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Abstract

The development of chemoselective processes is of utmost importance for the future
of synthetic organic chemistry, and has been described as ‘the single greatest
obstacle to complex molecule synthesis’.!"] Chemoselectivity is required to exploit
the full potential of synthetic developments in organic chemistry, allowing for more
efficient procedures and better route design. This thesis will describe the
development of chemoselective processes across two cornerstone reactions in

organic chemistry.

Chapter one will describe the development of dual nucleophile/electrophile
chemoselectivity in the Suzuki-Miyaura reaction. Chemoselectivity in this key cross-
coupling reaction has previously only been achieved at either the nucleophile or the
electrophile independently. Electrophile chemoselectivity is generally well defined
and has been used extensively in both academic and industrial settings.
Chemoselectivity of the nucleophilic component has been less well explored, and has
only been achieved through three distinct approaches; protecting group chemistries,
vicinal/geminal activation, and aryl/benzyl selectivity that is based upon activating
Ag additives. Herein, we describe the use of media controlled boron speciation
between aryl/vinyl BPins and BMIDAs to realize the first example of dual
nucleophile/electrophile chemoselectivity. The method was exemplified through the

synthesis of a range of diverse substrates and a BET bromodomain inhibitor.

Chapter two will describe an investigation into the source of rate independent
chemoselectivity in the CuAAC reaction. Chemoselectivity in the CuAAC reaction
has chiefly been demonstrated through the use of either activated or deactivated
azides, whereas alkyne chemoselectivity is less well developed. Recent work from
the Watson and Burley groups described the use of aromatic ynamines to afford
exquisite chemoselectivity over alkyl alkynes, allowing for sequential
functionalization of multifunctional bisalkynes. Herein, we describe the development
of a reactivity scale for alkynes in the CuAAC reaction and a kinetic investigation
into the origin of selectivity when using ynamine substrates. A chelation-assisted
change in the rate-determining step from Cu-acetylide formation to azide

ligation/insertion allows for chemoselectivity over more reactive alkynes despite a
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slower overall rate. This was harnessed to develop an orthogonal ligation strategy

from protected ynamine substrates.
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Tf — Triflyl

THPTA — Tris(3-hydroxypropyltriazolylmethyl)amine

RDS — Rate determining step
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rt — Room temperature
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SPAAC — Strain-promoted azide-alkyne cycloaddition
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TES — Triethylsilyl
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TIPS — Triisopropylsilyl

THF — Tetrahydrofuran
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1.0 Chapter 1

1.1 Introduction

1.1.1 Introduction to the Suzuki-Miyaura Reaction

The Suzuki-Miyaura (SM) reaction is one of the most widely used reactions in
synthetic chemistry and has become a staple in both academia and industry. This
reaction provides a general and effective method for carbon-carbon bond formation
through the palladium-catalysed cross-coupling of an organoboron species with an

organic halide or pseudo-halide (Scheme 1).

PdO cat.

Q-BOR); (—X —> -Q

Scheme 1: Suzuki-Miyaura cross-coupling.

The SM reaction was first published in 1979 by Suzuki, Miyaura, and coworkers, it
followed on from a range of other cross-coupling reactions developed around the
same time that followed a similar general catalytic cycle (Figure 1) but each utilizing
a different nucleophile.'”! Suzuki’s contribution to the field of cross-coupling earned
him a share of the Nobel Prize in 2010 (with Ei-Ichi Negishi and Richard Heck). An
extensive study published in 2011 showed that over 40% of all C-C bond formations
in the pharmaceutical industry were carried out using the SM reaction, demonstrating
the value and utility of this reaction for synthetic chemists.”) The popularity of the
SM reaction is due to a set of mild conditions that tolerate of a wide range of
functionalities while yielding non-toxic by-products. Although many other methods
of Pd-catalysed C-C bond formation are available (for example Kumada, Stille, and
Negishi couplings),”" they often involve handling a highly reactive or toxic
organometallic reagent. The boron reagents used in SM coupling are comparatively
more benign and they are either widely commercially available or can be readily
synthesized using a variety of approaches.”® Moreover, the selectivity obtained in the
SM and across the broad class of cross-coupling reactions is typically far superior to
other methods of substituted aryl synthesis, which mainly rely on Friedel-Crafts-type

regioselectivity."”’
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Figure 1: General palladium catalytic cycle.

Over the last few decades, the SM reaction has been the subject of a great deal of
research, expanding the boundaries of the reaction beyond the coupling of olefinic
boron reagents that Suzuki demonstrated in his groundbreaking paper.'?! The reaction
is now used most commonly in the cross-coupling of unsaturated ring systems,

which is of interest to medicinal and materials chemists alike.[>'"

1.1.2 Mechanism of the SM Reaction

The catalytic cycle of the SM reaction contains three distinct steps: oxidative
addition, transmetalation, and reductive elimination. The cycle is common to many
forms of Pd-catalysed cross-coupling and an understanding of each step can explain

the various trends seen in Pd catalysis.!'

Although the majority of Pd-catalysed cross-coupling reactions all follow the same
general mechanistic pathway, each display nuances that differentiate them from each
other. The following section will give an overview of the mechanistic aspects
associated with SM coupling and describe in detail the current literature relating to

the unique transmetalation step.



1.1.2.1 Oxidative Addition

The first step in the catalytic cycle is the oxidative addition of Pd” into the carbon-
halogen bond to form a Pd" intermediate (Figure 2). This is often the rate-
determining step!™ for the reaction and can be directly influenced by altering the
(pseudo)halogen attached to the carbon. A well-defined order of reactivity was set
out by Suzuki which follows I > OTf > Br >> CL™ Despite not being the most active
electrophile, bromides are the most commonly used coupling partners in SM
coupling, possibly because they tend to be more commercially available in
comparison to iodides and triflates, and are far more reactive than chlorides.'” The
rate of oxidative addition can also be tuned by changing the substituents in proximity
to the halide: electron-withdrawing groups (EWGs) increase the rate while electron-
donating groups (EDGs) result in a decrease in rate. The introduction of an EWG to
activate the halide is an effective method to allow the use of chlorides in cross-
coupling reactions.'” Recent developments have allowed the use of unactivated
chlorides as coupling partners through the application of novel ligand-catalyst

combinations (vide infra).

1.1.2.2 Transmetalation
X LnPd LaPd —X

Boronate Pathway Oxopalladium Pathway L,Pd 7

LnPd<O

X
/
LoPd] L,Pd
X
b B(OH)3 ’%\ hd
o LPd”
\7< oH ] o oH " on NS
o

| HO /
B(OH)sX O_BQ’OH — O_BbH
OH
boronate boronic acid

Figure 2: Mechanism of the Suzuki-Miyaura reaction.

While oxidative addition is relatively well understood, the transmetalation step has

(13

been the subject of much debate.!"*) Within the literature there are two competing

interpretations, the boronate pathway and the oxo-palladium pathway.



The boronate pathway was, for many years, the accepted mechanism of
transmetalation (Figure 2) and was proposed by Suzuki, Miyaura, and co-workers in
1979.1) In this pathway, the tetrahedral boronate, that is formed from the boronic
acid under aqueous basic reaction conditions, undergoes transmetalation with a Pd-
halide complex. It was thought that the more nucleophilic boronate was necessary for

the transmetalation step (Figure 3).

/
L,Pd
Boronate Pathway
©
B(OH)3X
/

® Boronate © LnPd_
® Charged (l)H —| X
e Tetrahedral, sp® hybridised ( )_B"'OH
® Proceeds from Pd-halide complex \ OH

Figure 3: Transmetalation via boronate pathway.

More recently, a body of evidence has been disclosed that strongly supports the oxo-
palladium pathway, which proceeds through the neutral boronic acid and an oxo-Pd
complex.") The oxo-palladium species is proposed to be formed through anion
metathesis between a hydroxide ion and the Pd-halide complex derived from the

oxidative addition step (Figure 4).

/
L,Pd
Oxopalladium Pathway
B(OH)3
/
o L.Pd N
* Boronic acid OH OH
* Neutral ( )—B/
o Planar, sp? hybridised \OH
* Proceeds from Pd-hydroxo complex

Figure 4: Transmetalation via oxo-palladium pathway.
Suzuki and Miyaura first suggested this pathway in 1985, just 6 years after their
original mechanistic proposal.' In an in-depth study on alkene-alkene cross-

coupling, the authors noted three key observations:

1. Transmetalation did not occur when Lewis bases such as triethylamine were
used, demonstrating the need for hydroxide or alkoxide in the reaction

medium.



2. When a preformed methyl lithium boronate was exposed to the reaction
conditions in the absence of base, only 9% cross-coupled product was
formed, suggesting that transmetalation does not proceed through an anionic

boron species.

3. The formation of reduction products were observed in the reaction, which can
be attributed to p-hydride elimination of an in situ formed Pd-alkoxide
species, yielding a Pd-H intermediate that reductively eliminates to afford the

corresponding dehalogenated alkene (Scheme 2).

B-hydride elimination

S
H Me

KO Me Me
Br ( H H
LnPd _0 0 LnPd
@ LnPd @ . LnPd @ ﬁ; @ -
KBr

reductive elimination
Me. O

anion metathesis

Scheme 2: Mechanism of the formation of reduction products.

These three observations led to the conclusion that the reaction most likely
proceeded through the oxo-palladium pathway. However, neither mechanism could

be ruled out completely.!*'>'¢!

Only recently, in three separate studies reported by Amatore and Jutand, Hartwig,
and Schmidt has light been shed on the likely course of transmetalation.!'’ ™ In
Hartwig’s study, stoichiometric palladium complexes that resemble both the Pd-
halide complex 1.1 and the Pd-oxo complex 1.2 were synthesised. The Pd-halide
complex 1.1 was reacted with an aryl trihydroxyboronate to simulate the boronate
pathway (Scheme 3, equation 1) and the Pd-oxo complex 1.2 was reacted with
neutral tolylboronic acid to simulate the oxo-palladium pathway (Scheme 3, equation

2).



Ph3P

4 B(OH)K O
@ PPh, /© THF/H,0
PPh,

Me
18-crown-6 93%

rt, 10 min

81%

Ph3P

. B(OH), THF/HZO
PO T O
rt, <2 min Me
Scheme 3: Measurement of the rates of transmetalation/reductive elimination for model substrates.

The rate of transmetalation for both systems was measured at room temperature; it
was shown the neutral boronic acid was coupled at a rate four times higher than its
boronate derivative. In addition, it was observed that boronic esters (catechol,
neopentyl, pinacol) all reacted at higher rates than the charged trihydroxyboronate,
providing further evidence that transmetalation occurs through a neutral species
(Scheme 4). The rate data for the pinacol boronic ester (BPin) was most intriguing.
In the weakly basic media commonly used in SM coupling the formation of the BPin
boronate is highly unfavoured, as is hydrolysis to afford the free boronic acid,
indicating a slower, direct transmetalation event that takes place from the BPin rather
than the corresponding boronic acid upon hydrolysis. However, it is important to
note that this data includes the rates of both transmetalation and subsequent reductive

elimination, although transmetalation is most likely rate determining.

Ph3P

B(OR),  THE O
@ Q ®
F

-55 °C then rt 10 min

<2 min <2 min <2 min 15h

Scheme 4: Rates of transmetalation for different boron species.

Transmetalation via the boronate was also proposed to proceed through the Pd-oxo
species, which can be accessed from the halide complex via anion metathesis. This
equilibrium was investigated through the use of tetrabutylammonium salts (Scheme
5); *'P NMR was used to measure the resting state equilibria between Pd-halide and -

hydroxo complexes.

THF/H,0  PhyP, PR
Pd (50:1) Pd
)2( PPh; * PPh3
PPh;
NBuyl
1.2 20 °C
[2]=0.0049 M [3]=0.0028 M [1]=0.0032 M

Scheme 5: Resting equilibrium concentrations of Pd complexes in solution.



The authors found that the resting concentration of Pd-halide complex 1.1 is lower
than the combined concentrations of the Pd-oxo monomer, 1.3, and dimer, 1.2,
complexes, although the difference between the two concentrations is less than one
order of magnitude. It’s worth noting that the concentration of the Pd-oxo species
was higher at lower concentrations of water. This was thought to occur because of

decreased hydration of free hydroxide ions at lower water concentrations.

In a related study, Amatore and Jutand used electrochemical methods to measure the
rates of transmetalation and reductive elimination from isolated Pd-halide
complexes.'™ By measuring the oxidation and reduction currents that are generated
in each step of the reaction, the concentration of each reactive species could be
accurately determined. This could be extrapolated to provide rates of transmetalation
for both Pd-oxo and Pd-halide species. The authors reported a conclusion in
agreement with Hartwig, that transmetalation proceeds rapidly through the Pd-oxo
complex and sluggishly through the Pd-halide complex, supporting the oxo-
palladium pathway. Schmidt, who studied the rates of transmetalation through

UV/Vis spectroscopic analysis, also reached the same conclusion.!”’

While these three important studies all support a reaction mechanism that proceeds
through the oxo-palladium pathway, the pre-transmetalation intermediates had never
been observed. Denmark and Thomas recently elucidated the mechanistic missing
link by using rapid injection low temperature NMR spectroscopy.?”’ The formation
and decay of the active intermediates in the transmetalation step was monitored by
reacting stoichiometric Pd-oxo complex 1.4 with neutral boronic acids at low
temperatures (Scheme 6). Denmark’s work represents the first unambiguous

evidence for the proposed mechanistic path of this benchmark transformation.
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Scheme 6: Observation of B-O-Pd linkage by rapid injection NMR spectroscopy.

The authors also probed the most favourable pathway for transmetalation, showing
the Pd-boron catalytically active intermediate is most readily reached from Pd-

hydroxo complex 1.4.

1.1.3 Advances in the Suzuki Miyaura Reaction

1.1.3.1 Increasing the Scope of Electrophiles

Despite its widespread use since first publication, for many years, the SM reaction
was limited to the electrophile scope described in Suzuki’s ground-breaking papers;
bromides, sulfonates, and iodides."®! None of the standard conditions employed in the
reaction showed any reactivity with chlorides or other less activated electrophiles
(e.g., OTs, OP(O)(OEt),). It wasn’t until the late 1990’s that reports emerged of the
cross-coupling of unactivated aryl chlorides through the use of electron-rich

phosphines.*!*?

Me Pg(zt(ggi)s Me
MeO@CI @B(OH)z m’ MeO
88%
Scheme 7: First example of using P(/Bu); for the SM coupling of unactivated aryl chlorides.
Fu and co-workers used the bulky trialkyl phosphines P(Cy); and P(/Bu); to couple
aryl chloride electrophiles effectively at room temperature (Scheme 7).2' The
heightened reactivity of the Pd-phosphine complex in the oxidative addition step was
attributed to the increase in nucleophilicity as a result of the electron-rich alkyl
phosphine ligand. The increased steric hindrance also appeared to increase the

reactivity of the catalyst as a result of a fast reductive elimination step. This versatile



catalyst system has also been found to facilitate efficient coupling of aryl chlorides in
a range of other cross-coupling manifolds including Stille, Heck, and Negishi.””* The
effectiveness of this catalyst system has been extended beyond aryl chloride
electrophiles; Fu has also reported the rapid cross-coupling of hindered biaryls,
including the first synthesis of a tetra-ortho-substituted biaryl using Stille cross-

coupling (Scheme 8).**

Pd,(dba);
P(tBu
o e O
CSF dioxane
60-100 °C

89%
Scheme 8: Highly hindered Stille coupling with P(tBu)s.
Buchwald and co-workers simultaneously described an alternative method to Fu’s
trialkylphosphines, by using electron-rich dialkyl biaryl phosphines, Buchwald
effectively coupled aryl chlorides at room temperature.””) The biaryl phosphine
ligand employed in this report (DavePhos) became the template for a wide array of

electron-rich biaryl phosphines developed within the Buchwald group (Figure 5).1241

O O I PCy» O MeO PCy,
PCys PiBu2 pr iPr PCY2 oy Pr
Me,N | I O MeO l OMe
iPr

DavePhos JohnPhos XPhos SPhos BrettPhos
JACS 1998 ACIE 1999 JACS 2003 ACIE 2004 Org Lett 2009

Figure 5: Selection of ligands developed in the Buchwald group.

The modified ligands each have minor changes compared to the template, leading to
differing properties.”>**) With judicious choice of the correct ligand/catalyst system,
almost any cross-coupling can be achieved. Buchwald outlined the importance of
each aspect of the ligand systems based on an understanding of the mechanism of the

SM reaction (Figure 6).1*"

+ Alkyl groups increase
R, R2 = H prevents electron density at
; phosphorus, increasing rate of
cyclometallation. PR, oxidative addition.
: R', R*=large group R2 R « Increased size of R
increases [L4Pd(0)]. ~ - enhances rate of

oxidative addition.

Figure 6: Ligand structure-activity-relationship.



Alkyl substituents on phosphorus increase the rate of oxidative addition, while an
increase in the bulk of these groups aids reductive elimination. Substitution at the
ortho-position of the lower ring increases the proportion of mono-ligated complex
[LiPd°] over the less reactive bis-ligated complex [L,Pd’]. In addition,
cyclometalation is avoided when R' and R? are blocked, increasing the stability of
the catalyst. Substitution at R® fixes the conformation of the biaryl system, directing
the phosphine over the n-system of the lower aryl ring, which further stabilises the

active [L;Pd"] species and promotes reductive elimination.

The next step in the evolution of these catalyst systems was the development of Pd"

precatalysts (Figure 7).

o 9P 99 9P

d—NH d—NH d—N
OMs OMs Me
stGen Precatalyst 2ndGen Precatalyst 3rdGen Precatalyst 4thGen Precatalyst

Figure 7: Buchwald palladacycle precatalysts.

These nitrogen-bonded palladacycles reductively eliminate under basic conditions to
provide an active Pd’ species without complications arising from non-innocent
spectator ligands (dba, acetate, efc.). This clean generation of reactive Pd’ can
facilitate rapid cross-coupling in systems where protodeboronation was problematic,
such as polyfluorinated aromatics and 2-heteroaryl boronic acids.”” The utility of
these precatalysts was further exemplified in the cross-coupling of nitrogen-rich
heterocycles where coordination of Pd to the substrate led to a loss in reactivity

(Scheme 9).°"

N
N (HO),B _ Cat 1, K3PO4 (2 equiv)
Crba" CL-¢

dioxane/H,0
100 °C, 15-20 h

92%

C|—P\d_NH Cl \X§
SPhos !
Cat1 : ‘ « Complexation of azole

slows transmetalation.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Scheme 9: Precatalysts enable cross-coupling of coordinating azoles.
The latest generations of Buchwald’s precatalysts are air and moisture-stable and

have found uptake in a wide variety of Pd-mediated transformations.?***"!
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1.1.3.2 Nature of the Organoboron Reagent
While boronic acids remain the most commonly used boron reagents in SM
coupling, a number of other reagents are available with differing properties and

reactivities.**!

1.1.3.2.1 Boronic Acids

Boronic acids were first used in SM coupling in 1981 and are still one of the most
commonly used boron reagents.”” Their popularity stems from good organic
solubility, particularly in the typically polar solvents commonly used in SM

341 Boronic acids are more reactive

chemistry and a wide commercial availability.
than their boronic ester counterparts (vide infra). While this has extended the utility
of boronic acids towards a range of other transformations that are not facile with less
reactive boron species (e.g., Hayashi, Chan-Evans-Lam) it also leads to a small set of
unwanted side-reactions within SM coupling, namely oxidation, homocoupling, and

protodeboronation.**!

The most common of these is protodeboronation, which occurs under both acidic and

3637 protodeboronated side-products will generally be seen in small

basic conditions.
quantities under SM conditions but this unwanted reaction is accelerated by high
temperatures and variations in the pH of the reaction media.*®! The mechanism for
protodeboronation was first described by Kuivila, and has recently been confirmed
and expanded upon by Lloyd-Jones.”” The most common source of
protodeboronation occurs through a base-mediated pathway; electrophilic aromatic
substitution of the boronic acid or its corresponding boronate abstracts a proton from
either water, boric acid or another boronic acid to deliver the protodeboronated
product (Scheme 10).

- S

Scheme 10: Mechanism of base-promoted protodeboronation.

Protodeboronation is most prominently seen in heterocyclic boronic acids,
particularly 2-pyridyl, thiazolium, and pyrazolyl boronic acids. Lloyd-Jones has
shown that the degradation of these unstable boronic acids proceeds through a

different mechanism to that of standard aryl boron species. The authors propose that
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zwitterionic water adducts provide stabilisation of the boric acid leaving group,

facilitating rapid protodeboronation at neutral pH (Scheme 11).

N H,0 B
| — .
o

P
rapid N™ "B(OH);
N "B(OH), equilibrium H
HO OH HO_ OH
“B_on -B-0-H
| -H-0
7 AN 7 “N-H H

transition state structures for
zwitterionic water adducts

Scheme 11: Transition states for water assisted 2-pyridyl protodeboronation.

Unusually, this effect can be moderated by either high or low pH through alteration
of the proportion of the charged species. Addition of Lewis acids such as CuCl, or
ZnCl; can slow the rate of protodeboronation by up to a factor of 24. This occurs
through complexation of the Lewis acids to the pyridine nitrogen, reducing the

amount of reactive zwitterion available for fragmentation.

Homocoupling, another prominent side-reaction, can occur via two alternative

mechanisms, either reductive activation of the Pd" catalyst (Scheme 12)P%

or
through an oxidative mechanism that is typically only seen when the reaction is not

run under inert conditions.

RB(OH), + OH" RB(OH), + OH- R-R

AN T
[Ln,Pd""X,] % [Ln2F|>d”X] [Ln2I|3d”] [Ln,PdO]
R
X X

Scheme 12: Homocoupling from reductive activation of Pd.
Oxygen present in the reaction mixture reacts with Pd’ to form Pd" peroxo species
1.5, which can react with two equivalents of boronic acid to form homocoupled
product (Scheme 12). Amatore and Jutand utilised electrochemical methods to
illuminate the mechanism of formation of the Pd peroxo species and subsequent

oxidative homocoupling.[*”
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Scheme 13: Mechanism of oxidative homocoupling.

This pathway is also responsible for the oxidation of boronic acids to alcohols,

through perboric acid 1.6.

Boronic acids can be synthesised relatively simply through the reaction of an
organometallic compound with a boric acid ester, followed by acidic hydrolysis to
release the boronic acid (Scheme 13). This method allows facile installation of the
boronic acid functionality onto a wide variety of scaffolds.!*"!

Br Li B(OMe), B(OH),

@ nBuLi @ B(OMe); H30*
THF, -78 °C

Scheme 14: Formation of boronic acids through lithium halogen exchange.

1.1.3.2.2 Organoboranes

The first boron species to be used in SM were organoboranes with three carbons
attached to a planar sp® boron (Figure 8). These reagents were widely used in early
investigations into SM chemistry, as they are easily prepared via hydroboration of

alkynes to form alkenyl organoboranes which can undergo subsequent cross-

O A G

dicyclohexylborane disiamylborane 9-BBN borane

coupling.!

Figure 8: Commonly used organoboranes.
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Organoboranes suffer a number of disadvantages compared to boronic acids or
esters, such as a lack of selectivity in transmetalation since each of the three
substituents on boron can be transferred to Pd. These reagents are also prone to
undergo a series of degradation processes such as aerobic oxidation,
dehydroboration, and protodeboronation, leading to reduced yields even under the

347 One of the most synthetically useful organoboranes is

most stringent conditions.
9-borabicyclo[3.3.1]nonane (9-BBN), which contains a more rigid structure and thus

provides greater selectivity in transmetalation than other organoboranes.

One significant advantage of sp> organoboranes over other boron reagents is the
higher reactivity in SM cross-coupling, facilitating reluctant C-C bond formations
that cannot proceed with other boron species. For these reasons, organoboron species
have been used extensively as a class of cross-coupling partners in natural product
synthesis. Their prevalence arises from the ease of preparation and they can often be
made in situ to preclude isolation of the reactive organoborane, for example, a one
pot hydroboration/SM reaction was used in the synthesis of dihydroxyserrulatic acid
43]

by Hayashi and co-workers (Scheme 15).!

M
MeO,C ©

|
Me
C S L H o i)e-BBN
ii) PACl,(dppf) g Me
S K,COj, THF/H,0 H
—_—
Me S

OR Me  gr._L__come

OR Me
77%

Scheme 15: Hydroboration/SM coupling on dihydroxyserrulatic acid.

1.1.3.2.3 Boronic Esters

Towards the end of the 1990°s the use of boronic esters became prominent as more
robust methods for their synthesis were developed. The most commonly employed
are pinacol esters and catechol esters (Figure 9). Initial reports of boronic esters in
SM employed catechol boronic esters, which can be readily prepared through
hydroboration of terminal alkynes.™ Boronic esters are typically more stable than
their boronic acid counterparts because of the c-donation of carbon; making the
oxygen lone pairs more readily able to donate into the adjacent empty p-orbital on

boron, therefore reducing the Lewis acidity and reactivity of the boron centre.”"
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Boronic esters are also stable to chromatography and are soluble in non-polar

solvents commonly used in synthetic organic chemistry.

Me
O~J.Me 0o
R-B R-B,
0 =" Me e}
Me

boronic acid pinacol ester boronic acid catechol ester
(BPin) (BCat)

Figure 9: Common boronic esters.
Boronic esters are proposed to react in SM through one of two pathways; partial
hydrolysis of the ester under aqueous conditions to liberate the reactive boronic acid
or via direct transmetalation of the boronic ester.”*¥ It is difficult to unequivocally
determine which pathway is correct, as water is almost always present under SM

conditions.!'*4

While many methods for their preparation exist, on a laboratory scale, boronic esters
(particularly BPins) are typically synthesised through either the Pd-catalysed
Miyaura borylation™* or via Ir-catalysed C-H borylation**** (Scheme 16). The
invention of these complementary methodologies has opened up the scope of cross-

coupling allowing ready access to a wide library of borylated molecules.

[Ir(COD)(OMe)], .
PinB dtbpy Br Pd(OAc),, KOAC BPin
2P|n2 szlnz
hexane, rt CN DMF, 85°C CN
83% 81%

Scheme 16: Borylation of arenes via Ir- and Pd-catalysed borylations.

A combination of the ease of synthesis and favourable physical properties of boronic
esters, such as solubility and stability, has made them one of the most popular cross-

coupling partners in SM chemistry.

1.1.3.2.4 Organotrifluoroborates

Organotrifluoroborates (BF;K) were first discovered in the 1960’s but the application
of this reagent was limited until pioneering work by Molander and Batey in the early
2000’s using organotrifluoroborates as an alternative reagent for SM coupling.*”™*"
As bench-stable, crystalline solids, BF;K salts are appealing reagents in SM

chemistry when compared to their boronic acid and ester counterparts.
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BF;K salts can be easily prepared from boronic acids by stirring with aqueous KHF,
in methanol; the range of available boronic acid compounds gives ready access to
vast numbers of BF;K salts and many are now commercially available (Scheme

17).b%

KHF
©/B(OH)2 MeOH. 1t ®/BF3K
R R
= =
Scheme 17: Synthesis of BF;Ks from boronic acids.

The Molander group has extensively demonstrated the versatility of these reagents in
SM coupling, through the synthesis and application of BF;Ks across a wide array of
substrates.”"! One particularly appealing feature of BF;Ks is the capacity to couple
sp> alkyl trifluoroborates with vinyl and aryl bromides in good to excellent yields

(Scheme 18).1°%

OH B P o 0
r P f)Cl,»DCM H
H/\/BF;},K d(dppfClDO > K(\p
OH Me Cs,CO3, ZhMe/HZO OH Me

94%

Scheme 18: Example of alkyl SM coupling.
The enhanced reactivity of BF;K salts towards sp® nucleophile cross-coupling can be
explained in part by their mechanism of action in SM coupling. In biphasic media,
BF;K salts are slowly hydrolysed to give boronic acids, which then undergo rapid
transmetalation.”® Slow release of the parent boronic acid ensures a low
concentration of the reactive species is maintained throughout the reaction.
Hydrolysis of the BF;K salts proceeds through a complex series of boron species,
resulting in an equilibrium between boronic acid 1.7 and boronate 1.8 (Scheme
19).5%

g BRI r-BF2OHK —~ BFOHK — r-BOH)K

\F/ \ / \ /1.8

B _BF(OH) .B(OH),

R
R 1.7

Scheme 19: Slow release of boronic acids from BF;K through hydrolysis cascade.

Another appealing application of BF;Ks is as a boronic acid protecting group. Due to
their increased stability over both boronic acids and esters, BF;K groups can be taken
through multiple steps in a reaction sequence. Molander has shown they will survive
exposure to a number of oxidising conditions, such as Swern, Ley, and Dess-Martin
oxidations.® 0sO4 and dimethyl dioxirane (DMDO) for the preparation of diols and

epoxides were likewise tolerated.">) Moreover, the BFsK salts stayed intact when
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subjected to both Wittig/Horner-Wadsworth-Emmons reactions™® (Scheme 20,

[57

equation 1) and Huisgen type 1,3-dipolar cycloadditions®”’ (Scheme 20, equation 2)

to form olefins and triazoles, respectively, leading to various useful compounds with

a SM-compatible functional handle present.>*™*
HO Me Os_Me
DMP

M - 5
CH,Cl,, 0°C, 18 h

BF K BF 3K

90%
@ Cul EtO,C
N3~ O BF,K ==—CO4Et P — - BF K
-~

DMSO,80°C N, .N
N
98%
Scheme 20: Use of BF;K as a boronic acid protecting group.
Despite the successes in this area, BF;Ks are acid- and base-labile and decompose
upon exposure to silica and some protic solvents, limiting the use of these reagents to
a series of mild transformations.”¥ Many of the manipulations demonstrated by
Molander require a KHF, work up, suggesting that the BF;K is not always left intact

159601 For small-scale chemistry, these limitations present a

by the end of the reaction.
disadvantage, as reactions on more highly functionalised molecules often need
chromatographic purification. This is perhaps offset by the ease of crystallisation at a

larger scale where the use of chromatography is limited.

1.1.3.2.5 MIDA Boronic Esters
MIDA boronic esters (BMIDASs) are another prominent class of boron species. These

(6] but have seen resurgence in the

were first synthesised in the 1980s by Mancilla
last decade, chiefly through work by the Burke group in Illinois.'*” BMIDAs are
base-labile boronic esters that, like BF;Ks, are free-flowing solids and are tolerant of
a wide range of reaction conditions. Donation of the nitrogen lone pair into the boron
empty p-orbital lends the boron sp® character, which renders the BMIDA unit inert to

a range of standard boron chemistries, including transmetalation (Figure 10).

Me
AY
N HO OH
TSN} N
07 Ng O Me O
%
BMIDA N-Methyliminodiacetic acid (MIDA)

Figure 10: MIDA acid and boronic ester.
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These properties have enabled the use of BMIDASs as both a boronic acid protecting
group and to allow the coupling of unstable boron species through the slow release of

the active boronic acid under aqueous basic conditions.

Early use of BMIDAs was focussed on their use as a protecting group in iterative
cross-coupling (vide infra) and they also proved to have had a profound effect on
organic synthesis through their ability to withstand a wide range of functional group

manipulations.[*”

Burke has shown BMIDAs are reasonably stable towards oxidations (Jones, Swern,

and DDQ), reductions (NaBHj), and strong acids (TfOH) as well as a range of other

" 64
conditions (Scheme 21).1Y
Bn
BMIDA -
Me T\ 79%
\/©/BM|DA N\«O syn:anti > 20:1
PMBO oH & O
Bn,
PMBOC(NH)CCl3, TfOH | | DDQ, CH,Cl, Me | (nBu)BOTH
THF, 0°C - 1t, 5 h i, 1.5 h, 79% N0 | Et;N DCM
64% | 78ic-n
BMIDA o O
BMIDA _~_ 88%
° \(;\/\
o . 90% |
(COCl)y, EtaN,
CrOg, HyS0,4 DMSO, CH,Cl, CrClp, CHI,
acetone, rt, -78°C-rt, 2h THF-dioxane
0.5h BMIDA 88% BMIDA i, 1h
—_—
Jog=——tah 6§
PPhg, |5, Im, OH NaBg'beg_';_ﬁtOH fo) Morpholine,
THF i NaBH(OAc);
t,1h ° DCE, rt, 8h
BMIDA BMIDA | N
o o
'v©/ o.M | NaH, DMF =
TBSCI, Im || HF*Py, THF (EtO)P OEt| rt 05h s
88% THF, rt, 9h| | rt 20 min 76% N
98% 83%
(o)
BMIDA BMIDA
oTBS 71% | COEt
2!

Scheme 21: Functional group interconversions of simple BMIDA containing building blocks.

Since Burke’s initial reports, a multitude of research groups have exploited the
unique properties of BMIDAs to synthesise an assortment of boron-containing

compounds that were previously unobtainable.
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In 2014, the Yudin group reported a general method for the SM coupling of sp’
BMIDASs with aryl bromides./®! It was found that excess equivalents of base and a
high catalyst loading were necessary for good conversion in this process. A range of
alkyl BMIDAs were successfully coupled, providing a complementary approach to
Molander’s work with BF;Ks (Scheme 22).[”)

O
O

BMIDA Pd(dppf)Cl, (10 mol%) O,N
©/\/ OZND)LMe K,CO3 (6 equiv) O Me
THF:H,0 5:1, 80 °C, 48 h O

Br
78%

Scheme 22: Intermolecular sp>-sp® SM cross-coupling.
The Yudin group also used MIDA esters in the preparation of a-boryl aldehydes,
which were used as precursors to a wide scope of borylated scaffolds.’® The a-boryl
aldehyde precursors could be synthesised in three steps by a one-pot procedure from
allyl Grignard reagent. Subsequent a-halogenation of the aldehyde in the presence of

catalytic pyrrolidine gives the desired halide in good yield (Scheme 23).

1. B(OMe); o .
2. MIDA BMIDA pyrrogdme ((1)0 moISA) BMIDA
3. Ozonolysis AcOH, H,0, NX
Bng/\/ - > HH ° HX °
H MeCN
= 0,
62% (3 steps) §=(B:Ir 2170//‘:

Scheme 23: Synthesis of a-boryl aldehydes.

The halogenated species could then be condensed with thioamides and thioureas to

form borylated heterocycles in good to excellent yields (Scheme 24).

BMIDA

s . Ros
H%\fo L MeCN, 85 °C ?\ll/

H
Q/N?J/}BMIDA Me\N'rS/ BMIDA
78% 54%
Scheme 24: Condensation of a-boryl aldehydes to form thiazoles.
The boryl enamine intermediate could also be trapped with an acyl chloride to give
a-boryl enamides in good yields. Sequential intramolecular Heck coupling and
hydrogenation on these products were then carried out to provide borylmethyl-

isoindolones (Scheme 25).
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Enamine formation/Trapping 5-exo-trig Heck cyclisation/Hydrogenation

Scheme 25: Synthesis of a-boryl enamides and subsequent Heck cyclisation.

The utility of these borylated heterocycles was then demonstrated through an sp*-sp’
intramolecular SM cross-coupling to provide tetracyclic compounds, which represent

the key skeleton of the bioactive natural product lennoxamin (Scheme 26).

BMIDA RuPhos G,

Cs,CO;3 (6 equiv)
N Cl . . .
E E Dioxane:H,0 10:1, 100 °C, 24 h

82%

« sp?-sp? cross coupling
« Tetracyclic framework

Scheme 26: sp’-sp’ Intramolecular SM reaction to form tetracyclic frameworks.
MIDA protection has also been effective in the coupling of unstable boronic acids.
2-Heterocyclic boronic acids are known to readily protodeboronate under ambient
conditions, rendering the SM cross-coupling of functionalised heterocycles a difficult
task. The employment of protected boronic acids provides one solution to this
problem, since 2-heterocyclic BMIDA esters are bench stable solids that can be
made on large scale.'®”) In solution the MIDA protecting group is slowly hydrolysed
under basic conditions, releasing the free boronic acid in low concentrations
throughout the reaction. The reactive boronic acid is then cross-coupled immediately,

before degradation can begin (Scheme 27)."]

Pd(OAc),, SPhos

OtBu
K3PO
(I%*BMIDA Q/ — O b O ofu
dioxane:H,0 5:1, o

60°C,6h
92%

Scheme 27: Slow-release SM coupling of 2-heterocyclic BMIDASs.
The 2-pyridyl problem is an important example of this issue; while both 3- and 4-
pyridyl boronic acids can undergo effective cross-coupling, substitution at the 2-
position is not well tolerated due to the very low stability of these residues. The use
of copper additives has been shown to dramatically improve the outcome of the SM

reaction of 2-pyridyl boronic acids. Burke and co-workers used Cu(OAc), and

20



diethanolamine as additives to facilitate the coupling; the authors suggested that
transmetalation occurred through an aryl copper intermediate that is formed in
situl®! Recent data from Lloyd-Jones has shown this to be a result of Lewis acid-

mediated inhibition of protodeboronation (Scheme 28).1*"!

oM
XPhosPdcycle, ©

BMIDA Me
/©/ Cu(OAQ), N
4’

K3POy4, DEA, DMF,
100 °C, 24 h

Cu(DEA),

NCu

/
Scheme 28: Cu-mediated SM coupling of 2-pyridyl BMIDAs.
Burke was not the first to employ protected boronic acids to overcome this stability
issue. Hodgson cross-coupled 2-pyridyl systems under similar conditions using N-

phenyl diethanolamine as an alternative mask for the boronic acid (Scheme 29).[7"!

1. B(O/Pr); ﬂN Ph pd(0Ac), K,COs, PPhy NO,
N -Br nBuLi, THF Cul
Ly 2 "
N
= 2. N-Phenyldiethanolamine U THF, reflux |
IPA = /

/@/NOZ 84% (2 steps)
[

Scheme 29: Early example of a protecting group to enable coupling of 2-pyridyl boronic acids.
BMIDASs can be simply prepared through condensation of N-methyliminodiacetic
acid with a boronic acid. The BMIDA ester is either directly precipitated out of

solution or can be easily recrystallized to yield a white, free flowing, crystalline solid

(Scheme 30).[7!
@/B(OH)Z MIDA, PhMe:DMSO 10:1 @/BM'DA
Br Br

reflux, Dean-Stark
98%

Scheme 30: Synthesis of BMIDA through condensation of MIDA with boronic acid.

If the boronic acid is unavailable or too unstable to be isolated then the BMIDA unit
can also be introduced from halogenated species. Borylation of a metalated carbon
centre using B(OiPr); followed by addition of MIDA acid affords the desired ester in
good yield. This method is efficient and atom economical; however, due to the use of
highly reactive lithium and magnesium reagents, the application of this method is
limited because of its complex operation and functional group intolerance (Scheme

31).71
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Scheme 31: Synthesis of 2-pyridyl BMIDA from aryl bromide.
An alternative, non-organometallic method for the formation of BMIDA esters is
commenced with bromoborylation of an alkyne with BBr; to give an unstable
borylalkene intermediate, which can be further trapped with MIDA acid to provide
the MIDA ester in modest yield (Scheme 32).["2

BBrg MIDA
He— H BI’\/\BBI’2 Br\/\BMlDA
2,6-lutidine, DMSO 33%
0

Scheme 32: Formation of MIDA ester through bromoborylation.

1.1.4 Chemoselectivity in the SM reaction
Chemoselectivity in the SM reaction is mainly achieved through four distinct
methods; electrophile chemoselectivity, protecting group strategies, vicinal/geminal

activation and aryl/benzyl chemoselectivity (Figure 11)."*

/©/Br BPin BMIDA o /g -
c ©/ ©/ NN PinB

Electrophile Chemoselectivity Protecting Group Strategies Vicinal/Geminal Activation Aryl/Benzyl Chemoselectivity

Most Reactive Least Reactive

Figure 11: Strategies for chemoselectivity in the SM reaction.

The following section will describe the state of the art in all four areas.

1.1.4.1 Electrophile Chemoselectivity

Electrophile chemoselectivity is the most commonly employed method for attaining
selectivity in the SM reaction. The selective monofunctionalisation of a more
reactive electrophile over a less reactive electrophile has played an important role in
the field of cross-coupling. The order of reactivity for halides and pseudo-halides in
SM is well established and was set out by Suzuki in his early ground-breaking work
on the SM reaction, as I > Br, OTf >> CL"®! The differences in reactivity are defined
by the electronegativity of the leaving group, therefore the C-X bond strength or
bond dissociation energy (BDE). As I is least electronegative, it has the lowest BDE

and 1s in turn the most reactive C-X bond.
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While this phenomenon has been known for many years the most comprehensive
demonstration came in 2000 when Fu exploited this reactivity bias to selectively

mono-couple a boronic acid with a dihaloarene (Scheme 33)."*!

sz(dba)3, P(tBU)g
Chroom oo ™22 () (5
KF, THF, rt
97%
Scheme 33: Chemoselective monocoupling of 1-bromo-4-chlorobenzene.
Of particular note in this report was the ability to reverse the outcome of the SM

coupling through alteration of the ligand (Scheme 34).

Me
Pd,(dba);, P(tBu)s
<j>—3(om2 CIOOTf m» OTf
95%
Me
Pd,(dba)s;, P(Cy)3 ;
87%
Scheme 34: Selectivity between Cl and OTf based on ligand selection.
When P(/Bu); was employed as the ligand, cross-coupling between boronic acid and
chloride was observed, while the product of cross-coupling between the boronic acid
and triflate was obtained in the presence of P(Cy);. This unprecedented reactivity can
be explained by the difference in reactivity between mono- and bis-ligated palladium
complexes, where the mono-ligated complex formed with the bulky P(/Bu); reacts
preferentially with a chloride electrophile instead of a triflate. This phenomenon has
been explained in great detail in the work of Schoenebeck and Sigman through both
computational and experimental means but is outside the scope of this

discussion.”>7®!

This work by Fu is particularly impressive as selectivity is obtained between two
ostensibly equivalent electrophiles (Br vs. OTf) and the concept is pushed further to

demonstrate selectivity against the defined reactivity gradient (Cl vs. OTY).

While Fu uses prudent catalyst selection to induce chemoselectivity, it is possible to
exploit the natural reactivity of the substrate to gain chemoselective control. This
chemoselectivity is of great importance in dihaloheterocycles where two equivalent
halides can be differentiated either via electronics (where the most electron deficient

halide will react first) or by directing group effects (Figure 12).""
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Figure 12: Electronic discrimination within multiple halogenated heterocycles.

A review by Fairlamb!” describes the site-selectivity across a wide range of
dihaloheterocycles and how the selectivity can be predicted a priori through Zhang’s
method, which correlates the 'H NMR shifts of the dehalogenated parent
heterocycles to the regioselectivity.”®! For example 2.4,5-trichloropyrimidine will
react preferentially at the 4-position, followed by the 2-position, and finally at the 5-

position (Scheme 35).[7")

al Pd(PPhs)s, K,COj3 Pd(PPhs)s, K,CO3 Ph

o PhMe/DMF PhMe/DMF al
\ka MW 185 °C, 10 mins MW 185 °C, 10 mins | \/’I\l\
N/)\Cl PhB(OH), )\ PhB(OH), N” >Ph
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: cl !

1 ; Ph Pd(PBus),, K,CO3

' ~N ' Ph N PhMe/DMF
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! : N”>Ph PhB(OH),
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Scheme 35: Sequential chemoselective coupling of 2,4,5-trichloropyrimidine.

Electronically equivalent halides can be discriminated through the directing effect of
neighbouring Lewis bases. For example, the selectivity in 2,6-dibromopyrdines can
be switched through altering the substituent in the 3-position. When a non-directing
ester is used, oxidative addition at the less sterically demanding 6-position is
favoured. Switching to a chelating amide alters the site selectivity toward the 2-

position (Scheme 36).1*%

(0]
Pd(PPh3)4 K,CO3
| N OMe OMe +
_ \\\ THF PhB(OH),

Cl N Cl
Steric control
(0] (0]
(dppf)CIz K2CO3
| S NHR NHR + | A NHR
_ ) THF, PhB(OH)z _
Cl N Cl Cl N Ph

Chelation control

R=CH,CH,OPh
Scheme 36: Selectivity switch through chelation control.
In certain cases the electronic effect arising from heterocyclic halides can overcome
the conventional reactivity gradient. The Undheim group showed 2,4-dichloro-6-

bromoquinazolines cross-coupled at the more electron deficient chloride in the 4-
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position over a typically more reactive bromide across a range of cross-coupling

manifolds (Scheme 37).%"

o I

Br\©\/gN //Bu PAPPRaICla O B =N
e Et,N, rt
N//kCI o N//kCI

67%

Scheme 37: Site-selective Sonogashira coupling of 2,4-dichloro-6- bromoquinazolines.

A research group at Pfizer have demonstrated chemoselectivity for a chloropyrazine
over a bromoarene. Through a systematic ligand screen, the group found that by
using a bidentate Xantphos catalyst they could gain selectivity for the ‘less reactive’
chloride. This selectivity could be reversed by moving to a monodentate cataCXium®

ligand to provide high selectivity for the bromo-coupled product (Scheme 38).1*%!

Ar  Pd(Xantphos)Cl, cataCXium® C N_C
j/ NaZCO3 dioxane j/ Cs,COg, dioxane ]/
NS
N
ArBPin ATBPI”
80°C, 16 h 80°C, 16 h Ar
83% 88%

f(j: \Hj

Boc

Scheme 38: Selective SM coupling of chloropyrazine vs aryl bromide.

While levels of chemoselectivity between differentiated dihaloarenes are well
established, chemoselective control between exhaustive and mono coupling remains
a challenge. Sherburn has shown that alteration of the halide electrophile and the

boron nucleophile can dramatically influence the outcome of the reaction, providing

. . . 83
either exhaustive or mono-coupling (Scheme 39).1*!
Mono-selective Exhaustive
Br  Pd(PPhj)s, Cs,COs,
OMe O PhMe/MeOH, reflux, X Pd(PPhg),, Ag,COs,
18 h /©/ THF, reflux, 18 h
. —_—
® x
OMe OMe OMe

. A B(OH), @BPin

88%
Z>oMe OMe
Scheme 39: Mono vs. exhaustive coupling based on substrate control and alteration of the reaction media.
While good selectivities were obtained in this study, the reaction was highly
substrate-specific and the chemoselectivity was eroded with even slight changes to

the reaction medium. Since Sherburn’s seminal report, the selectivity between mono-

and exhaustive cross-coupling has been more comprehensively explored. In 2005,
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Hu disclosed a Pdy(dba);/P(fBu); catalyst system that effectively furnishes the
exhaustive coupling products for a range of dihalobenzenes with exquisite

selectivities (Scheme 40).1

Me
Br  (HO):B sz(dba P(tBu); O O
©:Br QMe K3POy, THF, 1t, 20 h O
Me

98%
Scheme 40: Exhaustive coupling using Pd/P(fBu); catalyst system.

The authors hypothesised that in order to achieve exhaustive coupling with an excess
of dihalide, oxidative addition of the regenerated Pd” species with the newly formed
biaryl halide must occur faster than diffusion of the Pd’ into the bulk solution
(Scheme 41). It is suggested that this selectivity could be applied in controlled Pd-
catalysed polymerisation. This theme was continued recently by Larrosa and Goldup
who used Pd-NHC complexes (PEPPSI-IPent) to affect exclusive bis-coupling across
a wide range of substrates while employing a near universal palette of metal
nucleophiles (Mg, Zn, B).* The key advance in this study was the application of the

methodology to dichloroarenes, which had been absent in previous studies.

Mono coupling ko>k4

7\
Xi=
L,Pd
} Q ADihaloarene in excess
-~ ==/ X N e,
ol
L.Pd +w N X :
—BOH), / T\
Pd =
LY 7\
n \\x
LnPd_ 74 \
—B(OH), OH =K
\ L,Pd

-

Exhaustive coupling ki>k»

k4 = Fast oxidative addition
k= Diffusion into bulk solution

Scheme 41: Rationalisation for exhaustive cross-coupling.

1.1.4.2 Chemoselective Transmetalation via Vicinal/Geminal Activation

In 2010, Endo and Shibata reported the first example of geminal activation of sp’

BPins.*® Taking 1,1-diborylethane and iodoanisole the authors showed, under mild
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cross-coupling conditions, selective mono-functionalisation of the geminal BPin

(Scheme 42).

Pd[P(tBu)s]2

oM
BPin - OMe KOH ©
Me BPin | Pz H,O/dioxane,
25°C,2h BPin

68%

Scheme 42: Mono-functionalisation of geminal diboron species.

Shibata suggests that the geminal BPin activation arises from an increase in Lewis
acidity of one of the boron atoms. The proposed increase in Lewis acidity allows for
selective boronate formation of a single BPin boronate, which is proposed to be the
active species in transmetalation. This hypothesis is supported experimentally and by

NMR. A summary of the key arguments is as follows.

* Formation of a BPin boronate is only achieved under forcing conditions in

most systems.

* Formation of a BPin boronate in geminal diboron species was observed by

"B NMR at room temperature with KOH.

* Cross-coupling of geminal diboron species was only observed with strong

bases.

* No reaction was observed with 1,1-borylsilylalkanes or with primary

borylalkanes.

The compelling evidence presented by Shibata strongly suggests a boronate pathway

and was, in effect, contrary to much of the literature published at the time.

In 2011, Hall reported the synthesis of enantioenriched geminal diboron compounds

(7] Using cuproboration chemistry on B-boryl

and their stereospecific cross-coupling.
unsaturated esters Hall prepared 1,1-diboron compounds with  high
enantioselectivity. The chemoselectivity was established in the cross-coupling step
by using the protected boronic acid BDAN (vide infra), which is inert to
transmetalation but is still able to activate a neighbouring boron species (BFs;K in

this case) (Scheme 43). To explain the inversion of stereochemistry in this coupling
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Hall invokes a model proposed by Suginome and Molander, where backside attack

of the palladium complex on the boron bearing carbon is more favourable than a

" . 88,89
traditional transmetalation step.[**™]
0 CuCl, B,Pin, O  BPin 0  BFK
R,R)-CF3-Walph KHF5, MeCN
Meo)]\/\BDAN (RRyCFyWalphos MeoJ\)\BDAN —_— Meo)J\)\BDAN

NaOtBu, MeOH o o o

THE 1t 88%, 99% ee 91%
e YT ‘

0 B-Y : Pd(OAc),, XPhos

i | ~H ; © K5CO3, PhMe/H,0 (10:1)
! MeoM‘ BDAN : o} 80 °C

: Pd(Ar ! -

0 (A ! Meo)l\/\ BDAN
i ' N |
i Proposed Transition State : 92%, 99% ee | P

Scheme 43: Stereoinvertive SM cross-coupling of 1,1-diboryl compounds.

More recently, Morken disclosed the enantioselective cross-coupling of geminal
BPins.”” By using a Taddol-based chiral ligand the enantiotopic geminal BPin can
be discriminated with excellent selectivities. While the authors did not comment on
the hybridisation of the active boron species, a large excess of KOH was required for

selectivity, suggesting that a BPin boronate is present in the reaction (Scheme 44).

PA(OAC),, (R,R) L AN 1
C)o, s * . ' '
BPin ! KOH BPin ! Me Q !
| P - = Ph ! Me /P—NMSZ !

Ph BPin  MeO dioxane/H,0, rt, 12h | 0o w
OMe Ar Ar H

82% 94:6 er i Ar=p-Me-Ph ;

Scheme 44: Enantioselective SM coupling of geminal BPins.

Morken has also demonstrated the chemo- and stereoselective cross-coupling of
vicinal BPins.”" Enantioselective diboration of terminal alkenes using a chiral Pt
catalyst yields the enantioenriched vicinal diboron compounds, which could then be
cross-coupled under similar conditions to the geminal diboron systems. Morken
suggests that rather than external activation with hydroxide the vicinal diboron
system self-activates through internal Lewis base donation, allowing for better

coordination to a reactive Pd(OH) species (Scheme 45).
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Scheme 45: Enantioselective diboration/cross-coupling sequence disclosed by Morken.

The facile introduction and application of chiral boron species through either vicinal
or geminal strategies allow for the rapid construction of enantioenriched frameworks.
Discrimination of diboron systems through chemoselective transmetalation opens up
many opportunities for the generation of molecular complexity, this burgeoning field
will likely continue to produce innovative solutions to the general problem of sp’

cross-coupling.

1.1.4.3 Chemoselective Transmetalation via Protected Boron Species

Over the last 10 years the use of protected boron species has increased dramatically,
this can mainly be attributed to the resurgence of BF;K, BMIDA, and BDAN groups.
The use of these protected boronic acids in diboron systems can be regarded as
chemoselective transmetalation, as two boron species enter the reaction but only the
unprotected boron species is free to react. The following section will describe some
recent examples of chemoselective transmetalation using protected boron species and
the respective advantages and disadvantages of each protecting group in the context

of diboron systems.

1.1.4.4 Use of BMIDA in Chemoselective Transmetalation

The use of BMIDAS in iterative cross-coupling constitutes some of the first examples
of chemoselective transmetalation and indeed, the first application of diboron
systems in the context of SM. Using anhydrous SM conditions, the Burke group
synthesised the natural product ratanhine from four simple starting materials.””
Using a cross-coupling/deprotection strategy the natural product could be

synthesised in a modular, iterative fashion in just six steps (Scheme 46).
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Scheme 46: Six-step synthesis of ratanhine through iterative cross-coupling using MIDA protected boronic
acids.

Due to the sensitive nature of the BMIDA functionality towards the aqueous basic
conditions required for SM coupling, a number of different ‘dry’ conditions have
been developed for their use. Using the mild base KF as an activator for Pd and an
electron-rich phosphine ligand, vinyl BMIDAs could be coupled effectively in the

absence of water. This technique was exploited in the synthesis of the polyene

framework of the natural product amphotericin B (Scheme 47).1"?

1. NaOH (aq), THF
Me Bra o~ BMIDA Me rt, 15 min, 90%

L BOH), L~ BMIDA

Pd(OAc),, SPhos .
KF, PhM h 96% 2. Pd(OAc),, XPhos M
s e, rt, 36 o Cs,CO.. PhMe BMIDA

45°C, 18 h, 42%

Pd(OAc),, XPhos, NaOH

THF, 45°C, 16 h Me
SN NN BMIDA

Scheme 47: Synthesis of the polyene framework of amphotericin B through anhydrous iterative SM cross-
coupling.

Burke has pushed the limits of this technology through automation; by building a

‘synthesis machine’ that performs SM cross-coupling, chromatographic purification,
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and hydrolysis of the MIDA protecting group in an iterative fashion, the synthesis of
14 different classes of small molecule can be achieved.'”*! This advance is built upon
the ‘catch and release’ purification step, which is based on the highly polar nature of
BMIDA groups. The crude reaction mixture is delivered to a silica column, which is
flushed with MeOH in Et,O to remove any impurities; the BMIDA is then washed
through the column with THF. The synthesis machine seamlessly combines
chemoselective cross-coupling of haloaryl BMIDAsS, ‘catch and release’ purification
and deprotection steps to perform multiple iterative cross-couplings in an automated
manner. The utility of this technology was demonstrated with the automated

synthesis of several natural products (Scheme 48).
O

1S BMIDA CO,tBu
z Br” ™ OtBu
OTIPS Me Me Z“Me OTIPS
x BMIDA
oo QOO 000~
OTIPS Me X
Me!

ll 2 steps

D
@ eprotect « Automated iteration phase forms backbone
[0}
« Cyclise phase provides natual product o
CF’) Purify Me .
H Me
oblongolide

Scheme 48: Automated synthesis of the natural product oblongolide via iterative SM cross-coupling.

Further contributions to this area have come from the Li group who synthesised site
differentiated diboron compounds using C-H borylation. Li showed that Ir-catalysed
C-H borylation could be performed on BMIDA containing molecules, providing an
array of aryl diboron compounds.”” These could then be chemoselectively coupled
to give functionalised aryl BMIDAs, which then in turn could be cross-coupled
(Scheme 49).
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Scheme 49: Synthesis and chemoselective SM coupling of diboron compounds.

1.1.4.5 Use of BF;K in Chemoselective Transmetalation

While the physical attributes of BF3;Ks have already been discussed, they have also
played an important role in diboron systems, facilitating chemoselective
transmetalation.

Molander first employed BF;Ks in diboron systems in 2008 when he selectively
coupled alkyl organoboranes to haloaryl BF;Ks.””) Hydroboration of vinyl bearing
BF;Ks with 9-BBN followed by in situ cross-coupling with retention of the BF;K
(Scheme 50). It is worth noting that KF is used as base in the coupling reaction,

which will help to conserve the integrity of the BF;K.

BFK ~# 9-BBN, THF
Br then Pd(OAc),, = BF 3K
Davephos, KF, rt
Pd(OAC)z, K2C03
MeOH

Most Reactive

Br
S L
. Least Reactive | _ OMe
I OMe

81% (3 steps)

Scheme 50: Chemoselective transmetalation of an organoborane over a BF;K.

Molander was able to reverse this chemoselectivity using photoredox chemistry to

6] A combination

selectively cross couple a BF;K in the presence of a BPin moiety.
of Ni and Ir catalysis is used to selectively activate an sp’ BF;K towards cross-

coupling forming a new C-C bond with an aryl bromide (Scheme 51).
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Scheme 51: Chemoselective transmetalation of a BF;K over a BPin using photoredox catalysis.

1.1.4.6 Use of BDAN in Chemoselective Transmetalation

BDANSs are another class of protected boronic acid, developed by Suginome in 2007
which are derived from the parent boronic acid and diaminonaphthalene.””) BDANs
possess broadly orthogonal reactivity to BF;Ks and BMIDASs as they are acid labile,
but completely tolerant of even strongly basic conditions (Figure 13). Similarly to
BMIDAS, they are inert to transmetalation due to donation of the nitrogen lone pairs
into the empty p-orbital of boron. As such, they have been exploited in diboron

systems to enable chemoselective cross-coupling.

e Acid labile

 Stable to aqueous basic conditions
* Nitrogen lone pairs donate !

into empty p-orbital

Figure 13: Structure and properties of DAN protected boronic acids.

In 2008, Suginome reported the preparation and application of differentially
protected diboron systems.”® Miyaura borylation of haloaryl BDANSs gave access to
monoprotected diboronic acid derivatives that could in turn be cross-coupled under
standard SM conditions while leaving the BDAN intact. The parent boronic acids
could finally be revealed in excellent yields through acidic hydrolysis (Scheme 52).

Pd(dppf)Cl,, KOAC, .~ BDAN
QBDAN B,Pin, QBDAN Pd[P(tBu)3],, NaOH |
> X =
Br DMSO, 80 °C PinB dioxane, 60 °C, 4 h
X Br
81% ©N 90%

BOH:2 5N HClaq, THF
,4h
x

I 99%

Scheme 52: Regioselective transmetalation of a BPin over a BDAN.

Intriguingly, Suginome used the large steric demand of the BDAN group to

synthesise differentially protected olefinic diboron species with complete
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regioselectivity.”” Using Ir or Pt catalysis, the unsymmetrical diboron compound 1.9
was added across terminal alkynes to give the BDAN at the least hindered side. The
resulting olefinic diboron reagents could be subjected to chemoselective cross-

coupling before deprotection of the DAN group (Scheme 53).

Me
Pt(dba)2/P[3,5-(CF3)2C5H3]3 BPi Pd(dppf)Cl
/H or [IrCl(cod)],, 1.9 )\m/BDAN K?}:‘SE )szd
Ph = ; Ph X _—

PhMe, 80 °C, 24 h THF, 80 °C, 15 h X BDAN
oo 85% Br 91%
' M i
' B-B, :( i Me
O
1 Me '

1.9

Scheme 53: Chemoselective diboration and subsequent SM cross-coupling.

While the physical properties of BDANs make them perhaps the most logical choice
for use in SM coupling, they have been underdeveloped in comparison to BMIDAs
and BF;Ks. This may be in some part a consequence of the relative difficulty of the
protection/deprotection steps. It is not challenging to imagine functionalities
(including many boronic acids) that are not tolerant of prolonged exposure to
concentrated acid. Despite this, BDANSs still hold a complimentary place alongside
BMIDASs and BF;Ks.

1.1.4.7 Aryl/Benzyl Chemoselectivity

The Crudden group has shown chemoselectivity between aryl and benzyl BPins.
Using di-nucleophile 1.10 the authors demonstrated that in the absence of Ag salt
additives aryl BPin couple exclusively in the presence of benzylic BPin nucelophiles.
The coupled product 1.11 can then be effectively reacted in a second SM coupling

).1% Previous work from the group has

under Ag mediated conditions (Scheme 54
shown that despite being unreactive towards SM under standard conditions, benzylic
BPin couple effectively when Ag,0 is used as an additive. While the origin of this
reactivity is currently unknown, the phenomenon is relatively general and can also be

applied to allylic BPin.!""!
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Scheme 54: Sequential SM couplings enabled by aryl/benzyl chemoselectivity.
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1.2 Project Background

1.2.1 Boron speciation

In this section the concept of boron speciation will be introduced and examples of
this phenomenon in the literature will be discussed, including its application and

importance in SM cross-coupling.

Boron speciation refers to the exchange of ligands and a change in oxidation state of
boron through a series of equilibria. A simple and representative example of boron
speciation is the exchange of pinacol ligands on boronic acids under basic conditions
(Scheme 55). When a boronic acid and a BPin are treated with aqueous base, the

pinacol ligand will transfer rapidly to give a statistical mixture of products.!'*”!

/©/B(OH)2 BPin  H,O (5 equiv) /©/Bpin /©/B(OH)2 ©/BPin ©/B(OH)2
Ph O THF Ph Ph

42% 58% 58% 42%

Scheme 55: Boron speciation between B(OH), and BPin.
Brown and Matteson were able to exploit the rates of transesterification of vicinal
diols to scavenge pinene-derived chiral auxiliaries, which form very stable boronic
esters.'!™ Further studies into the stability of boronic esters towards

transesterification established an order of stability for various chiral and achiral

. . 105
boronic esters (Figure 14)./'"]
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Figure 14: Order of hydrolytic stability for common boronic esters.

This order was established through the treatment of a boronic ester with a range of
vicinal diols and measuring the equilibrium ratios of the two resulting boronic esters

(Scheme 56).
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Scheme 56: Measurement of relative boronic ester stability through equilibration.
A more detailed study into the effect of reaction media on diol conjugation came
from Springsteen and Wang.!'""*'°”) Through a series of highly intricate experiments
the authors proved that the optimum pH range for diol conjugation was between the
pK, of the boronic acid and the diol. While the pK, of boronic acids can vary
considerably (between 4-10), diol conjugation is typically most favoured under basic
conditions (pH 8-10). From the data presented, it is difficult to draw any conclusive

trend as to what effect the electronics of the boronic acid has on conjugation, despite

the prevailing idea that more acidic boronic acids conjugate more rapidly.

While these works laid the foundations for understanding boron speciation and
ligand exchange, the importance of their observations in the synthetic sense was not
realised until the work of Schauss and Chong. Chong used catalytic chiral diols to

induce asymmetry in the conjugate addition of alkynes to a, B-unsaturated ketones

(Scheme 57).['%
CCC
OH
OH Ph
o O 20 mol% | |
|

Ph—=—B(OPr), o
PhM pp ———————>

CH,Cly, rt-reflux Ph Ph

95%, 82% ee
Scheme 57: Asymmetric 1,4-addition of alkynes via boron speciation.
While 1,4-addition using stoichiometric quantities of chiral boron species was well
documented, the use of catalytic chiral diol presented significant challenges (Scheme
58).
* The chiral diol must be significantly more hydrolytically stable than the

achiral ligand to achieve transesterification.

* The chiral, catalytic boron species must be significantly more reactive
towards the transformation than the achiral starting material in order to gain

stereocontrol.
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* The chiral ligand must be able to be released at the end of the reaction to

complete the catalytic cycle.

[ R '
" QiPr OO iPh = B(O/Pr),
J'\/CEB\OPF on L__.__Inactive |

Ph” 7" ph OO on

|

Boron Speciation iPrOH
Boron Speciation
iProH

Scheme 58: Catalytic cycle for asymmetric 1,4-addition.

Judicious choice of chiral diol was essential for high yields and enantioselectivities.
It was found that 1,1-bi-2-naphthol (BINOL) type ligands were effective, while
diisopropyl tartrate, another commonly used ligand in asymmetric boron chemistry,
only delivered racemic product. Interestingly, most standard achiral diols, such as
pinacol and ethylene glycol did not catalyse the reaction, and acyclic alcohols were

likewise ineffective.

After this landmark advance in asymmetric boron chemistry, this speciation-driven
method was employed in a number of other transformations. One year later, Schauss
reported the use of similar BINOL catalysts to effect catalytic asymmetric allylation

of ketones (Scheme 59).1'%"!
CCL
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Q x
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Scheme 59: Asymmetric allylboration via boron speciation.
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This elegant work enables the enantioselective formation of two adjacent chiral
centres, and provides a facile solution to the allylboration of ketones, which had
shown to be difficult substrates. Previous work in the area had required metal
catalysis or stoichiometric chiral reagents to achieve high yields and selectivities.
This methodology was subsequently expanded upon extending the scopes of both

boron conjugate addition and allylation.!'*''"]

Goodman and co-workers have elucidated the mechanisms of these two
transformations through computational means. Both Chong’s work on 1,4-addition
of boryl alkynes and alkenes and Schauss’ work on allylboration were shown to be
driven by the Lewis acidity of the boron atom. Computational analysis determined
that the ‘twist’ of the BINOL catalyst (147 ° vs. 180 ° for ethylene glycol derivative)
reduces the ability of the oxygen lone pairs to donate into the empty p-orbital of
boron, increasing its Lewis acidity. This observation can explain why other diol

catalysts were ineffective in these reactions.!''*''%

1.2.2 Speciation in SM coupling

While boron speciation has been used extensively in other areas of chemistry, it has
only recently been applied to SM coupling. In 2014, Watson reported the
chemoselective synthesis of boronic esters by controlled boron speciation. In this
work, the authors demonstrated the formal homologation of aryl and vinyl boronic
esters by controlling the solution speciation of pinacol and MIDA esters during the

SM reaction (Scheme 60).!'"”!

BPin _BMIDA  pd cat.

A g + HO-BPin
o I

. Me
New C-C bond _BPin _B(OH), HO = Me

- N I
New BPin ester HO '\'/’I’eMe

controlled speciation

Scheme 60: Chemoselective synthesis of boronic esters via controlled speciation.

The cross-coupling of an aryl BPin and a haloaryl BMIDA under aqueous basic
conditions afforded biaryl MIDA 1.9, and the often overlooked by-products of any
SM reaction; boric acid and pinacol. The BMIDA group is then slowly hydrolysed to
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reveal a biaryl boronic acid, which will rapidly conjugate to pinacol at high pH to
give the homologated BPin product. The key to successful completion of the reaction
was the careful balance of the reaction medium, where an excess of water or base
was found to enable premature hydrolysis of the MIDA functionality, leading to
oligomeric products. This was modulated through judicious choice of base; by
establishing an internal reservoir by exploiting the hygroscopicity of the inorganic
base, slow release of water into the organic phase could be effected. K;PO4 was
found to provide the ideal level of hygroscopicity to mitigate MIDA hydrolysis while

delivering a basic biphase of sufficient pH to control the boron speciation events.

The delivery of a BPin ester under active SM conditions resulted in an extension of
the protocol where a second aryl halide or haloaryl BMIDA was added to the
reaction mixture upon formation of the BPin intermediate, leading to a further SM

coupling to give a triaryl or doubly homologated product (Scheme 61).
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Scheme 61: Sequential SM cross-couplings via controlled speciation.
As part of a more detailed study into this speciation phenomenon, the methodology
was further extended to include the synthesis of BMIDAs.'" After a detailed
examination of the reaction parameters, the authors found that if the reaction was
carried out at room temperature, the cross-coupled BMIDA product could be
obtained. This showed that, at reduced temperatures, the reaction medium was
benign enough to retard hydrolysis and subsequent speciation. This study also
revealed that the homologation protocol was applicable to the homologation of
boronic acids and catechol esters, albeit with the latter being formed in low yields

due to instability of the reaction products (Scheme 62).
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Pd(dppf)Cl, (4 mol%)
or

B(OR), _BMIDA Pd(OAc); (4 mol%), SPhos (8 mol%) _B(OR)2
X~ K3PO4 (3 equiv), H,O (5 equiv), THF
T°C
_BMIDA _B(OH), _BcCat
T=22°C T=90°C T=90°C
B(OR), = BPin B(OR), = B(OH), B(OR), = BCat

Scheme 62: Formal homologation of boronic esters via boron speciation.

The utility of the boronic acid products and the relative dearth of facile methods for

their preparation inspired the optimisation of this boronic acid protocol. Watson

described the elegant synthesis of homologated boronic acids as a platform for

diversity. By tuning the base/water ratio the products could be synthesised in good

yields, including the core of a BET bromodomain inhibitor, which was then

derivatised using a range of standard boron transformations (Scheme 63).

OMe

Me B(OH),
~ Me
N Br

Scheme 63: Homologation of aryl boronic acids via controlled speciation as a platform for diversity.

[116]

Core

OMe
Pd(dppf)Cl,
KsPOs  Me
Hzo —
S B(OH), —=
BMIDA THF,90°C, =
4h Me
83%

Tunable vector
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1.3 Aims

Previous work in the Watson group has established that by careful control of the
reaction media a chemoselective boronic ester synthesis can be achieved. This study
exhibited nucleophile chemoselectivity between a BPin and a BMIDA but also
speciation control to enable pinacol transfer from the HO-BPin by-product to a
newly formed boronic acid to provide a homologated BPin. As part of this study, the
BPin product could be cross-coupled effectively with a second bromide electrophile.
This result demonstrated that the Pd catalyst was still active towards a further cross

coupling.

With this knowledge, it was proposed that by exploiting electrophile reactivity
gradients both cross-couplings could be achieved without any intervention. This
methodology would enable the one-pot assembly of complex carbogenic frameworks
that are only limited by the availability of the borylated and halogenated starting

materials (Scheme 64).

B Pd Cat. o R
RI-BPin RZ-BMIDA | |]/ V= T
cl~ Ty R v
Scheme 64: Proposed tandem chemoselective SM cross-coupling.

Based on previous work, it was clear from the beginning of this study that several

difficulties had to be overcome for success.

*  While cross-coupling a bromide in the presence of a chloride is facile through
the use of a less activated Pd catalyst, the chemoselective cross-coupling of

both halides in one-pot is unprecedented.

* The conditions required for two consecutive SM cross couplings must be

compatible with the boron speciation required for nucleophile control.

* The yields achieved in the two-step one-pot process were only moderate, with
the mass balance consisting of by-products derived from an incomplete
second coupling. A more effective method for the second cross-coupling

must be developed.
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With these challenges in mind a set of clear aims were established for the completion
of the project.

1. Develop a one-pot tandem SM coupling.
2. Gain insight into the chemoselectivity of dihalo and diboron systems.
3. Establish a scope to determine the generality of the reaction.

4. Apply the methodology to medicinally relevant scaffolds.

43



1.4 Results and Discussion

The work in this chapter is based on the following publication:

C. P. Seath, J. W. B. Fyfe, J. J. Molloy, A. J. B. Watson, Angew. Chem. Int. Ed.
2015, 54, 9976-9979.

The work described herein was performed with Dr J. W. B. Fyfe and Mr J. J. Molloy.

Interrogation of this novel methodology was started with the workhorse reaction of
phenylboronic acid, pinacol ester 1.10, 4-bromophenylboronic acid, MIDA ester
1.11, and aryl chloride 1.12 (Scheme 65).

BMIDA BMIDA|
Pd cat.
Ph—BPin /©/ /@/\COzMeK oo /©/
cl 3P04, M0 | pp

1.10Br 1.11 THF, 90 °C 1.13
,,,,,,,,,,,,,,,,,,,,,, HO-BPin
‘ 1.14

: A7 co,Me l

3 R ! ‘ 1.12 BPin
Hotn e atlie e
| Ph ' Ph 1.16 Ph

1.15

Scheme 65: Workhorse reaction for development.

Initial evaluation of the reaction conditions based upon previous work led to no
conversion to the desired product, only returning biaryl BPin compound 1.15 (Table
I, entry 1). This was indicative of slow oxidative addition to the chloride
electrophile. Moving to a more activated catalyst system Pd(OAc),/SPhos led to low
conversion to the desired product, with the mass balance consisting of unreacted
biaryl BPin and the undesired coupling product 1.17, which arises from a lack of
electrophile chemoselectivity (Table 1, entry 2).

Table 1: Evaluation of base/water relationship.

BMIDA COMe Pd (cat) O CO,Me
Ph—BPin /@ —
B o K3PO, (X eqiuv) O
1.10 1.1 1.12 Hz0 (Xequiv) 116

THF, 90 °C, 24 hP

Entry Catalyst K;PO, equiv.  H,0 equiv  Conversion” (%)
1 Pd(dppf)Cl, 3 5 0
2 Pd(OAc),/SPhos 3 5 17
3 Pd(OAc),/SPhos 3 10 35
4 Pd(OAc),/SPhos 3 20 53
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5 Pd(OAc)/SPhos 4 20 88
6 Pd(OAc),/SPhos 4 30 41
7 Pd(OAc)/SPhos 4 40 25
8 Pd(OAc),/SPhos 5 20 80

aConversion to 1.16 determined by HPLC against a caffeine internal standard. See Experimental
section for further details.

Evaluation of the stoichiometric ratio between water and base led to a significant
increase in the productivity of catalysis; demonstrating the need for additional
equivalents of both water and base to facilitate a second sequential cross-coupling
(Table 1, entries 3-5). Addition of extra water led to higher conversion to 1.16 but
significant amounts of oligomer products, 1.18, arising from premature hydrolysis of
BMIDA species (Table 1, entries 6-7). This uncontrolled hydrolysis could be offset
by the addition of one equivalent of K3POy that pleasingly led to good conversion of
the desired product.

These data support the suggestion that K;PO,4 has a desiccant effect in the reaction
media, creating a saturated aqueous layer, allowing slow release of water into the
organic phase. This slow release of water was vital for control of hydrolysis and

subsequent speciation events in the reaction media.

A water study at four equivalents of base showed that addition of extra equivalents of
water (Table 2, Graph 1) led to a decrease in conversion to 1.16 and a commensurate

increase in oligomer products.
Table 2: Evaluation of water equivalents.

Pd(OAc), (4 mol%)
BMIDA CO,Me  SPhos (8 mol%) COMe
Ph—BPin /=
Br cl K3POy4 (4 eqiuv) O
1.16

H,0 (x equiv)
1.10 1.1 1.12 THF. 90 °C, 24 h Ph

Entry Water equiv Conversion” (%)
1 5 48
2 10 47
3 15 67
4 20 88
5 25 66
6 30 40
7 35 37

45



8 40 23
9 50 17

aConversion to 1.16 determined by HPLC against a caffeine internal standard. See Experimental
section for further details.
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Graph 1: Relationship between water equivalents and conversion. Determined by HPLC.

A time study showed that while the reaction progressed to almost 80% in 8-10 h, full
conversion was not reached until 24 h; this was consistent with previous work in the
group that had showed that full speciation of the MIDA functionality to the
corresponding BPin required extended reaction times.!''” Prolonged heating after
this time led to a slight decrease in conversion to 1.16, arising from hydrolysis of the

ester functionality (Table 3, Graph 2).

Table 3: Effect of time on reaction conversion.

Pd(OAc); (4 mol%)
BMIDA /@Acone SPhos (8 mol%) O CO Me
Ph— BPln —_—
K3POy4 (4 eqiuv) ‘
1.16

H,0 (20 equiv)
THF, 90 °C, X h Ph

Entry Time (h) Conversion” (%)
1 2 27
2 4 58
3 8 79
4 12 81
5 16 82
6 24 88
7 48 81
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"Determined by HPLC
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Graph 2: Effect of time on reaction conversion. Determined by HPLC.

Following this, a brief evaluation of the stoichiometry showed that 1.3 equivalents of

the BPin were optimal for full conversion (Table 4, Graph 3).

Table 4: Effect of BPin stoichiometry on conversion.

Pd(OAc), (4 mol%)
BMIDA CO,Me  SPhos (8 mol%) COMe
Ph—BPin -
Br ol KsPO, (4 eqiuv) O

1§<12quiv b 112 T:%,Og(geg,q ;zil\l)h Ph 1.16
Entry BPin equiv Conversion” (%)
1 1 71
2 1.1 76
3 1.2 34
4 1.3 90
5 1.4 90
6 1.5 38

aConversion to 1.16 determined by HPLC against a caffeine internal standard. See Experimental
section for further details.

47



100

90

80

Conversion %

70

60
1 1.1 1.2 1.3 1.4 1.5

1.10 (equiv)

Graph 3: Effect of BPin stoichiometry on conversion to 1.16. Determined by HPLC against a caffeine
internal standard.

A survey of different catalyst systems showed no further improvement although
other Buchwald ligands did provide reasonable conversion (Table 5). Unsurprisingly,
use of less electron-rich catalysts provided no conversion; as they cannot oxidatively

add into aryl chlorides.

Table 5: Effect of ligand/catalyst on conversion.

BMIDA COzMe Pd (cat) COzMe
Ph—BPin —_
Br al K3PO, (4 eqiuv) ‘
1.10 1.11 112 Hz0 (20 equiv) 116

THF, 90 °C, 24 h

Entry Catalyst/Ligand Conversion” (%)
1 Pd(OAc),/SPhos 88
2 Pd(OAc),/CyJohnPhos 69
3 Pd(OAc),/XPhos 34
4 Pd(OAc),/DavePhos 76
5 Pd(PPhs)4 0
6 Pd(dppf)Cl, 0
7 Pd,(dba); 0
8 Pd,(dba);/SPhos 0

aConversion to 1.16 determined by HPLC against a caffeine internal standard. See Experimental
section for further details.

Exploration of different bases only showed decreased conversions; this was not
unexpected, based on previous work. Extensive studies on the role of the base in

MIDA hydrolysis and boron speciation have shown that K;PO4 is unique in its
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ability to create a saturated biphasic medium, allowing for controlled hydrolysis of

the MIDA functionality (Table 6).

Table 6: Effect of base on conversion.

Pd(OAc), (4 mol%)
' /@/BMIDA /@ACmMe SPhos (8 mol%) O CO;Me
Ph—BPin —
Br cl Base (4 eqiuv) O
1.16

H,0 (20 equiv)
1.10 1.1 1.12 THF. 90 °C, 24 h

Entry Base Conversion” (%)
1 K;5POy4 88
2 KOH 6
3 K,COs3 41
4 Cs,COs 65
5 K>;HPO, 0
6 Na,COs3 0

aConversion to 1.16 determined by HPLC against a caffeine internal standard. See Experimental
section for further details.

Significantly, the optimum reaction conditions were effective with only slight
excesses of the aryl BPin and aryl chloride, demonstrating that the yields and
chemoselectivity are not statistically biased through the use of large excesses of a
single component or through electronic tailoring of the nucleophile. The reaction
rates of the optimised system are harmonized so that aryl BPin reacts only with
bromoaryl BMIDA 1.11 to deliver biaryl BMIDA 1.13. The corresponding MIDA
can then undergo hydrolysis and boron speciation to give biaryl BPin 1.15 at a rate
that avoids oligomerization. Meanwhile, the reaction media and catalyst are still able

to facilitate another effective cross coupling.

With optimal conditions in hand the scope of the methodology was explored

(Scheme 63).
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_ Pd(OAC), (4 mol%) /.
BPin _BMIDA Ol SPhos (8 mol%) (r)
Br~ K3POy4 (4 equiv)
H,0 (20 equiv)
1.16a-

THF, 90 °C

OMe

1.16a: 82% Me  1.16b: 88% COzMe 1.16c¢: 86%
C\‘/‘ 3 -
1.16d: 83% 1.16e: 85% 1.16f: 64%
Ne Me
=
U
CF3
1.16g: 60% 1.16h: 65% 1.16i: 84%
/N ‘ (@] Me O
X X Me—N' S O A \
N= s «
1.16j: 76% 1.16k: 87% 1.161: 87%

Scheme 66: Substrate scope for chemoselective tandem SM cross-coupling using conjunctive haloaryl
BMIDA components. Isolated yields. Substrates 1.16b,d, and j were purified by JJM.

A broad range of coupling partners were tolerated in the process including
heteroaromatics, alkenyl species, and a range of standard functional groups —
ketones, esters, nitriles, ethers, and fluorinated species. The substrates attempted
typically worked very well or very poorly, with those that worked well shown in
Scheme 66. The success of any substrate was often determined by either (i) the
chemoselectivity in the first step of the process, (i.e., whether the BPin couples to the
bromoaryl BMIDA or the aryl chloride) or (i1) the efficiency of the second cross
coupling (i.e., how much of the intermediate biaryl BPin couples to the remaining
aryl chloride). The mass balance of unsuccessful substrates consisted of biaryl
resulting from (i) or biaryl BPin resulting from (ii). For case (i), this could be
influenced by the solubility of the halide-bearing coupling partners. Aryl BMIDAs
are typically highly insoluble, and in extreme cases their insolubility will invert the
selectivity of oxidative addition leaving the BPin to couple with the more soluble
aryl chloride. In addition, when particularly activated chlorides are used (e.g.,
pyrazine, pyrimidine) the chemoselectivity of the first coupling can invert, once

again producing biaryl compounds exclusively.

50



For case (ii), when particularly electron-rich chlorides are used, or Lewis basic
moieties that are able to deactivate the palladium catalyst the reaction can falter
before completion of the second cross coupling. Some unsuccessful substrates are

shown in figure 15.

COgMe

\
e
V.
O%
O
8
5

5

F g N /CN

= |
N/
S ~
e .
Me”
Me
Me
~ "Me
X
(6]

\ ~
Due to the lack of diversity in commercial haloaryl BMIDAs, it was determined to

Figure 15: Unsuccessful substrates.

be advantageous for the procedure to be transferable to a system utilising dihalide
starting materials. These common building blocks would react with two
differentiated boronic acid nucleophiles, all of which are more commercially

available than the corresponding haloaryl BMIDAs.

We began our investigation by exposing dihalide 1.20 to phenyl BMIDA 1.19 and
BPin 1.21 under the previously optimised conditions. To our dismay, conversion to
the desired triaryl product was only 67% with the mass balance of the reaction

consisting of unselective coupling products 1.24 and 1.25 (Scheme 64).
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cl
Pd cat.
Ph—BMIDA COMe_T2°F- Ph—BMIDA
K3POy4, HO
1.20 PinB Ph

1.19Br THF, 90 °C 1.22

HO-BPin1.14
O CO,Me l

cl
O /©/ Ph—BPin
Ph 118 Ph 122

Scheme 67: Development of iterative cross coupling using dihaloarenes.

These by-products arise as a result of unselective oxidative addition and a preference
for exhaustive coupling as seen in the work of Hu and Larossa.®*®' It can be assumed
that the rate of MIDA hydrolysis can be controlled through alterations to the
temperature and reaction medium. With this in mind, achieving selectivity in the first

cross-coupling will likely determine the reaction outcome.

At this point a switch in the optimization substrate was made to a dihalopyridine; this
was chosen because pyridine cores were not tolerated in the previous process and are
highly activated towards oxidative addition. We hypothesized that by optimising on a
‘difficult’ substrate the scope would be more general. Optimization began with the
screening of several ligands on 2,6-dihalopyridine 1.27 at three temperatures to
access selectivity. In general, selectivity was better at lower temperatures, with less

electron-rich ligands (Table 7).

Table 7: Mono vs exhaustive selectivity with alteration of catalyst and temperature.

Pd(OAc), (4 mol%)
) A _Ligand (8 mol%)
TolBPin |
Br N >c)  KaPOjy (4 eqiuv)
1 28 1 29

H,0 (20 equiv)

1.26 1.27 THF, 90 °C, 24 h
Entry Temp (°C) Ligand Ratio® Full conversion® (Y/N)
(1.28/1.29)
1 23 SPhos 88/12 N
2 23 DavePhos 100/0 N
3 23 PPh; 100/0 N
4 70 SPhos 44/56 Y
5 70 DavePhos 65/35 Y
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6 70 PPh; 70/30 Y
7 90 SPhos 36/63 Y
8 90 DavePhos 54/45 Y
9 90 PPh; 80/20 Y
10 90 RuPhos 36/64 Y
12 90 dppf 79/21 Y
13 90 dppp 85/15 N

aConversion of 1.27 starting material. Determined by HPLC against a caffeine internal standard. See
Experimental section for further details.

This short study showed Pd(OAc), with either DavePhos or PPh; at room
temperature to give complete selectivity for the bromide electrophile, with SPhos
giving mixtures of mono-, 1.28, and bis-coupled, 1.29, products even at room
temperature. The best conditions from this study were then used on a less activated
system to probe the reproducibility; on the less activated aryl system 1.20, both
DavePhos and PPh; ligand combinations did not produce any of the bis-coupled

product 1.24, and SPhos was once again inferior (Table 8).

o
Br

Table 8: Effect of ligand on selectivity.

i CO,Me
() coue PO Lo S

’ K3POy4, H,0O
1.20 PinB 1.21 THE 90°C 116
Entry Ligand Ratio” (1.16/1.24)
1 PPh; 100:0
2 DavePhos 100:0
3 SPhos 88:12

aConversion to 1.16 determined by HPLC against a caffeine internal standard. See Experimental
section for further details.

At this point we proceeded with a catalyst system of Pd(OAc), and DavePhos as
PPh; was not able to effectually couple wunactivated aryl chlorides. A
time/temperature study was then executed to gain maximum selectivity. We
postulated that by performing the reaction at room temperature until the first
coupling is complete (T1), then increasing the temperature to hydrolyse the BMIDA
(T2), high levels of selectivity could be achieved in a minimal amount of time (Table

9).
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Table 9: Effect of time on conversion.

M
o BMIDA /©/C' /@ﬂcone Pd(OAc),, DavePhos O COMe
40 PinB K3PO4, H0 O

119 Br 1 121 THF 90°C 116
Entry T1 (h) (rt) T2 (h) (90 °C) Conversion” (%)
1 2 24 86
2 4 24 86
3 6 24 92
4 8 24 96
5 16 24 88
6 8 2 6
7 8 16 91 (isolated)
8 8 20 93

aConversion to 1.16 determined by HPLC against a caffeine internal standard. See Experimental
section for further details. T1 refers to the time the reaction was run at the lower temperature. T2
referes to the time the reaction was run at increased temperature.

The study showed that six to eight hours at room temperature was required for
optimal conversion and following this, a further 16 hours was required for boron
speciation and cross coupling of the second boron nucleophile. Isolation of product

1.16 under the optimum conditions gave a 91% yield.

With a fully optimised system, the scope of the reaction was explored. Once again
the reaction proved to be tolerant of a wide range of functionality in all three
components. Heterocyclic and vinylic groups could both be smoothly incorporated in

good to excellent yields (Scheme 68).
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, Pd(OAC), (4 mol%) /‘
BPin _Cl BMIDA pavePhos (8 mol%) @
Br~ K3POy4 (4 equiv)

H,0 (20 equiv)

THF, rt-90 °C .16a,m-w
‘/‘/‘/\ Cone’)\/j\‘\’r FSCO\EP\L
1.16a: 91% 1.16m: 74% 1.160: 69%
OMe
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CN Me Me
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\y N
o \N| X X
Me! H
1.160: 84% 1.16p: 79% 116q 97%
1.16s: 929% Me 116t 81%

1.16u: 90% AcHN 1.16v: 89% 1.16w: 77%

Scheme 68: Substrate scope for chemoselective SM cross coupling using conjunctive dihalide components.
Isolated yields.

During the synthesis of the substrates for this scoping exercise it was noted that
almost all the reactions gave desired product, but for a high yield to be obtained the
initial room temperature coupling must proceed completely and selectively. This
could be hampered by slow cross-coupling due to steric concerns or an electronic
bias for the chloride. While substrates in this process were generally effective, a
number of unsuccessful cases were noted (Figure 16). Typically, low levels of
electrophile selectivity caused complex mixtures of products that could not be
separated. Additionally, some Lewis basic functionalities led to a decrease in the

productivity of the catalyst.
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Figure 16: Unsuccessful substrates.

After exploiting the standard reactivity gradient for electrophile control, we sought to
use specific and subtle differences in dibromo- and dichloro-electrophiles to further
exemplify our tandem process. While electrophile selectivity has been demonstrated
in a great many dihalide systems, we chose four different scaffolds based on four
different fundamental principles for achieving chemoselectivity.

* Selectivity based upon electronic bias.
* Selectivity for vinyl halides over aryl halides.
o Selectivity for sp” halides over sp halides.

* Selectivity for mono-coupling over exhaustive coupling.

2,4-Dichloropyrimidine was used to exploit electronic bias, first reacting at the 4-
position followed by the 2-position. The high reactivity of this substrate required the
use of a much less active catalyst than the Buchwald ligand systems previously
employed in this work. Pd(dppf)Cl, proved to be effective for attaining selectivity at
room temperature. However in order to facilitate the second cross coupling the
reaction was heated to 90 °C for 48 hours. Despite the extended reaction time, the

tandem cross-coupled product 1.30 was obtained in good yield (Scheme 66).

Vinyl halides are more reactive toward oxidative addition; this is likely due to a
favourable agostic interaction between the m-system of the olefin and the Pd’
complex."'” In order to access this chemoselectivity a simple styrenyl dibromide

was used. Once again, optimal chemoselectivity was attained using the less activated
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Pd(dppf)Cl; catalyst and extended reaction times were required for good conversion

to the styrenyl product 1.31 (Scheme 66).

. ~. X ~ 2 N
R'-BPin SOOI, T R 1%t coupling
R2-BMIDA X~ Sa- N\ R1J~‘~v 2n coupling

1.30-1.33

|
N F. —
)'\j\ Pd cat. Ij)\N
c N el ; Voo "

1.30: 70%

(0]
X Br
/©/\/ Pd cat. N
Br NS

1.31: 79%

/@ABT Pd cat._ O O
cat.
Me-nN" X C
Br © NN Fs

= 1.32:84%

Br
e s 0F

Br
O

1.33: 60%

Scheme 69: Chemoselective tandem Suzuki-Miyaura cross-couplingusing dibromo and dichloro
electrophiles. Isolated yields. Reactions performed by JWBF.

The preference for oxidative addition of Pd into an sp” halide over a sp® halide is also

likely derived from agostic interactions between the Pd catalyst and the aryl ring.

While this phenomenon is less pronounced in an aryl system than an alkenyl system,
the effect still renders the aryl halide more reactive toward oxidative addition than an
unactivated sp> halide. To exploit this reactivity, we chose 4-bromobenzyl bromide
as the model system, the benzyl halide can be considered as pseudo-aromatic as it
has no B-hydrogens, and as such is more stable to SM coupling than other sp® halides
that can undergo PB-hydride elimination after the oxidative addition step. This
scaffold was effectively employed in the tandem cross-coupling using Pd(dppf)Cl; to
give 1.32 in good yield (Scheme 66).

The difference in bond strength (bond dissociation energy, BDE) between a
Csp’(aryl)-Br bond and a Csp’(benzyl)-Br bond was also considered, however, the
experimental bond strengths for both bonds (Csp’(aryl)-Br — 84 kcal/mol vs.
Csp’(benzyl)-Br — 63 kcal/mol) reported by Blanksby and Ellson"'™® do not correlate
with chemoselectivity. Indeed, by this metric, benzyl chlorides (Csp’(benzyl)-Cl — 74
kcal/mol) would couple preferentially over aryl bromides and at a similar rate to aryl

iodides (Csp?(aryl)-I — 67 kcal/mol).
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Further analysis of this data shows that while selectivity between aryl bromides and
chlorides should be relatively straightforward, with a AAH;93=13 kcal/mol, the small
difference between aryl and vinyl bromides AAHyos =3.2 kcal/mol should make
chemoselectivity in this system more challenging. In practice, the relative
chemoselectivity across the scope of this study did not purely reflect the BDE of the
substrates. For this reason, we propose a more favourable catalyst pre-coordination
to the m-system provides levels of selectivity that are outwith the experimentally

derived BDEs.

The last dihalide system employed was 1,4-dibromobenzene, which has been shown
to undergo either selective mono-coupling or exhaustive coupling depending on the
reaction conditions.”® We envisioned that through selective mono-coupling of the
BPin to the dihalide and subsequent hydrolysis of the BMIDA, we could achieve two
chemoselective SM couplings without the use of any electrophile bias. This
challenging tandem process was carried out without the need for any change in the

reaction medium or catalyst system to provide 1.33 in moderate yield (Scheme 66).

After exploring the tandem process across a range of
multinucleophile/multielectrophile systems, we sought to demonstrate the synthetic
applicability of this method in the synthesis of the BET bromodomain inhibitor
1.39.""1 Employing the optimised method to conjunctive bromoaryl BMIDA 1.34,
commercial dimethylisoxazole BPin 1.35, and benzyl chloride gave the core
scaffold, 1.38, of the bioactive molecule in 70% yield in one synthetic operation

(Scheme 70).

PinB OMe
Me Pd(OAc), (4 mol%)
N 1.35 SPhos (8 mol%)_ Me
*;3%032(5‘ eq”"’)) N BMIDA
BMIDA e 2 equiv M 1.36
THF, 90 °C O e
Ph” > Cl
OMe OMe
+ 2 x chemoselective oxidative addition| Me Me
+ 2 x chemoselective transmetallation - )
» chemoselective speciation control N7 | N7 | BPin
\O Ph \O 1.37
Me Me
1.38: 70% Ph>cl

Scheme 70: One-pot synthesis of BET bromodomain scaffold. Isolated yields.
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This process demonstrates chemoselective sp>-sp’ SM coupling, boron speciation,
and a subsequent sp>-sp’ SM cross-coupling to considerably shorten the route to this
important class of tool compounds. From the basic carbon scaffold, oxidation of the

benzylic position was proposed to access the target compound. A range of oxidation

methods was employed from the literature, with no success (Scheme 71).12¢1%?]
OMe OMe
Me [Ox] Me
/ y [0]
N L N T
© Me © Me

MnO,, DDQ, PCC - No reaction
Scheme 71: Attempted oxidation of bromodomain scaffold.
However, using diphenylmethane as a surrogate, oxidation of the benzylic position
was realized through the use of NBS, which delivered benzophenone in quantitative

yield (Scheme 72).1'*

[0}

Scheme 72: Oxidation of diphenylmethane. Isolated yields.

[Ox]

Br, - N.R.
NBS, AIBN - N.R.
NBS - quant

This reaction presumably proceeds through the intermediacy of a geminal dibromide
that upon hydrolysis gives the ketone. Upon application of this method to the desired
BET inhibitor, none of the desired product was detected. A [M+Br] peak indicated
bromination of the molecule, but not at the desired benzylic position. Fortunately,
application of more strongly oxidizing conditions (KMnQOj,) led to good conversion
to the desired ketone product (Scheme 73). Reduction of the ketone using NaBH4
gave the desired benzyl alcohol 1.39 in 57% over two redox steps. This novel path to
this molecule represents a significantly shorter route than the published synthesis of

six steps by the Conway group.!'"”!

OMe OMe
Me 1. KMnO, Me
e re— OH
NG | 2. NaBH, NG |
S Ph S Ph
Me Me

1.39: 57% (2 steps)

Scheme 73: KMnO, oxidation followed by reduction to provide bromodomain inhibitor. Isolated yield.
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1.5 Conclusions

In conclusion, a tandem chemoselective SM cross-coupling procedure has been
developed.l"*"! In this protocol we demonstrated, for the first time, simultaneous
nucleophile and electrophile control by exploiting boron speciation. Careful control
of the reaction media is key to balancing the rates of MIDA hydrolysis with SM
cross-coupling. This procedure was applied to the synthesis of the BET

bromodomain inhibitor 1.39.

Throughout the reaction development, the rate of MIDA hydrolysis was shown to be
the most important factor for establishing nucleophile selectivity. The stoichiometry
of base and water were vital to temper the hydrolysis step. Use of strong base led to
rapid hydrolysis and subsequent oligomerization; less hygroscopic bases also
resulted in premature hydrolysis. The amount of water present in the reaction also
had a profound effect on chemoselectivity, while hydrolysis of the MIDA
functionality only requires five equivalents of water; the efficiency of the second
cross-coupling is severely impaired. An additional 15 equivalents were needed to
ensure completion of the second SM reaction. This is likely due to the availability of
hydroxide, which is required for the formation of the catalytic oxo-palladium

species.

Another key conclusion from this study was the ligand—controlled electrophile
chemoselectivity. Achieving selectivity between chloride and bromide electrophiles
in mono-boron systems is relatively facile; use of a catalyst that is not active enough
to react with chloride electrophile can ensure complete chemoselectivity. In multi-
boron systems where both electrophiles are required to react, achieving selectivity is
more difficult. During this study it was shown that very minor variations in the
electronics of the ligand employed can dramatically affect selectivity. Use of
Buchwald ligands was important for facilitating both effective cross-coupling and
high levels of selectivity. The versatility of the set of ligands developed by the
Buchwald group allows for effective and rapid optimisation of chemoselective

Processes.
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Another aspect of interest that was uncovered during the course of this work was the
differences in reactivity in dibromo- and dichloro- electrophiles. While examples of
chemoselective cross-coupling using these dihalides are known, they are uncommon,
and the levels of chemoselectivity in these systems have never been leveraged
towards multi nucleophile systems. We found that even subtle differences in

reactivity between halides could be utilised for chemoselective catalysis.
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1.6 Future Work

While the utility of this process towards the synthesis of bioactive compounds was
demonstrated with a BET bromodomain inhibitor, the methodology could feasibly be
utilised in high throughput array chemistry to develop structure activity relationships

around COX-2 (Rofecoxib), or AT1 inhibitors (Valsartan) (Scheme 71)'2*126]

Rofecoxib Valsartan

Oy OH N=N
M N NH
e N Q
M
efo O !
Me

O_OH
Me\;N N=N
N NH
T /\©\
° o BPin Il
BMIDA
Me Br

SOzMe

Scheme 74: Tandem SM bond disconnections for block buster drugs.

Many bioactive scaffolds contain biaryls and many can be disconnected back to two
discrete cross-coupling steps. With the high throughput purification techniques
available to industrial synthetic chemists, array-like synthesis of complex
frameworks through chemoselective cross-couplings could feasibly be used to

prepare a series of analogues efficiently.

In this methodology we exploited the chemoselectivity between two boron
nucleophiles; a natural extension to this would to to employ heteroatom nucleophiles
in Buchwald-Hartwig amination and etherification protocols, this would broaden the
scope of products and building blocks that could be used in tandem cross-coupling
reactions. Buchwald has previously exploited differences in amine nucleophilicity to
perform sequential cross-couplings in the synthesis of heterocycles. Extending this
work to include more diverse amines, alcohols and halide electrophile partners would

provide a useful method for sequential functionalization (Scheme 73).
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Scheme 75: Sequential one-pot Buchwald-Hartwig coupling.

In addition, this same method could be exploited in the Chan-Lam reaction. Control
of the boron nucleophile could be achieved through the speciation protocols
described within the group, and amine selectivity can be naturally derived from

natural nucleophilicities, e.g., primary amines react faster than anilines (Scheme 74).

(HO)B @\/Me
.M NH
O 0,0 = QO
BMIDA N
H

Scheme 76: Sequential one-pot Chan-Evans-Lam coupling.

Using three discrete nucleophiles and three different electrophiles could also increase
the limits of chemoselectivity; iodides and triflates could be employed as
electrophiles as they are already established as competent coupling partners. The
additional nucleophile could come in the form of a BF;K, which could undergo
controlled hydrolysis followed by cross coupling in a similar manner to a BMIDA

(Scheme 75).

BPin

;

Pd cat. I
Cl Br

BMIDA _BF3K @

Scheme 77: Chemoselective four component SM coupling
Additionally, in this study only one sp’ coupling partner was utilised, the
development of a process that includes both sp® and sp’ nucleophiles and
electrophiles would greatly broaden the scope of the reaction and in turn, greatly

increase its utility in industrial settings.
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1.6 Experimental

1. General
All reagents and solvents were obtained from commercial suppliers and were used
without further purification unless otherwise stated. Purification was carried out

according to standard laboratory methods.”’

1.1 Purification of Solvents

Dry solvents for reactions were either obtained from a PureSolv SPS-400-5 solvent
purification system (THF). These solvents were transferred to and stored in a
septum-sealed oven-dried flask over previously activated 4 A molecular sieves and
purged with and stored under nitrogen. CH,Cl,, Et,0O, EtOAc, MeCN, and petroleum
ether 40-60° for purification purposes were used as obtained from suppliers without

further purification.

1.2 Drying of Inorganic Bases

Inorganic bases were dried in a Heraeus Vacutherm oven at 60 °C under vacuum for

a minimum of 24 hours before use.

1.3 Experimental Details

Reactions were carried out wusing conventional glassware (preparation of
intermediates) or in capped 5 mL microwave vials. Glassware was oven-dried (150
°C) and purged with N, before use. Purging refers to a vacuum/nitrogen-refilling
procedure. Room temperature was generally 18 °C. Reactions were carried out at
elevated temperatures using a temperature-regulated hotplate/stirrer.

1.4 Purification of Products

Thin layer chromatography was carried out using Merck silica plates coated with

fluorescent indicator UV254. These were analyzed under 254 nm UV light or
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developed wusing potassium permanganate solution. Normal phase flash
chromatography was carried out using ZEOprep 60 HYD 40-63 um silica gel.
Reverse phase flash chromatography was carried out using IST Isolute CI18

cartridges.

1.5 Analysis of Products

Fourier Transformed Infra-Red (FTIR) spectra were obtained on a Shimadzu
[RAffinity-1 machine. "’F NMR spectra were obtained on a Bruker AV 400
spectrometer at 376 MHz. "B NMR spectra were obtained on a Bruker AV 400
spectrometer at 128 MHz. 'H and >C NMR spectra were obtained on either a Bruker
AV 400 at 400 MHz and 125 MHz, respectively, or Bruker DRX 500 at 500 MHz
and 126 MHz, respectively. Chemical shifts are reported in ppm and coupling
constants are reported in Hz with CDCl; referenced at 7.26 ppm (‘H) and 77.0 ppm
(*C) and DMSO-d, referenced at 2.50 ppm (‘H) and 39.5 ppm (*°C). High-resolution
mass spectra were obtained through analysis at the EPSRC UK National Mass
Spectrometry Facility at Swansea University. Reverse phase HPLC data was
obtained on an Agilent 1200 series HPLC using a Machery-Nagel Nucleodur C18
column. Analysis was performed using a gradient method, eluting with 5-80%
MeCN/H;0 over 16 minutes at a flow rate of 2 mL/min. Samples for HPLC analysis
were prepared through the addition of 2 mL of caffeine standard to the completed
reaction mixture, the resulting solution was then stirred before the removal of a 200
uL aliquot. The aliquot was diluted to 1 mL with MeCN, a 200 pL aliquot of the
diluted solution was then filtered and further diluted with 800 uLL MeCN and 500 pL

H,0 for HPLC analysis against established conversion factors.
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2. General Experimental Procedures
General Procedure 1A: Optimized reaction (Scheme 66)

For example synthesis of methyl 2-([1,1":4',1"-terphenyl]-4-yl)acetate, 1.16a

O CO,Me
g
To an oven dried 5 mL microe vessel was added 4-bromophenylboronic acid,
MIDA ester (78 mg, 0.25 mmol, 1 equiv), phenylboronic acid pinacol ester (66 mg,
0.325 mmol, 1.3 equiv), Pd(OAc), (2.2 mg, 0.01 mmol, 4 mol%), SPhos (8.2 mg,
0.02 mmol, 8 mol%), methyl 2-(4-chlorophenyl)acetate (69 mg, 57 puL, 0.375 mmol,
1.5 equiv), and K3PO4 (212 mg, 1 mmol, 4 equiv). The vessel was then capped and
purged with N, before addition of THF (1 mL, 0.25 M) and H,O (90 uL, 5 mmol, 20
equiv). The reaction mixture was then heated to 90 °C in a sand bath for 24 h. The
vessel was allowed to cool to room temperature, vented, and decapped. The solution
was then concentrated under reduced pressure before being diluted with EtOAc (10
mL) and washed with water (10 mL) and brine (10 mL). The organics were then
concentrated to give a crude yellow oil, which was purified by reverse phase flash
chromatography (20-70% MeCN in H»O). The fractions containing product were
concentrated under reduced pressure, diluted with EtOAc (2 x 100 mL) and washed
with water (50 mL) before being dried through a hydrophobic frit. The dry organic
solution was then concentrated to give the desired product as an off-white solid. (62

mg, 82%).

General Procedure 1B: Optimized reaction (Scheme 68)

For example synthesis of methyl 2-([1,1":4',1"-terphenyl]-4-yl)acetate, 1.16a

O CO,Me
To a 5 mL microwave vessel was added 1-bromo-4-chlorobenzene (47.5 mg, 0.25
mmol, 1 equiv), (4-(2-methoxy-2-oxoethyl)phenyl)boronic acid pinacol ester (76 mg,
0.275 mmol, 1.1 equiv), Pd(OAc), (2.24 mg, 0.01 mmol, 0.04 equiv), DavePhos (7.8
mg, 0.02 mmol, 0.08 equiv), phenylboronic acid MIDA ester (75 mg, 0.325 mmol,

1.3 equiv), and K3PO4 (212 mg, 1 mmol, 4 equiv). The vessel was then capped and
purged with N, before addition of THF (1 mL, 0.25 M) and H,O (90 uL, 5 mmol, 20

66



equiv). The reaction mixture was stirred at room temperature for 8§ h before being
heated to 90 °C in a sand bath for 16 h. Upon completion of the reaction, the vessel
was allowed to cool to room temperature, vented, and decapped. The reaction
mixture was then concentrated under reduced pressure before being diluted with
EtOAc (10 mL) and washed with water (10 mL). The organics were dried and
concentrated at reduced pressure before purification by silica chromatography (0—
10% EtOAc/petroleum ether) to afford the desired product as a white solid (69 mg,
91%).

General Procedure 1C: Synthesis of MIDA esters from boronic acids
For example, for the preparation of (3-bromo-5-methoxyphenyl)boronic acid MIDA
ester, S1

OMe
Br BMIDA

A mixture of (3-bromo-5-methoxyphenyl)boronic acid (1.0 g, 4.34 mmol, 1 equiv),
N-methyliminodiacetic acid (671 mg, 4.56 mmol, 1.05 equiv) in DMF (50 mL) was
heated to 90 °C for 18 h under air. The reaction mixture was allowed to cool to room
temperature and concentrated under vacuum to give an off-white slurry. EtOAc (100
mL) was added and the resulting precipitate was collected by filtration. The
precipitate was washed with H,O (2 x 50 mL) and Et,0O (2 x 50 mL) before being
dried under vacuum to give the desired product as a white crystalline solid (1.4 g,

94%).

General Procedure 1D: General procedure for optimization process Tables 1-6

To an oven dried 5 mL microwave vessel was added 4-bromophenylboronic acid,
MIDA ester (78 mg, 0.25 mmol, 1 equiv), phenylboronic acid pinacol ester (66 mg,
0.325 mmol, 1.3 equiv), PdCl,dppf*CH,Cl; (8.2 mg, 0.01 mmol, 4 mol%), methyl 2-
(4-chlorophenyl)acetate (69 mg, 57 puL, 0.375 mmol, 1.5 equiv), and KzPO4 (159 mg,
1 mmol, 3 equiv). The vessel was then capped and purged with N, before addition of
THF (1 mL, 0.25 M) and H,O (22.5 pL, 5 mmol, 5 equiv). The reaction mixture was
then heated to 90 °C in a sand bath for 24 h. The reaction mixture was allowed to
cool to room temperature before analysis by HPLC against a known internal

standard.
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General Procedure 1E: General procedure for optimization process Tables 7-9

To an oven dried 5 mL microwave vessel was added 2-bromo-6-chloropyridine (48
mg, 0.25 mmol, 1 equiv), Pd(OAc), (2.2 mg, 0.01 mmol, 4 mol%), SPhos (8.2 mg,
0.02 mmol, 8 mol%), 4-methylphenylboronic acid, pinacol ester (60 mg, 0.275
mmol, 1.1 equiv), H,O (90 uL, 5 mmol, 20 equiv), and K3PO4(212 mg, 1 mmol, 4
equiv). The vessel was then capped and purged with N, before addition of THF (1
mL, 0.25 M) and H,O (22.5 puL, 5 mmol, 5 equiv). The reaction mixture was then
heated to 90 °C in a sand bath for 24 h. The reaction mixture was allowed to cool to

room temperature before analysis by HPLC against a known internal standard.

3. Reaction optimization data

Results from Table 1

Reactions were carried out according to General Procedure 1D using 4-
bromophenylboronic acid MIDA ester (70.6 mg, 0.226 mmol, 1 equiv),
phenylboronic acid pinacol ester (60 mg, 0.294 mmol, 1.3 equiv), Pd(OAc), (2 mg,
0.009 mmol, 4 mol%), SPhos (7.4 mg, 0.018 mmol, 8 mol%), methyl 2-(4-
chlorophenyl)acetate (62 mg, 0.339 mmol, 1.5 equiv), H,O (X pL, X mmol, X

equiv), and K;PO4 (X mg, X mmol, X equiv) for 24 h.

Entry Catalyst K;PO, equiv.  H,0 equiv  Conversion” (%)
1 Pd(dppf)Cl, (7.4 mg) 3 (144 mg) 5 (20 uL) 0
2 Pd(OAc),/SPhos (2 3 (144 mg) 520 puL) 17
mg/7.4 mg)

3 Pd(OAc),/SPhos (2 3 (144 mg) 10 (41 pL) 35
mg/7.4 mg)

4 Pd(OAc),/SPhos (2 3 (144 mg) 20 (81 uL) 53
mg/7.4 mg)

5 Pd(OAc),/SPhos (2 4 (192 mg) 20 (81 uL) 88
mg/7.4 mg)

6 Pd(OAc),/SPhos (2 4 (192 mg) 30 (122 uL) 41
mg/7.4 mg)

7 Pd(OAc),/SPhos (2 4 (192 mg) 40 (163 uL) 25
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mg/7.4 mg)
8 Pd(OAc),/SPhos (2 5 (240 mg) 20 (81 uL) 80
mg/7.4 mg)

aConversion to 1.16 determined by HPLC against a caffeine internal standard. See Experimental
section for further details.

Results from Table 2

Reactions were carried out according to General Procedure 1D using 4-
bromophenylboronic acid MIDA ester (70.6 mg, 0.226 mmol, 1 equiv),
phenylboronic acid pinacol ester (60 mg, 0.294 mmol, 1.3 equiv), Pd(OAc), (2 mg,
0.009 mmol, 4 mol%), SPhos (7.4 mg, 0.018 mmol, 8 mol%), methyl 2-(4-
chlorophenyl)acetate (62 mg, 0.339 mmol, 1.5 equiv), KsPO4 (192 mg, 0.905 mmol,
4 equiv), and H,O (X equiv).

Entry H,0 equiv Conversion” (%)
1 5(20 uL) 48
2 10 (41 uL) 47
3 15 (61 uL) 67
4 20 (81 pL) 88
5 25 (101 pL) 66
6 30 (122 pL) 40
7 35 (143 pL) 37
8 40 (163 uL) 23
9 50 (204 pL) 17

aConversion to 1.16 determined by HPLC against a caffeine internal standard. See Experimental
section for further details.

Results from Table 3

3.1 Time study

Reactions were carried out according to General Procedure 1D using 4-
bromophenylboronic acid MIDA ester (70.6 mg, 0.226 mmol, 1 equiv),
phenylboronic acid pinacol ester (60 mg, 0.294 mmol, 1.3 equiv), Pd(OAc), (2 mg,
0.009 mmol, 4 mol%), SPhos (7.4 mg, 0.018 mmol, 8 mol%), methyl 2-(4-
chlorophenyl)acetate (62 mg, 0.339 mmol, 1.5 equiv), HO (81 uL, 4.5 mmol, 20
equiv), and K3PO4 (192 mg, 0.905 mmol, 4 equiv) for X h.
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Entry Time (h) Conversion” (%)

1 2 27
2 4 58
3 8 79
4 12 81
5 16 82
6 24 88
7 48 81

aConversion to 1.16 determined by HPLC against a caffeine internal standard. See Experimental
section for further details.

Results from Table 4

Reactions were carried out according to General Procedure 1D using 4-
bromophenylboronic acid MIDA ester (70.6 mg, 0.226 mmol, 1 equiv),
phenylboronic acid pinacol ester (X mg), Pd(OAc), (2 mg, 0.009 mmol, 4 mol%),
SPhos (7.4 mg, 0.018 mmol, 8 mol%), methyl 2-(4-chlorophenyl)acetate (62 mg,
0.339 mmol, 1.5 equiv), H,O (81 uL, 4.5 mmol, 20 equiv), and K;PO4 (192 mg,
0.905 mmol, 4 equiv) for 24 h.

Entry BPin equiv (mass) Conversion” (%)
1 1 (46 mg) 71
2 1.1 (50 mg) 76
3 1.2 (55 mg) 84
4 1.3 (60 mg) 90
5 1.4 (65 mg) 90
6 1.5 (69 mg) 88

aConversion to 1.16 determined by HPLC against a caffeine internal standard. See Experimental
section for further details.

Results from Table 5

3.2 Catalyst Screen

Reactions were carried out according to General Procedure 1D using 4-
bromophenylboronic acid MIDA ester (70.6 mg, 0.226 mmol, 1 equiv),
phenylboronic acid pinacol ester (60 mg, 0.294 mmol, 1.3 equiv), Pd catalyst (X mg,
0.009 mmol, 4 mol%), ligand (X mg, 0.018 mmol, 8 mol%), methyl 2-(4-
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chlorophenyl)acetate (62 mg, 0.339 mmol, 1.5 equiv), HO (81 puL, 4.5 mmol, 20
equiv), and K3;PO4 (192 mg, 0.905 mmol, 4 equiv).

Entry Catalyst/Ligand (mass) Conversion” (%)
1 Pd(OAc),/SPhos (2 mg/7.4 mg) 88
2 Pd(OAc),/CyJohnPhos (2 mg/6.3 mg) 69
3 Pd(OAc),/XPhos (2 mg/8.6 mg) 34
4 Pd(OAc),/DavePhos (2 mg/7.1 mg) 76
5 Pd(PPh3)4 (10.5 mg) 0
6 Pd(dppf)Cl, (7.4 mg) 0
7 Pd,(dba); (8.3 mg) 0
8 Pd,(dba);/SPhos (8.3 mg/7.4 mg) 0

aConversion to 1.16 determined by HPLC against a caffeine internal standard. See Experimental
section for further details.

Results from Table 6

3.4 Base Study

Reactions were carried out according to General Procedure 1D using 4-
bromophenylboronic acid, MIDA ester (78 mg, 0.25 mmol, 1 equiv), phenylboronic
acid, pinacol ester (66 mg, 0.325 mmol, 1.3 equiv), Pd(OAc); (2.2 mg, 0.01 mmol, 4
mol%), SPhos (8.2 mg, 0.02 mmol, 8 mol%), methyl 2-(4-chlorophenyl)acetate (62
mg, 0.375 mmol, 1.5 equiv), H,O (81 uL, 4.5 mmol, 20 equiv), and Base (X mg, 1

mmol, 4 equiv).

Entry Base (mass) Conversion” (%)
1 K;3PO4 (212 mg) 88
2 KOH (56 mg) 6
3 K,CO; (138 mg) 41
4 Cs2CO3 (325 mg) 65
5 Ky,HPO4 (174 mg) 0
6 Na,COs (105 mg) 0

aConversion to 1.16 determined by HPLC against a caffeine internal standard. See Experimental
section for further details.
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Results from Table 7

Reactions were carried out according to General Procedure 1E using 2-bromo-6-
chloropyridine (48 mg, 0.25 mmol, 1 equiv), Pd(OAc), (2.2 mg, 0.01 mmol, 4
mol%), ligand (X mg, 0.02 mmol, 8§ mol%), 4-methylphenylboronic acid, pinacol
ester (60 mg, 0.275 mmol, 1.1 equiv), HO (90 pL, 5 mmol, 20 equiv), and K3PO4
(212 mg, 1 mmol, 4 equiv). The ratio of mono (1.16) to bis (1.24) coupled product
was recorded by HPLC analysis.

Entry Temp (°C) Ligand (mass) Ratio® Full conversion (Y/N)
(1.28/1.29)

1 23 SPhos (8.2 mg) 88/12 N

2 23 DavePhos (7.8 100/0 N
mg)

3 23 PPh; (5.2 mg) 100/0 N

4 70 SPhos (8.2 mg) 44/56 Y

5 70 DavePhos (7.8 65/35 Y
mg)

6 70 PPh; (5.2 mg) 70/30 Y

7 90 SPhos (8.2 mg) 36/63 Y

8 90 DavePhos (7.8 54/45 Y
mg)

9 90 PPh; (5.2 mg) 80/20 Y

10 90 RuPhos (9.3 mg) 36/64 Y

12 90 dppf (11.1 mg) 79/21 Y

13 90 dppp (8.2 mg) 85/15 N

aConversion to 1.16 determined by HPLC against a caffeine internal standard. See Experimental
section for further details.

Results from Table 8

Reactions were carried out according to General Procedure 1E using 1-bromo-4-
chlorobenzene (48 mg, 0.25 mmol, 1 equiv), Pd(OAc), (2.2 mg, 0.01 mmol, 4
mol%), ligand (X mg, 0.02 mmol, 8 mol%), (4-(2-methoxy-2-
oxoethyl)phenyl)boronic acid, pinacol ester (76 mg, 0.275 mmol, 1.1 equiv), H,O
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(90 uL, 5 mmol, 20 equiv), and K3PO4(212 mg, 1 mmol, 4 equiv). The ratio of mono
(16) to bis (24) coupled product was recorded by HPLC analysis.

Entry Ligand Ratio® (1.16/1.24)
1 PPh; 100:0
2 DavePhos 100:0
3 SPhos 88:12

aConversion to 1.16 determined by HPLC against a caffeine internal standard. See Experimental
section for further details.

Results from Table 9

Reactions were carried out according to General Procedure 1E using 1-bromo-4-
chlorobenzene (48 mg, 0.25 mmol, 1 equiv), phenylboronic acid, MIDA ester (75
mg, 0.325 mmol, 1.3 equiv), Pd(OAc), (2.2 mg, 0.01 mmol, 4 mol%), SPhos (8.2
mg, 0.02 mmol, 8 mol%), (4-(2-methoxy-2-oxoethyl)phenyl)boronic acid, pinacol
ester (76 mg, 0.275 mmol, 1.1 equiv), H,O (90 uL, 5 mmol, 20 equiv), and K;PO4
(212 mg, 1 mmol, 4 equiv). Stirring the reaction at room temperature for T1 (X h)
before heating the reaction to 90 °C for T2 (X h), before HPLC analysis against a

known standard.

Entry T1 (h) (rt) T2 (h) (90 °C) Conversion” (%)
1 2 24 86
2 4 24 86
3 6 24 92
4 8 24 96
5 16 24 88
6 8 2 6
7 8 16 91 (isolated)
8 8 20 93

aConversion to 1.16 determined by HPLC against a caffeine internal standard. See Experimental
section for further details.
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4. Compound Characterization Data
4.1 Intermediates

(3-Bromo-5-methoxyphenyl)boronic acid MIDA ester, S1.1

OMe

Br BMIDA
Prepared according to  General Procedure 1C using (3-bromo-5-
methoxyphenyl)boronic acid (1.0 g, 4.34 mmol, 1 equiv), N-methyliminodiacetic
acid (671 mg, 4.56 mmol, 1.05 equiv), and DMF (50 mL) to afford the desired
product as a white solid (1.4 g, 94%).
U may (solid): 3070, 2963, 2935, 1748, 1668, 1569, 1461, 1405, 1269 cm .
"H NMR (DMSO-dg, 400 MHz): & 7.21-7.06 (m, 2H), 6.95 (d, J = 1.4 Hz, 1H), 4.33
(d,J=17.2 Hz, 2H), 4.14 (d, /= 17.2 Hz, 2H), 3.77 (s, 3H), 2.56 (s, 3H).
BC NMR (DMSO-ds, 101 MHz): & 169.2, 162.3, 159.8, 127.0, 122.1, 117.3, 117.0,
62.0,55.4,47.7.
"B NMR (DMSO-dg, 128 MHz): § 11.03.
HRMS: exact mass calculated for [MJrNa]+ (C12H;3BBrNNaOs) requires m/z
365.9942, found m/z 365.9943.

(3-Fluoro-4-methoxyphenyl)boronic acid MIDA ester, S1.2

F

BMIDA

Prepared according to  General Procedure 1C  wusing (3-fluoro-4-
methoxyphenyl)boronic acid (500 mg, 2.9 mmol, 1 equiv), N-methyliminodiacetic
acid (448 mg, 3.05 mmol, 1.05 equiv), and DMF (20 mL) to afford the desired
product as a white solid (800 mg, 98%).

U may (s0lid): 3010, 2966, 1745, 1614, 1514, 1448, 1413, 1338, 1273 cm .

"H NMR (DMSO-dg, 400 MHz): & 7.26-7.07 (m, 3H), 431 (d, J = 17.2 Hz, 2H),
4.10 (d, J=17.1 Hz, 2H), 3.84 (s, 3H), 2.52 (s, 3H).

BC NMR (DMSO-dg, 101 MHz): & 169.2, 151.3 (d, 'Jer = 244.2 Hz), 147.6 (d, Je-r
= 10.6 Hz), 128.9 (d, *Jcr = 3.0 Hz), 119.2 (d, *Jor = 15.5 Hz), 113.3, 61.8, 55.7,
47.5. Carbon bearing boron not observed.

"B NMR (DMSO-dg, 128 MHz): § 11.12.

YF NMR (DMSO-dg, 376 MHz): & —136.83.
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HRMS: exact mass calculated for [MJrNH4]+ (C12H17BFN;Os) requires m/z
299.1209, found m/z 299.1210.

Thiophen-2-ylboronic acid MIDA ester, S1.3

ES/)—BMIDA

Prepared according to General Procedure 1C using thiophen-2-ylboronic acid (1 g,
7.8 mmol, 1 equiv), N-methyliminodiacetic acid (1.2 g, 8.2 mmol, 1.05 equiv), and
DMF (30 mL) to afford the desired product as a white solid (1.1 g, 58%).

U may (s0lid): 2999, 2958, 1747, 1737, 1514, 1454, 1402, 1334, 1298 cm .

"H NMR (DMSO-ds, 400 MHz): & 7.71 (dd, J = 4.7, 0.9 Hz, 1H), 7.24 (dd, J = 3.3,
0.9 Hz, 1H), 7.19 (dd, J = 4.7, 3.4 Hz, 1H), 4.35 (d, J = 17.2 Hz, 2H), 4.12 (d, J =
17.2 Hz, 2H), 2.58 (s, 3H).

BC NMR (DMSO-ds, 101 MHz): 8 168.9, 132.9, 129.6, 128.3, 61.4, 47.4. Carbon
bearing boron not observed.

"B NMR (DMSO-dg, 128 MHz): § 11.27.

HRMS: exact mass calculated for [MJrNH4]+ (CoH14BSN,Oy4) requires m/z 257.0762,
found m/z 257.0763.

(3-Isobutoxyphenyl)boronic acid, MIDA ester, S1.4

Mej/\o/@ BMIDA

Me
Prepared according to General Procedure 1C using (3-isobutoxyphenyl)boronic acid
(600 mg, 3.1 mmol, 1 equiv), N-methyliminodiacetic acid (477 mg, 3.24 mmol, 1.05
equiv), and DMF (30 mL) to afford the desired product as a white solid (900 mg,
95%).
U may (s0lid): 3004, 2956, 2872, 1768, 1748, 1577, 1457, 1424, 1286, 1253 cm .
"H NMR (DMSO-ds, 400 MHz): & 7.26 (t, J= 7.7 Hz, 1H), 6.99-6.92 (m, 2H), 6.91
(dd, J=8.1, 2.6 Hz, 1H), 4.31 (d, J = 17.2 Hz, 2H), 4.10 (d, J = 17.2 Hz, 2H), 3.73
(d, J=6.5 Hz, 2H), 2.51 (s, 3H), 2.00 (m, 1H), 0.98 (d, /= 6.7 Hz, 6H).
BC NMR (DMSO-ds, 101 MHz): & 169.4, 158.3, 128.8, 124.4, 118.2, 114.7, 73.4,
61.8,47.5,27.8, 19.1. Carbon bearing boron not observed.
"B NMR (DMSO-dg, 128 MHz): § 11.06.
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HRMS: exact mass calculated for [M+H]+ (Ci5H20BNOs) requires m/z 305.1507,
found m/z 305.1513.

(1H-Indol-5-yl)boronic acid, MIDA ester, S1.5

H

N
L
BMIDA

Prepared according to General Procedure 1C using (1H-indol-5-yl)boronic acid (2 g,
12.4 mmol, 1 equiv), N-methyliminodiacetic acid (1.9 g, 13.02 mmol, 1.05 equiv),
and DMF (50 mL) to afford the desired product as a white solid (3.3 g, 98%)).

U may (s0lid): 3401, 3008, 2962, 1766, 1744, 1578, 1455, 1340, 1245, 1236 cm .

"H NMR (CDCls, 400 MHz): § 11.02 (s, 1H), 7.62 (s, 1H), 7.37 (d, J = 8.2 Hz, 1H),
7.3 (t,J=2.7 Hz, 1H), 7.14 (d, J = 8.2 Hz, 1H), 6.41 (s, 1H), 4.30 (d, /= 17.2 Hz,
2H), 4.08 (d, J=17.2 Hz, 2H), 2.45 (s, 3H).

BC NMR (CDCl;, 101 MHz): & 169.5, 136.5, 127.5, 124.9, 124.5, 110.8, 101.1,
61.6, 47.5. Carbon bearing boron not observed.

"B NMR (CDCls, 128 MHz): § 12.52.

HRMS: exact mass calculated for [MJrH]+ (C13H13BN,04) requires m/z 273.1041,
found m/z 273.1045.

Pyrimidin-5-ylboronic acid, MIDA ester, S1.6

N
(L
N-Z>amiba

Prepared according to General Procedure 1C using pyrimidin-5-ylboronic acid (1 g,
8.13 mmol, 1 equiv), N-methyliminodiacetic acid (1.26 g, 8.54 mmol, 1.05 equiv),
and DMF (80 mL) to afford the desired product as a white solid (1.8 g, 94%)).

U may (s0lid): 3030, 2939, 1748, 1763, 1582, 1424, 1413, 1286, 1254 cm .

"H NMR (DMSO-dg, 400 MHz): 8 9.19 (s, 1H), 8.81 (d, J=4.7 Hz, 2H), 4.42 (d, J =
17.2 Hz, 2H), 4.22 (d, J=17.1 Hz, 2H), 2.68 (s, 3H).

BC NMR (DMSO-ds, 101 MHz): § 171.5, 169.0, 160.9, 158.9, 62.1, 47.8.

"B NMR (DMSO-dg, 128 MHz): § 10.58.

HRMS: exact mass calculated for [M+H]+ (CoH10BN3O4) requires m/z 236.037,
found m/z 236.0839.

(2-Methoxypyridin-3-yl)boronic acid, MIDA ester, S1.7
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Prepared according to General Procedure 1C using (2-methoxypyridin-3-yl)boronic
acid (600 mg, 3.9 mmol, 1 equiv), N-methyliminodiacetic acid (605 mg, 4.1 mmol,
1.05 equiv), and DMF (40 mL) to afford the desired product as a white solid (1 g,
97%).
U may (s0lid): 3029, 2960, 1770, 1755, 1578, 1460, 1392, 1340 cm .
"H NMR (DMSO-ds, 400 MHz): & 8.17 (dd, J = 5.0, 2.0 Hz, 1H), 7.80 (dd, J = 7.0,
2.0 Hz, 1H), 6.98 (dd, J = 7.0, 5.0 Hz, 1H), 4.38 (d, J = 17.1 Hz, 2H), 4.06 (d, J =
17.1 Hz, 2H), 3.81 (s, 3H), 2.61 (s, 3H).
BC NMR (DMSO-dg, 101 MHz): & 169.1, 165.4, 147.7, 143.7, 116.9, 63.1, 52.8,
47.1. Carbon bearing boron not observed.
"B NMR (DMSO-dg, 128 MHz): § 11.27.
HRMS: exact mass calculated for [MJrNH4]+ (C11H13BN;Os) requires m/z 265.0990,
found m/z 265.0985.

4.2 Products from Scheme 66
Methyl 2-([1,1":4',1"-terphenyl]-4-yl)acetate, 1.16a

O CO,Me
Q)
®
Prepared according to General Procedure 1A using 4-bromophenylboronic acid,
MIDA ester (78 mg, 0.25 mmol, 1 equiv), phenylboronic acid pinacol ester (66 mg,
0.325 mmol, 1.3 equiv), Pd(OAc), (2.2 mg, 0.01 mmol, 4 mol%), SPhos (8.2 mg,
0.02 mmol, 8 mol%), methyl 2-(4-chlorophenyl)acetate (69 mg, 57 ul, 0.375 mmol,
1.5 equiv), K3PO4 (212 mg, 1 mmol, 4 equiv), THF (1 mL, 0.25 M), and H,O (90 uL,
5 mmol, 20 equiv). After 24 h the reaction mixture was subjected to the purification
outlined in the General Procedure (C18 silica gel, 20-70% MeCN in H,0) to afford
the desired product as a white solid (62 mg, 82%).
U may (solid): 3032, 2954, 1732, 1506, 1486 cm .
"H NMR (CDCls, 500 MHz): & 7.67-7.70 (m, 4H), 7.64-7.67 (m, 2H), 7.61-7.63
(m, 2H), 7.45-7.49 (m, 2H), 7.35-7.41 (m, 3H), 3.74 (s, 3H), 3.70 (s, 2H).
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BC NMR (CDCls, 126 MHz): & 172.0, 140.7, 140.2, 139.7, 139.6, 133.1, 129.7,
128.8, 127.5,127.4,127.4, 127.2, 127.0, 52.1, 40.9.

HRMS: exact mass calculated for [M+H+] (C11H190,) requires m/z 303.1380, found
m/z 303.1382.

Methyl (E)-2-(5'-(3,3-dimethylbut-1-en-1-yl)-2'-methoxy-[ 1,1'-biphenyl]-4-
yl)acetate, 1.16b

Me CO,Me
Prepared according to General Procedure 1A using 2-(5-bromo-2-methoxyphenyl)-6-
methyl-1,3,6,2-dioxazaborocane-4,8-dione (85.5 mg, 0.25 mmol, 1 equiv), (E)-2-
(3,3-dimethylbut-1-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (68.3 mg, 0.325
mmol, 1.3 equiv), methyl 2-(4-chlorophenyl)acetate (69 mg, 0.375 mmol, 1.5 equiv),
Pd(OAc), (2.2 mg, 0.01 mmol, 4 mol%), SPhos (8.4 mg, 0.02 mmol, 8 mol%),
K3POy4 (212 mg, 0.1 mmol, 4 equiv), THF (1 mL, 0.25 M), and H,O (90 pL, 5 mmol,
20 equiv). After 24 h the reaction mixture was subjected to the purification outlined
in the General Procedure (C18 silica gel, 10-40% MeCN in H,O) to afford the title
compound as a yellow oil (74 mg, 88%).
U may (film): 2953, 2926, 2854, 1735, 1602, 1517, 1492, 1460 cm™".
"H NMR (CDCl3, 400 MHz): & 7.55-7.50 (m, 2H), 7.38-7.34 (m, 3H), 7.31 (dd, J =
8.5,2.3 Hz, 1H), 6.94 (d, /= 8.4 Hz, 1H), 6.31 (d, J=16.1 Hz, 1H), 6.18 (d, /= 16.2
Hz, 1H), 3.82 (s, 3H), 3.74 (s, 3H), 3.69 (s, 2H), 1.14, (s, 9H).
BC NMR (CDCls, 101 MHz): & 172.1, 155.6, 140.3, 137.5, 132.6, 131.0, 130.3,
129.7, 128.9, 128.4, 126.3, 123.7, 111.3, 55.7, 52.1, 41.0, 33.3, 29.7.
HRMS: exact mass calculated for [MJrH]+ (C22H2703) requires m/z 339.1955, found
m/z 339.1958.

(E)-4'-(2-Cyclopropylvinyl)-2,4-difluoro-1,1'-biphenyl, 1.16¢
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Prepared according to General Procedure 1A using 4-bromophenylboronic acid
MIDA ester (78 mg, 0.25 mmol, 1 equiv), (£)-2-(2-cyclopropylvinyl)-4,4,5,5-
tetramethyl-1,3,2-dioxaborolane (63 mg, 0.325 mmol, 1.3 equiv), 1-chloro-2,4-
difluorobenzene (55.5 mg, 0.375 mmol, 1.5 equiv), Pd(OAc); (2.2 mg, 0.01 mmol, 4
mol%), SPhos (8.4 mg, 0.02 mmol, 8 mol%), K;PO4 (212 mg, 0.1 mmol, 4 equiv),
THF (1 mL, 0.25 M) and H,O (90 uL, 5 mmol, 20 equiv). After 24 h the reaction
mixture was subjected to the purification outlined in the General Procedure (C18
silica gel, 10—-40% MeCN in H,O) to afford the title compound as a yellow solid (55
mg, 86%).

U may (film): 3076, 3014, 2924, 2852, 1645, 1614, 1597, 1523, 1490, 1402 cm ™.

"H NMR (CDCl;, 400 MHz): § 7.49-7.36 (m, 5H), 7.02—6.88 (m, 2H), 6.53 (d, J =
15.7 Hz, 1H), 5.82 (dd, J=15.7, 9.0 Hz, 1H), 1.69-1.56 (m, 1H), 0.93-0.83 (m, 2H),
0.60-0.53 (m, 2H).

B3C NMR (CDCls, 101 MHz): § 161.7 (dd, 'Je.r = 238.3 Hz, *Jer = 11.2 Hz), 159.2
(dd, "Jep= 240.2 Hz, *Jer = 11.4 Hz), 136.8, 135.2, 132.5, 130.7 (dd, *Jer = 9.3,
3Jer=5.1Hz), 128.5 (d, Jer = 3.3 Hz), 126.3, 125.2, 124.6 (dd, *Jer = 13.7 Hz, Jer
= 3.8 Hz), 111.0 (dd, *Jor = 21.5, Jer = 4.0 Hz), 103.9 (t, “Jer = 26.0 Hz), 14.2,
6.9.

F NMR (CDCl;, 376 MHz): 8 —111.82 (d, J = 7.4 Hz, 1F), -113.35 (d, J = 7.4 Hz,
1F).

HRMS: exact mass calculated for [MJrH]+ (Cy7H;5F>,) requires m/z 257.1136, found
m/z 257.1138.

3'-(Thiophen-2-yl)-[1,1'-biphenyl]-4-carbonitrile, 1.16d
<SS

Prepared according to General Procedure 1A using 3-bromophenylboronic acid
MIDA ester (78 mg, 0.25 mmol, 1 equiv), 4,4,5,5-tetramethyl-2-(thiophen-2-yl)-
1,3,2-dioxaborolane (68 mg, 0.325 mmol, 1.3 equiv), 4-chlorobenzonitrile (51.4 mg,
0.375 mmol, 1.5 equiv), Pd(OAc), (2.2 mg, 0.01 mmol, 4 mol%), SPhos (8.2 mg,
0.02 mmol, 8 mol%), KsPO4 (212 mg, 0.1 mmol, 4 equiv), THF (1 mL, 0.25 M), and
H,0 (90 uL, 5 mmol, 20 equiv). After 24 h the reaction mixture was subjected to the
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purification outlined in the General Procedure (C18 silica gel, 20-60% MeCN in
H,O0) to afford the desired compound as a colorless oil (54 mg, 83%).

U may (film): 3099, 2918, 2850, 2223, 1600, 1475 cm™".

"H NMR (CDCls, 400 MHz): § 7.84-7.80 (m, 1H), 7.82-7.71 (m, 4H), 7.72-7.66
(m, 1H), 7.54-7.50 (m, 2H), 7.41 (dd, J = 3.6, 1.2 Hz, 1H), 7.36 (dd, /= 5.1, 1.2 Hz,
1H), 7.14 (dd, /= 5.1, 3.6 Hz, 1H).

BC NMR (CDCl;, 101 MHz): & 144.8, 143.2, 139.5, 134.9, 132.2, 129.2, 127.7,
127.3,125.8, 125.7, 124.9, 124.3, 123.2, 118.4, 110.7.

HRMS: exact mass calculated for [MJrNH4]+ (C17HsN2S) requires m/z 279.0954,
found m/z 279.0950.

1-(4-(5-(4-(Trifluoromethoxy)phenyl)thiophen-2-yl)phenyl)ethan-1-one, 1.16e

I\
D P
F3CO
Me

Prepared according to General Procedure 1A using 2-(5-bromothiophen-2-yl)-6-
methyl-1,3,6,2-dioxazaborocane-4,8-dione (79.4 mg, 0.25 mmol, 1 equiv), 4,4,5,5-
tetramethyl-2-(4-(trifluoromethoxy)phenyl)-1,3,2-dioxaborolane (93.7 mg, 0.325
mmol, 1.3 equiv), 1-(4-chlorophenyl)ethan-1-one (42.8 mg, 0.375 mmol, 1.5 equiv),
Pd(OAc), (2.2 mg, 0.01 mmol, 4 mol%), SPhos (8.4 mg, 0.02 mmol, 8 mol%),
K3POy4 (212 mg, 0.1 mmol, 4 equiv), THF (1 mL, 0.25 M), and H,O (90 pL, 5 mmol,
20 equiv). After 24 h the reaction mixture was subjected to the purification outlined
in the General Procedure (C18 silica gel, 10-40% MeCN in H,O) to afford the title
compound as a bright yellow solid (77 mg, 85%).

U mayx (film): 3072, 2926, 2854, 1676, 1598, 1541, 1514, 1496, 1452 cm™".

"H NMR (CDCl3, 400 MHz): & 8.03-7.99 (m, 2H), 7.76-7.71 (m, 2H), 7.70-7.65
(m, 2H), 7.43 (d,J = 3.8 Hz 1H), 7.32 (d, J = 3.9 Hz, 1H), 7.32-7.23 (m, 2H), 2.65
(s, 3H).

BC NMR (CDCl;, 101 MHz): & 196.8, 148.2, 143.1, 142.1, 137.9, 135.4, 132.2,
128.7, 126.5, 125.2, 124.9, 124.4, 121.0, 120.0 (q, 'Jer = 257.8 Hz), 26.1.

YF NMR (CDCls, 376 MHz):  —57.81.

HRMS: exact mass calculated for [M+H]+ (C19H14F50,S) requires m/z 363.0661,
found m/z 363.0662.
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(E)-5-(5-(3-Cyclopentylprop-1-en-1-yl)-2-methoxyphenyl)benzo[ b]thiophene, 1.16f

Prepared according to General Procedure 1A using 2-(5-bromo-2-methoxyphenyl)-6-
methyl-1,3,6,2-dioxazaborocane-4,8-dione (85.5 mg, 0.25 mmol, 1 equiv), (£)-2-(3-
cyclopentylprop-1-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (76.7 mg, 0.325
mmol, 1.3 equiv), 5-chlorothiophene (42.4 mg, 0.375 mmol, 1.5 equiv), Pd(OAc),
(2.2 mg, 0.01 mmol, 4 mol%), SPhos (8.4 mg, 0.02 mmol, 8 mol%), K;PO4 (212 mg,
0.1 mmol, 4 equiv), THF (1 mL, 0.25 M), and H,O (90 uL, 5 mmol, 20 equiv). After
24 h the reaction mixture was subjected to the purification outlined in the General
Procedure (C18 silica gel, 10-40% MeCN in H,O) to afford the title compound as a
yellow oil (58 mg, 64%).

U may (film): 2997, 2945, 2856, 2362, 1600, 1500, 1458, 1438 cm™".

"H NMR (CDCl;, 400 MHz):  8.04 (s, 1H), 7.85 (d, J = 8.3 Hz, 1H), 7.55 (dd, J =
8.2, 1.5 Hz, 1H), 7.45 (d, J= 5.4 Hz, 1H), 7.39 (d, J = 2.2 Hz, 1H), 7.36 (d, /= 5.4
Hz, 1H), 7.31 (dd, J = 8.5, 2.2 Hz, 1H), 6.95 (d, J = 8.5 Hz, 1H), 6.38 (d, J = 15.8
Hz, 1H), 6.15 (dt, J=7.1, 7.1, 15.7, 1H), 3.83 (s, 3H), 2.22 (t, J = 6.7 Hz, 2H), 2.02—
1.87 (m, 1H), 1.83-1.74 (m, 2H), 1.68-1.59 (m, 2H), 1.57-1.52 (m, 2H), 1.25-1.16
(m, 2H).

BC NMR (CDCl;, 101 MHz): & 155.1, 139.2, 137.9, 134.3, 130.5, 130.0, 128.8,
128.4, 128.1, 125.9, 125.7, 125.7, 123.1, 122.6, 122.3, 110.8, 55.2, 39.6, 38.9, 31.8,
24.6.

HRMS: exact mass calculated for [M+H]+ (C23H250,1S)) requires m/z 349.1621,
found m/z 349.1622.

4-(2-(2,4-Difluorophenyl)benzo[ b]thiophen-5-yl)-3,6-dihydro-2 H-pyran, 1.16g
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Prepared according to General Procedure 1A using (5-bromobenzo[b]thiophen-2-
yl)boronic acid MIDA ester (92 mg, 0.25 mmol, 1 equiv), (3,6-dihydro-2H-pyran-4-
yl)boronic acid pinacol ester (68.3 mg, 0.325 mmol, 1.3 equiv), 1-chloro-2,4-
difluorobenzene (55 mg, 0.375 mmol, 1.5 equiv), Pd(OAc), (2.2 mg, 0.01 mmol, 4
mol%), SPhos (8.4 mg, 0.02 mmol, 8 mol%), K;PO4 (212 mg, 0.1 mmol, 4 equiv),
THF (1 mL, 0.25 M), and H,O (90 pL, 5 mmol, 20 equiv). After 24 h the reaction
mixture was subjected to the purification outlined in the General Procedure (C18
silica gel, 20-70% MeCN in H,O) to afford the title compound as a white solid (49
mg, 60%).

U mayx (film): 3070, 3057, 2924, 2852, 1708, 1614, 1591, 1525, 1492 cm™".

"H NMR (CDCl;, 400 MHz): & 7.80 (d, J = 8.4 Hz, 2H), 7.71-7.62 (m, 2H), 7.44
(dd, J= 8.5, 1.6 Hz, 1H), 7.01-6.92 (m, 2H), 6.21 (s, 1H), 4.38 (dd, /= 5.3, 2.6 Hz,
2H), 3.99 (t,J=5.4 Hz, 2H), 2.62 (d, J = 1.7 Hz, 2H).

BC NMR (CDCls, 101 MHz): § 162.5 (dd, 'Jer = 251.2 Hz, *Jor = 12.2 Hz), 159.7
(dd, 'Jep = 254.0 Hz, *Jor = 11.9 Hz), 140.6, 138.2 (d, “Jer= 2.3 Hz), 137.3, 136.9
(d, *Jer= 3.4 Hz), 134.1, 130.4 (dd, *Jer= 9.5 Hz, *Jor= 4.8 Hz), 123.2 (d, *Jor=
8.3 Hz), 122.6, 122.0, 121.9, 119.8, 118.7 (dd, *Je¢= 12.5 Hz, *Jer= 4.0 Hz), 112.0
(d, “Jep=21.5 Hz), 104.8 (t, “Jer = 25.9 Hz), 65.9, 64.5, 27.5.

F NMR (CDCl;, 376 MHz): 8 —108.82 (d, J = 8.5 Hz, 1F), =109.74 (d, J = 8.4 Hz,
1F).

HRMS: exact mass calculated for [MJrH]+ (C19H14F,0OSH) requires m/z 329.0806,
found m/z 329.0806.

3'-(3,5-Dimethylisoxazol-4-yl)-5'-(trifluoromethyl)-[ 1,1'-biphenyl]-4-carbonitrile,
1.16h

Prepared according to General Procedure 1A using 2-(3-bromo-5-
(trifluoromethyl)phenyl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione (94.5 mg, 0.25
mmol, 1 equiv), 3,5-dimethyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-
yl)isoxazole (72.4 mg, 0.325 mmol, 1.3 equiv), 4-benzonitrile (51.4 mg, 0.375 mmol,
1.5 equiv), Pd(OAc), (2.2 mg, 0.01 mmol, 4 mol%), SPhos (8.4 mg, 0.02 mmol, 8

82



mol%), KsPO4 (212 mg, 0.1 mmol, 4 equiv), THF (1 mL, 0.25 M), and H,O (90 pL,
5 mmol, 20 equiv). After 24 h the reaction mixture was subjected to the purification
outlined in the General Procedure (C18 silica gel, 10-40% MeCN in H,0) to afford
the title compound as a white solid (55.3 mg, 65%).

U may (film): 2991, 2926, 2852, 2227, 1633, 1606, 1467, 1354 cm™".

"H NMR (CDCl3, 400 MHz): § 7.86-7.80 (m, 3H), 7.76-7.72 (m, 2H), 7.65 (s, 1H),
7.59 (s, 1H), 2.49 (s, 3H), 2.34 (s, 3H).

BC NMR (CDCls, 101 MHz): 8 165.6, 157.7, 143.1, 140.4, 132.4, 132.1, 131.9 (d, ,
*Jor = 32.5 Hz), 130.5, 127.4, 125.2 (d, *Jer = 4.7 Hz), 123.1 (d, "Jer = 272.7 Hz),
122.7 (d, *Jer =4.1Hz), 117.9, 114.8, 111.8, 11.2, 10.3.

YF NMR (CDCls, 376 MHz): § —62.71 (s, 3F).

HRMS: exact mass calculated for [MJrH]+ (C19H14F3N>01) requires m/z 343.1053,
found m/z 343.1055.

3-(2-Fluoro-4-(thiophen-2-yl)phenyl)pyridine, 1.16i

Prepared according to General Procedure 1A using 2-(4-bromo-2-fluorophenyl)-6-
methyl-1,3,6,2-dioxazaborocane-4,8-dione (83 mg, 0.25 mmol, 1 equiv), 4,4,5,5-
tetramethyl-2-(thiophen-2-yl)-1,3,2-dioxaborolane (68.3 mg, 0.325 mmol, 1.3 equiv),
3-chloropyridine (42.4 mg, 0.375 mmol, 1.5 equiv), Pd(OAc), (2.2 mg, 0.01 mmol, 4
mol%), SPhos (8.4 mg, 0.02 mmol, 8 mol%), K;PO4 (212 mg, 0.1 mmol, 4 equiv),
THF (1 mL, 0.25 M), and H,O (90 pL, 5 mmol, 20 equiv). After 24 h the reaction
mixture was subjected to the purification outlined in the General Procedure (C18
silica gel, 10-40% MeCN in H,O) to afford the title compound as an off white solid
(53 mg, 84%).

U mayx (film): 3045, 3030, 2924, 2852, 1616, 1552, 1537, 1471, 1400 cm™".

"H NMR (CDCl3, 400 MHz): & 8.85 (s, 1H), 8.64 (dd, J = 4.8, 1.7 Hz, 1H), 7.95—
7.87 (m, 1H), 7.52 (dd, J = 8.0, 1.7 Hz, 1H), 7.50-7.43 (m, 2H), 7.43-7.38 (m, 2H),
7.36 (dd, J=5.1, 1.1 Hz, 1H), 7.13 (dd, J= 5.1, 3.6 Hz, 1H).

BC NMR (CDCl;, 101 MHz): 8 159.6 (d, 'Jer = 248.6 Hz), 149.0 (d, *Jor = 3.4
Hz), 148.3, 141.8, 136.0 (d, *Jer = 8.5 Hz), 135.6 (d, *Jer = 3.6 Hz), 130.7, 130.3
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(d, *Jer = 3.8 Hz), 127.8, 125.4, 123.8 (d, “Jer = 14.3 Hz), 123.6, 122.8, 121.6 (d,
*Jer=2.9 Hz), 113.0 (d, *Jor = 24.3 Hz).

F NMR (CDCls, 376 MHz): 8 —117.45 (s, 1F).

HRMS: exact mass calculated for [M+H]+ (CisHi 1 FIN;S)) requires m/z 256.0592,
found m/z 256.0591.

3-(3-(3,6-Dihydro-2 H-pyran-4-yl)phenyl)pyridine, 1.16j

/N (@]

A ! X
Prepared according to General Procedure 1A using 3-bromophenylboronic acid
MIDA ester (78 mg, 0.25 mmol, 1 equiv), 2-(3,6-dihydro-2H-pyran-4-yl)-4,4,5,5-
tetramethyl-1,3,2-dioxaborolane (68 mg, 0.325 mmol, 1.3 equiv), 3-chloropyridine
(42.4 mg, 0.375 mmol, 1.5 equiv), Pd(OAc), (2.2 mg, 0.01 mmol, 4 mol%), SPhos
(8.4 mg, 0.02 mmol, 8 mol%), K;PO4 (212 mg, 0.1 mmol, 4 equiv), THF (1 mL, 0.25
M), and H,O (90 pL, 5 mmol, 20 equiv). After 24 h the reaction mixture was
subjected to the purification outlined in the General Procedure (C18 silica gel, 10—
40% MeCN in H,0) to afford the title compound as a brown oil (45 mg, 76%).
U mayx (film): 3030, 2922, 2850, 2358, 1718, 1600, 1577, 1469, 1429 cm™".
"H NMR (CDCls, 400 MHz): & 8.87 (d, J = 2.5 Hz, 1H), 8.62 (dd, J = 4.8, 1.6 Hz,
1H), 7.90 (ddd, J = 7.9, 2.4, 1.6 Hz, 1H), 7.60 (q, J = 1.4 Hz, 1H), 7.51-7.45 (m,
3H), 7.39 (ddd, J=7.9, 4.9, 0.9 Hz, 1H), 6.23 (m 1H), 4.37 (q, J = 2.8 Hz, 2H), 3.99
(t,J=5.5Hz, 2H), 2.63-2.57 (m, 2H).
BC NMR (CDCl;, 101 MHz): & 148.0, 147.8, 140.8, 137.6, 136.3, 133.9, 133.4,
128.7, 125.6, 124.0, 123.2, 123.0, 122.8, 65.4, 63.9, 26.8.
HRMS: exact mass calculated for [MJrH]+ (Ci16H16N1O1) requires m/z 238.1226,
found m/z 238.1229.

4-(3-(Benzo[b]thiophen-5-yl)phenyl)-1,5-dimethyl-1H-pyrazole, 1.16k

5 2
O
N= s

Prepared according to General Procedure 1A using 3-bromophenylboronic acid
MIDA ester (78 mg, 0.25 mmol, 1 equiv), 1,5-dimethyl-4-(4,4,5,5-tetramethyl-1,3,2-
dioxaborolan-2-yl)-1H-pyrazole (72.1 mg, 0.325 mmol, 1.3 equiv), 4-
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chlorobenzothiophene (63 mg, 0.375 mmol, 1.5 equiv), Pd(OAc), (2.2 mg, 0.01
mmol, 4 mol%), SPhos (8.4 mg, 0.02 mmol, 8 mol%), K;PO4 (212 mg, 0.1 mmol, 4
equiv), THF (1 mL, 0.25 M), and H,O (90 uL, 5 mmol, 20 equiv). After 24 h the
reaction mixture was subjected to the purification outlined in the General Procedure
(C18 silica gel, 10-40% MeCN in H,0) to afford the title compound as a yellow oil
(66 mg, 87%).

U may (film): 2924, 2852, 1732, 1604, 1558, 1487, 1454, 1396 cm ™.

"H NMR (CDCls, 400 MHz): § 8.17-8.11 (m, 1H), 7.92 (d, J = 8.3 Hz, 1H), 7.70—
7.63 (m, 3H), 7.62-7.55 (m, 1H), 7.58-7.45 (m, 2H), 7.42-7.36 (m, 2H), 3.90 (s,
3H), 2.46 (s, 3H).

BC NMR (CDCl;, 101 MHz): & 141.1, 140.0, 138.3, 137.1, 136.8, 134.7, 134.1,
128.6, 126.3, 126.3, 126.1, 124.8, 123.5, 123.3, 123.1, 120.4, 120.2, 36.0, 10.0.
HRMS: exact mass calculated for [M+H]+ (C19H7N2S)) requires m/z 305.1107,
found m/z 305.1108.

(E)-3-(2-(Benzofuran-3-yl)vinyl)pyridine, 1.161

o\ NN
~ |

Prepared according to General Procedure 1A using (£)-2-(2-bromovinyl)-6-methyl-
1,3,6,2-dioxazaborocane-4,8-dione (65 mg, 0.25 mmol, 1 equiv), 2-(benzofuran-3-
yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (79.3 mg, 0.325 mmol, 1.3 equiv), 3-
chloropyridine (42.4 mg, 0.375 mmol, 1.5 equiv), Pd(OAc); (2.2 mg, 0.01 mmol, 4
mol%), SPhos (8.4 mg, 0.02 mmol, 8 mol%), K;PO4 (212 mg, 0.1 mmol, 4 equiv),
THF (1 mL, 0.25 M), and H,O (90 pL, 5 mmol, 20 equiv). After 24 h the reaction
mixture was subjected to the purification outlined in the General Procedure (C18
silica gel, 10-40% MeCN in H,0) to afford the title compound as a pale yellow solid
(48 mg, 87%).
U may (film): 3076, 3014, 1645, 1614, 1597, 1523, 1408, 1267 cm™".
"H NMR (CDCls, 400 MHz): & 8.76 (d, J = 2.5 Hz, 1H), 8.51 (dd, J = 4.8, 1.6 Hz,
1H), 7.82 (dt, J= 8.0, 1.9 Hz, 1H), 7.56 (d, /= 7.7 Hz, 1H), 7.49 (dd, J= 8.2, 1.0 Hz,
1H), 7.34-7.20 (m, 4H), 7.06 (d, J = 16.3 Hz, 1H), 6.73 (s, 1H).
BC NMR (CDCl;, 101 MHz): & 155.0, 154.3, 148.9, 148.7, 132.8, 132.3, 128.9,
126.3, 125.1, 123.6, 123.1, 121.1, 118.4, 111.0, 106.3.
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HRMS: exact mass calculated for [MJrH]+ (CisH12N1Oy) requires m/z 222.0914,
found m/z 222.0913.

4.3 Products from Scheme 68
Methyl 2-([1,1":4',1"-terphenyl]-4-yl)acetate, 1.16a

O CO,Me
g
®
Prepared according to General Procedure 1B using 1-bromo-4-chlorobenzene (47.5
mg, 0.25 mmol, 1 equiv), (4-(2-methoxy-2-oxoethyl)phenyl)boronic acid pinacol
ester (76 mg, 0.275 mmol, 1.1 equiv), Pd(OAc), (2.2 mg, 0.001 mmol, 4 mol%),
DavePhos (7.8 mg, 0.02 mmol, 8 mol%), phenylboronic acid MIDA ester (75 mg,
0.325 mmol, 1.3 equiv), KsPO4 (212 mg, 1 mmol, 4 equiv), THF (1 mL, 0.25 M),
and H,O (90 uL, 5 mmol, 20 equiv). After 24 h the reaction mixture was subjected to
the purification outlined in the General Procedure (silica gel, 0-10%
EtOAc/Petroleum ether) to afford the title compound as a white solid (69 mg, 91%).
U may (solid): 3032, 2954, 1732, 1506, 1486 cm .
"H NMR (CDCls, 500 MHz): & 7.67-7.70 (m, 4H), 7.64-7.67 (m, 2H), 7.61-7.63
(m, 2H), 7.45-7.49 (m, 2H), 7.35-7.41 (m, 3H), 3.74 (s, 3H), 3.70 (s, 2H).
BC NMR (CDCls, 126 MHz): & 172.0, 140.7, 140.2, 139.7, 139.6, 133.1, 129.7,
128.8, 127.5,127.4,127.4, 127.2, 127.0, 52.1, 40.9.
HRMS: exact mass calculated for [MJrH]+ (C21H190,) requires m/z 303.1380, found
m/z [M+H'] 303.1382.

1-(3-(6-(4-Isobutoxyphenyl)pyridin-2-yl)phenyl)ethan-1-one, 1.16m

AN

/
O
Me Me

Ve L _o o)

Prepared according to General Procedure 1B using 2-bromo-6-chloropyridine (47.5
mg, 0.25 mmol, 1 equiv), (3-acetylphenyl)boronic acid pinacol ester (68 mg, 0.275
mmol, 1.1 equiv), (3-isobutoxyphenyl)boronic acid MIDA ester (99 mg, 0.325
mmol, 1.3 equiv), Pd(OAc), (2.2 mg, 0.001 mmol, 4 mol%), DavePhos (7.8 mg, 0.02
mmol, 8 mol%), KsPO4 (212 mg, 1 mmol, 4 equiv), THF (1 mL, 0.25 M), and H,O
(90 uL, 5 mmol, 20 equiv). After 24 h the reaction mixture was subjected to the
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purification outlined in the General Procedure (silica gel, 0-20% EtOAc/Petroleum
ether) to afford the title compound as an off white solid (64 mg, 74%).

U may (solid): 3060, 2954, 2917, 1683, 1608, 1584, 1459, 1267 cm .

"H NMR (CDCl3, 400 MHz): & 8.30-8.24 (m, 2H), 8.13-8.08 (m, 2H), 7.89-7.83
(m, 1H), 7.79-7.74 (m, 3H), 7.72-7.69 (m, 1H), 7.43 (t,J=7.9 Hz, 1H), 7.01 (ddd, J
= 8.2, 2.6, 0.8 Hz, 1H), 3.87 (d, J = 6.5 Hz, 2H), 2.68 (s, 3H), 2.23-2.12 (m, 1H),
1.10 (d, J = 6.7 Hz, 6H).

BC NMR (CDCl;, 101 MHz): & 197.4, 159.3, 156.6, 154.9, 143.2, 140.1, 137.1,
136.7,129.2, 128.3, 126.6, 119.2, 118.7, 114.8, 112.9, 74.1, 27.9, 26.2, 18.8.
HRMS: exact mass calculated for [MJrH]+ (C23H23NO») requires m/z 346.1802,
found m/z 346.1801.

(E)-5-(3-(3,3-Dimethylbut-1-en-1-yl)phenyl)pyrimidine, 1.16n

F3CO

= Ph
Me

Prepared according to General Procedure 1B using 1-bromo-2-chloro-4-
(trifluoromethoxy)benzene (69 mg, 0.25 mmol, 1 equiv), (E)-styrylboronic acid
pinacol ester (63.3 mg, 0.275 mmol, 1.1 equiv), (E)-prop-1-en-1-ylboronic acid
MIDA ester (4:1 E:Z, 64 mg, 0.325 mmol, 1.3 equiv), Pd(OAc), (2.2 mg, 0.001
mmol, 4 mol%), DavePhos (7.8 mg, 0.02 mmol, 8 mol%), KsPO4(212 mg, 1 mmol,
4 equiv), THF (1 mL, 0.25 M), and H,O (90 pL, 5 mmol, 20 equiv). After 24 h the
reaction mixture was subjected to the purification outlined in the General Procedure
(silica gel, 0-3% EtOAc/Petroleum ether) to afford the title compound as a pale
yellow oil (53mg, 69%). Product isolated as a 4:1 mixture of propenyl stereoisomers
(E:2).

U may (film): 3029, 2960, 2928, 1580 1462, 1221, 1254, 1161 cm .

Major stereoisomer (E)

"H NMR (CDCl3, 400 MHz): § 7.59-7.51 (m, 3H), 7.44-7.29 (m, 4H), 7.27 (s, 1H),
7.10 (d, J = 6.8 Hz, 1H), 6.97 (d, J = 16.1 Hz, 1H), 6.72 (dd, J = 15.6, 1.7 Hz, 1H),
6.23-6.08 (m, 1H), 1.97 (dd, J= 6.7, 1.8 Hz, 3H).

BC NMR (CDCl;, 101 MHz): & 148.2, 137.8, 136.8, 133.3, 131.0, 129.7, 128.3,
127.4,127.3,127.2, 126.2, 125.0, 120.1 (d, 'Jer = 270.7 Hz), 118.8, 118.3, 18.3.

Observable signals for minor stereoisomer (2)
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"H NMR (CDCl;, 400 MHz): § 7.68 (d, J = 8.6 Hz, 1H), 7.03 (d, J = 15.5 Hz, 1H),
6.57 (d, J=11.5 Hz, 1H), 5.99 (dq, J = 14.0, 7.0 Hz, 1H), 1.75 (dd, J= 7.0, 1.8 Hz,
1H).

BC NMR (CDCls, 101 MHz): & 137.2, 131.4, 130.1, 129.1, 128.9, 126.9, 126.2 (s, J
=3.9 Hz), 125.2, 121.3,119.0, 118.8, 13.9.

YF NMR (CDCls, 376 MHz): 5 —57.68 (s, 3F).

HRMS: exact mass calculated for [M+H]+ (CisH;5F50) requires m/z 305.1148,
found m/z 305.1145.

(E)-5-(2-Methoxypyridin-3-yl)-2-styrylbenzonitrile, 1.160

CN
Ph ~

~

MeO™ N
Prepared according to General Procedure 1B using 2-bromo-5-chlorobenzonitrile (54
mg, 0.25 mmol, 1 equiv), (E)-styrylboronic acid pinacol ester (63.3 mg, 0.275 mmol,
1.1 equiv), (3-methoxypyridin-2-yl)boronic acid MIDA ester (86 mg, 0.325 mmol,
1.3 equiv), Pd(OAc); (2.2 mg, 0.001 mmol, 4 mol%), DavePhos (7.8 mg, 0.02 mmol,
8 mol%), KsPO4 (212 mg, 1 mmol, 4 equiv), THF (1 mL, 0.25 M), and H,O (90 pL,
5 mmol, 20 equiv). After 24 h the reaction mixture was subjected to the purification
outlined in the General Procedure (silica gel, 0-8% EtOAc/Petroleum ether) to afford
the title compound as an off white solid (66 mg, 84%).
U may (s0lid): 3017, 2999, 2922, 2843, 2222, 1632, 1580, 1452 cm .
"H NMR (CDCls, 400 MHz): & 8.24 (dd, J = 5.0, 1.9 Hz, 1H), 7.91 (d, J = 1.6 Hz,
1H), 7.88 (d, J = 8.4 Hz, 1H), 7.82-7.79 (m, 1H), 7.66 (dd, J = 7.3, 1.9 Hz, 1H),
7.64-7.61 (m, 2H), 7.55-7.32 (m, 5H), 7.04 (dd, /= 7.3, 5.0 Hz, 1H), 4.03 (s, 3H).
BC NMR (CDCl;, 101 MHz): & 160.2, 146.3, 138.9, 137.8, 135.8, 135.7, 133.1,
133.0, 128.4, 126.7, 124.6, 123.2, 121.5, 117.5, 116.8, 110.8, 53.2.
HRMS: exact mass calculated for [MJrH]+ (C21H6N2O) requires m/z 313.1335,
found m/z 313.1337.
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(E)-1-(2-(3,3-Dimethylbut-1-en-1-yl)-5-(1 H-indol-5-yl)phenyl)ethan-1-one, 1.16p

Prepared according to General Procedure 1B using 1-(2-bromo-5-
chlorophenyl)ethan-1-one (58 mg, 0.25 mmol, 1 equiv), (E)-(3,3-dimethylbut-1-en-
I-yl)boronic acid, pinacol ester (58 mg, 0.275 mmol, 1.1 equiv), (1H-indol-5-
yl)boronic acid, MIDA ester (88 mg, 0.325 mmol, 1.3 equiv), Pd(OAc), (2.2 mg,
0.001 mmol, 4 mol%), DavePhos (7.8 mg, 0.02 mmol, 8 mol%), K;PO4 (212 mg, 1
mmol, 4 equiv), THF (1 mL, 0.25 M), and H,O (90 uL, 5 mmol, 20 equiv). After 24
h the reaction mixture was subjected to the purification outlined in the General
Procedure (silica gel, 0-9% EtOAc/Petroleum ether) to afford the title compound as
a brown solid (63 mg, 84%).

U may (s0lid): 3339, 2954, 2859, 1664, 1599, 1398 cm .

"H NMR (CDCl;, 400 MHz): 5 8.28 (s, 1H), 7.87 (d, J = 9.8 Hz, 2H), 7.72 (d, J = 8.1
Hz, 1H), 7.59 (d, J = 8.1 Hz, 1H), 7.52-7.41 (m, 2H), 7.27 (s, 1H), 6.84 (d, J=16.0
Hz, 1H), 6.63 (s, 1H), 6.18 (d, /= 16.0 Hz, 1H), 2.64 (s, 3H), 1.17 (s, 9H).

BC NMR (CDCl;, 101 MHz): § 203.2, 144.8, 140.9, 138.1, 135.7, 135.5, 132.1,
130.0, 128.5,127.9, 127.3, 125.1, 123.2, 121.5, 119.1, 111.4, 103.1, 33.8, 30.3, 29.5.
HRMS: exact mass calculated for [MJrH]+ (C2H23NO) requires m/z 318.1852, found
m/z 318.1852.

4-(4-Methoxyphenyl)-6-(2-methoxypyridin-3-yl)quinolone, 1.16q

Prepared according to General Procedure 1B using 4-bromo-6-chloroquinoline (61
mg, 0.25 mmol, 1 equiv), (4-methoxyphenyl)boronic acid pinacol ester (65 mg,
0.275 mmol, 1.1 equiv), (2-methoxypyridin-3-yl)boronic acid MIDA ester (86 mg,
0.325 mmol, 1.3 equiv), Pd(OAc), (2.2 mg, 0.001 mmol, 4 mol%), DavePhos (7.8
mg, 0.02 mmol, 8 mol%), KsPO4(212 mg, 1 mmol, 4 equiv), THF (1 mL, 0.25 M),
and H,O (90 uL, 5 mmol, 20 equiv). After 24 h the reaction mixture was subjected to
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the purification outlined in the General Procedure (silica gel, 0-25%
EtOAc/Petroleum ether) to afford the title compound as a pale yellow solid (84 mg,
97%).

U may (solid): 3036, 2984, 2924, 2837, 1610, 1578, 1496, 1405 cm .

"H NMR (CDCls, 400 MHz): & 8.95 (d, J = 4.2 Hz, 1H), 8.36 (dd, J = 5.0, 1.8 Hz,
1H), 8.23 (d, J = 8.8 Hz, 1H), 7.97 (dd, J = 8.7, 1.9 Hz, 1H), 7.71 (d, J = 1.8 Hz,
1H), 7.64 (dd, J = 7.2, 1.8 Hz, 1H), 7.54 (d, J = 8.7 Hz, 2H), 7.35 (d, J = 4.4 Hz,
1H), 7.09 (dd, J= 7.2, 5.1 Hz, 1H), 6.99 (d, J = 8.7 Hz, 2H), 3.93 (s, 3H), 3.86 (s,
3H).

BC NMR (CDCl;, 101 MHz): & 160.7, 159.0, 149.0, 147.0, 143.3, 139.3, 138.5,
132.5, 130.3, 129.7, 128.5, 128.0, 126.7, 122.2, 122.0, 120.4, 116.3, 113.9, 54.9,
53.1.

HRMS: exact mass calculated for [MJrH]+ (C2H1sN2Oy) requires m/z 343.1441,
found m/z 343.1440.

(E)-5-(3-(3,3-Dimethylbut-1-en-1-yl)phenyl)pyrimidine, 1.16r

lN/ Mé Me
Prepared according to General Procedure 1B using 1-bromo-3-chlorobenzene (47.5
mg, 0.25 mmol, 1 equiv), ((£)-(3,3-dimethylbut-1-en-1-yl)boronic acid pinacol ester
(58 mg, 0.275 mmol, 1.1 equiv), pyrimidin-5-ylboronic acid MIDA ester (76 mg,
0.325 mmol, 1.3 equiv), Pd(OAc), (2.2 mg, 0.001 mmol, 4 mol%), DavePhos (7.8
mg, 0.02 mmol, 8 mol%), KsPO4(212 mg, 1 mmol, 4 equiv), THF (1 mL, 0.25 M),
and H,O (90 uL, 5 mmol, 20 equiv). After 24 h the reaction mixture was subjected to
the purification outlined in the General Procedure (silica gel, 0-20%
EtOAc/Petroleum ether) to afford the title compound as a yellow solid (45 mg, 76%).
U may (solid): 3032, 2950, 2863, 1560, 1463, 1416 cm .
"H NMR (CDCl;, 400 MHz): & 9.23 (s, 1H), 8.98 (s, 2H), 7.56 (s, 1H), 7.51-7.39
(m, 3H), 6.39 (d, /= 1.7 Hz, 2H), 1.17 (s, 9H).
BC NMR (CDCl;, 101 MHz): & 156.9, 154.4, 142.9, 138.9, 134.0, 134.0, 129.1,
126.1, 124.8, 124.2, 123.4, 33.0, 29.0.
HRMS: exact mass calculated for [MJrH]+ (Ci6H1sNy) requires m/z 239.1543, found
m/z 239.1543.
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(E)-1-(2-(1-Methyl-1H-pyrazol-4-yl)-5-(prop-1-en-1-yl)phenyl)ethan-1-one, 1.16s

N

< N-Me
o}

Me
Prepared according to General Procedure 1B using 1-(2-bromo-5-
chlorophenyl)ethan-1-one (58 mg, 0.25 mmol, 1 equiv), (1-methyl-1H-pyrazol-4-
yl)boronic acid, pinacol ester (57 mg, 0.275 mmol, 1.1 equiv), prop-1-en-1-ylboronic
acid MIDA ester (4:1 E:Z, 64 mg, 0.325 mmol, 1.3 equiv), Pd(OAc); (2.2 mg, 0.001
mmol, 4 mol%), DavePhos (7.8 mg, 0.02 mmol, 8 mol%), KsPO4(212 mg, 1 mmol,
4 equiv), THF (1 mL, 0.25 M), and H,O (90 pL, 5 mmol, 20 equiv). After 24 h the
reaction mixture was subjected to the purification outlined in the General Procedure
(silica gel, 40—-80% EtOAc/Petroleum ether) to afford the title compound as a yellow
oil. Product isolated as a 4:1 mixture of propenyl stereoisomers (£:2) (56 mg, 92%).
U may (film): 2975, 2934, 1684, 1603, 1565, 1411, 1357, 1180 cm™".
Major stereoisomer (E)
"H NMR (CDCls, 400 MHz): § 7.65 (s, 1H), 7.52 (s, 1H), 7.44-7.41 (m, 2H), 7.32
(d, J=17.8 Hz, 1H), 6.43 (dd, J = 15.8, 1.3 Hz, 1H), 6.33 (dq, J = 15.7, 6.4 Hz, 1H),
4.01 (s, 3H), 2.36 (s, 3H), 1.93 (dd, /= 6.3, 1.2 Hz, 3H).
BC NMR (CDCl;, 101 MHz): & 204.4, 139.8, 137.4, 136.6, 129.9, 129.7, 129.2,
127.3,127.1, 126.9, 124.2, 120.6, 38.3, 30.1, 18.0.
Observable signals for minor stereoisomer (2)
"H NMR (CDCls,400 MHz): § 7.67 (s, 1H), 7.54 (s, J = 3.5 Hz, 1H), 7.36 (dd, J =
7.6, 0.8 Hz, 1H), 6.46 (dd, J = 11.6, 1.8 Hz, 1H), 5.90 (dq, J = 11.6, 7.2 Hz, 1H),
4.01 (s, 3H), 2.37 (s, 3H), 1.95 (d, J= 1.8 Hz, 3H).
BC NMR (CDCls, 101 MHz): § 137.5, 136.2, 130.5, 129.5, 128.0, 127.8, 127.2.
HRMS: exact mass calculated for [MJrH]+ (CisHN2O) requires m/z 241.1335,
found m/z 241.1337.

(E)-3-(2-(2-Cyclopropylvinyl)-3-methylbenzo[b]thiophen-5-yl)-2-methoxypyridine,
1.16t
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Prepared according to General Procedure 1B using 2-bromo-5-chloro-3-
methylbenzo[b]thiophene (65 mg, 0.25 mmol, 1 equiv), (E)-cyclopropylvinylboronic
acid pinacol ester (54 mg, 0.275 mmol, 1.1 equiv), (3-methoxypyridin-2-yl)boronic
acid MIDA ester (86 mg, 0.325 mmol, 1.3 equiv), Pd(OAc); (2.2 mg, 0.001 mmol, 4
mol%), DavePhos (7.8 mg, 0.02 mmol, 8 mol%), K3;PO4 (212 mg, 1 mmol, 4 equiv),
THF (1 mL, 0.25 M), and H,O (90 pL, 5 mmol, 20 equiv). After 24 h the reaction
mixture was subjected to the purification outlined in the General Procedure (silica
gel, 0-20% EtOAc/Petroleum ether) to afford the title compound as a yellow oil (66
mg, 89%).

Umay (film): 2947, 2924, 2855, 1662, 1578, 1463, 1396 cm ™.

"H NMR (CDCl3, 400 MHz): & 8.20 (dd, J = 5.0, 1.9 Hz, 1H), 7.78-7.74 (m, 2H),
7.69 (dd, J= 7.3, 1.9 Hz, 1H), 7.48 (dd, J = 8.2, 1.7 Hz, 1H), 7.02 (dd, /= 7.3, 5.0
Hz, 1H), 6.83 (d, /= 15.4 Hz, 1H), 5.69 (dd, J = 15.4, 9.0 Hz, 1H), 4.01 (s, 3H), 2.41
(s, 3H), 1.63 (m, 1H), 0.92-0.88 (m, 2H), 0.64-0.56 (m, 2H).

BC NMR (CDCl;, 101 MHz): & 160.5, 145.1, 141.0, 138.3, 136.8, 136.8, 136.5,
132.3,126.5, 125.1, 124.6, 121.5, 121.2, 119.2, 116.6, 53.1, 14.4, 11.2, 7.2.

HRMS: exact mass calculated for [MJrH]+ (Co0H19NOS) requires m/z 322.1264,
found m/z 322.1260.

3-(4'-Methoxy-[1,1'-biphenyl]-3-yl)thiophene, 1.16u

f \ O O OMe

Prepared according to General Procedure 1B using 1-bromo-3-chlorobenzene (47.5
mg, 0.25 mmol, 1 equiv), (4-methoxyphenyl)boronic acid pinacol ester (64 mg,
0.275 mmol, 1.1 equiv), thiophen-3-ylboronic acid MIDA ester (78 mg, 0.325 mmol,
1.3 equiv), Pd(OAc), (2.2 mg, 0.001 mmol, 4 mol%), DavePhos (7.8 mg, 0.02 mmol,
8 mol%), KsPO4 (212 mg, 1 mmol, 4 equiv), THF (1 mL, 0.25 M), and H,O (90 pL,
5 mmol, 20 equiv). After 24 h the reaction mixture was subjected to the purification
outlined in the General Procedure (silica gel, 0-8% EtOAc/Petroleum ether) to afford
the title compound as a white solid (60 mg, 90%).

U may (s0lid): 3096, 3004, 2954, 2837, 1603, 1513, 1441 cm ™.
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"H NMR (CDCl3, 400 MHz): & 7.78 (t, J = 1.6 Hz, 1H), 7.60-7.57 (m, 2H), 7.57—
7.40 (m, 6H), 7.01 (d, J = 8.7 Hz, 2H), 3.88 (s, 3H).

BC NMR (CDCl;, 101 MHz): & 159.3, 142.4, 141.5, 136.3, 133.7, 129.2, 128.2,
126.5, 126.2, 125.6, 125.0, 124.9, 120.5, 114.3, 55.4.

HRMS: exact mass calculated for [MJrH]+ (C17H14SO) requires m/z 266.0760, found
m/z 266.0759.

(E)-N-(4'-(2-Cyclohexylvinyl)-2'-methoxy-[1,1'-biphenyl]-4-yl)acetamide, 1.16v

Prepared according to General Procedure 1B wusing 1-bromo-4-chloro-2-
methoxybenzene (55 mg, 0.25 mmol, 1 equiv), (4-acetamidophenyl)boronic acid
pinacol ester (72 mg, 0.275 mmol, 1.1 equiv), (E)-(2-cyclohexylvinyl)boronic acid
MIDA ester (86 mg, 0.325 mmol, 1.3 equiv), Pd(OAc), (2.2 mg, 0.001 mmol, 4
mol%), DavePhos (7.8 mg, 0.02 mmol, 8 mol%), K3;PO4 (212 mg, 1 mmol, 4 equiv),
THF (1 mL, 0.25 M), and H,O (90 pL, 5 mmol, 20 equiv). After 24 h the reaction
mixture was subjected to the purification outlined in the General Procedure (silica
gel, 0-50% EtOAc/Petroleum ether) to afford the title compound as a light brown
solid (78 mg, 89%).

U may (solid): 3304, 3043, 2921, 2850, 1660, 1601, 1539, 1370, 1223 cm .

"H NMR (CDCls, 400 MHz): & 7.62-7.53 (m, 4H), 7.50 (d, J = 8.0 Hz, 1H), 7.40 (d,
J=11.0 Hz, 1H), 7.13 (dd, J= 7.9, 1.5 Hz, 1H), 7.05 (d, /= 1.6 Hz, 1H), 6.72 (d, J =
15.8 Hz, 1H), 6.23 (dd, J = 16.1, 7.0 Hz, 1H), 3.92 (s, 3H), 2.22 (s, 3H), 1.90-1.64
(m, 6H), 1.40-1.29 (m, 3H), 1.25-1.18 (m, 2H).

BC NMR (CDCl;, 101 MHz): & 167.9, 156.1, 139.6, 137.1, 136.7, 136.6, 126.9,
126.0, 125.6, 120.9, 119.7, 118.7, 108.9, 55.1, 41.1, 32.6, 25.7, 25.6, 24 4.

HRMS: exact mass calculated for [MJrH]+ (C23H27NO») requires m/z 350.2215,
found m/z 350.2216.
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(E)-2-(2-Cyclopropylvinyl)-3'-isobutoxy-1,1'-biphenyl, 1.16w

Prepared according to General Procedure 1B using 1-bromo-2-chlorobenzene (47.5
mg, 0.25 mmol, 1 equiv), (E)-(2-cyclopropylvinyl)boronic acid pinacol ester (53 mg,
0.275 mmol, 1.1 equiv), (3-isobutoxyphenyl)boronic acid MIDA ester (99 mg, 0.325
mmol, 1.3 equiv), Pd(OAc), (2.2 mg, 0.001 mmol, 4 mol%), DavePhos (7.8 mg, 0.02
mmol, 8 mol%), KsPO4 (212 mg, 1 mmol, 4 equiv), THF (1 mL, 0.25 M), and H,O
(90 uL, 5 mmol, 20 equiv). After 24 h the reaction mixture was subjected to the
purification outlined in the General Procedure (silica gel, 0—6% EtOAc/Petroleum
ether) to afford the title compound as a yellow oil (56 mg, 77%).

U may (film): 2958, 2928, 2872, 1597, 1578, 1470 cm™".

"H NMR (CDCls, 400 MHz): & 7.58-7.51 (m, 1H), 7.38-7.24 (m, 4H), 6.99-6.90
(m, 3H), 6.51 (d, J = 15.7 Hz, 1H), 5.68 (dd, J = 15.7, 8.9 Hz, 1H), 3.79 (d,J = 6.6
Hz, 2H), 2.21-2.08 (m, 1H), 1.55-1.43 (m, 1H), 1.07 (d, J = 6.7 Hz, 6H), 0.83-0.74
(m, 2H), 0.53-0.44 (m, 2H).

BC NMR (CDCl;, 101 MHz): & 158.4, 142.1, 139.4, 135.2, 135.1, 129.5, 128.4,
126.9, 125.9,125.7, 124.8, 121.6, 115.4, 112.9, 74.0, 27.8, 18.8, 14.1, 6.7.

HRMS: exact mass calculated for [MJrH]+ (C21H240) requires m/z 293.1900, found
m/z 293.1904.

4.4 Products from Scheme 69
2-(3-Fluoro-4-methoxyphenyl)-4-(p-tolyl)pyrimidine, 1.30

F. ' =
N
MeO Me

Prepared according to General Procedure 1B using 2,4-dichloropyrimidine (37 mg,
0.25 mmol, 1 equiv), 4-tolylboronic acid pinacol ester (60 mg, 0.275 mmol, 1.1
equiv), ((3-fluoro-4-methoxyphenyl)boronic acid MIDA ester (91 mg, 0.325 mmol,
1.3 equiv), PdCl,dppf*CH,Cl, (8.2 mg, 0.001 mmol, 4 mol%), KsPO4 (212 mg, 1
mmol, 4 equiv), THF (1 mL, 0.25 M), and H,O (90 uL, 5 mmol, 20 equiv). After 8 h
stirring at room temperature the reaction was heated to 90 °C for a further 48 h. The

reaction mixture was then subjected to the purification outlined in the General
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Procedure (silica gel, 10-20% Et,O/Petroleum ether) to afford the title compound as
a white solid (51 mg, 70%).

U may (s0lid): 2956, 2922, 2850, 1621, 1565, 1547, 1513 cm .

"H NMR (CDCls, 400 MHz): & 8.79 (d, J = 5.3 Hz, 1H), 8.42-8.32 (m, 2H), 8.14 (d,
J=8.2 Hz, 2H), 7.56 (d, J = 5.3 Hz, 1H), 7.37 (d, J = 8.0 Hz, 2H), 7.10 (t, J = 8.7
Hz, 1H), 4.00 (s, 3H), 2.48 (s, 3H).

BC NMR (CDCl;, 101 MHz): & 163.8, 163.3 (d, J= 2.8 Hz), 157.6, 152.4 (d, 'Je.r =
244.8 Hz), 149.9 (d, *Jer = 11.0 Hz), 141.5, 134.0, 131.3 (d, *Jer = 6.3 Hz), 129.7,
127.1, 124.6 (d, J=2.9 Hz), 116.0 (d, “Jer = 19.8 Hz), 113.9, 112.8, 56.2, 21.5.

YF NMR (CDCls, 376 MHz): 6 —135.42 (s, 1F).

HRMS: exact mass calculated for [MJrH]+ (CisHsFN,0O) requires m/z 295.1241,
found m/z 295.1239.

(E)-4-(4-Vinylstyryl)-3,6-dihydro-2 H-pyran, 1.31

(6]
Xy

AN

Prepared according to General Procedure 1B using (E)-1-bromo-4-(2-
bromovinyl)benzene (65 mg, 0.25 mmol, 1 equiv), (3,6-dihydro-2H-pyran-4-
yl)boronic acid pinacol ester (58 mg, 0.275 mmol, 1.1 equiv), vinylboronic acid
MIDA ester (68 mg, 0.325 mmol, 1.5 equiv), PdCl,dppf*CH,Cl, (8.2 mg, 0.001
mmol, 4 mol%), KsPO4 (212 mg, 1 mmol, 4 equiv), THF (1 mL, 0.25 M), and H,O
(90 uL, 5 mmol, 20 equiv). After 24 h stirring at room temperature the reaction was
heated to 90 °C for a further 24 h. The reaction mixture was then subjected to the
purification outlined in the General Procedure (silica gel, 10% Et,O/Petroleum ether)
to afford the title compound as an off-white solid (42 mg, 79%).

U may (s0lid): 2956, 2922, 2854, 1716, 1696, 1604, 1511, 1385 cm .

"H NMR (CDCls, 400 MHz): § 7.40 (s, 4H), 6.81 (d, J = 16.2 Hz, 1H), 6.73 (dd, J =
17.6,10.9 Hz, 1H), 6.51 (d, J=16.1 Hz, 1H), 5.88 (s, 1H), 5.77 (d, J=17.6 Hz, 1H),
5.26 (d, J=10.9 Hz, 1H), 4.32 (d, J = 2.2 Hz, 2H), 3.92 (t, J = 5.5 Hz, 2H), 2.42 (s,
2H).

BC NMR (CDCl;, 101 MHz): & 136.9, 136.6, 136.5, 133.5, 130.4, 127.4, 126.5,
126.5, 125.8, 113.6, 65.8, 64.2, 25.0.
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HRMS: exact mass calculated for [MJrH]+ (Ci5H160) requires m/z 213.1274, found
m/z 213.1269.

1-Methyl-4-(4-(4-(trifluoromethyl)benzyl)phenyl)-1 H-pyrazole, 1.32

Me\Nﬁ/‘/\‘mCF3
N=

Prepared according to  General Procedure 1B  using  1-bromo-4-
(bromomethyl)benzene (62 mg, 0.25 mmol, 1 equiv), (1-methyl-1H-pyrazol-4-
yl)boronic acid, pinacol ester (52 mg, 0.275 mmol, 1.1 equiv), (4-
(trifluoromethyl)phenyl)boronic acid MIDA ester (98 mg, 0.325 mmol, 1.3 equiv),
PdCl,dppf*CH,Cl, (8.2 mg, 0.001 mmol, 4 mol%), K;PO4 (212 mg, 1 mmol, 4
equiv), THF (1 mL, 0.25 M), and H,O (90 pL, 5 mmol, 20 equiv). After 24 h stirring
at room temperature the reaction was heated to 90 °C for a further 24 h. The reaction
mixture was then subjected to the purification outlined in the General Procedure
(silica gel, 10-40% EtOAc/Petroleum ether) to afford the title compound as a yellow
solid (66 mg, 84%).

U may (s0lid): 3079, 3030, 2926, 2852, 1617, 1608, 1502, 1400, 1331 cm .

"H NMR (CDCls, 400 MHz): & 7.68 (s, 4H), 7.53 (d, J = 8.2 Hz, 2H), 7.36 (s, 1H),
7.31(d, J=8.2 Hz, 2H), 7.14 (s, 1H), 3.87 (s, 2H), 3.86 (s, 3H).

BC NMR (CDCl;, 101 MHz): & 144.9, 141.9, 139.5, 138.0, 129.5, 129.3, 127.8,
127.7, 126.1 (q, *Jer = 3.9 Hz), 122.1 (d, "Jer = 272.0 Hz), 120.9, 39.3, 30.7.
Carbon bearing CF; not observed.

YF NMR (CDCls, 376 MHz): 8 —62.40 (s, 3F).

HRMS: exact mass calculated for [M+H]+ (CisHysF3Ny) requires m/z 317.1260,
found m/z 317.1260.

4-((4'-(Thiophen-2-yl)-[1,1'-biphenyl]-3-yl)methyl)morpholine, 1.33

N
®
Prepared according to General Procedure 1B using 1,4-dibromobenzene (59 mg, 0.25

mmol, 1 equiv), (3-(morpholinomethyl)phenyl)boronic acid, pinacol ester (83 mg,

0.275 mmol, 1.1 equiv), thiophen-2-ylboronic acid MIDA ester (66 mg, 0.325 mmol,
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1.1 equiv), PdCl,dppf*CH,Cl, (8.2 mg, 0.001 mmol, 4 mol%), KsPO4 (212 mg, 1
mmol, 4 equiv), THF (1 mL, 0.25 M), and H,O (90 uL, 5 mmol, 20 equiv). After 16
h stirring at room temperature the reaction was heated to 90 °C for a further 8 h. The
reaction mixture was subjected to the purification outlined in the General Procedure
(silica gel, 10-40% EtOAc/Petroleum ether) to afford the title compound as an off
white solid (50 mg, 60%).

U may (solid): 3068, 2921, 2861, 2809, 2768, 1601, 1483, 1455, 1353, 1115 cm ™.

"H NMR (CDCl3, 400 MHz): § 7.72-7.61 (m, 4H), 7.60 (s, 1H), 7.54-7.50 (m, 1H),
7.43-7.38 (m, 1H), 7.36 (dd, J = 3.6, 1.1 Hz, 1H), 7.35-7.31 (m, 1H), 7.30 (dd, J =
5.1, 1.1 Hz, 1H), 7.11 (dd, J= 5.1, 3.6 Hz, 1H), 3.74 (t, /= 4.6 Hz, 4H), 3.59 (s, 2H),
2.51 (s, 4H).

BC NMR (CDCls, 101 MHz): & 144.2, 140.7, 140.2, 133.6, 129.0, 128.5, 128.2,
127.9,127.7, 126.4, 126.0, 125.0, 123.3, 67.1, 63.6, 53.8.

HRMS: exact mass calculated for [MJrH]+ (C21H21NOS) requires m/z 336.1417,
found m/z 336.1418.

4.4 Products from Scheme 70 and 73
4-(3-Benzyl-5-methoxyphenyl)-3,5-dimethylisoxazole, 1.38

OMe

Prepared according to  General Procedure 1A  using (3-bromo-5-
methoxyphenyl)boronic acid MIDA ester (85 mg, 0.25 mmol, 1 equiv), (3,5-
dimethylisoxazol-4y-l)boronic acid pinacol ester (61 mg, 0.275 mmol, 1.1 equiv),
benzyl chloride (41 mg, 0.325 mmol, 1.3 equiv), Pd(OAc), (2.2 mg, 0.01 mmol, 4
mol%), SPhos (8.2 mg, 0.02 mmol, 8§ mol%), K;PO4 (212 mg, 1 mmol, 4 equiv),
THF (1 mL, 0.25 M), and H,O (90 pL, 5 mmol, 20 equiv). After 24 h, the reaction
mixture was subjected to the purification outlined in the General Procedure (silica
gel, 0-10% EtOAc/Petroleum ether) to afford the title compound as a colourless oil
(51 mg, 70%).

U may (film): 3007, 2966, 2671, 1591, 1456, 1415, 1278 cm™".
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"H NMR (CDCls, 400 MHz): & 7.37-7.30 (m, 2H), 7.25 (m, 3H), 6.78-6.74 (m, 1H),
6.69-6.65 (m, 1H), 6.66-6.63 (m, 1H), 4.02 (s, 2H), 3.82 (s, 3H), 2.40 (s, 3H), 2.26
(s, 3H).

BC NMR (CDCl;, 101 MHz): & 165.2, 160.0, 158.6, 143.3, 140.5, 131.7, 128.9,
128.6,126.3, 122.1, 116.6, 113.5, 112.6, 55.3, 41.9, 11.6, 10.8.

HRMS: exact mass calculated for [MJrH]+ (C19H20NO») requires m/z 294.1489,
found m/z 294.1487.

(3-(3,5-Dimethylisoxazol-4-yl)-5-methoxyphenyl)(phenyl)methanone, 1.39a

OMe

be) Ph

To a solution of 4-(3-benzyl-5-methoxyphenyl)-3,5-dimethylisoxazole 1.38 (90 mg,
0.3 mmol, 1 equiv) and tetrabutylammonium bromide (148 mg, 0.46 mmol, 1.5
equiv) in CH,Cl, (1.5 mL) was added KMnO,4 (291 mg, 1.84 mmol, 6 equiv)
portionwise. The reaction mixture was stirred at reflux for 24 h. The reaction mixture
was then warmed to room temperature and MeOH (50 mL) was added dropwise. The
resulting black precipitate was filtered and washed with CH,Cl, (50 mL). The
resulting solution was concentrated at reduced pressure to afford a deep purple solid.
To this, a further 50 mL of MeOH was added until the solution became colourless.
The mixture was filtered again to remove the black solid precipitate and the filtrate
was concentrated at reduced pressure to give the crude product as a brown oil. The
crude product was then purified by flash chromatography (silica gel, 0-15%
EtOAc/Petroleum ether) to afford the title compound as a cloudy oil (58 mg, 62%).

U may (film): 3066, 2933, 2850, 1658, 1633, 1587, 1446, 1409 cm™".

"H NMR (CDCl3, 400 MHz): & 7.86 (d, J = 7.0 Hz, 2H), 7.64 (t, J = 7.4 Hz, 1H),
7.52 (t,J=17.6 Hz, 2H), 7.37 (dd, J= 2.5, 1.4 Hz, 1H), 7.24 (t, /= 1.4 Hz, 1H), 7.04
(dd, J=2.5, 1.5 Hz, 1H), 3.92 (s, 3H), 2.44 (s, 3H), 2.31 (s, 3H).

BC NMR (CDCl;, 101 MHz): & 195.6, 165.2, 159.4, 158.0, 139.0, 136.8, 132.3,
131.4,129.5,127.9,122.9,119.1, 115.3, 112.7,55.2, 11.2, 10.4.

HRMS: exact mass calculated for [MJrH]+ (C19H7NO3) requires m/z 308.1281,
found m/z 308.1279.
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(3-(3,5-Dimethylisoxazol-4-yl)-5-methoxyphenyl)(phenyl)methanol, 1.39b

OMe

OH

o Me P
A solution of (3-(3,5-dimethylisoxazol-4-yl)-5-methoxyphenyl)(phenyl)methanone
1.39a (50 mg, 0.18 mmol, 1 equiv) in CH,Cl;:MeOH (10:1, 0.9 mL) was cooled to 0
°C. NaBH4 (14 mg, 0.36 mmol, 2 equiv) was then added portion wise. The reaction
mixture was stirred at 0 °C for 30 min before being warmed to room temperature and
stirred for a further 30 min. The mixture was quenched with H,O (5 mL) and was
diluted with CH,Cl, (5 mL). The organics were separated and dried through a
hydrophobic frit before being concentrated at reduced pressure to give the crude
product as a brown oil. The crude product was then purified by flash chromatography
(silica gel, 30% EtOAc/Petroleum ether) to afford the title compound as an opaque
oil (46 mg, 92%).
U may (film): 3345, 2956, 2924, 1590, 1496, 1464, 1407 cm™".
"H NMR (CDCls, 400 MHz): & 7.44-7.34 (m, 4H), 7.33-7.27 (m, 1H), 7.01-6.97
(m, 1H), 6.83-6.85 (m,1H), 6.69 (dd, J= 2.4, 1.5 Hz, 1H), 5.86 (s, 1H), 3.83 (s, 3H),
2.37 (s, 3H), 2.22 (s, 3H).
BC NMR (CDCl;, 101 MHz): & 164.8, 159.5, 158.1, 145.6, 143.2, 131.2, 128.1,
127.3,126.0,119.2, 116.0, 113.5, 110.4, 75.5, 54.9, 11.1, 10.3.
HRMS: exact mass calculated for [MJrH]+ (C19H9NO3) requires m/z 310.1438,
found m/z 310.1440.
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2.0 Chapter 2 - Chemoselectivity in the CuAAC Reaction

2.1 Introduction

The copper-catalysed azide alkyne (3+2) cycloaddition (CuAAC) is the reaction
between a terminal alkyne and an organic azide to form a 1,2,3-triazole product, 2.1
(Scheme 78a). Huigsen reported the first example of this type of reaction under
thermal promotion in the 1960’s: terminal alkynes and azide substrates were heated
together to obtain mixtures of 1,2,3-triazole regioisomers, 2.2 (Scheme 78b).['?71%*]
However, the full potential of this reaction was not realised until the Cu-mediated
version was discovered in 2002 by the groups of Finn, Sharpless and Fokin,!'*+!"]

and Meldal.[**!

(a) H N cusource N=N . (b) H N A N=N R2 N
= N N-RZ |~ N N-RZ . N7
. Z N I/ | R1/ W ) IN
R R i R R R
21 ! 22
alkyne azide triazole product |  alkyne azide mixture of triazole regioisomers

Scheme 78: General scheme of the CuAAC reaction.

The two seminal reports of the CuAAC reaction provided very different methods for
its use, and both reports have significantly affected the way this reaction is used to
date. The report from Sharpless and Fokin!'*"! described the use of what many
consider to be ‘classic’ CuAAC conditions: a CuSO4 precatalyst with NaAsc as a
reductant in a solvent mixture of /BuOH/H,O (Scheme 79). The group carried out a
substrate scope to explore the reactions compatibility with standard functionality and

proposed a basic mechanism, vide infra.

_N
H CuSOy4, NaAsc N ‘N-Bn
= BnN - . =
Pho_FZ 3 (‘\/
O/ H,O:tBuOH 2:1, 1t, 8 h oph

91%
Scheme 79: Seminal report of CuAAC from the group of Sharpless and Fokin.
The Meldal report"*" described a more applied approach to the development of the
CuAAC reaction. Using polymer-supported alkynes, the group reacted a range of
azides using a Cul catalyst with N,N-diisopropylethylamine (DIPEA) as a base.
Apart from the use of polymer-supported reagents, the key difference in this report is
the scope of the reaction. Meldal uses this powerful reaction to ligate a diverse range
of amino acids and small peptides to a number of highly functionalised azides,

including saccharides, and molecules containing polar amines and acid moieties, in
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addition to a range of more standard functional groups (Scheme 80). This report in

particular set the scene for many of the future applications of the CuAAC.

foT\ Ac
o
o AcO N

% Ho, S o)
SPh
b [N LAS H
FGFG HO N
/ Cul, DIPEA % OH
then NaOH HO ‘N=N o) 2

>95%
Scheme 80: Polymer-supported sugar-peptide ligation from Meldal’s seminal contribution.

Since then, the CuAAC has become the method of choice for the connection of

discrete molecules. CuAAC has seen uptake throughout a range of broadly different

areas of chemistry and biology, perhaps due to the benign conditions employed and

operationally facile nature of the transformation.!'**™'3%

Chemical biology in particular has been profoundly impacted, with advances in
bioconjugation, DNA modification, and in the synthesis of multifunctional
biomaterials, among others, being aided by the CuAAC reaction. Chemical biology
has embraced this chemistry principally because it is termed a ‘bio-orthogonal’
reaction (Scheme 81)."**! This means CuAAC chemistry can be performed under

conditions that are tolerant of sensitive biomolecules; such as proteins, DNA, and

so: 136
even living cells.["*"!
VYoo VYoo
‘cu'
VAVAL —_—
= —
H /\/\/N‘N"N
azide modified biomoleule  alkyne modified biomolecule selective ligation in vitro

Scheme 81: Ligation of biomolecules using CuAAC.

This technology has even allowed selective modification in vivo. For example, in
2008, Bertozzi used the strain promoted azide alkyne cycloaddition (SPAAC), a
copper free, yet closely related reaction (vide infra) to attach fluorescent probes (2.3)
to azide-modified glycans in live developing zebrafish (Scheme 82)."*"! This
allowed the authors to interrogate the distribution of the labelled glycans throughout
the early lifetime of the zebrafish. The concept of using simple, benign chemistry to
look closely at biological systems was revolutionary, and has been a keystone in the

development of the bourgeoning field of chemical biology.!'**
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Scheme 82: Use of SPAAC chemistry to label glycans in developing zebrafish.

2.1.1 Mechanism of the CuAAC Reaction

Due to its great importance to academics and industrialists within chemical biology,
a fundamental understanding of how this reaction proceeds is vital. While the
applications that have stemmed from this chemistry have been transformative in
chemical biology, the wide range of substrates and conditions employed with this

reaction has made probing the mechanism a significant challenge.!'*”’

While the fundamental reactivity of the two reactive species, a Cu-acetylide 2.4
(formed in situ from the Cucatalyst and alkyne) and an organoazide 2.5, are highly
complementary, with both possessing nucleophilic and electrophilic sites, the exact
mechanism of the cycloaddition is not straightforward (Figure 17a). Much of the
subtlety in the catalytic cycle lies around the precise role of the Cu catalyst, and the

nature of the azide ligation step.

Over the last 10 years, the mechanism has slowly been elucidated. The original
mechanistic proposal by Sharpless, Finn, and Fokin in their seminal paper described

1129 1t was proposed that the reaction

the reaction over four mechanistic steps.
proceeded through  Cu-acetylide formation 2.6, followed by azide
coordination/ligation, rearrangement 2.7, and protonation of the Cu-triazole 2.8 to

give the desired product 2.9 (Figure 17b).
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Figure 17: a) Complimentary reactivity of azide and Cu-acetylide b) Mechanism of the CuAAC initially
proposed by Sharpless c¢) Representative energy diagram for the CuAAC mechanism.

In an early mechanistic study from the groups of Noodleman, Fokin, and Sharpless,
density functional theory (DFT) calculations were carried out to verify the feasibility
of the group’s proposed catalytic cycle.'*” Initial studies determined that -
coordination of the Cu species to the alkyne dramatically reduced the pK, of the
acetylenic proton. This activation reduces the pK, of propyne from 25 to
approximately 15, which makes formation of the Cu-acetylide feasible in the
aqueous systems that are commonly employed in CuAAC. The group then ruled out
a direct, concerted cycloaddition from the m-coordinated alkyne, as the projected
energy barrier was too high to explain the experimental results (ca. 27.8 kcal/mol for
the Cu-coordinated alkyne vs. 26 kcal/mol for the uncatalysed process). Moving to
look at the step-wise process that had been previously suggested, the energy barrier
required for a reaction proceeding through a Cu(IIl) metallacycle was significantly
lower (Figure 17c). Formation of the 6-membered transition state was calculated to
have an energy barrier of 14.9 kcal/mol, which is significantly lower than the
uncatalysed process, explaining the rate enhancement of 7-8 orders of magnitude

observed with Cu-catalysis.

In addition to this computational report, Finn and Fokin released a kinetic evaluation
of the CuAAC reaction."""! Monitoring the reaction between benzyl azide and
phenylacetylene by HPLC quench kinetics allowed the calculation of rate orders for

the reaction components. Under catalytic conditions, the reaction was found to be
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first order in acetylene, zero order in azide, and second order in copper. When a large
excess of azide was used a slight negative dependency was observed, consistent with
an unproductive azide-Cu interaction. Under conditions employing stoichiometric
copper, the reaction was found to be first order in both alkyne and azide, and zero

order in copper.

Fokin and co-workers later expanded on this work, proposing an alternative

2] This detailed study intended to verify the role of the m-

mechanistic pathway.!
coordinated copper species 2.10 in the azide ligation/coordination step. While =-
coordination has been shown to accelerate the rate of Cu-acetylide formation, it was
unknown whether this copper species is catalytically active in azide ligation. Two
possible mechanistic pathways were postulated, the first involved m-coordination to
accelerate acetylide formation, at which point the n-ligated Cu leaves to allow azide
ligation: a mono-copper catalytic cycle. In the second mechanism, the acetylene

bound copper atom plays a role in the azide ligation step, indicating a di-copper

mechanism (Scheme 83).

2 R?
Ry i i a'e
( R'—==1(CuJ’ RI—==—H RI—==[cu]' N /ICu]z
A=t common intermediate RI—==[Cu]’
mono-copper pathway 2.10 di-copper pathway

Scheme 83: CuAAC is proposed to go through either a mono or di-copper pathway.

The group first probed these two possible mechanisms through the application of a
stable, pre-formed Cu-acetylide 2.11 to both catalysed and non-catalysed conditions.
While the catalysed conditions gave full conversion to product after 10 minutes, the
reactions without an additional Cu-catalyst were unreactive, suggesting a role for a

second Cu atom, other than purely facilitating acetylide formation (Scheme 84).

CU(PPh3)2NO3 or

_N
/CU(NHC) N non-catalysed N= "N—Bn
o3 THF, rt =
Ar Bn ' Ar
2.1 Cu(NHC)

With Cu: full conversion in 20 min
W/out Cu: no reaction

Scheme 84: Reaction of preformed Cu-acetylide with and without exogenous catalyst.
Following this, three simple experiments were carried out to further explore the role
of an external copper source. Using an isotopically enriched *Cu catalyst under the
standard reaction conditions, the group observed 50% isotopic enrichment upon

isolation of the corresponding Cu triazole 2.12 (Scheme 85).
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Scheme 85: Isotopic enrichment is observed through triazole formation.

Two further control experiments were carried out to determine if either the copper

acetylide or copper triazole species would readily facilitate isotopic exchange.

a) Cu(NHC)  %3Cu(MeCN)4PF¢ Cu(NHC) | P) N:N‘N—Bn 63Cu(MeCN)4PFg N’/N\N_Bn
Ar THF, rt Ar LA THF, rt Ar
' Cu(NHC) Cu(NHC)
no isotopic enrichment no isotopic enrichment

Scheme 86: Control experiments to probe mechanism.

As enrichment was shown to not to occur at either the Cu-acetylide step (Scheme
86a) or from the Cu-triazole species (Scheme 86b) the authors conclude, by process
of elimination, that the isotopic enrichment must arise from an intermediate
mechanistic event. These data indicate that at some point during the azide

ligation/insertion step, both copper atoms must become equivalent.

R2 R?
N-N, N-N,
N ‘Cu N \Cu(NHC)

RT  “CuNHe) ligand transfer of oy,
Scheme 87: Ligand exchange between equivalent Cu atoms.

In addition, the enrichment observed would require the migration of the NHC ligand
on copper, which the authors suggest arises from two copper atoms bound to the
same carbon atom which undergo a rapid exchange of the NHC ligand before a
significantly slower cyclisation event to form the second C-N bond (Scheme 87).
The combination of these experiments has led to the proposal of a more detailed
mechanism of the CuAAC reaction, shown in Figure 18 below, the key addition to
the mechanism from this study was moving to a di-copper azide ligation step 2.13,

which had not been suggested previously.
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Figure 18: Fokin mechanism of the CuAAC. Azide ligation step shown in green .

Bertrand later extended this work through use of custom cyclic alkyl amino—carbene
(CAAC) ligands."*! The Bertrand group has demonstrated the ability of these

11441 Using this technology,

ligands to stabilise highly reactive metallic intermediates.
they were able to isolate bis-copper complex 2.14 and obtain a crystal structure of
this previously elusive reactive intermediate. The authors found that the counterion
was crucial for isolation, with only trifluoromethanesulfonate allowing reliable
preparation of the desired dinuclear complex 2.14. Kinetic analysis of both mono-
(2.15) and di-copper species after exposure to BnNj showed a significant rate
enhancement (by two orders of magnitude) for di-copper species 2.14. In addition,
use of mono- (2.16) and di- (2.17) nuclear Cu-triazole species as catalysts in the
reaction also exhibited the same trend. With this data, the authors were able to

propose that while the bis-ligated complex proceeds through the kinetically favoured

pathway, the mono-ligated copper species is also catalytically active (Figure 19).
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Figure 19: CAAC ligands reveal a rate difference between mono- and di-copper pathways.
More recently Tilley and co-workers have provided experimental support for an
alternative di-nuclear Cu species. Using a custom chelating ligand, the group were
able to synthesise a di-Cu p — n'n' alkyne complex 2.18. This symmetrical di-Cu
structure bears two Cu(I) atoms bound to the terminal carbon of the alkyne; these Cu
atoms are stabilised by neighbouring pyridine and 1,8-napthyridine ligands 2.19. 2D-
NMR and X-ray crystallography were used to unambiguously confirm the structure

of the complex (Figure 20).
Me —| NTf,

Il
N—Clu Cltu—N
.t
o/
218

Figure 20: Di-nuclear Cu species isolated by the Tilley group.

Di-Cu complex 2.18 was then reacted with 4-tolyl azide in THF to provide a
bridging di-Cu triazolide complex 2.20. This complex was also stable enough to be
crystallised. Reaction of the bridging triazolide complex with an alkyne led to almost
quantitative yield of complex 2.18, which is presumably formed through
protodemetalation of the triazolide, in analogy to the final step of the CuAAC

reaction (Scheme 88).
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Scheme 88: Reaction of di-nuclear complex with azides and alkynes.

While both key steps of the CuAAC reaction were shown to be competent using
stoichiometric Cu-complexes, 2.18 was also investigated as a catalyst. Heating p-

tolyl azide with p-tolyl acetylene with 10 mol% of 2.18 provided the desired triazole
product in 90% yield.

Additionally, 2.18 was oxidised using ([AcFc]NTf,) to a mixed valence di-Cu(I,II)
(2.21) complex in order to investigate the viability of a di-Cu intermediate of this
type as a reactive intermediate in the CuAAC reaction. Exposure of the mixed
valence complex to either alkynes or azides led to decomposition of the di-Cu
species and only low levels of the desired products (Scheme 89). This suggests that if
a di-Cu p— n'm' alkyne is catalytically active in the CuAAC reaction then both Cu
atoms are likely in the +1 oxidation state.
me | (NTR):

o

|| (10 equiv)
0-CgH4F2, 9 h, 60 °C
N-Cd "Cu-N oriaT2
LN N\_)
/

Scheme 89: Decomposition of mixed valence di-Cu complex after exposure to azide.

decomposition

This study may have greater implications for the mechanism of the CuAAC,
particularly in determining the valence of Cu in any di-Cu species that have been
previously proposed. However, the conditions used for the synthesis of these
complexes are unlike any of the conditions used in the CuAAC reaction on a
practical level. In addition, the single mechanistic steps proceeding from this
bridging di-Cu complex are unusually sluggish in comparison to other
stoichiometrically prepared intermediates, requiring high temperatures and extended

reaction times. While this does not rule out the existence of complexes of this type in

108



the CuAAC reaction, it would suggest that these copper complexes are less

kinetically competent that their n-ligated counterparts.

2.1.2 Chemoselectivity

The power of CuAAC is greatly enhanced though the accumulation of additional
azide or alkyne partners on a single molecular scaffold. The success of this strategy
is well documented and has relied on the exploitation of known reactivity profiles of
the individual components. The following section will detail the approaches

currently employed in the literature.

2.1.2.1 Chemoselectivity in the Alkyne Component

2.1.2.1.1 Strain-Promoted Azide-Alkyne Cycloadditions

Selectivity in the alkyne component of the CuAAC reaction has been achieved
through a number of methods. The most prevalent technique to date has involved the
use of highly strained cyclic alkynes 2.22. This method, invented in 2004 by the
Bertozzi group (termed SPAAC, or Strain Promoted Azide Alkyne Cycloaddition)
utilises Cu-free conditions to promote the rapid union of a wide variety of azide and
cyclic alkyne partners (Scheme 90).'**! The broad utility of this reaction stems from
its comparably mild, Cu-free conditions, which are ideally suited towards use in
sensitive environments such as cells."**'**) However, SPAAC coupling produces a
mixture of triazole regioisomers when used with unsymmetical alkynes and the
mechanistic behaviour of these systems remains largely unknown. Despite this,
SPAAC can be used to leverage chemoselectivity over terminal alkynes, which can

then be reacted further upon addition of a Cu catalyst to the system.

RO R
® =
2.22

SPAAC - Cu free mixture of regioisomers

R1
0 N= \
=N RO N-n
N Nog N
+

Scheme 90: Strain promoted azide-alkyne cycloaddition.

Beal and co-workers used bifunctional bis-alkyne 2.23 to perform sequential
SPAAC/CuAAC coupling to selectively functionalise a dipeptide fragment.!'*®!
Treatment of 2.23 with biotin bearing azide 2.24 gave complete conversion to
SPAAC product 2.25. Further reaction with fluorous azide 2.26, under standard
CuAAC conditions, gave bis-triazole 2.27 in reasonable yield across both steps. The

peptide conjugate was then reacted with Bovine Serum Albumin (BSA) through a
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thiol-ene reaction (Scheme 91). This work demonstrated the feasibility of

CuAAC/SPAAC sequential ligation strategies for the diversification of proteins.
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Scheme 91: SPAAC/CuAAC sequential ligation for the dual functionalization of BSA.

This parallel reactivity has been employed throughout a number of applications;
however, the most significant advance came from the group of Hosoya in 2014.1'*
The authors were able to exploit the enhanced reactivity of a strained cyclic alkyne
by transient protection through stoichiometric complexation of copper. When this
was applied to bifunctional bis-alkyne 2.28, the group were able to overturn the
traditional SPAAC/CuAAC reactivity gradient and perform CuAAC on the pendant
terminal alkyne in the presence of the highly reactive strained alkyne. The complex
formed from the cyclooctyne and Cu(MeCN);BF4 (2.29) was stable enough to
crystallise. The resulting crystal structure showed a tricoordinate cycloalkyne-Cu(I)

species that was ligated to water and MeCN (Scheme 92). The reactive cyclic alkyne

could be regenerated from the Cu complex by treatment with aqueous ammonia.

most reactive

1) (MeCN),CuBF, (2 equiv.) =
CHCly, t, 30 min O O

2) TBTA, 15 h, RN,

O

%H 3) ag. NHa, CH,Cly, O)/(H
2.28 = AcOEtrt, 1.5 h K \—

0, ~
least reactive MeCN 88% R

——————————————————— H20. ¢ e inversion of selectivity
3 R= : via:
wes

O H
2.29 g/’N\/:

Scheme 92: SPAAC/CuAAC diynes can display orthogonal reactivity.
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This seminal work was extended by Dudley who demonstrated that stoichiometric
levels of CuSOy4 allows for in situ complexation of strained cyclic alkyne 2.30 while

facilitating a CuAAC on a pendant terminal alkyne, once again inverting the standard

selectivity profile (Scheme 93).11*%

MeO OMe

OMe CuSOy4 (1 equiv.)

e
{ NaAsc, TBTA /N O
MeOH/H,0
RN,
-

=
2.30

Scheme 93: Orthogonal control in CuAAC/SPAAC using stoichiometic copper.

However, despite its widespread utility, SPAAC has a number of significant
drawbacks. Firstly, the cyclooctyne starting materials often require a lengthy
synthesis, with little opportunity for diversification. For example, the Bertozzi group
synthesised the first SPAAC alkyne partner 2.31 in four steps from cycloheptene,
which represents a significant investment in time and resource compared to the

commercial terminal alkynes commonly used in CuAAC (Scheme 94).['*!

Br

CHBr3
O {BUOK, tBUOH Br O@OH AgCIO, @
MeO > < :>

) NaOMe, DMSO
2) LiOH

functionalised cyclooctynes >—©J Q

Scheme 94: Synthesis of functionalised cyclooctyne.

In addition, while CuAAC delivers a single regioisomer, SPAAC typically gives an
equimolar mixture of regioisomers, making purification and characterisation
challenging.!"*”) When used in biological systems, due to differences in structure,

these regioisomers do not always provide the same biological effect.

Finally, the strained nature of SPAAC precursors renders them promiscuous towards
a number of other reactive nucleophiles. In particular, background °‘thiol-yne’
reactions with cysteine residues (as disulfide bridges) can reduce the efficiency of

SPAAC processes (Scheme 95).113%1°0]
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Scheme 95: Light initiated thiol-yne coupling with cyclooctyne.

While SPAAC remains the most common method for achieving selectivity, a small

number of other reactive alkynes have been reported in the literature.

2.1.2.1.2 Activation of the Alkyne Component

As part of a wider interest in bioconjugation, Finn and co-workers explored a wide
range of alkynes for use in the CuAAC reaction.”! By measuring the relative
performance of these alkynes under standard bio-orthogonal conditions, the authors
were able to establish a reactivity scale to inform the use of CuUAAC chemistry for
bio-conjugation, based on the relative rate of reaction (Scheme 96). The authors
found glycine—derived propiolamide 2.32 to be the fastest, followed closely by aryl
propargyl alkyne 2.33 and Boc-protected piperazine propiolamide 2.34. Propargyl
amine 2.35 was next fastest, and aromatic alkynes 2.36 and 2.37 were significantly

slower.

R

¢ 51 THPTACUSO, I4<N
NaAsc NN
HO 0 Yo -
HO 0" S0
OH
OHC o
o Z
HaN" |
MeOC/\N)\ > \©\ > (\NJ\\\ > 2 N > Ej\
AR 0 BocN__J S N
2.36 2.37

2.32 2.33 234 235
Scheme 96: Alkyne reactivity scale for bioconjugation.
While the aim of the study was to determine which alkynes were optimal for
application in more complex systems, chemoselectivity between alkynes was also
disclosed. Reacting one of the fastest alkynes, propiolamide 2.34, and tolyl acetylene

2.38 which was shown to be comparably slow, in a 1:1 ratio with benzyl azide
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provided reasonable levels of chemoselectivity (5.6:1) in favour of the propiolamide
triazole product (Scheme 97).

)\ BnN3 CUSO4
|/\N /@/ B|mPy2 NaAsc )k(\ \Q\K\
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chemoselective click product

Scheme 97: Chemoselective CuAAC using reactive propiolamide.

The Hsung group, who have a long-standing interest in the chemistry of ynamides,
have reported another example of alkyne chemoselectivity.!'”) The authors have
demonstrated the selective engagement of oxazolidinone ynamide 2.39 over terminal
alkyne 2.40 in CuAAC reaction with hydroazinated ynamide intermediate 2.41. The
intermediate 2.41, was formed through reaction of NaNs with the ynamide starting
material under Cu-catalysed conditions (Scheme 98).
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Scheme 98: Chemoselective CuAAC with oxazlidinone ynamide.

2.1.2.1.3 Protection of the Alkyne Component

Due to the scarcity of methods for achieving selectivity purely based on alkyne
reactivity, selective functionalisation has primarily been realised through the use of
protecting groups. Protection of one alkyne, usually through the use of silyl species,
allows for completely chemoselective CuAAC reactions on the unprotected alkyne.
This method has been widely reported for the sequential functionalisation of

biomolecules.

Aucagne and Delmas used this method for the selective union of peptide
fragments.!"**! The group used CuAAC as an alternative to native chemical ligation
of long peptide fragments. In an impressive display, the authors demonstrated the
union of three peptide chains, each with >30 residues, to form a chain 98 residues
long in reasonable yields. The diversity of functionality and high number of Lewis

basic sites required the use of stoichiometric Cu(l) to facilitate the reaction.
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Deprotection of the TIPS protecting group with TBAF was followed by a second
CuAAC reaction to provide the 98’mer 2.42 (Scheme 99). This was the first use of
the CuAAC as a viable alternative to classical ligation procedures.
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Scheme 99: Sequential CuAAC enabled by protecting groups.

Building upon this pioneering work, Carell used a similar sequential ligation method
for the functionalisation of oligonucleotides.!"”> In this report, the authors use
differentially protected alkynes to perform three successive ligations onto a DNA
strand. Three custom nucleobase building blocks were effectively incorporated into
DNA strands using phosphoramidite chemistry (Figure 21). These nucleobases,
based on thymidine 2.43 and cytidine 2.44, were modified at the 5-position with an
alkyne—bearing chain. The pendant alkynes were unprotected, TMS protected, or

TIPS protected; this established a reactivity gradient for sequential functionalisation.

= N\ © [si—= N\ NHBZ
I "NH I N
TMDOWN/&O TMDOWN 5
o o

243 2.44
Figure 21: Custom phosphoramidite used in sequential DNA functionalization.

Exposure of the oligonucleotide to CuBr, TBTA, and a wide scope of azides led to
high conversion to the corresponding triazole products. The mono-functionalised
DNA strand 2.45 was then washed with 1% acetic acid solution, cleaving the TMS
protecting group, and revealing another reactive alkyne. A second CuAAC reaction
under the same conditions yielded the doubly modified oligonucleotide 2.46.
Deprotection of the TIPS group on the final modified nucleobase using TBAF
provided a further free alkyne for modification. A final CuAAC reaction led to the
triply modified oligonucleotide 2.47 in 50% yield (Scheme 100).
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Scheme 100: Triple modification of oligonucleotides using sequential CuAAC.

Leigh and co workers later extended this theme, performing sequential CuAAC
ligations to synthesise short peptide sequences.!'> In this report, the authors use
TMS-protected alkynes to achieve selectivity, which can be deprotected and
subsequently reacted in a single operation using catalytic amounts of CuSO4 and

AgPFg in an alcohol/water mixture (Scheme 101).
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Scheme 101: Sequential CuAAC/deprotection-CuAAC of peptide fragments.
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2.1.2.1.4 Chemoselectivity in the Azide Component

Two primary methods have been disclosed for achieving selectivity in the azide
component of the CuAAC reaction: through either activation of the azide via a
neighbouring chelating group or by deactivating the azide through steric hindrance.
The better exemplified of these two approaches is the use of chelating azides. Zhu
has shown that a number of azides with an appropriately disposed chelating group
will accelerate the CuAAC reaction (Figure 22).."°%Pyridine (2.48, 2.49), quinoline

(2.50) and even a triazole (2.51) were shown to be competent chelating groups.

N3 N3
X
N N 72\
3 INe}
2.49 2.50

248 2.51

Figure 22: Chelating azides used for selective functionalization.

This approach has allowed for chemoselective CuAAC reactions verses standard,

non-chelating azides, 2.50 (Scheme 102). In addition, bifunctional diazides such as
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2.49 can be used for sequential CuAAC reactions to provide access to highly

functionalised frameworks with excellent levels of selectivity.
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Scheme 102: Sequential CuAAC facilitated by chelating azide.
The authors have shown that the use of a Cu(Il) precatalyst is essential for high
levels of selectivity and optimal rate enhancement when using these activated

azides.!"”’

Jn their initial report, the authors suggest that the Cu(OAc), precatalyst is
reduced by either alkyne-alkyne homocoupling or, if the reaction is performed in
MeOH, by oxidation of the alcoholic solvent. UV/Vis absorption spectroscopy
measurements throughout the reaction time course show that after an initial induction
period where Cu(Il) persists, the absorbance signal abruptly disappears, suggesting
the rapid reduction to Cu(I). EPR measurements of the reaction mixture before and
after the addition of the azide showed that the chelation is required for reduction of
Cu(II). While a strong EPR signal is observed for Cu(Il) species, Cu(I) is EPR silent;
the authors show that in the absence of azide, Cu(Il) is not reduced. However, upon
addition of the chelating azide the characteristic Cu(Il) signal disappears with

completion of the reaction, providing further evidence for an in situ azide-assisted

reduction of Cu(II) to Cu(I) via alkyne-alkyne homocoupling.

A further mechanistic investigation into this chelate effect revealed the nature of the
active catalytic species and provided further evidence for an in situ reduction via two
separate mechanisms.!">® Kinetic evaluation of the reaction was performed through
both fluorescence spectroscopy and NMR analysis in both MeCN and MeOH using
quinoline bearing azide 2.51 with phenylacetylene 2.52, and picolinyl azide 2.53
with alkynyl coumarin 2.54 (Scheme 103). Initial experiments showed a significant
induction period that was attributed to the formation of the active catalyst complex.
Pre-mixing the catalyst with the chelating azide in MeOH effectively eliminated the
induction period, lending support to this hypothesis. In MeCN, very little difference
in the induction period was observed, indicating a divergent mechanism for catalyst
activation. In addition, a significant deuterium kinetic isotope effect (KIE) was

observed using CD;0D, whereas no effect was observed using CH;0D, suggesting
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that cleavage of the C-H bond plays a mechanistically significant role, such as the

reduction of Cu(II).

2 O = COUBO
Ny —— » N
N 3 N
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NMR kinetic handle

Fluorescent kinetic handle

Scheme 103: Model systems used for NMR and fluorescent kinetic studies.
Measurement of the reaction orders of all of the components revealed similar results
to the work of Fokin and Finn."*"! The reaction had a second order dependence on
Cu(OAc),, suggesting a dinuclear Cu species is the active catalyst. In MeOH, the
reaction was first order in alkyne and showed a slight positive dependence (0.4) on
azide. In MeCN, azide is zero order and there is a second order dependency on
alkyne. These data signify that both alkyne and Cu are involved in the rate-
determining step (RDS), which in this case is Cu-acetylide formation. Further
evidence for a Cu-acetylide RDS came from deuterium KIE experiments; deuteration
of the acetylenic C-H bond gave a primary KIE of 2.3 and significantly extended the
induction period in MeCN.

The authors propose a mechanistic model to explain the kinetic variation between
MeCN and MeOH. The slight positive dependence on azide when the reaction is
performed in MeOH is attributed to the role of the pyridine (2.53) as a base, aiding
the oxidation of MeOH and subsequent reduction of Cu, a step that is shown to be
kinetically significant. This positive dependence is not observed in MeCN, as Cu(I)
is produced through alkyne homocoupling. The 2™ order dependence on alkyne in
MeCN is proposed to arise from its role in both acetylide formation and reduction of
Cu, and also as a proton source for protonation of the Cu-triazole species. In MeOH,
the protonation of the Cu-triazole will occur from the solvent, rather than the alkyne.
Additionally the alkyne species does not play a role in the reduction of Cu, which
accounts for its first order dependency.

Guided by the kinetic investigation and a crystal structure obtained from a mixture of
the Cu(OAc), catalyst and chelating azide 2.53, the authors proposed dinuclear

complex 2.55 as the active catalytic species..'"® Their model contains an acetate-
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bridged dimer with each copper bearing a pyridyl azide ligand (Scheme 104). This
dimer then wundergoes Cu-acetylide formation to give 2.56, followed by
intramolecular azide insertion to form the Cu-triazole product. Protonation of the

resulting Cu species provides the product.
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Scheme 104: Mechanistic model featuring a dinuclear copper complex.

In contrast to the work of Zhu with chelating azides, Koert has shown that sterically
hindered azides react sluggishly, providing chemoselectivity when used with less

[159) Bifunctional bis-azide 2.57 was shown to provide

hindered primary azides.
complete selectivity for the less sterically encumbered primary benzyl azide. While
the authors make no comment about the mechanistic aspects of this reactivity, it can
be assumed that pre-coordination of the less hindered azide is energetically more
favourable, resulting in high levels of chemoselectivity (Scheme 105). The authors
go on to demonstrate the application of this methodology by making a thin film in a

layer-by-layer (LbL) approach.
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Scheme 105: Chemoselectivity based on steric hindrance.

2.1.2.1.5 Use of 1-Iodo Alkynes
In 2009, Fokin and Sharpless demonstrated that 1-iodoalkynes 2.58 undergo a rapid
Cu-catalysed cycloaddition with organic azides to give iodotriazoles 2.59 with

complete regioselectivity (Scheme 106).1'*"
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Scheme 106: CuAAC reaction with 1-iodoalkynes.
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Using Cul and a tris-triazole ligand (TTTA, Scheme 106), the CuAAC reaction
between the iodoalkyne 2.58 and azide is complete in 1 h at room temperature, which
is significantly faster than the corresponding terminal alkyne and is competitive with
other ‘fast” CuAAC substrates. The authors propose two different mechanistic
pathways that could account for both the regioselectivity and the rate of the reaction

(Figure 23).

R2-N3

Figure 23: Postulated mechanistic pathways for iodoalkyne cycloaddition.

The first proposed mechanism starts with addition of Cu(I) into the C-I bond to form
an acetylide 2.60, azide coordination followed by cyclisation provides a Cu-triazole
2.61. Copper exchange through o-bond metathesis with another molecule of

1odoalkyne yields an iodotriazole 2.62 and completes the catalytic cycle.

The alternative mechanistic hypothesis does not proceed through a Cu-acetylide
species; instead, m-coordination of the Cu-catalyst to the iodoalkyne 2.63 facilitates
azide ligation. Cyclisation to form the triazole product then proceeds through 6-

membered transition state 2.64.

Fokin and co-workers favour the second mechanism, as when the reaction is
performed in protic solvents, the iodotriazole remains the exclusive product. If the
iodotriazole is formed through a recombination event from a cuprate intermediate,
such as in mechanism A, then in the presence of a proton source some protiotriazole
should be formed. In mechanism B, the iodine-carbon bond is never broken, leaving

the iodotriazole as the sole product.

In 2016, a chemoselective iodotriazole CuAAC reaction was used in a novel cascade

reaction."®! Lautens used tandem Cu- and Pd-catalysis to perform a chemoselective
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CuAAC reaction on an iodoalkyne 2.65 over a terminal alkyne to form an
iodotriazole product 2.66 (Scheme 107). This intermediate then undergoes
Sonogashira coupling with the unreacted terminal alkyne 2.67 to construct a fully

substituted alkynyl triazole 2.68.
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Scheme 107: Use of iodoalkyne for chemoselective CuAAC.

Careful control of the reaction mixture was required to preclude the formation of a
number of unwanted by-products that arise in the presence of both Cu and Pd
catalysts. The authors observed significant quantities of alkyne dimerisation as well
as the undesired triazole product. The group found that when weak bases are
employed, Buchwald precatalysts 2.69 do not activate via reductive elimination at
room temperature (Scheme 108). This allowed for temperature—dependent
selectivity; the CuAAC reaction could be performed at room temperature, effectively
Pd free, before the reaction mixture is heated, inducing reductive elimination and
activation of the Pd-catalyst, which can subsequently undergo Sonogashira coupling

to afford the final product.

‘ KOAc ‘ 8-5 oq
O ‘ activation_  [Pd%-XPhos]
rt
pd NH, Pd NH;

MsO  XPhos MsO  XPhos
2.69

inactive at rt
Scheme 108: Buchwald precatalyst allows temperature-dependent activation.
The group of Xu later reversed the selectivity in this tandem process. Using CuCl
and moving to less activated bromoalkyne 2.70, an initial CuAAC reaction on the
terminal alkyne provided Cu-triazole compound 2.71 which was able to engage the
unreacted bromoalkyne to provide the alkynyl triazole product 2.72 in good yield
(Scheme 109).!'*

NN :
. CuCl N/ N
r = Bn” OPh =
BN Z / Lio'Bu, DCE ,N%_\Oph
TIPS oen o W\ Bn -
u
2.70 2'7287%T|PS 2.7
terminal alkyne selective
click

Scheme 109: Bromoalkyne provides alkyne chemoselectivity in CuAAC/Ullmann tandem coupling.
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This study, in concert with the work of Lautens, demonstrated the synthetic power of
chemoselectivity in the CuAAC reaction, effectively building highly functionalised

heterocyclic products in excellent yields.

2.1.3 Summary

The CuAAC reaction has become a highly important tool for the linkage of discrete
biomolecules. The mild and selective conditions employed allow for a wide substrate
scope including sensitive proteins, nucleotides, and saccharide moieties. The utility
of this reaction is greatly enhanced through the use of polyfunctionalised systems to
selectively ligate a diverse array of biomolecules and activity modifying groups to a

target of interest.

To achieve this, a number of chemoselective approaches have been developed to
facilitate sequential chemoselective ligations. These can be broadly separated into
alkyne selectivity and azide selectivity. Alkyne selectivity has been dominated by the
use of strained cyclic alkynes and protecting group strategies, both of which offer
perfect selectivity but low atom economy and step efficiency. Activation of one
alkyne over another has received far less attention due to the lower levels of
selectivity that are commonly observed, although these techniques have enabled the

discovery of novel methods in small molecule chemistry.

Chemoselectivity in the azide component has been limited to two approaches;
through chelation control and by exploiting steric hindrance, of which, use of a
neighbouring chelating group is by far the most prominent. This method has allowed
for complete chemoselectivity versus a range of standard azide substrates. Use of
sterically demanding azides provides a method for deactivation, and also provides

excellent levels of selectivity.

In addition, a wealth of excellent mechanistic work has shed light on the elusive
mechanism of the reaction. In particular, by examining the mechanistic origins
behind the selectivity of chelating azides, Zhu was able to examine the key
mechanistic steps in great detail, proposing a novel dinuclear copper complex and

reaction pathway that may have bearing on the CuAAC reaction in the general sense.
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The development and investigation of chemoselective protocols not only delivers
new synthetic methods but also provides a different lens with which to investigate

fundamental reactivity that is often overlooked.
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2.2 Previous work - Ynamines as Reactive Substrates in CuAAC

While many groups have explored the diverse chemistry of ynamides,"'®”
significantly less research has been devoted towards the use of aromatic ynamines. In
2010, the Burley group developed a robust, Cu(I)-catalysed method for the synthesis
of imidazole based ynamines using microwave irradiation.!"®! The group found that
catalytic polyethylene glycol 400 (PEG 400) was highly beneficial, acting as both a
phase transfer reagent and as a Cu-stabilising ligand (Scheme 110).

N
oy
©:N\> TIPS Cul (5 mol%), PEG-400 N

=z

H Br Cs,CO3, dioxane, 80 °C \\
72% TIPS

Scheme 110: Synthesis of benzimidazole ynamine.
Two years later, the group demonstrated the proficiency of the ynamine substrates
towards CuAAC.!"*! Upon exposure to standard CuAAC conditions (Scheme 110),
benzimidazole ynamine 2.73 underwent complete reaction to form triazole product
2.74 in just five minutes. The group went on to investigate the reactivity of the
CuAAC products towards Ir, noting that coordination at N3 of the imidazole ring

was favoured over chelation to the triazole.

N N Cl
N CuSO,4 (20 mol%) \> : \>
@E S NaAsc (40 mol%) N w N

N +  BnNj !
EtOH, H,0 7N : (/Kll}l
\\ N-N 3 N-N
Bn ! Br
2.73 2.74 80% ‘

Scheme 111: CuAAC to form ynamine triazole and its complexation with Ir.

This unusually rapid reactivity in the CuAAC was further investigated in 2016,
where benzimidazole ynamine 2.73 was shown to be a robust partner in the CuAAC

166] Optimisation of the reaction conditions showed that the reaction was

reaction.!
highly tolerant of a wide range of Cu salts, although Cu(OAc), was most effective,
and could be performed with catalyst loadings as low as 1 mol%. In addition, the
reaction was shown to be efficient in a range of media; however, MeCN and MeOH

were found to be optimal.
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The scope of the reaction was excellent, with a broad array of biologically relevant

molecules such as dyes, nucleobases, and saccharides all reacting smoothly (Scheme
112).

N N
A\
©: N Cu(OAC), (5 mol %) ©:N>

N + R-Nj
\\ MeCN or MeOH, rt, 16 h ~

Ph” N3 n-Oct—Nj3 c-Hex—N3 Ad—N3 Phs™ N3 Meo,N~ > Ng

MeCN® 92% 80% 83%  65% 88% 87%
MeOH? 100% 69% 90% 47% 51% 91%
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J B N7
Fe H/\/\N3 7 Ns | _ Ns
MeCN? 96% 73% 71%
MeOH? 98% 97% 95%
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MeCN? 94% 68%
MeOH? 98% 97%

E6N o NEt,
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O
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MeCN? 88% 95% 65%
MeOH? 66% 50% 84%

Scheme 112: Substrate scope.

Intermolecular competition experiments employing equistoichiometic amounts of
both benzimidazole ynamine 2.73 and aliphatic alkyne 2.75 showed complete
chemoselectivity for the ynamine triazole product 2.74. This selectivity was

conserved with both benzyl and cyclohexyl azides (Scheme 113).

N
>
N
N
S 0 Cu(OAG), (5 mol %) o nN=N
C[N * J\(v/// + PN, 2/~|'?‘ + J\M/k/'\'“\
\\ PhHN 4 MeCN or MeOH, t, 6 h N PhHN 4
2.73 (1 equiv) 2.75 (1 equiv) (1 equiv) 2.74 (Ph

MeCN 100% 0%
MeOH 90% 10%

Scheme 113: Chemoselective CuAAC using benzimidazole ynamine.

Selectivity was then addressed in intramolecular competition experiments using
diyne 2.76. Two azides of biological significance (ferrocene azide 2.77 and green

dye 2.78) were reacted with the bifunctional scaffold, once again demonstrating
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complete chemoselectivity for the ynamine triazole products. Upon the completion
of the first reaction, application of more standard CuAAC conditions led to excellent

yields of the bis-triazole products 2.79 and 2.80 (Scheme 114).

NO,
H W o} =N,
5 4 O Azide 2, Cu(OAc),, MeCN, rt, 16 h;
Azide 1, Cu(OAc),, MeCN, rt, 16 h; /TfN N ,:c)LN/\/\N3 =N _ then Azide 1 , AMTC
then Azide 2, AMTC ~ 0 ? H NaAsc, MeOH/H,0, t, 16 h
NaAsc, MeOH/H,0, rt, 16 h N Me VSN
2.76 3
@ Azide 1,277 @ Azide 2, 2.78
N }@

o ~N

- | |

N
N >?| i) azide 1, Cu(OAc);, MeCN, rt, 16 h , H ))
H il azide 2, CuSO,, AMTC (2 N N

(=} WN N NaAsc, MeOH/H0, tt, 16 h Nﬁ/\)\ﬂ/ >
N, /> N=N O N
N=N (0] N 280

2.79 A—‘ \—. -

96% (2 steps) 92% (2 steps)
or or
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Scheme 114: Chemoselective sequential and one-pot CuAAC ligations of diyne 2.76.

125



2.3 Project Aims

Previous work in the Watson and Burley groups has established that aromatic
ynamines are highly reactive substrates for CuUAAC reactions. This distinct substrate
class undergo rapid CuAAC reactions with a broad scope of azide partners. In
addition, this class displayed high levels of chemoselectivity versus aliphatic
alkynes. This chemoselectivity has allowed for the sequential dual functionalization

of bis-alkynes, providing a platform for bio-orthogonal ligation.

We aimed to probe the limits of this unprecedented alkyne chemoselectivity, and
establish a guide for use of this reagent in bioconjugation. A number of reactive
alkynes are available in the literature for use in biologically relevant systems,
establishment of a general reactivity scale will allow the generation of novel
chemoselective processes that do not rely on protecting group strategies,

streamlining synthetic routes towards labelled biomolecules.

After determining how aromatic ynamines behave in comparison to other reactive
alkynes, we proposed that through kinetic and spectroscopic studies we could
determine the origin of this unusual chemoselectivity. Classic approaches towards
alkyne selectivity have relied on exploitation of a difference in overall rate, which is
principally determined by the rate of Cu-acetylide formation (as the typical RDS).
Through investigation of the mechanism of the ynamine CuAAC we aimed to further
understand how chemoselectivity is established and shed light on the mechanism of

the CuAAC in a more general sense.

In addition to determining the source of selectivity, we aimed to utilise the levels of
chemoselectivity offered by aromatic ynamine substrates to develop a novel
orthogonal platform for sequential CuAAC. Orthogonal control has previously only
been achieved through SPAAC/CuAAC diyne systems using stoichiometric Cu
masking groups. We hypothesised that traditional protecting group strategies could
be overturned through exploitation of a rapid deprotection/CuAAC sequence. This
strategy would require a silyl protected ynamine substrate to be deprotected and
undergo Cu-acetylide formation before a second, competing alkyne can react

(Scheme 115).
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Scheme 115: Proposed method for orthogonal reactivity.
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2.4 Results and Discussion

The work in this chapter is based on the following publications:

C. P. Seath, G. A. Burley, A. J. B. Watson, Angew. Chem. Int. Ed. 2017, 56, 3314 —
3318 and M. Z. C. Hatit, C. P. Seath, A. J. B. Watson, G. A. Burley J. Org. Chem.
2017, 82, 5461 — 5468.

The work described herein was performed with Ms M. Z. C. Hatit

2.4.1 Determining the Origins of Chemoselectivity

While benzimidazole ynamine 2.73 had previously been shown to provide perfect
chemoselectivity versus aliphatic alkynes, it was unknown whether this impressive
reactivity would translate when used in competition with more reactive alkynes. In
order to investigate this, a representative palette of alkynes from the literature was
chosen to probe the chemoselectivity of 2.73. The group of alkynes consisted of
pentyne 2.81, tolyl acetylene 2.38, propargyl alkyne 2.82, oxazolidinone ynamide
2.83, and tertiary propiolamide 2.34, in addition to dimethyl benzimidazole ynamine
2.84, which was chosen for its more characteristic 'H NMR signals. This small set of
alkynes covers all of the major classes of alkyne used in CuAAC, including other

alkynes that have demonstrated chemoselective reactivity (Figure 24).

N\ 0 0 =
©:N> (\NJ\\\ C{«/N—: PO /©// Me/\///
Me

\\ BocN \)
. . . ) . propargyl
ynamine tertiary propiolamide ynamide - inductive activation aryl alkyne alkyl alkyne
2.73 2.34 2.83 2.82 2.38 2.81

Figure 24: Alkynes screened for chemoselectivity.

In order to establish a reactivity scale bearing these six alkyne classes, a series of 1:1
competition experiments was carried out (Scheme 116). Based on previous literature,
ynamine and ynamide should be chemoselective versus the alkyl alkyne and
propiolamide should be selective versus both aryl alkyne and alkyl alkyne. Using the
conditions previously optimised by the Watson and Burley groups (Cu(OAc), in
MeCN), with BnN; 2.85 as a representative azide partner, a reactivity scale was

quickly established.
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Cu(OAc); (5 mol%) N N,
@—: —=— Bn-N;y ————— | N+ | )
MeCN, rt, 1 h N
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Me N o
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2.81 Me/\/
Me™ ™3 38 2.81

Scheme 116: Competition CuAAC reactions of systems containing two alkynes. Ratios are products arising
from horizonal number:vertical number. Determined by 'H NMR spectroscopy.

Ynamine 2.84 was the most reactive alkyne chemotype, outcompeting all other
alkyne classes. Exclusive formation of the ynamine triazole product was observed in
reactions with alkynes 2.38, 2.81, and 2.82 and was favoured over propiolamide
triazole product by more than 8:1. Tertiary propiolamide 2.34 provided 8:1
selectivity over alkynes 2.83, 2.82, and 2.38 and complete selectivity against alkyl
alkyne 2.81. Ynamide 2.83 was only moderately selective against propargyl alkyne
2.82 but provided good selectivity against aryl alkyne 2.38, and complete selectivity
when in competition with alkyl alkyne 2.81. Propargyl alkyne 2.81 gave 8:1
selectivity versus aryl alkyne 2.38 and complete selectivity against alkyl alkyne 2.81,

which was completely unreactive under the reaction conditions.

These data allowed the creation of a reactivity scale for chemoselective CuAAC
which is as follows: ynamine > propiolamide > ynamide > propargyl > Aryl > alkyl
(Figure 25). We propose that this guide will inform the selection of alkyne partners

for chemoselective sequential CuAAC reactions on multi-functional systems.

Me N
o< SRR -
Me N > (\NJ\\\ > O\\JfN—: > Pho\ > /©/ > Me/\///
Me

\\ BocN\)

Most reactive Least reactive

Figure 25: Reactivity scale established through competition experiments.

In order to further investigate the origins of this observed chemoselectivity, the
kinetic profiles of the reactions were monitored by '"H NMR over a 1 h time course.

The benzyl protons from both the azide starting material and the product provided a
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useful handle for analysis; conversion was measured against an internal standard at

two minute intervals (Scheme 117).

Cu(OAc), (5 mol%) N,
@ = Bn—N; _— | °N

MeCN-d3, 300K, 1 h N’

(1 equiv) 2.85 (1 equiv)
W)

0} o) v
=N
N /[< N- PhO “ ~ NBn N=N
/\N S} =N | 'N NBn
N g S
2/\!}‘ BOCNJ )KENIBH l\/NAQ\/I{IBn NBn Me/©/k/ Me/\/'\/

2.86 2.87 2.88 2.89 2.90 2.91
Scheme 117: Representative reaction used for kinetic experiments, and their products.

Initial observations of the kinetic profiles was immediately surprising, based on the

data from the competition experiments we expected to see an increase in rate that

was consonant with the chemoselectivity profiles. However, the initial rate

measurements did not follow the expected trend. Based on extracted Kops,

propiolamide 2.34 was fastest with an initial rate of 2.4 x 10 M s™'. Ynamine 2.84

was the next fastest (5.5 x 10° M s™) followed closely by ynamide 2.83 (5.1 x 107
M s (Graph 4).
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Graph 4: Kinetic profiles for alkynes 2.84 (left) and 2.34 (right). Error bars from N=3 data shown
for 2.84. Conversion refers to formation of desired triazole product.
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Graph 5: Kinetic profiles from alkynes 2.83 (left) and 2.82 (right). Conversion refers to
formation of desired triazole product.

The reaction of propargyl alkyne, aryl alkyne and alkyl alkyne all required the
presence of NaAsc to induce initiation of the reaction within the time course. In the
presence of NaAsc, propargyl alkyne displayed an initial rate of 4.1x 10° M s,

aryl alkyne reacted at 0.3 x 10° M s™ and alkyl alkyne at 1 x 10° M s (Graphs 4-
0).
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Graph 6: Kinetic profiles for alkynes 2.38 (left) and 2.81 (right). Conversion refers
to formation of desired triazole product.

Under the reaction conditions, all six alkynes displayed induction periods. For
alkynes 2.84, 2.34 and 2.83 this was relatively short at ca. <5 min for 2.84 and 2.34,
and 16 min for ynamide 2.83. However, for the remaining three alkyne chemotypes
the induction periods were significantly extended, with no reaction even after > 1 h.
This can be attributed to the requirement for oxidative homocoupling to produce the

active Cu(I) catalyst, which is clearly much faster for alkynes 2.84, 2.34 and 2.83.

This kinetic data is consistent with only some of the data derived from the
competition experiments. Propiolamide, which has the highest rate of reaction, is
also chemoselective versus all alkynes except ynamine 2.84. Ynamide 2.83 is

chemoselective versus aryl and alkyl alkynes and only moderately selective in
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competition with propargyl system 2.82. This is consistent with the rate data
extracted from the kinetic profiles, as there is a significant difference in rate between
2.83 and 2.38/2.81 but the small difference between propargyl alkyne 2.82 and
ynamide 2.83 only allows for moderate selectivity to be observed. Propargyl alkyne
2.82 is chemoselective in competition with aryl and alkyl alkynes (2.81, 2.38), which

is consistent with the rate data extracted.

Aryl alkyne 2.38 displays a slower rate of reaction than alkyl alkyne 2.81 in isolation
but is chemoselective in competition. This difference is due to the addition of NaAsc
as a promoter; while aryl alkyne reacts slowly under the standard reaction conditions

alkyl alkyne 2.81 is completely unreactive without the addition of NaAsc.

The key differences come when the rate of ynamine 2.84 is considered. In
competition, ynamine outcompetes propiolamide by 8:1, however in isolation the

rate of reaction is less than half than 2.34 (Graph 7).
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Graph 7: Reaction profile for competition reaction of 2.84/2.34 with BnN; Product 2.86 corresponding to
2.84 shown as blue diamonds, product 2.87 corresponding to 2.34 as red squares. Conversion refers to
formation of desired triazole product.

In addition, the rate of ynamide 2.83 is similar to ynamine 2.84, but displays a longer
initiation time. In competition, initiation time cannot be considered, as upon
generation of Cu(I) by the ynamine in ca. 5 min, this would presumably accelerate

the reaction of both alkynes.
These data suggest that selectivity is not purely contingent on the overall rate of the

reaction, indicating a different origin for the observed chemoselectivity profiles of

ynamine 2.84.

132



In order to further explore the mechanism of the ynamine CuAAC reaction, the

dependence on both azide and alkyne were probed to determine the rate-determining

step in the reaction. Data reported previously by both Finn and Fokin, and Zhu

showed that under their conditions Cu-acetylide formation is the RDS. In those cases

the reaction had a positive dependency on the alkynyl component but a zero order

dependency (or a slight negative dependency) on the azide component!'*!'>*],
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Graph 8: Variation of [2.84] in reaction with Cu(OAc), and BnNj;. Conversion refers to formation of
desired triazole product.
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Graph 9: Calculation of order in [2.84].

Further kinetic experiments showed that the reaction rate was largely independent of

[2.84] but showed a significant dependency on [BnNs] with kinetic order of 1.6

(Graphs 8-11).
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Graph 10: Variation of [BnNj;] in reaction with 2.84 and Cu(OAc),. Conversion refers to formation of
desired triazole product.
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Graph 11: Calculation of order in [BnNj] .

These data suggest that the RDS of the CuUAAC reaction with alkyne 2.84 is azide

ligation/insertion rather than Cu-acetylide formation.

To further probe the RDS, a series of deuterium kinetic isotope effect experiments
were carried out. Deuteration of ynamine, propiolamide and ynamide was performed

simply by stirring the alkynes with K,CO3; and D,0 to provide the enriched products

with high levels of “D incorporation.

In similar experiments using an aryl alkyne, Zhu observed a significant primary KIE
of 2.3, in addition to a significant increase in initiation time. In contrast to this,
Ynamine did not display a primary KIE (1.17), which supports a switch in RDS,
away from Cu-acetylide formation (Graph 12).
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Graph 12: KIE experiment for 2.84. Deuterated 2.84 shown as red squares, standard 2.84 shown as blue
diamonds. Conversion refers to formation of desired triazole product.

Both ynamide and propiolamide both displayed a primary KIE of 1.57 and 2.66

respectively, consistent with previous reports.
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The effect of [Cu(OAc),] was interrogated next. While under catalytic conditions
Fokin and Finn had reported a second order dependence on [Cu], this was not
observed using ynamine 2.84. Instead, a first order dependence was observed,

suggesting a mechanism based upon a mono copper intermediate (Graphs 13-14).
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Graph 13: Variation of [Cu(OAc),] in reaction with 2.84 and 2.85. Conversion refers to formation of
desired triazole product.
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Graph 14: Calculation of order in [Cu(OAc),].

These experiments can assist in the explanation of the discrepancy between the
overall rate and the chemoselectivity. If Cu-acetylide formation were the product-
determining step then acceleration of this step would have a positive impact on the
selectivity. In addition, based upon the work of Bertrand, if a mono-copper pathway
is operative then the azide ligation step would be comparatively slow, which could

account for the slower overall rate in comparison to Cu-acetylide formation.
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Further examination of the kinetic profile of ynamine 2.84 allowed for the extraction
of the rate of Cu-acetlyide formation. This was measured via the disappearance of
the acetylenic proton of the ynamine, which arises from formation of the acetylide
and subsequent deuteration by D,O. Upon analysis of this data, it was immediately
obvious that the Cu-acetylide formation is significantly faster than the overall
reaction (1x10™* M s for Cu-acetylide formation vs. 5.5x10° M s for the overall

reaction, Graph 15).
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Graph 15: Comparison of the rate of formation of Cu-acetylide versus product. Conversion
referes to consumption of ynamine acetylenic proton (red squares) and formation of the
desired triazole product (blue diamonds).

This data suggests that the Cu-acetylide formation is both rapid and reversible, as the
decrease in concentration of the acetylenic proton is greater than the amount of
copper present in the reaction. In addition, while the rate of Cu-acetylide formation is
rapid, it is still lower than the rate of reaction for propiolamide 2.34. This
discrepancy can be accounted through various means. The rate measured for the Cu-
acetylide formation is, in reality, the combination of Cu-acetylide formation and
deuteration of the alkyne, minus the rate of protonation of the alkyne from residual
water present. While protonation/deuteration of the acetylide is likely a rapid
process, this equilibrium does not allow for the measurement of the true rate of
acetylide formation. This equilibrium is also supported by evidence generated by a
co-worker in the group that has shown that water has an inhibitory effect on the
reaction rate. This is presumably because the equilibrium concentration of acetylide
is higher at lower concentrations of water. Finally, it is conceivable that
chemoselectivity is not influenced purely by the rate of the product-determining step,
but another mechanistic effect, such as a beneficial complexation between ynamine

2.84 with Cu, vide infra.
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At this juncture, it was clear that the RDS of the ynamine CuAAC reaction is the
azide ligation/migratory insertion step, and that a rapid Cu-acetylide step formation
provides high levels of chemoselectivity. However, it was still unclear why ynamine
2.84 provided such remarkable selectivity compared to the structurally similar
ynamide 2.83.

We hypothesised that the pK, of the ynamine could be modulated through a Lewis
acid-Lewis base interaction with the Cu(OAc),. A number of control experiments

were designed to interrogate this theory.

Firstly, indole ynamine 2.92 was prepared to access the role of the N3 of the
benzimidazole. Kinetic analysis of the indole ynamine CuAAC revealed an identical
rate as the benzimidazole variant. However, in competition with propiolamide 2.34
chemoselectivity was negligible with only a 1.4:1 preference for indole ynamine
product 2.93. This experiment demonstrated the importance of the N3 of the

benzmidazole for chemoselectivity (Scheme 118).

Co o i
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N + 234 ———~ )K(\N~Bn
N:N

MeCN, rt, 1 h N)Q‘ +Bocl\©l
n

292 \\ BnN; (1 equiv) LN,
(1 equiv) (1 equiv) 2.93 B

2.93:2.87 = 1.4:1

2.87

Scheme 118: Competiton reaction between 2.92 and 2.34.

NMR analysis was used to aid in the determination the role of the benzimidazole N3.
Samples of TIPS protected benzimidazole (2.94) and indole ynamines (2.95) were
treated with both Cu(OAc), and CuOAc in MeCN-&” to look for any evidence of an
interaction at N3. TIPS protecting groups on the alkynes were used to prevent the
formation of a Cu-acetylide species. °C NMR analysis of the resulting solutions
revealed that the combination of benzimidazole ynamine and Cu(OAc), was
singularly effective at generating a complex, as evidenced by the disappearance of a
number of the aromatic signals, and movement of others. The other three solutions
all showed a clean "°C spectrum, consistent with the starting materials. This simple
experiment demonstrated that the N3 promoted a strong interaction with copper, and
that N1 did not. In addition, only the Cu(II) precatalyst formed a complex (2.96) with

the benzimidazole. While this is not unexpected, as Cu(Il) is Lewis acidic, if this
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interaction is catalytically relevant then some of the pre-catalyst must be present

throughout the reaction (Scheme 119, Spectra 1).
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Spectra 1: '*C spectra of 2.94(Above). *C Spectra of 2.94 upon addition of Cu(OAc),,
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Scheme 119: Reaction of protected ynamines with Cu salts.

In order to probe whether Cu(Il) persists throughout the reaction course UV/Vis
spectroscopic analysis was used. Measurement of the absorption at 690 nm over the
first ten minutes of the reaction gave a qualitative look at the concentration of Cu(Il)
left in the reaction mixture. A rapid decrease in the concentration over the initial 2-4
minutes corresponds to the initiation time observed by 'H NMR. At this point the
absorption levelled out at half the original value, demonstrating that Cu(II) is present

throughout the course of the reaction (Graph 16).
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Graph 16: Absorption spectra of the reaction of 2.84 with BnN; with Cu(OAc),in MeCN over 10 minutes
at 690 nm. Curve shows a decrease in absorption over time as Cu(II) is reduced.

In addition to the spectroscopic evidence presented above, HRMS experiments were
undertaken to support an interaction between Cu(Il) and the benzimidazole N3. TIPS
protected benzimidazole 2.94 and indole ynamines 2.95 and were stirred with
Cu(OAc); and analysed by HRMS. While only starting materials were observed in
the reaction with indole ynamine, dimeric Cu-benzimidazole species 2.97 was

detected in the reaction of TIPS benzimidazole ynamine with Cu(OAc); (Figure 26).

TPS—=_ |

\=N_ MeCN
o2t

L

2.97&

TIPS

Figure 26: Dimeric copper complex observed by HRMS.
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This dimeric complex with an MeCN ligand supports the presence of a favourable
complexation between N3 and Cu(Il) in the reaction mixture. A Lewis acid
interaction of this type could lower the pKa of the ynamine acetylenic proton through
an inductive electron-withdrawing effect and therefore accelerate Cu-acetylide
formation. Additionally, a Cu-chelation at N3 could increase chemoselectivity purely
based on proximity. A strong interaction at N3 could sequester the Cu-catalyst,
allowing movement of the catalyst within the immediate vicinity (solvent cage
effects) and therefore providing chemoselectivity. However, while this scenario
remains a possibility, chemoselectivity in this case would decrease upon an increase

in [Cu(OAc);] which was not observed (Table 10).

Table 10: Comparison of chemoselectivity with increasing [Cu(OAc),].

Me N
Me N o S o
I:[ > )\ Cu(OAc); (x mol%)y;q N
Me N * N _ 5 k(\N_Bn

2.84\\ Bocti._) :4 Mech, 1 2.3:® \Bn+ sodh_J) o
Entry Cu(OAc), (mol%) 2.86/2.87
1 5 87:13
2 10 91:9
3 25 91:9
4 50 95:5
5 75 91:5
6 100 88:12
Determined by "H NMR

To assess the effect of Lewis acids on the pK, of benzimidazole ynamine 2.84, we
looked for changes in the "H NMR shift of the acetylenic proton upon exposure to a
range of Lewis acids. While not a perfect measure of pK,, a downfield shift in an
acidic proton can be indicative of an increase in acidity."*”’A downfield shift such as
this is more commonly used to measure the protonation of an amine via pH NMR
titration but in this case provided qualitative support for our hypothesis. Treatment of
2.84 with either Sc(OTf); or AICI; yielded a significant downfield shift of the
acetylenic proton. Sc(OTf); had the most pronounced effect with a shift of 0.39 ppm,
while AICl; provided a downfield shift of 0.3 ppm (Scheme 120). TiCls was also

tested but degraded the ynamine starting material upon exposure.
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Scheme 120: Effect of Lewis acids of the acetylinic proton of benzimidazole ynamine 2.84.
While copper Lewis acids could not be tested due to rapid acetylide formation, the
above data suggests that catalytic amounts of a copper Lewis acid could accelerate

Cu-acetylide formation by lowering the pK, of the acetylene proton.

The pK, of the benzimidazole ynamine was measured by NMR titration with
phosphazene bases. Use of BEMP and BTPP allowed for a pK, of 27.9 (MeCN) to be
calculated for 2.84 and a pKa of 28.8 (MeCN) for indole ynamine 2.92. This small
difference in pKa between 2.84 and 2.92 demonstrates the importance of the
inductive contribution of the N3 nitrogen of the benzimidazole. By extension, a
Lewis acid interaction at the N3 position would increase the inductive electron

withdrawing effect, decreasing the pK, further.

2.4.2 Overturning Protecting Group Strategies in the CuAAC Reaction:
Chemoselective CuAAC Reactions of Protected Aromatic Ynamines

Based on previous work in the Watson and Burley groups describing sequential
ligation strategies and the unprecedented levels of alkyne chemoselectivity, we
aimed to develop a truly orthogonal sequential CuAAC platform. As previously
discussed, alkyne chemoselectivity has remained uni-directional, with use of
protecting groups being the most common method employed. While this allows for
reliable selectivity, the order of reaction has to be determined at inception with little
opportunity for late stage diversification. Based on this, we sought to harness the
selectivity afforded from aromatic ynamines to overturn conventional protecting

group strategies.

We aimed to take protected ynamines and perform orthogonal CuAAC reactions
with aliphatic alkynes. Based upon previous work in the literature, using
conventional CuAAC conditions, unprotected alkynes react with complete selectivity

in the presence of protected alkynes. More challenging is a selective CuAAC
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reaction of the protected alkyne before engagement of the unprotected alkyne. A

combination of these two reactions would provide a bidirectional strategy for the

control of sequential CuAAC reactions based upon control of the reaction conditions

(Scheme 121).

Me N
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j@'\? . (/ Cu cat. Me . (/
M N
° \\ OPh @ %\Kj OPh

N‘
2.84 2.100 2.86@ 2.100

ynamine selective
(restored natural reactivity)

Cu cat., FE-N;
[
Me N Me]@:N Q
) > N
MeD:N> . ( = Cu cat. Me N ﬁI N
\ o @ LI
294 TIPS 2.100 294 TIPS 2.101

alkyne selective
(orthogonal reactivity)

Scheme 121: Design plan for orthogonal CuAAC reaction.

We began our investigation through the reaction of TIPS protected ynamine 2.94,

representative aliphatic alkyne 2.100 and BnNj; 2.101. As expected, exposure to

standard CuAAC conditions provided complete selectivity for unprotected alkyne

triazole product 2.101 in quantitative yield and without any degradation of 2.94

(Table 11).
Table 11: Optimisation of orthogonal CuAAC protocol.

M " N\> N

e N ~~ Cu(OAc); (5 mol % .

2.94 N 2.100 nah 2.8%”N—N 2.101

Entry reaction conditions 2.86/2.101 %

1 NaAsc, AMTC, DMSO/H;O0 (1:1) 0:100
2 NaAsc, AMTC, TBAF, DMSO/H,0 (1:1) 20:80
3 NaAsc, AMTC, TBAF, MeOH/H,0 (1:1) 47:53
4 NaAsc, AMTC, PS-F, DMSO/H,0 (1:1) 15:85
5 NaAsc, THPTA, TBAF, DMSO/HO0 (1:1) 43:57
6 NaAsc, THPTA, PS-F, DMSO/HO0 (1:1) 63:37
7 PS-F, DMSO 35:65
8 TBAF, DMSO 47:53
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9 TBAF, MeOH 16:84
10 TBAF, MeCN 100:0

aDetermined by HPLC against a caffeine internal standard. See Experimental section for further
details. Performed by MZCH.

We then aimed to restore chemoselectivity for ynamine triazole product 2.86 through
addition of TBAF or polymer-supported fluoride (PS-F) a source of F. Direct
addition of either fluoride source to systems containing NaAsc as a reductant and
Cu(l) stabilising ligands such as (1-(trans-2-hydroxycyclohexyl)-4-(N,N-
dimethylaminomethyl)-1,2,3-triazole (AMTC) or tris(3-
hydroxypropyltriazolylmethyl)amine (THPTA) in a range of solvent systems led to
mixtures of products (entries 2-6). Removal of these additives and a short solvent
study revealed MeCN as the optimum solvent, providing complete selectivity for the

ynamine CuAAC product.

Use of a Cu(Il) pre-catalyst without NaAsc was key for chemoselective control.
Based on previous work, 2.84 (produced via deprotection of 2.94) will reduce Cu(Il)
to Cu(l) via homocoupling of the alkyne (Glaser coupling), however, aliphatic
alkyne 2.100 undergoes Glaser coupling extremely slowly. This provides a window
for the deprotection step to proceed before any Cu(l) is present in the reaction
mixture. Removal of any Cu(I) stabilising ligands also improved selectivity; this can
be attributed to the positive effect of Cu(Il) salts in the reaction mixture. We have
shown that Cu(II) may act as a Lewis acid, accelerating the product-determining Cu-

acetylide formation step of the ynamine CuAAC reaction.
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Scheme 122: Selective orthogonal CuAAC reactions of 2.94 or 2.100 with a variety of azides using
conditions A or B. Isolated yields. Performed by MZCH.

The scope of the optimum conditions for both aliphatic alkyne and ynamine CuAAC
products was then probed (Scheme 122). Reaction with a set of diverse and highly
functionalised azide partners delivered high yields and selectivities for both alkyne
and ynamine products. The conversions and selectivites were retained regardless of
the steric or electronic demand of the azides. In addition, a number of azides with
direct relevance to chemical biology were tolerated; such as the dyes and
fluorophores 2.104g-i and biotinylated azide 2.104j. Following this, we investigated
the scope of the reaction with respect to the competing alkyne component. We took
five alkynes representing different electronic classes to provide a representative slice
of the literature, ynamide 2.83, propiolamide 2.105, propargyl alkyne 2.82, aryl
alkyne 2.38, and alkyl alkyne 2.81. Pleasingly, all alkynes were tolerated in the
alkyne selective protocol and all provided good selectivity under the ynamine
selective conditions. When using more activated alkynes some of the undesired

product was formed under the reaction conditions; this was consistent with previous
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work and in most cases the selectivity remained >9:1 in favour of the ynamine

CuAAC product (Scheme 123).

Me N Conditions A Me N
\> or \> ﬁn
Me N Conditions B N [l N

6: Me

\\ BnN; (2.85, 1 equiv) / |';l
2,94 ' ips 2.86 .\ N

Conditions A: Cu(OAc), (5 mol %), NaAsc (10 mol %), AMTC (10 mol %), DMSO/H,0 (1:1), rt
Conditions B: Cu(OAc), (5 mol %), TBAF (1.1 equiv), MeCN, rt

_— o O%
Z _
PhO = gz =
(ﬁz/ OJ\N/é N 7 p_Tol// n_Pr//
OPh \ /
2.100 2.83 2.105 2.82 2.38 2.81
- . 2.86:0% 2.86:0%  2.86:0%  2.86:0%  2.86:0%  2.86:0%
Conditions A: 5'101: 100%  2.88 99%  2.106: 100% 2.89: 97%  2.90: 92%  2.91: 85%
Conditions B: 2-86:100%  2.86:79%  2.86:86%  2.86:90%  2.86:90%  2.86: 99%

2101:0%  2.88:21% 2.106: 14% 2.89:8%  2.90:9%  2.91:0%
Scheme 123: Competition reactions of 2.94 with a range of alkynes using conditions A or B. Isolated yields.
This orthogonal reactivity was next explored in an intramolecular sense through the
use of mono-protected diyne 2.107. Exposure of 2.107 to conditions A led to
complete conversion of the unprotected alkyne triazole product 2.108, this compound
could then be reacted under conditions B to give bis-triazole 2.110 in good yield over
two steps. The order of reaction could be reversed, with selective CuAAC on the
protected ynamine using conditions B giving 2.112 before subsequent reaction of
aliphatic alkyne to give the regioisomeric product 2.113 while still maintaining high
yields across both steps. In addition, the selectivity was shown not to be dependnt on
the azide component as the opposite regioisomers could be effectively synthesised by

switching the order of addition of the two azide coupling partners (Scheme 124).
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Scheme 124: Orthogonal CuAAC reactions of diyne scaffold 2.107. Performed by MZCH.

This intramolecular experiment demonstrates the excellent levels of selectivity that
can be achieved across this orthogonal reaction template and establishes a viable

platform for sequential ligation of multifunctional molecules.

Finally, we investigated whether the alkyne selectivity developed throughout this
study could be married with Zhu’s azide chemoselective protocol® to deliver two
selective CuAAC reactions in one pot. We anticipated that use of chelating azide

2.53 would provide high levels of azide selectivity over benzyl azide 2.8S.
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Scheme 125: Dual orthogonal CuAAC reaction by exploiting alkyne and azide chemoselectivities.

The dual-CuAAC reaction was first performed under conditions A, coupling the
more active picolinyl azide 2.53 with the unprotected tolyl acetylene 2.38 to
selectively form triazole 2.115. Addition of TBAF to release the free ynamine 2.84
delivered the second triazole product 2.86 in good yield and high selectivity.

Alternatively, using conditions B the ynamine undergoes a rapid deprotection
followed by a selective CuAAC reaction with chelating azide 2.54 to provide triazole
2.102f. This is followed by the union of the remaining alkyne 2.38 and azide 2.85

components to give the second triazole product 2.90.
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2.5 Conclusions

We have demonstrated that aromatic ynamine 2.84 undergoes chemoselective
CuAAC reactions versus a range of other alkynes including the highly reactive
propiolamide 2.34. A series of competition experiments has allowed for the
generation of an alkyne reactivity scale that can be used for sequential CuAAC
reactions. Investigation into the source of the selectivity led to the discovery that
selectivity is not based purely on the rate of the reaction. In fact, ynamine was shown

to be chemoselective versus alkynes with a faster overall rate.

A kinetic investigation into this phenomenon showed that the RDS of the ynamine
CuAAC reaction is azide ligation/insertion rather than the more commonly reported
Cu-acetylide formation. Further mechanistic studies ascertained that a Lewis
acid/Lewis Base interaction between the Cu(Il) pre-catalyst may lower the pK, of the
acetylinic proton and subsequently increase the rate of Cu-acetylide formation, the

product-determining step in the reaction (Scheme 126).

chemoselectivity
determining step

RZ
Cu()2 '
cu(l) [Cu} R2Nj3 ?N‘Ne
Standard alkyne RI—= == R—==[cu(l)' ==  WN_ Seuup
P i
RDS L R—=Houy
Aryl ynamine ?U(“) ?U(“)
N N N N
R S cuth rYf S culy giff N R*Ns RIS
JEN — JEN> P REN> Tﬁ REN>N”§'}‘ R?
3 4
\\ \\ &[Cu(l)]z RDS \{‘[C(u(l)]z
[Cu()]! [Cu())]"

Scheme 126: Summary of chemoselectivity-detemining and rate-determining events for standard alkynes
and aryl ynamines.

We propose that the comparatively slow azide ligation step arises from the inherent
electronics of the ynamine. The highly electron—rich alkyne will render the Cu atom
bound to the m-system comparatively less electrophilic than an electron poor alkyne
e.g. (Scheme 127, 2.84) resulting in a lower rate of azide ligation/insertion.
Mejij[ N\> cu(l) Me N\> — Electron-rich alkyne
M N p— N — Less electrophilic Cu
e Me —> Slower azide ligation
2.84 \\ \—\{[CU]2
\ [Cu(l’

Scheme 127: Rationale for comparatively slow azide ligation event of aryl yanmine 2.84.
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In a broader sense, this study has demonstrated that selectivity in catalysis is not
based on rate alone and that other factors may be involved. In addition, taken
together with previous mechanistic reports, we show that the RDS of the CuAAC

reaction is not set and may change based on conditions and alkyne class.

Following on from this, we have developed a conditional strategy for orthogonal
control in the CuAAC reaction. Use of a silyl protecting group on a highly active
ynamine allows a rapid deprotection-CuAAC reaction to be performed before a
competing alkyne can react. This strategy is contingent on the reaction conditions;
deprotection of the ynamine must be rapid and the competing CuAAC must be
sufficiently slow for high levels of selectivity. This can be influenced by solvent and

additive selection.

The orthogonal method proved to be robust, tolerating a number of azides and
alkynes commonly used in bioconjugation. In addition, the conditions were amenable
to an intramolecular sequential ligation strategy; dual functionalization of a
bifunctional diyne was shown to work effectively, with initial CuAAC occurring at
either alkyne depending on the conditions used. Finally, the method could be
combined with azide chemoselectivity to perform two chemoselective CuAAC

reactions in one pot with no intervention.
This application of the alkyne chemoselectivity previously developed within the

group can provide a more flexible method for sequential functionalization in both

chemical biology and materials chemistry.
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2.6 Future work
After these original communications, there are two clear avenues of research that

should be undertaken to better understand the reactivity of ynamines in CuAAC.

Firstly, the reactivity of ynamines in general should be investigated. The kinetics of
the benzimidazole ynamine have been investigated; however a broad range of
aromatic ynamines have been synthesised and should be assessed for their
competency in the CuAAC reaction, both alone, and in competition (Figure 27). In
addition, kinetic analysis should be performed through another medium to confirm
the results generated by NMR. Preliminary results within the group have shown

FTIR to be a competent method for kinetic analysis of this reaction.

oo o Y o
Voo T 4 h

Figure 27: Range of ynamines that could be investigated.

This can be extended to ynamides, which have been underused as substrates for
CuAAC but may possess mechanistic similarities. Ynamides are generally more
accessible and their electronics can be more readily tuned, making them attractive

substrates for investigation (Figure 28).

R JEWG
‘N\ » Modulation of activity through EWG?

« Effect of R group on CUAAC?

Figure 28: Ynamides present interesting opportunities for mechanistic investigation.

In addition, stoichiometric Cu-acetylide and dicopper species of ynamine should be
synthesised and assessed for reactivity. CAAC ligated copper species could provide
more evidence for why the azide ligation step is comparatively slow. This could be
due to the electronics of the alkyne, but based on the first order dependence on
[Cu(OAc);], this could also be attributed to a mono-copper pathway. Synthesis of the
stoichiometric organocopper compounds could aid in unravelling this problem

(Figure 29).

N N N N
c oo o O
N N N N » Mono- or di- copper mechanism?

\\ & &(CU(CAAC) %\\ * Where is second copper situated?
Cu(NHC) Cu(CAAC) Cu(CAAC) cul’ L

Figure 29: Synthesis of proposed complexes may provide further insight into the mechanism of ynamine
CuAAC.
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In order to aid chemical biologists in the development of multi—alkyne systems for
sequential functionalisation, a body of data based on more classical ligand based
systems should be assembled. Use of Cu(l) stabilising ligands is important for
avoiding degradation in biological systems; it would be of great utility to develop a
general chemoselectivity scale using these more active conditions, in a similar
fashion to Finn. Incorporation of other rapid CuAAC substrates would be

advantageous, such at SPAAC cyclic alkynes.

The second, more academic, source of future enquiry lies in better understanding the
RDS of the CuAAC reaction. Alteration of the electronic properties of a wide-
ranging set of alkynes, and analysis of their mechanism could help to unpick the
factors that influence chemoselectivity and reactivity in a broader sense. While many
mechanistic studies have looked at tailored catalyst systems in order to understand
the role of copper in the reaction, the effect of altering the alkyne substrate remains

undeveloped.

Application of the orthogonal approach described here towards the sequential
functionalization of biomolecules would be a logical extension to the initial
communication. In addition, this method could be applied towards the synthesis of

multifunctional surfaces that can have applications in biomedical science.

When compared with the work of Carell, who demonstrated sequential ligation of
labelled oligonucleotides, vide supra, the application of ynamines and protected
ynamines could provide a significant advance in step economy and allow for a

diversity-oriented functionalization (Scheme 128).
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Scheme 128: Comparison of previous (Carell) and our approach towards sequential functionalization.

During this study it was shown that ynamine 2.84 is able to undergo a cycloaddition
with BnNj that is catalysed by Ag,CO;. While Ag-catalysed (3+2) cycloadditons

(AgAAC) have been reported in the literature,'®*!

the mild, ligandless conditions that
are amenable with 2.84 would represent a significant advance. In terms of
chemoselectivity, this would provide complete selectivity over standard alkynes

based on catalyst selection (Scheme 129).

Me N Me N
o o
Me N Ag,CO3, EtzN Me N
234& MeCN, 16 h 286 N,
N""-gn

ligand-free AGAAC quant.

Scheme 129: First reported ligand-free, room temperature AGAAC reaction using 2.84.
The high levels of reactivity displayed by aromatic ynamine 2.84 should also be
further investigated using other metals. By performing high-throughput optimisation
using a wide array of transition metal salts (e.g. Fe, Au), we hope to discover novel

reactivity.

In addition to CuAAC and AgAAC, the ability of ynamines to react with other
biomolecules commonly used for ligation (e.g. thiols or amines) would be a useful
advance (Scheme 130). In particular, a conditional basis for selectivity between
different ligation partners would provide users with a highly selective and flexible

tool for bioconjugation.
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Scheme 130: Amine and thiol ligation of 2.84.
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2.7 Experimental

2.7.1 General

All reagents and solvents were obtained from commercial suppliers and were used
without further purification unless otherwise stated. Purification was carried out
according to standard laboratory methods."®” Compounds 2.34!"°" 283!
294, 2,100, 2.104b,1'7F 2.104d," 2.104¢,"7Y 2.104g,'"> 2.104n,"7°
2.104i,1"7" 2,104, 2,105, 2.82,1"%%) 2.107,'°) and AMTC!"™" were prepared

according to literature procedures.

2.7.2 Purification of Solvents

Dry solvents for reactions were either obtained from a PureSolv SPS-400-5 solvent
purification system (THF) or via distillation over a suitable drying agent following
the prescribed methods (1,4-dioxane, MeCN). These solvents were transferred to and
stored in a septum-sealed oven-dried flask over previously activated 4 A molecular
sieves and purged with and stored under nitrogen. CH,Cl,, Et,0, EtOAc, MeCN, and
petroleum ether 40-60° for purification purposes were used as obtained from

suppliers without further purification.

2.7.3 Experimental Details

Reactions were carried out wusing conventional glassware (preparation of
intermediates) or in 5 mL or 20 mL microwave vials. The glassware was oven-dried
(140 °C) and purged with N, before use. Purging refers to a vacuum/nitrogen-
refilling procedure. Room temperature was generally 18 °C. Reactions were carried

out at elevated temperatures using a temperature-regulated hotplate/stirrer.

2.7.4 Purification of Products

Thin layer chromatography was carried out using Merck silica plates coated with
fluorescent indicator UV254. These were analyzed under 254 nm UV light or
developed wusing potassium permanganate solution. Normal phase flash

chromatography was carried out using ZEOprep 60 HYD 40-63 pum silica gel.
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2.7.5 Analysis of Products

Fourier Transformed Infra-Red (FTIR) spectra were obtained on a Shimadzu
[RAffinity-1 machine. "’F NMR spectra were obtained on a Bruker AV 400
spectrometer at 376 MHz. 'H and ">C NMR spectra were obtained on a Bruker AV
400 at 400 MHz and 125 MHz, respectively. Chemical shifts are reported in ppm and
coupling constants are reported in Hz with CDCl; referenced at 7.26 (‘H) and 77.0
ppm (°C), MeCN-d; referenced at 2.05 (‘H) and 118.3 (*C), DMSO-d; referenced at
2.50 ppm ('H) and 39.52 ppm (*°C), and MeOD referenced at 3.31 ppm (‘H) and
49.0 ppm ("°C). High-resolution mass spectra were obtained through analysis at the
EPSRC UK National Mass Spectrometry Facility at Swansea University or recorded
on a Bruker maXis Impact TOF mass spectrometer, equipped with an ESI interface,

over a mass range of 50—1000 Da, with a scan time of 1 s.

Reverse phase HPLC data was obtained on an Agilent 1200 series HPLC using a
Machery-Nagel Nucleodur C18 column. Analysis was performed using a gradient
method, eluting with 5—80% MeCN/H,0O over 50 min at a flow rate of 1 mL/min.
Samples for HPLC analysis were prepared through the removal of 30 pL of the
reaction mixture in which 100 uL of EDTA solution (10 mg/mL) was added. The
product was extracted with 100 uL of DCM. The organics were concentrated, and the
product was dissolved in MeOH (1 mL). To 110 pL of this solution was added 5 puL.
of 2-bromopyrimidine solution (10 mg/mL in MeOH) for HPLC analysis. Note: Due
to the high heteroatom count in specific products, >*C NMR analysis was not

possible due to issues with relaxation.

2.7.6 General Procedures

General Procedure 2A — Competition experiments

To a 10 mL microwave vial charged with alkyne A (0.1 mmol, 1 equiv), alkyne B
(0.1 mmol, 1 equiv) and (azidomethyl)benzene (12.5 pL, 0.1 mmol, 1 equiv) was
added MeCN (0.6 mL, 0.15 M) followed by Cu(OAc), (0.9 mg, 0.005 mmol, 5
mol%). The reaction was stirred at room temperature for 4 h before the addition of
EDTA solution (20 mg/mL) and EtOAc (10 mL). The organics were separated and
the aqueous layer extracted with a further 10 mL EtOAc. The combined organics

were then dried and concentrated to provide a mixture of the crude products. The
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crude residue was analyzed by NMR, with the product ratio taken from the ratio

between the benzyl protons.

General Procedure 2B — Deuteration of alkynes

All novel deuterated alkynes were prepared according to the procedure of Bew et
] 1182

A flame dried 10 mL round bottomed flask was charged with an alkyne (0.3 mmol, 1
equiv) and K,COs (4.5 mmol, 1.5 equiv) in MeCN (3 mL, 0.1 M). This was allowed
to stir under an atmosphere of N, for 30 min. To this, D,O (500 uL, 80 equiv) was
added and left to stir for 1 h. The resulting crude reaction mixture was diluted with
DCM (10 mL). The organic layer was separated and dried with MgSQ,, filtered, and

solvent removed under reduced pressure to provide the deuterated product.

General procedure 2C

Kinetic NMR measurements were performed on either a Bruker AV 400 at 400 MHz
or a Bruker DRX 500 at 500 MHz. Data sets were collected using a using a
multi zgvd pulse program with a fixed delay of 120 seconds over 60 min at 300 K.
Each reaction was performed in MeCN-Dj;. Cu(OAc), was added as an 0.25 mM
solution in D0, directly before the acquisition of the data set. Stock solutions of
BnNj3 (63 pL/mL) and dinitrobenzene (42 mg/mL) in MeCN-D; were prepared. To a
1.5 mL vial was added alkyne (0.05 mmol, 1 equiv), BnNj; solution (100 pL, 0.05
mmol, 1 equiv) and dinitrobenzene solution (100 pL, 0.025 mmol, 0.5 equiv). The
mixture was diluted with MeCN (300 pL) before being transferred to an NMR tube.
Cu(OAc); solution (8 pL, 0.0025 mmol, 5 mol%) was added directly before
acquisition. Conversion was measured as a comparison to the internal standard.
Conversions were checked by isolation of the desired product. The rate of the
reaction was obtained from the slope of the linear portion immediately after the

induction period.

General procedure 2D

Kinetic NMR measurements were performed on either a Bruker AV 400 at 400 MHz
or a Bruker DRX 500 at 500 MHz. Data sets were collected using a using a
multi zgvd pulse program with a fixed delay of 120 seconds over 60 min at 300 K.
Each reaction was performed in MeCN-Dj;. Cu(OAc), was added as an 0.25 mM
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solution in D0, directly before the acquisition of the data set. Stock solutions of
BnNj3 (63 pL/mL) and dinitrobenzene (42 mg/mL) in MeCN-D; were prepared. To a
1.5 mL vial was added alkyne (0.05 mmol, 1 equiv), BnNj; solution (100 pL, 0.05
mmol, 1 equiv) and dinitrobenzene solution (100 pL, 0.025 mmol, 0.5 equiv). The
mixture was diluted with MeCN (300 pL) before being transferred to an NMR tube.
NaAsc solution in water (10 uL, 100 mg/mL), was added to the tube followed by
Cu(OAc); solution (8 pL, 0.0025 mmol, 5 mol%) which was added directly before
acquisition. Conversion was measured as a comparison to the internal standard.
Conversions were checked by isolation of the desired product. The rate of the
reaction was obtained from the slope of the linear portion immediately after the

induction period.

General Procedure 2E —Formation of 2.86, 2.103b—j (Scheme 122).

To a solution of 5,6-dimethyl-1-((triisopropylsilyl)-ethynyl)-1H-benzo[d]imidazole
(45 mg, 0.14 mmol, 1 equiv), (but-3-yn-1-yloxy)benzene (20 mg, 0.14 mmol, 1
equiv), and azide 6a—j (0.14 mmol, 1 equiv) at rt in MeCN (1 mL) was added TBAF
(49 pL, 0.15 mmol, 1.1 equiv) followed by Cu(OAc), (1 mg, 0.007 mmol, 0.05
equiv). The reaction was stirred for 16 h, after which EtOAc (10 mL) was added. The
mixture was washed with EDTA (10 mg/mL, 10 mL) and brine (2 x 10 mL), dried
over Na;SQOy, and concentrated under vacuum. The resulting residue was purified by

flash chromatography (silica gel) to provide the desired compound.

General Procedure 2F —Formation of 2.103a—j (Scheme 122).

To a solution of 5,6-dimethyl-1-((triisopropylsilyl)ethynyl)-1H-benzo[d]imidazole
(45 mg, 0.14 mmol, 1 equiv), (but-3-yn-1-yloxy)benzene (20 mg, 0.14 mmol, 1
equiv), and azide 5a—j (0.14 mmol, 1 equiv) at rt in DMSO/H,O (1/1, 1 mL) was
added AMTC (3 mg, 0.014 mmol, 0.1 equiv) followed by Cu(OAc); (1 mg, 0.007
mmol, 0.05 equiv) and NaAsc (3 mg, 0.014 mmol, 0.1 equiv). The reaction was
stirred for 16 h, after which EtOAc (10 mL) was added. The mixture was washed
with EDTA (10 mg/mL, 10 mL) and brine (2 x 10 mL), dried over Na,SO4, and
concentrated under vacuum. The resulting residue was purified by flash

chromatography (silica gel) to provide the desired compound.
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General Procedure 2G — Formation of 2.101, 2.88, 2.106, 2.89, 2.90, and 2.91
(Scheme 123).

To a solution of 5,6-dimethyl-1-((triisopropylsilyl)ethynyl)-1H-benzo[d]-imidazole
(132 mg, 0.41 mmol, 1 equiv), alkyne (0.41 mmol, 1 equiv), and benzyl azide (53
puL, 0.41 mmol, 1 equiv) at rt in DMSO/H,0 (1/1, 1 mL) was added AMTC (9 mg,
0.041 mmol, 0.1 equiv) followed by Cu(OAc); (3 mg, 0.02 mmol, 0.05 equiv) and
NaAsc (9 mg, 0.041 mmol, 0.1 equiv). The reaction was stirred for 16 h, after which
EtOAc was added. The mixture was washed with EDTA (10 mg/mL, 10 mL) and
brine (2 x 10 mL), dried over Na;SO4, and concentrated under vacuum. The resulting
residue was purified by flash chromatography (silica gel) to provide the desired

compound.

2.7.7 Synthesis of Starting Materials.
5,6-Dimethyl-1-((triisopropylsilyl)ethynyl)-1H-benzo[d]imidazole, 2.94!'*"!

Me N

MeD[ N\>

\
TIPS

An oven dried 20 mL microwave vial was charged with 5,6-dimethyl-1H-
benzo[d]imidazole (511 mg, 3.5 mmol, 1 equiv), (bromoethynyl)triisopropylsilane
(2.01 g, 7.7 mmol, 2.2 equiv), Cul (33 mg, 0.175 mmol, 5 mol%), Cs,CO;3 (1365 mg,
4.2 mmol, 1.2 equiv) and PEG-400 (140 mg, 0.35 mmol, 10 mol%). The vial was
capped and purged before the addition of 1,4-dioxane (11 mL, 0.3 M). The reaction
mixture was then heated to 160 °C for 1 h. Upon completion of the reaction, the vial
was vented and cooled to room temperature before being filtered through Celite and
concentrated under reduced pressure. The crude oil was purified by flash
chromatography (silica gel, 0-5% Et,O/petroleum ether) to provide the desired
compound as a clear oil (900 mg, 79%).
Vmax (n€at): 2939, 2863, 2177, 1498, 1465 cm™.
"H NMR (CDCl3, 400 MHz): & 3.71 (dd, J = 6.2, 4.3 Hz, 2H), 3.57 (dd, J= 6.3, 4.3
Hz, 2H), 3.45 (dd, /= 6.2, 4.2 Hz, 2H), 3.39 (dd, /= 6.3, 4.3 Hz, 2H), 1.44 (s, 9H).
BC NMR (CDCl;, 126 MHz): & 143.0, 140.2, 134.2, 133.0, 120.8, 111.1, 90.6, 72.4,
20.6,20.2, 18.6, 11.2.

Data consistent with previously reported spectra.t'®¥
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1-Ethynyl-5,6-dimethyl-1H-benzo|d]imidazole, 2.84

Me:©:N\>

Me N

\

To a solution of 5,6-dimethyl-1-((triisopropylsilyl)ethynyl)-1H-benzo[d]imidazole
(1.3 g, 4 mmol, 1 equiv) in THF (25 mL, 0.15 M) at 0 °C was added TBAF (1M in
THF, 6 mL, 6 mmol, 1.5 equiv). The reaction was stirred at 0 °C for 30 min then
warmed to room temperature before the addition of EtOAc (10 mL) and H,O (10
mL). The organics were separated and washed with H,O (10 mL) and brine (10 mL)
before being dried and concentrated under reduced pressure. The crude mixture was
purified by flash chromatography (silica gel, 0-20% Et,O/petroleum ether) to provide
the desired compound as a white solid (800 mg, 88 %).
Vmax (ne€at): 3196, 3099, 2917, 2149, 1493, 1450 cm™".
"H NMR (CDCl;, 400 MHz): & 7.95 (s, 1H), 7.54 (s, 1H), 7.31 (s, 1H), 3.25 (s, 1H),
2.37 (s, 3H), 2.35 (s, 3H).
BC NMR (CDCls, 101 MHz): & 142.3, 139.8, 133.8, 132.6, 132.3, 120.3, 110.5,
70.2,61.2,19.9, 19.7.
HRMS: exact mass calculated for [MJrH]+ (C11H11Ny) requires m/z 171.0917, found
m/z 171.0914.

1-((Triisopropylsilyl)ethynyl)-1H-indole, 2.95

Co

!

TIPS
An oven dried 20 mL microwave vial was charged with indole (468 mg, 4 mmol, 1
equiv), (bromoethynyl)triisopropylsilane (2.1 g, 8 mmol, 2 equiv), Cul (38 mg, 0.2
mmol, 5 mol%), Cs,CO3 (1560 mg, 4.8 mmol, 1.2 equiv) and PEG-400 (160 mg, 0.4
mmol, 10 mol%). The vial was capped and purged before the addition of 1,4 dioxane
(11.5 mL, 0.35 M). The reaction mixture was then heated to 160 °C for 16 h. Upon
completion of the reaction the vial was cooled to room temperature, vented,

decapped, filtered through Celite, and concentrated under reduced pressure. The
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crude oil was purified by flash chromatography (silica gel, 0-1% Et;O/petroleum
ether) to provide the desired compound as a clear oil (1030 mg, 86%).

Vmax (ne€at): 2939, 2861, 2179, 1522, 1457, 1325 cm™.

"H NMR (CDCl;, 400 MHz): & 3.71 (dd, J = 6.2, 4.3 Hz, 2H), 3.57 (dd, J= 6.3, 4.3
Hz, 2H), 3.45 (dd, /= 6.2, 4.2 Hz, 2H), 3.39 (dd, /= 6.3, 4.3 Hz, 2H), 1.44 (s, 9H).
BC NMR (CDCls, 126 MHz): & 138.4, 129.1, 127.8, 123.7, 122.1, 121.3, 111.53,
105.3,94.8, 68.9, 18.9, 11.5.

HRMS: exact mass calculated for [MJrH]+ (C19H27NSi) requires m/z 298.1991, found
m/z 298.1994.

1-Ethynyl-1H-indole, 2.92

o
!

To a solution of 1-((tritsopropylsilyl)ethynyl)-1H-indole (520 mg, 1.75 mmol, 1
equiv) in THF (17.5 mL, 0.1 M) at 0 °C was added TBAF (1M in THF, 2.65 mL,
2.65 mmol, 1.5 equiv). The reaction was stirred at 0 °C for 30 min then warmed to
room temperature before the addition of EtOAc (10 mL) and H,O (10 mL). The
organics were separated and washed with H,O (10 mL) and brine (10 mL) before
being dried and concentrated under reduced pressure. The crude mixture was purified
by flash chromatography (silica gel, 0-5% Et;O/petroleum ether) to provide the
desired compound as a brown oil (130 mg, 53 %).

vmax (neat): 3264, 3110, 2147, 1521, 1455, 1316, 1212 cm™.

"H NMR (CDCl;, 400 MHz): & 7.68 (t, J= 8.1 Hz, 1H), 7.44 — 7.39 (m, 1H), 7.34 —
7.30 (m, 1H), 7.29 (d, J = 3.4 Hz, 1H), 6.65 — 6.60 (m, 1H), 3.21 (s, 1H).

BC NMR (CDCls, 101 MHz): & 138.3, 128.9, 127.8, 123.8, 122.2, 121.3, 111.4,
105.7, 74.5, 58.9.

HRMS: exact mass calculated for [M-H] (C;oHg¢N) requires m/z 140.0500, found m/z
140.0493.

Deuterated products

1-(Ethynyl-d)-5,6-dimethyl-1H-benzo[d]imidazole, 2.84b
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Prepared according to General Procedure 2B using 1-ethynyl-5,6-dimethyl-1H-
benzo[d]imidazole (51 mg, 0.3 mmol, 1 equiv) and K,COs (62 mg, 0.45 mmol, 1.5
equiv) to provide the desired product as an off-white solid (45 mg, 87%, 95%D).
Vmax (n€at): 3099, 2917, 2541, 2002, 1745, 1493 cm™.

"H NMR (CDCls, 400 MHz):  7.97 (s, 1H), 7.56 (s, 1H), 7.34 (s, 1H), 2.40 (s, 3H),
2.37 (s, 3H).

BC NMR (CDCl3, 101 MHz): & 143.0, 140.4, 134.5, 133.2, 132.9, 121.0, 111.1, 70.4
(t,Jep=7.7Hz), 61.7 (t, J c.0 = 40.4 Hz), 20.6, 20.3.

HRMS: exact mass calculated for [M]+ (C11H9DNy) requires m/z 171.0907, found m/z
171.0909.

tert-Butyl 4-(propioloyl-d)piperazine-1-carboxylate, 2.34b

O
N )\
Bocl\(\) S D

Prepared according to General Procedure 2B using tert-butyl 4-propioloylpiperazine-
1-carboxylate (71 mg, 0.3 mmol, 1 equiv) and K,CO; (62 mg, 0.45 mmol, 1.5 equiv)
to provide the desired product as an off white solid (52 mg, 73%, 91%D).

Vmax (neat): 3194, 2969, 2922, 2541, 2102, 1943, 1680, 1625, 1439 cm™.

"H NMR (CDCl;, 400 MHz): & 3.71 (dd, J = 6.2, 4.3 Hz, 2H), 3.57 (dd, J= 6.3, 4.3
Hz, 2H), 3.45 (dd, /= 6.2, 4.2 Hz, 2H), 3.39 (dd, /= 6.3, 4.3 Hz, 2H), 1.44 (s, 9H).
BC NMR (CDCls, 101 MHz): 8 153.9, 151.4, 80.0, 79.2, 74.2 (t, Je.p = 7 Hz), 46.2,
40.8, 27.8.

HRMS: exact mass calculated for [M]+ (C12H17DN,03) requires m/z 239.1380, found
m/z 239.1388.

3-(Ethynyl-d)oxazolidin-2-one, 2.83b

o
OJ\N/D
/
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Prepared according to General Procedure 2B using 3-ethynyloxazolidin-2-one (33
mg, 0.3 mmol, 1 equiv) and K,CO3 (62 mg, 0.45 mmol, 1.5 equiv) to provide the
desired product as a yellow gum (20 mg, 60%, 85%D).

vmax (ne€at): 3237, 2919, 2562, 2149, 2008, 1759, 1476, 1409 cm™".

"H NMR (CDCl;, 400 MHz): & 4.43 (dd, J= 8.7, 7.3 Hz, 2H), 3.91 (dd, J=8.7, 7.3
Hz, 2H).

BC NMR (CDCl, 126 MHz): § 156.3, 72.3 (t, J= 8.5 Hz), 63.3, 59.5 (t, J=40.2
Hz), 46.5.

HRMS: exact mass calculated for [M]+ (CsH4NO;,D) requires m/z 122.0383, found
m/z 122.0387.

2.7.8 Competition Experiments from Scheme 116

N—

Me:I:::I:§> ri::T/ﬂ\SSF iif? _ PN /J:::]/éga Me/”\/é2

2.84 2.34 2.83 2.82 2.81

Me N> o) O\.\// OPh
N Ph <\/ L\r/\ Ph
Ph
N = N =
pos SRH RN, o
~ BocN N=p H N=r/ H N=y |
N SNOH
N-No_Ph
N-
2.91 )Kf 2.87 288 2.89
H oW
8 =>5.62 ppm 8=>5.53 ppm & =550 ppm 8 =5.49 ppm
Me
Ph Me Ph
= N+H \/Y\N+H
N=N" H N=N" H
2.90 291
8 =15.56 ppm 8 =15.48 ppm

2.84 vs. 2.34

Reaction was carried out according to General Procedure 2B using 1-ethynyl-5,6-
dimethyl-1H-benzo[d]imidazole (17 mg, 0.1 mmol, 1 equiv) and tert-butyl 4-
propioloylpiperazine-1-carboxylate (24 mg, 0.1 mmol, 1 equiv) to provide a 87:13
ratio of products by 'H NMR.
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2.84 vs. 2.83

Reaction was carried out according to General Procedure 2B using 1-ethynyl-5,6-
dimethyl-1H-benzo[d]imidazole (17 mg, 0.1 mmol, 1 -equiv) and 3-
ethynyloxazolidin-2-one (11 mg, 0.1 mmol, 1 equiv) to provide a 98:2 ratio of

products by "H NMR.

2.84 vs. 2.82

Reaction was carried out according to General Procedure 2B using 1-ethynyl-5,6-
dimethyl-1H-benzo[d]imidazole (17 mg, 0.1 mmol, 1 equiv) and (prop-2-yn-1-
yloxy)benzene (13 mg, 0.1 mmol, 1 equiv) to provide a 100:0 ratio of products by 'H
NMR.

2.84 vs. 2.38

Reaction was carried out according to General Procedure 2B using 1-ethynyl-5,6-
dimethyl-1H-benzo[d]imidazole (17 mg, 0.1 mmol, 1 equiv) and I-ethynyl-4-
methylbenzene (12.5 uL, 0.1 mmol, 1 equiv) to provide a 100:0 ratio of products by
'H NMR.

2.84 vs. 2.81

Reaction was carried out according to General Procedure 2B using 1-ethynyl-5,6-
dimethyl-1H-benzo[d]imidazole (17 mg, 0.1 mmol, 1 equiv) and pent-1-yne (10 pL,
0.1 mmol, 1 equiv) to provide a 100:0 ratio of products by "H NMR.

2.34 vs. 2.83

Reaction was carried out according to General Procedure 2B using tert-butyl 4-
propioloylpiperazine-1-carboxylate (24 mg, 0.1 mmol, 1 equiv) and 3-
ethynyloxazolidin-2-one (11 mg, 0.1 mmol, 1 equiv) to provide a 80:20 ratio of

products by "H NMR.

2.34 vs. 2.82

Reaction was carried out according to General Procedure 2B using tert-butyl 4-
propioloylpiperazine-1-carboxylate (24 mg, 0.1 mmol, 1 equiv) and (prop-2-yn-1-
yloxy)benzene (13 mg, 0.1 mmol, 1 equiv) to provide a 86:14 ratio of products by 'H
NMR.
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2.34 vs. 2.38

Reaction was carried out according to General Procedure 2B using tert-butyl 4-
propioloylpiperazine-1-carboxylate (24 mg, 0.1 mmol, 1 equiv) and 1-ethynyl-4-
methylbenzene (12.5 uL, 0.1 mmol, 1 equiv) to provide a 90:10 ratio of products by
'H NMR.

2.34 vs. 2.81

Reaction was carried out according to General Procedure 2B using tert-butyl 4-
propioloylpiperazine-1-carboxylate (24 mg, 0.1 mmol, 1 equiv) and pent-1-yne (12.5
uL, 0.1 mmol, 1 equiv) to provide a 100:0 ratio of products by 'H NMR.

2.83 vs. 2.82

Reaction was carried out according to General Procedure 2B using 3-
ethynyloxazolidin-2-one (11 mg, 0.1 mmol, 1 equiv) and (prop-2-yn-1-
yloxy)benzene (13 mg, 0.1 mmol, 1 equiv) to provide a 65:35 ratio of products by 'H
NMR.

2.83 vs. 2.38

Reaction was carried out according to General Procedure 2B using 3-
ethynyloxazolidin-2-one (11 mg, 0.1 mmol, 1 equiv) and 1-ethynyl-4-methylbenzene
(12.5 uL, 0.1 mmol, 1 equiv) to provide a 90:10 mixture of products by 'H NMR.

2.83 vs. 2.81

Reaction was carried out according to General Procedure 2B using 3-
ethynyloxazolidin-2-one (11 mg, 0.1 mmol, 1 equiv) and pent-1-yne (12.5 pL, 0.1
mmol, 1 equiv) to provide a 100:0 ratio of products by 'H NMR.

2.82 vs. 2.38

Reaction was carried out according to General Procedure 2B using (prop-2-yn-1-
yloxy)benzene (13 mg, 0.1 mmol, 1 equiv) and 1-ethynyl-4-methylbenzene (12.5 pL,
0.1 mmol, 1 equiv) to provide a 85:15 mixture of products by 'H NMR.

2.82 vs. 2.81
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Reaction was carried out according to General Procedure 2B using (prop-2-yn-1-
yloxy)benzene (13 mg, 0.1 mmol, 1 equiv) and pent-1-yne (12.5 pL, 0.1 mmol, 1
equiv) to provide a 100:0 ratio of products by 'H NMR.

2.38 vs. 2.81

Reaction was carried out according to General Procedure 2B using 1-ethynyl-4-
methylbenzene (12.5 pL, 0.1 mmol, 1 equiv) and pent-1-yne (12.5 pL, 0.1 mmol, 1
equiv) to provide a 100:0 ratio of products by 'H NMR.

2.7.9 Kinetic data

Determination of rates for alkynes 2.84, 2.34, 2.83, 2.82, 2.38, and 2.81.
Rate of 2.86

Data was obtained according to General Procedure 2C using 1-ethynyl-5,6-dimethyl-
1 H-benzo[d]imidazole (8.5 mg, 0.05 mmol, 1 equiv). Data was acquired by taking an

average over two runs.
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Rate of 2.34

Data was obtained according to General Procedure 2C using fert-butyl 4-

propioloylpiperazine-1-carboxylate (11.9 mg, 0.05 mmol, 1 equiv).
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Data was obtained according to General Procedure 2C using 3-ethynyloxazolidin-2-

one (5.6 mg, 0.05 mmol, 1 equiv).
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Rate of 2.82

Data was obtained according to General Procedure 2D wusing (prop-2-yn-1-

yloxy)benzene (6.6 mg, 0.05 mmol, 1 equiv).
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Data was obtained according to General Procedure
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Rate of 2.81

Data was obtained according to General Procedure 2D using 1-pentyne (3.4 mg, 0.05

mmol, 1 equiv).
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Rate of 1-(ethynyl-d)-5,6-dimethyl-1H-benzo[d]imidazole, 2.84b
Data was obtained according to General Procedure 2C using 1-(ethynyl-d)-5,6-
dimethyl-1H-benzo[d]imidazole (8.5 mg, 0.05 mmol, 1 equiv).
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Rate of zert-butyl-4-(propioloyl-d)piperazine-1-carboxylate, 2.34b

Data was obtained according to General Procedure 2C using fert-butyl-4-(propioloyl-

d)piperazine-1-carboxylate (11.9 mg, 0.05 mmol, 1 equiv).
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Data was obtained according to General Procedure 2C using 3-(ethynyl-

d)oxazolidin-2-one (5.6 mg, 0.05 mmol, 1 equiv).
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NMR competition experiments

Competition reaction of 2.84 vs. 2.34

Data was obtained according to General Procedure 2C using 1-ethynyl-5,6-dimethyl-
1 H-benzo[d]imidazole (8.5 mg, 0.05 mmol, 1 equiv) and tert-butyl-4-
(propioloyl)piperazine-1-carboxylate (11.9 mg, 0.05 mmol, 1 equiv). Blue diamonds
show formation of product 2.86. Red squares show formation of product 2.87.
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Dependence on benzyl azide concentration

0.4 eq azide

Data was obtained according to General Procedure 2C using 1-ethynyl-5,6-dimethyl-
1 H-benzo[d]imidazole (8.5 mg, 0.05 mmol, 1 equiv) and benzyl azide (2.66 mg, 0.02

mmol, 0.4 equiv).
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Data was obtained according to General Procedure 2C using 1-ethynyl-5,6-dimethyl-
1 H-benzo[d]imidazole (8.5 mg, 0.05 mmol, 1 equiv) and benzyl azide (8.3 mg, 0.063

mmol, 1.25 equiv).

100 - 0.08
09009% ¢ 0%
L F} ) 0.
oo7e 07 y = 6E-05x-0.0164

80 - S 0.06 -
—_
X . 0.05
= - . o)
g 60 % 0.04
g . 8
b 0.03
()] L 2
> 40 -
S ¢ 0.02
S . '

20 - . 0.01

* 0 . .
¢ 0 500 1000 1500
0 vee ' ' ' Time (s)
0 20 40 60

Time (min)

2 eq azide
Data was obtained according to General Procedure 2C using 1-ethynyl-5,6-dimethyl-
1 H-benzo[d]imidazole (8.5 mg, 0.05 mmol, 1 equiv) and benzyl azide (13.3 mg, 0.1

mmol, 2 equiv).
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Data was obtained according to General Procedure 2C using 1-ethynyl-5,6-dimethyl-

1 H-benzo[d]imidazole (8.5 mg, 0.05 mmol, 1 equiv) and benzyl azide (14.6 mg, 0.11

mmol, 2.2 equiv).
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Calculation of order in [benzyl azide]
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Dependence on ynamine (2.84) concentration

0.5 equiv

Data was obtained according to General Procedure 2C using 1-ethynyl-5,6-dimethyl-
1 H-benzo[d]imidazole (4.25 mg, 0.025 mmol, 0.5 equiv) and benzyl azide (6.7 mg,

0.05 mmol, 1 equiv).
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1.5 equiv

Data was obtained according to General Procedure 2C using 1-ethynyl-5,6-dimethyl-

1 H-benzo[d]imidazole (12.75 mg, 0.075 mmol, 1.5 equiv) and benzyl azide (6.7 mg,

0.05 mmol, 1 equiv).
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Data was obtained according to General Procedure 2C using 1-ethynyl-5,6-dimethyl-

1 H-benzo[d]imidazole (17 mg, 0.1 mmol, 2 equiv) and benzyl azide (6.7 mg, 0.05

mmol, 1 equiv).
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2.5 equiv
Data was obtained according to General Procedure 2C using 1-ethynyl-5,6-dimethyl-
1 H-benzo[d]imidazole (21.25 mg, 0.015 mmol, 2.5 equiv) and benzyl azide (6.7 mg,

0.05 mmol, 1 equiv).
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2.5 mol% Cu

Data was obtained according to General Procedure 2C using 1-ethynyl-5,6-dimethyl-
1 H-benzo[d]imidazole (8.5 mg, 0.05 mmol, 1 equiv), benzyl azide (6.7 mg, 0.05
mmol, 1 equiv) and Cu(OAc); (4 pL, 0.25 mM solution, 0.00125 mmol, 2.5 mol%).
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Data was obtained according to General Procedure 2C using 1-ethynyl-5,6-dimethyl-
1 H-benzo[d]imidazole (8.5 mg, 0.05 mmol, 1 equiv), benzyl azide (6.7 mg, 0.05
mmol, 1 equiv) and Cu(OAc), (12 pL, 0.25 mM solution, 0.00375 mmol, 7.5 mol%).
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Data was obtained according to General Procedure 2C using 1-ethynyl-5,6-dimethyl-
1 H-benzo[d]imidazole (8.5 mg, 0.05 mmol, 1 equiv), benzyl azide (6.7 mg, 0.05
mmol, 1 equiv) and Cu(OAc), (16 pL, 0.25 mM solution, 0.005 mmol, 10 mol%).
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Data was obtained according to General Procedure 2C using 1-ethynyl-5,6-dimethyl-

1 H-benzo[d]imidazole (8.5 mg, 0.05 mmol, 1 equiv), benzyl azide (6.7 mg, 0.05
mmol, 1 equiv) and Cu(OAc), (32 pL, 0.25 mM solution, 0.01 mmol, 20 mol%).
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Calculation of order in Cu(OAc);
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Rate of Cu acetylide formation of 2.84

Data was obtained according to General Procedure 2C using 1-ethynyl-5,6-dimethyl-
1 H-benzo[d]imidazole (8.5 mg, 0.05 mmol, 1 equiv) and benzyl azide (6.7 mg, 0.05
mmol, 1 equiv). Both the disappearance of the acetylinic C-H and the appearance of

the product benzyl peaks were monitored.
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Red squares indicate the decrease in concentration of the alkyne methine proton.

Blue diamonds show the increase in click product.
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Kinetics of indole ynamine 2.92
Data was obtained according to General Procedure 2C using 1-ethynyl-1H-indole

(7.1 mg, 0.05 mmol, 1 equiv) and benzyl azide (6.7 mg, 0.05 mmol, 1 equiv).
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Data was obtained according to General Procedure 2C using 1-ethynyl-1H-indole

(7.1 mg, 0.05 mmol, 1 equiv) and benzyl azide (3.35 mg, 0.025 mmol, 0.5 equiv).
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1.5 eq azide
Data was obtained according to General Procedure 2C using 1-ethynyl-1H-indole

(7.1 mg, 0.05 mmol, 1 equiv) and benzyl azide (10.05 mg, 0.075 mmol, 1.5 equiv).
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NMR competition experiment between 2.92 and 2.34

Data was obtained according to General Procedure 2C using 1-ethynyl-1H-indole
(7.1 mg, 0.05 mmol, 1 equiv), fert-butyl-4-(propioloyl)piperazine-1-carboxylate
(11.9 mg, 0.05 mmol, 1 equiv) and benzyl azide (6.7 mg, 0.05 mmol, 1 equiv). Blue

diamonds show formation of product 2.93. Red squares show formation of product
2.87.
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2.7.6 Mechanistic and control experiments

Treatment of TIPS protected ynamines with Cu salts

Procedure

To a solution of 5,6-dimethyl-1-((triisopropylsilyl)ethynyl)-1H-benzo[d]imidazole
(16.3 mg, 0.05 mmol, 1 equiv) in MeCN (0.5 mL) was added Cu(OAc), (16 uL, 0.25
mM solution, 0.005 mmol, 10 mol%).The resulting mixture was analyzed by "*C
NMR.

Reaction of 5,6-dimethyl-1-((triisopropylsilyl)ethynyl)-1H-benzo|d]imidazole
with Cu salts
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BC NMR of 5,6-dimethyl-1-((triisopropylsilyl)ethynyl)-1H-benzo|d]imidazole +
Cu(OAc),

To a solution of 5,6-dimethyl-1-((triisopropylsilyl)ethynyl)-1H-benzo[d]imidazole
(16.3 mg, 0.05 mmol, 1 equiv) in MeCN (0.5 mL) was added Cu(OAc), (16 uL, 0.25
mM solution, 0.005 mmol, 10 mol%).The resulting mixture was analyzed by "*C

NMR.
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BC NMR of 5,6-dimethyl-1-((triisopropylsilyl)ethynyl)-1H-benzo|d]imidazole +
CuOAc
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50000
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To a solution of 5,6-dimethyl-1-((triisopropylsilyl)ethynyl)-1H-benzo[d]imidazole
(16.3 mg, 0.05 mmol, 1 equiv) in MeCN (0.5 mL) was added CuOAc (0.61 mg,

0.005 mmol, 10 mol%). The resulting mixture was analyzed by >C NMR.
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Reactions of 1-((triisopropylsilyl)ethynyl)-1H-indole with Cu salts

oy oy
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B3C NMR of 1-((triisopropylsilyl)ethynyl)-1H-indole.

ot s o A\ e s

140 135 130 125 120 115 110 105 f (lé)é)m) 95 90 85 80 75 70 65 60
3C NMR of 1-((triisopropylsilyl)ethynyl)-1H-indole + Cu(OAc),

To a solution of 1-((triisopropylsilyl)ethynyl)-1H-indole (14.9 mg, 0.05 mmol, 1
equiv) in MeCN (0.5 mL) was added Cu(OAc), (16 uL, 0.25 mM solution, 0.005

mmol, 10 mol%). The resulting mixture was analyzed by >C NMR.
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Treatment of 1-ethynyl-5,6-dimethyl-1H-benzo|d]imidazole with Lewis acids
Sc(OTH);

To a solution of 1-ethynyl-5,6-dimethyl-1H-benzo[d]imidazole (8.5 mg, 0.05 mmol,
1 equiv) in MeCN (0.5 mL) was added Sc(OTf); (24.6 mg, 0.05 mmol, 1 equiv). The

resulting mixture was analyzed by 'H NMR.
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AlCl;

To a solution of 1-ethynyl-5,6-dimethyl-1H-benzo[d]imidazole (8.5 mg, 0.05 mmol,
1 equiv) in MeCN (0.5 mL) was added AICl;(6.65 mg, 0.05 mmol, 1 equiv). The
resulting mixture was analyzed by 'H NMR.
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'"H NMR after
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Determination of ynamine pK, by treatment with amine bases

Procedure

To a solution of ynamine (8.5 mg, 0.05 mmol, 1 equiv) in MeCN (0.5 mL) was

added amine base (0.05 mmol, 1 equiv) and the reaction was stirred at room

temperature for 1 h. The resulting mixture was analysed by '"H NMR. The extent of

deprotonation of the alkyne methine was measured with a range of bases of various

pK..
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UV/vis measurement of Cu(OAc), persistence

Procedure

To a cuvette containing 1-ethynyl-5,6-dimethyl-1H-benzo[d]imidazole (17 mg, 0.1
mmol, 1 equiv) and benzyl azide (13.3 mmol, 0.1 mmol, 1 equiv) in MeCN (4 mL)
was added Cu(OAc), (16 pL, 0.25 mM solution, 0.005 mmol, 5 mol%) the

absorbance at 690 nm was monitored over 10 min.
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014+ 1

0.12+

Abs

0.10- .

.
0.08- e gk

Time (min)

HRMS determination of chelated intermediates

A mixture of 1-((triisopropylsilyl)ethynyl)-1H-benzo[d]imidazole (15 mg, 0.05
mmol, 1 equiv) and Cu(OAc), (8 pL, 0.25 mM solution, 0.0025 mmol, 5 mol%) in
MeCN (0.5 mL) was analysed by HRMS (XEVO-G2XSQ — 10 min run, formic acid

modifier).

TIPS
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The above copper complex was observed in the reaction media.

HRMS: exact mass calculated for [MJrH]+ (C33Hs55CuNsSi,) requires m/z 701.3370,

found m/z 701.4120.

2.7.7 Compound Characterization
1-(1-Benzyl-1H-1,2,3-triazol-4-yl)-5,6-dimethyl-1 H-benzo[d]imidazole, 2.86
Me N
I
Me N
=)

\Y
\N’N

vmax (neat): 3237, 2919, 2562, 2149, 2008, 1759, 1476, 1409 cm™".

"H NMR (CDCl;, 400 MHz): & 8.20 (s, 1H), 7.67 (s, 1H), 7.58 (s, 1H), 7.45 — 7.38
(m, 3H), 7.38 — 7.31 (m, 2H), 5.62 (s, 2H), 2.37 (s, 6H).

BC NMR (CDCls, 101 MHz): & 142.6, 141.8, 139.8, 133.4, 133.0, 131.7, 130.5,
128.9,128.7, 127.7, 120.1, 112.9, 110.7, 54.6, 20.1, 19.7.

HRMS: exact mass calculated for [MJrH]+ (C1gH7Ns) requires m/z 304.1557, found
m/z 304.1557.

~-Ph

tert-Butyl 4-(1-benzyl-1H-1,2,3-triazole-4-carbonyl)piperazine-1-carboxylate,
2.871°
O
ey
BocN\) N=p
"H NMR (CDCl;, 400 MHz): & 7.99 (s, 1H), 7.39 — 7.34 (m, 3H), 7.32 — 7.27 (m,
2H), 5.53 (s, 2H), 4.33 —4.22 (m, 2H), 3.75 — 3.67(m, 2H), 3.56 — 3.44 (m, 4H), 1.47
(s, 9H).
BC NMR (CDCls, 101 MHz): 8 159.4, 154.1, 143.9, 133.2, 128.8, 128.6, 127.9,
79.7,53.9,46.0,42.1, 27.9.

Data consistent with previously reported spectra.l'!

3-(1-Benzyl-1H-1,2,3-triazol-4-yl)oxazolidin-2-one, 2.88!">*!
0]
O
o
DD

N:NI

191



"H NMR (CDCls, 400 MHz): & 7.84 (s, 1H), 7.40 — 7.34 (m, 3H), 7.31 — 7.26 (m,
2H), 5.50 (s, 2H), 4.56 (dd, J = 8.9, 7.3 Hz, 2H), 4.25 (dd, J= 8.9, 7.3 Hz, 2H).
13C NMR (CDCls, 101 MHz): 5 154.9, 144.0, 134.4, 129.2, 128.9, 128.2, 111.9,
63.4,54.9, 43.7.

Data consistent with previously reported spectra.t'*”

1-Benzyl-4-(phenoxymethyl)-1H-1,2,3-triazole, 2.89!'%4

OPh
Ph
= /N—J
N=y

"H NMR (CDCls, 400 MHz): § 7.49 (s, 1H), 7.37 — 7.30 (m, 2H), 7.26 — 7.20 (m,
5H), 6.97 — 6.88 (m, 3H), 5.49 (s, 2H), 5.15 (s, 2H).

13C NMR (CDCls, 101 MHz): § 157.7, 144.1, 134.0, 129.0, 128.7, 128.3, 127.6,
122.1, 120.8, 114.3, 61.5, 53.7.

Data consistent with previously reported spectra.l'™"

1-Benzyl-4-(p-tolyl)-1H-1,2,3-triazole, 2.90!'"

Me
\©Y\ Ph
= N—J

<
"H NMR (CDCls, 500 MHz): § 7.68 (d, J = 8.1 Hz, 2H), 7.63 (s, 1H), 7.40 — 7.33
(m, 3H), 7.31 — 7.28 (m, 2H), 7.19 (d, J = 7.9 Hz, 2H), 5.54 (s, 2H), 2.35 (s, 3H).
13C NMR (CDCls, 101 MHz): 5 147.8, 137.5, 134.3, 129.0, 128.6, 128.2, 127.6,
127.2, 125.1, 118.8, 53.7, 20.8.

Data consistent with previously reported spectra.l'®

1-Benzyl-4-propyl-1H-1,2,3-triazole, 2.91''*¢

M Ph
e\/\(\NJ

<)
"H NMR (CDCls, 400 MHz): § 7.24 — 7.17 (m, 4H), 7.13 (m, 2H), 5.36 (s, 2H), 2.54
(t,J=7.6 Hz, 2H), 1.60 — 1.48 (m, 2H), 0.82 (t, J = 7.4 Hz, 3H).

13C NMR (CDCls, 101 MHz): 5 148.0, 134.6, 128.4, 127.9, 127.3, 120.4, 53.2, 27.1,
22.0, 13.2.

Data consistent with previously reported spectra.t'*"
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1-(1-Benzyl-1H-1,2,3-triazol-4-yl)-1H-indole, 2.93

Co
o

N-N_Ph

Vmax (neat): 3125, 3053, 2350, 1569, 1454 cm™.

"H NMR (CDCl;, 400 MHz): & 7.72 (dd, J = 8.2, 0.7 Hz, 1H), 7.68 (d, J= 7.8 Hz,
1H), 7.61 — 7.57 (m, 2H), 7.47 — 7.39 (m, 3H), 7.39 — 7.33 (m, 2H), 7.32 — 7.26 (m,
1H), 7.25-7.18 (m, 1H), 6.70 (d, /= 3.4 Hz, 1H), 5.61 (s, 2H).

BC NMR (CDCls, 101 MHz): & 145.32, 134.6, 133.8, 128.9, 128.8, 128.5, 127.6,
125.9,122.5,120.7, 120.5, 112.2, 110.7, 104.3, 54.4.

HRMS: exact mass calculated for [M+H]+ (C17H5Ny) requires m/z 275.1291, found
m/z 275.1296.

2.7.8 Products from Scheme 122
1-(1-Benzyl-1H-1,2,3-triazol-4-yl)-5,6-dimethyl-1 H-benzo[d]-imidazole (2.86).

ses
'

\
N~
n

=z

/
B

Prepared using General Procedure 2E. White solid (31 mg, 66%). Purification on
silica gel using hexane/EtOAc 3/7.

vmax (neat): 3086, 2922, 2854, 1724, 1584, 1495, 1459, 1407, 1284, 1213, 1053, 867,
718 cm .

"H NMR (CDCl3, 400 MHz): & 8.20 (br. s, 1H), 7.67 (s, 1H), 7.58 (br. s, 1H),
7.39-7.45 (m, 4H), 7.37-7.34 (m, 2H), 5.62 (s, 2H), 2.37 (s, 6H).

BC NMR (CDCls, 100 MHz): & 143.2, 142.4, 140.4, 134.0, 133.6, 132.2, 131.1,
129.5,129.3,128.3, 120.7, 113.5, 111.3, 55.2, 20.7, 20.3.

HRMS: exact mass calculated for [MJrH]+ (C1gHsNs) requires m/z 304.1557, found
m/z 304.1551.

5,6-Dimethyl-1-(1-octyl-1H-1,2,3-triazol-4-yl)-1 H-benzo[d]-imidazole (2.102b).
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n-Oct
Prepared using General Procedure 2E. White solid (88 mg, 98%). Purification on
silica gel using hexane/EtOAc 3/7.
vmax (neat): 3135, 2924, 2857, 1740, 1597, 1500, 1470, 1383, 1292, 1206, 1156,
1091, 1053, 1033, 949, 869, 785 cm .
"H NMR (CDCls, 500 MHz): & 8.62 (br. s, 1H), 7.77-7—68 (m, 3H), 4.45 (t, J=7.1
Hz, 2H), 2.40 (s, 3H), 2.38 (s, 3H), 2.00 (app. quint, J = 6.6 Hz, 2H), 1.40—1.26 (m,
10H), 0.87 (t, J= 7.2 Hz, 3H).
BC NMR (CDCls;, 100 MHz): & 133.9, 132.0, 113.8, 51.5, 31.8, 30.4, 29.8, 29.2,
29.1, 26.6,22.7,20.7,20.4, 14.2.
HRMS: exact mass calculated for [MJrH]+ (C19H28Ns) requires m/z 326.2339, found
m/z 326.2323.

1-(1-((3s,5s,7s)-Adamantan-1-yl)-1H-1,2,3-triazol-4-yl)-5,6-di-methyl-1H-
benzo[d]imidazole (2.102c¢).

Me N
Me N
-
N

>

P4

\

1l
N~
/

Ad
Prepared using General Procedure 2E. White solid (95 mg, 99%). Purification on
silica gel using hexane/EtOAc 3/7.
vmax (neat): 3080, 2917, 2852, 1725, 1586, 1495, 1467, 1448, 1281, 1216, 1149,
1019, 948, 861, 844 cm .
"H NMR (CDCls, 400 MHz): § 8.22 (br. s, 1H), 7.82 (s, 1H), 7.60 (s, 1H), 7.47 (s,
1H), 2.39 (s, 3H), 2.38 (s, 3H), 2.33 (br. s, 9H), 1.83 (br. s, 6H).
BC NMR (CDCl;, 100 MHz): & 142.4, 142.1, 140.7, 133.5, 132.1, 131.4, 120.7,
111.4,110.6, 61.0, 43.1, 35.9, 29.8, 29.6, 20.7, 20.4.
HRMS: exact mass calculated for [MJrH]+ (C21H26N5s) requires m/z 348.2183, found
m/z 348.2179.

194



(8)-5,6-Dimethyl-1-(1-(1-phenylethyl)-1H-1,2,3-triazol-4-yl)- 1 H-benzo[d]imidazole
(2.1024d).

Prepared using General Procedure 2E. White solid (46 mg, 95%). Purification on
silica gel using hexane/EtOAc 3/7.

vmax (neat): 3110, 2926, 2857, 1724, 1590, 1498, 1459, 1383, 1286, 1212, 1143, 910,
731 cm.

"H NMR (CDCl3;, 400 MHz): & 8.20 (br. s, 1H), 7.63 (s, 1H), 7.59 (br. s, 1H),
7.45-7-35 (m, 6H), 5.88 (q, /= 7.0 Hz, 1H), 2.37 (s, 6H), 2.09 (d, J = 7.1 Hz, 3H).
BC NMR (CDCl;, 100 MHz): & 139.3, 133.6, 132.3, 129.4, 126.7, 120.7, 112.6,
111.5,61.5,29.8,21.3, 20.7, 20.4. Four signals not observed/coincident.

HRMS: exact mass calculated for [MJrH]+ (C19H20N5s) requires m/z 318.1713, found
m/z 318.1704.

(8)-2-((tert-Butoxycarbonyl)amino)-6-(4-(5,6-dimethyl- 1 H-benzo-[d]imidazol-1-yl)-
1H-1,2,3-triazol-1-yl)hexanoic acid (2.102e).
Me N
L
Me N
A
N— N

BocHN OH

0}
Prepared using General Procedure 2E. Yellow solid (56 mg, 94%). Purification on
silica gel using DCM/MeOH 9/1 + 0.01% AcOH.
vmax (neat): 3382, 3127, 2974, 2867, 2485, 2233, 2071, 1686, 1591, 1422, 1392,
1368, 1247, 1165, 1119, 1052, 974 cm ™.
"H NMR (MeOD, 400 MHz): & 9.80 (br. s, 1H), 8.79 (s, 1H), 7.91 (s, 1H), 7.71 (s,
1H), 4.60 (br. s, 2H), 4.08 (br. s, 1H), 2.48 (s, 6H), 2.08 (br. s, 2H), 1.89 (br. s, 1H),
1.74 (br. s, 1H), 1.51 (br. s, 2H), 1.41 (s, 9H).

195



BC NMR (MeOD, 100 MHz): & 175.9, 158.1, 141.0, 139.2, 138.9, 119.9, 116.0,
114.8, 80.4, 54.6, 52.4, 32.2, 30.6, 28.7, 23.9, 20.7, 20.5. Two signals not
observed/coincident.
HRMS: exact mass calculated for [MJrH]+ (C2H31N6O4) requires m/z 443.2401,
found m/z 443.2389.

5,6-Dimethyl-1-(1-(pyridin-2-ylmethyl)-1H-1,2,3-triazol-4-yl)-1H-
benzo[d]imidazole (2.102f).

Prepared using General Procedure 2E. Yellow oil (83 mg, 99%). Purification on
silica gel using hexane/EtOAc 3/7.

vmax (neat): 3105, 2960, 2917, 2852, 1586, 1502, 1465, 1435 cm ™.

"H NMR (CDCl;, 500 MHz): & 8.61 (d, J = 4.5 Hz, 1H), 8.24 (s, 1H), 8.03 (s, 1H),
7.72 (dt, J = 7.7, 1.7 Hz, 1H), 7.57 (s, 1H), 7.45 (s, 1H), 7.33 (d, J = 7.7 Hz, 1H),
7.29 (m, 1H), 5.72 (s, 2H), 2.36 (s, 6H).

BC NMR (CDCl;, 100 MHz): & 153.6, 150.1, 143.0, 142.3, 140.4, 137.6, 133.6,
133.5,133.4,132.3, 132.2, 132.1, 131.0, 123.8, 122.8, 120.6, 114.3, 111.3.

HRMS: exact mass calculated for [MJrH]+ (C17H17Ng) requires m/z 305.1509, found
m/z 305.1508.

N-(2-(4-(5,6-Dimethyl-1H-benzo[d]imidazol-1-yl)-1H-1,2,3-tria-zol-1-yl)ethyl)-N-
methyl-7-nitrobenzo[c][1,2,5]oxadiazol-4-amine (2.102g).

Me—
A

o=y NO

Prepared using General Procedure 2E. Red solid (119 mg, 95%). Purification on
silica gel using hexane/EtOAc 1/9.
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vmax (neat): 3599, 3108, 3082, 2917, 2852, 1613, 1597, 1550, 1424, 1288, 1216,
1149, 1087, 1002, 918, 732 cm .

"H NMR (CDCls, 400 MHz): & 8.48 (m, 2H), 7.63 (s, 1H), 7.49 (br. s, 1H), 6.38 (d, J
=9.3 Hz, 1H), 4.98 (t, J = 4.5 Hz, 2H), 3.45-3.42 (m, 2H), 2.39 (d, J = 4.7 Hz, 6H),
2.03 (s, 3H). One signal not observed/coincident.

HRMS: exact mass calculated for [MJrH]+ (C20H20N9O3) requires m/z 434.1684,
found m/z 434.1613.

N-(3-(4-(5,6-Dimethyl-1H-benzo[d]imidazol-1-yl)-1H-1,2,3-tria-zol-1-yl)propyl)-5-
(dimethylamino)naphthalene-1-sulfonamide (2.102g).

Me N

po
a

N’N

A~

Me,N

Prepared using General Procedure 2E. Yellow solid (43 mg, 92%). Purification on
silica gel using DCM/MeOH 9/1.

vmax (neat): 3127, 2924, 2857, 2794, 1750, 1597, 1457, 1396, 1325, 1312, 1234,
1146, 1092, 1042, 951, 789 cm .

"H NMR (CDCls;, 500 MHz): & 8.52 (d, J = 8.6Hz, 1H), 8.27 (d, J = 8.6Hz, 1H),
8.24 (s, 1H), 8.21 (d, J = 8.6 Hz, 1H), 7.80 (s, 1H), 7.61 (s, 1H), 7.55 (t, J = 7.6 Hz,
1H), 7.50-7.46 (m, 2H), 7.16 (d, J= 7.6 Hz, 1H), 5.38 (t,J = 6.5 Hz, 1H), 4.54 (t,J
=5.5Hz,2H), 2.94 (q, J = 6.2 Hz, 2H), 2.86 (s, 6H), 2.39 (s, 6H), 2.15 (m, 2H).

BC NMR (CDCls, 100 MHz): & 152.4, 142.6, 142.4, 140.5, 134.2, 133.8, 132.4,
131.0, 130.1, 129.9, 129.6, 128.9, 123.4, 120.7, 118.3, 115.5, 114.7, 111.4, 47.7,
45.5,39.9, 30.2, 20.7, 20.4.

HRMS: exact mass calculated for [MJrH]+ (C6H30N70,S) requires m/z 504.2176,
found m/z 504.2153.
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1-(3',6'-Dihydroxy-3-o0x0-3 H-spiro[isobenzofuran-1,9'-xanthen]-5-yl)-3-(3-(4-(5,6-
dimethyl-1H-benzo[d]imidazol-1-yl)-1H-1,2,3-triazol-1-yl)propyl)thiourea (2.102h).

/w :
Sevslilice sy

Prepared using General Procedure 2E. Red solid (66 mg, 85%). Purification on silica
gel using DCM/MeOH 9/1).

vmax (n€at): 2924, 2113, 1716, 1593, 1541, 1457, 1381, 1303, 1245, 1210, 854 cm .
"H NMR (DMSO-dg, 400 MHz): & 9.32 (br. s, 1H), 9.00 (s, 1H), 8.45 (s, 1H), 7.86
(d, J = 8.0 Hz, 1H), 7.82 (s, 1H), 7.65-7.62 (m, 2H), 7.16 (d, J = 8.3 Hz, 1H),
6.72—6.68 (m, 2H), 6.60—6.56 (m, 3H), 4.66 (t, J= 6.9 Hz, 2H), 3.51 (s, 2H), 3.16 (s,
2H), 2.40 (s, 3H), 2.38 (s, 3H).

HRMS: exact mass calculated for [M—H] (CssH2sN7OsS) requires m/z 658.1878,
found m/z 642.1632 [M—OH] .

3C NMR could not be obtained due to relaxation issues.

N-(2-(2-(2-(2-(4-(5,6-Dimethyl-1 H-benzo[d]imidazol-1-yl)-1H-1,2,3-triazol-1-
yl)ethoxy)ethoxy)ethoxy)ethyl)-5-((3aS$,4S,6aR)-2-oxohexahydro-1H-thieno| 3,4-
d]imidazol-4-yl)pentanamide (2.102i).

Me N\>

M N

=
O \N _N \/\O/\/O
YNH ’ ]

HN% ’
"q,/\/W ~ 0
H s

(6]

Prepared using General Procedure 2E. White solid (24 mg, 87%). Purification on
silica gel using DCM/MeOH 9/1.

vmax (neat): 3375, 3124, 2922, 2867, 2470, 2068, 1690, 1645, 1591, 1454, 1098,
1055 cm ™.

"H NMR (MeOD, 400 MHz): & 8.52 (s, 2H), 7.63 (br. s, 1H), 7.55 (br. s, 1H), 4.71
(t,J=5.2 Hz, 2H), 4.45 (dd, /= 7.8, 4.9 Hz, 1H), 4.25 (dd, /= 7.9, 4.5 Hz, 1H), 3.99
(t, J = 4.9 Hz, 2H), 3.69-3.66 (m, 2H), 3.64-3.62 (m, 2H), 3.58-3.55 (m, 2H),
3.49-3.47 (m, 2H), 3.38 (t, J = 5.4 Hz, 2H), 3.24 (t, J = 5.4 Hz, 2H), 3.17-3.12 (m,
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1H), 2.88 (dd, J=12.8, 5.0 Hz, 1H), 2.68 (d, J = 12.7 Hz, 1H), 2.41 (s, 3H), 2.40 (s,
3H), 2.17-2.13 (m, 2H), 1.73—1.50 (m, 4H), 1.42—1.34 (m, 2H).

BC NMR (MeOD, 100 MHz): & 176.0, 166.1, 135.2, 133.9, 120.6, 118.2, 112.9,
71.5,71.4,71.1, 70.5, 63.3, 61.6, 57.0, 52.3, 41.0, 40.2, 36.7, 29.7, 29.4, 26.8, 20.7,
20.3.

HRMS: exact mass calculated for [MJrH]+ (C8H43N3OsS) requires m/z 615.3072,
found m/z 615.3149.

1-Benzyl-4-(2-phenoxyethyl)-1H-1,2,3-triazole (2.103a).

PhO

a

Bn/N/N
Prepared using General Procedure 2F. White solid (81 mg, quant). Purification on
silica gel using hexane/EtOAc 3/7.
vmax (neat): 3120, 3071, 3038, 2958, 2935, 1604, 1590, 1496, 1459, 1251, 1219,
1176, 1059, 1042, 890, 828, 789, 752, 720 cm .
"H NMR (CDCl;, 400 MHz): & 7.40—7.34 (m, 4H), 7.29-7.26 (m, 2H), 7.25-7.24
(m, 2H), 6.94 (tt, J = 7.4, 1.1 Hz), 6.89—-6.85 (m, 2H), 5.50 (s, 2H), 4.23 (t, J = 6.5
Hz, 2H), 3.19 (t, /= 6.5 Hz, 2H).
BC NMR (CDCl;, 100 MHz): & 158.8, 135.0, 129.6, 129.2, 128.8, 128.1, 122.0,
121.1, 114.7, 66.8, 54.2, 26.4.
HRMS: exact mass calculated for [MJrNa]+ (C17H17N3ONa) requires m/z 302.1264,

found m/z 302.1256.

1-Octyl-4-(2-phenoxyethyl)-1H-1,2,3-triazole (2.103b).

PhO

?”
N

N
/
n-Oct

Prepared using General Procedure 2F. White solid (78 mg, 94%). Purification on
silica gel using hexane/EtOAc 3/7.

vmax (neat): 3142, 2956, 2922, 2852, 1604, 1591, 1500, 1487, 1388, 1247, 1217,
1176, 1057, 1035, 886, 817, 756, 694 cm .
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"H NMR (CDCls, 400 MHz): § 7.41 (s, 1H), 7.29-7.25 (m, 2H), 6.96—6.89 (m, 3H),
4.30 (t, J= 7.2 Hz, 2H), 4.24 (t, J = 6.5 Hz, 2H), 3.21 (t, J = 6.5 Hz, 2H), 1.87 (app.
quint, J=7.1 Hz, 2H), 1.30—1.25 (m, 10H), 0.87 (t, /= 6.6 Hz, 3H).

BC NMR (CDCl;, 100 MHz): & 158.7, 144.6, 129.6, 121.7, 121.0, 114.6, 66.8, 50.3,
31.8,30.4,29.1, 29.0, 26.6, 26.3, 22.7, 14.1.

HRMS: exact mass calculated for [MJrNa]+ (Ci3H27N30Na) requires m/z 324.2046,
found m/z 324.2035.

1-((3s,5s,7s)-Adamantan-1-yl)-4-(2-phenoxyethyl)-1H-1,2,3-triazole (2.103c).

PhO

?N
N

N~
/
Ad

Prepared using General Procedure 2F. White solid (81 mg, quant). Purification on
silica gel using hexane/EtOAc 3/7.

vmax (neat): 2909, 2857, 1599, 1590, 1556, 1500, 1476, 1457, 1420, 1348, 1292,
1243, 1035, 1016, 780, 759, 694 cm .

"H NMR (CDCls, 400 MHz):  7.49 (s, 1H), 7.30—7.28 (m, 2H), 7.00—6.90 (m, 3H),
4.25 (t, J = 6.6 Hz, 2H), 3.22 (t, J = 6.6 Hz, 2H), 2.25-2.23 (m, 9H), 1.82—-1.75 (m,
6H).

BC NMR (CDCl;, 100 MHz): & 158.9, 143.7, 129.6, 121.0, 118.2, 114.7, 67.1, 59.4,
43.1, 36.1, 29.6, 26.5.

HRMS: exact mass calculated for [MJrNa]+ (Cy0H25N30Na) requires m/z 346.1890,
found m/z 346.1881.

(8)-4-(2-Phenoxyethyl)-1-(1-phenylethyl)-1H-1,2,3-triazole (2.103d).

Prepared using General Procedure 2F. White solid (67 mg, 84%). Purification on
silica gel using hexane/EtOAc 3/7).

vmax (neat): 3170, 3066, 3030, 3045, 2941, 2924, 2870, 1604, 1588, 1498, 1463,
1387, 1366, 1305, 1251, 1038, 811, 756, 733, 705, 694 cm .
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"H NMR (CDCl;, 400 MHz): & 7.38—7.32 (m, 8H), 6.94 (tt, J = 7.4, 1.1 Hz, 1H),
6.88— 6.85 (m, 2H), 5.78 (q, /= 7.2 Hz, 1H), 4.23 (t, J= 6.5 Hz, 2H), 3.19 (t, J= 6.5
Hz, 2H), 1.97 (d, J= 7.1 Hz, 3H).

BC NMR (CDCls, 100 MHz): & 158.7, 144.6, 140.2, 129.6, 129.1, 128.5, 126.6,
121.0, 120.8, 114.7, 66.8, 60.2, 25.4, 21.4.

HRMS: exact mass calculated for [MJrNa]+ (CisH19N3ONa) requires m/z 316.1420,
found m/z 316.1410.

(8)-2-((tert-Butoxycarbonyl)amino)-6-(4-(2-phenoxyethyl)-1H-1,2,3-triazol-1-
yl)hexanoic acid (2.103e).

BocHN OH

o
Prepared using General Procedure 2F. White solid (46 mg, 82%). Purification on
silica gel using DCM/MeOH 9/1, 0.1% AcOH.
vmax (neat): 3398, 2952, 2922, 2868, 2482, 2242, 2071, 1688, 1600, 1368, 1167,
1119,974 cm ™.
"H NMR (MeOD, 500 MHz): & 7.83 (br. s, 1H), 7.24 (t, J= 7.8 Hz, 2H), 6.92—6.89
(m, 3H), 4.37 (t, J= 7.1 Hz, 2H), 4.22 (t,J = 6.5 Hz, 2H), 4.08—4.05 (m, 1H), 3.15 (t,
J=6.4 Hz, 2H), 1.94—1.89 (m, 2H), 1.87-1.80 (m, 2H), 1.70—1.55 (m, 2H), 1.42 (s,
9H).
BC NMR (MeOD, 100 MHz): & 176.0, 158.1, 130.5, 121.9, 115.6, 80.5, 67.7, 54.6,
52.2,51.1,32.3,32.2,29.4,28.7,26.9, 23.9.
HRMS: exact mass calculated for [M+Na]  (CpH39N4O5Na) requires m/z

441.2108, found m/z 441.2102.

2-((4-(2-Phenoxyethyl)-1H-1,2,3-triazol-1-yl)methyl)pyridine (2.103f).
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Prepared using General Procedure 2F. White solid (60 mg, 79%). Purification on
silica gel using hexane/EtOAc 3/7.

vmax (neat): 3142, 2932, 1601, 1590, 1496, 1474, 1441, 1295, 1241, 1052, 1022,
1035, 998, 752, 692 cm .

"H NMR (CDCls, 400 MHz): & 8.60 (s, 1H), 7.67 (it, J = 7.8, 1.8 Hz, 1H), 7.60 (s,
1H), 7.29-7.24 (m, 4H), 7.15 (d, J= 7.7 Hz, 1H), 6.93 (tt, J= 7.3, 1.2 Hz, 1H), 6.88
(m, 1H), 5.63 (s, 2H), 4.25 (t,J = 6.5 Hz, 2H), 3.22 (t, /= 6.5 Hz, 2H).

BC NMR (CDCl;, 100 MHz): & 158.8, 137.5, 129.6, 123.5, 121.1, 114.7, 66.8, 55.7,
26.4. Three signals not observed/ coincident.

HRMS: exact mass calculated for [MJrNa]+ (Ci16H16N4ONa) requires m/z 303.1216,
found m/z 303.1214.

N-Methyl-7-nitro-N-(2-(4-(2-phenoxyethyl)-1H-1,2,3-triazol-1-yl)-
ethyl)benzo[c][1,2,5]oxadiazol-4-amine (2.103g).

Prepared using General Procedure 2F. Yellow solid (118 mg, 85%). Purification on
silica gel using hexane/EtOAc 1/9.

vmax (neat): 3142, 1617, 1556, 1483, 1429, 1303, 1281, 1095, 1035, 1000, 801, 756,
682 cm .

"H NMR (CDCls, 500 MHz): & 8.37 (d, J= 9.0 Hz, 1H), 7.86 (br. s, 1H), 7.24 (t, J =
7.7 Hz, 2H), 6.92 (t, J = 7.3 Hz, 1H), 6.84 (d, J = 8.0 Hz, 2H), 6.20 (d, J = 8.9 Hz,
1H), 4.68 (m, 2H), 4.01 (t, J = 6.0 Hz, 2H), 3.03 (t, J = 6.0 Hz, 2H), 1.34-1.29 (m,
5H).
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HRMS: exact mass calculated for [MJrNa]+ (C19H9N7O4Na) requires m/z 432.1391,
found m/z 432.1376.

13C NMR could not be obtained due to relaxation issues.

5-(Dimethylamino)-N-(3-(4-(2-phenoxyethyl)-1H-1,2,3-triazol-1-
yl)propyl)naphthalene-1-sulfonamide (2.103h).

PhO

Me,N
Prepared using General Procedure 2F. Yellow solid (38 mg, 87%). Purification on
silica gel using DCM/MeOH 9/1.
vmax (neat): 3293, 3142, 2935, 2870, 2790, 1603, 1590, 1577, 1500, 1457, 1409,
1396, 1314, 1236, 1145, 1038, 947, 910, 791, 757, 731, 694 cm .
"H NMR (CDCls, 400 MHz): & 8.53 (dt, J = 8.5, 0.9 Hz, 1H), 8.27 (dt, J = 8.5, 0.9
Hz, 1H), 8.18 (dd, J = 7.3, 1.2 Hz, 1H), 7.55 (dd, J = 8.6, 7.6 Hz, 1H), 7.47 (dd, J =
8.5, 7.2 Hz, 1H), 7.33 (s, 1H), 7.28=7.24 (m, 2H), 7.16 (d, J = 7.6 Hz, 1H),
6.95—-6.88 (m, 3H), 5.41 (t, J = 6.5 Hz, 1H), 4.32 (t, J = 6.6Hz, 2H), 4.20 (t, J = 6.3
Hz, 2H), 3.15 (t, /= 6.3 Hz, 2H), 2.87 (s, 6H), 2.01 (m, 4H).
BC NMR (CDCl;, 100 MHz): & 158.7, 152.2, 134.5, 130.8, 130.0, 129.8, 129.6,
128.7, 123.3, 121.0, 118.6, 115.4, 114.7, 66.7, 46.9, 45.5, 40.1, 32.0, 30.4, 29.8,
26.2,14.3.
HRMS: exact mass calculated for [MJrNa]+ (C25H29NsO3SNa) requires m/z
502.1883, found m/z 502.1862.

1-(3',6'-Dihydroxy-3-o0x0-3 H-spiro[isobenzofuran-1,9'-xanthen]-5-yl)-3-(3-(4-(2-
phenoxyethyl)-1H-1,2,3-triazol-1-yl)propyl)thiourea (2.103i).
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Prepared using General Procedure 2F. Red solid (68 mg, 91%). Purification on silica
gel using DCM/MeOH 9/1.

vmax (neat): 2928, 1638, 1591, 1541, 1457, 1381, 1295, 1238, 1210, 1176, 1120, 852
cm .

"H NMR (DMSO-dg, 500 MHz): & 8.72 (br. s, 1H), 8.38 (s, 1H), 8.06 (s, 1H), 7.83
(d, J=17.7Hz, 1H), 7.27 (t, J= 7.1 Hz, 2H), 7.17 (d, J = 7.1 Hz, 1H), 6.95 (m, 2H),
6.71 (s, 3H), 6.57-5.59 (m, 3H), 4.45 (t, J = 6.4 Hz, 2H), 4.22 (t, J = 6.6 Hz, 4H),
3.51 (m, 2H), 3.09 (t, /= 6.4 Hz, 2H).

HRMS: exact mass calculated for [M—H] (C34H2sNsO6S) requires m/z 634.1766,
found m/z 618.2001 [M—OH].

3C NMR could not be obtained due to relaxation issues.

5-((3a8.,4S,6aR)-2-Oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)-N-(2-(2-(2-(2-(4-
(2-phenoxyethyl)-1H-1,2,3-triazol-1-yl)ethoxy)-  ethoxy)ethoxy)ethyl)pentanamide

(2.103j).
PhO/\>§\
:?—NH H N\\N’N\/\E/\/Oj
Hﬁ/\/\[g ~"o
Prepared using General Procedure 2F. White solid (32 mg, 88%). Purification on
silica gel using DCM/MeOH 9/1.
vmax (neat): 3274, 3071, 2917, 2861, 1695, 1679, 1643, 1545, 1474, 1238, 1104,
1035, 756 cm .
"H NMR (CD;O0D, 400 MHz,): & 7.96 (br. s, 1H), 7.25 (t, J=7.7 Hz, 2H), 6.92 (d, J
=7.2 Hz, 3H), 4.56 (t, J=4.6 Hz, 2H), 4.47 (dd, J = 7.6, 5.6 Hz, 1H), 4.28 (dd, J =
7.9, 4.3 Hz, 1H), 4.24 (t, J = 5.1 Hz, 2H), 3.88 (t, J = 4.7 Hz, 2H), 3.63—3.54 (m,
8H), 3.50 (t, J = 5.1 Hz, 2H), 3.37-3.33 (m, 2H), 3.20-3.17 (m, 3H), 2.90 (dd, J =
12.5, 4.8 Hz, 1H), 2.70 (d, J = 12.7 Hz, 1H), 2.19 (t, J = 7.4 Hz, 2H), 1.75-1.54 (m,
4H), 1.41 (app. quint, J = 7.5 Hz, 2H).
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BC NMR (MeOD, 100 MHz): § 176.1, 166.1, 160.2, 130.5, 121.9, 115.7, 71.6, 71.5,
71.4,71.2, 10.6, 70.4, 67.8, 63.4, 61.6, 57.0, 51.5, 41.1, 40.3, 36.7, 29.7, 29.5, 27.0,
26.8. One signal not observed/coincident.

HRMS: exact mass calculated for [MJrH]+ (C8H43NsO6S) requires m/z 591.2959,
found m/z 591.2811.

2.7.9 Products from Scheme 123
3-(1-Benzyl-1H-1,2,3-triazol-4-yl)oxazolidin-2-one (2.88).!"*

=

Prepared using General Procedure 2G. White solid (99 mg, 99%). Purification on
silica gel using hexane/EtOAc 7/3.

'H NMR (CDCl3, 400 MHz): & 7.82 (s, 1H), 7.36—7.33 (m, 3H), 7.28—7.26 (m, 2H),
5.48 (s, 2H), 4.56—4.52 (m, 2H), 4.25-4.21 (m, 2H).

C NMR (CDCls, 100 MHz): & 154.9, 144.1, 134.4, 129.2, 129.0, 128.2, 111.9,
63.4,54.9,43.7.

(1-Benzyl-1H-1,2,3-triazol-4-yl) (pyrrolidin-1-yl)methanone (2.106).

C O

N

?w
N’N

/
Bn

Prepared using General Procedure 2G. White solid (105 mg, quant). Purification on
silica gel using hexane/EtOAc 7/3.

vmax (neat): 3298, 3099, 2939, 5466, 2861, 2190, 1600, 1543, 1498, 1424, 1342,
1279, 1229, 1048 cm .

"H NMR (CDCls, 400 MHz): & 8.02 (s, 1H), 7.36—7.34 (m, 3H), 7.28—7.26 (m, 2H),
5.52 (s, 2H), 4.09 (t, J = 6.7 Hz, 2H), 3.62 (t, J = 6.9 Hz, 2H), 1.97 (app. quint, J =
7.1 Hz, 2H), 1.88 (app. quint, J = 7.1 Hz, 2H).

BC NMR (CDCls, 100 MHz): & 159.5, 145.5, 134.1, 129.3, 129.0, 128.3, 127.6,
54.3,48.7,47.0, 26.6, 23.8.
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HRMS: exact mass calculated for [MJrNa]+ (C14H6N4ONa) requires m/z 279.1216,
found m/z 279.1206.

1-Benzyl-4-(phenoxymethyl)-1H-1,2,3-triazole (2.89).1'%"]

Prepared using General Procedure 2G. White solid (106 mg, 97%). Purification on
silica gel using hexane/EtOAc 9/1.

"H NMR (CDCls, 400 MHz): & 7.52 (s, 1H), 7.37-7.35 (m, 3H), 7.29—7.25 (m, 4H),
6.97—6.95 (m, 3H), 5.52 (s, 2H), 5.18 (s, 2H).

BC NMR (CDCls, 100 MHz): & 157.7, 144.2, 134.0, 129.0, 128.7, 128.3, 127.6,
122.1, 120.8, 114.3, 61.6, 53.7.

1-Benzyl-4-(p-tolyl)-1H-1,2,3-triazole (2.90).I"*!

Me

&
N’N

/
Bn

Prepared using General Procedure 2G. White solid (94 mg, 92%). Purification on
silica gel using hexane/EtOAc 9/1.

"H NMR (CDCl;, 400 MHz): & 7.70 (s, 1H), 7.68 (s, 1H), 7.62 (s, 1H), 7.39-7.36
(m, 3H), 7.32-7.31 (m, 1H), 7.30-7.29 (m, 1H), 7.21 (s, 1H), 7.19 (s, 1H), 5.56 (s,
2H), 2.36 (s, 3H).

BC NMR (CDCl;, 100 MHz): & 148.4, 138.1, 134.9, 129.6, 129.3, 128.9, 128.2,
127.9,125.7,119.3, 54.3, 21 4.

1-Benzyl-4-propyl-1H-1,2,3-triazole (2.91).["*"]

Me
2
N

-

/
Bn

Prepared using General Procedure 2G. White solid (70 mg, 85%). Purification on

silica gel using hexane.
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"H NMR (CDCls, 400 MHz): § 7.36-7.31 (m, 3H), 7.24— 7.21 (m, 2H), 7.18 (s, 1H),
5.47 (s, 2H), 2.64 (t, J = 7.4 Hz, 2H), 1.64 (sextet, J = 7.4 Hz, 2H), 0.9 (t, J = 7.4 Hz,
3H).

13C NMR (CDCls, 100 MHz): § 148.8, 135.1, 129.1, 128.6, 128.0, 120.7, 54.0, 27.8,
22.7,13.8.

2.7.10 Products from Scheme 124
5-(1-Benzyl-1H-1,2,3-triazol-4-yl)-N-(1-((triisopropylsilyl)ethynyl)-1H-
benzo[d]imidazol-6-yl)pentanamide (2.108).
Bn
M JO R
N N N
o
TIPS
To a solution of N-(1- ((triisopropylsilyl)ethynyl)-1H-benzo[d]imidazol-6-yl)hept-6-
ynamide (50 mg, 0.119 mmol, 1 equiv) in MeOH/H,0 (1/1, 2 mL) was added benzyl
azide (15 pL, 0.119 mmol, 1 equiv), AMTC (3 mg, 0.012 mmol, 0.1 equiv),
Cu(OAc); (1 mg, 0.006 mmol, 0.05 equiv), and NaAsc (3 mg, 0.012 mmol, 0.1
equiv). The reaction was stirred at rt for 16 h, after which DCM (10 mL) was added.
The mixture was washed with ag. EDTA (10 mg/mL, 10 mL), brine (2 x 10 mL),
dried over Na,SOy, and concentrated under reduced pressure. The resulting residue
was purified by flash chromatography (silica gel, hexane/ EtOAc 3/7) to provide the
desired product as a white solid (62 mg, 98%).
vmax (neat): 3251, 2937, 2859, 2184, 1664, 1602, 1548, 1498, 1441, 1216, 909, 883,
730 cm .
"H NMR (CDCls, 400 MHz,): & 8.75 (s, 1H), 8.24 (s, 1H), 8.05 (br. s, 1H), 7.64 (br.
s, 1H), 7.35—-7.30 (m, 4H), 7.23—7.21 (m, 3H), 5.45 (s, 2H), 2.71 (t, J= 6.9 Hz, 2H),
243 (t,J=6.9 Hz, 2H), 1.79-1.70 (m, 4H), 1.14 (s, 21H).
BC NMR (CDCl;, 100 MHz): & 171.8, 136.3, 134.8, 129.2, 128.8, 128.1, 120.6,
117.0, 102.6, 73.5, 54.2, 37.1, 29.8, 28.6, 25.1, 25.0, 18.7, 11.3. Five signals not
observed/ coincident.

HRMS: exact mass calculated for [MJrNa]+ (C3,H4oN6OSiNa) requires m/z
577.3082, found m/z 577.3122.
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N-(1-(1-Cyclohexyl-1H-1,2,3-triazol-4-yl)-1 H-benzo[ d]imidazol-6-yl)hept-6-
ynamide (2.109).

N
(@]
~ S I
X
\(\%J\” N
2/\”

>

z=z

N
el
To a solution of N-(1-((triisopropylsilyl)- ethynyl)-1H-benzo[d]imidazol-6-yl)hept-6-
ynamide (50 mg, 0.12 mmol, 1 equiv) in MeCN (1 mL) was added cyclohexylazide
(15 mg, 0.12 mmol, 1 equiv), TBAF (43 uL, 0.13 mmol, 1.1 equiv), and Cu(OAc);
(1 mg, 0.006 mmol, 0.05 equiv). The reaction was stirred at rt for 16 h, after which
DCM (10 mL) was added. The mixture was washed with aq. EDTA (10 mg/mL, 10
mL), brine (2 x 10 mL), dried over Na,SO4, and concentrated under reduced
pressure. The resulting residue was purified by flash chromatography (silica gel, 7/3
EtOAc/ hexane) to provide the desired product as a white solid (45 mg, 96%).
vmax (neat): 3289, 3259, 3123, 3080, 2930, 2855, 1673, 1604, 1587, 1550, 1487,
1442, 1299, 1240, 911, 803, 730 cm .
"H NMR (CDCl;, 400 MHz,): & 8.40 (br. s, 1H), 8.34 (s, 1H), 8.08 (br. s, 1H), 7.85
(s, 1H), 7.68 (br. s, 1H), 7.07 (d, /= 5.9 Hz, 1H), 4.48 (tt, /= 11.8, 3.6 Hz, 1H), 2.41
(t,J=7.4 Hz, 2H), 2.27 (d, /= 12.4 Hz, 2H), 2.21 (dt, J= 7.2, 2.1 Hz, 2H), 1.96 (m,
3H), 1.89-1.82 (m, 4H), 1.59 (app. quint, J = 7.8 Hz, 2H), 1.52—1.41 (m, 2H), 1.32
(dt,J=12.8, 2.7 Hz, 2H).
BC NMR (CDCl;, 100 MHz): & 171.5, 141.7, 135.1, 120.7, 116.1, 112.4, 102.7,
84.1, 68.9, 61.4, 37.2, 33.5, 28.0, 25.2, 25.1, 24.8, 18.3. Three signals not
observed/coincident.
HRMS: exact mass calculated for [MJrNa]+ (Cx2H26N6ONa) requires m/z 413.2060,
found m/z 413.2049.

5-(1-Cyclohexyl-1H-1,2,3-triazol-4-yl)-N-(1-((triisopropylsilyl)-ethynyl)-1 H-
benzo[d]imidazol-6-yl)pentanamide (2.111).

c-Hex\
SHPOS
N N N
4
N
TIPS

To a solution of N-(1-((triisopropylsilyl)ethynyl)-1H-benzo[d]imidazol-6-yl)-
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hept-6-ynamide (50 mg, 0.119 mmol, 1 equiv) in MeOH/H,O (1/1, 2 mL) was added
cyclohexylazide (15 mg, 0.12 mmol, 1 equiv), AMTC (3 mg, 0.012 mmol, 0.1
equiv), Cu(OAc), (1 mg, 0.006 mmol, 0.05 equiv), and NaAsc (3 mg, 0.012 mmol,
0.1 equiv). The reaction was stirred at rt for 24 h, after which DCM (10 mL) was
added. The mixture was washed with agq. EDTA (10 mg/mL, 10 mL), brine (2 x 10
mL), dried over Na,SO4, and concentrated under reduced pressure. The resulting
residue was purified by flash chromatography (silica gel, hexane/EtOAc 3/7) to
provide the desired product as a white solid (42 mg, 63%).

vmax (neat): 3296, 3132, 3075, 2935, 2859, 2184, 1686, 1664, 1602, 1547, 1500,
1483, 1441, 1376, 1284, 1216, 1071, 998, 885, 680 cm .

"H NMR (CDCls, 400 MHz): & 8.51 (br. s, 1H), 8.20 (d, J = 1.6 Hz, 1H), 8.01
(s,1H), 7.66 (d, J = 8.7 Hz, 1H), 7.32 (dd, J = 8.6, 1.7 Hz, 1H), 7.29 (s, 1H), 4.38 (tt,
J=11.8, 3.8 Hz, 1H), 2.75 (t, J = 6.9 Hz, 2H), 2.45 (t, J = 6.7 Hz, 2H), 2.18-2.15
(m, 2H), 1.92— 1.87 (m, 2H), 1.83—-1.65 (m, 6H), 1.48—1.37 (m, 2H), 1.27-1.21 (m,
2H), 1.16—1.14 (m, 21H).

BC NMR (CDCl;, 100 MHz): & 171.8, 147.2, 143.8, 138.2, 136.2, 135.0, 120.8,
118.7, 117.0, 102.6, 90.1, 73.4, 60.1, 37.2, 33.7, 28.6, 25.3, 25.3, 25.1, 25.0, 18.8,
11.3. Nine signals not observed/coincident.

HRMS: exact mass calculated for [MJrNa]+ (C31H46N6OSiNa) requires m/z
569.3395, found m/z 569.3382.

N-(1-(1-Benzyl-1H-1,2,3-triazol-4-yl)-1H-benzo[d]imidazol-6-yl)-  hept-6-ynamide
(2.112).
300
Sy \
A
N’N
Bn/
To a solution of N-(1-((triisopropylsilyl)-ethynyl)-1H-benzo[d]imidazol-6-yl)hept-6-
ynamide (50 mg, 0.12 mmol, 1 equiv) in MeCN (1 mL) was added benzyl azide (15
puL, 0.119 mmol, 1 equiv), TBAF (43 uL, 0.13 mmol, 1.1 equiv), and Cu(OAc); (1
mg, 0.006 mmol, 0.05 equiv). The reaction was stirred at rt for 2 h, after which DCM
(10 mL) was added. The mixture was washed with ag. EDTA (10 mg/mL, 10 mL),

brine (2 x 10 mL), dried over Na;SO,, and concentrated under reduced pressure. The
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resulting residue was purified by flash chromatography (silica gel, 9/1 EtOAc/
hexane) to provide the desired product as a white solid (47 mg, 98%).

vmax (neat): 2954, 2961, 2865, 1599, 1589, 1439, 1396, 1080, 1065, 1041, 866, 775
cm .

"H NMR (CDCl;, 400 MHz): & 8.37 (br. s, 1H), 8.25 (br. s, 1H), 8.01 (br. s, 1H),
7.88 (s, 1H), 7.68 (d, J = 8.7 Hz, 1H), 7.39-7.34 (m, 5H), 7.20 (dd, J = 8.6, 1.7 Hz,
1H), 5.61 (s, 2H), 3.12-3.08 (m, 2H), 2.42 (t, J= 7.3 Hz, 2H), 2.22 (td, J = 7.2, 2.7
Hz, 2H), 1.95 (t, /= 2.5 Hz, 1H), 1.88—1.80 (m, 2H).

BC NMR (CDCls, 100 MHz): & 171.3, 135.2, 134.1, 129.4, 129.2, 128.3, 120.6,
116.2, 114.2, 102.5, 84.2, 68.8, 55.2, 37.1, 28.0, 24.7, 19.7, 18.3. Six signals not
observed/coincident.

HRMS: exact mass calculated for [MJrNa]+ (C23H22N6ONa) requires m/z 421.1747,
found m/z 421.1732.

5-(1-Benzyl-1H-1,2,3-triazol-4-yl)-N-(1-(1-cyclohexyl-1H-1,2,3-triazol-4-yl)-1H-
benzo[d]imidazol-6-yl)pentanamide (2.110).

Bn\
N
N o \
N, %
N N N
4 H
7\
N’N
/
c-Hex

Method A: To a solution of 5-(1-benzyl-1H-1,2,3-triazol-4-yl)-N-(1-
((triisopropylsilyl)ethynyl)-1 H-benzo[d]imidazol-6-yl)pentanamide (64 mg, 0.12
mmol, 1 equiv) in MeCN (1 mL) was added cyclohexylazide (15 mg, 0.12 mmol, 1
equiv), TBAF (43 pL, 0.13 mmol, 1.1 equiv) and Cu(OAc), (1 mg, 0.006 mmol, 0.05
equiv). The reaction was stirred at rt for 16 h, after which DCM (10 mL) was added.
The mixture was washed with ag. EDTA (10 mg/mL, 10 mL), brine (2 x 10 mL),
dried over Na,SO4 and concentrated under reduced pressure. The resulting residue
was purified by flash chromatography (silica gel, 9/1 EtOAc/hexane) to provide the
desired product as a white solid (61 mg, 98%).

Method B: To a solution of 5-(1-benzyl-1H-1,2,3-triazol-4-yl)-N-(1-
((triisopropylsilyl)- ethynyl)-1H-benzo[d]imidazol-6-yl)pentanamide (20 mg, 0.051
mmol, 1 equiv) in MeOH/H,0O (1/1, 2 mL) was added benzyl azide (7 uL, 0.051
mmol, 1 equiv), AMTC (1 mg, 0.0051 mmol, 0.1 equiv), Cu(OAc), (0.5 mg, 0.0026
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mmol, 0.05 equiv), and NaAsc (1 mg, 0.0026 mmol, 0.1 equiv). The reaction was
stirred at rt for 16 h, after which DCM (10 mL) was added. The mixture was washed
with aq. EDTA (10 mg/mL, 10 mL) and brine (2 x 10 mL), dried over Na,SO4, and
concentrated under reduced pressure. The resulting residue was purified by flash
chromatography (silica gel, 9/1 EtOAc/ hexane) to provide the desired product as a
white solid (25 mg, 94%).

vmax (neat): 3257, 3125, 3062, 2922, 2852, 2093, 1671, 1584, 1547, 1496, 1485,
1446, 1299, 1216, 1050, 816, 799, 729 cm .

"H NMR (CDCl;, 400 MHz,): & 8.23 (s, 1H), 8.40 (br. s, 1H), 8.38 (s, 1H), 7.92 (s,
1H), 7.68 (d, J = 7.5 Hz, 1H), 7.33—7.30 (m, 4H), 7.23— 7.20 (m, 3H), 5.45 (s, 2H),
4.47 (tt, J=11.8, 3.8 Hz, 1H), 2.69 (t, J = 6.5 Hz, 2H), 2.43 (t, /= 6.7 Hz, 2H), 2.25
(dd, J = 12.7, 2.4 Hz, 2H), 1.95-1.89 (m, 2H), 1.84 (dd, J = 12.1, 3.6 Hz, 2H),
1.79-1.70 (m, 6H), 1.47 (tt, J=12.9, 3.5 Hz, 2H).

BC NMR (CDCl;, 100 MHz): & 172.0, 135.5, 134.9, 129.2, 128.8, 128.1, 121.1,
120.6, 116.3, 112.3, 102.4, 61.3, 54.1, 37.1, 33.4, 28.6, 25.3, 26.2, 25.1, 25.0. Five
signals not observed/coincident.

HRMS: exact mass calculated for [MJrNa]+ (Cy9H33N9ONa) requires m/z 546.2700,
found m/z 546.2660.

N-(1-(1-Benzyl-1H-1,2,3-triazol-4-yl)-1 H-benzo[d]imidazol-6-yl)-5-(1-cyclohexyl-
1H-1,2,3-triazol-4-yl)pentanamide (2.113).

c—Hex\
N N
AT
\\
N N N
4 H
7N
N’N
/
Bn

Method A: To a solution of 5-(1-cyclohexyl-1H-1,2,3-triazol-4-yl)-N-(1-
((triisopropylsilyl)ethynyl)-1 H-benzo[d]imidazol-6-yl)pentanamide (30 mg, 0.06
mmol, 1 equiv) in MeCN (1 mL) was added benzyl azide (7 pL, 0.06 mmol, 1
equiv), TBAF (20 uL, 0.07 mmol, 1.1 equiv), and Cu(OAc), (0.5 mg, 0.003 mmol,
0.05 equiv). The reaction was stirred at rt for 2 h, after which DCM (10 mL) was
added. The mixture was washed with aq. EDTA (10 mg/mL, 10 mL) and brine (2 X
10 mL), dried over Na,SOy4, and concentrated under reduced pressure. The resulting

residue was purified by flash chromatography (silica gel, 9/1 EtOAc/hexane) to
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provide the desired product as a white solid (30 mg, 95%). Method B: To a solution
of N-(1-(1-benzyl-1H-1,2,3- triazol-4-yl)-1H-benzo[d]imidazol-6-yl)hept-6-ynamide
(30 mg, 0.08 mmol, 1 equiv) in MeOH/H,0 (1/1, 2 mL) was added cyclo- hexylazide
(10 mg, 0.08 mmol, 1 equiv), AMTC (1.6 mg, 0.008 mmol, 0.1 equiv), Cu(OAc)2
(0.8 mg, 0.004 mmol, 0.05 equiv), and NaAsc (3 mg, 0.008 mmol, 0.1 equiv). The
reaction was stirred at rt for 24 h, after which DCM (10 mL) was added. The mixture
was washed with aq. EDTA (10 mg/mL, 10 mL) and brine (2 x 10 mL), dried over
Na,SO4, and concentrated under reduced pressure. The resulting residue was purified
by flash chromatography (silica gel, 9/1 EtOAc/ hexane) to provide the desired
product as a yellow solid (30 mg, 71%).

vmax (neat): 3300, 2954, 2928, 2855, 1736, 1677, 1628, 1600, 1587, 1548, 1496,
1441, 1455, 1379, 1364, 1301, 1234, 864, 821, 725 cm ™.

"H NMR (CDCls;, 400 MHz,): § 8.67 (br. s, 1H), 8.10 (br. s, 1H), 7.88 (br. s, 1H),
7.41-7.38 (m, 6H), 7.23 (m, 2H), 5.65 (s, 2H), 3.24 (m, 2H), 2.48 (t,J = 5.8 Hz, 2H),
2.29-2.26 (m, 1H), 2.20-2.18 (m, 2H), 1.90-1.75 (m, 6H), 1.69-1.60 (m 4H),
1.45—1.42 (m, 2H).

BC NMR (CDCls, 100 MHz): & 129.4, 129.2, 128.3, 124.6, 31.6, 30.3, 29.8, 29.6,
28.0,25.3, 24.8, 24.5, 20.0, 13.9. Fifteen signals not observed/coincident.

HRMS: exact mass calculated for [MJrNa]+ (Cy9H33N9ONa) requires m/z 546.2700,
found m/z 546.2689.

2.7.11 Products from Scheme 125
2-((4-(p-Tolyl)-1H-1,2,3-triazol-1-yl)methyl)pyridine (2.115).1"*"

To a solution of 5,6-dimethyl-1-((triisopropylsilyl)ethynyl)-1H-benzo[d]-imidazole
(49 mg, 0.15 mmol, 1 equiv) and 1-ethynyl-4- methylbenzene (19 pL, 0.15 mmol, 1
equiv) in MeCN (0.75 mL) was added 2-(azidomethyl)pyridine (20 mg, 0.15 mmol,
1 equiv), (azidomethyl)benzene (19 pL, 0.15 mmol, 1 equiv), and Cu(OAc), (1.4 mg,
0.0075 mmol, 0.05 equiv). The reaction was stirred at rt for 5 h before being filtered

through Celite and concentrated under reduced pressure. The crude mixture was
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dissolved in MeCN (0.75 mL) before adding Cu(OAc); (1.4 mg, 0.0075 mmol, 0.05
equiv) and TBAF (1 M in THF, 22.5 uL, 0.225 mmol, 1.5 equiv). The reaction was
stirred at rt for a further 16 h, after which EtOAc (10 mL) was added. The mixture
was washed with aq. EDTA (10 mg/mL, 10 mL) and brine (2 x 10 mL), dried over
Na,;SOq4, and concentrated under reduced pressure. The resulting residue was purified
by flash chromatography (silica gel, Et;,O/MeOH/NEt; 20/1/1) to provide the desired
product as a white solid (32 mg, 85%).

"H NMR (CDCls, 500 MHz): § 8.61 (br. s, 1H), 7.89 (s, 1H), 7.72 (s, 1H), 7.71 (s,
1H), 7.68 (td, J = 7.6, 1.4 Hz, 1H), 7.26 (t, J = 5.4 Hz, 1H), 7.22 (t, /= 5.6 Hz, 3H),
5.69 (s, 2H), 2.36 (s, 3H).

BC NMR (CDCls, 100 MHz): & 154.7, 149.8, 148.5, 138.1, 137.5, 129.6, 127.8,
125.7, 123.6, 122.6, 120.0, 55.8, 21.4.
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13C NMR of S5
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13C NMR of S7
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F NMR of 7c
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!H NMR of 7d
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HRMS of 7d
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13C NMR of 7e
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HRMS of 7e

csi18 MW=3827 EPSRC National Centre Swansea Ciaran
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13C NMR of 7f
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'H NMR of 7g
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BFENMR of 7g
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!H NMR of 7h
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F NMR of 7h
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H NMR of 7i
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F NMR of 7i
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IH NMR of 7j
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HRMS of 7j
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13C NMR of 7k
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H NMR of 71
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HRMS of 71

CS98 MW=2217 EPSRC National Centre Swansea Ciaran
ASAP(SOLID) LTQ Orbitrap XL 05/11/2014 15:31:44
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13C NMR of 7m
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HRMS of 7n
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13C NMR of 70
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'H NMR of 7p
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HRMS of 7p
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BBC NMR of 7q
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IH NMR of 7r
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HRMS of 7r
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13C NMR of 7s
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H NMR of 7t
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13C NMR of 7u
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IH NMR of 7v
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HRMS of 7v
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13C NMR of 7w
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9F NMR of 8a
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HRMS of 8b
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13C NMR of 8c
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HRMS of 8¢
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13C NMR of 8d
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HRMS of 13
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13C NMR of 14a
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H NMR of 14b
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HRMS of 14b
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Chapter 2

9. !H and *C NMR Spectra
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'HNMR of 1
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'H NMR of 9

@ 60000
N

k\ 55000

50000
45000
40000
35000
30000
25000
20000
15000
10000

5000

1.00= e —
0.96—

2.051
105\
o

0.8
1.2

r-5000

5.0 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0
f1 (ppm)

BC NMR of 9

I~ 50000

—138.30

—111.38

— 105.69
74.49
58.92

45000

40000

35000

30000

25000

20000

15000

10000

5000

-5000

T T T T T T T
200 190 180 170 160 150 140 130 120 110 f %00 ) 90 80 70 60 50 40 30 20 10 0
ppm.



'H NMR of S1b
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'H NMR of S2b
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'H NMR of S3b
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'H NMR of S1
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'H NMR of S2
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'H NMR of S3
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'H NMR of $4
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'H NMR of S5
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'H NMR of S6

Me

&
N-N

S6

5.36

2.56
2.54
2.52

A
N

1.58
1.56
1.54
1.52

/
AN

i 2.00 L—

1.971

0.84
0.82
0.81

A
\

3.051

80000

75000

70000

65000

60000

55000

50000

45000

40000

35000

30000

25000

20000

15000

10000

5000

r-5000

9.0 8.5

13C NMR of S6

147.99

— 134.60

128.37

A
X

127.88

127.32

127.29

6.0

—120.40

5.5 5.0
f1 (ppm)

4.0

3.5

3.0

53.22

2.0

—27.09

—22.04

13.16

8E+05

 8E+05

7E+05

6E+05

[ 6E+05

[ 6E+05

 5E+05

4E+05

4E+05

4E+05

 3E+05

2E+05

2E+05

[ 2E+05

r1E+05

50000

-50000

T T T
200 190 180 170 160 150

140

T
130

T
120

T
100
f1 (ppm)

T
110

90

80

70

60

50

40

30



'H NMR of S9
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10. 'H NMR spectra from kinetic experiments
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