RSSI ratio features (120 X 6) and their 

corresponding location coordinates were used as inputs to train the algorithms; RSSI ratios 

from the remaining 30 locations were used as test data. The statistical measures of location 

error for each node localisation model using the three best Kernels are presented in 

Table 5.7, Table 5.8, and Table 5.9. 
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Table 5.7: Statistical measures of location error for each model using Rational Quadratic + 

Matern Kernel Function. 

Models 
SF9 RSSI Ratio 

(m) 
SF10 RSSI Ratio 

(m) 
SF11 RSSI Ratio 

(m) 
SF12 RSSI Ratio 

(m) 

Epsilon-SVR(min) 59 66 85 70 

Epsilon-SVR (median) 453 381 303 346 

Epsilon-SVR (mean) 571 451 451 378 

Epsilon-SVR (RMSE) 694 509 573 431 

Nu-SVR (min) 119 57 109 121 

Nu-SVR (median) 399 353 338 324 

Nu-SVR (mean) 508 440 463 391 

Nu-SVR (RMSE) 575 503 555 444 

GPR(min) 49 52 35 22 

GPR(median) 423 388 387 361 

GPR(mean) 489 447 490 385 

GPR(RMSE) 560 506 678 433 
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Table 5.8: Statistical measures of location error for each model using ExpSineSquared + 

Matern Kernel Function. 

Models SF9 RSSI Ratio 
(m) 

SF10 RSSI Ratio 
(m) 

SF11 RSSI Ratio 
(m) 

SF12 RSSI Ratio 
(m) 

Epsilon-SVR(min) 90 108 84 97 

Epsilon-SVR (median) 477 410 326 329 

Epsilon-SVR (mean) 637 498 453 393 

Epsilon-SVR (RMSE) 767 559 588 447 

Nu-SVR (min) 140 56 111 116 

Nu-SVR (median) 425 366 338 309 

Nu-SVR (mean) 541 432 474 404 

Nu-SVR (RMSE) 609 498 612 459 

GPR(min) 36 59 32 62 

GPR(median) 430 380 392 379 

GPR(mean) 503 450 488 424 

GPR(RMSE) 576 508 595 481 
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Table 5.9: Statistical measures of location error for each model using RBF + Matern Kernel 

Function. 

Models SF9 RSSI Ratio 
(m) 

SF10 RSSI Ratio 
(m) 

SF11 RSSI Ratio  
(m) 

SF12 RSSI Ratio 
(m) 

Epsilon-SVR(min) 75 45 84 42 

Epsilon-SVR (median) 444 359 313 323 

Epsilon-SVR (mean) 532 449 453 385 

Epsilon-SVR (RMSE) 629 507 583 440 

Nu-SVR (min) 55 64 129 83 

Nu-SVR (median) 410 357 336 320 

Nu-SVR (mean) 518 452 454 396 

Nu-SVR (RMSE) 600 514 567 443 

GPR(min) 40 45 32 49 

GPR(median) 431 378 392 317 

GPR(mean) 502 454 488 425 

GPR(RMSE) 572 526 595 491 

     

Results indicate a consistency in the performance of the algorithms used for SF11 and SF12 

irrespective of the combined Kernels. More specifically, each of the models provide a 

localisation accuracy with median error less than 400m, evident in the box plot for each 

model as a function of different Kernels in Figure A4.1 to Figure A4.9 in Appendix 4. Epsilon-

SVR has the lowest median error of 303m compare to 309m and 317m for nu-SVR and GPR 

respectively. Furthermore, the overall performance of the three models is captured by CDFs 
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of the localisation error as shown in Figure A4.1 to Figure A4.9 in Appendix 4. SVR (303m) 

outperformed the GPR (317m) models in terms of overall accuracy. 82% of the time both nu-

SVR and epsilon-SVR attempt to locate node with localisation error of 600m or less 

compared to GPR at 78%. 

 Conclusions 

An investigation into the use of Kernelised learning methods with RSSI ratios for node 

localisation has been detailed. Specifically, epsilon- and nu-Support Vector Regression and 

Gaussian Process Regression have been used to model the complex relationship between 

RSSI ratios and node location. The RSSI ratio pairs are inputs to the models during training. 

The performance of the models has been evaluated and results indicate that the combination 

of different Kernel functions can enhance localisation accuracy.  

The kernel-based models provide  consistent performance when used with RSSI data at SF11 

and SF12 irrespective of the combined Kernels. More specifically, each of the models provide 

a localisation accuracy with median error less than 400m. Epsilon-SVR has the lowest 

median error of 303m compare to 309m and 317m for nu-SVR and GPR respectively. 

In the next chapter, a location fingerprint combination technique based on SFs will be 

explored and ensemble machine learning algorithm based on decision regression trees - 

random forest and gradient boosting - will be used to develop a node localisation model 

based on the combined features. Based on preceding results, the motivation is that a 

combination of features from different SFs provide a more robust set of features for 

localisation and the ensemble methods will improve accuracy.  
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CHAPTER 6 NODE LOCALISATION VIA FEATURE 
COMBINATION AND ENSEMBLE METHODS 

 Introduction 

The Chapter investigates the feasibility of using machine a learning ensemble technique and 

feature engineering to improve the performance of node localisation. To this end, RSSI 

parameters (RSSI values and ratios) at different Spreading Factors are combined to form a 

location fingerprint. Preceding analyses informs that a combination of location features 

based on SF enhance localisation accuracy. Therefore, a number of SF combinations are used 

to form different features that are used as input to develop models. Furthermore, machine 

learning ensemble methods - Random Forest (RF) and Gradient Boosting Regressor (GBR) - 

derived from Regression Decision Trees (RDTs) are investigated and used to model the 

complex relationship between the combined features and the location of nodes. The models 

are then used to infer node location. The performance of the node localisation models are 

evaluated with particular focus on accuracy and on comparison with RDT. 

 Location Fingerprint based on Combined Spreading Factors 

Preceding analyses has confirmed that the Spreading Factor impacts the RSSI data collected, 

which has motivated the evaluation on the use of a combination of two different spread 

factors viz. RSSI and RSSI ratio as a combined feature for node localisation. The combined 

features may capture the varying degrees of attenuation, interference and the impact of the 

challenging environmental characteristics; therefore, With SF11 and SF12, established to 

produce the best predictions, there the hypothesis is that features that result from the 
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combination of spreading factors and ratios may be potentially more robust as location 

fingerprints. 

Given the data from spreading factors SF9, SF10, SF11 and SF12 reported in Chapter 3, an 

observation for a given location can be represented by SF, nodes and measured RSSI. 

Therefore, a combination of RSSI features at each location for unique SF pair SFi and SFj  given 

as {(RSSI1i, RSSI2i, RSSI3i, RSSI4i)( RSSI1j, RSSI2j, RSSI3j, RSSI4j)} can be formulated (Figure 6.1).  

Similarly, a combination of RSSI ratios feature {(RSSI1i, RSSI2i, RSSI3i, RSSI4i, RSSI5i, RSSI6i)( 

RSSI1j, RSSI2j, RSSI3j, RSSI4j, RSSI5j, RSSI6j)} - as explained in Chapter 5 - where i,j = 9, 10, 11, 

12 represent spreading factors can be established. It is envisaged that this combination will 

increase the uniqueness of the RSSI values mapped to each known location, yielding more 

distinct fingerprints. 

For the purpose of the evaluation, the combined features (both RSSI and RSSI ratios) based 

on SFs will be referred to as SF9 & SF10, SF9 & SF11, SF9 &SF12, SF10 & SF11, SF10 & SF12 

and  SF11 & SF12, indicating the SF-RSSI values used in each unique combination. The 

formulation can be extended to a combination of three or four SFs viz. SF9&SF10&SF11, 

SF9&SF10&SF12, SF9&SF11&SF12 or SF9&SF10&SF11&SF12. This nomenclature is used 

throughout the remainder of the Chapter. Table 6.1 is a summary of data sets generated by 

feature combination for different SFs. 
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Table 6.1: Datasets from combined RSSI /RSSI ratio features. 

Dataset No. train No. test RSSI Dimension RSSI_Ratios Dimension 

2 SFs Combined 120 30 8 12 

3 SFs Combined 120 30 12 18 

4 SFs Combined 120 30 16 24 

     

 

Figure 6.1: Node localisation methodology based on combined features. 

 Feasibility of using combined features 

To verify the feasibility of using combined features based on SF, the KNN algorithm 

in Chapter 3 is used as a benchmark to model the combine RSSI-location relation. The 

combined features and their reference locations are used as KNN inputs to train and 

establish a model.  
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The KNN search space remains the same irrespective of features. K-nearest neighbours from 

the database are selected and used to estimate the location of a new observation. Since the 

combined features differ from the features used in the KNN developed in Chapter 3, the 

optimal value of parameter k derived is no longer valid. Therefore, an optimal value of k for 

combined features needs to be computed. V-fold cross validation is applied again on the 

training portion of the data to estimate the optimal value of the k-parameter. The results of 

v-fold cross validation for the optimal value of k in each pair of combine features (SF9 & 

SF10, SF9 & SF11, SF9 &SF12, SF10 & SF11, SF10 & SF12 and SF11 & SF12 is summarised in 

Table 6.2. 

Table 6.2: Optimal value of k for each data set. 

 

SF9&SF10 SF9&SF11 SF9&SF12 SF10&SF11 SF10&SF12 SF11&SF12 

Optimal_K 8 15 3 19 6 10 

       

The optimal values of k are then used in the KNN model to estimate the locations of the nodes 

in the test data. The results of the evaluations are summarised in Table 6.3. A significant 

improvement in performance compared with the results with single SF (Chapter 3) is 

evident. Specifically, the best median localisation error in the combined data set is 297m for 

SF9&SF12, an improvement of 6% from the best median localisation error (316m) when 

single SF data is used. In conclusion, the result demonstrate that the technique of combining 

features from different SFs produces a manifest improvement in localisation accuracy. 
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Table 6.3: Performance of kNN with two SFs feature combinations. 

 

SF9&SF10 
(m) 

SF9&SF11 
(m) 

SF9&SF12 
(m) 

SF10&SF11 
(m) 

SF10&SF12 
(m) 

SF11&SF12 
(m) 

kNN(min) 43 140 99 91 85 35 

kNN(max) 1008 1048 857 986 1066 968 

kNN(mean) 469 496 322 418 377 365 

kNN(median) 472 487 297 389 358 372  

kNN(RMSE) 539 545 378 472 425 419 

       

 Regression Decision Trees (RDTs) 

Decision Trees (DTs) are one of the simplest and widely used machine learning algorithms 

for classification and prediction [116] [117]. Regression Decision Trees (RDTs) [118, 119, 

120] are a variant of the DT where the target variables take continuous values. Here, the DRT 

[121] [122] is regarded as a function approximation problem consisting of mapping of the 

node RSSI input onto output variables representing the latitude and longitude of the node 

position achieved through the training of the DRT to learn the complex relationship between 

the RSSI features and their respective referenced locations. The training/learning process 

involves splitting the whole data into smaller clusters handled by simple linear predictors. A 

regression model is established and in turn used to infer location of nodes given new feature 

observations. 

The splitting process is achieved top-down from the root node to the leaves using recursive 

binary division. Recursive binary splitting is an iterative process that splits the training data 

(RSSI values and location co-ordinates) at each node into smaller groups with more 
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homogeneous/similar data points. In other words, the predictor space of possible feature-

locations is divided into distinct and non-overlapping regions (𝑅) as determined by 

Equation 6.1 and Equation 6.2: 

𝑹𝟏(𝒋, 𝒔) = {𝒙|𝒙𝒋 ≤ 𝒔} Equation 6.1 

𝑹𝟐(𝒋, 𝒔) = {𝒙|𝒙𝒋 > 𝒔} Equation 6.2 

Where, 𝑗 = splitting variable 

  𝑠 = split point 

For every observation that falls into a region, a prediction is made i.e. the mean of location 

coordinates in the training set in that particular region as determined Equation 6.3 and 

Equation 6.4: 

(𝑙𝑛�̂�, 𝑙𝑎�̂�)1(𝑗, 𝑠) = 𝑎𝑣𝑒{(𝑙𝑛𝑔, 𝑙𝑎𝑡)𝑖|𝑥𝑖 ∈ 𝑅1(𝑗, 𝑠)} Equation 6.3 

(𝑙𝑛�̂�, 𝑙𝑎�̂�)2(𝑗, 𝑠) = 𝑎𝑣𝑒{(𝑙𝑛𝑔, 𝑙𝑎𝑡)𝑖|𝑥𝑖 ∈ 𝑅2(𝑗, 𝑠)} Equation 6.4 

where 𝑗 and 𝑠 are found by minimising loss (𝐿) through a sum of Mean Square Error in 

partitioning the data as defined in Equation 6.5; 

𝑳(𝑗, 𝑠) = ∑
1

𝑁𝑅1

((𝑙𝑛𝑔, 𝑙𝑎𝑡)𝑖 − (𝑙𝑛�̂�, 𝑙𝑎�̂�)
𝑅1

)
2

𝑖:𝑥𝑖∈𝑅1(𝑗,𝑠)

+ ∑
1

𝑁𝑅2

((𝑙𝑛𝑔, 𝑙𝑎𝑡)𝑖 − (𝑙𝑛�̂�, 𝑙𝑎�̂�)
𝑅2

)
2

𝑖:𝑥𝑖∈𝑅2(𝑗,𝑠)

 

Equation 6.5 
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Location coordinates are subsequently inferred from new RSSI values inputted into the DT 

model that lead to a particular output leaf node. The tree expands until all leaves contain less 

than the minimum number of samples required to split an internal node. 

A known problem with DRT is that there is the tendency to over-fit data. Although the model 

performs well on the training data, it is likely to have a greater error rate with unseen data 

[123].  In order to overcome overfitting, ensemble learning methods are employed. In the 

next section, the ensemble methods considered are discussed. 

 Ensemble Methods 

The two ensemble methods employed in this thesis are GBR and RF. In machine learning, 

these models combine the results from multiple models to improve the performance in terms 

of prediction accuracy as compared to using a single model. The main causes of error in 

learning models are due to noise, bias and variance. Ensemble methods help to minimize 

these factors. 

 Random Forest (RF) for node localisation 

Random Forests (RFs) are combination of different individual tree models such that each 

tree depends on the values of a random vector sampled independently and with the same 

distribution for all trees in the forest [124, 125, 126]. The major aspect of RF is that its 

component trees are randomised in order to de-correlate individual tree predictions, in turn 

leading to improved generalisation and robustness. In other words, each tree of the forest is 

trained on a random subset of the training data. Both the samples and the features are 
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randomly selected with replacement. RFs have been used for classification and regression in 

many areas of studies [127, 128, 129]. Figure 6.2 shows the schema of the RF technique.  

 

Figure 6.2: Random forest procedure. 

In the node localisation application, the RF maps RSSI combined features to their location 

coordinates. The RF algorithm can be divided into an off-line training phase and an on-line 

test phase. In the training phase, individual tree models are built with bootstrap samples of 

the data. After obtaining multiple tree models, each testing sample is simultaneously pushed 

through all trees in multiple models until it reaches the corresponding leaves. RF test is 

executed in parallel, thus achieving high computational efficiency. 

 Gradient Boosting Regression (GBR) 

Gradient Boosting [130] [131] [132] is a variant of the Boosting machine learning ensemble 

technique for regression based on weighting observations, placing more weight on difficult 
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to predict cases and less on those well predicted. The result is a prediction model in the form 

of an ensemble of regression decision trees. In a statistical framework setting, boosting can 

be interpreted as an optimisation problem where the objective is to minimise the loss of the 

model by adding weak learners (decision trees) using a gradient descent like procedure 

[133]. The model is built in a stage-wise manner by adding one new regression tree at a time 

to compensate the shortcomings (minimise the loss) of existing weak regression trees in the 

model, whilst retaining existing models [134]. Therefore, GBR involves three elements; a loss 

function to be optimised, a weak learner (regression decision tree) to make predictions and 

an additive model to add weak regression tree learners to minimise the loss function. The 

loss function used is ‘square loss’, which implies that the task is to find an approximate model 

that minimises ‘square loss’ of the training data. In other words, using a training set 

{(𝑥𝑖, 𝑦𝑖)}𝑖=1
𝑛  of known values of RSSI, 𝑥 and corresponding values of location coordinates 𝑦, 

GBR tries to find an approximation �̂�(𝑥) that minimises the mean value of the loss function 

𝐿(𝑦, 𝐹(𝑥)) on the training set (Equation 6.6); 

𝐿(𝑦, 𝐹(𝑥)) =
1

2
(𝑦 − 𝐹(𝑥))

2
 

Equation 6.6 

Regression decision tree used as the weak learner in GB outputs real values for splits and 

those outputs can be added together, allowing subsequent models outputs to be added to 

compensate for the loss in the predictions. A gradient descent procedure is used to minimise 

the loss when adding trees [135]. Instead of minimising a set of parameters, the tree added 

to the model to reduce the loss is parameterised, and the parameters of the tree modified 

and moved in the right direction, reducing the error. The output of the new tree is then added 
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to the output of the existing sequence of trees in order to improve the final output of the 

model. Either a fixed number of trees are added or training stops once loss reaches an 

acceptable level or does not improve on an external validation dataset. Each 𝐹𝑚+1(𝑥) 

attempts to correct the errors of predecessor 𝐹𝑚(𝑥).  

 Performance Analysis 

The data is randomly divided into two sets; the training set containing 120 data samples 

(RSSI) with corresponding location coordinates with the remaining 30 samples are taken as 

test or validation set. 

 Performance metrics 

The performance of the developed models is evaluated and compared based on the following 

metrics;  

1. Cumulative Distribution Function (CDF) 

The CDF metric is used to determine the probability that the localisation error is less than or 

equal to a certain user-defined value. For example, the CDF of localization error X is defined 

as Equation 6.7; 

𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑅 Equation 6.7 

2. Accuracy 
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Accuracy represents the deviation of the estimated location from the ground truth location 

of a node. The accuracy of the models is measured as the mean of the Haversian distance 

metric between the estimated location and the true location of a sensor given in Equation 6.8; 

𝑑 = 2𝑟 sin−1 (√sin2 (
𝜑 − 𝜑0

2
) + cos(𝜑0) cos(𝜑) sin2 (

𝜆 − 𝜆0

2
)) 

Equation 6.8 

Where, 𝜑0 = 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑟𝑒𝑎𝑙 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 

  𝜑 = 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 

  𝜆0 = 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑟𝑒𝑎𝑙 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 

  𝜆 = 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 

3. RMSE 

RMSE is defined as the square root of the mean squared difference between the estimated 

location and the true location of a node. The localisation error in terms of RMSE is given by 

Equation 6.9, where 𝑑 is defined in Equation 6.9; 

𝑹𝑴𝑺𝑬 =  √
𝟏

𝒏
∑(𝒅𝒊)𝟐

𝒏

𝒊=𝟏

 

Equation 6.9 

 Impact of the Number of Trees and Maximum Depth 

Since the size of ensemble methods (RF and GB) changes as the number of trees utilised and 

maximum depth varies, it is important to examine the impact of both variables. In the 
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evaluation, other parameters such as number of features was not set to any value in order to 

generate each tree in a different state. 

A number of individual RFs and GBs were constructed with different number of trees and 

different depths to evaluate the effect of the size of the ensemble methods. The effect of 

number of trees on the localisation accuracy is then assessed for each combination of 

features, representing different data sets. The combinations of two SFs, 3SFs and 4SFs, create 

eleven sets of data, with the evaluation assessing the impact of number of trees for each of 

the data sets. Figure 6.3, Figure 6.4, and Figure 6.5 show the so-called elbow curves 

indicating the performance of RF on 2SFs, 3SFs and 4SFs combined data respectively for 

different number of trees. Similar curves for RSSI ratios and the GB algorithm are shown in 

Figure 6.6 to Figure 6.14. A unique optimal number of trees with the lowest median location 

error each data combination is determined.  

The summary of the optimal number of trees for each data combination (RSSI values and 

RSSI Ratios) is presented in Table 6.4. These optimal values of the number of trees are used 

in the remainder of the Chapter. 
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Table 6.4: Optimal number of tree in RF and GB for different data combinations.  

Combined data by SFs Optimal number of trees 

RF_RSSI RF_Ratios GB_RSSI GB_Ratios 

SF9,SF10 66 21 24 156 

SF9,SF11 3 18 16 24 

SF9,SF12 13 3 23 63 

SF10,SF11 12 9 54 58 

SF10,SF12 8 29 13 17 

SF11,SF12 20 84 75 139 

SF9,SF10,SF11 21 8 108 34 

SF9,SF10,SF12 18 3 76 28 

SF9,SF11,SF12 4 49 109 167 

SF10,SF11,SF12 11 5 191 40 

SF9,10,11,12 26 6 112 184 
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Figure 6.3: Optimal number of trees in RF for Combined data (2 SFs). 



 

112 

  

  

Figure 6.4: Optimal number of trees in RF for Combined data (3 SFs). 

 

Figure 6.5: Optimal number of trees in RF for Combined data (4 SFs). 
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Figure 6.6: Optimal number of trees in RF for Combined RSSI Ratio data (2 SFs). 
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Figure 6.7: Optimal number of trees in RF for Combined RSSI Ratio data (3 SFs). 

 

Figure 6.8: Optimal number of trees in RF for Combined RSSI Ratio data (4 SFs). 
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Figure 6.9: Optimal number of trees in GB for Combined data (2 SFs). 
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Figure 6.10: Optimal number of trees in GB for Combined data (3 SFs). 

 

Figure 6.11: Optimal number of trees in GB for Combined data (4 SFs). 
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Figure 6.12: Optimal number of trees in GB for Combined RSSI Ratio data (2 SFs). 
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Figure 6.13: Optimal number of trees in GB for Combined RSSI Ratio data (3 SFs). 

 

Figure 6.14: Optimal number of trees in GB for Combined RSSI Ratio data (4 SFs). 
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 Impact of localisation algorithm 

A RDT approach has been used to build two ensemble learning models; RF and GB for node 

localisation. The results of the localisation performance have been compared with a base 

algorithm, regression tree model; here, only the combination of RSSI values by 2SFs is used 

to compare the algorithms. 

The ensemble learning algorithms outperformed the regression decision tree for any 

combination of the RSSI features by the spreading factors; a single tree model is shown in 

Table 6.5. In terms of mean and median location error, RF has been shown to be more 

accurate with mean and median localisation error of 338m and 193m respectively when SF9 

and SF12 features are combined, a 36.8% and 61% improvement in precision results 

compared with regression tree model. GB has the least minimum error of 22m when the 

features of SF9 and SF12 are combined. Both ensemble methods have consistent 

performance in terms of the median localisation error; for every feature combination, their 

median localisation error is less than 350m. 
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Table 6.5: Performance of node localisation using combined RSSI features.  

Models 
SF9&SF10 

(m) 
SF9&SF11 

(m) 
SF9&SF12 

(m) 
SF10&SF11 

(m) 
SF10&SF12 

(m) 
SF11&SF12 

(m) 

DT(min) 77 16 88 71 70 91 

DT(mean) 555 530 535 487 486 546 

DT(median) 477 416 495 368 398 470 

DT(RMSE) 641 680 619 597 608 673 

RF(min) 23 111 51 41 43 85 

RF(mean) 383 448 338 396 329 354 

RF(median) 325 296 193 276 258 249 

RF(RMSE) 440 546 433 465 404 427 

GBR(min) 18 54 22 46 119 70 

GBR(mean) 397 437 344 395 401 356 

GBR(median) 312 293 210 307 277 266 

GBR(RMSE) 486 551 423 470 462 409 

       

The CDF and the box plot of localisation error for DRT, RF and GB are shown in Figure 6.15, 

Figure 6.16, and Figure 6.17 respectively. The ensemble methods achieved the best 

performance yielding 75% localisation precision with error less than 454 m (RF)and 481 m 

(GBR). In contrast, the DRT achieved 75% localisation precision with error up to 600m.  
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Figure 6.15: CDF and box plot of localisation error for DRT using combined RSSI features. 

  

Figure 6.16: CDF and box plot of localisation error for RF using combined RSSI features. 

 
 

Figure 6.17: CDF and box plot of localisation error for GB using combined RSSI features. 
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 Impact of Feature Combination 

In order to evaluate the impact of features on the performance of the node localisation 

models, an empirical evaluation of the regression decision tree and the ensemble models as 

a function of RSSI features of each spreading factor is carried out and compared to the 

performance on a combination of the RSSI features by spreading factors. In addition, the RSSI 

ratios used in Chapter 5 have been combined by spreading factors and used to investigate 

the consistency of the proposed feature transformation. The feature combination technique 

by spreading factor is extended to combining three and then four spreading SF to further 

investigate their impact. In order to have an unbiased evaluation, the ensemble methods are 

first evaluated using RSSI values at a single spreading factor. Table 6.6 shows the statistical 

performance of the models for single spreading factor data. 
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Table 6.6: Performance of node localisation using single spreading factor RSSI features.  

Models 
SF9 
(m) 

SF10 
(m) 

SF11 
(m) 

SF12 
(m) 

GBR (min) 107 43 35 38 

GBR (mean) 498 513 435 349 

GBR(median) 467 498 343 257 

GBR (RMSE) 551 594 538 429 

RFR (min) 72 77 115 16 

RFR (mean) 464 486 465 370 

RFR (median) 455 431 365 263 

RFR (RMSE) 533 568 552 472 

     

As shown in Table 6.6 the best median localisation error using RSSI features at a single 

spreading factor SF9 through S12 is 257 m. In contrast, RF and GB with combined features 

(2SFs) provide the best median localisation error of 193 m and 210m respectively as shown 

in Table 6.5, enhancing precision by 24.9% and 18.3% over using RSSI at a single spreading 

factor.  

For RSSI ratio feature combination, only the ensemble methods are implemented. Table 6.7 

shows the statistical performance of the models on the combined ratio data for 2SFs. From 

Table 6.5 and Table 6.6, it is evident that combining RSSI values yielded an improvement in 

terms of localisation accuracy and robustness. RF and GB estimate node location with 

distance error of 193 m and 210 m or less respectively for 50% of the time; when RSSI ratio 
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features are combined, the least median localisation error for RF and GB are 314 m and 320 

m respectively.  

Table 6.7: Performance of node localisation using combined RSSI Ratio features (2SFs).  

Models (Ratios) 
SF9&SF10 

(m) 
SF9&SF11 

(m) 
SF9&SF12 

(m) 
SF10&SF11 

(m) 
SF10&SF12 

(m) 
SF11&SF12 

(m) 

RF(min) 20 39 12 60 20 20 

RF(mean) 496 470 455 504 435 460 

RF(median) 382 397 314 401 377 405 

RF(RMSE) 586 548 566 595 492 543 

GBR(min) 87 70 18 76 64 31 

GBR(mean) 520 475 453 527 455 466 

GBR(median) 366 320 325 385 368 326 

GBR(RMSE) 605 596 526 608 509 580 

       

The impact of feature combination was investigated further by combining 3 and 4 different 

SFs data, the results of which are summarised in Table 6.8,  Table 6.9, and Table 6.10. It is 

clear that no significant improvement results when 3SFs or 4SFs data are combined 

compared to combining 2SFs. 
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Table 6.8: Performance of node localisation using combined RSSI features (3SFs). 

Models  
SF9&SF10&SF11 

(m) 
SF9& SF10&SF12 

(m) 
SF9& SF11&SF12 

(m) 
SF10&SF11&SF12 

(m) 

RF(min) 31 63 91 89 

RF(mean) 368 334 384 319 

RF(median) 266 245 254 250 

RF(RMSE) 437 420 470 375 

GBR(min) 30 28 89 60 

GBR(mean) 371 330 335 352 

GBR(median) 296 199 257 273 

GBR(RMSE) 436 427 390 417 

     



 

126 

Table 6.9: Performance of node localisation using combined RSSI Ratio features (3SFs). 

Models  
SF9&SF10&SF11 

(m) 
SF9& SF10&SF12 

(m) 
SF9& SF11&SF12 

(m) 
SF10&SF11&SF12 

(m) 

RF(min) 63 111 47 64 

RF(mean) 512 442 449 480 

RF(median) 393 336 364 385 

RF(RMSE) 593 543 530 563 

GBR(min) 106 28 99 72 

GBR(mean) 487 488 451 505 

GBR(median) 365 347 300 382 

GBR(RMSE) 577 603 560 593 
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Table 6.10: Performance of node localisation using combined RSSI & RSSI Ratio features 

(4SFs). 

Models  SF9&SF10&SF11&SF12 RSSI Values (m) SF9& SF10&SF11&SF12 RSSI Ratios (m) 

RF(min) 58 28 

RF(mean) 324 532 

RF(median) 255 404 

RF(RMSE) 396 617 

GBR(min) 76 35 

GBR(mean) 353 469 

GBR(median) 231 372 

GBR(RMSE) 435 550 

   

Based on the results of the evaluation, it can be concluded that combination of features by 

spreading factor with ensemble learning methods can provide a higher localisation accuracy 

consistently on comparison with single spreading factor RSSI features. More specifically, 

combining data from 2SFs proved to yield the maximum improvement. 

 Summary  

An investigation into the use of ensemble learning methods and combination of features of 

different spreading factors to improve the accuracy of node localisation has been carried out. 

The spreading factor plays an important role on the RSSI received. Therefore, a combination 

of RSSI features from any two spreading factor can have a significant impact on the quality 
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of the features, providing richer data for node localisation thereby improving the accuracy. 

The performance of the combination of features on localisation has been evaluated. A 

combination of three and four spreading factor-RSSI features has been investigated and the 

results compared with using a combination of two spreading factor-RSSI features. 

Furthermore, machine learning ensemble methods - Random Forest and Gradient Boosting 

Regression - have been used for localisation using the combined features. The use of 

combination of spreading factor-RSSI features in conjunction with ensemble learning 

techniques has proven to improve localisation performance in the selected environment. RF 

and GBR with combined features (2SFs) provide the best median localisation error of 193 m 

and 210m respectively, enhancing precision by 24.9% and 18.3% over using RSSI features 

at a single spreading factor with best median error of 257 m. RF has been shown to be more 

accurate when SF9 and SF12 features are combined. RF provided a 61% improvement in 

precision results compared with results from the regression tree model. 

Compared with KNN and WKNN, which rely on the storage all of the data in the fingerprint 

database and piecemeal one-by-one comparisons in the online matching stage, RF and GB 

methods only need to keep the trained model and carry out the node splitting process in the 

online matching phase. 
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CHAPTER 7 CONCLUSIONS AND FUTURE WORK  

 Conclusions 

The Thesis presented the development and performance evaluation of a cost-effective IoT-

implemented node localisation technique for suburban environments subject to sandstorm 

conditions in Saudi Arabia. Results demonstrate the attainable performance of RSSI-based 

node localisation in dynamic environments through a limited number of Gateways and 

significant distances between nodes and Gateways.  

The network-based approach utilised a LoRaWAN implementation as the target application 

required coverage over a region characterised by significant distances between nodes. In 

order to overcome the challenges imposed by the operational environment and limited 

network resources, the solution selected the readily attainable Received Signal Strength 

Indicator (RSSI) as the basis for deriving node locations. Furthermore, localisation was 

implemented through fingerprinting and its performance enhanced through machine 

learning techniques. 

The evolution of the development was informed throughout by results obtained starting 

from the foundation data gathering phase and the subsequent results on the enhancements 

owing to the application of a number of machine learning techniques with RSSI-derived 

feature inputs to establish the fingerprints.  A key early output was the validation of the 

importance of key LoRaWAN parameters, most notably the Spreading Factor, to the 

performance of node localisation. Different strategies such as ensemble methods and feature 
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engineering were evaluated for enhanced estimation. Table 7.1 summarises the optimal 

node localisation performance for the developed techniques. 

Table 7.1: Summary table of the optimal performance results for the developed models. 

  

Chapter 

 

Model 

 

RSSI feature 

Optimal Spreading 

Factor 

Optimal Performance 

(Median) 

1 Chapter 4 KNN Single RSSI SF12 316 m 

2 Chapter 4 WKNN Single RSSI SF12 315 m 

3 Chapter 5 SVR Ratio RSSI SF11 303 m 

4 Chapter 5 GPR Ratio RSSI SF12 317 m 

5 Chapter 6 GBR Combined RSSI SF9 and SF12 210 m 

6 Chapter 6 RF Combined RSSI SF9 and SF12 193 m 

      

Chapter Four details the implementation and performance evaluation of RSSI-based location 

fingerprinting. RSSI is considered as the most readily available in comparison with other 

transmitted parameter, in the goal of creating unique signatures for each node location. 

Confirmation that basic path transmission models, such as the classical two-ray propagation, 

yield poor estimates of distance stimulated to use of machine learning to improve model 

accuracy. K-nearest neighbour algorithm and its variant, weighted K-nearest neighbour 

were used as baseline machine learning algorithms to develop localisation models; both 

these models demonstrated an improvement over established propagation models. 
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KNN and WkNN models yielded improvement in localisation accuracy as the SF increased 

from SF9 to SF12. Further the trade-off between latency and accuracy at the highest SF12 is 

argued to be desirable in the application under consideration. Shadowing and reflections 

that impair consistent reception is more likely at lower than higher SFs. The median optimal 

performance of KNN and WKNN were 316m and 315m respectively at SF12 (Table 7.1). In 

this respect, the main contributions are as follows;  

 implementation of fingerprinting technique for IoT node localisation in suburban 

environment subject to sandstorms using RSSI as inputs to the fingerprints enhanced 

with KNN algorithms. The approach is general and can be applied to any localisation 

scenario. 

 characterisation of the impact of LoRa SF on the reception performance of LoRaWAN 

nodes in a challenging environment. 

Chapter 5 details node localisation performance based on the use of relative RSSIs as inputs 

to fingerprints in tandem with more advanced machine learning techniques. The approach 

targets a reduction in the temporal variations in RSSIs e.g. owing to multi-paths. The 

foundation RSSI values are transformed into RSSI ratios by pairs of Gateways. Results show 

that RSSI ratios improve performance (Table 7.1). Two kernel-based algorithms - Support 

Vector Regression (SVR) and Gaussian Process Regression (GPR) - are parameterised to 

model the relationship between RSSI ratios and reference node location. Moreover, analyses 

to determine the impact of kernel functions demonstrated that new functions derived from 

a combination of existing kernels yield more accurate estimations compared to existing 
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kernels. SVR has the lowest median error of 303m compare to 317m for GPR at SF11 and 

SF12 respectively (Table 7.1). The main contributions of the chapter are as follows:  

 use of relative RSSI as location fingerprints in conjunction with advanced machine 

learning techniques for improved node localisation 

 effect of combined kernel functions on the performance of node localisation 

Chapter 6 presents two new techniques based on feature engineering and ensemble methods 

to improve the fingerprint; both methods demonstrated improvement over preceding 

techniques. RSSI at different SFs are combined to form new fingerprints. The combination of 

two different parameters - RSSI and RSSI ratio – is tested to determine the impact on the 

quality of the features in the goal to establish a richer database for localisation. Results 

corroborate that combined features are more robust and enhance performance. 

Furthermore, a combination of three and four spreading factor-RSSI features were explored 

in order to understand the combination strategy that best preserves a richer location 

information. However a combination of more than two different spreading factor-RSSI 

introduces noise into the fingerprints and hence compromises the performance of the node 

localisation system.  

The second strategy was the use of a machine learning ensemble technique. Two tree-based 

ensemble methods - Gradient Boosting Regression and Random Forest were identified and 

used to model the complex relationship between the combined RSSI fingerprints and the 

reference node locations. The evaluation of the machine learning ensemble methods 

demonstrated manifest improvement in node localisation accuracy compared with using 
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single tree regression model. RF has been shown to be more accurate with median 

localisation error of 193m when SF9 and SF12 features are combined, a 61% improvement 

in precision results compared with results from the regression tree model (Table 7.1). The 

combination of machine learning and spreading factor-RSSI combined features in the field of 

node localisation has not been reported extensively to date. The main contributions within 

the Chapter are as follows:  

 a novel feature engineering strategy is introduced for enhanced node localisation in 

challenging propagation environments. The feature combination scheme presented 

is modular and can be used in other applications and environments. 

 development of two machine learning ensemble models through a limited number of 

Gateways and significant distances between nodes and Gateways. 

Evidence in support of proving the feasibility of providing an energy-efficient localisation 

technique with acceptable performance for extensive IoT applications and services within 

challenging operational environments is provided. Feature engineering methods based on 

the readily attainable Received Signal Strength Indicator (RSSI) acquired within a LoRaWAN 

network setting provide a spectrum of options for the estimation of node location that form 

the basis for the development of solutions addressing multiple applications operating in 

many diverse environments.  

 Future Work 

The knowledge gained has surfaced a number of additional research challenges; 
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 the proposed localisation solution considered a scenario of fixed nodes; future work 

should address the challenges associated with mobile node localisation 

 consideration of the impact of other LoRa parameters on the performance of node 

localisation extending the analysis beyond SF only 

 only the RSSI of the received packets are extracted and used as location fingerprints; 

future work could consider other parameters. 

 ML has been applied in the localisation solution to primarily optimise accuracy. 

Future development should be orientated toward creating node localisation models 

focused on the joint optimisation of both accuracy and latency 

 an aspect not considered in the present research is the complexity of the algorithms, 

important if the numbers of nodes and Gateways increase 
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APPENDIX 1 EPSILON-SVR 

Appendix 1 is a collection of the results obtained for parameter optimisation in the kernel 

functions used in the epsilon-SVR algorithm for developing node localisation models in 

Chapter 5 of this thesis. The matern Kernel which combined with other kernels, has a 

“nu_Matern” parameter that is needed to be optimised. Random search method was used to 

select the optimal “nu_Matern” parameters. 

  

  

Figure A1.1: ExpSineSquared and Matern kernels 
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Figure A1.2: RBF and Matern Kernel 

  

  

Figure A1.3: RationalQuadratic + Matern kernel  
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APPENDIX 2 NU_SVR 

Appendix 2 presents plots obtained in the process of parameter optimisation in both the nu-

SVR algorithm and the kernel functions used in developing node localisation models in 

Chapter 5, of this thesis. Random search method was used to tune the parameters of matern 

Kernel and nu-SVR algorithm. The minimum mean values in the plots represent the optimal 

value of each parameter.  

  

  

Figure A2.1: RBF Kernel 
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Figure A2.2: Linear Kernel 

  

  

Figure A2.3: Rational Quadratic Kernel 
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Figure A2.4: RBF+Matern 

  

  

Figure A2.5: Rational Quadratic + Matern 
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Figure A2.6: ExpSineSquared + Matern 
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APPENDIX 3 GAUSSIAN PROCESS REGRESSION 

Appendix 3 is a collection of the plots that results from the process of parameter optimisation 

in the kernel functions used for developing Gaussian Process Regression based node 

localisation models in Chapter 5 of this thesis. Random search method was employed to tune 

the parameters and the optimal parameter was given has the minimum mean value in the 

obtained plots shown below.  

  

  

Figure A3.1: RBF & Matern kernels 
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Figure A3.2: Rational Quadratic & Matern kernels 

  

  

Figure A3.3: ExpSinSquared & Matren kernels 
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APPENDIX 4 CDF AND BOXPLOTS FOR KERNEL-BASED 
MODELS 

Appendix 4 is a collection of the obtained results for the analysis of the developed kernel-

based node localisation models in Chapter 5 of this thesis. Both the Cumulative Distribution 

Frequency (CDF) and the boxplots represent the performance the individual models using 

different kernel functions. This gives the overall performance of each model in terms of 

localisation error. 

 



 

165 

  

  

Figure A4.1: CDF and box plot for GPR using RBF + Matern 

kernel. 

Figure A4.2: CDF and box plot for GPR using Rational Quadratic 

+ Matern Kernel. 
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Figure A4.3: CDF and box plot for GPR using ExpSineSquared + 

Matern Kernel Function. 

Figure A4.4: CDF and box plot for epsilon-SVR using 

ExpSineSquared + Matern Kernel Function. 
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Figure A4.5: CDF and box plot for epsilon-SVR using 

RBF+Matern Kernel. 

Figure A4.6: CDF and box plot for epsilon-SVR using Rational 

Quadratic + Matern Kernel. 
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Figure A4.7: CDF and box plot for nu-SVR using 

ExpSineSquared + Matern Kernel Function. 

Figure A4.8: CDF and box plot for nu-SVR using Rational 

Quadratic + Matern Kernel. 
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Figure A4.9: CDF and box plot for nu-SVR using RBF + Matern 

Kernel. 
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