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Abstract

This thesis concerns the theoretical modelling and analysis of sessile droplets of liquids

as they evaporate in different modes of evaporation. The thesis focuses on diffusion-

limited evaporation in which the diffusion of vapour in the surrounding atmosphere

governs the evaporation rate of the droplet.

First, we investigate the combined influences of the initial contact angle and the sub-

strate conductivity on droplet evaporation. In particular we highlight that for droplets

with large contact angles the lifetime of the droplet does not vary strongly with either

the mode of evaporation or the conductivity of the substrate.

Next, we investigate the evaporation of thin sessile droplets on thin substrates in two

situations in which the influence of the thermal properties of the system is strong.

Specifically, we obtain closed form asymptotic solutions for the evolution of the droplet

when the substrate has a high thermal resistance relative to the droplet, and when the

saturation concentration of the vapour depends strongly on temperature.

Finally, we develop a model for the evaporation of thin two-dimensional sessile droplets

evaporating either singly or as a pair. We find that in large domains the lifetime of

the droplet depends logarithmically on the size of the domain, and more weakly on

the mode of evaporation and the separation between the droplets. In particular, we

quantify the shielding effect that the droplets have on each other, and how it extends

the lifetime of the droplets.
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Chapter 1

Introduction

1.1 Evaporation of sessile droplets

A sessile droplet (or drop) is a small volume of liquid which rests on a substrate.

The liquid makes contact with the substrate along a droplet-substrate interface. The

liquid makes contact with the atmosphere along an atmosphere-droplet interface (the

free surface of the droplet). The angle which the free surface of the droplet makes

with the substrate is called the contact angle, and the curve at which the atmosphere,

droplet and substrate meet is called the contact line. The physics of sessile droplets,

for example, droplet spreading, impact, and evaporation, have been the subject of a

vast number of scientific investigations (see, for example, the recent reviews [20, 27, 59,

74, 81, 113, 125]) due to their important role in many industrial applications, health

and medicine, as well as being of fundamental scientific interest. This thesis concerns

the theoretical modelling and analysis of sessile droplets of liquids as they evaporate in

different modes of evaporation.

In this chapter we describe various physical mechanisms that control the evaporation

of a sessile droplet. We also describe several areas of active research involving droplet

evaporation. Finally, we outline the contents of the thesis. A comprehensive discussion

of various models for droplet evaporation is given in chapter 2.
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Chapter 1. Introduction

1.2 Mathematical modelling of droplet evaporation

Mathematical modelling of liquid evaporation dates back at least as far as Maxwell

[86], who determined the diffusivity coefficient of vapour through an atmosphere using

the lifetime of an evaporating liquid. Maxwell [86] observed that the evaporation of

a liquid is governed by the distribution of vapour in the atmosphere. In general, the

evaporative flux depends on both the rate at which the liquid vaporises on the free

surface of the liquid and the rate at which the vapour is transported away from the free

surface. However, if the liquid vaporises much faster than the vapour can be transported

away from the free surface then the surface will become saturated with vapour. In a

quiescent atmosphere the difference between the high saturation concentration and the

low ambient vapour concentration drives a diffusive flux of vapour away from the liquid.

Since the evaporation rate is limited by the diffusion of vapour in the atmosphere,

models built on the work of Maxwell [86] are called diffusion-limited models.

Building on the work of Maxwell, Picknett and Bexon [102] obtained theoretical ap-

proximate expressions for the evolution, and thus lifetimes, of evaporating droplets for

a range of initial contact angles. Picknett and Bexon [102] compared their approxi-

mate expressions with the experimental results of methyl acetoacetate evaporating on

a polytetrafluoroethylene (PTFE) substrate. They found at worst a 19.7% difference

between the theoretical and experimental lifetimes. The model developed by Picknett

and Bexon [102] assumes a constant vapour saturation concentration, but in practice

this concentration can depend on the temperature of the free surface of the droplet,

which varies in both space and time. Additionally, their model assumes a spherical-

cap-shaped droplet, whereas their experimental droplets were not perfectly spherically

shaped due to the effect of gravity. Picknett and Bexon [102] attribute the differ-

ence in the theoretical and experimental lifetime predictions to these two modelling

assumptions. We discuss conditions in which droplets are approximately spherical in

section 2.2.3 and conditions in which the vapour saturation concentration depends on

the temperature of the free surface of the droplet in section 2.3.

2



Chapter 1. Introduction

Following Picknett and Bexon [102], Deegan et al. [37, 38, 39], Popov [105], Popov

and Witten [106] and Stauber et al. [143, 144, 145] obtained exact expressions for

the evolution and lifetime of an evaporating droplet using the exact solution to the

equivalent problem in potential theory first reported by Lebedev [75, pp. 221-224].

The work of Deegan et al. [38] initiated an explosion of theoretical investigations into

droplet evaporation, with Deegan et al. [38] receiving over 5211 citations according to

Google Scholar as of April 2020. We discuss the evaporation of droplets of nanoparticle

suspensions in more detail in section 1.7.

For situations in which the diffusion of vapour is not the governing mechanism for

droplet evaporation, so-called “non-equilibrium models” are appropriate. We describe

in brief a non-equilibrium model for droplet evaporation in section 2.7.

1.3 The effects of thermal properties on droplet evapora-

tion

As highlighted by Picknett and Bexon [102], when a droplet evaporates the total heat

energy decreases as the liquid vaporises. Therefore, there have been a considerable num-

ber of experimental and theoretical investigations into thermal effects during droplet

evaporation. Hu and Larson [66] and Ristenpart et al. [112] both used the diffusion-

limited model for evaporation to determine the temperature of the droplet, and hence

study thermally-induced Marangoni, i.e. flow induced by large surface tension gradients

on the free surface of the droplet.

While studying the evaporation of thin liquid films, Sultan et al. [147] noted that the

saturation concentration of a vapour in the atmosphere is, in general, a function of the

temperature of the free surface. Following Sultan et al. [147], Dunn et al. [50, 51, 52]

and Sefiane et al. [120, 121] developed a diffusion-limited thermally-coupled model,

hereafter refered to as “the Dunn model”, for droplet evaporation by using an expression

for saturation concentration which is a polynomial in temperature. However, these

authors incorrectly assumed that the relatively low thermal conductivity of air produces

3



Chapter 1. Introduction

an isothermal atmosphere. Ait Saada et al. [3, 4, 5] and Lopes et al. [83] present

a thermally-coupled model, hereafter referred to as “the thermally-coupled model”,

which uses the same polynomial expression for saturation concentration as that used

by Dunn et al. [50], but also allows for a non-uniform atmospheric temperature. Singh et

al. [133] used a variant of the thermally-coupled model which uses a different expression

for saturation concentration which is exponential in temperature. All of these authors

found that, in general, the lifetime of a droplet evaporating on a highly insulating

substrate is longer than that of a droplet evaporating on a highly conducting substrate.

Using the thermally-coupled model, Nguyen et al. [95] obtained expressions for lifetimes

of droplets on an infinitely conducting substrate.

We give a full description of the Dunn model presented by Dunn et al. [50] and the

thermally-coupled model presented by Ait Saada et al. [3], in chapter 2. Using the

thermally-coupled model we obtain new solutions for the evolution, and hence lifetime,

of droplets both numerically in chapter 3 and analytically in chapter 4.

1.4 Modes of evaporation

As a droplet evaporates, its volume reduces and so the contact radius R̂ = R̂(t̂) and/or

the contact angle θ̂ = θ̂(t̂) must change. The manner in which the geometry of the

droplet changes as it evaporates is called the mode of evaporation. It is necessary

to understand the various modes of evaporation in order to determine the lifetime of

a droplet. Picknett and Bexon [102] identified two “extreme” modes of evaporation

for an axisymmetric droplet, namely the constant contact radius (CR) mode, and the

constant contact angle (CA) mode. In the CR mode the contact radius of the droplet

is fixed, R̂ ≡ R̂(0), and the contact angle θ̂ decreases from θ̂(0) to 0. Conversely,

in the CA mode the contact angle is fixed, θ̂ ≡ θ̂(0), and the contact radius of the

droplet R̂ decreases from R̂(0) to 0. Picknett and Bexon [102] found that the lifetime

of the droplet depended on both the initial contact angle of the droplet and the mode

in which the droplet evaporated. Table 1.1 provides many examples of experimental

4



Chapter 1. Introduction

investigations into droplets evaporating in the CR and CA modes in the contexts of

thermal dynamics [21, 136, 149, 155], wetting dynamics [23, 130, 131, 135], evaporation

rates [24, 31, 33, 55, 70, 107, 129], and pattern formation [26, 80, 97].

Nguyen and Nguyen [93, 94] described a compound mode of evaporation for axisym-

metric droplets, namely the stick-slide (SS) mode, when investigating nano-particle

effects on droplet lifetimes. In the SS mode the droplet initially evaporates in a

CR phase with a fixed contact radius R̂ ≡ R̂(0) and a contact angle θ̂ that de-

creases from θ̂(0) to a critical contact angle θ̂∗ (0 < θ̂∗ < θ̂(0)), after which it

evaporates in a CA phase with fixed contact angle θ̂ = θ̂∗ and a contact radius

R̂ that decreases from R̂(0) to 0. Table 1.1 provides many examples of investiga-

tions into droplets evaporating in the SS mode in the contexts of wetting dynamics

[13, 54, 103, 130, 131], pattern formation [22, 77, 80, 152, 154], evaporation rates

[32, 34, 40, 47, 57, 58, 69, 76, 87, 92, 104, 124, 140, 141], and thermal dynamics

[122, 123, 168].

Stauber et al. [143] gave an analysis of the CR, CA and SS modes of evaporation

and found evaporation rates and lifetimes for droplets in each of these modes. Further-

more, Stauber [142, pp. 95-99] described a fourth mode of evaporation for axisymmetric

droplets, namely the stick-jump (SJ) mode. In the SJ mode the droplet initially evap-

orates in a CR phase with a fixed contact radius R̂ ≡ R̂(0) and a contact angle θ̂ that

decreases from θ̂(0) to a critical angle θ̂min (0 < θ̂min < θ̂(0)), at which moment the con-

tact angle jumps instantaneously from θ̂min to a second critical angle θ̂max (θ̂max > θ̂min)

and the contact radius jumps instantaneously to a new value R̂ = R̂1. The process of

a CR phase followed by an instantaneous jump phase then repeats an infinite number

of times until the droplet has finally evaporated. Table 1.1 provides many examples

of investigations into droplets evaporating in the SJ mode in the contexts of pattern

formation [2, 17, 18, 19, 78, 91, 98, 132], wetting dynamics [25, 71, 84, 96], thermal

dynamics [110], and evaporation rates [88]. Figure 1.1 (reprinted with permission from

Debuisson et al. [36]) shows experimental measurements of the contact angle θ and

contact radius R of a water droplet as it evaporates in the SJ mode.
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Mode of evaporation Experimental investigations

CR and CA

[21, 23, 24, 26, 31, 33, 55, 70,
80, 97, 102, 103, 104, 107, 129,
130, 131, 135, 136, 140, 149,
155]

SS

[13, 22, 32, 34, 40, 47, 54, 57,
58, 69, 76, 77, 80, 87, 92, 93,
103, 104, 122, 123, 124, 130,
131, 140, 141, 152, 154, 168]

SJ
[2, 17, 18, 19, 25, 71, 78, 84,
88, 91, 96, 98, 110, 132]

Table 1.1: Examples of experimental investigations into droplets evaporating in the
CR, CA, SS and SJ modes described in this section.

Figure 1.1: Experimental measurements of the contact angle θ and contact radius R
of a water droplet as it evaporates in the SJ mode. Reprinted with permission from
Debuisson et al. [36]. Copyright 2016 American Chemical Society.
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Chapter 1. Introduction

1.5 The effects of neighbouring droplets on droplet evap-

oration

For a droplet evaporating in isolation, the only source of vapour is the droplet itself.

However, droplets rarely evaporate in isolation. In particular, multiple droplets appear

in many industrial applications such as ink-jet printing [35], fuel injection [114] and

spray cooling [62]. Because of this, there is growing interest in investigating the influ-

ence that neighbouring droplets have on each other when evaporating in close proximity.

In particular, there have been a number of experimental, numerical and analytical inves-

tigations into the so-called “shielding effect”, in which neighbouring droplets increase

the vapour concentration in the atmosphere between the droplets.

Early experimental work by Schäfle et al. [115] demonstrated that droplets evaporating

in an array interact with each other through their vapour field, and hence influence

the evaporation rate of their neighbours. Sokuler et al. [139] numerically and experi-

mentally investigated the evaporation of droplets deposited in both 1D and 2D arrays.

They observed that isolated droplets evaporated faster than droplets evaporating in an

array. Sokuler et al. [139] observed experimentally that the vapour surrounding an iso-

lated droplet maintains ambient conditions beyond a (finite) typical distance from the

droplet. They also highlighted that the influence of neighbouring identical droplets on

evaporation was negligible when the droplets were separated by more than that typical

distance.

Recent experimental work by Shaikeea et al. [126, 127, 128] also highlights the shielding

effect. Figure 1.2 (reprinted with permission from Shaikeea and Basu [128]) shows a

side view of two water droplets evaporating on a PDMS substrate. Also shown is a

sketch which illustrates the increased vapour concentration between the droplets, i.e.

the shielding effect.

Castanet et al. [29] experimentally and numerically investigated the influence of droplet

spacing on the evaporation rate and temperature of a uniform line of sessile fuel

droplets, namely, isohexane, ethanol, n-decane and n-dodecane. Castanet et al. [29]

7



Chapter 1. Introduction

Figure 1.2: Side view of two water droplets evaporating on a polydimethylsiloxane
(PDMS) substrate. Also shown is a sketch which illustrates the increased vapour con-
centration between the droplets, i.e. the shielding effect. Reprinted with permission
from Shaikeea and Basu [128]. Copyright 2016 American Chemical Society

found that greater spacing between droplets leads to shorter droplet lifetimes. Carrier

et al. [28] developed a rudimentary model for obtaining the lifetimes of non-uniform

droplet clusters produced by spraying liquid onto a substrate. Hu et al. [67] theo-

retically investigated the deposition patterns produced by two neighbouring droplets

containing suspended nanoparticles and found that the majority of the deposited mass

is found near the point on the contact line which is furthest from the neighbouring

droplet. Hu et al. [67] concluded that, due to the presence of a neighbouring droplet,

the evaporative flux is most suppressed near the point on the contact line which is clos-

est to the neighbouring droplet, and hence the suspended nanoparticles are convected

towards the point with the highest evaporative flux (i.e. the point furthest from the

neighbouring droplet).

Hatte et al. [64] experimentally investigated the evaporation of a line of uniformly

spaced sessile water droplets. Hatte et al. [64] also found that greater spacing between

the droplets leads to shorter droplet lifetimes, and that for sufficiently spaced droplets,

the lifetime approaches that of a droplet evaporating in isolation.

Very recently, Wray et al. [161] obtained exact expressions for flux profiles, as well as

evolutions and lifetimes, for multiple evaporating droplets. The approach of Wray et

al. [161] captures the shielding effect, and, in particular, shows that the evaporative

8



Chapter 1. Introduction

flux from a pair of droplets is greatest at the point on the contact line that is furthest

from the neighbouring evaporating droplet.

Analogous phenomena to the shielding effect have been studied in other physical con-

texts. Greenwood [61] examined the interaction of large numbers of microcontacts in

electric contact theory, treating them as independent at leading order, and introducing

an interaction term at higher order. Similar approaches have since been applied to

elastic punches [60] and flow through pores [56], and have been put on a more rig-

orous asymptotic basis [14, 15, 16]. All these studies essentially considered problems

equivalent to the evaporation of circular droplets in three dimensions.

1.6 Droplet composition

Although this thesis only concerns single component droplets, e.g. pure water or pure

methanol, in general, droplets can consist of multiple components. Recent work has

shown that the chemical makeup of a droplet influences its evaporation rate. Tan et

al. [150, 151] experimentally and numerically investigated the evaporation of a droplet

consisting of water, ethanol and anise oil. They found that this droplet evaporates

in four distinct phases. During the first phase the ethanol quickly evaporates away

from the droplet, resulting in strong Marangoni flows within the droplet. In the second

phase the anise oil begins to nucleate into microdroplets within the droplet. In the

third phase the anise oil microdroplets merge into a ring near the contact line of the

droplet. During the second and third phases the water is continuously evaporating

away from the droplet. Finally, in the fourth phase the water has completely evapo-

rated, leaving behind a droplet of pure anise oil. This work shows that, throughout the

evaporation process, a multicomponent droplet can experience strong internal flows, as

well as distortions to the shape of its free surface. The work by Tan et al. [150, 151],

and later Diddens et al. [41, 42, 43] and Li et al. [79] has shown that the evapora-

tion of multicomponent droplets is far more complex than those of single component

droplets.

9
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1.7 The coffee-stain effect

Understanding droplet evaporation is an important part of understanding many indus-

trial processes, for example, ink-jet printing and surface patterning [22, 80], as well as

drug delivery systems [109] and the detection of hazardous chemicals [63]. For all of

these processes it is important to know both the evolution and lifetime of the droplet,

and the structure of any deposit of suspended particles left after the liquid has evap-

orated. When a droplet of liquid containing suspended particles is left to evaporate,

the distribution of deposit left behind is often highly non-uniform. The deposition of

particles in patterned formations is often refereed to as the “coffee-stain effect”. One

particular application of the coffee-stain effect in industry is the ink-jet printing of

self-assembling electronics [46, 166].

Deegan et al. [38] pioneered the mathematical and experimental investigation into the

coffee-stain effect by relating the movement of suspended particles within a droplet

to the profile of the evaporative mass flux from the free surface of the droplet. In

subsequent years there have been further investigations into the effects of many different

mechanisms on deposition patterns such as: particle size [37], evaporation suppression

[39, 67], electrostatic effects [160], and evaporative modes [162]. The contact angle

plays a significant role in the coffee-stain effect [37, 38, 39, 105], as does the initial

shape of the droplet-substrate interface [106, 148, 166].

Although this thesis is not directly concerned with the coffee-stain effect, Deegan et al.

[38] have shown that to understand the coffee-stain effect it is necessary to understand

the evaporation mechanisms of the droplet.

Dinh et al. [46] described a method of ink-jet printing carbon electrodes in which a line

of liquid containing suspended carbon nanoparticles evaporates and leaves a deposit of

carbon at the edge of the line. Their process involved depositing 100−140 multi-walled

carbon nanotube (MWCNT)-laden water droplets with radius ∼ 0.1 mm in a straight

line. The spacing between the droplets ranged from 0.06 − 0.11 mm. The resulting

deposits were liquid lines ∼ 0.1 mm thick and ∼ 10 mm long. Dinh et al. [46] found

10
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Figure 1.3: Top down photographs of (MWCNT)-laden water liquid lines. (a–c) show
the head of the liquid line (left) and the tail of the liquid line (right) for droplets printed
with a spacing of 90 µm onto a silicon substrate with temperature 35 ◦C, 50 ◦C and
60 ◦C, respectively. (d–f) show the middle part of a liquid line for droplets printed
with a spacing of 110 µm, 90 µm and 60 µm, respectively onto a silicon substrate with
temperature 60 ◦C. Reprinted with permission from Dinh et al. [46]. Copyright 2016
Elsevier.

that a spacing of 90 µm between individual droplets produced a liquid line that was,

for the most part, uniform along its length. We shall hereafter refer to such uniform

liquid lines as 2D droplets.

Figure 1.3, reprinted with permission from Dinh et al. [46], shows the various liquid

lines produced by Dinh et al. [46]. Figures 1.3(a–c) show top down photographs of

the heads (left) and the tails (right) for droplets printed with a spacing of 90 µm onto

a silicon substrate with temperature 35 ◦C, 50 ◦C and 60 ◦C, respectively. Figures

1.3(d–f) show the middle part of a liquid line for droplets printed with a spacing of 110

µm, 90 µm and 60 µm, respectively onto a silicon substrate with temperature 60 ◦C.

In particular, figure 1.3(e) shows a liquid line that is uniform along its length.

11
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Figure 1.4: (a) Sketch of the cross-section of a 2D droplet of MWCNT-laden water being
deposited onto a silicon substrate. The evaporation driven coffee-ring effect causes the
MWCNTs to self-assemble into carbon electrodes. (b) Sketch of the top down view of a
liquid line of MWCNT-laden water before and after completed evaporation. Reprinted
with permission from Dinh et al. [46]. Copyright 2016 Elsevier.

Figure 1.4(a), reprinted with permission from Dinh et al. [46], shows a sketch of the

cross-section of a 2D droplet of MWCNT-laden water being deposited onto a silicon sub-

strate. The evaporation driven coffee-ring effect causes the MWCNTs to self-assemble

into carbon electrodes. Figure 1.4(b) shows the sketch of the top down view of an liquid

line of MWCNT-laden water before and after total evaporation. In particular, figure

1.4(b) divides the liquid line into a rounded head and tail and a straight middle part.

When we consider 2D droplets in chapter 5 we shall only consider the straight middle

part.

Following from Deegan et al. [38], Yarin et al. [166] developed a mathematical model

to describe the evaporation rate, and hence the coffee-stain effect, of an evaporating

2D droplet. Yarin et al. [166] also compared their results with the particle deposits

left by an evaporating 2D droplet of gold-nanoparticle-laden toluene solvent. Petsi and

Burganos [99] also give a solution for deposits left by an evaporating 2D droplet for an

arbitrary expression for the evaporative flux.

12
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1.8 Mathematically similar problems

The mathematical models which describe the shape of the free surface of a droplet

and its rate of evaporation are similar to models used to describe the dissolution of

liquid droplets and gaseous bubbles (see review by Lohse and Zhang [81]). In par-

ticular, a number of authors have remarked on the mathematical similarities between

liquid droplet evaporation into a gaseous atmosphere (as discussed in this thesis) and

(i) gaseous bubbles dissolving into a surrounding liquid [48, 82, 90, 170] and (ii) liq-

uid droplets dissolving into a surrounding liquid [44, 45, 72, 111, 171]. Moreover, the

problems described in [48, 72, 111, 170] are mathematically equivalent to problems

concerning multiple droplet evaporation, and the problems described in [44, 111, 171]

are mathematically equivalent to problems concerning various modes of droplet evap-

oration.

Authors have also considered a number of other mathematically similar problems, in-

cluding elastostatics [134], electrostatics [68], thermostatics [85], and hydrodynamics

[146].

A range of mathematical techniques can be deployed to solve such problems [49, 134];

including separation of variables [158], orthogonal polynomial expansions [53], Fourier

or Hankel transforms [156, 163, 164], and Green’s functions [165].

In two dimensions, additional techniques become available, notably conformal map-

ping [73, 85]. This makes two-dimensional analogues of droplet evaporation problems

appealing from the modeller’s point of view: although two-dimensional problems may

be somewhat artificial, their greater tractability allows more thorough analysis to be

carried out.

1.9 Thesis overview

This thesis is concerned with various aspects of the evolution, and hence the lifetimes,

of evaporating sessile droplets in various modes of evaporation.
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In chapter 2 we give an account of various models for the evaporation of a sessile droplet

on a horizontal substrate. We give a full derivation of the thermally-coupled diffusion-

limited models for evaporation used by, for example, Ait Saada et al. [5]. We also

give a statement of the model used by Dunn et al. [51] and explain the key differences

between the thermally-coupled model and the Dunn model.

In chapter 3 we consider the thermally-coupled evaporation of an axisymmetric droplet

using the finite element analysis package COMSOL Multiphysics [1]. We first validate

our solutions against the solutions found previously by Dunn et al. [51], Ait Saada et

al. [5] and Stauber et al. [143]. We then find the evaporation rates and lifetimes for ax-

isymmetric water droplets with various initial contact angles evaporating on substrates

of various thermal conductivities in the CR and CA modes of evaporation.

In chapter 4 we build on the work in chapter 3 and restrict our investigation to thin

droplets evaporating on thin substrates, allowing us to obtain analytical expressions for

the vapour and temperature fields produced by an evaporating droplet. In particular,

we obtain the evaporation rate, and hence lifetime, of a droplet evaporating in the CR,

CA, SS and SJ modes of evaporation.

In chapter 5 we consider the evaporation of thin two-dimensional sessile droplets either

singly or in a pair. We use a conformal-mapping technique to obtain the vapour con-

centrations, and hence obtain closed-form solutions for the evolutions and the lifetimes

of the droplets in the CR, CA and SS modes of evaporation.

In chapter 6 we summarise the results obtained, draw conclusions, and suggest possible

directions for future work.

1.10 Publications and presentations

Aspects of the work in chapter 3 have been published as an extended abstract (Schofield

et al. [116]) in the Proceedings of the 16th UK Heat Transfer Conference, September

2019, Nottingham, as well as being presented as an oral presentation by my primary
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supervisor Prof. Stephen K. Wilson at this meeting and by myself at Droplets 2019,

September 2019, Durham.

The work in chapter 4 has been published in the Journal of Fluid Mechanics (Schofield

et al. [117]) and as an extended abstract (Wilson et al. [159]) in the Proceedings of

the 15th UK Heat Transfer Conference, September 2017, London, as well as presented

as an oral presentation by Prof. Stephen K. Wilson at this meeting. This work has

also been presented by me at the Institute of Physics Printing and Graphics Soci-

ety “Printing for the Future” conference, January 2018, Nottingham; the 60th British

Applied Mathematics Colloquium, March 2018, St Andrews; the 31st Scottish Fluid

Mechanics Meeting, May 2018, Aberdeen; the UK Fluids Network Fluid Mechanics of

Cleaning and Decontamination Special Interest Group Summer 2018 Conference, Au-

gust 2018, Cambridge; the UK Fluids Conference 2018, September 2018, Manchester;

the 12th European Fluid Mechanics Conference, September 2018, Vienna; and a Con-

tinuum Mechanics and Industrial Mathematics Research Group Seminar within the

Department of Mathematics and Statistics at the University of Strathclyde, January

2019.

The work in chapter 5 has been recently published in the Journal of Engineering Math-

ematics (Schofield et al. [118]), as well as presented by me at the 61st British Applied

Mathematics Colloquium, April 2019, Bath, and the 32nd Scottish Fluid Mechanics

Meeting, May 2019, Dundee and by Prof. Stephen K. Wilson as an oral presentation

at Droplets 2019, September 2019, Durham.
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Chapter 2

Theoretical Models for Droplet

Evaporation

2.1 Introduction

In this chapter we give a mathematical description of a sessile droplet, and various

models for its evaporation on a horizontal substrate. When choosing an appropriate

model it is important to consider the dominant physical mechanisms which govern the

evaporation of the droplet. Evaporation models are usually categorised as either of the

following.

• Diffusion-limited (or two-sided) models, in which the evaporation is controlled

by the diffusion of vapour molecules in the atmosphere. Diffusion-limited models

are generally appropriate for situations in which the droplet evaporates in an

equilibrated state.

• Non-equilibrium (or one-sided) models, in which evaporation is controlled by

non-equilibrated thermal effects acting at the free surface of the droplet. Non-

equilibrium models are generally appropriate for situations in which the droplet

is heated.

As the work in this thesis concerns only diffusion-limited models of evaporation, we will
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Parameter Water [51] Methanol [51] Acetone [51] Toluene [166]

ρ̂ [kg m−3] 9.98× 102 7.90× 102 7.88× 102 8.67× 102

µ̂ [kg m−1 s−1] 9.46× 10−4 5.74× 10−4 3.15× 10−4 5.8× 10−4

D̂ [m2 s−1] 2.44× 10−5 1.5× 10−5 1.06× 10−5 2.1× 10−5

σ̂ [kg s2] 7.25× 10−2 2.23× 10−2 2.38× 10−2 2.84× 10−2

k̂ [kg m s−3 K−1] 6.04× 10−1 2.03× 10−1 1.61× 10−1 −
ĉp [m2 s−2 K−1] 4.18× 103 2.53× 103 2.17× 103 −
α̂ [m2 s−1] 1.44× 10−7 1× 10−7 9.41× 10−8 −
L̂ [m] 1× 10−3 1× 10−3 1× 10−3 1× 10−3

V̂0 [m3] 1× 10−9 1× 10−9 1× 10−9 1× 10−9

ĉsat(T̂∞) [kg m−3] 1.194× 10−2 1.86× 10−1 6.37× 10−1 1.77× 10−1

ĉ∞ [kg m−3] 7.76× 10−3 0 0 0

τ̂ [s] 1.073× 103 86 35 1.57× 102

Table 2.1: Typical physical properties of various liquids as quoted by Dunn et al. [51]
and Yarin et al. [166]. Also shown are lengthscales L̂ and initial volumes V̂0 typical for
the droplets described by Dunn et al. [51] and Yarin et al. [166], and the corresponding
evaporative timescales τ̂ of the obtained using (2.1). Dashes indicate values not given
in the corresponding source.

now give a complete derivation of these models. We will also give a brief description of

non-equilibrium models in section 2.7.

2.2 Mathematical model of an evaporating droplet

We will now give a mathematical model of an evaporating sessile droplet. Using carets

to denote dimensional quantities and unscaled angles, we consider a droplet of liquid

with known constant density ρ̂, surface tension σ̂, viscosity µ̂, specific heat capacity

ĉp, thermal conductivity k̂, thermal diffusivity α̂ = k̂/ρ̂ĉp, latent heat of vaporisation

L̂, and with an unknown free surface ĥ and temperature T̂ . The droplet is immersed

within an atmosphere with constant pressure p̂a, density ρ̂a, specific heat capacity ĉa
p,

thermal conductivity k̂a, and thermal diffusivity α̂a = k̂a/ρ̂aĉa
p, and with unknown

vapour concentration ĉ and temperature T̂ a. Table 2.1 gives typical physical properties

of various liquids as quoted by Dunn et al. [51] and Yarin et al. [166]. Table 2.1 also

gives the typical lengthscales L̂ and timescales τ̂ of the droplets described by Dunn et
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Parameter Aluminium [51] PTFE [51] Aerogel [157]

ρ̂s [kg m−3] 2.71× 103 2.22× 103 −
ĉs

p [m2 s−2 K−1] 9.11× 102 1.05× 103 −
k̂s [kg m s−3 K−1] 2.73× 102 2.5× 10−1 −
α̂s [m2 s−1] 1.20× 10−4 1.08× 10−7 4× 10−7

Table 2.2: Typical physical properties of various substrates as quoted by Dunn et al.
[51] and Wei et al. [157]. Dashes indicate values not given in the corresponding source.

al. [51] and Yarin et al. [166], where

τ̂ =
ρ̂

2D̂(ĉsat(T̂∞)− ĉ∞)

(
3V̂0

2π

)2/3

(2.1)

is the characteristic timescale of diffusion-limited evaporation as discussed by, for ex-

ample, Stauber et al. [143], and is hereafter referred to as the basic timescale.

2.2.1 Wetting

We suppose that the droplet is deposited onto a horizontal substrate of constant thick-

ness ĥs, density ρ̂s, specific heat capacity ĉs
p, thermal conductivity k̂s, and thermal

conductivity k̂a, thermal diffusivity α̂s = k̂s/ρ̂sĉs
p, and unknown temperature T̂ s. Table

2.2 shows typical physical properties of various substrates as quoted by Dunn et al. [51]

and Wei et al. [157].

Adhesive forces (forces between unlike molecules) between the substrate and the droplet

deform the droplet to a quasi-equilibrium state with a contact angle between the sub-

strate and the droplet θ̂ (0 ≤ θ̂ ≤ π) by the process of wetting. The equilibrium contact

angle of a droplet deposited onto an ideal substrate, i.e. a substrate that is perfectly

smooth, chemically homogeneous, rigid, impermeable and insoluble, is described by the

Young–Dupré equation, [167]

σ̂ cos θ̂ = σ̂sa − σ̂sd, (2.2)

where σ̂, σ̂sa, and σ̂sd denote the surface tensions at the droplet-atmosphere interface,
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σ̂

σ̂sdσ̂sa

Atmosphere
Droplet

θ̂

Contact line

Ideal substrate

Figure 2.1: Sketch of the contact line for a low wetting droplet on an ideal substrate.

the substrate-atmosphere interface, and the substrate-droplet interface, respectively.

Figure 2.1 shows a sketch of the contact line for a low wetting droplet on an ideal

substrate.

The degree of wetting is characterised by the value of θ̂. We refer to θ̂ = 0 as total

wetting, 0 < θ̂ ≤ π/2 as high wetting, π/2 < θ̂ < π as low wetting and θ̂ = π as

zero wetting. Although equation (2.2) states that a droplet deposited onto an ideal

substrate has a unique equilibrium contact angle, in reality, substrates are non-ideal,

and surface roughness and/or chemical heterogeneities allow for contact line pinning,

and hence in practice there is usually a range of stable equilibrium contact angles (see

for example, Zhang et al. [169]).

2.2.2 The Young–Laplace equation

The liquid droplet is composed of molecules attracted to one another by cohesive forces

(i.e. forces between like molecules). Every molecule in the bulk of the droplet expe-

riences equal attraction in all directions by neighbouring molecules, and as a result

the net cohesive force acting on the molecule is zero. However, when adhesive forces

between the molecules in the atmosphere and the molecules in the droplet are negligi-

ble, then the liquid molecules on the surface of the droplet will experience a net force

of cohesion in the direction of the inward normal to the surface. The cohesive force

acting on a surface element must balance with a difference in normal stress across the
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droplet-atmosphere interface, expressed as [108, pp. 173–176]

n̂ · (∆T̂ ) · n̂ = σ̂(∇̂ · n), (2.3)

where n̂ is the unit normal to the free surface, and

∆T̂ = −∆p̂I + µ̂
[
∇̂û+ (∇̂û)T

]
(2.4)

is the stress tensor difference across the free surface of a droplet of Newtonian liquid,

with ∆p̂ = p̂ − p̂a denoting the pressure difference across the free surface, û denoting

the velocity field within the liquid, and I denoting the identity tensor. In writing (2.4)

we have taken the viscosity of the atmosphere to be negligible, i.e. µ̂a = 0.

In addition to the normal stress balance (2.4), the tangential stress difference must

satisfy

n̂ · (∆T̂ ) · t̂ = ∇̂σ̂ · t̂, (2.5)

where t̂ is a unit tangent to the free surface.

In general, σ̂ depends on T̂ (see for example, Sultan et al. [147] who consider a linear

expression of σ̂(T̂ )). However, for the small magnitudes of cooling (< 10 K) considered

in the present work, the variation in σ across the surface of the droplet is only 1%, and

so σ̂ can reasonably be assumed to be constant.

If we consider uniform surface tension, i.e. ∇̂σ̂ = 0, then equation (2.5) reduces to

n̂ · (∆T̂ ) · t̂ = 0. (2.6)

We scale û = Ûu, ∆p̂ = (σ̂/L̂)∆p and L̂∇̂ = ∇, where Û = L̂/τ̂ is the characteristic

velocity scale, L̂ is the characteristic length scale and τ̂ is the time scale given by (2.1).

Thus, from equation (2.3) we have

n · (∆pI) · n− µ̂Û

σ̂
n ·
[
∇u+ (∇u)T

]
· n = −∇ · n. (2.7)
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Liquid Ca We Re Bo Fom Pem
Water 3.2× 10−4 8.2× 10−3 25.6 1.4× 10−1 2.6× 104 3.8× 10−5

Methanol 3.8× 10−4 8.0× 10−3 21.1 3.5× 10−1 1.2× 103 7.7× 10−4

Acetone 1.0× 10−4 2.8× 10−3 28.0 5.9× 10−1 2.1× 102 4.8× 10−3

Toluene 1.4× 10−4 3.7× 10−3 26.4 3.2× 10−1 3.8× 103 2.6× 10−3

Table 2.3: Typical values of nondimensional groups defined throughout this chapter for
droplets of various liquids evaporating into air calculated using values from table 2.1.

The dimensionless group

Ca =
µ̂Û

σ̂
(2.8)

is the capillary number which characterises the ratio of the magnitude of viscous forces

to the magnitude of surface tension forces acting across the interface. Table 2.3 shows

typical values of nondimensional groups defined throughout this chapter for droplets

of various liquids evaporating into air calculated using values from table 2.1. Table

2.3 shows that for droplets of various standard liquids Ca � 1. A small capillary

number Ca � 1 characterises a situation where surface tension forces dominate, thus

the viscous term in equation (2.7) is negligible, i.e. equation (2.7) becomes

n · (∆pI) · n = −∇ · n. (2.9)

Equation (2.9) is the dimensionless form of the Young–Laplace equation [167] and may

be written simply as

∆p = −∇ · n = κ, (2.10)

where κ is the mean curvature of the free surface.
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2.2.3 The free surface of the droplet

To determine the shape of the free surface of the droplet, we consider the dimensional

Navier–Stokes equation for the flow within the droplet

∂û

∂t̂
+ (û · ∇̂)û = f̂ − ∇̂p̂

ρ̂
+
µ̂

ρ̂
∇̂2û, (2.11)

where f̂ = −ĝez and ĝ is gravitational acceleration. Scaling û = Ûu = (L̂u)/τ̂ , t̂ =

τ̂ t, L̂∇̂ = ∇, p̂ = (σ̂/L̂)p, f̂ = ĝf , where τ̂ is the time scale given by (2.1), we obtain

from equation (2.11)

We

(
∂u

∂t
+ (u · ∇)u

)
= Bof −∇p+ Ca∇2u, (2.12)

where we have introduced the following dimensionless groups.

The Weber number

We =
L̂ρ̂Û2

σ̂
(2.13)

characterises the ratio of the magnitude of inertial forces to the magnitude of capillary

forces within the fluid.

The Bond number

Bo =
L̂2ρ̂ĝ

σ̂
(2.14)

characterises the ratio of the magnitude of the force of gravity to the magnitude of the

capillary forces acting on the droplet.

Table 2.3 shows that for droplets of various standard liquids We � 1. We note that

these values of the Bond number are not much smaller than unity. Picknett and Bexon

[102] remarked that for the millimetre-sized droplets they investigated, due to a non-

negligible Bond number, the droplets were not perfectly-spherical caps. However, using

the same values quoted in table 2.1, for a methanol droplet with radius L̂ = 1 × 10−4
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m (instead of L̂ = 1×10−3 m) we obtain Bo = 3.5×10−3 (instead of Bo = 3.5×10−1).

Thus, for submillimetre sized droplets there is a physical regime for which Bo � 1,

Ca � 1 and We � 1. Although a droplet with the parameters quoted in table 2.1

is not quite in this regime, throughout this thesis we assume Bo � 1, Ca � 1 and

We� 1. In this regime equation (2.12) reduces to

∇p = 0, (2.15)

so p is constant throughout the droplet.

The conventional Reynolds number Re can be expressed in terms of Ca and We as

Re =
ρ̂Û L̂

µ̂
=

We

Ca
, (2.16)

and is also included in table 2.3 for completeness.

2.2.4 Axisymmetric droplet

In chapters 3 and 4 we consider the evaporation of axisymmetric droplets, thus it is

natural to work in cylindrical coordinates (r̂, φ̂, ẑ) = (L̂r, φ̂, L̂z). In this coordinate

system equations (2.10) and (2.15) are satisfied by a spherical cap of radius R =

R/ sin θ̂, the free surface of which is given by

h(r, t) = ±
√
R2 − r2 −R cos θ̂, (2.17)

where a positive sign gives the upper hemisphere of the surface, and a negative sign

gives the lower hemisphere of the surface.

It is often convenient to express the free surface in terms of the contact radius R,

namely

h(r, t) = ±
√

R2

sin2 θ̂
− r2 −R cot θ̂. (2.18)
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ẑ = ĥ
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Figure 2.2: Cross-sectional view of an axisymmetric droplet with radius R̂, contact
radius R̂, and contact angle θ̂.

The volume of the spherical cap with contact radius R is given by

V (t) =
π

6
R tan

(
θ̂

2

)(
3R2 +R2 tan2

(
θ̂

2

))

=
πR3 sin θ̂(cos θ̂ + 2)

3(cos θ̂ + 1)2
. (2.19)

By rescaling the free surface (2.18) we obtain the dimensional free surface

ĥ(r̂, t̂) = ±

√
R̂2

sin2 θ̂
− r̂2 − R̂ cot θ̂. (2.20)

Figure 2.2 shows the geometry of an axisymmetric droplet with a free surface given by

equation (2.20).

2.2.5 2D droplet

In chapter 5 we consider the evaporation of 2D droplets. When studying 2D droplets it

is natural to work in Cartesian coordinates (x̂, ŷ) = L̂(x, y). In this coordinate system
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equations (2.10) and (2.15) are satisfied by a cylindrical cap of radius R = R/ sin θ̂, the

free surface of which is now given by

h(x, t) = ±
√

R2

sin2 θ̂
− x2 −R cot θ̂. (2.21)

Note that the equivalent cross-section for the axisymmetric droplet (2.18) is recovered

by replacing ŷ = ẑ and x̂ = r̂. The cross-sectional area of the cylindrical cap with

contact radius R is given by

A(t) = R2

(
θ̂

sin2 θ̂
− cot θ̂

)
. (2.22)

2.3 Diffusion-limited models

2.3.1 Thermally-coupled model

As discussed in chapter 1, previous authors have shown that the rate of evaporation for

a sessile droplet is often governed by the diffusion of vapour in the atmosphere. Here we

give a full formulation of the diffusion-limited model using axisymmetric polar coordi-

nates (r̂, ẑ). The formulation of the corresponding 2D model follows the corresponding

procedure using Cartesian coordinates (x̂, ŷ).

The distribution of vapour concentration ĉ is governed by the advection-diffusion equa-

tion

∂ĉ

∂t̂
= ∇̂ · (D̂∇̂ĉ)− ∇̂ · (ûaĉ), (2.23)

where D̂ and ûa denote the diffusivity of vapour through the atmosphere and the
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velocity in the atmosphere, respectively. Equation (2.23) can be rewritten as

1

Fom

∂c

∂t
= ∇2c− Pem∇ · (uac), (2.24)

where we have introduced the following dimensionless groups.

The (mass) Péclet number

Pem =
L̂Û

D̂
(2.25)

characterises the ratio of the magnitude of diffusive transport of mass to the magnitude

of advective transport of mass.

The (mass) Fourier number

Fom =
τ̂ D̂

L̂2
(2.26)

characterises the ratio of the magnitude of the evaporative timescale to the magnitude

of the mass diffusion timescale. Since in the diffusion-limited model Û = L̂/τ̂ , from

(2.25) and (2.26) Pem = 1/Fom. Note that this equality does not necessarily hold in

regimes that are not diffusion limited.

Table 2.3 shows that for droplets of various standard liquids Fom � 1 and Pem � 1.

In this regime equation (2.23) reduces to

∇̂2ĉ = 0. (2.27)

Equation (2.27) is subject to the boundary conditions

ĉ = ĉsat on ẑ = ĥ, (2.28)

ĉ→ ĉ∞ as
√
r̂2 + ẑ2 →∞ and ẑ > 0, (2.29)

∂ĉ

∂ẑ
= 0 on ẑ = 0 for r̂ > R̂, (2.30)

where ĉsat = ĉsat(T̂ ) denotes the saturation concentration of vapour and ĉ∞ denotes the
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constant ambient concentration far from the droplet. We follow, for example, Sefiane

et al. [121] and couple the saturation concentration at the free surface of the droplet to

the temperature of the free surface of the droplet by choosing

ĉsat = ĉsat(T̂ ), (2.31)

where the function ĉsat(T̂ ) is, in general, expressed as a polynomial in T̂ − T̂∞ given

as

ĉsat(T̂ ) =
n∑
i=0

âi
(T̂ − T̂∞)i

i!
, (2.32)

where âi = diĉsat/dT̂
i(T̂∞) and T̂∞ denotes the constant ambient atmospheric temper-

ature.

Figure 2.3 shows ĉsat(T̂ ) as given by equation (2.32) for n = 0, . . . , 4 for water vapour in

air at T̂∞ = 295 K, using the values of ai given by Sefiane et al. [121]. The present figure

2.3 is a corrected and extended version of figure 7 in Sefiane et al. [121]; specifically the

quadratic curve (n = 2) has been corrected, and we have also included the constant

(n = 0) and cubic (n = 3) expressions for completeness. We expect that dĉsat/dT̂ > 0,

and so unphysical parts of the curves with dĉsat/dT̂ < 0 are plotted with a dotted curve.

To emphasize the differences in each approximation, figure 2.3 shows ĉsat(T̂ ) plotted

over a large range of T̂ . However, throughout this thesis we are primarily concerned

with small magnitudes of evaporative cooling, < 10 K.

Since the vapour distribution in the atmosphere is temperature-dependent via equa-

tion (2.28) with (2.31), we must solve an appropriate temperature equation to find the

temperature distribution in the system. As with the vapour concentration, the tem-

perature is governed by the advection-diffusion equation. For simplicity, we split the

temperature equation for the entire system into three separate temperature equations,

namely

∂T̂ i

∂t̂
= α̂i∇̂2T̂ i − ∇̂ · (ûiT̂ i), (2.33)
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Figure 2.3: Saturation concentration of vapour ĉsat(T̂ ) as given by equation (2.32) for
n = 0, . . . , 4, for water vapour in air at T̂∞ = 295 K, using the values of ai given by
Sefiane et al. [121]. We expect that dĉsat/dT̂ > 0, and so unphysical parts of the curves
with dĉsat/dT̂ < 0 are plotted with a dotted curve.

where α̂i = k̂i/ρ̂iĉip denotes the thermal diffusivity within the domain, ûi denotes

velocity within the domain and an index i = a denotes atmospheric quantities, an

index i = s denotes substrate quantities, and the absence of an index denotes droplet

quantities. As before, we rewrite equation (2.33) as

1

Foih

∂T i

∂t
= ∇2T i − Peih∇ · (uiT̂ i), (2.34)

where

Foih =
α̂iτ̂

L̂2
(2.35)

is the (thermal) Fourier number which characterises the ratio of the evaporative timescale

to the thermal diffusive timescale, and

Peih =
L̂Û i

α̂i
(2.36)

is the (thermal) Péclet number which characterises the ratio of the magnitude of diffu-

sive transport of heat to the magnitude of advective transport of heat.

Table 2.4 shows values of Foih and Peih for various substances calculated using values
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Atmosphere Foa
h Pea

h

Air (ĉ∞ = 0.4× ĉsat) 8.0× 103 1.25× 10−4

Liquid Foh Peh
Water 5.5× 101 1.8× 10−2

Methanol 4.4× 100 2.3× 10−1

Acetone 1.8× 100 5.5× 10−1

Substrate Fos
h Pes

h

Aluminium 4.6× 104 0

PTFE 4.2× 101 0

Aerogel 1.54× 103 0

Table 2.4: Typical values of Foih and Peih for various substances calculated using values
from tables 2.1 and 2.2, as well as properties of air given by Tsilingiris [153]. For the
atmosphere and the substrate we have used τ̂ = 1073 s, which corresponds to the water
droplet evaporation quoted by Dunn et al. [51].

from tables 2.1 and 2.2, as well as properties of air given by Tsilingiris [153]. In

particular, we use α̂a = 2.1 × 10−5 m2 s−1 to calculate Foa
h and Pea

h. Table 2.4 shows

that for various standard substances, Foih � 1 and Peih � 1. Note that for methanol

and acetone Foh is not much larger, and Peh is not much smaller, than unity. However,

as we later discuss in chapters 3 and 4, it is possible to obtain longer-living droplets of

methanol and acetone, which exist in the regime Foih � 1 and Peih � 1. In this regime

equation (2.33) reduces to

∇̂2T̂ i = 0. (2.37)

We solve equation (2.37) subject to the following boundary conditions. The tempera-

ture of the atmosphere approaches the ambient value far from the droplet, i.e.

T̂ a → T̂∞ as
√
r̂2 + ẑ2 →∞ for ẑ > 0. (2.38)

The temperature of the substrate takes the ambient value on its lower surface and far
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from the droplet, i.e.

T̂ s = T̂∞ on ẑ = −ĥs and in − ĥs ≤ ẑ ≤ 0 as r̂ →∞. (2.39)

The temperature is continuous across the atmosphere-droplet, atmosphere-substrate

and droplet-substrate interfaces, i.e.

T̂ a = T̂ on ẑ = ĥ, (2.40)

T̂ a = T̂ s on ẑ = 0, r̂ > R̂, (2.41)

T̂ = T̂ s on ẑ = 0, r̂ < R̂, (2.42)

respectively.

The heat flux is continuous across the atmosphere-substrate and droplet-substrate in-

terfaces, i.e.

k̂a∂T̂
a

∂ẑ
= k̂s∂T̂

s

∂ẑ
on ẑ = 0, r̂ > R̂, (2.43)

k̂
∂T̂

∂ẑ
= k̂s∂T̂

s

∂ẑ
on ẑ = 0, r̂ < R̂. (2.44)

The heat flux across the atmosphere-droplet interface satisfies the local energy bal-

ance

1

L̂
n̂ · ∇̂

(
k̂T̂ − k̂aT̂ a

)
= n̂ · D̂∇̂ĉ = −Ĵ on ẑ = ĥ, (2.45)

where Ĵ(r̂, t̂) denotes the evaporative mass flux from the free surface of the droplet.

The rate of change of the mass of the droplet is found by integrating the mass flux over

the free surface of the droplet, i.e.

ρ̂
dV̂

dt̂
= −

∫
ĴdŜ. (2.46)

In chapter 3 we numerically solve the thermally-coupled model and obtain numerical
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solutions for vapour concentration, temperature and droplet lifetimes. In chapter 4 we

analytically solve the reduced form of the thermally-coupled model described in section

2.5 and obtain closed-form solutions for vapour concentration, temperature and droplet

lifetimes.

2.3.2 Comparison with similar thermally-coupled models

The present thermally-coupled model described here differs slightly from the thermally-

coupled models previously used by Dunn et al. [51] and Ristenpart et al. [112]. In

the present model, the vapour distribution is coupled to the temperature everywhere,

whereas in the Dunn model the vapour distribution is coupled to the temperature

distribution in the droplet and substrate only. To decouple atmospheric thermal ef-

fects, Dunn et al. [51] neglected conditions (2.38), (2.40) and (2.43), and replaced the

boundary conditions (2.41) and (2.45) as follows.

Instead of condition (2.41) Dunn et al. [51] imposed

T̂ s = T̂∞ on ẑ = 0, r̂ > R̂, (2.47)

and instead of condition (2.45) Dunn et al. [51] imposed

k̂

L̂
n̂ · ∇̂T̂ = n̂ · D̂∇̂ĉ = −Ĵ on ẑ = ĥ. (2.48)

Neglecting the atmospheric temperature field by taking specific limits of the thermally-

coupled model is common practice (see, for example, [83, 112]). However, the Dunn

model cannot be recovered by taking a limit of the thermally-coupled model. Condition

(2.47) fixes the temperature of the unwetted upper surface of the substrate. This means

that, as we will show in section 3.3.4, the unwetted upper surface of the substrate cannot

cool, but the wetted upper surface of the substrate can cool.

Unlike Dunn et al. [51], Ristenpart et al. [112] use a model in which the lower surface of

the substrate is kept at a fixed temperature, but the entire upper surface of the substrate
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is allowed to cool. To impose this condition, while still decoupling atmospheric thermal

effects, Ristenpart et al. [112] impose condition (2.48), but replace condition (2.47)

with

∂T̂ s

∂ẑ
= 0 on ẑ = 0, r̂ > R̂. (2.49)

We note that conditions (2.48) and (2.49) are valid in the regime k̂a � k̂s and k̂a � k̂

from conditions (2.45) and (2.43), respectively.

2.4 Non-dimensional thermally-coupled model

Denoting R̂(0) = R̂0, θ̂(0) = θ̂0 and V̂ (0) = V̂0, when considering axisymmetric droplets

we introduce the following set of non-dimensional quantities:

r = r̂/R̂0, z = ẑ/R̂0, T = T̂ /T̂∞, T s = T̂ s/T̂∞, T a = T̂ a/T̂∞, h = ĥ/R̂0,

hs = ĥs/R̂0, V = V̂ /R̂3
0, α = k̂a/k̂, β = k̂a/k̂s, c =

ĉ− ĉ∞
ĉsat(T̂∞)− ĉ∞

,

γi =
diĉ

dT̂ i

∣∣∣∣
T̂=T̂∞

T̂ i∞

i!(ĉsat(T̂∞)− ĉ∞)
, λ =

T̂∞k̂

D̂L̂(ĉsat(T̂∞)− ĉ∞)
,

t =
2D̂(ĉsat(T̂∞)− ĉ∞)

ρ̂

(
2π

3V̂0

)2/3

t̂, J =
R̂0

2D̂(ĉsat(T̂∞)− ĉ∞)
Ĵ . (2.50)

The non-dimensionalised thermally-coupled evaporation problem is given by the fol-

lowing equations and boundary conditions.

The free surface of the droplet h is given by equation (2.17) and the volume of the

droplet is given by equation (2.19).

Laplace’s equation for the vapour concentration (2.27) becomes

∇2c = 0 in the atmosphere. (2.51)

The boundary conditions on the concentration in the atmosphere (2.28)–(2.30) be-
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come

c =

n∑
i=0

γi(T − 1)i on z = h, (2.52)

c→ 0 as
√
r2 + z2 →∞ and z > 0, (2.53)

∂c

∂z
= 0 on z = 0 for r̂ > R̂, (2.54)

respectively.

The three Laplace’s equations for temperature in the atmosphere, droplet and substrate

(2.37) become

∇2T a = 0 in the atmosphere, (2.55)

∇2T = 0 in the droplet, (2.56)

∇2T s = 0 in the substrate, (2.57)

respectively.

The ambient conditions on temperature (2.38) and (2.39) become

T a → 1 as
√
r2 + z2 →∞ for z > 0, (2.58)

T s = 1 on z = −hs and on − hs ≤ z ≤ 0 as r →∞, (2.59)

respectively.

The temperature continuity conditions (2.40)–(2.42) become

T a = T on z = h, (2.60)

T a = T s on z = 0, r > R, (2.61)

T = T s on z = 0, 0 < r < R, (2.62)

respectively.
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The energy balance conditions (2.43)–(2.45) become

β
∂T a

∂z
=
∂T s

∂z
on z = 0, r > R, (2.63)

∂T

∂z
=
α

β

∂T s

∂z
on z = 0, 0 < r < R, (2.64)

J = −λn · ∇ (T − αT a) = −n · ∇c on z = h, (2.65)

respectively.

The rate of change of the mass of the droplet (2.46) becomes

dV

dt
= −

(
3V̂0

2π

)2/3
1

R̂2
0

∫
JdS. (2.66)

2.5 Thermally-coupled model for a thin droplet evaporat-

ing on a thin substrate

The thermally-coupled model given in section 2.4 can be solved numerically, for exam-

ple, by finite element methods [3, 5, 6, 133]. However, to make analytical progress with

this model, further reductions are required. An approach used when modelling thin

droplets, i.e. droplets for which θ̂0 � 1, is to consider a thin-film limit in which we

compare the magnitudes of various lengthscales, identify negligible quantities, and re-

duce the model further, for example [50, 52]. Moreover, when modelling thin substrates

i.e. substrates for which hs � 1, the same principle of comparing characteristic length-

scales can be applied to the substrate, leading to a reduced model which is analytically

tractable.

2.5.1 Rescaled equations and boundary conditions

Due to the different vertical lengthscales in the atmosphere, the droplet and the sub-

strate we introduce the non-dimensional quantities za = z, z̄ = z/θ̂0 and zs = z/hs, to

denote z in the atmosphere, the droplet and the substrate, respectively. To simplify
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notation, we also introduce the non-dimensional quantities

θ = θ̂/θ̂0, V̄ = V/θ̂0, h̄ = h/θ̂0, t̄ = t(9/θ̂0)1/3, S = βhs/αθ̂0. (2.67)

The new timescale introduced in (2.67) comes from taking the thin-film limit of the

timescale in (2.50). Before we make any reductions, we rewrite the thermally-coupled

model in these new non-dimensional quantities as follows.

The free surface of the droplet (2.17) becomes

h̄ =
1

θ̂0

(
±
√

R2

sin2(θ̂0θ)
− r2 −R cot(θ̂0θ)

)
. (2.68)

The volume of the droplet (2.19) becomes

V̄ =
πR3 sin (θ̂0θ)(cos(θ̂0θ) + 2)

θ̂03(cos (θ̂0θ) + 1)2
. (2.69)

Laplace’s equation for the vapour concentration (2.51) remains as

∇2c = 0 in the atmosphere. (2.70)

The boundary conditions on the vapour concentration (2.52)–(2.54) become

c =

n∑
i=0

γi(T − 1)i on za = θ̂0h̄, (2.71)

c→ 0 as
√
r2 + za2 →∞ and za > 0, (2.72)

∂c

∂za
= 0 on za = 0 for r̂ > R̂, (2.73)

respectively.

The three Laplace’s equations for the temperature in the atmosphere, droplet and
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substrate (2.55)–(2.57) become

1

r

∂

∂r

(
r
∂T a

∂r

)
+
∂2T a

∂za2
= 0 in the atmosphere, (2.74)

1

r

∂

∂r

(
r
∂T

∂r

)
+

1

θ̂0
2

∂2T

∂z̄2
= 0 in the droplet, (2.75)

1

r

∂

∂r

(
r
∂T s

∂r

)
+

1

hs2

∂2T s

∂zs2
= 0 in the substrate, (2.76)

respectively.

The energy balance conditions (2.63)–(2.65) become

β
∂T a

∂za

∣∣∣∣
za=0

=
1

hs

∂T s

∂z

∣∣∣∣
zs=0

for r > R, (2.77)

1

θ̂0

∂T

∂z̄

∣∣∣∣
z̄=0

=
α

βhs

∂T s

∂zs

∣∣∣∣
zs=0

for 0 < r < R, (2.78)

J = − λ
θ̂0

∂T

∂z̄

∣∣∣∣
z̄=h̄

+ λα
∂T a

∂za

∣∣∣∣
za=θ̂0h̄

= − ∂c

∂za

∣∣∣∣
za=θ̂0h̄

on z = h, (2.79)

respectively.

The rate of change of the mass of the droplet (2.66) becomes

θ̂
2/3
0 91/3 dV̄

dt̄
= −

(
3V̂0

2π

)2/3
1

R̂2
0

∫
JdS. (2.80)

2.5.2 Reduced equations and boundary conditions

At leading order in θ̂0 � 1 and hs � 1 the equations given in section 2.5.1 reduce as

follows.

The free surface of the droplet (2.68) becomes

h̄ = θ
R2 − r2

2R
. (2.81)
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The volume of the droplet (2.69) becomes

V̄ =
π

4
θR3. (2.82)

Laplace’s equation for the vapour concentration (2.70) becomes

1

r

∂

∂r

(
r
∂c

∂r

)
+

∂2c

∂za2
= 0 for za > 0. (2.83)

The boundary conditions on the vapour concentration (2.52)–(2.54) become

c =
n∑
i=0

γi(T − 1)i on za = 0 for r < R, (2.84)

c→ 0 as
√
r2 + za2 →∞ and za > 0, (2.85)

∂c

∂za
= 0 on za = 0 for r > R, (2.86)

respectively.

The three Laplace’s equations for the temperature in the atmosphere, droplet and

substrate (2.74)–(2.76) become

1

r

∂

∂r

(
r
∂T a

∂r

)
+
∂2T a

∂za2
= 0 for za > 0, (2.87)

∂2T

∂z̄2
= 0 in the droplet, (2.88)

∂2T s

∂zs2
= 0 in the substrate, (2.89)

respectively.
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The energy balance conditions (2.77)–(2.79) become

hsβ
∂T a

∂za

∣∣∣∣
za=0

=
∂T s

∂zs

∣∣∣∣
zs=0

for r > R, (2.90)

S
∂T

∂z̄

∣∣∣∣
z̄=0

=
∂T s

∂zs

∣∣∣∣
zs=0

for 0 < r < R, (2.91)

J = − 1

αθ̂0

∂T

∂z̄

∣∣∣∣
z̄=h̄

+
∂T a

∂za

∣∣∣∣
za=0

= − 1

λα

∂c

∂za

∣∣∣∣
za=0

, (2.92)

respectively, where S is defined by (2.67).

The rate of change of the mass of the droplet (2.80) becomes

dV̄

dt̄
= −2π

∫ R

0
Jrdr. (2.93)

We consider evaporation of a thin droplet on a thin substrate in chapter 4 and, in

particular, obtain analytical expressions for the droplet evolution and lifetime.

2.6 Thermally-decoupled model

Setting γi = 0 for i > 0 in equation (2.52) gives csat ≡ 1. This decouples the vapour

distribution and the temperature distribution, thus recovering the thermally-decoupled

evaporation model used by, for example [39, 102, 143, 144], and given as follows.

The distribution of vapour concentration c is governed by

∇2c = 0 in the atmosphere, (2.94)

subject to zero vapour flux normal to the substrate,

∂c

∂z
= 0 on z = 0, r > R, (2.95)
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ambient saturation of the atmosphere far from the droplet,

c→ 0 as
√
r2 + za2 →∞ for za > 0, (2.96)

and total saturation of the atmosphere at the free surface,

c = 1 on z = h. (2.97)

2.6.1 Solutions to the thermally-decoupled model

As mentioned in chapter 1, the thermally-decoupled model has been the subject of

scientific research for many decades. The earliest analytical solution for the thermally-

decoupled model was given by Weber [156] who gave an analogous solution for the

evaporation of thin droplets (θ̂ � 1) in the electrostatic context of the electric field

produced by a charged disc. In particular, from Weber’s [156] solution, the dimensional

evaporative flux from a thin droplet,

Ĵ =
2

π

D̂(ĉsat − ĉ∞)√
R̂2 − r̂2

, (2.98)

is found to be singular (but integrable) at the contact line of the droplet.

The analytical solution for the general case of a non-thin droplet with 0 < θ̂ < π was

first reported, again in the context of electrostatics, by Lebedev [75, pp. 221-224]. From

Lebedev’s [75] solution Deegan et al. [39] found an expression for the evaporative flux

from a droplet with contact angle θ̂, namely

Ĵ =
D̂(ĉsat − ĉ∞)

R̂

[
1

2
sin θ̂ +

√
2(coshα+ cos θ̂)3/2

×
∫ ∞

0

τ cosh θ̂τ

coshπτ
tanh[τ(π − θ̂)]P−1/2+iτ (coshα)dτ

]
, (2.99)

where P−1/2+iτ denotes the Legendre function of the first kind of degree −1/2 + iτ and
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argument

coshα =
r̂2 cos θ̂ ± R̂

√
R̂2 − r̂2 sin2 θ̂

R̂2 − r̂2
. (2.100)

Deegan et al. [37, 39] used a simpler approximate expression for the dimensional evap-

orative flux from a droplet, namely

Ĵ(r̂, t̂) ∝ [1− (r̂/R̂)2]−λ, (2.101)

where λ = (π − 2θ̂)/(2π − 2θ̂). In particular, 2.101 reveals that the flux at the contact

line of the droplet is singular for θ̂ < π/2, finite for θ̂ = π/2 and zero for θ̂ > π/2.

In chapter 3 we compare the results of the thermally-coupled model to the results of

the thermally-decoupled model. We also use the thermally-decoupled model to solve

problems concerning the evaporation of 2D droplets in chapter 5.

2.6.2 Thermally-decoupled model for a thin droplet

As in the thermally-coupled model, in the limit in which the droplet is thin, the

thermally-decoupled model simplifies because the profile of the droplet may be ignored

when imposing the boundary conditions on ĉ. Specifically, the mathematical problem

becomes that of solving for ĉ in a half-space or other large domain, subject to appro-

priate mixed boundary conditions. As discussed in section 1.8, previous authors have

investigated mathematically similar problems.

We consider the thermally-decoupled model for a thin droplet in two dimensions in

chapter 5.

2.7 One-sided model

As previously mentioned, the models described in the section 2.3–2.6 are known as

diffusion-limited models because the evaporation of the droplet is governed by the
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quasi-steady diffusion of vapour. However, diffusion-limited models are not applicable

for droplets which evaporate in a non-equilibrated regime. The non-equilibrium model

is appropriate for modelling heated droplets.

The non-equilibrium model follows from the work of Schrage [119], who showed that

evaporative flux in a non-equilibrated regime is proportional to the difference between

the equilibrium vapour pressure p̂v
sat and the actual vapour pressure p̂v, as shown in

the Hertz–Knudsen equation:

Ĵ =
ρ̂vL̂L̂
k̂T̂ ∗

√
R̄T̂

2π

(
p̂v

sat

p̂v
− 1

)
, (2.102)

where T̂ ∗ denotes the equilibrium saturation temperature, ρ̂v denotes the density of

the vapour, T̂ is the temperature of the free surface, and R̄ is the gas constant per unit

mass.

As well as being applied to the evaporation of heated droplets [10, 11, 12, 137], non-

equilibrium models can be used to model other physical phenomena, such as droplet

spreading [7, 10, 138], the coffee-stain effect [101, 100], and vapour bubble dynamics

[8, 9, 10]. We will not use the one-sided model in this thesis.
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Thermally-Coupled Model:

Numerical Method and Results

3.1 Introduction

In this chapter we obtain numerical solutions to the thermally-coupled diffusion-limited

evaporation model described in chapter 2. Following, for example, Dunn et al. [51] and

Ait Saada et al. [5], we use a finite element based approach to solve the quasi-steady

problem described in section 2.3. Specifically, we use the finite element analysis package

COMSOL Multiphysics [1]. Using these quasi-steady solutions we use a simple time-

stepping method to obtain the quasi-steady evolution, and hence the lifetime, of an

evaporating droplet.

We first describe the numerical model. We then validate our numerical results against

the results obtained numerically by Ait Saada et al. [5]. We then compare our numerical

solutions to the thermally-coupled model described in section 2.3 with our numerical

solutions to the Dunn model described in section 2.3.2 and the thermally-decoupled

model described in section 2.6. In both cases we highlight the key differences between

the present numerical method, and the numerical methods presented by Ait Saada et

al. [5] and Dunn et al. [51], respectively. In particular, we show how these differences
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contribute to the differences between our present results and the corresponding results

of Ait Saada et al. [5] and Dunn et al. [51].

After validating our numerical results we conduct new investigations into the influence

of various thermo-physical properties on the vapour concentration, temperature and

evaporative flux. We also show how to recover the thermally-decoupled model from

the thermally-coupled model. Finally, we present new calculations of the lifetimes of

droplets with a wide range of initial contact angles on substrates with a wide range

of thermal conductivities. All of these numerical calculations are carried out using

the thermally-coupled model described in section 2.3 and using the physical parameter

values shown in tables 2.1 and 2.2, unless otherwise specified.

3.2 Description of the numerical method

In this section we explain how we numerically implement the thermally-coupled model

described in section 2.3. The numerical method presented here is broadly similar to

that of Ait Saada et al. [5], with the exception of the meshing and time-stepping

methods.

3.2.1 Geometry

We create a geometry for our computational model using the geometry tools provided in

COMSOL Multiphysics. Since the computational domain must be finite, we follow, for

example, Dunn et al. [51] and Ait Saada et al. [5], and replace the far-field conditions

(2.29), (2.38) and (2.39) with boundary conditions imposed at a large but finite distance

from the droplet, namely

ĉ = ĉ∞ on
√
r̂2 + ẑ2 = SR̂ for ẑ > 0, (3.1)

T̂ a = T̂∞ on
√
r̂2 + ẑ2 = SR̂ for ẑ > 0, (3.2)

T̂ s = T̂∞ on ẑ = −ĥs, 0 ≤ r̂ ≤ SR̂ and − ĥs ≤ ẑ ≤ 0, r̂ = SR̂, (3.3)

43



Chapter 3. Thermally-Coupled Model: Numerical Method and Results
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Droplet

Atmosphere
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(a)
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ẑ

(0, 0)

−ĥs

SR̂
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Figure 3.1: Sketch (not to scale) of the numerical domain on which we impose boundary
conditions (3.1)–(3.3). (a) The computational subdomains representing the substrate,
the droplet, and the atmosphere. (b) The circle (dotted) centred at the contact line
within which we greatly increase the mesh resolution.

respectively, where S is a dimensionless number (typically 300) which determines the

size of the computational domain. The lifetimes of a droplet evaluated using S = 300

and using S = 400 typically differ by ≈ 0.5%.

Figure 3.1 shows a sketch (not to scale) of the numerical domain with finite boundaries

on which we impose conditions (3.1)–(3.3). Figure 3.1(a) illustrates the computational

subdomains representing the substrate, the droplet and the atmosphere.

Since, as we have already described, the flux can be singular at to the contact line, to

improve the accuracy of the solutions it is necessary to increase the mesh resolution

near the contact line (R̂, 0). In section 3.2.3 below we follow Dunn et al. [51] and greatly

increase the mesh resolution within a circle with a radius less than ĥs and R̂, centred

at the contact line. For all of the computations in this chapter we use a circle of radius

min(ĥs, R̂)/20. Figure 3.1(b) illustrates the circle (dotted) centred at the contact line

within which we greatly increase the mesh resolution.
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3.2.2 Governing equations

We implement the equations to be solved using the Mathematics set of physics tools

provided in COMSOL Multiphysics. The equations we have to solve are the Laplace

equation for vapour concentration in the atmosphere, i.e. equation (2.27), and the three

Laplace equations for temperature in the substrate, the droplet, and the atmosphere,

i.e. equation (2.37). To create these we use the Coefficient Form PDE tool, which

solves an equation of the form

ea
∂2u

∂t̂2
+ da

∂u

∂t̂
+ ∇̂ · (−c∇̂u−αu+ γ) + β · ∇̂u+ au = f. (3.4)

To implement the Laplace equations we simply set ea = 0, da = 0, c = 1, α =

0, γ = 0, a = 0, and f = 0. Since we need to solve equation (3.4) in cylindrical

polar coordinates, and COMSOL Multiphysics takes ∇̂ = (∂/∂r̂, ∂/∂ẑ), we set β =

(−1/r̂, 0).

3.2.3 Computational mesh

We create the computational mesh using the meshing tools provided in COMSOL

Multiphysics. Before any mesh refinements are made, we apply a default free triangular

mesh to the entire computational domain. We set the element size in this mesh to the

COMSOL predefined setting Extremely Fine.

As previously mentioned, the flux can be singular (but integrable) at the contact line.

Therefore, we find some mesh sensitivity of the flux near to the contact line. To ensure

that the mesh sensitivity of the flux near to the contact line does not introduce a mesh

sensitivity of the rate of change of volume of the droplet (i.e. the flux integrated along

the free-surface of the droplet), and hence the lifetime of the droplets, we carry out a

convergence check on the mesh.

For this convergence check the flux is evaluated using a series of meshes that are increas-

ingly refined near to the contact line. The final two meshes in this series are denoted
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Figure 3.2: Numerically evaluated flux Ĵ plotted as a function of the toroidal coordinate
τ for a typical droplet with contact angle θ̂ = 4π/5 and contact radius R̂ = 1 mm,
evaluated using n = 1 in equation (2.52). The dotted lines indicate the τ position on
the free surface after which the two final mesh elements before the contact line lie. In
order of increasing τ , the first and second dotted lines correspond to meshes M1 and
M2, respectively.
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M1 andM2, where the mesh elements close to the contact line inM2 are half the size

of the corresponding elements in M1.

To show the mesh sensitivity of the flux we use the toroidal coordinates described in

appendix A. In toroidal coordinates τ = 0 corresponds to the top of the droplet and

τ =∞ corresponds to the contact line. Figure 3.2 shows how the numerically evaluated

flux Ĵ varies with the toroidal coordinate

τ =
1

2
ln

(
(r̂ + R̂)2 + ẑ2

(r̂ − R̂)2 + ẑ2

)

for a typical droplet with contact angle θ̂ = 4π/5 and contact radius R̂ = 1 mm,

evaluated using n = 1 in equation (2.52). In figure 3.2 all but two of the mesh elements

forM1 lie in τ < 14.0 (indicated by the first dotted line). The final two mesh elements

on the free surface of the droplet lie in 14.0 < τ < 200. No mesh elements lie in

τ > 200. For M2 the final two mesh elements on the free surface lie in 15.4 < τ < 200

(indicated by the second dotted line). Figure 3.2 shows that the mesh sensitivity caused

by singular flux at the contact line only affects the final two mesh elements of the given

mesh.

Plotting the flux profiles as functions of τ is useful for examining the behaviour of

the numerical model near the contact line, but it enormously exaggerates the mesh

dependency of our results. To determine the mesh sensitivity of the rate of change

of the droplet volume, the difference in flux integrated along the free-surface of the

droplet is considered. For the two meshes shown in figure 3.2, the difference in the flux

integrated along the free-surface of the droplet is 0.037%. This difference is negligible,

and thus demonstrates that the rate of change of the droplet volume, and hence the

droplet lifetime, is not mesh sensitive.

For all of the computations described in this chapter we use the following mesh refine-

ment. On the boundaries within the circular subdomain indicated by the dotted circle

shown in figure 3.1(b) we set the maximum element size to R̂/1000. On the remaining

(unrefined) solid boundaries of the droplet subdomain we set the maximum element
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r̂

ẑ

(0, 0)

−ĥs

Figure 3.3: An example of the mesh close to the droplet, generated using the mesh re-
finements detailed within this section. This example was generated using R̂ = 1.35 mm,
θ̂ = π/2 and ĥs = 1 mm.

size to R̂/100. These meshes are found to be suitably refined near to the contact line, as

per the mesh refinement check. A typical build of a mesh with these settings contains

roughly 105 domain elements and 103 boundary elements. Figure 3.3 shows an example

of the mesh close to the droplet, generated using the mesh refinements detailed within

this section. This example was generated using R̂ = 1.35 mm, θ̂ = π/2 and ĥs = 1

mm. A typical runtime of the quasi-steady problem (including mesh building) using

this mesh is about 30 seconds on a standard desktop computer.

3.2.4 Time-stepping and data extrapolation

With the finalised computational domain, equations and boundary conditions, and

computational mesh we use the default stationary solver provided in COMSOL Multi-

physics to numerically solve the quasi-steady problem described in section 2.3. Once

the quasi-steady solution is obtained, we use the integration tools provided in COM-

SOL Multiphysics to evaluate the rate of change of the volume of the droplet, i.e.

equation (2.52). Then, following Dunn et al. [51], we apply Euler’s forward method
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given generally by

V̂n+1 = V̂n − t̂δ
∣∣∣∣∣dV̂ndt̂

∣∣∣∣∣ , (3.5)

where t̂δ is the (constant) time-step

t̂δ =
V̂0∣∣∣dV̂0

dt̂

∣∣∣N , (3.6)

for which N is a dimensionless number (typically 500) that is kept constant for each

evaluation of the droplet lifetime, to obtain the droplet volume at time t̂ = nt̂δ.

Using the newly-obtained volume we rebuild the computational domain and mesh de-

scribed in sections 3.2.1 and 3.2.3, respectively, and solve for dV̂ /dt̂ at t̂ = nt̂δ. This

process of obtaining a new droplet volume is marched forward in time until the droplet

volume reaches zero (or, in practice, first becomes slightly negative), at which point

the computations are terminated. After obtaining an array of data for V̂ at each time

step we use the Curvefitting tools of Maplesoft Maple 2017 to obtain an extrapolated

droplet lifetime. In particular, we use the linear ArrayInterpolation command on the

final two volume data points.

A property of a robust finite element analysis mesh is the absence of so called “sliver

elements”, i.e. meshing elements with at least one hyperacute angle. Therefore, COM-

SOL Multiphysics does not allow triangular meshing elements with any angle less than

≈ 0.005 radians. Thus, it is necessary to use these same Curvefitting tools to extrap-

olate the droplet evolution for droplets whose contact angle becomes 0 < θ̂ . 0.005,

i.e. does not become negative, during the lifetime calculation (typically for droplets

evaporating in the CR mode with θ̂0 < 0.1). A typical runtime for a single lifetime

calculation is about four hours on a standard desktop computer.

We note that the time-stepping method described here is different from the one used

by Ait Saada et al. [5]. We give a detailed comparison of the different time-stepping

methods used in section 3.5.
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3.3 Validating the numerical method

To begin to understand the coupled behaviour of vapour concentration and temperature

distribution during evaporation, and to confirm that our numerical method is correctly

implemented, we seek to reproduce the results given by Ait Saada et al. [5]. For this

we use the physical parameters used by Ait Saada et al. [5]. Table 3.1 lists the physical

parameters for the air atmosphere and the water droplet as used by Ait Saada et al.

[5]. Table 3.1 also shows the physical properties of the various substrates used by Dunn

et al. [51]. Note that some of the physical parameters in table 3.1 are different to the

corresponding parameters in table 2.1. This is because Ait Saada et al. [5] consider a

droplet that is 3.15 K warmer than the droplet considered by Dunn et al. [51].

Throughout this chapter we follow Ait Saada et al. [5] and also consider substrates with

very large (k̂s →∞ W m−1 K−1) and very small conductivities (k̂s = 0 W m−1 K−1),

in practice k̂s = k̂ × 104 and k̂s = k̂ × 10−4, respectively. Although such substrates

are not physically realistic, the results obtained in these extreme situations can help

clearly demonstrate the influence of substrate conductivity on evaporation.

3.3.1 Validating the solution for the vapour concentration and tem-

perature fields

We first consider the numerically calculated quasi-steady vapour concentration and

temperature fields. The fixed temperatures of the lower surface of the substrate and

the far-field act to anchor the temperature of the lower surface of the droplet at T̂∞.

However, the evaporation at the free surface of the droplet cools the droplet to below

T̂∞. Therefore, the temperature of the droplet depends on the physical properties of

the system that determine the magnitudes of the thermal anchoring and the cooling

effects.

Figure 3.4 shows the vapour concentration ĉ for a droplet of water with contact angle

θ̂ = 1.36 and contact radius R̂ = 1.86 mm evaporating into air with ĉ∞ = 0.4ĉsat(T̂∞)

and T̂∞ = 298.15 K on (a) an infinitely conducting substrate (k̂s →∞W m−1 K−1) and
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Air atmosphere [5]

ρ̂a [kg m−3] 1.1845× 102

µ̂a [kg m−1 s−1] 1.844× 10−5

ĉa
p [m2 s−2 K−1] 1.0063× 103

k̂a [W m−1 K−1] 2.597× 10−2

T̂∞ [K] 298.15

Water droplet [5]

R̂0 [m] 1.86× 10−3

θ̂0 1.361

ρ̂ [kg m−3] 9.97× 102

µ̂ [kg m−1 s−1] 8.68× 10−4

D̂ [m2 s−1] 2.50× 10−5

σ̂ [kg s2] 7.20× 10−2

k̂ [W m−1 K−1] 6.12× 10−1

ĉp [m2 s−2 K−1] 4.07× 103

L̂ [m2 s−2] 2.44× 106

Substrate [51] Aluminium Titanium Macor PTFE

ĥs [m] 1× 10−3 1× 10−3 1× 10−3 1× 10−3

ρ̂s [kg m−3] 2.71× 103 4.54× 103 2.52× 103 2.20× 103

ĉs
p [m2 s−2 K−1] 913 523 790 1.05× 103

k̂s [W m−1 K−1] 237 21.9 1.46 0.25

Table 3.1: Physical parameters for the air atmosphere, water droplet and various sub-
strates, as used by Ait Saada et al. [5] and Dunn et al. [51].
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(b) a PTFE substrate (k̂s = 0.25 W m−1 K−1). Figure 3.4 also shows the temperature

contours of T̂ , T̂ s and T̂ a.

Figure 3.4 (a) shows that the infinitely conducting substrate has not cooled. However,

figure 3.4 (b) shows that the PTFE substrate is cooled close to the droplet. This is

because the larger conductivity anchors the temperature of the droplet to T̂∞ more

strongly than the smaller conductivity of PTFE. Since vapour saturation is an increas-

ing function of temperature, a warmer droplet has a greater vapour concentration at

its free surface. Consequently, evaporation is faster for a droplet on a more conductive

substrate. Figure 3.4 captures all of the same qualitative behaviour as figure 4 of Ait

Saada et al. [5].

To determine the quantitative agreement between the present results and the results

obtained by Ait Saada et al. [5], we compare the solutions for the profiles of temper-

ature, vapour concentration and flux. Ait Saada et al. [5] only presented results for

the choice of n = 4 in equation (2.52). We also obtain the corresponding results for

n = 0 and n = 1. Doing this allows us to highlight the different results obtained by the

thermally-decoupled model (n = 0) and the thermally-coupled model (n > 0).

Figure 3.5 shows numerically evaluated solutions for temperature, vapour concentra-

tion, and flux profiles for a droplet of water with contact angle θ̂ = 1.361 and contact

radius R̂ = 1.86 mm evaporating into air with ambient temperature T̂∞ = 298.15 K

and thermal conductivity k̂a = k̂air = 0.026 W m−1 K−1 on an infinitely conducting

substrate k̂s → ∞ W m−1 K−1, a PTFE substrate k̂s = 0.25 W m−1 K−1, and a

perfectly insulating substrate k̂s = 0 W m−1 K−1. Column [(a), (d), (g)] is obtained

using n = 0 in equation (2.52), likewise column [(b), (e), (h)] is obtained using n = 1,

and column [(c), (f), (i)] is obtained using n = 4.

Figures 3.5(a)–(c) show the temperature profiles on the free surface of the droplet and

the upper surface of the substrate. Figures 3.5(a)–(c) show that, for all choices of n, as

k̂s increases the evaporative cooling of the free surface decreases. By comparing figures

3.5(a)–(c) we see that the thermally-decoupled model shown in (a) predicts greater

evaporative cooling as k̂s decreases than the thermally-coupled model shown in (b),
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Figure 3.4: Vapour concentration ĉ for a droplet of water with contact angle θ̂ = 1.361
and contact radius R̂ = 1.86 mm evaporating into air with ĉ∞ = 0.4ĉsat(T̂∞) and
T̂∞ = 298.15 K on (a) an infinitely conducting substrate (k̂s → ∞ W m−1 K−1) and
(b) a PTFE substrate (k̂s = 0.25 W m−1 K−1). Also shown are temperature contours
T̂ , T̂ s and T̂ a in K.
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ĉ/
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Figure 3.5: Numerically evaluated solutions for temperature, vapour concentration and
flux profiles, for a droplet of water with contact angle θ̂ = 1.361 and contact radius
R̂ = 1.86 mm evaporating into air with ĉ∞ = 0.4ĉsat(T̂∞) and T̂∞ = 298.15 K on an
infinitely conducting substrate k̂s → ∞ W m−1 K−1, a PTFE substrate k̂s = 0.25 W
m−1 K−1, and a perfectly insulating substrate k̂s = 0 W m−1 K−1. Column [(a), (d),
(g)] is obtained using n = 0 in equation (2.52), likewise column [(b), (e), (h)] is obtained
using n = 1 and column [(c), (f), (i)] is obtained using n = 4. In figures (a)–(c) dashed
curves show the temperature along the free surface of the droplet and solid curves show
the temperature along the substrate upper surface. In figures (d)–(f) the concentration
profile is taken along the free surface of the droplet for r̂ < R̂, and along the substrate
upper surface for r̂ > R̂. Arrows indicate the direction of increasing k̂s.
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(c). Furthermore, we see more cooling for n = 4 than for n = 1. This is caused by the

increased flux for n = 4, which in turn is because ĉsat is larger for n = 4 than for n = 1

over the temperature range we are concerned with.

Figures 3.5(d)–(f) show the scaled vapour concentration profiles on the atmosphere-

droplet interface and the atmosphere-substrate interface. Since the vapour concentra-

tion is decoupled from the temperature solution for the thermally-decoupled model,

all of the concentration profiles are identical in figure 3.5(d). Figures 3.5(b), 3.5(c),

3.5(e) and 3.5(f) show that for r̂ < R̂ the temperature of the free surface, and also the

vapour concentration, increase monotonically to a maximum value at r̂ = R̂. For r̂ > R̂

the temperature of the substrate increases towards T̂∞ and the vapour concentration

decreases towards ĉ∞ = 0.4ĉsat(T̂∞) as r̂ →∞. Figure 3.5(d) shows that the thermally-

decoupled model gives ĉsat = ĉsat(T̂∞) = constant across the entire free surface of the

droplet. However, figures 3.5(e) and 3.5(f) show that, in general, ĉsat ≤ ĉsat(T̂∞) for

the thermally-coupled model of evaporation, with ĉsat(T̂ ) = ĉsat(T̂∞) only at r̂ = R̂

when k̂s → ∞. In particular, figures 3.5(e) and 3.5(f) show that ĉsat(T̂∞) increases

with k̂s.

Figures 3.5(g)–(i) show the flux profiles along the free surface of the droplet. Specifi-

cally, figures 3.5(g)–(i) show that for all values of k̂s the flux is singular at the contact

line. Again, since the flux is de-coupled from the temperature solution when n = 0, all

of the flux profiles are identical in figure 3.5(g). Figures 3.5(h) and 3.5(i) show that for

the thermally-coupled model Ĵ increases as k̂s increases. This is because increasing k̂s

decreases the magnitude of the cooling, and thus increases ĉsat(T̂ ), on the free surface

of the droplet.

By comparing figure 3.5(g) and figures 3.5(h) and 3.5(i) we see that the thermally-

decoupled model (n = 0) predicts greater flux than the thermally coupled model (n > 0)

for all k̂s. This is because ĉsat(T̂ ) is larger for n = 0 than for n > 0.

We compare the present results for n = 4 with the results obtained by Ait Saada et

al. [5]. Comparing the present figure 3.5(c) and figure 5(b) of Ait Saada et al. [5],

we see near-identical results for the temperature profiles. Both results show about a
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9 K difference in the cooling of the wetted substrate between k̂s → ∞ and k̂s = 0.

By carefully inspecting figure 4 of Ait Saada et al. [5], we observe a similar vapour

profile to that shown in figure 3.5(f). Comparing the present figure 3.5(i) and figure

7(b) of Ait Saada et al. [5] we also see near-perfect agreement between the present flux

profiles and those obtained by Ait Saada et al. [5] for droplets of water evaporating on

substrates of varying thermal conductivity.

3.3.2 Validating the solution for the rate of change of the volume of

a droplet

Using the numerically calculated flux we obtain the instantaneous rate of change of the

volume of a droplet. Table 3.2 shows the rate of change of the volume of a droplet

corresponding to the results obtained in figure 3.5. Table 3.2 also shows the numerical

values of the analytical solutions for the thermally-decoupled model, as obtained, for

example, by Stauber et al. [143] using their equation (10), and the numerical results

obtained by Ait Saada et al. [5].

Comparing the present n = 0 results and the Stauber et al. [143] results shows that

the thermally-decoupled model numerical results presented here are within 0.3% of the

corresponding analytical values.

Table 3.2 clearly shows that the thermally-coupled model results depend on the sub-

strate conductivity. We see that increasing the conductivity of the substrate gives a

higher evaporation rate. Comparing the present n = 0 results and the present n = 1

and n = 4 results we see that, in all cases, the thermally-decoupled model gives larger

rates of change of the volume of the droplet than the thermally-coupled model.

Table 3.2 also shows the sensitivity of the results to the choice of n in equation (2.52) for

the thermally-coupled model solutions. Comparing the k̂s → ∞ results for n = 1 and

n = 4, we do not see any difference. This is because the highly conducting substrate

reduces the cooling of the droplet, and thus the thermally-coupled model is not sensitive

to the choice of n in this case. However, we see that as we decrease the conductivity of
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k̂s [W m−1 K−1] 0 0.25 ∞

−dV̂
dt̂

mm3 s −1

n = 0 0.00372 0.00372 0.00372
Stauber et al. [143] 0.00371 0.00371 0.00371

n = 1 8.9780× 10−4 0.00298 0.00347
n = 4 0.00105 0.00301 0.00347

Ait Saada et al. [5] 0.001087 0.003 0.003435

Table 3.2: Summary of instantaneous rates of change of the volume of the droplet
−dV̂ /dt̂ for the droplets discussed in section 3.3.1.

the substrate the sensitivity to n increases.

3.3.3 Validating the solution for the droplet lifetime

Using the numerically obtained rate of change of the volume of the droplet and the

time-stepping method described in section 3.2.4 we obtain the evolution of the rate

of change of the volume of the droplet, and hence the droplet lifetimes. Figure 3.6

shows the present numerically evaluated rate of change of the volume of the droplet

dV̂ /dt̂ as it evolves in time for a droplet of water evaporating into air on a PTFE

substrate (k̂s = 0.025 W m−1 K−1), initiated as described in section 3.3.1 (i.e. the

present numerical results for a droplet initially identical to that as discussed by Ait

Saada et al. [5], evaporating on a PTFE substrate) in each of the (a) CR and (b)

CA modes of evaporation. From figure 3.6 we see that, for this particular droplet,

t̂CR < t̂CA. We also see from figure 3.6 (a) that as t̂ → t̂CR the rate of change of the

volume of the droplet approaches the non-zero rate of change of the volume of a droplet

corresponding to a thin droplet (θ̂ � 1). Likewise, from figure 3.6 (b) we see that as

t̂→ t̂CA the rate of change of the volume of the droplet approaches zero. Note that in

both cases the time-stepping method terminates (very slightly) before reaching these

limits due to the numerically insignificant volume of droplet remaining.

Here we compare the lifetimes we have numerically calculated for the thermally-decoupled

model with the analytical lifetime expressions given by Stauber et al. [143] and the nu-

merically calculated lifetimes given by Ait Saada et al. [5].

Stauber et al. [143] gave analytical expressions for the thermally-decoupled model life-
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Figure 3.6: The present numerically evaluated rate of change of the volume of the
droplet dV̂ /dt̂ as it evolves in time for a droplet of water evaporating into air on a
PTFE substrate (k̂s = 0.025 W m−1 K−1), initiated as described in section 3.3.1, in
each of the (a) CR and (b) CA modes of evaporation.
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tCR

k̂s [W m−1 K−1] 0.25 ∞
Ait Saada et al. [5] 3780 s 3300 s

Present n = 4 3834 s 3369 s
Stauber et al. [143] 3219 s

tCA

k̂s [W m−1 K−1] 0.25 ∞
Ait Saada et al. [5] 4750 s 4000 s

Present n = 4 5167 s 4333 s
Stauber et al. [143] 4034 s

Table 3.3: Summary of CR and CA lifetimes for a droplet of water with initial radius
R̂ = 1.86 mm and contact angle θ̂ = 1.361.

times t̂CR and t̂CA in their equations (3.2) and (3.3), respectively. Evaporative cooling

means that T̂ ≤ T̂∞ across the free surface of the droplet in both the thermally-coupled

model and the thermally-decoupled model. However, the cooling of the droplet does not

decrease the vapour concentration on the free surface of the droplet in the thermally-

decoupled model. Consequently, the lifetimes in the thermally-decoupled model act as

a lower bound for the lifetimes in the thermally-coupled model.

We also compare the lifetime values obtained by Ait Saada et al. [5], who used n = 4

in equation (2.52), with the present results. Table 3.3 summarises the lifetime data for

θ̂0 = 1.361. Table 3.3 shows that the CR and CA lifetimes obtained by Ait Saada et

al. [5] are up to 2% and 8% shorter than corresponding present results, respectively.

In particular, the lifetime of the CA mode obtained by Ait Saada et al. for a droplet

evaporating on an infinitely conducting substrate is even less than that for the corre-

sponding thermally-decoupled model. Since this is evidently impossible, this suggests

problems with the method Ait Saada et al. [5] used to obtain the droplet lifetimes.

To find the source of the disagreement between the present results for the CA mode

lifetimes and the results presented by Ait Saada et al. [5] we compare the different

time-stepping methods used. The present time-stepping method given by equations

(3.5) and (3.6) is verified by comparing with the analytical results given by Stauber

et al. [143] for the thermally-decoupled model. As previously described, the present

numerical results are within 0.5% of the analytical predictions.
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Ait Saada et al. [5] obtained their time-step ∆t̂ using their equation (12), namely

∆t̂ =
dt̂

dV̂
∆V̂ , (3.7)

where ∆V̂ is a fixed change in droplet volume. From equation (2.46) we find

dV̂

dt̂
→ −2π

ρ̂

∫ R̂(t̂)

0
Ĵ r̂dr̂ as θ̂ → 0. (3.8)

Thus, in the CR mode, ∆t̂ remains well defined as t̂→ t̂CR since R̂ is constant. However,

in the CA mode, equation (2.46) shows that

dV̂

dt̂
→ 0 as R̂→ 0. (3.9)

Thus, in the CA mode ∆t̂→∞ as t̂→ t̂CA. Therefore, equation (3.7) is not suitable for

obtaining time-steps in the CA mode of evaporation. Ait Saada et al. [5] justify their

time-stepping method in their figure 3, where they compare their numerical results with

the experimental results of Song et al. [140], Hu and Larson et al. [66], and Dunn et

al. [51]. Although Ait Saada et al. [5] show good agreement of their model for the CR

mode of evaporation, no verification is given for the CA mode. We therefore suggest

that the principal source of disagreement between the lifetimes given by Ait Saada et

al. [5] and the present results is the time-stepping method, and that the time-stepping

method used by Ait Saada et al. [5] is less reliable than the present method. To verify

this suggestion, however, it would be necessary to implement the method used by Ait

Saada et al. [5] within the present numerical method and compare the behaviour as

V̂ → 0 directly.

3.3.4 Comparison with the predictions of the Dunn model

To explain the differences between the thermally-coupled model and the Dunn model

described in section 2.3.2 we compare the results obtained by Dunn et al. [51] with the

results of own calculations using the Dunn model and the thermally-coupled model.
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r̂/R̂

T̂ s [K]

Figure 3.7: Typical numerically evaluated temperature profile on the upper surface of
the substrate. The dashed curve shows the results obtained using the Dunn model.
The solid curve shows the results obtained using the present thermally-coupled model.

Figure 3.7 shows a typical numerically evaluated temperature profile on the upper

surface of the substrate. Figure 3.7 shows that, by assumption, when using the Dunn

model the temperature of the upper surface of the substrate reaches T̂∞ at r̂ = R̂.

However, when using the thermally-coupled model the substrate temperature does not

reach T̂∞ at the contact line, but instead tends to T̂∞ only as r̂ →∞. Consequently, the

wetted surface of the substrate is warmer when using the Dunn model than when using

the thermally-coupled model. This makes the droplet warmer, and hence evaporate

faster.

Using the results obtained by Dunn et al. [51] we compare the rates of change of the

volume of the droplet predicted by the Dunn model and by the thermally-coupled

model. Figure 3.8 summarises the numerically calculated rate of change of the volume

of the droplet for droplets of acetone, methanol and water on substrates of aluminium,

titanium, Macor and PTFE. Figure 3.8(a) shows the values given in figure 4 of Dunn

et al. [51], obtained using the Dunn model. Figure 3.8(b) shows our recalculated values
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Figure 3.8: Bar charts summarising the numerically calculated evaporation rates for
droplets of acetone, methanol and water evaporating on substrates of aluminium, ti-
tanium, Macor and PTFE. (a) Values quoted in figure 4 of Dunn et al. [51], obtained
using the Dunn model. (b) Present values obtained using Dunn model and the present
mesh. (c) Corresponding values obtained using the present thermally-coupled model
described in section 2.4.
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obtained using the Dunn model and the present mesh. Figure 3.8(c) shows the corre-

sponding values obtained using the thermally-coupled model described in section 2.4.

In general, figures 3.8(a)–(c) show the same trend, namely that the evaporation rate

decreases with substrate conductivity. The difference between the evaporation rates

given by figures 3.8(a) and 3.8(b) is presumably due to the different meshes used. Fig-

ure 3.8 shows that in almost every case the Dunn model predicts a greater evaporation

rate than the thermally-coupled model. The difference between the predicted values

is greatest for the cases with the most evaporative cooling, i.e. the cases with lower

k̂s.

3.4 Results for the full range of initial contact angles

So far we have validated the implementation of our numerical method against the re-

sults of Ait Saada et al. [5]. However, Ait Saada et al. [5] only considered a single

initial contact angle, namely θ̂0 = 1.361. We now investigate the effects that differ-

ent thermophysical properties have on droplets with the full range of initial contact

angles.

We first present the quasi-steady solutions for vapour concentration and temperature.

We then present lifetime results for droplets with initial contact angles in the full range

0 ≤ θ̂0 ≤ π for a variety of different substrates. For the remainder of this chapter

we use the values of the physical parameters given by Dunn et al. [51], i.e. the values

presented in tables 2.1 and 2.2.

3.4.1 Dependence of solutions for ĉ, T̂ and Ĵ on k̂s and θ̂

Firstly, we discuss the behaviour of the quasi-steady solution for the coupled vapour

concentration and temperature. In particular, we see how ĉ and T̂ vary with k̂s and θ̂.

We have already seen from figure 3.4 that decreasing the thermal conductivity of the

substrate allows the substrate to cool more, which means the vapour concentration is

lower on the free surface of the droplet. Figure 3.9 shows the vapour concentration ĉ
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for a droplet of water with contact angle (a) θ̂ = 2π/3 and (b) θ̂ = 5π/6, and contact

radius R̂ = 0.5 mm evaporating into air with ĉ∞ = 0.4ĉsat(T̂ ) and T̂∞ = 295 K on

a PTFE substrate (k̂s = 0.25 W m−1 K−1). Figure 3.9 also shows the temperature

contours of T̂ , T̂ s and T̂ a. Figure 3.9 shows that, given the same contact radius, a

droplet with a larger contact angle is cooler than a droplet with a smaller contact

angle. This is because a droplet with a larger contact angle is taller, so the free surface

of the droplet is further from the lower surface of the substrate, thus reducing the

temperature anchoring effects of the substrate.

As in figure 3.5, figure 3.10 shows numerically evaluated solutions for temperature,

vapour concentration, and flux profiles for a droplet of water with contact angle θ̂ =

5π/6 and contact radius R̂ = 0.5 mm evaporating into air with ambient temperature

T̂∞ = 295 K and thermal conductivity k̂a = k̂air = 0.026 W m−1 K−1 on an infinitely

conducting substrate k̂s →∞ W m−1 K−1, a PTFE substrate k̂s = 0.25 W m−1 K−1,

and a perfectly insulating substrate k̂s = 0 W m−1 K−1. Note that, since the free

surface of the droplet is overhanging for θ̂ > π/2, the profiles for T̂ , ĉ and Ĵ on the free

surface are double-valued. Column [(a), (d), (g)] is obtained using n = 0 in equation

(2.52), likewise column [(b), (e), (h)] is obtained using n = 1 and column [(c), (f),

(h)] is obtained using n = 4. Since the droplet height is double-valued for r̂ > R̂, the

temperature, vapour concentration and flux profiles are also double-valued for r̂ > R̂.

Figures 3.10(a)–(f) show much the same behaviour as shown in figures 3.5(a)–(f).

Specifically, we again see that the free-surface temperature, and thus the vapour con-

centration, increases to a maximum value at the contact line of the droplet.

Figure 3.10(g) shows the flux profile calculated using the thermally-decoupled model,

where the flux is zero at the contact line. This is because, since the vapour concentration

is uniform along the free surface of the droplet, the acute corner region near the contact

line becomes saturated with vapour, and so the droplet cannot evaporate from the

contact line. Figures 3.10(h) and 3.10(i) show that, as in figure 3.5, for k̂s 6= 0 the flux

is singular at the contact line. This is because the vapour concentration is maximum in
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Figure 3.9: Vapour concentration ĉ for a droplet of water with contact angle (a) θ̂ =
2π/3 and (b) θ̂ = 5π/6, and contact radius R̂ = 0.5 mm evaporating into air with 40%
humidity and T̂∞ = 295 K on a PTFE substrate (k̂s = 0.25 W m−1 K−1). Also shown
are the temperature contours of T̂ , T̂ s and T̂ a in K.
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ĉ s

a
t(
T̂
∞

)

(d)

ĉ/
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Figure 3.10: Numerically evaluated solutions for temperature, vapour concentration
and flux profiles, for a droplet of water with contact angle θ̂ = 5π/6 and contact radius
R̂ = 0.5 mm evaporating on an infinitely conducting substrate k̂s →∞ W m−1 K−1, a
PTFE substrate k̂s = 0.25 W m−1 K−1 and a perfectly insulating substrate k̂s = 0 W
m−1 K−1. Column [(a), (d), (g)] is obtained using n = 0 in equation (2.52), likewise
column [(b), (e), (g)] is obtained using n = 1 and column [(c), (f), (i)] is obtained using
n = 4. In figures (a)–(c) dashed curves show the temperature along the free surface
of the droplet and solid curves show the temperature along the upper surface of the
substrate. In figures (d)–(f) the concentration profile is taken along the free surface of
the droplet for r̂ < R̂, and along the upper surface of the substrate for r̂ > R̂. Arrows
indicate the direction of increasing k̂s.

the acute corner region of the droplet, but decreases along the free surface of the droplet,

allowing for the droplet to evaporate from the contact line. However, in contrast to

figure 3.5, figures 3.10(h) and 3.10(i) show that for k̂s = 0 the flux at the contact

line is apparently zero. This is because for k̂s = 0 the vapour concentration is again

(nearly) uniform along the free surface of the droplet. As discussed in section 2.6 the
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local behaviour near to the contact line of an evaporating droplet has been investigated

by various authors using reduced forms of the thermally-coupled model. However, as

we mention later in section 6.2.2, we are unaware of any investigations into the local

behaviour near to the contact line using the full thermally-coupled model.

3.4.2 Dependence of solutions for ĉ, T̂ and Ĵ on k̂a

We have shown that the thermal conductivity of the substrate is an important factor

in determining the temperature of the droplet. We are also interested in knowing the

importance of the thermal conductivity of the atmosphere in determining the temper-

ature of the droplet, particularly for droplets with very large contact angles (θ̂ ≈ π).

We have chosen to investigate high contact angle droplets because these droplets have

a small droplet-substrate interface, thus we expect the conductivity of the substrate

to have less influence on the droplet lifetime than for low contact angle droplets with

larger droplet-substrate interfaces.

We investigate the dependence of our numerical results on the thermal conductivity

of the atmosphere k̂a. We carry out these calculations for a droplet of water with

high contact angle θ̂ = π − 0.1 and contact radius R̂ = 0.1 mm, evaporating into

atmospheres with all of the physical properties of air with ĉ∞ = 0.4ĉsat(T̂∞) except for

thermal conductivity, which we take to be k̂a = 0, k̂a = k̂air and k̂a → ∞. We carry

out these calculations for an aluminium substrate and a PTFE substrate.

Figure 3.11 shows the numerically calculated results for the temperature, vapour con-

centration and flux on the free surface of a droplet evaporating into atmospheres of

varying thermal conductivity.

Figure 3.11(a) shows that when k̂a = 0 the results for T̂ vary significantly with substrate

conductivity k̂s. Figures 3.11(b) and 3.11(c) show that as k̂a increases, T̂ becomes less

dependent on k̂s. In the limit k̂a → ∞ we see that T̂ ≡ T̂∞ on the free surface,

independent of k̂s. Figures 3.11(a)–(f) show that ĉ behaves in a similar fashion to T̂ .

This is because when k̂a → ∞ the temperature of the free surface of the droplet is
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Figure 3.11: Numerically evaluated solutions for the free-surface temperature T̂ (a)–(c),
vapour concentration ĉ (d)–(f) and flux Ĵ (g)–(i) profiles for a droplet of water with
contact angle θ̂ = π−0.1 and contact radius R̂ = 0.1 mm evaporating on an aluminium
substrate (solid curves) and a PTFE substrate (dashed curves), into atmospheres of
varying thermal conductivity k̂a. All of the results are obtained using n = 1 in equation
(2.32).

entirely determined by (and equal to) the ambient far field atmospheric temperature

T̂∞. Figure 3.11(g) shows that when k̂a = 0 we have Ĵ → ∞ at the contact line.

Conversely, figure 3.11(i) shows that when k̂a → ∞ we have Ĵ → 0 at the contact

line. As before, the nature of the flux at the contact line depends on the uniformity of

ĉsat(T̂ ) on the free surface of the droplet.

Figure 3.11 shows that the evaporation rate is most strongly influenced by the substrate

conductivity in the limit k̂a = 0. On the other hand, in the limit k̂a → ∞, the

evaporation rate approaches that of the thermally-decoupled model. This is because a
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large thermal conductivity in the atmosphere creates a uniform temperature T̂ = T̂∞

on the free surface of the droplet.

From figures 3.11[(b),(e),(h)] we note that even when the droplet-substrate interface is

small, the temperature of the droplet, and hence the evaporation rate, still depends on

the thermal conductivity of the substrate. This is because the temperature across the

droplet-substrate interface is continuous, even for a point contact. As k̂s decreases the

temperature of the droplet-substrate interface is increasingly determined by the evap-

orative cooling and the diffusion of heat through the atmosphere, and as k̂s increases

this temperature is increasingly determined by the temperature of the lower surface of

the substrate.

3.5 Droplet lifetimes

As before, we use the numerically obtained rate of change of the volume of the droplet V̂

and the time-stepping method described in section 3.2.4 to obtain droplet lifetimes. In

particular, we obtain droplet lifetimes for a variety of substrates with different thermal

conductivities, for the full range of initial contact angles.

For a droplet with R̂ > 0 the volume, and hence the lifetime, of the droplet becomes

singular as θ̂0 → π−. As we did in section 2.4, we again follow Stauber et al. [143], and

scale time with the basic timescale

τ̂ =
ρ̂

2D̂(ĉsat(T̂∞)− ĉ∞)

(
3V̂0

2π

)2/3

, (3.10)

to compare the lifetimes of droplets with 0 ≤ θ̂0 ≤ π. Using this timescale we have

t̂CA = 1 for any droplet with θ̂0 = π/2 evaluated using the thermally-decoupled model

of evaporation.

Figures 3.12 and 3.13 show, respectively, numerically evaluated scaled lifetimes in the

CR and CA modes for droplets of water evaporating into 40% humidity air on various

substrates of thickness ĥs = 1 mm. We see that for the thermally-coupled model
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the droplet lifetime decreases as k̂s increases. To obtain the lifetimes for θ̂0 = π we

have linearly extrapolated from lifetime data with θ̂0 = π − 0.07 (not shown) and

θ̂0 = π − 0.1.

Figure 3.12 shows that tCR monotonically increases with θ̂0 in the thermally-coupled

model. However, this is not the case for the thermally-decoupled model for which tCR

begins to decrease after θ̂0 ≈ 2.5830, as discussed by Stauber et al. [143] and shown in

figure 3.12. Figure 3.13 shows that tCA monotonically increases with θ̂0 for k̂s = 237

W m−1 K−1 in the thermally-coupled model. However for k̂s = 0.25 W m−1 K−1

and k̂s = 0.5 W m−1 K−1 tCA decreases as θ̂0 → π. Figure 3.13 also shows that for

the thermally-decoupled model tCA begins to decrease after θ̂0 = π/2, as discussed by

Stauber et al. [143]. Figure 3.13 shows us that, for θ̂0 close to π, for poorly conducting

substrates the thermally-coupled lifetime of the droplet decreases as θ̂0 increases, as in

the thermally-decoupled model. This is because, as we have previously discussed, as the

conductivity of the substrate decreases, the vapour concentration on the free surface

of the droplet becomes increasingly uniform. Thus, the thermally-coupled lifetime of

the droplet as a function of θ̂0 behaves qualitatively the same the thermally-decoupled

lifetime.
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θ̂0/π

tCR

Figure 3.12: Numerically evaluated scaled lifetimes of the CR mode tCR for droplets
of water with initial radius R̂ = 1 mm evaporating into air with ĉ∞ = 0.4ĉsat(T̂∞) on
aluminium ◦ (k̂s = 237 W m−1 K−1), HDPE ? (k̂s = 0.50 W m−1 K−1) and PTFE �

(k̂s = 0.25 W m−1 K−1) substrates of thickness ĥs = 1 mm. Analytical results given
by Stauber et al. [143] for the thermally-decoupled model shown as a solid line. The
lifetimes are evaluated using physical parameters given in table 2.1.

θ̂0/π

tCA

Figure 3.13: Numerically evaluated scaled lifetimes of the CA mode tCA for droplets
of water with initial radius R̂ = 1 mm evaporating into air with ĉ∞ = 0.4ĉsat(T̂∞) on
aluminium ◦ (k̂s = 237 W m−1 K−1), HDPE ? (k̂s = 0.50 W m−1 K−1) and PTFE �

(k̂s = 0.25 W m−1 K−1) substrates of thickness ĥs = 1 mm. Analytical results given
by Stauber et al. [143] for the thermally-decoupled model shown as a solid line. The
lifetimes are evaluated using physical parameters given in table 2.1.
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From both figures 3.12 and 3.13 we see that in the limit θ̂0 → π− the lifetimes of

the droplets are less dependent on the substrate conductivity than for 0 < θ̂0 < π.

This is because in the limit θ̂0 → π− the droplet has a single point of contact with

the substrate, thus the influence of the substrate conductivity is minimised. However,

the substrate retains some influence due to the continuity of temperature through

the droplet-substrate single point of contact and the conduction of heat through the

atmosphere, as discussed earlier.

Figures 3.12 and 3.13 show that for any given θ̂0 the difference between the lifetimes

evaluated for aluminium (k̂s = 237 W m−1 K−1) and high-density polyethylene (HDPE)

(k̂s = 0.5 W m−1 K−1) substrates is the same order of magnitude as the difference be-

tween the lifetimes evaluated for HDPE and PTFE (k̂s = 0.25 W m−1 K−1) substrates.

This shows that the lifetimes of the droplets increase quickly as k̂s decreases. To il-

lustrate this point further, we investigate the lifetimes calculated for a single value of

θ̂0 with k̂s spanning many decades of W m−1 K−1. Figure 3.14 shows scaled lifetimes

of droplets with θ̂0 = π/2 in the CR mode and in the CA mode plotted as a function

of k̂s using a log scale. Figure 3.14 shows that the lifetimes decrease monotonically as

k̂s increases. In particular, the lifetimes are relatively sensitive to the conductivity of

the substrate for k̂s < k̂ = 0.612 W m−1 K−1. However, the lifetimes quickly become

independent of k̂s as k̂s increases.

3.6 Conclusions

In this chapter, we have carried out an in-depth investigation into the evaporation and

lifetimes of sessile droplets. In particular, we have investigated the combined influences

of initial contact angle θ̂0 and substrate conductivity k̂s on droplet evaporation.

First, we verified the implementation of our numerical method against existing results

obtained by previous authors. In general, a warmer droplet will evaporate faster than a

cooler one, due to the increased vapour concentration at the free surface of the droplet.

We have also found that substrates with higher thermal conductivity and droplets
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k̂s [W m−1 K−1]

tCR

tCA

Figure 3.14: Scaled lifetimes of droplets with θ̂0 = π/2 in the CR mode (circles)
and the CA mode (crosses) plotted as a function of k̂s using a log scale. k̂s = k̂ =
0.604 W m−1 K−1 is shown as a dotted line.

with lower contact angles are more effective at keeping the temperature across the free

surface of the droplet close to the ambient value than substrates with lower thermal

conductivity and droplets with higher contact angles. This means that, in general, the

lifetime of a droplet will increase as k̂s decreases and as θ̂ increases. We have made

these observations using the thermally-coupled model given in section 2.3.

In contrast to the thermally-coupled model, for thermally-decoupled model the vapour

saturation is not influenced by evaporative cooling. These means that the vapour

concentration at the free surface of the droplet is always at its maximum value, and

thus the lifetimes obtained using the thermally-decoupled model are the lower bound of

the lifetimes obtained using the thermally-coupled model. Using the thermally-coupled

model we recover these lower bounds in the limits for which T̂ ≡ T̂∞ on the free surface

of the droplet, i.e. the limit k̂a →∞ or the limit k̂s →∞ and k̂ →∞.

We have also considered the Dunn mode. In this model, the temperature of the un-

wetted surface of the substrate does not change at all, which anchors the droplet to a
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higher temperature than if the substrate was allowed to cool. The warmer droplet leads

to a higher vapour concentration on the free surface of the droplet. This means that

for a given set of physical parameters, the evaporation rate obtained using the Dunn

model is greater than the corresponding result obtained using the thermally-coupled

model.

We saw that it is important to consider the number of terms n in the approximation for

csat(T ) given by equation (2.52). Small values of n are acceptable for cases in which we

can expect low amounts of evaporative cooling, i.e. for small θ̂(0) and large values of k̂s

or k̂a. For large values of θ̂(0) and small values of k̂s, larger values of n should be used.

We have also shown that it is important to take care when choosing a timestepping

method. In particular we have shown that the present timestepping method is more

reliable than the timestepping method used by Ait Saada et al. [5].

In general, we found that substrates with lower conductivity allow for more evaporative

cooling, and therefore produce longer droplet lifetimes. The contact angle also deter-

mines the magnitude of cooling, with higher contact angles allowing for more cooling

further from the temperature-anchoring substrate than lower contact angles.
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Chapter 4

Evaporation of a Thin Droplet on

a Thin Substrate when the

Influence of the Thermal

Properties of the System is

Strong

4.1 Introduction

In this chapter we obtain closed-form solutions to the thermally-coupled diffusion-

limited evaporation model described in chapter 2. In particular, we follow the approach

(but not the model) of Dunn et al. [52] and examine the limit of a thin droplet (θ̂0 � 1)

evaporating on a thin substrate (hs � 1), with an expression for ĉsat that is linear in

T̂ . The evaporation of a thin sessile droplet is analysed when the influence of the

thermal properties of the system is strong. Specifically, we obtain asymptotic solutions

for the evolution, and hence explicit expressions for the lifetimes, of a droplet when the
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substrate has a high thermal resistance relative to the droplet and when the saturation

concentration of the vapour depends strongly on temperature. The work presented

in this chapter has been published in the Journal of Fluid Mechanics (Schofield et al.

[117]).

4.2 Problem formulation

Whereas Dunn et al. [52] investigated the thin-film limit of the Dunn model described

in section 2.3.2, here we investigate the corresponding thin-film limit of the thermally-

coupled model, i.e. the thin-film model described in section 2.5. Moreover, Dunn

et al. [52] only investigated the initial evaporation rate of the droplet, whereas here

we investigate the full evolution of the droplets in the CR, CA, SS and SJ modes of

evaporation.

In order to make analytical progress we follow the approach of Dunn et al. [50, 52]

and assume that both the droplet and the substrate are thin (i.e. that θ̂0 � 1 and

hs � 1), but make no assumption about their relative thicknesses (i.e. we make no a

priori assumption about the size of hs/θ̂0). Hence at leading order in the appropriate

thin-film limit, the free surface of the droplet is given by equation (2.81) and the volume

of the droplet is given by equation (2.82).

In practice, the atmosphere is typically a relatively poor thermal conductor when com-

pared with the droplet and the substrate [83, 112], and provided that

k̂a

k̂
θ0 = αθ̂ � 1 and

k̂a

k̂s

ĥs

R̂0

= βhs � 1 (4.1)
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the energy balance conditions (2.90)–(2.92) reduce to

∂T s

∂zs

∣∣∣∣
zs=0

= 0 for r > R, (4.2)

S
∂T

∂z̄

∣∣∣∣
z̄=0

=
∂T s

∂zs

∣∣∣∣
zs=0

for 0 < r < R, (4.3)

J = − λ
θ̂0

∂T

∂z̄

∣∣∣∣
z̄=h̄

= − ∂c

∂za

∣∣∣∣
za=0

, (4.4)

respectively, where λ and S are defined by (2.50) and (2.67), respectively. Note that,

since both the droplet and the substrate are thin, these conditions hold when k̂ and k̂s

are comparable with k̂a.

To simplify presentation, as well as investigate the influence of the variation of the

saturation concentration of the vapour with temperature on the droplet evolution, we

introduce the non-dimensional groups

∆C =
θ̂0L̂D̂ĉ′sat(T̂∞)

k̂
, E =

θ̂0

λ
=
θ̂0L̂D̂(csat(T̂∞)− ĉ∞)

k̂T̂∞
(4.5)

where ∆C measures the variation of the saturation concentration of the vapour with

temperature and E measures the evaporative cooling.

When (4.1) holds, and using (4.5), it is straightforward to show that equations (2.88)

and (2.89) are satisfied by

T = 1− EJ(z̄ + S) for 0 < z̄ < h̄, r < R, (4.6)

T s = 1− EJS(zs + 1) for − 1 < zs < 0, r < R, (4.7)

T s = 1 for − 1 < zs < 0, r > R. (4.8)

Following Dunn et al. [52], and using an expression for csat that is linear in T (i.e. n = 1

in equation (2.84)) the coupled problem for c as described in section 2.5.2 satisfies

∇2c = 0 in za > 0 (4.9)
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subject to

c = 1−∆C(h+ S)J on za = 0 for r < R, (4.10)

∂c

∂za
= 0 on za = 0 for r > R, (4.11)

and

c→ 0 as (r2 + za2)1/2 →∞, (4.12)

and the decoupled problem for T a satisfies

∇2T a = 0 in za > 0 (4.13)

subject to

T a = 1− EJ(h̄+ S) on za = 0 for r < R, (4.14)

T a = 1 on za = 0 for r > R, (4.15)

and

T a → 1 as (r2 + za2)1/2 →∞. (4.16)

The total evaporation rate is then given by

− dV̄

dt̄
= −π

4

d

dt
(θR3) = 2π

∫ R

0
J(r, t) rdr, (4.17)

where

J(r, t) = −∂c
∂z

∣∣∣∣
z=0

. (4.18)

Whereas equations (4.9)–(4.12) show that the solution for c, and hence the evolution

of the droplet given by (4.17) and (4.18), depends on ∆C and S but not E, equations

(4.6)–(4.8) and (4.13)–(4.16) show that the evaporative cooling of the atmosphere, the

droplet and the substrate also depends on E.

Note that although, as we have already mentioned, the thermally-coupled model differs

from the Dunn model proposed by Dunn et al. [51], in the present limit of a thin droplet

on a thin substrate the problem for T , T s and c given by equations (4.6)–(4.12), but
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not, of course, that for T a given by equations (4.13)–(4.16), coincides exactly with the

problem analysed by Dunn et al. [50, 52]. However, these latter authors considered only

the initial evolution of a pinned droplet (i.e. evolution of a droplet evaporating in the

CR mode for t = O(1)) and did not either analyse the entire evolution of the droplet

or consider other modes of evaporation, both of which we do in this chapter.

In the special case ∆C = 0 in which csat is independent of T the concentration of

vapour at the free surface of the droplet is constant and we recover the thermally-

decoupled model in which the solution for c, and hence the evolution of the droplet,

is also independent of S, i.e. is entirely independent of the thermal properties of the

system. Explicit expressions for the lifetimes of thin droplets in this special case (albeit

using a different non-dimensionalisation of time) were obtained by [143] for the CR,

CA and SS modes, and by [142] for the SJ mode. The key observation is that when

∆C = 0 the lifetimes of thin droplets are, as anticipated, of the order of the basic

timescale (2.1). This timescale is also applicable when thermal effects are weak, but

not, as we shall show in the present chapter, when they are strong.

4.3 When the substrate has a high thermal resistance

Consider the evolution of an evaporating droplet using the model described in section

4.2 when the substrate has a high thermal resistance relative to the droplet (i.e. when

the substrate is highly insulating and/or thick relative to the droplet), corresponding

to the asymptotic limit S →∞ with ∆C 6= 0.

Inspection of (4.9)–(4.17) suggests that in the limit S →∞ the complete evolution of a

droplet will occur over the long timescale t̄ = O(S)� 1. In order to obtain a uniformly

valid leading-order asymptotic solution able to capture the complete evolution of the

droplet we therefore rescale c and J with 1/S and t̄ with S by writing c = c̃/S, J = J̃/S

and t̄ = St̃, and seek an asymptotic expansion for c̃ in the form

c̃(r, z, t̃) = c̃0(r, z, t̃) +O(1/S), (4.19)
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with corresponding asymptotic expansions for the other dependent variables. Note

that, in contrast to the other chapters of this thesis, throughout this chapter θ0, R0

and V̄0 denote the zeroth term in the asymptotic expansions of θ, R and V̄ , and not

the initial values θ(0), R(0) and V̄ (0).

At leading order in the limit S → ∞ we obtain J̃0 = 1/∆C (i.e. at leading order the

mass flux from the free surface of the droplet is uniform and constant),

T0 = 1− E/∆C (4.20)

(i.e. at leading order the droplet is uniformly cooled by a constant amount E/∆C)

and

T s
0 = 1− E(zs + 1)/∆C, (4.21)

and hence (4.17) yields the equation describing the leading-order evolution of the

droplet, namely
d

dt̃
(θ0R

3
0) = −4R2

0

∆C
. (4.22)

The explicit expression for the leading-order concentration of vapour,

c̃0(r, z) =

∫ ∞
0

J0(ξr)J1(ξ) exp(−ξz)
ξ

dξ, (4.23)

where Jn(·) denotes the Bessel function of the first kind of order n, can be obtained

(see, for example, [89]), but this is not required in order to determine the leading-order

evolution of the droplet.

4.3.1 Evolution of a droplet evaporating in the Constant Radius mode

For a droplet evaporating in the CR mode with R0 ≡ 1, solving (4.22) yields

R0 ≡ 1, θ0 = 1− 4

∆C
t̃, V̄0 =

πθ0

4
, (4.24)
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and hence the lifetime of the droplet, denoted by t̃CR, is given by t̃CR = ∆C/4.

4.3.2 Evolution of a droplet evaporating in the Constant Angle mode

For a droplet evaporating in the CA mode with θ0 ≡ 1, solving (4.22) yields

R0 = 1− 4

3∆C
t̃, θ0 ≡ 1, V̄0 =

πR3
0

4
, (4.25)

and hence the lifetime of the droplet, denoted by t̃CA, is given by t̃CA = 3∆C/4 =

3t̃CR.

Both t̃CR and t̃CA are directly proportional to ∆C (i.e. stronger variation of csat with

T leads to slower evaporation and hence to longer lifetimes), and their ratio is exactly

3. This latter result contrasts with that in the special case ∆C = 0 discussed by [143]

for which the corresponding ratio is exactly 3/2.

4.3.3 Evolution of a droplet evaporating in the Stick-Slide mode

As described in section 1.4, the stick-slide (SS) mode of evaporation consists of a CR

phase which lasts until the contact angle reaches a critical receding contact angle θ?

(0 ≤ θ? ≤ 1) followed by a CA phase. For a droplet evaporating in this mode, solving

(4.22) yields (4.24) for 0 < t̃ < t̃? and

R0 =
(1 + 2θ?)∆C − 4t̃

3θ?∆C
, θ0 ≡ θ?, V̄0 =

πθ0R
3
0

4
(4.26)

for t̃? < t̃ < t̃SS, where

t̃? =
∆C

4
(1− θ?) and t̃SS =

∆C

4
(1 + 2θ?) (4.27)

are the depinning time (i.e. the time at which the contact angle θ0 reaches the critical

receding angle θ?) and the lifetime of the droplet, respectively. Both t̃? and t̃SS are

directly proportional to ∆C, t̃? is a linearly decreasing function of θ? satisfying t̃? = t̃CR
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at θ? = 0 and t̃? = 0 at θ? = 1, and t̃SS is a linearly increasing function of θ? satisfying

t̃SS = t̃CR at θ? = 0 and t̃SS = t̃CA at θ? = 1.

Figure 4.1 shows (a) R0, (b) θ0 and (c) V̄0 as functions of t̃ for various values of θ?,

including θ? = 0 (i.e. the CR mode given by (4.24)) and θ? = 1 (i.e. the CA mode

given by (4.25)), and (d) V̄0 as a function of t̃ for various values of ∆C. Figure 4.1

illustrates that R0 and θ0 are either constant or linearly decreasing functions of t̃, V̄0

is first (for 0 < t̃ < t̃?) a linearly and then (for t̃? < t̃ < t̃SS) a cubically decreasing

function of t̃, and as θ? increases the droplet depins earlier but has a longer lifetime.

Somewhat more unexpectedly, figure 4.1(a) also illustrates that, except in the special

case θ? = 0, R0 = 2/3 at t̃ = t̃CR irrespective of the value of the critical receding angle

θ? (i.e. whatever the non-zero value of θ?, the contact radius always reduces to 2/3 of

its initial value at t̃ = t̃CR).

4.3.4 Evolution of a droplet evaporating in the Stick-Jump mode

As also described in section 1.4, the stick-jump (SJ) mode of evaporation consists of an

infinite series of stick (i.e. CR) phases separated by an infinite series of jump phases

in which the contact angle jumps instantaneously from a minimum value θmin to a

maximum value θmax (0 ≤ θmin ≤ θmax ≤ 1) with a corresponding instantaneous jump

in the contact radius. For a droplet evaporating in this mode, if we denote by Rn

(n = 1, 2, 3, . . .) the constant value of R0 during the nth stick (i.e. CR) phase lasting

from t = tn−1 to t = tn, then, by conservation of mass during the nth jump phase

occurring at t = tn (n = 1, 2, 3, . . .), we have θminR
3
n = θmaxR

3
n+1, and so

Rn+1 =

(
θmin

θmax

)1/3

Rn =

(
θmin

θmax

)n/3
R1. (4.28)

During the 1st stick phase with R0 = R1 ≡ 1 from t = t0 = 0 to t = t1 = ∆C(1 −
θmin)/4, θ0 and V̄0 are given by (4.24), and thereafter during the nth stick phase
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t̃

θ⋆ = 1 θ⋆ = 0

R0

θ⋆

(a)

t̃

θ0

θ⋆ = 1

θ⋆ = 0

(b)

t̃

V0

θ⋆

(c)

t̃

V0

∆C

(d)

Figure 4.1: Evolution of a droplet on a substrate with a high thermal resistance (i.e.
in the limit S →∞ with ∆C 6= 0) evaporating in the SS mode. Plots of (a) R0, (b) θ0

and (c) V̄0 as functions of t̃ for θ? = 0 (i.e. the CR mode, shown dashed), 1/4, 1/2, 3/4
and 1 (i.e. the CA mode) with ∆C = 1, and (d) V̄0 as a function of t̃ for ∆C = 1/2, 1,
3/2 and 2 with θ? = 1/2. The dots (•) denote the instants at which depinning occurs
(i.e. t̃ = t̃?), and in parts (a), (c) and (d) the arrows indicate the direction of increasing
values of the appropriate parameter.
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(n = 2, 3, 4, . . .) with R0 = Rn from t = tn−1 to t = tn,

R0 = Rn, θ0 = θmax −
4

∆CRn
(t̃− t̃n−1), V̄0 =

πθ0R
3
n

4
, (4.29)

where

t̃n =
∆C

4

[
1− θmax + (θmax − θmin)

1− (θmin/θmax)n/3

1− (θmin/θmax)1/3

]
. (4.30)

Taking the limit n→∞ in (4.30) we obtain the lifetime of the droplet, namely

t̃SJ =
∆C

4

[
1− θmax + (θmax − θmin)

θ
1/3
max

θ
1/3
max − θ1/3

min

]
. (4.31)

In particular, t̃SJ is directly proportional to ∆C, and is an increasing function of both

θmax and θmin (< θmax) satisfying t̃SJ = t̃CR when θmax = 0 and when θmin = 0, and

t̃SJ → t̃SS when θmax → θmin = θ?.

Figure 4.2 shows (a) R0, (b) θ0 and (c) V0 as functions of t̃ for various values of θmin,

(d) V0 as a function of t̃ for various values of ∆C, (e) t̃SJ as a function of θmin (≤ θmax)

for various values of θmax, and (f) t̃SJ as a function of θmax (≥ θmin) for various values of

θmin. Figure 4.2 illustrates that R0 is constant and θ0 is a linearly decreasing function

of t̃ during each stick phase, R0 and θ0 jump instantaneously down and up, respectively,

during each jump phase, and as the droplet evaporates the stick phases get progressively

shorter (approaching zero duration in the limit n→∞).

4.4 When the saturation concentration depends strongly

on temperature

A similar analysis to that described in section 4.3 can be performed when the saturation

concentration of the vapour depends strongly on temperature, corresponding to the

asymptotic limit ∆C →∞.

Inspection of (4.9)–(4.17) suggests that in the limit ∆C → ∞ the complete evolution

of a droplet will occur over the long timescale t̄ = O(∆C)� 1. Proceeding in the same
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t̃
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θmin = 1

(a)

t̃

θ0

θmin = 0

θmin = 1

(b)

t̃

V0

θmin

(c)

t̃

V0

∆C

(d)

θmin

t̃SJ

(0, 0.25)

θmax

(e)

θmax

t̃SJ

θmin

(1, 0.75)

(f)

Figure 4.2: Evolution of a droplet on a substrate with a high thermal resistance (i.e.
in the limit S →∞ with ∆C 6= 0) evaporating in the SJ mode. Plots of (a) R0, (b) θ0

and (c) V̄0 as functions of t̃ for θmin = 0 (i.e. the CR mode, shown dashed), 1/2 and 1
(i.e. the CA mode) with θmax = 1 and ∆C = 1, (d) V0 as a function of t̃ for ∆C = 1/2,
1, 3/2 and 2 with θmax = 1 and θmin = 1/2, (e) t̃SJ as a function of θmin (≤ θmax)
for θmax = 0 (i.e. the CR mode), 1/4, 1/2, 3/4 and 1, and (f) t̃SJ as a function of
θmax (≥ θmin) for θmin = 0 (i.e. the CR mode), 1/4, 1/2, 3/4 and 1 (i.e. the CA mode),
with ∆C = 1. In parts (c) and (d) the dots (•) denote the instants at which the jump
phases occur (i.e. t̃ = t̃n for n = 1, 2, 3, . . .), and in parts (c)–(f) the arrows indicate
the direction of increasing values of the appropriate parameter.
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manner as in section 4.3 we therefore rescale c and J with 1/∆C and t̄ with ∆C by

writing c = č/∆C, J = J̌/∆C and t = ∆Cť, and seek an asymptotic expansion for č

in the form

č(r, za, ť) = č0(r, za, ť) +O(1/∆C), (4.32)

with corresponding asymptotic expansions for the other dependent variables.

In the limit ∆C →∞ we obtain

J̌ =
2R0

[θ0(R2
0 − r2) + 2SR0]∆C

+O

(
1

∆C2

)
, (4.33)

T = 1− 2ER0(z̄ + S)

[θ0(R2
0 − r2) + 2SR0]∆C

+O

(
1

∆C2

)
, (4.34)

T s = 1− 2ER0S(zs + 1)

[θ0(R2
0 − r2) + 2SR0]∆C

+O

(
1

∆C2

)
, (4.35)

and hence (4.17) yields the equation describing the leading-order evolution of the

droplet, namely
d

dť
(θ0R

3
0) = −8R0

θ0
log

(
2S + θ0R0

2S

)
. (4.36)

In contrast to the limit S →∞, in this limit we are unable to obtain an explicit expres-

sion for the leading-order concentration of vapour, č0, but, as in the limit S →∞, this

is not required in order to determine the leading-order evolution of the droplet.

4.4.1 Evolution of a droplet evaporating in the Constant Radius mode

A droplet evaporating in the CR mode satisfies

R0 ≡ 1, ť = F (1, 1, S)− F (1, θ0, S), V̄0 =
πθ0

4
, (4.37)
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and hence ťCR = F (1, 1, S), where F (R0, θ0, S) is an increasing function of each of its

three arguments defined by

F (R0, θ0, S) =
S2

2

[
Ei

(
2 log

(
2S + θ0R0

2S

))
− Ei

(
log

(
2S + θ0R0

2S

))
− log 2

]
,

(4.38)

in which Ei(·) denotes the exponential integral

Ei(ξ) = −
∫ ∞
−ξ

e−λ

λ
dλ. (4.39)

Note that F (R0, θ0, S) takes the value zero when any one of its arguments is zero.

4.4.2 Evolution of a droplet evaporating in the Constant Angle mode

A droplet evaporating in the CA mode satisfies

ť = 3 [F (1, 1, S)− F (R0, 1, S)] , θ0 ≡ 1, V̄0 =
πR3

0

4
, (4.40)

and hence ťCA = 3F (1, 1, S) = 3ťCR.

Both ťCR and ťCA are increasing functions of S satisfying ťCR, ťCA = O(1/ logS)→ 0+

as S → 0+, and ťCR ∼ S/4→∞ and ťCA ∼ 3S/4→∞ as S →∞, and (as in the limit

S →∞) their ratio is exactly 3.

The solutions in the limit ∆C → ∞ given by (4.37) and (4.40) are similar, but not

identical, to the corresponding solutions in the limit S →∞ given by (4.24) and (4.25)

with S replaced by ∆C. Unlike the corresponding solutions in the limit S → ∞, θ0

and R0 are not simply linear functions of ť in the CR and CA modes, respectively, and

ťCR and ťCA are not simply linear functions of S. However, except for small values

of S, the nonlinear function F (R0, θ0, S) defined by (4.38) is very well approximated

by its linear leading-order small R0 and/or small θ0 and/or large S behaviour, i.e.

F (R0, θ0, S) ≈ θ0R0S/4. Hence, except for small values of S, the solutions in the

limit ∆C →∞ are very well approximated by the corresponding solutions in the limit

S →∞ with S replaced by ∆C. In particular, except for small values of S, t̂CR ≈ S/4
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and ťCA ≈ 3S/4.

4.4.3 Evolution of a droplet evaporating in the Stick-Slide mode

A droplet evaporating in the SS mode satisfies (4.37) for 0 < ť < ť? and

ť = 2F (1, θ?, S) + F (1, 1, S)− 3F (R0, θ
?, S), θ0 ≡ θ?, V̄0 =

πθ?R3
0

4
(4.41)

for ť? < ť < ťSS, where

ť? = F (1, 1, S)− F (1, θ?, S) and ťSS = 2F (1, θ?, S) + F (1, 1, S). (4.42)

Both ť? and ťSS are increasing functions of S satisfying ť?, ťSS = O(1/ logS) → 0+

as S → 0+, and ť? ∼ S(1 − θ?)/4 → ∞ and ťSS ∼ S(1 + 2θ?)/4 → ∞ as S → ∞.

Furthermore, ť? is a decreasing function of θ? satisfying ť? = ťCR at θ? = 0 and ť? = 0

at θ? = 1, whereas ťSS is an increasing function of θ? satisfying ťSS = ťCR at θ? = 0 and

ťSS = ťCA at θ? = 1. As for a droplet evaporating in either the CR or the CA mode,

except for small values of S, the solutions in the limit ∆C → ∞ are again very well

approximated by the corresponding solutions in the limit S → ∞ with S replaced by

∆C, and so require no further discussion here.

4.4.4 Evolution of a droplet evaporating in the Stick-Jump mode

A droplet evaporating in the SJ mode again satisfies (4.28). During the 1st stick phase

with R0 = R1 ≡ 1 from t = t0 = 0 to t = t1 = F (1, 1, S) − F (1, θmin, S), θ0 and V̄0

are given by (4.37), and thereafter during the nth stick phase (n = 2, 3, 4, . . .) with

R0 = Rn from t = tn−1 to t = tn,

R0 = Rn, ť− ťn−1 = F (Rn, θmax, S)− F (Rn, θ0, S), V̄0 =
πθ0R

3
n

4
, (4.43)
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where

ťn = F (1, 1, S)− F (1, θmin, S) +
n∑

m=2

F (Rm, θmax, S)− F (Rm, θmin, S). (4.44)

Taking the limit n→∞ in (4.44) we obtain the lifetime of the droplet, namely

ťSJ = F (1, 1, S)− F (1, θmin, S) +
∞∑
m=2

F (Rm, θmax, S)− F (Rm, θmin, S). (4.45)

In particular, ťSJ is an increasing function of S satisfying ťSJ → 0+ as S → 0+, and

ťSJ = O(S) → ∞ as S → ∞. Furthermore, ťSJ is an increasing function of both θmax

and θmin (< θmax) satisfying ťSJ = ťCR when θmax = 0 and when θmin = 0, and ťSJ → ťSS

when θmax → θmin = θ?. As for a droplet evaporating in either the CR or the CA mode,

except for small values of S, the solutions in the limit ∆C → ∞ are again very well

approximated by the corresponding solutions in the limit S → ∞ with S replaced by

∆C, and so again require no further discussion here.

4.5 Conclusions

In this chapter we have analysed the evaporation of a thin sessile droplet on a thin sub-

strate in two situations in which the influence of the thermal properties of the system

is strong. Specifically, we have obtained uniformly valid leading-order asymptotic solu-

tions for the evolution of the droplet when the substrate has a high thermal resistance

relative to the droplet (corresponding to the limit S →∞ with ∆C 6= 0) and when the

saturation concentration of the vapour depends strongly on temperature (correspond-

ing to the limit ∆C → ∞). In both situations we have obtained explicit expressions

for the lifetimes of the droplet for all four of the modes of evaporation studied in the

present chapter (namely the CR, CA, SS and SJ modes).

The thermally-decoupled model, which is applicable when the influence of the thermal

properties of the system on the evolution of the droplet is weak, predicts that the

lifetimes of the droplet are of the order of the thin-film limit of the basic timescale
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(2.1), namely

ρ̂

2D̂(ĉsat(T̂∞)− ĉ∞)

(
3θ̂0R̂

3
0

8

)2/3

. (4.46)

In contrast, the present work shows that when the influence of the thermal properties

of the system on the evolution of the droplet is strong (specifically, in the limit S →∞
and to a very good approximation in the limit ∆C →∞), the lifetimes of the droplet

are much longer than the basic timescale by a factor of size S∆C � 1, i.e. are actually

on the much longer timescale

ρ̂θ̂0R̂0L̂ĥsĉ′sat(T̂∞)

k̂s(ĉsat(T̂∞)− ĉ∞)
. (4.47)

The different dependence of the timescales given by (4.46) and (4.47) on the physical

parameters reflects the different dominant physical mechanisms when thermal effects

are weak and when they are strong. The basic timescale (4.46), which is indepen-

dent of L̂, k̂, k̂s and ĥs (i.e. independent of the thermal properties of the system and

the thickness of the substrate), corresponds to the familiar situation described by the

thermally-decoupled diffusion-limited model in which the evaporation from the droplet

is limited by diffusion of vapour in the atmosphere with constant saturation concen-

tration at the free surface of the droplet. In contrast, the timescale (4.47), which is

independent of k̂ and D̂ (i.e. independent of the thermal conductivity of the droplet and

the coefficient of diffusion of vapour in the atmosphere), corresponds to the situation

in which the evaporation from the droplet is limited by thermal conduction through

the droplet and the substrate.

To illustrate the difference between the two situations, consider a thin droplet of

methanol with initial radius R̂0 = 10−3 m and initial contact angle θ̂0 = 0.02 in

an atmosphere of air with ĉ∞ = 0.4ĉsat(T̂∞), for which, using the typical parameter

values given by [51], ρ̂ = 790 kg m−3, L̂ = 1.20 × 106 m2 s−2, k̂ = 0.203 kg m s−3

K−1, ĉsat(T̂∞) = 0.186 kg m−3, ĉ′sat(T̂∞) = 9.47 × 10−3 kg m−3 K−1 at T̂∞ = 295

K, and D̂ = 1.50 × 10−5 m2 s−1. The thermally-decoupled model predicts that on a
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t[s]

V [nl]

CR CA

CR CA

Figure 4.3: Evolution of the dimensional volume V̂ (in nl) as a function of dimensional
time t̂ (in s) for a thin droplet of methanol on a substrate made of a good thermal
conductor according to the thermally-decoupled model (dashed curves) and on a thin
substrate made of an aerogel according to the present leading-order solution in the limit
S → ∞ with ∆C 6= 0 (solid curves). In both cases the four curves correspond (from
left to right) to evaporation in the CR, SS, SJ and CA modes. The dots (•) denote the
instants at which depinning (SS mode) and the jump phases (SJ mode) occur.
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substrate made of a good thermal conductor (such as, for example, a metal) the droplet

evaporates completely in between 1.11 and 1.67 seconds (corresponding to the CR and

CA modes, respectively). On the other hand, the present leading-order solution in the

limit S → ∞ with ∆C 6= 0 predicts that on a thin substrate of thickness ĥs = 0.2

mm made of a poor thermal conductor, specifically an aerogel with a typical thermal

conductivity of k̂s = 0.015 kg m s−3 K−1 (see, for example, [30]), corresponding to

∆C = 0.017 and S = 135, the same droplet evaporates completely in between 3.22

and 9.65 seconds. Figure 4.3 shows the evolution of the dimensional volume V̂ of the

droplet as a function of dimensional time t̂ for both substrates for all four modes of

evaporation. In particular, figure 4.3 illustrates the main conclusion of the chapter,

namely that when thermal effects are strong the lifetimes of evaporating droplets are

significantly extended relative to those when thermal effects are weak.
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Chapter 5

The Influence of the Shielding

Effect on the Evaporation of

Two-Dimensional Droplets

5.1 Introduction

In this chapter we analyse the evolution, and hence the lifetimes, of 2D droplets (as

described in section 2.2.5) evaporating either singly, or as a pair. We consider the

thermally-decoupled model for evaporation described in section 2.6 and use a con-

formal mapping technique to calculate the vapour concentrations in the surrounding

atmosphere. Using the solution for the vapour concentration we obtain closed-form so-

lutions for the evolution, and hence the lifetimes, of the droplets. The work presented

in this chapter has recently been published in the Journal of Engineering Mathematics

(Schofield et al. [118]).

In two dimensions there is a fundamental difficulty in solving the thermally-decoupled

model concerning the specification of appropriate boundary conditions [134], which we

will overcome, in the spirit of the work of Yarin et al. [166], by considering a suitably

relaxed boundary condition.
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In section 5.2 we consider the one-droplet problem. We present the governing equa-

tions (section 5.2.1), show that the most apparently natural problem does not have a

solution (section 5.2.2), and then show that by considering a suitably relaxed boundary

condition we can obtain a physically acceptable solution via a conformal-mapping tech-

nique (section 5.2.3). We validate this solution against numerical simulations (section

5.2.4), and use it to obtain closed-form solutions for the evolution and lifetimes of the

droplet in various modes of evaporation (section 5.2.5). We then develop asymptotic

expressions for these lifetimes in a large domain (section 5.2.5). In section 5.3 we con-

sider the two-droplet problem. We obtain a solution to this problem (section 5.3.1),

which we again validate against numerical simulations (section 5.3.2), before using it

to obtain closed-form solutions for the evolution and lifetimes of the droplets (section

5.3.3). We develop asymptotic expressions for these lifetimes (section 5.3.3), and use

these expressions to compare the lifetimes of a single droplet and a pair of droplets in

dimensional terms (section 5.4).

5.2 One-droplet problem

5.2.1 Model

Consider a thin two-dimensional sessile droplet, as described in section 2.2.5, evapo-

rating according to the 2D equivalent of the thermally-decoupled model described in

section 2.6. The droplet has a semi-width R̂(t̂), contact angle θ̂(t̂) and cross-sectional

area Â(t̂). Using Cartesian co-ordinates (x̂, ŷ) with origin at the centre of the base

of the droplet, the droplet evaporates into a surrounding atmosphere with constant

coefficient of vapour diffusion D̂, constant vapour saturation concentration ĉ = ĉsat,

and constant ambient vapour concentration ĉ = ĉ∞. The vapour concentration in the

atmosphere is denoted by ĉ(x̂, ŷ, t̂), and the diffusive mass flux from the surface of the

droplet by Ĵ(x̂, t̂).

Following the approach of Dunn et al. [50, 52], we non-dimensionalise and scale accord-
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ing to

(x̂, ŷ) = R̂0(x, y), R̂ = R̂0R, θ̂ = θ̂0θ, Â = R̂2
0θ̂0A,

ĉ = ĉ∞ + (ĉsat − ĉ∞)c, Ĵ =
D̂ (ĉsat − ĉ∞)

R̂0

J, t̂ =
ρ̂θ̂0R̂

2
0

D̂ (ĉsat − ĉ∞)
t, (5.1)

where R̂0 = R̂(0) and θ̂0 = θ̂(0).

The free surface of the droplet is approximately parabolic and using the nondimension-

alisation (5.1) its cross-sectional area is given by

A =
2

3
R2θ. (5.2)

As in section 2.6, the vapour concentration is assumed to be quasi-steady, and so c

satisfies Laplace’s equation

∇2c = 0 (5.3)

throughout the atmosphere.

Also as in section 2.6, the flux from the droplet is given by

J = −∂c
∂y

for |x| ≤ R, (5.4)

which may be evaluated at y = 0 due to the thinness of the droplet. Similarly, the

saturation condition, c = 1, on the surface of the droplet may also be imposed on

y = 0.

The saturation condition on the droplet and the no-flux condition on the substrate thus

become

c(x, 0) = 1 for |x| < R,
∂c

∂y
(x, 0) = 0 for |x| > R, (5.5)

respectively. To complete the problem we require a suitable boundary condition to be

imposed in the “far field”; this turns out to be non-trivial to specify.
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5.2.2 No solution in an infinite half-space

The simplest problem to specify is evaporation into an infinite half-space, so we aim to

solve (5.3) subject to the far-field condition

c→ 0 as x2 + y2 →∞ in y > 0, (5.6)

as well as to a mixed boundary condition on y = 0 of the form

c(x, 0) = f(x) (> 0) for |x| < R,
∂c

∂y
(x, 0) = 0 for |x| > R. (5.7)

Applying a cosine transform to (5.3) and imposing the far-field condition (5.6) leads to

a solution of the form

c =

∫ ∞
0

u−1A(u)e−uy cos(ux) du, (5.8)

where the function A(u) is to be determined. Imposing the boundary condition (5.7)

requires that

∫ ∞
0

u−1A(u) cos(xu) du = f(x) for |x| < R, (5.9)∫ ∞
0

A(u) cos(xu) du = 0 for |x| > R. (5.10)

The work of Sneddon [134, §4.5] shows that requiring regularity of c at the contact line

x = R imposes the condition

∫ R

0

f(x)√
R2 − x2

dx = 0, (5.11)

so specifying that the function f(x) is any positive constant is not an admissible bound-

ary condition, and so, as could have been anticipated from the behaviour of the funda-

mental solution of Laplace’s equation in two dimensions, the problem specified by (5.3),

(5.5) and (5.6) has no solution. We note that (5.11) precludes not only solutions to the

simplest problem in which the saturation concentration is constant on the droplet, but

also solutions to more general problems in which it varies along the droplet surface due,
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for example, to changes in temperature as in the thermally-coupled model described in

section 2.4.

5.2.3 Solution in a finite domain via conformal mapping

Since the most apparently natural problem does not have a solution, we instead look for

a closely related analogue that does. We therefore consider a slightly modified problem

in which the far-field condition (5.6) is replaced by a similar Dirichlet condition at a

distant, but finite, boundary. We therefore aim to solve

∇2c = 0 in y > 0, x2 + y2 < γ2, (5.12)

subject to the standard boundary conditions on y = 0,

c(x, 0) = 1 for |x| < R,
∂c

∂y
(x, 0) = 0 for R < |x| < γ, (5.13)

and the relaxed boundary condition

c = 0 for y > 0, x2 + y2 = γ2. (5.14)

While it is difficult to find an analytical solution in a domain that is exactly semi-

circular, we can obtain a solution in a semi-elliptical domain that approaches a semi-

circular shape as it becomes large.

We proceed using conformal mapping. Let

z = x+ iy, w = u+ iv. (5.15)

Then the mapping

z = g(w) = −R cos
(π

2
(w + 1)

)
(5.16)

maps the semi-infinite strip (u, v) ∈ (−1, 1) × (0,∞) in the w-plane to the upper half

of the z-plane. In particular, the rectangle (−1, 1) × (0, S) shown in figure 5.1(a) is
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1−1
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Ψ

R−R−
√

Ψ 2 +R2
√

Ψ2 +R2

Figure 5.1: (a) The rectangular domain in the w-plane and (b) the semi-elliptical
domain in the z-plane for the one-droplet problem.

mapped to the semi-ellipse with semi-major axis length
√

Ψ2 +R2 and semi-minor axis

length Ψ shown in figure 5.1(b) and given by

z =
√

Ψ2 +R2 cos(s) + iΨ sin(s) for 0 ≤ s ≤ π, (5.17)

where

Ψ = R sinh

(
πS

2

)
. (5.18)

An important point to note is that the shape of the semi-elliptical domain in the z-plane

given by (5.17) depends on R as well as on Ψ. Thus, in general, for a droplet whose

semi-width changes as it evolves, the shape of the domain also changes. However, in

the regime of most interest, Ψ � R, in which the domain is large, equation (5.17)

gives

z = Ψeis
[
1 +O(Ψ−2)

]
, (5.19)

and so the domain is semi-circular with radius Ψ and independent of R up to O(Ψ−2)�
1.

In the rectangular domain in the w-plane we seek a harmonic function Φ(u, v) satisfy-

ing

Φ(u, 0) = 1,
∂Φ

∂u
(−1, v) = 0 =

∂Φ

∂u
(1, v), Φ(u, S) = 0. (5.20)

Solving the problem for Φ in the rectangular domain immediately gives the correspond-

ing solution for c in the semi-elliptical domain.

98



Chapter 5. The Influence of the Shielding Effect on the Evaporation of
Two-Dimensional Droplets

By inspection, the solution in the rectangular domain is given by

Φ(u, v) = 1− v

S
= 1− =(w)

S
, (5.21)

so

c(x, y) = 1− =
(
g−1(z)

)
S

= 1− 1

arcsinh (Ψ/R)
=
[
arccos

(
− z
R

)]
, (5.22)

and the flux is given by

J(x) = −∂c
∂y

(x, 0) =
1

arcsinh (Ψ/R)

1√
R2 − x2

for |x| < R. (5.23)

In particular, the flux satisfies

J ∼ 1√
2R arcsinh (Ψ/R)

1√
R− x

as x→ R−, (5.24)

and so it has the same (integrable) square-root singularity at the contact line x = R as

in the corresponding three-dimensional problem discussed in section 2.6.1.

5.2.4 Numerical validation

In order to validate the solution obtained in section 5.2.3 (i.e. in order to assess the

accuracy of the solution and to quantify the effect of the non-circularity of the domain),

we solved the problem in the semi-circular domain using COMSOL Multiphysics [1].

In figure 5.2 we compare these numerical solutions to the analytical solutions in the

semi-elliptical domain given by (5.22) and (5.23).

Figures 5.2(a)–(c) show solutions for the vapour concentration along the x-axis, c(x, 0);

(d)–(f) show solutions for the vapour concentration along the y-axis, c(0, y); (g)–(i)

show solutions for the flux, J(x). The first column [(a), (d), (g)] shows results for

Ψ = 2, the second column [(b), (e), (h)] shows results for Ψ = 10, and the third

column [(c), (f), (i)] shows results for Ψ = 100. In all cases the solid lines denote

the analytical solutions in the semi-elliptical domain, and the dashed lines denote the

corresponding numerical solutions in the semi-circular domain. Figures 5.2(a)–(f) show
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c c c
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J J J

x x x

y y y

x x x

Figure 5.2: The vapour concentration and flux for the one-droplet problem for R = 1
and Ψ = 2 [(a), (d), (g)], Ψ = 10 [(b), (e), (h)], and Ψ = 100 [(c), (f), (i)]. (a)–(c) show
solutions for the vapour concentration along the x-axis, c(x, 0); (d)–(f) show solutions
for the vapour concentration along the y-axis, c(0, y); (g)–(i) show solutions for the flux,
J(x). Solid lines denote the analytical solutions in the semi-elliptical domain given by
(5.22) and (5.23), and dashed lines denote the corresponding numerical solutions in the
semi-circular domain.
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that the vapour concentration c takes its saturation value c = 1 on the surface of

the droplet and decreases monotonically to its ambient value c = 0 at the edge of

the domain, and figures 5.2(g)–(i) show that the flux J increases monotonically with

distance from a minimum value at the centre of the droplet and is singular at the

contact line x = R. Figure 5.2 also shows that the analytical solutions accurately

capture the behaviour of the numerical solutions provided that Ψ is sufficiently large,

which is exactly as expected since it is for smaller domains that the semi-circular and

semi-elliptical domains are most different.

5.2.5 Evolution and lifetime of the droplet

The rate of change of the cross-sectional area (5.2) is given by the flux (5.23) integrated

over the surface of the droplet,

dA

dt
=

2

3

d

dt

[
R2(t)θ(t)

]
= −

∫ R

−R
J(x) dx = − π

arcsinh(Ψ/R)
. (5.25)

In order to integrate (5.25) to determine the evolution and lifetime of the droplet, we

require additional information about the behaviour ofR(t) and θ(t), i.e. we need to spec-

ify the mode in which the droplet is evaporating. Here we consider the two-dimensional

analogues of three of these modes: the constant radius (CR) mode, the constant an-

gle (CA) mode, and the stick–slide (SS) mode described in section 1.4. (Throughout,

for consistency with the three-dimensional problem, we will refer to modes in which

R is fixed as “constant-radius” modes, although strictly R is not the radius but the

semi-width of the two-dimensional droplet.)

Constant radius (CR) mode

In the constant radius (CR) mode, R(t) ≡ R0 = 1. Noting that θ(0) = θ0 = 1, we may

immediately integrate (5.25) to obtain

θ(t) = 1− 3π

2 arcsinh Ψ
t, A(t) =

2

3

[
1− 3π

2 arcsinh Ψ
t

]
. (5.26)
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Figure 5.3: Evolution and lifetime of a single droplet evaporating in the CR and CA
modes: (a) contact angle θ(t) in the CR mode given by (5.26), (b) semi-width R(t) in
the CA mode given by (5.28), and (c) areas A(t) given by (5.26) and (5.28), plotted
as functions of t for Ψ = 10, 100 and 1000 with the arrows indicating the direction of
increasing Ψ; (d) lifetimes tCR and tCA given by (5.27) and (5.29) plotted as functions
of Ψ. In (c) and (d) solid lines denote the CA mode and dashed lines denote the CR
mode.
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Hence the lifetime of a single droplet evaporating in the CR mode is

tCR =
2

3π
arcsinh Ψ. (5.27)

Figures 5.3(a,c,d) show the evolution and lifetime of a single droplet evaporating in

the CR mode. The contact angle θ and the area A both decrease linearly with time t

[figures 5.3(a,c)]. As the size of the domain Ψ increases, the contact angle θ and the

area A decrease more slowly, and so the lifetime tCR increases monotonically with Ψ

[figure 5.3(d)]. This is because in two dimensions the distance to the outer boundary

sets the distance over which the concentration decays to zero, and thus controls the

concentration gradient close to the droplet, as seen in (5.23). This strong role of the

outer boundary is a fundamental difference from the corresponding three-dimensional

problem, in which the distance to the outer boundary becomes irrelevant for a suffi-

ciently large domain, and so a far-field boundary condition can be safely imposed “at

infinity”.

Constant angle (CA) mode

In the constant angle (CA) mode, θ(t) ≡ θ0 = 1. Noting that R(0) = R0 = 1, we may

integrate (5.25) implicitly to obtain

t =
2

3π

[
arcsinh Ψ−R2(t) arcsinh

(
Ψ

R(t)

)
+ Ψ

(√
Ψ2 + 1−

√
Ψ2 +R2(t)

)]
,

A(t) =
2R2(t)

3
. (5.28)

Hence the lifetime of a single droplet evaporating in the CA mode is

tCA =
2

3π

[
arcsinh Ψ + Ψ

(√
Ψ2 + 1−Ψ

)]
, (5.29)
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which can be re-written as

tCA = tCR +
2Ψ

3π

(√
Ψ2 + 1−Ψ

)
. (5.30)

Figures 5.3(b,c,d) show the evolution and lifetime of a single droplet evaporating in

the CA mode. In contrast to the CR mode, the semi-width R and the area A now

both decrease nonlinearly with time t [figures 5.3(b,c)]. However, as in the CR mode,

the lifetime tCA increases monotonically with Ψ [figure 5.3(d)]. Figure 5.3(d) also illus-

trates, as (5.30) also shows, that due to its pinned contact lines, a droplet evaporating

in the CR mode always has a larger surface area, and hence a larger total flux and thus

a shorter lifetime, than the same droplet evaporating in the CA mode, i.e. tCR ≤ tCA

for all Ψ.

Stick–slide (SS) mode

In the stick–slide (SS) mode, the contact line is initially pinned, while the contact angle

decreases until it reaches its critical de-pinning (receding) value θ = θ? (0 ≤ θ? ≤ 1) at

the de-pinning time t = t?. After de-pinning, the contact angle remains at its critical

value, while the semi-width decreases until it reaches zero. Thus we have

R(t) ≡ 1 for 0 < t < t?,

θ(t) ≡ θ? for t? < t < tSS.

 (5.31)

In the pinned (i.e. the CR) phase, 0 < t < t?, the droplet evolves according to (5.26),

so that

t? =
2(1− θ?) arcsinh Ψ

3π
, (5.32)
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while in the de-pinned (i.e. the CA) phase, t? < t < tSS, the droplet evolves according

to

t = t? +
2θ?

3π

[
arcsinh Ψ−R2(t) arcsinh

(
Ψ

R(t)

)
+ Ψ

(√
Ψ2 + 1−

√
Ψ2 +R2(t)

)]
.

(5.33)

Combining (5.32) and (5.33), the lifetime of a single droplet evaporating in the SS mode

is

tSS =
2

3π

[
arcsinh Ψ + θ?Ψ

(√
Ψ2 + 1−Ψ

)]
, (5.34)

which can be re-written as

tSS = tCR +
2θ?Ψ

3π

(√
Ψ2 + 1−Ψ

)
. (5.35)

Figure 5.4 shows the evolution and lifetime of a single droplet evaporating in the SS

mode. The de-pinning time t? decreases linearly with θ?, while the lifetime tSS increases

linearly with θ? [figure 5.4(d)]. Comparing (5.27), (5.30) and (5.35) shows that, as might

have been anticipated, the lifetime of a droplet evaporating in the SS mode always lies

between those of the same droplet in the CR and CA modes, i.e. tCR ≤ tSS ≤ tCA for

all Ψ and θ?. In the limit θ? → 1− the SS mode approaches the CA mode and thus

tSS → tCA
−, while in the limit θ? → 0+ the SS mode approaches the CR mode and

thus tSS → tCR
+.

We note that in figure 5.4(a) all of the curves for which θ? 6= 0 intersect at t = tCR,

and from (5.27), (5.32) and (5.33), the semi-width of the droplet at this time, R(tCR),

satisfies

R2(tCR) arcsinh

(
Ψ

R(tCR)

)
= Ψ

(√
Ψ2 + 1−

√
Ψ2 +R2(tCR)

)
. (5.36)

Note that R(tCR) is a monotonically decreasing function of Ψ which takes its maximum

value R(tCR) = 1/2 in the limit Ψ→ 0+ and satisfies R(tCR)→ 0+ as Ψ→∞.
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Figure 5.4: Evolution and lifetime of a single droplet evaporating in the SS mode:
(a) semi-width R(t), (b) contact angle θ(t), and (c) area A(t) given by (5.31)–(5.33),
plotted as functions of t for θ? = 0, θ? = 1/4, θ? = 1/2, θ? = 3/4 and θ? = 1 with the
arrows indicating the direction of increasing θ?; (d) de-pinning time t? given by (5.32)
(dashed line) and lifetime tSS given by (5.34) (solid line) plotted as functions of Ψ. In
all cases Ψ = 100.
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Asymptotic behaviour of the lifetimes in a large domain, Ψ� R

Consider the regime of most interest, Ψ � R, in which the domain is large and ap-

proximately semi-circular, and the condition at the outer boundary corresponds most

closely to a far-field condition. From (5.27), (5.29) and (5.34) we obtain

tCR =
2

3π
ln(2Ψ) +O

(
1

Ψ2

)
, (5.37)

tCA =
2

3π
ln(2Ψ) +

1

3π
+O

(
1

Ψ2

)
, (5.38)

tSS =
2

3π
ln(2Ψ) +

θ?

3π
+O

(
1

Ψ2

)
, (5.39)

respectively. Equations (5.37)–(5.39) show that the lifetimes of the droplets all depend

logarithmically on the size of the domain, and differ by an amount of O(1) which

depends on the mode of evaporation. The corrections at O(Ψ−2) are of the same order

as the deviation of the domain from circularity.

5.3 Two-droplet problem

We now consider the analogous two-droplet problem in the ζ-plane, where ζ = η+iξ. We

assume that the droplets are identical, and use the initial semi-width of the droplets as

the characteristic length scale in the non-dimensionalisation. The droplets are located

so that they have inner contact lines at η = ±I and outer contact lines at η = ±Ω,

where Ω > I, as shown in Figure 5.5. The cross-sectional area of each droplet is then

given by

A =
(Ω− I)2 θ

6
. (5.40)

5.3.1 Solution in a finite domain via conformal mapping

Consider the conformal map

ζ = Γ(z) =
√
I2 + z2 (5.41)
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√
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Figure 5.5: The quasi-semi-elliptical domain in the ζ-plane for the two-droplet problem.

from the z-plane to the ζ-plane. This maps the real interval (0, R) in the z-plane to

the real interval (I,Ω) where Ω =
√
I2 +R2 in the ζ-plane, preserving the saturation

condition on the droplet. It maps the real interval (R,
√

Ψ2 +R2) in the z-plane to

the real interval (Ω,
√

Ψ2 + Ω2) in the ζ-plane, preserving the no-flux condition on the

substrate. It maps the imaginary interval (0, iI) in the z-plane to the real interval

(0, I) in the ζ-plane: the symmetry condition on the imaginary axis in the z-plane now

becomes a no-flux condition on the real interval (0, I) in the ζ-plane. With a suitable

choice of branch cut, the equivalent regions in the left half of the z-plane are mapped

into corresponding regions in the left half of the ζ-plane. The outer boundary of the

domain, given by the rectangle in the z-plane and the semi-ellipse (5.17) in the z-plane,

is mapped to the quasi-semi-elliptical curve shown in figure 5.5 and given by

ζ =

[
I2 +

(√
Ψ2 + Ω2 − I2 cos(s) + iΨ sin(s)

)2
]1/2

for 0 ≤ s ≤ π. (5.42)

However, as in the one-droplet problem, in the regime of most interest, Ψ� I, in which

the domain is large, equation (5.42) gives

ζ = Ψeis
[
1 +O(Ψ−2)

]
, (5.43)

and so the domain is again semi-circular with radius Ψ and independent of I and Ω up

to O(Ψ−2)� 1.
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(a) (b)
c = 0.55

c = 0.7

y ξ

x η

Figure 5.6: Contours of the vapour concentration (a) c(x, y) for the one-droplet problem
given by (5.22) when R = 1, and (b) c(η, ξ) for the two-droplet problem given by (5.45)
when I = 1 and Ω = 3. In both cases Ψ = 100 and the contours are shown with
increments of 0.05.

The solution in the quasi-semi-elliptical domain is given by

c(η, ξ) = c(ζ) = c(w(z(ζ))) (5.44)

= 1− 1

arcsinh
(

Ψ/
√

Ω2 − I2
)=[arccos

(
−
√
ζ2 − I2

Ω2 − I2

)]
. (5.45)

Figure 5.6 shows the contours of the vapour concentration c(η, ξ) for the two-droplet

problem given by (5.45) and the corresponding contours of c(x, y) for the one-droplet

problem given by (5.22). In both cases, far from the droplet(s) the contours approach

the (semi-elliptical or quasi-semi-elliptical) shape of the outer boundary, and near to the

droplet(s) the contours approach the flat shape(s) of the droplet(s). For the two-droplet

problem the concentration in the region between the droplets is increased relative to

that in the one-droplet problem, and near to the droplets the concentration falls away

more gradually than it does in the one-droplet problem, and resulting in the shielding

effect described in section 5.1.

The flux is given by

J(η) = −∂c
∂ξ

(η, 0) =
1

arcsinh
(

Ψ/
√

Ω2 − I2
) η√

Ω2 − η2
√
η2 − I2

. (5.46)
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In particular, the flux satisfies

J ∼ 1√
2(Ω2 − I2) arcsinh

(
Ψ/
√

Ω2 − I2
) ×



√
I

η − I as η → I+,√
Ω

Ω− η as η → Ω−,

(5.47)

confirming that it again has square-root singularities at both contact lines.

5.3.2 Numerical validation

As we did in the one-droplet problem, in order to validate the solution obtained in

Section 5.3.1, we solved the two-droplet problem in the semi-circular domain using

COMSOL Multiphysics [1]. In figure 5.7 we compare these numerical solutions to the

analytical solutions in the quasi-semi-elliptical domain given by (5.45) and (5.46).

Figures 5.7(a)–(c) show solutions for the vapour concentration along the η-axis, c(η, 0);

(d)–(f) show solutions for the vapour concentration along the ξ-axis, c(0, ξ); (g)–(i)

show solutions for the flux, J(η). The first column [(a), (d), (g)] shows results for

Ψ = 4, the second column [(b), (e), (h)] shows the corresponding results for Ψ = 10,

and the final column [(c), (f), (i)] shows the corresponding results for Ψ = 100. In all

cases the solid lines denote the analytical solutions in the quasi-semi-elliptical domain,

and the dashed lines denote the corresponding numerical solutions in the semi-circular

domain. As in the one-droplet problem, figure 5.7 shows that c takes its saturation

value on the surface of the droplets and decreases monotonically to its ambient value

at the edge of the domain, that J is singular at the contact lines x = I and x = Ω,

and that the analytical solutions accurately capture the behaviour of the numerical

solutions provided that Ψ is sufficiently large.

However, figures 5.7(a)–(f) also show that c decreases monotonically to an (unsatu-

rated) minimum value between the droplets, and that this value is an increasing func-

tion of Ψ: this latter behaviour reflects the smaller concentration gradients, and thus

the higher concentrations, which occur near to the droplets in larger domains. In ad-
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Figure 5.7: The vapour concentration and flux for the two-droplet problem for I = 1,
Ω = 3 and Ψ = 4 [(a), (d), (g)], Ψ = 10 [(b), (e), (h)], and Ψ = 100 [(c), (f), (i)]. (a)–
(c) show solutions for the vapour concentration along the η-axis, c(η, 0); (d)–(f) show
solutions for the vapour concentration along the ξ-axis, c(0, ξ); (g)–(i) show solutions
for the flux, J(η). Solid lines denote the analytical solutions in the quasi-semi-elliptical
domain given by (5.45) and (5.46), and dashed lines denote the corresponding numerical
solutions in the semi-circular domain.
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dition, Figures 5.7(g)–(i) clearly illustrate the shielding effect that the droplets have

on each other. In particular, as (5.47) shows, the flux near to the outer contact line

is suppressed less by the presence of the other droplet, and so remains larger than the

flux near to the inner contact line, resulting in the skewed flux profiles shown in figures

5.7(g)–(i). In particular, the minimum value of the flux no longer occurs at the centre

of each droplet (as it does in the one-droplet problem).

5.3.3 Evolution and lifetime of the droplets

Using the solution for the flux given by (5.46), the evolution and lifetime of the droplets

are determined by

dA

dt
=

1

6

d

dt

[
(Ω(t)− I(t))2 θ(t)

]
= −

∫ Ω

I
J(η) dη = − π

2 arcsinh
(

Ψ/
√

Ω2 − I2
) . (5.48)

In the one-droplet problem we investigated three modes of evaporation (namely the

CR, CA and SS modes), but in the two-droplet problem there is a much richer variety

of possible behaviours because any of the four contact lines may, in principle, move

independently of the other three. In the present work, we consider four canonical be-

haviours, in each of which the droplets remain symmetric about the ξ-axis. Specifically,

we consider the following modes of evaporation:

1. The constant inner and outer contact line (CIO) mode: the inner and outer

contact lines of both droplets are pinned at η = ±I(0) = ±I0 and η = ±Ω(0) =

±Ω0 as the droplets evaporate.

2. The constant angle centred (CAC) mode: both droplets evaporate with constant

contact angle and remain centred at η = ±(I + Ω)/2 = ±(I0 + Ω0)/2.

3. The constant angle and constant inner contact lines (CAI) mode: both droplets

again evaporate with constant contact angle, but now their inner contact lines

are pinned at η = ±I0.

4. The constant angle and constant outer contact line (CAO) mode: both droplets
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again evaporate with constant contact angle, but now their outer contact lines

are pinned at η = ±Ω0.

Constant inner and outer contact line (CIO) mode

In the CIO mode, the inner and outer contact lines of both droplets are pinned, I ≡ I0

and Ω ≡ Ω0 = I0 + 2. We may then immediately integrate (5.48) to obtain

θ(t) = 1− 3π

4 arcsinh
(

Ψ/
√

Ω2
0 − I2

0

) t,

A =
(Ω0 − I0)2

6

1− 3π

4 arcsinh
(

Ψ/
√

Ω2
0 − I2

0

) t
 . (5.49)

Hence the lifetime of a pair of droplets evaporating in the CIO mode is

tCIO =
4 arcsinh

(
Ψ/
√

Ω2
0 − I2

0

)
3π

. (5.50)

Figure 5.8 shows the evolution and the lifetime of a pair of droplets evaporating in the

CIO mode. As for a single droplet in the CR mode, the contact angle θ and the area

A both decrease linearly with time t [figure 5.8(a,b)] and the lifetime tCIO increases

monotonically with Ψ [figure 5.8(c)]. In addition, since the shielding effect is weaker,

and hence evaporation is faster, when the droplets are more widely separated, the

lifetime tCIO decreases monotonically with the separation between the droplets, 2I0

[figure 5.8(d)].

Constant angle (CAC, CAI, CAO) modes

In the CAC, CAI and CAO modes, the contact angle remains constant, θ(t) ≡ θ0 = 1.

The three modes are distinguished by the different behaviours of the contact lines.

In the constant angle centred (CAC) mode, the droplets remain centred at η = ±(I +
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Figure 5.8: Evolution and the lifetime of a pair of droplets evaporating in the CIO
mode: (a) contact angle θ(t) and (b) area A(t) given by (5.49) plotted as functions
of t for Ψ = 10, Ψ = 100 and Ψ = 1000 with the arrows indicating the direction of
increasing Ψ; lifetime tCIO given by (5.50) plotted (c) as a function of Ψ and (d) as a
function of I0 when Ψ = 100. In (a)–(c) all curves are for I0 = 1 and Ω0 = 3.
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Ω)/2 = ±(I0 + Ω0)/2. It is therefore convenient to write

I(t) = Γ−∆(t), Ω(t) = Γ + ∆(t) (5.51)

where Γ = (I0 +Ω0)/2 is the position of the centre of the right-hand droplet and ∆(t) =

(Ω− I)/2 is its semi-width. We may then integrate (5.48) implicitly to obtain

18πΓ2t = 24Γ2

(
arcsinh

(
Ψ

2
√

Γ

)
−∆2 arcsinh

(
Ψ

2
√

Γ∆

))
+
√

4Γ∆ + Ψ2
(
Ψ2 − 2Γ∆

)
Ψ−

√
4Γ + Ψ2

(
Ψ2 − 2Γ

)
Ψ. (5.52)

Hence the lifetime of a pair of droplets evaporating in the CAC mode is

tCAC =
1

18πΓ2

[
24Γ2 arcsinh

(
Ψ

2
√

Γ

)
+ Ψ4 −

√
4Γ + Ψ2

(
Ψ2 − 2Γ

)
Ψ

]
. (5.53)

In the constant angle and inner contact-line (CAI) mode, the inner contact line is

pinned, I ≡ I0. We may then integrate (5.48) implicitly to obtain

FCAI(Ω) = FCAI(Ω0) +
3π

2
t, (5.54)

where

FCAI(Ω) =
I2

0

4

[
3 arctanh

(
Ψ2 − ΩI0 − I2

0

Ψ
√

Ψ2 + Ω2 − I2
0

)
− arctanh

(
Ψ2 + ΩI0 − I2

0

Ψ
√

Ψ2 + Ω2 − I2
0

)]

+
Ω

2
(2I0 − Ω) arcsinh

(
Ψ√

Ω2 − I2
0

)
− Ψ

2

√
Ψ2 + Ω2 − I2

0

+ ΨI0 ln

(
Ω +

√
Ψ2 + Ω2 − I2

0

)
. (5.55)

Hence the lifetime of a pair of droplets evaporating in the CAI mode is

tCAI =
2

3π
[FCAI(I0)− FCAI(Ω0)] . (5.56)

In the constant angle and outer contact line (CAO) mode, the outer contact line is
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pinned, Ω ≡ Ω0. We may then integrate (5.48) implicitly to obtain

FCAO(I) = FCAO(I0) +
3π

2
t, (5.57)

where1

FCAO(I) =
Ω2

0

4

[
3 arctanh

(
Ψ2 + Ω0I + Ω2

0

Ψ
√

Ψ2 + Ω2
0 − I2

)
− arctanh

(
Ψ2 − Ω0I + Ω2

0

Ψ
√

Ψ2 + Ω2
0 − I2

)]

+
I

2
(2Ω0 − I) arcsinh

(
Ψ√

Ω2
0 − I2

)
+

Ψ

2

√
Ψ2 + Ω2

0 − I2

+ ΨΩ0 arctan

(
I√

Ψ2 + Ω2
0 − I2

)
. (5.58)

Hence the lifetime of a pair of droplets evaporating in the CAO mode is

tCAO =
2

3π
[FCAO(Ω0)− FCAO(I0)] . (5.59)

Figure 5.9 shows the evolution and the lifetime of a pair of droplets evaporating in the

three constant angle modes. The difference between the modes is most clearly seen in

figure 5.9(a), which shows the inner and outer contact lines moving towards the centre

of the droplet in the CAC mode, the outer contact line moving inward in the CAI

mode, and the inner contact line moving outward in the CAO mode. Despite these

differences, the evolution of the area A, which decreases nonlinearly with t, is similar

for all three modes [figure 5.9(b)]. As in the CAI mode, the lifetimes tCAC, tCAI and

tCAO increase monotonically with Ψ [figure 5.9(c)] and decrease monotonically with the

separation between the droplets, 2I0, [figure 5.9(d)].

As figures 5.9(c,d) show, the lifetimes of the three constant angle modes are very similar,

and it is only when the separation between the droplets is small that the difference

between them becomes important. Specifically, figure 5.9(d) shows that the difference

between tCAC, tCAI and tCAO becomes negligible when I0 & 5 (i.e. when the droplet

1 Note that, as a check on the correctness of (5.55) and (5.58), we may (up to an unimportant
additive constant) recover FCAO from FCAI by replacing Ω with I, I0 with Ω0 and Ψ with iΨ in (5.55),
and FCAI from FCAO by replacing I with Ω, Ω0 with I0 and Ψ with iΨ in (5.58).
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Figure 5.9: Evolution and lifetime of a pair of droplets evaporating in the CAC (solid
lines), CAI (dotted lines), and CAO (dashed lines) modes: (a) contact line positions
I(t), Ω(t) and (b) area A(t) given by (5.40), (5.52), (5.54) and (5.57) plotted as functions
of t for Ψ = 10, Ψ = 100 and Ψ = 1000 with the arrows indicating the direction of
increasing Ψ; lifetimes tCAC, tCAI and tCAO given by (5.53), (5.56) and (5.59) plotted
(c) as functions of Ψ and (d) as functions of I0 for Ψ = 100. In (a)–(c) all curves
are for I0 = 1 and Ω0 = 3, while (d) also includes the leading-order behaviour in the
asymptotic regime 1� I0 � Ψ given by 4/(3π) ln(Ψ/

√
I0) (dot-dashed line).
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tCAC

tCAO

tCIO

Ψ

CAI, CAC, CAO

CIO
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CIO

Figure 5.10: Lifetimes of a pair of droplets evaporating in the CAI (top curve in each
set), CAC, CAO and CIO (bottom curve in each set) modes given by (5.50), (5.53),
(5.56) and (5.59) plotted as functions of Ψ when I0 = 0 (top set of curves), I0 = 10
and I0 = 100 (bottom set of curves).

separation is several times the width of the droplets). As the droplets evaporate, the

droplet separation is smallest in the CAI mode and largest in the CAO mode, resulting

in the slowest evaporation, and hence the longest lifetime, in the CAI mode and the

fastest evaporation, and hence the shortest lifetime, in the CAO mode. This point is

further illustrated by figure 5.10, which shows the lifetimes tCAI, tCAC, tCAO and tCIO

plotted as functions of Ψ. In particular, figure 5.10 shows that as the droplet separation

increases the lifetimes of the three constant angle modes (but not that of the CIO mode)

become virtually indistinguishable. We will discuss the latter behaviour in more detail

in section 5.3.3 below.

Asymptotic behaviour of the lifetimes in a large domain, Ψ� I

The results shown in figure 5.10 motivate us to derive asymptotic expressions for the

lifetimes of the droplets when Ψ� I. Noting the difference between closely-spaced and

widely-separated droplets, we consider the regimes I0 � 1 and I0 � 1 separately.

In the regime I0 � 1 � Ψ, the initial droplet separation is much less than the initial
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droplet semi-width. Equations (5.50), (5.53), (5.56) and (5.59) then yield

tCIO =
4

3π
ln(Ψ) − 2I0

3π
+O

(
I0

2,
1

Ψ2

)
, (5.60)

tCAC =
4

3π
ln(Ψ) +

1

3π
− 2I0

3π
+O

(
I0

2,
1

Ψ2

)
, (5.61)

tCAI =
4

3π
ln(Ψ) +

2

3π
− 4I0

3π
+O

(
I0

2 log I0,
1

Ψ2

)
, (5.62)

tCAO =
4

3π
ln(Ψ) +

2

π

(
1− 4

3
ln 2

)
+

4I0

3π
(1− 2 ln 2)+O

(
I0

2,
1

Ψ2

)
, (5.63)

respectively.

On the other hand, in the regime 1 � I0 � Ψ, the initial droplet separation is much

greater than the initial droplet semi-width. Equations (5.50), (5.53), (5.56) and (5.59)

then yield

tCIO =
4

3π
ln

(
Ψ√
I0

)
− 2

3πI0
+O

(
1

I2
0

,
I0

Ψ2

)
, (5.64)

tCAC =
4

3π
ln

(
Ψ√
I0

)
+

1

3π
− 2

3πI0
+O

(
1

I2
0

,
I0

Ψ2

)
, (5.65)

tCAI =
4

3π
ln

(
Ψ√
I0

)
+

1

3π
− 4

9πI0
+O

(
1

I2
0

,
I0

Ψ2

)
, (5.66)

tCAO =
4

3π
ln

(
Ψ√
I0

)
+

1

3π
− 8

9πI0
+O

(
1

I2
0

,
I0

Ψ2

)
, (5.67)

respectively.

Equations (5.60)–(5.67) show that, as in the one-droplet problem, in the regime Ψ� I,

the lifetimes of all four modes depend logarithmically on the size of the domain.

When I0 � 1, equations (5.60)–(5.63) show that the lifetimes depend on the mode of

evaporation at O(1). The lifetime of the CIO mode is the shortest because, due to

their pinned contact lines, the droplets in this mode have the largest surface area, and

hence evaporate the fastest. Of the three constant angle modes, the CAO mode has

the shortest lifetime and the CAI mode the longest lifetime. This is because when the

inner contact lines are pinned the droplets remain closer together and hence evaporate

more slowly than in the CAC mode due to a stronger shielding effect, whereas when
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the outer contact lines are pinned the droplets move further apart and hence evaporate

more quickly than in the CAC mode due to a weaker shielding effect.

On the other hand, when I0 � 1, equations (5.64)–(5.67) show that the influence of

the different behaviours of the contact lines on the three constant angle modes is very

weak and at O(1) the lifetimes of the CAC, CAI and CAO modes all coincide with each

other, but differ from the lifetime of the CIO mode by 1/(3π).

5.4 Comparison between the lifetimes of a single droplet

and a pair of droplets

To provide further insight into the shielding effect the droplets have on each other, we

compare the lifetimes of a single droplet and a pair of droplets in dimensional terms.

For simplicity, we consider only the leading-order behaviour of the lifetimes in the

regime of most interest in which the domain is large and approximately semi-circular

with radius Ψ̂.

Our reference point is the lifetime of a single droplet with initial semi-width R̂0, which

from (5.1), (5.37) and (5.38) is given by

t̂single ∼
2

3π
ln

(
2Ψ̂

R̂0

)
T̂ , where T̂ =

ρ̂θ̂0R̂
2
0

D̂(ĉsat − ĉ∞)
. (5.68)

A first natural comparison is with a pair of droplets, each with initial semi-width R̂0/2,

which together have the same total surface area as the single droplet (i.e. their initial

separation is 2Î0 = 0). In this case the vapour concentration and flux are identical in

the two problems. However, the lifetimes are not the same, because the cross-sectional

area of the single droplet is twice the total cross-sectional area of the two droplets.

Specifically, from (5.60)–(5.63) we obtain

t̂area ∼
4

3π

ρ̂θ̂0(R̂0/2)2

D̂(ĉsat − ĉ∞)
ln

(
Ψ̂

R̂0/2

)
=

1

3π
ln

(
2Ψ̂

R̂0

)
T̂ , (5.69)

120



Chapter 5. The Influence of the Shielding Effect on the Evaporation of
Two-Dimensional Droplets

so that, as expected, the lifetime of the pair of droplets is half that of the single droplet,

i.e. t̂area ∼ t̂single/2.

Alternatively, we can consider the same total cross-sectional area of fluid, arranged

either as two closely-spaced or two widely-separated droplets. In both cases the droplets

have initial semi-width R̂0/
√

2. If the droplets are closely spaced then from (5.60)–

(5.63) we obtain

t̂close ∼
4

3π

ρ̂θ̂0(R̂0/
√

2)2

D̂(ĉsat − ĉ∞)
ln

(
Ψ̂

R̂0/
√

2

)
=

2

3π

[
ln

(
2Ψ̂

R̂0

)
− 1

2
ln 2

]
T̂ . (5.70)

At leading order the lifetime of the pair of droplets is the same as that of the single

droplet, but there is a negative O(1) correction because the two droplets have a larger

total surface area than the single droplet. On the other hand, if the droplets are widely

separated then from (5.64)–(5.67) we obtain

t̂wide ∼
4

3π

ρ̂θ̂0(R̂0/
√

2)2

D̂(ĉsat − ĉ∞)
ln

 Ψ̂

R̂0/
√

2

√
R̂0/
√

2

Î0

 =
2

3π

[
ln

(
2Ψ̂

R̂0

)
− 1

2
ln

(
23/2 Î0

R̂0

)]
T̂ .

(5.71)

At leading order the lifetime of the pair of droplets is again the same as that of the

single droplet, but now there is a larger negative O(ln(Î0/R̂0)) correction due to a

weaker shielding effect when the droplets are widely separated.

To illustrate these results we take the representative parameter values ρ̂ = 998 kg m−3,

D̂ = 2.44 × 10−5 m2 s−1, ĉsat = 1.94 × 10−2 kg m−3 and ĉ∞ = 7.76 × 10−3 kg m−3,

corresponding to water at 295 K, evaporating into an environment with ambient vapour

concentration ĉ∞ = 0.4 ĉsat [51]. We further take Ψ̂ = 1 m together with θ̂0 = 0.1 and

R̂0 = 1 mm, so that the droplet has a cross-sectional area of approximately 6.7 ×
10−8 m2.

With these parameter values, the timescale T̂ ≈ 351 s and the lifetime of a single droplet

is t̂single ≈ 567 s. The lifetime of a pair of droplets with the same total surface area as

the single droplet is t̂area ≈ 283 s. The lifetime of two closely-spaced droplets with the

same total cross-sectional area as the single droplet is t̂close ≈ 541 s, whereas the lifetime
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of two widely-separated droplets with the same total cross-sectional area as the single

droplet is t̂wide ≈ 442 s if the droplets are separated by 2Î0 = 2 cm, and t̂wide ≈ 356 s if

the droplets are separated by 2Î0 = 20 cm.

5.5 Conclusions

In this chapter, we considered the diffusion-limited evaporation of thin two-dimensional

sessile droplets either singly or in a pair. This two-dimensional problem is qualitatively

different from the corresponding three-dimensional problem because, in contrast to in

three dimensions, in two dimensions the size of the domain remains important even

when it is much larger than the width of the droplets; it is therefore not possible to

obtain a solution to the two-dimensional problem with a far-field boundary condition

imposed “at infinity”. We therefore formulated a slightly modified problem in which the

far-field condition was replaced by a relaxed condition at a distant, but finite, boundary.

We then showed how a conformal-mapping technique may be used to calculate the

vapour concentrations, and hence obtain closed-form solutions for the evolution and the

lifetimes of the droplets in various modes of evaporation. These solutions demonstrate

that in large domains the lifetimes of the droplets depend logarithmically on the size of

the domain, and more weakly on the mode of evaporation and the separation between

the droplets. In particular, they allowed us to quantify the shielding effect that the

droplets have on each other, and how it extends the lifetimes of the droplets.
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6.1 Conclusions

In this thesis we have investigated the evaporation of both axisymmetric and 2D

droplets. In particular, we have studied the influence of thermal properties and of

neighbouring droplets on the evaporation rate, and hence lifetimes, of evaporating

droplets.

In chapters 1 and 2 we discussed relevant work by previous authors, and formulated

the diffusion-limited model of droplet evaporation.

In chapter 3 we considered the evaporation of an axisymmetric sessile droplet on a

variety of substrates with different thermal conductivities, for the full range of initial

contact angles. We used a finite element-based approach to obtain the vapour and tem-

perature fields produced by an evaporating droplet, and thus obtained the evaporation

rate, and hence the lifetime, of a droplet evaporating in the constant radius (CR) and

constant angle (CA) modes of evaporation. In general, a warmer droplet will evaporate

faster than a cooler one. Therefore, physical situations which reduce the magnitude of

evaporative cooling, such as a higher thermal conductivity of the substrate, reduce the

droplet lifetime.

We found that a droplet evaporating in the CR mode will evaporate faster than a
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droplet evaporating in the CA mode, since the free-surface area is larger in the CR

mode than in the CA mode. We also found that for droplets with large contact angles,

the lifetime of the droplet depends far less on the thermal conductivity of the substrate

than for droplets with a relatively larger droplet-substrate interface.

In chapter 4 we restricted our attention to thin droplets evaporating on thin substrates,

allowing us to obtain analytical expressions for the vapour and temperature fields pro-

duced by an evaporating droplet. Hence we obtained the evaporation rate, and hence

lifetime, of a droplet evaporating in the CR, CA, stick-slide (SS) and stick-jump (SJ)

modes of evaporation. In particular, we identified two regimes when the influence of

the thermal properties of the system are strong in which we could obtain closed-form

asymptotic expressions for the droplet lifetime, namely, when the droplet is far more

thermally conductive than the substrate, and when the saturation concentration of

vapour is highly dependent on temperature. In both of these regimes we find that the

droplet evaporates on a different timescale to that when the saturation concentration is

independent of temperature. Furthermore, in all regimes we found that a thin droplet

evaporating in the CA mode always lives longer than one evaporating in the SS or SJ

modes, which in turn lives longer than one evaporating in the CR mode.

In chapter 5 we considered the evaporation of thin two-dimensional sessile droplets

either singly or in a pair using the thermally-decoupled model. We used a conformal-

mapping technique to obtain the vapour concentrations, and hence obtained closed-form

solutions for the evolution and the lifetimes of the droplets in the CR, CA and SS modes

of evaporation. We found that, in contrast to the axisymmetric case, the lifetime of

a two-dimensional droplet depends logarithmically on the size of the atmosphere, and

more weakly on the mode of evaporation and the separation between the droplets. In

particular, we quantified the shielding effect that two neighbouring droplets have on

each other, and how it extends the lifetime of the droplets.
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6.2 Further Work

We are unaware of any previous physical experiments against which the present theo-

retical predictions can be validated, but hope that our work will inspire one or more

of the many experimental groups with an interest in evaporating droplets to conduct

such experiments in the future.

The work presented in this thesis suggests many possible opportunities for future

research. Three specific examples include the evaporation of multiple droplets in

three dimensions, further investigation of the evaporative flux near the contact line,

and investigation into the coffee-stain effect produced by evaporation of multiple 2D

droplets.

6.2.1 Evaporation of multiple droplets in three dimensions

One clear direction for future work is to extend the finite element analysis carried

out in chapter 3 to include more than one evaporating droplet. As we discussed in

section 1.5, the simultaneous evaporation of multiple droplets is of considerable indus-

trial and academic interest. We have carried out preliminary work in this direction

and have produced a proof-of-concept for a multi-droplet numerical implementation

of the thermally-decoupled model, which allows for multiple droplets to evaporate in

close proximity. The multi-droplet numerical model does not have the advantage of

being axisymmetric, and therefore the entire 3D system has to be meshed and solved

for. This means that the multi-droplet numerical model is more computationally de-

manding than the numerical model described in section 3. To reduce computational

demands, we have so far only considered the evaporation of thin droplets θ̂ � 1, which

may be implemented as flat discs within the numerical model.

Figure 6.1 shows the numerically evaluated contour plots of the flux Ĵ for a pair of

identical thin droplets. The droplets each have a contact radius R̂ = 1 mm and are

0.2 mm apart at their nearest points. The contour values are greatest on the contact

line of the droplet. As observed by Wray et al. [161], and as shown in figures 5.7(g)–(i)
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ŷ

x̂

Figure 6.1: Top-down view of the numerically evaluated contour plots of the flux Ĵ for
a pair of identical thin droplets. The droplets each have a contact radius R̂ = 1 mm
and are 0.2 mm apart at their nearest points.

for the corresponding two dimensional problem, the location of the smallest flux is not

at the centre of each droplet, as it is in the case of an isolated droplet, but is offset

towards the neighbouring droplet. This is caused by the shielding effect we discussed

in chapter 5.

The next step would be to extend the multi-droplet numerical model by coupling the

thermal effects and the vapour distribution as we did in chapter 3, to obtain a thermally-

coupled multi-droplet numerical model. Future work could investigate not only the

interactions between neighbouring droplets through the atmospheric vapour concentra-

tion, but also the interactions between droplets through the atmospheric and substrate

temperature fields.

6.2.2 Further investigation of the flux near to the contact line

Another direction for future work is a further investigation of the flux near to the

contact line. Throughout this thesis we have seen that, in general, for low-wetting

droplets Ĵ → ∞ at the contact line. However, for high-wetting droplets, particularly

in situations where ĉsat is nearly uniform on the free surface of the droplet, we find
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Ĵ → 0, as discussed in section 3.4.1.

Using the thermally-decoupled model, Deegan et al. [38], and later Ristenpart et al.

[112] have already analytically investigated the local thermally-decoupled problem for

flux near to the contact line of a droplet. In polar coordinates r̂, Θ̂ centred at the

contact line, the thermally-decoupled problem for the vapour is given by

∇̂2ĉ = 0 in θ̂ < Θ̂ < π, (6.1)

subject to

ĉ = ĉsat on θ̂ = Θ̂, (6.2)

and

1

r̂

∂ĉ

∂Θ̂
= 0 on Θ̂ = π. (6.3)

From equation (6.1) and conditions (6.2) and (6.3) Deegan et al. [38] found Ĵ ∝ r̂−λ,

where λ = (π − 2θ̂)/(2π − 2θ̂). Hu and Larson [65] later suggested an approximate

expression for Ĵ , namely

Ĵ ≈ Ĵ0(2r̂ cos θ̂)−1/2+θ̂/π, (6.4)

which is valid for 0 < θ̂ < π/2. Note, an exact solution

Ĵ = −D̂1

r̂

∂ĉ

∂Θ̂
=
D̂Acλr̂λ−1

sinλΘ̂
, (6.5)

can be obtained.

Ristenpart et al. [112] used the approximate solution (6.4) and the evaporative cooling

condition (2.48) on the free surface of the droplet to investigate how thermal gradients,

and thus thermal Marangoni flow, can be reversed near the contact line of a droplet. A

direction in which to further investigate the evaporative flux near to the contact line is
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to carry out a similar analysis to Ristenpart et al. [112] using the exact solution (6.5)

instead of the approximate solution (6.4).

Ristenpart et al. [112] assume that k̂a � k̂s and k̂a � k̂, and therefore, as we have

discussed in section 2.3.2, atmospheric temperature is decoupled from the temperature

of the substrate and droplet. Following Ristenpart et al. [112], using the exact ex-

pression for λ, we have carried out preliminary work which shows that more general

self-similar solutions for the temperature near to the contact line can be obtained with

no assumptions on k̂, k̂s or k̂a.

The approximate solution quoted by Ristenpart et al. [112] and the exact solution

discussed here both assume that ĉsat is constant on the free surface of the droplet.

Thus, we have Ĵ → 0 for high-wetting droplets and Ĵ → ∞ for low-wetting droplets.

Future work could also try to investigate the thermally-coupled corner problem, i .e.

the equivalent corner problem for the thermally-coupled model described in chapter 2.

Such an investigation could help explain the behaviour shown in figure 3.10(i), where

we see both Ĵ → 0 and Ĵ →∞ behaviours for a high-wetting droplet on two different

substrates.

6.2.3 Study of the coffee-stain effect in 2D droplet evaporation

As noted in section 1.7, the work discussed in Chapter 5 concerns two-dimensional

droplets. While truly two-dimensional droplets are, of course, only possible in theory,

we can expect the results obtained to relate to physical experiments of quasi-two-

dimensional liquid lines (see, for example, Dinh et al. [46]) provided that the “heads”

and “tails” of the lines do not contribute significantly to the overall evaporation, i.e.

provided that the lines are sufficiently long.

A potential study which could yield qualitatively similar results to those shown in

Chapter 5 would be a study of the coffee-stain effect produced by two particle-laden

liquid lines evaporating in close proximity. As, for example, Deegan et al. [38] have

shown, the distribution of deposit left by an evaporating droplet depends strongly on
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the evaporation rate at the contact line of the droplet. Given the results of the work

in Chapter 5, we would expect a study of two particle-laden liquid lines evaporating in

close proximity to produce larger deposits on the outer edges of each droplet footprint

(where the evaporative flux is relatively high) than on the inner edges of each droplet

footprint (where the evaporative flux is relatively low).
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Toroidal coordinates

In section 3.2.3 we introduce the toroidal coordinate

τ =
1

2
ln

(
(r̂ + R̂)2 + ẑ2

(r̂ − R̂)2 + ẑ2

)
≥ 0, (A.1)

which parameterises the free surface of a droplet with contact radius R̂ and contact

angle θ̂, and which is related to the cylindrical polar coordinates (r̂, ẑ) by

r̂ = R̂
sinh τ

cosh τ + cos θ̂
, (A.2)

ẑ = R̂
sin θ̂

cosh τ + cos θ̂
, (A.3)

where τ = 0 gives the apex of the droplet (0, R̂ tan(θ̂/2)) and τ =∞ gives the contact

line (R̂, 0). Figure A.1 shows the free surface of a droplet with contact radius R̂ and

contact angle θ̂, described implicitly as a function of τ in equation (A.1).

Several authors, for example [39, 75, 95, 105], use toroidal coordinates to present the

exact solution to the diffusion-limited evaporation problem for a perfectly spherical

droplet. In the present work, we use toroidal coordinates to investigate contact line

behaviour of our numerical model as shown in figure 3.2.

130



Appendix A. Toroidal coordinates

r̂

ẑ

θ̂
τ =∞

τ

τ = 0

R̂

Figure A.1: The free surface of a droplet with contact radius R̂ and contact angle θ̂,
described implicitly as a function of τ in equation (A.1).
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