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Abstract 

This Thesis presents monopulse radar concepts and signal processing techniques 

including fractional Fourier transform (FrFT), empirical mode decomposition (EMD), 

and combined EMD-FrFT to mitigate different types of interference associated with this 

radar. A matched filter is implemented for a chirp radar signal in the optimum fractional 

Fourier domain (FrFD). Mathematical formula for a received chirp signal in the Fourier 

domain and a generalized formula in the FrFD are derived using the principle of 

stationary phase (PSP). The performance enhancements in using the matched filter in the 

FrFD are presented and an example of using the FrFT radar matched filter for multiple 

target detection is presented. Two new monopulse system configurations based on new 

FrFT filtering algorithms are used to overcome the interference problems of unwanted 

targets appearing in the monopulse look direction and the presence of high power noise 

interference (through the radar main lobe or side lobe), respectively. A very high 

improvement in the radar’s tracking ability for different SNRs is gained by using the 

suggested canceling techniques in both interference scenarios. Another solution to the 

distortion problem, due to high power manmade interference, is proposed using a new 

monopulse processor based on EMD system. This algorithm successfully decreases the 

high power noise interference and improves the received radar SNR. Finally, a proposed 

EMD-FrFT filtering algorithm merges the benefits of both EMD and FrFT filtering 

algorithms to reduce the distortion problem due to high power interference in chirp 

monopulse radar systems. This algorithm successfully decreases the high power noise 

interference and improves the received radar SNR. 
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1 

111...   Introduction 

1.1 Preface 

Typical tracking radars use a pencil beam to receive echoes from a single target and 

track the target in angle, range, and/or Doppler. Electronic beam-scanning phased array 

radars may track multiple targets by sequentially dwelling upon and measuring each 

target while excluding other echo or signal sources. Because of its narrow beam width 

tracking radars usually depend upon information from surveillance radar or other source 

of target location to acquire the target.  Hence tracking radar places its beam on or in the 

vicinity of the target before initiating a track. There are a large variety of tracking radar 

systems including some that achieve simultaneously both surveillance and tracking 

functions [1].  

Monopulse radars are commonly used in target tracking because of their angular 

accuracy [2]. They provide superior angular accuracy and less sensitivity to fluctuation 

in the radar cross section (RCS) of the target compared to other types of tracking radars 

[3]. However, these radars are affected by different types of interference which affects 

the target tracking process that may lead to inaccurate tracking [1, 3].  

Monopulse radars are used for civilian and military applications.  In military, it is used 

to track the highly manoeuvrable airplanes and missiles, fire control systems, and in fire- 

and-forget radar guided missile (monopulse seeker). In civilian application they are used 

in airports for air traffic control. Monopulse radars can accommodate a significant 

increase in the number of airplane arrival to airports [3-5]. 

Monopulse radar first appeared at the Naval Research Laboratory (USA) and OKB 30 

(USSR) in 1940s. It was used for surface-to-air missiles projects in 1945, naval tracking 

radar in 1960s, and from 1970s spread into many military projects. 

Historically, monopulse radars employ two separate feed horns on a single antenna 
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element in order to generate two receive beams that are slightly offset in azimuth (or 

elevation) angle. Sum and difference outputs are formed by summing and subtracting the 

two beam outputs, respectively [6]. The ratio of difference to sum output voltages, called 

the error voltage, is then used to determine the degree of correction necessary to realign 

the beam axis with the target [7]. With the introduction of phased array technology, it 

became unnecessary to employ special hardware for monopulse processing, since the 

array itself can electronically form the multiple beams needed [8, 9]. A conventional 

monopulse processor for phased array radar is obtained by appropriately phasing the 

individual array channels to obtain sum and difference outputs. The ratio of difference to 

sum outputs provides the measure by which the angle offset from the beam axis (i.e., 

look direction) is determined. The updated angle measurement is used to compute 

phases for the channels so as to realign the beam axis with the target. Consequently the 

radar is affected by different types of interference [10] that may cause inaccurate 

tracking. 

 

1.2 Motivation of Research 

The aim of this thesis is to explore new signal processing techniques which can be used 

to improve the interference mitigation, noise rejection, and enhance the performance of 

the monopulse tracking radar. The objectives of the research presented in this thesis are 

two fold. The first objective is to develop a new monopulse radar processor based 

filtering algorithm to solve the interference problem due to more than one target appears 

in the monopulse radar half power beam width. The second objective is to investigate 

developed algorithms to mitigate the problem of high power interference (jamming) 

introduced to the radar processor and enhance the monopulse radar tracking performance. 

The thesis will address the enhancements, modifications, and inventions required to 

achieve high tracking radar performance using new signal processing techniques while 

avoiding as much as possible any additional complexity or increase in the computational 

cost.  
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1.3 Summary of Original Contributions 

The research detailed in this thesis includes original contributions to the field of tracking 

radars, noise/interference rejection or suppression, and target detection. These 

contributions are as follows: 

1. A new matched filter is implemented for a chirp radar signal in the optimum 

fractional Fourier domain (FrFD). Mathematical formulae for a received chirp 

signal in the Fourier domain and a generalized formula in the FrFD are derived 

using the principle of stationary phase (PSP). These expressions are used to show 

the limitations of the matched filter in the FrFD. The parameters that affect the 

chirp signal in the optimum FrFD and the implementation of radar matched filter 

in FrFD are described. The required processing steps to perform the radar matched 

filter in FrFD are demonstrated. The complexity of the FrFD matched filter over 

the normal FT matched filter is also investigated. The performance enhancements 

in using the matched filter in the FrFD are presented and the enhancement in the 

output SNR’s at different target SNR’s are also described. Example of using the 

FrFT radar matched filter for multiple targets detection is presented [11].  

 

2. A new signal processing algorithm, referred to as FrFT-ATF, is developed that 

offers a solution to the interference problem resulting from additive targets that 

appears in the monopulse look direction.  The technique is based on the use of 

optimal fractional Fourier transform (FrFT) filtering. The relative performance of 

the new filtering method over traditional based methods is assessed using standard 

deviation angle estimation error (STDAE) for a range of simulated environments. 

The proposed system configuration succeeds in significantly cancelling additional 

target signals appearing in the look direction beam width even if these targets have 

the same Doppler frequency [12-14]. 

 

3. A new monopulse radar structure is proposed that aims to mitigate high power 

interference jamming signal.  The structure is based on the use of optimal FrFT 
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filtering, referred to as FrFT-NIF. The improved performance of the new 

monopulse radar structure over the traditional monopulse processor is assessed 

using STDAE for a range of simulated and real environments.  The proposed 

system configurations with optimum FrFT filters is shown to reduce the interfered 

signal (simulated and real) and to minimize the STDAE for monopulse processors 

even with jamming present in the main lobe. Output interference-to-noise ratio 

(OINR ) is used to quantify the monopulse processor improvement by comparing 

the mitigation performance for the FrFT based monopulse radar compared to the 

conventional monopulse radar [15, 16]. 

 

4. New monopulse radar structures that utilizes an empirical mode decomposition 

(EMD) based denoising processor to overcome the jamming signals are presented.  

EMD filtering is carried out for the complex radar chirp signal with subsequent 

detrending, thresholding, and denoising processes. These processes are used to 

decrease the noise level in the radar processed data to improve the signal to noise 

ratio. The performance enhancement using the monopulse radar tracking system 

with EMD based filtering is included using the STDAE for different jamming 

scenarios and different target SNRs. The proposed system configuration is shown 

to reduce the interfered signal and to minimize the STDAE for high power 

interference signal presence in the main lobe and side lobe. STDAE shows that the 

new EMD based system works well in the case of main beam interference and side 

lobe interference for the conventional processor and, in the case of the spatial 

adaptive processor, is effective in the case of main lobe interference [17, 18]. 

 

5. A new signal processing subsystem for conventional monopulse tracking radars 

that offers an improved solution to the problem of dealing with manmade high 

power interference (jamming) is presented.  It is based on the hybrid use of EMD 

and FrFT.  EMD-FrFT filtering is carried out for complex noisy radar chirp signals 

to decrease the signal’s noisy components.  An improvement in the signal-to-noise 
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ratio (SNR) for different target SNRs is achieved using the proposed EMD-FrFT 

algorithm [19, 20].  

1.4 Thesis Organization 

The remainder of this thesis is divided into six chapters, the organization of which is 

explained as follows: 

 

Chapter 2 provides an overview of monopulse radars. It starts with the tracking radar, 

which uses angle tracking techniques, in order to introduce the sum and difference 

monopulse radar which will be used throughout the thesis. The basic monopulse radar 

structure and the basic monopulse radar processor are investigated next. Later on in this 

chapter, the mathematical models for both the conventional and spatial monopulse 

processors are reviewed. The last part of this chapter presents the real and simulated 

parameters for the target, jammer, and radar scenarios. 

 

Chapter 3 reviews the FrFT and EMD algorithms. Both algorithms are used in the 

remainder of this thesis in the design and implementation of advanced monopulse radar 

systems that aim to overcome different types of interference in tracking radars. A 

historical background and the applications of the two algorithms are given followed by 

details description. 

 

Chapter 4 uses the principle of stationary phase (PSP) to derive the chirp signal in the 

Fourier and fractional Fourier domains, respectively, and presents a matched filter in the 

Fourier domain and FrFD. A set of simulation results is presented in for different 

scenarios. It includes a discussion on the chirp matched filtering in the FrFD, the signal 

parameter limitations, and the improvement in SNR using matched filter in FrFT. 

Section 4.3.5 of this chapter presents work that was carried out in collaboration with 

Carmine Clemente on FrFT Matched filter for multiple targets. Chapter 4 concludes with 

a discussion underlining the results and the complexity comparison for matched filter in 

both the Fourier and fractional Fourier domains. 
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Chapter 5 consists of two main sections ( 5.2 and  5.3) introducing new algorithms that 

aim to overcome the monopulse distortion problems mentioned previously. This chapter 

is organized as follows: Section  5.2 proposes a new structure of the FrFT based 

monopulse radar processor. FrFT addtitive target filtering (FrFT-ATF) is a new 

algorithm for optimum FrFT to reduce the interference due to more than one target 

appearing in the radar look direction. Later in Section  5.2, a set of simulation results is 

presented for single and multiple targets using the new monopulse processor. Section  5.3 

proposes a new structure of the FrFT based monopulse radar processor. The proposed 

FrFT noise interference filtering (FrFT-NIF) mitigates the effects of high power 

jamming signal introduced to the radar processor through the radar antenna. A set of 

simulation results using simulated and real data is presented for the new monopulse 

structure that shows the improved reduction in the interfered signal and improves the 

tracking performance for the FrFT based monopulse radar compared to the conventional 

monopulse radar are included.  Section  5.4 concludes the chapter. 

 

Chapter 6 consists of two main sections ( 6.2 and  6.3) that introduce new algorithms to 

overcome the monopulse distortion problems mentioned previously. This chapter is 

organized as follows: Section  6.2 proposes a new monopulse radar that employs an 

EMD based monopulse processor to reduce the interference due to high power jamming. 

Later in Section  6.2, a set of simulation results is presented for different jamming 

scenarios at different target SNR that demonstrates the superior performance of the new 

structure. Section  6.3 proposes a new EMD-FrFT interference filtering algorithm. A set 

of simulation results is presented for the received signal improvement at different SNRs 

is also introduced. Section  6.4  concludes the chapter. 

 

Chapter 7 includes a summary and conclusions of this thesis are presented, along with a 

discussion of its limitations and suggestion of potential areas for further future work. 

 

The appendices contain some detailed calculations and some theoretical material which 

would impede the flow of the thesis. A list of the author's publications resulting from the 

research undertaken in this thesis is also provided. 
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222...   Monopulse Tracking Radar 

2.1 Introduction 

Monopulse radars are used to track a target that appears in the look direction. Similar to 

other tracking radar systems, monopulse radars suffer from distortion such as man made 

high power interference and additive unwanted targets, which appear in the look 

direction that may lead to errors in the target tracking angles resulting in target 

mistracking.  

This chapter provides an overview of monopulse radars. Section  2.2 introduces radar 

background. The tracking radar which uses angle tracking techniques, in order to 

introduce the sum and difference monopulse radar which will be used throughout the 

thesis is described in Section  2.3 . The basic monopulse radar structure is investigated in 

Section  2.4. In Section  2.6, the mathematical modelling for both the conventional and 

spatial monopulse processor are reviewed. The basic monopulse radar processor is 

investigated in Section  2.7. Section  2.9 of this chapter presents some real and simulated 

parameters for the target, jammer, and radar scenarios that will be used throughout the 

thesis. 

2.2 Radar Background 

A radar device transmits a waveform into the atmosphere and then listens for echoes as 

the transmitted waveform reflects back from surrounding objects [1, 3]. Depending on 

the radar, various types of information can be obtained from the incoming echoes about 

the desired scattering object, known as the target. Range information can be calculated 

from the amount of time takes by the transmitted signal to travel to an object and then 

arrive back at the receiver [9, 21]. Directional information can be obtained by scanning 

the surrounding space with a directive beam. Target velocity can be determined through 
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measuring the Doppler shift induced in the reflected waveform. The accuracy or 

resolution to which any of the above parameters can be measured depends to a large 

extent on the physical parameters of the radar and its electronics and to some extent on 

the environment in which it operates.  

Figure  2.1  shows a general block diagram of a tracking radar system [1, 3]. A 

waveform generator is used to generate the desired wave which is up-converted to the 

radar carrier frequency using mixer and local oscillator (LO) before amplification and 

transmission through the duplexer to the radar antenna. The duplexer is used to separate 

between the transmitting and receiving signal. The received signal is down converted 

(using mixer and LO), amplified by IF amplifier, and passes through a matched filter to 

extract the useful signal before detection and display [1].  

2.3 Tracking Radar with Angle Tracking Techniques 

Tracking radar systems are used to measure the target’s relative position in range, 

azimuth angle, elevation angle, and velocity [22]. The radar can predict future values by 

using and keeping track of these measured parameters. Target tracking is important to 

military radars as well as most civilian radars. In military radars tracking is responsible 

for fire control and missile guidance; in fact, missile guidance is almost impossible 

without proper target tracking. Commercial radar systems such as civilian airport traffic 

control radars may utilize tracking as a means of controlling incoming and departing 

airplanes[23].  

 

Figure  2.1  General Block diagram of radar system 
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Angle tracking is concerned with generating continuous measurements of the target’s 

angular position in the azimuth and elevation coordinates. The accuracy of early 

generation angle tracking radars depend heavily on the size of the pencil beam employed. 

Most modern radar systems achieve very fine angular measurements by utilizing 

monopulse tracking techniques [9].  Tracking radars use the angular deviation from the 

antenna main axis of the target within the beam to generate an error signal [24]. This 

deviation is normally measured from the antenna’s main axis. The resultant error signal 

describes how much the target has deviated from the beam main axis. Then, the beam 

position is continuously changed in an attempt to produce a zero error signal.  

In order to be able to quickly change the beam position, the error signal needs to be a 

linear function of the deviation angle. It can be shown that this condition requires the 

beam’s axis be squinted by some angle (squint angle) off the antenna’s main axis. A 

tracking radar measures coordinates of the target and provides data that may be used to 

determine the target path and to predict its future position. All or only part of the 

available radar data-range, elevation angle, azimuth angle, and Doppler frequency shift 

may be used in predicting the future position.  

Classifications of the tracking radar types are shown in Figure  2.2. These types are 

described in detail in the following subsections. 

2.3.1 Sequential Comparison Tracking Techniques 

The main aspect of sequential lobing tracking radar is the antenna. It usually faces the 

 

Figure  2.2  Classifications of angle tracking radar  
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target all the time in order to keep it in the centre of the antenna beam. If the target 

moves away from the centre of the beam, this produce an error voltage which is 

amplified and fed to servo motors to drive the antenna back on the target [21, 25]. There 

are two main techniques depending on this idea, the sequential lobing and the conical 

scan [26]. 

2.3.1.1 Sequential Lobing 

Sequential lobing [27] was one of the first tracking techniques utilized by early 

generation of radar systems. Sequential lobing is often referred to as lobe switching or 

sequential switching. It has a tracking accuracy that is limited by the pencil beam width 

and the noise caused by either mechanical or electronic switching mechanisms.  

Figure  2.3 shows the sequential lobing for target tracking. In Figure  2.3 as the beam is 

switched between the two positions (position A and position B), the radar measures the 

returned signal levels. The difference between the two measured signal levels is used to 

compute the angular error signal [23]. For example, when the target is tracked on the 

tracking axis, as the case in Figure  2.3-A, the voltage difference is zero. However, when 

the target is off the tracking axis, as in Figure  2.3-B, a non-zero error signal is produced. 

The sign of the voltage difference determines the direction in which the antenna must be 

moved with the goal to make the voltage difference be equal to zero [23]. 

(A) (B) 

Figure  2.3  Sequential lobing target tracking 
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2.3.1.2 Conical Scan 

Conical scan [28] is a logical extension of sequential lobing. The radar antenna is 

continuously rotated at an offset angle off the main axis. The antenna’s beam position is 

continuously changed so that the target will always be on the tracking axis [9].  

In order to illustrate how conical scan tracking is achieved, Figure  2.4 shows two 

different cases. The first case shown in Figure  2.4-A, the antenna rotates around the 

tracking axis all target returns have the same amplitude (zero error signals). Figure  2.4-

B shows the second case when the beam is at position B. The envelope of target 

returned signals is similar to the amplitude modulation (AM) envelope [25]. This AM 

envelope corresponds to the relative position of the target within the beam. Thus the 

extracted AM envelope can be used to derive a servo-control system in order to position 

the target on the tracking axis. 

2.3.2 Instantaneous Comparisons Monopulse Techniques 

Instantaneous comparison monopulse tracking is similar to lobing in the sense that four 

squinted beams are required to measure the target’s angular position [29]. The 

difference is that the four beams are generated simultaneously rather than sequentially. 

For this purpose, a special antenna feed is utilized such that the four beams as shown in 

Figure  2.5, are produced using a single pulse, hence the name monopulse [6]. With the 

introduction  of  phased  array  technology, it  became  unnecessary  to  employ  special  

 
(A) (B) 

Figure  2.4  Conical scan target tracking 
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Figure  2.5  Monopulse antenna pattern 

hardware for monopulse processing, since the array itself can electronically form the 

multiple beams needed. Three different methods can be found in the literature for the 

instantaneous generation of the monopulse, namely amplitude, phase, and sum and 

difference monopulse techniques. 

2.3.2.1 Amplitude Comparison Monopulse Technique 

In amplitude comparison monopulse only amplitude information is considered. The 

beams must be offset in angle as shown Figure  2.6 [4, 30, 31]. Note that phase is 

discarded in the angle sensor. For the configuration shown, angle estimation can only 

take place within a narrow region about boresight but with higher accuracy. The useful 

monopulse region can be increased by separating the beams farther but the angle 

measuring accuracy degrades as a result. 

 
Figure  2.6  Amplitude comparison monopulse 
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2.3.2.2 Phase Comparison Monopulse Technique 

In contrast, phase comparison monopulse utilizes only phase information. The beam 

patterns have identical shapes and pointing directions but with mirroring phase functions 

as shown in Figure  2.7 [4, 30, 31]. Although the phase functions are continuous in the 

entire 180o range, typically the phase functions wrap around a number of times 

throughout this range. Thus, the angle estimation takes place in only a narrow region 

about boresight.  

2.3.2.3 Sum and Difference Monopulse Technique 

The sum beam is formed by summing the displaced beams of the amplitude comparison 

monopulse, whereas the difference beam is formed by taking their differences [4, 31, 

32]. Note that the sum beam peaks at boresight whereas the difference beam has a null 

at boresight as shown in Figure  2.8.  

Monopulse radars (for the rest of this thesis, the words monopulse radar is used for sum 

and difference monopulse radar) are commonly used in target tracking because of their 

angular accuracy [2, 33]. They provide superior angular accuracy and less sensitivity to 

fluctuation in the RCS of the target compared to other types of tracking radars [3]. 

However, these radars as other types or radars are affected by different types of 

interference which affects the target tracking process that may lead to inaccurate 

tracking [8].  

 
Figure  2.7  Phase comparison monopulse 
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Figure  2.8  Sum and Difference monopulse 

As mentioned previously, monopulse radars employ two separate feed horns on a 

single antenna element in order to generate two receive beams that are slightly offset in 

azimuth (or elevation) angle. Sum and difference outputs are formed by summing and 

subtracting the two beam outputs, respectively [6]. The ratio of difference to sum output 

voltages, called the error voltage, is then used to determine the degree of correction 

necessary to realign the beam axis with the target [7]. With the introduction of phased 

array technology, it became unnecessary to employ special hardware for monopulse 

processing, since the array itself can electronically form the multiple beams needed [8, 

9].  

With an array of antenna elements it is possible for the overall array to emulate a variety 

of directional characteristics without altering the geometry, position, or orientation of 

the individual antenna elements that make up the array. Proper phase and amplitude 

adjustments of an outgoing signal waveform at the individual elements focuses the 

radiated energy in a particular direction. Likewise, phase and amplitude weighting of 

incoming signals sensitizes the array to a particular direction. Utilizing phase and 

amplitude weighting as a means to achieve a desired steer direction is typically referred 

to as phase steering or beam forming [34]. 
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Planar arrays (elements configured in a plane) permit beam forming in azimuth and 

elevation whereas linear arrays (elements configured on an axis) permit beam forming 

in one but not the other. The number of elements in an array and their spacing determine 

the extent of the angular and temporal resolution afforded by the array.  

The particular configuration that will be considered through the rest of the thesis is a 

uniform linear array (ULA) having N equally spaced elements, D meters apart 

( 2/λ≤D ) as shown in Figure  2.9. Hence, for a given angle of propagation with respect 

to array boresight, φ , the time lag between wave fronts t∆ impinging on neighbouring 

sensors is 

cDt /sinφ=∆ , ( 2.1) 

where c  is the speed of light with approximate value 8103×  m/s. 

Consider a monopulse radar system that transmits a sequence of M coherent pulses and 

samples the returns on an N element ULA. The transmitted waveform is often a linear 

frequency modulated (LFM) pulse having time duration T  and band width f∆ [10, 35, 

36]. The radar collects L  temporal samples from each element receiver at each pulse 

repetition interval (PRI), where each time sample corresponds to a range cell.  The 

three-dimensional data cube structure shown in Figure  2.10 represents the sampled 

returns in a single coherent processing interval (CPI) of M pulses. A spatial snapshot 

)()( tmx consists of N elements of spatial data from the tht range cell at a particular 

m pulse, where Mm <<1  as 
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Figure  2.9  Monopulse linear antenna 
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tNxtxtxt ),1(...),1(),0()( )()()()( −=x , ( 2.2) 

where ),()( tnx m is a sample aquired from the thn  receive element, representing the 

th
t range cell during the th

m repettion interval.  

 A space fast time (SFT) snapshot )(tSFTX consists of k consecutive spatial snapshots in 

descending order, k consecutive descending columns of )()( tmx : 

[ ])1(...)1()()( )()()( +−−= ktttt mmm xxxX SFT . ( 2.3) 

Similarly, A space slow time (SST) snapshot, )(tSSTX , consists of stacked element data 

from consecutive pulses at a given range cell, 

[ ])(...)()()( )1()1()0( tttt M −= xxxX SST . 
( 2.4) 

2.4 Basic Monopulse Radar Structure 

In a typical monopulse radar shown in Figure  2.11, a pulsed chirp signal )(tc  given in 

( 2.5) is produced from the waveform generator and up-converted to the radar carrier 

frequency cf before amplification and transmission through the duplexer to the radar 

antenna 
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Figure  2.10  Three dimensional data cube 
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where t  is restricted to a window Tt <<0 , T is the chirp time duration (pulse duration), 

startF  is the chirp start frequency, and stopF  is the chirp stop frequency.  

The received signal is down-converted through the sampler with sampling frequency sF  

and passed through a Gaussian filter. The filtered data is input to a chirp matched 

filtering process to maximize the target return signal. The target information parameters 

(azimuth angle, elevation angle, and target range) are then calculated by the monopulse 

processor from the filtered signal.  The structure of monopulse radar is repeated N  

times. The receiver system is considered as a parallel channel radar receiver, each 

channel having its own complete receiving system. All output data will be processed in 

only one monopulse processor. 

2.5 Important Parameters of the Monopulse Processor  

Before going into detail on the monopulse processor, it is important at this stage to 

define some of the necessary parameters as illustrated in the following subsections. 

)(tc

sF

sF

][nc

)(tS ][nS

)(tc

 

Figure  2.11 Basic structure of a monopulse radar 
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2.5.1 Spatial steering frequency vectors 

As mentioned in subsection  2.3.2.3, a phased array monopulse processor requires the 

formation of sum and difference beams through the appropriate phasing of the array 

elements. In one method [36, 37] a standard steering vector is selected for the sum 

channel and its derivative with respect to spatial frequency for the difference channel 

)( tνav =Σ , 

tνν

ν

∂

∂
=∆

)(a
v , 

( 2.6) 

where ∑ν and ∆ν  are the spatial steering frequency vectors for the sum and difference 

channel, respectively. The centre phase normalized steering vector in the look direction 

is defined as: 
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πν

νa , 
( 2.7) 

where ν is the spatial steering frequency, and 
tν  is the spatial steering frequency 

snapshot at time instant t .  The normalized spatial steering frequency ν is estimated 

from 

cDftf cc /sinφν =∆= , ( 2.8) 

where cf is the monopulse radar carrier frequency. 

2.5.2 Monopulse Sum and Difference Outputs 

The sum )(tz∑ and difference )(tz∆ monopulse processor outputs are given by 

)()( ttz
H

xw∑∑ =  ,    )()( ttz
H

xw∆∆ = , ( 2.9) 

where )(tx  is the N ×1 spatial snapshot at time instant t  at one of the M received 

pulses as shown in ( 2.2), ∑w  is the sum weight vector for the sum channel,  ∆w  is the 

difference weight vector for the difference channel, and H  indicates the Hermitian. The 

real part of the ratio of difference to sum outputs is defined as the error voltage )(tνε [36, 

37]. 

2.5.3 Error voltage curve 

The amplitude and phase components caused by factors that are external to the radar, 

such as target range, target cross-section, and medium losses, appear identically in both 
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sum and difference voltages. By considering a ratio of the voltages, the components that 

appear identically in the two voltages cancel out. Hence the real part of the ratio of 

difference to sum outputs is known as the error voltage )(tνε and is defined as [36, 37] 


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tz
tνε . 

( 2.10) 

Equations ( 2.9) and ( 2.10) show that the array sensor outputs )(tz∆ and )(tz∑ can be 

complex valued as the ratio of beam outputs is in general complex. However, the real 

valued ratios  
)(

)(

tz

tz

∑

∆   correspond to a physical target and the imaginary part of the ratio 

should be discarded since it is primarily due to interference. Once an error voltage is 

estimated, it can be used in conjunction with monopulse response curve (MRC) to 

estimate the target angle φ̂  of the real angleφ . 

2.5.4 Monopulse response curve 

The mapping function, MRC, is the ratio of difference to sum beam patterns and 

represented the ideal error voltage response to targets arriving from a particular angular 

region about boresight, so MRC, )(φm  is defined as  
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( 2.11) 

where )(φ∑w  and )(φ∆w are the monopulse beam pattern for the sum processor and the 

difference processor, respectively. The beam pattern )(φ∑w  and )(φ∆w are defined as 

the response of a fixed beam former, specified by its weight the spatial weight vectors 

∑w  and ∆w  to an ideal signal arriving from look direction angle φ , respectively, and are 

calculated as [38, 39]: 

)()( νφ aw
H

∑∑ =w ,  )()( νφ aw
H

∆∆ =w . ( 2.12) 

Different methods to generate sum and difference patterns for monopulse processor are 

shown in Appendix  A 
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2.6 Mathematical Modelling for Monopulse Processors 

Mathematical modelling for the sum and difference weights vectors for both 

conventional and spatial adaptive monopulse processors are introduced in this section. 

Error voltage curves and also MRCs are estimated for both processors in absence of 

interference. 

2.6.1 Conventional Monopulse Processor 

The conventional processor is a non-adaptive system comprising two sets of weights set 

to the sum and difference weights vectors defined as [36, 40]: 

Σ∑ = vw , ∆∆ = vw . ( 2.13) 

Figure  2.12-A and Figure  2.12-B show example sum and difference weights patterns 

)(φ∑w  and )(φ∆w , respectively, for a conventional monopulse processor using ( 2.12) 

and ( 2.13). The sum pattern has a maximum at the radar look direction which is 

considered at o32=φ  (vertical dashed line) with number of antennas 14=N , while the 

difference pattern has a deep null in the look direction. Thus, the resultant MRC shown 

in Figure  2.12-C, estimated from ( 2.11) shows a sloped curve which is the best 

requirements for monopulse pattern. The error voltage curve estimated from ( 2.10) is 

shown in Figure  2.12-D. The error voltage curve )(tνε and MRC are identical due to no 

interference. Thus the target estimated angle φ̂  of the real angleφ are identical. 

A major shortcoming of conventional monopulse is that it may not provide adequate 

suppression of jamming and other forms of interference. Spatial adaptive monopulse has 

been proposed as an effective means to counter the problem of side lobe jamming and, 

to a limited extent, main beam jamming.[36, 40]  

Adaptive processing represents a more sophisticated class of processors and typically 

requires solving for a set of weights w  that are optimal in the mean square sense. In 

other words, the mean square output of the processor can be written as 

{ } wRwwXXwz SFTSFT x

HHHEtE === })({
2

ζ , ( 2.14) 

where xR is covariance matrix. The mean output is minimized with respect to w subject 
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(A) 

 
(B) 

 
(C) (D) 

Figure  2.12 Conventional monopulse processor 

(A) sum weight pattern 

(B) difference weight pattern 

(C) MRC 

(D) error voltage 
 

to the constraints cwC = . The constraint matrix, C , may consist of a set of space-time 

steering vectors, whose spatiotemporal locations indicate where the constraints are to be 

applied. The constraint vector, c , contains the desired responses for signals arriving from 

the respective locations. The solution to the minimization problem can be expressed in 

closed form (assuming 1−
xR  exists) as  

cCRCRCw HH 111 )( −−−= xx . ( 2.15) 
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In a real system, the inverse of the covariance matrix xR is estimated using the sample 

matrix inversion (SMI) technique [41]. Some detailed expressions on how xR can be 

estimated are given in Appendix B. 

The reason for using Min variance technique (MV) to estimate the set of weights w  

rather than other types of angle estimator such as Maximum likelihood (ML) is because 

MV allows the designer to exercise a great deal of control over both the spatial and 

temporal behaviour of the SFT sum and difference processors, thus assuring robustness 

by providing a means to avoid target spreading and other distorting effects. More 

detailed comparison between MV and ML as angle estimators in SFT is shown in 

Appendix C. 

2.6.2 Spatial Adaptive Monopulse Processor 

Several different approaches have been proposed for designing an adaptive pair of sum 

and difference beams, such as the maximum-likelihood approach in [42, 43], which 

yields a pair of beams, that optimizes a selected angle estimator. Rather than directly 

optimizing an angle estimator, it is possible to minimize the interference in the 

individual sum and difference output channels by employing linearly constrained 

optimization. The spatial processor comprises an adaptive sum and difference beams 

formed by applying sum unity gain constraints in the look direction, 

1=ΣΣ vwH  ( 2.16) 

The sum and difference weights yields minimum variance (MV) may be written in the 

following form [37, 44, 45]: 

Σ
−

Σ

Σ
−

Σ =
vRv

vR
w

1

1

x

H

x , 
∆

−
∆

∆
−

∆ =
vRv

vR
w

1

1

x

H

x , 
( 2.17) 

where xR  is the covariance matrix [41] of the input data to the processor with diagonal 

loading [46, 47].  

Figure  2.13-A and Figure  2.13-B show the sum and difference patterns, respectively, for 

spatial adaptive monopulse processor as in ( 2.17). These patterns look the same as the 

weight patterns for the conventional processor shown in Figure  2.12-A and Figure  2.12-
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B since all spatial adaptive pattern work like the conventional when no interference. The 

spatial adaptive MRC and the error voltage shown in Figure  2.13-C and Figure  2.13-D , 

respectively, are similar to those shown Figure  2.12-A and Figure  2.12-B for the 

conventional processor but it can be noticed that it is more sensitive to error voltage 

change. 

2.7 Basic Structure of a Monopulse Processor  

The basic structure of a monopulse processor is shown in Figure  2.14. The received ][ns  

 
(A) 

 
(B) 

 
(C) 

 
(D) 

Figure  2.13 Spatial adaptive monopulse processor 

(A) sum weight pattern 

(B) difference weight pattern 

(C) MRC 

(D) error voltage 
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is used to form the covariance matrix xR . In the construction of xR  the processor 

attempts to exclude as much as possible of the target data from the input data to the 

processor (target range bin interval are deleted from the processed data). The weights 

(sum ∑w  and difference ∆w ) calculation depends on the type of monopulse processor 

( 2.13), ( 2.17). These weights, in conjunction with the received data ][ns , are used to 

form the sum and difference outputs )(lz∑ and )(lz∆ , respectively, from ( 2.9). The sum 

output )(lz∑  is considered as the processor output which is used to show the existence 

of a target and to determine the target range. The weights ∑w  and ∆w are also used to 

calculate the monopulse beam pattern )(φ∑w and )(φ∆w  which are used to determine 

the MRC ( 2.11), ( 2.12). The MRC can be viewed as the ratio of difference to sum beam 

patterns that represents the ideal error voltage response to targets arriving from a 

particular angular region about its boresight. The sum and difference outputs )(lz∑ and 

)(lz∆ are used to calculate the error voltage )(lνε  from ( 2.10). The error voltage )(lνε  is 

converted to an angular form via the mapping function MRC to compute the target look 

direction angleφ .  

2.8 Monopulse Performance Measures 

Angle estimation performance and interference mitigation performance are the most 

)(tz∆

)(tz∑

)(φ∆w

)(φ∑w

∆w∑w

xR][nS

)(tνε

φ

)(tz∑

∆w

∑w

 

Figure  2.14 Basic structure of a monopulse processor 
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important performance measures for the monopulse processor. These two performances 

are explained in the following subsections. 

2.8.1 Angle Estimation Performance 

Angle estimation performance is a formal methodology for assessing monopulse 

performance. One particularly useful performance measure for angle estimation 

techniques is the root mean square (RMS) of the angle error. The RMS of the angle error 

is equal to the standard deviation of the angle error (STDAE) for unbiased estimator 

( 0}{ =φεE ). The STDAE is determined using a target that is injected randomly across 

the range and angle within the main beam. The corresponding angle error is then 

averaged over the range and is defined as[37]:  

}{
2

φε εσ
φ

E= , 
( 2.18) 

where φφεφ −= ˆ , φ  is the target angle, and φ̂  is the estimate angle. When there is only 

one target signal without any distortion signal (jamming signal, clutter, thermal noise, 

and terrain scattering interference), both φ  and φ̂  are nearly equal, hence the STDAE 

will be close to zero. 

2.8.2 Interference Mitigation Performance  

Output to interference and noise ratio ( OINR ) is used to compare the mitigation 

performance for the different monopulse processors. OINR [10, 48] is defined as the 

ratio of the processor output power to the noise power 

{ }
2

n

2

σ
i

OINR
zΕ

= , 
( 2.19) 

where iz  is the output of the processor when only interference is present and 2

nσ is the 

noise power. A lower OINR  value implies improved mitigation performance and vice 

versa.  

2.9 Simulated and Real Monopulse Data 

The monopulse radar parameters, simulated target parameters, real and simulated 



26 

jamming signal parameters that are used throughout this thesis for simulation purposes 

are expressed in the following subsections: 

2.9.1 Simulated monopulse radar 

The computer based simulations that will be used in this thesis are extracted from 

DARPA/Navy Mountaintop Program to nearly emulate a real airborne monopulse 

tracking radar [49, 50].  These simulations comprise of a monopulse chirp radar with an 

ULA of 14 elements spaced 1/3 meters. The radar comprises a chirp pulse width T of 

100 microseconds, a pulse repetition interval (PRI) of 1.6 milliseconds, and the chirp 

pulse width W is 500 MHz using a carrier frequency cf 435 MHz. Some of these 

monopulse radar parameters for complete PRI are shown in Figure  2.15. A 200 kHz 

Gaussian band pass filter exists at the front end of each of the N  receiving channels 

associated with each antenna elements to filter the incoming data. The incoming 

baseband signals are sampled with sampling frequency 
sF  1 MHz. It is assumed that the 

radar operating range is 100:200 range bins with a starting window at 865 microseconds 

with window duration of 403 microseconds.  

2.9.2 Simulated Target Signal 

The target received signal )(tS  may be expressed in the radar baseband as:  
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Figure  2.15 Complete pulse repetition interval 



27 

where A  is the received signal amplitude, oφ is a random phase shift, (.) is the dot 

product, )(× is the cross product, and startT is the start time of the returned pulse that  

passes through a band pass Gaussian filter. The start time startT  depends on the target 

range tR can be estimated as 

c

R
T t

start

2
= . 

( 2.21) 

As indicated in ( 2.20), the Doppler shift and delay effect on the target chirp signal is 

determined by the dot product of the chirp signal by the Doppler vector df  defined as  

( ))(2exp startdd Ttfj −= LIf π       TTtT startstart +<< , ( 2.22) 

where df  is the target Doppler frequency LI  is a L×1  unitary vector.  

For the phased array receiving antenna, an antenna phase factor φf is introduced as  

( ))(2exp tTfj startc ∆−−= arrayN nIf πφ , ( 2.23) 

 where arrayn  is a vector represented as { 0 ,1,….., 1−N }and NI  is a N×1  unitary vector. 

The down-converted received signal passes through a band limited Gaussian filter before 

passing through the chirp matched filter to maximize the target return signal. The target 

information parameters are then calculated by the monopulse processor (conventional 

monopulse and spatial adaptive processor) from )(lz∑ .  

In the thesis, the simulated desired target is considered to be at range bin=150 at 

different angles from the look direction with a Doppler frequency of 150 Hz at different 

signal to noise ratio (SNR).  

2.9.3 Simulated and Real Jamming Signals 

A distortion produced when man made high power interference (jamming) with 

interference to noise ratio (INR) is introduced to the radar processor through the radar 

antenna main lobe (main lobe interference) or antenna side lobe (side lobe interference) 

may lead to errors in the target tracking angles resulting in target mistracking. The 

mathematical modelling and jamming scenarios for the simulated and real interference 

are shown in the following subsections. 
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2.9.3.1 Simulated Jamming Data 

Barrage noise jamming jamN  [1, 51] is the most common form of hostile interference. 

Such interference emanates from a spatially localized source and is temporally 

uncorrelated from sample to sample as well as between pulse repetition intervals. It is 

modelled as the product of a spatial steering vector )(tjamn  and the jamming spatial 

steering vector )(νjama : 

)()( νjamjamjam anN t= , ( 2.24) 

where )(tjamn  is complex white Gaussian  noise vector with zero mean, and the 

jamming spatial steering vector )(νjama is defined as 

( )
arrayjam Na jamjam j νπν 2exp)( = , ( 2.25) 

where jamν  is the normalized jamming spatial steering frequency estimated from 

cDf jamcjam /sinφν = , ( 2.26) 

where jamφ is the jamming angle w.r.t the radar antenna boresight. 

The power of each component of )(tjamn is assumed to be 2

jamσ . The white Gaussian 

vector )(tjamn  is a complex signal with real and imaginary parts drawn from a Gaussian 

distribution with zero mean and unit variance. For a white Gaussian )(tjamn  of length L  

(where L is the radar range gates), the barrage noise jamming jamN is of size LN × . 

A jamming signal with different interference noise ratio (INR) with two angles scenario, 

first at angle o32  from the look direction (main beam jamming) and second at angle o62  

from the look direction (side lobe beam jamming) will be introduced later in the thesis. 

2.9.3.2 Real Jamming Data 

The real jamming data is an experimental dataset stap3001 containing a direct-path 

barrage noise jammer at o42  that was collected as part of the DARPA/Navy 

Mountaintop Program [45, 49, 50]. The real jamming radar data “File stap3001” is 

pseudo-random signal noise with a bandwidth of 600 kHz (broadband relative to the 
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radar's bandwidth, so it appears as broadband barrage jamming). The jammer was sited 

on a mountain at a range of 65 km from the radar, and at an azimuth of o302  relative to 

true North. Therefore the jammer is at angle o42  from the radar look direction so the 

interference enters the radar through the side lobe. 

 

2.10 Conclusion  

This chapter has introduced the monopulse radars using sum and difference processing. 

These radars are commonly used in target tracking because of their angular accuracy. 

They provide superior angular accuracy and less sensitivity to fluctuation in RCS of the 

target compared to other types of tracking radars. However, these radars are affected by 

different types of interference which affects the target tracking process and may lead to 

inaccurate tracking. 

For phased array monopulse radar, the error voltage (the ratio of difference to sum 

output voltages) is used to determine the degree of correction necessary to realign the 

beam axis with the target. A conventional monopulse processor for phased array radar is 

obtained by appropriately phasing the individual array channels to obtain sum and 

difference outputs. The ratio of difference to sum outputs provides the measure by which 

the angle offset from the beam axis (i.e., look direction) is determined. The updated 

angle measurement is used to compute phases for the channels so as to realign the beam 

axis with the target. Consequently the radar is affected by different types of interference 

that may cause inaccurate tracking. 

The next chapter will present the signal processing algorithms that will be used to 

mitigate the interference problem in monopulse radar. These algorithms will be used 

later in the thesis to reduce the interferences and to enhance the tracking performance. 
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333...   FrFT and EMD Algorithms 

3.1 Introduction 

This chapter reviews the fractional Fourier transform (FrFT) and empirical mode 

decomposition (EMD) algorithms. Both algorithms are used in the remainder of this 

thesis in the design and implementation of advanced monopulse radar systems that aim 

to overcome different types of interference in tracking radars. A historical background 

and applications of the two algorithms are provided. 

The word “fraction” is widely used in different fields of science such as fractional 

derivatives in mathematics, fractal dimension in geometry, fractal noise, fractional space 

equalisers and fractional transformations in signal processing [52-55]. In general, 

“fractional” means that some parameter has no longer an integer value.  The idea of 

fractional powers of the Fourier transform operator appeared as early as 1929 [56]. In 

the mathematics literature, a generalization of the Fourier transform known as FrFT was 

re-introduced by Namias for applications in quantum mechanics in 1980 [57] but it was 

not widely recognized until it was independently reinvented by several groups of 

researchers [58-61]. State-of-the art collections for the FrFT theory including 

computational cost and applications can be found in [56, 62-65]. 

The FrFT is used in many applications such as: 

Optics: quantum optics, optical diffraction theory, optical beam propagation (including 

lasers) [59, 62, 66]. Image processing: image recovery, restoration, enhancement [67, 

68], application on SAR/ISAR and Sonar imaging [69-72]. Signal processing: signal 

recovery, signal detectors, correlation, convolution, synthesis, study signal time-

frequency distributions, pattern recognition, beam forming, wave front propagation and 

reconstruction, speech processing , digital watermarking, encryption and compression, 

multiplexing, tomography, blind source separation and energy localization problems, 
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high resolution trigonometric interpolation, analyzing sequences with non-integer 

periodic components (computing solar positions) , pre-processing for neural networks, 

three dimensional transparent object recognition, numerical holography 

computing ,multiple FrFT holography, securing information in digital holography [73-

77].    

EMD is Empirical because it lacks theoretical foundations.  Mode relates to the intrinsic 

mode functions which represent the oscillation modes embedded in the data. 

Decomposition refers to decomposing the original signal to IMFs and residual. 

The idea of EMD, which is also known as the Hilbert Huang transformation (HHT), 

appeared in 1998 [78] and was the winner of the 2002 NASA Government Invention of 

the Year [79]. It is recognized by NASA Headquarters inventions and contributions 

board as “One of the most important discoveries in the field of applied mathematics in 

NASA history”. Norden E. Huang who works for NASA Goddard Space Flight Center 

reviewed the non-stationary data processing methods as the spectrogram, wavelet 

analysis, Wigner-Ville distribution, evolutionary spectrum, empirical orthogonal 

function expansion (EOF), and other miscellaneous methods, and then showed the 

superior performance of EMD over these methods [80].  

EMD is used in many applications such as: nonlinear wave evolution, climate cycles, 

earthquake engineering, submarine design, structural damage detection, satellite data 

analysis, turbulence flow, blood pressure variations and heart arrhythmia, non-

destructive testing, structural health monitoring, signal enhancement, or economic data 

analysis  [81-84]. 

The remainder of the chapter comprises two main parts. In Section  3.2 the FrFT is 

reviewed. In this section definitions, mathematical formula and some applications of the 

FrFT are given along with its relation to other transforms.  The classical and bivariate 

definitions of EMD, EMD Detrending and Thresholding algorithm, invariant EMD 

thresholding and denoising algorithms, and EMD application are reviewed in Section  3.3. 

Section  3.4 conclude this chapter. 
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3.2 Fractional Fourier Transform (FrFT) 

The FrFT is the generalized formula for the Fourier transform that transforms a function 

into an intermediate domain between time and frequency [85, 86].  

3.2.1 Definition and Mathematical Formula  

The FrFT of order a  of an arbitrary function )(tx , with an angle θ , is defined as [87]: 

∫
∞

∞−

= dtttKtxtX aa ),()()( θθ , 

 

( 3.1) 

where ),( ttK aθ  is the transformation Kernel, at  is the variable in the tha  FrFD, and 

2/πθ a=  with ℜ∈a .  ),( ttK aθ  is defined as[88]:  
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( 3.2) 

The fractional transform operator )]([ txF a  is used to transform the time domain signal 

)(tx to the fractional Fourier domain (FrFD) )( atXθ that represents an intermediate 

domain between time and frequency as illustrated in Figure  3.1 . Thus the signal 

)( atXθ in the FrFD has combined components of the time and frequency.  

Figure  3.1 illustrates the relationships between the time, and frequency outputs from the 

FrFT, aF  when the fractional order a in an integer as:  
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( 3.3) 

It can also seen in Figure  3.1 that )()]([)]([ 04 txtxFtxF == . 

The inverse FrFT is achieved using the same transformation equations ( 3.1) and ( 3.2) 

using negative transformation order a− thus  the inverse fractional    transform   function 
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40 )( FtxF ==

)(1
fXF =

)(2
txF −=

)(3
fXF −=

)( a

a
tXF θ=

θ

 

Figure  3.1  Signal )(tx at different transformation order a  

)]([ a

a tXF θ
−  is used to transform the FrFD )( atXθ  back to the time domain signal )(tx . 

To understand the effect of different transformation orders a  on a signal )(tx , a linear 

chirp signal with the following parameters :- starting frequency of 5 Hz, stopping 

frequency of 100 Hz, chirp period of 0.8 sec, and sampling frequency of 1 kHz;  time 

window 5 sec, and the chirp start at 1.5 sec is transformed using different transformation 

orders 11 <<− a  (transformation angles 
22

π
θ

π
<<− ). The resulting transformations 

are illustrated in Figure  3.2-A for orders in the range 11 <<− a . As expected the 

transformation becomes the FT of the chirp signal when 1=a as seen in Figure  3.2-B 

with bandwidth 95 Hz while the transformation is the original time representation at 

0=a as seen in Figure  3.2-C with chirp duration 0.8 sec and starts at 1.5 sec. As 

indicated in Figure  3.2-D at 6588.0−=a , the chirp signal transformation reaches the 

narrowest band width with a spike at the fractional sample 2194 which is the peak 

position fractional sample. This order ( 6588.0−=a ) is called optimum FrFT order opta   

(or the angle of rotation 2/πθ optopt a= ). At this order the FrFT is tuned to provide an 

optimal response to the given linear chirp signal.  
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(B) 

 

(C) 

 

 

(A)  

(D) 

Figure  3.2 FrFT of a chirp signal with different transformation order a  

3.2.2 Normalized FrFT  

In the FrFT kernel transformation formula ( 3.2), the exponential term contains an 

addition process between t and at . This process is dimensionally incorrect because 

t dimension is in sec. (time domain) and at  dimension is something between sec. and Hz 

(FrFD). A normalization factor Κ=S  is added to the kernel formula to resolve this 

incorrect dimensions problem. The normalized coordinates for t and
at are u and

au , 

respectively, where u and au are defined from 

Κ
==

u

S

u
t , and 

Κ== aaa uSut . 

 

( 3.4) 

 Κ  is defined as 
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τ

τ

f
=Κ , 

( 3.5) 

where τ denotes time variable and τf  denotes frequency counterpart of τ . 

Hence the normalized FrFT kernel ( 3.2) can be re-written in the form 
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( 3.6) 

Thus the normalized FrFT formula is now defined as 

∫
∞

∞−Κ
= duuuKuxuX aa ),()(

1
)( θθ . 

 

( 3.7) 

For a sampled signal ][ux  with a sampling period pT and sampling frequency ps TF /1= , 

the frequency axis is defined as ]2/,2/[ ss FF−  and the timeline axis is defined in the 

period ]2/,2/[ ss tt−  as 

ps TLt = , ( 3.8) 

where L is the number of samples.  

 A  discrete definition of Κ  called  dΚ  is written in the form 

ssd Ft /=Κ . ( 3.9) 

Hence the normalized discrete FrFT formula of ][nx  is defined as 
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( 3.10) 

where u′  and 
au′ are the discrete representation for u  and 

au , respectively. 
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3.2.3 Discrete FrFT Matrix 

The discrete FT matrix F is a complex matrix of values around the unit circle. The 

product of the matrix F  with a vector computes the discrete FT of this vector. The 

discrete FrFT matrix aF  is used to transform a vector into the tha  FrFD. Note that at 

1=a  the discrete FrFT matrix aF is identical to a discrete FT (DFT) matrix F . 

Several publications [87, 89-91] proposing a definition for the discrete FrFT have 

appeared, but not all of these publications satisfy the following properties: unitarity, 

index additivty, reduction to the discrete FT when the order is equal to unity, and 

approximation of the continuous FrFT. The definition of the discrete FrFT matrix that 

satisfies all the previous properties is the spectral expansion given as [87] 
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where ][uk
′υ  is the th

k  discrete Hermite-Gaussian function.  The Hermite-Gaussian 

functions are known to be the eigenfunctions of the FT operator. The )
2

exp( akj
π

−  is 

the tha  power of eigenvalue )
2

exp( kjk

π
λ −= of the ordinary FT. The particular range of 

summation is due to the fact that an eigenvector doesn’t exist with 1−L  or L  zero 

crossing when L  is even or odd, respectively. The discrete Hermite-Gaussian function 

can be written as 
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( 3.13) 

where kυ  is the th
k discrete Hermite polynomial having k real zeros. 

3.2.4 Optimum FrFD of a Chirp Signal 

The FrFT is able to process linear chirp signals better than the ordinary FT. This is 

because a linear chirp signal forms a diagonal line in the time-frequency plane, and 

therefore, there exists an order of transformation in which such signals become compact 
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as shown in Figure  3.3. Figure  3.3 shows the time-frequency representation of the 

previous linear chirp signal.  It is clear that the chirp starts at time 1.5 sec and ends at 2.3 

sec. and the chirp frequency from -45 Hz to 45 Hz. The optimal fractional domain (black 

line) is the domain at which this chirp appears as a spike.   

Thus the idea of the transformation optimization process is that the optimum FrFT order 

opta  (or the angle of rotation 2/πθ optopt a= ) is used to tune the transform to provide an 

optimal response to a given linear chirp signal.  For a general linear 

chirp, )](2exp[ 2 ρεγπ ++ ttj , it is the chirp rate parameter γ  to which the transform 

order is matched. When the axis rotation is matched to the chirp rate γ of the signal, the 

magnitude response reaches its maximum [62, 92]. 

  For a sampled version of the general linear chirp signal  an expression for the optimum 

order value, opta , may be written as [92]:   

)
2

/
(tan

2

2

/
tan

2
2

11

γπγ

δδ

π

NFtf
a s

opt

−− −=







−= , 

 

( 3.14) 

 

 

Figure  3.3 Time-frequency plane for chirp signal  
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where fδ  is the frequency resolution 





 =

L
F

f sδ , tδ is the time resolution 





 =

sF
t 1δ , 

and sF  is the sampling frequency. Detail descriptions about the relation between the 

chirp rate γ and the optimum FrFT index opta  shown in ( 3.14) is described in Appendix 

 D. 

3.2.5 Peak Position of a Chirp Signal in the FrFD 

The shape of the magnitude of the chirp radar received signal in the FrFD using the 

transmitted chirp radar information depends on the transformation order a  that the chirp 

radar signal is transformed to a compact form using the  FrFT with optimal order 

opta [85]. The optimum FrFT produces a narrow peak for a certain chirp signal, however 

for processing purposes the knowledge of the position of the peak in the FrFD is 

required.  This position, in terms of sample number, depends on various discrete signal 

parameters. The peak position pP of a chirp signal in the FrFD (compact form) is 

computed as [93]:  

stopt
Tstart

optp t
f

MLf

f

F
P )cos(

2

)/(
)sin( ϑ

δδ
ϑ −







 ∆
+= , 

( 3.15) 

where 
TM is the number of samples in the chirp signal with pulse width T , 

optϑ is 

opt

o θ−360 , and 
stt  is the chirp start time sampling number. Detail descriptions how to 

estimate the peak position pP of a chirp signal in the optimum FrFD in ( 3.15) is 

described in Appendix  E. 

Applying the chirp signal parameters used in subsection  3.2.1 and using the optimum 

transformation angle optθ in ( 3.15), a spike is expected at fractional sample 2194. This is 

confirmed by Figure  3.2-D. 

3.2.6 Some Important Properties of FrFT 

Similar to the FT, the FrFT has basic properties such as linearity, translation, 

modulation, scaling, conjugation, duality, and convolution. Many references [62, 63] 
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introduce these properties in the fractional domain and compute the FrFT for some 

special functions including rectangular, Dirac, unit step, sinc, exponential. The FrFT of 

some of these elementary functions are presented in Appendix  F. The following 

background concentrates on the properties and operations that are relevant to this thesis: 

3.2.6.1  Shift operation and Convolution/Correlation in the FrFT 

The FrFT is a shift variant transform [62, 63]. In the FrFT, if a function is shifted in time 

or multiplied by an exponential, it results in a mixture of time and frequency 

components given a   is not an integer. 

Define two functions f and g  with af  the FrFT of f  and ag  the FrFT of g . For 

∈gf , L and ℜ∈θ  we have[63]:  

Shift rule: if  )()( ttftg δ+=  then  

)cos()(
)cos

2

1
(sin

θδ
θδθδ

taa

ti

aa tfetg
tat

+=
+

. 
( 3.16) 

Exponential rule: if )()( tfetg
ti tδ=  then,  

)sin()(
)sin

2

1
(cos

θδ
θδθδ

taa

fi

aa tfetg
ttt

+=
+

. 
( 3.17) 

Convolution rule: )(*)( tgtf a
 definition is  

( ))()()(*)( 11

1

aaaaa tftgFtgtf −= ++
− . ( 3.18) 

Cross correlation rule: )()( tgtf a⊗  definition is,  

( )( )H

aaaaa tftgFtgtf )()()()( 11

1

++
−=⊗ . ( 3.19) 

where 1−
F is the fractional transform function with 1−=a (inverse Fourier transform), 

and H  is the Hermitian transpose. )(1 aa tg + and )(1 aa tf +  are the Fourier transform of 

FrFT of )(tg  and )(tf , respectively. 

3.2.6.2 Optimum Filtering in FrFD 

In many practical applications, the useful signals are overlapped by undesired 

(distortion) signals. This overlapping may be partially or completely in both the time and 

frequency domain. Transforming these signals into the FrFD with available prior 
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knowledge about the useful signal and the distortion signals may result in minimized or 

complete cancellation of the effect of undesired signals. Thus signals with significant 

overlap in both the time and frequency domain may have little or no overlap in the 

fractional Fourier domain (FrFD).  As an illustration in Figure  3.4, depicts signals 1S and 

2S  that can be separated in the FrFT domain. 

This is done by filtering the unwanted signal in the optimal FrFD before transforming 

the filtered signal back to the time domain. 

The most commonly used observation model Z  may be described by: 

YXHZ += , ( 3.20) 

where X  is the system useful signal, Y  is the sum of all distortion signals, and H is the 

matrix characterizing the degradation process. The crosscorrelation matrix 
aa zxR is the 

cross correlation between x  and z  (column vector in X  and Z , respectively) in the 

FrFT domain of order a . The auto correlation matrix 
aa zzR is the autocorrelation for 

signal z in the FrFT domain of order a . These matrices may be  calculated from the 

following equations [87]    

aH

xx

a

zx aa

−= FHRFR  ,  and ( 3.21) 

a

yy

H

xx

a

zz aa

−+= FRHHRFR )( , ( 3.22) 

tt =0

ft =1

tt −=2

ft −=3

at1+at

2+at 3+at

 

Figure  3.4 Signal separation in the 
tha  domain 
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where aF  and  a−F  are discrete FrFT matrices of order a and a− , respectively, 

xxR and yyR are the covariance matrix for the signals x  and y , respectively. 

The optimum filter iopt,g  (optimum order filter) to filter the y  signal in the FrFT domain 

is given by: 

m..,1,2,i
ii

ii

aa

aa

zz

zx

iopt …==
),(

),(
,

R

R
g  

( 3.23) 

where m is the signal length. 

The filtered signal x̂  in the time domain is calculated from [85, 94] 

zFFx a

g

a
Λ

−=ˆ , ( 3.24) 

where gΛ is a diagonal matrix whose diagonal consists of the elements of the vector 

ioptg , . 

In this section, the discrete filtering in the optimal FrFD is formulated, and its solution 

based on the discrete fractional Fourier transform using the discrete FrFT matrices is 

introduced. Application of this filtering in the optimum FrFD will be shown in chapter  5. 

3.2.7 Relation to Other Transforms 

3.2.7.1 Linear Canonical Transform  

Linear canonical transform (LCT) is a family of integral transforms that generalizes 

many classical transforms. The LCT has four parameters ( ,,, ccccbbbbaaaa anddddd ) characterized by 

a general rotation 22 ×  matrix M and one constraint that the determine of M equal one 

[62, 63]. The LCT generalizes the Fourier, fractional Fourier, Laplace, Gauss–

Weierstrass, Bargmann, and the Fresnel transforms as particular cases.  The relationship 

between the LCT and the general formula for FT and FrFT will now be investigated. 

The linear canonical transform )]([ txF M  of a function )(tx  is an integral transform with 

kernel ),( ttK MM defined by [62, 63] 
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( 3.25) 

where 








+−
=








=

υµυµωυ

µµω

//

/1/
M

ddddcccc

bbbbaaaa
, the parameters µ ,υ , and ω  are independent 

of  M
t and t .  For a rotation with angleθ , the four parameters in matrix M are chosen 

such as θcos== ddddaaaa  and θsin=−= ccccbbbb  as 










−
=

θθ

θθ

cossin

sincos
M  .          

( 3.26) 

The FT is achieved by considering the transformation matrix M  ( 2/πθ = ) and the 

transformation kernel ),( ttK MM as 
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
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−
=

01

10
M , 

hence                                  
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( 3.27) 

Similarly the inverse FT ( 2/πθ −= ) is calculated by 


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10
M , 

thus                                  
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π
= . 

 ( 3.28) 

The FrFT can be defined using LCT depending on two different decomposition of FrFT 

namely: 

The 1st decomposition reflects the FrFT decomposition as chirp multiplication, chirp 

convolution, and another chirp multiplication. This can be seen from 










−
















−
=

1/)1(

01

10

1

1/)1(

01
M

bbbbaaaa

bbbb

bbbbdddd
. 

( 3.29) 

The 2
nd

 decomposition of FrFT is expressed as chirp multiplication, FT, dilation, and 

another chirp multiplication. This decomposition is shown as 
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( 3.30) 
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It is reported that more severe numerical rounding errors are experienced with the (3.30) 

for computing the  FrFT compared to using (3.29)  [63]. 

3.2.7.2 Wigner Distribution  

The Wigner distribution ),( 1ttW f  of a signal f  can be defined in terms of the time-

domain representation )(tf  of that signal as 

tdttjttfttfttW
H

f
′′−′−′+= ∫

∞

∞−

)2exp()2/()2/(),( 11 π . 
( 3.31) 

It is shown that the Wigner distribution of )(tf a is merely a rotation version of the 

Wigner distribution of )(tf as 

)cossin,sincos(),( 111 θθθθ ttttWttW ffa
+−= . ( 3.32) 

Thus the Wigner distribution of a signal and its FrFT are related by a rotation over an 

angleθ . In other words, rotation of Wigner distribution of a signal with angle θ  as 

shown in Figure  3.5-A results in a Wigner distribution of this signal in the FrFD as 

illustrated  Figure  3.5-B [88].    

ft =1

θ

 
(A) 

θ

ft =1

at

1+at

t

 (B) 

Figure  3.5 Wigner distribution of a signal in different domains 
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3.3 Empirical Mode Decomposition  

EMD was developed for analyzing non-linear and non-stationary data [78].  EMD  

decomposition is based on the local characteristic time scale of data [95, 96]. EMD 

decomposes any data set into a finite and often small number of intrinsic mode functions 

(IMF) [97]. An IMF is defined as any function having the same numbers of zero 

crossings and extrema, and also having symmetric envelopes defined by the local 

maximal and minima, respectively [98]. The IMF also admits well behaved Hilbert 

transform verified to be highly orthogonal [99, 100]. With the Hilbert transform, the 

IMFs yield instantaneous frequencies as functions of time that give sharp identifications 

of imbedded structures [78]. The final presentation of the results is an energy-frequency-

time distribution, designated as the Hilbert Spectrum.  

Wavelet analysis and  EMD are two decomposing algorithms [98].  EMD is used to 

decompose fast oscillations superimposed on slow oscillations while Wavelet analysis is 

used to decompose high frequency detail superimposed on low frequency components. 

Wavelet analysis splits the signal based on pre-determined spectral basis by the use of 

linear time-invariant filters and so prevents the possibility of adapting to local variations 

in the oscillations[98].  Thus, wavelets decomposition is conventionally achieved by 

repeated application of two filtering operations: firstly, pass the signal to high-pass filter 

extracts the detail. Secondly, the same filters applied to the approximation considered as 

a new full band after decimation by two. 

In contrast to wavelets decomposing, which perform the analysis by projecting the signal 

under consideration onto a number of predefined basis vectors, EMD expresses the 

signal as an expansion of basis functions that are signal dependent and are estimated via 

an iterative procedure called sifting. 

3.3.1 Classical and Bivariate EMD 

The EMD iteratively decomposes a multi-component signal into a number of mono-

component signals called IMFs. The iterative decomposition process is used for both the 
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classical and bivariate EMD.  The classical EMD is used to decompose real signal and 

the bivariate EMD is used to decompose complex signal. 

3.3.1.1 Classical EMD 

EMD is a non-linear technique for analyzing and representing non-stationary signals. 

EMD is data-driven and decomposes a time domain signal ][nx into a complete and 

finite set of adaptive basis functions which are defined as IMFs, ][)( nih ,
IMFLi ≤≤1 . 

These IMFs are not predefined as in the case with the Fourier and the Wavelet 

transforms.  The IMFs are oscillatory and have no DC component [98, 101, 102], so the 

signal ][nx can be represented as  

∑
=

+=
IMFL

i

i nnn
1

)( ][][][ dhx , 

( 3.33) 

where ][nd is the residual.   

When a signal ][nx , that comprises a slowly oscillation relative to the sampling 

frequency superimposed on a highly oscillation signal relative to the sampling frequency 

(in our case additive interference noise signal), is applied to the EMD algorithm, the first 

IMFs tend to contain the highly oscillation signal (noise) and the remaining IMFs 

contain the useful signal (in our case radar chirp signal).  In applications such as low 

frequency noise interference, the first IMFs in the EMD decomposition are the useful 

signal and the remainder contains the main noise components. Thus apriori knowledge 

of the noise characteristics in the EMD decomposed signal structure can be used to 

obtain the best performance. 

Each IMF is estimated with the aid of an iterative process called sifting that is applied to 

the residual multi-component signal as shown in Figure  3.6 
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( 3.34) 

During the ( 1+m )th sifting iteration, the temporary IMF estimate ][
)(

n
i

mh is improved 

according to the following steps: 
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Table  3.1   Temporary IMF estimate ][
)(

n
i

mh  improving 

1 While  ][][
)(

nn m

i

m mh −  is not sufficiently close to zero 

2 Identify all extrema (maxima and minima) of ][
)(

n
i

mh  . 

3 Interpolate the extrema points of ][
)(

n
i

mh to make upper and lower 

envelope. 

4 Compute the mean ][nmm of the two envelopes (upper and lower). 

5 Obtain the refined estimate ][
)(

1 n
i

m+h of the IMF by subtracting the 

mean found in the previous step from the current IMF 

estimate ][][
)(

nn m

i

m mh − . 

6 End 

 

To understand exactly how the classical EMD algorithm works, the signal  ][nx consists 

of the linear chirp signal from Section  3.2.1  shown in Figure  3.7-A added to a 

sinusoidal signal )200sin( tπ  with sampling frequency 1000 Hz (shown in Figure  3.7-B) 

to form the combined signal shown in Figure  3.7-C . 

Figure  3.8-A shows the interpolation for all maxima points and all the minima points of 

the temporarily IMF ][
)(

n
i

mh  on two different curves.  Figure  3.8-B shows a zoomed 

version of Figure 3.7-A. 

][
)(

n
i

h

∑
−
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−
1
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)( ][][
i

j

i
nn hx

][ nd

][ nx

 
Figure  3.6 The EMD sifting process 
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Figure  3.7 Combined chirp with sinusoidal signals 

The mean curve ][nmm  is calculated as the mean of the interpolated curves and it is 

shown in Figure  3.8-C. The extracted mean ][nmm  is subtracted from the original 

][nx and whole sifting iteration process continues for m times until the mean ][nmm  is 

reaching the stopping threshold criteria with nearly zero-mean. ][nmm reaches the 

stoping criteria at the  1+m  iteration process and the temporarily IMF ][
)(

n
i

mh  is 

considered now as the 1st IMF ][1 nh . ][1 nh  is shown in Figure  3.9 and contains nearly 

all the sinusoidal signal )200sin( tπ due to the fact that the first IMFs always contain the 

signal’s high frequency components. The sifting process starts again with input 

signal ][][ 1 nn hx − . All the previous processing work is repeated until the number of 

maxima points or minima points equal one (interpolation must be done at least between 

two points) and the last IMF (IMF 9) is achieved as seen in Figure  3.9. Note that the sum 

of the extracted IMFs from the 1st IMF 1 ][1 nh  to the last IMF 9 ][9 nh  results in the 

combined signal ][nx . 
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(A) 

 
(B) 

 
(C) 

 
(D) 

Figure  3.8 Classical EMD algorithm steps 
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Figure  3.9 The IMFs of  the combined signal 

The classical EMD is not sufficient to deal with monopulse radar received complex 

chirp signal with additive interference noise.  The bivariate EMD (complex EMD) is 

used to deal with complex data.  

3.3.1.2 Bivariate EMD 

The classical EMD described above can only be applied to real-valued time series. The 

bivariate EMD is used for complex valued time series [101, 102]. As with the classical 

EMD, the bivariate EMD is used to separate the more rapidly rotating components from 

slower ones.  The procedure is to define the slowly rotating component as the mean of 

some envelope which is a three-dimensional tube that encloses the signal. The slowly 

rotating components of the signal at any point in time can then be defined as the centre 

of the enclosing tube.  
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Figure  3.10 presents how envelope curves are used to derive the mean which is the 

slowly rotating components of the signal. In Figure  3.10-A, four curves are considered 

to determine the tube periphery in four directions (top, bottom, right, and left) that 

encloses the complex signal then these four curves interpolate the maxima points of the 

signal in these directions. Vertical cross section in these curves results in four points is 

shown in shown in Figure  3.10-B and Figure  3.10-C. The barycentre or the intersection 

of two straight lines, one being halfway between the two horizontal tangents of these 

four points is one of the points pass through the centre of the enclosing tube as shown in 

Figure  3.10-B and Figure  3.10-C, respectively. Interpolate the entire points pass through 

this centre results in curve represents the slowly rotating components of the decomposed 

signal.   

 
(A) 

 
(B) 

 
(C) 

Figure  3.10 Different methods to determine the signal centre 
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The previous four directions can be generalized for different directions angles 

KkKkk ≤≤= 1,/2πϕ  and are used in the following EMD complex algorithms [102].   

Table  3.2 introduces bivariate EMD Algorithms which is used to decomposed complex 

signals. 

Table  3.2  Bivariate EMD Algorithms [102] 

First algorithm (Bi-EMD-1) Second algorithm (Bi-EMD-2) 

1 For Kk ≤≤1  do 1  For Kk ≤≤1  do 

2 

 

Project the complex-valued signal 

][nx  on direction 
 

])[(][: nen k

k

j

k xρ
ϕ

ϕϕ −ℜ=  

2 

 

Project the complex-valued signal 

][nx  on direction 

])[(][: nen k

k

j

k xρ
ϕ

ϕϕ −ℜ=  

3 

 
Extract the locations }{ k

it of the 

maxima of ][n
kϕρ , i  refers to 

index 

3 

 

Extract the maxima locations and its 

value ][n
kϕρ : },{ k

i

k

it ρ , i  refers to 

index 

4 Interpolate the set ]}[,{ k

i

k

i tt x to 

obtain the envelope curve in 

direction 
kϕ : ][n

kϕe  

end 

4 Interpolate the set },{ k

i

jk

i
ket ρφ to 

obtain the  tangent curve  

kϕ : ][n
kϕe′  

end 

5 Compute the mean of all envelope 

curves:  

∑=
k

n
K

n
k

][
1

][ ϕem  

5 Compute the mean of all tangents:  

 

∑ ′=
k

n
K

n
k

][
2

][ ϕem  

6 Subtract the mean to obtain 

[ ] ][][][1 nnnx
B mxs −=  

6 Subtract the mean to obtain 

[ ] ][][][2 nnnx
B mxs −=  

In the special case for the 2nd algorithm (Bi-EMD-2) when K  is an even number, the 

length of the “For” loop is reduced to 2/K  and the mean is normalized by multiplying 

by 2 to be ∑ ′=
k

ne
K

n
k

][
4

][ ϕm . 

To understand exactly the two bivariate EMD algorithms, a complex signal is considered 

and is defined as: 

)/exp(ba][ sFfnjjn π++=x , ( 3.35) 

where 1−=j , a  and b  are constants, n represents the time samples, f is the signal 

frequency.  
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For the simplification purposes by 4=K , four angles directions kϕ  ( ,
2

3
,,

2

π
π

π
and π2 ) 

are considered. The complex signal ][nx  in three dimensional plots (real, imaginary, 

and time samples) is shown in Figure  3.11-A as helix its centre at ba j+ .  

In the first algorithm Bi-EMD-1, for all k , the curves interpolate extrema ][ne
kϕ in 

directions kϕ are all equal to: jjtx i ++= ba][
1 , 1ba][

2 −+= jtx i , jjtx i −+= ba][
3 , 

and 1ba][ 4 ++= jtx i
. Hence the center of these envelopes is ba j+ as shown in Figure 

 3.11-A and Figure  3.11-D. 

For Bi-EMD-2, using the fact that the extrema of the projections ][n
kϕρ are the 

projections of these extrema ][
k

itx , the tangent curves are calculated from the following 

table: 

 

 
(B) 

 
(C) 

 

 

 
(A) 

 
(D) 

Figure  3.11 Bivariate EMD 
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Table  3.3  Bi-EMD-2 detailed calculation 

][ k

itx  ][ k

i

j txe φ−  ])[( k

i

jk

i txe φρ −ℜ=  k

i

j ke ρφ
 

jjtx i ++= ba][ 1  1ba −−j  1b −−  jj +b  

1ba][ 2 −+= jtx i  1ba +−− j  1a +−  1a −  

jjtx i −+= ba][
3  1ba −+− j  1b −  jj −b  

1ba][ 4 ++= jtx i
 1ba ++ j  1a +  1a +  

The mean of all tangent curves ][nm is calculated as ba)2a2(5.0 jjb +=+ . 

Applying both algorithms (Bi-EMD-1 and Bi-EMD-2) required angles 

directions kϕ more than four in the mentioned example to reduce the dependence of the 

final decomposition with respect to rotation of the spatial coordinates. 

3.3.2 EMD Detrending and Thresholding (EMD-DT) Algorithm 

The concept of detrending is to calculate an estimate of the IMF number at which all 

previous IMFs may be regarded as noise and the subsequent IMFs may be considered to 

contain the useful signal. The IMF detrending technique depends on assuming that the 

1
st
 IMF, ][)1( nh , captures mostly noise, the noise level ]1[Ŵ  is estimated in ][nx  by 

computing [96, 103]  

( )∑
=

=
L

n

nW
1

2)1( ][]1[ˆ h . 
( 3.36) 

The model for noise only IMF energies can be approximated for white Gaussian noise 

dependence on the energy of the first IMF ][)1( nh from [96, 103] 

)(01.2
719.0

]1[ˆ
][ˆ iW

iW ×= .  
( 3.37) 

The threshold level energies ][iT are calculated using the approximated IMF energies in 

( 3.37) from [96, 103] 

92.146.0)
][ˆ

][
(loglog 22 −=








i

iW

iT
.  

( 3.38) 
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Computing the IMFs energies by applying EMD algorithm on ][nx  ( noisy signal) from 

[96, 103] 

( )∑
=

=
L

n

i niW
1

2)( ][][ h . 
( 3.39) 

Comparing IMFs energies ][iW with threshold level energies ][iT allows us to determine 

exactly when the signal energy level crosses the threshold level. Let this occur at mi = , 

the signal ][nx  is denoised by reconstruction using only IMFs whose energy exceeds 

the threshold according to: 

∑
+=

+=
IMFL

mi

i
nnn

1

)(
][][][~ dhx .  

( 3.40) 

This concept of detrending and thresholding is used later in this thesis to filter the 

Gaussian noise signal in the proposed EMD filtering algorithm. For other types of noise 

for example short range correlation noise with Hurst exponent less than 0.5 or long 

range correlation noise with Hurst exponent greater than 0.5,  the constants in the 

previous IMFs noise only model ][ˆ iW ( 3.37) and threshold level energies ][iT  ( 3.38) are 

changed according to the model defined in [96, 103] . 

Figure  3.12 shows an example describing the detrending and the thresholding algorithm 

for a noisy chirp signal. Applying the EMD algorithm to this noisy signal results in 10 

 
Figure  3.12 Detrending and the thresholding 
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IMFs ( IMFL ). The 1
st 

IMF is used to estimate energies for the remaining IMFs from ( 3.36) 

and ( 3.37) for the noise only model. The result is shown in black on Figure  3.12. The 

blue line represents the actual IMFs energies calculated from ( 3.38). The threshold 

model for each IMF from ( 3.37) is shown in red. It is clear that the actual IMFs energies 

are close to those estimated for noisy only model up to IMF 6 at which the threshold 

level is crossed. This means that these IMFs may be regarded as are essentially noise 

only. Thus the sum of IMFs from 7 to 10 represents the detrended and thresholded signal. 

For the noisy signal, the higher sampling frequency, the higher the number of samples, 

the greater the number of IMFs that are produced using EMD algorithm, the higher 

accuracy of detrending IMFs in the EMD-DT algorithm.   

3.3.3 Invariant EMD Thresholding and Denoising Algorithms 

Three EMD denoising algorithms that are inspired from  iterative wavelet interval 

thresholding methods [97, 98]  include: 

• Interval thresholding EMD (EMD-IT)  

• Iterative EMD Interval thresholding (EMD-IIT)  

• Clear Iterative EMD Interval thresholding (EMD-CIIT)  

3.3.3.1 Interval thresholding EMD (EMD-IT)  

Direct thresholding (DT) is a wavelet-like thresholding method. DT depends on 

thresholding each IMF using the threshold ][iT  either for hard or soft thresholding. ][iT  

described as [98]: 

)ln(2][][ LiWCiT = . ( 3.41) 

The thresholded IMF using this algorithm (both soft and hard) suffers from introducing 

discontinuities. DT makes segmentation for the thresholded IMF by putting zero for the 

values less than the threshold ][iT . EMD-IT overcomes this problem (discontinuities) of 

direct estimate ][iT  in each IMF by processing each IMF in intervals ][ )(

1

)()( i

q

i

q

i

q zz +=z  

(isolated IMF samples). In each interval )(i

qz  it is impossible to decide for any one of 

them if they correspond to noise or to useful signal. However, it is possible to guess if 
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the interval is noise dominant or signal dominant based on the single extrema that 

correspond to this interval. If the signal is absent, the absolute value of this extrema will 

lie below the threshold. Alternatively in the presence of strong signals the extrema value 

can be expected to exceed the threshold. 

3.3.3.2 Iterative EMD Interval thresholding (EMD-IIT)  

EMD-IIT [97, 98] algorithm is inspired from iterative wavelet interval thresholding. 

EMD-IIT denoising depends on creating different noisy versions of the original signal 

and performing EMD-IT on each before averaging these denoised versions. The EMD-

IIT method depends on the fact that most of the signal additive noise exists in the first 

IMF while the remaining IMFs (from 2nd IMF to the last IMF) contain the useful signal. 

EMD-IIT comprises: EMD expansion of the original noisy signal, randomly altering the 

sample positions of the first IMF to construct a different noisy version of the original 

first IMF. Adding the altered versions of the first IMF to the remaining IMFs creates 

different noisy versions of the original signal (altered first IMF + the remaining IMFs). 

The new version is expanded again using EMD before the new IMFs are denoised using 

EMD-IT. The previous steps are repeated for a number of iterations. The resultant 

denoised signal is the average of the resulting denoised signals from each iteration. 

3.3.3.3 Clear Iterative EMD Interval thresholding (EMD-CIIT)  

EMD-CIIT algorithm [97, 98] is similar to EMD-IIT algorithm except a thresholding 

operation of the first IMF is performed in an attempt to separate the noisy part of the 

first IMF from the non-noisy part. The noisy part is altered as described above. The 

altered noisy part of first IMF, the non-noisy part of first IMF and the remaining IMFs 

are combined to create a new version of the noisy signal. This is treated using EMD-IIT.    

3.3.4 Best Selection of Sampling Frequency and Denoised Method  

The higher the number of samples, the greater the number of IMFs that are produced. 

Using classical EMD algorithms the maximum number of these IMFs is )(log2 LO  [96, 

103]. An increased number of decomposed IMFs, leads to higher accuracy of detrending 

in the EMD-DT algorithm. Furthermore the ability for the translation invariant EMD 
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algorithms to increase the output SNR after denoising depends on the number of samples 

and the shape of the desired signal [98].  As a result in our application it will be 

necessary to optimize both the EMD denoising method and the radar sampling 

frequency based on the monopulse received chirp signal (in the receiving window) with 

high interference jamming for different SNRs. 

3.4 Conclusion  

This chapter has introduced FrFT and EMD algorithms. Both algorithms are used in the 

remainder of this thesis to design and implement advanced monopulse radar systems that 

aim to overcome different types of interference in tracking radars and to enhance the 

tracking performance. 

FrFT is the generalized formula for the Fourier transform that transforms a function into 

an intermediate domain between time and frequency. Signals with significant overlap in 

both the time and frequency domain may have little or no overlap in FrFD thus 

transforming signals into a particular FrFD may help to minimize or complete cancel the 

effect of undesired signals. The FrFT is able to process linear chirp signals better than 

the ordinary FT since there exists an order of transformation (optimum order) in which 

such signals become highly compact (spike) which can be used to apply many filtering 

ideas in the optimum FrFD. 

 EMD was developed for analyzing non-linear and non-stationary real and complex data 

thus it can be used with monopulse radar data. Many EMD filtering algorithms are used 

to filter the noisy data depends on the EMD decomposing such as EMD-DT, EMD-IT, 

EMD-IIT, and EMD-CIIT. 

The next chapter will present the implementation of a radar matched filter using the 

FrFT to improve the matched filter output SNR and consequently improve the radar 

tracking performance. 
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444...   FrFT Based Matched Filter 

4.1 Introduction 

Matched filters are commonly used in radar in which a known signal is transmitted, and 

the reflected signal is examined for common elements to the transmitted signal. Radar 

matched filters correlate a known signal (replica of the transmitted signal) with an 

unknown signal (received signal).  This is conventionally achieved by convolving the 

incoming signal with a time-reversed version of the transmitted signal which can be 

efficiently carried using FT multiplication in the frequency domain before transforming 

back into the time domain.  As mentioned previously in chapter  3, the FrFT is a 

mathematical generalization of the ordinary FT, the latter being a special case of the first 

when the fractional angle equals o90 [62, 88]. The FrFT converts a chirp signal in the 

optimal FrFD to a narrow, highly compact, delta function. Computationally efficient 

matched filters, employed to enhance the signal to noise ratio, normally use FT 

multiplication. This chapter investigates the concept of the matched filter in the FrFD. 

 This chapter is organized as follows: Section  4.2 uses the principle of stationary phase 

(PSP) to derive the chirp signal in the Fourier and fractional Fourier domains, 

respectively. The matched filter in the Fourier domain and FrFD is presented in Section 

 4.3. A set of simulation results is presented in Section  4.4 for different scenarios. This 

section also includes a discussion on the chirp matched filtering in the FrFD, the signal 

parameter limitations,  the improvement in SNR using matched filter in FrFT, and the 

usage of FrFT matched filter for multiple targets. Discussion underlining the results and 

the complexity comparison for matched filter in both the Fourier and fractional Fourier 

domains are presented in Section 4.5.  Section  4.6 concludes the chapter.  
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4.2 PSP for Chirp signal in FT and FrFT  

The principle of stationary phase (PSP) is an integration technique that can be applied to 

oscillatory integrals. PSP will be used in this section to estimate the mathematical 

modelling for a chirp signal in the frequency domain and FrFD using FT and FrFT, 

respectively. 

4.2.1 Principle of Stationary Phase 

PSP [104] can be applied to oscillatory integrals of the form: 

∫=
y

y

b

a

yj

y dyeyskS
)()()( ϕ , 

( 4.1) 

where )(ys is a slowly varying function and )(yϕ changes by many cycles over the 

interval of integration. Under these conditions, contributions to the above integral over 

most of the y interval tend to cancel, and thus add little to the overall value of the 

integral [104]. An exception occurs for contributions at the stationary points of the 

phase )(yϕ , defined as those values of y  for which 

0)( =y
dy

d
ϕ , 

( 4.2) 

The PSP states that the integral of ( 4.1) has its greatest contributions from those values 

of y  which are stationary points of )(yϕ on the interval [ yy ba , ]. The following two 

steps are employed to evaluate the integral ( 4.1) involving: 

1. Determine the location of the stationary point(s) of )(yϕ . 

2. Evaluate the integrand of ( 4.1) at the stationary point *y . 

If *y  is the only stationary point on [
yy ba , ], then an approximation for the integral is 

)(*
2

1

2
*

)( *

)(
)(2

)( yj

b

a

j
yj

eyse
y

dyeys

y

y

ϕ
π

ϕ

ϕ

π
∫ 











′′

−
≈

−

. 

 

( 4.3) 

For the radar signal processing problem of interest here, the factor in brackets in ( 4.3), 

including a magnitude and phase term, is essentially constant ( )( *yϕ ′′ is constant) and 
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 without loss of generality will not be considered in the following analysis. 

4.2.2 PSP for Chirp Fourier Transform 

An illustrative application of the PSP involves the computation of the Fourier transform 

of a received chirp waveform using PSP. The received radar signal )(ts  formula ( 2.20) 

can be simplified to: 
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( 4.4) 

The Fourier transform of )(ts can be written as 

∫
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( 4.5) 

Using the PSP, the phase of integrand is 
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where 
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Letting oj
eAB

πφ2−= , then the formula of the received signal in frequency domain may 

be written as: 
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The rect ( ).  function correctly indicates the nominal bandwidth of the chirp waveform 

and the exponential function correctly identifies the quadratic relationship across this 

bandwidth. The result in ( 4.9) is an approximation formula however it is a useful 
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engineering approximation especially in coherent radar problems emphasizing phase 

rather than magnitude.     

4.2.3 PSP for Chirp Fractional Fourier Transform 

A typical radar received signal )(ts in the FrFD )( auSθ  may be calculated from ( 3.7) as 

∫
∞

∞−

= duuuKusuS aa ),()()( θθ , 
( 4.10) 

where the FrFT kernel ),( uuK aθ is calculated from ( 3.6) [72]. Using PSP, the phase of 

integrand can be described as 
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The stationary point *u  is calculated as 
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and )( auSθ  in FrFD is written as 
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Letting 
T

f∆
=D  , the chirp signal representation in the FrFD may be written as : 
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Equation ( 4.15) can be considered as the general transformation of the received chirp 

signal ( 4.4) to the FrFD with angle θ . For a special case o90=θ  the signal 

representation in FrFT )( atSθ in ( 4.15) can be shown to be identical to ( 4.9). 

4.3 Matched Filter 

The matched filter in both the Fourier and the optimum fractional Fourier domains are 

discussed in this section using the PSP implemented mathematical formula of the radar 

received signal in these domains.  

4.3.1 Matched Filter in the Frequency Domain 

The matched filter )( fM F
in the frequency domain for )( fS is designed as the complex 

conjugate of the exponential part of the signal )( fS in ( 4.9) 
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The radar return chirp signal after the matched filter is  
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To transform )( fS  to the time domain an inverse Fourier transform formula is used as  
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4.3.2 Matched Filter in FrFD 

The shape of the signal in the FrFD in ( 4.15) is characterized by 
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Fourier order depends on Κ/cosθτ . This dependence means the FrFT of the same 

chirp signal with the same chirp width changes position in the FrFD depending on two 

parameters τ and θ . So the chirp shape in the FrFT depends on the start time startT  

because 
2

T
Tstart +=τ  ,  the chirp bandwidth f∆ and the chirp duration T  because 






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Lf

TFs

2

1tanθ .  

As a result the matched filter implementation in the FrFD requires knowledge about the 

start time startT which is an unknown parameter in our case because it depends on the 

target range tR  from ( 2.21). All other parameters are known. In the next section three 

methods for estimated startT  will be presented.   

The design of a radar matched filter in the optimum FrFD is a more complex problem 

than the normal FT matched filter due to the need for estimating startT . In the frequency 

domain transformation of the FT matched filter ( 4.9), the signal is characterized by 
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∆f

f
rect which depends only on the chirp bandwidth f∆ that is known from the 

transmitted chirp waveform generator.  

4.3.3 Methods to estimate 
startT  

Estimating the chirp start time
startT , which is the time of radar received chirp, depends 

on the target range. This estimation is essential in order to design the radar matched 

filter in the FrFD.  Figure  4.1 shows a simulated noisy target chirp received signal.  The 

time delay
startT  needs to be estimated in order to design the matched filter in the FrFD 

through using one of the following three methods: 

(i) FT matched filter. 

(ii) Optimum FrFT of the received chirp.  

(iii) Optimum FrFT of both the received and a reference signal.  
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Figure  4.1 Noisy chirp received signal 

4.3.3.1 Method 1:  FT matched filter 

Applying the matched filter formula ( 4.16) to the noisy chirp radar received signal 

(Figure  4.1), the signal output of the matched filter is seen in Figure  4.2.  In Figure  4.2 a 

spike appears at the range bin 150 (related to the target range) which is the start bin of 

the bins occupied by the received chirp. This start bin 
binR  (

binR =150) is used to 

calculate the target range tR   which is used to calculate startT from ( 2.21). 

The target range 
tR   is calculated from the range bin by adding the range at bin 0, 

oR , to 

the distance R∆  within the time window  as: 

RRR ot ∆+=  ( 4.21) 

and oR  is defined by 

1
5.0 wo TcR = , ( 4.22) 

where 
1wT is the start of time window and R∆  is calculated from: 

sbin FcRR /)5.0(5.0 −=∆ . ( 4.23) 

The calculated target range 
tR (from ( 4.21), ( 4.22), and ( 4.23)) is 156.975 km thus the 

estimated startT from ( 2.21) is 0.001 sec. 
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Figure  4.2   Estimate startT using matched filter 
 

4.3.3.2 Method 2:  Optimum FrFT of the received chirp 

Figure  4.3 shows the radar received signal transformed to the optimum FrFD using ( 3.1), 

( 3.2) , and ( 3.14). A spike at sample 195 is seen in zoomed area of Figure  4.3. The chirp 

pP sample number (195) is used to calculate stt  (the chirp start time sampling number) 

from ( 3.15) to be 150. The sample number 
stt is used to calculate the target range 

tR from (from ( 4.21), ( 4.22), and ( 4.23)) to calculate startT  from ( 2.21) to be 0.001 as in 

the previous method. 

4.3.3.3 Method 3: Optimum FrFT for the received and a reference signal  

In Figure  4.4, the radar received signal is transformed to the optimum FrFD as in the 

previous section, the target spike
TpP  in the optimum FrFD is observed to be located at 

195. A chirp signal with 0=startT in ( 4.4) is used as reference signal that is also 

transformed to the optimum FrFD, the location of the reference signal spike
RpP in the 

optimum FrFD is at sample 323. 
startT  is estimated from: 
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Figure  4.3   Estimate 
startT using pP  

For the stating time window 
1wT is 8.97 micro sec, and calculated optimum angle optθ is 

o30.83 in ( 4.24), the estimated startT is .001. 

4.3.4 Implementation of the Radar Matched Filter in FrFD 

The Radar Matched Filter in FrFD is implemented as follows:  the received signal, )(ts , 

is transformed to the optimal FrFD using apriori information from the transmitted chirp 

signal. This signal is convolved in the optimum FrFD with a replica signal. The 

mathematical formula of this replica signal in the time depends on the known or 

estimated value startT .  

 
Figure  4.4   Estimate startT using the difference in fractional bins 
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The convolution process is achieved by applying FT for both signals in the optimum 

FrFD, multiplying the two, then applying the inverse Fourier transform (IFT).  

The required processing steps to perform the radar matched filter in FrFD are described 

in Table  4.1. 

4.3.5 FrFT Matched Filter for Multiple Targets 

The proposed optimum FrFD radar matched filter approach can be used for multiple 

targets detection in the received signal. In the case of multiple targets, as many echoes of 

the transmitted signal as the number of targets illuminated from the system are present in 

the received signal. A FrFT of the received signal will show the presence of multiple 

peaks, each one representing a target. In order to apply the fractional matched filter, an 

estimation of the unknown time delay must be performed for each target due to the shift 

variance property described in ( 3.16), meaning that a different replica must be used to 

extract each target. The procedure to extract the targets is described in Table  4.2 
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Table  4.1   Perform the Radar Matched Filter in FrFD algorithm  

1 

 

Optimum transformation order estimation: 

starting from the transmitting signal parameters (known signal parameters) 

the optimum fractional order is estimated using ( 3.14) to be used to 

transform the received signal to the optimum FrFD 

2 FrFT of the received signal:  

the optimum FrFT of the received signal is performed to obtain a narrow 

peak detecting the presence of the received signal using ( 3.1) and ( 3.2) 

3 
startT estimation:  

the chirp start time startT is estimated by one of the previously described 

methods in subsection  4.3.3. This information is required in order to 

generate a suitable replica 

4 Replica generation in the FrFD:  

using the known or estimated value of startT   a replica of the signal can be 

generated and its FrFT can be performed 

5 Fourier Transform and matched filtering: 

 to reduce the computational complexity of the matched filtering for the 

received signal and the replica optimum fractional version, both are 

transformed into their relative frequency domain and multiplied together. 

6 Inverse Fourier Transform:  

IFT on the resulting signal after multiplying is performed to produce the 

matched signal output in the optimum FrFD.  

Steps 5 and 6 are done using FrFT cross correlation rule in ( 3.19). 
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Table  4.2   FrFT matched filter for multiple targets algorithm  

1 For tNk ≤≤1  do   k is iteration index, tN is the number of targets 

2 

 

Estimate the delay of the first echo with significant amplitude using of 

one of the previously methods described in subsection  4.3.3. 

3 Generate the replica with the estimated delay and apply the fractional 

matched filter obtaining the target detection as mentioned in the 

algorithm in Table  4.1. 

4 Subtract the k th echo from the received signal in order to perform the 

FrFD matched filter for the remaining targets.  

This subtraction is performed by subtracting the replica used for the 

FrFD matched filter from the received signal. The residual received 

signal contains another echo with a significant peak amplitude. 

5 End 

6 The output of each iteration can be added to the output from the previous 

iterations to obtain the final detections.   

 

The procedure can be iterated a fixed number of times if the number of targets in the 

received signal is known or a stop rule for the iterations can be used, i.e. the algorithm 

can be stopped if the amplitude of the peak in the residual FrFT of the received signal is 

less than a certain threshold. A simulation of using FrFT matched filter for multiple 

targets will be provided in the next section (subsection  4.4.4). 

4.4 Simulation Results 

A linear chirp radar is simulated with a pulse width of 100 microseconds and a pulse 

repetition interval of 1.6 milliseconds with chirp bandwidth 500 KHz. The incoming 

baseband signals are sampled at 1 MHz. Also it is assumed that the radar operating 

range is 1:402 range bins. Two desired targets are known to exist at range bins equal to 

50 and 250, respectively, with target signal to noise ratio (SNR) set to 60 dB and a 

Doppler frequency of 150 Hz.  FrFT matched filter design dependence parameters that 

were described in subsection  4.3.2 are now investigated.  
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4.4.1 FrFT Radar Signal Dependence on startT  

The chirp signal for the target at range bin 50 is shown in Figure  4.5. It starts at range 

bin 50 with width 100 bins (equivalent to 100 microseconds). In a similar fashion the 

target at range bin 250 starts at range bin 250 with width 100 bins.  Both target signals 

are filtered using a 200 kHz Gaussian band pass filter and the FFT of the output is 

computed. The magnitudes of the spectra are illustrated in Figure  4.6.  As expected the 

spectra only depends on the chirp band width f∆ . The FrFT of the target signals at range 

bins 50 and 250 are shown in Figure  4.7. The optimal order opta  for the chirp signal 

calculated from ( 3.14) is 1.7061 and the absolute value of the FrFT of the signal is a 

spike at pP  sample number 293 (as seen in the zoomed figure) which could also be 

determined mathematically from ( 3.15). The target signal at range bin 250 appears at 

pP sample number 114 in the optimum FrFD. From these results the FrFT dependence 

on start time startT even when the chirp signal has the same chirp width is evident. 

4.4.2 FrFT Radar Signal Dependence on ∆f  

Two different target chirp signals with bandwidths of 200 kHz and 500 kHz, 

respectively, are considered next.  These radar chirp signals start at the same time and 

are completely overlapped in time as seen in Figure  4.8. The FFT of both signals is seen 

in Figure  4.9. As expected they overlap in the frequency domain. In Figure  4.10, the two 

spikes at pP samples 2125 and 2285 (in the zoomed figures) demonstrate the dependence 

of the signal on the chirp band width f∆ in the optimum FrFD. From Figure  4.10, it is 

observed that if the two chirp signals completely overlap in time and frequency they can 

be separated in the optimum FrFD. 
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Figure  4.5 Chirp signals for different targets ranges 

Figure  4.6 FFT for different targets ranges 

 
Figure  4.7 FrFT for different targets ranges 
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Figure  4.8 Chirp signals for different radars bandwidth 

Figure  4.9 FFT of different radars bandwidth 

 
Figure  4.10 FrFT of different radars bandwidth 
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4.4.3 FrFT Radar Signal Dependence on Pulse Duration T  

Consider a received radar signal that comprises two chirps with the same start time 

startT but with different pulse width durations are seen in Figure  4.11. Both chirps start at 

range bin 150 with pulse width duration equal to 100 micro sec. and 120 micro sec. 

respectively. These two signals have the same chirp bandwidth so the FFT of both 

signals are identical as seen in Figure  4.12. The optimum FrFT of both signals is seen in 

Figure  4.13 in pP sample 203 and 194 (shown in the zoomed figures) for the chirps with 

pulse width duration equal to 100 micro sec. and 120 micro sec., respectively. Thus the 

dependence of the matched filter design in FrFD on the chirp pulse with duration is 

observed. 

4.4.4 FrFT Matched Filter for Multiple Targets 

As described in subsection  4.3.5, the FrFD Matched filtering can be used for the case of 

multiple targets in the received signal.  Figure  4.14 shows the case of two targets with a 

relative delay of 1 second. In this case the transmitted chirp has a bandwidth of 200 Hz 

with time duration of 1 second, the total range gate is of 2 seconds. The first target is 

placed after 0.5 seconds and the second after 1.5 seconds.  In Figure  4.14-A and Figure 

 4.14-B the result of the first and the second iteration are shown while in Figure  4.14-C 

Figure  4.11 Chirp signals for different radars pulse duration 
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Figure  4.12 FFT for different radars pulse duration 

 

Figure  4.13 FrFT for different radars pulse duration 

shows the final result.  In the first iteration, Figure  4.14-A, the first target alone is 

detected while in the second iteration, Figure  4.14-B the second target is detected. The 

sum of the two iterations, Figure  4.14-C shows the detection of both the target. 

The advantages provided by the use of the FrFT Matched Filtering compared to the 

Fourier approach are evident. In this case the -3 dB width of the main lobe is 17.3 times 

narrower than that obtained using the FT matched filter.  
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(A) (B) 

 
(C) 

Figure  4.14 FT and FrFT Matched filters for multiple targets 

(A) first target detection. 

(B) secound target detection. 

(C) resultant detection. 

4.4.5 Performance Enhancement Using FrFT Matched Filter 

It is clear from the mathematical model for the matched filter in FrFD ( 4.15) and the 

simulation results in subsections  4.4.1,  4.4.2and  4.4.3 that to obtain a matched filter in 

the FrFD the time delay of the received chirp is required. This time delay is estimated as 

described previously in subsection  4.3.3. The FT and FrFT matched filter outputs for 

two chirp signals with duration 1 sec. and chirp bandwidth 30 Hz starting at zero and 7.5 

sec are shown in Figure  4.15 ( 0=startT ) and Figure  4.16 (estimated 
startT ), respectively. 

In these figures an improvement of the chirp compressed width using the FrFT matched 
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filter rather than the FT matched filter for the applications with for 0=startT  or estimated 

startT is observed.  

In Figure  4.15  and Figure  4.16, it is shown that the FrFT matched filter output is 

narrower than the FT matched filter output. At the 3 dB point the ratio between the 

widths of the FT matched filter output to that of the FrFT matched filter out is 

approximately 3.706.   A significant reduction in side lobe using the FrFT matched filter 

is also observed in both figures.  Figure  4.16 shows that the total side lobe power using 

the FrFT matched filter results to be 6.49 dBs less than that obtained using the FT 

matched filter. 

 
Figure  4.15 FT and FrFT Matched filters for 0=startT  

 
Figure  4.16 FT and FrFT Matched filters for  known startT  
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4.4.6 FrFT and FT Matched Filter Enhancement at Different SNRs 

Simulation results for a chirp signal ( 30=∆f  Hz, 2=startT sec with chirp duration 2.5 

sec, 5=T sec, and 100=sF Hz) in a noisy environment with different SNRs applied to 

both FT and FrFT matched filters is shown in Figure  4.17. This shows improvements in 

SNR output for the chirp signal for the two matched filters. The results in Figure  4.17 

comprise an average over 500 independent noise generations. It shows an average 

improvement of approximately 3 dB by using FrFT matched filter compared to the FT 

matched filter for different input SNRs in range -15:20 dB.  This gain in performance is 

accompanied with an increase in complexity as will be analysed in Section  4.5 for the 

implementation of matched filter in FrFD as well as the extra processing required for 

estimating the radar received parameters. For different simulation scenarios 

(different startT , f∆ , T , startF  , stopF , and sF ), it is found that a SNR improvement is 

achieved using FrFT matched filter compared to using the FFT matched filter. The 

results are somewhat surprising, given that the matched filter is widely accepted as the 

optimum detector in the case of white noise and linear processing. 

Figure  4.17 SNR signals output using FT and FrFT matched filtering 
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4.5 Discussion on Matched Filter Complexity using FT and FrFT  

Performing the matched filtering in the FrFD is advantageous over the regular Fourier 

domain in that it achieves a narrower main lobe, reduces the side lobe levels, and 

enhances the SNR of the output. The chirp parameters ( f∆ ,T , startF  , and stopF ), the chirp 

received time in the radar receiving window startT , and the sampling Frequency sF are 

the parameters that affect the extent of these enhancements. These improvements when 

using the proposed matched filter in the FrFD compared to the matched filter in the 

Fourier domain face an increased complexity requirement. To compare the matched 

filtering complexity in both the Fourier and the fractional Fourier domains, it is required 

to know the complexity of fast Fourier transform (FFT) algorithm and FrFT algorithm 

which will be described in the following: 

• The complexity (complex multiplications) for an L -point FFT algorithm is 

LL 2log)2(   (for L  power of two).  

• Various methods [63, 88, 105] are used to implement the FrFT algorithm. The 

complexity of these algorithms is approximated to LL 2log . 

Table  4.3 shows a comparison of complexity between the matched filter implementation 

in both Fourier domain and FrFD. It shows that the matched filter in Fourier domain 

implemented by the FFT of the received radar signal multiplied by stored FFT replica of 

the received signal followed by inverse fast Fourier transform (IFFT) has a complexity 

approximated by LL 2log (the same complexity as the FrFT). The implementation of the 

matched filter in FrFD starts with FrFT of the received radar signal multiplied by FrFT 

replica of the received signal (the mathematical formula of this replica depends on 

estimation of the start time startT ) followed by inverse fast Fourier transform. Depending 

on this implementation the total complexity for a matched filter in FrFD as seen in Table 

 4.3 is approximated by LL 2log5.2 . Thus the complexity for implementing the matched 

filter in FrFD is approximately 2.5 times the complexity of the matched filter in Fourier 

domain.  
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Table  4.3  Complexity for matched filtering in the FT and fractional Fourier domains 

filter 

comparison 
Matched Filter (FT) Matched Filter (FrFT) 

implement by  

 

1 FFT  

1 multiplications 

1 IFFT 

2 FrFT  

1 multiplications 

1 IFFT 

complexity  

 

1 L (required multiplications) 

+ LL 2log)2(  (1 FFT)  

+ LL 2log)2(  (1 IFFT) 

 ≈ LL 2log  

1 L (required multiplications)  

+ LL 2log2  (2 FrFT)  

+ LL 2log)2(  (1 IFFT) 

 ≈ LL 2log5.2  

 

4.6 Conclusion 

In this chapter matched filters in the Fourier domain and the FrFD were investigated. 

The limitation of using matched filter in the optimum FrFT for a chirp signal was shown 

to be dependent on the chirp shape in this domain, on the chirp start time and chirp band 

width. The complexity of FrFT matched filter increases by approximately 2.5 times 

compared to the normal FT matched filter. In the special cases where specific 

parameters can be estimated then a significant enhancement results when using matched 

filter in the optimum FrFD compared to the conventional FT approach. 

An average improvement of approximately 3 dB is gained by using FrFT matched filter 

compared to the FT matched filter for different input SNRs in range -15:20 dB in the 

considered case (the results are somewhat surprising, given that the matched filter is 

widely accepted as the optimum detector in the case of white noise and linear processing, 

and future investigation will aim to confirm the experimentally obtained results). At the 

3 dB point the ratio between the widths of the FT matched filter output to that of the 

FrFT matched filter output is approximately 3.706. A significant reduction in side lobe 

using the FrFT matched filter is achieved in the cases studied. 

FrFT based matched filtering can be used for target detection in chirp radars with the 

advantages of increasing the output SNR, reducing the side lobe power, that is 

applicable for multiple targets detection with the limitation of estimating the target 

received time (
startT ) and increasing complexity compared to FT based matched filtering. 
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555...   FrFT Based Monopulse 

Processor 

5.1 Introduction  

Monopulse radar processors are used to track a target that appears in the look direction                         

beam width. The distortion produced due to many reasons such as manmade high power 

interference and additive unwanted targets that appear in the look direction beam width 

may lead to errors in the target tracking angles resulting in target mistracking.  

A scenario where more than one target exists in the monopulse radar half power beam 

width is shown in Figure  5.1. The resultant distortion due to this interference will affect 

the induced target error voltage and consequently the radar tracking ability.  

The distortion produced when manmade high power interference (jamming) is 

introduced to the radar processor through the radar antenna main lobe (main lobe 

interference) or antenna side lobe (side lobe interference) may affect the induced target 

error voltage and consequently the radar tracking ability. A scenario where manmade 

high power interference introduced to monopulse radar of main lobe jamming or side 

lobe jamming is shown in Figure  5.2. The resultant distortion due to this interference 

may lead to errors in the target tracking angles resulting in target mistracking. 

This chapter consists of two main sections ( 5.2 and  5.3). It introduces new algorithms 

that aim to overcome the monopulse distortion problems mentioned previously. This 

chapter is organized as follows: Section  5.2 proposes a new structure of the FrFT based 

monopulse radar processor and derives the new algorithm, FrFT-ATF, for optimum 

FrFT to reduce the interference due to more than one target appear in the radar look 

direction. Later on Section  5.2, a set of simulation results is presented for single and 

multiple targets using the new monopulse processor.  
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Figure  5.1 Three targets scenario for Monopulse radar 

Section  5.3 proposes a new structure of the FrFT based monopulse radar processor, 

FrFT-NIF, to mitigate high power jamming signal introduced to the radar processor 

through the radar antenna. A set of simulation results using simulated and real data is 

presented for the new monopulse structure that shows the improved reduction in the 

interfered signal and improves the tracking performance for the FrFT based monopulse 

radar compared to the conventional monopulse radar are included.  Section  5.4 

concludes the chapter. 

  
Figure  5.2 Interference scenarios for monopulse radar. 
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5.2 A New Structure of Monopulse Radar for Multi Targets in Look 

Direction  

Various methods [36, 106, 107] for combating high noise power interference have been 

published. 

Seliktar [37] suggested adding more constraints to the monopulse processor to cancel the 

distortion effect due to more targets appearing in the look direction using constraint 

matrix  C  and constraint vector c  in ( 2.15). However this would require knowledge of 

the position of the additive targets. Our work proposes the use of an optimal FrFT filter 

to cancel the additional targets’ signals that appear in the look direction half power beam 

width without adding any more constraints to the monopulse processor. 

The proposed new structure of the monopulse radar is shown in Figure  5.3. In Figure  5.3  

the optimum fractional filter obtains information about the shape of the chirp signal from 

the waveform generator and the updated target range from the range calculation. This 

information is used to determine the optimal FrFD.  

The new optimum fractional filter (shown as red block in Figure  5.3) is illustrated in 

Figure  5.4. For N receiving channel in which the received signal from each of the 

N antenna elements fills L  range gates, the total radar data size is therefore equal to 

)(tc

sF

sF

][nc

)(tc

)(ts ][ns

)(tc

  
Figure  5.3 New structure of the proposed monopulse radar 
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Figure  5.4 FrFT multi targets filtering radar data  

 

LN ×  for each pulse return. The optimum FrFD is calculated for each receiving channel 

data with size L×1  to filter the signal in the FrFD.  The resultant filtered data (useful 

signal) is converted back from the optimum FrFD using inverse FrFT to the time domain. 

The  L×1  data output from N  FrFT processors are applied to azimuth, elevation, and 

range calculator to determine the target information parameters.  

5.2.1 The FrFT-ATF algorithm  

The following steps in Table  5.1 describe the proposed FrFT filtering algorithm for 

additive targets (FrFT-ATF) that may be employed to cancel more than one target signal 

arriving in the look direction of the main beam while extracting the 1st target signal. 

The mathematical description for the previous steps is now described in detail: 

Applying the signal model of ( 3.20) to our radar system in which H is considered to be 

unity matrix (no system degradation) 

SSZ ′+= , ( 5.1) 

where the useful signal S  is the received signal of tracked target signal and the 

distortion signal S′  is the sum of the additional targets’ signals (in the simulation, the 

2nd target signal and the 3rd target signal). 

The target received signal is a chirp signal given by ( 2.20).  The optimum FrFT order 

opta  for this chirp can be computed by applying ( 3.14) to the radar system as:  
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Table  5.1   FrFT for additive targets filtering (FrFT-ATF) algorithm  

1 

 

Calculate 
opt

a  to determine the optimal FrFD for the 1
st
 (tracked) target 

signal from the information supplied from the waveform generator. 

2 Estimate the correlation matrix for the tracked target and the additive targets 

3 
 Estimate the cross correlation matrix for the tracked and the other targets in 

the optimum FrFD and the auto correlation matrix of the additive targets in 

the optimum FrFD. 

4 For Nk ≤≤1  do   (for each receiving channels), k is iteration index 

5 
 Design the optimum filter in the FrFD 

6  Extract the useful signal (the tracked target signal) by using the 

optimum FrFT matrix 

7 
 Transform the filtered signal back to time domain using inverse FrFT 

with the known optimal order opta− . 

8 End 

9 Use the filtered LN ×  data to re-calculate the target information (target bin 

position, azimuth and elevation angles) 

 


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2
2
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π
, 

( 5.2) 

The required information to calculate correlation matrices is obtained from the fact that a 

previous knowledge of the target position is achieved (already tracked before the other 

targets enter the radar look direction) and from the sample signal of the waveform 

generator (parameters of the transmitted chirp signal). So 
ssR  apart from a scale factor 

A  is computed as:  

)( H

ss E ee .ssR = , ( 5.3) 

where es is an estimate chirp signal of  the first target at range tR : 
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( 5.4) 

where sφ  is a random phase shift similar to that used in ( 2.21) and startT is calculated 

from ( 2.21) for target at range tR . 

In the same fashion ss ′′R  is calculated from: 

)(
H

ss E ee s.sR ′′=′′ , ( 5.5) 

where es′  is an estimate chirp signal at the other targets range: 
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( 5.6) 

where s′φ  is a random phase shift similar to that used in  ( 2.20) and tstarT ′ is calculated 

from ( 2.21) for target at range tt RR ∆+  and tR∆ is the maximum range difference 

between the 1
st
 target and any of the additive  targets that cannot be resolved by a range 

gate canceller. tR∆  can also be considered as the number of range bin occupied by the 

1st target. tR∆  in ( 5.6) ensures that no need to acquire any information about the range of 

the additive targets. 

The next step is to calculate the cross correlation matrix 
aa zsR for the 1

st
 and the sum of 

the targets and the auto correlation matrix 
aa zzR of the targets sum in the calculated 

optimum FrFD by applying ( 3.20) and ( 3.21), respectively, as 

optopt

aa

aH

ss

a

zs

−
= FIRFR , and ( 5.7) 

optopt

aa

a

ss

H

ss

a

zz

−

′′+= FRIRIFR )( . ( 5.8) 

Then the optimum filter in the optimum FrFD
qopt,g  is given by 
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The filtered signal ŝ  in the time domain is calculated from ( 3.24). All the outputs 

signals from the N  FrFT filters are supplied to the monopulse processor (the processors 

mathematical models were presented in Section  2.6) to calculate the target information. 

Proposed FrFT filtering technique 

To understand the proposed FrFT filtering algorithm (FrFT-ATF) applied to cancel 

additive targets in the radar data, the following target parameters are considered, the 

tracked target’s SNR equals 50 dB, the additive target’s SNR equals 47 dB, at an angle 

that varies randomly near to the tracked target (the radar is locked on the 1st target 

before the additive targets enter the radar half power beam width) but still in the look 

direction beam width), and at range bin 153. 

Figure  5.5-A shows the absolute value for the radar received signal in the 1
st
 channel of 

the radar channels. The radar received signal is transformed to the optimum FrFD using 

the calculated optimum index opta  equal to 7074.1  (Substituting the monopulse radar 

parameter values into ( 5.2)) and a spike for the tracked target appears at fractional 

sample 205 and for the additive appears at fractional sample 202 as seen in Figure  5.11-

A. Applying FrFT filtering algorithm (FrFT-ATF), the additive target magnitude in the 

optimum FrFD is highly decrease in this domain as seen in Figure  5.5-B. this reduction 

in the additive target magnitude improves the tracking performance as seen later in the 

simulation section (section  5.2.2). 

5.2.2 Simulation Results 

In the simulations the radar comprises the same radar parameters considered previously 

in subsection  2.9.1. The target is considered at range bin=150 at angle o32  from the look 

direction with SNR set to 50 dB with Doppler frequency 150 Hz.   
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(A) Two targets in optimum FrFD (No filtering) 

 
(B) Two targets in optimum FrFD (FrFT filtering) 

 

Figure  5.5 FrFT filtering algorithm (FrFT-ATF). 

5.2.2.1 Single Target 

As seen in Figure  2.12-A that the sum pattern has maximum at the look direction angle 

o32  and null at the same angle for the difference pattern in Figure  2.12-B. A well sloped 

curved for monopulse error voltage is calculated from ( 2.10) and is shown in Figure 

 2.12-D. It determines the target position by mapping this voltage onto the MRC in 

Figure  2.12-C to get
∧

φ . Any distortion to this curve will affect the target position 
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calculation. The processor output is determined from ( 2.9). From Figure  5.6-A, it is seen 

that there is only one target at the range bin 150 in the operating radar range bins.  

Similary, the spatial processor pattern is calculated from ( 2.17), the processor output 

from ( 2.9), and the monopulse error voltage from ( 2.10). It is shown in Figure  2.13-A 

that the sum pattern has maximum at the look direction angle o32  and null at the same 

angle for the difference pattern in Figure  2.13-B. It looks like the same pattern shape of 

the conventional processor because there is no signal interference due which the sum 

and difference patterns change their shape to try to cancel the effect of this interference. 

Again a well sloped curved for monopulse error voltage is obtained. From Figure  5.6-B, 

it is seen that there is only one target at the range bin 150 in the operating radar range 

bins.  

5.2.2.2 Multiple Targets 

In the simulation for two targets the following target parameters are considered, the 

second target’s SNR equals 53 dB (double the power of the 1
st
 target), at an angle that 

varies randomly near to the 1
st
 target (the radar is locked on the 1

st
 target before the 

additive targets enter the radar half power beam width) but still in the look direction 

beam width), and at range bin 153.  Note that this second target cannot be resolved 

because the 1st target occupied bins include 7 bins with the same Doppler frequency of 

the 1
st
 target. For the three targets scenario, the third target SNR is considered to be 

equal 50 dB (equal power of 1
st
 target), also at an angle that varies randomly near to 

 
(A) Conventional processor 

 
(B) Spatial adaptive processor 

Figure  5.6 Monopulse processor outputs. 



89 

the 1
st
 target but still in the look direction beam width), and at range bin 147 (nearer than 

the 1st target to the tracking radar) with the same Doppler frequency as the 1st target. 

Two Targets Scenario 

The conventional and the spatial processor outputs using ( 2.9) are seen in Figure  5.7-A 

and Figure  5.8-A, respectively. It is clear that in these figures that the second target 

cannot be cancelled using range gate canceller (overlapped with the 1
st
 target). The two 

target problem causes deviation in the monopulse error voltages from their original 

values to distorted curves as seen in Figure  5.7-B and Figure  5.8-B. This distortion in the 

error voltage will affect the tracking angle of the 1
st
 target resulting in a probable 

mistracking outcome. 

From Figure  5.7-D, the STDAE for the conventional processor is much higher at 2.9 for 

different target SNR (from 20-100 dB), so the system is completely distorted and the 

radar cannot track the 1
st
 target. In the case of the spatial adaptive processor in Figure 

 5.8-D, it starts to achieve good tracking results from approximately 60 dB because of the 

adaptive characterization of the beam pattern that attempts to cancel the 2
nd

 target signal.  

Despite the low STDAE values (average value 0.3) the processor still introduces 

considerable error in the 1
st
 target angle calculation.  

Three Targets Scenario 

The conventional and the spatial processor outputs using ( 2.9) are seen in Figure  5.7-A 

and Figure  5.8-A, respectively. It can be seen in these figures that both the additive 

targets cannot be cancelled using range gate canceller (overlapped with the 1
st
 target). 

There is now significant deviation in the monopulse error voltages from their original 

values to distorted curves as seen in Figure  5.7-B and Figure  5.8-B due to the third target. 

From Figure  5.7-D, the STDAE for the conventional processor is much higher at 2.9 for 

different target SNR, so the system is completely distorted and the radar cannot track the 

1
st
 target. In case of the spatial adaptive processor in Figure  5.8-D, it starts to achieve 

good tracking result from approximately 70 dB.  
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5.2.2.3 Monopulse Processors using Optimum FrFT Filter 

Substituting the specific monopulse radar parameters in ( 5.2), the order of the optimal 

FrFD opta  is computed as 1.7074. Following the steps described in subsection  5.2.1, the 

correlation matrix for the 1st target 
xxR and the additive targets yyR by considering tR∆ = 

7 range bin (more than 7 range bin there is no problem because the radar can cancel the 

additive targets using rage gate canceller) by using ( 5.3) and ( 5.5), respectively, are 

calculated. All the steps in subsection  5.2.1 are continued until the filtered data is 

produced. 

Two Targets Scenario with FrFT 

Applying the filtered data to the radar processors to calculate the processors outputs 

using ( 2.9), it is seen from Figure  5.7-C and Figure  5.8-C that only one strong target 

appears in the output and the 2
nd

 target is significantly suppressed (more than 20 dB 

reduction).  As seen in Figure  5.7-A and Figure  5.8-A, the resulting monopulse curve for 

the two targets scenario with FrFT are nearly identical to their original values (only one 

target). As a result the significance of the distortion due to the 2
nd

 target in the 

monopulse look direction has been minimized. The resultant STDAE using ( 2.18) for 

different SNR (20:100 dB) for the conventional processor is particularly low (average 

value less than 0.1) as shown in Figure  5.7-D. In Figure  5.8-D the STDAE for the spatial 

processor in case of two targets using FrFT are particularly low (average value less than 

0.1). The new system configuration enhances the system performance for the two target 

scenario at all SNR for the considered radar processors. If the scenario has only targets 

in the tracked target background then the calculated STDAE decreases to average 0.1 

due to the highly signal suppression in this case. This implies that both processors are 

able to track the first target correctly and the introduced error due to the existence of the 

additive target is significantly reduced. 

Three Targets Scenario with FrFT 

Applying the filtered data to the radar processors to calculate the processors outputs 

using ( 2.9), it is seen from Figure  5.7-C and Figure  5.8-C that only one strong target 

appears in the output and the 2
nd

 target is significantly suppressed (more than 20 dB 
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reduction) and the 3
rd

 target is suppressed (more than 5 dB reduction). The same results 

are obtained when only one additive targets is exists, in other words when only one 

additive target  exists, its signal is suppressed by  5 dB reduction and 20 dB reduction 

for the near target and far target, respectively.  As seen in Figure  5.7-B and Figure  5.8-B, 

the resulting monopulse curve for the three targets scenario with FrFT are slightly 

different to their original values (only one target). As a result the problem of the 

distortion due to the 3rd target in the monopulse look direction has been resolved. The 

resultant STDAE using ( 2.18) for different SNR (20:100 dB) for the conventional 

processor is low (average value less than 0.3) as shown in Figure  5.7-D. In Figure  5.8-D 

the STDAE for the spatial processor in case of three targets using FrFT are particularly 

low (average value less than 0.3). The higher values for STDAE in this case because the 

3rd target is nearer to the radar than the 1st one. In other words if the 3rd target is in the 

background of the 1st target, the STDAE will reduce to 0.1 (similar to the two target 

scenario). 

The previous suppression of the additive targets signals power and also the 

enhancements in the STDAE values were tested for up to six targets (3 near target and 3 

far targets) and generally a similar SNR reduction of approximately 20 dB was observed 

for all far targets while a SNR reduction of approximately 5 dB was observed for all 

near targets.  

5.3 A New Structure of Monopulse Radar for Mitigate High Power 

Interference 

In the previous section (section  5.2), the mistracking problem due to additional far and 

near targets appearing in the radar look direction along with the tracked target that leads 

to potential target mistracking especially in fire and forget tracking systems was 

addressed using the filtering in the optimum FrFD (FrFT-ATF). A very high 

improvement in the radar tracking ability for different target SNR was gained by using 

the proposed FrFT-ATF based on FrFD cancelling technique (more than 20 dB 

reduction for the far targets and more than 5 dB reduction for the near targets).   
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(A) 

 
(A) 

 
(B) 

 
(B) 

 
(C) 

 
(C) 

 
(D) 

 
(D) 

Figure  5.7 Conventional  

(A) processor output (No Filtering). 

(B) error voltage curve. 

(C) processor output (FrFT Filtering). 

(D) STDAE. 

Figure  5.8 Spatial adaptive  

(A) processor output (No Filtering). 

(B) error voltage curve. 

(C) processor output (FrFT Filtering). 

(D) STDAE. 
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In this section a new monopulse based FrFT processor is presented. The FrFT 

monopulse processor algorithm uses FrFT optimal noise interference filtering (FrFT-

NIF) to significantly reduce the effect of high power interference (jamming) signals. 

Seliktar et al. [37] presented a monopulse processor to reduce the effect of the noise 

interference prior to target information extraction. Our new FrFT filtering algorithm 

depends on the range information extracted from the sum channel output in the 

monopulse processor (conventional monopulse and spatial adaptive processor). This 

output (that still remains noisy) is used as a guide when FrFT filtering of the received 

signal is carried out to enhance interference suppression.   

5.3.1 The FrFT-NIF algorithm 

The proposed FrFT noise interference filtering (FrFT-NIF) based monopulse processor 

is illustrated in Figure  5.9.  It comprises a conventional monopulse processor subsystem 

along with additional FrFT and related processing blocks. The new FrFT based 

monopulse processor replaces the conventional monopulse processor seen in Figure  2.14. 

Thus in the new monopulse radar structure, a pulsed chirp signal )(tc  defined in ( 2.5), 

produced by the waveform generator, is up-converted to the radar carrier frequency, 

amplified and passed through the duplexer to be transmitted.  

)(lz∆
)(lz∑

)(φ∆W

)(φ∑W

∆w∑w

xR][nS

)(lνε

φ

)(lz∑

)(lz∆

)(lz∑

∆w

∑w

 
Figure  5.9 New structure of the proposed FrFT based monopulse processor 
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The down-converted received signal )(ts  passes through a band limited Gaussian filter 

before passing through the chirp matched filter to maximize the target return signal. The 

target information parameters are then calculated by the monopulse processor 

(conventional monopulse and spatial adaptive processor) from )(lz∑ . The target range 

(the range bin number) with the optimal fractional order information from the chirp 

waveform generator is used to determine the target position in the optimum FrFD from 

( 5.2). This position is used in the FrFT filtering by canceling the noise in the FrFD 

before transforming back to the time domain using the inverse FrFT. The filtered radar 

data is used again to re-calculate the target information parameters. The optimal FrFT 

filtering process illustrated in Figure  5.10 (dashed block in Figure  5.9) consists of 

N receiving channels in which the received signal from each of the N antenna elements 

will fill L  range gates. The total radar data size is therefore equal to LN ×  for each 

pulse return. The optimum FrFD is calculated for each receiving channel data with size 

L×1  to filter the signal in the FrFD.  The resultant filtered data (useful signal) is 

converted back from the optimum FrFD using an inverse FrFT to the time domain. The  

L×1  data output from N  FrFT processors are re-processed to re-determine the target 

information parameters. 

The following steps in Table  5.2 are involved in the proposed algorithm that may be 

used to cancel the noise interference signal: 

 
Figure  5.10  FrFT noise interference filtering radar data 
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Table  5.2   FrFT noise interference filtering (FrFT-NIF) algorithm  

1 

 

Calculate 
opt

a  to determine the optimal FrFD for the tracked target signal 

from the information supplied from the waveform generator. 

2 Calculate the target range information. 

3 Calculate the peak position 
p

P of the target in the optimal FrFD  

4 For Nk ≤≤1  do   (for each receiving channels), k is iteration index 

5 Filter the received data by keeping the target data (peak position 

sample and its adjacent samples) and force all the remaining samples 

in the tracking window to zero. 

6 Transform the filtered signal back to time domain using inverse FrFT 

with the known optimal order
opt

a− . 

7 End 

8 Use the filtered LN ×  data to re-calculate the target information (target 

bin position, azimuth and elevation angles) 

 

The mathematical description for the steps is now described. For the received target 

signal given by ( 2.20) overlapped with noise interference jamming signal jamN  by 

( 2.24), a signal model of our radar system [3] with size LN ×  considering only one 

pulse return is: 

jamNSZ += . ( 5.10) 

The optimum FrFT order opta  for the chirp can be computed by applying ( 5.2) to the 

radar system. From the target position in the return radar window, the chirp start time 

sampling number stt is determined. Consequently the target peak position in the 

optimum FrFT can be calculated from ( 3.15). As all other variables in this equation are 

known as the peak position in the FrFD can be written as:  

stopt

s

T

s

optp t
LF

MLf

LF

f
P )cos(

)/(2

)/(

)/(

)2/(
)sin( θθ −







 ∆
+

∆−
= . 

( 5.11) 

In each receiving channel, the peak position sample 
p

P  and its adjacent samples (5 
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samples on both sides, the number of these samples depends on the estimate chirp band 

width in optimum FrFD) are kept and all other samples in the tracking window are set to 

zero to get the filtered data in the optimal FrFD opta
z . The filtered signal ŝ  in the time 

domain is obtained by applying the inverse FrFT using negative value for the same 

optimal operator 
opt

a− (for each receiving channel) as: 

)(ˆ optopt aa
F zs

−
= . ( 5.12) 

All the output signals from the N  FrFT filters are then re-processed to get the target 

information parameters after applying the proposed filtering technique using ( 2.9) and 

( 2.10). 

During the re-calculation for the azimuth and elevation target angles, the weights ∑w  

and ∆w , which are generated using the noisy radar data, are kept and not re-generated 

using the new FrFD filtered data to maximize the benefit of the monopulse processors 

spatial cancelling as shown in Figure  5.9. Hence the processor output is generated using 

the filtered data in the optimum FrFD with the weights ∑w  and ∆w  corresponding to the 

spatial distribution of the noisy radar data. This idea can be applied to different types of 

the spatial noise cancelling monopulse processor in conjunction with FrFT. 

5.3.2 Simulation Results 

In the simulations the radar comprises the same radar parameters considered previously 

in subsection  2.9.1. The target is considered at range bin=150 at angle o32  from the look 

direction with SNR set to 50 dB with Doppler frequency 150 Hz.   

5.3.2.1 Proposed FrFT filtering technique 

To understand the proposed FrFT filtering algorithm (FrFT-NIF) applied to cancel noise 

interference in the radar data, the following jamming signal is injected to the target 

simulated signal with interference to noise ratio (INR) set to 82 dB at angle o32  from the 

look direction (main beam jamming). Figure  5.11-A shows the absolute value for a noisy 

received signal in the 1st channel of the radar channels. This noisy signal is transformed 

to the optimum FrFD using the calculated optimum index 
opta  equal to 7074.1  
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(Substituting the monopulse radar parameter values into ( 5.11)) and a spike for the target 

received chirp signal appears at fractional sample 205 as seen in Figure  5.11-B . Using 

the information that the target is detected at range bin 150, the 
p

P  in the optimum FrFD 

exists at fractional sample 205 to confirm the target sample position (in case of very high 

interference scenario). In Figure  5.11-C all the samples in the tracking window in the 

FrFD are forced to zero except the samples from 200 to 210 (peak position sample and 

its five adjacent samples). The inverse FrFT with opta equal to -1.7074 transforms the 

filtered signal back to the time domain after filtering a shown in Figure  5.11-D (real and 

imaginary values) in Figure  5.11-E (absolute values). This process is repeated for all the 

receiver channels N . Hence the filtered radar data LN ×  is used to re-compute the 

azimuth, elevation target angles and processor output can then be computed. 

5.3.2.2 Simulated Data Jamming Scenario 

A jamming signal with INR set to 82 dB with two scenarios, first at angle o32  from the 

look direction (main beam jamming) and second at angle o62  from the look direction 

(side lobe beam jamming) are introduced. The jamming interference causes deviations in 

the monopulse error voltages from their original values (no jamming). This distortion 

affects the tracking angle of the tracked target resulting in a probable mistracking 

outcome. The error voltage is calculated from ( 2.10). 

Figure  5.12-A shows the error voltage curve for the conventional processor. It is clear 

that in case of main lobe interference the curve is highly affected by interference so it is 

expected to get high STDAE while in the case of side lobe interference it is less affected 

by the interference and the error decreases to form a lower STDAE characteristic.  

The error voltage curves for the spatial adaptive processor are shown in Figure  5.12-B.  

In the case of main lobe interference it is seen that the tracking angle is very sensitive to 

any change in the error voltage. This is due to the radar adaptive pattern which shifts to 

the left thus decreasing the beam width. On the other hand in case of side lobe 

interference the error voltage is nearly the same as when no interference which implies 

that the processor successfully cancels the noise interference signals. 



98 

 
(A) 

 
(B) 

 
(C) 

 
(D) 

 
(E) 

Figure  5.11 FrFT Filtering algorithm (FrFT-NIF) details 

  (A) absolute value for a noisy received signal. 

(B) received signal in the optimum FrFD. 

(C) NIF in the optimum FrFD. 

(D) Fitered received signal. 

(E) magnitude of the received signal. 
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(A) 

 
(B) 

Figure  5.12 Error voltage curves 

The processors’ outputs using ( 2.9) for target SNR=70 dB is shown in Figure  5.13-A 

and Figure  5.13-B for the main lobe interference and in Figure  5.14-A and Figure  5.14-B  

for the side lobe interference, for the conventional and spatial adaptive processors, 

respectively. In all these figures the target exists at range bin 150. Using FrFT filtering, 

the processors’ output, in case of main lobe interference, decreases the noise level as 

seen in Figure  5.13-A and Figure  5.13-B. The noise interference signal is reduced by 

approximately 25 dB in the conventional case and by approximately 5 dBs in the case of 

the spatial adaptive processor.  In the case of side lobe interference as shown in Figure 

 5.14-A and Figure  5.14-B, the proposed FrFT filtering technique helps to decrease the 

noise levels by approximately 12 dBs and 4 dBs at the outputs of the conventional and 

spatial adaptive processors, respectively. 

Output OINR (7) is used to quantify the improvement. It is used to compare the 

mitigation performance for both monopulse processors using ( 2.19), knowing that the 

lowest OINR value represents the best mitigation performance. OINR values in Table 

 5.3 show that the FrFT filtering technique enhances the processors mitigation due to 
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(A) 

 
(B) 

Figure  5.13 Monopulse processor Outputs (main lobe) 

 

(A) 

 

(B) 

Figure  5.14 Monopulse processor Outputs (side lobe) 

noise for both jamming scenarios. From Table  5.3 it is observed that the OINR values 

for main lobe interference are always higher than those for the side lobe inference (that 

is clear because the distortion effect of side lobe interference is less than the main lobe 

interference). Also it is seen that the OINR values using FrFT filtering are always less 

than the OINR values without filtering (the proposed filtering technique helps to 

decrease the noise level for all processors in all noise interference cases). From Table 

 5.3 in case of conventional processor the OINR  values are improved by approximately 

15 dB and 9.7 dB for main lobe interference and side lobe interference, respectively, 

using FrFT filtering. In the case of spatial adaptive processor the OINR  values are 

improved by approximately 3.6 dB and 9.5 dB for main lobe interference and side lobe 

interference, respectively. 
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Table  5.3   OINR in dB for monopulse processors 

Monopulse processor Main lobe interference Side lobe interference 

Conventional processor 

(a)No filtering 

(b)FrFT  filtering 

 

14.31 

-1.33 

 

-3.3 

-12.99 

Spatial processor 

(a)No filtering 

(b)FrFT filtering 

 

-19.69 

-23.3 

 

-77.18 

-86.75 
 
 

Figure  5.15 and Figure  5.16 show the STDAE curves for the conventional and the 

spatial processors, respectively, for both cases of the interference scenarios. STDAE is 

calculated for different target SNR (from 20-100 dB). Particular values of STDAE are 

extracted from Figure  5.15 and Figure  5.16 and tabulated in Table  5.4. These show the 

SNR values at which both processors start tracking at the different interference scenario 

(main lobe and side lobe) for the conventional structure of the radar (No filtering) and 

proposed new structure (with FrFT filtering).  

 

Figure  5.15 Conventional processor at main lobe and side lobe interference 
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Figure  5.16 Spatial processor at main lobe and side lobe interference 

 

Table  5.4 indicates an improvement of approximately 5 dBs in both interference 

scenarios for the conventional processor when using the FrFT based monopulse radar.   

In the case of spatial adaptive processor, Table  5.4 indicates an improvement of 3 dBs 

when using the FrFT based monopulse radar for the main lobe interference.  

Figure  5.15 and Figure  5.16 show that for each target SNR the STDAE value decreases 

in the case of using FrFT filtering which indicates an improvement in the tracking 

performance. For example in Figure  5.15 at target SNR equal 70 dB (vertical dashed 

line) the STDAE value decreases from 2.1 to 0.7 in the main lobe jamming and at target 

SNR equal 53 dB (vertical dashed line) from 2.5 to 1.5 in the side lobe beam jamming. 

In a similar fashion Figure  5.16 shows at target SNR equal 60 dB (zoomed portion of the 

figure) the STDAE value decreases from 1.25 to 1.15 in the main lobe jamming.  Also it 

is clear that in case of side lobe interference the processor succeeds in reducing the 

inference (very low STDAE about 0.02) while still providing lower STDAE values 

using FrFT filtering as shown in the zoomed portion of the figure in Figure  5.16. 
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5.3.2.3 Real Data Jamming Scenario 

As a second experiment an evaluation of the new monopulse structure based FrFT 

filtering was conducted on real experimental dataset stap3001 mentioned in subsection 

 2.9.3.2. 

In Figure  5.17 the STDAE is calculated for different target SNR (from 20-120 dB). 

Figure  5.17 and the corresponding extracted values in Table  5.5 indicate an 

improvement of approximately 2 dB in both processors at an STDAE value of 3.5 when 

using the FrFT based monopulse radar.   From Figure  5.17 it is clear that for each target 

SNR the STDAE value decreases when using FrFT filtering. For example in case of the 

conventional processor at target SNR equal to 100 dB the STDAE value decreases from 

2.2 to 1.8 and for the spatial processor at target SNR equal 60 dB from 1.15 to 0.95. 

All previous STDAE values of the new monopulse based FrFT filtering structure are 

superior to those obtained from the conventional and the spatial processors at different 

target SNR using no filtering. For higher SNR the new system does not introduce a large 

enhancement to the tracking performance due to the fact that the target signal is much 

higher than the interference signal. The proposed system will work in an effective 

manner when one target is in the look direction with and without interference without 

any additional constrains on the radar processor so it can work with any monopulse 

processor. 

Table  5.4   Target  SNR at an STDAE value for both monopulse processors at different 

interference scenario (simulated data) 

Main lobe interference Side lobe interference Monopulse processor 

SNR STDAE SNR STDAE 

Conventional 

(a)No filtering 

(b)filtering 

 

66.6 

61.6 

 

3.5 

3.5 

 

51.5 

46.5 

 

3.5 

3.5 

Spatial 

(a)No filtering 

(b)filtering 

 

54 

51 

 

3.5 

3.5 

 

20 

20 

 

0.02 

< 0.02 
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Figure  5.17 Monopulse processor at main lobe and side lobe Interference 

 

Table  5.5   Target  SNR at an STDAE value for both monopulse processors at different 

interference scenario (real data) 

Side lobe interference Monopulse processor 

SNR STDAE 

Conventional 

(a)No filtering 

(b)filtering 

 

96.5 

94.5 

 

3.5 

3.5 

Spatial 

(a)No filtering 

(b)filtering 

 

57.5 

55.5 

 

3.5 

3.5 
 

5.4 Conclusion 

In this chapter, solutions for the distortion problem due to the unwanted targets 

appearing in the monopulse look direction beam and the distortion resulting from 

jamming interference are presented. The following two subsections review the work 

presented and summarize its results. 
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A new monopulse system configuration with new FrFT filtering algorithm (FrFT-ATF) 

is used to overcome the problem of unwanted targets appearing in the monopulse look 

direction. The proposed system configuration with the optimum N  FrFT filters 

succeeds to effectively reduce the additive targets’ signal and minimize the STDAE for 

the both considered monopulse processors. A very high improvement in the radar 

tracking ability for different SNR (because of very low STDAE) is gained by using the 

suggested canceling technique (more than 20 dB reduction for the far targets and more 

than 5 dB reductions for the near targets). One of the key advantages of the proposed 

system is that it works in an excellent manner when only one target in the look direction 

(normal case) as well as when more than one target exists in the look direction.   

The distortion resulting from jamming interference appearing in the monopulse main 

lobe and side lobe has been solved with a proposed FrFT algorithm (FrFT-NIF) based 

monopulse processor. The proposed monopulse radar system configuration successfully 

reduces the interference noise signal and minimizes the STDAE for the both considered 

monopulse processors compared to the monopulse radar without filtering. For both 

simulated and real experiments an improvement in the radar tracking ability for different 

SNR (lower STDAE) is gained by using the proposed FrFT based monopulse radar 

technique compared to the monopulse radar without filtering. It was experimentally 

observed that, for simulated jamming scenario, effective tracking (STDAE values of 3.5) 

started at a target SNR 5dB earlier for both conventional and the spatial adaptive 

processors using the FrFT based monopulse radar. In the case of real experimental data 

an improvement of 2 dB was measured. One of the key advantages of the proposed 

system is that it will work efficiently even when no jamming (normal case). 
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666...   EMD Based Monopulse 

processor 

6.1 Introduction 

In the previous chapter, the FrFT-NIF algorithm is introduced to decrease the distortion 

produced when manmade high power jamming is introduced to the monopulse radar that 

may affect the induced target error voltage and consequently the radar tracking ability. 

In this chapter, another signal processing algorithm, EMD, is used to address the same 

problem to enhance the monopulse tracking performance. Also another filtering 

algorithm (EMD-FrFT) based on the hybrid use of EMD and FrFT.  EMD-FrFT filtering 

is carried out for complex noisy radar chirp signals to decrease the signal’s noisy 

components. 

This chapter is consists of two main section ( 6.2 and  6.3) to introduce new algorithms to 

overcome the monopulse distortion problems mentioned previously in addition to 

Section  6.4 that conclude this chapter. This chapter is organized as follows: Section  6.2 

proposes a new monopulse radar that employs an EMD based monopulse processor to 

reduce the interference due to high power jamming. Later on Section  6.2, a set of 

simulation results is presented for different jamming scenarios at different target SNR 

that demonstrates the superior performance of the new structure. Section  6.3 proposes a 

new EMD-FrFT interference filtering algorithm. A set of simulation results is presented 

for the received signal improvement at different SNRs is also introduced. The last part of 

this chapter is Section  6.4, it concludes the chapter. 
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6.2 A New EMD Based Structure of Monopulse Radar for Mitigate 

High Power Interference  

Flandrin et al [96, 103] suggests applying EMD algorithm to reconstruct a signal from 

some of the non-noisy IMFs.  In the technique a threshold energy model is used to 

determine the number of IMFs where the energy crosses a particular threshold. The sum 

of these IMFs is considered as the non-noisy part of the original noisy signal.  Kopsinis 

et al [98] developed a denoising technique inspired by translation invariant Wavelet 

thresholding method that were applied  to the EMD signal to cancel the additive noise 

and enhance the SNR. In this section, denoising techniques for complex chirp signals by 

applying bivariate EMD to the received radar signal with the resultant real and 

imaginary IMFs treated as two identical paths are developed.  

In the new EMD based structure of monopulse radar [17, 18], EMD filtering is carried 

out for the complex radar chirp signal with subsequent detrending, thresholding, and 

denoising processes. These processes are used to decrease the noise level in the radar 

processed data to improve the signal to noise ratio. The performance enhancement using 

the monopulse radar tracking system with EMD based filtering is included using the 

STDAE for different jamming scenarios and different target SNRs. The proposed system 

configuration is shown to reduce the interfered signal and to minimize the STDAE for 

high power interference signal presence in the main lobe and side lobe.  

In the proposed EMD filtering method, the radar signal is processed using a proposed 

EMD filtering algorithm to reduce the interference noise before supplying the received 

radar data to the processor output calculator. EMD denoising is introduced in this 

section as a method to enhance monopulse processors not as separate noise cancelling 

processor. Monopulse processors are superior in spatial noise cancelling while EMD 

based filtering improves its temporal noise cancelling with an overall enhanced tracking 

performance. 

6.2.1 A New Monopulse Radar Structure 

The proposed EMD based monopulse radar is illustrated in Figure  6.1. It comprises a 

conventional monopulse subsystem along with an additional high frequency sampler and 
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a new monopulse based EMD processor. Again, a pulse chirp signal )(tc  defined in ( 2.5) 

is produced from the waveform generator and is up-converted to the radar carrier 

frequency, amplified and passed through the duplexer to be transmitted. The down-

converted received signal passes through a high frequency sampler before being passed 

to the new monopulse based EMD processor.  

As seen in Figure  6.1 the new monopulse based EMD processor obtains the received 

radar high sampled data ][ns′ from the high frequency sampler with a sampling 

frequency
sF′ . 

6.2.2 New EMD Based Monopulse Processor 

The detailed construction of the proposed monopulse based EMD processor is shown in 

Figure  6.2. It starts by splitting the input signal, ][ns′  into two paths. In the first path the 

signal is down sampled to the sampling frequency sF of the radar system. This path uses 

the basic monopulse processor. The signal in the second path passes through the EMD 

filtering algorithm block (that will be described in subsection  6.2.3) before being down 

)(tc

sF

′
sF

][nc

)(tc

)(tS ][nS′

sF

 

Figure  6.1 Proposed monopulse radar  
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sampled to the regular sampling frequency sF  of the radar system. Subsequently the 

filtered output is down sampled to produce the filtered ][ns  before passing through the 

Gaussian band pass filter. The filtered data is input to a chirp matched filtering process 

to maximize the target return signal. As mentioned previously the EMD denoising is 

introduced as a method to enhance monopulse processors and not as a separate noise 

cancelling processor. 

The filtered matched signal is multiplied by the weights calculated from the original data 

to produce the sum and difference outputs )(lz∑ and )(lz∆ , respectively, from ( 2.9). This 

new monopulse processor structure keeps the enhancement in SNR introduced by 

weights calculation for adaptive processors (weight are calculated from the original data 

before EMD filtering) in addition to the SNR enhancements introduced by EMD 

filtering to the data before the calculation of the sum and difference outputs (multiplying 

the unchanged weight generated from the original data with the filtered EMD data). 

6.2.3 EMD Filtering Algorithm 

In Figure  6.3, the high sampled complex chirp radar signal return is input to a bivariate 

EMD to produce the complex IMFs. The bivariate EMD complex IMFs are input to two 

identical paths, one for the real IMFs and one for the imaginary IMFs. The real IMFs are 

detrended and thresholded to estimate the non-noisy IMFs according from ( 3.36)-( 3.39).   

)(lz∆

)(lz∑∑w

∆w

)(φ∆W

)(φ∑W

∆w∑w

xR

)(lνε
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)(lz∑
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][nS

filteredfiltered

sF

][nS][nS ′][nS ′

][nS ′

 

Figure  6.2 EMD based monopulse processor 
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Only IMFs whose energy exceeds the threshold as in ( 3.38) are kept.  The real non-noisy 

IMFs pass through the denoising algorithm block which applies one of the denoising 

algorithms EMD-IT, EMD-IIT, and EMD-CIIT mentioned in subsection  3.3.3. The 

resultant thresholded IMFs are combined to produce the real part of the signal 

(detrended, thresholded, and denoised). The imaginary IMFs are processed in a similar 

fashion. Finally the real part and imaginary part of the signal are combined to produce 

the complex filtered signal. The EMD filtered signal is down sampled to the sampling 

frequency used in the radar system to continue data processing. All the output signals 

from the N  EMD filters are then passed to the matched filter and supplied to the 

processor output calculation as illustrated in Figure  6.2. 

6.2.4 Simulation Results for EMD Based Monopulse Processor 

In the simulations the radar comprises the same radar parameters considered previously 

in subsection  2.9.1. For target signal to noise ratios (SNR) set to 40, 60, 80, 100 dB, 

respectively, with a jamming signal with interference noise ratio (INR) set to 75 dB at 

angle o32  from the look direction (main beam jamming) is considered with the 

simulated radar system. The improvement in output SNR after applying EMD filtering 

using the three denoising algorithms (EMD-IT, EMD-IIT, and EMD-CIIT) is given in 

][ns′ ][ns′

 
Figure  6.3 Proposed EMD Filter Structure 



111 

Table  6.1.  Hard thresholding has been employed and the number of iterations is 20 with 

a fixed number of sifting equal to 8.  The results comprise an average over 50 

independent noise generations.  

 Table  6.1 is used to find an algorithm and a sampling frequency that provides a gain for 

the complete range of target SNRs. From Table  6.1 it is observed that a sampling 

frequency sF′ = 10 MHz (10 times the radar sampling frequency sF ) and the CIIT 

denoising method are the best choice.  This result is used in the rest of simulation results.   

Although higher gains are observed in Table  6.1, these are only obtained for specific 

values of target SNRs and sampling frequency.  

6.2.4.1 EMD Filtered Chirp Radar Signal 

The real and imaginary part of the received signal )(ts which is over sampled to 

][ns′ when no jamming signal comprises a chirp signal that starts at bin 1500 (target 

range) and pulse width of 1000 bins (100 msec.) with a target signal SNR=70 dB and 

interference noise ratio (INR) set to 75 dB at angle o32  with sampling frequency sF ′ = 10 

MHz are shown in Figure  6.4-A and Figure  6.5-A, respectively. In Figure  6.4-B and 

Figure  6.5-B, the real and imaginary part of the received signal is highly corrupted with 

the jamming signal.   

The distortion affects the tracking angle of the tracked target resulting in a probable 

mistracking outcome.   

Table  6.1 : Signal gains at different sampling frequency for different denoising methods 

Sampling 

frequency 

1 MHz 10 MHz 30 MHz 50 MHz 

Denoising 

method 

IT IIT CIIT IT IIT CIIT IT IIT CIIT IT IIT CIIT 

Target 

SNR [dB] 

Gain [dB] 

40  13.12 14.42 19.15 11.94 13.90 13.62 11.07 12.90 13.21 12.35 13.94 14.75 

60  12.32 13.66 16.38 7.89 9.26 9.22 4.91 7.23 5.61 4.35 6.63 3.81 

80  3.3 3.32 4.65 3.64 6.61 6.83 2.69 4.677 4.06 3.14 5.30 3.22 

100  -5.19 -5.49 -4.93 3.33 3.41 4.80 2.73 3.61 3.80 2.74 3.97 4.16 
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(A) 

 
(A) 

 
(B) 

 
(B) 

 
(C) 

 
(C) 

Figure  6.4 Received signal real part 

(A) no jamming 

(B) with jamming and no filtering 

(C) with jamming and EMD filtering 

Figure  6.5 Received signal imaginary part  

(A) no jamming 

(B) with jamming and no filtering 

(C) with jamming and EMD filtering 

 

The EMD filtered signal is shown in Figure  6.4-C and Figure  6.5-C. It is clear that from 

these figures that the jamming interference signal is highly reduced and the enhancement 
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in the signal is significant using the EMD-CIIT. A SNR gain equal 6.98 dB (average of 

50 noise generations) is achieved.  

In the next subsection the EMD filtering process is applied to chirp radar signal which is 

our main interest in this subsection. However as indicated in Appendix  G it can also be 

applied for different signals shape with different SNR. 

6.2.4.2 Simulated Jamming Scenario 

In this jamming situation (interference noise ratio (INR) set to 75 dB and target signal 

SNR=70 dB both at angle o32 ) the conventional and the spatial processor outputs using 

( 2.9) are seen in Figure  6.6 and Figure  6.7, respectively. It is clear from Figure  6.6 that 

the target appears with high noise level in the case of the basic structure of monopulse 

processor (no EMD filtering). The noise level decreases by approximately 10 dB 

(improves the target SNR output as seen in Table  6.1) and the target can be resolved at 

range bin 150 using complex EMD filtering as illustrated in Figure  6.6. For the spatial 

processor the noise level decreases about 10 dB in a similar fashion and the target level 

w.r.t the noise is also subsequently improved as illustrated in Figure  6.7. 

The tracking radar system performance is measured by STDAE in ( 2.18). The higher the 

STDAE the less the tracking performance achieved. STDAE is calculated for different 

target SNRs (from 20-100 dB) for a jamming scenario with high power interference 

noise ratio (INR) set to 82 dB with two angles, first at angle o32  from the look direction 

(main beam jamming) and second at angle o62  from the look direction (side lobe beam 

jamming) are introduced.  

The STDAE at each SNR is calculated by determining the half power beam width of the 

radar pattern at the radar look direction which changes according to the weights 

calculation of the received radar data (for main beam jamming the radar pattern is 

tapered and shifted away from the interference and in side lobe jamming it puts null in 

the jamming direction).  The target signal is injected at each angle using a resolution of 

o5.0  in the look direction beam width. STDAE is calculated at each of these angles from 

( 2.18) and the considered STDAE at the radar look direction is the maximum value of 

these STDAEs.    
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Figure  6.6 Conventional processor output 

 
Figure  6.7 Spatial adaptive processor output 

In Figure  6.8, the STDAE is presented for both main lobe and side lobe interference for 

the conventional monopulse processor with and without EMD filtering. It is clear that 

for each target SNR the STDAE value is lower in the case of using the new EMD based 

filtering processor with a resulting improvement in the tracking performance. For 

example at target SNR equal 70 dB (vertical dashed line) the STDAE value decreases 

from 3.15 to 2.2 for  main lobe jamming and from 0.56 to 0.23 in the case of side lobe 

beam jamming.  

The STDAE for the spatial adaptive monopulse processor is lower using EMD filtering 
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 in the case of main lobe interference as shown in Figure  6.9. For example at target SNR 

equal 70 dB at the STDAE value decreases from 1.7 to 1.1 in the main lobe jamming.  

However in the case of side lobe interference EMD filtering fails to make improvements 

in STDAE. This is because the characteristic of the spatial adaptive processor is superior 

as it actually places a null in the interference direction. For example at target SNR equal 

70 dB the STDAE value increases from 0.21 with no filtering to 0.94 with EMD filtering 

in the case of side lobe interference at angle o42 . In the case of side lobe interference at 

angle o62  the spatial adaptive processor can mitigate the interference better than in the 

case at o42 as observed by the lower STDAE that are obtained at lower SNR (without 

EMD filtering) which is seen to be slightly better than that obtained using EMD filtering. 

The STDAE values are approximately similar for the spatial adaptive processor with and 

without EMD filtering in the case of  o62  for a target SNR higher than 40 dBs. 

In Figure  6.8 and Figure  6.9, it is observed that the higher the SNR, the less enhancement 

is noticed in the STDAE values due to the fact that the target signal power is increased. 

This is highlighted in the zoomed area in both figures. 

6.2.5 Discussion 

Figure  6.8 and Figure  6.9 show that an improvement in the radar tracking ability for 

different SNR (lower STDAE) is gained by using the EMD filtering monopulse radar 

 

Figure  6.8 STDAE for Conventional processor configuration 
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Figure  6.9 STDAE for  Spatial adaptive processor configuration 

however it does not provide any enhancement (higher STDAE) in the case of side lobe 

inference for the spatial adaptive processor. This behaviour may be explained as follows:  

(1) The spatial distribution of the target signal (over the antenna elements and over the 

range cells) is very important information for monopulse tracking radar. It is used to 

determine the target angle and hence affects the STDAE calculation. Therefore it is 

essential to keep the phase information unchanged during filtering technique in 

monopulse radars. Filtering the noisy signal in two paths (real and imaginary) as 

shown in Figure  6.3 enhances the resultant SNR for both paths and thus enhances the 

overall SNR as seen previously in Table  6.1. However this process cannot preserve 

phase relation between the real and imaginary parts of the target data especially in 

the lower SNR situations. 

(2) In the spatial adaptive processor, the angle measurements depend on the weights ∑w  

and ∆w . These weights depend on the spatial distribution of the tracked target and also 

the additive noise. So any change in the phase information of the filtered data will affect 

)(lz∑  , )(lz∆  and consequently will affect the error voltage )(lνε  especially in side lobe 

interference. However in the case of main beam interference the spatial adaptive 

processor tends to be less dependant on the received data because in this case no nulls 

can be placed in the look direction.  
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It is concluded that the improvement in the STDAE values for the EMD based 

conventional processor incase of main lobe and side lobe interferences is due to the fact 

that the processor obtains lower STDAE (high tracking performance) at the higher SNR 

(60-100 dB) and its weights are fixed. Similarly the main lobe interference in the EMD 

based spatial adaptive processor yields an improvement due to the fact that it yields 

lower STDAE at higher SNR (60-100 dB) and its weights tend to similar to the weights 

in the case of the conventional processor. The higher values of STDAE in the case of 

side lobe interference for the spatial adaptive processor are obtained because this 

processor obtains high tracking performance (lower STDAE) at lower SNR (from 40 dB) 

and the weights depend on the received radar data spatial distribution. 

6.3 Filtering Based EMD-FrFT Algorithm 

 In our previous work, the mistracking problem due to interference signals was 

addressed using FrFT-NIF algorithm (section  5.3) and using EMD (in section  6.2). In 

Section  6.3 the use of both EMD and FrFT to implement N  EMD-FrFT filters in an 

attempt to reduce the very high power interference signals introduced from the radar 

antenna.  

Normally the magnitude of chirp signal in the optimum FrFT domain would be 

significantly higher than the noise signal in the FrFD. However in high power jamming 

scenarios this is not usually true and it becomes difficult to distinguish between the 

target spike and the noise spikes in the optimal FrFT domain. Thus, EMD-FrFT 

algorithm is proposed to combat the high power noise interference by filtering the 

received signal in the optimal FrFD using the transmitted chirp radar information after 

applying EMD filtering. 

The proposed EMD-FrFT radar filtering process, which must be applied to the received 

signal before the band pass filter, is shown in Figure  6.10. The radar received noisy 

complex chirp signal )(ts is sampled using the radar sampling frequency to form ][ns . 

The ][ns  signal recovery is carried out in two stages: (i) EMD filtering stage and (ii) 

FrFT filtering stage.  

 EMD filtering stage 
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In stage one the received signal ][ns is input to a bivariate EMD to produce the complex 

IMFs ][)( nih . The complex IMFs are detrended and thresholded to estimate the non-

noisy IMFs using ( 3.36)-( 3.39) as described in subsection 3.3.2.  Only IMFs whose 

energy exceeds the threshold are retained.  The resultant thresholded IMFs are combined 

to produce the complex denoised signal as in ( 3.40).  

FrFT filtering stage  

For the second stage, the complex denoised signal in the optimal FrFD is calculated 

from the information supplied from the transmitted chirp signal as in ( 3.14). 

The following steps in Table  6.2 are involved in the proposed EMD-FrFT filtering 

algorithm that may be used to cancel the noise interference signal. 

 

Table  6.2   EMD-FrFT noise interference filtering algorithm  

1 Calculate 
opt

a  to determine the optimal FrFD for tracked target signal from 

the information supplied from the waveform generator as in ( 3.14). 

2 For Nk ≤≤1  do   (for each receiving channels), k is iteration index 

3  Apply EMD filtering stage. 

4  Transform the EMD filtered received radar to the optimal FrFD using 

( 3.1) and ( 3.2).  

5  Estimate the peak position sample of the target in the FrFD.  

6  Filtering the received data by keeping the target data (peak position 

sample and its adjacent samples) and force all the rest of the samples 

in tracking window to be equal to zero. 

7  Transform the filtered signal back to time domain using inverse FrFT 

with the known optimal order opta− . 

8 End 

9 Use the filtered LN ×  data to calculate the target information (target bin 

position, azimuth and elevation angles) 
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The EMD-FrFT filtered data is supplied to the radar processor to continue data 

processing to calculate the target information. 

The EMD-FrFT filtering process illustrated in Figure  6.10 is attached to N  receiving 

channels in which the received signal from each of the N antenna elements will fill L  

range gates. The total radar data size is therefore equal to LN ×  for each pulse return. 

The EMD-FrFT filter block consists of N  EMD-FrFT filters shown in Figure  6.10. The 

overall filtered data ( LN × ) are processed to determine the target information 

parameters. 

6.3.1 Simulation Results for EMD-FrFT Algorithm 

In the simulations the radar comprises the same radar parameters considered previously 

in subsection  2.9.1. The target is considered at range bin=150 at angle 
o32  from the look 

direction with target signal to noise ratio (SNR) set to 56 dB. A jamming signal with 

interference noise ratio (INR) set to 75 dB at angle o32  from the look direction (main 

beam jamming) is introduced. 

6.3.1.1 High Power Interference Scenario 

Considering the simulation parameters for one of the 14 receiving channels (1st channel), 

the receiving target chirp signal appears at range bin 150 in case of no jamming while 

the chirp signal is completely corrupted in the time domain (also in the frequency 

domain) by the noise due to high power jamming signal as seen in Figure  6.11. 

The bivariate EMD is applied to the noisy signal to produce the complex IMFs. Due to 

the fact that the higher the number of samples, the higher the accuracy of detrending 

][ns ][ns

 
Figure  6.10 EMD-FrFT filtering 
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Figure  6.11 High noisy chirp signal in time domain (real) 

IMFs in EMD-DT algorithm, so the sampling frequency is increased to 10 MHz (10 

times the radar sampling frequency sF ). The resultant complex IMFs from applying the 

bivariate EMD to the noisy chirp 1 × 4029 produces 14 IMFs each of length 4029. 

Keeping only IMFs whose energy exceeds the threshold using the EMD-DT algorithm 

described in subsection  3.3.2 the signal is reconstructed summing the non-noisy IMFs 

from 6-14 to obtain the filtered signal after applying EMD-DT algorithm. 

Substituting the monopulse radar parameter values given above into ( 3.14) with a high 

sampling frequency of 10 MHz, the order of the optimal FrFT domain opta is computed as 

1.1266.  The EMD filtered signal is transferred to the optimal FrFD using the optimal 

order FrFT domain opta  1.1266.  

Transforming the radar received signal directly to the optimum FrFD using the 

calculated opta , is expected to produce a high magnitude value (spike) due to transferring 

the chirp signal to the optimum FrFD. However as seen in Figure  6.12, due to the high 

power interference, the spike of the target chirp is highly corrupted also by noise spikes 

in the optimum FrFD and cannot be filtered in this domain. 

It is therefore difficult to distinguish between the target spike and the noise spikes in the 

optimal FrFD. The proposed EMD-FrFT filtering algorithm is used to address this 

problem.  Figure  6.13 shows the EMD denoised chirp in optimum FrFD. It is evident 

that the noise is significantly reduced especially the high frequency components and the 

chirp target spike is also the highest spike which is shown in the zoomed portion of 

Figure  6.13.  
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Figure  6.12 High noisy chirp signal in optimum FrFD 

 

Figure  6.13 EMD denoised chirp in optimum FrFD 

The proposed filtering algorithm in the optimum FrFD keeps the sample with maximum 

magnitude (sample no. 2018) and its 10 adjacent samples from 2013-2023 while forcing 

all other samples window to zero. The filtered signal is then transformed back to time 

domain by applying inverse optimum FrFT using opta− (-1.1266) by applying ( 3.1). The 

real and imaginary parts of the denoised signal (recovered) after applying the proposed 

EMD-FrFT filtering algorithm is shown in Figure  6.14.  

Figure  6.14 compares the denoised chirp signal using EMD-FrFT filter with the non 

noisy signal. In the simulation example, the considered signal total input SNR is 

approximately equal -8 dB (after adding the jamming noise) and the output SNR is 

approximately 10 dB. The proposed EMD-FrFT filtering algorithm offers signal 

enhancement of approximately 18 dB. 



122 

 
(A) real 

 
(B) imaginary 

Figure  6.14    Recovered chirp signal 

 

6.3.1.2 Signal Improvement at Different SNR 

Table  6.3 shows the improvement results of applying different target SNR for the same 

jamming scenario (INR set to 75 dB at angle o32 ) and calculating the total input SNRs to 

the radar receiving channel. The results in Table  6.3  comprise an average over 50 

independent noise generations. 

Table  6.3  indicates an improvement of approximately 18.1 dBs for input SNR= -7.7 dB 

and an improvement of approximately 4.9 dBs for input SNR=10.6 dB. The proposed 

EMD-FrFT algorithm yields a higher improvement for the lower SNRs rather than the 

higher SNRs. 

 

Table  6.3   INR for monopulse processors 

Input SNR (dB) -7.7 -5.6 -2.9 -1.8 0.2 1.7 5.6 10.6 

Output SNR (dB) 10.4 10.8 13 13.4 14.8 15.4 15.8 15.5 

Gain (dB)  18.1 16.4 15.9 15.2 14.6 13.7 10.2 4.9 

6.4 Conclusion 

In this chapter, solutions for the distortion problem resulting from high power jamming 

interference are presented. The following two subsections review the work presented 

and summarize its results. 
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A new solution to the distortion problem in the monopulse tracking radar due to high 

power manmade interference was presented. The distortion resulting from jamming 

interference appearing in the monopulse main lobe and side lobe has been investigated. 

The proposed new EMD based monopulse radar system configuration with N EMD 

filters successfully reduces the interference noise signal for the new monopulse 

processors compared to the basic monopulse processor structure (without EMD filtering) 

in the case of main lobe high power interference. A resulting improvement in the radar 

tracking ability for different SNR (lower STDAE) is gained by using the EMD filtering 

monopulse radar however it does not provide any enhancement in the case of side lobe 

inference for the spatial adaptive processor. One of the key advantages of the proposed 

system is that it works efficiently even when only one target in the look direction 

(normal case) and there is no high power interference exists.  

A proposed EMD-FrFT filtering algorithm to reduce the distortion problem due to high 

power interference in chirp radar systems is presented. This algorithm successfully 

decreases the high power noise interference and improves the received radar SNR. A 

resulting improvement in the radar received signal is obtained for different SNR and the 

highest gain is achieved in the case of lower SNR (up to 18 dB in the considered case).  
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777...   Conclusion and Future Work 

7.1 Introduction 

The primary aim of the work described in this thesis was to explore and develop new 

signal processing techniques for monopulse tracking radars. The key achievements of 

the research are two fold. A new monopulse radar processor based filtering algorithm 

was developed to solve the interference problem due to more than one target appears in 

the monopulse radar half power beam width. The second objective was to investigate 

algorithms to mitigate the problem of high power interference (jamming) introduced to 

the radar processor and enhance the monopulse radar tracking performance. This chapter 

concludes the research work presented and indicates areas where future work could be 

directed. 

7.2 Conclusion 

This thesis focused on interference cancelling techniques associated with monopulse 

radars and was based on new non traditional signal processing tools and methods that 

provide enhanced tracking performance and reduced signal interference. 

The review of the monopulse radars (sum and difference) and the most important factors 

that affect its operation and performance with brief introduction to different monopulse 

processors, its advantages and limitations were presented in chapter  2.  

A discussion on FrFT and EMD algorithms that are used to design and implement 

advanced monopulse radar systems is introduced in chapter  3. FrFT is the generalized 

formula for the Fourier transform that transforms a function into an intermediate domain 

between time and frequency. Signals with significant overlap in both the time and 

frequency domain may have little or no overlap in FrFD thus transforming signals into a 

particular FrFD may help in minimized or complete cancellation of the effect of 

undesired signals. EMD was developed for analysing non-linear and non-stationary real 
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and complex data thus it is used with monopulse radar data. Many EMD filtering 

algorithms are used to filter the noisy data depends on the EMD decomposing such as 

EMD-DT, EMD-IT, EMD-IIT, and EMD-CIIT. 

Matched filters in the Fourier domain and the FrFD were investigated in chapter  4. The 

limitation of using matched filter in the optimum FrFT for a chirp was shown to be 

dependent on the chirp shape in this domain, on the chirp start time and chirp band width. 

The complexity of FrFT matched filter increases compared to the normal FT matched 

filter. An average improvement is gained by using FrFT matched filter compared to the 

FT matched filter for different input SNRs. A reduction in the widths of the FT matched 

filter output to that of the FrFT matched filter output is occurred and a significant 

reduction in side lobe using the FrFT matched filter is achieved in the cases studied in 

chapter  4. 

Solutions for the distortion problem due to the unwanted targets appearing in the 

monopulse look direction beam using FrFT-ATF algorithm and the distortion resulting 

from jamming interference using FrFT-NIF algorithm are presented in chapter  5.  A new 

monopulse system configuration with new FrFT filtering algorithm (FrFT-ATF) is used 

to overcome the problem of unwanted targets appearing in the monopulse look direction. 

A very high improvement in the radar tracking ability for different SNR is gained by 

using the suggested canceling technique. A proposed FrFT algorithm (FrFT-NIF) based 

monopulse processor is used to mitigate the distortion resulting from jamming 

interference appearing in the monopulse main lobe and side lobe has been solved with. 

The proposed monopulse radar system configuration successfully reduces the 

interference noise signal and minimizes the STDAE for the both considered monopulse 

processors compared to the monopulse radar without filtering.  

Finally, chapter  6 presented another signal processing algorithm, EMD, for the problem 

of high power manmade interference to enhance the monopulse tracking performance. 

Also it introduce another filtering algorithm (EMD-FrFT) based on the hybrid use of 

EMD and FrFT. Firstly, a new EMD based monopulse radar system solution to the 

distortion problem in the monopulse tracking radar due to high power manmade 

interference. The new system configuration successfully reduces the interference noise 
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signal for the new monopulse processors compared to the basic monopulse processor 

structure in the case of main lobe high power interference however it does not provide 

any enhancement in the case of side lobe inference for the spatial adaptive processor.  

Secondary, A proposed EMD-FrFT filtering algorithm to reduce the distortion problem 

due to high power interference in chirp radar systems is presented. This algorithm 

successfully decreases the high power noise interference and improves the received 

radar SNR. A resulting improvement in the radar received signal is obtained for different 

SNR and the highest gain is achieved in the case of lower SNR.  

7.3 Future Directions 

Based on the research presented throughout this thesis, the following areas are of interest 

for potential further investigation: 

 

Combination of FrFT-ATF and FrFT-NIF algorithms: both algorithms used 

separately to overcome the problem of additive targets in the look direction and high 

power interference, respectively. A combination of both algorithms (FrFT-ATF and 

FrFT-NIF) in the same monopulse processor to reduce the additive targets’ signals and 

mitigate the jamming noise simultaneously is to be addressed for different additive 

targets SNRs and different INRs for jamming signals at different insertion angles.   

 

New monopulse processor based EMD-FrFT algorithm: the proposed EMD-FrFT 

filtering algorithm is used to reduce the distortion problem due to high power 

interference in chirp radar systems. A new monopulse processor based EMD-FrFT to be 

investigated to mitigate high power interference for different target SNR. 

 

Non linear chirp radar: all the proposed filtering algorithms in this thesis are used with 

linear chirp monopulse radar.  Non linear chirp radar are affected as the linear chirp 

radar with different types of interferences, adaptive formulas of the new algorithms may 

be used with the non linear chirp radar to mitigate the interference problems. 
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Other applications: the proposed algorithms and its applicability to work in many other 

areas of interest including sonar, biomedical engineering, and communications are to be 

addressed. 
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Appendices 

A. Methods to Generate Sum and Difference Patterns 

The main issue when designing both sum and difference patterns is that they must be 

characterized by a peak at boresight and a null there for the difference pattern. Also it is 

required that the resultant MRC is well slope. There are three main methods to generate 

the sum and the difference pattern as the following: 

Displaced Beam Method (DBM)[37] 

It is the most straight forward method, the sum and difference beams are the sum and 

difference of two orthogonal steering vectors cantered about boresight and separated by 

a normalized spatial frequency of 
N
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where ∑ν and ∆ν  are the spatial steering frequency vectors for the sum and difference 

channel, respectively, [ ])1(22
)1(

........1)( −
−−

= Njj
Nj

ee
N

e πνπν
πν

νa is the centre phase 

normalized steering vector in the look direction, ν is the spatial steering frequency, and 

tν  is the spatial steering frequency snapshot at time instant t .  The normalized spatial 

steering frequency ν is estimated from 

cDftf cc /sinφν =∆= , ( A.2) 

where cf is the monopulse radar carrier frequency. 

The conventional processor comprising two sets of weights set to the sum and difference 

weights vectors ∑w  and ∆w , respectively, defined as [36, 40]: 

Σ∑ = vw , ∆∆ = vw . ( A.3) 
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The sum and difference patterns )(φ∑w  and )(φ∆w  are seen in Figure  A.1-A1 and 

Figure  A.1-B1, respectively. The difference pattern )(φ∆w  has very good deep null at 

the look direction angle. The MRC shown in Figure  A.1-C1 appears as a linear relation 

between the error voltage and the corresponding angle. Note that, the flatter the MRC, 

the greater the resulting error in angle reading for a given deviation of error voltage. 

Therefore, it is desirable to have a “well sloped" curve such as seen the next method. 

Half Phase Reversed Method (HPRM)[10, 37, 47] 

The sum weights are taken to be a steering vector in the look direction, and the 

difference weights are obtained by phase reversing the latter half of the components of 

the steering vector  

)( tνav =Σ ,    )(. tdj νatv −=∆ , ( A.4) 

where 

T

NNd 





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××
2

1
2

1
11t . Substituting in ( A.3), the monopulse sum and difference 

patterns )(φ∑w  and )(φ∆w   are seen in Figure  A.1-A2 and Figure  D.1-B2, respectively. 

Figure  A.1-B2 shows the difference weight )(φ∆w  has little deep null at the look 

direction but a very good sloped curve for MRC as seen in Figure  A.1-C2. 

Derivative method (DM)[37, 40] 

The sum weights to be a steering vector in the look direction and the vector of 

difference weights to be the derivative of the steering vector with respect to normalized 

spatial frequency 

)( tνav =Σ , 

tνν

ν

∂

∂
=∆

)(a
v , 

( A.5) 

The monopulse sum and difference patterns )(φ∑w  and )(φ∆w  are seen in Figure  A.1-

A3 and Figure  A.1-B3. The difference pattern )(φ∆w  has little deep null at the look 

direction.  Figure  A.1-C3 shows that the MRC is a very good sloped curve which is the 

best requirements for monopulse pattern. 
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(A1) 
 

(A2) 
 

(A3) 

 
(B1) 

 
(B2) 

 
(B3) 

 
(C1) 

 
(C2) 

 
(C3) 

DBM HPRM DM 

Figure  A.1  Methods to generate sum and difference patterns 
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B.  Covariance Matrix Estimation 

In this Appendix, the data from the CPI should be used as secondary data (data that 

contains little or no target signal) is determined.  The approach is to use as few range 

bins as possible so as to exclude the assumed target bin as much as possible.  In order to 

minimize the extent in range of the secondary data, the advantage of the availability of 

multiple CPI's is considered.  Figure  B.1 shows how the target bins are removed from 

CPI to construct the secondary data.  

As an example with one CPI and for one antenna, consider the following illustrative 

example: 

xxxxxxxxxxxxSSSSSSSSTTTTTSSSSSSSSxxxxxxxxxxxx 

where range bins that contain target information are indicated with a "T" and those that 

may be considered secondary data with an "S".  Those marked with an "x” is considered 

left over range bins that are not used.  In this example five bins are assumed to contain 

target info, while 16 bins are used as secondary data.  With additional CPI's, less "S" 

1 L

1

N

 
Figure  B.1  Range bins excluding from CPI 
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bins can be used from each CPI and thus reduce the range extent of the secondary data if 

needed. 

Considering the secondary data SECX  is of length )( κ−× LN , where κ is the number of 

range bins occupied by target data, the covariance matrix xR can be estimated as 

κ−
=

L

H

x
SECSEC XX

R . 
( B.1) 
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C. Optimization Criterion 

To generalize the monopulse concept to SFT (space fast time) it is required to: 

• Directly minimize angle estimation error 

• Exercise control over the spatial /temporal response of the processor so that the 

effects of target spreading and overlapping targets are reduced. 

To achieve both requires a highly nonlinear solution that is not of practical consideration. 

In Table  C.1, a comparison between Maximum likelihood angle estimation (ML) and 

Min variance technique (MV) (the 2
nd

 method is used in our work to implement the 

monopulse radar in SFT) is provided. 
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Table  C.1   A comparison between ML and MV as angle estimator 

 

 

 

Maximum likelihood angle estimation 

(ML) [42, 43] 

Min variance technique  

(MV) [37, 44] 

• ML offers direct minimization 

capability for the spatial case. 

• The simplified form of the ML criterion 

in isotropic noise suggests that it is 

particularly suitable for monopulse 

processors. On the other hand, for non 

isotropic noise interference the standard 

monopulse criterion does not yield the 

best angle estimate. 

• Since the general solution is nonlinear, 

computing it can be difficult. However, 

by making certain assumptions and 

simplifying approximations, Davis et 

al. [12] were able to arrive at closed 

form solutions to the ML estimator. 

Note that non isotropic noise and 

interference (barrage noise jammers, 

MSC, and TSI) prevent conventional 

monopulse processing and ML angle 

estimation from being equivalent. 

• There is a lack of control over the SFT 

responses of the sum and difference 

processors. 

• MV provides a simple linear solution that 

allows for a controlled response. 

However, because the angle estimation is 

not the criteria being optimized, a small 

but acceptable price may be paid in terms 

of angle estimation performance. 

• In other words,  the use of linear 

constraints in MV allows the designer to 

exercise a great deal of control over both 

the spatial and temporal behavior of the 

SFT sum and difference processors, thus 

assuring robustness by providing a means 

to avoid target spreading and other 

distorting effects.  

The disadvantage of the linearly 

constrained approach is that it cannot be 

used to directly to minimize an angle 

estimation performance criterion as is the 

case with the maximum likelihood 

approach. At best it is able to minimize 

the residual interference in the respective 

sum and difference outputs. 
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A comparison between MV and ML based on simulated results  

In order to make the comparisons fair, the angular region over which the search takes 

place corresponds to the angular region used in the analysis of the MV monopulse 

processor (i.e., the invertible MRC region within the beam width of the MV processor). 

For both techniques a Monte Carlo simulation method for an on-boresight target was 

used to arrive at STDAE performance. The resultant STDAE for different SNR for both 

methods is shown in Figure  C.2 [6]. 

 

Figure  C.2  STDAE for different SNR for MV and ML 

The curves for MV and ML approximately overlap for both side lobe and main beam 

jamming, suggesting that indeed the MV technique may be a good approximation to the 

ML technique, if the SNR is high enough. Clearly both ML and MV improve 

significantly over the conventional monopulse processor (dashed). 
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D. Optimum FrFT Order of Chirp Signal 

A general linear chirp signal )(tc  formula can be written as 

)](2[)( 2 ρεγπ ++= ttjExptc , ( D.1) 

where γ is the chirp rate parameter and ρε , are constants. The chirp instantaneous 

frequency instf is the derivative of chirp phase as[62, 92] 

εγ += ttfinst 2)( . ( D.2) 

Thus, the relation between the chirp rate γ and the optimum FrFT index opta  can be 

shown in Figure  D.1. 

As mention previously in section  3.2.4, the relation between optimum FrFT order 

opta and the optimum FrFT order optθ is given by 

2/πθ optopt a= . ( D.3) 

 

εγ += ttfinst 2)(

ε 1

γ2

optθ
optϑ

optϑ

 

Figure  D.1  Relation between the chirp rate and the optimum order 
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The optimum FrFD for the chirp signal )(tC  shown in ( D.1) is the domain at which the 

chirp signal transformation reaches the narrowest band width and appears as a spike. 

This domain is perpendicular on the chirp instantaneous frequency instf as shown in 

Figure  D.1. This optimum domain rotation is achieved by time axis rotation with anti 

clockwise rotation angle optθ or clockwise optϑ− . Thus, from ( D.3) the optimum FrFT 

order opta can be written as 

optopta ϑπ )/2(−= . ( D.4) 

Geometrical from Figure  D.1, it is easy to show that 

)2/1(tan 1 γϑ −=opt . ( D.5) 

From ( D.5) in ( D.4) 

)2/1(tan)/2( 1 γπ −−=opta . ( D.6) 

The time-frequency discretization for a chirp sampled signal is shown in Figure  D.2. The 

continuous values for both time and frequency and converted to its discretization form 

using the sampling frequency
sF  with tδ is the time resolution and fδ  is the frequency 

resolution as follows 

tδ1/1 samples of no  → , 

and fδγγ /22 samples of no  →  

( D.7) 

Hence, the discretization form of ( D.6) using ( D.7) can be written as 









−= −

γ

δδ

π 2

/
tan

2 1 tf
aopt

. 
( D.8) 

This sampled version for the optimum order value, opta of the general linear chirp signal  

is used in ( 3.14). 
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Figure  D.2  Discrete relation between the chirp rate and the optimum order 
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E. The peak position of a chirp signal in the FrFD 

The peak position pP of a chirp signal in the FrFD (compact form) is estimated as shown 

previously in ( 3.15) as:  

stopt
Tstart

optp t
f

MLf

f

F
P )cos(

2

)/(
)sin( ϑ

δδ
ϑ −







 ∆
+= . 

( E.1) 

To understand this formula, four graphical representations of a chirp signal in time- 

frequency domain for different time-frequency parameters are demonstrated to give 

understanding for the previous pP formula as follows: 

 

(i) Single-sided chirp in time-frequency domain 

For normal chirp signal )(tcs is can be represented as 

( ) 















 −
=

2

2
2exp)( t

T

FF
jtc

startstop

s π , 
( E.2) 

where t  is the time, T is the chirp time duration (pulse duration), startF  is the chirp start 

frequency, and stopF  is the chirp stop frequency. The chirp instantaneous frequency 

instf is the derivative of chirp phase as[62, 92] 

t
T

f
t

T

FF
tf

startstop

inst

∆
=

−
=)( . 

( E.3) 

This chirp signal appears at time-frequency domain as the red line shown in Figure  E.1. 

Figure  E.1 shows the optimum FrFD for this chirp which is perpendicular on the chirp 

instantaneous frequency instf . 

The discrete form of the chirp band width f∆ is written as ff δ/∆  where fδ  is the 

frequency resolution. Thus the peak position pP  (the blue thick line) in this case is given 

by 








∆
=

f

f
P optp

δ
θ )sin( . 

( E.4) 
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Figure  E.1  The relation between the chirp rate and the optimum order 

 

(ii) Double-sided chirp in time-frequency domain 

For double sided chirp )(tcd
 given by 






















−







 −
=

2

22
2exp)(

T
t

T

FF
jtc

startstop

d π . 
( E.5) 

The chirp instantaneous frequency instf is the derivative of chirp phase as 

2
)(

f
t

T

f
tfinst

∆
−

∆
= . 

( E.6) 

This instantaneous frequency instf for the double sided chirp is shown in Figure  E.2. 

Hence, the peak position 
pP  (the blue thick line) in this case is given by 








 ∆
=

f

f
P optp

δ
ϑ

2
)sin( . 

( E.7) 

The double sided chirp signal will be used during the rest of chirp demonstrations. The 

pP formula in ( E.7) is a special case of ( E.1) when both startF  and stt equal zero. 
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Figure  E.2  Double sided chirp and the optimum order 

 

(iii) Double sided chirp in time-frequency domain with shift in frequency 

Considering only the upright part of the chirp signal as our field of interest as seen 

previously for the double sided chirp, if the chirp in this case is shifted in frequency 

by startF , the number of shifted bins equals to 
f

Fstart

δ
. Figure  E.3 shows the peak position 

pP  (the blue thick line) in this case is given by 








 ∆
+=

f

f

f

F
P start

optp
δδ

ϑ
2

)sin( . 
( E.8) 

The 
pP formula in ( E.8) is a special case of ( E.1) when 

stt equal zero. 

 

(iv) Double sided chirp in time-frequency domain with shift in time 

Figure  E.4 shows that peak position pP  (the blue thick line) for double sided chirp with 

shift in time by time samples 
stt is given by 

stopt
T

optp t
f

MLf
P )cos(

2

)/(
)sin( ϑ

δ
ϑ −







∆
= . 

( E.9) 
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Figure  E.3  Double sided chirp with shift in frequency 
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Figure  E.4  Double sided chirp with shift in time 
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Combine the pP  formulas for double sided chirp with shift in time by time samples 

stt and shifted in frequency by startF show in ( E.9) and ( E.8), respectively, the general 

formula for pP in ( E.1). 
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F.  FrFT for Some Special Functions 

Using the FrFT definition in ( 3.6) and ( 3.7), some of the actual transforms of some 

elementary functions are shown in Table  F.2. 

 

Table  F.2  The FrFT of some basic functions 

 )(tx  )( atXθ  
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where ξχ , ∈ ℜ, and )(tkυ are the Hermite-Gauss functions. 
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G.EMD denoising algorithm for different signals shape and different 

SNRs 

The simulations comprise two simulated signals, the first one is a chirp signal with 1 sec 

chirp duration chirp bandwidth 500 Hz signals, and the second is block signal with 

random amplitude and random durations, both signals are sampled at 10 MHz and are 

shown in Figure  G.1-A and Figure  G.1-B, respectively.  

EMD-DT simulation 

Figure  G.2-A shows the previous chirp signal with the same chirp parameters with 

additive white Gaussian noise for SNR= 0 dB is used to show the improvement due to 

EMD-DT denoising technique. The chirp noisy signal is denoised as seen in Figure  G.2-

C by performing the thresholding and denoising EMD-DT algorithm and the SNR is 

improved to 6.7 dB (this value is average of 50 times different simulation of the additive 

noise). Figure  G.2-B shows the IMFs energies ][iW   and also threshold level energies. 

The IMFs energies cross the threshold level at IMF 5.2 (as seen in the zoomed area) so 

the IMF from 1 up to are 5 considered as noise and all the rest of IMFs is the denoised 

signal )(~ nx  

 

 
(A) Chirp signal 

 
(B) Block signal 

Figure  G.1  Signal used for EMD-DT validation 
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(A) noisy chirp (B) IMF thresholding  

 

(C) denoised chirp 

Figure  G.2  Denoising using EMD-DT algorithm 

 

Using EMD denoising algorithm for Different input SNR 

The EMD denoising algorithm works for different input SNR (-5 up to 10 dB) for chirp 

and block signals. The improvement in output SNR after applying EMD filtering is 

given in Table  G.1. The results comprise an average over 50 independent noise 

generations. 

 Table  G.1   Signals output SNR for different input SNR  (dB) 

Input SNR 

Signal type 

-5 0 10 

Chirp signal 8.2 13.2 20.6 

Block signal 7.6 12.5 16.7 
 



147 

Author Publications 

The following lists the author’s publications in reverse chronological order. 

Journal Publications 

[J5] S. A. Elgamel and J. Soraghan, “Fractional Fourier Transform Filtering to 

Mitigate High Power Interference in Monopulse Tracking Radars," Signal 

Processing Transactions, IEEE. (submitted) 

[J4] S. A. Elgamel, ,and J. Soraghan, "Fractional Fourier Transform Based Matched 

Filtering for Target Detection in Chirp Radars," ELSEVIER Signal Processing. 

(submitted) 

[J3] S. A. Elgamel and J. Soraghan, “Using EMD-FrFT Filtering to Mitigate High 

Power Interference in Chirp Tracking Radars," Signal Processing Letter, IEEE. 

vol. 18, pp. 263-266, 2011. 

[J2] S. A. Elgamel and J. Soraghan, "EMD Based Monopulse Processor for Enhanced 

radar Tracking in the presence of high power interference," Radar, Sonar & 

Navigation, IET. (In press 2011) 

[J1] S. A. Elgamel and J. Soraghan, "Enhanced monopulse tracking radar using 

optimum fractional Fourier transform," Radar, Sonar & Navigation, IET, vol. 5, 

pp. 74-82, 2010. 

Conference Publications 

[C9] S. A. Elgamel and J. J. Soraghan, “Mitigate High Power Interference Noise in 

Chirp Radar Systems Using EMD-FrFT Filtering," in 17th International 

Conference on Digital Signal Processing, 2011. DSP 2011. 



148 

 

[C8] S. A. Elgamel, C. Clemente, and J. J. Soraghan, “Radar matched filtering using 

the Fractional Fourier Transform," in Sensor Signal Processing for Defence 

Conference, 2010. SSPD 2010.  

[C7] S. A. Elgamel and J. J. Soraghan, “Fractional Fourier Transform based 

monopulse radar for combating jamming interference," in Sensor Signal 

Processing for Defence Conference, 2010. SSPD 2010. 

[C6] S. A. Elgamel and J. J. Soraghan, “Enhanced monopulse radar tracking using 

Empirical Mode Decomposition," in Radar Conference, 2010. EuRAD 2010. 

European, 2010. 

[C5] S. A. Elgamel and J. J. Soraghan, "Enhanced monopulse radar tracking using 

fractional Fourier filtering in the Presence of interference," in Radar Symposium 

(IRS), 2010 11th International, pp. 1-4. 

 [C4] S. A. Elgamel and J. J. Soraghan, "Optimum Fractional Fourier Filtering for 

monopulse processors distortion," in Radio Science Conference, 2010. NRSC 

2010. National, 2010, pp. 1-8.  

[C3] S. A. Elgamel and J. J. Soraghan, "Enhanced monopulse radar tracking using 

filtering in fractional Fourier domain," in Radar Conference, 2010 IEEE, pp. 

247-250. 

[C2] S. A. Elgamel and J. Soraghan, "A new Fractional Fourier Transform based 

monopulse tracking radar processor," in Acoustics Speech and Signal Processing 

(ICASSP), 2010 IEEE International Conference on, pp. 2774-2777. 

[C1] S. A. Elgamel and J. Soraghan, "Target tracking enhancement using a Kalman 

filter in the presence of interference," in Geoscience and Remote Sensing 

Symposium,2009 IEEE International, IGARSS 2009, 2009, pp. III-681-III-684. 



149 

References 

 

[1] M. I. Skolnik, Radar Handbook-Third edition: McGraw-Hill, Inc., 2008. 

[2] R. Klemm and U. Nickel, "Adaptive monopluse with STAP," in Radar, 2006. 

CIE '06. International Conference on, 2006, pp. 1-4. 

[3] M. I. Skolnik, Radar Handbook- Second edition: McGraw-Hill, Inc., 1990. 

[4] D. K. Barton, "History of Monopulse Radar in the US," Aerospace and 

Electronic Systems Magazine, IEEE, vol. 25, pp. c1-c16, 2010. 

[5] A. I. Leonov, "History of monopulse radar in the USSR," Aerospace and 

Electronic Systems Magazine, IEEE, vol. 13, pp. 7-13, 1998. 

[6] G. M. Kirkpatrick, "Development of A Monopulse Radar System," Aerospace 

and Electronic Systems, IEEE Transactions on, vol. 45, pp. 807-818, 2009. 

[7] Z. Xin, et al., "Detection and Localization of Multiple Unresolved Extended 

Targets via Monopulse Radar Signal Processing," Aerospace and Electronic 

Systems, IEEE Transactions on, vol. 45, pp. 455-472, 2009. 

[8] A. D. Seifer, "Monopulse-radar angle tracking in noise or noise jamming," 

Aerospace and Electronic Systems, IEEE Transactions on, vol. 28, pp. 622-638, 

1992. 

[9] H. Meikle, Modern Radar Systems Artech House, Inc., 2008. 

[10] Y. Seliktar, et al., "An adaptive monopulse processor for angle estimation in a 

mainbeam jamming and coherent interference scenario," in Acoustics, Speech 

and Signal Processing, 1998. Proceedings of the 1998 IEEE International 

Conference on, 1998, pp. 2037-2040 vol.4. 

[11] S. A. Elgamel and J. J. Soraghan, "Radar matched filtering using the Fractional 

Fourier Transform," in Sensor Signal Processing for Defence Conference, 2010 

SSPD  

[12] S. A. Elgamel and J. J. Soraghan, "Optimum Fractional Fourier Filtering for 

monopulse processors distortion," in Radio Science Conference, 2010  NRSC 

2010. 

[13] S. A. Elgamel and J. J. Soraghan, "Enhanced monopulse radar tracking using 

filtering in fractional Fourier domain," in Radar Conference, 2010 IEEE, pp. 

247-250. 

[14] S. A. Elgamel and J. Soraghan, "A new Fractional Fourier Transform based 

monopulse tracking radar processor," in Acoustics Speech and Signal Processing 

(ICASSP), 2010 IEEE International Conference on, pp. 2774-2777. 

[15] S. A. Elgamel and J. J. Soraghan, "Fractional Fourier Transform based 

monopulse radar for combating jamming interference," in Sensor Signal 

Processing for Defence Conference, 2010 SSPD  



150 

[16] S. A. Elgamel and J. J. Soraghan, "Enhanced monopulse radar tracking using 

fractional Fourier filtering in the Presence of interference," in Radar Symposium 

(IRS), 2010 11th International, pp. 1-4. 

[17] S. A. Elgamel and J. Soraghan, "EMD Based Monopulse Processor for Enhanced 

radar Tracking in the presence of high power interference," Radar, Sonar and 

Navigation, IET  

[18] S. A. Elgamel and J. J. Soraghan, "Enhanced monopulse radar tracking using 

empirical mode decomposition," in Radar Conference (EuRAD), 2010 European, 

pp. 57-60. 

[19] S. A. Elgamel and J. J. Soraghan, "Using EMD-FrFT Filtering to Mitigate Very 

High Power Interference in Chirp Tracking Radars," Signal Processing Letters, 

IEEE, vol. 18, pp. 263-266. 

[20] S. A. Elgamel and J. J. Soraghan, "Mitigate High Power Interference Noise in 

Chirp Radar Systems Using EMD-FrFT Filtering," in 17th International 

Conference on Digital Signal Processing, 2011 DSP. 

[21] S. K. a. S. Quegan, Understanding radar systems SciTech Publishing, 1999. 

[22] D. M. Vavriv, et al., "Development of Surveillance and Tracking Radar," in 

Ultrawideband and Ultrashort Impulse Signals, The Third International 

Conference, 2006, pp. 26-31. 

[23] A. Z. E. Bassem R. Mahafza, MATLAB simulations for radar systems design: 

Boca Raton, FL: CRC Press/Chapman & Hal, 2004. 

[24] F. Gini and M. Rangaswamy, Knowledge Based Radar Detection, Tracking and 

Classification John Wiley & Sons, Inc, 2008. 

[25] B. R. Mahafza, Radar system analysis and design using Matlab: Boca Raton, FL: 

CRC Press/Chapman & Hall, 2005. 

[26] M. I. Skolnik, Introduction to Radar Systems vol. Third Edition McGraw-Hill 

International Editions, 2001. 

[27] K. W. Lo, "Theoretical analysis of the sequential lobing technique," Aerospace 

and Electronic Systems, IEEE Transactions on, vol. 35, pp. 282-293, 1999. 

[28] A. Guesalaga and S. Tepper, "Synthesis of automatic gain controllers for conical 

scan tracking radar," Aerospace and Electronic Systems, IEEE Transactions on, 

vol. 36, pp. 302-309, 2000. 

[29] R. G. Wiley, ELINT: The Interception and Analysis of Radar Signals The Artech 

House Radar Library, 2006. 

[30] A. I. Leonov and K. I. Fomichev, Monopulse Radar: Artech House Inc., 

Norwood, MA, 1986. 

[31] D. R. Rhodes, Introduction to Monopulse: Artech House Inc., Dedham, MA, 

1980. 

[32] S. M. Sherman, Monopulse Principles and Techniques: Artech House Inc., 

Norwood, MA, 1984. 

[33] "IEEE Standard Radar Definitions," IEEE Std 686-1997, p. i, 1998. 

[34] D. H. J. a. D. E. Dudgeon, Array Signal Processing: Prentice Hall, Englewood 

Cliffs, NJ, 1993. 



151 

[35] G. Liu, et al., "Moving target feature extraction with polarisation diversity in the 

presence of arbitrary range migration and phase errors," Radar, Sonar and 

Navigation, IEE Proceedings -, vol. 147, pp. 208-216, 2000. 

[36] Y. Seliktar, et al., "A space/fast-time adaptive monopulse technique," ed: 

Hindawi Publishing Corp., 2006, pp. 218-228. 

[37] Y. Seliktar, "Space- Time Adaptive Monopulse Processing," PhD, Georgia 

Institute of Technology, 1998. 

[38] D. H. Johnson and D. E. Dudgeon, Array Signal Processing: Concepts and 

Techniques: Prentice-Hall PTR: Englewood Cliffs, NJ, 1993. 

[39] P. S. Naidu, Sensor Array Signal Processing: CRC Press LLC, 2001. 

[40] Y. Seliktar, et al., "Adaptive monopulse processing of monostatic clutter and 

coherent interference in the presence of mainbeam jamming," in Signals, Systems 

& Computers, 1998. Conference Record of the Thirty-Second Asilomar 

Conference on, 1998, pp. 1517-1521 vol.2. 

[41] I. S. Reed, et al., "Rapid Convergence Rate in Adaptive Arrays," Aerospace and 

Electronic Systems, IEEE Transactions on, vol. AES-10, pp. 853-863, 1974. 

[42] R. C. Davis, et al., "Angle Estimation with Adaptive Arrays in External Noise 

Fields," Aerospace and Electronic Systems, IEEE Transactions on, vol. AES-12, 

pp. 179-186, 1976. 

[43] U. Nickel, "Overview of generalized monopulse estimation," Aerospace and 

Electronic Systems Magazine, IEEE, vol. 21, pp. 27-56, 2006. 

[44] A. Papoulis, Probability, Random Variables, and Stochastic Processes, third 

edition ed.: McGraw-Hill Inc., NY, NY, 1991. 

[45] D. H. Johnson and D. E. Dudgeon, Array Signal Processing: Prentice Hall, 

Englewood Cliffs, NJ, 1993. 

[46] S. M. Kogon, et al., "Beamspace techniques for hot clutter cancellation," in 

Acoustics, Speech, and Signal Processing, 1996. ICASSP-96. Conference 

Proceedings., 1996 IEEE International Conference on, 1996, pp. 1177-1180 vol. 

2. 

[47] M. K. Stephen, "adaptive Array Processing Techniques for Terrain Scattered 

Interference Mitigation," PhD, Georgia Institute of Technology, 1996. 

[48] Y. Seliktar, et al., "Beam-augmented space-time adaptive processing," in 

Acoustics, Speech, and Signal Processing, 1999. ICASSP '99. Proceedings., 1999 

IEEE International Conference on, 1999, pp. 2849-2852 vol.5. 

[49] G. W. Titi and D. F. Marshall, "The ARPA/NAVY Mountaintop Program: 

adaptive signal processing for airborne early warning radar," in Acoustics, 

Speech, and Signal Processing, 1996. ICASSP-96. Conference Proceedings., 

1996 IEEE International Conference on, 1996, pp. 1165-1168 vol. 2. 

[50] Mountain Top Radar. Available: 

http://spib.rice.edu/spib/mtn_top.html#overview 

[51] D. L. Adamy, EW 102: a second course in electronic warfare: Horizon House 

Publications, Inc., 2004. 

[52] P. Chevillat, et al., "Rapid Training of a Voiceband Data-Modem Receiver 

Employing an Equalizer with Fractional-T Spaced Coefficients," 

Communications, IEEE Transactions on, vol. 35, pp. 869-876, 1987. 



152 

[53] S. Denno and Y. Saito, "Orthogonal-transformed variable-gain least mean 

squares (OVLMS) algorithm for fractional tap-spaced adaptive MLSE 

equalizers," Communications, IEEE Transactions on, vol. 47, pp. 1151-1160, 

1999. 

[54] P. Houlis and V. Sreeram, "An Interconnection between Combined Classical 

Block Diagrams and Linear Fractional Transformation Block Diagrams," in 

Control, Automation, Robotics and Vision, 2006. ICARCV '06. 9th International 

Conference on, 2006, pp. 1-5. 

[55] S. Venkatesh, "Identification of uncertain systems described by linear fractional 

transformations," in Decision and Control, 2003. Proceedings. 42nd IEEE 

Conference on, 2003, pp. 5532-5537 Vol.5. 

[56] R. Saxena and K. Singh, "Fractional Fourier transform: A novel tool for signal 

processing," Journal of Indian Institute of Science, vol. 58, pp. 11-26 February 

2005 2005. 

[57] V. NAMIAS, "The Fractional Order Fourier Transform and its Application to 

Quantum Mechanics," IMA Journal of Applied Mathematics, vol. 25, pp. 241-

265, March 1, 1980 1980. 

[58] L. B. Almeida, "The fractional Fourier transform and time-frequency 

representations," Signal Processing, IEEE Transactions on, vol. 42, pp. 3084-

3091, 1994. 

[59] H. M. Ozaktas and D. Mendlovic, "Fourier transforms of fractional order and 

their optical interpretation," Optics Communications, vol. 101, pp. 163-169, 

1993. 

[60] D. Mendlovic and H. M. Ozaktas, "Fractional Fourier transforms and their 

optical implementation: I," J. Opt. Soc. Am. A, vol. 10, pp. 1875-1881, 1993. 

[61] D. Mendlovic, et al., "Signal spatial-filtering using the localized fractional 

Fourier transform," Optics Communications, vol. 126, pp. 14-18, 1996. 

[62] H. M. Ozaktas, et al., The Fractional Fourier Transform: with Applications in 

Optics and Signal Processing: John wiley & Sons Ltd, January 2001. 

[63] A. Bultheel and H. Martìnez Sulbaran, "A shattered survey of the fractional 

Fourier transform, http://www.cs.kuleuven.be/_nalag/papers/ade/frft/index.html," 

2003. 

[64] A. Bultheel and H. E. Sulbaran, "Computation of the Fractional Fourier 

Transform," Applied and Computational Harmonic Analysis, vol. 16, pp. 182-

202, February 2004. 

[65] D. S. Yeung, et al., "Complete way to fractionalize Fourier transform," Optics 

Communications, vol. 230, pp. 55-57, 2004. 

[66] E. Leith, "Review of 'Systems and Transforms With Applications to Optics' " 

Information Theory, IEEE Transactions on, vol. 18, pp. 451-452, 1972. 

[67] T. Ran, et al., "Image Encryption With Multiorders of Fractional Fourier 

Transforms," Information Forensics and Security, IEEE Transactions on, vol. 5, 

pp. 734-738, 2010. 

[68] Z. Nanrun and D. Taiji, "Optical Image Encryption Scheme Based on Multiple-

parameter Random Fractional Fourier Transform," in Electronic Commerce and 

Security, 2009. ISECS '09. Second International Symposium on, 2009, pp. 48-51. 



153 

[69] C. Clemente and J. J. Soraghan, "Range Doppler SAR processing using the 

Fractional Fourier Transform," in Radar Symposium (IRS), 2010 11th 

International, 2010, pp. 1-4. 

[70] C. Clemente and J. J. Soraghan, "Fractional Range Doppler Algorithm for SAR 

imaging," in Radar Conference (EuRAD), 2010 European, 2010, pp. 248-251. 

[71] A. S. Amein and J. J. Soraghan, "High Resolution- High Focused Squint-Mode 

Radar Imaging Using the Fractional Chirp Scaling Algorithm," in Acoustics, 

Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE 

International Conference on, 2006, pp. III-III. 

[72] A. S. Amein and J. J. Soraghan, "Fractional Chirp Scaling Algorithm: 

Mathematical Model," Signal Processing, IEEE Transactions on, vol. 55, pp. 

4162-4172, 2007. 

[73] S. Shankar and N. Srivastav, "Power Play: On the Notion of Fractional Quantum 

Fourier Transform," Potentials, IEEE, vol. 30, pp. 29-32, 2011. 

[74] B. Santhanam and M. Hayat, "On a pseudo-subspace framework for discrete 

Fractional Fourier transform based chirp parameter estimation," in Digital Signal 

Processing Workshop and IEEE Signal Processing Education Workshop 

(DSP/SPE), 2011 IEEE, 2011, pp. 360-363. 

[75] R. Shi, et al., "A Novel SAR Signal Reconstruction Method from Non-uniform 

Sampling Associated with Fractional Fourier Transform," in Measuring 

Technology and Mechatronics Automation (ICMTMA), 2011 Third International 

Conference on, 2011, pp. 210-213. 

[76] G. Jianjun and S. Fulin, "A new cross-range scaling algorithm based on FrFT," in 

Signal Processing (ICSP), 2010 IEEE 10th International Conference on, 2010, 

pp. 2043-2046. 

[77] C. Xiaolong and G. Jian, "A fast FRFT based detection algorithm of multiple 

moving targets in sea clutter," in Radar Conference, 2010 IEEE, 2010, pp. 402-

406. 

[78] N. E. Huang, et al., "The empirical mode decomposition and the Hilbert 

spectrum for nonlinear and non-stationary time series analysis," Proc. R. Soc. 

London, vol. Ser. A, 454, pp. 903-995, 1998. 

[79] NASA Inventions and Contributions Board Available: 

http://www.nasa.gov/offices/oce/icb/winners/ioy/2002_ioy.html 

[80] N. E. Huang, et al., "A confidence limit for the empirical mode decomposition 

and Hilbert spectral analysis," Procedures of the Royal Society of London, vol. 

459, pp. 2317–2345, 2003. 

[81] B. Narsimha, et al., "Denoising and QRS detection of ECG signals using 

Empirical Mode Decomposition," in Communications and Signal Processing 

(ICCSP), 2011 International Conference on, 2011, pp. 439-442. 

[82] H. Ji, et al., "Flow Pattern Identification Based on EMD and LS-SVM for Gas-

Two-Phase Flow in a Minichannel," Instrumentation and Measurement, IEEE 

Transactions on, vol. 60, pp. 1917-1924, 2011. 

[83] N. ur Rehman and D. P. Mandic, "Filter Bank Property of Multivariate Empirical 

Mode Decomposition," Signal Processing, IEEE Transactions on, vol. 59, pp. 

2421-2426, 2011. 



154 

[84] A. Roy and J. F. Doherty, "Overlay Communications Using Empirical Mode 

Decomposition," Systems Journal, IEEE, vol. 5, pp. 121-128, 2011. 

[85] M. A. Kutay, et al., "Optimal filtering in fractional Fourier domains," Signal 

Processing, IEEE Transactions on, vol. 45, pp. 1129-1143, 1997. 

[86] M. A. Kutay, et al., "Optimal filtering in fractional Fourier domains," in 

Acoustics, Speech, and Signal Processing, 1995. ICASSP-95., 1995 International 

Conference on, 1995, pp. 937-940 vol.2. 

[87] C. Candan, et al., "The discrete fractional Fourier transform," Signal Processing, 

IEEE Transactions on, vol. 48, pp. 1329-1337, 2000. 

[88] H. M. Ozaktas, et al., "Digital computation of the fractional Fourier transform," 

Signal Processing, IEEE Transactions on, vol. 44, pp. 2141-2150, 1996. 

[89] B. Santhanam and J. H. McClellan, "The DRFT-a rotation in time-frequency 

space," in Acoustics, Speech, and Signal Processing, 1995. ICASSP-95., 1995 

International Conference on, 1995, pp. 921-924 vol.2. 

[90] J. McClellan and T. Parks, "Eigenvalue and eigenvector decomposition of the 

discrete Fourier transform," Audio and Electroacoustics, IEEE Transactions on, 

vol. 20, pp. 66-74, 1972. 

[91] J. McClellan, "Comments on "Eigenvector and eigenvalue decomposition of the 

discrete Fourier transform"," Audio and Electroacoustics, IEEE Transactions on, 

vol. 21, pp. 65-65, 1973. 

[92] C. Capus and K. Brown, "Short-Time fractional fourier methods for the time-

frequency representation of chirp signals," The Journal of the Acoustical Society 

of America, vol. 113(6), pp. 3253-63, 2003. 

[93] R. Jacob, et al., "Applications of Fractional Fourier Transform in Sonar Signal 

Processing," Journal of Research, IETE   vol. 55, pp. 16-27, 2009. 

[94] P. Soo-Chang, et al., "Discrete fractional Fourier transform based on orthogonal 

projections," Signal Processing, IEEE Transactions on, vol. 47, pp. 1335-1348, 

1999. 

[95] P. Flandrin, et al. Empirical Mode Decomposition [Online]. Available: 

http://perso.ens-lyon.fr/patrick.flandrin/emd.html 

[96] P. Flandrin, et al., "Detrending and denoising with Empirical Mode 

Decompositions," in The 2004 European Signal Processing Conference 

(EUSIPCO-2004), 2004  

[97] Y. Kopsinis and S. McLaughlin, "Empirical mode decomposition based soft-

thresholding," in Proc. 16th Eur. Signal Processing Conference (EUSIPCO), 

Lausanne, Switzerland, 2008. 

[98] Y. Kopsinis and S. McLaughlin, "Development of EMD-Based Denoising 

Methods Inspired by Wavelet Thresholding," Signal Processing, IEEE 

Transactions on, vol. 57, pp. 1351-1362, 2009. 

[99] G. Rilling and P. Flandrin, "One or Two Frequencies? The Empirical Mode 

Decomposition Answers," Signal Processing, IEEE Transactions on, vol. 56, pp. 

85-95, 2008. 

[100] Y. Kopsinis and S. McLaughlin, "Investigation and Performance Enhancement 

of the Empirical Mode Decomposition Method Based on a Heuristic Search 



155 

Optimization Approach," Signal Processing, IEEE Transactions on, vol. 56, pp. 

1-13, 2008. 

[101] T. Tanaka and D. P. Mandic, "Complex Empirical Mode Decomposition," Signal 

Processing Letters, IEEE, vol. 14, pp. 101-104, 2007. 

[102] G. Rilling, et al., "Bivariate Empirical Mode Decomposition," Signal Processing 

Letters, IEEE, vol. 14, pp. 936-939, 2007. 

[103] P. Flandrin, et al., "EMD Equivalent Filter Banks, from Interpretation to 

Applications," in Hilbert-Huang Transform and Its Applications ed: World 

Scientific, 2005, pp. pp. 57 -74. 

[104] E. Leith, "Review of 'Systems and Transforms With Applications to Optics' 

(Papoulis, A.; 1968)," Information Theory, IEEE Transactions on, vol. 18, pp. 

451-452, 1972. 

[105] A. Koc, et al., "Digital Computation of Linear Canonical Transforms," Signal 

Processing, IEEE Transactions on, vol. 56, pp. 2383-2394, 2008. 

[106] A. Farina, et al., "Maximum likelihood estimator approach to determine the 

target angular co-ordinates in presence of main beam interference: application to 

live data acquired with a microwave phased array radar," in Radar Conference, 

2005 IEEE International, 2005, pp. 61-66. 

[107] J. Zongsheng and S. Xicai, "Analysis on the tracking performance of active radar 

seeker under the condition of coherent interference," in Intelligent Computing 

and Intelligent Systems, 2009. ICIS 2009. IEEE International Conference on, 

2009, pp. 418-422. 

 

 


