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Abstract 

The composite structures studied in this thesis involve concrete slabs with profiled steel 

sheeting supported by steel beams. The composite interaction is realized by providing shear 

connectors welded to the top flange of the steel beams. The columns are normally non- 

composite. The steel beam-to column connections are either designed as pinned or designed 

as rigid. Recent research has shown that semi-rigid joint behaviour may be achieved in 

composite joints by considering only a small amount of reinforcement over the 

connections. However due to the lack of design provisions and a simple and effective 

analytical method, semi-rigid frame design is rarely adopted by engineers. 

In this thesis the behaviour of semi-rigid composite connections, composite beams, and 

composite frames is investigated. Simple and effective finite element analysis models for 

composite joints, composite beams and composite frames are proposed. The models are 

validated against published tests on composite joints and beams. Three composite frames 

are analyzed and the results are compared with different proposals. Satisfactory agreements 

are achieved. Design recommendations are promoted for semi-rigid composite frames. 

Seismic analysis of composite frames is performed using the proposed frame model. The 

influence of semi-rigid joints on the overall performance of composite frame is 

investigated. The proposed method is so simple and straightforward that it provides an 

effective tool for both static and dynamic analysis of composite semi-rigid structures. 
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Notation 

A area of steel section 
Ac area of concrete 
AT area of total reinforcement in the concrete slab within the total effective width 

Be total effective width of concrete slab 
D depth of steel section 
Db lever arm of a pair of bolts 

Deq equivalent lever arm of reinforcement 
Dp overall depth of profile steel sheet 
Dr lever arm of reinforcements in concrete slab 

or distance from the top of the steel beam to the centroid of the reinforcement 

D. overall depth of slab 
Dt transformed depth of composite beam model 
d nominal shank diameter of a stud shear connector 
dr design interstorey drift 

E Young's modulus of steel 
Ec Young's modulus of concrete 
fou characteristic cubic strength of concrete 

ft characteristic strength of concrete in tension 
fy characteristic strength of steel 
h overall height of stud 

or storey height 

Ig second moment of area of uncracked composite section 
In second moment of area of cracked composite section for negative moments 
Ip second moment of area of cracked composite section for positive moments 
I, second moment of area of steel beam about major axis 
K degree of shear connection 
k reduction factor depending on profile shape 
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kt exponents which influence the shape of the spectrum for a vibration period grater 
than TC 

k2 exponents which influence the shape of the spectrum for a vibration period grater 
than TD 

kdt exponents which influence the shape of the design spectrum for a vibration period 
grater than Tc 

kd2 exponents which influence the shape of the design spectrum for a vibration period 
grater than TD 

L beam span 
M moment 
MC moment capacity of composite section with partial shear connection 
Mpc moment capacity of composite section with full shear connection 
MS moment capacity of steel beam 

N number of shear connectors in a group 
Na actual number of shear connectors between intermediate point and the adjacent 

support 
N� number of shear connectors for negative moments 
Np number of shear connectors for positive moments 
Qk characteristic resistance of shear connector 
Qn capacity of shear connector in negative moment regions 
Qp capacity of shear connector in negative positive regions 
Ptot total gravity load 

py design strength of structure steel 

q behaviour factor 

Rb effective resistance of a pair of bolts in a steel-to-beam connection 
Rc resistance of concrete flange 
Rf resistance of steel flange 
Rq resistance of shear connector 
Rr resistance of reinforcement 
Rs resistance of steel beam 

R,,, resistance of overall web depth 
Ryr yield force of reinforcements 
S soil parameter 
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Sd(T) design response spectrum, normalised by g 
Se(T) elastic response spectrum 
T vibration period of a linear single degree of freedom system 
TB, c limits of the constant spectral acceleration branch 

TD value defining the beginning of the constant displacement range of the spectrum 
Vtot total seismic storey shear 

ag design ground acceleration for the reference return period 
s longitudinal spacing centre-to-centre of groups of shear connectors 
tf flange thickness 

tW web thickness 

w uniformly distributed loading on a beam 

a ratio of the design ground acceleration ag to the acceleration of gravity g (a = ag/g) 

ae modular ratio 
ßo spectral acceleration amplification factor for 5% viscous damping 

S Deflection 

or displacement at floor level 

SC deflection of steel beam acting alone 
SS deflection of composite beam with full shear connection 
SSW deflection of composite beam subjected to instantaneously applied self weight 

C strain 

11 damping correction factor with reference value 1= 1 for 5% vicous damping 

0 interstorey drift sensitivity coefficient 

ß stress 
A interstorey drift index 



Chapter 1 Introduction 

1.1 Introduction 

Studies of the global performance under static loading of steel framed structures date 

back to as early as the 1920's (Baker, 1980). With the introduction of computer 

technology in the late 1960's, much progress has been made in various aspects of the 

overall response of steel frames. Many approaches are now possible in frame analysis. 

The effects of semi-rigid and partial strength connections have been investigated since 

the 1980's. The study of steel-concrete composite structures began in the late 1950's. 

The study of the behaviour of composite frames with semi-rigid beam-to-column 

connections is fast becoming a major research topic. 

In this thesis, the behaviour of semi-rigid composite joints, composite beams and 

composite frames is investigated. A finite element analytical method for analyzing 

semi-rigid composite joints is proposed. A finite element analysis composite beam 

model is also proposed. By incorporating the proposed composite joint model, the 

behaviour of composite beams with semi-rigid connections can be studied. The 

proposed composite joint model and beam model are then used in the analysis of 

composite frames. The limit behaviour of composite frames is investigated and the 

influence of semi-rigid connections on the overall performance of composite frames is 

studied. 

1.2 Composite frames with semi-rigid connections 

A composite frame is a framed structure for a building or similar construction work, in 

which some or all of the beams and columns are composite members and most of the 

remaining members are structural steel members (Eurocode 4, Part 1.1,1994). The 

composite frames being studied in this thesis include the following members: 

" Composite slabs: reinforced concrete slabs with profiled steel sheeting 

" Steel beams: with symmetrical sections about their minor axis 
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" Shear studs: provide shear connection between the composite slabs and steel 

beams in order that composite behaviour can be achieved 

" Composite beams: with combined sections of composite slabs and steel beams 

connected by shear studs 

" Steel columns: with symmetrical sections about their major and minor axis 

" Composite connections: the connections between composite beams and steel 

columns in which reinforcement is intended to contribute to the resistance of the 

connection 

A typical composite beam with profiled steel sheeting is illustrated in Figure I. I. 

Composite construction has lots of advantages over traditional reinforced concrete 

construction, such as lower self-weight, larger beam span, controlled fabrication quality, 

shorter construction time, etc. Consequently it can significantly reduce the overall 

construction costs. In the past few decades, this type of construction has been greatly 
developed and accepted. Now it accounts for over 60% of the UK building market 

(Dowling & Burgan, 1998). 

Steel Beam 

Figure 1.1 Composite beam with profiled steel sheeting 
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1.2.1 Beam-to-column connections 

Generally beam-to-column connections may be classified by rigidity or by strength. By 

rigidity, beam-to-column connections may be sub-classified as nominally pinned 

connections, rigid connections and semi-rigid connections. 

According to EC 3, Part 1.1 (1992) a nominal pinned connection shall be so designed 

that it cannot develop significant moments which might affect members of the structure; 

and it should be capable of transmitting the forces calculated in design and should be 

capable of accepting the resulting rotations as well. Simple web cleat, fin plate and thin 

end plate connections are normally assumed as nominally pinned connections. 

A rigid connection shall be so designed that its deformation has no significant influence 

on the distribution of internal forces and moments in the structure, nor on its overall 

deformation, and it should be capable of transmitting the forces and moments calculated 

in design. The deformations of rigid connections should not reduce the resistance of the 

structure by more than 5% (Eurocode 3, Part 1.1,1992). A typical example of rigid 

connections is the fully welded connection. 

A semi-rigid connection should provide a predictable degree of interaction between 

members, based on the design moment-rotation characteristics of the joint. It should 

also be capable of transmitting the forces and moments calculated in design. A typical 

example of semi-rigid connections is the flush endplate connection. 

The moment diagrams of steel frames with nominal pinned, semi-rigid and rigid 

connections are shown in Figure 1.2. Semi-rigid connection is the optimal choice 
among the three types of connections under the same loading condition because the 

mid-span moment is smaller compared to simply supported beams, which leads to 

possible savings on beam sections. Secondly, the fabrication costs of semi-rigid joints 

are lower than those required by rigid joint design. 
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In composite construction, the fabrication and erection costs of structures are estimated 

to be 30-50% of the total structure costs. The type of connection has great influence on 

the fabrication and erection costs. In fact, over 60% of the fabrication costs is directly 

influenced by the fabrication of the connections (Nethercot, 1998). Economic studies in 

various countries have shown that the possible savings due to semi-rigid design can be 

20-25% in case of unbraced frames and of 5-9% in case of braced frames. With the 

assumption that the costs of the pure steel frames are about 10% of the total costs for 

office buildings and about 20% for industrial buildings, the reduction of the total 

building costs could be estimated to 4-5% for unbraced frames and 1-2% for braced 

frames (Weynand et al. 1998). 

J'TJT JTTt 

Nominal pinned connection Semi-rigid connection 

Figure 1.2 Bending moment diagrams of steel frames 

1.2.2 Composite beam to column connections 

Rigid connection 

Composite construction has achieved dominance in the UK because of its overall 

economy of use of materials and ease of construction relative to alternative reinforced 

concrete and steel options. Beam to column connections are traditionally considered to 
be `simple' with no moment transfer to the columns. However, it has been recognized 
that even relatively flexible steel connections are stiffer and stronger when used in a 
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composite frame. This is because of the continuity of reinforcement in the slab and 

other less quantified effects, such as membrane action of the floor slab. 

Composite connections are steel beam to column connections that are designed to act 

compositely with the floor slab through the reinforcement in the slab. Composite beam 

to column connections using welded end plate steel connections (Figurel. 3) are most 

accepted. Economies that result from incorporation of composite connections in the 

design of braced frames may be expressed in terms of 

" Reduced beam weights and savings in frame cost 

" Reduced beam depths (important for integration of building services, etc. ) 

" Predictable serviceability performance 

" Greater robustness against explosions and fire 

These economies increase for multi-bay braced frames, although moments transferred to 

edge columns have to be considered. It is reported that steel weight savings are of the 

order of 8% to 12% relative to braced frames. However, the weight and depth saving on 

the beams may be up to 25%. The corresponding savings are probably in the range of 
4% to 6% of the cost of the fabricated work, and 2% to 3% of the cost of the complete 

structure (Lawson & Gibbons, 1995). 

The different forms of fabricated steel beam to column connections that are widely used 
in the UK are 

1. End plate connections, i. e. plate welded to the flange and web of the beam 

and bolted to the column flange (Figure 1.3 & Figure 1.4). Four types exist: 
(a) Extended end plates with bolt above and below the beam top flange 

(b) Flush end plates with bolts contained within the beam depth 

(c) Partial depth end plates with the plate not directly connected to the 

complete depth of the web, or both flanges 

(d) Haunched connections with a local deepening of the beam section 

2. Cleat connections i. e. using angle cleats (Figure 1.5). They are: 
(a) Web cleats in pairs attached to the web 
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(b) Web cleats and a seating cleat 
(c) Web cleats and top and bottom cleats 

3. Fin plate connections i. e. plates welded to the column flange or web and 
bolted to the beam web (Figure 1.6). 

Conventionally, connections of types 1(c), 2(a), 2(b) and 3, listed above, are considered 

as ̀ simple', whereas 1(b) and 2(c) are `semi-rigid' in terms of their behaviour. Only 1(a) 

and 1(d) can be designed effectively as `rigid', and 1(d) can also be treated as full 

strength. The only connections currently covered by design rules for partial strength in 

Eurocode 3 are 1(a) and 1(b). 

1.3 Aim of the research 

The aim of this research is to produce a finite element analytical model for the nonlinear 

three-dimensional analysis of composite structures with semi-rigid connections. 

The objectives of the research are: 

" Propose a finite element model of shear connectors so that each shear connector 

can be directly modelled by a finite element. 

" Propose a finite element model for the analysis of semi-rigid composite joints. 

" Investigate the nonlinear behaviour of semi-rigid composite joints. 

" Validate the semi-rigid composite joint model against tests from published 

papers. 

" Propose a finite element model for the analysis of composite beams. 

" Investigate the nonlinear behaviour of composite beams regarding partial shear 

connection and semi-rigid joints. 

" Validate the proposed composite beam model against current design code 

method and tests from published papers. 

" Propose an analytical method for the analysis of composite frames. 

" Investigate the limit behaviour of semi-rigid composite frames and the influence 

of semi-rigid connections on the overall behaviour of composite frames. 
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" Validate the proposed analytical method of composite frames against different 

approaches from published papers. 

" Perform seismic analysis of composite frames. 
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1.4 Outline of the thesis 

There are nine chapters in this thesis. A brief introduction to composite construction and 

semi-rigid beam-to-column connections has been given in Chapter 1. 

In Chapter 2, the current design code method for steel beam-to-column connections is 

reviewed. Current research effort on the theoretical analysis of composite beam-to- 

column connections is also reviewed. 

The research on the analysis of composite beams is reviewed in Chapter 3 and the 

current design code method for simple support composite beams is outlined. The design 

recommendations for continuous composite beams are also outlined. 

In Chapter 4, the basic concept of finite element method and stiffness matrix method is 

reviewed. The LUSAS structural analysis program is introduced and the procedure of 

seismic analysis using time domain method is described. 

In Chapter 5, recent finite element models of semi-rigid composite joints are discussed 

and a simple composite joint model is proposed (including a shear connector model). 
The proposed composite joint model is validated against published joint tests and the 

non-linear behaviour of semi-rigid composite joints is investigated. 

In Chapter 6, the history of finite element modelling of composite beams is reviewed 

and a simple composite beam model is proposed. By incorporating the proposed 

composite joint model, composite beams with semi-rigid joints can be analysed. The 

proposed beam model is validated against the current British design code method and 
published composite beam tests. The behaviour of composite beams with partial shear 
connection and semi-rigid joints is investigated. 

In Chapter 7, the design recommendations on composite frames are reviewed and recent 
analytical proposals of composite frames are investigated. A simple finite element 
method for the nonlinear analysis of composite frames is proposed by incorporating the 
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proposed composite joint model and beam model. The proposed composite fame model 

is validated against different proposals through the analysis of three composite frames. 

The limit behaviour of composite frames is investigated and the influence of semi-rigid 

connections on the overall behaviour of composite frames is discussed. 

In Chapter 8, recent research on the seismic analysis of composite structures is 

reviewed. The proposed composite frame model is used to analyse a six-storey sample 

composite frame. The influence of composite joint stiffness on the overall behaviour of 

composite frames is investigated. 

In Chapter 9, the conclusions on the modelling of composite structures are outlined and 
design recommendations for semi-rigid composite frames are made. Future research 

work on improving the modelling and dynamic analysis of composite structures is 

indicated. 
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Chapter2 Semi-rigid beam-to-column connections 

2.1 Introduction 

The advantages and benefits of semi-rigid construction have been generally accepted 
but because of the lack of design provisions, semi-rigid design is rarely adopted in 

the current building industry. The main reason for this is because of the complexity 

of semi-rigid beam-to-column connections, especially in a composite joint design. 

The current European design code EC3 (DD ENV 1993-1-1) introduces a design 

method for the endplate type of steel beam-to-column connections. Research is still 

under way on the design of composite beam-to-column connections. 

In this chapter, the classifications of semi-rigid beam-to-column connections are 
introduced and the current design code method of endplate beam-to-column 

connections is reviewed. Recent design recommendations on composite beam-to- 

column connections are outlined. 

2.1.1 Moment-rotation relationship 

Generally speaking the moment-rotation relationship of a beam-to-column 

connection is non-linear. An approximate design moment-rotation relationship could 
be obtained from a more precise curve by an appropriate linearised approximation 
(e. g. bi-linear or tri-linear), provided that the approximate curve is below the more 

precise relationship (Figure 2.1). 

The design of the moment-rotation relationship should define three main properties: 

" Moment of resistance 

" Rotational stiffness 

" Rotation capacity 

13 
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Figure 2.1 Bi-linear relationship of beam-to-column connections 

2.1.2 Classification of beam-to-column connections according to EC3 

Generally beam-to-column connections may be classified by rotational stiffness or 
by moment of resistance. By rotational stiffness, beam-to-column connections may 
be sub-classified as nominally pinned connections, rigid connections and semi-rigid 

connections. By moment of resistance, beam-to-column connections may be sub- 

classified as nominally pinned connections, full-strength connections and partial- 

strength connections. 

2.1.2.1 Classification by rotational stiffness 

According to EC3 a beam-to-column connection may be classified as nominally 
pinned if its rotational stiffness Sj satisfied the condition: 

Sj<_ 0.5E1b 'Lb (2.1) 
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where Sj is the secant rotational stiffness of the connection 
Ib is the second moment of area of the connected beam 

Lb is the length of the connected beam 

A beam-to-column connection in a braced frame or an unbraced frame may be 

considered to be rigid compared to the connected beam, if the rising portion of its 

moment-rotation curve lies above the solid line on the diagram in Figure 2.2. 

However, for an unbraced frame every storey should satisfy: 

Kb 1K, z 0.1 (2.2) 

in which Kb is the mean value of Ib/L for all the beam members at the top of that 

storey 

and KK is the mean value of Iý/L, for all the columns in that storey 

where Ib is the second moment of area of a beam 

L is the span of a beam (centre-to-centre of columns) 
I, is the second moment of area of a column 
L, is the storey height for a column 

If the rising portion of its moment-rotation curve lies below the solid line in Figure 

2.2, a beam-to-column connection is classified as semi-rigid, unless it also satisfies 
the requirements for a nominal pinned connection. 
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Figure 2.2 Classification boundaries for rigid beam-to-column connections from EC3 

2.1.2.2 Classification by moment of resistance 

According to EC3, a beam-to-column connection may be classified as nominally 

pinned if its design moment of resistance MRd is not greater than 0.25 times the 

design plastic moment of resistance of the connected beam Mpi, Rd , provided that it 

also has sufficient rotation capacity. 
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A beam-to-column connection may be classified as full strength if its design moment 

of resistance MRd is at least equal to the design plastic moment of resistance of the 

connected beam Mpr, Rd, provided that it also has sufficient rotation capacity. 

A beam-to-column connection should be classified as partial-strength if design 

moment of resistance MRd is less than Mpt. Rd. 

The classification of typical moment-rotation relationships for beam-to-column 

connections with respect to both rotational stiffness and moment of resistance is 

illustrated in Figure 2.3. 

2.1.3 Design criteria 

In EC3 the design criteria of the moment of resistance, rotation capacity and the 

rotational stiffness of a beam-to-column connection is promoted by considering three 

critical zones as shown in Figure 2.4. They are: 

" Tension zone (in column & beam web) 

" Compression zone (in column web) 

" Shear zone (in column web) 

2.1.3.1 Moment of resistance 

The design moment of resistance should be determined by taking account of the 
following criteria: 

(a) Tension zone 

" Yielding of the column web 

" Yielding of the beam web 

" Yielding of the column flange 

" Yielding of the connection material (e. g. end plate) 

" Weld failure 

" Bolt failure 
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Figure 2.3 Examples of classification of moment-rotation relationships for beam- 
to-column connections from EC3 (DD ENV 1993-1-1) 
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Figure 2.4 Critical zones in beam-to-column connections 

(b) Compression zone 

" Crushing of the column web 

" Buckling of the column web 

(c) Shear zone 

" Shear failure of the column web panel 

The design moment of resistance of a beam-to-column connection is taken as the 

smaller of the resistance of the tension zone and the compression zone, multiplied by 

the distance between their centers of resistance. 

2.1.3.2 Rotational stiffness 

It is suggested in EC3 that the calculated rotational stiffness of a beam-to-column 

connection should be based on the flexibilities of the components of the critical 

zones. 

2.1.3.3 Rotation capacity 

It is suggested in EC3 (DD ENV 1993-1-1) that the calculated rotation capacity of a 
beam-to-column connection should be determined from the plastic deformation 
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capacity of the same critical zone which governs in the calculation of the design 

moment of resistance of the connection. 

2.2 Design of semi-rigid beam-to-column connections according EC3 

Bolted endplate connections are typical semi-rigid connections. In the connection, 

the column web may be un-stiffened or stiffened in line with one or both flanges of 

the beam. Some types of endplate connections are shown in Figure 2.4. In Annex J of 

EC3, Part 1.1 (1992), the design method of endplate connections is provided. 

II -ý/--Tr- 

ii ý ii - ti 
Stiffened Unstiffened 

(a) Bolted connections with extended end plates 

-TI-- ----rr- 

if= TiT 
"OR ý 

Stiffened Unstiffened 

(b) Bolted connections with flush end plates 

Figure 2.4 Bolted endplate beam-to-column connections 

ý 
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2.2.1 Moment of resistance 

In EC3 the design value of the moment of resistance of a bolted beam-to-column 

connection is given by 

MRd -ý 
[FN, 

Rd -hi ] (2.3) 

where F11. Rd is the design value of the effective resistance of an individual row of 
bolts 

h; is the distance from that bolt-row to the centre of resistance of the 

compression zone 

2.2.2 Rotational stiffness 

In EC3 the rotational stiffness of a bolted end-plate beam-to-column connection is 

given by: 

Eh; t,,, r, Si _ Fr 

k, F,. Rd 

where 
Si 

MRd 

hi 

p1 

(2.4) 

is the secant stiffness with respect to a particular moment M in the connection 

(MSMRd) 

is the design moment of resistance of the connection 
is the distance from the first bolt-row below the tension flange of the beam, to 

the centre of resistance of the compression zone 
is the modification factor. For i=1,2 or 3, g, = 1. For i=4,5 or 6, 

ý1 = 
hlF1, Rd 

MRd 

k, is the stiffness factor for component i. 
F; is the force in component i of the connection due to moment M. 
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F1, Rd is the design resistance of component i of the connection 
The definition of the stiffness factor (k; ) can be found in Annex J of Eurocode3, 

Part 1.1. 

2.2.3 Rotation capacity 

The rotation capacity of a bolted end-plate beam-to-column connection is given in 

EC3 from 

10.6 - 4ß� ý`ý 
1.3h, 

where 

(2.5) 

hi is the distance (in mm) from the first bolt-row below the tension 

flange of the beam to the centre of resistance of the compression zone. 

ßc, is the value of ß for the component with the lower value of Fg, Rd/EBt. Rd 
Mr, Rd is the total design resistance of all bolt-plate assemblies 

The definition of X13, Mt. Rd can also be found in Annex J, Eurocode3, Part l. 1 (1992). 

2.3 Design recommendations of composite semi-rigid connections 

A composite connection is defined in Eurocode 4, Part 1.1 (1994) as ̀ a connection 
between a composite member and any other member in which reinforcement is 

intended to contribute to the resistance of the connection'. Endplate connections are a 

commonly used form of connection for frames in the UK. A considerable amount of 

research has been carried out on their performance, both as steel and composite 
connections. Early studies have shown that endplate connections possess good 
rotation capacity and can achieve effective transfer of compression at the beam 
bottom flange. They can provide `robustness' as required in BS 5950: Part 1 (2000). 
And design guidance is only available for endplate type of composite connections. 

22 



The force transfer at a typical composite end plate connection is shown in Figure 2.5. 

The moment of resistance of composite connections may be evaluated by plastic 

analysis or `stress block' principles, provided: 

" There is an effective compression transfer to and through the column 

" The amount of reinforcement is above a certain minimum, so that cracking of 

the concrete develops in a controlled manner 

" There are sufficient shear connectors to develop the tensile forces in the 

reinforcement 

" The reinforcement is effectively anchored on both sides of the connection 

" The bolts provide sufficient shear resistance 

Bolt 

Beam 

Column 

Figure 2.5 Force transfer at a typical composite end plate connection 

2.3.1 Tensile force in the reinforcement 

The effective breadth of slab over which the reinforcement may be considered to act 
in tension in the negative region is given in Clause4.6 of BS 5950: Part 3. This 

effective breadth is equivalent to 1/8 of the average of the adjacent beam spans, 
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which is half of the value for a simple supported beam. Reinforcement outside this 

zone is neglected. 

The minimum percentage of bar reinforcement (expressed as a proportion of the slab 

cross-sectional area) should be sufficient to control the cracking of the concrete 
(0.5% is a recommended practical minimum for crack control at the connections). 
Additionally, the rotation capacity of the connection increases with the amount of 

reinforcement placed in the slab and therefore a higher percentage of reinforcement 

may be required. The maximum percentage of reinforcement is dependent either on 

the ability of the shear connectors placed in the negative moment region to transfer 

the required force to the reinforcement, or on the compression resistance of the beam 

or the column web. It is suggested that for typical shear connector spacing and beam 

sizes the sensible maximum percentage of reinforcement is about 2% (Lawson, 

1995). Mesh reinforcement is ignored in moment of resistance calculations because 

of its possible lack of ductility. 

2.3.2 Tensile force in the bolts 

In the joint design the upper bolts may be considered as part of the tensile resistance 

of the composite connection, provided the steel to steel connection is classified as 
`full' or `partial' strength according to Eurocode 3 Annex J. Mode 1 failure, defined 

in Annex J of EC3, corresponds to development of the necessary yield line 

mechanism in the end plate before bolt failure. If Mode 1 failure does not occur, the 

connection may not have guaranteed ductility compatible with the extension of the 

reinforcement at the required rotation of the connection. 

2.3.3 Compression in the bottom flange 

The transfer of the compression force through the connection relies on direct bearing 

of the bottom flange of the beam. It is possible to argue that the bottom flange can 
resist stress of up to 1.2py, due to strain hardening, as in the conventional design of 
steel connections to resist moments. In heavily reinforced connections, the neutral 
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axis may extend into the beam web. The maximum depth of beam web adjacent to 

each flange that can resist compression is 19t,, r, before onset of local buckling. Class 

3 (semi-compact) webs may be analysed by ignoring the ineffective portions of the 

web in compression when the depth in compression exceeds 38twF_ (tw is the web 

thickness and e= J(py /2 75) for steel of design strength, py) 

Checks also have to be made on the adequacy of the connected parts i. e. plates and 

welds, and on the local resistance of the column in compression. The buckling or 

bearing resistance of the column web may limit the maximum compression force that 

can be transferred. Web stiffeners may be required for composite connections with a 

high percentage of slab reinforcement, leading to a greater compression transfer at 

the bottom flange. 

2.3.4 Shear force in the bolts 

The shear resistance of the connection relies on the connecting parts. It is considered 
inappropriate to include the shear resistance of the concrete or reinforcement because 

of the influence of cracking in this zone. Conventionally, the bottom pair of bolts in a 

steel connection is often assumed to resist the total shear force on the beam. 

However, the top bolts that are highly stressed in tension may resist a proportion of 

their design shear resistance without affecting their tensile resistance (BS 5950: Part 

1,2000). 

2.3.5 Longitudinal shear force 

The development of the tensile force in the reinforcement depends on the 
longitudinal shear forces between the slab and beam being transferred by the shear 
connectors. It is normal practice to adopt a standard spacing of the shear connectors 
throughout the beam span. BS 5950: Part 3 (1990) requires that full shear connection 
is developed in the negative moment region, and this may lead to the use of shear 
connectors at the minimum spacing for highly reinforced slabs. The reinforcement 
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should extend over the negative moment region and be anchored into the 

compression zone of the slab, as required by BS 8110 (1997). 

Point of Point of 
contraflexure maximum 

moment 

,, 
Negative 
moment 
region 

' 
Ti 

Tension in Compression 
reinforcement 

'4 -' T111TTTTTTT 

-*I 
-W 

Bending moment 

In slab 
ý-*-t 1t 

a 
Longitudinal shear force 
In shear connectors 

Figure 2.6 Transfer of longitudinal shear forces in a composite beam 

2.3.6 Moment of resistance of composite connections 

Several methods have been proposed to predict the moment of resistance of 

composite end plate connections (Anderson & Najafi, 1994; Lawson & Gibbons, 

1995; Xiao et al, 1996; Brown & Anderson, 2001, etc. ). In these proposals, the 

moment of resistance of composite end plate connections is determined from plastic 

analysis principles in terms of the following parameters: 

Rr tensile resistance of the reinforcement placed within the effective breadth of 

the slab. 
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Rb effective tensile resistance of a pair of bolts, determined by the yield line 

pattern in the end plate or column flange (achieve mode 1 failure, according 

to EC3 Annex J) 

Rf compression resistance of the beam bottom flange, or alternatively, the 

resistance of the column web in buckling or bearing if this is smaller. 

The method described by Lawson & Gibbons is introduced in detail below. 

2.3.6.1 Flush end plate connections 

In flush end plate connections, it is considered that only the upper pair of bolts is 

effective in tension, provided also that the steel connection is classified as ̀ partial 

strength'. This limitation is made due to the potentially low strains in the bolts 

relative to the reinforcement, and the possibility that both elements may not reach 

their tensile resistance simultaneously. The moment of resistance of the composite 

connection is evaluated using the stress block analysis and symbols shown in Figure 

2.7. 

ý 
Aw 

ý- 
RI 
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Figure 2.7 Stress block analysis of the moment of resistance of a composite 

connection using a flush end plate (Lawson, 1995) 
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(a) The plastic neutral axis of the composite section subject to negative moment 

lies in the beam bottom flange, when 

Rf > Rb + Rr (2.6) 

In this case, the moment of resistance of the composite connection, MRa, is 

determined by taking moments about the centre of the beam bottom flange, and is 

given by: 

MRd = Rr(D+Dr-0. Stf)+Rb(D-Db-0. Stf) (2.7) 

where D is the beam depth 

Db is the distance of the first row of bolts below the top of the beam 

D, is the distance of the reinforcement above the top of the beam 

tfis the flange thickness 

(b) The plastic neutral axis of the composite section lies in the beam web, when 
Rf SRb+R, 

The neutral axis depth, yc , above the bottom flange is given by: 

vt _ twpy 

(2.8) 

(2.9) 

The web is fully effective in compression provided yc _< 38twe If not, the analysis 

may be continued by considering only an effective portion of the web of depth 19twc 

adjacent to both the bottom flange and the neutral axis. 

The moment of resistance of the composite connection with a fully effective web is 
determined by taking moments about the centre of the beam bottom flange, and is 

given by: 

R. +R6-Rf 
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MRd = R, (D + D, - 0.5 tf) + Rb(D - Db - 0.5 tf) - Rw (Y, +tf)/2 (2.10) 

where Rw = yc twpy 

As the amount of reinforcement is increased, the plastic neutral axis rises into the 

upper portion of the web. When yc > O. 5D it is proposed that the tensile resistance of 

the bolts should be neglected due to their low strains relative to the reinforcement. 

The moment of resistance of the connection with ineffective bolts and web can be 

calculated from the first principles. However, this design case indicates that the slab 

is heavily reinforced and it is unlikely that full shear connection in the negative 

moment region can be achieved. In practice, therefore, the above equations should be 

sufficient for design purpose. 

2.3.6.2 Extended end plate connections 

In extended end plate connections, the upper pairs of bolts above and below the 

upper beam flange are considered to be effective in tension. The moment of 

resistance is evaluated using the same basic expressions as in flush end plate 

connections assuming that the tension bolts are equally spaced about the upper 
flange. The effective resistance of the four tension bolts is 2Rb. And the compression 

stress of 1.2py is also assumed in calculating Rf . However, it is often necessary to 

stiffen the column web in extended end plate connection in order to develop this 

compression resistance. Otherwise, the maximum value of Rf would be limited to a 

maximum value given by buckling or bearing of the column web. 

(c) The plastic neutral axis of the composite section lies in the beam bottom 

flange, when 
Rf > Rb + R, (2.11) 

The moment of resistance of the composite connection, MRd, is determined by taking 

moments about the centre of the beam bottom flange, and is given by: 
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MRd = R, (D+Dr-0. Stf)+2R6(D-0. Stf) (2.12) 

(d) The plastic neutral axis of the composite section lies in the beam web, when 
Rf S 2Rb + R, (2.13) 

The neutral axis depth, yr., above the bottom flange is given by: 

y'= 
R. +2R6-Rf (2.14) 

twpy 

As for flush end plate connections, when the depth of the web in compression 

exceeds 38t, ve, the ineffective portion of the web is neglected in the moment of 

resistance calculations. 

The moment of resistance of the composite connection with a fully effective web is 

given by: 

MRd = R,. (D + Dr - 0. S tj) + 2R6(D - 0. S tj) - Rw (yc +tj)12 (2.15) 

where Rµ, = yc tw py 

As the amount of reinforcement is increased, the plastic neutral axis rises into the 

upper portion of the web. When yc > O. 5D, the tensile resistance of the bolts below 

the top beam flange is neglected, and only the upper pair of bolts is considered, until 

yc = O. 5D when these bolts are also neglected. The above equations should be 

modified accordingly. 
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2.3.7 Initial stiffness and rotation capacity of composite connections 

2.3.7.1 Anderson & Najafi's model 

Anderson & Najafi (1994) proposed a simplified spring model of composite 

connections with steel end plate joints to predict the joint stiffness and the joint 

rotation. In their model, each spring simulates the stiffness of a component of the 

connection and in principle is assumed to be elastic or elasto-plastic. Assuming full 

interaction, no slip occurring at the interface of the steel beam and concrete slab and 

the concrete to be cracked, the rotational stiffness of the composite connection is 

converted to the following springs as shown in Figure 2.8. 

" KQ the compression spring 
" Kb the tension spring. Kb = co when the column we is stiffened 
" Kr the spring corresponds to the reinforcement 
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ir 
D 

Db 
steel beam 

-0 

column) 

S 

centre line 

Or 
Fr ý- Kr 

Inl- 
b IDb 

Fb Kb I-- 
II 

Fa Ka 

) 

Figure 2.8 Anderson & Najafi's simplified model including steelwork joint and 

reinforcement 
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The rotational stiffness of the steelwork connection is: 

C. = 
Ms 

= 
FbDb 

a ýs 0s 

The joint rotation A can be written as: 

0s =b_r 
Db Dr 

(2.16) 

(2.17) 

where db is the extension of spring b, i. e. the displacement at the level of the top bolt 

row. From the above two equations, the stiffness of spring b can be written as: 

Kb=Qb =2 Ab Db 
(2.18) 

The stiffness CS can be calculated for steel end plate joints from EC3. Assuming that 

the reinforcement obeys Hooke's law: 

O. =F, 
F'1 

K, E, Ar 
(2.19) 

where 1 is the assumed length of reinforcing bars having extension dr ,1= D0�2. 

where Dc is the depth of the column section. Hence: 

K= Er Ar 

r1 (2.20) 

Assuming rotation about the bottom flange, the overall equilibrium and compatibility 
equations for the connection are: 

M=F, D, + FbDb (2.21) 
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Using the above equations to eliminate FT and Fb, 

M= (KbDb + KD, ')o 

Hence for a given moment, the corresponding rotation is given by: 

KbDb + KD, ' 

(2.22) 

(2.23) 

However, the predicted joint rotations at half the moment of resistance of the 

composite joint are much less than the experimental values. The authors concluded 
that the flexibility of shear connectors cannot be excluded from the derivation of 

connection stiffness. It is assumed that the slip at the connection depends initially on 
the nearest stud to the column. Under increasing load this stud provides resistance to 

slip, until it becomes plastic. Its force then remains constant and equal to its 

maximum resistance. Additional load is then assumed to be resisted by the next stud 
deforming elastically until the plastic resistance of that stud is reached also. Further 

load will then be carried by the next stud and so forth. The spring model representing 
the deformation of both the reinforcement and the shear connection is shown in 

Figure 2.9. 

I 
KS 

Figure 2.9 Anderson & Najafi's proposed model including steelwork joint, shear 
connectors and reinforcement 
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The joint rotation is: 

ý As 

bD 

(2.24) 

where D is the depth of the steel beam to the centre of the bottom flange. And the 

deformation ds due to shear connection is given by: 

As = 
F, 
K, 

(2.25) 

where the stiffness of the stud KS can be obtained from push-off tests. And the force 

in the shear connection Fs equals to that in the reinforcement Fr. Proceeding in a 

similar manner to previously it can be obtained that for a particular bending moment 

M, the rotation 0 is given by: 

K, K, D, D 
+K DZ [ 

K, +Ks 
b bý 

The force F, in the reinforcement is given by: 

F' =( 
K'K'D 

)0 
K, +K, 

(2.26) 

(2.27) 

For the reinforcement to yield, F, = A, fy , where fy is the yield strength of the bars. 

It is found that when yield occurs: 

0= fry 
(A` +E 

KD 

M 

(2.28) 
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As account is taken of deformation of the shear connection, the authors suggest that 

it is appropriate to increase the length I of the reinforcement having extension dr to 

be the distance between the centre line of the column and the first stud. 

2.3.7.2 Brown & Anderson's method 

Brown and Anderson (2001) proposed a method to predict the connection stiffness 

and the rotation capacity of composite end plate beam-to-column connections. Their 

approach was justified by their tests and earlier tests and the agreement was good. 

0 Initial stiffness 

In Eurocode 3 for steel joints, the initial stiffness Sj, in' is summed to be applicable for 

moments up to 0.67MRd. For steel end plate connections it is recommended that the 

secant stiffness at MRd should be taken as one-third of the initial value. This proposal 

has been shown to be appropriate also for composite joints with steel end plate 

connections. 

According the component approach of EC3 to calculate Sj, ;;, Brown and Anderson 

assumed that the active components are the bolt row in tension and the reinforced 

concrete slab. The deflections due to the column web stiffener in compression and 

the column web panel in shear are neglected. 

In Brown and Anderson's model, each bolt row in tension comprises the column web 
in tension, the column flange in bending, the end plate in bending and the bolts in 

tension. These individual components are shown by separate springs in Figure 2.10. 

For each of these components, Eurocode3 gives a stiffness coefficient denoted by the 

author as kj-k4. The components in the row are then combined to give an effective 

stiffness, as shown in Figure 2.10 (b). For composite joints, the reinforced concrete 
slab in tension acts in a similar manner to a bolt row, but it is represented by a single 
component. The assembly of the components is then simplified by replacing the 
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tension springs by an equivalent single stiffness keg and the rotational stiffness is 

given by: 

Sj, ini = Ekeq Z2 (2.29) 

To determine the stiffness coefficient for the slab, Anderson assumed the concrete to 

be fully cracked. The rotational stiffness at the beam-to-column interface is then 

dependent on the extension of the reinforcement over half the depth of the column 

section hß/2, and the total slip at the end of the beam due to deformation of the shear 

connection. 

(a) 

Symmetrical about Q, 

ý--ý-- hc12 

(b) (c) 

z 

Figure 2.10 Brown & Anderson's stiffness prediction model 
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" Connection rotation capacity 

Generally the moment of resistance of a composite joint is less than that of the 

adjacent composite beam section. The yielding therefore occurs within the composite 

joint. Yielding of the reinforcement is the main source of dependable rotation 

capacity of the composite joint. Brown & Anderson take this as the rotation capacity 

of the joint because the M-c relationships of their tests show that the joints sustain 

values of moment greater than the calculated resistance up to the point of fracture. 

They assume that for a slab in tension the maximum strain in the reinforcement 

occurs only at crack locations, elsewhere the strain is lower. To predict the 

deformation capacity of a length of reinforcement d,,, s the average strain ES, m should 

be calculated from the ultimate value which will arise at the crack. In their method, 

the length of reinforcement is calculated from the column depth h, , the distance to 

the first shear connector, and the `transmission' length Lt over which the bond 

between the concrete and the reinforcement has broken down (Figure 2.11). 

In Brown & Anderson's method, the slip deformation s due to shear connectors and 

the compression deformation in the beam flange dQ immediately adjacent to the joint 

are also considered. To assess plastic compression of the beam flange, they assume 

that at ultimate moment the strain in the compression flange is eight times the yield 

value, at which the strain hardening is assumed to commence. This strain is assumed 

over the distance from the face of the connection to the inclinometer used to measure 

rotation in their tests. And the inclinometers are positioned 85mm to the surface of 

the end plates in test specimens. The rotation capacity 0, is finally calculated as: 

Oe _ 
°. 

"' +[s+eQ] D. D 

ý 

(2.30) 
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Figure 2.11 Brown & Anderson's rotation capacity prediction model 

2.4 Summary 

For the design of steel beam-to-column connections, the detailed design method can 

be found in current European design code Eurocode 3 (1992) for welded connections 

and bolted connections with flush or extended end plates. For other types of beam-to- 

column connections, the design methods are not clearly defined. 

For the design of composite beam-to-column connections, the design method is not 

available in current design codes. Extensive research has been made to investigate 

the characteristics of composite beam-to-column connections. Since the design 

method of the steel bolted end plate connections is available, composite connections 

contained this type of steel connections are mostly studied. 

There are two approaches for the design of composite connections: the stress block 

analysis developed by Lawson (1995) and the spring model analysis developed by 

Anderson & Najafi (1994) and Brown & Anderson (2001). Lawson (1995) proposed 
a method to predict the moment resistance of composite connections. However the 
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calculations of the initial stiffness and the rotation capacity were not mentioned. 

Anderson & Najafi (1994) proposed a spring model of the composite joint and gave 

the method to calculate the moment resistance and the joint rotation of the composite 

joint until the yield of the rebars. Brown & Anderson (2001) used the same method 

as Lawson (1995) to predict the moment resistance of the composite joint, but 

considered three approaches of defining the compression resistance of the bottom 

flange of the steel beam. The prediction of the initial stiffness of the composite joint 

was given according to a revised spring model derived from the spring model of 

Anderson & Najafi (1994). The rotation capacity of the composite joint was defined 

as the rotation at which the fracture of the reinforcement occurred and a formula was 

given to calculate the rotation capacity. 
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Chapter 3 Design of composite beams 

3.1 Introduction 

In traditional steel construction concrete slabs are supported by steel beams in a non- 

composite manner. Under working load the concrete slab and steel beam deform 

separately and slip occurs between the concrete and steel beam interface. If the slab and 

steel beam act together in a composite state, the slip may be eliminated or considerably 

reduced, and the strength and stiffness will also increase compared to a non-composite 
beam. Composite construction has been increasingly used since it has a number of 

advantages over non-composite construction. Firstly the savings in steel weight are 

reported to reach 30% to 50% over non-composite beams (Lawson, 1989). Composite 

beams are shallower for the same span, leading to lower storey height and savings in 

cladding, etc. Since steel profiled sheeting or precast slabs are often used in the 

composite slab design, no props are needed during the construction. The construction 

period and the cost are significantly reduced. Typical composite beam sections with 

profile steel decking are illustrated in Figure 3.1. 

L 
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(a) (b) 

Figure 3.1 Composite beam sections with profile steel decking: (a) deck parallel to steel 
beam, (b) deck perpendicular to steel beam 
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In order that the composite state is formed, shear connectors should be designed to bear 

the longitudinal shear force on the steel-concrete interface. The most commonly used 

type of shear connector is the welded headed stud. The normal size of welded headed 

studs ranging from 13-25 mm in diameter and 65-125 mm in height as suggested in BS 

5950, Part 3 (1990). The shear studs are often welded through the steel deck. Other types 

of welded shear connectors, such bars with hoops, and channels, are mainly used in 

bridge construction. The research on headed stud shear connector began in the 1950's 

(Viest, 1955). In the 1960's, a number of pushoff tests were carried out to study the 

ultimate shear capacity of stud shear connectors, and different empirical equations were 

proposed to predict the ultimate shear capacity of the studs relating to the height and 

diameter of studs and the concrete strength (Chapman 1964, Chapman & Balakrishnan 

1964, Slutter & Driscoll 1965). The strength of shear connectors in hogging moment 

region of composite beam was also studied (Johnson, et al. 1969). In the 1970's, the 

research on shear connectors flourished with the increasing use of profiled steel sheeting 

and lightweight concrete in concrete floor construction. Menzies (1971) and Ollgaard et 

al. (1971) studied the strength of shear connectors in normal weight and lightweight 

concrete. The behaviour of shear studs in composite beams with profiled steel sheeting 

was also studied (Fisher 1970 & Grant et al. 1977). The influence of the metal deck 

shape on the strength of shear studs was investigated, and empirical stud strength 

reduction formulae were proposed. In the 1980's and early 1990's, many pushoff tests 

were performed on studs with various types of steel decking (Jayas & Hosain 1988, 

Robinson 1988, Lawson 1989, Lloyd & Wright 1990, Rakib 1991). Improved stud 

strength reduction formulae were proposed. The shear cone failure mode was studied 

and an empirical expression of the resistance of shear studs was proposed. The current 
British design code adopted the strength reduction idea and suggests the expression of 

calculating the reduction factor take the same form as proposed by Grant et al. (1977) 

but with revised parameters. More recently Johnson & Yuan (19981) reviewed 269 

previous pushoff tests with profile steel sheeting and performed 34 new push tests to 

study existing design rules for the static shear resistance of stud connectors. It was found 

that existing design rules were of limited scope and low accuracy, especially for studs 
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placed off-centre in the steel troughs. They established seven distinctive failure modes. 

Theoretical models, calibrations, and new design rules for these modes were proposed 

(Johnson & Yuan 19982). 

In a composite beam if sufficient shear connectors are provided that the full plastic 

capacity of the section may be developed, the composite beam is considered to be 

designed with full shear connection. But it is not always necessary or possible to design 

a composite beam with full shear connection. Especially when the concrete slab with 

steel profile sheeting is used, the spacing of shear connectors is restricted to the spacing 

of the troughs. In such cases, limited amount of shear connectors is needed, and the 

composite beams should be designed with partial shear connection. Though the strength 

and stiffness of beams with partial shear connection are lower than beams with full shear 

connection, the overall beam costs may be economic. 

The study of the behaviour of composite beams with partial shear connection began in 

the late 1960's. Yam & Chapman (1968) reported three beam tests with degrees of shear 

connection of 43%, 60% and 80%. Stud shear failure occurred when the degree of shear 

connection was less than 43% and concrete crunching failure was observed for the 

degree of shear connection above 43%. McGarraugh & Baldwin (1971) proposed a 
linear interaction method to predict the moment of resistance of composite beams with 

partial shear connection and a minimum of 50% shear connection was suggested. Wright 

(1989) performed two groups of four beam tests to investigate simple supported 

composite beams with relatively low degrees of shear connection from 20% to 50%. 

Two types of simple supports were used in the tests: idealized roller support and web 

cleat connection. BS 5950: Part 3 (1990) gives the formulae of the plastic capacity of 

composite beams derived from the stress block method. The lower limit of shear 

connection is suggested 0.4. In this chapter the current composite beam design method 

of BS 5950 is introduced. 
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3.2 Analysis of composite beams 

There are two design criteria for composite beams: elastic analysis and plastic analysis. 
Elastic analysis will result in larger beam size because the full plastic capacity of the 

section is not developed. Elastic analysis is used for serviceability analysis of composite 
beams, or the strength of beams subject to the effect of instability, for example, in 

continuous construction, or in beams where the ductility of shear connection is not 

adequate. Plastic analysis, however, is used in most cases. 

3.2.1 Elastic analysis 

For elastic analysis, the extreme fibre stresses are assumed to be not greater than the 

designed yield values of steel and concrete. The concrete is assumed to be uncracked 

under positive moment, and the concrete within troughs is neglected. This is 

conservative because the strength of this part of concrete is neglected. The elastic 

section properties can than be calculated from the transformed section as shown in 

Figure 3.2. 

Be/ae 

Ds 

D 

r- ý 

Figure 3.2 Elastic analysis of composite beam 
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The elastic neutral axis depth, xe, below the upper surface of the slab is determined from 

the following formula: 

V_D, 2Dr 
+a, r(D +D, ) 

a. e _ 

where 

1+aer 

A 
(D, -Dp)B, 

The second moment of area of the uncracked composite section is: 

ig 
4(D+D, +Dp)z 

+B, 
(D, -D P)3 + g 4(1+a, r) 12ae 

The section modulus for the steel in tension is: 

Zt= 
I, 

D+D, -Xe 

The section modulus for the concrete in compression is: 

Z=I `a` G 
Xe 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 
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3.2.2 Plastic analysis of composite beams with full shear connection 

Tests by Slutter & Driscoll (1965) show that the full flexural capacity of the composite 

section may be achieved if the design is for full shear connection, the ultimate strength 

of a composite beam is independent of loading history and of propped or unpropped 

construction. For the analysis, Slutter & Driscoll (1965) used the stress block method to 

calculate the plastic capacity of a composite section. Two cases of plastic neutral axis 
(PNA) were considered: PNA in the slab and PNA in the steel beam. Lawson (1989) 

used the same method but three cases of plastic neutral axis were considered: PNA in the 

slab, PNA in the steel flange and PNA in the web. The method introduced here complies 

with the method proposed by BS 5950: Part 1. 

The ultimate strength of a composite section is determined from its plastic capacity. It is 

assumed that the strains across the section are sufficiently great that the stress of the 

whole steel section reaches its yield value, and the concrete stress is at its design 

strength. The concrete is assumed to have no tensile strength. The plastic stress blocks 

are rectangular as shown in Figure 3.3. The stress in the steel is py, and 0.45ffu in the 

concrete. The tensile capacity of the steel section is 

R, = py A (3.7) 

Assuming the deck perpendicular to the steel beam, the resistance of concrete in 

compression is 

R, =0.45f. (D, -DP)Ba (3.8) 
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Figure 3.3 Plastic analysis of composite beam under positive bending 

ý 
xP 
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Three cases of neutral axis should be considered when calculating the plastic capacity of 

a composite section. Assuming the steel top flange is fully restrained by the concrete 

slab, and the web is compact, i. e. not subject to local buckling, the plastic moment 

capacity of a composite beam is given by: 

Case 1: R, > RS (plastic neutral axis lies in concrete slab) 

Ma =R, [ý+D, -Rc (Ds 
2DPA 

Case 2: RS > R, > R,, (plastic neutral axis lies in steel flange) 

Mpc =R, 
ý+Rc(DS 

2DP)-(Rs-Rc)Z 
tf 

Rf 4 

Case 3: R, < R,, (plastic neutral axis lies in steel web) 

(3.9) 

(3.10) 
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M =M +R 
DS +DP +D 

_ 
R, 2D 

PC 3C "1 

)D 

A 2 Rw 4 
(3.11) 

where M, is the plastic capacity of the steel section alone. Rw is the plastic capacity of 

steel web, RW = pyt�, D. 

3.2.3 Plastic analysis of composite beams with partial shear connection 

For full plastic capacity of a composite section to be achieved, the total capacity of shear 

connectors between the points of zero and maximum moment (Rq) is greater than the 

smaller of R, and R, If Rq is less than the smaller of R, and R,, the full plastic capacity of 

the composite section cannot develop. In such cases, the composite beam is designed 

with partial shear connection. The degree of shear connection is hence defined as 

K= Rg /Rs for R, < R, 

or K= Rg / R, for Rc < Rs (3.12) 

Using the stress block method, the moment capacity of a composite beam with partial 

shear connection can be calculated from following equations 

Case 4: Rq > R,, (plastic neutral axis lies in flange) 

Mc = Rs D+ Rg [D: - 
Rq 

( DS - DP )] - 
(RS - Rq )2 tf 

(3.13) 
2 Rc 2 Rf 4 

Case 5: Rq < Rw (plastic neutral axis lies in web) 

2 

Me = M: + Rg[D + D, -(DS 2 
DP)] 

- Rw 
ý 

(3.14) 
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An alternative approach, which mentioned before, is the linear interaction method 

proposed by McGarraugh & Baldwin (1971). The plastic moment capacity of composite 
beams with partial shear connection is given by: 

Mc =M, +K(Mpc -M, ) (3.14) 

McGarraugh & Baldwin suggested a lower limit of K=0.5 for partial shear connection 

to avoid `shear failure'. In Eurocode 4: Part 1.1 (1994) and BS 5950: Part 3 (1990), a 
lower limit of K=0.4 is given. The stress block method and the linear interaction 

method is illustrated in Figure 3.4. It can be seen that the stress block method shows a 

significant benefit in the range of K=0.5 to 0.7. 

ductile shear connectors 

0.4 1.0 
degree of shear connection, K 

Figure 3.4 The relationship between moment capacity and degree of shear connection. 
(a) stress block method, (b) linear interaction method. 
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3.2.4 Deflections 

For composite beams with full shear connection, the deflections may be calculated using 

the section properties from elastic analysis (see 3.2.1). For composite beams with partial 

shear connection, Johnson & May (1975) argued that it was accurate enough to use 
linear partial -interaction theory when analysing the deflections. A non-dimension 

parameter was used to measure the influence of the degree of shear 

connection. Analysis gave a curve similar to ABC in Figure 3.5. Johnson & May used a 

straight line DE to simplify the curve. The deflection can therefore be calculated from 

8=8, +a(1- K)(S, -8, ) (3.15) 

where 66 is the deflection of steel beam acting alone; SS is the deflection of composite 
beam with full shear connection for the same loading. For propped construction the 

parameter a was given as 0.5. For unpropped construction BS 5950: Partl suggests a 

taken as 0.3. Hence, the deflections of composite beam with partial shear connection 

may be calculated from the following expressions: 

For propped construction 8= 88 + 0.5(1- K)(8f - 8, ) (3.16a) 

For unpropped construction 8=8, + 0.3(1- K)(8f - 8, ) (3.16b) 

K 1.0 

Figure 3.5 Influence of degree of shear connection on the deflection of composite beams 

(Johnson & May, 1975) 
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3.3 Analysis of continuous composite beams 

A continuous composite beam is defined in Eurocode 4, Part 1.1 (1994) as ̀ a beam with 

three or more supports, in which the steel section is either continuous over internal 

supports or is jointed by full-strength and rigid connections, with connections between 

the beam and each support such that it can be assumed that the support does not transfer 

significant bending moment to the beam. At the internal supports the beam may have 

either effective reinforcement or only nominal reinforcement'. For the design of 

continuous composite beams both Eurocode 4, Part 1.1 (1994) and BS 5950, Part3.1 

(1990) suggest that the positive moment capacity of a continuous composite beam may 
be determined as for a simply supported beam and the negative moment capacity may be 

determined as for a cantilever. In this section, the design recommendations of BS 5950, 

Part3.1 (1990) are introduced. 

3.3.1 Effective breadth of concrete flange 

According to BS 5950, Part3.1 (1990), the total effective breadth Be of concrete flange is 

calculated from 

Be = LZ /4 (3.17) 

Where LZ is the distance between points of zero moment. For a simply supported beam 

Lz is equal to the effective beam span. For an internal support of a continuous beam, 

LZ=0.25(LI +L2) 

Substitute LZ in equation (3.17) with equation (3.18), we have 

(3.18) 

Be = (Li + L2) 116 (3.19) 

50 



Where LI and L2 are the effective beam spans on both sides of the support respectively. 

But the calculated effective breadth of concrete flange should not exceed the actual 

breadth of the concrete slab when the slab span is perpendicular to the beam. And the 

calculated Be should not exceed 80% of actual breadth of the concrete slab when the slab 

span is parallel to the beam. 

3.3.2 Simplified method 

A simplified method is given by BS 5950, Part3.1 (1990) to calculate the moments of 

continuous composite beams subjected to uniformly distributed loading. Firstly the 

beams are assumed to be simply supported, and moments are calculated by wL18, where 

w is the uniformly distributed loading. Then the moments at different locations of the 

continuous beam are calculated by the moment coefficients multiplied by wL18. The 

moment coefficients are provided in Table 3 of BS 5950, Part3.1 (1990). 

Table 3 of BS 5950, Part3.1 (1990) 

Simplified table of moment coefficients (to be multiplied by wL18) 
Classification of compression flange in negative moment region 

Location Number of Class 4 Class 3 Class 2 Class I Plastic 
spans 

Slender Semi-compact compact Generally Non-reinforced 
(see 6.2.1.2) 

2 0.71 0.71 0.71 0.75 0.79 
Middle of end s an p 

3 or more 0.80 0.80 0.80 0.80 0.82 
2 0.91 0.81 0.71 0.61 0.50 

First internal su ort pp 3 or more 0.86 0.76 0.67 0.57 0.48 

3 0.51 0.51 0.52 0.56 0.63 
Middle of internal spans 4 or more 0.65 0.65 0.65 0.65 0.67 
Internal supports except the 4 or more 0.75 0.67 0.58 0.50 0.42 
first 

3.3.3 Elastic analysis 

For general continuous beams analysis, the stress block method may be used in the cross 

section analysis. For beam sections under positive bending, the method for analyzing 
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simply supported composite beams described in section 3.2 can be used. For beam 

sections under negative bending, different design equations must be developed. 

Under negative moment if the stresses of the extreme fibres of the concrete slab and the 

steel beam are below the design yield values, the uncracked section properties can be 

used in the elastic analysis. The transformed method can be used in the analysis, as 

shown in Figure 3.2. And the concrete slab is regarded as un-reinforced. The moments at 

supports can be redistributed to the mid-span and the adjacent span to maintain the 

equilibrium. Table 4 of BS 5950, Part3.1 (1990) gives the maximum moment 

redistribution percentage. 

Table 4 of BS 5950, Part3.1 (1990) 

Maximum redistribution of support moments for elastic global analysis, using properties 

of gross uncracked section 

Classification of compression flange at support 

Class 4 Class 3 Class 2 Class 1 Plastic 

Slender Semi-compact Compact Generally Non-reinforced 

10% 20% 30% 40% 50% 

If the stresses of the extreme fibres of the concrete slab exceed the design tensile stress, 
the cracked section properties must be used in the elastic analysis. The cracked region is 

assumed within a length of 15% of the span on each side of the support. The section 

properties are calculated considering the steel beam and the main reinforcement within 
the effective breadth of the concrete slab at the support. The second moment of area I� of 
the cracked section for negative moment is given by 

Iý =Ix+A-A. 
(D+D, )2 

4(A+A, ) 
(3.20) 
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The depth y, of the elastic neutral axis below the centroid of the reinforcement is given 

by 

A(D+2D, ) 
Y' - 2(A+A, ) 

(3.21) 

The elastic section modulus for the stress in the reinforcement can be calculated from 

Zr =Inl yr (3.22) 

The elastic section modulus for the stress in the bottom flange of the steel beam can be 

calculated from 

Zs = r. l(D+D, -y, ) (3.23) 

The support moments from the analysis using the cracked section can also be 

redistributed. Table 6 of BS 5950, Part3.1 (1990) gives the maximum moment 

redistribution percentage. 

Table 6 of BS 5950, Part3.1 (1990) 

Maximum redistribution of support moments for elastic global analysis, using properties 

of cracked section 

Classification of compression flange at support 
Class 4 Class 3 Class 2 Class 1 Plastic 

Slender Semi-compact Compact Generally Non-reinforced 

0% 10% 20% 30% 40% 
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3.3.4 Plastic analysis 

The ultimate moment capacity of composite beams is obtained from the plastic analysis. 

The negative moment capacity of continuous beams is calculated when the 

reinforcement and the whole depth of the steel section reach the design yield stresses. 

But under negative moment, the steel bottom flange and the lower part of the web are in 

compression, it is possible that the capacity of the steel section may be limited by the 

local buckling of the web and the bottom flange. Therefore, the moment capacity of the 

beam should be calculated based on the effective cross section. 

BS 5950, Part3.1 (1990) classified steel sections as four classes: class 1 plastic, class 2 

compact, class 3 semi-compact, and class 4 slender. The classification of steel sections is 

given in Table 2 of the design code. When the steel section is class 1 plastic or class 2 

compact, the whole steel section can be used in the plastic analysis. When the steel 

section is class 3 semi-compact, the effective section should be used as shown in Figure 

3.6. 

Be 

plastic neutral axis 

compression 

Py 

Figure 3.6 Effective section for plastic analysis 

tension 
0.87fy 
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Table 2 of BS 5950, Part3.1 (1990), Limiting width to thickness ratios for webs 

(Elements which exceed these limits are to be taken as class 4 slender) 
Type of element Class of section 

Class 1 Plastic Class 2 Compact Class 3 Semi-compact 

Web, with neutral axis at d 
s64 

4--76e ds 114e 
mid-depth e t- t t 

Web, generally d 64e 
5 

q L& when rz0.66: 
1+r t : 5. t 1+r for rolled sections: 

ds 114e 
t 1+2r 
for welded sections: 
ds(T1-13) 
t 

when 0.66 >rz0: 
ds 114e 
t 1+2r 

when r<0: 
dý114e 1+r 
t (1+2r) 2 

NOTE 1 These ratios apply to the composite section. During construction the classification in BS 5950.1 applies. 
NOTE 2 Check webs for shear buckling in accordance with BS 6950-1 when d/t z 63e. 
NOTE 3 The values in this table do not apply to T-sections. 
NOTE 4e =1275/pd 4 

3.4 Summary 

The design method of simply supported composite beams with full or partial shear 

connections has been fully developed and can be found in current British design code 

BS 5950 (1990). For the design of continuous composite beams, it is assumed that the 

steel section is either continuous over internal supports or is jointed by full-strength and 

rigid connections. The internal joint moment can therefore be calculated and 

redistributed to the beam spans. For continuous beams with semi-rigid joints, however, 

the design method is not available. 

55 



Chapter 4 Finite element method and stiffness matrix method 

4.1 Introduction 

In this chapter, the basic concepts of the finite element method and the stiffness matrix 

method are presented. A finite element analysis program LUSAS 13 and a stiffness 

matrix analysis program QSE are introduced. In addition the procedure of seismic 

analysis of multi-degree of freedom systems is described. 

The finite element method is a numerical procedure for solving the ordinary and partial 
differential equations that arise in engineering and mathematical physics (Mohr, 1992). 

It is the most commonly used numerical analysis method in modem engineering. The 

stiffness matrix method may be considered as a `simplified' form of finite element 

method, which is used for the elastic analysis of frame structures. 

4.2 Finite element method 

Consider a general three-dimensional body subject to forces, the body will be displaced 

from its original configuration by an amount u, which give rise to strains s and 

corresponding stresses o The governing equations of equilibrium may be formed by 

utilizing the principle of virtual work. That is, for any small, virtual displacements 

imposed on the body, the total internal work must equal the total external work for 

equilibrium to be maintained. The total potential energy of a linearly elastic solid in 

three-dimensional Cartesian coordinates (x, y, x) is given by 

f{e}'{Q}dV 
- 

flit {T}dS II =2 

where 

{E}= (ei, i . exy, e) 

(4.1) 
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(Q) _(Qx, ay, Qz, Qxy, Qyz, Qu) 

(ü)=(u, v, w) 
(T) _ {tx, ty, tz) 

They are respectively the strains referred to the x, y, z-axes, the stress referred to the x, y, z- 

axes, the displacements parallel to these axes, and the surface tractions (with dimensions 

of force per unit area) parallel to these axes. dS and dV are infinitesimal increments of 

the surface area and volume of the solid. It is assumed that the stresses and strains are 

related by 

(a)=D{E} (4.2) 

where D is the modulus matrix. In the finite element method the strain energy is 

computed for a number of subdomains or finite elements, and the total potential energy 

of the complete domain is given by summation of the element energies. In finite element 

analysis, the body is approximated as an assemblage of discrete elements interconnected 

at nodal points. The displacements within any element are thought of relatively small in 

relation to the complete domain. It is then assumed that the displacements can be 

represented with sufficient accuracy by the interpolation from the displacements at the 

nodal points corresponding to that element, i. e., 

(a) =, P (d} (4.3) 

where F is the displacement interpolation or shape function matrix and (d) is the vector 

of nodal displacements of the element. The strains within an element may be related to 

the displacements by 

{s} =B (d) (4.4) 

where B is the strain-interpolation or strain-displacement matrix. 
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Once the matrices D, B and F have been defined we can determine the stresses, strains, 

and displacements at any point in an element. And the strain energy can then be 

obtained. Substitute equations (4.2), (4.3) and (4.4) into equation (4.1), we have 

tIe = 
2{d}` $B'DBdv{d}_{d}' $F{T}ds (4.5) 

Minimizing equation (4.5) with respect to each of the nodal displacements in turn, 

denoted as alle l0 {d}, we have 

a{d} 
= JBtDBdV{d} - 

fF{T}dS=k{d}-{q, }={0} (4.6) 

where k is the element stiffness matrix and (q1) is the vector of consistent loads 

corresponding to the surface tractions. Then summing over all elements and including 

and loads directly applied at the nodes in a vector {Q�}, we obtain 

ýk{D}=ý{q, }+{Qý} 

or 

K (D) = (Qj + {Q,, } = {Q} (4.7) 

where K is the system stiffness matrix and (Q) is the system load vector. Equation (4.7) 

is the governing equation of linear static analysis of a general three-dimensional body by 

finite element method. 

4.3 Nonlinear analysis 

Nonlinear problems related to the study of this thesis arise in the nonlinear material 

properties, i. e., nonlinear stress-strain relationships. With nonlinear materials Hooke's 
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law is no longer valid, but it is generally possible to obtain a relationship between small 

increments of stress and strain in the form 

d (a) = DTd {c} (4.8) 

where DT is called the tangent modulus matrix. Once the appropriate relationship has 

been found finite element method can be used to solve such problems. 

For the formulation of problems involving material nonlinear effects, the principle of 

virtual work may still be used, i. e., 

f{5e}' {a}dV - 
${&7}' {T}dS =0 (4.9) 

Introducing the finite element interpolations, after summation and re-arranging, we get 

Ef Bt{a}dV =E JF{T}dS =E{q, } 

On the other hand, if the system is not in equilibrium, then 

(4.10) 

Ef B'{Q}dV -E{q, } = {R} (4.11) 

where (R) is an out of balance force factor (the residual loads), and the matrix B and 

stresses (a) are nonlinear functions of the displacements and strains. Then nonlinear 

finite element problems can be exactly solved by evaluating $B' {a}dV, the element 

reactions, at each step of an iterative procedure until the residual loads (R) vanish and 

equation (4.10) is satisfied. This process is called equilibrium iteration. 
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Take Newton's method (Mohr, 1992) for example, the total load is first applied and an 

initial solution {D}, = K; ' {Q} obtained. Then equation (4.11) is used to calculate the 

residual loads (R). Corrections of the solution are calculated iteratively from 

{D}t+1 = {D}, +KT' {R} (4.12) 

where KT and (R) are calculated using the displacement (D),. The iteration finishes until 

convergence is obtained. This procedure is employed in the LUSAS program. 

4.4 LUSAS program 

LUSAS is a finite element analysis software capable of solving all types of linear and 

nonlinear stress, dynamics, composite and thermal engineering analysis problems. It is 

developed by Finite Element Analysis (FEA) Ltd., UK. The present version of LUSAS 

Modeller is version 13.3-2 released in November 2000. Three types of elements are used 

in the nonlinear analysis of composite structures described in this thesis: 3D bar element, 

3D nonlinear thick beam element, and 3D nonlinear thick beam element with 

quadrilateral cross-section. 

4.4.1 3D bar element 

This is an isotropic three-dimensional bar element provided by LUSAS Modeller as 

shown in Figure 4.1. It can be straight (named as BRS2) or curved (named as BRS3), 

and can accommodate varying cross section area. Two nodes are required for BRS2 and 

three nodes are required for BRS3. Each node has three degrees of freedom: u, v, and w. 
The required geometric properties are the cross section area at each node. For nonlinear 

analysis a strain hardening curve can be input. 
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BRS3 

9 

Figure 4.1 3D bar element 

4.4.2 3D nonlinear thick beam element 

This is a straight beam element in 3D for which shear deformations are included (Figure 

4.2). The geometric properties are constant along the length. Three nodes are needed to 

define the beam. The third node is used to define the local xy-plane. There are six 

degrees of freedom at each node. They are: u, v, w, Ox, 6y, 64. For plastic material 

properties, two options are available: circular hollow section and rectangular solid 

section. Universal beams and columns with I-section are considered as rectangular solid 

section group. 

BTS3 

Y, V, Ay 

X, u, 6x 

z, w, oz 

Figure 4.2 3D nonlinear thick beam element 

Z 
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4.4.3 3D nonlinear thick beam element with quadrilateral cross-section 

The properties of this element are mostly the same as the 3D nonlinear thick beam 

element except that the geometric properties are different. This is also a straight beam 

element in 3D for which shear deformations are included (Figure 4.3). The element has a 

cross-section which is constant along the length. Three nodes are needed to define the 

beam. The third node is used to define the local xy-plane. There are six degrees of 

freedom at each node. They are: u, v, w, 9x, 9,,, O. In order to define the geometric 

properties, the local coordinate pairs at each corner of the cross section are required 
(Figure 4.3b). The coordinates of the cross section are numbered clockwise around the 

local x-axis (the beam nodal line). For plastic material properties, two options are 

available: circular hollow section and rectangular solid section. The proper choice 

should be rectangular solid section for this type of element. 

BTX3 

Y, V, Oy 

z, W, eZ 
X, u, Ax 

(a) 

Z 

Y 

Z 

(b) 
Figure 4.3 3D nonlinear thick beam element with quadrilateral cross-section 

4.5 Stiffness matrix method and QSE program 

4.5.1 Stiffness matrix method 

The stiffness matrix method is used for elastic analysis of frame structures composed of 
only beam elements. It may be regard as a simplified form of finite element method. The 
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governing equation of finite element analysis K{D} = {Q} still applies to stiffness 

matrix method. In stead of using the principle of virtual work, the stiffness matrix of a 
beam element may be obtained through the analysis of the differential equation of the 
beam. Summing the matrices of all beam elements corresponding to the node numbers, 
the stiffness matrix for the whole system can be formed. And then the unknown nodal 
freedoms or the displacements can be found by standard matrix solution techniques. 

Take the example of a two-dimensional beam as shown in Figure 4.4, the differential 

equation governing the shape of the neutral axis of a bent beam is 

EId `v 
x) dxa = P( (4.13) 

where v is the transverse deflection of the beam and p(x) is the intensity of distributed 

loading upon the beam. 

i L I 
Nodal freedoms 

pL /2 

ºubwtcnt loau (F1 w 

pL /2 

pL2/12 -pL2/12 

Figure 4.4 A two-dimensional beam element 

Consistent load p 

, Fv 

Mý 

F� 

Nodal loads 
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There are three freedoms at each node: u, v, and q Assuming the internal loading is 

uniformly distributed, i. e., p(x)=p, equation (4.13) can be integrated four times with 

respect to the coordinate x, yielding the four equations 

EM3V 
dx' = px + c, 

EId 2v 
_ 

px2 
-2+ cIx + c2 dx2 

Eldv 
_ 

px3 cJx2 + +c2x+c3 
dx 62 

EIv= Px4 +c'x3 +CZx2 +csx+ca 
24 62 

(4.14a) 

(4.14b) 

(4.14c) 

(4.14d) 

Put x=0 in equations (4.14c) and (4.14d), we get c3=E1gI and c4=EIv,. And put x=L, we 

get 

32 

EI02 = 
P6 +c'L +c2L+EIO, 2 

as2 
EIv PL +c'L +czL +EIL0+EIv z 24 621z 

(4.15) 

(4.16) 

cl and c2 can then be solved. Let x=0 and x=L in equations (4.14a) and (4.14b) 

respectively, the shear forces and moments at both nodes of the beam element can be 

obtained. Writing the results in matrix form, we have 

FY, +pI/2 

M, +p12/12 
Fv2+p1/2 

M2-p12/12 

12 6L -12 6L v, 
EI 6L 4LZ - 6L 2LZ 01 
L3 -12 - 6L 12 -6L vZ 

6L 2LZ -6L 4L2 02 

(4.17) 

64 



The axial force in the beam may be written as 

T=QA=EAs=EASL -EA(u2-u, 
) 

LL 
(4.18) 

Hence the axial forces at both nodes can be obtained: F� j=T and Fi2= -T. Combining 

them with equation (4.17), the element stiffness matrix for a six-freedom beam is 

Ful 

Fv, 
M, 
Fu2 
Fv2 

M2 

OT 

+ 

0 
pL/2 

pLZ /12 

0 
pL/2 

-pL2/12 

k, 0 
0 k2 
0 k3 

- k, 0 
0- k2 
0 k, 

0 
k3 
k4 
0 

-k3 
k5 

- k1 

0 

0 
k, 

0 

0 

00 

-k2 k, 

-k3 k5 
00 
k2 -k3] 

- k3 k4 

uº 

vº 

0º 
U2 

V2 

2J 

{q, ) + (qt) =k (d) (4.19) 

where k1=EA/L, k2=12EI/L3, k3=6E1/L2, k4=4E1/L, and k5=2E1/L. The vector (q1) 

contains the consistent loads corresponding to the uniformly distributed load p. And the 

vector (q, ) contains the interelement reactions. In element assembly process these forces 

and moments must cancel between elements, i. e. E(q, )=(0). Therefore we have 

fQl = E{qý} + E(gd = Efgd (4.20) 

Note all forces applied to the whole structure should be included in the load vector (Q). 

After assembling all the element stiffness matrices, the same form of equation as 

equation (4.7) can be obtained. 
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4.5.2 QSE program 

QSE Space is a 2D and 3D frame analysis program. The analysis is performed using the 

stiffness matrix method based on the elastic behaviour of the structure. It is assumed that 

the displacements of beams do not affect the geometry of the structure. This is to ensure 

that the non-linearity due to large displacements would not happen. Elements are 

assumed to be long compared to their cross sections, hence deflection due to shear forces 

is ignored. Secondary factors such as buckling are also ignored. 

4.6 Dynamic analysis 

There are basically two approaches for predicting the dynamic response of structures: 

time domain method and frequency domain method. The time domain method is used to 

construct time histories of such variables as forces, moments and displacements by 

calculating the response at the end of a succession of very small time steps. It can be 

used to calculate the dynamic response of both linear and nonlinear structures and 

requires that time histories for the dynamic forces be available or can be generated. The 

frequency domain method is used to predict the maximum value of the same quantities 
by adding the response in each mode in which the structure vibrates. It is limited to 

linear structures, since the natural frequencies of nonlinear structures vary with the 

amplitude of response. Despite its limitations, frequency domain analysis is commonly 

used by engineers because it permits the use of response spectra which are more easily 

available than time histories. In Chapter 8 of this thesis, the frequent domain method is 

used in the earthquake analysis of sample frames with the response spectra 

recommended by current design code. In this section of the thesis, the theory of 
frequency domain analysis is described. 
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4.6.1 Eigenvalue analysis 

In general structures have an infinite number of degrees of freedom (DOF). By replacing 

the distributed mass of structures with an equivalent system of lumped masses, and 

assuming the elastic member to be weightless, the structure can be approximated to N 

DOF systems. This lumped mass idealization provides a simple means of limiting the 

number of DOF that must be considered in a dynamic analysis. 

The equations of dynamic equilibrium of an N DOF system can be written in matrix 

form as: 

M"z+C"z+K"x=P(t) (4.21) 

For natural frequency analysis, the damping matrix and the external force vector are 
both zero. And each freedom is assumed to excite harmonic motion in phase with all 

other freedoms, which may be expressed as 

x(t) =x sin(cat + 0) 

and the second time derivative of equation (4.22) gives the acceleration as 

x= -C02x sin(tvt + 0) 

Substituting equations (4.22) and (4.23) into equation (4.21), yields 

(4.22) 

(4.23) 

(K - tv&M)x =0 (4.24) 

This is equivalent to a generalised eigenvalue problem. The quantities of Oy are the 

eigenvalues or characteristic values indicating the square of the free-vibration 
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frequencies, while the corresponding displacement vectors x express the corresponding 

eigenvectors or mode shapes. 

4.6.2 Response spectra 

A response spectrum is a curve that shows how the maximum response, velocity or 

acceleration of oscillators with the same damping ratio, but with different natural 
frequencies, responds to a specific earthquake (Buchholdt, 1997). Considering a one 

DOF system subjected to a ground acceleration xg (t) , the equation of motion can be 

written as 

M "z+C"z+K "x =M -zg(t) (4.25) 

By calculating the maximum response of oscillators with different frequencies, but with 

the same damping, it is possible to construct a response spectrum in the frequency 

domain for oscillators with the same damping ratio. By repeating the process for 

oscillators with different damping ratios, it is possible to construct a number of response 

spectra for the same record. 

Since the obtained response spectra are usually raw, they need to be smoothened for 

design purpose. And in design it is usual to employ consolidated response spectra 

normalized to a peak acceleration of 1. Og with corresponding maximum values for 

ground displacement and velocity. Such design response spectrum is recommended in 

Eurocode 8, Part 1.1 (1994). 

4.6.3 Seismic analysis using response spectra 

For a linear multi-degree of freedom system subjected to a support motion xg(t) = xg 

with acceleration azg (t) , the general form for the equation of motion is 
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M "z+C". z+K -x=M "azg(t) 

Let 

x= Zq 

. z=Zq 
z=Zq 

where 

Z= IZit Z29... 9 Z19... 9 ZN] 

(4.26) 

(4.27) 

is the normalized modeshape matrix associated with equation (4.26). Substitute equation 
(4.27) into (4.26) and postmultiplication of each term in the equation by ZT yield 

ZTMZ1 + ZTCZi + ZTKZq = ZTMc, i (t) (4.28) 

From the orthogonal properties of normalized eigenvectors, we have 

ZTMZ=I 

ZTCZ = 2ý» (4.29) 

ZT KZ = a)' 

Substitute these expressions for the matrix products into equation (4.28) will uncouple 
the equations of motion and yield 

4+ 2ýoaq + w2q = ZTM&g(t) (4.30) 

where 2ýw and 9 are diagonal matrices. Equation (4.30) may also be written as 

9ý + 2ýiwi9'i + col 2 9, = Z, T MQxg (t) 

q2 + 2ý2w2g2 + 0)22g2 = Z2TMQxg (t) 
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4, + 2ý, w, 4, + w, '4, = Z, T Mazg (t) 

4N+ 2ýNwNgN + CON2gN = ZNT Maxg ýtý 

(4.31) 

where the product Z, TM is referred to as the i-th participation vector. Since the mass in 

each of the above equivalent one DOF systems is unity, it follows that the equivalent 

ground acceleration in the generalized coordinate system is qg, (t) = ZiTMaxg (t) . The 

maximum value of qgj (t) occurs when zg (t) is equal to 1.0g, i. e., 

9g,. 
mu = Z, T Mag (4.32) 

From a response spectrum based on a damping ratio, the response q,,. corresponding to 

the frequency a can be obtained. And the maximum response of the system can 

therefore be found. As the response spectrum is normalized to a peak acceleration of 
1.0g, it follows that 

9r, maz = Zr TMaqr., 

m 

Thus 

(4.33) 

9�m = Z, T Maq. (4.34) 

And therefore 
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x,,, ax = Zqnax = ZZ, T Mag. (4.35) 

This procedure assumes that the maximum response in each of the modes will occur 

simultaneously and relative to each other as in the modeshape matrix. Since this is 

highly unlikely to occur, for design purpose each element in the maximum response 

vector xm is modified as the square root of the sum of the squares of the contribution 
from each mode, i. e., 

xr = ((Zri g1)2 + (Zr2g2)2 + ... + (ZrNgN)2r1n 

or 

xr -ý 
iZrtgr 

r=ý 

4.7 Summary 

(4.36) 

(4.37) 

In this chapter, a two-dimensional beam is used as an example to explain the formation 

of the stiffness matrix and the procedure of the finite element analysis. The LUSAS 

analysis program and the QSE program are briefly introduced. The basic concept of the 

Eigenvalue analysis are introduced and the procedure of the seismic analysis using 

response spectra is described for the future dynamic analysis of composite frames. 
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Chapter 5 Modelling of composite semi-rigid connections 

5.1 Introduction 

Studies of the global performance under static loading of steel framed structures date 

back to as early as the 1920's. With the introduction of computer technology in the late 

1960's, much progress has been made in various aspects of the overall response of steel 
frames. And various approaches are possible in frame analysis. The effects of semi-rigid 

and partial strength connections have been investigated since the 1980's. The study of 

steel-concrete composite structure began in late 1950's as reported by Johnson (1975). 

The study of the behaviour of composite frames with semi-rigid beam-to-column 

connections remains a vibrant research topic. 

In the modelling of semi-rigid composite frames, the first problem is to establish an 

effective composite beam-to-column joint model. Eurocode3 Partl. 1 suggests `a 

rotational spring model' which resides between the centreline of the column and the 

connected beam at the point of interaction. This spring model has been generally 

accepted in the analysis of steel frames with semi-rigid joints in recent years. 

5.1.1 Fang et al. (1999) 

Composite joints were modelled as spring elements by Fang et al. (1999) in their finite 

elements analysis of composite frames. A `curve-fitting' method was used to model the 

nonlinear behaviour of composite joints. In view of the plastic plateau in the M-0 curve 

of composite connections under hogging moments, the simple form of exponential 

expression proposed by Shi et al. (1996) was used. 

IM, I=IM,. I(1-e "O) (5.1) 
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where MM is the moment at rotation qS and MM� is the ultimate moment of resistance. This 

formula can accurately simulate the M-ý characteristics of a composite connection, but 

test data are required to determine the parameters M, � and a for curve-fitting. This may 

not be available for certain types of joints due to limited tests on composite connections. 
To overcome this, Fang et al. proposed a method to calculate Mme, and a based on the 

spring model of composite connections proposed by Anderson & Najafi (1994). 

For composite joints under a sagging moment, due to the uncertainty on the contact 
between concrete slab and column flange and lack of experiment data, three M-qS models 

were proposed. The first model, termed as model `A', takes the same form as equation 
(5.1). In the second model, model `B', a lower value of ultimate moment of resistance is 

assumed, i. e., 

IM, I=0.66IM. I(1- e-"5'101 

The third model ̀ C' is a simple linear model, i. e., 

IMj=alM,,, cb 

Sagging moment 
M 

(5.2) 

(5.3) 

Figure 5.1 Moment-rotation relationship of composite joint in sagging moments 
proposed by Fang et al. (1999) 
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The advantage of this semi-empirical joint model proposed by Fang et al. (1999) is that 

the nonlinear behaviour of composite joints can be simulated both under positive 
bending and negative bending with sufficient accuracy. The disadvantage is that the 

model relies on test data of the steel joint. 

5.1.2 Dissanayake et al. (2000) 

Dissanayake et al. (2000) proposed a composite beam model with semi-rigid joints for 

the nonlinear analysis of composite frames. The beam model contains two parts: a 

composite beam element allowing for partial shear interaction, and a macro composite 
joint element as shown in Figure 5.2. The composite beam element used the same 

element proposed by Oven et al. (1997). And the proposed macro joint model contains 

three elements. A two-noded spring element of zero length with six degrees of freedom 

is used to model the semi-rigid behaviour of the steelwork connection. A stiff beam 

element is used to model the column web. The reinforced concrete slab is modelled as 

an ordinary beam element. And it is connected to the stiff beam element with very low 

translation interaction to allow for the continuity of the concrete slab over the support. 

The modelling of edge connections depends on the detailing of the slab reinforcement at 

the edge columns. A fully connected arrangement is shown in Figure 5.2 (a). However, 

it is not always practical to achieve sufficient anchorage for slab reinforcement. In such 

cases, it is suggested that for a conservative modelling only the steel-to-steel connection 
be used at edge columns. 
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Figure 5.2 Composite joint model proposed by Dissanayake et al. (2000) 
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5.1.3 Kattner & Crisinel (2000) 

In 1993 a research project with the object to study theoretically and experimentally the 

behaviour of composite semirigid beam-to-column connections was started at the 

Institute ICOM-Steel Structures at the Swiss Federal Institute of Technology Lausanne 

(EPFL). A numerical model to analyse non-linear composite joints was developed and 
integrated in a composite beam analysis program in 1996. Based on previous research, 
Kattner & Crisinel (2000) proposed a refined and more efficient finite element model of 

composite joints. 

A general two-dimensional composite joint model is shown in Figure 5.3. In the model, 

the steel beam and concrete slab are modelled as beam elements, located at the same 

geometric level as the steel-concrete interface. The element axes do not coincide with 

the geometric center of the steel beam and concrete slab cross sections. Hence an 

eccentricity is defined for each section. The steel beam and concrete slab elements are 

connected by horizontal translational springs representing the shear connectors. 
Empirical load-slip relationships from known push-out tests are assigned to those 

springs. 

ý 
./. ,/ ý/ : 

-o ý-* # 31 

Figure 5.3 Composite joint model of Kattner & Crisinel (2000) 
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The steel connection is modelled as translational spring elements. The number and 

geometric positions of the translational springs depend on the type of the steel 

connection. For a joint with flush endplate connection in Figure 5.3, four translational 

springs are needed representing the following: lower beam flange in compression, lower 

steel beam web in compression, upper bolts in tension/compression, and concrete slab- 

steel column flange interaction. 

Considering an unbalanced moment transmitted to the joint, contact forces between the 

concrete slab and the column flange may develop on one side of column. This slab- 

column interaction is allowed for in the model by introducing horizontal spring elements 

on each side of the column. Only compression forces activate the springs. 

The steel column is modelled by vertical beam elements coincident with the geometric 

center of the cross sections. Linear constraint conditions called `Tyings' are used to link 

the composite beam and the steel column. `Tyings' are specified linear dependencies 

between degrees of freedom of the system of equations (displacements and rotations). 
These dependencies are specified according to the geometry of the joint. The flexibility 

of the composite beam and joint are taken into account by using nonlinear constitutive 
laws for the translational springs. 

In order to take into account the non-linear behaviour of materials, strain hardening is 

allowed for steel members. And for concrete a non-linear model allowing for the 

contribution of the concrete between cracks (tension stiffening effect) are used. A 

bilinear stress-strain relationship for reinforcement and a linearised load-slip relationship 
for shear connectors is assumed. A bilinear load-displacement behaviour for the 

translational springs representing the steel connection is also assumed. 

There are quite a few advantages in Kattner & Crisinel's composite joint model. Firstly 

all components of the steel joint may be modelled in their real geometric positions. The 
dimensions of the joint are respected. Different types of steel joints can be modelled by 
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modifying the number, location and property of the springs representing the different 

components of the joint, and the joint model can be analysed by existing finite element 

programs without additional programming. The disadvantages of the model result from 

the complexity of the load-displacement behaviour of the translational spring elements 

and the difficulties in defining the `Tyings'. 

The advantage of spring model is obvious. It greatly simplified the complexity of 

composite semi-rigid joint behaviour and made it possible for the concept of semi-rigid 
joint to be applied in practical design. But so far all the proposals for nonlinear analysis 

of composite joints are not quite suitable for practical design purpose. The proposal of 
Fang et al. (1999) needs test data of steel connections, and its application is therefore 
limited. The model of Dissanayake et al. (2000) is complicated and needs additional 

programming. The model proposed by Kattner & Crisinel (2000) does not need 

additional programming, but the nonlinear behaviour of every component of the 

composite joint should be obtained, which is difficult for most composite joints. This 

also increases the complexity of the model. 

In this chapter a simplified composite joint model based on previous models is proposed. 
In this model, once the design parameters of the composite joint are established, the 

characteristics of the joint can be obtained through structural analysis programs without 

additional programming and reliance on tests. This composite joint model is simple to 

use and very little computer effort is needed. For further studies, the proposed composite 
joint model may be used in the analysis of composite beams and frames with semirigid 
beam-to-column connections. 
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5.2 Modelling of composite joints 

5.2.1 Proposed composite joint model 

A typical composite endplate beam-to-column joint is shown in Figure 5.4. There are 

five components considered in the joint: the steel column, the steel beam-to-column 

connection, the steel beam, the concrete slab, and the main reinforcement in the slab. 

Among them, the steel column acts as support. In order that the full plastic behaviour is 

developed, the concrete slab is assumed to be fully cracked. To simplify the procedure, 

the contribution of the concrete slab to the moment of resistance and rotation capacity of 

the composite joint is neglected. Consequently, only three components are to be 

considered in the nonlinear analysis of the composite joint, i. e., the steel beam-to- 

column connection, the steel beam, and the main reinforcement in the slab. In previous 

composite joint models (Dissanayake et al. 2000, and Kattner & Crisinel 2000) the 

components within the steel beam-to-column connection are treated separately as a 

group of spring elements. But in present modelling, the steel beam-to-column 

connection is taken as one component of the composite joint, and the overall behaviour 

of the steel connection is considered. This will greatly simplify the whole procedure of 

the composite joint modelling. Furthermore, in modelling of the composite joint, instead 

of using spring models for the joint, the idea of line element model is proposed, i. e., all 

the components in the joint are modelled as beam/bar elements. 

Previous studies have shown that in the plastic analysis of composite joints the yielding 

of the reinforcement is recognized as the main source of dependable deformation, and 

the resulting joint rotation may be taken as the rotation capacity of the joint (Brown & 

Anderson 2001). It follows that the contribution of the steel connection to the rotation 

capacity of the composite joint may be neglected. However, the moment of resistance of 
the steel connection must be taken into account when calculating the moment capacity of 
the composite joint. 
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Figure 5.4 Typical endplate composite beam-to-column joint 

In frame design the `strong column, weak beam' principle is normally adopted. In 

composite joint analysis, it is therefore reasonable to assume that the premature buckling 

of the column flange and web are prevented. This is to ensure that the ultimate capacity 

of the composite joint could develop during the loading procedure. Since the 

deformations of column flange and web in compression are very limited, they are 

neglected in the joint analysis. The cross section of the steel beam is assumed to be 

compact, i. e., the local buckling of the beam web would not occur. Assuming balanced 

load on both sides of the joint, using the analytical model of composite joints proposed 

by Anderson & Najafi (1994), and assuming the compression center lies at the center of 

the steel beam bottom flange, the moment capacity of a composite joint (Mj) may be 

obtained from the following equation, 

Mj = Rr " Dr 
+Z Rb " Db (5.4) 

where R, is the effective tensile resistance of the reinforcement 
Rb is the effective resistance of a pair of bolts, which can be determined 

according to EC3 Annex J (1993) 

D, is the lever arm of R,. 
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Db is the lever arm of Rb 

In order to determine the effective tensile resistance of the reinforcement R, two failure 

modes of the composite joint maybe considered. 

9 Failure mode 1: Fracture of the reinforcement bars in concrete slab 

In this case Rfz Ry, + Rb, where Ry, is the yield force of the reinforcement bars, 

Ry, = fyA,, and fy and A, are the yield stress and total area of the reinforcement bars, 

respectively; and Rf is the compressive resistance of the beam bottom flange. In plastic 

analysis Rf may be taken as 1.2py bf tf considering strain hardening (EC 3, Part 1.1), 

where py is the yield stress of steel bottom flange, bf and tf are the breadth and thickness 

of the flange, respectively. The effective tensile resistance of the reinforcement R, is 

R, =Ry, =fyA. (5.5) 

" Failure mode 2: Local buckling of steel bottom flange 

In this case Rf< Ry, + Rb , since Rf is always greater than Rb in a composite connection, 

the effective tensile resistance of the reinforcement R, can be calculated from 

R, = Rf - Rb (5.6) 

In order to eliminate Rb and Db from equation (5.4), assuming that the moment of 
resistance of the composite joint is achieved through the resistance of the reinforcement 
over an equivalent lever arm (Deq), i. e., 

Mj =Ry, "Dq (5.7) 
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Equilibrating (5.4) and (5.7), and rearrange, we obtain 

D__ =R" D_+1: , 
RbDb 

ey n. 
ý 

r 

yr 
( Rl'º (5.8) 

In this way the steel joint is eliminated from the composite joint model and the 

characteristics of the composite joint is assumed to be dependent on the reinforcement 

working together with the steel beam and shear studs over a hypothetical lever arm of 

Deq. From the above derivation it can be seen that the moment of resistance of the 

composite joint model will remain the same. But the rotation capacity of the joint will 

mainly depend on the deformation of the reinforcement in the concrete slab. 

In order to satisfactorily predict the rotation capacity of the composite joint, the effective 

length of the reinforcement should be properly chosen. Anderson & Najafi (1994) and 

Kemp & Nethercot (2001) take the length as half the depth of the steel column. Brown 

& Anderson (2001) suggests that the length of reinforcement be calculated from the 

column depth, the distance to the first shear connector and the `transmission' length over 

which the bond between concrete and reinforcement is broken down. In the model 
described here, the length of the reinforcement element is taken as the distance from the 

column centreline to the first shear connector. 

The proposed composite joint model is described as the following. The reinforcement in 

the concrete is modelled as a bar element. The length of the bar element is defined from 

the column centreline to the first shear stud. From the first shear stud and beyond, beam 

elements are used to model the concrete in tension. The bar element and concrete beam 

elements are located at the same level as the reinforcement. Each shear stud is modelled 

as a vertical beam element. The length of these elements is taken as the length of shear 

studs after welding. The steel beam is also modelled as beam elements which are placed 
horizontally in line with the compression center of the composite joint. The gaps 
between the shear stud elements and the steel beam elements are filled with vertical 
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`rigid links' with high stiffness. The function of the rigid links is to transfer the forces 

between the beam elements and shear stud elements. The high stiffness is to ensure that 

deformations due shear and bending are small so that the model behaves closely to real 

cases. This is achieved by assuming the value of Young's modulus of the links as 1000 

times that of steel. Trial analyses have shown that this value (EI; flk=1000Esteel) is high 

enough in force transfer and values greater than that may lead to an `ill-conditioned' 

stiffness matrix. The steel column is regarded as support for the elements in the 

composite joint model. A simple support is assigned to the bar element. And the bottom 

beam element is fixed at one end because it is assumed that there are no relative 

displacements and rotations between the steel beam and the column. The proposed 

composite joint model is therefore obtained as in Figure 5.5. 

Loading 
Reinforcement 
bar element Concrete beam elements 

Deq 

Column centre line 

Shear stud 

Rigid links 

elements 

Steel beam elements 

Figure 5.5 Proposed model of composite joint 

In order to model the nonlinear material properties of the joint, idealized bi-linear stress- 

strain relationships may be assumed for bar element and steel beam elements if the strain 
hardening is considered. And elastic-perfect plastic relationships may be assumed for 

83 



concrete elements, shear stud elements, and rigid link elements. The stress-strain 

relationships are illustrated in Figure 5.6. 

1 Ey Cu 

fy 

i i i i 
ý 

EY 

(a) For bar and steel beam elements (b) For stud elements (c) For concrete and rigid link elements 

Figure 5.6 Stress-strain relationships for the proposed composite joint model 

5.2.2 Shear stud model 

In order that the composite joint model may simulate the `real' composite behaviour of 

the joint, the shear connection between the steel beam and the concrete slab should be 

properly accounted for. If an effective and explicit shear stud model were established, 

the analysis of composite joints and beams would be much easier. But such a model can 
hardly be achieved because the behaviour of shear studs in a profiled concrete slab is so 

complicated that it is almost impossible for a stud model to accommodate all the 

parameters that affect its strength and deformation. 

In early composite construction, the steel beam-concrete slab type of composite beams 

was mainly used in highway bridge design. Efforts have been made in the finite element 

analysis and modelling of such beams since 1970's. Wegmuller & Amer (1975) 

modelled composite beams by dividing the beam into a layered system. Full shear 

connection was assumed and the modelling of shear studs was therefore avoided. 
Arizumi et al. (1981) proposed a simpler method to model composite beams with 
incomplete (or partial) shear connection, in which the steel beam and the concrete slab 
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were each modelled as a single element, and the shear connectors were assumed to act as 

continuous media along the interface of the steel beam and the concrete slab. Compared 

to the `layer model' of Wegmuller & Amer (1975), this method is simpler, and the 
behaviour of partial shear connection may be taken into account. The first direct 

modelling of shear connectors was established by Razaqper & Nofal (1990). A general 
three-dimensional composite beam model was proposed, in which the concrete slab and 
the steel beam were modelled as thin plate elements, and shear connectors were 

modelled as specialised bar elements with three translational degrees of freedom at each 

end. The composite beam and shear stud model are shown in Figure 5.7. For shear 

connectors, the authors assumed that the load is transferred primarily by shear and the 
flexural and torsional stiffness are neglected. The stiffness of shear connectors was 

calculated from an exponential empirical shear force-slip relationship proposed by Yam 

& Chapman (1968). In this proposal, the stud model is simple and easy to use, but test 
load-slip curves for different shear connectors are needed to determine the parameters of 
the empirical expression. Additional programming is also needed. 

In recent years the modelling of the shear connection or the shear connectors is mostly 
found in finite element analysis of composite beams. Instead of establishing a model for 

each stud, the shear connection between the steel beam and the concrete slab is taken 
into account by the overall performance of all shear connectors within the composite 
beam. In the Oven et al. (1997) beam model, as with Arizumi et al. (1981), the shear 

connectors are assumed to act as a continuous shearing media along the length of the 
beam between the steel beam and the concrete slab. The same assumption is also 
adopted by Salari et al. (1998) and Fang et al. (2000). Fabbrocino et al. (1999), however, 

consider the shear connectors in their actual positions and their action is assumed to 

consist of an interaction force applied at a discrete number of sections. The total 
interaction force is simply obtained by the summation of the force carried by every stud. 
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Figure 5.7 Composite beam and shear stud model proposed by Razaqper & Nofal 

(1990). (a) composite beam model; (b) shear stud model 

Another angle to model the shear connection is to investigate the degree of shear 

connection. Gattesco (1999) proposed a composite beam model by regarding the 

moment capacity of the beam section as a function of the degree of shear connection. 

Liew et al. (2001) related the stiffness of the composite section to the degree of shear 

connection to calculate the curvature of composite beams with partial shear connection. 

A direct way of modelling shear connectors is to use the spring model. In Sebastian & 

McConnel's (2000) composite beam model, the shear connector action is modelled by a 

novel concrete slab-steel beam interface element consisting of axial and rotational 

springs. In Kattner & Crisinel's (2000) composite joint model, shear connectors are 

modelled as translational springs that connect the horizontal concrete slab and steel 
beam elements. 
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Having reviewed all the available proposals of shear connector models, a simple shear 

connector model is proposed by modelling the shear stud as a nonlinear cross-section 
beam element. The proposed shear stud model is shown in Figure 5.8. The behaviour of 

shear studs in composite beams is so complicated that seven modes of failure are 

established by Johnson & Yuan (1998). Since it is not possible and practical for one 
beam element to model all the possible cases, only Mode 1 failure is assumed in the stud 

model. In Mode 1 failure, shear studs fail by shank shear. A plastic zone develops just 

above the weld collar, and the stud shears off with little damage to the surrounding 

concrete. The axial tension in the stud is very low. 

The purpose of the stud model is to produce an acceptable load-slip curve compared to 

those from push-off tests. Normally the geometric and material properties of shear 

connectors are defined by composite beam designs. But not all the values are appropriate 

to be used by the stud model because the behaviour of shear studs in a concrete slab has 

huge difference to the studs acting alone. Therefore, suitable geometric and material 

properties should be defined for the stud beam element. In order to satisfactorily model 

the behaviour of a shear stud in the concrete slab, the following factors should be taken 

into account: 

" Weld connection between steel beam flange and shear studs 

" Effect of concrete confinement to stud shanks 

" Effect of concrete confinement to stud heads 

" Deck shape 

" Number of studs per trough 

In push-off tests or composite beams, shear studs are welded on the steel beam flange. 

The premature weld failure is usually avoided. There are no relative displacements and 

rotations between the stud bottom and the steel flange. In the analysis of the stud beam 

model, the beam model may be assumed to be fixed at the bottom. The length of the 

model is taken as the same as the shear stud after welding. For the stud head, because of 
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the effect of concrete confinement to stud heads, it is reported that the rotations of the 

stud heads are very limited at the end of push-off tests (Lloyd & Wright, 1990). Since 

the longitudinal deformation of the shear stud is also very limited, the top vertical 
displacement and rotation of the analytical stud beam model in Figure 5.8(b) are 
therefore assumed to be restrained. Considering the confinement of the concrete to the 

stud shank, a large cross section area of the stud is assumed. This is to ensure that the 
length-to-diameter of the stud is small and the beam element fails by shear. And also the 

stress due to bending is kept small and P-S effect does not occur. An elastic-perfect 

plastic stress-strain relationship is assumed for the stud steel. Under horizontal load (P), 

the lateral displacement of the beam model is taken as the slip (s). 

concrete slab 

P je=o 

h 

7777 

steel beam flange 

(a) a stud in slab (b) a stud model 

Figure 5.8 Proposed shear stud model 

The bearing stress on the shank of a stud connector in a plane concrete slab is shown in 

Figure 5.9. By comparing the two diagrams, it can be seen that the triangular diagram of 
the model is slightly conservative in predicting the strength of the shear stud compared 
to the parabolic curve of actual situation (Johnson, 1975). 
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Figure 5.9 Bearing stress on the shank of a stud connector in plane slab 
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Figure 5.10 Load-slip curve of 19-mm shear stud model 

2 

In this study, the model of the 19mm-diameter stud with the length of 95mm after 

welding is produced. A bi-linear load-slip curve is obtained and is shown in Figure 5.10. 

The test curve is taken from Lloyd & Wright's (1990) push-off tests. The bi-linear load- 

slip curve of the stud model shows conservative agreement to the test curve. It should be 
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noted that for different shear studs different stud models should be worked out to match 

the test load-slip curves. 

From Figure 5.10 it can be seen that the shear capacity of the stud model is 80kN. This 

is because that according to BS5950, Part 3.1 (1990), the characteristic resistance Qk of 

such studs is 100kN in concrete slabs with the strength of 30 N/mm2. And the design 

capacities of shear connectors in a solid slab should be taken as 0.8Qk, i. e., 80kN. 

In fact, by changing the geometric and material properties of the stud model, different 

stiffness and values of design resistance of shear connectors can be obtained. Once the 

shear stud model is established, the proposed composite joint model can be utilized in 

composite joint analysis. 

5.3 Validation of composite joint model 

In order to validate the proposed composite joint model, two groups of composite joint 

samples are modelled and analysed. These composite joints are taken from the 

experiments performed by Brown & Anderson (2001) and Anderson & Najafi (1994). 

The advantage for this is that the analytical results can be directly compared to tests. 

5.3.1 Model vs. Brown & Anderson's tests 

Five end-plate joint tests were reported by Brown & Anderson in 2001. All tests 

presented major axis, internal beam-to-column connections and' were configured in a 

cruciform arrangement, providing two connections in each specimen. The first test, 

named Test 1, is a steel only joint to provide a control for the following composite joint 

tests. The others, named Test 2, Test 3, Test 4 and Test 5, are composite joints. For all 
joints 12 mm stiffeners were provided to prevent failure of column web and flange in 

compression. 
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These composite joint tests were designed to investigate the influence of the spacing of 

the main reinforcement in the slab, the end-plate thickness, bolt size, and larger sizes of 

beam and column on the behaviour composite joints. The changes of the design 

parameters of the joints are listed in Table 5.1. And the test arrangements and joint 

details are shown in Figure 5.11. 

The proposed composite joint model is used to model all four composite joints and the 

LUSAS 13 program is employed for the analysis. A snapshot of LUSAS Modeller 

window is shown in Figure 5.12, in which Test 2 is being modelled and the node 

numbers are made visible. 

To explain the procedure of joint modelling by LUSAS Modeller, the model of Test 2 is 

taken as an example. Considering the symmetry of the joints about the column center, 

only half the joint is modelled. The global x-axis is taken as the center of the steel beam 

elements, and the column centreline is taken as the global y-axis. 

" Steel beam 

The steel beam section is modelled as thick beam elements with shear deformation 

included. All the elements are on x-axis and each element is divided into four 

divisions. The geometric properties of generally used structural sections have bean 

grouped in the `Section Library' of LUSAS Modeller and are ready to use. The 

beam sizes are input according to Table 5.1 for each joint. The material properties 

are taken as the average values of web and flange from material tests. They can be 

found in Table 5.2 (a). Elastic-perfect plastic stress-strain relationship is assumed 
for steel beam elements. 
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Grade S275 
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Figure 5.11 Parameters of composite joints from Brown & Anderson (2001) 
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Table 5.1 Changes of composite joint parameters of Brown & Anderson (2001) 

Column (UC) Beam (UB) 

End-plate 

thickness 

(mm) 

Bolt size 

(grade 8.8) 

(mm) 

Test 2 203 x 203 x 52 457 x 152 x 52 15 M20 

Test 3 203 x 203 x 52 457 x 152 x 52 15 M20 

Test 4 203 x 203 x 52 457 x 152 x 52 10 M24 

Test 5 254 x 254 x 73 533 x 210 x 82 15 M24 
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" Main reinforcement in the slab 

The main -reinforcement in the concrete slab (4T16) is combined together and 

modelled as one bar element. The total area is assigned to the bar element. The two 

nodes are Node 1 and 2 in Figure 5.12 and four divisions are assigned to the 

element. The length of the element is calculated from the column centreline to the 

first shear stud. The element lies at the geometric center of the reinforcement. The 

material properties are taken from the average values of material tests. The 

Young's modulus is 200kN/mm2, the yield stress is 504 N/mm2, and the ultimate 

stress is 611 N/mm2. The elongation of the bar steel at maximum stress is 13%. 

This is used in the model analysis as the threshold value to terminate the nonlinear 

iteration procedure. A bi-linear stress-strain relationship is assumed for the bar 

element. 

" Concrete slab 

The concrete slab is modelled as non-linear cross section elements. The overall 

thickness and breadth of the slab are used for the section input data. These 

elements lie in line with the bar element. The number of the elements is 

determined by the number of shear studs. The tensile strength of concrete can be 

found in Table 5.2 (a). In the model analysis, once a concrete element is found to 

yield, it is replaced by the aforementioned bar element. Elastic-perfect plastic 

stress-strain relationship is assumed for concrete beam elements. 

" Shear studs 
The shear studs are modelled as non-linear cross section elements. There are seven 
studs at a spacing of 225 mm. The number of shear studs determines the numbers 
of concrete beam elements, rigid link elements and steel beam elements. The 

geometric and material are determined as such that the load-slip relationship of the 

model match the actual load-slip curve. Since the studs are 19mm in diameter and 
95mm height after welding, and the concrete in the tests was designed to achieve a 
characteristic strength of 30 N/mm2, the bi-linear load-slip relationship of the stud 
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model is used in all joint models. The length of the stud model is therefore 95 mm. 

The cross section area of the stud model is input as ten times of the original stud 

section to mimic the concrete confinement effects. The Young's modulus is 

assumed as 200 kN/mm2, and the strength is assumed as 800 N/mm2. 

" Rigid links 

Rigid links are elements with high stiffness linking steel beam elements and shear 

stud elements. These elements are the same as the steel beam elements except that 

the Young's modulus is assumed to 1000 times higher. This will ensure their 

deformations due to shear and bending are small. 

" Equivalent lever arm of the bar element, Deq 

The equivalent lever arm of the bar element (Deq) is used to determine the position 

of the bar element. Once this value is obtained, the overall geometry of the joint 

model can be defined. Prior to calculating the equivalent lever arm, the moment of 

resistance of the steel joint should be calculated. The equivalent lever arm can then 

be obtained from equation (5.8). For all the models, this value is listed in Table 5.2 

(b). 

" Support 

The joint model is assumed to be supported along the column centreline, i. e., the y- 

axis. Due to symmetry, for nodes on the y-axis, all displacements in x-direction 

must be zero. Neglecting the shear deformations of column web, the vertical 
displacements of nodes on the y-axis are also zero. Assuming no relative 
displacements and rotations between the steel bottom flange and column web, the 

rotation of the first node of the steel beam element (Node 10 in Figure 5.12) is also 

restrained. 
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" Loading 

A vertical point load is applied to the models at the position of the last shear stud, 

which is the same as the tests. The initial value of the load is 10 kN, and the load 

factor for each iteration step is set as 5, i. e., for the first load increment, the load is 

50 kN; for the second increment, the load is 100 kN; for the third increment, the 

load is 150 kN, and so on. For plastic analysis, the increment of the load is reduced 

according to the secant stiffness of the stress-strain relationship until the 

convergence is reached. The whole iteration will stop when the termination 

criterion is met. 

Table 5.2 Design data of joint models of Brown & Anderson (2001) 

(a) Material properties 

Test 2 Test 3 Test 4 Test 5 

Average Young's 

modulus of steel beam 197 197.5 203.5 203.8 

(kN/mm2) 

Average yield stress of 

steel beam (N/mm2) 
321.3 314.8 315 367.5 

Tensile stress of 

concrete (N/mm2) 
3.85 3.4 3.6 3.5 
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(b) Length of bar elements and the equivalent lever arm, Deq 

Test 2 Test 3 Test 4 Test 5 

Lo (m) 0.206 0.206 0.206 0.254 

Dey (m) 0.77 0.78 0.74 1.056 
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Figure 5.13 Snapshot of the Graph Wizard window of LUSAS Modeller 
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displacements of the bar element. The relationship between the horizontal reaction 

forces of Node 1 (Figure 5.12) and the horizontal displacements of the bar element at 

Node 2 (Figure 5.12) can be easily found by the Graph Wizard of LUSAS Modeller. A 

snapshot of the Graph Wizard window is shown in Figure 5.13. The units used 

throughout this work are N, m, kg. 

Assuming the reaction force of the bar element is Rba,. and the corresponding total 

extension of the bar element, i. e., the horizontal displacement of Node 2 in Figure 5.12, 

is dbar, the joint moment, M and the joint rotation, 4. can be calculated in relating to the 

equivalent lever arm, Deq. 

Mj = Rbar X Deq 

ý- = dbar / Deq (5.9) 

For the moment capacity and rotation capacity of the joint models, the results of the last 

iteration step are used. While for the calculation of the initial stiffness of the joint model, 

Sj;,,;, the results of the first iteration step are used. 

Sj. rnl=Mj1/ 6-1 (5.10) 

where Mj, and 41 are the joint moment and rotation after the first load increment, 

respectively. 

All four composite joints, Test 2, Test 3, Test 4, and Test 5 are modelled and analysed. 

The joint characteristics are calculated according to equations (5.9) and (5.10), and the 

results are listed in Table 5.3. By calculating the groups of data at different loading 

steps, the moment rotation curves of the four joint models can be obtained. They are 

illustrated in Figure 5.13 a, b, c, d, respectively, along with the curves from the joint 

tests. 
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Table 5.3 Characteristics of the composite joints of Brown & Anderson (2001) 

Test 2 Test 3 Test 4 Test 5 

Moment of Model 383 377 357 510 

resistance 
(kNm) Test 380 390 370 493 

Rotation Model 33.8 33.8 34.8 22 

acit ca p y 
(mrad) Test >33 48 35 20 

Initial Model 98.1 98.3 90.5 175.7 
stiffness 

(kNm/mrad) Test 142 144 136 211 
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Figure 5.13a Moment-rotation curve of Test2 model 
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Test3 moment-rotation curve 
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Figure 5.13b Moment-rotation curve of Test3 model 
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Test5 moment-rotation curve 
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Figure 5.13d Moment-rotation curve of Test5 model 
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Generally speaking, good agreement is obtained between model analysis and tests. From 

Figures 5.13a to 5.13d, it can be seen that the moment-rotation curves of the composite 
joint models agree well with tests at elastic stage and at plastic stage as well. At the 

elastic stage, though, the initial stiffness of the joint model is slightly lower than that of 

tests. Direct comparison of the initial stiffness between model and tests can be found in 

Table 5.3. The ratio between model and tests ranges from 0.65 to 0.83. The reason is 

probably because that the stiffness of the steel joint at the early stage of the composite 
joint deformation is not accounted for in the proposed model. Secondly, this may also be 

a result of the conservative load-slip relationship of the shear stud model. From Table 

5.3 it can be seen that the analytical results of the moment of resistance and the rotation 

capacity are quite satisfactory compared to tests. 

The analytical results of Test 2 and Test 3 are very close. This is true because these two 

tests are identical except that the transverse spacing between the main reinforcement is 
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changed. The difference is mainly caused by the minor changes of the material 

properties of the joint components. The proposed model, however, cannot model the 

changes of the spacing of the reinforcement, because only one bar element contains the 

total cross section area of the reinforcement is used in the model. All the reinforcement 

is assumed to yield and fail simultaneously. 

Test 4 is identical to Test 3 except that the endplate thickness is reduced from 15 mm to 

10 mm, and the bolt size is increased from M20 to M24. The change in endplate 

thickness will result in a lower moment of resistance of the steel joint, and a consequent 

lower moment of resistance of the composite joint. The initial stiffness of the composite 

joint may also decrease. In the joint model, the equivalent level arm Deq of Test 4 is 

therefore smaller than that of the Test 3 model. The predicted moment of resistance and 

initial stiffness by model analysis are less than those of Test 3. These results are in 

compliance with the expectations and are proved by the test results. 

The rotation capacity of Test 4 model, however, is larger than Test 3 model. This is 

because the same length and extension capacity of the bar element are assumed for both 

models. According to equation (5.9), smaller equivalent lever arm Deq will result in 

larger value of joint rotation. Tests show that the rotation capacity of Test 3 (48mrad) is 

larger than Test 4 (35mrad). The predicted rotation capacity of Test 3 is 30% lower than 

the tests. Very close results are obtained between Test 4 analysis (34.8mrad) and tests 

(35mrad). 

In Test 5, large beam and column sizes are used, but the amount of reinforcement is not 

changed. As we know, the moment of resistance of a steel joint will increase with the 

increase of beam size if the mode 1 failure of the endplate occurs. According to equation 

(5.4), the moment of resistance of the composite joint will increase and consequently, 

the equivalent lever arm of reinforcement (Deq) of the joint model will also increase 

according to equation (5.8). Assuming the same extension capacity of the reinforcement, 

103 



the rotation capacity of the composite joint will decrease according to equation (5.9). 

But the initial stiffness of the composite joint will increase according to equation (5.10). 

In the Test 5 model, the equivalent lever arm of reinforcement (Deq) is much larger than 

other models due to the increase of the steel beam size. The length of the bar element is 

also increased as a result of the increase of the column size since this value is taken as 

the distance between the column centreline and the first shear stud. As expected, through 

the analysis of Test 5 model, there is a significant increase in the moment of resistance 

and initial stiffness. But the rotation capacity of the composite joint reduced remarkably 

at the same time. The results of model analysis and the test agree very well in this case. 

5.3.2 Model vs. Anderson & Najafi's tests 

Five composite joint tests, identified as S4F, S8F S12F, S8E and SBFD, were reported 
by Anderson & Najafi in 1994. The endplate type of connection was used for all joints, 

in which an endplate was welded to the steel beam and bolted to the column flange. All 

the tests were carried out on cruciform specimens with two cantilevers on each side to 

model internal joints in a braced frame. The arrangement of specimens and the details of 

the steel joints are shown in Figure 5.14. 

The design parameters of the joints are as the following: 

Structural steel Grade 43 

Beam 305 X 165 UB40, except in S8FD which is 457 X 152 UB52 

Column 203 x 203 UC52 

End plate 15 mm thick 

Bolts 20mm diameter, Grade 8.8 

Deck PMF CF46 0.9mm thick 
Slab 1100mm wide, 120mm deep overall 
Concrete normal weight, Grade 30 

Reinforcement A142 mesh plus T12 longitudinal bars 
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Shear connectors 19 mm stud, 100 mm long before welding 

ELEVATION A-A 

Figure 5.14 Arrangement of test specimens from Anderson & Najafi (1994) 

Among the five joints, the amount of tensile reinforcement, the depth of the steel section 

and the type of end plate were varied. The changes of the parameters of the specimens 

are listed in Table 5.4. 

Table 5.4 Changes of design parameters of the tests from Anderson & Najafi (1994) 

Equivalent 
Type of end plate Main 

Beam (UB) lever arm, 
connection reinforcement Deq (mm) 

S4F Flush end plate 305 X 165 UB40 4-T12 699 

S8F Flush end plate 305 x 165 UB40 8-T12 549 

S12F Flush end plate 305 x 165 UB40 12-T12 499 

S8E Extended end plate 305 X 165 UB40 8-T12 786 

S8FD Flush end plate 457 x 152 UB52 8-T12 814 
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These five joints are modelled by using the proposed composite joint model through the 

LUSAS 13 program. A snapshot of the LUSAS Modeller window with S4F being 

modelled is shown in Figure 5.15. Again the node numbers are made visible. 

For these five joints, the procedure of modelling in LUSAS Modeller is the same as that 

of the joint models of Brown & Anderson (2001). Considering the symmetry of the 

joints about the column centreline, half the joint is modelled. The global x-axis is set to 

coincide with the center of the steel beam elements, and the column centreline is taken 

as the global y-axis. 

" Steel beam 

The steel beam section is modelled as thick beam elements with shear deformation 

included. All the elements are on x-axis and each element is divided into four 

divisions. The beam sizes are input according to Table 5.4 for each joint. Since the 

results of material tests are not provided in the reference, the material properties 

are taken from the values suggested by EC 3, Part 1.1 (1992). The Young's 

modulus is taken as 210 kN/mm2, the Poisson's ratio is 0.3, and the yield stress is 

275 N/mm2. An elastic-perfect plastic stress-strain relationship is assumed for steel 

beam elements. 

" Main reinforcement in slab 
The main reinforcement in the concrete slab (T12 bars) are combined together and 

modelled as one bar element. The two nodes are Node 1 and 2 in Figure 5.15 and 

four divisions are assigned to the element. The length of the element is calculated 

from the column centreline to the first shear stud. Since the size of column section 

is not changed, this value is the same for all joints. The element is positioned at the 

geometric center of the rebars. The Young's modulus is taken as 200 kN/mm2 

according to EC 2 Part 1.1 (1992), and the yield stress is taken as 486 N/mm2. The 

elongation of the bar steel at maximum stress is 17% from material tests. This 
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value is used to set the termination point of the nonlinear iteration procedure. An 

elastic-perfect plastic stress-strain relationship is assumed for the bar element. 

" Concrete slab 
The concrete slab is modelled as non-linear cross-section beam elements. The 

overall thickness and breadth of the slab are used to define the cross section. These 

elements lie in line with the bar element. The number of the element is determined 

by the number of shear studs. According to EC 2 Part 1.1 (1992), the Young's 

modulus concrete is taken as 32 kN/mm2. The tensile strength of concrete is taken 

as 2.9 N/mm2. In the model analysis, once a concrete element is found to yield, it is 

replaced by the aforementioned bar element. An elastic-perfect plastic stress-strain 

relationship is assumed for concrete beam elements. 

" Shear studs 

There are seven studs at a spacing of 225 mm on each side. The proposed shear 

stud model is used to model each stud. The number of shear studs determines the 

numbers of concrete beam elements, rigid link elements and steel beam elements. 
The length of the stud model is taken as 95 mm, which is the length after welding. 
The cross section area of the stud model is input as ten times of the original stud 

section to mimic the concrete confinement effects. The Young's modulus is 

assumed as 20 N/mm2, and the strength is assumed as 800 N/mm2. 

" Rigid links 

Rigid links are elements with high stiffness linking steel beam elements and shear 
stud elements. The material properties of these elements are the same as the steel 
beam elements except that the Young's modulus is assumed to 1000 times higher. 
This is to ensure their deformations due to shear and bending are small. 
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" Equivalent lever arm of the bar element, Deq 

The equivalent lever arm of the bar element (Deq) is used to determine the 

coordinates of the bar element, and hence the geometry of the joint model can be 

obtained. The equivalent lever arm is calculated from equation (5.8). For all the 

models, this value is listed in Table 5.4 (b). 

" Support 

Due to symmetry, for nodes on the y-axis, the displacements in x-direction must be 

zero. Neglecting the shear deformations of column web, the vertical displacements 

of nodes on the y-axis are also zero. Assuming no relative displacements and 

rotations between the steel bottom flange and column web, the rotation of the first 

node of the steel beam element (Node 10 in Figure 5.12) is also restrained. 

" Loading 

A vertical point load is applied to the models at the position of the last shear stud, 

which is the same as the tests. The initial value of the load is 10 kN, and the load 

factor for each iteration step is set as 10, i. e., for the first load increment, the load 

is 100 kN; for the second increment, the load is 200 kN; for the third increment, 

the load is 300 kN, and so on. For plastic analysis, the increment of the load is 

reduced according to the second stiffness of the stress-strain relationship until the 

convergence is reached. The whole iteration will stop until the termination 

criterion is met. 
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All five composite joint models are obtained through the above procedure and then 

analysed by the LUSAS Solver. Again the characteristics of the joint model cannot be 

directly obtained from the output data of LUSAS Solver. But they can be calculated 

from the reaction forces and the nodal displacements of the bat element in association 

with the equivalent lever arm. The relationship between the horizontal reaction forces of 

Node 1 (Figure 5.15) and the horizontal displacements of the bar element at Node 2 

(Figure 5.15) can be easily found by the Graph Wizard of LUSAS Modeller. Figure 5.16 

shows the results of S4F model. 
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Figure 5.16 A screen shot of LUSAS post-process window of S4F model analysis 
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The joint moment of resistance and rotation capacity are found by equation (5.9), and 

the initial stiffness can be found from equation (5.10). For all five joints these values are 

shown in Table 5.5. The relationship between joint moment and rotation can therefore be 

found by calculating the pair of values at each load increment. For each joint, the 

moment-rotation relationship is shown in Figure 5.17a, b, c, d, e. 

ný 
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Table 5.5 Analytical results joint models from Anderson & Najafi (1994) tests 

S4F S8F S12F S8E S8FD 

Moment of Model 154 241 298 283 345 

resistance 
(kNm) Test 179 262 302 291 416 

Rotation Model 25.7 32.7 42.7 30 22.6 
capacit y 

(mrad) Test 26.6 35.8 55.7 40 14 

Initial Model 40 50 51 69.2 102.7 
stiffness 

(kNm/mrad) Test 55 65 85 145 140 
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Figure 5.17a Moment-rotation curve of S4F model 
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Through the finite element analysis of these five composite joint models - S4F, SBF, 

S12F, S8E, S8FD - we can see that good agreement is achieved compared with the joint 

tests. From the moment-rotation curves of the joint models, it can be seen that the joint 

moment remains constant until failure. The yield moment is taken as equal to the 

moment of resistance of the joint. The reason for this is that for all materials, an elastic- 

perfect plastic stress-strain relationship is assumed. As a result, the predicted yield 

moment of the joint is higher than the tests. The yield joint moment from tests is about 
60-70% of the joint model and the predicted moment of resistance is conservative 

compared to the tests. The initial stiffness of the joint is calculated from joint moment 

and rotation of the first load increment and the rotation capacity is taken as the value 

where the iteration stops. Except for the rotation capacity of S8FD model, all predicted 

values are on the safer side and in a close range to the test results. 

In the first three tests - S4F, S8F, and S 12F, the amount of reinforcement is changed. 
The numbers 4,8 and 12 are the numbers of T12 bars are placed in the slab. By 

comparing the analytical results of joint models with tests through Figures 5.17a, b, c, it 

can be observed that with the increase of the reinforcement in the concrete slab, the 

moment of resistance, rotation capacity and the initial stiffness of the composite joint are 

all increased. For tests of S4F and S8F which fail by rebar fracture, the joint model 

predicted the moment-rotation curves satisfactorily. For S 12F which fails by the local 

buckling of beam bottom flange, the model predicted the moment of resistance and 
initial stiffness well but underestimated the rotation capacity. 

In the HE test, an extended end plate is used compared to S8F. Both test and model 
analysis have shown that the moment of resistance and initial stiffness increased. Since 
S8E failed by the local buckling of beam bottom flange in the test, the rotation capacity 
the two tests cannot be compared. The joint model, however, again underestimated the 
rotation capacity of S8E. 
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In the S8FD test a large steel beam section is used compared to S8F. The model analysis 

shows that there is a significant increase in the moment of resistance and initial stiffness, 
but a significant decrease in the rotation capacity. S8FD fails by the fracture of the 

rebars. And in this case the model overestimated the rotation capacity of the joint 

compared to the tests. It should be noted that in the test S8FD was unloaded twice: at 

about 60% of the failure load and at about 90% of the failure load. The first unload- 

reloading procedure would not affect the joint properties much because the joint is 

mostly in elastic stage. In the second unloading-reloading procedure, however, when the 

whole joint is plastic and near failure, the plasticity of the materials, especially the rebars 

would decrease. And the brittle fracture of the rebars would occur. In such a case, the 

joint fails when the moment reaches its maximum value. Unlike the other three tests, the 
descending stage of the moment-rotation curve would not occur. In the joint model the 

elongation of the rebars at failure is taken as 17% for all joints. This may not be true for 

S8FD. 

In the proposed model, it is assumed that the joints fail by the fracture of the rebars. For 

joints falling into the assumption, the proposed model predicts the characteristics of the 

joints quite well. For joints failing by local buckling of beam bottom flange, this 

assumption has little influence on the prediction of the moment of resistance and initial 

stiffness, but the proposed model tends to underestimate the rotation capacity. 

By studying the moment-rotation curves from joint tests, except for S8FD, it can be 

found that they are very similar to normal material tests on steel members, i. e., the curve 

may be roughly divided into three stages: elastic stage, hardening stage, and post- 
hardening stage. Due to the complexity of composite joint deformations, the yield 

moment of the joint is not clearly distinguished. The value of 0.67MRd may be used as 
the yield moment (Brown & Anderson, 2001). After yield, a hardening plateau can be 

observed. The peak value of the joint moment is taken as the moment of resistance of the 
composite joint by Anderson & Najafi (1994). The moment-rotation curve then declines 
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until failure. The joint rotation just before failure is taken as the rotation capacity in the 

tests. 

According to the test curves of the moment-rotation relationship, a more accurate tri- 

linear moment-rotation relationship may be recommended for future composite joint 

design. In Figure 5.18, three straight lines are used to simulate the three stages of the 

moment-rotation curve. Point A is the elastic limit; point B simulates the peak point of 

the hardening stage when the joint rotation reaches 50% of the rotation capacity, and 

point C represents the point of failure. The yield moment is assumed to be 0.67Mrd. It 

can be seen that the recommended tri-linear moment-rotation relationship is a more 

accurate simulation of the real composite joint behaviour. 

S 

0 (Dm 

(a) Predicted bi-linear relationship from the proposed model 

MAa 

0.67Mw 

C 
ý 

Si, iw 

0.5(Da (Dm 

(b) Recommended tri-linear relationship 

Figure 5.18 Proposed tri-linear moment-rotation relationship 

116 



5.3.3 Elastic analysis of composite joints 

Since the proposed composite joint model is so simple that it uses only bar and beam 

elements, it is possible that such problems may be solved by small structural analysis 

packages, such as QSE, rather that employing big finite element analysis programs. 

Packages like QSE program are widely available at much lower price but they normally 

provide limited functions as linear elastic analysis only. Through linear elastic analysis, 

only the initial stiffness of composite joints can be predicted. The moment capacity and 

rotation capacity of the joint cannot be found. EC 3 provides a method to predict the 

moment capacity and rotation capacity of composite joints. By combining the linear 

elastic analysis and EC 3 method, the characteristics of composite joints can be obtained. 

Linear elastic analysis is performed on the previously reported two series of composite 

joint specimens from the tests of Brown & Anderson (2001) and Anderson & Najafi 

(1994). Linear elastic analysis can be performed by using either QSE program or 

LUSAS program. Since plastic analysis has been performed on the composite joints 

previously, it is easy to do linear elastic analysis on the same model just by replacing the 

plastic material properties with elastic ones. Note that the shear deformations of beam 

elements are excluded when performing linear elastic analysis. 

The results of the elastic analysis of the composite joint specimens are shown in Figures 

5.13a, b, c, d and Figures 5.17a, b, c, d, and e. From the figures it can be observed that 

the moment rotation relationship from linear elastic analysis is the same as that of the 

elastic stage from plastic analysis of the joints, except for the Test 5 model. That follows 

that except for the Test 5 model, the initial stiffness is the same when using linear elastic 

analysis or plastic analysis. In other words, the predicted initial stiffness of linear elastic 

analysis has the same accuracy as the plastic analysis. 

In Test 5, a deeper steel beam section (533 x 210 x 82) is used than other specimens 
(457 x 152 x 52) of the same joint series. From Figure 5.13d, it can be observed that the 
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joint rotations predicted by linear elastic analysis is slightly smaller that those from 

plastic analysis. The initial stiffness of Test 5 model from elastic analysis is therefore 

larger that that from plastic analysis. Note that in the joint test, Test 5 specimen failed by 

the local buckling of the lower flange of the steel beam. The decrease in the initial 

stiffness of the joint is probably caused by the early yield of the lower beam flange, 

which cannot be perceived by linear elastic analysis. 

Considering all the above, linear elastic analysis can be performed on small structural 

analysis programs and give the same accuracy as plastic analysis carried out using a big 

finite element analysis programs in terms of the initial stiffness of composite joints. 

Together with EC 3, the characteristics of composite joints can be obtained with limited 

effort. In cases when early yield of joint members occur, 'linear elastic analysis may 

overestimate the initial stiffness of the joint. 

5.4 Conclusions 

A simple analytical composite joint model is proposed along with a shear stud model. It 

gives satisfactory predictions of the characteristics of composite joints in general. The 

proposed joint model is based on previous analytical models. The moment of resistance 

of the steel joint should be calculated according to Annex J of EC4 (1994) before the 

composite joint model can be established. A shear stud model is also proposed in order 

that the influence of the deformation of shear studs can be accounted for. The shear stud 

model is established according to its load-slip behaviour. For different shear studs, a 

different stud model should be established. The advantages of the proposed joint model 

are that a finite element model can be easily established once the moment of resistance 

of the steel joint is calculated, and the proposed model is simple to use and does not 

need further programming. To establish the shear model, however, the load-slip curve is 

needed. 

The following assumptions are proposed in the formation of the composite joint model: 
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1. The composite joint is subject to negative bending. 

2. The compression center coincides with the center of the bottom flange of the 

steel beam, and the whole composite joint rotates about the compression 

center. 
3. Failing or buckling of the column web and flange in compression do not 

occur, and the deformations of the column web and flange in compression are 

neglected. 
4. The shear deformation of column web in shear zone is neglected. 
5. The deformations of the column web and flange in tension zone are 

neglected. 
6. The rotation capacity of the composite joint is measured by the extension of 

the bar element in connection with the equivalent lever arm. 

7. The full shear strength of the shear studs may develop before failing. 

From the model analysis the following conclusions may be drawn: 

1. The proposed model may be used in the predictions of the characteristics of 

composite joints subject to negative bending. 

2. The deformations of the shear connectors are considered in the proposed 

model. 

3. For composite joints failing by the fracture of the rebars, the predictions of 
the moment of resistance, rotation capacity, and initial stiffness are 

satisfactory. For composite joints failing by the local buckling of the bottom 

flange of the steel beam, the predictions of the moment of resistance and 
initial stiffness are satisfactory but the proposed model tends to 

underestimate the rotation capacity. 

4. A tri-linear moment-rotation relationship is recommended for the future 
design of composite joints. 
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5. Linear elastic analysis of composite joints shows that it can provide the same 

accuracy in predicting the initial stiffness of composite joints provided that 

the early yield of the joint components does not occur. Together with EC 3, 

the characteristics of composite joints can be obtained without employing big 

finite element analysis programs. Due to the limitations of linear elastic 

analysis, elasto-plastic analysis needs to be performed to capture the whole 
history of the moment-rotation relationship of composite joints. 

To conclude, the proposed semi-rigid composite joint model shows good agreement with 

tests and can effectively predict the moment of resistance, rotation capacity and initial 

stiffness of semi-rigid composite joints. It can be applied for the further studies of 

composite beams and frames. 
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Chapter 6 Modelling of composite beams with semi-rigid connections 

6.1 Introduction 

Research on composite steel and concrete beams dates back as early as the 1940's, and 

extensive research has been carried out on composite beams since then. Many tests have 

been done and the behaviour of simple supported composite beams under various 

loading conditions and different degrees of shear connections has been made relatively 

clear. More recently, research on composite beams with semi-rigid joint connections has 

taken place with several experiments having been carried out on such beams. Some 

analytical approaches have been proposed by different researchers. In this chapter, 

previous studies on composite beams are reviewed. The types of composite beam 

include: simple supported beams, two-span continuous beams, continuous beams with a 

cantilever beam. The types of support or joint connection include: roller support, web 

cleat joint and endplate joint. Several analytical composite beam models are reviewed. 

Finally, a simple and effective composite beam model is proposed by the author. The 

proposed beam model may be used for the analysis of simple supported beams, 

continuous beams, and beams with semirigid connections. The proposed beam model is 

validated against tests and published papers and satisfactory agreements are achieved. 

6.1.1 Barnard & Johnson, 19651'2 

Barnard & Johnson (19651) proposed a method of predicting the ultimate moment of 

resistance of composite beams. At the time of the study, it was accepted that welded- 

stud shear connectors could be designed by an ultimate strength method which assumes 

that connectors may be spaced uniformly in the region between adjacent cross sections 

of maximum and zero bending moment, and each connector is loaded to its ultimate 

capacity when the collapse load of the beam as a whole is reached. The number of 

connectors required in such a region is found by dividing the longitudinal force in the 
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steel at maximum moment by the capacity of one connector. It was also accepted that 

when the slab-width/span ratio is properly chosen, the distribution of strain across the 

slab would be uniform right to ultimate moment. Based on the above theory, it was 

assumed no slip occurred and the strain distributions in steel and concrete are both 

linear. A method of predicting the ultimate moment of resistance of composite beams 

was proposed by assuming both structural steel and reinforcement behave in a perfect 

elastic-plastic manner in both tension and compression. The method was validated by 

the results of six simple-supported beam tests performed by the authors and a computer 

programme developed by the authors. It was claimed that the theory predicted very 

accurately the value of maximum moment, when comparing with the results of both the 

actual and the computer tests. 

A study on the plastic behaviour of continuous beams then followed (Barnard & Johnson 

19652). Four tests on three-span continuous beam were reported. Through studying the 

continuous beam test the authors indicated that shear connectors and appreciable slab 

reinforcement are desirable in negative moment regions. It was concluded that the 

simple plastic theory of simple supported composite beam may be used to predict the 

maximum moment of resistance of continuous composite beams where the concrete, 

section is in compression. 

6.1.2 Slutter & Driscoll, 1965 

Slutter & Driscoll (1965) conducted a series of tests to investigate the ultimate strength 

properties of composite steel and concrete beams. The experimental work of the 

investigation consisted of twelve simple span composite beams of 15-feet span and one 

two-span continuous beam of the same span. The spacing of the shear connectors was 

varied among the beams and several different loading conditions were used in the tests. 

Based on the test results the authors proposed a criterion for minimum shear connector 

requirements for composite beams. And it was reported that when this criterion is 

satisfied, the ultimate strength of beams in which the neutral axis at ultimate moment 
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lies within the slab is not reduced by slip between slab and beam. A method of 

determining the ultimate bending capacity of beams with partial shear connection was 

proposed. The proposal was validated by test results and good correlation was obtained. 
Based on their tests, the authors suggested that the redistribution of load on shear 

connectors prior to failure makes it unnecessary to space the shear connectors in 

accordance with the shear diagram for the case of uniform loading. Regarding the test of 

the continuous beam, the authors suggested that not only the ultimate strength theory 

but, in a limited way, plastic analysis also may be applied to composite beams. 

6.1.3 Ansourian, 1975 

A three-dimensional elastic finite element analysis of composite beams was first 

reported by Ansourian (1975). The author firstly modelled the concrete slab as 8/16 

node solid elements. And the steel beam was modelled as plane stress elements. Each 

flange was modelled as one element and the web as two elements. The top flange was 

connected to the lower surface of the slab elements. Satisfactory convergence was 

obtained with this method, but the data preparation for the solid elements was 

`cumbersome'. A simplified simulation was then put forward. 

In the second method, instead of solid elements the concrete slab was represented by a 

network of thin plate elements. And the steel beam was represented by conventional 
beam elements. In the assembly of the composite system, the plate elements were at the 

mid-surface of the slab, and the beam elements were at the centreline of the steel beam. 

The plate elements and the beam elements were connected by `rigid links'. These were 

not actual physical members, but their function was simulated numerically by making 
the displacements along the beam axis depend on the displacements of the slab nodes 
located vertically above. The displacements at the nodes along the beam axis were 
therefore fully determined by the corresponding slab displacements. The proposed 
composite beam model proved to be effective in elastic analysis. The author then 

extended the same model for the plastic analysis of composite beams (Ansourian & 
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Roderick, 1978), in which the yielding of the steel, the nonlinearity in the concrete, and 

even the effects of the interface slip of shear connectors were included. The stiffness of 

shear connectors was determined by the load-slip curve obtained from push-out tests and 

simulated by an initial linear section followed by a polynomial. The plastic analysis 

proved to be successful compared with the results of six full-scale composite beam tests. 

6.1.4 Kristek & Studnicka, 1982 

Kristek & Studnicka (1982) used finite element method to investigate the influence of 

deformable connecters on the stress and deflections of composite beams. In their 

method, the concrete slab, steel beam flanges and web were idealized as an assembly of 

rectangular elements, called `folded plates', connected along the longitudinal joints. The 

connection of the concrete deck to the top flange was made by a `special element' to 

model as truthfully as possible the action of the connection. Due to the complexity of the 

`special element', it was replaced by the `rigid dummy links' between the centroidal axis 

of the concrete deck and the top flange of the steel beam. The stiffness of shear 

connectors was measured by `the deformability characteristic of the connection' K, 

defined by the author. 

The accuracy and convergence of the analytical model was tested through a simple 

supported composite beam carrying a harmonic loading of unit value at midspan. Then 

three types of composite beams were studied of the influence of deformable connections, 

and finally conclusions were made. 

6.1.5 Razaqpur & Nofal, 1990 

Razaqpur & Nofal (1990) developed a finite element program for the nonlinear analysis 

of general three-dimensional composite steel-concrete structures. Two composite beams 

and a bridge were analysed and compared with the corresponding experimental results. 
Good agreement was achieved. It is reported that the nonlinear finite element method 
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can used to reliably evaluate the inelastic behaviour and ultimate strength of composite 

beams and bridges. 

In the analysis of composite beams, three parts of the structure must be properly 

modelled, i. e., the concrete slab, steel beam and shear connectors. In the program 
developed by the authors, the concrete slab was divided into several layers and each 
layer modelled as a quadrilateral membrane element called RQUAD4. And the top and 
bottom flanges and the web of the steel beam were each modelled as an improved 

discrete Kirchhoff quadrilateral plate bending element called IDKQ. The reinforcement 

in the slab was smeared and also modelled as an IDKQ element. A combined element 

was formed by combining the concrete layers, the smeared steel layer and the top flange 

layer. Each shear connector was modelled as a specialized bar element with three 

translational degrees of freedom at each end. The stiffness of the shear stud element was 

obtained from an empirical load-slip relationship: 

F=a (1 -ebA) 

Where F= shear force in a given direction acting on the connector; %= slip in the 

direction of F; a and b= experimental constants, depending on the connector geometry 

and strength as well as the surrounding concrete strength; and e= base of natural 
logarithm. The shear connector element was capable of modelling of full, partial, and no 
interaction at the interface of the concrete and the steel beam. 

6.1.6 Wright, 1990 

A series of full-scale beam tests were carried out to investigate the behaviour of 

composite beams with discrete flexible connection. The folded plate method of Kristek 

& Studnicka (1982) was used to simulate the composite beams. In Kristek & 
Studnicka's (1982) method, the concrete slab and the steel beam were modelled as plates 
and jointed by `dummy' elements. By adjusting the material properties of the dummy 
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element, the shear stiffness may be simulated. This method is suitable for linear shear 

connection. Wright (1990) extended the folded plate method to account for discrete non- 
linear connection by disconnecting the dummy element from the beam, and introduced 

longitudinal forces along the surface to represent the stud connections. By adjusting the 

forces, it is possible to match the load-slip relationship found from push-off tests. As 

each stud load and resulting slip is applied individually to the analysis, non-linear effects 

are automatically included. 

6.1.7 Oven et al., 1997 

In composite construction, composite action is achieved by means of shear connection, 

typically in the form of headed studs welded to the steel flange and embedded in the 

concrete slab. The design capacity of composite beams is based on the assumption of 
full interaction, and the number of shear connectors required to achieve this can be 

calculated. However it is not always practical to accommodate this number of studs, 

particularly when profiled decking is used as part of a composite slab. The connectors 

can only be fitted at the profiled troughs, and this limits the spacing of studs. Under 

these circumstances modified calculation methods must be used to take into account the 

partial interaction that develops. Thus the advantages of composite interaction can be 

realised, but in a reduced manner. Oven et al. (1997) proposed an analytical model for 

investigating the behaviour of such composite beams. 

The model is based on a two-dimensional non-linear finite element analysis program 
INSTAF, developed originally for steel frames. And it is extended to include the 

reinforced concrete slab and the slip at its interface with the steel in composite 

construction. The steel I-section is modelled by line elements with four degrees of 
freedom at each node, namely the axial displacement, axial strain, vertical displacement 

and rotation. The program considers material non-linearity of the steel, geometrical non- 
linearity due to large displacements, and a non-linear strain-displacement relationship. In 

the proposed model the additional effects of material non-linearity in the concrete and 
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shear connectors, and the effect of slip on large displacements are also incorporated. The 

concrete slab and slip at the interface are taken into account by introducing two parallel 
line elements representing the beam and slab. The model includes two additional degrees 

of freedom, allowing the concrete and steel to have independent axial displacements and 

strains. In the case of partial interaction the axial deformations of the slab and the bean 

are different and two line elements representing these two components are used, with 

axes positioned at the centroids of the concrete slab and steel I-section. The assumptions 

made by the author are: 

" The distributions of axial strain in the concrete slab and the steel I-section are 

assumed to be linear but different from one another; 

" The shear connectors are assumed to be act as a continuous shearing medium along 

the length of the beam, between the concrete slab and steel I-section; 

" The vertical displacement, rotation and curvature of the concrete slab and the steel I- 

section are identical at the end of an element. 
Nonlinear stress-strain relationship of steel and concrete is used. And a tri-linear stress- 

strain relationship is adopted for shear connectors. 

In order to define the transformed section the composite cross-section is divided into 11 

segments. The variation in strain is assumed to be linear across each segment. The width 

of each region is modified by multiplying by the current tangent modulus divided by the 

initial elastic modulus. Once the transformed thickness of each region has been 

determined, the first and second moments of area of the total cross section can easily be 

calculated. 

In order to validate the program, some comparisons were made with test results 

published previously for composite beams with partial interaction. Both simple 

supported and continuous beam were included in the validation. The comparison shows 
that the analysis gives consistent results. It is reported that the analysis appears to predict 
the deflection and slip behaviour at various load levels quite well. The program is 
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believed to be very effective in predicting slip behaviour, and could lead to more 

economical design of composite beams with partial interaction. 

6.1.8 Salari, et a1., 1998 

In a steel-concrete composite beam, the strength and stiffness of a composite section 

depend on the degree of composite action between the steel and concrete components. 

The degree of composite action is related to the geometrical and mechanical properties 

of the shear connectors. Therefore in a realistic analytical model the actual strength and 

stiffness of the mechanical connectors must be accounted for. Based on previous 

research, a force-based composite beam element was proposed for the analysis of 

composite beams under small displacements. This element is believed to be more 

accurate and computational efficient than previous approaches by modelling the internal 

forces in a more precise and consistence manner. In order to establish the element, the 

basic equations that govern the behaviour of a composite beam with deformable shear 

connectors are derived. The equations are then used to develop a composite beam 

element in a force-based finite-element framework. The element consists of two beam 

components, i. e., the concrete and the steel beam, and an interface. The interface model 

represents the shear connectors because it is accepted that a distributed interface with 

equivalent strength and stiffness properties can be used to simplify the discrete 

distribution of shear connectors. The interface shear in the force-based element is 

approximated with a cubic polynomial. The proposed composite beam model by Salari, 

et al. (1998) is illustrated in Figure 6.1. 

Beam component I (concrete slab) 

Bcam component 2 (steel beam) 

Figure 6.1 Proposed composite beam model by Salari, et al. (1998) 
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6.1.9 Wang, Y. C., 1998 

As we know, it may not always be possible or necessary to design a composite beam 

with full shear connection because the number of shear connectors may be too large to 

be accommodated in a composite beam especially when the profiled steel sheeting is 

used, and secondly the applied load could be safely sustained with less shear connectors 

than required by full shear connection. Therefore it is necessary to study the deflection 

of composite beams with partial shear connection. A number of design equations have 

been available for calculating the maximum deflection of a composite beam with partial 

shear connection in design codes, i. e., BS 5950 Part 3, Eurocode 4 Part 1.1, and the 

American Institute of Steel Construction (AISC) design guidance (1993). By studying 

the relationship between the composite beam deflection and the stiffness of shear 

connectors, Wang (1998) proposed a new simple method for calculating the maximum 
deflection of composite beams with partial shear connection based on existing solutions. 

In the study, the analytical solution for a simple supported beam with uniformly 
distributed load was used, and the following assumptions were made: 

" Shear connection stiffness is uniform along the length of the composite beam 

" The curvature and vertical deflection of both the steel and concrete components 

are the same as those of the beam 

" The beam behaviour is linear elastic 

" Deflection is small and shear deformation in the steel and concrete components 
is neglected 

" Only shear connectors provide composite action between the steel and concrete 
components 

An equation relating to the stiffness of shear connectors for calculating the deflection of 
composite beams with partial shear connection was obtained. It is noted that the 
proposed equation can be used for composite beams with other types of loading and 
boundary conditions. 
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For the validation of the proposed method, a finite element analysis is used. In the finite 

element modelling, a composite beam is divided into a number of line elements. Four 

degrees of freedom are assigned to each node. They are the axial displacement of the 

steel component (US), the axial displacement of the concrete component (U"), the 

vertical deflection (V), and the rotation of the beam (0). This finite element analysis 

beam model is shown in Figure 6.2. The two axial displacements at each node are 

related via the shear connector stiffness. For composite beams under various loading 

conditions and support conditions with shear connector stiffness ranging from providing 

no shear interaction to nearly complete shear interaction, the differences between the 

finite element predictions and the proposed equations are reported to be less than 5%. 

Comparisons are also made among a few available tests, design codes, and the proposed 

equations. The proposed method is reported to be effective. 

node 

Division of beam 

Composite beam section 

Figure 6.2 Finite element composite beam model used by Wang (1998) 

6.1.10 Kim, 1999 

Kim (1999) studied a continuous stem girder system comprising two cantilevers and a 
interspan composite beam. Experimental work and finite element analysis method were 

130 



employed in the study. For the finite element analysis, the push-out specimen was 

simulated. And then the whole beam system was analysed. The LUSAS program was 

used for the analysis. 

" Push-out specimen 

The push-out specimen was modelled by 2-dimensional finite elements. The steel beam, 

concrete slab and studs were modelled as plane stress elements, and the profiled steel 

sheeting as bar elements. The stud was assumed as a rectangular section. The properties 

of the circular stud section were transferred to an equivalent rectangular cross-section. 

The analysis shows that the load-slip curve is little changed if the profiled steel sheeting 

is neglected. Comparing the load-slip curves from test and analysis, it can be seen that 

the 2D modelling was not completely successful. A 3D linear elastic modelling of the 

push-out specimen was then preformed, in which the steel beam and the profiled 

sheeting were modelled as shell elements, the studs as beam elements, and the concrete 

as volume elements. The 3D analysis showed a' better agreement to the test curve 

especially in the early stage of loading. The author believed that a 3D non-linear analysis 

might give a good agreement to the test curve. But it could not be realized because of the 

limitation of 3D elements of the LUSAS program and the time taken for the analysis. 

" The continuous stem girder system 

Kim (1999) performed linear-elastic two-dimensional finite element analysis of the 

continuous stem girder system. The steel beam and concrete slab were represented by 

beam elements at their mid-surface and connected by `rigid links'. The profiled steel 

sheeting and the concrete in troughs were not taken into account. The rigid links were 

connected together using joint elements at the location of the top flange of the steel 
beam. The joint elements represented the shear studs, and the elastic connection stiffness 
from push-out tests was given the joint stiffness. Two beams were analysed and it was 
believed that the model was `reasonably correct'. 
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6.1.11 Sebastian & McConnel, 2000 

Sebastian & McConnel (2000) developed an advanced nonlinear finite element program 
for the analysis of general composite structures of steel and reinforced concrete. For 

composite beams, a four-noded layered thin-plate bending-membrane (2D) element was 

used to model the concrete slab, with nodes located at the base of the slab to enable 

connection of shear stud element. A two-noded layered bending-membrane (1D) 

element was used to model the steel beam, with nodes located along the concrete slab- 

steel beam juncture line. Each shear connector was modelled by a novel concrete slab- 

steel beam interface (stub) element of zero length consisting of axial and rotation 

springs. The stiffness of the axial springs was determined by an empirical shear force- 

slip relationship, and partial shear interaction was enabled. The stiffness of the vertical 

springs and rotational springs was assumed as ̀ very high'. The composite beam model is 

shown in Figure 6.3. 
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Figure 6.3 composite beam model of Sebastian & McConnel (2000) 
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6.1.12 Summary of literature review 

In reviewing previous finite element analysis of composite beams, it can be found that 

the finite element method is an effective and economical way to analysis composite 
beams. Both three-dimensional and two-dimensional models may be used in the 

analysis. 3D analysis generally achieved more accurate results than 2D analysis. 2D 

analysis, on the other hand, is much simpler and acceptable accuracy may be achieved if 

the elements are properly designed. Nonlinear analysis must be included if a 

satisfactory analytical model is expected. With the development of finite element 

techniques and modem computer technology, the cost of nonlinear analysis has been 

greatly reduced. In a composite beam model, the modelling of shear connectors plays a 
key role. Various shear connector elements have been suggested by different 

researchers. The stiffness of shear connector elements is either determined from test 

load-slip curves or simulated by empirical load-slip curves. By incorporating shear 

connector elements, the behaviour of composite beams with different degrees of shear 

connection can be analysed. 

In this chapter, a very simple composite beam model is proposed by incorporating the 

proposed composite joint model reported in Chapter 5. The elements of the beam model 

are all selected from LUSAS program, therefore no extra programming is needed. The 

proposed model is capable of analyzing composite beams with different degrees of shear 

connection, various loading conditions, and different types of joint support conditions. 

6.2 Proposed model of composite beams 

Since the composite joint model has been proposed, the idea is consequently used and 

extended to the modelling of composite beams. For a composite beam, the concrete slab, 

steel beam and shear connectors are modelled. For composite beams with semirigid joint 

connections, the composite joints are also modelled according to the proposed joint 

model of Chapter 5. When profiled steel sheeting is used in a composite beam, the steel 
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profile sheeting and the concrete in each trough are omitted. Also the reinforcement in 

concrete slab is neglected as well. The selection of elements is based on the element 

library of the LUSAS program. The proposed composite beam model is illustrated in 

Figure 6.4. 

In the proposed model each component of the composite beam is described as the 

following 

" Steel beam 

The steel beam is modelled as conventional beam elements in line with the 

geometric centre of the steel beam cross-section. For elasto-plastic analysis, 
idealized elastic-perfect plastic of bi-linear stress-strain relationship is assumed for 

steel beam elements. 

p4 

I- 

semirigid joint 

composite beam model 

Figure 6.4 Proposed composite beam model 
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" Concrete slab 
The concrete slab is modelled as nonlinear cross-section elements in line with the 

center of the main reinforcing bars. Normally, the concrete slab elements should be 

placed at the geometric centre of the cross-section neglecting the troughs. For 

simple supported beam, where joint moments are assumed zero, this method 

should be adopted. For beams with semirigid joints, where the proposed joint 

model is incorporated, an eccentricity would occur if the concrete slab elements 

are placed at its geometric centre of the cross-section. To avoid this eccentricity, 

the centre of the concrete slab elements is shifted up to coincide with the centre of 

the rebar elements. Trial analysis on simple supported beams has shown that very 
little difference is observed because of the shift of the concrete slab elements, since 

the eccentricity is usually small (within 5cm) compared to the overall depth of the 

composite cross-section. 

" Shear connectors 
The shear connector model derived for the composite joint model is used in the 
beam model. The length of the shear stud elements is taken as the after weld length 

of the shear studs. They provide vertical links between concrete slab elements and 
rigid link elements 

" Rigid links 

Vertical beam elements are placed between the shear stud and steel beam elements. 
They have very high stiffness, i. e., EIu, k=103Esteel . The geometric properties are 

assumed to be the same as the steel beam elements. The high stiffness is to ensure 
little energy loss in force transfer between the shear studs and the steel beam. 

" Composite beam-to-column joints 

For beams with semirigid joints, the proposed composite joint model of Chapter 5 
is used. The equivalent lever arm (Deq) is calculated according to the geometric 
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and material properties of the joint. Since the equivalent lever arm (Deq) is always 

greater than the `transformed beam depth' (Dr) (Figure 6.4), an eccentricity will 

occur between the centres of the steel beam elements to the beam element in line 

with the compression center of the joint. A slanted ̀ passing' steel beam element is 

therefore needed to complete the beam model. It should be noted that more 
`passing' elements are need to avoid sudden change of beam element center if the 

eccentricity is too large. For simple supported beams, there is no need to calculate 
the equivalent lever arm (Deq) because the joint moment is zero. And the 

transformed beam depth (Di) is used along the whole beam span. 

6.3 Validation of the proposed composite beam model 

Firstly two composite beam examples from `Steel Designer's Manual' (Owens et al., 
1994) are analysed: a simple supported beam, and a two-span continuous beam with 

same beam design data. This is to compare the FEM analytical results with the design 

code, i. e., BS5950, Part 3 (1990). Secondly, the composite beam model is used to 

analyse four composite beams with different degrees of shear connections. And the 

results are compared with the beam tests (Wright, 1989). Lastly a continuous beam with 

a cantilever beam is analysed, and the results are compared with the test by Rakib 
(1991). 

6.3.1 Beam model vs. BS5950, Part 3 

Two composite beam design examples can be found in `Steel Designer's Manual' 
(Owens et al., 1994). One is a simple supported beam, and the other is a two-span 

continuous beam with same beam design data. They are designed according to present 
composite beam design code - BS5950, Part 3 (1990). Both beams are modelled and 
analysed in LUSAS. The mid-span or maximum deflections under imposed loading and 
the natural frequencies are obtained through the analysis. 
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6.3.1.1 Modelling of 12m-span simple support composite beam 

This is a 12-meter-span composite beam with a total imposed loading of 18kN/m. The 

composite slab is 130mm deep with the profile height of 50mm. The effective breadth of 

concrete slab is taken as 3m. The trough spacing and average width are 300mm and 

150mm, respectively. The cube strength of concrete f, � is 30N/mm2, and the density of 

the lightweight concrete is taken as 1800kg/cm3. For the steel beam a UB457x191x67 

grade 50 (py=300N/mm2) is chosen. Shear connectors are 19mm diameter and 95mm as- 

welded length. Two shear connectors are placed per trough providing the 0.76 degree of 

shear connection. The modelling of this composite beam is shown in Figure 6.5. 
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Figure 6.5 12m-span simple support composite beam model in LUSAS Modeller 
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In order to get the mid-span deflection, one extra pair of shear stud element and rigid 

link is placed at beam mid-span in the model. This will not affect the analytical results 

and the degree of shear connection of the composite beam because the shear force at 

mid-span is zero under uniformly distributed loading, and hence no shear force is 

transferred through the shear studs at mid-span. At both supports since the joint 

moments are zero, there is no need to calculate the equivalent lever arm, and the depth 

of the beam model is the `transformed depth' (D1) throughout the beam. In order to 

exclude the extra self-weight caused by the rigid link elements, the mass density of these 

elements is set zero when performing the eigenvalue analysis. Through the model 

analysis the mid-span deflection and natural frequency of the beam are obtained. And 

they are shown in Table 6.1. 

Table 6.1 Analytical results of 12m-span simple support composite beam 

Mid-span deflection (mm) Natural frequency (Hz) 

Owens et al., 1994 31.3 4.91 

Beam model 28.8 5.95 

From Table 6.1, it is can be seen that the prediction of the mid-span deflection is 

satisfactory with the error of 8% between the model analysis and BS5950. For the 

prediction of the natural frequency, the proposed model produced 21% higher value than 

the empirical method used by Owens et al. (1994). It should be noted that in computer 

program the lump mass method is used when calculating the natural frequencies of 

structures, in which the mass of the element is lumped at the nodes. This lump mass 

method has been generally accepted in the dynamic analysis of multi-freedom structures, 

and great accuracy may be obtained if enough elements are used in the finite element 

model. In Steel Designer's Manual, an simplified equation was used to predict the 

natural frequency of the beam. 
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TI. 
(6.1) 

where f is the natural frequency, and SS,., is the deflection of composite beam subjected to 

instantaneously applied self weight. The instantaneously applied self weight includes the 

self weight of slab and beam, 10% imposed load, and ceiling load but excluding 

partitions. This empirical method is conservative and underestimates the natural 
frequency of the composite beam compared to the finite element analysis. 

6.3.1.2 Modelling of two-12m-span continuous composite beam 

The same design data is used as the simple support beam except that the effective 

breadth of the concrete slab is reduced to 2.1m and a smaller size (UB406x178x60) is 

chosen for the steel beam. The degree of shear connection is 0.86. In the reference 40% 

support moment redistribution is assumed when calculating the beam deflection. The 

natural frequency is calculated as if it were a 12m-span simple support beam. 

The modelling of this continuous beam is shown in Figure 6.6. At both end supports the 

proposed joint model is not applicable because the joint moments are zero. As with the 

simply supported beam in Figure 6.5, the beam depth at both end supports is taken as the 

`transformed depth' (D1). At the middle support, however, a certain degree of continuity 
is maintained by the steel connections and the reinforcement over the support. The depth 

of the beam model at the middle support should be determined in accordance with the 
joint moment capacity. The proposed joint model is used at the middle support, and the 

depth of the joint is taken as the calculated equivalent lever arm Deq. As with the simply 

supported beam, zero mass density is assigned to the rigid link elements in Eigenvalue 

analysis. Through the LUSAS analysis, the mid-span deflection, the natural frequency, 

and the negative moment at the mid-support are obtained. They are listed in Table 6.2. 
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From Table 6.2, it can be seen that the mid-span deflection of the continuous beam from 

the model analysis is 21% lower than the result of Owens et al. (1994), while the 

predicted joint moment is 17% higher than that of Owens et al. In `Steel Designer's 

Manual', the mid-span deflection is calculated by assuming that 40% of the maximum 

theoretical negative moment (wL2/8) is carried out by the joint. Through the model 

analysis, the actual negative moment undertaken by the joint can be obtained, which is 

equivalent to 47% of the maximum theoretical support moment. Since the value of the 

negative moment has significant effect on the prediction of the mid-span deflection, 

there is no doubt that beams with higher joint moments will result in smaller mid-span 
deflections, and vice versa. 
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Table 6.2 Analytical results of the two span continuous composite beam 

Mid-span deflection 

(mm) 

Natural frequency 

(Hz) 

Negative moment 
(kNm) 

Owens et al., 1994 25.2 4.1 136 (40%) 

Beam model 19.9 5.22 159 (47%) 

For the natural frequency of the continuous beam, the proposed beam model produced a 

higher value than Owens et al. (1994). In `Steel Designer's Manual', the natural 

frequency is also calculated by equation (6.1), but assuming the continuous beam as a 

simple support beam. This method will underestimate the natural frequency because the 

stiffness of the simple beam is less than the continuous beam. The finite element method 

is believed to be more accurate. 

To conclude, good agreement is obtained for the prediction of the mid-span deflection of 

the simple supported beam between the proposed beam model and BS5950, Part 3 

(1990). For the continuous beam, since the `real' negative moment carried by the joint 

can be obtained from the beam model, the prediction of the deflection of the continuous 

beam is believed to be more accurate. The empirical equation (6.1) is coarse in 

predicting the natural frequencies of composite beams, while the finite element analysis 
is effective and accurate. 

6.3.2 Beam model vs. continuous composite beam tests of Rakib 

Two full-scale continuous composite beam tests were reported by Rakib (1991) to 
investigate the behaviour of composite beams with semi-rigid connections. The beams 

were designed to have one full span of 8m with a loaded cantilever of 2.5m. The 
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supporting columns were two 875mm high universal columns bolted on the strong floor 

of the laboratory. In order to observe the semi-rigid joint behaviour, two types of joint 

connection were used in the test. A web cleat connection was used in the first continuous 
beam (named as Beaml) and a flush end-plate connection for the second one (named as 
Beam2). Concrete slabs with profiled steel sheeting were used and the troughs are 

perpendicular to the main span. Fourteen stud shear connectors were used for the main 

span and five studs were used for the cantilever beam. The stud spacing was 600mm. 

For both beams a theoretical shear connection of 50% was provided. Five point loads 

were applied to the continuous beam. One was applied at the end of the cantilever beam, 

and four equal loads were applied on the main beam at a spacing of 2m. The main 
design data of the two beams are as follows: 

Concrete slab 

Total slab breadth 2.5m, effective slab width 1.6m, slab depth 110mm, trough depth 

50mm and trough spacing 300mm 

Shear connectors 
19mm diameter and 95mm after welding, 7 studs at half span providing an actual degree 

of shear connection of 0.47. 

Steel beam and Supporting column 
Beam UB 305 x 102 x 33 grade 43; column UC 305 x 305 x 97 grade 43. 

Main reinforcement 

16mm diameter high tensile steel bars were used. The average yield stress was 
538N/mm2, the ultimate stress was 699N/mm2, and the average Young's modulus is 

203kN/mm2. 

The material properties of the test specimen are shown in Table 6.3. 
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Table 6.3 Material properties of steel beams and concrete slab 

Steel beam fy (N/mm) E (kN/mm) Total No. of studs 

1 272 206 19 

2 276 206 19 

Composite 
(N/mm 2 f) E, (d/mm 2 ) f (N/mm 2 ) 

Reinforcement 

beam ratio at support 

1 33.0 20.0 2.2 0.15% 

2 40.0 21.8 2.85 1.0% 
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Figure 6.7 Continuous composite beam model of Rakib (1991) in LUSAS Modeller 
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" Modelling and analysis of Rakib's continuous beams 

According to the provided design data these two continuous beams are modelled using 

the proposed composite beam model and analysed using the LUSAS program. The 

continuous beam model formed by LUSAS is shown in Figure 6.7. The steel beam is 

modelled as normal beam elements with elastic-perfect plastic stress-strain relationship. 
The concrete slab is modelled as nonlinear cross section elements with elastic-perfect 

plastic stress-strain relationship as well. The proposed stud element is used to model the 

shear studs. High stiffness rigid links are provided between the stud elements and the 

steel beam elements. In the joint areas bar elements are used to model the main 

reinforcement. Bi-linear stress-strain relationship is assumed to the bar elements 

according to the material properties. The geometries of the two beams are identical 

except that the beam depths at the supports are different. The beam depth at the support 
is determined by the steel joint configuration and the amount of slab reinforcement over 

the support. In the beam model it is taken as the equivalent lever arm of the 

reinforcement. For Beaml, the web cleat connection is regarded as pinned, the moment 

of resistance of the steel connection is consequently neglected. The equivalent lever arm 

of the reinforcement is therefore taken as the distance from the center of the 

reinforcement to the center of the bottom flange, i. e., Deq = 402.3mm. For Beam2, the 

moment of resistance of the flush endplate connection must be calculated and from 

equation (5.8) the equivalent lever arm of the reinforcement is calculated as 562mm. The 

supporting columns within the beam depth are modelled as normal beam elements. Since 

the deformations of the columns were very limited during the tests, the supporting 

columns below the beam bottom flange are omitted to simplify the model and 

represented by support conditions of the beam model as shown in Figure 6.7. The beam 

model is loaded at four points within the main span and at the end of the cantilever beam 

according to the test arrangement. 

Through model analysis, the mid-span deflections of the main span through the whole 
loading history are obtained. In Figure 6.8 the curves of the mid-span deflection versus 
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the total point loads are shown for both Beam! and Beam2. The following is the 

observations of the model analysis from Figure 6.8. 

" The load-deflection curves from beam model analysis are almost bi-linear. This 

is probably because of the assumed bi-linear or elastic-perfect plastic stress- 

strain relationships of the materials. 

" The mid-span deflection of Beam2 is less than Beamlat the same load level. This 

is because the main reinforcement in the slab of Beam2 over the support is 

significantly increased compared to Beaml. Secondly, the steel joint is replaced 
from the web cleat connection of Beaml to the flush endplate connection for 

Beam2. These two factors lead to the increase of the moment of resistance and 

the initial stiffness of the composite joint, and the deflection of the beam is 

consequently reduced. 

" Beam2 model failed at a higher load level that Beaml model. The reason for this 
is that the joint moment of resistance of Beam2 is higher than that of Beaml. 

" The maximum deflections are close for Beaml and Beam2. As load increases, 

the plastic hinges first appear at joint areas. As further increase of load will only 
increase the stress and strain of the beam span. As soon as the plastic hinge is 

formed at mid-span area, the beam will collapse. The deformation capacity of the 

composite beam is mainly determined by the beam span regardless of joint 

conditions. Because Beaml and Beam2 are identical except that the joints are 
different, the maximum deflections of the two beams should be close when the 
beams fail. 

From the analysis, it can be seen that the proposed model is capable of modelling 

such beams and the influence of slab reinforcement and steel joint conditions is 

satisfactorily captured. 
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Figure 6.8 Mid-span deflection curves of Rakib (1991) composite beams 

6.3.3 Beam model vs. composite beam tests of Wright 

Four tests of simply supported composite beams with profiled steel sheeting were 

reported by Wright (1989). The beam span was 8m and welded stud shear connectors 

were used. In order to investigate the behaviour of composite beams with lower degrees 

of shear connection, the number of shear studs at half span was designed as 7,4,5 and 3, 

corresponding to the theoretical degrees of shear connection of 50%, 30%, 40% and 

20%. Two types of simple support were designed: idealized roller support and 

conventional web cleat connection. The test specimens were supported by two short 

columns bolted on the strong floor of the laboratory. Four equal and symmetrical point 

loads were applied to the beams at a spacing of 2m. Dynamic tests were also performed 

on both support conditions, and the basic frequencies were obtained. These four beams 

were named BEAM 1, BEAM 2, BEAM 3, and BEAM 4. The design parameters of the 

four beams are as the following: 
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Concrete slab: Lightweight concrete with profile sheeting, 8m long, 2.5m wide, 

D. = 115mm, DP = 50mm 

Steel beam: UB 305 X 102 x 33 

Shear stud: 19mm diameter, 95mm after welding 

Table 6.4 Material properties of composite beams of Wright (1989): 

f- N/mm2; E- kN/mm2 BEAM I BEAM2 BEAM3 BEAM4 

fy 297.5 281 312.5 317 

Steel beam f� 445 - - - 
Es 205.5 204 198 200.8 

Concrete 
fcu 40.5 45 39.8 39 

slab 
fcu, 4.05 3.96 3.2 2.69 

E, 24.3 22 20.3 24 

fy 386.5 386.5 36105 385.5 

Steel mesh fu, 491 491 530 490 

E 203 203 197.5 201 

Shear stud f� 450 450 450 450 

The main objective of the modelling of this group of composite beams is to evaluate the 

capability of the proposed beam model on composite beams with partial shear 

connection. The models of the four beams are established according the proposed 

procedure and the geometric and material properties of the beams provided by the test 

specimens. Since each stud (or a pair of studs if two studs are present within one trough) 

is modelled by a stud element, the degree of shear connection of the beam model is 

determined by the number of the stud elements. In the beam models, the number and 

position of the stud element comply with the studs in the composite beam specimens. 

Another objective of the modelling of this group of composite beams is to evaluate the 

dynamic analysis of the proposed model. 
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The beam model is loaded under the combination of self-weight and imposed loading. 

The self-weight is input as a uniformly distributed loading. The concrete slab, troughs, 

steel sheeting, and steel beam are included in the self-weight calculation. The weights of 

shear studs and rigid links are neglected. The imposed loading is four concentrated loads 

according to the tests. In the finite element analysis, the initial point load is set as 5kN, 

and the load increment is also 5kN for each load step. Simple supports are used for all 

the beams as the boundary conditions. The four beam models formed by LUSAS 

program are shown in Figure 6.8(a), (b), (c), (d). 

From the LUSAS analysis, the relationship between the mid-span deflection and the 

imposed loading at one point can be obtained. In order to compare the results with the 

tests, the four imposed point loads are transformed to the uniformly distributed surface 
loading over the whole concrete slab. The relationships between the mid-span deflection 

and the transformed imposed surface loading of the four beams are shown in Figures 

6.9a, b, c, d. 
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Figure 6.8 Composite beam models of Wright (1989) beams 
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BEAM 3 Imposed load v. Mid-span deflection 
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From Figures 6.9a, b, c, d, it can be seen that the predicted imposed load-mid-span 

deflection curves agree well with test curves although the predicted curves are nearly 
linear compared to the test curves. The linear relationship between the imposed loading 

and the mid-span deflection from the beam model analysis is mainly because of the 

assumed bi-linear or elastic perfect-plastic stress-strain relationship of the materials. The 

beam model therefore yields at a higher load level compared to the tests. It follows that 

if the predicted mid-span deflections are close to the tests at lower levels of imposed 

loading, it is quite possible that the beam model would under estimate the deflections of 
the composite beam at high load levels. 

To investigate the beam model in the modelling of composite beams with different 

degrees of shear connection, the predicted mid-span deflections at different levels of 

surface loads are studied. From Table 6.5, it can be seen that at the same load level, the 

mid-span deflection increases with the decrease of the degree of shear connection. It 

proves that the beam model is capable of modelling beams with different degrees of 

shear connection. 

Table 6.5 Mid-span deflections at different load levels (mm) 
Surface load 

(kN/m2) 
1 2 3 4 

BEAM1(K=0.5) 3.48 6.97 10.44 13.93 

BEAM3 (K=0.4) 3.63 7.26 10.88 14.52 

BEAM2 (K=0.3) 3.83 7.65 11.48 15.31 

BEAM4 (K=0.2) 4.07 8.14 12.21 19.29 
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Table 6.6 Frequencies of BEAM 1-BEAM 4 (Hz) 

Test Model 

BEAM 1 9.067 9.088 

BEAM 2 8.317 8.490 

BEAM 3 8.30 8.573 

BEAM 4 8.179 8.322 

Through the Eigenvalue analysis, the natural frequencies of the beams are easily 

obtained. As the program's default setting, the lump mass method is used in the 

Eigenvalue analysis. The mass of the rigid link elements is excluded. The predicted 

natural frequencies of the beams are listed in Table 6.6 along with the results from the 

tests. It can be seen that the predicted natural frequencies of the beams are very close to 

the test results. It is noticed that the predicted values are slightly higher than the tests. 

This is mostly because that the damping related to the mass and stiffness of the 

composite beam is neglected in the model analysis. It therefore may be concluded that 

the proposed model can accurately predict the natural frequencies of composite beams. 

Another advantage of the beam model in dynamic analysis is that the second mode 

frequency, even the third and higher mode frequencies can be easily obtained. As we 

know, the fundamental frequency is not always enough for the dynamic analysis of the 

structure. It is necessary to incorporate more mode shapes and frequencies to get better 

results of dynamic analysis. 

6.4 Conclusions 

In this chapter, the history of the modelling of composite beams is reviewed. Various 

beam models have been proposed for composite beams with different joint connections 

and beams with full or partial shear connections. But the available beam models are 

either too complicated for practical use or rely on data from composite joint tests. A 

simple composite beam model is therefore proposed. The proposed beam model is 

capable of analysing composite beams with different joint or support conditions, with 
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different degrees of shear connection, and with various loading conditions. The proposed 

beam model is validated against the current British Standard method and two groups of 

composite beam tests. The agreements are satisfactory. 

The following conclusions may be drawn from the analysis of composite beams using 

the proposed composite beam model. 

" The proposed model is simple to use and very little computer effort is needed. 

" Both elastic and plastic analysis of composite beams can be performed using the 

proposed model. 

" The behaviour of partial shear connection can be easily modelled. 

" The modelling of composite beams with different degrees of shear connection is 

successful. 

" The modelling of composite beams with semi-rigid joints is successful. 

" For the analysis of continuous composite beams, the actual negative moment of 

resistance can be obtained without a presumed redistribution of the negative 

moment at the supports. 

"A bi-linear relationship between the imposed loading and the mid-span 
deflection may be obtained from the beam model. The load level at yield is 

higher than the tests. 

" The proposed model can accurately predict the natural frequencies of composite 
beams. And higher mode frequencies can be easily obtained. 

" The empirical equation (6.1) is too coarse when it is used to predict the natural 
frequencies of composite beams. 
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Chapter 7 Modelling of composite frames with semi-rigid connections 

7.1 Introduction 

In conventional composite frame design, the composite beams are normally designed as 

simply supported beams between columns. There are no moments transferred to the 

columns through the beam-to-column connections. The connections are designed to 

transfer only the shear forces at beam ends. In semi-rigid construction, the beam-to- 

column connections are designed as semi-rigid or semi-continuous, which allow a 

certain amount of moment to be transferred to the columns. The benefits of semi-rigid 

construction are that the composite beam sizes maybe reduced which would lead to the 

savings on the overall construction costs. Secondly, the composite beams will provide 

additional lateral restraint to the columns, and hence increase the lateral stiffness of the 

structure. The slab steel also provides an excellent way to control the cracks on the 

concrete surfaces. It has been reported (Leon, 1990) that in braced frame construction, 

the semi-rigid composite system can be very economical if the design live loads exceed 

the dead loads by a factor of two or more. It can also be very advantageous in areas of 

moderate to high wind loads and low to moderate seismic loads. It is suggested that for 

unbraced frames such as those used for buildings stories should be limited to eight to 

ten, with the most economical range probably in the four to six-storey range. 

In this chapter three semi-rigid composite frames are analysed and the influence of semi- 

rigid joints on the overall performance of composite frames is discussed. 

Recommendations for the design of semi-rigid composite frames are proposed. 

7.1.1 Nethercot, 1995 

Nethercot (1995) discussed the basic requirements for the application of the principles of 
the semi-continuous approach in nonsway composite frame design. Take a symmetrical 
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two-span uniformly loaded continuous beam for example. The ratio of support moment 

to mid-span moment is 1.8, but the sagging moment capacity of the composite beam 

cross-section is always greater than the hogging moment capacity according to the usual 

stress block method. It follows that the sagging moment capacity of the composite 

section may never be utilized if beam is designed elastically. If the full sagging moment 

capacity is to be developed in the mid-span region, a plastic hinge must form at the 

support and further loading is accommodated by redistribution of moment from the 

support. The composite joint is, however, required to sustain sufficient rotation capacity. 
Thus a satisfactory and economic design of a semi-continuous composite beam is 

determined by the joint moment capacity, the beam sagging moment capacity and the 
joint rotation capacity. The quasi-plastic collapse mechanism in Figure 7.1 was 

recommended as favourable, and the quasi-plastic design method was therefore 

proposed by the author for non-sway composite frames. 

Through studying the moment redistribution of a single-span beam under different 

loading conditions, it is found that for the same level of beam loading weaker joints 

involve more rotation in order to redistribute greater proportions of moment into to the 

span. The rotations necessary to develop a required amount of moment redistribution 
increased remarkably once the load level was sufficient to cause yielding at midspan. So 

only in the case of higher level of available rotation capacity and stronger joints could 
the full sagging capacity of the cross-section be developed at midspan. However the 

author suggests that designing for 95% of M� would significantly reduce the demands on 
the end connections without much loss of actual load carrying capacity. 
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Figure 7.1 Quasi-plastic design method of Nethercot, 1995 
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Figure 7.2 General layout of the frame specimen of Li et al., 19961,19962 

7.1.2 Li et a1., 1996 

A full-scale test was reported on a two-span one bay two-storey composite frame (Figure 

7.2) and the implications for the design of composite frames was provided (Li et al., 

19961,19962). The main purpose of the frame tests was to investigate semi-rigid 

connection effects on overall frame behaviour. The three-dimensional frame was divided 

into two two-span plane frames, referred to as frame A and frame B. Frame A and frame 

B were loaded separately until failure. The moment diagrams of frame A and frame B 

showed that the rigid joint assumption largely overestimated the joint moments and 

158 



underestimated the span moments, while the pinned joint assumption significantly 

overestimated the span moments. By studying the connection behaviour, it was found 

that the joint moment capacities and rotational stiffness obtained from the frame test 

were smaller than those obtained from the isolated tests using identical specimens. By 

studying the beam deflections it was found that the mid-span deflections predicted by 

the design code method given in BS5950: Part 3.1 were systematically smaller than the 

test results. By examining the bottom flange strains it was found that the composite 
beams started to behave inelastically when the beam deflection was well within the 

serviceability limit specified by the code. By investigating the moment capacities of the 

beam sections, it was found that yield and ultimate moment capacities of composite 
beam predicted by BS5950: Part 3.1 were quite accurate. The quasi-plastic analysis gave 

the closest predictions of the joint moments compared to the test results. It was therefore 

recommended for the design of semi-rigid on-sway composite frames. 

7.1.3 Dissanayake et al., 1998,1999 

Dissanayake et al. (1998,1999) analysed five sub-frames from current UK commercial 

buildings, and one of them was selected for a case study. Twelve different sub-frame 

configurations were analysed by the computer programs developed by the authors. Two 

types of steel connections were used: seating cleat and flush end plate, featuring nominal 

pinned and semi-rigid connections, respectively. The reinforcement areas over the 

support were 0.2% and 1.0%. And three degrees of shear connection were assumed for 

composite beams, which were 49%, 86%, and 118%. For comparison, three simple 

support beams with the same degrees of shear connection were also analysed. 

Three finite elements were used in the program to simulate the composite frames, 

namely the steel column element, the partial interaction composite beam element and the 

composite joint element. Partial interaction between the steel beam and the concrete slab 
is simulated by treating the composite beam as two parallel beam elements, one for the 

steel beam and one for the concrete slab, connected through a continuous shear medium 
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representing shear connectors. The shear-slip modulus and the internal force per unit 

length required were calculated from the load-slip behaviour of the stud and averaged 

the shear force per stud over the inter-stud spacing. A tri-linear load-slip relationship 

was assumed. The composite connections were modelled as the proposed `macro- 

element' model (Dissanayake et al. (2000). 

By comparing the load capacities with the composite beams, it wass found that the 

failure load increased 15% to 17% for beams with 0.2% of reinforcement over the 

support and pinned steel connections. An increase of 22% to 24% was observed for 

beams with semi-rigid steel connections and the same reinforcement. The failure load 

increased 20% to 44% for beams with 1.0% of reinforcement and pinned steel 

connections. An increase of 29% to 49% was observed for beams with semi-rigid steel 

connections and the same reinforcement. By comparing the deflections under service 

state and imposed load only with the corresponding calculations according to design 

code BS5950 (1990), it was found that the beam deflections reduced significantly (up to 

51%) when the composite beams were considered as semi-continuous by adding a small 

amount of reinforcement over the supports. The reinforcement also increased the 

stiffness and the ductility of the composite connections. 

7.1.4 Fang et al., 1999 

Fang et al. (1999) proposed a single element per member method for geometric and 

material non-linear analysis of composite beams with semi-rigid connection. A 

composite beam model was established by assuming a deflection function of composite 
beams. The curvature of the beam could be obtained as the second derivative of the 

deflection. The stiffness matrix of a beam element could then be found. By using static 

condensation to eliminate the internal degrees of freedom, a simple beam element could 
be formed with the composite joints as the boundary conditions. 
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The semi-rigid beam-to-column joint was accounted for by approximating the moment- 

rotation curve of the composite joint as a simple exponential expression. The parameters 

of the expression could be obtained from steel joint test data or theoretical formula. For 

composite joints under sagging moment, because of limited experimental data on the 

monotonic behaviour of joints under sagging moment, three exponential equations were 

assumed. The first model, termed as model A, used the same expression as the hogging 

bending; the second model `B' employed a lower ultimate moment of resistance; the 
third model ̀ C' was a simple linear model. 

7.1.5 Liew et al., 2001 

Liew et al. (2001) proposed a method for the inelastic analysis of the limit state 
behaviour of composite frames. The composite beam model was established by 

subdivided the beam along the length into a finite number of segments. The flexural 

stiffness of a segment was evaluated using the moment-curvature relationship of the 

composite beam section, which could approximately the partial interaction between the 

concrete slab and the steel beam. The static condensation method was then used to the 

segment model into a single beam-column element. The beam-to-column connections 

were supposed to be rigid. It is noticed that the moment-curvature relationships of all 

sections must be predetermined before a global analysis can be performed by using this 

approach. 

To validate the proposed model, the behaviour of a simple supported composite beam, a 
two-span composite beam was studied and the results showed good agreements with the 

corresponding tests. And a steel portal frame was analysed to verify the proposed 
inelastic analysis method, and the results were compared with different approaches. The 

proposed analytical model was then used to study the limit behaviour of composite 
frames. A steel portal frame with composite beams was investigated, followed by the 
analysis of a three-dimensional 20-storey composite frame. The study indicated that the 
load limit of steel frames while considering the composite beam effect was about 30% 

161 



higher than that of the pure steel beams, and the lateral stiffness could be significantly 

enhanced by considering the composite action. 

Although the economic and structural advantages of semi-rigid construction have been 

realized, the semi-rigid composite frame design is still not practical at present. A main 

reason is lack of a simple design approach to such complicated problems. In this chapter, 

a simple frame model is proposed in composite frame analysis. The proposed model is 

capable of analysing composite beams with semi-rigid connections. Three composite 
frames are modelled and results agree well with published papers. And finally design 

recommendations for composite frames are made. 

7.2 Proposed model of composite frames 

A composite frame is composed of three components: columns, composite beams, and 

composite beam-to-column connections. A successful composite frame model should be 

able to model these three components and predict the overall behaviour of the frame 

with acceptable accuracy. In order to acquire such a model, the behaviour of composite 
beam-to-column connections has been investigated and an effective analytical model has 

been proposed. A composite beam model has been proposed as well and has been 

validated for composite beam analysis. The type of column is normally a universal 

column section. Normal beam elements may be directly used to model the columns. For 

other types of column sections, such as columns formed by a universal column section 

encased by concrete, normal beam elements can also been used once the material 

properties are established. To clarify the frame model, each component model is 

described below: 

" Columns 

Columns are modelled as normal beam elements. Non-linear material properties are 
accommodated. 
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" Composite beam-to-column connections 

The previous proposed composite joint model is used, in which the reinforcement in the 

concrete slab is modelled as bar elements; the steel beam is modelled as beam elements; 

the shear studs are modelled as stud elements developed by the author; rigid links are 

provided between the steel beam and the stud elements. The equivalent lever arm is 

calculated according to the composite joint configuration by equation (6.8). 

" Composite beams 

A composite beam is composed of three components: the concrete slab, shear 

connectors, and the steel beam. The previous proposed composite beam model is used in 

frame analysis, in which the concrete slab is modelled as non-linear cross-section 

elements; the steel beam is modelled as beam elements; the shear studs are modelled as 

stud elements (developed by the author); and rigid links are provided between the steel 
beam and the stud elements. 

Composite beam--column connection Composite beam 

r----- ----- r-----------------ý I 
Concrete beam elements I Reinforcemen 

A 

Rigid links 

Steel beam elements 

AB = Deq 
Column 
elements 

Figure 7.3 Assembly of the proposed semi-rigid connection and composite beam model 
in a composite frame 

bar elements II Concrete beam elements 

Shear studfelements 

Rigid links 

i Steel beam elements 

B L---- 
----I L-----------------J 
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7.3 Validation of the proposed composite frame model 

Due to lack of available design details of composite frames, only three composite frames 

were found in the literature and were chosen for the validation of the proposed 

composite frame model from published papers. They are: a portal frame, a six-storey 

plane frame, and a twenty-storey space frame. These three composite frames are 

analysed and the results are compared with corresponding papers. Satisfactory 

agreements are obtained. 

7.3.1 Analysis of a steel portal frame with composite beam 

Firstly, a steel portal frame with composite beams is analysed by the proposed 

composite frame model. The same composite portal frame was used by Liew et al. 
(2001) to investigate the limit state behaviour composite frames. 

The portal frame consists a composite beam rigidly connected to two steel columns 

subjected to equal vertical and lateral loads. The geometry of the frame is shown in 

Figure 7.4. The frame is supported at both ends of the columns. The vertical and 
horizontal freedoms are restrained, but the rotational freedoms are free. The column 

section is W12 x 50. Other design parameters of the composite portal frame are: 

Concrete slab: Bi=1219mm, DS 102mm, Dp 0, the cylinder strength of concrete 

fc'=16N/mm2. 

Steel beam: D=304mm, Bf=165mm, t, ý=6.02mm, ti =10.16mm, fY 252.4N/mm2, 

E=2 x 1011N/mm2 

Shear connectors: Assuming 19 mm diameter, 100 mm nominal height shear studs are 

used providing a shear degree of 90%. 

The proposed analytical model of the portal frame generated by LUSAS 13 is shown in 

Figure 7.5. For the modelling of the portal frame, the steel columns are modelled as 
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nonlinear thick beam elements with four divisions. The steel beam is modelled as 

nonlinear thick beam elements. The concrete slab is modelled as nonlinear cross-section 

elements. The proposed shear stud model is used to model shear studs. The number of 

shear studs is 12 with the degree of shear connection of 90% according to BS5950, Part 

3(1990). The rigid links are modelled as nonlinear thick beam elements, but with a high 

stiffness by assigning the Young's modulus as 2x 1014N/m2 to ensure the transfer of 
forces between the shear connectors and the steel beam without seriously distortion of 
the original curvature of the composite beam. At both beam-to-column joints, bar 

elements are used to model the reinforcement bars. The length of the bar elements is 

determined from the first shear stud to the column center. Assuming that sufficient 

anchorage of the reinforcement bars is achieved outside the beam-to-column joint, and 
the steel beam-to-column connection is assumed to be pinned, the equivalent lever arm 

of the reinforcement bars is taken as the distance between the centre of the steel beam 

lower flange to the center of the reinforcement bars. For all elements, an elastic-perfect 
plastic stress-strain curve is assumed. In the analysis, the self-weight of the frame is 

neglected. 

P 

PI PI 

-ý 

0 h 
X 
N_ 

3 

0 h 
X 
N 

3 
E 
4A 

concrete slab: 1219 X 102 
T 

1 W12X27 

composite beam cross section 

1 Sm 1 

Figure 7.4 The portal frame from Liew et al. (2001) 
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In the analysis of Liew et al. (2001), the composite beam-to-column connections were 

assumed rigid. As we know the stiffness of a composite joint is determined by the steel 

joint configuration and the amount of reinforcement in the concrete slab over the 

support. In this analysis, the steel joint is assumed to be pinned. And the amount of the 

reinforcement is gradually increased from 0.1% to 0.5% of the effective concrete slab 

area. Thus the composite joints of the portal frame model would be semi-rigid rather 

than rigid. By changing the amount of reinforcement in the concrete slab, its influence 

on the lateral stiffness and the global behaviour of the portal frame can be studied. The 

curves of load (P) versus lateral displacement of the frame are illustrated in Figure 7.6. 

And the load limit of the composite portal frame is listed in Table 7.1. The load limit of 

pure steel frame is obtained from Liew et al. (2001). 
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In frame analysis, it is generally accepted that the amount of lateral displacement is 

closely related to the lateral stiffness of the frame. Frames with higher lateral stiffness 

will result in less lateral displacement, and vice versa. From Figure 7.5 it can be seen 

that with the increase of the reinforcement ratio, the lateral displacement of the portal 
frame decreased at the same load level. It follows that by increasing the reinforcement 

ratio, the initial stiffness and the lateral stiffness of the frame increased. Since we know 

from previous analysis of composite joints that the initial stiffness of composite joints 

will increase with the increase of the reinforcement ratio in the concrete slab, it follows 

that the initial stiffness and the lateral stiffness of composite frames will increase with 

the increase of the stiffness of composite joints. Consequently, by changing the amount 

of the slab reinforcement the lateral stiffness of composite frames can be adjusted. With 

the increase of the lateral stiffness, the load limit of the frame is also increased. This can 
be observed from both Table 7.1 and Figure 7.6. 

By studying the load-lateral displacement curves in Figure 7.6, it can be seen that semi- 

rigid behaviour will develop with only a very small amount of reinforcement. Both the 

lateral stiffness and the load limit increased significantly. Since the rigid composite joint 

is very difficult to achieve, it is therefore recommended that a semi-rigid joint should be 

adopted in composite frame design. The semi-rigid composite joint can be easily 

achieved by adding a very small amount of reinforcement in the slab over the support. 
Furthermore, the rigidity of the composite joint can be adjusted by the reinforcement 

ratio. 
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Figure 7.6 Load - lateral displacement curve of the portal frame 

Table 7.1 Load limit of the composite portal frame 

Reinforcement Liew et Steel 
0.1% 0.2% 0.3% 0.4% 0.5% 

ratio al., 2001 frame 

Load limit 
67 69.2 76.6 80.9 85.2 81.6 62.2 

(kN) 
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7.3.2 Analysis of a six-storey composite frame 

As reviewed earlier, Fang et al. (1999) proposed an analytical method for the nonlinear 

analysis of composite frames. A six-storey composite frame with semi-rigid joint 

connections was one of the examples being analysed. The same frame is investigated by 

the proposed frame model in order that the results can be compared with the method of 
Fang et al. (1999). The section properties and loading conditions of the frame is 

illustrated are Figure 7.7. The material properties are as follows: 

" Concrete design stress f, =30N/mm2 

" Concrete strain at design stress c =0.002 

" Young's modulus of steel ES 2.0 x 1011N/mm2 

" Yield stress of steel fy-400N/mm2 

The members of the frames are modelled in the same way as the previous composite 

portal frame. For the modelling of composite joints, it is assumed that the steel beam-to- 

column joint is pinned, i. e., the moment of resistance of the steel joint is zero. Two 

circumstances are considered: joints located at outside columns and joints located at the 

middle column. For joints located at the middle column, the equivalent lever arm of the 

reinforcement bars is taken as the distance from the center of the bottom flange of the 

steel beam to the centre of the rebars, and the proposed joint model is applied. For the 
joints located at outside columns, assuming the reinforcement bars are not sufficiently 

anchored and the full moment of resistance of the composite joint cannot achieve, the 

equivalent lever arm of the reinforcement bars is taken as the distance between the 

elastic neutral axis of the steel beam to the center of the rebars. Since the degree of shear 

connection is not stated in the analysis of Fang et al. (1999), full shear connection is 

assumed in the beam model. In order to study the influence of the joint characteristics to 

the overall response of the composite frame, four levels of slab reinforcement are used: 
0.15% (4T8), 0.34% (4T12), 0.61% (4T16), and 2%. The composite frame model 
generated by LUSAS 13 is shown in Figure 7.8. 
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Figure 7.8 Analytical model of six-storey composite frame from LUSAS 13 

II 

Through the model analysis, the lateral displacements of the composite are obtained. 

The curves of the load factor versus the lateral displacement of the frame are shown in 

Figure 7.9. The results of frames with joint model A, model B, model C, and rigid joint 

are also shown in Figure 798 for comparison. 

From Figure 7.9 it can be seen that the amount of slab reinforcement has significant 
influence on the overall behaviour of the composite frame. The observations are as the 

following: 

At the same load level the lateral displacement of the composite frame decreased 

with the increase of the reinforcement ratio. This is the same as the results 
analysed for the portal frame. It follows that the lateral stiffness of the composite 
frame increased with the increase of the reinforcement in the concrete slab. 
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Figure 7.9 Lateral displacement curves of the six-storey composite frame 

" By comparing the curve of rebar ratio 0.15% (4T8) to the curve of rebar ratio 
0.34% (4T12), it can be observed that only a slight increase of the rebars reduced 
the lateral displacement significantly when the load factor exceeds 0.8. 

" Continuing increase in the rebar ratio does not significantly reduce the lateral 
displacement, even when a very high rebar ratio (2%) is used. This is probably 
because that the lower flange of the steel beam in the joint area has yielded 
before the full strength of the rebar can be developed. 

" The composite frames with higher reinforcement (0.34% and above) survived 
until a very high load level was applied (load factor=2). 

" The lateral displacement curve of the frame with the rebar ratio of 0.15% is very 
close to the joint model B curve of Fang et al. (1999). 
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7.3.3 Analysis of a twenty-storey space frame with composite beams 

A twenty-storey space frame with composite beams was analysed by Liew et al. (2001) 

in addition to the composite portal frame discussed before. The plan view and the 

elevation view are illustrated in Figure 7.10. The dimensions and section properties of 

the frame can be found in Table 7.2 and Figure 7.9. For all steel sections, the yield stress 
is taken as 344.8 N/mm2 and the Young's modulus as 2x 105 N/mm2. The cylinder 

strength of concrete is taken as 27.3 N/mm2. Full shear connection is assumed for all 

composite beams. The frame is analysed for the combination of gravity load 4.8 kN/m2 

and wind load 0.96 kN/m2. A rigid floor diaphragm action is assumed in the global 

analysis. 

Table 7.2 Properties of composite beams in 20-storey frame (Liew, 2001) 

Be (mm) D. (mm) Dp (mm) Steel section 

BI 1829 127 0 W21 x 57 

B2 914 127 0 W16 x 36 

B3 17314 127 0 W12 x 26 

B4 1829 127 0 W12 x 26 
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In the assembly of the space frame model, the steel columns are modelled as normal 

beam elements. Composite beams are modelled as the proposed beam model, i. e., the 

concrete slab is modelled as nonlinear cross-section beam elements; the steel beam is 

modelled as normal beam elements; each shear stud is modelled as a stud element; and 

rigid links are provided between the stud elements and the steel beam elements. The 

number of shear studs is calculated on full shear connection condition. 

Before the composite beam-to-column connections are modelled, two assumptions are 

made, they are 

" Sufficient anchorage of slab reinforcement outside the columns is not achieved. 
This is possible because sufficient anchorage of slab reinforcement at such area 
is hard to achieve; and secondly the anchorage detail of slab reinforcement is not 

provided by the reference. 

" The steel beam-to-column connections are assumed to be pinned. The purpose 

of this assumption is to investigate the influence of the amount of slab 

reinforcement to the overall behaviour of the space frame. 

For joints located at outside columns, the joint model is established by taking the 

equivalent lever arm of the reinforcement bars as the distance between the center of the 

rebars to the elastic neutral axis of the steel beam. For continuous connections, the joint 

model is established by taking the equivalent lever arm of the reinforcement bars as the 

distance between the center of the rebars to the center of the steel beam lower flange. 

Three levels of reinforcement ratios over the connections are evaluated: 0.35%, 0.78% 

and 2%, representing low, medium and high reinforcement ratios, respectively. Since 

hardening parameters of the materials are not available, elastic-perfect plastic stress- 

strain relationship is assumed for all materials. The frame model in the LUSAS Modeller 

is shown in Figure 7.11. Figure 7.11(a) shows the global view of the frame model; and 
Figure 7.11(b) shows the top six storeys of the frame model. 
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Figure 7.11 Screen shots of the 20-storey composite frame model from LUSAS (a): 

whole model. 

The 20-storey space frame is analysed by increasing the load step at a load factor of 0.1. 

After yielding the load factor will automatically reduced until a convergence is reached. 

The iteration procedure stops when a failure mechanism is formed. The load limit ratios 

and the lateral displacements of the frame are obtained from the analysis. The 

displacements in the y-direction of two points, point A and B in Figure 7.10, at the top 

storey of the frame are studied. The load limit ratios obtained from the analysis are 

shown in Table 7.3. The top storey load-lateral displacement relationship at point A and 

point B is illustrated in Figure 7.12 and Figure 7.13. 
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Figure 7.11 Screen shots of the 20-storey composite frame model from LUSAS(b): top 

six levels 

Through studying the load limit of the space frame it can be seen that 

" The load limit increased with the increase of the reinforcement ratio. This is 

probably because that the lateral stiffness of the frame increased with the 
increase of the reinforcement ratio, hence the frame is capable of resisting higher 

lateral loads. 

" The predicted load limit of the composite frame is slightly lower than the 

prediction of Liew et al. (2001) even when the reinforcement ratio is as high as 
2%. There are two main reasons. Firstly, the composite joints are assumed to be 

rigid in the model of Liew et al. (2001). Secondly the advantages of strain 
hardening are neglected for all materials in the proposed model. 
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" The load limit increased significantly after the reinforcement ratio is changed 

from 0.35% to 0.88%. But very limited further increase of the load limit (1.6%) 

is observed even when the amount of slab reinforcement reached a high level of 
2%. This is probably because the moment of resistance of the composite joint is 

limited by the capacity of other joint components despite of the increase of the 

reinforcement. 

Table 7.3 Load limit ratio of the 20-storey composite frame 

Reinforcement Liew et al., 
0.35% 0.88% 2% 

ratio 2001 

Load limit 
1.16 1.23 1.25 1.338 

ratio 

0 0.005 0.01 0.015 0.02 0.025 
Drift ratio in Y-direction at point A 

Figure 7.12 Top storey drift ratio in Y-direction at point A 

0.03 

178 



1.4 

0 0.8 

M ö 0.6 

0.4 

1.2 

-4-- Rebar-0.35% 

-U- Rebar-0.88% 

-A- Rebar-2% 

-ý- Liew et al. 2001 

0.2 

0 0.005 0.01 0.015 0.02 0.025 

Drift ratio in Y-direction at point B 

Figure 7.13 Top storey drift ratio in Y-direction at point B 

Through studying the lateral displacements of the space frame it can be seen that 

" The lateral displacements of the frame reduced with the increase of the slab 

reinforcement. Again this because the overall stiffness of the frame increased. 

" The composite frame with a lower reinforcement ratio (0.35%) yield at a lower 

load factor (0.6), while the frame yields at the load factor of 0.8 when higher 

reinforcement ratios are present (0.88%, 2%). 

" The lateral displacements of the composite frame reduced significantly when a 

higher reinforcement ratio (0.88%) is used, compared to a low reinforcement 

ratio of 0.35%. 

" There is no significant reduction in the lateral displacements when the amount of 

slab reinforcement reached a certain level. 

" The predicted lateral displacements of Liew et al. (2001) are smaller than the 

proposed frame model. This is true because rigid composite joints are assumed in 

the analysis of Liew et al. (2001). 
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7.4 Conclusions 

An analytical model of composite frames is proposed. The frame model is established by 

incorporating the proposed composite joint and beam model, with the steel columns 

modelled as normal beam elements. To validate the proposed frame model, three 

composite frames are analysed: a composite portal frame, a six-storey composite frame, 

and a three-dimensional 20-storey composite frame. For all three frames, the amount of 

reinforcement in the concrete slab is varied to study the effect of the slab reinforcement 

on the overall performance of composite frames. And the following conclusions may be 

drawn from the composite frame analysis: 

" Composite frames can be explicitly modelled and analysed by the proposed 
frame model. No extra programming is needed to establish the model. 

" Since only line elements are used in the model, the total degrees of freedom of 

the composite frame model are greatly reduced. The proposed model is therefore 

very simple and computationally efficient. 

" The analytical results agree well to other published approaches. 

" The proposed model is effective in predicting the limit state behaviour of 

composite frames. 

" The lateral stiffness of a steel frame will increase significantly if the composite 
action is taken into account at a very low cost. 

" The amount of longitudinal reinforcement in the concrete slab at joint has great 
influence on the overall performance of composite frames. 

" Increase in the amount of slab reinforcement will result in increase of the overall 
stiffness of composite frames; increase the load limit; and reduce the lateral 
displacements. 

" Excessive slab reinforcement will make very little difference in the terms of the 
lateral stiffness and the load limit. The reinforcement ratio ranging from 0.6% to 
1% seems to be sufficient for a satisfactory semi-rigid design. 
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" For the semi-rigid design of composite frames, it is also suggested that at 

composite joint the amount of longitudinal reinforcement in the concrete slab 

should be no less than 0.35%. 

" Since the moment of resistance of composite joints is closely related to the slab 

reinforcement, the joint moments transformed to the columns can be easily 

controlled in order to comply the `strong column, weak beam' design principle. 

" Since the design of composite joints is non-symmetrical, the hysteric moment- 

rotation loops of composite joints are most likely non-symmetrical. For the 

analysis of composite frames, the behaviour of the composite joint model under 

sagging moment should be studied. 
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Chapter 8 Dynamic analysis of composite structures 

8.1 Introduction 

Since earthquakes occur frequently all year round over the globe and strong earthquakes 

can lead to great damage to modem society, it is necessary to investigate the nature of 

earthquakes and the dynamic response of structures, especially the earthquake resistance 

of structures. The importance of dynamic analysis lies in two points: firstly it can 

provide criteria to evaluate the capacity of existing structures under possible earthquake 
loading; and secondly it can provide design criteria for future structure design. In a 

word, the purpose of the research is to reduce the possible damage to the minimum 

through the optimal design method. 

Composite construction has been widely used in the North America and most European 

countries in the past three decades. But the earthquake resistance of such structures is 

still a research topic. The research on semi-rigid design has shown that structures with 

semi-rigid connections have many advantages over conventional rigid or pinned 

connection designs. But with the introduction of semi-rigid composite beam-to-column 

connections, the complexity of the research is greatly increased. Reports on frame 

damage, after the 1994 Northridge earthquake, show that most damage started as 

cracking in the bottom beam flange weld but no damage was reported in steel moment 
frames designed with bolted or riveted connections (Nakashima, et at., 2000). Does that 

mean that semi-rigid composite construction is a better alternative in seismic design than 

the conventional fully welded connection design? This question can only be answered 

when the many aspects of the seismic performance and design problems of semi-rigid 

composite structures are fully investigated. In this chapter recent research on the seismic 
behaviour of composite structures is reviewed. Efforts on the modelling and analysis of 

composite frames under earthquake loading are reported. Future research on dynamic 

analysis of composite structures is outlined. 

182 



8.2 Literature review 

Research on the dynamic analysis of composite structures started as soon as this type of 

construction was introduced to the industry. Due to the complexity of the composite 

joint and the response of the structures under dynamic loading, the research is still going 

on. Since a large number of failures were found in the fully welded connections after the 

1994 Northridge earthquake, researchers have realized the advantages of moment- 

resisting frames with semi-rigid beam-to-column connections in the effort to find an 

alternative for the conventional rigid connection design. In this section, recent research 

reports on the investigation of the dynamic behaviour of semi-rigid joints and composite 

structures are reviewed. 

8.2.1 Suarez, et al., 1996 

Suarez, et al. (1996) studied the dynamic and seismic response of steel frames with 
flexible beam-to-column connections. A beam element was proposed for finite element 

analysis, in which the flexible connections were represented by rotational springs with 
linear moment-rotation relationships. A ten-storey plane steel frame was used to study 
the effect of the connection flexibility on the dynamic properties and seismic response. It 

was reported that the connection flexibility had the most effect on the lowest frequency 

and the partition factors and mode shapes were also affected. Those effects were also 
reflected in the seismic response. It was observed that the displacement responses were 
increased by the inclusion of the joint flexibility. Although the structure was more 
flexible by considering the joint flexibilities, the shear force and bending moments in the 
lower storey were increased. The peak amplitude of the floor response spectrum for the 
top floor was reduced. The authors finally concluded that the size and the eccentricity of 
the connection did affect the dynamic characteristics and response, however, this effect 
was not observed to be very large. 
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8.2.2 Broderick & Elnashai, 1996 

In Eurocode 8a structural behaviour factor is introduced in seismic design. The 

behaviour factor is employed to reduce the seismic design loads to a level which allows 

the benefits offered by the energy dissipation capacity of each structure to be developed, 

while still ensuring that the imposed ductility demand does not exceed the available 

supply. It is assumed that the total response, including both elastic and plastic 
deformations, is no greater than that implied by a linear plastic analysis under the 

reduced loads. Since the behaviour factors of composite frames are not available, 
Eurocode 8 employs the same values as the design of steel frames. In order to obtain 

more rational values of the behaviour factor, Broderick & Elnashai (1996) performed 

seismic analysis on 20 moment-resisting composite frames varying in dimension and 

member type using a nonlinear dynamic analysis program ADAPTIC. To include a 

realistically wide range of earthquakes, six different ground motion records were 

employed. Each frame was designed according to the requirements of the structural 
Eurocodes. For each frame the structural behaviour factors were identified by defining 

those ground motion intensities sufficient enough to cause yield and collapse. In this 

regard failure criteria were defined which reflect the response at both the local (member) 

and global (storey) levels. 

Through a series of dynamic analyses it was found that the structural behaviour factors 

were significantly greater than those recommended by Eurocode 8. While the interstorey 

drift was the most severe response parameter, the inelastic rotation of composite beams 

under negative moment more usually determined the identified behaviour factors. 

Sufficient differences in the seismic behaviour of composite and steel frames have been 

identified to justify the use of separate behaviour factors, and hence the code provisions 
for composite structures should be amended to reflect the more accurate behaviour 

factors. 
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In the design of composite frames to resist gravity loading, a large portion of the 

negative beam moments are redistributed to the positive moment regions. However, as 

seismic design is normally based on elastic analysis, this is not possible when 

earthquake loads are to be resisted. To properly reflect the characteristics of composite 
frames, it was recommended that plastic design procedures should be employed. It was 

suggested that the use of local behaviour factors to reduce the design forces in selected 
locations might allow this to be achieved. It was observed that the enhanced rotation 
ductility capacities of composite members and the asymmetric behaviour of composite 
beams in particular, greatly improved the energy dissipation capacities of moment- 

resisting composite frames over that of their bare steel equivalents; leading directly to 

the identified higher behaviour factors. 

8.2.3 Leon, et al., 1998 

After the 1994 Northridge, California, earthquake, numerous unexpected fractures were 
found in welded connections of moment-resisting frames, mainly in the regions of the 

bottom girder flanges. In these frames, the steel beam flanges are connected to the 

column flanges using complete joint penetration (CJP) welds and details that were 

thought to provide excellent ductility and strength. Single plate shear tabs are usually 
bolted to the beam web and welded to the column flange, with some welding to the 
beam web being required if the steel beam flanges cannot transfer 75% of the plastic 

moment capacity of the steel cross section. Field reports indicated that 90-95% of the 
brittle failures initially documented in structures with rigid diaphragms were in the 
bottom flange connections, with many of the failures concentrated near the CJP weld of 
the beam flange to the column flange, and in the heat affected zone (HAZ) of the weld. 
The failure was observed in frames with a great variety of framing configurations, and 

often in frames that were built only a few years before the earthquake, indicating 

unexpected shortcomings in the design and detailing procedures. 
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In assessing the prevalence of bottom flange failures, the authors speculated that the 

presence of the floor slab might have played a major role in the local behaviour of the 

connection. In general, for seismic design it is assumed that the floor slab forms a rigid 
diaphragm and transfers only the in-plane loads to the moment-resisting frames. It is not 

customary to account for the presence of the slab in structure calculations of the beam 

and connection capacity. However, based upon a capacity design philosophy, the authors 

suggested that it might be unconservative to ignore the contribution of the concrete slab 

to the strength and stiffness of the structural system. It was possible to shift from a 

strong column/weak beam failure mechanism to a strong beam/weak column failure 

mechanism. Because the stiffness of the beam increases due to the presence of the slab, a 
larger portion of forces is attracted. This has to be transferred by the welds. 

In order to investigate the effect of the composite floor slab, three full-scale specimens 

of interior pre-Northridge connections were tested, along with corroborating 

computational research, which included both continuum finite element analyses of the 

specimens and nonlinear analyses of an existing steel frame structure to assess demand 

during the Northridge earthquake. The tests included a bare steel specimen, a composite 

specimen with 55% composite interaction, and a composite specimen with 35% 

composite interaction. All six connections failed at the bottom flange by fracture. The 

three connections with a backup bar on the bottom flange failed prematurely at 1.5% 

drift by brittle failure at the interface between the complete joint penetration weld and 

the column flange, while the three connections without backup bars failed at 3% drift, 

but after only 1-3 cycles. The composite connections exceeded the plastic moment 

strength of their bare steel section, indicating the possible unexpected strong beam/weak 

column frame system if the concrete slab is neglected in the design. All six connections 
did not achieve their calculated moment strength in positive bending. And none of the 

connections exhibited adequate levels of ductility, especially when subjected to positive 
bending moment. The bottom region of the connections in the composite specimens 

generally sustained significantly more damage compared to the top region, featuring 

local flange buckling and extensive plastification at the bottom flange. This prevalence 
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of damage occurring to the bottom beam flange correlates well with the observed 

damage from the Northridge earthquake. The finite element analysis results verified that 

near the beam-to-column interface, the strains focused more substantially in the flanges, 

and especially in the bottom flange in the composite specimens. 

Through the test investigation and finite element analysis, the authors concluded that it 

was prudent to establish an approach to connection design, which at a minimum, 

considered the inherent asymmetries in the connection region due to the presence of 

concrete floor slabs. It was suggested that an appropriate proportioning of beam-to- 

column connections be desired such that inelastic behaviour occurs at a location away 
from the column face, in which minimal use of the highly restrained column material 

and welded joints was recommended. 

8.2.4 Leon, 1998 

Since the basic code design accelerations in large areas of the U. S. and the rest of the 

world were upgraded to levels ranging from 0.10 to 0.20g, the author pointed out that 

fully restrained (FR) moment-resisting frames were unlikely to be economically built 

there. Partially restrained composite frames (PR-CFs) were an economic alternative 

since they could provide both energy dissipation and drift control. And PR-CFs could 

make use of the concrete floor slab to increase the strength, rigidity and redundancy of 
the structural system. Before the design method of PR-CFs is developed, the author 

stated several problems relating to the structure analysis: 

" Determination of moment-rotation relationships; 

" Incorporation of the slab effects into the member properties; 

" Modelling of partial interaction in the beams; 

" Frame stability; 

" Effect of partial strength connections; 

" Level of modelling required. 
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With particular reference to seismic considerations, the problems were: 

" Determination of a natural period; 

" Use of simplified modelling for preliminary design; 

" Determination of force reduction and displacement amplification factors; 

" Level of detailing required. 

The author investigated and discussed the above problems arising from partial restrained 

composite frame design. By comparing the lateral drifts of FR and PR frames, it was 
found that a PR frame did not necessarily drift more than a FR one; in fact, in many 

cases it drifted less. Studies conducted on numerous PR frames utilising nonlinear 
dynamic analysis programs indicated that the envelopes of drift for PR and FR frames 

were very similar. The author suggested that there was no reason to believe that PR 

frames present a potential stability problem under seismic loads. Furthermore, studies 

showed that the rotational demands for PR frames subjected to seismic loads were well 

within the rotational capacities achieved in tests of PR connections. It was believed that 

PR frames could become an attractive structural alternative in areas of low to moderate 

seismic demand within a very short time. 

8.2.5 Liu & Astaneh-Asl, 2000 

Simple, or shear, steel beam-to-column connections are usually assumed to be pinned in 

frame design and no lateral resistance is considered for such connections. However, in 

composite construction these connections may act as partially rigid connections with the 

composite action of floor slab and they may possess certain lateral load resisting 

capacity. Liu & Astaneh-Asl (2000) performed six-teen full-scale cyclic tests on such 

composite connections to investigate the influence of concrete slabs on the performance 

of such connections. 
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The tests showed that the maximum lateral load resistance of composite connections 

were up to double that of bare steel connections. The composite action was lost due to 

damage to the concrete, along with severe buckling of the metal deck. And the 

composite connections reverted towards the behaviour of the bear steel connections. The 

maximum moment capacity of composite joints reached 30-45% of the plastic moment 

capacity of the composite beam sections. Additional reinforcement in the concrete slab 
did not significantly improve the cyclic performance of the composite connections. The 

negative moment capacities of the joints increased, but the lateral load resistance did not. 
By comparing the tests with and without concrete infill between the column webs, it was 

observed that the absence of concrete in the column web cavity reduced the maximum 
lateral load capacity of the joint. But the failure of the connection occurred later in such 

cases. It was therefore suggested that a slight increase in the ductility, but a decrease in 

the lateral capacity would result from the absence of the concrete in the column web 

cavity. 

8.2.6 Bugaja et al., 2000 

Bugeja et al. (2000) investigated the seismic performance of composite RCS moment 
frame systems, which consist of reinforced concrete (RC) columns and composite steel 
beam-reinforced concrete slab sections. Using RC, rather than steel columns can result 
in significant material cost savings, increased inherent structural damping, and 

significantly increased lateral stiffness of the building. Six tests were performed on two- 

thirds-scale subassemblage joint specimens with various beam-to-column joint detail 

arrangements. Test results showed that with appropriate joint detailing, the specimens 

exhibited a desirable beam plastic hinge mechanism with stable hysteretic response. 
Composite beam sections maintained near full composite behaviour beyond the drift 

limits suggested by the American design code with good energy dissipation 

characteristics and were able to undergo large plastic rotation magnitudes. For the 

purpose of composite beam design the authors gave recommendations on the effective 
flange width based on the test results. It was believed that composite RCS moment 
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frame systems were an alternative structural framing system for low-to-mid-rise 

structures in high seismic risk zones. 

8.3 Seismic design criteria of composite structures 

Current available European design provisions for seismic resistance of structures are 
Eurocode 8, Part 1.1 (1994). Future parts of Eurocode 8 include specific provisions for 

different kinds of structures. But seismic design provisions for composite structures are 

not among them. Since composite structures are the most popular type of construction 
for low to middle rise commercial and office buildings, it is necessary to produce 

seismic provisions for such buildings. To date a certain amount of research has been 

carried out on the seismic performance of composite frames and beam-to-column joints 

reported mainly in North America, Japan and some European countries. It is far from 

being enough to provide validation for the seismic design provisions. Extensive 

experimental and numerical research needs to be done on the seismic behaviour of 

composite joints, beams, columns and frames. 

Despite the difficulties in the seismic design of composite structures, some basic 

principles and general rules can be applied to such structures. In order to evaluate the 

performance of composite frames under earthquake loading, the failure criteria of 
composite frames need to be studied. It is assumed that once one of these criteria is 

reached the composite frame will fail. Further increase in the loading will result in 

partial or overall collapse of the structure. For safety reasons these criteria should always 
be conservative in practical frame design. In general the following response criteria 
should be investigated. 

8.3.1 Interstorey drift limit and storey stability 

Under strong earthquake loading, large lateral displacements of the frame could occur. 
Excessive lateral displacement will lead to the P-0 effects. To control the P-i effects, 
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the storey drift limit should be defined. The most common method of measuring the 

interstorey drift is by the interstorey drift index, A;, defined as 

eý=s''' h, (s. l) 

where 4 is the instantaneous displacement at floor level i and hl is the storey height 

under consideration. In some analysis (Broderic & Elnashai, 1996), a limit of 3% is 

suggested. 

In Eurocode 8 an intersrotey drift sensitivity coefficient is defined to take into account 

the second order effects (P-A effects). 

©=P1e, - d, 
V,,, -h 

(8.2) 

where 0 is the interstorey drift sensitivity coefficient; Ptot is the total gravity load at and 

above the storey considered; dr is the design interstorey drift; Vtot is the total seismic 

storey shear; h is the interstorey height. If 0 
_< 0.1, the P-0 effects need not be 

considered. If 0.1 <0S0.2, the second order effects can approximately be taken into 

account by increasing the relevant seismic action effects by a factor of 1/ (1 - 0). the 
limit value of 0 is set to 0.3. 

8.3.2 Steel column response criteria 

The column base at ground floor level is one of the critical zones in seismic design. It is 
demanded that sufficient rotation capacity be possessed by the column base to dissipate 

the large strain energy caused by earthquakes. It is therefore required that the critical 
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buckling strain of the compression flange should not exceed the plastic strain caused by 

earthquakes. 

Apart from the critical buckling strain of the column flange, the plastic hinges on 

columns should also be monitored. A collapse mechanism will form if the simultaneous 

existence of plastic hinges at both the upper and lower ends of a steel column. The 

occurrence of a plastic hinge may be identified if strains in both tension and 

compression flanges of the column exceed the plastic strain. 

8.3.3 Composite beam response criteria 

In moment-resistance composite frames the lateral resistance is primarily provided by 

the flexural resistance of composite beams and steel columns. The composite beam-to- 

column connections may be subject to large negative moment and positive moment as 

well during an earthquake. In beam spans under positive bending the tensile failure of 

the steel beam section is unlikely to occur, while the failure of concrete slab under 

compression should be considered. The compression failure of concrete slab may be 

monitored by the critical compression strain of the concrete. A value of 0.0035 is 

suggested by (Broderic & Elnashai, 1996). 

In composite joints under negative bending, if the rupture of the longitudinal 

reinforcement is unlikely to occur prior to the local buckling of the beam flange and web 

under compression, the critical local buckling stress and strain of the beam flange and 

web should be investigated, and the maximum stress and strain of the beam flange and 

web in compression should be monitored. 

8.4 Seismic analysis of composite frames 

In this section a six-storey composite frame is analysed under seismic loading and its 

performance is discussed. The same frame is used as previously described in Chapter 7 
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for static analysis. The elastic response spectrum is obtained from Eurocode 8. The 

proposed composite frame model is used and applied directly to the seismic analysis. 

8.4.1 Elastic response spectrum 

The earthquake motion at a given point of the surface may be represented by a ground 

acceleration response spectrum. For elastic seismic frame analysis, Eurocode 8 defines 

an elastic response spectrum, Se(T), by the following expressions: 

O ST STB : 

TB ST STc : 

TcSTSTD: 

TDST : 

S'd(T)-aj'S"[l+ý (ý"ijo -1)3 
6 

Sd(T)=at "S"q - Qo 

Sd(T)=at, S, j7, go, [ TI 
T 

Sd(T) = as , S,? 1, Qo '[T ]k' ,[T ]k: 
D 

(8.1a) 

(8.1b) 

(s. 1c) 

(8.1d) 

Where 

SC(T) the elastic response spectrum, 
S soil parameter, 
T vibration period of a linear single degree of freedom system, 

TB, Tc limits of the constant spectral acceleration branch, 

TD value defining the beginning of the constant displacement range of the 

spectrum, 

ag design ground acceleration for the reference return period, 
Po spectral acceleration amplification factor for 5% viscous damping, 

71 damping correction factor with reference value il =1 for 5% viscous 

damping, 

k1, k2 exponents which influence the shape of the spectrum for a vibration 

period grater than Tc, TD respectively. 
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Figure 8.1 Elastic response spectrum of EC 8, Part 1.1 (1994) 

8.4.2 Design response spectrum 

For structural systems to resist seismic actions in the nonlinear range, the design 

capacity is generally smaller than that corresponding to a linear elastic response. To 

avoid explicit nonlinear structural analysis in design, Eurocode 8 recommends that a 
linear analysis be performed based on the design response spectrum, which is reduced 

with respect to the elastic response spectrum. This reduction is accomplished by 

introducing the behaviour factor q, which is defined in Eurocode 8, Part 1.1 (1994) as an 

approximation of the ratio of the seismic forces that the structure would experience if its 

response was completely elastic with 5% viscous damping, to the minimum seismic 
forces that may be used in design with a conventional linear model. 

In Eurocode 8, Part 1.1 (1994) the design response spectrum as shown in Figure 8.1 is 

defined by the following expressions: 
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Where 

Sd(T) the design response spectrum, normalised by g, 

a ratio of the design ground acceleration ag to the acceleration of gravity g 

((x = ag /g), 

q behaviour factor, 

kdl, kd2 exponents which influence the shape of the design spectrum for a 

vibration period grater than Tc, TD respectively. 

8.4.3 Seismic analysis of a six-storey composite frame 

A six-storey composite frame is chosen as a sample frame. The same frame was 

analysed by the proposed composite frame model to investigate the influence of semi- 

rigid composite joints on the global performance of the frame. The report can be found 

in section 7.3.2 of the thesis. This frame may be used to investigate the seismic 

performance of composite frames with semi-rigid joints though it may not have been 

designed according to seismic design codes. This is reasonable because the outcomes of 

the analysis may be used to evaluate those composite frames with no seismic designs 

under possible earthquake strikes. Secondly the results of the analysis may provide some 
indications on the seismic design of semi-rigid composite frames. 

195 



8.4.3.1 Design response spectrum 

The design ground acceleration is assumed to be 0.1g, 0.2g, 0.3g, 0.4g, representing low 

to high seismic zones. Elastic response spectrums are used for the elastic seismic design 

method. If economical plastic seismic design is to be adopted, the behaviour factor is 

introduced to reduce the design ground acceleration. Since the behaviour factors for 

composite frames are not available, Eurocode 8 suggests the same value as the 

equivalent steel frames. Research by Broderick & Elnashai (1996) has shown that this 

assumption is conservative for composite frames, and a 40% increase of the value 

proposed by Eurocode 8 was suggested. Since the behaviour factors of composite 

frames are controversial at present, the commonly accepted conservative elastic response 

spectrums are used in this study. The design response spectrums are illustrated in Figure 

8.2. 

Design response spectrum 
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8.4.3.2 Eigenvalue analysis 

The six-storey composite frame is modelled in exactly the same way as in the static 

analysis on Chapter 7. A brief review of the composite frame model is as following. The 

steel columns and beams are modelled as normal beam elements. The concrete slabs are 

modelled as non-linear cross-section elements. The steel beam elements and concrete 

slab elements are connected by shear stud elements through rigid link elements. The 

column elements are connected to the composite beams by the proposed composite joint 

models. 

Prior to the seismic analysis, Eigenvalue analysis of the frame is performed to obtain the 

natural frequencies and the equivalent mode shapes of the frame. The analysis is 

performed through LUSAS 13 program by the lump mass method with 5% viscous 
damping. In the analysis the mass of the rigid link elements is neglected by entering a 

zero mass density because these elements do not exist in a real composite beam. In order 
to take into account the influence of high order frequencies and mode shapes, forty 

frequencies are obtained. The lowest five dominant frequencies and mode shapes are 

shown in Figure 8.3. 
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Figure 8.3 Natural frequencies and mode shapes of the six-storey composite frame 

8.4.3.3 Seismic analysis 

Since the response spectrums have been obtained, the seismic analysis can be performed 

based on the results of the Eigenvalue analysis of the composite frame, with 5% viscous 

damping assumed. During the analysis, the stiffness of the composite joint is changed by 

adjusting the main reinforcement of the slab over the joint. Four levels of reinforcement 

are adopted, i. e., 4T8,4T12,4T16, and 2% reinforcement ratio, representing low to high 

percentage of reinforcement ratios in the concrete slab. The corresponding four frames 

are named as Frame 1, Frame 2, Frame 3, and Frame 4, respectively. Through the 

analysis, the following results are obtained: 

" The lateral displacements of the four composite frames, as listed in Table 8.1a, b, 
c, and d. 
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" The lateral drift ratios of the four frames, as shown in Table 8.2. 

" The interstorey drift ratios of the four frames, as shown in Figure 8.4(a), (b), (c), 

and (d). 

Table 8.1 a Lateral displacements of Frame 1 (Rebar = 4T8, unit = meter) 

Storey number 
Ground acceleration 

0.1g 0.2g 0.3g 0.4g 

6 0.0412 0.0824 0.124 0.165 

5 0.0353 0.0705 0.106 0.141 

4 0.0273 0.0547 0.082 0.109 

3 0.0195 0.0389 0.0584 0.0778 
2 0.0115 0.023 0.0345 0.0459 

1 0.004 0.008 0.012 0.016 

Ground 0 0 0 0 

Table 8.1b Lateral displacements of Frame 2 (Rebar = 4T12, unit = meter) 

Storey number 
Ground acceleration 

0.1g 0.2g 0.3g 0.4g 
6 0.0388 0.0776 0.116 0.155 
5 0.0332 0.0664 0.0996 0.133 
4 0.0257 0.0514 0.0771 0.103 
3 0.0183 0.0366 0.0549 0.0733 
2 0.0109 0.0217 0.0326 0.0435 
1 0.00384 0.00767 0.0115 0.0153 

Ground 0 0 0 0 
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Table 8.1c Lateral displacements of Frame 3 (Rebar = 4T16, unit = meter) 

Storey number 
Ground acceleration 

0. lg 0.2g 0.3g 0.4g 

6 0.0379 0.0758 0.114 0.152 

5 0.0324 0.0648 0.0972 0.13 

4 0.025 0.05 0.0751 0.1 

3 0.0178 0.0357 0.0535 0.0714 

2 0.0106 0.0212 0.0318 0.0424 

1 0.00377 0.00753 0.0113 0.0151 

Ground 0 0 0 0 

Table 8.1 d Lateral displacements of Frame 4 (Rebar ratio = 2%, unit = meter) 

Storey number 
Ground acceleration 

O. lg 0.2g 0.3g 0.4g 
6 0.037 0.0741 0.111 0.148 

5 0.0317 0.0633 0.095 0.127 

4 0.0244 0.0488 0.0732 0.0977 

3 0.0174 0.0348 0.0523 0.0697 

2 0.0104 0.0208 0.0311 0.0415 

1 0.0037 0.00741 0.0111 0.0148 
Ground 0 0 0 0 
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Table 8.2 Lateral drift ratios of Frame 1, Frame 2, Frame 3, and Frame 4 

Frame number 
Ground acceleration 

O. lg 0.2g 0.3g 0.4g 

Frame 1 0.183% 0.366% 0.551% 0.733% 

Frame 2 0.172% 0.34% 0.516% 0.689% 

Frame 3 0.168% 0.337% 0.506% 0.676% 

Frame 4 0.164% 0.329% 0.493% 0.658% 

>�4 2 

0 .. cn 3 

-ý- Frame 1 

-ý-- Frame 2 

--A- Frame 3 

-- Frame 4 

0 0.05 0.1 0.15 0.2 0.25 

Interstorey drift ratio (%) 

ý 0 

(a) Ground acceleration = 0.1g 
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Figure 8.4 Interstorey drift ratios of Frame 1, Frame 2, Frame 3, and Frame 4 

8.4.3.4 Results analysis 

The results of the lateral displacements of the four composite frames under different 

levels of earthquake loading are described here. Among the four frames, the amount of 

reinforcement in the composite joints is varied. Since the slab reinforcement within the 

composite joint is directly related to the stiffness of the joint, and hence the overall 
lateral stiffness of the composite frame, the overall performance of the composite frames 

with different lateral stiffness can be investigated through the seismic analysis of the 
four six-storey composite frames. 

From Table 8.1, it can be seen that for each frame the lateral displacements increased 

with the increase of the ground acceleration. Furthermore the lateral displacements are 
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proportional to the ground accelerations. This means that all frames performed 

elastically during the analysis. By comparing the lateral displacements of the four frames 

under the same ground acceleration, it can be observed that the lateral displacements 

decreased with the increase of the amount of joint reinforcement. This can also be 

observed from Table 8.2 which shows the lateral drift ratios of the four frames. This 

indicates that frames with higher lateral stiffness may experience less lateral 

displacements under the same level of earthquake within elastic deformations. 

From Figure 8.4, it can be observed that the interstory drift ratio decreased with the 

increase of the slab reinforcement and increased proportionally with the increase of the 

ground acceleration. The maximum interstorey drift occurred on the third floor with a 

maximum value of 0.85% well within the limit value of 3% suggested by Broderic & 

Elnashai (1996). 

8.5 Conclusions 

Seismic analysis is performed on a sample six-storey composite frame. The proposed 

composite joint model and beam model are used to compose an analytical composite 
frame model. Through the seismic analysis the following conclusions may be drawn 

regarding to the analytical frame model for dynamic analysis and the overall behaviour 

of composite frames under earthquake loading. 

" The proposed composite frame model can give reasonable predictions of the 

overall behaviour of composite frames subjected to earthquake loading at least in 

the elastic analysis range, because the analysis gives reliable results of the frame 

lateral displacements on different levels of earthquake spectrums and frames 

with different lateral stiffness. 

" The semirigid joint can be modelled and the influence on the overall frame 

performance can be obtained. The analysis shows that the lateral displacements 
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decrease with the increase of the joint stiffness in elastic deformation of the 

composite frame. 

" Since the proposed composite joint model is composed of a series of bar/beam 

elements, the local failure within a composite joint, i. e., weld failure, local 

buckling of steel beam flange and web, cannot be accurately captured. 

" For analysis of composite frames subjected to high ground accelerations with the 

proposed frame model, possible local failure within composite joints must be 

considered when using the analytical results. 
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Chapter 9 Conclusions and future work 

9.1 Introduction 

In this thesis a simple finite element method is proposed for the nonlinear analysis of 

semi-rigid composite structures. The finite element model is established on the basis of 
direct modelling of every component of the composite structure. Each component - steel 

column, steel beam, concrete slab, shear stud, reinforcement over connection - is 

modelled as one type of line element. The advantages of the proposed model are: 

" The model can be used on both 2D and 3D analysis. 

" Geometry and material nonlinearity can be accommodated. 

"A finite element model can be established without relying on test data of 

composite joints. 

" The total degrees of freedom of the analytical model are small and hence the 

computer resources required for the analysis are low. 

" The model can be analysed by most structure analysis program and no extra 

programming is needed. 

A finite element model for composite joint analysis is proposed in the first place. In 

order that the influence of the deformation of shear studs on the behaviour of composite 
joint can be accounted for, a shear stud model is also proposed according to the load-slip 

curve of the shear stud. Secondly, a composite beam model is proposed by introducing 

`rigid link' elements. The semi-rigid joint behaviour can be accounted for by 

incorporating the composite joint model to the beam model. Finally, a composite frame 

model is obtained by introducing the composite joint and beam model with the steel 

column modelled as normal beam elements. 
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In this chapter, the main conclusions of the composite joint modelling, the composite 

beam modelling, and the composite frame modelling are summarised. 

9.2 Conclusions of composite joint modelling 

A simple analytical composite joint model is proposed along with a shear stud model. It 

gives satisfactory predictions of the characteristics of composite joints in general. The 

following assumptions are proposed in the process of establishing the composite joint 

model: 

" The composite joint is subject to negative bending. 

" The compression center coincides with the center of the bottom flange of the 

steel beam, and the whole composite joint rotates about the compression center. 

" Failing or buckling of the column web and flange in compression does not occur, 

and the deformations of the column web and flange in compression are 

neglected. 

" The shear deformation of column web in shear zone is neglected. 

" The deformations of the column web and flange in tension zone are neglected. 

" The reinforcement in the concrete slab is assumed to deform simultaneously 

regardless of their distance to the beam center. 

" The full shear strength of the shear studs may develop before failing. 

There are five types of elements in the composite joint model: a nonlinear beam clement 

representing the steel beam, a nonlinear bar element representing the main slab 

reinforcement, a nonlinear cross-section beam element representing the uncracked 

concrete slab in tension, a shear stud clement representing the shear studs, and a rigid 
link element. In order to establish a simple composite joint model, the moment of 

resistance of the steel joint is calculated according to Annex J of EC4 (1994). And then 
it is replaced by the moment of the reinforcement over a certain lever arm obtained from 

208 



I 

equal moment principle. The total lever arm of the reinforcement, named as the 

equivalent lever arm (Deq), is therefore obtained. 

__ 
RE Dr Deq 
Ryr -}- Ryr (5.8) 

A simplified composite joint model is consequently established regardless of the type 

and configuration of the steel joint. A shear stud model is also proposed using beam 

element in order that the influence of the deformation of 'shear studs can be accounted 

for in the analysis of composite joints. The shear stud model is established according to 

its load-slip behaviour. For different shear studs, a different stud model should be 

established. Rigid links are elements with very high stiffness providing connections to 

the steel beam elements and the shear stud elements. 

From the model analysis the following conclusions may be drawn: 

" The proposed joint model can be easily established once the moment of 

resistance of the steel joint is calculated. 

" The proposed model is simple to use and it can be analysed by any structural 

analysis program without extra programming. 

" To account for the deformation of the shear studs, a shear model can be 

developed according to the load-slip curve. 

" For composite joints failing by the fracture of the rebars, the predictions of the 

moment of resistance, rotation capacity, and initial stiffness are satisfactory. 

" For composite joints failing by the local buckling of the bottom flange of the 

steel beam, the predictions of the moment of resistance and initial stiffness are 

satisfactory. But the proposed model tends to underestimate the rotation capacity. 

" The proposed joint model tends to overestimate the yield moment of composite 
joints. 
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" According to the predicted bi-linear moment-rotation relationship, a tri-linear 

moment-rotation relationship is recommended for the design of composite joints. 

To conclude, the proposed semi-rigid composite joint model shows good agreements 

with tests and can effectively predict the moment of resistance, rotation capacity and 

initial stiffness of semi-rigid composite joints. It can be applied for the further studies of 

composite beams and frames. 

9.3 Conclusions of composite beam modelling 

A simple composite beam model is proposed. The proposed beam model is capable of 

analysing composite beams with different joint or support conditions, with different 

degrees of shear connection, and with various loading conditions. The proposed beam 

model is validated against current British Standard method and two groups of composite 

beam tests. The agreements are satisfactory. The assumptions in the process of 

establishing the composite beam model are: 

" The distribution of stress and strain through the whole steel beam cross-section is 

constant. 

" The distribution of stress and strain through the whole concrete slab cross-section 

is constant. 

" The full shear capacity of shear studs may develop before failing. 

Four types of elements are used in the proposed composite beam model: nonlinear beam 

element representing the steel beam, nonlinear cross-section beam element representing 

the concrete slab, shear stud element representing the shear studs, and rigid link element. 

The shear stud elements and the rigid link elements are obtained in the same way as the 

proposed composite joint model. For composite beams with semi-rigid connections, the 

proposed composite joint model is used in the joint modelling. 
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The following conclusions may be drawn from the analysis of composite beams using 

the proposed composite beam model. 

"A composite beam model can be quickly established through the proposed 

procedure. And very little computer efforts are needed for the analysis. 

" Both elastic and plastic analysis of composite beams can be performed using the 

proposed model. 

" The behaviour of partial shear connection can be easily modelled. 

" The modelling of composite beams with different degrees of shear connection is 

successful. 

" The modelling of composite beams with semi-rigid joints is successful. 

" For the analysis of continuous composite beams, the actual negative moment of 

resistance can be obtained without a presumed moment redistribution of the 

negative moment at supports. 

"A bi-linear relationship of the imposed loading and the mid-span deflection may 
be obtained from the beam model. The beam model tends to overestimate the 

beam yield load level. 

" The proposed model can accurately predict the natural frequencies of composite 

beams. And higher mode frequencies can be easily obtained. 

" The empirical equation (6.1) is coarse when it is used to predict the natural 
frequencies of composite beams. 

9.4 Conclusions of composite frame modelling 

A finite element model of composite frames is established by incorporating the proposed 

composite joint model and beam model, with the steel columns modelled as normal 
beam elements. To validate the proposed frame model, three composite frames are 
analysed: a composite portal frame, a six-storey composite frame, and a three- 
dimensional 20-storey composite frame. For all three frames, the amount of 
reinforcement in the concrete slab is varied to study the effect of the slab reinforcement 
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on the overall performance of composite frames. The limit state behaviour of the 

composite frames is discussed. The following conclusions may be drawn from the 

composite frame analysis: 

" Composite frames can be explicitly modelled and analysed by the proposed 

frame model. No extra programming is needed to establish the model. 

" Since only line elements are used in the model, the total degrees of freedom of 

the composite frame model are greatly reduced. The proposed model is therefore 

very simple and computationally efficient. 

" The analytical results agree well to other published approaches. 

" The proposed model is effective in predicting the limit state behaviour of 

composite frames. 

" The lateral stiffness of a steel frame will increase significantly if the composite 

action is taken into account and this will be at a very low cost. 

" The amount of longitudinal reinforcement in the concrete slab at joint has great 
influence on the overall performance of composite frames. 

" Increase in the amount of slab reinforcement will result in increase of the overall 

stiffness of composite frames; increase the load limit; and reduce the lateral 

displacements. 

" Excessive slab reinforcement will make very little difference in the terms of the 

lateral stiffness and the load limit. The reinforcement ratio of between 0.6% to 

1% seems to be sufficient for a satisfactory semi-rigid design. 

" For the semi-rigid design of composite frames, it is also suggested that at 

composite joint the amount of longitudinal reinforcement in the concrete slab 

should be no less than 0.35%. 

" Since the moment of resistance of composite joints is closely related to the slab 

reinforcement, the joint moments transformed to the columns can be easily 

controlled in order to comply the ̀ strong column, weak beam' design principle. 
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9.5 Conclusions on seismic analysis of composite frames 

The proposed composite joint model and beam model are used to form an analytical 

composite frame model. Seismic analysis is performed on a sample six-storey composite 
frame. The joint stiffness is varied and the overall performance of the sample frame is 

investigated. Through the seismic analysis the following conclusions may be drawn 

regarding to the analytical frame model for dynamic analysis and the overall behaviour 

of composite frames under earthquake loading. 

" The proposed composite frame model can give reasonable predictions of the 

overall behaviour of composite frames subjected to earthquake loading at least in 

the elastic analysis range, because the analysis gives reliable results of the frame 

lateral displacements on different levels of earthquake spectrums and frames 

with different lateral stiffness. 

" The semirigid joint can be modelled and the influence on the overall frame 

performance can be obtained. The analysis shows that the lateral displacements 

decrease with the increase of the joint stiffness in elastic deformation of the 

composite frame. 

" Since the proposed composite joint model is composed of a series of bar/beam 

elements, the local failure within a composite joint, i. e., weld failure, local 
buckling of steel beam flange and web, cannot be accurately captured. 

" For analysis of composite frames subjected to high ground accelerations with the 

proposed frame model, possible local failure within composite joints must be 

considered when using the analytical results. 

9.6 Future work 

In reviewing present proposed model of composite frames, further research efforts 
should be made on the following aspects: 
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" Since the design of a composite joint cross-section is non-symmetrical, the 

nonlinear hysteric moment-rotation loops of the composite joint are most likely 

non-symmetrical. The behaviour of the composite joint model under sagging 

moment should be studied. This is necessary because some joints may subject to 

positive bending when a composite frame is under lateral loading. 

" The tri-linear moment-rotation relationship proposed in Chapter 5 may be 

introduced in the analysis of composite beams and frames. And more accurate 

predictions could be realized. 

" The behaviour of composite joints under dynamic loading may be investigated 

by the proposed joint model. 

" Seismic analysis of composite frames may be performed if the behaviour of 

composite joints under dynamic loading is investigated. 

Future work on dynamic modelling and analysis of composite structures may be carried 

on the following: 

" Since a bilinear moment-rotation relationship is used for composite joints, it is 

necessary to produce a composite joint model capable of modelling the nonlinear 
hysteric moment-rotation curves. 

" The dynamic response of composite beams and the influence of the joint stiffness 

need to be studied. And the design criteria of composite beams under dynamic 

loading need to be investigated. 

" Nonlinear behaviour of composite frames under earthquake loading should be 

studied. 
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