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Abstract

In this thesis mathematical, statistical and economic techniques involved in the

decision making regarding the use of a vaccine intervention and the assessment of

vaccine effectiveness are described and used. The central themes of the thesis are

pneumococcal carriage and disease and prevention of both carriage and disease

through the use of the 7-valent pneumococcal conjugate vaccine (PCV-7).

The thesis can be considered in four sections. The first section contains two math-

ematical modelling chapters in which differential equations are used to describe

pneumococcal carriage. Through the use of these models potential problems for

the long term efficacy of the vaccine are explored. These involve problems as-

sociated with increased non-vaccine type serotype carriage, or genetic concerns

regarding sequence types which may manifest as a vaccine type and a non-vaccine

type serotype.

The next section involves a review of techniques used in the economic analysis

of health care technologies. Statistical techniques are used to model trends in

pneumococcal diseases and infections in England and Wales to predict hospital

episode figures assuming no intervention. These can be compared to the true

figures following the introduction of PCV-7. This aids in the estimation of the

effectiveness of the vaccine and revised parameter estimates can be fed into cost-

effectiveness models for PCV-7.

The third section involves the analysis of routinely collected data on cases of

invasive pneumococcal disease (IPD) in Scotland, with information available re-

garding the serogroup or serotype and multi-locus sequence type (MLST) of the

bacterium responsible for the disease. Changes in trend of the serogroups or

serotypes and MLSTs responsible for disease in Scotland prior to the introduc-

tion of PCV-7 are identified as well as associations between 30 day mortality and

serogroup/type or MLST.

ii



In the final section, single-level and multi-level modelling techniques are adopted

to assess individual level and postcode district level factors affecting the uptake

of PCV-7 in Scotland.
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Chapter 1

The biology of Streptococcus

pneumoniae

1.1 Introduction

In this thesis mathematical, statistical and economic techniques involved in the

decision making regarding the use of a vaccine intervention and the vaccine ef-

fectiveness are described and used. In this chapter the biological background to

the thesis will be discussed.

1.2 The bacterium

Streptococcus pneumoniae (S. pneumoniae), or pneumococcus, is a bacterium (a

single celled microorganism), that was discovered in 1880 simultaneously, but

independently, by the American physician George Miller Sternberg (Sternberg

1881) and the French chemist Louis Pasteur (Pasteur 1881). Since the discovery

of this bacterium, over 90 different pneumococcal serotypes within 46 serogroups

have been identified (Henrichsen 1995), with the most recent discovery of the 91st

serotype, 6C, in 2007 (Park et al. 2007).

Serotypes are defined according to the structure of the polysaccharide capsule

which encases the bacterium. This polysaccharide capsule protects the bac-

terium from the immune system, enabling it to cause infection and disease. Thus,
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the serotype is a known virulence factor, with the level of virulence varying by

serotype (Lindberg 1999). However, it is clear that other genetic factors must

be important in the ability of the bacterium to cause disease (Hollingshead and

Briles 2001).

Certain serotypes have similar antigens to one another and so are classified to-

gether in a serogroup. For example, serotypes 9A, 9L, 9N and 9V are all antigeni-

cally related and are all from serogroup 9. Certain serotypes are not related to

any others and these serotypes are classified by number alone, with no associated

letter (Kalin 1998).

S. pneumoniae may also be categorised by multi-locus sequence type (MLST).

Pneumococcal sequence types are defined according to 7 house-keeping genes

identified within the pneumococcal genetic material (Enright and Spratt 1998).

These particular genes are used to determine the sequence type as they are not

under a great deal of selective pressure and so remain relatively constant over

time. There are hundreds of different pneumococcal MLSTs and it has been

observed that some MLSTs are able to manifest in more than one serotype.

1.3 Serotypes and MLSTs

The relationship between pneumococcal serotypes and MLSTs is difficult to define

as no direct correlation has been established. However, certain MLSTs have been

shown to be more associated with particular serotypes than others. For example,

it has been observed that MLST 9 commonly appears associated with serotype

14 (Brueggemann et al. 2003; Jefferies et al. 2004). Studies of S. pneumoniae

primarily concentrate on the serotypes and the MLSTs are not often recorded

so it is difficult to establish the importance of MLSTs in the disease potential of

the bacterium. However, in recent years studies have been carried out to identify

MLSTs common in invasive disease in an attempt to understand the relationship

between serotypes and MLSTs.

A study of 501 pneumococcal isolates (150 from invasive disease isolates collected

between 1995 and 2003, and 351 from various carriage studies between 1999 and

2



2001) from children under the age of five years in Oxford was carried out to

determine whether it is the serotype or the MLST that is the important factor

for the development of invasive pneumococcal disease (IPD) (Brueggemann et al.

2003). In this paper, it is stated that if serotypes are the only important factor

in determining whether or not IPD will occur then a pneumococcal isolate of

one serotype associated with a certain MLST should have the same ability to

cause invasive disease as an isolate of the same serotype but different MLST. For

example, if MLSTs play no part in determining whether or not invasive disease

shall occur then a serotype 14 isolate should have the same potential to cause

invasive disease regardless of whether or not the isolate is associated with MLST

9 or MLST 124. In this paper, it is concluded that there is in fact a correlation

between pneumococcal MLSTs and serotypes, with the most invasive sequence

types corresponding to the most invasive serotypes.

A study of 368 pneumococcal isolates recovered from invasive disease in Scot-

land also showed a strong correlation between MLSTs and serotypes involved in

invasive disease (Clarke et al. 2004). In addition, an American study has also

demonstrated a correlation between MLSTs and serotypes involved in IPD (Beall

et al. 2006).

1.4 Pneumococcal carriage

S. pneumoniae may be carried asymptomatically in the nasopharynxes of both

children and adults, with up to 30% of adults and 60% of children becoming

colonised with no adverse effects (Ghaffar et al. 1999). Asymptomatic carriage

is most common among very young children, with studies showing high carriage

rates in children under the age of two years (Bogaert et al. 2006). Other stud-

ies demonstrate the relationship between carriage and age during the early years

of life, with asymptomatic colonisation shown to be anywhere between approxi-

mately 10% during the early weeks following birth to around 100% by the end of

the first year of life (Spratt et al. 2004).

Pneumococcal carriage studies have shown that the duration of carriage is also
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associated with age, with the length of time the pneumococcus colonises an in-

dividual decreasing with increasing age. In one study, it was estimated that the

average duration of carriage was 51 days for children and only 19 days for adults

(Melegaro et al. 2004).

Multiple carriage of serotypes has been documented but appears rare, with a

longitudinal carriage study of pneumococcus in 82 children showing carriage of

2 serotypes in 4% of the isolates examined and 3 serotypes in 0.3% (Gray et al.

1980). It has been suggested from other studies that the incidence of multiple

colonisation could be up to about 10% (Crook et al. 2004).

Pneumococcal strains may be passed from person to person through direct contact

or via airborne respiratory droplets, such as those from coughs and sneezes. As

children are the primary carriers of S. pneumoniae, this group is deemed to be

the predominant cause of the transmission of pneumococci within the population

(Leiberman et al. 1999). Pneumococcal carriage rates and transmission within

a community are dependent upon several factors such as frequent close contact

with other individuals, particularly young children in environments such as child

care centres, and high incidence of viral respiratory tract infections (Dagan et al.

2002).

Differences in pneumococcal carriage have been observed between the developed

and developing countries. Within developing countries, studies have shown high

carriage rates of two or three times the rates observed in developed countries,

with pneumococcal colonisation occurring at an earlier age (Obaro and Adegbola

2002). However, as with developed countries, it has been observed that develop-

ing countries display reductions in carriage rates with increasing age (Lloyd-Evans

et al. 1996). These reductions both in developed and developing countries may

be due to decreased exposure to pneumococci as close contact with many indi-

viduals is a risk factor for carriage and this occurs particularly at a young age.

Alternatively, this could be attributable to increased resistance of the immune

response to the predominant pneumococcal strains with increasing age (Obaro

and Adegbola 2002).

4



1.5 Pneumococcal disease and infection

Pneumococcus can cause a variety of infections such as otitis media (OM), an ear

infection common in infants, sinusitis, and pneumonia. It is the most common

cause of serious pneumonia (NHS Scotland 2003). In addition, various invasive

diseases may be caused by S. pneumoniae such as meningitis and septicaemia.

Pneumococcal disease occurs when the bacterium is carried to a normally sterile

air space in the body such as the lungs, sinuses or middle ear. Disease is always

preceded by nasopharyngeal colonisation (Gray et al. 1980).

Worldwide, there are approximately one and a half million deaths per year which

are attributable to pneumococcal disease, with an estimated 700,000 to one mil-

lion in children under the age of five years (World Health Organization 2007). For

developed countries such as the United States of America (USA) and Europe, the

observed incidence of IPD amongst young children is between 8 and 75 cases per

100,000 population each year whilst in developing countries the range in incidence

is from 100 to over 500 cases per 100,000 which clearly shows the difference in

disease burden between these groups of countries (Brueggemann et al. 2004).

It has been observed that, although over 90 types exist, the majority of pneumo-

coccal disease is attributable to only around 20 or 30 types (George and Melegaro

2001). Approximately two thirds of adult pneumococcal disease and 80% of dis-

ease in children is attributable to between 8 and 10 serotypes (Salisbury et al.

2006).

It is known that pneumococcal disease and infection must follow colonisation but

it is important to assess the relationship between the bacterial types commonly

found in carriage studies and those primarily found in disease. This relationship

was assessed in a meta-analysis carried out by Brueggemann et al. (2004). In

this analysis, it was discovered that those serogroups or serotypes most commonly

carried were the least likely types to cause IPD whilst those carried less often were

identified more commonly in disease. It has been stated that the serotypes 1, 3,

4 and 5 are identified in IPD but are not commonly found in asymptomatic

colonisation of children (Dagan et al. 2002). Furthermore, Dagan et al. state

that in developed countries serotypes 1, 4 and 5 are more common in disease in
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adults whilst studies in developing countries have shown serotype 1 in particular

to feature prominently in disease (Saha et al. 2009; Williams et al. 2009). In

contrast to the statement made by Dagan et al., a recent study of IPD in Germany

showed serotype 1 to be amongst the most common disease causing serotypes in

children (Imöhl et al. 2009).

1.6 Prevention and treatment

For many years antibiotics were used to treat pneumococcal infections and dis-

ease. However, this led to an increase in antibiotic resistant pneumococcal

strains, with great resistance shown to develop in the USA primarily in the 1990s

(Brueggemann and Doern 2000). In an effort to prevent the occurrence of pneu-

mococcal disease and infection, pneumococcal conjugate vaccines (PCVs) were

developed, with serotypes included in these vaccines, or vaccine related serotypes,

identified as those most commonly associated with resistance (Finkelstein et al.

2003; Dagan et al. 2003).

Pneumococcal vaccines have been in use for the last thirty years. In 1977, a

14-valent pneumococcal polysaccharide vaccine (PPV) was licensed for use in the

USA and in 1979 in the United Kingdom (UK). This vaccine was replaced in

the USA in 1983, and in the UK in 1989, by the 23-valent polysaccharide vaccine

(PneumovaxTMII, PPV-23), produced by Merck Research Laboratories, USA, and

this vaccine is still currently administered in both the USA and the UK, and in

other countries throughout the world.

1.6.1 23-valent polysaccharide vaccine

PPV-23 was initially administered to anyone over 50 years of age believed to

be at an increased risk of developing pneumococcal disease, such as those with

an immune deficiency. The license was altered in 1984 in the USA (Immuniza-

tion Practices Advisory Committee 1984), and introduced routinely in 2003 in

the UK, to include any adult over the age of 65 years (Salisbury et al. 2006),

regardless of the risk posed to them by pneumococcal disease. However, the in-

troduction of PPV-23 was staggered in England with all individuals aged over
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80 years administered the vaccine in August 2003; those aged 75 years and over

administered the vaccine in April 2004 and those aged over 65 years who had not

been vaccinated given the vaccine in April 2005. Routine immunisation for over

65 year old individuals in England commenced in 2006/07 (NHS Scotland 2003).

PPV-23 consists of purified capsular polysaccharide antigens from 23 different

pneumococcal serotypes (1, 2, 3, 4, 5, 6B, 7F, 8, 9N, 9V, 10A, 11A, 12F, 14,

15B, 17F, 18C, 19F, 19A, 20, 22F, 23F and 33F) which cause over 90% of the

pneumococcal disease cases in the UK (George and Melegaro 2001). Early studies

suggested PPV-23 has between 50 and 70% efficacy in preventing IPD due to the

23 serotypes contained in the vaccine (Fedson 1999). Recent studies have shown

the vaccine to provide no protection against pneumonia (Huss et al. 2009), or

pneumococcal pneumonia without septicaemia (Jackson et al. 2003).

In the UK, PPV-23 is recommended for one dose per lifetime for healthy elderly

individuals. However, repeated doses may be offered in five year intervals to those

whose antibody levels decline more quickly (NHS Scotland 2003). In addition to

routine immunisation of the elderly, PPV-23 may be administered to anyone over

the age of 2 years at an increased risk of developing pneumococcal disease and

infection. However, PPV-23 cannot be administered to children under the age of

2 years as this age group do not have a good antibody response to polysaccharide

vaccinations (Riley et al. 1981).

1.6.2 7-valent pneumococcal conjugate vaccine

In 2000, the 7-valent pneumococcal conjugate vaccine (Prevnar/PrevenarTM,

PCV-7), produced by Wyeth, was licensed for use in the USA to prevent pneu-

mococcal disease in infants (Immunization Practices Advisory Committee 2000).

The vaccine consists of the purified polysaccharide capsular antigens of 7 pneu-

mococcal serotypes (4, 6B, 9V, 14, 18C, 19F and 23F) conjugated to a protein. It

is due to the fact that the purified capsular antigens are conjugated to a protein

that the vaccine is effective in preventing disease for those under 2 years of age.

PCV-7 was licensed in Europe in 2001. Amongst the 27 European Union coun-

tries and other European countries, Croatia, Iceland, Norway, Switzerland and
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Turkey, 24 had adopted, or decided to adopt, PCV-7 in their routine childhood

immunisation schedule by the beginning of 2009. Of these 24, 12 introduced the

vaccine in a schedule consisting of three primary doses and one booster dose, as

used in the USA; 11 introduced a schedule of two primary doses followed by a

booster dose; Switzerland adopted both of these schedules, with three primary

doses administered to children at an increased risk of infection or disease and

two primary doses administered to all other children (De Carvalho Gomes et al.

2009). Recent reports have stated that PCV-7 is available in over 90 different

countries worldwide (Wyeth Pharmaceuticals 2009a). In addition to Europe and

the USA, these include Australia, South America and Canada in three or four

dose schedules (Beutels et al. 2007).

PCV-7 was introduced in the UK in 2002 for those children under 2 years of age

most at risk of developing pneumococcal disease and in 2004 this was extended

to all at-risk children under the age of 5 years. In 2006, PCV-7 was introduced to

the routine childhood immunisation schedule in the UK (Salisbury et al. 2006).

Early studies following the introduction of PCV-7 to the routine immunisation

schedule showed over 90% effectiveness in preventing IPD attributed to the 7

serotypes included in the vaccine in healthy children (Whitney et al. 2006).

1.6.3 Developments in conjugate vaccination formulations

Recently new formulations of PCV have been licensed. A 10-valent pneumococ-

cal vaccine, SynflorixTM, produced by GlaxoSmithKline was licensed in Europe in

2009 (GlaxoSmithKline 2009). This vaccine includes purified polysaccharide cap-

sules of the seven serotypes found in PCV-7 in addition to that of the serotypes

1, 5 and 7F (Knuf et al. 2008). These three serotypes are very invasive and

becoming increasingly common (Brueggemann and Spratt 2003; Ihekweazu et al.

2008; Munõz-Almagro et al. 2008). Thus, it is believed that this vaccine could

potentially have a greater impact on the burden of IPD than PCV-7.

In addition, a 13-valent vaccine, Prevenar 13TM, developed by Wyeth has recently

been approved by the Chilean Ministry of Health, the first government agency

to approve the vaccine, and will be administered in four doses in the infant
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immunisation schedule in Chile, with primary doses at 2, 4 and 6 months and a

fourth dose administered between the ages of 12 and 15 months. This vaccine

should provide protection against the 10 serotypes found in SynflorixTMas well as

serotypes 3, 6A and 19A and builds on the formulation of PCV-7. The vaccine is

also currently undergoing trials for use in adults (Wyeth Pharmaceuticals 2009b)

1.6.4 Benefits of conjugate vaccination

The main advantage of the PCVs over the PPV, other than the fact that they

are effective in preventing disease in one of the key risk groups, young children,

is that conjugate vaccines have been shown to not only prevent invasive disease

due to the serotypes included in the vaccine but also prevent carriage of these

serotypes (Dagan et al. 1996; Dagan et al. 2002) and in the USA, approximately

80% of all carried serotypes are vaccine type (VT) serotypes (Butler et al. 1995).

In preventing carriage, PCV-7 allows for the possibility of herd immunity to occur

in the population.

Herd immunity occurs when the immunisation of selected individuals in a com-

munity elicits protection to the whole community. As mentioned previously, chil-

dren under the age of 2 years commonly carry S. pneumoniae asymptomatically.

Therefore, it is believed that, since the conjugate vaccine reduces the carriage

of the 7 VT serotypes in children less than 2 years of age, the overall carriage

of these serotypes will reduce. This is due to the fact that vaccination of this

group will prevent the transmission of these serotypes to adults in the vaccinated

population thus preventing VT pneumococcal disease in adults. Herd immunity

effects were observed in the USA following the introduction of PCV-7, with re-

ductions of between 8 and 32% observed in the incidence of IPD in unvaccinated

age groups (Whitney et al. 2003). It is still too early to determine whether or

not the UK will experience the same herd immunity impact.

9



1.7 Concerns about long term vaccine efficacy

There are potential problems associated with the use of pneumococcal vaccines

that may prevent them from having long term efficacy. These problems are at-

tributed to the fact that only a limited number of the total number of pneumococ-

cal serotypes in existence may be contained in a vaccine. In Brueggemann et al.

(2004) it is stated that the selection of serotypes for the vaccine was determined

by assessing the ranking of the IPD serotypes. However, Brueggemann et al. re-

late their concerns about this method of selection by stating that the prevalence

of a serotype in disease may not truly reflect the invasiveness of that serotype,

with serotypes ranking highly in IPD perhaps only reflecting the fact that these

serotypes are very common in colonisation in the population and occasionally

cause disease, rather than the fact that they are the most invasive serotypes.

This is of concern if truly invasive serotypes begin to thrive and become more

prevalent following the introduction of conjugate vaccines.

1.7.1 Serotype replacement

A key problem which may impact upon the effectiveness of conjugate vaccines is

that of serotype replacement, where non-vaccine type (NVT) serotypes replace

the niche previously filled by the VT serotypes (Lipsitch 1999). Serotype replace-

ment can occur in two possible ways; there could be an increase in the number of

serotypes that had already been present in the population prior to the introduc-

tion of the vaccine, or serotypes that were previously absent from the population

prior to vaccination as they were unable to compete with VT serotypes may be-

gin to appear once the VT serotypes are eliminated from carriage (Spratt and

Greenwood 2000). This is a problem for long term vaccine efficacy as it may lead

to an increase in NVT invasive disease and infection.

Serotype replacement has been observed following routine implementation of

PCV-7. Following the introduction of PCV-7 in Alaska, high vaccine uptake

rates resulted in elimination of almost all IPD caused by PCV-7 serotypes. How-

ever, serotype replacement was observed to occur, with increases in serotype 19A
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reported (Singleton et al. 2007). Increases in serotype 19A IPD have been ob-

served following PCV-7 use in other states of the USA (Beall et al. 2006). In

addition, reports have shown the appearance of serotypes 1, 3, 5, 6A and 7 in IPD

following vaccine use, most of which are included in the recently developed con-

jugate vaccines (Albrich et al. 2007). Other reports have documented increases

in serogroups 15 and 33 following PCV-7 use (Gonzalez et al. 2006; Kaplan et al.

2004; Schutze et al. 2004).

1.7.2 Capsular switching

Another potential problem that may arise due to the use of PCVs is that capsular

switching may occur. Capsular switching is where an organism that is expressing

one particular serotype is able to express another serotype through large recom-

binational exchanges with a different donor serotype (Coffey et al. 1998). It is

likely that in order for capsular switch to take place, an individual must become

dually colonised with two different pneumococcal serotypes (Brugger et al. 2009).

Brugger et al. state that not enough is known about co-colonisation and its effect

on disease due to the inability of current techniques for typing isolates to identify

more than one type, and often only the most abundant type within a sample will

be identified.

It is believed that the expansion of 19A disease following the introduction of

PCV-7, mentioned previously, may in fact be partly attributable to a capsular

switch event (Brueggemann et al. 2007). In this article by Brueggemann et al., it

is stated that the 19A strains identified in disease following vaccine use were found

with a MLST that was previously identified as only associated with serotype 4

which is found in PCV-7.

1.8 Thesis outline

The central theme of this thesis is PCV-7, with emphasis on its potential long

term effectiveness. Mathematical, statistical and economic techniques involved

in the development and assessment of pneumococcal vaccines will be explored.
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The first component of the thesis explores the long term effect of a vaccine which

prevents carriage of a pneumococcal serotype. This part addresses the issue,

described previously, of MLSTs which are able to manifest as more than one

serotype, where one is included in a vaccine and the other not, and uses deter-

ministic modelling to determine the impact of vaccine use. It is important to con-

sider MLSTs in assessing the impact of vaccination as capsular switch events have

been documented where pneumococcal MLSTs are able, through genetic trans-

formation, to manifest as a different serotype. Thus, if the MLST is important in

determining the disease potential of the bacterium and MLSTs found associated

with VT serotypes become more commonly associated with NVT serotypes this

may reduce the efficacy of the vaccine over time.

As well as assessment of the effectiveness of a pneumococcal vaccine in preventing

disease and infection, it is important to assess the cost of introducing such an

intervention to the childhood immunisation schedule. The next section of work,

Chapters 4 and 5, was carried out in collaboration with the health economic

team at the UK branch of Wyeth pharmaceuticals and begins with a general

introduction to the economic analysis of a health care intervention, with emphasis

on the use of economic analyses in the assessment of PCV-7. This is followed by

an analysis of trends in hospital episodes of IPD in England and Wales prior to

the introduction of PCV-7. Through the comparison of the predicted numbers

of hospital episodes obtained using these models, which assume no intervention,

to the true number of episodes following the introduction of PCV-7, updated

figures on the efficacy of the vaccine may be used in the existing model for the

assessment of the cost-effectiveness of PCV-7.

The development of PCV-7 was based upon the prevalence of serotypes involved

in disease. Therefore, it is important to continually monitor the serotypes found

in IPD. PCV-7 was not introduced in the UK until 2006 but the formulation

of the vaccine was decided upon prior to 2000. In Chapters 6 and 7 of the

thesis, the serotypes found in IPD in Scotland prior to the introduction of PCV-7

are examined. Chapter 6 focusses on assessing trends in the serotypes found in

disease to determine whether or not any serotypes are becoming more prevalent

in IPD. In Chapter 7, associations between serotypes causing IPD and 30 day
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mortality are examined to determine whether or not disease from certain serotypes

is linked to an increased risk of fatality. Analyses such as these are important in

determining the impact of vaccines in preventing disease and in the creation of

future interventions.

A vaccine will only provide protection to a community through herd immunity

should high levels of uptake occur. Thus, it is crucial to identify population char-

acteristics which may prevent the receipt of vaccination, or which will cause the

vaccine to be administered later than scheduled. The final chapter of analysis in

the thesis looks at the routine uptake of PCV-7 in Scotland. Individual and area

level variables are used to describe the uptake and timing of the vaccine in uni-

variate and multivariate response models to identify key factors which determine

whether or not a child will receive the vaccine on time or at all.
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Chapter 2

Modelling pneumococcal carriage

in children

2.1 Introduction

In this chapter, the theory behind the mathematical modelling of infectious dis-

eases will be discussed and existing mathematical models of the carriage and

transmission of S. pneumoniae will be communicated. Following this, ordinary

differential equation models of pneumococcal carriage in children of age to re-

ceive PCV-7 routinely will be considered. These models explore the relationship

between pneumococcal serotypes and MLSTs. The results for three different

mathematical models of MLST carriage will be presented. The model discussed

in this chapter addresses the carriage of only one MLST whilst the two subse-

quent models related in Chapter 3 will consider carriage of one or other of two

MLSTs.

2.2 Mathematical modelling of infectious dis-

eases

Mathematical modelling of infectious diseases began in 1760 when Daniel Bernoulli

developed epidemic models to determine whether inoculation of healthy individ-

uals with smallpox was an effective means of preventing the spread of the disease

(Bernoulli 1760). Bernoulli was the first to represent the proportion of healthy
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individuals that are susceptible to an infectious disease in terms of the force of

infection and life expectancy (Dietz and Heesterbeek 2000).

Deterministic epidemic modelling began to be commonly used in the 20th cen-

tury, with mathematicians such as Ross, Kermack and McKendrick contributing

significantly to this field. Prior to the 20th century, a fundamental result was

determined by Hamer who established that the progression of an epidemic is de-

pendent upon the number of susceptible individuals in a population and the rate

at which infectious individuals and susceptible individuals come into contact with

one another (Hamer 1906). Early in the 20th century, Ross developed a basic

deterministic epidemic model in which differential equations are used to describe

changes in the number of susceptible and infectious hosts, as well as the total

number of hosts in the population, over time (Ross 1916). Deterministic models

provide reasonable approximations to the changes in the number of susceptible

and infectious hosts over time when the numbers of both types of host are large.

This basic model may be simply extended to consider other features of the disease

under study.

2.2.1 Kermack and McKendrick model

In 1927, Kermack and McKendrick extended the basic model of Ross to attempt

to represent the changes in the number of infected individuals observed in epi-

demics such as the plague and cholera (Kermack and McKendrick 1927). The

Kermack and McKendrick model retains the basic structure of the model by Ross,

with non-linear ordinary differential equations used to describe the rate of change

of the number of susceptible (S) and infectious (I) hosts. However, a third class

of host is considered in this model for recovered hosts (R). Recovered hosts are

those individuals who recovered from the infection and developed an immunity

and thus do not return to the susceptible class. The non-linear equations that

correspond to this model may be described as follows:

dS

dt
= −βSI,
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dI

dt
= βSI − γI,

and

dR

dt
= γI.

In the model notation, β is the rate of infection and γ is the recovery rate. This

model describes the changes in a closed population over time, as no births or

deaths are considered (Mollison 1995). The Kermack and McKendrick model

assumes that there is an instantaneous incubation period for the infection and

that the population is homogeneously mixed.

2.2.2 Threshold theorem

The key result in determining what happens to the number of susceptible and

infectious hosts in the population over time is the Threshold Theorem. This

theorem states that an epidemic cannot occur on introduction of a small number

of infectious hosts to a population if the number of susceptible hosts is beneath

some critical value. However, if the number of susceptible hosts is above this

particular value then an epidemic will take place. This epidemic would reduce

the number of susceptible hosts to a level as far beneath the critical value as the

number of susceptible hosts originally was above this value (Bailey 1957). The

rate at which susceptible hosts become infectious hosts (βSI) must be greater

than the rate at which infectious hosts recover from the infection (γI).

2.2.3 Basic reproductive number

An important quantity to consider in Susceptible-Infectious (SI) models or

Susceptible-Infectious-Recovered (SIR) models is the basic reproductive number,

R0. The basic reproductive number is “the average number of secondary cases

produced by a ‘typical’ infected (assumed infectious) individual during his/her

entire life as infectious (infectious period) when introduced in a population of

susceptibles” (Diekmann and Heesterbeek 2000). The basic reproductive number
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is often considered as a threshold value that may be used to determine when

an infection is able to persist in a population. In most deterministic epidemic

models, an infection will only persist in a completely susceptible population if

and only if the basic reproductive number is greater than 1 (Hethcote 2000).

2.3 Modelling of S. pneumoniae

In this section existing models of pneumococcal carriage and disease will be de-

scribed. In total, twelve models will be discussed. The key features of these

models will be described and the main conclusions and limitations will be con-

veyed. The review is structured in three sections. The first section looks at

models which feature specific serotypes involved in colonisation, such as VT or

NVT serotypes. The second section focusses on models which have been created

to explore the problem of antibiotic resistance. The final section looks at the

problem of capsular switch.

An overview of the main themes of the models under consideration is shown

in Table 2.1. A distinction is made between those mathematical models which

involve an analytical approach, those which involve a numerical approach and

those which involve some type of probabilistic simulation or parameter estimation.

An approach is defined as analytical if the authors have adopted analytical math-

ematical techniques, in which no parameter estimation is required, to obtain the

general properties of a system of equations, such as the basic reproductive num-

ber, the equilibrium solutions and stability analyses. This is the approach adopted

in the models created and developed in this chapter and the subsequent chapter.

A numerical approach may provide a more realistic impression of what is occurring

in a population as parameter estimates for the system under consideration are

input into a mathematical model in an attempt to determine what happens to

the population sizes over time. The drawback to this type of approach is that it

is difficult to establish whether or not all possible solutions have been obtained

as the solutions are only applicable to the particular parameter estimates used.

As with the numerical approach, simulations may be used as an alternative, or in
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addition, to analytical solutions to establish what happens to the different classes

of host over time. Often when it is not possible to obtain analytical solutions to

complex mathematical systems simulations are used to obtain modelling results,

again once suitable parameter estimates have been identified.

Both the numerical and simulation approach rely on parameter estimates to ob-

tain solutions. Thus, the solutions are only as reliable as the specific choices of

parameter value used in these models, highlighting the importance of obtaining

reliable, informative data. Other publications considered in this review involve

the use of statistical methods to obtain parameter estimates to use in the math-

ematical modelling.

2.3.1 Serotype colonisation

A key deterministic model of the carriage of S. pneumoniae, and the earliest pub-

lished pneumococcal model described here, often referred to by others studying

pneumococcal carriage and transmission, is the model created by Marc Lipsitch,

shown in Figure 2.1. The Lipsitch model considers a conjugate vaccine which

can prevent carriage, either full or partial, of the VT pneumococcal serotypes

and focusses on the possibility of resulting serotype replacement in carriage, as

discussed in the introductory chapter of this thesis.

In the two serotype model shown in Figure 2.1, X is used to represent hosts

susceptible to pneumococcal carriage, Y1 and Y2 are those hosts carrying either

serotype 1 or serotype 2 and Y12 represents coexistence of these two serotypes

within a host. In this model, and subsequent models discussed in this chapter,

serotypes 1 and 2 do not refer specifically to the actual serotypes ‘1’ and ‘2’ in

existence in the population. Instead, the values 1 and 2 are used as identifiers

for any serotype in the population, where 1 is assumed to be present in a vaccine

which will completely prevent carriage of this type and the vaccine may or may

not elicit protection against 2. f is the fraction of hosts who enter the susceptible

vaccinated class rather than the susceptible unvaccinated class.

Lipsitch considers three scenarios in the modelling discussed in this paper. The

first is that the vaccine completely prevents carriage of serotype 2, the second is
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Figure 2.1: Model of carriage of two pneumococcal serotypes, vaccine completely
effective against only one serotype (adapted from Lipsitch 1997).

that the vaccine partially prevents carriage of serotype 2 and, finally, the third

is that the vaccine does not prevent carriage of serotype 2 at all. Vaccinated

individuals are class V in the model and those vaccinated hosts carrying serotype

2 are class W . L is used to represent the constant rate at which susceptible hosts

enter the population and u represents the per capita rate at which hosts leave the

population. The total rate at which individuals leave a class is u multiplied by

the number of individuals in that class. γ is the per capita rate at which hosts

independently leave a carrying class to return to a susceptible class once again.

The transitions between one class to another occur according to mass action

processes, β1(Y1 + Y12)X and β2(Y2 + Y12 +W )X for unvaccinated hosts starting

to carry serotypes 1 and 2 respectively; kβ2(Y2 + Y12 +W )V for vaccinated hosts

acquiring serotype 2. It is assumed that susceptible vaccinated hosts may go on

to carry serotype 2 at a different rate to those susceptible unvaccinated hosts. In

this model, 1 − k is the fractional decrease in the rate at which a host will go

on to carry serotype 2 if the host originated in the susceptible vaccinated class

rather than the unvaccinated class. If k = 1 in the model, the assumption is that
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the vaccine offers complete prevention of carriage of serotype 1 but no prevention

of serotype 2 carriage.

Lipsitch assumes that once a serotype is acquired it is more difficult to acquire

a second serotype to progress to the dual colonised class, Y12, than it is for a

susceptible individual to acquire this other serotype. Thus, the parameters c1

and c2, both assumed to take values between 0 and 1, are entered in the model.

These parameters account for the relative risk of the acquisition of a second

serotype and may differ according to which serotype is first carried. Hosts are

assumed to be unable to progress straight from the susceptible unvaccinated class

to the dual carriage class. If c1 = c2 = 0, it is not possible for the two serotypes

to coexist in the same host.

Lipsitch’s main conclusion from this analysis is that if the vaccine specifically

targets only one of the two serotypes in the population then the reduction in car-

riage of the VT serotype will result in an increase in carriage of the NVT serotype.

However, it is surmised that the increase in carriage of the NVT serotype will be

smaller than the size of the reduction of VT carriage. Thus, in this scenario, the

vaccine will still ultimately be beneficial as overall carriage will be reduced. Un-

fortunately, this result is limited to the two serotype model. In situations where

two or more serotypes are considered in the population and only one is a VT

serotype, one of the NVTs may be able to replace carriage of the VT serotype.

In later work, not exclusively specific to S. pneumoniae, Lipsitch et al. revisit

the issue of coexistence of serotypes in a population (Lipsitch et al. 2009). This

paper stresses the importance of correctly modelling the possibility of a host

being able to become simultaneously invaded with more than one strain, taking

into account difficulties in obtaining a second strain if already colonised and

considering acquired immunity of particular strains. Lipsitch et al. stress that

models often involve the possibility of coexistence of strains without assumptions

regarding the likelihood of such a situation arising being made clear. Coexistence

often arises in such models due to the model structure rather than because any

clear insight has been made about how coexistence should occur. In this paper,

Lipsitch et al. present the notion of a neutral null model which requires two
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criteria to be met in order to allow strain coexistence of two identical strains.

For the first of these, referred to as “ecological neutrality”, Lipsitch et al. state

that the number of individuals in each class (the susceptible class and the classes

carrying zero, one or more strains) should not depend on the particular strain

type but should be dependent upon the state variables in the system, assuming

that the strains are indistinguishable. The second condition, “population genetic

neutrality”, refers to the population equilibria in such a system of equations. This

criteria alludes to the fact that no stable equilibria for the infective strain types

should be possible in a model of this sort. Instead, it should be possible through

the choice of initial conditions in the model to ensure that the prevalence of the

strains is fixed constant for time t > 0.

In exploring the two requirements for a neutral null model, Lipsitch et al. con-

clude that the two serotype model considered in Lipsitch’s 1997 paper does not

meet these criteria. Not only can the model not be expressed independently of the

type of serotype considered but the model also has an equilibrium solution when

the two serotypes are assumed to be indistinguishable. In the 1997 model, Lip-

sitch considers only the possibility that hosts who have acquired one serotype can

either cease to carry that serotype or go on to carry a second, different serotype.

The possibility that an individual could be dually colonised with the same bac-

terium type is not considered. By approaching the modelling in this way, Lipsitch

admits that one serotype will aid the prevalence of the other serotype in the pop-

ulation. This is due to the fact that for a set frequency of carriage of one of the

serotypes, both serotypes will be able to become more commonly transmitted as

the proportion of individuals carrying the other serotype increases. Thus, this

model allows for the possibility of coexistence through the structure alone, rather

than by consideration of the mechanism required for coexistence to occur in the

population.

Lipsitch et al. adapt the two serotype model created in 1997 to obtain a model

which will meet the criteria. This new model is shown in Figure 2.2. It can be

noted that, unlike the 1997 Lipsitch model, hosts colonised with both serotypes 1

and 2 can return directly to the susceptible class without the necessity of losing

one of the serotypes first. In this model, λ1 = β1(Y1+qY12) and λ2 = β2(Y2+qY12).
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Figure 2.2: Altered model of carriage of two pneumococcal serotypes to account
for coexistence criteria (adapted from Lipsitch et al. 2009).

q in the 1997 model was equal to 1 meaning those individuals carrying both

serotypes are equally able to transmit these serotypes to others in the population

as those carrying each of them individually. This model assumes that hosts that

have acquired serotype 1 can go on to carry serotype 2 simultaneously at a rate

λ1k1. Similarly, for those who first acquire serotype 2, the rate is λ2k2. This new

model also addresses competing serotypes with the possibility that those in the

Y12 class may return to a class where only one serotype is carried due to contact

with this serotype. For example, if a host carrying serotypes 1 and 2 comes into

contact with serotype 1 then this serotype could potentially eradicate the carriage

of serotype 2, returning the host to a state of only serotype 1 carriage. This is

assumed to take place at a rate c times as large as the rate of secondary carriage

for a host who is only colonised by one of the bacterial types. In this attempt to

obtain a neutral null model for the 1997 two serotype model, Lipsitch et al. state

that the new model still does not eliminate the problem of expressing the model

in terms of different serotypes. However, if c = q = 1
2
, the model will meet the

necessary requirements.
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In concluding discussions of the 1997 model in the 2009 paper, Lipsitch et al.

state that this model is still valid for consideration as it is known that coexis-

tence of serotypes occurs within individuals in the population. Thus, coexistence

would inevitably have had to be built into a model. In addition, the model was

created to observe what may happen in the population should only one of the

serotypes be targeted by an intervention so the serotypes are not assumed to be

indistinguishable.

Sutton et al. expand upon the ideas of the 1997 Lipsitch model to consider

not only those colonised by S. pneumoniae but those who continue to develop

pneumococcal infection following colonisation (Sutton et al. 2008). A diagram of

this model is shown in Figure 2.3. In this figure, X and V represent susceptible

hosts, unvaccinated and vaccinated, as in the 1997 Lipsitch model. CX and CV

represent unvaccinated and vaccinated carriers and IX and IV are those hosts

who go on to develop infections following carriage. Infectious hosts are assumed

to return to the susceptible class at a per capita rate γ. Carrying hosts are

assumed to cease carriage at a per capita rate α. Two per capita death rates

are assumed in this model: one is η representing death due to infection, one is

µ for natural death. Hosts are assumed to enter the susceptible, unvaccinated

population at birth at a constant rate, λ. β is the per capita contact rate with

a contact between a susceptible and a colonised host resulting in the susceptible

host becoming colonised so that susceptible hosts become colonised at total rate
βX(CX+CV +IX+IV )

N
. Hosts can become colonised through contact with carriers or

infected individuals. α is the per capita rate at which hosts cease to be colonised.

Other parameters in the model are ρ, φ, ε, δ and l representing the rate of the

loss of vaccine induced protection, rate of vaccine effectiveness, reductions in

carriage due to vaccine, reduction in disease due to vaccine, and the proportion

of susceptible hosts who are at risk. The parameter κ represents the rate of

infection for those colonised hosts who are at risk of developing infection. In

addition, Sutton et al. include parameters to take into account average infection

rates and seasonality of infection.

Using Australian surveillance data, Sutton et al. use this model in conjunction

with statistical methods, assuming model errors, to investigate vaccination effects
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Figure 2.3: Model of pneumococcal colonisation and infection incorporating a
vaccine effect (adapted from Sutton et al. 2008), with ω = CX+CV +IX+IV

N
.

in the population. Model results imply that reductions observed in pneumococcal

infections are attributable to the conjugate vaccine preventing infection but also

due to the reduction in the ability of pneumococci to colonise. In addition, a herd

immunity effect is suggested in the model. However, Sutton et al. discuss the fact

that although the model adequately reflects the disease picture for the earliest

year data are available, 2005, it underestimates the burden of disease for 2006 and

2007. Thus, it appears that perhaps alterations need to be made to models to

reflect changes in vaccine effect over time, changing host susceptibility to infection

and, also, variations in circulating pneumococci. The authors conclude by stating

that wide spread PCV-7 immunisation is likely to have a dramatic effect in the

epidemiology of S. pneumoniae which will require close scrutiny in years following

routine implementation.

2.3.2 Antibiotic treatment and resistance

The next series of models described address the issue of antibiotic resistance.

The earliest published resistance model considered in this section was created by

Lipsitch (Lipsitch 2001). This mathematical model was created to investigate

how antibiotic resistance is related to previous antibiotic use.

The model shown in Figure 2.4 is used to describe a trial in which patients are
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Figure 2.4: Model of penicillin resistance in sample population carrying both
susceptible and resistant S. pneumoniae (adapted from Lipsitch 2001).
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administered antibiotics and relates to a closed population in which no hosts may

enter or leave the trial. In Figure 2.4, the left hand group of X, S and R hosts

refer to those who have not received antibiotics. X represents hosts suscepti-

ble to carriage, S represents those carrying antibiotic susceptible (AS) serotypes

and R represents those carrying resistant strains. λR and λS represent the rates

at which carriage susceptible hosts may become carriers of antibiotic resistant

and susceptible strains respectively. µR and µS are the rates at which carrying

hosts cease to carry each of these type of pneumococcal strains. The groups on

the right-hand side of Figure 2.4 represent the sample population immediately

following treatment, where hosts with resistant strains are assumed to become de-

colonised during treatment with per capita probability pRX ; those hosts carrying

AS strains can become decolonised during treatment with probability pSX . pSR

is the per capita probability that hosts carrying AS serotypes immediately before

treatment will become primarily colonised with resistant serotypes immediately

after treatment.

The model shown in Figure 2.4 differs from other models of pneumococcal car-

riage considered in that the purpose of the model is to look at carriage in a

sample of individuals rather than in the population. This sample is assumed to

be a trial sample of patients being followed to assess the effect of antibiotics on

carriage. The aim of the modelling is to determine how the chosen measure of the

link between antibiotic use and resistance alters between the time of antibiotic

treatment to the time at which a subject has a sample taken. Therefore, time is

considered in the model with t = 0 assumed to be the point at which a subject

is administered antibiotics.

Lipsitch discusses the fact that antibiotic treatment reduces theR0 of AS serotypes

and hosts carrying this type of serotype who receive treatment will have either a

reduced infectiousness or reduced duration of carriage, or both. However, this will

result in an increase in AR strains in the population. If antibiotic treatment is

administered fairly often then this will result in an increase in antibiotic resistant

serotypes.

The first of four pneumococcal models, three of which consider antibiotic resis-
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tance, involving Temime is shown in Figure 2.5 (Temime et al. 2003). In this

work, Temime et al. consider both S. pneumoniae and N. meningitidis, bacteria

with similar antibiotic resistance mechanisms. The model shown in Figure 2.5 is

used to assess the process of antibiotic resistance in a population. Hosts can be

in one of two classes: those susceptible to carriage, i.e. uncolonised, and those

carrying, colonised. Vaccine is not considered in this model. Instead, as interest

is in antibiotic resistance, treatment with penicillin is assumed. σ is the probabil-

ity of loss of the bacterium following antibiotic treatment. If the bacterium is not

lost, replacement may occur with a bacterium with a higher minimum inhibitory

concentration (MIC) replacing the original serotype. Temime et al. explain the

assumption they have made that serotype replacement is only possible in those

individuals administered treatment by stating that, although it is known that

genetic events are plausible which could cause replacement, the competition that

arises due to the fact that large numbers of bacteria colonise a host means that

it is very unlikely that the natural bacterial population within a host will be

replaced by genetically altered bacterial types without some intervention.

1
λ

is the mean duration of carriage in the absence of antibiotic treatment, irre-

spective of the MIC of the serotype, and β is the per capita infectious contact

rate between susceptible and carrying hosts. Once a carrying host ceases to carry

the serotype, a period in which the host cannot become a carrier again is as-

sumed. This lasts for a mean duration of 1
θ
. The model parameter α represents

the frequency at which hosts move from the untreated class to the treated class

at the onset of treatment with penicillin and the average duration of treatment

is assumed to be 1
γ
.

From literature, Temime et al. obtained an estimate of the average pneumococcal

carriage duration of 2.2 months. However, it is noted that the period in which

a host cannot be colonised after ceasing to carry a serotype is more difficult to

determine and thus an estimate of 2 weeks was chosen and varied between 4

days to 2 months. From French data, Temime et al. were able to estimate the

average duration of penicillin treatment to be 8 days. Differences in carriage

and the number of penicillin treatments were observed for different age groups

and an attempt to reflect this information in the model was made, even though
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Figure 2.5: Compartmental model of penicillin resistance in carriage of both S.
pneumoniae and N. meningitidis (adapted from Temime et al. 2003).
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the model was not specifically structured by age group. This was carried out by

weighting the number of antibiotic treatments using the probabilities of pneumo-

coccal colonisation by age. Antibiotics of the same concentration were assumed

to be administered, regardless of the MIC of the pneumococcal strain. Thus,

the probability of the antibiotic being unable to prevent carriage is assumed to

be described as a function of MIC, m, only. The formula for the probability is

σm = m3

0.05+m3 . β was assumed constant for those untreated with antibiotics and

was taken to be 0.23 per week per person so that the proportion of hosts carrying

serotypes reflects the 45% reported in the literature. The model assumes that

in the presence of treatment, a susceptible host has a higher chance of becoming

a carrier once in contact with a carrying host if the bacterium involved had a

high MIC. Colonisation was assumed to be less likely when a AS bacterium is

involved. Thus, β′ is defined where β′ = 2βm3

0.5+m3 so that β′ < β when m = 0 but

β′ > β when m is large.

The conclusions of the model regarding penicillin resistance were that the MIC

of the strain is important. If a pneumococcal strain only has low resistance then

it is likely that it can become eradicated from the population before it is able

to increase MIC through genetic events. However, if a strain appears with high

MIC then it should be able to remain in the population and will lead to the

introduction of strains with even higher MIC levels. One of the main outcomes

from the modelling was the conclusion that there is a great deal of variation in

the time to selection of bacteria of given resistance levels. The model appears to

adequately predict the bimodal distribution in resistance levels that appears in the

French data. The critical parameters in modelling the continuation of resistance

in the population were identified as: how often penicillin is administered, how

long a strain may be carried for, how long a host is administered penicillin and the

rate at which uncolonised hosts come into contact with colonised hosts. Varying

the time at which an individual cannot become colonised after ceasing to carry a

strain did not appear significant in determining the model outcome.

The limitations of the Temime et al. model appear to be that although penicillin

intervention was considered, the effect of a vaccine intervention was not. In

addition, Temime et al. did not consider the possibility of coexistence of strains
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within a population or individual. The model only focusses on one serotype

and considers varying degrees of resistance. It does not allow for variation in

transmission or carriage duration for different pneumococcal serotypes.

In the same year as this paper was published, McCormick et al. published work

on a model which also considered antibiotic resistance of pneumococcal serotypes

(McCormick et al. 2003), shown in Figure 2.6. Unlike the 2003 Termime et al.

model, McCormick et al. consider not only penicillin resistance but also ery-

thromycin resistance. In Figure 2.6, X represents hosts susceptible to pneumo-

coccal colonisation; S represents hosts with strains susceptible to both penicillin

and erythromycin; P is the class of hosts with pneumococci resistant to peni-

cillin; E is the erythromycin resistant pneumococci carrying class; D represents

hosts with strains resistant to both penicillin and erythromycin. McCormick et

al. are interested in causes of geographical variation in pneumococci resistant to

these antimicrobial agents. The authors believe that there are various possible

causes of geographical variation in resistance; one of the causes could be that in

areas where higher selection pressure is exerted, i.e. areas which have higher an-

timicrobial use, more resistant serotypes will be present, or in areas with greater

antibiotic use a higher proportion of resistance may be present within serotypes.

A further possibility is simply that resistant pneumococci are more common in

certain areas than in others. The first two cases are similar in that they are

related to pressure exerted due to antimicrobial use, whilst the third case differs

as it is assumed attributable to natural variation. The first two scenarios may

reflect changes in serotype distribution for different areas.

In the modelling, data collected between 1996 and 1999, pre-PCV-7 introduction,

by the Active Bacterial Core surveillance (ABCs) sites of the Centres for Disease

Control and Prevention in the United States were used. The results suggest that

differences in antimicrobial use are responsible for the differences in resistance

for different geographical locations. In addition, this variation is mainly due to

differences in the resistant proportions in each serotype. A third conclusion is that

those serotypes unaffected by both penicillin and erythromycin have a survival

advantage compared to those only able to resist one of the antimicrobial agents.
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Although the effect of the PCV is not explicit in the model, McCormick et al. do

discuss the possible implications of vaccine introduction as this will negate the

assumption of constant selection pressures on the pneumococci. The serotypes

found in PCV-7 are amongst those with the highest antimicrobial resistance so

would be expected to reduce the proportion of resistant strains more than those

susceptible to antibiotics. However, the authors state that it is unlikely that

vaccine use will alter the resistance within a serotype.

Continuing with models of antibiotic resistance, in subsequent work involving

Temime, the 2003 Temime et al. model was extended to consider the vaccine

effect (Temime et al. 2004). The compartmental model is shown in Figure 2.7.

From assessment of this figure, it can be noted that this model is split into three

age classes: those aged under 2 years; the vaccine targeted group; those aged 2

to 15 years, and those aged over 15 years. The class Xnp represents the number

of hosts who are susceptible to carriage who have not received penicillin whilst

Ynp represents those hosts who are susceptible but have been treated. One of

the model assumptions is that there are ten different levels of penicillin resis-

tance so that XV,1 and YV,1 are the number of individuals who are respectively

untreated and treated with penicillin, are carrying a VT pneumococcal serotype

and who have resistance level 1; similarly, XV,2 and YV,2 represent those respec-

tively untreated and treated with resistance level 2, and so on. The subscript

NV represents hosts carrying NVT serotypes. As a subset of the under 2 years

age group are vaccinated, separate additional compartments must be considered

for this group. These are V representing those vaccinated who have not re-

ceived penicillin and W for those vaccinated who have received penicillin. As

the model assumes the vaccine is 100% effective in preventing colonisation with

VT serotypes, the vaccinated children can only carry NVT strains. This model

was created to address two key issues. The first of these involves the question

of what happens to the S. pneumoniae population epidemiologically after the

introduction of the conjugate vaccine. The second concerns penicillin resistance

and, in particular, how the distribution of resistance levels changes in children

and adults carrying pneumococcus following vaccine introduction.

In the Temime et al. model, hosts are assumed to enter the population at birth
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Figure 2.7: Compartmental model of the effect of vaccine on penicillin resistance
(adapted from Temime et al. 2004).

34



at a constant rate µN . A proportion ν of hosts aged under 2 years receive the

conjugate vaccine and are assumed to have a duration of protection represented

by dν . This model does not consider coexistence of serotypes in carriage.

This study involved French data from the French Reference Centre for Pneumo-

cocci (Centre National de Réference des Pneumocoques) which included informa-

tion about penicillin resistance for specific serotypes and age groups. The data

were used to obtain a general picture about VT and NVT serotypes so that the

information could be incorporated in the model.

The results from the model suggest a similar picture to that of the 1997 Lipsitch

two serotype model. Temime et al. conclude that an increase in NVT pneumococ-

cal carriage occurs as a result of the decrease in carriage of VT serotypes. How-

ever, as in the two serotype Lipsitch model, the increase in carriage of NVTs is not

as great as the decrease in VT carriage. Thus, overall carriage in the population

is reduced upon introduction of PCV. As for the penicillin resistance considered,

results suggest that the replacement of VT carriage with NVT carriage occurs

alongside increases in resistance. This means that, as the non-vaccine pneumo-

cocci increase in the population, the average resistance of these pneumococci also

increases. This implies that penicillin resistance is unaffected by vaccine.

Temime et al. state that the important parameters in the model to determine

overall rates of pneumococcal carriage in a population involving vaccinations

are the duration of carriage and the rates at which contacts are made between

susceptible and carrying hosts. Concerning the proportion of types resistant

to penicillin, in addition to the parameters important for determining rates of

carriage, the important variable is the duration of exposure to penicillin. Temime

et al. admit that there may be some limitations to the model described in Figure

2.7. One point not addressed in the modelling is the possibility that non-vaccine

serotypes are less able to colonise in a population than VT serotypes. However,

differences between the two classes of serotypes were considered concerning the

length of time VT and NVT serotypes are able to colonise. The results suggest

that this does not impact on penicillin resistance but it may lessen how quickly

serotype replacement occurs if the carriage of NVT strains is less than that of
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VT strains.

The third antibiotic resistance model involving Temime focusses on one of the se-

vere outcomes of pneumococcal colonisation, community-acquired bacterial menin-

gitis (Temime et al. 2005). As with the 2004 Temime et al. paper, both antibiotic

resistance and vaccine effect are considered in this model. This model has a simi-

lar structure to that shown in Figure 2.7 and builds on the initial model of Temime

et al. on antibiotic resistance, Figure 2.5. The model is used to investigate how

the level of antibiotic use in a population impacts the ability of the vaccine to

prevent meningitis. Temime et al. use data from the Tracking Resistance in the

United States Today (TRUST) surveillance study in the USA and the French

Reference Centre for Pneumococci to investigate the effects of antibiotic use and

the conjugate vaccine. The USA was chosen to represent low antibiotic coverage,

whilst France represents countries with high antibiotic exposure. Antibiotic ex-

posure with vaccine use was considered in three different ways: one way is that

the use of vaccine reduces antibiotic exposure to all children, another is that the

exposure is only less for vaccinated children, and the third is that the antibiotic

exposure remains unaltered for all children. The authors hypothesise the length

of time a vaccine provides immunity to disease to be 13 years. A constant propor-

tion of all hosts carrying pneumococci are assumed to have bacterial meningitis

independent of the serotype being carried. Temime et al. varied vaccine use from

no coverage to complete coverage in the model.

The model results suggest that the length of time a host carries a pneumococcal

serotype is the crucial parameter in determining meningitis incidence from antibi-

otic resistant strains. Antibiotic exposure also proved to be important, with high

levels of antibiotic exposure leading to antibiotic resistant serotypes accounting

for almost all of the cases of bacterial meningitis after 20 years of vaccine use,

irrespective of the level of vaccine coverage. The length of time the vaccine pro-

vides immunity against disease does not appear to be of great importance and no

significant difference was found in the number of meningitis occurrences for the

three classes of antibiotic exposure that children could encounter.

Limitations to this model are the fact it does not consider coexistence of serotypes
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within an individual so the possibility of serotype replacement was not addressed.

In addition, the authors state that due to the age classes chosen in the modelling,

the level of incidence of bacterial meningitis for those aged under 2 years is

underestimated.

A different approach in the consideration of pneumococcal carriage is taken by

Huang et al. (Huang et al. 2005a). It is known that young children are the

primary carriers of S. pneumoniae and that high transmission rates are observed

in places where many young children regularly congregate, such as nurseries and

child care centres. Thus, the modelling carried out by Huang et al. considers a

transmission model which takes into account the risk of higher rates for children

who attend child care centres or who often are found to spend time with children

who attend these centres. This carriage model does not consider coexistence as

children are assumed to be able to carry only one serotype at a time. In addition,

the model only considers one hypothetical community of young children and does

not allow for new children to enter or existing children to leave this community.

A diagram of the compartmental model is shown in Figure 2.8.

In Figure 2.8, XC and XN represent the proportion of children susceptible to

pneumococcal carriage who do and do not attend child care centres respectively.

Similarly, YC and YN represent the proportion of carriers for the same two groups.

In this model, c and r are parameters included in the model to account for

antibiotic treatment the children receive. c is the percentage of children for whom

carriage is eliminated due to treatment with antibiotics and r is the percentage of

children who receive antibiotic treatment each week. The parameters f and g refer

to child care centre attendance, with f representing the fraction of all children

who attend child care centres and g representing the average hours spent in child

care centres. g is divided by 84 as 84 represents the number of hours that a

child spends awake per week, assuming that a child is awake 12 hours per day.

β1 and β2 are constant transmission rates, with β1 being the rate for carriage

transmission outwith child care centres and β2 the rate within these centres. m

is the parameter for weekly automatic clearance of pneumococcal carriage in the

children. This model assumes that β2 > β1 as the transmission amongst children

within a centre is expected to be higher than that outside. It is assumed that
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Figure 2.8: Serotype carriage model of children who are attendees and non-
attendees of child care centres (adapted from Huang et al. 2005a).

children who do and do not attend centres are able to interact during hours the

children are awake and attendees are not at the centres. The model also suggests

that while children are attending centres, those who do not attend will not come

into contact with as many other children as those within a centre.

The analysis carried out by Huang et al. involved data to obtain parameter

estimates for the compartmental model. The data were taken from studies in

Massachusetts communities. Obtaining equilibrium solutions, the model was used

to estimate the prevalence of carriage, allowing f and g to vary. The results from

the modelling stress the importance of child care centres. Conclusions are made

that carriage prevalence increases with increasing child care attendance for both

groups of children in the population as the model allows interactions between

groups as well as within. Huang et al. state that the model considered leads

to the impression that centre attendance possibly accounts for between 4% and

56% of the variability in the volume of carriage across communities. Thus, it

is important to consider community-level risk factors, such as child care centre
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attendance, when considering pneumococcal transmission. However, Huang et

al. do admit that other risk factors were not considered in the model and that

it was assumed that the carriage duration was fixed. In addition, there are other

potential considerations to take into account in the model such as antibiotic

resistant (AR) serotypes. Therefore, further work may have to be undertaken to

fully understand the effect of child centre attendance, incorporating other risk

factors and allowing other parameters in the model to vary.

In Sweden, a mathematical model was created to examine antibiotic resistance

(Andersson et al. 2005). As with the Huang et al. model, Andersson et al.

consider a model of children attending day-care centres (DCCs) as it is assumed

that this type of close contact amongst the group known to be the primary pneu-

mococcal carriers will have the greatest spread of carriage and infection in the

population. Unlike the Huang et al. model, Andersson et al. specifically focus

on resistance to antibiotics and also use a stochastic approach in the modelling.

In addition, Andersson et al. do not consider the transmission of S. pneumoniae

amongst the population outwith those attending day-care.

As antibiotic resistance was observed to be becoming increasingly more common

following studies carried out in 1992, in 1995 an intervention project, the South

Swedish Pneumococcal Intervention Project (SSPIP), was introduced to prevent

resistant pneumococci from becoming more prevalent in the Malmöhus county in

Sweden. This study observed no significant change in antibiotic strains found in

this population during the first four years of intervention. However, it is difficult

to determine if the intervention has no effect or if the unchanging situation is due

to the intervention of the SSPIP on an ever increasing trend of resistant strains.

Since no comparable population who had not received the intervention of the

SSPIP was available, mathematical models were adopted to try and answer this

question. Andersson et al. focus only on children attending day-care as there have

been many studies focussing on this group and thus the authors were easily able

to obtain appropriate parameter estimates of some of the parameters included in

their model.

This model differs from the other models of antibiotic resistance discussed in
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that hosts can be found in three classes: those susceptible to carriage or infec-

tion, those carrying pneumococcal serotypes and those who have a pneumococcal

infection. Other resistance models consider only the possibility that hosts are un-

colonised or colonised without the distinction between carriage and infection. All

hosts must become carriers of pneumococci before becoming infected following

an incubation time T . The three stochastic processes considered in the model are

thus S(t), the number of susceptible hosts at time t, C(t), the number of carrying

hosts at time t, and I(t), the number of infected hosts at time t, where t is defined

as the number of weeks since the introduction of pneumococci in the population.

In addition, a fourth process C(t, s) is considered which represents the number of

pneumococcal carriers at time t who became carriers at time s. Other processes

are used to describe the transitions between the various classes and also the num-

ber of children present in the DCC, both uncolonised and colonised, as children

may be absent for various reasons.

Andersson et al. model seasonal variation by incorporating a parameter that

accounts for the differences in transmission for each week of the year. The prob-

ability that a serotype is transmitted from a carrying host to a susceptible host

is assumed to be proportional to this transmission parameter for that week. The

size of the group in a DCC is also considered as a potentially important factor

for transmission.

Figure 2.9 shows two diagrams depicting how the basic reproductive number

varies with the size of the DCC and the week of the year, assuming two different

incubation periods. Clearly, the size of the centre has an impact as the plots

show higher R0 values for larger groups of children. There is an apparent seasonal

effect as R0 is above the threshold value ‘1’ for weeks in autumn and winter. R0

appears higher with the shorter incubation period. Seasonality seems to be the

most important feature. Week 36, the first week of September, is the point at

which maximum transmission is estimated to take place.

The authors hypothesise that the increased transmission in the autumn periods

could be attributable to increased contact between day-care attendees as they

will be more likely to be kept indoors due to bad weather. In addition, other
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Figure 2.9: Plots of varying R0 by week and group size (adapted from Andersson
et al. 2005).
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infections are common in these seasons. Thus, this could increase susceptibility

to pneumococcal carriage and infection. As far as the intervention of the SSPIP

is concerned, the intervention appears to be more effective in weeks towards the

end of a year, in larger DCCs and for shorter incubation periods. Andersson et

al. conclude by stating a belief that the intervention should prove effective under

appropriate settings but it is difficult to determine whether or not the intervention

will provide benefits to the wider population. This is due to the fact it is unknown

how much of the transmission can be attributable to children attending DCCs.

Further modelling considering antibiotic resistance was published in 2006 (Wang

and Lipsitch 2006). This model differs from other resistance models considered

as Wang and Lipsitch look at the replacement of current, possibly ineffective

antibiotics with new antibiotics to which serotypes may not have an established

resistance. In the modelling, three types of pneumococci are considered: those

susceptible to antibiotic treatment, those resistant to the old treatment but sus-

ceptible to the new treatment and those with resistance to both treatment types.

Wang and Lipsitch are interested in assessing the effect of the timing of switching

between treatments for the population.

The results from this model suggest that a compromise has to be met between

attempting to have a successful antibiotic treatment and creating an environment

in which resistance to the new antibiotic treatment can occur. This trade-off can

be affected if there is a difference in the transmission ability of the resistant and

susceptible pneumococci in the population. The model shows that if resistant

serotypes have low transmissibility and there is a substantial risk that pneumo-

cocci will become resistant to the new treatment then an immediate switch to

the new treatment will result in low transmission of resistant pneumococci. Early

switch also should be adopted in the case where the old, existing antibiotic can

cause resistant serotypes of both this treatment and the new antibiotic. Switch-

ing treatment should be put off until the existing treatment becomes ineffective

if the new antibiotic has high transmissibility in the population but there is a re-

duced risk of pneumococcal serotypes becoming resistant to this drug. Wang and

Lipsitch admit that there are some limitations to the model due to the fact that

certain important factors in the spread of the bacterium were not incorporated
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such as the age of the population and the effect of vaccine.

2.3.3 Capsular switching

Returning to the issue of the impact of pneumococcal vaccines in modelling with-

out the issue of antibiotic resistance, capsular switching is considered in later

modelling by Temime et al. (Temime et al. 2008). Figure 2.10 shows a rep-

resentation of the model. In this figure, as with the Lipsitch model, Figure

2.1, X represents susceptible unvaccinated hosts, V represents susceptible vacci-

nated hosts, and YX and YV respectively represent unvaccinated and vaccinated

hosts colonised with a NVT pneumococcal serotype. WX and WV are respec-

tively classes of unvaccinated and vaccinated host who are colonised with NVT

serotypes following capsular switch and, finally, Z represents hosts colonised with

the VT serotype. As with the other colonised host types, there are separate Z

classes for the vaccinated and unvaccinated hosts. Dual colonies are shown in

the model. This model considers two age groups: those aged less than 2 years

and thus targeted by vaccine and those aged over 2 years. The model assumes

that a proportion of children are vaccinated, with the potential for immunity to

continue to adulthood. The capsular switch which takes place amongst those

vaccinated hosts who are colonised with both a vaccine and non-vaccine serotype

is shown by the red arrow. Capsular switch due to the introduction of the vaccine

is the only type of switch modelled. The natural switch process that occurs is

not specifically defined in the model as Temime et al. state that amongst unvac-

cinated hosts, the switches to and from vaccine strains should be balanced and

thus it is unnecessary to have an additional mechanism to account for this switch

in the model.

The diagram of the Temime et al. model, Figure 2.10 appears strange in that

classes of hosts are defined in which vaccinated hosts carry VT serotypes. This

should not be possible since the authors state that the vaccine is supposed to be

100% effective in preventing colonisation by VT serotypes. Thus, in this case,

the classes ZV , Y ZV and ZWV do not contain any individuals.

A competition effect was considered in the model by assuming that the probability
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Figure 2.10: Capsular switch serotype carriage model of vaccinated and unvacci-
nated hosts (adapted from Temime et al. 2008).

of carrying a particular serotype was reduced by half if the host was already

carrying one serotype. The model assumes that the average length of time a host

carries a serotype is the same for all of the different serotypes.

In this numerical simulation, Temime et al. assume a vaccine coverage rate of

90% and used parameter estimates from a literature search to explore the effect

that capsular switch has on the impact of vaccine. Results suggest that capsular

switch should not significantly affect the benefits obtained through the use of

vaccine, indicating that the reduction in disease incidence should not decrease due

to switching. This conclusion is partially attributable to the competition effect

considered, as switched serotypes compete with other NVT serotypes. However,

the estimates of the occurrence of capsular switch are unreliable due to the lack of

relevant data on this type of event. Another potential drawback to this modelling

is that the assumption was made that capsular switching has no effect on the

virulence of the bacterium, implying that NVT serotypes occurring from a switch

will have the same virulence as the VT serotype. This may not be the case as
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virulence factors are still being explored by biologists. Temime et al. conclude

by stressing the importance of obtaining relevant data from further studies of S.

pneumoniae in the population.

To summarise, of the twelve published pneumococcal models, six consider the

problem of AR pneumococci. These models differ regarding the antibiotics con-

sidered to be resistant with some mathematical models created which consider

more than one antibiotic treatment (McCormick et al. 2003; Wang and Lipsitch

2006). Some of the models focussed on assessing the effect of different antibi-

otic exposures on carriage and disease (Lipsitch 2001; McCormick et al. 2003),

with McCormick et al. particularly addressing geographical variation in expo-

sure. Only two of the models consider both vaccine and antibiotic resistance

(Temime et al. 2004; Temime et al. 2005). In the AR study by McCormick et

al. the possible implications of vaccine usage are discussed even though vaccine

is not incorporated in the model. McCormick et al. state that the vaccine will

have an effect on circulating pneumococcal strains by reducing the proportion of

resistant strains since the vaccine includes the common resistant strains. Thus,

it does appear from assessment of the various pneumococcal models that both

antibiotic resistance and vaccination are important to consider in mathematical

models as the vaccine is likely to reduce circulating resistant strains which may

impact on the use of antibiotics in a population. However, it is possible that more

AR strains may appear due to serotype replacement which can occur due to the

use of conjugate vaccines which can only include a small number of the circulat-

ing serotypes. The results from the 2004 Temime et al. model emphasise this

problem as the NVT serotypes will inevitably become more commonly carried,

replacing VT serotypes in carriage in the population and the increase in carriage

of NVTs was observed to coincide with increases in resistance.

Some of the models primarily consider future implications of vaccine use on pneu-

mococcal carriage (Lipsitch 1997; Temime et al. 2008), addressing issues such as

competition between VT and NVT serotypes (Lipsitch 1997) and capsular switch-

ing (Temime et al. 2008). The conclusions seem to suggest that an increase in

prevalence of NVT serotypes should be expected after the introduction of vaccine

but that the increase should not be as large as the decrease in prevalence of VT
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serotypes. In addition, capsular switching should not have a substantial effect on

the benefit obtained through the use of vaccines.

Clearly, there are a variety of ways in which mathematical models may be used

to aid understanding of pneumococcal carriage and infection and the mecha-

nisms involved in allowing certain types to become prevalent in the population.

In addition, mathematical models assist in determining the benefits of various

interventions against carriage and infection and in the development of these in-

terventions.

The models described in this section adopt different mathematical and statis-

tical approaches in order to obtain solutions to the biological processes under

consideration, see Table 2.3. As mentioned previously, an analytical approach,

such as that adopted by Lipsitch in his 1997 paper, is useful in that it enables

generalisable results for all manner of parameter estimates. However, when the

biological process being modelled, such as the capsular switch process defined by

Temime et al. (2008), is complex, and analytical solutions are perhaps not pos-

sible to determine, solutions to the system may still be obtained through the use

of simulations. Furthermore, statistical regression approaches may be adopted in

conjunction with the differential equation mathematical models to aid in param-

eter estimation for these numerical or statistical simulations, or to obtain model

results. For example, multinomial logistic regression is used by McCormick et al.

within the framework of a four state transmission model to obtain their results.

Thus, there are clearly a variety of approaches to take to obtain solutions to

models of this nature.

In the next section, a discussion of the importance of considering pneumococcal

MLSTs in addition to pneumococcal serotypes will be presented.

2.4 Multi-locus sequence types in mathematical

models of S. pneumoniae

Mathematical models of S. pneumoniae have been created to consider possible

adverse effects attributable to the introduction of PCV. These models, discussed
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in the previous section of this chapter, involve concerns such as competition from

NVT serotypes which can lead to serotype replacement resulting in an increase in

NVT carriage and disease; the possibility of increasing NVT AR strains becoming

prevalent and the rare phenomenon of capsular switching. Capsular switching is

a process in which, through genetic transformation, pneumococci can exchange

capsules (Musher 2006). This means that if genetic elements of the pneumococci,

such as the MLST, associated with invasive disease and infection which manifest

as VT serotypes become more commonly associated with NVT serotypes through

capsular switch then an increase in NVT pneumococcal disease and infection

is possible. Although this process of capsular switch involves consideration of

the underlying genetic material of the pneumococcus, Temime et al. do not

specifically refer to MLSTs in their mathematical model. Instead it is assumed

that the capsular switch takes place when a vaccinated host becomes colonised

with a VT and NVT serotype, without discussion of the underlying biological

process involved in the switch.

Pneumococcal MLSTs have become a matter of interest for biologists in recent

years and concerns have been raised about associations between MLSTs and

disease. The serotype of the pneumococcus is considered to be the factor which

causes the virulence of the bacterium. However, it has been observed that certain

MLSTs are able to manifest in more than one serotype. This is a problem with

consequences such as capsular switch. In addition, this is a problem if MLSTs that

are associated with invasive disease more commonly manifest in NVT serotypes

following the introduction of a vaccine as this could lead to an increase in non-

vaccine serotype invasive disease and infection (McChlery et al. 2005).

In this chapter and the subsequent chapter, ideas from the two serotype dif-

ferential equation model of Lipsitch (Lipsitch 1997) will be adapted to develop

mathematical models involving the carriage of one or more pneumococcal se-

quence types. Lipsitch was interested in investigating the competition between

NVT and VT serotypes in the models considered. In the models discussed in

this thesis, interest is focussed on MLSTs that are associated with more than one

serotype to incorporate the possibility of capsular switching into the model. The

population of interest that is being considered is children aged under two years
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as this is the group to which the new conjugate vaccine is administered.

All of the modelling presented is analytical, not requiring any parameter estima-

tion. The analytical approach is preferred for the models considered in Chapters

2 and 3 due to the fact the solutions are more generalisable than those which

could be obtained through the use of numerical techniques. Numerical solutions

would provide results only for specific parameter values entered in the model.

Thus, even if a variety of values are entered in the model which show similar

results this is not a proof of what occurs in the model. However, this is not the

case with analytical techniques which are generalisable to any parameter values.

For each mathematical model described, the differential equations representing

the model are presented. The time independent solutions for the sizes of each

class of host are found and the basic reproductive number, described earlier in

this chapter, is determined. In addition, both local and global stability analyses

are conducted to identify what happens to the number of carrying hosts in the

long term.

The first model discussed in detail considers only one MLST associated with

two different serotypes. This is the simplest model that will be described and

was created to understand underlying properties of models involving the carriage

of a MLST which can manifest as more than one serotype. By expansion of

the structure of this model in the next chapter, more complex models may be

explored. In Chapter 3, models involving two MLSTs which have the potential

to manifest in more than one serotype will be considered.

The models will explore the effect of a PCV which prevents carriage of VT

serotypes by examining the relationship between the MLSTs and serotypes, where

a vaccine may not prevent carriage of a MLST if it is associated with a NVT in

addition to a VT. In addition, the models will consider different transmission

mechanisms.
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2.5 Model of one MLST associated with two

serotypes

The simplest analytical differential equation model considers only four possible

classes of individuals; two classes of hosts susceptible to carriage of the pneumo-

cocci, one for unvaccinated children (X) and the other for vaccinated children (V ),

and two classes of carrying hosts, again one for those unvaccinated (T1) and one

for those vaccinated (VT1). In this model, and subsequent models, carriage refers

to the MLST acquired and not specifically to the serotype. It is assumed that

this MLST may manifest itself in either serotype 1 (Y1) or serotype 2 (Y2) with

proportions PT1 and (1− P )T1 respectively in an unvaccinated population. It is

assumed, for simplicity, that the proportion of children who receive vaccination

is a constant.

Using the notation of Lipsitch 1997, the model assumes that susceptible hosts

enter the population of interest at a constant rate L and that hosts leave the

population at a per capita rate u. The transition from the susceptible class to the

carrying class occurs according to a mass action process at a rate of β1X(T1+VT1)

for unvaccinated children and at a rate β1V (T1 + VT1) for vaccinated children. In

this initial model, for simplicity of expression, transmission is assumed to be

attributable to MLST and not serotype. However, it is biologically plausible that

MLSTs play a part in the ability of the bacterium to transmit from one host to

another. The possibility of transmission being attributable to serotype is explored

in the modelling in Chapter 3. Carrying hosts may cease to carry the MLST,

becoming susceptible again, independently of one another, at rate γ.

In this model, the vaccine is assumed to be 100% effective in preventing carriage

of serotype 1 but ineffective in preventing carriage of serotype 2. Therefore, the

vaccine will not eradicate carriage of the MLST as it is able to manifest in both

serotypes 1 and 2. All vaccinated hosts carrying the MLST must be carrying it

in the form of serotype 2. f is the proportion of children who receive the vaccine.

The ordinary differential equations (ODEs) that correspond to this model (Figure

2.11) are:
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Figure 2.11: Model of one MLST which can manifest in two serotypes with vaccine
effective against one serotype.

dX

dt
= L(1− f)− uX − β1X(T1 + VT1) + γT1,

dT1

dt
= β1X(T1 + VT1)− (γ + u)T1,

dV

dt
= Lf − uV − β1V (T1 + VT1) + γVT1 ,

and

dVT1

dt
= β1V (T1 + VT1)− (γ + u)VT1 . (2.1)

In the next section, the mathematical results for this model are described. To

begin, an equilibrium analysis is carried out, followed by a discussion of the effec-

tive reproductive number. Then a local stability analysis is discussed, followed

by a global stability analysis.
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2.5.1 Results

Equilibrium solutions

By setting the time derivatives, dX
dt

, dV
dt

, dT1

dt
and

dVT1

dt
, equal to zero, the particular

steady state population sizes may be determined for each of the unique classes.

Adding the equilibrium equations corresponding to (2.1)(i) and (2.1)(ii), it can

be deduced that at equilibrium X + T1 = (1− f)L
u

. Similarly, from (2.1)(iii) and

(2.1)(iv), it can be deduced that at equilibrium V +VT1 = f L
u

. This is intuitively

sensible.

The total number of individuals in the population, N , is defined as N = X +

T1 + V + VT1 . Therefore, dN
dt

= L− uN and it can easily be shown that N → L
u

as t → ∞. Thus, at equilibrium, the total number of hosts in the population

is L
u

. As f is the proportion of vaccinated hosts, at the steady state population

it makes sense that the total number of vaccinated hosts must equal f L
u

, i.e.

V + VT1 = f L
u

. Similarly, since 1 − f is the proportion of hosts that have not

been vaccinated, it makes sense that X + T1 = (1− f)L
u

at equilibrium.

Next, substitution of X = (1 − f)L
u
− T1 into dT1

dt
= 0 and V = f L

u
− VT1 into

dVT1

dt
= 0 gives the equations

β1

(
L

u
(1− f)− T1

)
(T1 + VT1)− (γ + u)T1 = 0, (2.2)

and

β1

(
L

u
f − VT1

)
(T1 + VT1)− (γ + u)VT1 = 0. (2.3)

The addition of (2.2) and (2.3) gives the following expression:

β1(T1 + VT1)

(
L

u
(1− f)− T1 +

L

u
f − VT1

)
− (γ + u)T1 − (γ + u)VT1 = 0,
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so

β1(T1 + VT1)

(
L

u
− (T1 + VT1)

)
= (γ + u)(T1 + VT1).

Therefore, either T1 + VT1 = 0, or

(γ + u) = β1

(
L

u
− (T1 + VT1)

)
so

T1 + VT1 =
L

u
− γ + u

β1

.

When T1 + VT1 = 0, T1 = 0 and VT1 = 0 since T1 > 0 and VT1 > 0. Thus,

X = (1 − f)L
u

and V = f L
u

. Therefore, the carriage-free equilibrium (CFE)

solution (Xe,T1e ,Ve,VT1e
) is: (

(1− f)
L

u
, 0, f

L

u
, 0

)
.

This solution is intuitive since when there are no hosts carrying the MLST (T1 = 0

and VT1 = 0), all hosts, N , are susceptible to carriage. However, a proportion f

of hosts receive the vaccine. Thus, the hosts are split between the two susceptible

classes accordingly.

Next consider the case where T1 + VT1 6= 0 and

T1 + VT1 =
L

u
− γ + u

β1

.

Now, V = 0 implies that VT1 = 0 from the equilibrium version of (2.1)(iv). This

contradicts the equilibrium version of (2.1)(iii). Hence, V > 0 at equilibrium and

(2.1)(iv) now implies that VT1 > 0. Dividing the equilibrium versions of (2.1)(ii)

and (2.1)(iv) it can be deduced that

T1

VT1

=
X

V
=

L
u

(1− f)− T1

L
u
f − VT1

,
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since X = (1− f)L
u
− T1 and V = f L

u
− VT1 . Therefore,

L

u
(1− f)VT1 =

L

u
fT1.

Thus, (1 − f)VT1 = fT1 which gives T1 = (1 − f)k and VT1 = fk for some k.

Hence, T1 + VT1 = k = L
u
− γ+u

β1
.

To summarise,

T1 = (1− f)

(
L

u
− γ + u

β1

)
,

VT1 = f

(
L

u
− γ + u

β1

)
,

X =
L

u
(1− f)− T1 = (1− f)

γ + u

β1

,

and

V =
L

u
f − VT1 = f

γ + u

β1

.

The endemic, or carriage, equilibrium solution (Xe,T1e ,Ve,VT1e
) is:

(
(1− f)

γ + u

β1

, (1− f)

(
L

u
− γ + u

β1

)
, f
γ + u

β1

, f

(
L

u
− γ + u

β1

))
.

This equilibrium will be biologically feasible and distinct from the CFE if and

only if L
u
> γ+u

β1
.

The carriage equilibriumn (CE) states that, at steady state, the total number of

susceptible hosts (X + V ) is equal to the rate at which carrying hosts return to
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the susceptible class, γ, added to the rate at which hosts leave the population, u,

then divided by the carriage transmission rate β1. The total number of carrying

hosts (T1+VT1) at equilibrium is simply the total population minus this number.

To obtain the specific numbers for the vaccinated and unvaccinated classes, all

that is required is to multiply by the parameter for the proportion vaccinated, f ,

or unvaccinated, 1− f .

A special case of this model is the situation where no vaccine is present in the

population. For this case the equilibrium number of susceptible and infected

individuals at the two possible equilibria are obtained by setting f = 0 in the

above expressions. Clearly, if no hosts receive vaccination then at the CFE all

hosts, L
u

, will be found in the unvaccinated susceptible class, X. At the CE

equilibrium, γ+u
β1

hosts will be found in the unvaccinated susceptible class and
L
u
− γ+u

β1
in the unvaccinated carrying class, T1. Carrying hosts may be colonised

with the MLST manifested as serotype 1 or serotype 2 as there is no vaccine

effect present to prevent carriage of serotype 1.

In addition, it is possible to consider a scenario where all children receive the

vaccine, i.e. f = 1. In this situation, at the CFE all hosts are found in the vacci-

nated susceptible host class and at the CE γ+u
β1

hosts are found in the vaccinated

susceptible class, V , and L
u
− γ+u

β1
are found in the vaccinated carrying class, VT1 .

In this situation, as the vaccine is assumed to be 100% effective in preventing car-

riage of serotype 1, serotype 1 will not be present in the population. All carrying

hosts will be colonised with serotype 2.

Returning to the model with vaccination, considering the model in terms of

serotype, a proportion P of unvaccinated MLST carrying hosts, T1, are assumed

to be carrying serotype 1, Y1, and a proportion 1−P are carrying serotype 2, Y2.

All vaccinated MLST carrying hosts, VT1 are carrying serotype 2. Thus, at the

CFE, no hosts are carrying either serotype as no MLSTs are carried. At the CE,

T1 = (1− f)

(
L

u
− γ + u

β1

)
.

Thus, from this,
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Y1 = P (1− f)

(
L

u
− γ + u

β1

)
,

and the contribution to Y2 from T1 is

(1− P )(1− f)

(
L

u
− γ + u

β1

)
.

However, as all VT1 are manifest as Y2,

Y2 = (1− P )T1 + VT1 ,

= (1− P )(1− f)

(
L

u
− γ + u

β1

)
+ f

(
L

u
− γ + u

β1

)
,

= (1− P (1− f))

(
L

u
− γ + u

β1

)
.

In this chapter, P is assumed to take some fixed value. To explore the relationship

between the MLST and the two serotypes associated with it, P = 0 and P = 1

are considered. When P = 0, no hosts are colonised with serotype 1 since this

refers to the proportion of individuals carrying the MLST who are colonised with

serotype 1. In this case, all hosts must be colonised with serotype 2. Thus, the

vaccine would have no impact at all on the population as it is assumed 100%

effective in preventing carriage of serotype 1 only. However, if it is assumed that

P = 1, hosts may become colonised with either serotype 1 or serotype 2 and the

CE is the same whether expressed in terms of MLSTs or serotypes. The model

implicitly assumes that capsular switch is possible. If VT1(0) > 0 this is correct

as there are initially serotype 2 pneumococci in existence in the population. If

VT1(0) = 0 then it must be assumed that serotype 2 invades from outside the

population for the model to be valid.
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Effective reproductive number, Re

The effective reproductive number has essentially the same definition as the basic

reproductive number. It is called effective rather than basic as a vaccine effect

has been incorporated in this model.

Consider the model discussed (Figure 2.11). The average duration of carriage of

the MLST is 1
γ+u

for both vaccinated and unvaccinated hosts. Let mij be the

expected number of susceptible individuals of type i infected by a single type j

carrying individual entering the CFE during his or her entire infectious period.

For this model, type 1 refers to unvaccinated carriers of the MLST and 2 refers

to vaccinated carriers of the MLST. Then,

M =

[
m11 m12

m21 m22

]
=

[
β1L(1−f)
u(γ+u)

β1L(1−f)
u(γ+u)

β1Lf
u(γ+u)

β1Lf
u(γ+u)

]
.

For example, m11 is the expected number of unvaccinated carriers caused by a

single carrying individual entering the CFE. At the CFE, there are (1− f)L
u

sus-

ceptible individuals. Each of these is infected by the original carrying individual

at rate β1 for time 1
γ+u

so the expected number of unvaccinated carriers is

m11 = β1 × (1− f)
L

u
× 1

γ + u
=
β1L(1− f)

u(γ + u)
.

The other entries of M are deduced similarly. The eigenvalues are the roots of

the characteristic equation det(M− λI) = 0. Therefore,

(
β1L(1− f)

u(γ + u)
− λ
)(

β1Lf

u(γ + u)
− λ
)
−
(

β1Lf

u(γ + u)

)(
β1L(1− f)

u(γ + u)

)
= 0.

It follows that

λ2 − β1Lf

u(γ + u)
λ− β1L(1− f)

u(γ + u)
λ = 0,
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so

λ

(
λ− β1L

u(γ + u)

)
= 0.

Hence, either λ = 0 or λ = β1L
u(γ+u)

. Re is defined to be the largest eigenvalue so

Re = β1L
u(γ+u)

since β1L
u(γ+u)

> 0.

At equilibrium, the total rate at which hosts enter the population, L, may be

assumed to be approximately equal to the total rate at which hosts leave the

population, uN̂ , where N̂ is the equilibrium population size. The population

under consideration in these models is children under the age of two years. Thus,

Re may be expressed as

Re =
β1N̂

γ + u
.

This means that the value of the effective reproductive number is essentially

determined by the transmission rate, and the rate at which carrying hosts cease

to carry the MLST. Note that the CE is biologically feasible if and only if Re > 1.

Hence, for Re 6 1 there is only one equilibrium, the CFE, whereas for Re > 1

there are two equilibria, namely the CE and the CFE.

It can be noted that Re for this model is independent of f , the proportion of hosts

that receive the vaccine. This is due to the fact that transmission is assumed to

be attributable to MLST, not serotype, so the model relates specifically to the

carriage of the MLST. Thus, since the vaccine does not prevent carriage of the

MLST since it is associated with a VT and a NVT serotype, vaccine cannot have

an impact on Re.

Local stability analysis

To continue the investigation of the model involving only one MLST that is able

to manifest in two serotypes, a stability analysis of the equilibrium solutions

was carried out to determine what happens to the number of unvaccinated and

vaccinated susceptible individuals and carrying hosts in the long term. Initially

a local stability analysis (LSA) was carried out. Local stability (more formally

local asymptotic stability) of an equilibrium means that if the initial population
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sizes are sufficiently close to the equilibrium then, in the long term, the solutions

will converge to the equilibrium. The drawback to the local stability analysis

is that it is difficult to quantify “sufficiently close”. However, a global stability

analysis (GSA) was also performed on this model and this analysis does not

require the assumption that the initial population sizes are sufficiently close to

an equilibrium.

Consider the right-hand sides of equations (2.1),

dX

dt
= f(X,T1, V, VT1) = L(1− f)− uX − β1X(T1 + VT1) + γT1,

dT1

dt
= g(X,T1, V, VT1) = β1X(T1 + VT1)− (γ + u)T1,

dV

dt
= h(X,T1, V, VT1) = Lf − uV − β1V (T1 + VT1) + γVT1 ,

and

dVT1

dt
= j(X,T1, V, VT1) = β1V (T1 + VT1)− (γ + u)VT1 .

The partial derivatives of these functions are shown in the following table:

∂/∂X ∂/∂T1 ∂/∂V ∂/∂VT1

f −u− β1(T1 + VT1) −β1X + γ 0 −β1X

g β1(T1 + VT1) β1X − γ − u 0 β1X

h 0 −β1V −u− β1(T1 + VT1) −β1V + γ

j 0 β1V β1(T1 + VT1) β1V − γ − u

An equilibrium solution, (Xe, T1e , Ve, VT1e) is locally asymptotically stable (LAS)

if the real parts of the eigenvalues of the following matrix, A, are negative.

A =



∂f
∂X

(Xe, T1e , Ve, VT1e
) ∂f

∂T1
(Xe, T1e , Ve, VT1e

) ∂f
∂V

(Xe, T1e , Ve, VT1e
) ∂f

∂VT1
(Xe, T1e , Ve, VT1e

)

∂g
∂X

(Xe, T1e , Ve, VT1e
) ∂g

∂T1
(Xe, T1e , Ve, VT1e

) ∂g
∂V

(Xe, T1e , Ve, VT1e
) ∂g

∂VT1
(Xe, T1e , Ve, VT1e

)

∂h
∂X

(Xe, T1e , Ve, VT1e
) ∂h

∂T1
(Xe, T1e , Ve, VT1e

) ∂h
∂V

(Xe, T1e , Ve, VT1e
) ∂h

∂VT1
(Xe, T1e , Ve, VT1e

)

∂j
∂X

(Xe, T1e , Ve, VT1e
) ∂j

∂T1
(Xe, T1e , Ve, T1e ) ∂j

∂V
(Xe, T1e , Ve, VT1e

) ∂j
∂VT1

(Xe, T1e , Ve, VT1e
)


.
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A LSA was carried out for each of the equilibrium solutions of this model.

1. Carriage-free equilibrium.

At (Xe, T1e , Ve, VT1e
) =

(
(1− f)L

u
, 0, f L

u
, 0
)
,

A =


−u −β1L

u
(1− f) + γ 0 −β1L

u
(1− f)

0 β1L
u

(1− f)− γ − u 0 β1L
u

(1− f)

0 −β1L
u
f −u −β1L

u
f + γ

0 β1L
u
f 0 β1L

u
f − γ − u

 .

The eigenvalues of A are found by identifying when det(A− λI) = 0. Let

K = β1L
u

, then

det(A− λI) =

∣∣∣∣∣∣∣∣∣
−u− λ −K(1− f) + γ 0 −K(1− f)

0 K(1− f)− γ − u− λ 0 K(1− f)

0 −Kf −u− λ −Kf + γ

0 Kf 0 Kf − γ − u− λ

∣∣∣∣∣∣∣∣∣ .

Using Maple, the eigenvalues of A were found to be λ1 = −(γ + u), λ2 =

K − γ − u and λ3, λ4 = −u. λ1, λ3 and λ4 are all negative. The CFE will

be LAS if all of the eigenvalues have negative real parts. This will be true

if λ2 < 0, i.e. β1L
u
− γ − u < 0. This inequality can be rearranged to get

Re < 1. Therefore, the CFE is LAS if Re < 1 and is unstable if Re > 1.

2. Carriage equilibrium.

At

(Xe, T1e , Ve, VT1e
) =

(
(1− f) (γ+u)

β1
, (1− f)

(
L
u −

(γ+u)
β1

)
, f (γ+u)

β1
, f
(
L
u −

(γ+u)
β1

))
,
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A =


γ − β1L

u γ − (1− f)(γ + u) 0 −(1− f)(γ + u)
β1L
u − γ − u (1− f)(γ + u)− γ − u 0 (1− f)(γ + u)

0 −f(γ + u) γ − β1L
u γ − f(γ + u)

0 f(γ + u) β1L
u − γ − u f(γ + u)− γ − u

 .

Using Maple, the eigenvalues of A were found to be λ1 = −β1L
u

, λ2 =

−β1L
u

+ γ + u and λ3, λ4 = −u. λ1, λ3 and λ4 are all negative. Therefore,

for the carriage equilibrium solution to have local asymptotic stability, it

is necessary that λ2 < 0, i.e. −β1L
u

+ γ + u < 0. This inequality can be

rearranged to get Re > 1. The endemic carriage equilibrium only exists if

Re > 1. Therefore, the endemic carriage equilibrium is always LAS when

it exists.

To summarise the local asymptotic stability findings, when the effective reproduc-

tive number is less than or equal to one the CFE is the only equilibrium possible,

and is LAS if Re < 1. When the effective reproductive number is greater than

one both equilibria are possible. However, in this situation, the CFE is unstable

and the CE is LAS.

Global stability analysis

As mentioned previously, N = X +T1 +V +VT1 , where N is the total number of

hosts in the population. So, dN
dt

= L− uN and N → L
u

as t→∞.

Consider

d

dt
(X + V ) = L− u(X + V )− β1(X + V )(T1 + VT1) + γ(T1 + VT1), (2.4)

and

d

dt
(T1 + VT1) = β1(X + V )(T1 + VT1)− (γ + u)(T1 + VT1). (2.5)

Initially in the global stability analysis (GSA), Re 6 1 is considered. As men-
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tioned previously, when Re < 1 the CFE is the only equilibrium possible and is

LAS. There are two cases to consider. First of all, what occurs in the long term

to the number of susceptible and carrying hosts if there are no carrying hosts ini-

tially, i.e. (T1+VT1)(0) = 0. Secondly, what happens to the population sizes when

there are some carrying hosts in the initial population, i.e. (T1 + VT1)(0) > 0.

• Case 1: (T1 + VT1)(0) = 0.

(T1 + VT1)(0) = 0⇒ d(T1+VT1
)

dt
= 0.

Therefore, (T1 + VT1)(t) = 0 ∀ t.

In this case the equation for X + V is the same as the equation for N ,

i.e. d(X+V )
dt

= L − u(X + V ). Therefore, regardless of the initial state of

X + V , X + V → L
u

.

• Case 2: (T1 + VT1)(0) > 0.

In this case it is required to prove that (T1 +VT1)(0) > 0⇒ (T1 +VT1)(t) > 0

∀ t > 0. This can be shown using a proof by contradiction. ? Suppose that

(T1 + VT1)(t) 66> 0 ∀ t > 0.

Let S = {t > 0 : (T1 + VT1)(s) > 0 on [0, t]} and let ξ0 = sup(S). If

sup(S) = ξ0 =∞, there is nothing to prove since in this case (T1+VT1)(s) >

0 ∀ s > 0.

Suppose that ξ0 <∞. Therefore, (T1 + VT1)(s) > 0 on [0, ξ] for any ξ < ξ0.

From (2.5),

1

(T1 + VT1)

d(T1 + VT1)

dt
= β1(X + V )− (γ + u).

Integrating both sides in the interval [0, ξ] gives:
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∫ ξ

0

d

dt

(
ln(T1 + VT1)

)
ds =

∫ ξ

0

(β1(X + V )− (γ + u)) ds

so

ln

(
(T1 + VT1)(ξ)

(T1 + VT1)(0)

)
=

∫ ξ

0

(β1(X + V )− (γ + u)) ds.

Therefore, (T1 +VT1)(ξ) = (T1 +VT1)(0) exp
(∫ ξ

0
(β1(X + V )− (γ + u)) ds

)
∀ ξ ∈ [0, ξ0). Note that X +V is continuous on [0, ξ0] and so is bounded on

[0, ξ0].

Let ξ → ξ0, then∫ ξ

0

(β1(X + V )(s)− (γ + u)) ds→
∫ ξ0

0

(β1(X + V )(s)− (γ + u)) ds.

Hence, by continuity of exponentials,

(T1 + VT1)(ξ)→ (T1 + VT1)(0) exp

(∫ ξ0

0

(β1(X + V )(s)− (γ + u))

)
ds > 0

as ξ → ξ0.

But T1 + VT1 is continuous on [0,∞) so (T1 + VT1)(ξ) → (T1 + VT1)(ξ0) as

ξ → ξ0. Hence,

(T1 + VT1)(ξ0) = (T1 + VT1)(0) exp

(∫ ξ0

0

(β1(X + V )(s)− (γ + u))

)
ds > 0.

Hence, by continuity, (T1 + VT1)(t) > 0 in [0, ξ0 + 4ξ] for some 4ξ > 0.

This is a contradiction so ξ0 =∞. Therefore, (T1 + VT1)(t) > 0 ∀ t.

Now, to prove that the CFE is globally asymptotically stable (GAS) when

Re 6 1, it is required to show that regardless of the initial number of

carrying hosts in the population, the number will tend to zero in the long

term.
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First, the case where Re < 1 is considered. To show that the number of

carrying hosts tends to zero, it shall be shown that T1 + VT1 is decreasing.

Note that T1 + VT1 > 0.

Choose some arbitrary ε > 0 such that −k0 = (γ + u)(Re − 1) + β1ε < 0.

This is the case when, for example,

ε =
−(γ + u)

2β1

(Re − 1).

∃ t0 such that for t > t0, X + V 6 L
u

+ ε. Therefore for t > t0,

1

T1 + VT1

d(T1 + VT1)

dt
= β1(X + V )− (γ + u),

6 β1

(
L

u
+ ε

)
− (γ + u),

= β1
L

u
− (γ + u) + β1ε,

= −k0 < 0.

Hence,

∫ t

t0

1

T1 + VT1

d(T1 + VT1)

dt
ds 6

∫ t

t0

−k0ds

so

ln

(
(T1 + VT1)(t)

(T1 + VT1)(t0)

)
6 −k0(t− t0).

It can be deduced that, (T1 + VT1)(t) 6 (T1 + VT1)(t0) exp(−k0(t − t0)).

Therefore, 0 6 (T1+VT1)(t) 6 (T1+VT1)(t0) exp(−k0(t−t0)) so T1+VT1 → 0

as t → ∞ (since exp(−k0(t − t0)) → 0 as t → ∞). As a consequence,

X + V = N − (T1 + VT1)→ L
u

as t→∞.

Next, the case where Re = 1 is considered. Suppose again that ε > 0. It is known
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that ∃ t0 such that for t > t0, N − L
u

6 ε.

For t > t0,

d

dt
(T1 + VT1) = β1(N − (T1 + VT1))(T1 + VT1)− (γ + u)(T1 + VT1),

6 β1(ε− (T1 + VT1))(T1 + VT1).

Hence, for T1 + VT1 > 2ε,
d(T1+VT1

)

dt
6 −β1ε(T1 + VT1).

Lemma 2.5.1.1

∃ t2 > t0 such that for t > t2, 0 6 (T1 + VT1)(t) 6 3ε.

Proof

If (T1 + VT1)(t0) > 3ε then whilst (T1 + VT1)(t) > 2ε,

(T1 + VT1)(t) 6 (T1 + VT1)(t0) exp[−β1ε(t− t0)]

so ∃ t1 > t0 such that (T1 + VT1)(t1) 6 3ε, whether or not (T1 + VT1)(t0) > 3ε.

Then, if 4t is small and positive, (T1 + VT1)(t1 +4t) 6 3ε.

Let ξ1 = sup{t > t1 : (T1 +VT1)(t) 6 3ε} so ξ1 > t1. If ξ1 <∞, then by continuity

(T1 + VT1)(ξ1) = 3ε, so

(T1 + VT1)(ξ1 +4t) = 3ε+
d

dt
(T1 + VT1)|ξ14t+ o(4t),

6 3ε− 3β1ε
24t+ o(4t),

< 3ε

if 4t > 0 and 4t is sufficiently small. This contradicts the definition of ξ1. Thus,

ξ1 =∞ and the lemma holds. Since ε > 0 is arbitrary, as an immediate corollary

it is deduced that (T1 + VT1)(t)→ 0 and (X + V )(t)→ L
u

as t→∞ as required,

even when Re = 1.

To summarise, when Re 6 1, T1 + VT1 → 0 and X + V → L
u

regardless of the
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initial values of T1 + VT1 and X + V . Since T1 > 0 and VT1 > 0, as T1 + VT1 → 0,

T1 → 0 and VT1 → 0 as t→∞.

To determine what X and V each tend to as t → ∞, consider the equation for
dX
dt

in the model described in Figure 2.11. Substituting T1 + VT1 → 0 and T1 → 0

into the first equation shown in (2.1) gives

dX

dt
→ L(1− f)− uX as t→∞.

Consider some arbitrary ε > 0. ∃ t3 such that for t > t3,

dX

dt
< L(1− f)− uX + ε. (2.6)

Hence, X must eventually fall beneath the level L(1−f)
u

+ 2ε
u

, i.e., ∃ t4 > t3 such

that X(t4) < L(1−f)
u

+ 2ε
u

.

It shall be shown that once X goes beneath the level L(1−f)
u

+ 2ε
u

it can never rise

above it. Suppose otherwise, and that

X(t5) >
L(1− f)

u
+

2ε

u
for some t5 > t4.

Then ∃ t6, t7 with t4 < t6 < t7 < t5 such that X(t) is strictly monotone increasing

in [t6, t7] and
L(1− f)

u
+

2ε

u
< X(t6) < X(t7).

This contradicts (2.6) which implies that X(t) is monotone decreasing in [t6, t7].

Hence

X 6
L(1− f)

u
+

2ε

u
, ∀t > t4.

Therefore, once X goes beneath the level L(1−f)
u

+ 2ε
u

it can never rise above it.

Similarly, ∃ t8 such that for t > t8
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dX

dt
> L(1− f)− uX − ε. (2.7)

Hence X must eventually rise above the level L(1−f)
u
− 2ε

u
, i.e. ∃ t9 > t8 such that

X(t9) >
L(1− f)

u
− 2ε

u
.

It shall be shown that once X rises above the level L(1−f)
u
− 2ε

u
it can never drop

beneath it. Suppose otherwise and that

X(t10) <
L(1− f)

u
− 2ε

u

for some t10 > t9. Then there exists t11, t12 with t9 < t11 < t12 < t10 such that

X(t) is strictly monotone decreasing in [t11, t12] and

L(1− f)

u
− 2ε

u
> X(t11) > X(t12).

This contradicts (2.7) which implies that X(t) is monotone increasing in [t11, t12].

Therefore, once X is above L(1−f)
u
− 2ε

u
it can never drop below this level. Thus,

X >
L(1− f)

u
− 2ε

u
for t > t9.

Thus, for t > max(t4, t9), ∣∣∣∣X(t)− L(1− f)

u

∣∣∣∣ 6 2
ε

u
.

But, ε > 0 is arbitrary . Therefore,

X → L(1− f)

u
as t→∞.

Since X + V → L
u

as t→∞,
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V → L

u
− L(1− f)

u
=
Lf

u
as t→∞.

Therefore, when Re 6 1, X → L(1−f)
u

, V → Lf
u

, T1 → 0 and VT1 → 0 as t → ∞.

Thus, it has been shown that the CFE is GAS when Re 6 1.

Next, it is necessary to examine the case where Re > 1. In this situation both

the CFE and CE exist. Here, the CE is LAS and the CFE is unstable. Once

again there are two cases to consider. Firstly, what happens to the number of

susceptible and carrying hosts when there are no hosts carrying MLSTs initially

and secondly, what occurs when there are initial carrying hosts in the population.

• Case 1: (T1 + VT1)(0) = 0.

The argument for this case is the same as that when (T1 + VT1)(0) = 0

and Re 6 1. Therefore, irrespective of the initial starting state of X + V ,

X+V → L
u

when there are no initial hosts carrying the MLST. Furthermore,

as before X → L(1−f)
u

and V → Lf
u

as t→∞.

• Case 2: (T1 + VT1)(0) > 0.

Following the same argument as that of Case 2 when Re < 1, it can be

shown that (T1 + VT1)(0) > 0⇒ (T1 + VT1)(t) > 0 ∀ t > 0.

Choose some arbitrary ε > 0. ∃ t0 such that for t > t0

L

u
− ε 6 N 6

L

u
+ ε.

Once again, considering (2.5),

1

T1 + VT1

d(T1 + VT1)

dt
= β1(X + V )− (γ + u),
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so

1

T1 + VT1

d(T1 + VT1)

dt
= β1(N − (T1 + VT1))− (γ + u),

6 β1

(
L

u
+ ε

)
− β1(T1 + VT1)− (γ + u),

= (γ + u)(Re − 1) + εβ1 − β1(T1 + VT1). (2.8)

As the CE is the LAS equilibrium when Re > 1, it is necessary to consider

both T1 + VT1 increasing and decreasing to determine whether this equilib-

rium has global stability since T1 + VT1 can take values less than or greater

than the value it takes at equilibrium.

To first assess T1 + VT1 decreasing, consider
d(T1+VT1

)

dt
< 0. This is the case

when (γ + u)(Re − 1) + εβ1 − β1(T1 + VT1) < 0. This is true when

T1 + VT1 >
(γ + u)(Re − 1)

β1

+ ε.

In this circumstance, T1 +VT1 is decreasing (and will always remain decreas-

ing).

Lemma 2.5.1.2

∃ t1, where t1 > t0, such that for t > t1

T1 + VT1 6
(γ + u)(Re − 1)

β1

+ 2ε.

Proof

To begin, assert that ∃ t1 such that
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(T1 + VT1)(t1) 6
(γ + u)(Re − 1)

β1

+ 2ε.

The result is true if

(T1 + VT1)(t0) 6
(γ + u)(Re − 1)

β1

+ 2ε.

Otherwise, provided that

T1 + VT1 >
(γ + u)(Re − 1)

β1

+ 2ε

which is true for t > t0,

1

T1 + VT1

d(T1 + VT1)

dt
6 −εβ1,

so ∫ t

t0

d

dt
(ln(T1 + VT1)) ds 6

∫ t

t0

(−β1ε)ds.

It can be deduced that

ln

(
(T1 + VT1)(t)

(T1 + VT1)(t0)

)
6 (−β1εt+ β1εt0),

so

0 6 (T1 + VT1)(t) 6 (T1 + VT1)(t0) exp(−β1ε(t− t0)).

Thus, eventually

(T1 + VT1)(t1) 6
(γ + u)(Re − 1)

β1

+ 2ε for some t1 > t0.
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If ∃ t2 > t1 such that

(T1 + VT1)(t2) >
(γ + u)(Re − 1)

β1

+ 2ε

then ∃ t3, t4 with t1 < t3 < t4 < t2 such that (T1 + VT1)(t) is strictly

monotone increasing in [t3, t4] and

(γ + u)(Re − 1)

β1

+ ε < (T1 + VT1)(t3) < (T1 + VT1)(t4).

This contradicts the fact, implied by (2.8), that T1 + VT1 is monotone de-

creasing in [t3, t4].

Therefore,

T1 + VT1 6
(γ + u)(Re − 1)

β1

+ 2ε, ∀ t > t1.

Once T1 +VT1 goes beneath the level (γ+u)(Re−1)
β1

+ 2ε it can never rise above

it. This completes the proof of Lemma 2.5.1.2.

Next it is of interest to assess T1 +VT1 increasing. For t > t0, consider again

1

T1 + VT1

d(T1 + VT1)

dt
= β1(N − (T1 + VT1))− (γ + u),

> β1

(
L

u
− ε
)
− β1(T1 + VT1)− (γ + u),

= (γ + u)(Re − 1)− εβ1 − β1(T1 + VT1). (2.9)

To assess T1 + VT1 increasing, it is necessary for (γ + u)(Re − 1) − εβ1 −
β1(T1 + VT1) > 0. This is the case when

T1 + VT1 6
(γ + u)(Re − 1)

β1

− ε.
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Lemma 2.5.1.3

∃ t5 such that for t > t5,

T1 + VT1 >
(γ + u)(Re − 1)

β1

− 2ε.

Proof

First, assert that ∃ t5 such that

(T1 + VT1)(t5) >
(γ + u)(Re − 1)

β1

− 2ε.

The result is true if

(T1 + VT1)(t0) >
(γ + u)(Re − 1)

β1

− 2ε.

Otherwise, provided that

T1 + VT1 <
(γ + u)(Re − 1)

β1

− 2ε,

1

T1 + VT1

d(T1 + VT1)

dt
> εβ1,

i.e.

d

dt
(ln(T1 + VT1)) > εβ1,

so

(T1 + VT1)(t) > (T1 + VT1)(t0) exp(εβ1(t− t0)).

As t→∞, (T1 + VT1)(t0) exp(εβ1(t− t0))→∞ and eventually
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(T1 + VT1)(t5) >
(γ + u)(Re − 1)

β1

− 2ε for some t5 > 0.

Next, it is shown that T1 + VT1 remains above this level for t > t5.

If ∃ t6 > t5 such that

(T1 + VT1)(t6) <
(γ + u)(Re − 1)

β1

− 2ε

then ∃ t7, t8 with t5 < t7 < t8 < t6 such that (T1 + VT1)(t) is strictly

monotone decreasing in [t7, t8] and

(γ + u)(Re − 1)

β1

− ε > (T1 + VT1)(t7) > (T1 + VT1)(t8).

This contradicts the fact, implied by (2.9), that T1 + VT1 is monotone in-

creasing in [t7, t8].

Therefore,

T1 + VT1 >
(γ + u)(Re − 1)

β1

− 2ε for all t > t5.

Once T1 + VT1 is above (γ+u)(Re−1)
β1

− 2ε, it can never drop below this level.

This completes the proof of Lemma 2.5.1.3.

Hence, combining the results of Lemmas 2.5.1.2 and 2.5.1.3, for t > max(t1, t5),

∣∣∣∣(T1 + VT1)(t)−
(γ + u)(Re − 1)

β1

∣∣∣∣ < 2ε.

But ε > 0 is arbitrary. Therefore,
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T1 + VT1 →
(γ + u)(Re − 1)

β1

as t→∞ and

X + V = N − (T1 + VT1)→
L

u
− (γ + u)(Re − 1)

β1

=
γ + u

β1

as t→∞.

Thus, in summary, it is known that

X + V → γ + u

β1

and

T1 + VT1 →
L

u
− γ + u

β1

. (2.10)

However, it has not yet been established what X, V , T1 and VT1 each tend to

separately. To establish this, consider

d

dt
(X + T1) = L(1− f)− u(X + T1).

It can easily be shown that

X + T1 →
L(1− f)

u
as t→∞.

In addition, consider

d

dt
(V + VT1) = Lf − u(V + VT1).

Therefore,

V + VT1 →
Lf

u
as t→∞.
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Let X = (1− f)X̄, T1 = (1− f)T̄1, V = fV̄ and VT1 = fV̄T1 . So,

dX̄

dt
= L− uX̄ − β1X̄(T1 + VT1) + γT̄1,

and

dT̄1

dt
= β1X̄(T1 + VT1)− (γ + u)T̄1.

Since X+T1 → L(1−f)
u

as t→∞, then it can be seen that (1−f)X̄+(1−f)T̄1 →
L(1−f)

u
. Therefore, X̄ + T̄1 → L

u
. As a consequence,

dT̄1

dt
→ β1

(
L

u
− T̄1

)(
L

u
− γ + u

β1

)
− (γ + u)T̄1,

= β1
L

u

(
L

u
− γ + u

β1

)
− β1L

u
T̄1.

Consider some arbitrary ε > 0.

∃ t10 such that for t > t10

dT̄1

dt
< β1

L

u

(
L

u
− γ + u

β1

)
− β1L

u
T̄1 + ε. (2.11)

Hence T̄1 must eventually fall beneath the level L
u
− γ+u

β1
+ 2εu

β1L
. It shall be shown

that once T̄1 goes beneath the level L
u
− γ+u

β1
+ 2εu

β1L
it can never rise above it.

Suppose otherwise, and that

T̄1(t11) <
L

u
− γ + u

β1

+
2εu

β1L
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and

T̄1(t12) >
L

u
− γ + u

β1

+
2εu

β1L
(2.12)

for some t12 > t11. Then ∃ t13, t14 with t11 < t13 < t14 < t12 such that T̄1(t) is

strictly monotone increasing in [t13, t14] and

L

u
− γ + u

β1

+
εu

β1L
< T̄1(t13) < T̄1(t14).

This contradicts (2.11) which implies that T̄1(t) is monotone decreasing in [t13, t14].

Hence,

T̄1 6
L

u
− γ + u

β1

+
2εu

β1L
, ∀ t > t11.

Therefore, once T̄1 goes beneath the level L
u
− γ+u

β1
+ 2εu

β1L
it can never rise above

it.

Similarly, ∃ t15 such that for t > t15,

dT̄1

dt
> β1

L

u

(
L

u
− γ + u

β1

)
− β1L

u
T̄1 − ε. (2.13)

Hence, T̄1 must eventually rise above the level L
u
− γ+u

β1
− 2uε

β1L
, i.e. ∃ t16 > t15 such

that

T̄1(t16) >
L

u
− γ + u

β1

− 2uε

β1L
.

It will be shown that once T̄1 rises above the level L
u
− γ+u

β1
− 2uε

β1L
it can never

drop below this level. Suppose otherwise and that

T̄1(t17) <
L

u
− γ + u

β1

− 2uε

β1L

75



for some t17 > t16. Then ∃ t18, t19 with t16 < t18 < t19 < t17 such that T̄1(t) is

strictly monotone decreasing in [t18, t19] and

L

u
− γ + u

β1

− εu

β1L
> T̄1(t18) > T̄1(t19).

This contradicts (2.13) which implies that once T̄1 is beneath L
u
− γ+u

β1
− εu

β1L
it is

monotone increasing. So T̄1 > L
u
− γ+u

β1
− 2εu

β1L
for t > t16.

Therefore, for t > max(t11, t16),∣∣∣∣T̄1 −
(
L

u
− (γ + u)

β1

)∣∣∣∣ 6 2uε

β1L
.

But ε > 0 is arbitrary. Therefore,

T̄1 →
L

u
− (γ + u)

β1

as t→∞,

so

T1 → (1− f)

(
L

u
− (γ + u)

β1

)
as t→∞.

Since X + T1 → L(1−f)
u

, it can be deduced that X → (1 − f) (γ+u)
β1

as t → ∞.

From (2.10), it can further be deduced that

VT1 → f

(
L

u
− γ + u

β1

)
and V → f

γ + u

β1

as t→∞.

In summary, the following theorem has been proven:

Theorem 2.5.1.1

(i) When Re 6 1, T1(t) → 0, VT1 → 0, T2(t) → 0, VT2(t) → 0, X(t) → L(1−f)
u

and V (t)→ Lf
u

as t→∞.

(ii) When Re > 1 and both T1(0) and VT1(0) equal 0, T1(t) = 0, VT1(t) = 0 ∀ t,
X(t)→ L(1−f)

u
and V (t)→ Lf

u
as t→∞.
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(iii) When Re > 1 and (T1 + VT1)(0) > 0, T1(t)→ (1− f)
(
L
u
− γ+u

β1

)
, VT1(t)→

f
(
L
u
− γ+u

β1

)
, X(t)→ (1− f)γ+u

β1
and V (t)→ f γ+u

β1
as →∞.

2.5.2 Conclusions

The model considered in this chapter is a preliminary model created to explore

the role of MLSTs in the process of serotype replacement through capsular switch.

It was discussed in Chapter 1 that coexistence of pneumococcal strains within a

host is a necessary prerequisite for capsular switch to occur. However, to obtain

insight into MLST colonisation, it is important to consider simpler initial models

from which mathematical properties for the biological process may be obtained.

The results of the analysis of the mathematical model involving the carriage of

one MLST which manifests as two serotypes, one VT and the other NVT, show

that there are two possible steady state population sizes for children aged under

2 years in this model.

One possible equilibrium involves no MLST carriers in the population. Thus, no

hosts carry either serotype at this equilibrium. As all hosts are divided amongst

the four possible classes (vaccinated susceptible, unvaccinated susceptible, vac-

cinated carriers and unvaccinated carriers) at this equilibrium, all hosts must

therefore be susceptible to carriage. The numbers in each of the vaccinated and

unvaccinated classes are split according to the proportion of children who receive

vaccination upon entering the population. This steady state is the limiting pop-

ulation value when Re 6 1, regardless of the initial number of vaccinated and

unvaccinated carrying hosts in the population, as carriage will die out in the long

term.

However, it is known that pneumococcal serotypes and MLSTs have been in ex-

istence in the population for many years. Thus, since pneumococcal colonisation

prevails, it is likely that Re must be greater than 1.

When Re > 1, if no children initially carry the MLST in the population, there

never will be any carriers and thus the total number of hosts will be split between

the vaccinated and unvaccinated susceptible classes as in the case where Re < 1.
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The other possible (stable) population does involve carriage of the MLST. This

equilibrium only exists when Re > 1. When this is the case and there are initial

carriers of the MLST in the population, the number of carrying hosts tends to
L
u
− γ+u

β1
, the rate at which hosts cease to carry the MLST, γ, plus the rate

at which hosts leave the population, u, divided by the rate at which the MLST

colonises hosts, β1, subtracted from the total size of the population at equilibrium,
L
u

. To obtain the numbers of carrying hosts at equilibrium for the vaccinated

and unvaccinated groups, this number needs to be multiplied by f and 1 − f

respectively.

The analysis of the model shows that MLST colonisation is unaffected by vac-

cine intervention since the vaccine acts on the pneumococcal serotype and not

the MLST. At the endemic equilibrium both serotypes are present in the popu-

lation with serotype 2 able to colonise hosts who have received the vaccine. The

number of hosts colonised with each serotype at equilibrium is dependent upon

the proportion with which the MLST manifests as each of the serotypes and the

proportion of children who receive the vaccine, as described on pages 54 and 55.

As the vaccine intervention does not appear to play a role in eradicating MLST

colonisation, it is important to consider the parameter P which represents the

proportion of MLST carriers who are carrying serotype 1. When it is assumed

that P = 0, no hosts are colonised with serotype 1. Thus, the vaccine has no

impact since it is assumed to be effective only in preventing serotype 1 carriage.

When it is assumed that P = 1, all unvaccinated hosts carrying the MLST will be

carrying serotype 1 whilst all vaccinated hosts will be carrying serotype 2. Thus,

the vaccine will not prevent MLST carriage as the MLST is associated with more

than one serotype.

If MLSTs play a role in the ability of the pneumococcus to cause invasive disease

and are important in the transmissibility of the pneumococcus between hosts,

from the analysis in this chapter, it can be observed that invasive disease should

continue to feature in the population as the vaccine will not prevent carriage of

the MLST when it is associated with more than one serotype, where only one is

a VT serotype.
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In the next chapter, this simple one MLST model will be extended to consider

more than one circulating MLST which can colonise hosts in the population.

Once again, transmission according to MLST will be considered. However, in

addition, a model with transmission attributable to serotype will be examined to

identify whether or not the vaccine effect will be included in Re in this case.
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Chapter 3

Modelling carriage of two MLSTs

in children

3.1 Introduction

In this chapter, further modelling of the carriage of pneumococcal MLSTs will

be discussed, developing the concepts introduced in Chapter 2. The models

considered will extend the model analysed in the previous chapter in an attempt to

make the model more realistic by looking at the possibility that a carrier could be

colonised with one of two different MLSTs. One or other of the MLSTs is able to

manifest in more than one serotype. Once again, the effect of a conjugate vaccine

will be considered. In the previous chapter the MLST results were independent of

the vaccine effect. In this chapter, the relationship between MLSTs and VT and

NVT serotypes will be explored further to identify whether or not the vaccine

has an effect in more complex models. Two models will be discussed, assuming

different mechanisms of transmission. In the first model, the transmission is

assumed to be attributable to MLST whilst in the second the transmission is

assumed to be attributable to serotype.
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Figure 3.1: Model of two MLSTs; one associated with two serotypes, the other
only one. Transmission is due to MLST and the vaccine is assumed to be effective
against one serotype.

3.2 Model of two MLSTs with transmission due

to MLST

This model assumes that vaccinated and unvaccinated susceptible hosts, X and

V , may become colonised with either MLST 1 or MLST 2. T1 and VT1 respec-

tively represent the number of unvaccinated and vaccinated hosts carrying MLST

1, whilst T2 and VT2 respectively represent those hosts carrying MLST 2. The

vaccine is 100% effective in preventing carriage of serotype 1 but ineffective in

preventing carriage of serotype 2. It is assumed that, without intervention, MLST

1 is able to manifest in either serotype 1, Y1, or serotype 2, Y2, with proportions

PT1 and (1 − P )T1 respectively; MLST 2 is associated only with serotype 2.

Therefore, the vaccine will not eradicate carriage of either MLST 1 or 2. Those

vaccinated hosts carrying MLST 1 must all be carrying this MLST as serotype

2. In addition, in this model it is assumed that the transmission parameter, β, is

determined by MLST and not serotype.

The six ODEs that correspond to this model (Figure 3.1) are:
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dX

dt
= L(1− f)− uX − β1X(T1 + VT1) + γ(T1 + T2)− β2X(T2 + VT2),

dT1

dt
= β1X(T1 + VT1)− (γ + u)T1,

dT2

dt
= β2X(T2 + VT2)− (γ + u)T2,

dV

dt
= Lf − uV − β1V (T1 + VT1) + γ(VT1 + VT2)− β2V (T2 + VT2),

dVT1

dt
= β1V (T1 + VT1)− (γ + u)VT1 ,

and

dVT2

dt
= β2V (T2 + VT2)− (γ + u)VT2 .

In the next section, the analysis of this model will be presented. As with the

model presented in Chapter 2, the equilibrium solutions and effective reproductive

number are determined and both local and global stability analyses are carried

out.

3.2.1 Results

Equilibrium solutions

Using a similar approach to that described in the previous chapter, the equilib-

ria for this two MLST model were found. The details are omitted for brevity

but are similar to the derivation of the equilibrium results for the case when

transmission depends on serotype explained in detail in the second model in

this chapter. For this model, three steady state populations are possible: one

carriage-free and two carriage equilibria. Assuming that β1 6= β2, these equilib-
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ria, (Xe, T1e , T2e , Ve, VT1e
, VT2e

), are:

(
L

u
(1− f), 0, 0,

L

u
f, 0, 0

)
, (3.1)

(
(1− f)

γ + u

β1

, (1− f)

(
L

u
− γ + u

β1

)
, 0, f

γ + u

β1

, f

(
L

u
− γ + u

β1

)
, 0

)
, (3.2)

and(
(1− f)

γ + u

β2

, 0, (1− f)

(
L

u
− γ + u

β2

)
, f
γ + u

β2

, 0, f

(
L

u
− γ + u

β2

))
. (3.3)

The first equilibrium (the CFE) is always feasible. The second equilibrium (a

CE) is feasible if and only if β1L
u(γ+u)

> 1 and the third equilibrium (also a CE) is

feasible if and only if β2L
u(γ+u)

> 1.

One CE refers only to carriage of MLST 1 and the other involves only carriage

of MLST 2. Thus, at equilibrium the two MLSTs cannot coexist in the popula-

tion. The number of susceptible hosts in each of these CE solutions only differ

in terms of the transmission parameter, with the CE for carriage of MLST 1 de-

pendent upon the transmission of MLST 1, β1, and the CE for carriage of MLST

2 dependent upon transmission of MLST 2, β2.

In the case where β1 = β2 = β, one equilibrium is again

(
L

u
(1− f), 0, 0,

L

u
f, 0, 0

)
.

Additionally, if βL
u(γ+u)

> 1 then any solution of the form

(
(1− f)

γ + u

β
, (1− f)αξ, (1− f)(1− α)ξ, f

γ + u

β
, fαξ, f(1− α)ξ

)
with ξ = L

u
− γ+u

β
and 0 < α < 1 is a feasible CE. Thus, in this case neither
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MLST dominates and the two MLSTs can coexist in the population.

Effective reproductive number

Re can take one of two possible values for this two MLST model. These values

differ in terms of the transmission parameter. Re is defined to be:

Re = max(β1, β2)
L

u(γ + u)
.

To see this, the matrix M is calculated as in Section 2.5.1 in the previous chapter

with four types of carrying hosts: unvaccinated carriers of MLST 1 (i = 1);

unvaccinated carriers of MLST 2 (i = 2); vaccinated carriers of MLST 1 (i = 3);

vaccinated carriers of MLST 2 (i = 4). Then

M =


β1L(1−f)
u(γ+u)

0 β1L(1−f)
u(γ+u)

0

0 β2L(1−f)
u(γ+u)

0 β2L(1−f)
u(γ+u)

β1Lf
u(γ+u)

0 β1Lf
u(γ+u)

0

0 β2Lf
u(γ+u)

0 β2Lf
u(γ+u)

 .

The largest eigenvalue of M is Re above. For the purpose of later discussion, let

Re1 = β1L
u(γ+u)

and Re2 = β2L
u(γ+u)

.

Local stability analysis

If it is assumed that β1 > β2 > 0 then Re1 > Re2. Thus, in this situation, Re1

is the effective reproductive number. The mathematics of carrying out a LSA

was discussed in depth in the previous chapter for the simpler one MLST model.

Therefore, here the mathematical detail will be omitted and a summary of the

findings are provided.

There are three possible cases to consider for this analysis; Re1 < 1 and Re2 < 1,

Re1 > 1 > Re2 and Re1 > Re2 > 1. In the first scenario, the CFE, (3.1), is the

only equilibrium possible and is LAS. In the second situation, the only equilibria

possible are the CFE and the CE involving carriage of only MLST 1, (3.2). In
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this case the CFE is unstable and the CE is LAS. In the third case, all equilibria

are possible. Both the CFE and the CE involving carriage of MLST 2, (3.3), are

unstable and the CE involving carriage of MLST 1 is LAS.

Therefore, in each case there is just one LAS equilibrium. The CE referring to

carriage of MLST 1 is always LAS when it exists and the CE for carriage of MLST

2 is always unstable when it exists.

A similar argument follows when β2 > β1 > 0, where the CE referring to carriage

of MLST 2 is always LAS when it exists and that of MLST 1 is unstable when it

exists.

To summarise, if the effective reproductive number is less than 1, the CFE is the

only possible equilibrium and is LAS. If it is greater than 1, the CFE is unstable.

If Re1 > Re2, then when Re > 1, the equilibrium corresponding to carriage of

MLST 1, is LAS and the equilibrium corresponding to carriage of MLST 2 either

does not exist if Re2 6 1, or is unstable if Re2 > 1. Similarly, if Re2 > Re1 and

Re2 > 1, then the equilibrium corresponding to carriage of MLST 2 is LAS and

the equilibrium corresponding to carriage of MLST 1 either does not exist or is

unstable.

Global stability analysis

As discussed in Chapter 2, a GSA is preferred to a LSA to avoid the issue of

determining how close the initial population sizes must be to the sizes shown

in the equilibrium for the population sizes to tend to that steady state. Global

stability can be difficult to prove. However, fortunately a GSA is possible for this

model.

Assume once again that β1 > β2. Thus, Re1 > Re2 so Re = Re1 = β1L
u(γ+u)

. Initially,

as with the GSA described in previous chapter, vaccinated and unvaccinated

susceptible and carrying hosts are grouped together. Thus, for this model, three

ODEs are formed as this model also considers hosts carrying a second MLST.
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These ODEs are described below.

d(X + V )

dt
= L− (X + V )(u− β1(T1 + VT1)− β2(T2 + VT2))

+ γ(T1 + T2 + VT1 + VT2),

d(T1 + VT1)

dt
= β1(X + V )(T1 + VT1)− (γ + u)(T1 + VT1),

and

d(T2 + VT2)

dt
= β2(X + V )(T2 + VT2)− (γ + u)(T2 + VT2). (3.4)

The analysis involves the same approach as that described in Chapter 2. Thus,

the first scenario to consider is when Re 6 1. As usual in this case, the CFE is

the only equilibrium possible and is LAS if Re < 1 and it is of interest to consider

various cases involving the number of initial carrying hosts. The cases considered

are what happens when there are no carrying hosts initially; what happens when

there are no hosts carrying MLST 1 initially but there are carriers of MLST 2;

what happens when there are hosts carrying MLST 1 initially but no carriers of

MLST 2; what happens when there are hosts carrying MLST 1 and hosts carrying

MLST 2 in the initial population.

The argument for the first case is very similar to that of the one MLST model

as (T1 + VT1)(0) = (T2 + VT2)(0) = 0 ⇒ (T1 + VT1)(t) = (T2 + VT2)(t) = 0 ∀
t. As it is known that T1, T2, VT1 and VT2 are all greater than or equal to zero

since they represent numbers of hosts, when T1 + VT1 = 0, T1 and VT1 must both

equal zero. The same is true of T2 and VT2 when T2 + VT2 = 0. By substituting

T1 = VT1 = T2 = VT2 = 0 into the ODE for X+V , it can be seen that X+V → L
u

as t → ∞. In this case, the same argument as that adopted in the one MLST

model can be used to identify what X and V each tend to. This time T2 +VT2 = 0

must be substituted into the equation for dX
dt

as well as T1 + VT1 = 0. Therefore,

it can be concluded that X → L(1−f)
u

and V → Lf
u

as t→∞.

In the second case when there are no hosts carrying MLST 1 initially but there

are carriers of MLST 2, (T1 + VT1)(0) = 0 implies that (T1 + VT1)(t) = 0 ∀ t so
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that T1(t) = 0 and VT1(t) = 0 ∀ t as above. In this situation, substituting T1 = 0

and VT1 = 0 into the first ODE and the third ODE, (3.4), leaves the following

equations:

d(X + V )

dt
= L− u(X + V )− β2(X + V )(T2 + VT2) + γ(T2 + VT2), (3.5)

and

d(T2 + VT2)

dt
= β2(X + V )(T2 + VT2)− (γ + u)(T2 + VT2). (3.6)

Considering these equations, it can be seen that the proof for this part of the

GSA is the same as that for Case 2 of the GSA in Chapter 2, with T2 replacing

T1 in the arguments and VT2 replacing VT1 . It can be shown, using the same

approach as in Case 2, that (T2 + VT2)(0) > 0 implies that (T2 + VT2)(t) > 0 ∀ t,
a requirement for this analysis. Following the rest of the proof in Case 2, it can

be concluded that for this situation when Re 6 1, T2 + VT2 → 0 and X + V → L
u

as t→∞, regardless of the initial values of T2 + VT2 and X + V . Hence, T2 → 0,

VT2 → 0 and, from the results from the GSA in Chapter 2, X → L(1−f)
u

and

V → Lf
u

as t→∞.

Similarly, in the third case when there are no hosts carrying MLST 2 initially

but there are carriers of MLST 1, if (T2 + VT2)(0) = 0 and (T1 + VT1)(0) > 0,

substituting T2 = 0 and VT2 = 0 leaves two ODEs in terms of X+V and T1 +VT1 .

The results in this situation are analogous to those detailed for (T1 + VT1)(0) = 0

and (T2 + VT2)(0) > 0.

Next, in the case where both MLSTs are present in the initial population, (T1 +

VT1)(0) > 0 and (T2 + VT2)(0) > 0, is assessed. By using the same ideas as in

Case 2 of the GSA in Chapter 2, it can be shown that (T1 + VT1)(t) > 0 and

(T2 + VT2)(t) > 0 ∀ t. For this part of the GSA, all carrying hosts must be

considered together. Let T = T1 + VT1 + T2 + VT2 and for Re < 1 choose ε > 0

such that −k0 = (γ + u)(Re − 1) + β1ε < 0. ∃ t0 such that X + V 6 L
u

+ ε for

t > t0. Since β1 > β2, for t > t0

87



dT

dt
6 β1

(
L

u
+ ε

)
T − (γ + u)T,

so

1

T

dT

dt
6 β1

(
L

u
+ ε

)
− (γ + u) = −k0 < 0.

Then ∫ t

t0

1

T

dT

dt
ds 6

∫ t

t0

−k0ds.

0 6 T (t) 6 T (t0) exp(−k0(t − t0)). Hence, as t → ∞, T (t) → 0. Therefore,

T1 → 0, VT1 → 0, T2 → 0 and VT2 → 0 as t→∞.

When Re = 1 and (T1 + VT1)(0) > 0 and (T2 + VT2)(0) > 0, it is straightforward

to modify the argument given in Case 2 of the GSA in Chapter 2 to show that

here also T1 → 0, VT1 → 0, T2 → 0 and VT2 → 0 as t→∞.

Since X+V = N −T , X+V → L
u

as t→∞. Once again, following the previous

argument, X → L(1−f)
u

and V → Lf
u

.

To this point, the GSA for Re 6 1 has been shown. Next Re > 1 is considered

in the GSA. In this situation, the CFE is not the only possible equilibrium. The

same three cases as considered for Re 6 1 must be considered once again for

Re > 1. That is, when there are no carrying hosts initially, when there is one

type of MLST being carried initially and when both MLSTs are present in the

initial population.

In the case of no initial carrying hosts the results are the same as those obtained

when Re 6 1 and there are no hosts colonised with either MLST initially.

When (T1 +VT1)(0) > 0 but (T2 +VT2)(0) = 0 it can be shown, as in the previous

analysis, that there never will be any hosts carrying MLST 2. In this situation,

the global stability arguments of the one MLST model when Re > 1 and (T1 +
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VT1)(0) > 0 hold. Thus, X → (1 − f)γ+u
β1

, T1 → (1 − f)(L
u
− γ+u

β1
), V → f γ+u

β1

and VT1 → f(L
u
− γ+u

β1
) as t→∞. When there are hosts initially carrying MLST

2 but not MLST 1 the situation is slightly different as it has been assumed that

Re = Re1 which corresponds to transmission of MLST 1. Thus, when hosts

initially carry MLST 2, it is necessary to consider both Re2 6 1 and Re2 > 1.

When there are no hosts carrying MLST 1 initially, there never will be hosts

carrying MLST 1. When Re2 6 1, X + V → L
u

and T2 + VT2 → 0. Therefore,

following previous analysis, X → (1 − f)L
u

, V → f L
u

, T2 → 0 and VT2 → 0 as

t→∞. From the GSA of the one MLST model, when Re2 > 1, X → (1− f)γ+u
β2

,

T2 → (1− f)(L
u
− γ+u

β2
), V → f γ+u

β2
and VT2 → f(L

u
− γ+u

β2
) as t→∞.

When there are hosts present in the initial population carrying both of the two

MLSTs and β1 > β2, then X → (1− f)γ+u
β1

, V → f γ+u
β1

, T1 → (1− f)
(
L
u
− γ+u

β1

)
,

VT1 → f
(
L
u
− γ+u

β1

)
, T2 → 0 and VT2 → 0 as t → ∞. The proof is complicated

and is given in Appendix A.1 for simplicity of presentation.

Finally it is possible to show that if Re1 = Re2 > 1 and at least one MLST is

initially present, X, T1, V , VT1 and VT2 approach an equilibrium point where

X = (1− f)

(
L

u
− ξ
)
, T1 = (1− f)αξ, T2 = (1− f)(1− α)ξ,

V = f

(
L

u
− ξ
)
, VT1 = fαξ and VT2 = f(1− α)ξ for

α =
1

1 + k
and 0 6 α 6 1.

Here ξ = L
u
− γ+u

β
where β = β1 = β2 and k is given in terms of the initial

conditions by
T2(0)+VT2

(0)

T1(0)+VT1
(0)

. The proof is omitted for reasons of brevity but it is a

simplified version of the corresponding proof for the second model in the chapter

which is given in Appendix A.2.

To summarise, the following results have been proved:

Theorem 3.2.1.1

(i) When the effective reproductive number is less than or equal to one, the CFE
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is the only possible equilibrium. In this situation, regardless of the number

of hosts carrying either MLST 1 or MLST 2, the number of carrying hosts

will tend to zero in the long term. The number of susceptible and vaccinated

individuals will tend to their CFE values.

(ii) a) When the effective reproductive number is greater than one, if there are

no hosts initially carrying either of the MLSTs, there will never be any

hosts carrying either MLST.

(ii) b) If Re = Re1 > 1 > Re2 then if there are hosts carrying MLST 2 but not

MLST 1, there will never be any hosts carrying MLST 1 and the number

of hosts carrying MLST 2 will tend to zero. If Re = Re1 > Re2 > 1 then

under the same initial conditions the population sizes tend to those shown

in the CE for carriage of MLST 2, (3.3).

(ii) c) However, if Re1 > Re2 and there are hosts carrying MLST 1 initially,

regardless of whether there are any hosts carrying MLST 2 initially, in the

long term the number of hosts carrying MLST 2 will tend to zero and the

population will tend to the population sizes described in the CE for carriage

of MLST 1, (3.2).

(ii) d) If Re2 > Re1 the situations above are reversed.

(ii) e) If Re1 = Re2 > 1 then the CE is a line of equilibria and in the long term

coexistence of both MLSTs will occur along this line if both are initially

present, see above for details.

3.2.2 Conclusions

The analysis of this two MLST carriage model shows that there are three possible

equilibrium solutions when β1 > β2 or β2 > β1. One of the equilibria involves

only susceptible hosts, the other two involve carriage of one or other MLST but

not both. The two MLSTs are only able to coexist in the population should the

transmission parameter for MLST 1, β1, equal that of MLST 2, β2.

The results show that the effective reproductive number is dependent upon the

transmission parameters in the model. If MLST 1 has a higher transmission
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than MLST 2 then MLST 1 will remain in the population in the long term if

Re1 > 1 and there are hosts initially carrying MLST 1. This result is irrespective

of whether or not there are hosts initially carrying MLST 2. If MLST 1 has higher

transmission and there are no hosts carrying MLST 1 in the initial population but

carriers of MLST 2 exist then MLST 2 will remain in the population if Re2 > 1.

Thus, it is clear that the coexistence of MLSTs in the population is not possible

for this model, unless Re1 = Re2 > 1. If MLST 2 has higher transmission then the

situation is reversed. It is known that hosts may become dually colonised with

pneumococcal serotypes and this phenomenon was considered in the Lipsitch

two serotype model discussed in Chapter 2 (Lipsitch 1997). The Lipsitch model

showed coexistence of the serotypes within the population. It is plausible that if

a host can be dually colonised with pneumococcal serotypes that a host may be

dually colonised with pneumococcal MLSTs. Thus, perhaps a model involving

coexistence of the MLSTs should be considered. The main conclusion from the

modelling appears to be that in general in order to have coexistence of MLSTs

within the population it is necessary to have coexistence of MLSTs within an

individual host.

Considering the serotypes with which the MLSTs are associated, MLST 2 is only

associated with serotype 2. Thus, as the carriage equilibria show elimination of

one or other MLST, when Re > 1 and MLST 2 has higher transmission than

MLST 1 then serotype 1 will be eliminated from the population. If MLST 1

remains present in the population then both serotypes shall remain as although

the vaccine eradicates carriage of serotype 1, those unvaccinated hosts may still

be colonised with MLST 1 in the form of serotype 1.

A special case of this two MLST model involves no intervention. Assuming that

no individuals receive vaccine, setting V = 0, VT1 = 0 and VT2 = 0 will give the

three ODEs for dX
dt

, dT1

dt
and dT2

dt
that describe this system. Once again, this two

MLST model involves three equilibria; the CFE and two CE. One of the CEs

involves carriage of MLST 1 and the other MLST 2. Thus, in general this model

also results in elimination of one or other serotype when Re > 1 and there are

initial carrying hosts. The equilibria for this case can be formally derived from

the equilibria when there is vaccination by setting f = 0.
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Figure 3.2: Model of two MLSTs; both associated with two serotypes. Trans-
mission is due to serotype and the vaccine is assumed to be effective against one
serotype.

3.3 Model of two MLSTs with transmission due

to serotype

As with the previous model discussed in this chapter, it is assumed that hosts

can become colonised with one or other of the two sequence types, MLST 1 and

MLST 2. However, in this model it is assumed that MLST 1 and MLST 2 are both

associated with serotypes 1 and 2. MLST 1 can manifest as each serotype with

proportions PT1 and (1− P )T1 as in the previous model while MLST 2 is found

as serotype 1 with proportion QT2 and as serotype 2 with proportion (1−Q)T2.

However, as the vaccine is assumed to be 100% effective in preventing carriage

of serotype 1, all vaccinated carriers of MLST 1 and 2 must be carrying serotype

2. Once again, a proportion f of hosts entering the population are assumed to

receive the vaccine. The key difference between this model and the previous two

MLST model is that it is assumed that transmission is attributable to serotype,

not MLST. This can be seen on comparison of Figure 3.2 to Figure 3.1 for the

previous model.
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The six ODEs that correspond to this model (Figure 3.2) are:

dX

dt
= L(1− f)− uX − (Pβ1 + (1− P )β2)XT1 − β2XVT1

− (Qβ1 + (1−Q)β2)XT2 − β2XVT2 + γ(T1 + T2),

dT1

dt
= (Pβ1 + (1− P )β2)XT1 + β2XVT1 − (γ + u)T1,

dT2

dt
= (Qβ1 + (1−Q)β2)XT2 + β2XVT2 − (γ + u)T2,

dV

dt
= Lf − uV − β2V VT1 − (Pβ1 + (1− P )β2)V T1 − β2V VT2

− (Qβ1 + (1−Q)β2)V T2 + γ(VT1 + VT2),

dVT1

dt
= β2V VT1 + (Pβ1 + (1− P )β2)V T1 − (γ + u)VT1 ,

and

dVT2

dt
= β2V VT2 + (Qβ1 + (1−Q)β2)V T2 − (γ + u)VT2 . (3.7)

In the next section, the results for this model are presented. As before, these

include the equilibrium solutions, effective reproductive number, local and global

stability.

3.3.1 Results

Equilibrium solutions

In this model, as with the previous two MLST model, there are three equilibria.

The CFE is identical to that of the earlier model. The two carriage equilibria,

(Xe, T1e , T2e , Ve, VT1e
, VT2e

), are shown below:
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(
(1− f)(γ + u)

(1− f)(Pβ1 + (1− P )β2) + fβ2
, (1− f)

(
L

u
− (γ + u)

(1− f)(Pβ1 + (1− P )β2) + fβ2

)
, 0,

f
(γ + u)

(1− f)(Pβ1 + (1− P )β2) + fβ2
, f

(
L

u
− (γ + u)

(1− f)(Pβ1 + (1− P )β2) + fβ2

)
, 0
)
,

(3.8)

and(
(1− f)(γ + u)

(1− f)(Qβ1 + (1−Q)β2) + fβ2
, 0, (1− f)

(
L

u
− (γ + u)

(1− f)(Qβ1 + (1−Q)β2) + fβ2

)
,

f
(γ + u)

(1− f)(Qβ1 + (1−Q)β2) + fβ2
, 0, f

(
L

u
− (γ + u)

(1− f)(Qβ1 + (1−Q)β2) + fβ2

))
.

(3.9)

Once again, it can be observed that one CE corresponds to carriage of MLST 1,

the other to carriage of MLST 2.

As the derivation of these equilibrium solutions differs from that of those shown

in Chapter 2, the process is described. As usual, the time derivatives are set

equal to zero and solved simultaneously to obtain the solutions.

From (3.7), dT1

dt
= 0 is rearranged to obtain an expression for T1 in terms of X

and VT1 . For ease of expression, let R = Pβ1 + (1− P )β2. Then

T1 =
β2XVT1

(γ + u)−RX
. (3.10)

(3.10) is substituted into
dVT1

dt
= 0 to obtain

β2V VT1 +
V Rβ2XVT1

(γ + u)−RX
− (γ + u)VT1 = 0,
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so

VT1

(
β2V +

V Rβ2X

(γ + u)−RX
− (γ + u)

)
= 0.

Therefore, either VT1 = 0 or

V

(
β2 +

Rβ2X

(γ + u)−RX

)
= (γ + u),

i.e.

V

(
β2(γ + u)

(γ + u)−RX

)
= (γ + u).

Thus,

V =
(γ + u)−RX

β2

.

Let K = Qβ1 + (1−Q)β2 and substitute V = (γ+u)−RX
β2

into
dVT2

dt
= 0. This gives

β2

(
(γ + u)−RX

β2

)
VT2 +

(
(γ + u)−RX

β2

)
KT2 − (γ + u)VT2 = 0.

Hence, clearly,

VT2 =

(
(γ + u)−RX

β2

)
KT2

RX
.

Substituting this expression for VT2 into dT2

dt
= 0 gives

XKT2 + β2X

(
(γ + u)−RX

β2

)
KT2

RX
− (γ + u)T2 = 0.

It can be deduced that either T2 = 0 or XK + (γ+u)K
R
−XK − (γ + u) = 0. In

the latter case this gives (γ + u)
(
K
R
− 1
)

= 0, i.e. K
R

= 1 since (γ + u) 6= 0.

This means K = R, i.e. Qβ1 + (1−Q)β2 = Pβ1 + (1− P )β2. Thus, to find the

equilibrium solutions, VT1 = 0, T2 = 0 and K = R all must be considered.

When VT1 = 0, T1 = 0 or V = 0 from
dVT1

dt
= 0. When VT1 = V = 0, this implies

that VT2 = 0 from
dVT2

dt
= 0. However, at equilibrium V + VT1 + VT2 = Lf

u
. Thus,
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this cannot be the case. Therefore, V 6= 0 so T1 = 0 is the solution. When

VT1 = T1 = 0, the equilibrium equations to consider are:

L(1− f)− uX −KXT2 − β2XVT2 + γT2 = 0,

KXT2 + β2XVT2 − (γ + u)T2 = 0,

Lf − uV − β2V VT2 −KV T2 + γVT2 = 0,

and

β2V VT2 +KV T2 − (γ + u)VT2 = 0. (3.11)

Hence, X + T2 = L(1−f)
u

, V + VT2 = Lf
u

and

T2

VT2

=
X

V
=

L
u

(1− f)− T2

L
u
f − VT2

.

It can be seen that, after simplifications, fT2 = (1 − f)VT2 . Therefore, T2 =

(1 − f)υ and VT2 = fυ, where T2 + VT2 = υ and so X = L(1−f)
u
− (1 − f)υ and

V = Lf
u
− fυ. Substituting these expressions involving υ for T2, VT2 , X and V

into (3.11)(ii) added to (3.11)(iv) gives(
L

u
− υ
)
K(1− f)υ + β2

(
L

u
− υ
)
fυ − (γ + u)υ = 0.

Thus, υ = 0 or β2f
(
L
u
− υ
)

+ K(1 − f)
(
L
u
− υ
)
− (γ + u) = 0. Let y = L

u
− υ.

Then

y =
γ + u

K(1− f) + β2f
.

This means that

υ =
L

u
− (γ + u)

K(1− f) + β2f
. (3.12)
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When υ = 0, since T2 +VT2 = 0, T2 = 0 and VT2 = 0. This proves one equilibrium

solution is the CFE. When υ takes the value shown, (3.12),

T2 = (1− f)

(
L

u
− (γ + u)

K(1− f) + β2f

)
,

VT2 = f

(
L

u
− (γ + u)

K(1− f) + β2f

)
,

X =
(1− f)(γ + u)

K(1− f) + β2f
,

and

V =
f(γ + u)

K(1− f) + β2f
.

This is the CE shown previously, (3.9).

When T2 = 0, either X = 0 or VT2 = 0. However, X 6= 0 as X+T1+T2 = L
u

(1−f)

and X = 0 implies that T1 = 0. Thus, T2 = VT2 = 0 and the procedure for finding

the equilibrium solution (3.8) is the same as that for the other CE solution.

Finally, K = R must be considered. Once again, consider the fact that at equi-

librium X + T1 + T2 = L
u

(1− f) and V + VT1 + VT2 = L
u
f . Then,

T1

VT1

=
X

V

unless T1 = VT1 = 0. Similarly, T2

VT2
= X

V
unless T2 = VT2 = 0. When T1 or VT1 6= 0

and T2 or VT2 6= 0,

T1

VT1

=
T2

VT2

=
X

V
= π.

So,
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π =
X + T1 + T2

V + VT1 + VT2

=
1− f
f

,

or,

π =
X

V
=

T1 + T2

VT1 + VT2

=
1− f
f

.

So, if T1 + T2 = (1− f)ξ, where ξ > 0, and VT1 + VT2 = fξ,

ξ = T1 + T2 + VT1 + VT2 =
L

u
− (X + V ) =

L

u
−X

(
1 +

f

1− f

)
.

Therefore, X = (1 − f)
(
L
u
− ξ
)

and V = f
(
L
u
− ξ
)
. Substituting these expres-

sions into dX
dt

= 0 in (3.7) gives

L(1− f)− u(1− f)

(
L

u
− ξ
)
− (1− f)

(
L

u
− ξ
)
K(1− f)ξ

− β2(1− f)

(
L

u
− ξ
)
fξ + γ(1− f)ξ = 0,

since K = R. This simplifies to

uξ − (1− f)

(
L

u
− ξ
)
Kξ − β2

(
L

u
− ξ
)
fξ + γξ = 0.

Therefore, ξ = 0 or

ξ(K(1− f) + β2f) =
L

u
K(1− f) +

β2L

u
f − (u+ γ).

When ξ = 0, X = (1−f)L
u

and V = fL
u

. In addition, in this case T1 = T2 = VT1 =

VT2 = 0. This is the CFE for this model. Otherwise, L
u

(K(1− f) + β2f) must be

greater than or equal to γ + u.

It is known that X = (1 − f)
(
L
u
− ξ
)
, V = f

(
L
u
− ξ
)
, T1 + T2 = (1 − f)ξ and

VT1 + VT2 = fξ.
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Choose α so that VT1 = αfξ < fξ for α < 1. Then

VT2 = fξ − αfξ = fξ(1− α),

T1 =
1− f
f

VT1 = (1− f)αξ,

and

T2 = (1− f)(1− α)ξ.

These values of X, V , T1, T2, VT1 and VT2 satisfy all the equilibrium equations

hence form an equilibrium for any value of α. In the situation where T2 = VT2 = 0,

T1 or VT1 6= 0.

T1

VT1

=
X

V
= π.

So,

π =
X + T1

V + VT1

=
1− f
f

.

Hence, if T1 = (1 − f)ξ and VT1 = fξ, ξ = T1 + VT1 = L
u
− (X + V ). Thus,

ξ = L
u
− X

(
1 + f

1−f

)
, X = (1 − f)

(
L
u
− ξ
)

and V = f
(
L
u
− ξ
)
. Therefore,

substituting once again into dX
dt

= 0 from (3.7),

L(1− f)− u(1− f)

(
L

u
− ξ
)
− (1− f)

(
L

u
− ξ
)
K(1− f)ξ

− β2(1− f)

(
L

u
− ξ
)
fξ + γ(1− f)ξ = 0.

So, as before X = (1 − f)
(
L
u
− ξ
)
, V = f

(
L
u
− ξ
)
, T1 = (1 − f)ξ and VT1 = fξ

is the equilibrium solution. Similarly, when T1 = VT1 = 0, T2 or VT2 6= 0 and

X = (1− f)
(
L
u
− ξ
)
, V = f

(
L
u
− ξ
)
, T2 = (1− f)ξ and VT2 = fξ.
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Effective reproductive number

Again, as with the other two MLST model, Re takes one of two possible values.

Re takes the larger of Re1 and Re2 where

Re1 =
((1− f)(Pβ1 + (1− P )β2) + fβ2)L

u(γ + u)

and

Re2 =
((1− f)(Qβ1 + (1−Q)β2) + fβ2)L

u(γ + u)
.

The derivation of Re for this model is not presented here as it is similar to that

of the previous model.

Clearly, which value Re takes is dependent upon the transmission parameter. The

difference between the two values for Re is due to the differing proportions with

which each of the MLSTs can manifest as each of the serotypes.

Local stability analysis

As with the previous models, a LSA was carried out for this model. Once again

the stability matrix for the model must be identified. To do this, the equations

(3.7) are expressed as

dX

dt
= f(X,T1, T2, V, VT1 , VT2),

dT1

dt
= g(X,T1, T2, V, VT1 , VT2),

dT2

dt
= h(X,T1, T2, V, VT1 , VT2),

dV

dt
= i(X,T1, T2, V, VT1 , VT2),
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dVT1

dt
= j(X,T1, T2, V, VT1 , VT2),

and

dVT2

dt
= k(X,T1, T2, V, VT1 , VT2).

The partial derivatives of these functions are shown in Table 3.1, with R =

Pβ1 + (1− P )β2 and K = Qβ1 + (1−Q)β2.

An equilibrium solution, (Xe, T1e , T2e , Ve, VT1e, VT2e) is LAS if the real parts of the

eigenvalues of the 6× 6 matrix A, an extension of the 4× 4 matrix A in Chapter

2, Section 2.5.1, are negative.

A LSA was carried out for each of the equilibrium solutions of this model. The

full details of the LSA are not presented here but the results show that when

Re < 1, the CFE is LAS but is unstable if Re > 1. Recall that the CFE is the only

equilibrium solution if Re 6 1. If Re = Re1 > max(1, Re2) (i.e. Pβ1 +(1−P )β2 >

Qβ1+(1−Q)β2) the first CE, (3.8), is LAS and if it exists (i.e. if Re2 > 1) then the

second CE is unstable. In the reverse situation, if Re = Re2 > max(1, Re1) then

the first CE, (3.8), is unstable if it exists (i.e. if Re1 > 1). In this situation the

second CE is always stable. If Re1 = Re2 then any of the line of endemic equilibria

are neutrally stable. A solution is defined as neutrally stable if a “differential

shift in the initial state is preserved in time” (Öktem 2005). This means that the

solution is stable but not attracting.

Global stability analysis

To carry out the GSA assume, without loss of generality, that (Pβ1+(1−P )β2)(1−
f) + β2f > (Qβ1 + (1−Q)β2)(1− f) + β2f . Therefore, Re = Re1 and Re > Re2.

The GSA can then be carried out using a similar approach to that described for

the previous models by first of all considering the various initial states for Re 6 1

and then again for Re > 1. For brevity, the proofs are not presented in this thesis.

However, the analysis is available on request.
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As usual, the analysis is begun by considering Re 6 1. When T1(0) = VT1(0) =

T2(0) = VT2(0) = 0 then T1(t) = VT1(t) = T2(t) = VT2(t) = 0, ∀ t. In this

case X → L(1−f)
u

and V → Lf
u

as t → ∞. Considering T1(0) = VT1(0) = 0 but

T2(0) > 0 or VT2(0) > 0, T1(0) = VT1(0) = 0 which implies that T1(t) = VT1(t) = 0,

∀ t. Substituting T1 = 0 and VT1 = 0 in the four ODEs for X, T2, V and VT2

gives:

dX

dt
= L(1− f)− uX − (Qβ1 + (1−Q)β2)XT2 − β2XVT2 + γT2,

dT2

dt
= (Qβ1 + (1−Q)β2)XT2 + β2XVT2 − (γ + u)T2,

dV

dt
= Lf − uV − β2V VT2 − (Qβ1 + (1−Q)β2)V T2 + γVT2 ,

and

dVT2

dt
= β2V VT2 + (Qβ1 + (1−Q)β2)V T2 − (γ + u)VT2 .

Unlike the GSA for the other two MLST model where the vaccinated and unvac-

cinated susceptible and carrying hosts were grouped to carry out the analysis, for

this analysis ODEs involving grouped classes of unvaccinated hosts are considered

as follows:

d(X + T2)

dt
= L(1− f)− u(X + T2).

So,

X + T2 →
L(1− f)

u
as t→∞.
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Similarly,

V + VT2 →
Lf

u
as t→∞.

This means that given ε > 0, ∃ t0 such that for t > t0,

X 6 X + T2 6
L(1− f)

u
+ ε and V 6 V + VT2 6

Lf

u
+ ε.

Therefore,

d

dt

(
T2

VT2

)
6

(
(Qβ1 + (1−Q)β2)

(
L(1−f)

u
+ ε
)

β2

(
L(1−f)

u
+ ε
)

(Qβ1 + (1−Q)β2)
(
Lf
u

+ ε
)

β2

(
Lf
u

+ ε
) )(

T2

VT2

)

− (γ + u)

(
T2

VT2

)
.

Let the matrix B be defined by

B =

(
(Qβ1 + (1−Q)β2)

(
L(1−f)

u
+ ε
)

β2

(
L(1−f)

u
+ ε
)

(Qβ1 + (1−Q)β2)
(
Lf
u

+ ε
)

β2

(
Lf
u

+ ε
) )

.

Recall that the spectral radius of a matrix is the largest absolute value of an

eigenvalue of that matrix. The spectral radius of BT is

ρ(BT ) = (Qβ1 + (1−Q)β2)

(
L

u
(1− f) + ε

)
+ β2

(
Lf

u
+ ε

)
.

If Re2 < 1, ε may be chosen to be small enough so that ρ(BT ) < γ+u. By Lemma

2.1 of Nold (1980), there is an e = (e1, e2) > 0 such that BTeT = ρ(BT )eT , i.e.

eB = ρ(BT )e.
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So, if

T =

(
T2

VT2

)
,

then

d

dt
[eT] 6 eBT− e(γ + u)T,

= (ρ(BT )− (γ + u))(eT),

= −k0eT,

where k0 = (γ + u) − ρ(BT ) > 0. Hence 0 6 eT(t) 6 eT(0) exp(−k0t) → 0 as

t→∞ so eT(t) = e1T2(t) + e2VT2(t)→ 0 as t→∞. Therefore, since e1 > 0 and

e2 > 0, T2(t) → 0 and VT2(t) → 0 as t → ∞. So, X → L(1−f)
u

and V → Lf
u

as

t→∞.

When Re2 = 1, define B(ε) ≡ B. ρ(B(0)T ) = (γ + u)Re2 = (γ + u). By Lemma

2.1 of Nold (1980) there is an e = (e1, e2) > 0 such that B(0)TeT = ρ(B(0)T )e,

i.e. eB(0) = ρ(B(0)T )e.

It is known that

d

dt

(
T2

VT2

)
6

(
(Qβ1 + (1−Q)β2)

(
L(1−f)

u
+ ε− T2

)
β2

(
L(1−f)

u
+ ε− T2

)
(Qβ1 + (1−Q)β2)

(
Lf
u

+ ε− VT2

)
β2

(
Lf
u

+ ε− VT2

) )
×(

T2

VT2

)
− (γ + u)

(
T2

VT2

)
.
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So,

d

dt
[eT] 6 e

(
B(0) +

(
(Qβ1 + (1−Q)β2)(ε− T2) β2(ε− T2)

(Qβ1 + (1−Q)β2)(ε− VT2) β2(ε− VT2)

))
T

− e(γ + u)T, where T =

(
T2

VT2

)
,

= (e1, e2)

(
(Qβ1 + (1−Q)β2)(ε− T2) β2(ε− T2)

(Qβ1 + (1−Q)β2)(ε− VT2) β2(ε− VT2)

)
T,

=

(
(Qβ1 + (1−Q)β2)[e1(ε− T2) + e2(ε− VT2)],

β2[e1(ε− T2) + e2(ε− VT2)]

)(
T2

VT2

)
,

= ((Qβ1 + (1−Q)β2)T2 + β2VT2)(e1(ε− T2) + e2(ε− VT2)),

= ((Qβ1 + (1−Q)β2)T2 + β2VT2)((e1 + e2)ε− e1T2 − e2VT2).

Hence, for eT > (e1 + e2)ε, d
dt

(eT) is negative so ∃ t1 > t0 such that for t > t1,

0 6 e1T2 + e2VT2 6 2(e1 + e2)ε. But ε > 0 is arbitrary and e1 > 0 and e2 > 0 so

T2 and VT2 → 0 as t→∞. So, again, X → L(1−f)
u

and V → Lf
u

as t→∞.

The same arguments may be used when T2(0) = VT2(0) = 0 and T1(0) > 0 and

VT2(0) > 0, replacing Qβ1 + (1 − Q)β2 with Pβ1 + (1 − P )β2. Thus, T1(t) → 0,

VT1 → 0, X → L(1−f)
u

and V → Lf
u

as t→∞.

Finally, the case where (T1 + VT1)(0) > 0 and (T2 + VT2)(0) > 0 when Re 6 1 is

discussed. First, consider

d

dt
(X + T1 + T2) = L(1− f)− u(X + T1 + T2).

106



So,

X + T1 + T2 →
L(1− f)

u
as t→∞.

Next, consider

d

dt
(V + VT1 + VT2) = Lf − u(V + VT1 + VT2).

Hence,

V + VT1 + VT2 →
Lf

u
as t→∞.

This means that given ε > 0, ∃ t0 such that for t > t0,

X 6 X + T1 + T2 6
L(1− f)

u
+ ε and V 6 V + VT1 + VT2 6

Lf

u
+ ε.

Thus,

d

dt

(
T1

VT1

)
6

(
(Pβ1 + (1− P )β2)

(
L(1−f)

u
+ ε
)

β2

(
L(1−f)

u
+ ε
)

(Pβ1 + (1− P )β2)
(
Lf
u

+ ε
)

β2

(
Lf
u

+ ε
) )(

T1

VT1

)

− (γ + u)

(
T1

VT1

)
.

Therefore, by following the same argument as that for the case where T1(0) =

VT1(0) = 0 and T2(0) > 0 and VT2(0) > 0, it can be shown that T1 → 0 and

VT1 → 0. A similar argument can be used to show that both T2(0) → 0 and

VT2(0)→ 0 as t→∞. Hence X → L(1−f)
u

and V → Lf
u

as t→∞.

As with the global stability analyses for the other models, next Re > 1 is consid-

ered. When there are no carrying hosts initially, it can be shown that X → L(1−f)
u

and V → Lf
u

as t→∞ and there never will be carrying hosts.
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If there are no hosts initially carrying MLST 2 but there are hosts carrying

MLST 1, it is easily shown that no hosts will ever carry MLST 2 and that X +

T1 → L(1−f)
u

and V + VT1 → Lf
u

as t → ∞. The next part of the analysis

involves combining the ODEs for susceptible and carrying hosts. Vaccinated

and unvaccinated susceptible hosts are grouped together in a single ODE and

vaccinated and unvaccinated carrying hosts are grouped together in another ODE.

The ODE for the carrying hosts is complicated by the fact that transmission is

attributable to serotype and not MLST. The analysis for this part of the GSA

is shown in Appendix A.2. The results as t → ∞ if Re1 > 1 are T2 → 0 and

VT2 → 0 and

X → (1− f)(γ + u)

(Pβ1 + (1− P )β2)(1− f) + β2f
,

T1 → (1− f)

(
L

u
− γ + u

(Pβ1 + (1− P )β2)(1− f) + β2f

)
,

V → f(γ + u)

(Pβ1 + (1− P )β2)(1− f) + β2f
,

and

VT1 → f

(
L

u
− γ + u

(Pβ1 + (1− P )β2)(1− f) + β2f

)

When there are only hosts carrying MLST 2 initially and Re = Re1, if Re2 6 1

then the GSA follows the same argument as that when Re 6 1. Thus, T2 → 0,

VT2 → 0, X → L(1−f)
u

and V → Lf
u

as t→∞. When Re2 > 1, the analysis follows

the same argument as that of T2(0) = VT2(0) = 0 when there are hosts initially

carrying MLST 1, with Pβ1 + (1 − P )β2 replaced by Qβ1 + (1 − Q)β2. In this

scenario, if Pβ1 + (1− P )β2 > Qβ1 + (1−Q)β2, then Re = Re1 and as t→∞,
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X → (1− f)(γ + u)

(Qβ1 + (1−Q)β2)(1− f) + β2f
,

T2 → (1− f)

(
L

u
− γ + u

(Qβ1 + (1−Q)β2)(1− f) + β2f

)
,

V → f(γ + u)

(Qβ1 + (1−Q)β2)(1− f) + β2f
,

and

VT2 → f

(
L

u
− γ + u

(Qβ1 + (1−Q)β2)(1− f) + β2f

)
.

Finally, the last scenario to consider is when there are hosts initially carrying

both MLSTs. The analysis is not displayed in this chapter but may be found

in Appendix A.2. In this scenario, if Pβ1 + (1 − P )β2 > Qβ1 + (1 − Q)β2, then

Re = Re1 and as t→∞, T2 → 0, VT2 → 0 and

X → (1− f)(γ + u)

(Pβ1 + (1− P )β2)(1− f) + β2f
,

T1 → (1− f)

(
L

u
− γ + u

(Pβ1 + (1− P )β2)(1− f) + β2f

)
,

V → f(γ + u)

(Pβ1 + (1− P )β2)(1− f) + β2f
,

and

VT1 → f

(
L

u
− γ + u

(Pβ1 + (1− P )β2)(1− f) + β2f

)
.

However, if Qβ1 + (1− Q)β2 > Pβ1 + (1− P )β2, then Re = Re2 and T1(t) → 0,
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VT1(t)→ 0 and

X → (1− f)(γ + u)

(Qβ1 + (1−Q)β2)(1− f) + β2f
,

T2 → (1− f)

(
L

u
− γ + u

(Qβ1 + (1−Q)β2)(1− f) + β2f

)
,

V → f(γ + u)

(Qβ1 + (1−Q)β2)(1− f) + β2f
,

and

VT2 → f

(
L

u
− γ + u

(Qβ1 + (1−Q)β2)(1− f) + β2f

)
.

When Pβ1 + (1−P )β2 = Qβ1 + (1−Q)β2, the situation is slightly more complex

and X, T1, T2, V , VT1 and VT2 approach the equilibrium point where

X = (1− f)

(
L

u
− ξ
)
, T1 = (1− f)αξ, T2 = (1− f)(1− α)ξ,

V = f

(
L

u
− ξ
)
, VT1 = αfξ, and VT2 = fξ(1− α).

In these equations, ξ = L
u
− (γ+u)

(Pβ1+(1−P )β2)(1−f)+β2f
. Here, α = 1

1+k
, where k is

given in terms of the initial conditions by

(Pβ1 + (1− P )β2)T2(0) + β2VT2(0)

(Pβ1 + (1− P )β2)T1(0) + β2VT1(0)
.

This analysis is described in full in Appendix A.

A summary of the results are shown in the following Theorem:

Theorem 3.3.1.1

(i) When the effective reproductive number is less than or equal to one, the CFE
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is the only possible equilibrium. In this situation, regardless of the number

of hosts initially carrying either MLST 1 or MLST 2, the number of carrying

hosts will tend to zero in the long term. The number of susceptible and

vaccinated individuals will tend to their CFE values.

(ii) a) When the effective reproductive number is greater than one, if there are

no hosts initially carrying either of the MLSTs, there will never be any

hosts carrying either MLST.

(ii) b) If Re = Re1 > 1 > Re2 then if initially there are hosts carrying MLST

2 but not MLST 1, then there will never be any hosts carrying MLST 1

and the number of hosts carrying MLST 2 will tend to zero. If Re = Re1 >

Re2 > 1 then under the same initial conditions the population sizes tend to

those shown in the CE for carriage of MLST 2, (3.9).

(ii) c) However, if Re1 > Re2 and there are hosts carrying MLST 1 initially,

regardless of whether there are any hosts carrying MLST 2 initially, in the

long term the number of hosts carrying MLST 2 will tend to zero and the

population will tend to the population sizes described in the CE for carriage

of MLST 1, (3.8).

(ii) d) If Re2 > Re1 and Re2 > 1 the situations above are reversed.

(ii) e) If Re1 = Re2 > 1 then the CE is a line of equilibria and in the long term

coexistence of both MLSTs is possible along this line if both are initially

present. Provided that at least one MLST is initially present X, T1, T2, V ,

VT1 and VT2 approach the equilibrium point where

X = (1− f)

(
L

u
− ξ
)
, T1 = (1− f)αξ, T2 = (1− f)(1− α)ξ,

V = f

(
L

u
− ξ
)
, VT1 = fαξ and VT2 = f(1− α)ξ,

for α = 1
1+k

and 0 6 α 6 1. Here, k =
(Pβ1+(1−P )β2)T2(0)+β2VT2

(0)

(Pβ1+(1−P )β2)T1(0)+β2VT1
(0)

and

ξ = L
u
− γ+u

(Pβ1+(1−P )β2)(1−f)+β2f
.
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3.3.2 Conclusions

The results for this two MLST model show three possible equilibria, as with

the previous two MLST model. Once again, there is the CFE and two possible

CE; one corresponding to carriage of MLST 1, the other MLST 2. There is no

possibility of hosts carrying MLST 1 and others carrying MLST 2 at equilibrium

apart from the special case where Re1 = Re2.

As transmission is assumed to be dependent on serotype for this model and not

MLST, the effective reproductive number involves the proportions vaccinated and

unvaccinated. However, the difference between the two possible values of Re is

attributable to the different proportions with which each MLST manifests as

each of the serotypes as clearly the difference between the two values is that one

involves Pβ1 + (1− P )β2 whilst the other involves Qβ1 + (1−Q)β2. Thus, it is

apparent that one of the Re values corresponds to carriage of MLST 1, the other

carriage of MLST 2.

The results of the GSA were summarised previously but the main conclusions

are that if Pβ1 + (1 − P )β2 > Qβ1 + (1 − Q)β2 then Re = Re1 and if this

value is less than or equal to 1 then the number of hosts carrying either of the

MLSTs will tend to zero in the long term, irrespective of the initial number of

carrying hosts. This makes sense as when Re 6 1, the CFE is known to be the

only possible equilibrium. When Re = Re1 > 1, the population sizes will tend

to those of the CE for carriage of MLST 1, (3.8), as MLST 1 dominates when

Pβ1 + (1 − P )β2 > Qβ1 + (1 − Q)β2. However, this result is dependent upon

there being hosts initially carrying MLST 1 in the population. If no hosts carry

either MLST and Re > 1, the populations will tend to the sizes of the CFE which

is the same as that of the first two MLST model, (3.1). Similarly, if there are

children carrying MLST 2 initially but not MLST 1 but Re2 < 1, the limiting

steady state population is described by the CFE. However, if there are initial

individuals colonised by MLST 2 but not MLST 1 and Re2 > 1 then MLST 2

prevails in the population and the CE for carriage of MLST 2, (3.9) is both locally

and globally asymptotically stable.

Concerning the two serotypes, as both MLSTs are able to manifest in both
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serotypes then, even though MLSTs have been shown to be unable to coexist

in the population, the two serotypes should be able to coexist in the population

assuming that there are unvaccinated hosts. If f = 1, then all children will re-

ceive the conjugate vaccine, assumed to be 100% effective in preventing carriage

of serotype 1. In this case, regardless of whether or not individuals are colonised

with MLST 1 or 2, all hosts must be carrying serotype 2.

In the case of no vaccine intervention, i.e. V = 0, VT1 = 0 and VT2 = 0, all hosts

fall into the unvaccinated susceptible class, X, unvaccinated MLST 1 carrier class,

T1 and the unvaccinated MLST 2 carrier class, T2. The ODEs for these classes

are as described for this model with vaccine, replacing the terms for vaccinated

hosts in the expressions with zero. At the CFE, all hosts, L
u

, are in the susceptible

class X. The CEs for X, T1 and T2 are the same as those shown in (3.8) and

(3.9), with f = 0. Thus, coexistence of MLSTs in the population at equilibrium

is not possible unless Re1 = Re2, as in the situation with vaccine intervention.

Obviously, V , VT1 and VT2 should no longer be considered in these equilibria. The

values for R0 are the same as those described for the model with vaccine with f =

0 and the stability analysis shows similar results to that of the model with vaccine.

When R0 6 1, the CFE is the only equilibrium which exists and is globally stable,

irrespective of the initial number of carrying hosts. If R0 > 1 and no hosts are

carriers initially, the CFE is the globally stable equilibrium. If R0 > 1 and

Pβ1 +(1−P )β2 > Qβ1 +(1−Q)β2 and there are hosts initially carrying MLST 1

then the population will tend to that of the CE for carriage of MLST 1, regardless

of the initial number of MLST 2 carriers. When Pβ1+(1−P )β2 > Qβ1+(1−Q)β2,

if there are no hosts carrying MLST 1 initially but hosts carry MLST 2, as long

as the R0 value corresponding to carriage of MLST 2 is greater than one then

the population will tend to the MLST 2 carriage equilibria, otherwise the CFE

shows the stable population sizes. If Qβ1 + (1 − Q)β2 > Pβ1 + (1 − P )β2 the

above situations are reversed.

3.4 Modelling conclusions

In the current chapter and the preceding chapter, three different models for the

carriage of MLSTs in children under the age of two years are discussed. In
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each of these models, at least one MLST is assumed to be associated with more

than one serotype. The model in Chapter 2 considers only the possibility of

colonisation with a single MLST which is associated with two serotypes with

differing proportions. In this chapter, the models look at the possibility of a

child becoming a carrier of one of two different MLSTs. The first model in

this chapter assumes that only one of the MLSTs corresponds to two serotypes

with differing proportions, whilst the other manifests only as one serotype. The

second addresses the possibility that each MLST is associated with the same two

serotypes but that the proportions with which each MLST manifests as each of

the serotypes differ. The second model in this chapter can be used to obtain other

models involving different combinations of serotypes and MLSTs. For example,

by setting Q = 0 or Q = 1 in this model, the first model in this chapter is

obtained but with transmission dependent on serotype rather than MLST.

Each of the three models consider a vaccine intervention which completely elim-

inates carriage of the VT serotype. In the models, only one of the serotypes is

assumed to be a VT serotype. Vaccinated hosts are still able to become colonised

with the MLST considered in the first model, or either of the MLSTs considered

in the two MLST models, as the vaccine is serotype specific, not MLST specific.

The vaccine would result in elimination of the MLST only if it was solely associ-

ated with the VT serotype. The reason that the models did not consider MLSTs

solely associated with a VT serotype is that the models were created with a view

to assessing what could occur in the population following a vaccine intervention

should MLSTs be able to manifest as both a virulent VT and a NVT serotype.

The assumption that the vaccine is 100% effective in preventing carriage of VT

serotypes is likely to be an overestimate of the vaccine effectiveness, with studies

in France and the USA showing a reduction in carriage of VT serotypes but not

total elimination (Cohen et al. 2006; ?). Similarly, in a South African trial of

PCV-7, the carriage of VT serotypes observed for vaccinated hosts was half of that

observed for unvaccinated hosts but VT serotypes were still carried by vaccinated

hosts (Mbelle et al. 1999). Thus, it appears unlikely that the vaccine will prevent

all hosts from carrying VT serotypes and therefore this should possibly be taken

into account in the mathematical models. However, other published mathematical
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models of pneumococcus make assumptions that the vaccine is 100% effective in

preventing colonisation with VT strains (Lipsitch 1997; Temime et al. 2004).

Thus, it seems reasonable to have considered this in the MLST models analysed

in this thesis. As the models described in this chapter do consider the possibility

of a fraction of those aged under two years remaining unvaccinated, this allows

for VT serotypes to remain in the population at equilibrium. Thus, by varying

this parameter, it is possible to consider a reduced vaccine effect in the model.

A further issue explored in this chapter is the differences which occur when trans-

mission is assumed to be attributable to serotype rather than to MLST. The first

model considered in Chapter 2 assumes transmission is due to MLST as does the

first model in this chapter, whilst the third model discussed addresses transmis-

sion by serotype. In other pneumococcal carriage models, such as the 1997 model

by Lipsitch, transmission is assumed to be attributable to serotype. However,

MLSTs were not considered in any of the other published pneumococcal models

which all focus on serotype or strain, rather than addressing the possibility of

classifying the pneumococcal isolates according to both serotype and MLST. As

many of the modelling approaches discussed in Chapter 2 involve the examina-

tion of penicillin resistance by pneumococcal strains, it makes sense to model

from the serotype perspective as the serotype is a known virulence factor of the

bacterium and penicillin resistance has been observed for different serotypes in-

volved in disease. In allowing the mechanism of transmission to differ for the two

models considered in this chapter, differences are observed in the effective repro-

ductive numbers for the models. In the first model of transmission by MLST, Re

is determined by the size of the transmission parameter between the susceptible

class to the carrier classes for MLST 1 and 2, with the larger transmission param-

eter present in Re. The expressions for Re for the model where transmission is

assumed attributable to serotype involves the proportions for which each MLST

is able to manifest in each serotype. This model is the only one to have the

parameter for the proportion of hosts vaccinated present in the expression for Re.

Of the two models analysed in this chapter, neither show the possibility of coex-

istence of MLSTs in the population at equilibrium except for special parameter

values. However, coexistence of MLSTs or serotypes within an individual host
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Figure 3.3: Model of two MLSTs; both associated with two serotypes with
serotype coexistence.

was not considered in these models. Dual colonisation has been shown to occur

within an individual in carriage; a longitudinal study of 82 children during the

first 24 months in the USA showed 4.3% of all samples involved multiple carriage,

4% with two serotypes and 0.3% with three (Gray et al. 1980). Thus, coexis-

tence of serotypes within a host should be considered as a possibility in carriage

models. Therefore, the models discussed in this chapter could be extended by

the inclusion of coexistence of either serotype or MLST. Possible models which

could be considered in future analysis are shown in Figures 3.3 and 3.4. Figure

3.3 shows coexistence of serotypes but not MLSTs as the serotypes coexisting

within an individual are assumed to have the same MLST. The other model,

Figure 3.4, addresses both serotype and MLST coexistence. A host can be dually

colonised with serotypes which have the same MLST, serotypes with different

MLSTs and MLSTs with the same serotype. In these models, the transmission

could be considered to be attributable to either MLST or serotype, as in the

models considered in this chapter.

Coexistence of MLSTs or serotypes within an individual appears to be a neces-

sary prerequisite for coexistence of MLSTs within the population. By excluding

the possibility of coexistence within an individual in the three models assessed,
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Figure 3.4: Model of two MLSTs; both associated with two serotypes with MLST
coexistence resulting in serotype coexistence.

coexistence of the two MLSTs is not possible in the population at equilibrium. Of

course, it is possible that either host heterogeneity or some type of stochasticity,

or indeed something else which has not been incorporated in the model structure,

could cause coexistence.

As coexistence is not incorporated into the model structures, a parameter to

account for competition between the two MLSTs in the model, as included in the

two serotype Lipsitch model, could not be included in the two MLST models. In

the model with transmission attributable to MLST considered in this chapter,

two MLSTs appear to compete for survival due to differences in their abilities

to transmit. Whichever has the higher transmission thrives in the population

when Re > 1 and the other is eventually eliminated, assuming that there are

initial carrying hosts of that MLST in the population. It is known that MLSTs

can coexist in the population. Thus, this once again emphasises the necessity to

include coexistence within an individual host in the MLST models.

The models analysed have a variety of limitations as described in this section.

However, the conclusion drawn from the model that coexistence of MLSTs or

serotypes within an individual host is necessary for coexistence within a popula-
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tion is a significant conclusion to reach.

Further studies of MLSTs in pneumococcal carriage are required to obtain a better

understanding of the importance of these stable genetic elements in describing

the pneumococcal population. Considering coexistence in the models described

would have greatly complicated the system of equations and thus computationally

intensive measures would have been required to obtain equilibrium solutions and

stability analyses. Longitudinal carriage studies have assessed the serotypes which

commonly colonise but no studies with appropriate MLST and serotype data

could be identified to obtain an idea of what happens from the genetic perspective

in dual colonisation. This type of longitudinal study is required to establish which

of the models should be considered in further analysis.
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Chapter 4

Economic evaluation of health

technologies

4.1 Introduction

In this next section of the thesis, interest lies in assessing how decisions are made

about whether or not the benefits provided by a new treatment or health care

intervention, such as PCV-7, outweigh the cost of introducing such an interven-

tion. PCV-7 is the most expensive paediatric vaccine to become licensed (Beutels

et al. 2007). However, to obtain a license for use, health economic analyses must

be carried out to assess whether or not, through the use of an expensive product

such as this, the burden to the health care provider will be reduced.

This chapter begins with a general introduction to the ideas behind economic

assessment of a health care intervention and describes some of the methodology

adopted in such an analysis. The focus in later sections of the chapter will re-

turn to the pneumococcus, with a description of the published analyses of the

cost-effectiveness of PCV-7. Following this, the next chapter contains a statisti-

cal analysis of hospital episode statistics (HES) of the pneumococcal conditions

septicaemia, meningitis and pneumonia for use in a cost-effectiveness model of

PCV-7.
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4.2 Background

Economic evaluation within the health sector is necessary, as with other sectors

such as transport and defence, as there are only finite resources available with

which to provide health care technologies. The health sector does not have the

means with which to provide all possible health care technologies to suit the needs

of all individuals. Therefore, economic evaluation is adopted to enable decisions

to be made as to which technologies should be implemented. These decisions

are based on the costs of providing the technology and the benefits, or effects,

obtained through the use of the technology.

Health economics is a branch of economics created to enable better decision mak-

ing when determining whether or not health care technologies are cost-effective.

Health care from an economic perspective was considered as far back as the 17th

century when the English economist and scientist Sir William Petty addressed

important issues in health economy such as what value should be placed on a life.

However, health economic theory and modelling was not explored in depth until

the late 1960s when economists began to assess how government money should

be spent in the health sector. The 1970s saw the introduction of the techniques of

cost-benefit analysis (CBA) and cost-effectiveness analysis (CEA) to determine

how resources should be allocated within and throughout the health sector (Mills

1997). Economic studies were not utilised to decide whether or not governments

should adopt new treatments until the 1990s when, in 1993, Australia created a

policy whereby any new drug required not only an efficacy trial but also some

type of cost-effectiveness analysis before it would be considered for reimbursement

(Kobelt 2002). Following this, a number of countries adopted various methods

of incorporating cost-effectiveness evidence into the process of policy-making in

health care. Canada introduced compulsory cost-effectiveness analyses on all new

drugs in 1995 in Ontario and in 1996 in British Columbia, whilst in Europe, Fin-

land, Norway and the Netherlands have had obligatory health economic analyses

on all new drugs since 1998, 2002 and 2003 respectively (Kobelt 2002).

In the UK, the National Institute for Clinical Excellence (NICE) was created in

1999 to provide guidance on the clinical efficacy and cost-effectiveness of new tech-

nologies (such as medicines, medical devices and diagnostic techniques). NICE
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was renamed the National Institute for Health and Clinical Excellence in 2005

when the role of the Health Development Agency (HDA) was adopted by the

institute. One of the primary reasons for the establishment of NICE was to “re-

duce variation in the quality of care provided by the National Health Service”

(Littlejohns 2001). One of the primary concerns of the 1997 Labour government

was that throughout the UK there was a vast difference in the quality of health

care provided and the government wanted to put an end to postcode prescribing

where different health authorities were able to offer different treatments (Griffin

and O’Grady 2006). In January 2002, it was made a requirement for England

and Wales that National Health Service (NHS) organisations fund the various

medical technologies that were recommended by NICE (NICE 2005). NICE rec-

ommendations are controversial due to the fact the new technologies are assessed

according to evidence of their cost-effectiveness, not just their clinical efficacy,

to determine whether or not the NHS should fund them. A key concern is that

NICE recommendations could lead to an increase in the government spending

required for the NHS to have sufficient funds for these new technologies. Another

concern is that NICE will not actually have the effect intended, as it may not

stop postcode prescribing since local health authorities are able to apply clinical

discretion as to which current treatments will be replaced by the new treatments

recommended by NICE (Griffin and O’Grady 2006).

In Scotland, the Scottish Medicines Consortium (SMC) provides recommenda-

tions as to which new health technologies should be adopted. The SMC was

created in 2001 and represents all Health Boards (HBs) and Area Drug and

Therapeutic Committees (ADTCs) in Scotland.

There are a number of differences in the way the SMC and NICE operate. SMC is

responsible for assessing all drugs that have been licensed for market in Scotland

whilst it is the responsibility of the Department of Health and the Welsh Assembly

to decide which health technologies, not exclusively drugs, are to be assessed

by NICE. The SMC provides a faster assessment of new technologies on their

introduction whilst NICE provides a much longer and more comprehensive review

of the evidence surrounding the new technology. Whilst it is policy for Health

Authorities in England and Wales to adopt NICE recommended treatments, in
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Scotland the ADTC receive guidance from the SMC but are not required to follow

their recommendations unless it is an exceptional circumstance, such as in the

case where there is no other treatment available for a particular condition. With

both organisations, the emphasis is on assessing new treatments whilst treatments

in use prior to the establishment of NICE and SMC had no requirement for a cost-

effectiveness analysis and are not now considered by these agencies retrospectively

(Cairns 2003).

It may appear rather odd that cost-effectiveness analyses only became commonly

used in health care decision making in the 1990s as economic analyses have been

used to enable decision making in other government sectors, such as transport

or security, for a great number of years. However, economic analyses are much

more complex when dealing with the health sector. Health must be considered in

a different way to that of other sectors as economic analyses generally consider

investments but health cannot be considered solely in terms of an investment. In

addition, unlike other sectors involving consumers, in the case of health care the

consumer relies on the advice of others, such as general practitioners (GPs), to

establish what condition he or she is suffering from and which treatment should

be adopted. In addition, it is difficult to determine the output in an economic

evaluation of health as it is difficult to place a value on the improvement in health

(Griffin and O’Grady 2006). There are other problems associated with economic

analyses in the health sector attributed to weak or complicated methodology

used in the cost-effectiveness analyses. Some complications attributed to the

methodology will be discussed in this chapter.

4.3 Types of economic evaluation

Economic evaluations are defined according to the approach taken when costing

or the benefit measure used in the analysis. There are four main types of analysis

that may be used in the evaluation and comparison of health technologies: the

cost-effectiveness analysis (CEA), cost-utility analysis (CUA), the cost-benefit

analysis (CBA) and the cost-consequence analysis (CCA). In practice, the CEA,

CUA or CBA are the preferred approaches. This is due to the fact that in a CCA,

all costs and consequences, measured in the appropriate units, are presented to
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the decision maker. This makes it difficult to judge whether or not the treatment

is truly cost-effective as it is difficult to determine the trade-offs (Drummond et al.

2005). The other three types, the CEA, CUA and CBA, are defined according to

the type of benefit measure used in the analysis.

4.3.1 Cost-effectiveness analysis

A cost-effectiveness analysis (CEA) is used when there are at least two technolo-

gies, a new technology and a current technology in use, to be compared in terms

of their cost-effectiveness. For each technology, the costs for one unit of improved

outcome, whether it be an additional year of life of a patient gained or an episode

free day for an asthma patient (Drummond et al. 2005), are determined and

compared. In a cost-effectiveness analysis the benefit measure is a natural unit

which is relatively simple to determine such as number of lives, or life years saved,

or number of cases of disease detected, for example. To compare the technologies

the cost per life year gained, or cost per number of cases of a disease detected,

may be calculated for each technology. This cost analysis must be carried out

in conjunction with evidence of clinical efficacy as a new technology cannot be

adopted purely to reduce costs if it will not prove as effective in practice as the

current technology. A special case of the CEA is a cost-minimisation analysis

(CMA). A CMA may be carried out if there is no difference in the health bene-

fits obtained from the various health technologies being compared (Briggs et al.

2006). Therefore, the health technology adopted should be the technology which

would cost least to implement. Cost-minimisation analysis is rarely used in prac-

tice as it is highly unlikely that two health technologies will have precisely the

same health benefit, particularly when a new technology has been developed to

improve the health benefit (Kobelt 2002).

A cost-effectiveness ratio is calculated to enable comparisons of technologies. The

extra cost that one technology has over the alternative (usually the new technol-

ogy proves more expensive than the existing technology), otherwise known as

the incremental cost, is determined and the incremental cost effectiveness ratio

(ICER) is computed. The ICER is the added expense of obtaining a further unit

of outcome, such as life year gained, for one technology compared to another

(Kobelt 2002).
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The ICER is only calculated when the more expensive of the technologies has

also been shown to have greater efficacy. In the case where technology B is more

effective but more expensive than A, the calculation for the ICER is (Kobelt

2002):

ICER =
CostB − CostA

EffectB − EffectA
.

The better, more expensive technology is adopted if the willingness to pay of those

determining which technology to utilise is greater than the incremental cost. If

the better technology is also the less expensive technology there is no need to

work out the ICER as clearly this technology should be the one adopted. The

ICER may be displayed on the cost-effectiveness plane (Figure 4.1).

A

New technology less 

effective and more 

expensive than the current 

technology

B

New technology more effective 

and more expensive than the 

current technology

C

New technology less 

effective and less expensive 

than the current technology

D

New technology more effective 

and less expensive than the 

current technology

-

+

+

- Difference in 

Effectiveness

Difference in Cost

Figure 4.1: The cost-effectiveness plane (adapted from Drummond et al., 2005).

The horizontal-axis on the cost-effectiveness plane shows the difference in the

efficacy of the new technology and the current technology that it is being com-

pared to. The vertical-axis shows the difference in the cost of the two technologies

(Drummond et al. 2005). The decision as to which technology to use is simple if

the outcome lies in either category A or D, as if the new technology is less effec-

tive and more expensive than the current technology it should not be adopted to
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replace the current technology and if the new technology is more effective and less

expensive then it should replace the technology currently in use. The decision of

which technology to use if the outcome lies in categories B and D is more difficult

and is based upon the ICER and willingness to pay. Alternatively, the ICER may

be displayed in a 3× 3 table (Figure 4.2).

G D B

C I E

A F H

Incremental effectiveness of new technology compared to current 

technology

More

Same

Less

More Same Less

Incremental cost of 

new technology 

compared to 

current technology

Figure 4.2: The cost-effectiveness table (adapted from Drummond et al., 2005).

A cost-effectiveness acceptability curve may be used to portray the information

used in the CEA as it shows what proportion of estimates of the ICER are

satisfactory for a series of willingness-to-pay values. Here, the willingness-to-

pay values are determined by how much a policymaker is prepared to pay for

the technology. An example of cost-effectiveness acceptability curves from an

assessment of the cost-effectiveness of a rotavirus vaccine in Vietnam is shown

in Figure 4.3 (Kim et al. 2009). These curves show the cost-effectiveness results

when assessing the rotavirus vaccine from the societal perspective and from the

health care payer perspective. Further details about perspectives in a health

economic analysis will be provided later in this chapter.
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Figure 4.3: Cost-effectiveness acceptability curves (adapted from Kim et al.,

2009).

The difficulty with a CEA analysis that uses natural units as a benefit measure

is that it is often very disease specific, thus making it difficult to compare cost-

effectiveness across all conditions. For example, in a published CEA of a vaccine

for prevention of hepatitis A and B infections, the outcome benefit measure was

the number of cases of hepatitis A and B infections prevented (Szucs 2000). By

using a benefit measure of this type, it is difficult to determine whether the cost-

effectiveness for this vaccine is better, worse or equal to the cost-effectiveness of

a vaccine which prevents something else, such as influenza, for example.

Another example where this type of analysis may not be the most appropriate is

a cost-effectiveness analysis of the use of the varicella vaccine in Canada (Brisson

and Edmunds 2002). The drawback of this analysis is not that the outcome mea-

sure is not comparable across analyses but it does concern the outcome measure

adopted. In this analysis the outcome measure is life-years gained. However,

Brisson and Edmunds state that a more appropriate outcome measure to have

used in the analysis is the cost per quality-adjusted life year (QALY) saved due

to the fact that varicella is a mild disease resulting in little mortality and it is

known that the vaccine results in reduced morbidity. A definition of a QALY is
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provided in the next section of the chapter. The authors state that unfortunately

this technique could not be used in the analysis as no methodology had been

developed to measure QALYs lost due to mild diseases with short-term duration

in very young children.

4.3.2 Cost-utility analysis

The preferred type of health economic evaluation is the cost-utility analysis

(CUA), where the outcome to measure improvements in health care provided

is the QALY and the cost for each QALY gained is determined for each technol-

ogy. QALYs measure the desire of individuals to be in various states of health.

To determine the quality-adjusted life expectancy, the total number of years that

an individual spends in a particular health condition is multiplied by the score

associated with that particular condition. The health scores generally range from

0 to 1, with scores approaching 0 reflecting worsening states of health as 0 rep-

resents death whilst 1 represents perfect health. It is possible to give a negative

score if the health state is considered to be worse than death.

To help clarify the definition of a QALY, consider someone who lives for twenty

years. In the first ten years the person has no health problems whatsoever and

thus has a utility of 1 for these years. In the next ten years, the person suffers

from a health condition which reduces the utility by half before the person dies

at the end of these ten years. Thus, the person lived for twenty years but had

a quality-adjusted life expectancy of (10× 1) + (10× 0.5) = 15 QALYs (Palmer

2005).

A threshold for the maximum cost per QALY for a health care intervention is

defined for a health economic analysis. In the UK, for example, if a treatment

costs more than £20, 000 − 30, 000 per QALY then it is not cost-effective (NHS

NICE 2009).

In addition, a similar alternative measure to the QALY, often adopted in a CUA,

is the disability-adjusted life year (DALY). The DALY differs from the QALY in

that rather than determining individual preferences for living with a disability,
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values are taken from decisions made by a panel of health care workers who looked

at person trade-off scores. In addition, the weights used in DALYs consist of only

nine distinct values, including one for healthy and one for dead whilst the QALY

weights can hypothetically take any value between 0 and 1. Finally, the DALY

involves weighting according to age whilst the QALY does not (Drummond et al.

2005).

The benefit of using a CUA over a CEA is that QALYs are not disease-specific so

the cost-effectiveness of various technologies across disease areas can be compared.

The problem in using a CUA is that difficulties can arise in obtaining truly

representative utility weights necessary to calculate a QALY. Another issue is that

different cost-effectiveness studies assess the technologies according to different

perspectives. Therefore, the technologies cannot be compared in terms of the

cost per QALY gained. For example, some cost-effectiveness analyses are carried

out from the NHS perspective whilst others could be assessed from the point of

view of those to receive the technology (Towse et al. 2002).

QALYs are a commonly used measure in analyses of the cost-effectiveness of

vaccines. Recently, QALYs have been used as the outcome measure in analyses

of the cost-effectiveness of the vaccine created to prevent cervical cancer, HPV

(Colantonio et al. 2009; Dasbach et al. 2008; Jit et al. 2008; Ginsberg et al.

2007). Considering the analysis by Colantonio et al., in this analysis the cost-

effectiveness of the vaccine in five Latin American countries was considered. The

model consists of twelve different health states which are mutually exclusive and

follows a female cohort from the age of 11 years until death. Each of these twelve

states are allocated a cost and utility for spending one cycle, a year in this case,

in this state. Thus, the model outcomes can vary as individuals can differ in

the length of time spent in one state. Colantonio et al. then calculated the

difference between scenarios for both health outcomes and total costs and were

able to estimate the ICER per QALY saved. In this analysis an intervention is

considered to be cost-effective when one QALY gained costs less than three times

the Gross Domestic Product per capita in each country. The authors find the

vaccine to be cost-effective under these conditions.

128



CUAs have also been used in assessment of other vaccines. For example, a CUA

was adopted in an analysis of a rotavirus vaccine (Goossens et al. 2008). Ro-

tavirus is the main cause of severe diarrhoea and vomiting in very young children

and Goossens et al. investigate the cost-effectiveness of introducing a vaccine

against rotavirus in the Netherlands. As with the Colantonio et al. HPV model,

Goossens et al. consider cycles in which children can move between various

health states. However, in this model the cycles are of much shorter duration,

one month, due to the nature of the conditions caused by rotavirus. In the model

it is assumed, for simplicity, that a child who did not die during a cycle following

the first five years of life will have a utility of 1 for the rest of his or her life.

In order to calculate the QALYs for this model, the utility values were based on

a study of rotavirus infection outcomes which used the EQ5D questionnaire to

make the valuation. The EQ5D questionnaire is a standardised instrument used

to calculate utility values for different health states.

4.3.3 Cost-benefit analysis

A third type of health economic evaluation that may be undertaken is a cost-

benefit analysis (CBA). In CBA, both the costs and the health benefit are mea-

sured in monetary terms. This necessitates the valuation of the usual measures of

outcome, such as life-years gained, number of disease cases prevented or QALYs

gained, in monetary terms. This differs from the CEA, where the health outcome

measure is the therapeutic effect and the CUA where the health outcome measure

is the quality of life of the patient. The advantage of this type of evaluation is

that, since the benefit measure is money, it allows the government funding deci-

sions within the health sector to be compared with the funding decisions of the

government in other sectors, such as transport or security. The problem with this

type of analysis is the difficulty of assigning a monetary value to life. There are

two main ways in which health may be given a monetary value.

The first of these is in terms of willingness-to-pay (WTP). To assess the WTP

for a CBA, contingent valuation studies are carried out in which questions are

asked about how much the subjects taking the survey are willing to spend on the

benefits obtained from a health technology. A contingent valuation can consist
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of two types of question: open-ended and discrete. With open-ended questions,

those taking the questionnaire are requested to state their maximum WTP whilst

with the discrete questioning approach, respondents have to state whether or not

they would be willing to pay certain amounts that are put before them (Kobelt

2002). In order to assess WTP, it is important that the respondents are able to

make informed decisions based on all available scientific information about the

health technology (Sloan 1996).

An example of this type of analysis involves the assessment of the WTP for

PCV-7 (Prosser et al. 2004). In this analysis, data were collected on the WTP

to prevent six conditions (simple OM, complex OM, moderate pneumonia, se-

vere pneumonia, bacteremia, and meningitis) which are preventable through the

use of PCV-7. The results from 30 minute telephone interviews of a sample of

parents of children who had experienced at least one of the six outcomes and

from a general community sample in the USA show both groups to assign rel-

atively high values to preventing the more severe outcomes such as meningitis

and pneumonia. Using the information in a health economic model resulted in a

cost-effectiveness ratio being obtained which is comparable to those obtained for

other health interventions commonly used.

The second method of valuing benefits is a market based approach looking at

human capital. The human capital approach assesses the effect of lost productiv-

ity of workers were they to suffer from ill health (Gold et al. 1996). Therefore,

in this approach, a good state of health is considered as an investment since a

person in good health is assumed to be able to make a greater contribution in

the workplace. In this way human capital may be measured in terms of earn-

ings and the current value of possible future earnings attributed to the health

care measure of interest is determined for comparison with that of current health

measures. There are difficulties with assigning monetary values to health in this

way. For example, there may be inconsistencies in the treatment of staff in the

workplace due to discrimination that make a generic value for wage difficult to

assign (Drummond et al. 2005). In addition, there are difficulties in assigning

values for those who have retired (Sloan 1996).
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This approach was adopted in an analysis of the varicella vaccine in Taiwan,

where it is mentioned that this measures the value of the vaccine intervention

by the effect it has on the lifetime earnings of the patients (Hsu et al. 2003).

To obtain estimates for the monetary benefit, a cross-sectional study of varicella

cases in Taiwan was carried out and information was collected about the income

of the parents or families of the patient who were unable to work because they

had to care for the patient. Thus, the monetary value placed on the benefit of

preventing the case of varicella was calculated by multiplying the loss of working

days of each adult by his or her daily income. The conclusions from the study

suggest that the vaccination implementation is only worthwhile to administer

routinely from the societal perspective with a benefit-cost ratio of 2.06, not from

the health care payer perspective, where a benefit-cost ratio of 0.34 is obtained.

Additionally, Hsu et al. carried out the analysis using the WTP approach. To

obtain an estimate of the WTP, in the cross-sectional study the participants were

asked to quote the most that they would be willing to pay for a routine varicella

vaccination programme that reduces the risk of death and long term disability.

A list of the potential disabilities was provided. The results showed the vaccine

not to be cost-effective using the WTP approach.

4.3.4 Cost-consequence analysis

Finally, a fourth type of economic evaluation which may be adopted is the cost-

consequence analysis (CCA). In a CCA, the various health technologies for a

particular health state are compared by listing all of the costs and health benefits,

or consequences, of each and a decision is made about which technology to adopt

by comparing these lists (Gold et al. 1996). A CCA is used when there are

a variety of benefits from each technology, therefore rendering other types of

economic evaluations difficult to use (Drummond et al. 2005). In a CCA, the costs

and consequences are not combined, as with other types of economic evaluation,

and the importance of the various consequences is not determined. The decision

of which technology is most appropriate to adopt is made purely by the decision

maker on examining the lists of costs and consequences.
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A CCA was carried out in an analysis of a treatment for cancer of the urinary

bladder (Marchetti et al. 2000). In this paper, Marchetti et al. provide estimates

of the expected costs of administering the intervention of interest, Valrubicin,

considering costs of potential adverse effects to the treatment. The authors sim-

ply conclude the analysis with the statement of the expected cost, making no

conclusions about whether or not the treatment is cost-effective as, in this type

of analysis, the decision ultimately has to be made by a higher authority who

determines whether or not the intervention should be implemented.

4.4 Costs

Various factors have led to an increase in the cost of health care. These include

an increasing demand for high standards of living, the ease with which infor-

mation about health care technologies may be obtained in the modern world,

technological advances and the ageing population in the developed world (Kobelt

2002).

In the economic evaluation of health technologies, money plays an important role

but is not considered as a resource for providing health. However, it is important

as it enables the purchase of necessary resources required to attempt to improve

health such as doctors, hospital beds and drugs (Griffin and O’Grady 2006). The

resources required in providing the health technology must be considered and the

costs of each of these must be evaluated for the economic analysis. Costs involved

in health care are not all necessarily defined in monetary terms but should still

be considered in an economic evaluation.

There are various types of costs that may be incurred by a patient when a health

technology is being implemented. There are direct costs which can be medical

or non-medical. A direct medical cost is the cost associated with the health

technology such as the price of a treatment whilst a direct non-medical cost

could be, for example, the travel expenses the patient must pay in order to receive

the treatment. Without paying these travel expenses the patient cannot receive

treatment. Therefore, this expense is considered as a direct cost. Indirect costs

are costs to the patient through, for example, the loss of wages whilst taking time
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off work to receive treatment.

In all economic analyses the opportunity costs must be identified. The oppor-

tunity cost is defined as the “value of the forgone benefits because the resource

is not available for its best alternative use” (Drummond et al. 2005, page 57).

Opportunity costs can occur when a resource being used is not thought of in mon-

etary terms, in that it does not have a market price, such as a family member

voluntarily providing care for another. It is important to determine the oppor-

tunity costs for all technologies being compared in order to correctly determine

which is the most cost-effective.

In determining the resources to include in the economic evaluation, it is important

to include both resources that may have a relatively small individual cost but will

have substantial usage, as well as resources associated with large costs which will

have fairly infrequent use (Gold et al. 1996). The decision of which costs should

be included in the analysis will entirely depend upon the perspective with which

the economic evaluation is being carried out. Economic evaluations are carried

out to enable decisions to be made about which health technologies should be

adopted. In the decision making process, the perspective of the analysis is very

important. One possible perspective that may be adopted is the societal per-

spective. Under this perspective, all individuals on whom the health technology

is likely to have an impact, whether it be in terms of health or cost, are consid-

ered (Gold et al. 1996). However, there are various other perspectives which can

be adopted in an economic evaluation, such as the third party payer, and the

perspective selected is dependent upon the aim of the evaluation. A third party

payer could be, for example, the government or an insurance company. With a

third party payer perspective, only costs incurred by this payer are taken into

account in the analysis. For example, a health insurance company is likely to be

interested only in the direct medical costs incurred and will not take into account

indirect costs such as those attributable to absence from work due to sick leave.

In the UK, economic evaluations of health technologies are carried out from the

NHS and Personal Social Services perspective with the main aim to be cost con-

tainment. As mentioned, analyses carried out from perspectives other than the
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societal viewpoint will only consider a subset of the factors considered in analy-

ses from the societal perspective. For example, in a CEA of a health technology

adopting a societal perspective costs incurred in purchasing and administering

the technology, additional hospital costs which require to be taken into account

when providing this technology, costs of services such as home health care or

nursing home expenses related to the technology and patient costs are all consid-

ered, whereas if a CEA is carried out from a hospital perspective then only the

costs of purchasing and administering the technology and any additional hospital

costs require to be considered (Sloan 1996).

There are two main categories of costing: micro-costing and gross-costing. Gross-

costing is relatively simple to carry out as an overall sum is determined for the

services involved in implementing the health technology, such as costs incurred

during a stay in hospital. However, there is a disadvantage to adopting this

approach of costing in that there may be a lack of sensitivity in the analysis

(Raftery 2000). In the UK gross-costing is adopted as hospital costs are esti-

mated by averaging information on treatment costs from hospitals throughout

the country. Micro-costing involves a greater degree of research work in order

to detail all resources a patient may require and all costs incurred through the

process of providing the intervention (Gold et al. 1996). Micro-costing may be

appropriate when an adjustment is being made to an existing health care service

(Raftery 2000). The disadvantage of micro-costing is that it is often expensive

and time-consuming to obtain the detailed expenses required in this costing ap-

proach.

In considering costing, discounting must be taken into account. Discounting is

carried out in economic evaluations when costs and benefits occur at different

times. Discounting is important as, with some health care interventions, it may

take time to observe benefits of the health technology but the cost of implementing

the technology may have to be paid immediately (Kobelt 2002). The correction

factor to adjust for discounting is 1/(1+r)t, where t is the number of years and r is

the discount rate. In the UK, a discount factor of 3.5% per annum is used for both

costs and benefits (Department of Health 2007). Thus, £1, 000 now is
(

1
1+0.035

)
×

£1, 000 in one year. The Treasury is responsible for deciding the discount rate to
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be adopted in economic evaluations and research is carried out on the societal time

preference for health benefits, i.e. the preference to receive benefits now rather

than in the future, to enable this decision to be made. The rate of inflation may

be used to guide this decision but discounting effectively has little to do with

inflation. High discount rates reflect the preference to have higher benefits now

whilst lower rates will reflect a higher emphasis on future benefits (Sloan 1996).

Discounting is not always essential in an economic evaluation. For example, if

effects of a health technology are experienced reasonably quickly, such as within

a year or two of the technology being implemented, it may not be necessary to

use discounting in the analysis. Considering vaccines once again, generally the

beneficial effects are obtained in the long term. For example, with PCV-7 long

term beneficial effects should be obtained through reductions in disease in those

unvaccinated due to herd immunity. However, some instantaneous effects are

observed such as a reduction in mortality to vaccine attributable disease in those

vaccinated.

4.5 Uncertainty

Identifying and assessing the uncertainties involved in an economic evaluation

plays a key role in decision making. Uncertainties may be assessed in two main

ways. The first of these involves data on the resource use of individual patients

to use in models to quantify uncertainty.

The other technique used in determining uncertainty is a sensitivity analysis.

There are four types of sensitivity analysis that may be adopted in an economic

evaluation: a one-way sensitivity analysis, a probabilistic analysis, a scenario

analysis and a threshold analysis. These four methods are described below.

The one-way sensitivity analysis is the simplest of the four types. In this type

of analysis, model parameters are varied one at a time to discover the impact of

each on the outcome of the model. This enables identification of the variables

which are important in determining the outcome. This technique also enables

the discovery of errors in the model. The disadvantage of this type of sensitivity

analysis is the difficulty in quantifying the combined effect of several potentially
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sensitive variables on the model outcome (Drummond et al. 2005). Therefore,

multiway analyses are often preferred such as two-way or three-way analyses, in

which two or three parameters are varied simultaneously. Analyses with greater

dimensions may be adopted. However, these analyses become very difficult to

carry out and interpret.

A second method of sensitivity analysis is a probabilistic analysis. This method

can be adopted when there are a variety of parameters which may prove impor-

tant in the sensitivity analysis as, for each of the identified uncertain parameters,

a probability distribution is assumed and the effect these parameters have on the

model is determined through Monte Carlo simulation. Monte Carlo simulation

will be discussed in the Methodology section in this chapter. Commonly, distri-

butions such as the Gamma distribution or the Beta distribution are adopted for

uncertain utilities (Sculpher 2004).

A third method is a scenario analysis. In this type of analysis, the parameters are

chosen to reflect best case and worst case scenarios so that the decision maker can

assess costs involved in each of these circumstances. A base case scenario which

reflects the best estimate of the analyst of the parameter values is also considered

for comparison.

Finally, threshold analysis may be adopted in determining uncertainty in an eco-

nomic evaluation. Threshold analysis enables decisions of which price should be

chosen for the technology if all other variables in the model are assumed to have

a greater degree of certainty. In such an analysis, the decision maker may state a

maximum cost for the health technology, above which the technology should not

be adopted. In this situation, an analyst will vary the parameters in the model

to determine which combinations of estimates will cause the health technology

to exceed the threshold cost proposed by the decision maker (Drummond et al.

2005).

There are various uncertainties that must be considered in an economic evaluation

such as structural uncertainty in which the model structure may not be suitable.

This could arise where models incorrectly specified crucial steps in a disease

progression. Variable uncertainty is also important to assess whether variables
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with a high variability are important in deciding the outcome of the model.

4.6 Methodology

As yet, no mention has been made of the methodology adopted in the evaluation

process. Commonly, modelling techniques are adopted. These techniques will be

discussed in this section.

Modelling is important in the economic evaluation of health care technologies as

it allows conclusions about the effectiveness of the technology, both in terms of

costs and benefits, to be made outwith the scope of the data used in the analysis.

The modelling methodologies used in economic evaluations include decision trees

and Markov chains, Monte Carlo simulations and Bayesian techniques. Research

identified all but the Bayesian approach in published economic evaluations of

the 7-valent pneumococcal vaccine (PCV-7). For example, decision trees were

adopted in an Australian CEA and CUA of the cost-effectiveness of PCV-7 (But-

ler et al. 2004); Markov models were used in a Norwegian study looking at a

CEA and CUA (Wisløff et al. 2006); Monte Carlo simulations were adopted to

carry out a sensitivity analysis in a UK CUA in conjunction with decision trees

to model disease outcomes and costs (Melegaro and Edmunds 2004a). Descrip-

tions of each of the usages will be provided in the relevant sections. In addition,

an example for the Bayesian approach will be provided for a non-pneumococcal

intervention.

The first step to be taken when carrying out a health economic evaluation is

the decision, and clear specification, of the question that is to be addressed.

There are key factors that must be taken into account such as the alternatives

for comparison in the analysis and the individuals to whom the treatments are

to be given. It is necessary to identify the perspective with which the analysis

is to be carried out. For example, does interest lie in addressing the benefits to

society or the benefits to the third party payer? The third party payer could

be the government or a particular health care organisation (Kobelt 2002). If the

societal benefits are addressed in the study then all costs, such as costs incurred

by the health care service, patients and costs incurred by others in society through
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production loss, must be included in the analysis. However, if the analysis is to be

carried out from a health care organisation perspective, or any other third party

payer perspective, then the only costs to be included are those for the resources

that the health care organisation directly pays for.

To illustrate, consider the analysis by Butler et al. (2004). Butler et al. carried

out an analysis to address the benefits of the introduction of PCV-7 to children

not at high-risk of pneumococcal disease in Australia, since prior to this analysis

only high-risk groups were administered the vaccine. The intention of the study is

to assess the benefits and costs of adopting PCV-7 for use amongst young healthy

children to prevent pneumococcal disease and infection.

Concerning the perspective, the authors state that it is apparent in Australia

which perspective should be adopted in an analysis as there is a clearly defined

system in place for new health care interventions in which only direct costs are

included in the analysis. To estimate the unit costs of vaccination and treatment

of various disease states, a societal perspective is adopted.

Considering the potential alternative treatments, Butler et al. estimated the costs

for the alternative treatments required should various pneumococcal outcomes

occur that PCV-7 could potentially prevent. For example, concerning meningitis,

the authors identified two possible costs. The first of which is the pre-hospital

admission treatment cost; the second, the average cost of treatment involving

hospitalisation due to meningitis. These depend on the severity of the meningitis.

The Butler et al. study will be discussed again later in this chapter.

A further issue that is important to consider is the structure that the model should

have. Firstly, clinical events must be considered. For example, if interest lies in

the cost-effectiveness of a particular treatment for a disease then it is necessary to

determine clinical events such as the number of cases of disease and stages in the

disease progression, as well as other diseases the virus or bacterium may cause.

This information must be utilised in the structure of the model. If these are not

considered then it is possible that incorrect conclusions may be made about the

cost-effectiveness of the treatment. The potential effects of the treatment of in-

terest must be determined, as well as the effects of all other interventions that can
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be used in treating the disease. For example, in assessment of HPV introduced

to prevent cervical cancer, it is important to calculate costs other than those

avoided through the prevention of cancer due to the use of the vaccine. These

costs include those incurred through cervical screening (as potentially the dura-

tion between routine examinations could increase following vaccine introduction,

thus reducing the overall cost of screening), and costs of treating other vaccine

preventable health conditions attributable to the virus, such as genital warts,

such as in the analysis by Jit et al. (2008). If the other preventable costs are not

considered the vaccine may prove too costly to be introduced. Jit et al. state

that a reduction in treatment for warts accounts for half of the discounted cost

savings to the health service.

It is essential to decide a time frame for the model in order to correctly identify

the events to be incorporated into the model. For example, in models of HPV,

the time frame selected can be the entire lifetime as cervical cancer can occur

at any point in adult life. This is the case in the model by Colantonio et al.

where a cycle of one year is considered from 11 years of age until death due to the

nature of the virus and due to the fact that the vaccine should be administered

to children of 12 years of age.

In order to carry out some of the modelling techniques adopted in a health eco-

nomic analysis, data are required. The clinical effectiveness information utilised

in a health economic analysis can come from a variety of sources and there is a

defined hierarchy of information that may be used. The best, most valid and reli-

able evidence to use in an analysis is accrued through a systematic review of the

literature on the effectiveness of interventions for a health condition of interest.

Second in the hierarchy is a well-designed pragmatic randomised controlled trial.

When such a trial is not possible then an observational study will have to be

carried out to obtain the information required. Finally, if all other measures fail

to provide the required information, expert opinion must be sought. However,

at this low level in the hierarchy there is a high chance of error and thus it is

preferred to rely on alternatives if at all possible. It has been argued that this

hierarchy is not always relevant as in some situations it is extremely difficult, if

not impossible, to carry out randomised controlled trials. For example, if the
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severe health outcome being assessed occurs rarely then it may be better to use

an observational study for a cost-effectiveness analysis of a treatment for this

outcome rather than a randomised controlled trial (Evans 2003).

4.6.1 Decision trees

The decision tree is a commonly used method in health economic analyses. A

diagram of a simple decision tree is shown in Figure 4.4. There are seven principal

components: decision and chance nodes, branch probabilities, pathways, pathway

probabilities, costs and expected values. The decision node is the first component

of the model and illustrates the decision that is to be considered for the patients

in the analysis. In Figure 4.4, the decision being dealt with in the model could

be assessing which of the interventions A or B is more cost-effective in preventing

disease without negative consequences. In the analysis of PCV-7 by Butler et

al., the decision node represents whether or not children receive the vaccine, see

Figure 4.5.

From the decision node, the tree progresses to the chance nodes which portray

the outcomes of the various primary health care interventions being considered.

An example of a chance node from the Butler et al. decision tree is the pos-

sibility of getting invasive pneumococcal disease, pneumonia or otitis media for

those unvaccinated children. Chance nodes occur moving across the tree, from

left to right, showing subsequent events following further interventions. These

nodes represent uncertain outcomes as it is not evident which event will occur.

There may be positive or negative outcomes resulting from the use of a particular

intervention depending on the individual to which it is administered.

Joining the nodes to one another are the branches of the decision tree and these

link the nodes to the potential effects of the interventions. Probabilities are

associated with the branches that correspond to the likelihood of the individuals

experiencing the various events. The sum of the probabilities of all the branches

leaving each chance node must equal 1 since these probabilities represent the

proportion of the cohort of individuals that follow each branch and all individuals

must be accounted for in the decision tree (Global Forum for Health Research

2008). Conditional probabilities occur when moving from one chance node to
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other chance nodes due to the fact that the probabilities of these further events

occurring are dependent upon the fact that the patient experienced a previous

event. For example, returning to the Butler et al. decision tree example, Figure

4.5, to obtain the outcome ‘with tympanostomy’, a patient must first have severe

OM.

The pathways in the decision tree are mutually exclusive and consist of the various

branch combinations. The probabilities associated with each pathway may be

calculated from the branch probabilities by multiplying the branch probabilities

associated with each chance node in the pathway. Pathway costs may also be

calculated by determining the costs for each of the events experienced in the

pathway and summing these costs. The costs involved could be, for example, the

cost of the intervention itself or the cost of hospitalisation. Finally, the expected

values in the decision tree must be calculated. For example, the expected cost for

each primary intervention can be calculated by multiplying the pathway costs by

their respective probabilities and summing across the pathways that correspond

to each intervention (Drummond et al. 2005).

Decision node

Chance node

EA1

EA2

P(EA1)

P(EA2) 
= 1-P(EA1)

EA3

P(EA3|EA1)

EB1

EB2

P(EB1)

P(EB2)
= 1-P(EB1)

KEY

Branch

Event i given 
intervention AEAi

EBi
Event i given 

intervention B

P Branch 
probability 

Intervention 
A

Intervention 
B

Figure 4.4: Decision tree.

The main advantage of using decision trees in evaluating the cost-effectiveness

of a particular intervention is that the methodology is relatively simple to carry
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out. The researcher is able to identify the information required to run the model

and can determine when additional assumptions or expert opinion are required if

information is not available for a particular parameter in the model. As mentioned

previously, expert opinion is at the bottom of the hierarchy of requirements for

information to be incorporated into a cost-effectiveness analysis. However, this

methodology enables sensitivity analyses to be carried out for weaker data such as

this. The sensitivity analysis is carried out in order to determine whether changes

in the uncertain parameter that has been assumed to take a particular value, or

has been estimated by expert opinion, lead to changes in the conclusions of the

analysis. In the situation where the uncertain parameter has a dramatic effect

on the analysis it is necessary to obtain more information about this parameter

before reporting the results.

There are a variety of drawbacks to using decision trees in a health economic

evaluation. Primarily, the problem arises with time dependent factors that are

required in the model, such as discounting factors, as it is not possible to specify

a time variable in this type of methodology. This problem is not exclusive to

decision trees as sometimes it is not easy to include time dependency in Markov

models due to the memoryless property of the Markov model. This property

is discussed in the next section. A second drawback is that decision trees can

become very complicated and can involve many possible branches depending on

the illness or disease that is under consideration. In particular, it is difficult to

specify all of the potential events for persistent conditions that can occur over

the length of the life of the patient.

Returning to the Butler et al. decision tree, the costs and benefits of a four dose

vaccination regime are compared with those when no vaccination is adopted. A

section of the decision tree is shown in Figure 4.5. In this figure, estimates for

the expected costs and event probabilities are shown for the OM strand of the

tree. These figures can be used to calculate total expected costs. For example,

the expected cost of a severe case of OM is (0.39× $1, 465) + (0.61× $2, 292) =

$1, 969.47. Expected costs and benefits for all of the pathways in the decision tree

were calculated in order to decide whether to adopt PCV-7 in Australia. On the

basis of the analysis carried out, Butler et al. concluded that adopting the four
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dose vaccination schedule in Australia, at a cost of $90 per dose, would not prove

to be cost-saving, regardless of the reduction in hospitalisations and in mortality.

Birth 
cohort

Unvaccinated

Vaccinated

Vaccine type IPD*

Pneumonia

* Invasive pneumococcal disease from a vaccine type serotype

Without Tympanostomy

With Tympanostomy

Otitis Media

Moderate

Severe
Survive

Die

Severe

Moderate

Further branches omitted+

+ Further branches omitted

0.9925

0.0075

0.39

0.61

$75

$1465

$2292

Figure 4.5: Decision tree model structure (adapted from Butler et al., 2004).

4.6.2 Markov chains

Markov chains may be used when the timing of the events being considered is

important in the economic analysis. This type of model is a stochastic process

defined in discrete time. As Markov chains consider time, they can be employed

in situations unsuitable for the use of decision trees. Instead of branches that

describe the progression of a patient dependent on the intervention adopted,

Markov chains are based on the states a patient may take during defined cycles.

A cycle in a Markov chain is a discrete period of time in which the patients may

move between the various states. The duration of the cycle is determined by the

health condition and the types of health care technology that are being considered

in the CEA. Cycles are typically months of a year or years. A Markov chain may

consist of several cycles and within each cycle there is a cost associated with each

state.

The principal property, or Markov property, of this type of model is that it has
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no memory. This means that to determine what state a patient may take in the

future, only the present state need be considered. It is unimportant how the

patient arrived at the current state. Once a patient has arrived at a certain state

in the Markov chain, the patient can either move to another state or remain in that

same state according to a set of given fixed probabilities. These probabilities are

termed transition probabilities as they are used to define transitions the patient

makes between states in the chain. In a Markov chain, the transition probabilities

are fixed with respect to time. However, in another type of Markov model, a

time-dependent Markov process, transition probabilities are allowed to vary over

time (Briggs and Sculpher 1998). Time-dependent Markov processes are useful

for models of continuing disease as, unlike the simple Markov chain, it is not

assumed, for example, that there is the same probability of death for young

individuals as for the elderly (Sloan 1996).

As mentioned previously, the memoryless property may cause problems with time

dependency in models. For example, Drummond et al. (2005) discuss an example

relating to AIDS patients. Patients can enter the AIDS state from either a state

where the CD4 count is between 200 and 500 cells/mm3 or from a state where

the count is less than 200 cells/mm3 but once in the AIDS state the model does

not distinguish between patients who came from one CD4 state or the other.

Drummond et al. state that this is a problem if evidence suggests that the

mortality risk is higher for those who entered into the AIDS state from the higher

CD4 count state than for those from the lower CD4 count state. However, this

problem may be avoided by creating two AIDS states: one state for those who

entered with lower CD4 counts and one for those who entered with higher CD4

counts.

Figure 4.6 shows a basic Markov chain consisting of only three possible states:

‘Infected’, ‘Recovered’ and ‘Dead’. It can be noted that the state ‘Dead’ is an

absorbing state. This means that once an individual has entered this state, he or

she cannot depart from it. Therefore, it has an associated transition probability

of remaining in this state, P7, of 1.
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Figure 4.6: Markov model (adapted from TreeAge Software Inc., 2008).
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Figure 4.7: Matrix of transition probabilities.

Figure 4.6 may also be expressed as a square array called a transition matrix (Fig-

ure 4.7). In the transition matrix, the first row contains the one step transition

probabilities of moving to an ‘Infected’, ‘Recovered’ or ‘Dead’ state if the current

state is ‘Infected’. The second row of the matrix contains the transition proba-

bilities for each state if the patient is in a ‘Recovered’ state. Similarly, the third
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row contains the probabilities of a patient making a transition from the ‘Dead’

state. As a patient must always be in one of the states defined in the Markov

chain, the transition probabilities in each row must sum to one. Therefore, P7

must equal one.

When using a Markov chain in a health economic analysis the expected costs

for each intervention are calculated by first determining the length of time, on

average, a patient spends in the different states. These times are then weighted

by the costs associated with the state. To calculate these expected costs, the

probabilities for a patient being in each state must be determined for every cycle

in the model. To do this, the proportion of patients in each state is determined

for every cycle by assessing the progression of a cohort of patients through the

model. The important factors are the proportion of patients that were in each

state in the previous cycle and the transition probabilities between the states.

The costs for each state are multiplied by the proportion of the cohort of patients

that are in the respective state for each cycle and these costs are then totalled

for all cycles in the model to find the overall expected cost. The expected effect

may be calculated in a similar manner (Drummond et al. 2005).

A Markov model was used in a Norwegian study to determine the cost-effectiveness

of introducing PCV-7 to the routine infant immunisation schedule (Wisløff et al.

2006). The Markov process Wisløff et al. used involved cycles of 1 year from birth

until death at age 100 years. A section of the Markov process is shown in Figure

4.8. This figure contains a section of the Markov model created to assess the

various disease progressions from pneumococcal meningitis. The Markov model

begins with newborn healthy children who can progress into one of four different

pneumococcal disease or infection states. These diseases lead each patient into a

mutually exclusive subsequent state such as hydrocephalus, epilepsy, neurologi-

cal sequelae or death. As with the Australian study carried out by Butler et al.

using a decision tree approach, the Norwegian study by Wisløff et al. concluded

that the pneumococcal vaccination would not be cost-effective for routine use in

a four dose infant immunisation schedule. The reasons behind this decision are

discussed later in the chapter.
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Figure 4.8: Section of Markov chain for the Norwegian PCV-7 cost-effectiveness

analysis (adapted from Wisløff et al., 2006).

4.6.3 Monte Carlo simulations

Monte Carlo simulations are commonly used in probabilistic sensitivity analyses

for cost-effectiveness models. In a probabilistic sensitivity analysis, a joint prob-

ability distribution is established which describes the uncertainty in the input

parameters in the model. The Monte Carlo method involves repeated simulation

of random input parameters for the model. Each set of input parameters is then

adopted in the model to determine the effect of the changing parameters on the

outcome. Ideally, at least 10,000 different simulations are required to obtain a

clear idea of the uncertainty in the model.

Monte Carlo simulations have the benefit of allowing uncertainty and randomness

to be taken into account in the cost-effectiveness model as probability distribu-

tions are adopted for the parameters rather than point estimates, thus enabling

more informative predictions to be made.

Melegaro et al. (2004) made use of Monte Carlo simulations to carry out mul-

tivariate sensitivity analyses to determine the extent to which indirect vaccine
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effects such as herd immunity affect the model results in a cost-effectiveness anal-

ysis of PCV-7 carried out for England and Wales. Latin Hypercube sampling

was used to determine initial parameter values from probability distributions in

the Monte Carlo simulations. In Latin Hypercube sampling, a set of n values are

selected from j random variables by dividing the range of each of the j variables

into n independent intervals which each have equal probability and randomly

choosing a single value from each interval according to the probability density

in the interval (Wyss and Jorgensen 1998). Melegaro et al. assumed different

parameters, including age-specific incidence rates, case-fatality ratios, length of

hospital stay and 35 different parameters related to costs of hospital care, followed

a Uniform distribution.

age-specific incidence rates, casefatality ratios and length of stay in the hos-

pital as well as for all the parameters related to the cost of care and treatment

The simulation was carried out 1,000 times in order to obtain a distribution

for the outcome values.

Figure 4.9 shows the simulation results obtained from five different scenarios un-

der consideration in the cost-effectiveness analysis. In the base case scenario,

no indirect effects of vaccination such as herd immunity or serotype replacement

were considered. Other scenarios were compared to this base case scenario to try

to consider serotype replacement and herd immunity as these effects are known

to occur in practice. Most alternative scenarios assumed a 5% reduction in pneu-

mococcal disease for those not vaccinated with PCV-7. One scenario considered

higher levels of herd immunity taken from levels observed in an American study

by Whitney et al. (2003). As far as serotype replacement was concerned, two

scenarios considered complete replacement of vaccine serotypes with non-vaccine

serotypes (serotype replacement coefficient = 100%), and one scenario considered

a varying level of serotype replacement between 0 and 1 (serotype replacement

coefficient variable (0,1)). The results from this study showed that routine child-

hood immunisation with PCV-7 would not prove cost-effective in the base case

scenario, where no herd immunity benefits are considered. If the herd immunity

effects observed by Whitney et al. apply to England and Wales then the vaccine

does prove cost-effective. In the scenarios where only a herd immunity effect

of 5% is considered, the vaccine still proved to be cost-effective unless complete
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serotype replacement occurs.
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Figure 4.9: Graphs showing the cost per life year gained and cost per quality ad-

justed life year estimated using Monte Carlo simulations in a scenario sensitivity

analysis (adapted from Melegaro et al., 2004).

149



4.6.4 Bayesian technique

To use Bayesian techniques in health economic analyses, prior probability distri-

butions for the uncertain parameters in the model, such as the event rates and

transition probabilities, must be specified. Thus, the Bayesian technique, unlike

Monte Carlo simulations, requires data to update prior beliefs about these pa-

rameters. The prior distributions reflect the beliefs or knowledge of the modeller

about the plausible values that may be taken by the parameters. However, it is

perfectly acceptable to specify a prior distribution that indicates a complete lack

of knowledge about the parameters. For example, a Uniform distribution may

be adopted when there is no information available about the possible values a

parameter may take. Such a prior is called a non-informative prior. In the case

where valid information has been used as the basis for the prior distribution, the

prior is called an informative prior. There are another two possible types of prior

that may be relevant: skeptical priors and structural priors. Skeptical priors are

used in situations where the null hypothesis is expected to be true whilst struc-

tural priors can be adopted when there is information available about how the

model parameters are related to one another (O’Hagan and Luce 2003). In many

situations there are a number of different distributions that may be selected for

use as the prior distribution so there is no single correct distribution that must

be adopted.

In addition to the prior distribution, the likelihood must be established. Informa-

tion from clinical trials about the effect of the interventions under consideration

is used to determine the likelihood function. The likelihood describes the support

that exists for the different values of the effect of the interventions (Spiegelhalter

et al. 2004).

Finally, in a Bayesian analysis, the prior distribution and the likelihood are com-

bined to obtain the posterior distribution. Using a Bayesian approach, all infer-

ences about the unknown parameter are made using the posterior distribution.

Using the notation of Gelman et al. (2004), let θ represent some unknown out-

come parameter in the health economic analysis. A prior distribution must be

specified for θ. This prior distribution is represented by p(θ). p(y|θ) is the likeli-
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hood of obtaining the clinical trial data, y, given θ. The likelihood is effectively

the conditional probability of observing the data, given a specific value for θ de-

termined for each of the plausible values for θ (U.S. Department of Health &

Human Services Food & Drug Administration 2008). Once this likelihood has

been established, the posterior distribution, p(θ|y), can be determined using the

following relationship:

p(θ|y) ∝ p(θ)p(y|θ). (4.1)

One benefit of using Bayesian techniques in an economic analysis is the ease

with which a model may be used to update the results when new information

is available. That is, the posterior distribution may be adopted as the prior

distribution and used to update the results about the unknown parameter θ when

more data are available. As more information about the parameter is acquired,

the more certain the modeller will be about the posterior distribution. The initial

prior distribution chosen will have a small effect on the outcome distribution given

the addition of more and more information for the unknown parameter.

Unfortunately, an example of the use of the Bayesian technique in a cost

-effectiveness analysis of PCV-7 could not be identified. However, the Bayesian

technique was adopted in a health economic analysis of an intervention to prevent

HIV (Johnson-Masotti et al. 2001). The example focusses on a CUA carried

out to assess HIV interventions for seriously mentally ill patients. To use the

Bayesian approach, Johnson-Masotti et al. specified prior distributions for the

key parameters for sexual risk such as the prevalence of HIV infection and condom

effectiveness. In addition, prior distributions were specified for parameters such

as the QALYs and intervention costs. 5,000 estimates for the parameters were

obtained by sampling from the prior distribution and combining with empirical

data available on parameters such as the number of partners and the number of

unprotected sex acts. Johnson-Masotti et al. compare the results obtained from

the Bayesian analysis to those from a univariate sensitivity analysis and state

that they obtain comparable results. However, they state that using the Bayesian

approach in a probabilistic cost-effectiveness analysis provides a greater degree of

151



certainty about the cost-effectiveness of the intervention under consideration.

4.7 Economic evaluations of routine childhood

pneumococcal conjugate vaccination

Economic evaluations regarding health care can prove to be complex regarding

issues of how best to measure the benefit outcome obtained. The evaluation of

vaccine interventions can ultimately become even more difficult due to the fact

that some benefits may be hard to measure or may not be observed immediately

following use of the intervention. For example, herd immunity is a potential

benefit occurring from the use of vaccines such as PCV-7 but it is difficult to

obtain estimates of the scale of this immunity as the true impact may not be

observed for many years.

In a review by McIntosh of various cost-effectiveness analyses of PCV, problems

regarding the economic evaluation of this vaccine are discussed (McIntosh 2004).

In this review, McIntosh explains that one of the key problems in analysing the

PCV is in identifying the health burden of this bacterium. Pneumococcus is

accountable for a variety of diseases such as meningitis, septicaemia, pneumonia

and sinusitis, as well as common infections such as OM.

With certain pneumococcal diseases it is difficult to obtain a picture of the true

burden in the population due to problems with the reporting of these diseases.

It is difficult to obtain accurate estimates of the number of cases of childhood

OM in a population due to differences in the way in which this condition may be

treated. In the UK, some children will be seen by a GP where the incidence of

OM may be recorded but the information may never be collected for analysis if

there are no routine reporting systems for this type of condition. For example, in

Scotland, the Scottish Meningococcus and Pneumococcus Reference Laboratory

routinely collect information and samples from cases of invasive disease but not

for non-invasive diseases or infections.

In various economic analyses of the PCV, the issue of assessing OM is addressed.

In the Norwegian study of the cost-effectiveness of implementing PCV-7 discussed
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previously (Wisløff et al. 2006), after carrying out a sensitivity analyses of various

components in the Markov model used, it was noted that one of the important

factors in determining the cost-effectiveness of the vaccination is the incidence of

OM. This is the case since OM is the most common pneumococcal disease. OM

was also found to be important in the sensitivity analysis due to the potential

problems that can occur in the development of OM, such as the development

of acute coalescent mastoiditis. However, Wisløff et al. pointed out that there

was difficulty obtaining data on the occurrence of acute OM in Norway and

that Danish data had to be used in the analysis. Similarly, in a Swedish cost-

effectiveness analysis of PCV-7 (Bergman et al. 2008), the incidence of acute OM,

as well as the ability of the vaccine to prevent it were identified as important

factors in the sensitivity analysis of the variables in the Markov model used.

With this analysis, the issue of the uncertainties surrounding true incidence rates

of acute OM was raised and addressed through extensive sensitivity analyses

varying the rates. Bergman et al. raised the point that a substantial component

of cost savings in the use of PCV-7 would be due to lowered rates of complications

attributable to the development of acute OM and that this was indeed the most

influential variable in the Swedish Markov model. In an Italian cost-effectiveness

study (Marchetti and Colombo 2005), limitations to the analysis regarding the

treatment of OM were listed, such as the uncertainty in the rate of occurrence of

OM which Marchetti et al. found difficult to take account of fully in the analysis.

In addition, Marchetti et al. mentioned the exclusion of the potential benefit of

reduction in the recurrence of OM in their Markov model. This exclusion is likely

to be attributable to the difficulty in obtaining reliable data of this nature. These

studies indicate the importance of accurately reflecting the true burden of OM

in economic analyses of the pneumococcal conjugate vaccination programme as,

even though OM is the least serious of the diseases attributable to S. pneumoniae,

it is the most common of the pneumococcal diseases.

Other complications in the analysis of the PCV occur due to the fact there are

at least 90 different types of the bacterium in circulation, with differing abilities

to cause infection and disease. The conjugate vaccine currently on offer in the

UK contains only seven of the 91 types of this bacterium and other vaccines

that have been or are currently undergoing trials contain only ten and thirteen
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types. Therefore, there may be problems which arise due to changing trends in

the circulating pneumococcal types which could affect the impact of the vaccine.

Of the twenty-four economic analyses of the cost-effectiveness of pneumococcal

conjugate vaccination published between 2000 and 2009 summarised in Table 4.1,

only the UK study by Melegaro et al. (2004) directly tackles the issue of serotype

replacement in depth in an economic evaluation. However, Ray et al. comment

that their model results do take serotype replacement into account due to the

fact that the rates of IPD for unvaccinated hosts were taken from observed cases

and were irrespective of the serotype of the disease. Although, it is stated that if

this replacement were to become greater then the future vaccine efficacy may be

lessened.

In the economic analysis by Melegaro et al. a situation where, after imple-

mentation of PCV-7, there was a complete replacement of VT serotypes with

NVT serotypes was considered. It was assumed that the NVT serotypes had the

same ability to cause community acquired pneumonia and acute OM as the VT

serotypes whilst estimates for the ability of non-VT serotypes to cause IPD were

acquired from a study by Brueggemann et al. (2003). The conclusions from Mel-

egaro et al. were mentioned earlier in the discussion of Monte Carlo simulations,

with the vaccine proving cost-effective if herd immunity is taken into account,

even when partial serotype replacement is present.

In a review of fifteen economic analyses of pneumococcal conjugate vaccination

published between 2002 and 2006, the importance of considering herd immunity

as one of the potential benefits of adopting PCV-7 in a childhood vaccination

schedule was discussed (Beutels et al. 2007). Beutels et al. stated that herd

immunity effects are greatly influential in a cost-effectiveness analysis but that

herd immunity was only considered in 2 of the 15 papers they reviewed (McIntosh

et al. 2005; Melegaro and Edmunds 2004a). However, following the publication

of the USA study showing herd immunity effects (Whitney et al. 2003), more

health economists are taking herd immunity into account.

Ten of the twenty-four economic evaluations mentioned previously were published

between 2006 and 2009 and were thus not included in the Beutels et al. review.
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Of these ten analyses, eight addressed herd immunity in the evaluation. The

two analyses that did not consider herd immunity were the international cost-

effectiveness analysis involving 72 different countries (Sinha et al. 2007) and an

Italian analysis (Giorgi-Rossi et al. 2009). Sinha et al. justified the exclusion of

herd effects observed in the USA in their economic analysis by explaining that

differences in population interactions and exposures between the USA and the

developing countries may cause differences in herd immunity and, thus, assump-

tions involving US herd effects would not necessarily be relevant in their model.

Giorgi-Rossi et al. state that they do not consider herd immunity in their model

due to the fact they only consider a ten year period in the analysis. Thus, they

felt that this reduces the relevance of herd immunity. In addition, they felt that

this positive benefit of vaccination may be offset by other negative effects such

as serotype replacement and antibiotic resistance.

In all but one of the eight studies which included herd immunity effects, favourable

results were obtained regarding the cost-effectiveness of routine infant vaccination

after inclusion of this indirect benefit. However, Wisløff et al. (2006) reported

that in Norway, a four dose vaccination schedule would not prove to be cost-

effective, even after inclusion of herd immunity and other indirect benefits of

vaccination. If, however, a three dose schedule were adopted, where three doses

elicit the same efficacy as four, the vaccine would prove cost-effective in Norway

but only if other indirect effects, such as lost work time of parents with children

suffering from pneumococcal disease, were included in the analysis in addition

to herd immunity effects. In the study by Bergman et al. (2008), it was noted

that even though herd immunity had been included in their analysis, some herd

immunity effects are difficult to quantify so there is still an underestimation of the

benefits of vaccine to unvaccinated individuals. Bergman et al. point out that

their study includes only herd immunity in adults in the population and does

not consider the potential impact of vaccinated children eliciting protection to

siblings. Hubben et al. clearly show the benefit of including herd immunity in a

cost-effectiveness analysis. They extend the model by Bos et al. (2003), in which

a conclusion was reached that the inclusion of PCV-7 in a childhood vaccination

schedule would not prove cost-effective in comparison with other health care

interventions in use in the Netherlands, to include indirect benefits of vaccination,
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such as herd immunity, and conclude that PCV-7 would prove cost-effective in

the Netherlands.

One of the key issues in the economic analyses of PCV-7 is the price of the vaccine.

PCV-7 is currently the most expensive infant vaccination available (Beutels et al.

2007) and, as such, the price of vaccination was highlighted as the most sensitive

variable in economic analyses of PCV-7 (De Wals et al. 2003). With the vaccina-

tion price in mind, certain countries, such as the UK and Norway, have adopted

a three dose immunisation schedule (two doses plus a booster dose) instead of

the recommended four dose schedule (three doses plus a booster) on which the

vaccine efficacy trials were based. In a Swedish economic analysis of the three

dose schedule, one of the crucial assumptions in proving the cost-effectiveness of

a three dose schedule was that three doses of PCV-7 elicit the same protection

as four doses (Bergman et al. 2008).

Further to the issues discussed, McIntosh raises the point that there are greatly

different rates of disease for different age groups within the population that will

affect the ability to assess the cost-effectiveness of the vaccine (McIntosh 2004).

In addition, various limitations were mentioned in the cost-effectiveness analyses

studied which could affect the conclusions reached such as the unknown duration

for which the vaccine would remain effective (Ruedin et al. 2003), the failure to

acknowledge vaccination of high-risk groups with PCV-7 in a cost-effectiveness

analysis (Butler et al. 2004; Marchetti and Colombo 2005) and the potential

overestimation of the effect of vaccination in children due to disease and mor-

tality occurring in children aged under 3 months of age who are too young to

have received the PCV-7 vaccination (Bergman et al. 2008; Butler et al. 2004).

Furthermore, other problems with cost-effectiveness analyses of PCV-7 occur due

to the failure to quantify the beneficial effect the vaccine may have in preventing

antibiotic resistant strains of pneumococcus (Navas et al. 2005; Bergman et al.

2008).
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4.8 Summary

In this chapter, the different types of analysis and methodology which can be

adopted in a health economic assessment have been discussed, with examples

from published studies. In addition, published health economic analyses of PCV-

7 have been summarised. In the next chapter, a statistical analysis of hospital

episodes of the pneumococcal diseases meningitis, septicaemia and pneumonia is

carried out. The intention of this analysis is to provide updated information to

input into existing UK cost-effectiveness analysis models for PCV-7.
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Chapter 5

Trend analysis of hospital

episodes of septicaemia,

meningitis and pneumonia

5.1 Introduction

In this chapter, a statistical analysis of cases of pneumococcal disease in England

and Wales will be carried out with an aim to improve parameter estimates of

PCV-7 efficacy to use in the CEA model created by Wyeth pharmaceuticals,

discussed in Chapter 4 (McIntosh et al. 2003; McIntosh et al. 2005).

Cases of both pneumococcal and unspecified septicaemia, meningitis and pneumo-

nia identified in England and Wales are considered in this chapter, with separate

models fitted to each of these six classifications of disease to identify any trends

in the occurrence of each disease prior to PCV-7 use. In addition, models are

fitted to assess trends in two comparator groups, femur and forearm fractures,

which are independent of pneumococcal infection or disease and should remain

relatively stable in number over time. These models are fitted to the comparator

groups in order to determine whether or not there is evidence of changes in the

practice of recording hospital episodes in England and Wales.
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5.2 Background

Invasive and respiratory pneumococcal diseases, such as septicaemia, meningitis

and pneumonia, annually cause approximately 3 million deaths worldwide; 1

million of which are young children (Adrian et al. 2004). Both PPV-23 and

PCV-7 were introduced to reduce the burden of pneumococcal disease in the

age groups most at risk of developing pneumococcal disease, those aged 65 years

and over and those aged under 2 years. However, it is believed that PCV-7

should reduce the burden of pneumococcal disease for all age groups due to the

potential for herd immunity. This is not the case with PPV-23 which does not

prevent carriage of the VT serotypes. It is important to assess the impact of

these vaccines on the incidence of pneumococcal disease since introduction.

In this chapter, Hospital Episode Statistics (HES) (Hospital Episode Statistics

2007) from the NHS Information Centre for Health and Social Care of the num-

ber of cases of septicaemia, meningitis and pneumonia in England and Wales

from 1993/94 to 2005/06 were used to identify trends for each disease over that

time period. This data includes information gathered from over 300 Trusts and

Primary Care Trusts in England and Wales and includes only information on

in-patient and day cases. Out-patient information is not included.

The HES dataset contains information about the number of cases of each disease

but, as an individual is able to have more than one episode of pneumococcal

disease a year, the data are not representative of the number of patients that have

hospital episodes of pneumococcal disease in England and Wales. The dataset

includes information about the number of hospital episodes for ten different age

groups: 0-3 months, 3-11 months (where those aged > 3 months are included in

this category), 1 year, 2 years, 3 years, 4-9 years, 10-17 years, 18-39 years, 40-64

years and 65 years and over.

The hospital episodes are categorised according to the International Classification

of Diseases (ICD) codes. The dataset spans two different classification codes as

ICD-10 codes were introduced in 1995/96 to replace the previously used ICD-9

codes. On examination of the disease descriptions associated with each code in

the HES dataset, it was decided to combine the categories to create six categories
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of health episode, as shown in Table 5.1, according to their clinical relevance.

Table 5.1: Hospital episode categories.

Disease ICD-9 ICD-10
Pneumococcal Septicaemia 0382 A403

Unspecified Septicaemia 0389 A419
Pneumococcal Meningitis 3201 G001

Unspecified Meningitis 3209, 3229 G009, G039
Pneumococcal Pneumonia 481, 481-, 4819 J13X

Unspecified Pneumonia 485, 485-, 4850, J180,
(includes unspecified bronchopneumonia 4851, 4856, 486, J181, J188,

and lobar pneumonia) 486-, 4860, 4869 J189

These categories were combined as such based on the description of the episode

provided with the HES data. For example, considering the ICD-9 codes for

unspecified meningitis in Table 5.1, the description for code 3209 was ‘bacterial

meningitis, meningitis due to unspecified bacterium’ whilst the description for

code 3229 was ‘meningitis of unspecified cause, meningitis unspecified’. Similarly,

considering the ICD-10 codes for unspecified meningitis, G009 is described as

‘bacterial meningitis, not elsewhere classified, bacterial’ and G039 is ‘meningitis

due to other and unspecified causes, meningitis’.

PPV-23 was introduced for routine vaccination of the elderly in 2003 in the UK,

with a staggered introduction in England and Wales with those aged over 85 years

receiving the vaccine in 2003, those aged over 75 years in 2004 and those aged 65

years and over from 2005. Thus, this dataset may be used to assess whether or not

PPV-23 had an impact on the number of hospital cases of septicaemia, meningitis

and pneumonia. As PCV-7 was not introduced for routine use in the UK until

2006, the number of episodes of each disease can be predicted from the models

for earlier years and these numbers may be compared to the observed number

when new data are available. This will assist in determining whether or not the

vaccine has reduced the number of hospital episodes of pneumococcal diseases

septicaemia, meningitis and pneumonia. The primary aim of this analysis was to

find suitable models to describe the trend for each of the six disease categories

described in Table 5.1. The secondary aim was to identify whether or not there
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were differences in the trends within each disease for the different age groups.

All statistical analysis in this chapter was carried out using R Version 2.9.1.

5.3 Initial analysis

To assess the trends of each category of disease from 1993/94 to 2005/06, plots of

the number of cases of each disease against year were created for each age group.

From assessment of the plot of the number of cases of pneumococcal pneumonia

for those aged between 0 and 3 months, shown in Figure 5.1, a substantial drop

in the number of hospital episodes from 1994/95 to 1995/96 is observed. The

same pattern was observed in each of the other age groups. It is likely that this

difference is not due to a drop in episodes of pneumococcal pneumonia admitted to

hospital but that the difference may be attributed to the change in the diagnosis

coding from ICD-9 in 1994/95 to ICD-10 in 1995/96. On examination of the plot

of unspecified pneumonia for the youngest age group, the opposite trend can be

seen as there is an increase in the number of cases of unspecified pneumonia in

1995/96. Once again this pattern appears for all age groups. This could suggest

that a greater number of cases of pneumonia remain undiagnosed as pneumococcal

from 1995/96 onwards. As this will have an impact on the trend analysis, data

from 1993/94 and 1994/95 is omitted from further analysis.

5.4 Trend analysis

Poisson and Negative Binomial regression were used to model the number of cases

of each disease against time, in years from 1995/96 to 2005/06. Before carrying

out the trend analysis, the population sizes for each year in England and Wales

had to be determined to prevent results being influenced by increasing population

sizes. In addition, as the age groups are not equal in size, the analysis was carried

out to compare the rates of each disease across the age groups and not the number

of cases. Thus, it was necessary to obtain these population estimates.

The mid-year population estimates were recovered from the Office for National

162



0100300

N
um

be
r 

of
 c

as
es

 o
f p

ne
um

oc
oc

ca
l p

ne
um

on
ia

 b
y 

ye
ar

A
ge

 g
ro

up
 0

−
3 

M
on

th
s

Ye
ar

Number of Cases

19
93

/9
4

19
95

/9
6

19
97

/9
8

19
99

/0
0

20
01

/0
2

20
03

/0
4

20
05

/0
6

400500600700

N
um

be
r 

of
 c

as
es

 o
f u

ns
pe

ci
fie

d 
pn

eu
m

on
ia

 b
y 

ye
ar

A
ge

 g
ro

up
 0

−
3 

M
on

th
s

Ye
ar

Number of Cases

19
93

/9
4

19
95

/9
6

19
97

/9
8

19
99

/0
0

20
01

/0
2

20
03

/0
4

20
05

/0
6

10152025

N
um

be
r 

of
 c

as
es

 o
f p

ne
um

oc
oc

ca
l s

ep
tic

ae
m

ia
 b

y 
ye

ar

A
ge

 g
ro

up
 0

−
3 

M
on

th
s

Ye
ar

Number of Cases

19
93

/9
4

19
95

/9
6

19
97

/9
8

19
99

/0
0

20
01

/0
2

20
03

/0
4

20
05

/0
6

250350450

N
um

be
r 

of
 c

as
es

 o
f u

ns
pe

ci
fie

d 
se

pt
ic

ae
m

ia
 b

y 
ye

ar

A
ge

 g
ro

up
 0

−
3 

M
on

th
s

Ye
ar

Number of Cases

19
93

/9
4

19
95

/9
6

19
97

/9
8

19
99

/0
0

20
01

/0
2

20
03

/0
4

20
05

/0
6

152535

N
um

be
r 

of
 c

as
es

 o
f p

ne
um

oc
oc

ca
l m

en
in

gi
tis

 b
y 

ye
ar

A
ge

 g
ro

up
 0

−
3 

M
on

th
s

Ye
ar

Number of Cases

19
93

/9
4

19
95

/9
6

19
97

/9
8

19
99

/0
0

20
01

/0
2

20
03

/0
4

20
05

/0
6

160200240

N
um

be
r 

of
 c

as
es

 o
f u

ns
pe

ci
fie

d 
m

en
in

gi
tis

 b
y 

ye
ar

A
ge

 g
ro

up
 0

−
3 

M
on

th
s

Ye
ar

Number of Cases

19
93

/9
4

19
95

/9
6

19
97

/9
8

19
99

/0
0

20
01

/0
2

20
03

/0
4

20
05

/0
6

F
ig

u
re

5.
1:

T
re

n
d

p
lo

ts
fo

r
th

e
0

to
3

m
on

th
s

ag
e

gr
ou

p
.

163



Statistics (ONS) (Office for National Statistics 2008). The ONS only gives pop-

ulation estimates for age groups in years. Therefore, to obtain population sizes

for the 0 to 3 months age group and the 3 to 11 months age group, a quarter and

three quarters of the 1 year age group were taken for the 0 to 3 months age group

and 3 to 11 months age group respectively to get a rough approximation of the

population sizes. These population sizes were used as the basis for offsets in the

Poisson and Negative Binomial regression models. The population sizes by year

and age group are shown in Table 5.2.

5.4.1 Pneumococcal septicaemia

−
2

−
1

0
1

2
3

4

Log rate of pneumococcal septicaemia per 100,000 by year and age group

Year

Lo
g 

ra
te

 p
er

 1
00

,0
00

1995/96 1997/98 1999/00 2001/02 2003/04 2005/06

0−3 months
3−11 months
1 year
2 years
3 years
4−9 years
10−17 years
18−39 years
40−64 years
65 years & over

Figure 5.2: Log rate of episodes of pneumococcal septicaemia per 100,000 against

year by age group.

The plot of the rate of hospital episodes of pneumococcal septicaemia per 100,000

against year by age group (Figure 5.2) shows that the highest rate of episodes

generally occurred in the 3 to 11 months age group. However, the 0 to 3 months

age group showed a higher rate in 1995/96 and 1999/00. No clear trend in the

rates can be observed for any of the age groups.
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To aid comparison of hospital episodes across the age groups, Table 5.3 shows

the overall rate and 95% confidence interval for the proportion of cases with

respect to the population size in the given age group. The confidence intervals

were calculated for the proportions based on the Normal approximation to the

Binomial distribution since np̂ > 5, where n is the cumulative number of cases of

pneumococcal septicaemia within an age group over multiple years and p̂ is the

estimated proportion of cases. The confidence intervals were calculated using the

following equation:

p̂± 1.96×
√
p̂(1− p̂)

n
.

Table 5.3: Overall rate of hospital cases of pneumococcal septicaemia per 100,000
for each age group.

Age group Rate 95% C.I.
0-3 months 8.53 (7.15, 9.91)
3-11 months 12.89 (11.91, 13.87)

1 year 7.31 (6.67, 7.95)
2 years 2.80 (2.40, 3.19)
3 years 1.78 (1.46, 2.09)

4-9 years 0.47 (0.41, 0.54)
10-17 years 0.24 (0.20, 0.28)
18-39 years 0.59 (0.56, 0.63)
40-64 years 1.45 (1.39, 1.50)

65 years & over 6.05 (5.89, 6.21)

Table 5.3 shows that the overall rate of hospital episodes is greatest for the

youngest age groups, with the highest rate of 12.89 per 100,000 for the 3 to

11 months age group, followed by 8.53 and 7.31 for the 0 to 3 months age group

and the 1 year age group respectively. The 65 years and over age group also has

a fairly high proportion of hospital episodes of pneumococcal septicaemia.

Poisson regression was used to model the number of episodes of pneumococcal

septicaemia. In this model, year was included as a continuous explanatory vari-

able and age group as a categorical variable. The age groups were combined into

five age groups by grouping together the age groups from 2 years up to 40 to 64
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years in the one category. Age groups 0 to 3 months, 3 to 11 months, 1 year and

65 years and over were retained as these groups are targeted by either PCV-7

or PPV-23. The categories used in the modelling are: 0 to 3 months, 3 to 11

months, 1 year, 2 to 64 years and 65 years and over. The reasoning behind these

new age categories is that PCV-7 is administered to, and directly protects, those

aged less than 2 years of age. In addition, PPV-23 is recommended for routine

use in the elderly. By combining the age categories, 55 observations were used in

the pneumococcal septicaemia model. A trend plot of pneumococcal septicaemia

for the new age categories is shown in Figure 5.3.

On examination of the plot of the rate of episodes of pneumococcal septicaemia

per 100,000 against year by age group for the five age group categories (Figure

5.3), it can be noted that the rate of cases of pneumococcal septicaemia in the 2

to 64 years age group is very low compared to the other age groups.
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Figure 5.3: Log rate of episodes of pneumococcal septicaemia per 100,000 against

year by age group with five age categories.

To attempt to account for the introduction of PPV-23 for the elderly in 2003

in the pneumococcal septicaemia model of all years, a change-point model was

fitted to the data, similar to that carried out elsewhere (Bartsch et al. 2008). This

complex model is used to test if there is any evidence of a change in slope in the

65 years and over age group following the introduction of PPV-23. In this model
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an indicator term is used which allows the slope of the model to change in 2003.

The year was centered at 2003 to ease interpretation of the parameter estimates.

As PPV-23 is only administered to those aged 65 years and over routinely, an

interaction between this age group and the indicator variable was fitted in the

model.

In order to model the trend in the rate of pneumococcal septicaemia cases a

Poisson regression model was fitted to the data as is appropriate when dealing

with a response variable recording counts. This model included the variables year,

age group, the two-way interaction between year and the 65 years and over age

group, the two-way interaction between the indicator variable and this age group

and the three-way interaction between year, the oldest age group and the year

indicator. The model used an offset of the natural logarithm of the population

size per 100,000 for each of the age groups. The model can be described using

the following equation:

log(ratei) = α + β1(Year− 2003) + β2AgeGp

+ β3(Year > 2003)

+ β4(Year− 2003)(AgeGp = 65yrs & over)

+ β5(Year− 2003)(Year > 2003)

+ β6(Year > 2003)(AgeGp = 65yrs & over)

+ β7(Year− 2003)(AgeGp = 65yrs & over)(Year > 2003),

where Year>2003 is the indicator variable. The three-way interaction term in

the model is the variable required if there is evidence of a change in slope of the

trend for the 65 years and over age group following the introduction of PPV-23.

A significant two-way interaction between indicator and the 65 years and over

age group is not indicative of a change in slope but rather a displacement from

the estimated trend on the y-axis. Thus, it is of interest to assess the significance

of this parameter as well as that of the three-way interaction.

A problem concerning the use of this change-point model is that there may be

low power to detect any change in the slope due to the fact that there are only

data for two observations following the year at which a change-point is thought to
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have taken place. In addition, there may be problems due to correlations between

the intercept and slope parameter as in a change point model the intercept at the

change point and the slope before and after the change point are correlated.

A residual deviance of 107.65 was obtained on 44 degrees of freedom. As the

residual deviance should be roughly equal to the residual degrees of freedom,

it appears that this model is over-dispersed as the residual deviance is more

than twice the residual degrees of freedom. If a Poisson regression model is the

most appropriate model to use then the residual deviance should follow a χ2

distribution with degrees of freedom equal to the residual degrees of freedom of

the model (Vogt and Bared 1998). The p-value obtained for 107.65 following

the χ2 distribution with 44 degrees of freedom is less than 0.001 thus the null

hypothesis that the Poisson model is appropriate to use to model the number

of episodes of pneumococcal septicaemia should be rejected. The data are over-

dispersed and Negative Binomial regression should be used. A Negative Binomial

regression model is more appropriate to use as, unlike the Poisson distribution,

the mean is not equal to the variance in this distribution. The Negative Binomial

distribution is a generalisation of the Poisson distribution; the variance is equal

to the mean plus some non-zero constant, k, multiplied by the mean squared.

A Negative Binomial regression model was fitted to the data. In order to de-

termine whether or not each of the variables is required in the model, stepwise

model selection procedures were used to identify the final model. The function

stepAIC in R was used to identify the significant variables (Ripley and Venables

2002). This function carries out backward stepwise selection based on AIC where

AIC is defined to be −2L + 2k with L representing the maximum log-likelihood

of the model being investigated and k is the number of parameters in the model.

The optimal model is deemed to be the one with the smallest AIC value. The

modelling results for the model including all possible variables is shown in Table

5.4.

Using backward stepwise selection, the only variables found to be significant in

the model of pneumococcal septicaemia were year, age group and the interaction

between the indicator variable and the 65 years and over age group. The results

for this model are shown in Table 5.5, where Indicator represents the variable
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Table 5.4: Parameter estimates and confidence intervals for the Negative Binomial
regression model of the number of cases of pneumococcal septicaemia.

Parameter Estimate 95% C.I.
Intercept −9.181 (−9.359,−9.003)

Year 0.067 (0.051, 0.083)
3 to 11 months 0.413 (0.225, 0.601)

1 year −0.153 (−0.345, 0.039)
2 to 64 years −2.250 (−2.424,−2.076)

65 years & over −0.356 (−0.558,−0.154)
Year:65 years & over −0.018 (−0.043, 0.007)

Indicator 0.073 (−0.197, 0.343)
Year:indicator −0.061 (−0.226, 0.104)

Indicator:65 years & over −0.312 (−0.757, 0.133)
Year:indicator:65 years & over 0.092 (−0.180, 0.364)

Year > 2003. The estimate of θ for the model shown in Table 5.5 is 223.5, 95%

C.I. (17.8, 429.1), where θ is defined in the following expression for the variance

of the Negative Binomial regression model, with µ representing the mean of the

distribution:

µ+
µ2

θ
.

Thus, k described previously is equal to 1
θ
. Therefore, in this model k is small at

only 0.004.

As the three-way interaction term is not required in the model, there is no ev-

idence that the slope changes for the 65 years and over age group from 2003.

However, as mentioned previously, there are only two observations following the

year at which a change-point is anticipated. Thus, there is little power to detect

this change. The coefficient of year is positive. Therefore, the hospital episodes

of pneumococcal septicaemia have been increasing between 1995 and 2005. The

coefficient of the dummy variable for the 3 to 11 months age group is positive.

Thus, this group has higher numbers of cases of pneumococcal septicaemia than

the comparator, age group 0 to 3 months. All other age group coefficients are

negative, with these groups having lower numbers of cases than the comparator.

The interaction between the 65 years and over age group and the indicator vari-
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able is negative. This indicates that, although there is no change in trend in cases

in the over 65 years age group following 2003, a drop in the number of anticipated

cases of pneumococcal septicaemia was observed in this group. This is shown in

the plot of the predicted log rates of pneumococcal septicaemia, Figure 5.4.

Table 5.5: Parameter estimates and confidence intervals for the best fitting Neg-

ative Binomial regression model of the number of cases of pneumococcal septi-

caemia.

Parameter Estimate 95% C.I.

Intercept −9.208 (−9.384,−9.033)

Year 0.060 (0.047, 0.073)

3 to 11 months 0.413 (0.225, 0.601)

1 year −0.153 (−0.346, 0.040)

2 to 64 years −2.251 (−2.426,−2.077)

65 years & over −0.289 (−0.466,−0.113)

Indicator 0.019 (−0.097, 0.135)

Indicator:65 years & over −0.267 (−0.421,−0.113)

The plot of the deviance residuals for this model is shown in Figure 5.5. This

plot shows a fairly even distribution of points around the zero line. Thus, the

assumption that the residuals have zero mean appears reasonable.
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Figure 5.4: Plot of predicted log rates from the Negative Binomial regression

model of pneumococcal septicaemia.
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Figure 5.5: Plot of residuals against fitted values for Negative Binomial regression

model of pneumococcal septicaemia.
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5.4.2 Unspecified septicaemia
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Figure 5.6: Log rate of episodes of unspecified septicaemia per 100,000 against

year by age group with five categories.

The plot of the log rate of unspecified septicaemia per 100,000 against year by

age group (Figure 5.6) shows the 0 to 3 months age group to have the highest rate

of cases until 2000/01 when the 65 years and over age group shows the highest

rate and continues to have the highest rate for all other years. The log rate of

cases in the 65 years and over age group shows an increase over time. The 2

to 64 years age group had a similar rate of cases to the 1 year age group until

2000/01. However, the rate in the 2 to 64 years group showed an increasing trend

over the period of study whilst the 1 year age group does not appear to have a

distinct trend. Both of these groups, as well as the 3 to 11 months age group

showed lower rate of cases than either the 0 to 3 months age group or the 65 years

and over group. It appears that hospital episodes of unspecified septicaemia are

most common amongst the elderly and the very young and that the rates for the

elderly and for those aged 2 to 64 years of age have shown an increase over time.

The table containing summary statistics for the rate of unspecified septicaemia

for each of the age groups (Table 5.6) shows that the 65 years and over age group

and the 0 to 3 months age group have much higher rates, at over 200 cases per
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Table 5.6: Overall rate of hospital cases of unspecified septicaemia per 100,000
for each age group.

Age group Rate 95% C.I.
0-3 months 220.34 (213.31, 227.36)
3-11 months 49.26 (47.34, 51.18)

1 year 17.33 (16.34, 18.31)
2 years 8.71 (8.01, 9.41)
3 years 6.58 (5.98, 7.19)

4-9 years 3.14 (2.98, 3.31)
10-17 years 3.64 (3.49, 3.80)
18-39 years 11.75 (11.59, 11.91)
40-64 years 42.23 (41.93, 42.53)

65 years & over 270.00 (268.94, 271.07)

100,000 in the population, than the other age groups.

The analysis of the unspecified septicaemia was carried out in a similar manner

to that of the pneumococcal septicaemia. A Poisson regression model involving

the same variables as those considered in the pneumococcal septicaemia model

was fitted for the number of episodes of unspecified septicaemia. However, this

model was over-dispersed, with a residual deviance of more than twenty times

the residual degrees of freedom. Therefore, a Negative Binomial regression model

was fitted with the same variables. The parameter estimates for the full model

and 95% confidence intervals are shown in Table 5.7.

Table 5.7 shows that there is no evidence of a change in slope in 2003 for the

65 years and over age group. Backward stepwise selection procedures were used

to obtain the best fitting model to describe the trend in unspecified septicaemia.

Table 5.8 shows the results for the best fitting model.

In the final model for unspecified septicaemia the interaction between year and

the 65 years and over age group is significant with a positive coefficient. This

indicates that the general trend for the 65 years and over age group was different

to that for the other age groups. Therefore, a sharper increase is observed in cases

of unspecified septicaemia in this age group than in all others. The coefficients
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Table 5.7: Parameter estimates and confidence intervals for the full Negative
Binomial regression model of the number of cases of unspecified septicaemia.

Parameter Estimate 95% C.I.
Intercept −5.974 (−6.099,−5.849)

Year 0.055 (0.035, 0.075)
3 to 11 months −1.496 (−1.631,−1.361)

1 year −2.528 (−2.669,−2.387)
2 to 64 years −2.393 (−2.522,−2.264)

65 years & over 0.337 (0.117, 0.557)
Year:65 years & over 0.078 (0.035, 0.121)

Indicator −0.019 (−0.380, 0.342)
Year:indicator 0.057 (−0.164, 0.278)

Indicator:65 years & over 0.113 (−0.655, 0.881)
Year:indicator:65 years & over −0.062 (−0.532, 0.408)

of the dummy variables for the 3 to 11 months, 1 year and 2 to 64 years age

group are all negative. Thus, the 0 to 3 months age group had higher rates of

unspecified septicaemia than these groups. The highest rate was observed for the

65 years and over group.

Table 5.8: Parameter estimates and confidence intervals for the best fitting Nega-
tive Binomial regression model of the number of cases of unspecified septicaemia.

Parameter Estimate 95% C.I.
Intercept −5.945 (−6.049,−5.841)

Year 0.061 (0.045, 0.077)
3 to 11 months −1.496 (−1.631,−1.361)

1 year −2.527 (−2.668,−2.386)
2 to 64 years −2.392 (−2.521,−2.263)

65 years & over 0.345 (0.184, 0.506)
Year:65 years & over 0.079 (0.048, 0.110)

In this model, θ was estimated to be 44.0, 95% C.I. (24.9, 63.1). The residuals

plot for this model is shown in Figure 5.7. This plot shows that for the best fitting

Negative Binomial regression model the assumption of zero mean is reasonable as

most of the deviance residuals lie between -2 and 2 on the plot of residuals against

fitted values. Figure 5.8 shows the predicted values of unspecified septicaemia for

175



each year and age group.
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Figure 5.7: Residuals plot for the Negative Binomial regression model of unspec-

ified septicaemia.
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5.4.3 Pneumococcal meningitis
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Figure 5.9: Log rate of episodes of pneumococcal meningitis per 100,000 against

year by age group with 5 categories.

Figure 5.9 shows the 2 to 64 years age group to have the lowest rate of pneumo-

coccal meningitis per 100,000 in the population of all age groups. In addition, the

65 years and over group has a low rate. Therefore, it appears that pneumococcal

meningitis is most common amongst the very young, particularly those aged 3 to

11 months old. The general trend for most age groups appears to be an increasing

trend, albeit only a slight increase. However, no clear trend is observed for the 0

to 3 months age group.

The table of summary statistics of the rate of pneumococcal meningitis for each

group (Table 5.9) shows both the 0 to 3 months and the 3 to 11 months age

groups to have a much higher overall rate than the other age groups.

As with the other models fitted for septicaemia, a Poisson regression model was

fitted for pneumococcal meningitis in order to identify the best possible model to

describe the change in number of hospital episodes with time. Once again, the

Poisson regression model was over-dispersed with a residual deviance of 210.50

on 44 degrees of freedom and so a Negative Binomial regression model was fitted
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Table 5.9: Overall rate of hospital cases of pneumococcal meningitis per 100,000
for each age group.

Age group Rate 95% C.I.
0-3 months 19.51 (17.42, 21.60)
3-11 months 36.94 (35.28, 38.60)

1 year 8.99 (8.28, 9.69)
2 years 2.84 (2.44, 3.24)
3 years 1.75 (1.44, 2.06)

4-9 years 0.63 (0.56, 0.71)
10-17 years 0.35 (0.30, 0.39)
18-39 years 0.47 (0.43, 0.50)
40-64 years 1.14 (11.34, 11.44)

65 years & over 1.55 (1.47, 1.63)

to the data. The parameter estimates, standard errors and confidence intervals

for the parameter estimates for the full model are shown in Table 5.10.

Table 5.10: Parameter estimates and confidence intervals for the full Negative
Binomial regression model of the number of cases of pneumococcal meningitis.

Parameter Estimate 95% C.I.
Intercept −8.366 (−8.540,−8.192)

Year 0.054 (0.029, 0.079)
3 to 11 months 0.612 (0.434, 0.790)

1 year −0.793 (−0.983,−0.603)
2 to 64 years −3.243 (−3.417,−3.069)

65 years & over −2.671 (−2.953,−2.389)
Year:65 years & over −0.027 (−0.080, 0.026)

Indicator −0.185 (−0.620, 0.250)
Year:indicator 0.087 (−0.178, 0.352)

Indicator:65 years & over 0.682 (−0.237, 1.601)
Year:indicator:65 years & over −0.311 (−0.877, 0.255)

The best fitting model was identified using the backwards stepwise selection pro-

cedure as before. The only variables found to be significant in this model are year

and age group, both with p-values of <0.001 based on F-tests with one and four

degrees of freedom respectively. The results for this model are shown in Table
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5.11. The estimate of θ for the model shown in Table 5.11 is 34.9, 95% C.I. (14.1,

55.7).

Table 5.11: Parameter estimates and confidence intervals for the best fitting Neg-
ative Binomial regression model of the number of cases of pneumococcal menin-
gitis.

Parameter Estimate 95% C.I.
Intercept −8.393 (−8.546,−8.240)

Year 0.048 (0.030, 0.066)
3 to 11 months 0.612 (0.439, 0.794)

1 year −0.796 (−0.990,−0.602)
2 to 64 years −3.245 (−3.425,−3.065)

65 years & over −2.552 (−2.736,−2.368)
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Figure 5.10: Plot of residuals against fitted values for the Negative Binomial

regression model of pneumococcal meningitis.

The coefficient of year in the model of pneumococcal meningitis is positive. Thus,

there is evidence that pneumococcal meningitis has been increasing with year.

There is no evidence of a change in trend following the introduction of PPV-23.

The 3 to 11 months age group has the highest rates of pneumococcal meningitis.
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The 1 year, 2 to 64 years and the 65 years and over age group all have lower rates

than the comparator, 0 to 3 months of age.

The residuals plot for the model described in Table 5.11 is shown in Figure 5.10.

Figure 5.10 shows the points to be fairly evenly scattered about the zero line

between -2 and 2. Therefore, the assumptions that the residuals have zero mean

appears reasonable.

Figure 5.11 shows the predicted log rates of pneumococcal meningitis for each

year and age group. The youngest age groups have the greatest predicted rates,

with the 3 to 11 months group the highest.
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Figure 5.11: Plot of predicted log rates from the Negative Binomial regression

model of pneumococcal meningitis.
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5.4.4 Unspecified meningitis
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Figure 5.12: Log rate of episodes of unspecified meningitis per 100,000 against

year by age group with five categories.

The trend plot of unspecified meningitis for the 5 age categories (Figure 5.12)

shows the 2 to 64 years age group to have low log rates of cases, similar to those

observed for the 65 years and over age group. Thus, it appears that unspecified

meningitis is most common amongst the very young, in particular those under 3

months of age. The 0 to 3 months age group has higher rates per 100,000 in the

population than all other age groups. However, the rate does not appear to show

a great increase over time for this group. The next highest rate appears in the 3

to 11 months age group. This group shows a fairly even rate of cases across all

years and does not appear to have an increasing or decreasing trend. All other

age groups also appear to have fairly stable rates of cases across all years.

The table of summary statistics for the rate of unspecified meningitis (Table 5.12)

shows that the 0 to 3 months age group did indeed have a much higher rate of

cases than all other age groups, with a rate of more than 100 greater than the

next highest average observed. The 40 to 64 years age group shows the lowest
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Table 5.12: Overall rate of hospital cases of unspecified meningitis per 100,000
for each age group.

Age group Rate 95% C.I.
0-3 months 137.97 (132.41, 143.53)
3-11 months 34.66 (33.05, 36.27)

1 year 9.60 (8.86, 10.33)
2 years 5.43 (4.88, 5.98)
3 years 5.08 (4.55, 5.61)

4-9 years 3.24 (3.07, 3.41)
10-17 years 3.53 (3.38, 3.68)
18-39 years 2.93 (2.85, 3.01)
40-64 years 2.55 (2.47, 2.62)

65 years & over 2.91 (2.80, 3.02)

average rate.

Following the same modelling procedure as described for pneumococcal septi-

caemia, a Poisson regression model for unspecified meningitis was found to be

over-dispersed with a residual deviance of 302.34 on 44 degrees of freedom for the

model. The results for the full Negative Binomial regression model are shown in

Table 5.13.

Table 5.13: Parameter estimates and confidence intervals for the full Negative
Binomial regression model of the number of cases of unspecified meningitis.

Parameter Estimate 95% C.I.
Intercept −6.493 (−6.597,−6.389)

Year 0.023 (0.005, 0.041)
3 to 11 months −1.380 (−1.490,−1.270)

1 year −2.664 (−2.789,−2.539)
2 to 64 years −3.841 (−3.943,−3.739)

65 years & over −4.001 (−4.185,−3.817)
Year:65 years & over −0.024 (−0.061, 0.013)

Indicator −0.317 (−0.621,−0.013)
Year:indicator 0.117 (−0.067, 0.301)

Indicator:65 years & over 0.465 (−0.178, 1.108)
Year:indicator:65 years & over −0.068 (−0.460, 0.324)
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The results for the best fitting model obtained using stepwise selection methods

are shown in Table 5.14.

Table 5.14: Parameter estimates and confidence intervals for the best fitting Neg-
ative Binomial regression model of the number of cases of unspecified meningitis.

Parameter Estimate 95% C.I.
Intercept −6.547 (−6.637,−6.457)

Year 0.013 (0.001, 0.025)
3 to 11 months −1.379 (−1.499,−1.259)

1 year −2.665 (−2.798,−2.532)
2 to 64 years −3.842 (−3.954,−3.730)

65 years & over −3.861 (−3.977,−3.745)

The only variables required in the model for unspecified meningitis are year and

age group. The coefficient of year is positive. Therefore, the hospital episodes of

unspecified meningitis have been increasing with year in England and Wales. The

coefficients for each of the dummy variables for age group are all negative. Thus,

the 0 to 3 months age group has the highest predicted episodes of unspecified

meningitis.

In this model, θ is 67.0. The 95% confidence interval for θ is (33.7, 100.3). The

plot of the deviance residuals against fitted values is shown in Figure 5.13. The

assumption that the residuals have zero mean appears reasonable from assessment

of this plot.

The plot of the predicted log rate for each year and age group is shown in Fig-

ure 5.14. Only four lines are apparent from examination of Figure 5.14 as the

predicted log rates of unspecified meningitis are practically equal for the 2 to 64

years age group and the 65 years and over group.
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Figure 5.13: Plot of residuals against fitted values for the Negative Binomial

regression model of unspecified meningitis.

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

1
2

3
4

5

Predicted rates of unspecified meningitis by year and age group

Year

Lo
g 

ra
te

 p
er

 1
00

,0
00

1995/96 1996/97 1997/98 1998/99 1999/00 2000/01 2001/02 2002/03 2003/04 2004/05 2005/06

●

●

●

●

●

0−3 months
3−11 months
1 year
2−64 years
65 years & over

Figure 5.14: Plot of predicted log rates from the Negative Binomial regression

model of unspecified meningitis.
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5.4.5 Pneumococcal pneumonia

The trend plot of the rate of pneumococcal pneumonia for the five age categories

(Figure 5.15) shows that the 2 to 64 years age group had the lowest rate of cases

for every year from 1995/96 to 2005/06. The rate appears to remain relatively

stable for this age group from 1995/96 to 2000/01, at which point an increase in

the log rate of episodes is observed. A similar pattern is observed in the 65 years

and over age group. The 0 to 3 months age group had the highest rate in 1997/98

but this was followed by a general decreasing trend in rate for this group. The 3

to 11 months age group also showed fairly high rates in comparison to all other

age groups but, like the 0 to 3 months age group, showed a general decreasing

trend.
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Figure 5.15: Log rate of episodes of pneumococcal pneumonia per 100,000 against

year by age group with five categories.

Table 5.15 shows the highest overall rate of pneumococcal pneumonia of 23.82

per 100,000 occurred for the 65 years and over age group. The next highest

overall of 16.12 per 100,000 was observed for the 3 to 11 months age group. The

0 to 3 months age group and the 1 year age group also showed high overall rates

compared to other age groups of over 10 per 100,000.
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Table 5.15: Overall rate of hospital cases of pneumococcal pneumonia per 100,000
for each age group.

Age group Rate 95% C.I.
0-3 months 14.31 (12.52, 16.10)
3-11 months 16.12 (15.02, 17.22)

1 year 12.68 (11.84, 13.53)
2 years 6.51 (5.90, 7.11)
3 years 5.12 (4.59, 5.66)

4-9 years 2.20 (2.06, 2.34)
10-17 years 1.15 (1.06, 1.24)
18-39 years 3.00 (2.92, 3.08)
40-64 years 6.04 (5.92, 6.15)

65 years & over 23.82 (23.51, 24.14)

A Negative Binomial regression model was fitted to the pneumococcal pneumonia

data as the Poisson regression model was deemed over-dispersed with a residual

deviance of 494.12 on 44 degrees of freedom. The results from the full model are

shown in Table 5.16.

Table 5.16: Parameter estimates and confidence intervals for the full Negative
Binomial regression model of the number of cases of pneumococcal pneumonia.

Parameter Estimate 95% C.I.
Intercept −9.080 (−9.260,−8.900)

Year −0.045 (−0.069,−0.021)
3 to 11 months 0.119 (−0.065, 0.303)

1 year −0.124 (−0.308, 0.060)
2 to 64 years −1.294 (−1.466,−1.122)

65 years & over 0.567 (0.320, 0.814)
Year:65 years & over 0.022 (−0.021, 0.065)

Indicator 0.166 (−0.232, 0.564)
Year:indicator 0.182 (−0.059, 0.423)

Indicator:65 years & over 0.062 (−0.689, 0.813)
Year:indicator:65 years & over −0.015 (−0.474, 0.444)

Using stepwise selection procedures, the model shown in Table 5.17 is the best fit

to the data. The interaction between year and the year indicator is significant,
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Table 5.17: Parameter estimates and confidence intervals for the best fitting Neg-
ative Binomial regression model of the number of cases of pneumococcal pneu-
monia.

Parameter Estimate 95% C.I.
Intercept −9.062 (−9.235,−8.889)

Year −0.039 (−0.059,−0.020)
3 to 11 months 0.119 (−0.067, 0.304)

1 year −0.125 (−0.310, 0.060)
2 to 64 years −1.300 (−1.472,−1.126)

65 years & over 0.508 (0.335, 0.681)
Indicator 0.184 (−0.156, 0.525)

Year:indicator 0.176 (−0.031, 0.384)

indicating that the mean slope from 2003 is different for all age groups. The

coefficient of year is negative in this model and the coefficient for the interaction

between the year and indicator variable is positive. Thus, the cases of pneumo-

coccal pneumonia decrease between 1995 and 2003, after which they increase.

The coefficients of the 3 to 11 months age group and the 65 years and over age

groups are positive, indicating these two groups have higher rates than the 0 to 3

months age group. The oldest age group has the highest rates of pneumococcal

pneumonia, the 2 to 64 years age group has the lowest.

θ in this model is estimated to be 50.1, 95% C.I. (22.9, 77.3). The residuals

against fitted values plot for this model is shown in Figure 5.16. The assumption

that the residuals have zero mean appears reasonable.

The plot of the predicted log rate for each year and age group is shown in Figure

5.17.
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Figure 5.16: Plot of residuals against fitted values for the Negative Binomial

regression model of pneumococcal pneumonia.
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Figure 5.17: Plot of predicted log rates from the Negative Binomial regression

model of pneumococcal pneumonia.
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5.4.6 Unspecified pneumonia
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Figure 5.18: Log rate of episodes of unspecified pneumonia per 100,000 against

year by age group with 5 categories.

The plot of the log rate of episodes of unspecified pneumonia for each age group

(Figure 5.18) shows that the 65 years and over age group had the highest rate

of episodes per 100,000. This age group shows a general increasing trend from

1995/96 to 2005/06. The 2 to 64 years age group also shows a slight increase in the

log rates over time. No other age group shows a distinct trend from examination

of this plot. The rate of unspecified pneumonia per 100,000 was lower for the 2

to 64 years age group than any other group.

Table 5.18 shows the summary statistics for the rate of hospital episodes of pneu-

mococcal pneumonia for each age group. This table shows that the 65 years

and over group had by far the highest rate per 100,000 than all other groups, at

more than three times the next highest rate, which was observed for the 1 year

age group. The lowest rate of hospital episodes of pneumococcal pneumonia was

observed for the 10 to 17 years group, at only 32.22 per 100,000.

The Poisson regression model for the episodes of unspecified pneumonia was
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Table 5.18: Overall rate of hospital cases of unspecified pneumonia per 100,000
for each age group.

Age group Rate 95% C.I.
0-3 months 437.17 (427.29, 447.05)
3-11 months 435.77 (430.07, 441.46)

1 year 440.69 (435.74, 445.65)
2 years 277.52 (273.69, 281.44)
3 years 207.78 (204.40, 211.16)

4-9 years 81.62 (80.78, 82.47)
10-17 years 32.22 (31.76, 32.68)
18-39 years 57.20 (56.84, 57.55)
40-64 years 155.43 (154.58, 156.01)

65 years & over 1458.39 (1455.94,1460.84)

highly over-dispersed, with a residual deviance of 5,693 on 44 degrees of free-

dom. Therefore, a Negative Binomial regression model was fitted. The output

from fitting this model is shown in Table 5.19.

Table 5.19: Parameter estimates and confidence intervals for the full Negative
Binomial regression model of the number of cases of unspecified pneumonia.

Parameter Estimate 95% C.I.
Intercept −5.335 (−5.421,−5.249)

Year 0.033 (0.019, 0.047)
3 to 11 months −0.010 (−0.102, 0.082)

1 year −0.006 (−0.096, 0.084)
2 to 64 years −1.520 (−1.610,−1.430)

65 years & over 1.259 (1.106, 1.412)
Year:65 years & over 0.031 (0.002, 0.060)

Indicator −0.097 (−0.340, 0.146)
Year:indicator 0.089 (−0.060, 0.238)

Indicator:65 years & over 0.167 (−0.368, 0.702)
Year:indicator:65 years & over −0.092 (−0.419, 0.235)

The model shown in Table 5.20 was obtained on performing stepwise model se-

lection. The estimate of θ for this model is 87.7, 95% C.I. (53.2, 122.2).
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Table 5.20: Parameter estimates and confidence intervals for the best fitting Neg-
ative Binomial regression model of the number of cases of unspecified pneumonia.

Parameter Estimate 95% C.I.
Intercept −5.317 (−5.391,−5.243)

Year 0.036 (0.026, 0.046)
3 to 11 months −0.011 (−0.103, 0.081)

1 year −0.007 (−0.099, 0.085)
2 to 64 years −1.521 (−1.613,−1.429)

65 years & over 1.269 (1.155, 1.383)
Year:65 years & over 0.033 (0.011, 0.055)

The interaction between year and age group 65 years and over is significant. Thus,

there is evidence that the 65 years and over age group has a different slope than

the other age groups considered. The coefficient of year is positive. Therefore, the

cases of unspecified pneumonia have been increasing with increasing year. The

coefficient of the dummy variable for the 65 years and over age group is positive.

This shows that this age group has higher rates of disease than the 0 to 3 months

age group. In addition, this age group has a steeper slope relative to all other

age groups. All other coefficients for the age groups are negative.

The plot of the deviance residuals against the fitted values for this model is shown

in Figure 5.19 in which it can be observed that there are a couple of points which

lie outwith the range -2 to 2. However, the assumption of zero mean appears

reasonable.

The plot of the predicted log rate for each year and age group is shown in Figure

5.20. This shows no real difference in the predicted rates for the 0 to 3 months,

3 to 11 months and the 1 year age groups. The 65 years and over age group has

the highest predicted rates and the 2 to 64 years age group has the lowest. The

change in slope is minimal but can be observed in the plot.
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Figure 5.19: Plot of residuals against fitted values for the Negative Binomial

regression model of unspecified pneumonia.
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Figure 5.20: Plot of predicted log rates from the Negative Binomial regression

model of unspecified pneumonia.
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5.4.7 Comparator

To determine whether the trends observed in the HES of the pneumococcal and

unspecified diseases described in this chapter are attributable to true changes in

the number of cases of disease or whether they reflect changes in the reporting

system of hospitals in England and Wales over time, a comparator group has

to be considered. The HES comparator selected for this analysis is fractures

as it can be assumed that the number of fractures observed annually should

remain relatively stable within each age group. Data on the hospital episodes

of both forearm fractures (ISD-10 code S52) and femur fractures (ISD-10 code

S72) were downloaded from the HES website (Hospital Episode Statistics 2008).

Unfortunately, the data involves only four age groups 0 to 14 years, 15 to 59

years, 60 to 74 years and 75 years and over and was only available for the years

2002/03 to 2005/06. For the analysis, the number of episodes was the number

of finished consultant episodes as was the case with the data used in the other

models in this chapter. Information was available on the gender of the patients.

The appropriate estimates for the population sizes were obtained for these age

groups (Office for National Statistics 2008).

Figures 5.21 and 5.22 show that for most age groups there are no clear increasing

or decreasing trends for the log rate of forearm or femur fractures per 100,000.

However, there appears to be an increasing trend in forearm fractures for the 75

years and over age group between 2002/03 and 2005/06.

Poisson regression models were fitted to the data and found to be over-dispersed.

Thus, Negative Binomial regression models were fitted to the data for forearm

and femur fractures separately and included the variables gender, age group, year

and the interaction between year and age group. Using backward stepwise model

selection based on AIC, as used in the other models in this chapter, the final model

for forearm fractures involved only age group and gender; femur fractures only

age group. Year was not significant. Thus, the null hypothesis that the number

of forearm or femur fractures remains constant over time may not be rejected.

This means that any trends observed in other hospital episodes during this period

are likely to be attributable to changes in the number of cases of disease rather

than differences in the reporting systems over time. However, a limitation of this
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analysis is that data for the comparator groups were not available for the same

duration and age groups that were considered in the analysis of pneumococcal

and unspecified septicaemia, meningitis and pneumonia. Thus, it is difficult to

determine whether or not the changes observed for these diseases are attributable

to true increases or decreases in disease. In addition, as the analysis of these

two comparator groups is limited to a shorter period than the analyses of the

pneumococcal and unspecified diseases considered previously, the modelling has

lower power to detect any trend effect. Thus, these results should be interpreted

with caution. In order to have a suitable comparison of trends, an analysis of

hospital episode statistics for femur and forearm fractures over the same period

of time as the pneumococcal and unspecified diseases is required.

5.5 Conclusions

In this chapter, models were fitted to describe the trends in hospital episodes of

pneumococcal and unspecified septicaemia, meningitis and pneumonia between

1995/96 and 2005/06. In each model a three-way interaction term was included

to describe any change of slope following 2003/04 in the 65 years and over age

group which may be attributable to the introduction of PPV-23. However, this

variable was not found to be significant in any of the models fitted. Thus, no

evidence was found of a change in slope for the 65 years and over age group.

All diseases considered in this chapter were observed to have an increasing trend

between 1995/96 and 2005/06, other than pneumococcal pneumonia which showed

a decreasing trend from 1995/96, followed by an increasing trend. The highest

overall rates in disease were observed for the oldest and youngest age groups.

The 65 years and over age group had the highest overall rates of unspecified

septicaemia, pneumococcal pneumonia and unspecified pneumonia. The 3 to 11

months age group had the highest rate of pneumococcal septicaemia and pneu-

mococcal meningitis whilst the 0 to 3 months age group had the highest rate of

unspecified meningitis.
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Figure 5.21: Log rate of episodes of forearm fractures per 100,000 against year

by age group.
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Figure 5.22: Log rate of episodes of femur fractures per 100,000 against year by

age group.

195



The analysis carried out in this chapter adds to a previously published analysis of

hospital episodes of pneumonia between 1997 and 2005, prior to the introduction

of PCV-7 (Trotter et al. 2008). In this analysis, Trotter et al. consider only one

episode of pneumonia per patient unlike the analysis of pneumonia carried out in

this chapter in which the data are not representative of individual cases of disease

but instead allow for the possibility of multiple hospital admissions. Trotter et

al. observe a rise in the age-standardised incidence of pneumonia, particularly

in the older age groups. The analysis carried out in this chapter for pneumo-

coccal pneumonia contradicts these results as a decreasing trend was observed

for all age groups between 1995 and 2003. The trend in the rates of disease is

increasing from 2003 to 2005. However, the rate of unspecified pneumonia was

observed to increase during the period 1995/96 to 2005/06. Thus, these results

are in correspondence with the observations of Trotter et al. considering all cases

of pneumonia together. The analysis carried out in this chapter separated the

pneumococcal classifications of each disease from all others in order to determine

any vaccine effect and also due to the fact that these models were created with

the future impact of PCV-7 in mind.

Unlike the analysis of Trotter et al., the modelling undertaken in this chapter

investigated whether or not PPV-23 had an impact on the cases of disease in

the elderly. No significant evidence of a vaccine effect was found, although there

was evidence of a deviation from the model predictions from 2003/04 for pneu-

mococcal septicaemia. However, no change in slope was identified. The cases

of pneumococcal septicaemia were lower than anticipated from 2003/04 for the

65 years and over age group. This could be attributable to the introduction of

PPV-23 but the anticipated decreasing trend due to vaccine use was not observed.

Significant changes in slope from 2003/04 were identified for cases of pneumo-

coccal pneumonia and unspecified pneumonia for all age groups. However, the

change in slope for unspecified pneumonia was minimal. Considering pneumo-

coccal pneumonia, an increase in the slope was observed from 2003/04, not a

decrease due to any vaccine impact. As PPV-23 is only administered to those

over the age of 65 years and does not provide any herd immunity as it does not

prevent carriage, any effect observed in disease in the unvaccinated groups from
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2003/04 cannot be attributable to vaccine use. In the analysis carried out in

this chapter there was limited power to detect any changes in disease trends in

the vaccine targeted age group due to the fact that only two years of data was

available following the introduction of the vaccine.

It is unsurprising that no clear vaccine effect was found as the introduction of

PPV-23 was staggered in England and Wales, with only those aged over 85 years

of age receiving the vaccine in 2003/04 and those aged over 75 years in 2004/05.

PPV-23 was not introduced for routine use in those aged 65 years and over until

2005/06. Thus, to identify whether or not PPV-23 has an impact in preventing

pneumococcal disease more data are required for the years following 2005/06.

There was evidence of an interaction between year and age group for the trend in

cases of unspecified septicaemia. The 65 years and over age group has a steeper

slope than the other age groups, with lower predicted cases of disease than the

0 to 3 months age group in the early years of the analysis but the highest rates

from 2000/01.

A limitation of the analysis carried out in this chapter is that data for the com-

parator group, fractures, were not available for the same duration and age groups

that were considered in the analysis of pneumococcal and unspecified septicaemia,

meningitis and pneumonia. Thus, it is difficult to determine whether or not the

changes observed for these diseases are attributable to true increases or decreases

in disease.

In future work, data for the same age groups and period for the comparator group

should be obtained in order to determine whether or not there is evidence of a

trend for this group that could affect the interpretation of the results obtained

for the pneumococcal and unspecified diseases. In addition, it is intended that

the models created in this chapter be used to predict the cases of pneumococcal

and unspecified septicaemia, meningitis and pneumonia for the years following

the introduction of PCV-7. These predictions assuming no PCV-7 effect will be

compared to the observed hospital episode rates for these years to identify the

effect of the conjugate vaccine. The estimates for the vaccine effect can then be

used to update the cost-effectiveness model created by Wyeth pharmaceuticals
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to assess PCV-7.

The next two chapters continue the investigation of pneumococcal disease in the

UK by examining both the trends in serogroups, serotypes and MLSTs found

in IPD in Scotland and the associations between these pneumococcal types and

mortality.
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Chapter 6

Analysing trends in

serogroups/serotypes and MLSTs

in Scottish IPD cases

6.1 Introduction

In addition to the assessment of factors influencing the long term efficacy and

cost-effectiveness of PCV-7, one of the central themes in the thesis is exploring

the importance of MLSTs in the ability of pneumococci to cause disease and their

potential contribution to the loss of long term efficacy of PCV-7. The relationship

between VT and NVT serotypes and MLSTs in carriage was explored previously

in Chapters 2 and 3 through the use of mathematical modelling.

In this section of the thesis, the focus is on circulating pneumococcal serogroups,

serotypes and MLSTs involved in IPD in Scotland. In addition, the relationship

between serotypes and MLSTs involved in IPD in Scotland is explored. In this

chapter and the subsequent chapter, through the use of existing statistical tech-

niques, changes in serogroup, serotype and MLST distribution in IPD over recent

years and the risks of fatality from IPD of different strains are analysed.

As mentioned in the introductory chapter of the thesis, the development of vac-

cines for the prevention of pneumococcal disease and infection is based upon the
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serotypes responsible for the greatest burden of disease. Thus, it is important

to continually assess the changing distribution of serotypes involved in IPD. It is

necessary to additionally assess the MLSTs involved in IPD due to the potential

for capsular switch to occur following the use of PCV-7.

This chapter begins with a discussion of serotype trends observed in IPD world-

wide, both prior to and following the introduction of PCV-7. Following this, a

trend analysis of the serogroups, serotype and MLSTs involved in IPD in Scotland

prior to the introduction of PCV-7 is carried out.

6.2 Background

As discussed in the introductory chapter, pneumococcal vaccine formulations are

based upon the serotype of the bacterium as this is the known virulence factor

and currently 91 different pneumococcal serotypes within 46 serogroups have been

identified (Henrichsen 1995; Park et al. 2007). A pneumococcal isolate may also

be identified by its MLST. The MLST is defined according to 7 house-keeping

genes identified within the genetic material of the pneumococcus (Enright and

Spratt 1998). Hundreds of different MLSTs have been identified and some MLSTs

have displayed an association with more than one serotype (Clarke et al. 2004).

Great interest lies in assessing the involvement of NVT serotypes in IPD cases

and the burden of disease attributable to these serotypes. If NVTs are observed

to increase in prevalence in IPD then vaccine formulations could require revisions

to include NVTs responsible for increasing proportions of disease and infection.

6.2.1 Serogroup/serotype 1 IPD

Of particular interest for this study is serotype 1 as in previous published studies

in Scotland, and throughout Europe, changes in the number of cases of IPD

attributable to serotype 1, a serotype which is not included in PCV-7, have been

observed.

In a Swedish study of serotypes involved in IPD between 1987 and 1997, a large
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increase in the rate of pneumococcal bacteraemia was reported over the years,

with the increase being related to a rise in the number of cases of both serotype

1 and serotype 14 bacteraemia, with a 10-fold increase in the number of cases of

serotype 1 bacteraemia observed between 1992 and 1997 (Normark et al. 2001).

In Scotland, the observed rate of serotype 1 IPD increased from 0.67 cases per

100,000 population in 2000 to 1.25 cases per 100,000 population in 2004 (Kirkham

et al. 2006). In addition, in a study of cases of bacteraemia in the UK and Ireland,

a significant change in serotype distribution was observed with increasing year of

study, with serotype 1 increasing in prevalence from 4% of IPD in 2001 to 15.6%

in 2006 (Farrell et al. 2008).

In contrast, a Danish study of IPD between 1996 and 1999, in which serotype

1 was identified as the most common disease-causing serotype overall, showed a

reduction in cases attributable to serotype 1 from 26.5% of all invasive disease in

1996 to only 5.4% in 1999 (Konradsen and Kaltoft 2002). However, Konradsen

and Kaltoff discuss a decrease in the overall incidence of IPD in Denmark in

the years 1996 to 1999 which coincides with the observed decrease in serotype 1

IPD. A further contradictory study involves data on IPD from Oxfordshire, UK

in which a reduction in disease attributable to serotype 1 was observed between

1996 and 2005 (Foster et al. 2008).

Considering the association between serotype 1 and IPD outwith Europe, a study

of trends in pneumococcal serogroups (serotype specific information was not avail-

able for this analysis) involved in IPD between 1929 and 1998 in the USA was

carried out (Feikin and Klugman 2002). This analysis showed a decrease in

serogroup/serotype 1 IPD over this period. The authors state that the reduction

of this serogroup and others such as 3 and 5 is likely to be attributable to the

introduction of antibiotic treatment between the 1930s and 1940s. Fiekin and

Klugman report an increase in the PCV-7 serogroups between 1929 and 1998.

A study of IPD in New Zealand reported serotype 1 as decreasing in IPD cases

between 1998 and 2005, prior to the routine use of PCV-7 (Heffernan et al. 2008).

Heffernan et al. also report reductions in serotype 9V, 7F and 12F disease and

increases in 14, 6B and 4 disease.
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6.2.2 Age associations with serogroup/serotype 1

Differing serotype prevalence amongst cases of IPD in different age groups has

been documented (Kaplan et al. 2002; Konradsen and Kaltoft 2002; Kyaw et al.

2000). Focussing on serotype 1 once again, Kaplan et al. (2002) report increased

proportions of serotype 1 IPD with increasing age in their study of children who

attended 8 different hospitals in the USA. 16.2% of IPD isolates were identified

as serotype 1 amongst all cases in children over the age of 10 years and only 2%

in children under 2 years of age. Kaplan et al. also report serogroups/serotypes

3 and 23 had increased proportions in IPD for older children, whilst serotype 14

was involved in less IPD amongst older children.

In the Konradsen et al. (2002) study, although serotype 1 was reported to be the

most common cause of IPD between 1995 and 1999 overall, it was not the most

common cause of IPD in those aged under 2 years, where serotype 14 accounts

for most disease. Serotype 1 is only the eleventh most common serotype in this

age group but appears as the most common for the 2 to 59 years age group and

the over 65 years age group.

Similarly, in a study of Scottish invasive isolates collected during the period 1988

to 1999, serotype 1 was the most common disease-causing serotype for the age

group 5 to 64 years but not for those under 5 years old, where serotype 14 was the

most prevalent. Serotype 14 was also reported as the most prevalent in disease

of those aged 65 years and over (Kyaw et al. 2000).

6.2.3 MLST 306 and serotype 1

MLST 306 has been documented to be associated with serogroup/serotype 1 IPD

(Jefferies et al. 2004; Serrano et al. 2005; Munõz-Almagro et al. 2008), with

some countries documenting an increase in MLST 306 disease corresponding to

an increase in serotype 1 disease (Normark et al. 2001).

In addition to an observed increase in rate of serogroup/serotype 1 IPD in Scot-

land, Kirkham et al. (2006) report an increase in MLST 306 serogroup/serotype
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1 IPD from 0.04 cases per 100,000 in the population in 2001 to 0.81 cases per

100,000 in the population in 2004. However, they document a fairly constant

rate in MLST 227 serogroup/serotype 1 IPD over the same period, the other

MLST commonly found associated with serogroup/serotype 1. Thus, Kirkham

et al. conclude that the increase in serogroup/serotype 1 IPD in Scotland is at-

tributable to the increase in MLST 306 serogroup/serotype 1 IPD. However, their

study focusses on the genetic composition of serotype 1 isolates in IPD and the

rates of serotype 1 IPD are reported but no statistical analysis appears to have

been carried out. Thus, the analysis carried out in this chapter should add to the

work carried out by Kirkham et al. as statistical techniques are adopted to deter-

mine whether or not there is evidence of a changing trend in serogroup/serotype

1 disease or MLST 306 disease or both.

6.2.4 Effect of PCV-7

Many of the existing studies of serotypes involved in IPD concern the comparison

of a pre-conjugate vaccination period to a post vaccination period to examine any

changes in serotype distribution likely to be related to the use of PCV-7. In the

USA, great reductions in IPD were documented which were not limited to the

vaccine targeted age group (Whitney et al. 2003). However, recent studies have

shown increases in IPD due to the NVT 19A in the USA following PCV-7 use

(Pelton et al. 2007, Albrich et al. 2007, Beall et al. 2006, Huang et al. 2005b).

Increases in this serotype have been observed following PCV-7 use outwith the

USA (Aguiar et al. 2008; Munõz-Almagro et al. 2008). Aguiar et al. (2008) also

report increases in NVT 7F disease in adults in Portugal but state that decreases

in the VT serotypes 4, 6B, 14 and 23F were observed in IPD; Munõz-Almagro et

al. document increases in the NVT serotypes 1, 5 and 6A disease in addition to

19A. Although it is speculated that the increase in 19A disease is attributable to

vaccine use, in Belgium 19A was documented to increase in IPD but the authors

state that this cannot be attributable to any vaccine effect as it was prior to

routine PCV-7 implementation (Amrine-Madsen et al. 2008).

One of the primary concerns regarding the increase in serotype 19A IPD in par-

ticular is that the emergence of this serotype in the post-vaccine era is likely to
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be attributable to a capsular switch event with serotype 4 (Brueggemann et al.

2007). Thus, it is becoming evermore important to assess the sequence types

involved in IPD as well as the serotypes.

A study comparing circulating pneumococcal strains in Barcelona pre- and post-

PCV-7 introduction reported increases in rates of IPD due to the NVT serotypes

1, 5, 7F, 12F, 19A, 22F and 24 (Ardanuy et al. 2009). Ardanuy et al. consider

the MLSTs in the analysis of IPD in Barcelona and report the most common

to be MLST 156, MLST 260, MLST 306, MLST 191, MLST 289, MLST 180

and MLST 81. It is reported that significant increases are observed in MLST

306 (associated with serotype 1), MLST 191 (serotype 7F), MLST 989 (serotype

12F) and MLST 433 (serotype 22F and 19A) from the pre-PCV-7 period (years

1997 to 2001) to the late-PCV-7 period (years 2005 to 2007).

6.2.5 Serotype and MLST associations

Associations between serotypes and MLSTs involved in IPD have been explored

in the literature. In a study in the USA of cases of IPD in 1999, 2001 and 2002,

years prior to and following the introduction of PCV-7, the serotype and MLST

associations are described (Beall et al. 2006). Beall et al. state that it is likely

that MLSTs which are associated with more than one serotype occur due to

capsular switch events and that the data presented in their study indicate that

such an event is rare since only 11 MLSTs amongst 177 identified from 2,100

collected isolates were associated with more than one serotype. Only 1 of these

MLSTs, 199, is associated with both VT and NVT serotypes. However, a Scottish

study of IPD prior to the introduction of PCV-7 showed MLSTs associated with

more than 1 serotype to occur more frequently (Clarke et al. 2004). This study

considered 368 IPD isolates collected in the first 6 months of 2003. Among 97

different MLSTs identified, 14 MLSTs were found associated with more than

1 serotype. Of these 14 MLSTs, 12 were associated with both VT and NVT

serotypes.
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6.3 Methods

In the analysis carried out in this chapter, the data were obtained from the

Scottish Invasive Pneumococcal Disease Enhanced Surveillance (SPIDER) on all

cases of IPD in Scotland between 1999 and 2006. Serogroup information for the

cases of IPD was available for all years. Serotype and MLST information was

available from 2003.

The SPIDER records contain information about the year and week the case of

IPD was recorded. The years were grouped from week 40 of one year to week 39 of

the next year to ensure winter seasons were grouped together as most cases of IPD

occur during winter. The information used in the analysis was all cases of IPD in

SPIDER which were identified from blood or cerebrospinal fluid (CSF) samples.

The analysis was carried out on this data from 1999/00 to 2005/06. Within the

SPIDER records information was also available on the age of the patient. These

ages were grouped into six categories: 0 to 4 years, 5 to 34 years, 35 to 49 years,

50 to 64 years, 65 to 74 years and 75 years and over, as these age groups have

been adopted in literature elsewhere looking at IPD in Scotland (Mooney et al.

2008). However, the Mooney et al. analysis combined the age groups 65 to 74

years and 75 years and over whereas this analysis makes a distinction between

these age groups. This is due to the fact that the elderly have one of the highest

burdens of IPD, particularly amongst the most elderly, and so these groups are

separated as there may be differences in the serogroups found in disease.

Logistic regression models were used to investigate whether or not there is evi-

dence of a trend for each of the serogroups, serotypes and MLSTs found in IPD

in Scotland. The model can be described by the following equation:

log (θ/(1− θ)) = α + β × x. (6.1)

For the serogroup trend analysis, in the logistic regression model (6.1) θ is the

proportion of serogroup i IPD in Scotland and x is the value of the continuous

explanatory variable year from 1999/00 to 2005/06. This model was fitted for

each of the serogroups found in IPD. Similar models were fitted for serotypes

and MLSTs. However, in these models, data were only available for the years

205



2003/04 to 2005/06. To identify significant trends, either increasing or decreasing,

for serogroups/types and MLSTs, the p-value for the variable year in the logistic

regression model was examined.

Based on the observed increasing rates of serotype 1 IPD in Scotland between 2000

and 2003 (Kirkham et al. 2006), the primary hypothesis of this analysis of the

Scottish IPD data was to determine whether or not there is significant evidence of

an increasing trend in serogroup/serotype 1 IPD in the years prior to the introduc-

tion of PCV-7. The secondary hypothesis was to determine whether or not there

is evidence of an increasing or decreasing trend for any other serogroup/serotype

found in IPD in Scotland. As MLST 306 is a potentially influential factor for

any increase in serotype 1 IPD observed, the primary hypothesis in the MLST

analysis is that MLST 306 has an increasing trend.

As hypotheses are specified regarding serogroup/serotype 1 and MLST 306 trends,

the p-values for year in each of these logistic regression models were compared to

a significance level of 0.05. All other models were adjusted for multiple testing

using the Bonferroni correction factor described below:

α/n. (6.2)

In the Bonferroni correction, α was fixed at a level of 0.05 and n is the total

number of serogroups observed in at least 1% of all IPD from 1999/00 to 2005/06.

Similarly, for serotypes and MLSTs, n is the total number observed in at least

1% of IPD between 2003/04 to 2005/06.

The analysis in this chapter was carried out using R version 2.8.0.

6.4 Results

6.4.1 Cases of IPD in Scotland

On average, approximately 651 cases of IPD per year were reported in Scotland

between 1999/00 to 2005/06. Table 6.1 shows the results for each year.

Table 6.1 shows that the minimum number of cases of IPD occurred in 1999/00
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Table 6.1: Number of cases of IPD reported in Scotland each year.

Year 99/00 00/01 01/02 02/03 03/04 04/05 05/06
Number 538 594 566 743 672 710 737

and the maximum in 2002/03, with a difference of 205 cases.

1999/00 2000/01 2001/02 2002/03 2003/04 2004/05 2005/06
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Figure 6.1: Proportion of IPD cases for each age group from 1999/00 to 2005/06.

From examination of Figure 6.1, it can be observed that IPD is most common

among the elderly; in particular, those aged 75 years and over, with approximately

28% of all observed IPD occurring in this age group. The proportion of IPD in

the 65 to 74 years age group and the 75 years and over age group shows a slight
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decline after 2002/03. This is likely to be attributable to the introduction of PPV-

23 in 2003 to prevent IPD in those aged 65 years and over. The introduction of

the vaccine is not taken into account in the trend analysis as only serogroup

information is available from 1999/00 and the vaccine is serotype specific. As

serotype information is available from 2003/04, a trend analysis was carried out

for the older age groups to identify which, if any, of the PPV-23 VT serotypes

had a decreasing trend following the introduction of the vaccine.

6.4.2 Serogroup, serotype and MLST distribution in IPD

In Scotland, from 1999/00 to 2005/06, 35 different serogroups were identified in

cases of IPD. Figure 6.2 shows the serogroups responsible for more than 1% of

all cases of IPD during the period of study.

It can clearly be observed from examination of Figure 6.2 that serogroup 14 is

the most common serogroup found in IPD in Scotland, accounting for more than

17% of all cases. Serogroups 9 and 1 are the next two most common serogroups,

accounting for 9.28% and 8.44% of IPD respectively. Serogroups 14 and 9 appear

to have been commonly associated with IPD in Scotland for many years as a

study of Scottish IPD between 1988 and 1999 showed serogroups 14 and 9 to be

the two most prevalent of all serogroups in IPD during that period (Kyaw et al.

2000). However, serogroup 1 was only the sixth most common serogroup involved

in IPD between 1988 and 1999.

A total of 46 different serotypes were identified in IPD in Scotland between

2003/04 and 2005/06. Figure 6.3 shows the serotypes which each were responsible

for more than 1% of all cases of IPD between 2003/04 and 2005/06, with vaccine

type serotypes highlighted.

Figure 6.3 shows that, of the 20 serotypes that each account for more than 1% of

IPD in Scotland, 17 are found in at least one of the two pneumococcal vaccines,

PCV-7 and PPV-23. The other 3 serotypes, 19A, 6A and 9N, have been identified

as PCV-7 related serotypes (Whitney et al. 2003). Thus, PCV-7 may prove

effective in preventing disease from these 3 serotypes.
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Figure 6.2: Percentage of IPD cases attributable to each serogroup from 1999/00

to 2005/06 (for serogroups that account for more than 1% of IPD).
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Figure 6.3: Percentage of IPD cases attributable to each serotype from 2003/04

to 2005/06 (for serotypes that account for more than 1% of IPD).
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Together, the 10 most common disease-causing serotypes in Scotland account

for approximately 71% of all IPD between 2003/04 and 2005/06. The serotypes

found in PCV-7 (4, 6B, 9V, 14, 18C, 19F, 23F) account for approximately 47% of

all those IPD cases serotyped during this period and the PCV-7 related serotypes

(6A, 9A, 9L, 9N, 18A, 18B, 18F, 19A, 19B, 19C, 23A, 23B) together account for

a further 9% of all IPD. Kyaw et al. (2000) report overall coverage of 61% of all

IPD by PCV-7 between 1988 and 1999.

The serotypes found in PPV-23 (1, 2, 3, 4, 5, 6B, 7F, 8, 9N, 9V, 10A, 11A, 12F,

14, 15B, 17F, 18C, 19A, 19F, 20, 22F, 23F, 33F) account for approximately 90% of

all IPD for which the specific serotype was identified in Scotland between 2003/04

and 2005/06. Kyaw et al. (2000) report a coverage of 96% by PPV-23 of cases

of Scottish IPD between 1988 and 1999. In total, 851 (18.66%) isolates were not

specifically typed from 1999/2000 to 2005/06. However, serogroup information

was available for these cases.

PCV-7 has a high efficacy in preventing vaccine type IPD and not only prevents

disease and infection in the vaccinated population but also prevents vaccinated

hosts from carrying these serotypes. PPV-23 does cover a high proportion of

IPD in Scotland but this vaccine only has a moderate efficacy in preventing

vaccine type disease. A meta-analysis carried out looking at the efficacy of the

polysaccharide vaccine has shown the vaccine to have an estimated efficacy of 65%

(95% C.I. (-49%, 92%)) in preventing vaccine type IPD (Melegaro and Edmunds

2004b). In addition, this vaccine has no impact on the carriage of the 23 VT

serotypes. Thus, there is no potential for herd immunity through the use of this

vaccine.

Figure 6.4 shows the MLSTs responsible for at least 1% of all IPD in Scotland

between 2003/04 and 2005/06. MLST 9 is the most common MLST found in

IPD, responsible for 9% of all IPD during the three year period. MLST 9 is

commonly associated with serogroup/serotype 14. Approximately 60% of the

serogroup/serotype 14 isolates found in IPD between 2003/04 and 2005/06 were

MLST 9. The second most common MLST found in IPD was 306. Over 65% of

serogroup/serotype 1 isolates were associated with MLST 306.
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Figure 6.4: Percentage of IPD cases attributable to each MLST from 2003/04 to

2005/06 (for MLSTs that account for more than 1% of IPD).

There were 22 MLSTs each responsible for more than 1% of IPD in Scotland. The

10 most common disease-causing MLSTs together account for approximately 44%

of all IPD in Scotland between 2003/04 and 2005/06. Of the 22 MLSTs shown

in Figure 6.4, 16 were associated with serotypes found in PCV-7. The serotype

associations are shown in Table 6.2. Only 2 MLSTs are associated with just the

one serotype amongst the 22 most common. These are 227 and 36, associated

with serotype 1 and 23F respectively. 5 isolates were non-typeable (NT), with

only MLST information available.

Figure 6.5 shows the distribution of MLSTs associated with serogroup/serotype

1 IPD in Scotland. In total, serogroup/serotype 1 was associated with 23 dif-

ferent MLSTs during this three year period. From examination of this figure,

it can be observed that MLST 306 is associated with the greatest percentage

of serogroup/serotype 1 IPD each year and that the proportion increased from

approximately 57% in 2003/04 to about 73% in 2005/06. This corresponds to a

general increase in the number of serogroup/serotype 1 IPD, with only approxi-
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mately 11% of all IPD cases attributable to serogroup/serotype 1 IPD in Scotland

in 2003/04 and 2004/05, increasing to over 16% in 2005/06. The number of dif-

ferent MLSTs associated with serogroup/serotype 1 IPD in Scotland decreased

over time. There were 12 different MLSTs associated with serogroup/serotype 1

IPD in 2003/04, ten in 2004/05 and only six in 2005/06.
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Figure 6.5: Percentage of serogroup/serotype 1 IPD associated with each MLST

each year.

MLST 227 is the second most common MLST found associated with serogroup/

serotype 1 IPD, with between 20 and 25% of this type of IPD attributable to

MLST 227. MLST 227 serogroup/serotype 1 IPD did not vary greatly with year.

Figure 6.6 shows the distribution of MLSTs in serogroup/serotype 14 IPD in

Scotland from 2003/04 to 2005/06. Overall, serogroup/serotype 14 IPD was

associated with 31 different MLSTs. In this figure, it can be seen that MLST 9

was the most common MLST found in serogroup/serotype 14 IPD in Scotland in

each of the years from 2003/04 to 2005/06. The percentage of serogroup/serotype

14 MLST 9 IPD cases increased slightly each year, with approximately 52% of

serogroup/serotype 14 IPD attributable to this MLST in 2003/04 and 62% in
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2005/06.
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Figure 6.6: Percentage of serogroup/serotype 14 IPD associated with each MLST

each year.

The second most common MLST found in serogroup/serotype 14 IPD is MLST

124. The proportion of serogroup/serotype 14 IPD attributable to this MLST

remained fairly constant each year, averaging around 24%. The number of ML-

STs associated with serogroup/serotype 14 IPD in Scotland decreased from 19

different MLSTs in 2003/04 to 11 in 2004/05 and 12 in 2005/06.

6.4.3 Trend Analysis

In Figure 6.7, the trends in IPD cases for the ten most common serogroups

are shown. In addition, the trend for a group of serogroups consisting of those

responsible for all other cases of IPD in Scotland is shown. Figure 6.7 supports

the hypothesis that serogroup 1 is becoming more common in cases of IPD in

Scotland over time. In 2005/06, serogroup 1 replaced serogroup 14 as the most

common serogroup found in IPD. Serogroup 1 accounted for only approximately
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5% of all IPD cases in 1999/00 but over 16% of all cases in 2005/06 suggesting a

potentially significant increase over time. Serogroup 14 shows a decreasing trend

in cases of IPD from 2001/02 to 2005/06. No other serogroup appeared to show

a clear increasing or decreasing trend from 1999/00 to 2005/06.
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Figure 6.7: Trend plot of IPD cases by serogroup for the ten most common

serogroups from 1999/00 to 2005/06.

Figures 6.8 to 6.13 show the trends in the ten most common serogroups found in

IPD for each of the age groups. Figure 6.8 shows that for those aged 0 to 4 years,

serogroup 14 was the most common serogroup of the 10 most common found in

IPD for all years. There is no apparent increasing or decreasing trend for any of

the 10 most common serogroups for this age group.

For the 5 to 34 years age group, it can be observed from examination of Figure

6.9 that serogroup 1 shows an increasing trend in cases of IPD and from 2001/02

was the serogroup accountable for the greatest proportion of cases of IPD in

this group, with a marked increase from 23% of all cases of IPD in 2004/05 to
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around 40% of cases in 2005/06. No other serogroup shows a clear increasing or

decreasing trend during this period.

In the 35 to 49 years age group, serogroup 1 again appears to show an increasing

trend in Figure 6.10, only 8% of all cases of IPD in 1999/00 and 21% of all cases

in 2005/06 were attributable to serogroup 1. Between 6% and 10% of all cases

of IPD each year were attributable to serogroup 14. Serogroup 8 was the most

common cause of IPD in this age group in 1999/00, approximately 13% of all

cases were attributable to this serogroup. However, by 2004/05 serogroup 8 was

only responsible for about 4% of all IPD and was only responsible for 6% in

2005/06. Other than serogroup 1, none of the 10 most common serogroups show

a clear increasing or decreasing trend over the period of study for this age group.

The trend plot of serogroups for the 50 to 64 years age group (Figure 6.11) shows

serogroup 14 to be the most common serogroup in IPD every year apart from

2004/05 where serogroup 4 was accountable for most invasive disease. There

is no apparent increasing or decreasing trend for any of the ten most common

serogroups in this age group.

Serogroup 14 was the most common cause of IPD in the 65 to 74 years age group

for all years between 1999/00 and 2005/06 apart from 2002/03 when serogroup

9 was most common. There is no clear increasing or decreasing trend for any of

the serogroups shown in Figure 6.12.

Serogroup 14 was the most common cause of IPD in the 75 years and over group

for all years apart from 2004/05 when serogroup 3 was accountable for a slightly

higher proportion of cases. The trend plot for this age group (Figure 6.13) shows

no apparent trend, either increasing or decreasing, for any of the common disease-

causing serogroups.

Examination of a trend plot of the 10 most common MLSTs in the period 2003/04

to 2005/06 (Figure 6.14) shows that most MLSTs remain fairly constant in pro-

portion over the 3 year period. MLST 306 shows an increase from 2004/05 to

2005/06, replacing MLST 9 as the most common MLST in IPD in 2005/06. This

corresponds with serogroup 1 replacing serogroup 14 to become the most common

serogroup found in IPD as MLST 306 is the most common MLST associated with
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serogroup 1 IPD in Scotland and MLST 9 is the most common MLST associated

with serogroup 14.
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Figure 6.8: Trend plot of IPD cases by serogroup for those aged 0-4 years.
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Figure 6.9: Trend plot of IPD cases by serogroup for those aged 5-34 years.
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Figure 6.10: Trend plot of IPD cases by serogroup for those aged 35-49 years.
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Figure 6.11: Trend plot of IPD cases by serogroup for those aged 50-64 years.
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Figure 6.12: Trend plot of IPD cases by serogroup for those aged 65-74 years.
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Figure 6.13: Trend plot of IPD cases by serogroup for those aged 75 years & over.
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Figure 6.14: Trend plot of IPD cases by MLST for the ten most common MLSTs

from 1999/00 to 2005/06.

6.4.4 Logistic regression

Logistic regression models were used to formally assess whether or not there is

significant evidence of an increasing or decreasing trend for each of the serogroups

and MLSTs involved in IPD in Scotland.

Serogroup trends

There were 35 serogroups in total observed in IPD in Scotland between 1999/00

and 2005/06. Table 6.3 shows the odds ratio (OR), Bonferroni adjusted 95% C.I.

and p-value of year in the model for serogroups involved in at least 1% of IPD

in Scotland. As a specific hypothesis was assumed about serogroup 1 having an

increasing trend, no adjustment for multiple testing has to be made for the test

for this serogroup and the p-value obtained for the serogroup 1 logistic regression

may be compared to the significance level of 0.05.
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Table 6.3: Results of the logistic regression model for the serogroups responsible
for at least 1% of IPD.

Serogroup exp(β) Adjusted 95% p-value
C.I.

14 0.938 (0.883, 0.997) 0.003
9 0.968 (0.892, 1.047) 0.230
1 1.359 (1.238, 1.493) < 0.001
6 0.969 (0.891, 1.057) 0.328
19 0.984 (0.900, 1.074) 0.595
4 1.039 (0.946, 1.134) 0.284
8 0.948 (0.865, 1.044) 0.135
23 0.941 (0.858, 1.035) 0.084
3 0.995 (0.902, 1.100) 0.917
7 1.036 (0.926, 1.167) 0.357
18 0.983 (0.876, 1.104) 0.685
12 1.040 (0.914, 1.183) 0.400
22 0.977 (0.849, 1.125) 0.648
20 0.948 (0.808, 1.113) 0.360
33 0.936 (0.789, 1.110) 0.285
11 0.969 (0.811, 1.160) 0.638
15 1.013 (0.829, 1.239) 0.864

The p-value for year in the regression model for serogroup 1 is <0.001 and the OR

(exp(β)) is greater than 1. Therefore, there is significant evidence that serogroup

1 has been increasing in IPD in Scotland during the period 1999/00 to 2005/06.

The p-values for year for each of the other logistic regression models have to be

compared to a significance level of 0.003, using the Bonferroni correction factor

shown previously (6.2) to adjust for the 17 tests carried out for each serogroup

observed in at least 1% of all IPD cases. Serogroup 14 is borderline significant

with a p-value of 0.003. The OR for this serogroup is less than 1. Thus, there

is significant evidence to suggest that serogroup 14 has been decreasing in IPD

in Scotland from 1999/00 to 2005/06. No other serogroup was found to have a

significant increasing or decreasing trend.

Separate logistic regression models were fitted to the serogroups found in IPD in

each of the 6 age groups defined previously to assess trends within each group.
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There was no information about the age of the patient for 32 cases of IPD. No

adjustment was made for multiple testing for the serogroup 1 models. The results

are shown in Table 6.4.

Table 6.4: Results of the logistic regression model for the serogroups responsible
for at least 1% of IPD for those aged 0 to 4 years.

Serogroup Number exp(β) Adjusted 95% p-value
C.I.

14 151 0.947 (0.832, 1.079) 0.284
6 71 0.994 (0.837, 1.181) 0.932
19 66 1.081 (0.903, 1.294) 0.258
18 39 0.934 (0.748, 1.166) 0.426
23 31 0.844 (0.657, 1.084) 0.076
9 25 1.050 (0.794, 1.388) 0.649
1 22 1.461 (1.022, 2.088) 0.006
4 17 1.064 (0.760, 1.490) 0.629
3 13 0.991 (0.681, 1.443) 0.950
15 12 0.890 (0.603, 1.312) 0.433
33 7 0.988 (0.594, 1.643) 0.952

In total, amongst the 523 cases of IPD observed in the 0 to 4 years age group,

there were 25 serogroups observed; 11 of which were each responsible for at least

1% of IPD within this age group. The results from the logistic regression analysis

for this age group are shown in Table 6.4. The only serogroup found to have a

significant trend was serogroup 1 with a p-value of 0.006. This serogroup was

shown to increase over time.

There were 537 cases of IPD between 1999/00 and 2005/06 in the 5 to 34 years

age group. 26 different serogroups were identified; 15 of which were responsible

for at least 1% of IPD. Thus, after adjustments for multiple testing, a p-value

of < 0.003 is required for significance. The results for these 15 serogroups are

shown in Table 6.5. Once again, serogroup 1 was the only serogroup to show a

significant trend in IPD, with a p-value of < 0.001.

25 different serogroups were accountable for IPD in the 35 to 49 years age group

in Scotland. Of these serogroups, there were 17 which each accounted for at least
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Table 6.5: Results of the logistic regression model for the serogroups responsible
for at least 1% of IPD for those aged 5 to 34 years.

Serogroup Number exp(β) Adjusted 95% p-value
C.I.

1 122 1.358 (1.145, 1.611) < 0.001
14 49 0.962 (0.778, 1.188) 0.617
7 39 1.009 (0.783, 1.255) 0.915
4 30 0.973 (0.748, 1.266) 0.782
18 29 0.840 (0.646, 1.093) 0.074
9 28 1.005 (0.764, 1.322) 0.960
6 28 0.809 (0.618, 1.058) 0.032
23 24 0.934 (0.699, 1.249) 0.524
8 23 0.896 (0.668, 1.201) 0.309
12 21 0.815 (0.600, 1.107) 0.070
19 18 0.875 (0.628, 1.218) 0.270
3 9 0.770 (0.483, 1.227) 0.128
15 7 1.269 (0.683, 2.355) 0.297
22 7 1.015 (0.592, 1.742) 0.941
33 6 0.841 (0.480, 1.475) 0.403

1% of the IPD within this age group, shown in Table 6.6. In total, there were 623

cases of IPD observed in this age range. Serogroup 1 had a significant positive

trend (p-value< 0.001). In the logistic regression model for serogroup 8 in this age

group, year had a significant p-value of 0.002. A p-value of < 0.003 is required for

significance using the Bonferroni correction factor. The estimated OR for year in

the logistic regression model for serogroup 8 is less than 1 indicating a decreasing

trend in serogroup 8 IPD from 1999/00 to 2005/06. No other serogroup had a

significant increasing or decreasing trend for this age group.

From the 828 cases of IPD, 24 different serogroups were observed in the 50 to

64 years age group. A trend test was carried out for only the 16 responsible for

at least 1% of IPD. The results are displayed in Table 6.7. Only serogroup 1

had a significant trend with a p-value of 0.001. In the logistic regression models

for the 65 to 74 years age group, none of the 16 most common serogroups had a

significant trend, see Table 6.8. In total, 28 serogroups were observed in the 727

cases of IPD in this age group.
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Table 6.6: Results of the logistic regression model for the serogroups responsible
for at least 1% of IPD for those aged 35 to 49 years.

Serogroup Number exp(β) Adjusted 95% p-value
C.I.

1 80 1.301 (1.067, 1.586) < 0.001
4 62 1.017 (0.836, 1.237) 0.810
14 54 0.964 (0.784, 1.185) 0.617
8 52 0.795 (0.646, 0.977) 0.002
7 41 1.082 (0.849, 1.379) 0.372
9 40 0.866 (0.687, 1.091) 0.087
12 34 1.053 (0.811, 1.368) 0.588
19 34 1.053 (0.811, 1.368) 0.588
18 23 1.264 (0.891, 1.793) 0.066
20 23 0.914 (0.675, 1.237) 0.413
23 17 0.958 (0.673, 1.363) 0.737
6 15 0.829 (0.573, 1.199) 0.159
3 12 1.119 (0.716, 1.748) 0.489
22 10 1.194 (0.719, 1.981) 0.337
11 9 0.774 (0.482, 1.243) 0.137
10 7 1.026 (0.588, 1.790) 0.898
33 7 0.986 (0.570, 1.706) 0.943

Serogroup 1 has a significant trend for the 75 years and over group with a p-value

of 0.044. After adjusting for multiple testing for the 18 most common disease-

causing serogroups in this age group, no other serogroups were found to have an

increasing or decreasing trend. The results are shown in Table 6.9. In total, 29

serogroups were observed in the 1,290 cases of IPD in this age group between

1999/00 and 2005/06.

Serotype trends

A trend analysis was carried out for the serotypes for the years 2003/04 to 2005/06

since specific serotype information was available for these years. The results are

shown for the serotypes responsible for at least 1% of all IPD in this period in

Table 6.10.

From examination of Table 6.10, no serotype appears to have a significant in-
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Table 6.7: Results of the logistic regression model for the serogroups responsible
for at least 1% of IPD for those aged 50 to 64 years.

Serogroup Number exp(β) Adjusted 95% p-value
C.I.

14 108 0.889 (0.767, 1.030) 0.029
9 80 0.968 (0.819, 1.143) 0.588
4 59 1.165 (0.949, 1.431) 0.040
19 53 0.980 (0.801, 1.200) 0.784
8 52 0.935 (0.764, 1.145) 0.362
1 52 1.320 (1.047, 1.666) 0.001
3 48 0.998 (0.806, 1.235) 0.983
23 39 1.030 (0.815, 1.304) 0.727
6 35 1.000 (0.782, 1.279) 0.998
12 34 1.013 (0.790, 1.299) 0.890
7 32 1.022 (0.791, 1.322) 0.816
22 25 0.839 (0.629, 1.118) 0.092
18 18 0.826 (0.590, 1.156) 0.120
20 16 1.207 (0.819, 1.779) 0.185
11 14 1.045 (0.709, 1.541) 0.757
33 10 0.951 (0.607, 1.489) 0.760

creasing or decreasing trend following Bonferroni adjustment for the 19 tests.

However, as a hypothesis was specified for serotype 1, the p-value obtained in

this test should be compared to the significance level 0.05. Thus, serotype 1 ap-

pears to have a significant trend during the period 2003/04 to 2004/05. The OR

for this serotype is greater than 1. Therefore, there is significant evidence that

serotype 1 is increasing in IPD with increasing year.

As PPV-23 was introduced in 2003 for routine administration of those aged 65

years and over in Scotland, logistic regression models were fitted to assess the

serotype trends for the 65 to 74 years age group and the 75 years and over age

group to determine whether or not the vaccine had an impact on the VT serotypes

in these groups. Approximately 85% of typeable IPD in the 65 to 74 years age

group is attributable to the 23 serotypes found in PPV-23, whilst in the 75 years

and over group, 30% of the typeable IPD is attributable to the 23 serotypes

found in PPV-23. Serotype information was missing for approximately 11% of
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Table 6.8: Results of the logistic regression model for the serogroups responsible
for at least 1% of IPD for those aged 65 to 74 years.

Serogroup Number exp(β) Adjusted 95% p-value
C.I.

14 91 0.988 (0.839, 1.164) 0.846
9 79 1.027 (0.862, 1.224) 0.670
6 56 1.125 (0.917, 1.381) 0.116
3 52 0.950 (0.772, 1.170) 0.506
8 50 1.017 (0.822, 1.259) 0.828
19 48 1.021 (0.823, 1.267) 0.795
4 41 0.930 (0.737, 1.173) 0.394
23 30 0.834 (0.633, 1.100) 0.073
1 29 1.142 (0.862, 1.514) 0.197
18 21 0.971 (0.705, 1.338) 0.803
22 18 1.026 (0.725, 1.452) 0.840
11 17 1.049 (0.735, 1.497) 0.712
7 15 0.932 (0.639, 1.360) 0.614
12 14 1.314 (0.858, 2.013) 0.080
33 12 0.868 (0.567, 1.331) 0.365
20 10 0.882 (0.554, 1.403) 0.457

IPD cases for the 65 to 74 years age group and the same percentage for those

aged 75 years and over. From the logistic regression modelling, no significant

trends were identified for either age group.

MLST trends

There were 158 MLSTs involved in IPD in Scotland in 2003/04, 140 in 2004/05

and only 115 in 2005/06 showing a reduction in the diversity of MLSTs over

time. In total, 273 different MLSTs were identified in IPD in Scotland. The ten

most common MLSTs together account for 51% of all IPD in Scotland between

2003/04 and 2005/06.

The MLSTs associated with the PPV-23 serotypes during the period from 2003/04

to 2005/06, which includes those serotypes found in PCV-7, are shown in Tables

6.11 and 6.12.
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Table 6.9: Results of the logistic regression model for the serogroups responsible
for at least 1% of IPD for those aged 75 years or over.

Serogroup Number exp(β) Adjusted 95% p-value
C.I.

14 219 0.976 (0.874, 1.091) 0.548
9 110 0.955 (0.822, 1.109) 0.392
23 101 1.017 (0.871, 1.188) 0.758
6 96 1.003 (0.856, 1.175) 0.961
3 86 1.095 (0.927, 1.294) 0.128
19 70 0.915 (0.760, 1.102) 0.180
8 64 1.023 (0.847, 1.236) 0.736
4 63 0.986 (0.814, 1.194) 0.835
22 43 1.002 (0.796, 1.261) 0.983
7 29 0.886 (0.668, 1.176) 0.237
18 28 1.124 (0.847, 1.492) 0.255
20 28 0.826 (0.614, 1.111) 0.073
33 28 1.013 (0.764, 1.344) 0.902
12 26 1.015 (0.757, 1.362) 0.887
1 26 1.246 (0.921, 1.686) 0.044
11 21 0.969 (0.698, 1.343) 0.784
15 19 1.257 (0.882, 1.793) 0.073
16 14 1.023 (0.688, 1.521) 0.874

The diversity index was calculated for the MLSTs, as described by Brueggemann

et al. (2003), in which it was defined that the genetic diversity, λ, of a population

of bacteria provides a measure of the probability that two randomly selected

pneumococcal isolates will be of different types. As with the Brueggemann et al.

analysis, the Simpson index (Simpson 1949), D, is used to obtain an unbiased

estimate of λ where

λ =
n∑
i=1

ni(ni − 1)

N(N − 1)
and D = 1− λ. (6.3)

In (6.3), ni is the number of isolates of the ith type and N is the overall number

of isolates in the sample. Here, N = 1, 815 since MLST information was not

available for 304 isolates between 2003/04 and 2005/06. i = 1, ..., 273 as there

are 273 distinct MLSTs observed. λ was calculated to equal approximately 0.035.
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Table 6.10: Results of the logistic regression model for the serotypes responsible
for at least 1% of IPD between 2003/04 and 2005/06.

Serotype Number exp(β) Adjusted 95% p-value
C.I.

14 287 0.976 (0.785, 1.214) 0.759
1 243 1.265 (0.998, 1.604) 0.006
4 134 1.100 (0.811, 1.491) 0.384

9V 123 0.887 (0.647, 1.216) 0.288
8 108 1.006 (0.718, 1.410) 0.959
3 105 1.023 (0.728, 1.438) 0.852

23F 99 1.013 (0.715, 1.436) 0.916
6B 83 0.975 (0.667, 1.425) 0.136
7F 77 1.224 (0.819, 1.829) 0.160
19F 76 0.942 (0.634, 1.400) 0.674
18C 69 0.707 (0.464, 1.077) 0.022
19A 63 0.799 (0.517, 1.235) 0.151
12F 61 1.390 (0.879, 2.196) 0.045
6A 57 1.209 (0.761, 1.922) 0.253
22F 44 0.726 (0.431, 1.224) 0.088
9N 39 0.961 (0.556, 1.660) 0.840
20 36 0.851 (0.482, 1.504) 0.430

11A 29 0.925 (0.491, 1.743) 0.732
15B 22 0.990 (0.479, 2.045) 0.970

An approximate 95% confidence interval for the genetic diversity, D, may be

calculated as follows (Grundmann et al. 2001):

D ± 2
√
σ2,

where

σ2 =
4

N

 n∑
i=1

(ni
N

)3

−

(
n∑
i=1

(ni
N

)2
)2
 .

Thus, the genetic diversity, D, of the MLSTs from IPD was 0.965 (95% C.I.

(0.962, 0.968). Therefore, there is a high probability that two randomly selected
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isolates will be of different MLST type.

As 156 MLSTs only appeared once in IPD in Scotland, 41 only twice and a

further 21 appeared only three times, for the purpose of the trend analysis of

MLSTs involved in IPD, only the MLSTs responsible for at least 1% of IPD in

Scotland (shown in Figure 6.14) were assessed. Table 6.13 shows the exponenti-

ated coefficient, Bonferroni adjusted 95% confidence interval and p-value of year

resulting from each of the logistic regression models for the 22 MLSTs involved in

at least 1% of IPD in Scotland. The p-value for the explanatory variable year in

the logistic regression model with the proportion of MLST 306 IPD in Scotland

as response is 0.001, shown in Table 6.13, which is below the significance level

of 0.05. Therefore, as the OR for year in this model is greater than 1, there is

evidence of an increasing trend in MLST 306 IPD.

All other p-values for year in the regression models were compared to a signifi-

cance level of 0.002, using the Bonferroni correction factor to correct for multiple

testing. No other MLST shows a significant increasing or decreasing trend.

6.5 Conclusions

In Scotland, between 1999/00 and 2005/06 on average approximately 650 cases of

IPD occurred per year, with the greatest burden of disease amongst the elderly,

particularly those aged over 75 years. A slight decline in the proportion of IPD

for this age group was observed from 2003/04 to 2005/06 which is potentially

attributable to the introduction of PPV-23. However, on carrying out logistic

regression modelling of the serotypes observed in IPD for the vaccine targeted

age groups, 65 to 74 years and 75 years and over, between 2003/04 and 2005/06

none of the PPV-23 serotypes showed a statistically significant decreasing trend

in IPD.

The VT serogroup/serotype 14 was responsible for the greatest overall burden of

IPD in Scotland, with 17% of disease between 1999/00 and 2005/06 caused by

this serogroup. The observation that serogroup 14 is the most common disease-

causing serogroup corresponds with other IPD studies in Europe prior to the
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Table 6.13: Results of the logistic regression model for the MLSTs responsible
for at least 1% of IPD between 2003/04 and 2005/06.

MLST exp(β) Adjusted 95% p-value
C.I.

9 1.062 (0.804, 1.402) 0.539
306 1.395 (1.042, 1.869) 0.001
162 1.030 (0.741, 1.432) 0.797
53 1.012 (0.700, 1.464) 0.924
180 1.011 (0.678, 1.508) 0.939
191 1.242 (0.823, 1.875) 0.134
124 0.998 (0.658, 1.515) 0.987
218 1.239 (0.784, 1.956) 0.183
199 0.715 (0.444, 1.151) 0.045
227 1.221 (0.750, 1.990) 0.244
311 0.917 (0.561, 1.498) 0.615
246 0.974 (0.593, 1.601) 0.883
205 1.207 (0.654, 2.228) 0.386
206 1.217 (0.652, 2.271) 0.372
433 0.596 (0.314, 1.132) 0.022
176 1.178 (0.620, 2.237) 0.468
113 1.020 (0.530, 1.965) 0.930
235 0.773 (0.390, 1.531) 0.284
138 1.155 (0.581, 2.295) 0.552
36 1.190 (0.572, 2.475) 0.499
62 1.135 (0.531, 2.429) 0.636
65 1.629 (0.691, 3.838) 0.106

introduction of PCV-7 (Serrano et al. 2005; Normark et al. 2001) and a previous

Scottish IPD study reported this serogroup/serotype to be the most prevalent

in disease in a period preceding that of this analysis, 1988 to 1999 (Kyaw et al.

2000). The burden of disease attributable to serogroup 14 is almost double that

of the next most common serogroup found in IPD, serogroup 9, and is slightly

more than double that of the third most common, serogroup 1. However, it is

interesting to observe serogroup/serotype 1 replacing serogroup/serotype 14 as

the most common cause of IPD in 2005/06 after a period in which serotype 14

appears to dominate in IPD.
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Serogroup 14 was the most common cause of disease overall. However, in the 6

age groups considered in this chapter, the serogroup attributable to most disease

varies. Thus, there appears to be an age association with the serogroups involved

in IPD in Scotland as observed elsewhere. In a study of IPD in children, Kaplan

et al. (2002) observe increasing proportions of serotype 1 IPD with increasing

age and decreasing proportions of serotype 14. This appears similar to the ob-

servations in this study where serogroup 14 appears as the most common cause

of disease in every year for the 0 to 4 years age group, whilst in the 5 to 34 years

old group serogroup 1 was the most common cause of disease in all but one year

when serogroup 7 was accountable for most IPD. Similar results were presented

in the Kyaw et al. (2000) study of IPD isolates in Scotland in a period prior to

the one considered in this analysis, where serogroup 14 was the most common

cause of IPD in those aged under 5 years. Kyaw et al. report serogroup 1 to be

the most common cause of disease in those aged 5 to 64 years of age. However,

the analysis in this chapter considers the age groups 5 to 34 years, 35 to 49 years

and 50 to 64 years separately. Amongst the disease isolates for those aged 35

to 49 years, serogroup 8 was the most common until 2002/03 following which

serogroup 1 was the most common; in the 50 to 64 years age group serogroup 14

was the most common cause of IPD for every year but 2004/05 when serogroup

4 was attributable for the highest burden of disease.

Although IPD attributable to 35 different serogroups was observed in this study,

the majority of disease was attributable to a much smaller number of serogroups,

with only 17 serogroups each responsible for at least 1% of all cases of IPD.

During the three years for which serotype specific information was available,

47% of all isolates collected were PCV-7. Thus, if serotype proportions in IPD

remain constant beyond 2005/06, the introduction of the vaccine should have a

substantial impact on the burden of disease due to herd immunity preventing

disease in the unvaccinated groups.

There are many MLSTs found in cases of IPD in Scotland. The genetic diversity

of the MLSTs found in IPD was high with a probability of around 0.97 that two

randomly selected pneumococcal isolates will have different MLSTs as in only

three years of study, 273 different MLSTs were identified but many occur rarely.
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Only 22 MLSTs accounted for at least 1% of IPD between 2003/04 and 2005/06.

The most common MLST in IPD was identified to be MLST 9, predominantly

associated with serogroup/serotype 14, with only one MLST 9 isolate associated

with serotype 19F. The second most prevalent disease-causing MLST was MLST

306, primarily associated with serogroup/serotype 1. However, MLST 306 was

also identified to be associated with a single case of each of the serotypes 14, 18C,

19F, 3, 4 and 6B, in addition to a nontypeable isolate. In a study of IPD in the

USA, Beall et al. (2006) documented that the association of MLSTs with more

than one serotype was a rare event. However, in this study this occurrence appears

far more commonly with all MLSTs amongst the 22 most common associated with

more than one serotype, 12 of which are associated with both a VT and NVT

serotype.

The results from the analysis of serogroup trends in Scotland show significant

evidence that serogroup 1 has increased in IPD incidence with year from 1999/00

to 2005/06. This increasing trend is apparent in all age groups but is not statis-

tically significant in the 65 to 74 years group where no serogroup was found to

have a statistically significant trend. The highest increasing trends for serogroup

1 were observed amongst those aged 5 to 34 years old and those aged 35 to 49

years old. The results obtained provide statistical evidence to add to the previ-

ous speculation that serogroup 1 has been increasing in Scotland (Kirkham et al.

2006) and corresponds with results obtained for the UK and Ireland in which

serogroup 1 bacteraemia was found to increase over time (Farrell et al. 2008).

Contradictory results have been obtained regarding serogroup/serotype 1 IPD in

the UK, as a study of serotypes involved in IPD in Oxfordshire between 1996

and 2005 showed serotype 1 to have significantly decreased in incidence over that

period (Foster et al. 2008). However, Foster et al. state that it appears that the

largest decline occurred around 1999 and that from 2000 serotype 1 IPD appeared

relatively stable. Thus, although the increase in trend of serogroup 1 IPD was

not observed from 1999 as the case in Scotland, it may not be the case that the

opposite trend is true for this period in the Oxfordshire study.

Amongst all cases of IPD, serogroup 14 was found to have a statistically significant

decreasing trend but this trend was not confirmed statistically in any of the
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analyses of the different age groups separately, although this trend was observed

in all but one of the age classes. Overall, no other serogroup was identified as

having a statistically significant trend. However, in cases of IPD in the 5 to 34

years age group, the NVT serogroup/serotype 8 was found to have a significant

decreasing trend.

The results of the MLST analysis show an increasing trend in MLST 306 IPD,

as hypothesised. This corresponds to the increase in serogroup 1 IPD. No other

MLST was identified to have significantly increased or decreased between 2003/04

and 2005/06. However, as there are many MLSTs observed in disease and there

are only three years of data there is little power to detect trends in the MLSTs.

PCV-7 does not provide protection against IPD caused by serogroup/serotype 1.

Thus, it is concerning to see this serotype increasing in IPD in Scotland prior to

vaccine use. In 2006, PCV-7 was introduced in Scotland and, assuming similar

results to those obtained in the USA, will greatly reduce the burden of disease

attributable to the VT serotypes 4, 6B, 9V, 14, 18C, 19F and 23F. However,

amongst the 10 most common serotypes causing disease in Scotland in the 3

years prior to PCV-7 use, 4 (serotypes 1, 8, 3 and 7F) are not included in this

vaccine formulation. This is of interest as there is potential for these virulent NVT

serotypes, and other IPD causing NVT serotypes, to become evermore prevalent

in IPD following reductions in the VT serotypes, as has been observed elsewhere

(Aguiar et al. 2008; Munõz-Almagro et al. 2008). In addition, as there are

several MLSTs associated with more than one serotype in Scotland, there is the

potential for capsular switch events to occur which could also affect the overall

disease burden in Scotland.

The recently developed 10-valent PCV contains the same 7 serotypes found in

PCV-7, as well as serotypes 1, 5 and 7F; two of which are serotypes found amongst

the 10 most common in IPD between 2003/04 and 2005/06. Thus, the introduc-

tion of this vaccine could aid in the prevention of disease in Scotland, particularly

if serotype 1 continues to increase in IPD following PCV-7 implementation. The

13-valent vaccine contains these 10 serotypes in addition to the other common

disease-causing serogroups 3, 6A and 19A. The introduction of this vaccine would
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perhaps be necessary should the burden of disease become greater due to increases

in 19A disease, as observed in the USA.

In this chapter, logistic regression modelling was carried out to assess the trends.

However, an alternative approach would have been to use multinomial logistic

regression, a method which is adopted in Chapter 8 of this thesis. However,

as this analysis was carried out in conjunction with microbiologists, the logistic

regression approach was preferred due to the ease of explanation of the results

from this method.

The main limitation of the analysis carried out in this chapter is that serotype

specific information is not available prior to 2003/04 and so the only trend analysis

possible from 1999/00 is on the serogroups. This means the trends for the VT

serotypes prior to the introduction of PCV-7 cannot be examined from 1999/00.

However, serogroup information has been adopted in previous trend analyses

of pneumococci where serotype information is unavailable (Feikin and Klugman

2002). Feikin et al. state that there are biological justifications for carrying out an

analysis of serogroups due to the fact that levels of antibiotic resistance are similar

for serotypes within a serogroup and PCV-7 may offer some cross-protection.

In future work, information collected about Scottish IPD in the 3 years following

the introduction of PCV-7 should be used in a similar analysis to that carried

out in this chapter to assess the impact of vaccine introduction. Pre-vaccination

trends could be compared to post-vaccination trends to identify any significant

differences attributable to PCV-7 use. It will be of interest to examine whether

or not the NVT serotype 1 continues to increase in cases of IPD in Scotland and

if any other NVT serotypes become more prevalent.
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Chapter 7

Analysis of the association

between pneumococcal

serogroups and MLSTs and

mortality

7.1 Introduction

This chapter follows from the previous chapter in thatIt appears that in this

situation the Cochran-Mantel-Haenszel test may not be the most appropriate

analysis to use in this situation as this test has low power for detecting an asso-

ciation in which the patterns of association for some strata are in the opposite

direction of those displayed by other strata. Thus, a nonsignificant result can

also indicate that the pattern of association does not have enough strength or

consistency to dominate any other pattern. statistical techniques are used to

examine serogroups and MLSTs involved in IPD. In particular, this chapter as-

sesses associations between serogroups and MLSTs and mortality. As there are

many different pneumococcal serotypes which have the potential to cause IPD, it

is important for the development of vaccinations to establish not only which are

the most prevalent in disease but also which are associated with a greater risk of

death from IPD as this can influence the serotypes which should be included in

a pneumococcal vaccine.

237



7.2 Background

The association between mortality and serotype in Scotland is unknown. A study

of 103 patients suffering from pneumococcal bacteraemia between 1993 and 1995

in the Grampian region of Scotland documented serotypes 6A and 19A as having

higher fatality rates than the other serotypes observed in disease (McKenzie et al.

2000). However, the sample size in this study was too small to obtain statistically

significant results.

In other countries attempts have been made to determine the potential for spe-

cific serotypes in IPD to result in fatality. However, some involve assessment

of associations with mortality for groups of serotypes rather than for individual

serotypes. For example, Sjöström et al. (2006), Alanee et al. (2007), and Jansen

et al. (2009) group serotypes in slightly different ways but base the groupings

according to their invasive disease potential as identified by a meta-analysis of

carriage and disease rates of various serotypes (Brueggemann et al. 2004).

7.2.1 Associations between groups of serotypes and mor-

tality

Sjöström et al. (2006) group the serotypes into high (serotypes 1 and 7F), medium

(4, 9V, 14, 18C), and low (3, 6A, 6B, 8, 19F, 23F) invasive disease potential.

They state that although having high invasive disease potential, serotypes 1 and

7F caused no fatalities in their study of 494 adults and that serotype 1 was only

found among younger adults. Sjöström et al. believe that these invasive serotypes

are most able to cause disease and thus are generally observed in disease in healthy

individuals whilst the other serotypes found in disease are more opportunistic,

causing disease in elderly and weaker individuals. Unfortunately, due to the small

number of patients in the study, Sjöström et al. state that they were unable to

determine whether variations in disease severity in previously healthy individuals

are attributable to the capsular type, clonal type or both.

As in the Sjöström et al. study, Alanee et al. (2007) group serotypes 1 and 7F
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together as invasive. However, Alanee et al. also include all other serotypes found

in serogroup 7 in this invasive group, as well as all serotypes within serogroup 5.

This group is compared to a group involving the PCV-7 serotypes and a third

group of paediatric serotypes (6, 9, 14, 19 and 23). In a univariate analysis of

the 796 adult patients in the study, examining associations between these groups

of serotypes and mortality and disease severity, statistically significant results

were obtained for an increased risk of severe disease or fatality when infected

with paediatric serotypes. However, in a multivariate analysis involving other co-

morbidities no significant associations were identified between any of these groups

of serotypes and disease severity or mortality.

Jansen et al. (2009) consider two groups of serotypes: a reference group composed

of types 1, 5 and 7F as in the Alanee et al. analysis but, in addition, 15B, 20

and 33F are included in this group. It is concluded that the group composed of

serotypes 3, 19F, 23A, 16F, 6B, 9N and 18C are associated with increased case-

fatality rates (CFRs) when compared to the invasive reference group. As with the

Sjöström et al. study, Jansen et al. state that serogroups 1 and 7 affect relatively

healthy adults, as does serogroup 5. Jansen et al. state that although they had a

relatively large number of patients in the study for which isolates could be typed

(1,142 patients) they were unable to assess serotype specific associations with

mortality due to the small number of isolates observed for each serotype.

A fourth analysis of mortality associations involved the assessment of groupings

of serotypes. In this analysis of 160 patients, the serotypes involved in IPD were

grouped according to VT or NVT serotypes based on PCV-7 (Chen et al. 2009).

In this study, neither group was associated with mortality outcome. However,

Chen et al. identified associations between strains with high levels of antibiotic

resistance and fatal outcome.

7.2.2 Associations between individual serotypes and mor-

tality

In a recent much larger population based study of 18,858 cases of IPD in Den-

mark, a statistical analysis was carried out of serotype specific associations with
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mortality (Harboe et al. 2009). In this analysis, serotype 1 was selected as the

reference category for comparison as it was the most commonly isolated serotype

in IPD. The results show serotypes 31, 11A, 35F, 17F, 3, 16F, 19F, 15B and

10A were significantly associated with highly increased mortality when compared

to serotype 1 for those aged at least 5 years. There appeared to be different

mortality associations for those under 5 years. As fatalities in this age group

were low in number, statistical precision was low and no statistically significant

associations were identified. However, it was stated that the case fatality for this

age group was highest for serotype 1 and serotypes 14, 6A, 7F and 4 appeared to

be associated with decreased mortality compared to serotype 1.

Other smaller studies have assessed serotype specific associations with mortality

attributable to IPD (Henriques et al. 2000; Martens et al. 2004; Rückinger et al.

2009; Balakrishnan et al. 2000). Two of these studies document associations

with mortality for serotype 3, with this serotype associated with increased risk

of fatality (Henriques et al. 2000; Martens et al. 2004). In addition, Martens

et al. (2004) report a reduced relative risk of fatality associated with serotype

1 IPD. Ruckinger et al. (2009) report that serotype 7F is associated with an

increased risk of severe and fatal outcome due to IPD after adjusting for other

co-morbidities. Ruckinger et al. state that due to the fact that serotype 1 may be

associated with a reduced risk of IPD fatality, as observed in the study by Martens

et al., those studies mentioned previously which group serotypes 1 and 7F together

may be missing associations with 7F and increased risk of death. Balakrishnan

et al. (2000) report in their study of 104 cases of pneumococcal bacteraemia that

serotype 14 was common and significantly associated with higher case fatality.

This is in contrast to the study by Henriques et al. in which serotype 14 was the

most common serotype overall but seemed to be associated with lower risks of

severe disease and death.

A further study investigating mortality associated with pneumococcal meningitis

focussing on the three serotypes 1, 3 and 9V reports significantly lower CFRs for

serotype 1 than for 3 and 9V (Østergaard et al. 2004). Another investigating

IPD in those aged at least 50 years in the USA following PCV-7 use reports

significantly higher CFRs for IPD attributable to serotypes 19F, 23F, 3 or 11A
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and lower rates for serotype 12F when compared to serotype 14 (Lexau et al.

2005).

No studies investigating mortality associations for MLSTs could be identified.

7.3 Methods

In this chapter, data on all cases of IPD, identified from blood or CSF samples

in Scotland recorded at the Scottish Meningococcal and Pneumococcal Reference

Laboratory (SMPRL) at Stobhill Hospital in Glasgow, were assessed. This infor-

mation was linked to death certification records by the General Register Office

for Scotland. As with the work of Harboe et al. (2009), deaths from any cause

within 30 days of the sample being submitted to the SMPRL were classed as a

fatality attributable to IPD. The data were used to determine whether or not

there is evidence of an association between serogroup and MLST and mortality.

Data were available on cases of IPD in Scotland from January 1992 to December

2007. Serogroup information was available for all years. Routine MLST deter-

mination was not carried out at SMPRL on all samples until 2003. However,

MLST analysis was carried out on many invasive isolates collected in 2001 and

2002 as part of a study funded by Wyeth pharmaceuticals and this information

was made available for this mortality analysis. Information on the age and sex

of the patient was also available. No information was available on co-morbidities

of the patients. 68 duplicate samples from patients were removed prior to anal-

ysis. These duplicates occurred as certain patients, those with pneumococcal

meningitis, had both a CSF and a blood sample issued to the SMPRL.

As the data available for the analysis in this chapter are also population-based

and a relatively large amount of information is available, each serogroup and

MLST is considered separately for associations with mortality. The primary aim

of this analysis was to identify whether or not there was significant evidence of

an association between any of the serogroups identified in IPD in Scotland and

mortality. The secondary aim was to determine if any MLSTs are associated with

mortality. In addition, it was of interest to assess associations between serogroups

241



and MLSTs and mortality for different age groups.

A 2×2 contingency table was used to display mortality against serogroup. Table

7.1 shows a 2×2 contingency table for serogroup i. In Table 7.1, a is the number

of deaths within 30 days of developing IPD attributable to serogroup or MLST i,

b is the number who survived more than 30 days of serogroup or MLST i IPD, c

is the number of deaths within 30 days of developing IPD attributable to all other

serogroups or MLSTs (i.e. all non serogroup or MLST i IPD deaths), and d is

the number of survivors of more than 30 days of disease from all other serogroups

or MLSTs.

Table 7.1: Example of a contingency table of mortality by serogroup.

Serogroup Fatalities Survivals
Serogroup i a b

All other serogroups c d

ORs of dying within 30 days from IPD due to particular serogroups or MLSTs

compared to dying within 30 days from IPD due to all other serogroups or se-

quence types were calculated. The OR is calculated as follows:

OR = ad/bc. (7.1)

If an OR of 1 is obtained, an individual with serogroup or MLST i is as likely to

die within 30 days as an individual with IPD and a serogroup or MLST other than

i. An OR of greater than 1 can be interpreted as being indicative of an increased

probability of death within 30 days of IPD due to the serogroup or MLST invasive

disease, whilst an OR of less than 1 is indicative of a reduced probability for the

serogroup or MLST to cause death within 30 days. This technique was used

in a paper establishing the invasive disease potential of serotypes and MLSTs

among children in Oxford, England (Brueggemann et al. 2003). It is possible to

use the most prevalent disease-causing serotype as the comparator in analyses of

mortality associations (Lexau et al. 2005; Harboe et al. 2009). In this analysis

each serogroup or MLST was compared to all others. This approach was used in

another serotype mortality association analysis (Martens et al. 2004). However,

for the unstratified analyses of serogroup and MLST associations with mortality,
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the most common disease-causing serogroup and MLST were considered as the

baseline in order to determine whether or not the results from the two approaches

differ.

To formally determine whether or not there is evidence that certain serogroups or

MLSTs are significantly associated with a greater or reduced risk of fatality, the

Fisher’s Exact Test was employed. This test is used to establish whether or not

there are associations between two categorical variables. The null hypothesis is

that there is no association between the two variables and the alternative hypoth-

esis is that there is an association. The Fisher’s Exact Test is similar in purpose

to the χ2 Test of Association. The Fisher’s Exact Test is more appropriate than

the χ2 Test when the expected count in some cells is small. The χ2 Test is based

on a large sample approximation whilst the Fisher’s Exact Test uses exact prob-

abilities from the hypergeometric distribution. The Fisher’s Exact Test does not

have a formal test statistic or critical value (Simon 2000). However, a p-value for

the test may be obtained.

To determine the p-value for the Fisher’s Exact Test, let the sum of all entries

of Table 7.1 equal n and let the row sums of the table equal x1 (= a+ b) and x2

(= c+ d) respectively, and the column sums equal y1 (= a+ c) and y2 (= b+ d).

The conditional probability of obtaining the observed 2×2 contingency table is

calculated as follows:

P =
x1!x2!y1!y2!

n!a!b!c!d!
. (7.2)

Following this, all possible values of a, b, c and d to obtain the fixed row and

column values x1, x2, y1 and y2 must be determined, and for each the conditional

probability specified in (7.2) must be calculated (Weisstein 1999). The sum of all

of these conditional probabilities should equal 1.

The p-value may be calculated by summing all conditional probabilities which

are less than or equal to the conditional probability calculated for the observed

values of a, b, c and d (Weisstein 1999). The p-value should then be compared

to a specified critical level such as 0.05. If the calculated p-value is less than
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the critical level then the null hypothesis may be rejected and there is significant

evidence to suggest an association between the two categorical variables.

As many serogroups and MLSTs may be rarely observed in IPD, or even if com-

mon may be little observed in fatalities, the Fisher’s Exact Test is more appro-

priate to use than the χ2 Test for this analysis. For the purpose of determining

whether or not there is an association between mortality and serogroup or MLST,

one of the categorical variables is whether or not the IPD is from serogroup or

MLST i, the other is whether or not the patient survived beyond 30 days of the

sample being submitted to the SMPRL. As many MLSTs appear infrequently in

IPD in Scotland, only those responsible for at least five cases of invasive disease

were assessed. The Bonferroni correction factor (6.2) mentioned in the previous

chapter, was used to adjust for multiple testing.

The Cochran-Mantel-Haenszel Test was used to carry out age adjustment when

testing the association between serogroups or MLSTs and mortality. For this

analysis, the continuous variable age was grouped into the following categories:

0-4 years, 5-34 years, 35-49 years, 50-64 years, 65-74 years and 75 years and over.

These age groups are the same as those adopted in Chapter 6.

The null hypothesis of the Cochran-Mantel-Haenszel Test is that there is no

association between the two categorical variables across all strata whilst the al-

ternative hypothesis is that there is an association between the two categorical

variables in at least one of the strata. Here, the strata are the age categories

and the two categorical variables are as described for the Fisher’s Exact Test.

In the Cochran-Mantel-Haenszel Test, there are k 2×2 contingency tables; one

for each of the k strata. The Cochran-Mantel-Haenszel Test has a greater power

than the Fisher’s Exact Test to establish whether or not there are non-random

associations between the two categorical variables as individuals are grouped in

strata of similar individuals (Agresti 2007). It is expected that by examining age

group in the analysis an association may be more effectively identified between

serogroup or MLST or both and mortality if the serogroup or MLST (or both)

involved in IPD are related to age also. However, the Cochran-Mantel-Haenszel

test has low power for detecting associations when the patterns of association for
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some strata are in the opposite direction of those displayed by other strata. Thus,

a nonsignificant result does not necessarily mean that there is no association but

can also indicate that the pattern of association does not have enough strength

or consistency to dominate any other pattern. An alternative, potentially more

suitable test, which could have been adopted is the Breslow-Day test. However,

this test requires a large sample size within each stratum. Thus, limiting its

usefulness.

The pooled OR when carrying out the stratified analysis is calculated as follows:

OR =

∑
j

(
ajdj

nj

)
∑

j

(
bjcj
nj

) . (7.3)

In (7.3), j = 1, ..., k as there are k strata. a, b, c and d have the same definition

as in (7.1). The test statistic, χ2

CMH, for the Cochran-Mantel-Haenszel Test de-

fined by Cochran (1954) and Mantel-Haenszel (1959) is found using the following

calculation:

χ2

CMH =

(∑k
j=1 aj −

∑k
j=1 x1jy1j/nj

)2(∑k
j=1 x1jx2jy1jy2j/n2

j(nj − 1)
) . (7.4)

The test statistic, χ2

CMH, defined in (7.4) should approximately follow the χ2(1)

distribution under the null hypothesis. All quantities defined in (7.4) are as

described earlier in this chapter. The Cochran-Mantel-Haenszel Test was also

used to investigate age and gender combinations as strata.

Alternative analysis approached which could have been adopted in this analysis

include log-linear models. However, the tests described previously were adopted

due to the ease with which the results can be interpreted and described to the

microbiologists who supplied the data.

All statistical analysis in this chapter was carried out using R Version 2.8.0.
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7.4 Results

During the period from January 1992 to December 2007, blood or CSF samples

from 5,959 patients with IPD were submitted to the SMPRL for typing. Of these

5,959 patients, 5,119 (85.90%, 95% C.I. (85.02, 86.79)) survived beyond 30 days

of the sample submission and 833 (13.95%, 95% C.I. (13.10, 14.80)) died. This

fatality rate is comparable to that obtained in other studies of IPD (Ewig et al.

1999; Alanee et al. 2007). There were 7 (0.12%) patients that could not be

matched to data from the General Register Office on death certification records.

Figure 7.1 shows the number of cases of IPD by year. The number of cases of

IPD appears to be increasing over time, with a minimum of 29 cases of IPD

observed in 1992 and a maximum of 697 observed in 2006. A very small number

of cases of IPD were recorded in 1992. The number remained fairly low, appearing

generally to increase each year, until 2000. The increasing number of observations

is likely due to increased surveillance rather than real increases in the number

of cases of IPD in Scotland. In 2000, PCV-7 was introduced for routine use

in the USA. Therefore, it is likely that the numbers increased markedly due

to increased awareness by scientists and medical professionals working with the

bacterium which in turn led to increased reporting of results to the reference

laboratory. This could potentially have implications on the results obtained in

the analysis in this chapter if in the earlier years the more severe cases were

reported. However, this is unlikely as 30 day mortality was identified by data

linkage following the report of IPD. On average there were approximately 372

cases of IPD per year (median = 292). Omitting 1992, the mean number of cases

of IPD per year was 395 (median = 346).

Figure 7.2 shows the proportion of deaths and survivals from IPD each year

from 1992 to 2007. From this plot, it appears that the proportion of fatalities

attributable to IPD has decreased over the period of study even though the

number of cases has been increasing over time as displayed in Figure 7.1. In fact,

1992, although having the lowest number of cases of IPD observed, had the highest

proportion of fatalities with 7 of the 29 cases (24%) of IPD resulting in death

within 30 days of the blood or CSF sample being submitted to the SMPRL. In

2006, the highest number of cases of IPD was observed. In this year, only 12% of
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cases resulted in a fatality attributable to IPD. To test the null hypothesis that

the proportions of fatalities remained constant over time, a logistic regression

was fitted to the data with the mortality outcome as the response variable and

year as the explanatory variable. A p-value of < 1 × 10−5 was obtained for the

variable year. Thus, there is significant evidence to reject the null hypothesis that

the proportion of fatalities remains constant over time. The coefficient of year

is negative (-0.04), indicating a decrease in the odds of fatality with increasing

year.
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Figure 7.1: Plot of the number of cases of IPD observed in Scotland each year

from 1992 to 2007.

The age of patients in the dataset ranged from 0 years to 99 years, with a mean

age of approximately 53 years (median = 61 years). 301 patients had missing

age information. 3,015 (50.60%) patients in the dataset were male and 2,913

(48.88%) were female. 31 patients had missing gender information. Figure 7.3

shows the proportion of fatalities and survivors of IPD within each gender by six

different age groups. This graph shows that a marginally higher proportion of

all females who acquired IPD had fatal outcomes than males who acquired IPD

within the age groups 0 to 4 years and 35 to 49 years. For the other age groups,

the opposite result is true.
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Figure 7.2: Plot of the proportion of deaths and survivals of IPD each year in

Scotland from 1992 to 2007 (95% confidence intervals shown).

35 different serogroups were observed in IPD in Scotland between January 1992

and December 2007. Figure 7.4 shows the proportion of fatalities for each of

the 10 most common disease-causing serogroups. Serogroup 3 has the highest

proportion of deaths from IPD with 85 cases of IPD out of 349 (24%) resulting in

death within 30 days of the specimen being submitted to the SMPRL. Serogroups

19 and 23 have the next highest rates of fatality at 18% and 15% respectively.

Serogroup 1 has the lowest rate of fatality of the 10 most common IPD causing

serogroups, with only 5% of cases of IPD resulting in death attributable to IPD.

Serogroup 7 also has a fairly low percentage of IPD fatality at only 8%.

371 MLSTs were identified in cases of IPD between 2001 and 2007. Of the 10 most

common disease-causing MLSTs, MLST 180 has the highest observed percentage

of IPD attributable fatality at 22%, shown in Figure 7.5. MLST 306 has the

lowest at only approximately 3%.
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Figure 7.3: Plot of the proportion of deaths and survivals of IPD in Scotland for

each sex by six age groups (95% confidence intervals shown).

●

●

●

●

●

●
●

●

●

●

0.
2

0.
4

0.
6

0.
8

Proportion of IPD cases resulting in survival and fatality by serogroup

Serogroup

P
ro

po
rt

io
n

●

●

●

●

●

●
●

●

●

●

14 9 1 6 19 4 23 8 3 7

●

●

Fatalities
Survivals

Figure 7.4: Plot of the proportion of deaths and survivals of IPD in Scotland for

each of the 10 most common serogroups (95% confidence intervals shown).
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Figure 7.5: Plot of the proportion of deaths and survivals of IPD in Scotland for

each of the 10 most common MLSTs (95% confidence intervals shown).

7.4.1 Tests of association

Serogroup analysis

Table 7.2 shows the results from the Fisher’s Exact Test of association between

each of the 20 most common serogroups found in IPD and mortality.

In Table 7.2, the OR and Bonferroni adjusted 95% confidence interval for the risk

of fatality of each of the 20 most common serogroups found in IPD in Scotland are

shown. The p-value for the Fisher’s Exact Test of association between mortality

and serogroup is also displayed. Using the Bonferroni correction factor to adjust

for multiple testing, a p-value of less than 0.0018 was used (0.05/28 as 28 tests

were carried out for each of the 28 serogroups observed in at least 5 cases of IPD

to be assessed at the 5% significance level). From examination of Table 7.2, there

is significant evidence of an association between mortality and the serogroups 1,

3, and 16. Serogroup 11 is borderline significant with a p-value slightly larger

than the critical value 0.0018. Serogroups 3, 11 and 16 all display ORs greater

than 1. Thus, there is an increased risk of a fatal outcome on obtaining IPD
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Table 7.2: Results from the Fisher’s Exact Test of association between mortality
and serogroup.

Serogroup Fatalities Total OR Adjusted 95% C.I. p-value
14 106 919 0.78 (0.54, 1.09) 0.02
9 79 537 1.07 (0.70, 1.59) 0.60
1 26 513 0.31 (0.15, 0.57) <0.002
6 62 463 0.95 (0.59, 1.47) 0.78
19 83 453 1.43 (0.94, 2.12) 0.01
4 57 410 1.00 (0.61, 1.57) 1.00
23 59 385 1.13 (0.69, 1.77) 0.40
8 41 357 0.79 (0.44, 1.33) 0.18
3 85 349 2.10 (1.37, 3.16) <0.002
7 23 272 0.56 (0.26, 1.08) 0.01
18 17 213 0.53 (0.21, 1.12) 0.01
12 30 186 1.20 (0.59, 2.21) 0.39
22 26 170 1.12 (0.53, 2.15) 0.57
20 9 106 0.57 (0.15, 1.56) 0.12
11 27 106 2.15 (0.99, 4.32) <0.002
33 11 76 1.05 (0.31, 2.76) 0.87
15 12 72 1.24 (0.38, 3.21) 0.49
10 7 44 1.17 (0.23, 3.95) 0.66
16 13 34 3.87 (1.11, 12.15) <0.002
31 10 34 2.59 (0.65, 8.45) 0.02

attributable to any of those 3 serogroups. Serogroup 1 has an OR of less than

1. Therefore, there is a reduced risk of fatality on obtaining IPD attributable to

this serogroup.

In addition, if tested singly at the 5% significance level, serogroups 7, 14, 18, 19

and 31 have a significant association with 30-day mortality. Serogroup 7, 14 and

18 are associated with a reduced risk of a fatal outcome whilst 19 and 31 are

associated with an increased risk.

Using serogroup 14, the most common disease-causing serogroup in Scotland,

as the baseline for comparison in the analysis serogroups 1, 3, 11 and 16 were

identified to have significant associations with mortality, as before. Serogroup 1

was found to have a lower risk of fatality than serogroup 14 whilst 3, 11 and 16
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had a higher risk. In addition to these four serogroups, serogroup 19 was found

to be associated with mortality when considering serogroup 14 as the baseline,

with serogroup 19 identified to have a higher risk of fatality than serogroup 14.

The Cochran-Mantel-Haenszel Test was used to determine whether or not there is

an association between serogroup and mortality adjusting for the age strata. Once

again, the Bonferroni correction factor was used to adjust for multiple testing for

the 28 serogroups. Table 7.3 shows the results from the Cochran-Mantel-Haenszel

Test for the 20 most common serogroups found in IPD.

Table 7.3: Results from the Cochran-Mantel-Haenszel Test of association between
mortality and serogroup by age group.

Serogroup OR Adjusted 95% C.I. p-value
14 0.79 (0.55, 1.13) 0.05
9 1.01 (0.67, 1.53) 0.98
1 0.41 (0.21, 0.80) < 1.00× 10−4

6 0.96 (0.60, 1.52) 0.82
19 1.57 (1.03, 2.39) < 1.00× 10−3

4 0.95 (0.58, 1.54) 0.77
23 0.99 (0.62, 1.58) 0.99
8 0.72 (0.42, 1.25) 0.07
3 1.72 (1.12, 2.62) < 1.00× 10−4

7 0.65 (0.32, 1.32) 0.07
18 0.68 (0.30, 1.53) 0.16
12 1.25 (0.65, 2.42) 0.34
22 0.97 (0.49, 1.92) 0.96
20 0.45 (0.15, 1.37) 0.03
11 1.98 (0.95, 4.12) < 0.01
33 0.87 (0.31, 2.48) 0.80
15 1.22 (0.43, 3.45) 0.68
10 1.23 (0.33, 4.60) 0.79
16 3.40 (1.06, 10.89) < 2.00× 10−3

31 2.64 (0.76, 9.10) 0.02

On examination of the p-values for the Cochran-Mantel-Haenszel Test shown in

Table 7.3, there is evidence of an association between mortality and serogroups

1, 3, 19 (p-value ≈ 0.0009) and 16 (p-value ≈ 0.0011) across at least some of the

age strata. Serogroup 1 has an OR lower than 1. Therefore, there is evidence to
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suggest that patients acquiring serogroup 1 IPD have a reduced odds of fatality

compared to IPD from all other serogroups. Serogroups 3, 16 and 19 have ORs

greater than 1 and thus there is evidence to suggest that there is an increased

risk of death from IPD if these serogroups are acquired.

On carrying out a Cochran-Mantel-Haenszel Test using combinations of age group

and gender as the strata, significant associations were discovered between mor-

tality and serogroup for serogroups 1, 3, 16 and 19. Serogroups 3, 16 and 19

are associated with an increased risk of fatality compared to all other serogroups

across all age groups and both genders. Serogroup 1 has a reduced odds of fatality.

The results of the unadjusted and adjusted analyses are similar, with serogroups

1, 3 and 16 found to be significantly associated with mortality in all tests carried

out, with serogroup 1 associated with a reduced risk of fatality and serogroups 3

and 16 with an increased risk. However, there are differences in the unadjusted

and adjusted analyses. Serogroup 11 is borderline significant in an unadjusted

test of association with mortality but is not significant after adjusting for age or

age and gender. In addition, serogroup 19 which is not statistically significantly

associated with mortality prior to adjustment when comparing serogroup 19 to

all other serogroups is significant when age or both age and gender are taken into

account. On further assessment of serogroup 19 case-fatality it can be observed

that the CFR for serogroup 19 was comparable to the overall fatality rate for the

0 to 4 years and 5 to 34 years age groups. However, the CFR for serogroup 19

was higher than the overall CFR for all other age groups. This is shown in Table

7.4.

Serogroup 11 has an overall CFR of 25.5%. However, amongst those aged under

5 years only one case of serogroup 11 IPD is recorded and this does not result in

fatality; only 8 cases of IPD amongst those aged 5 to 34 years are attributable to

serogroup 11 and all of these patients survive. Amongst other age groups there

is a relatively high CFR for serogroup 11 IPD. For example, for those aged 75

years and over, 46.4% of serogroup 11 IPD result in a fatal outcome. Thus, after

adjustment for age group this serogroup does not appear significantly associated

with mortality. It appears that in this situation the Cochran-Mantel-Haenszel
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test may not be the most appropriate analysis to use in this situation as this test

has low power for detecting an association in which the patterns of association

for some strata are in the opposite direction of those displayed by other strata.

Thus, a nonsignificant result can also indicate that the pattern of association does

not have enough strength or consistency to dominate any other pattern.

MLST analysis

Table 7.5 shows the results from the Fisher’s Exact Test of association between

each of the 20 most common IPD causing MLSTs in Scotland and mortality. A

p-value of less than 0.0006 is required for significant evidence of an association

between any MLST and mortality as an adjustment for multiple testing has to

be made since tests were carried out on the 79 MLSTs observed in at least five

cases of IPD in Scotland between 2001 and 2007. From examination of Table 7.5,

there is only significant evidence of an association between MLSTs 306 and 180

and mortality. MLST 306 has an OR of less than 1. Therefore, there is evidence

to suggest that there is a reduced risk of fatality within 30 days of a case of IPD

from MLST 306 IPD than from all other MLST IPD. MLST 180 has an OR

greater than 1. Therefore, this suggests that there is an increased risk of fatality

within 30 days of IPD from MLST 180 than from all other MLSTs. If considered

at the 5% significance level without adjustment for multiple comparisons, MLST

191 is significantly associated with a reduced risk of fatality within 30 days of

IPD.

MLST 180 is commonly associated with serogroup/serotype 3 IPD. Of all the

MLST 180 isolated identified in this study, 98.2% were associated with serogroup/

serotype 3. On the other hand, MLST 306 is commonly associated with serogroup/

serotype 1 with 96.4% of all MLST 306 isolates identified to be serogroup/serotype

1.

The unstratified analysis assessing associations with MLST and mortality was

also carried out with MLST 9, the most common MLST found in disease in

Scotland, as the baseline group for comparisons. MLST 180 was the only MLST

found to have an association with mortality in this analysis, with a higher risk of

fatality attributable to MLST 180 disease than to MLST 9 disease.

255



Table 7.5: Results from the Fisher’s Exact Test of association between mortality
and MLST.

MLST Fatalities Total OR Adjusted 95% C.I. p-value
9 34 361 0.72 (0.35, 1.33) 0.08

306 8 250 0.22 (0.04, 0.67) < 1.00×10−6

162 30 241 1.01 (0.47, 1.96) 0.92
53 17 199 0.65 (0.23, 1.49) 0.10
180 38 175 2.05 (1.01, 3.90) < 1.00×10−4

191 8 171 0.34 (0.07, 1.03) < 8.00×10−4

124 16 140 0.91 (0.31, 2.19) 0.90
199 19 121 1.34 (0.49, 3.08) 0.26
246 16 112 1.19 (0.40, 2.91) 0.56
218 14 111 1.03 (0.32, 2.61) 0.88
311 15 99 1.28 (0.41, 3.22) 0.36
227 6 97 0.46 (0.07, 1.66) 0.06
433 10 80 1.01 (0.24, 3.01) 1.00
205 7 68 0.81 (0.14, 2.83) 0.71
176 11 64 1.48 (0.37, 4.41) 0.25
206 8 63 1.03 (0.20, 3.45) 0.85
113 6 60 0.79 (0.11, 2.98) 0.70
62 9 53 1.46 (0.31, 4.81) 0.29
36 9 52 1.49 (0.31, 4.94) 0.29
235 7 49 1.19 (0.19, 4.35) 0.66

The Cochran-Mantel-Haenszel Test was used to adjust for age groups in the

analysis of the association between MLST and mortality. Table 7.6 shows the

results for the 20 most common disease-causing MLSTs. This table shows that

none of the 20 most common disease-causing MLSTs have a significant association

with mortality across all age strata.

7.4.2 Mortality analysis prior to and following PCV-7 use

To determine whether or not the introduction of PCV-7 had an impact on the

serogroups, serotypes and MLSTs associated with mortality, a pre and post vac-

cine analysis was carried out. As no information was available regarding the week

of the case of disease, it was not possible to separate the cases of disease in 2006

into pre-vaccine and post-vaccine periods. 2006 was included in the pre-vaccine
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Table 7.6: Results from the Cochran-Mantel-Haenszel Test of association between
mortality and MLST by age group.

MLST OR Adjusted 95% C.I. p-value
9 0.75 (0.39, 1.46) 0.17

306 0.35 (0.10, 1.26) < 0.01
162 0.95 (0.47, 1.95) 0.90
53 0.56 (0.22, 1.41) 0.04
180 1.67 (0.85, 3.28) 0.01
191 0.40 (0.11, 1.47) 0.02
124 0.76 (0.29, 2.00) 0.41
199 1.39 (0.56, 3.44) 0.27
246 1.27 (0.48, 3.32) 0.49
218 1.05 (0.38, 2.91) 0.88
311 1.12 (0.41, 3.07) 0.81
227 0.69 (0.15, 3.08) 0.50
433 0.81 (0.25, 2.64) 0.64
205 0.86 (0.21, 3.61) 0.88
176 1.72 (0.49, 5.96) 0.20
206 1.04 (0.27, 4.05) 0.92
113 0.98 (0.21, 4.55) 0.96
62 1.33 (0.35, 4.97) 0.61
36 1.14 (0.31, 4.22) 0.88
235 1.02 (0.25, 4.21) 0.97

analysis as it is unlikely that PCV-7 would have a great impact on disease in the

first three months following routine implementation. The post-vaccine analysis

only includes the year 2007.

The results for the serogroup associations in the pre-vaccine period were the same

as those for the whole period of data with serogroups 1, 3, 11 and 16 found to be

significantly associated with mortality when compared to all other serogroups. As

before, serogroups 3 (OR 2.10, Bonferroni adjusted 95% C.I. (1.33, 2.04)), 11 (OR

2.56, C.I. (1.16, 2.56)) and 16 (OR 4.82, 95% C.I. (1.33, 16.34)) are associated

with an increased risk of fatality, serogroup 1 (OR 0.34, C.I. (0.16, 0.64)) with

a reduced risk. However, in the post-vaccine period, only serogroup 1 was found

to have a significant association with mortality (OR 0.08, Bonferroni adjusted

95% C.I. (0, 0.84)). Serogroup 3 and 11 are not found to be associated with an
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increased risk of fatality in the post-vaccine period and serogroup 16 is not found

amongst the most common disease-causing serogroups in 2007. However, the

post-vaccine period consists of only one year of IPD cases. Thus, there is much

less power to detect an association with 30-day mortality in the post-vaccine

period than in the pre-vaccine period.

In both the pre and post-vaccine periods, only MLST 306 was found to be signif-

icantly associated with mortality with an OR of 0.29 (Bonferroni adjusted 95%

C.I. (0.06, 0.88)) in the pre-vaccine period and an OR of 0 (95% C.I. (0, 0.85))

in the post-vaccine period. Therefore, there are no differences observed in the

MLST associations in the pre and post-vaccine periods.

7.5 Conclusions

In the analysis carried out in this chapter, it has been shown that the proportion

of fatalities within 30 days of report of IPD has decreased with increasing year

from 1992 to 2007. However, the number of cases of IPD reported increased

substantially between 1992 and 2001. This is likely to be attributable to increased

reporting of IPD cases in Scotland rather than a true increase in IPD as PCV-

7 was introduced in the USA in 2000. Thus, this is likely to have resulted in

increased interest in IPD leading to increased surveillance.

The highest IPD CFR is observed in those aged 75 years and over and the lowest

amongst those aged 0 to 4 years and 5 to 34 years of age. Serogroup 14 was the

most common serogroup found in cases of IPD. This has been observed in other

studies (Balakrishnan et al. 2000; Henriques et al. 2000; Sjöström et al. 2006),

whilst another study documented higher numbers of serogroup 1 IPD (Harboe

et al. 2009). Serogroup 3 has the highest CFR, as observed elsewhere (Henriques

et al. 2000). Other studies document this serotype amongst the three with the

highest CFRs (Rückinger et al. 2009; Lexau et al. 2005). Serogroups 19 and

23 had the next highest CFRs. These serogroups have also been linked with

high CFRs in other studies (Henriques et al. 2000; Lexau et al. 2005). The

lowest overall CFR observed in this study was for serogroup 1 IPD. This concurs

with low CFRs for serotype 1 observed elsewhere (Jansen et al. 2009). However,
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serotype 1 was observed to have among the highest CFRs for those aged under 5

years in another study (Harboe et al. 2009). However, this result was not found

to be statistically significant. MLST 180, identified to be commonly associated

with serogroup/serotype 3 IPD in Scotland, had the highest CFR of all MLSTs,

whilst MLST 306, commonly associated with serogroup/serotype 1 IPD, had the

lowest.

The analysis carried out in this chapter has shown significant associations between

serogroup 1 and mortality, with those with serogroup 1 IPD at a reduced risk

of fatality. This concurs with another study of serotype mortality association

(Martens et al. 2004). Serogroups 3 and 16 were identified to be significantly

associated with an increased risk of fatality compared to all other serogroups.

The result for serogroup 3 is in agreement with other studies (Henriques et al.

2000; Martens et al. 2004), whilst the result for serogroup 16 concurs with results

obtained in another study (Harboe et al. 2009). Serogroup 11 was found to be

borderline significant, with results suggesting that this serogroup is associated

with an increased risk of fatality. This is also in agreement with the Harboe et al.

study in which 11A was identified to be significantly associated with an increased

risk of mortality. Lexau et al. (2005) also document 11A to have significantly

higher CFRs than the comparator serotype 14.

After age-adjustment, serogroup 19 was found to be significantly associated with

an increased risk of 30-day mortality compared to all other serogroups. 19F was

also identified to be associated with highly increased mortality in the large Danish

study carried out by Harboe et al. (2009). McKenzie et al. (2000) reported 19A

to be associated with high mortality in their small study in Grampian, Scotland.

However, due to the small sample size, statistically significant results could not

be obtained. In contrast, Henriques et al. (2000) report that 19A seems to be

associated with lower risks of severe disease and death but report 19F to have

increased CFRs.

Regarding the MLST associations with mortality, both MLST 180 and 306 were

identified to be associated with overall 30-day mortality from IPD in Scotland.

MLST 180, which is primarily associated with serogroup 3 in this study, was
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found to have an increased risk of fatality, whilst MLST 306, associated with

serogroup 1, has a reduced risk of fatality.

No other study of pneumococcal mortality identified assessed the association be-

tween MLSTs and fatal outcome. Thus, the analysis carried out in this chapter

contributes to the understanding of the importance of MLST in the disease out-

come of pneumococci. From the analysis carried out in this chapter it cannot be

ascertained whether or not the serogroup or MLST is more important in deter-

mining disease outcome. A simultaneous evaluation of the involvement of both

serogroup and MLST in disease outcome would require the use of log-linear mod-

elling. However, as MLST information is not available for all years this would

reduce the power of the analysis and would mean that the associations between

serogroup and 30-day mortality identified in this chapter may not be uncovered.

Thus, the analysis approach adopted in this chapter is reasonable.

The main limitation of this analysis is that data were not available on

co-morbidities of those with IPD in Scotland other than age. In an interna-

tional study of associations between serotypes and IPD outcome (Alanee et al.

2007), which controlled for co-morbidities, it was concluded that factors specific

to the individual patient rather than the serotype of the bacterium are of greater

importance in determining disease outcome. No association was identified be-

tween particular serotypes and outcome after controlling for co-morbidities. In a

study of IPD fatality in the Netherlands in which co-morbidities were also studied

(Jansen et al. 2009), the serogroups 1, 5 and 7 which are known to have high IPD

potential in children (Brueggemann et al. 2004) were observed to affect adults

who were fairly healthy whilst other serogroups with low to moderate IPD poten-

tial were more common amongst those with underlying health conditions or are

of an older age. By examining age in this study, one of the potential confounders

has been assessed. However, future studies of IPD mortality should consider

other potential health confounders to determine whether or not serogroup 1 is

consistently significantly associated with lower odds of fatality. This may be the

case, as in another study which did include co-morbidities (Martens et al. 2004).
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Chapter 8

Analysis of factors affecting the

uptake and timing of PCV-7

8.1 Introduction

In this chapter, single-level and multi-level modelling techniques are adopted to

assess the uptake of PCV-7 in Scotland since its introduction in the childhood

immunisation schedule in September 2006. Models are used to explore not only

the factors affecting whether or not the third dose, or booster dose, is received

by children but also whether or not the vaccine is administered to children later

than scheduled.

PCV-7 is currently administered in a three dose schedule in the UK. The first

dose is administered at 2 months of age, the second dose at 4 months of age and

the third, booster vaccination, at 13 months of age. The third dose coincides with

the timing of the MMR vaccination and is administered one month later than the

Hib/Men C booster vaccination (NHS Immunisation 2008). It is of interest to

assess what the effect of receiving the Hib/Men C booster late has on the timing

of the PCV-7 booster. It is believed that delays in vaccine uptake have occurred

in Scotland due to the addition of the PCV-7 and the Hib/Men C booster to the

immunisation schedule as many more vaccines now need to be administered to

children within the first two years of life.
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Initially, univariate response models are created to look at three different response

variables. The first model considers whether or not the PCV-7 booster is received

and this variable involves all children for whom information is available. The

second model addresses whether or not the vaccine is administered late. This

variable only considers a subset of the data: those children who received the

vaccine. Although, those who have not received the vaccine could potentially be

administered the vaccine at a later date and thus could be considered as ‘late’ for

this response variable, it is uncertain whether or not they will ever receive the

vaccine. Finally, the third variable considered is the number of months late the

PCV-7 booster is administered.

Further models will then be presented which combine the response variables con-

sidered in the univariate analyses. The first of these involves combining the two

binary response variables which give information about whether or not the vac-

cine has been administered and whether or not it has been administered late.

The second model looks at the addition of categories based on the continuous re-

sponse variable for the number of months late the vaccine has been administered

to this multivariate response model.

Data are available on vaccine uptake in Scotland from quarter 3 of 2004 to quarter

3 of 2008. The analysis in this chapter involves data on Scottish children born in

quarters 3 and 4 of 2006 as PCV-7 was only introduced for routine vaccination

in September 2006 and the analysis focuses only on those eligible to receive the

vaccine according to the three dose schedule, excluding all involved in any catch-

up campaign, and who have reached the age at which the PCV-7 booster and

Hib/Men C booster should be administered. No information collected in 2007

was included in the analysis in order to have cohorts with sufficiently long follow-

up time to have an idea of how late the vaccines are being administered. The

dataset includes information on all vaccinations administered in the childhood

vaccination schedule in Scotland which includes MMR, diphtheria (three dose

schedule), tetanus (three dose schedule), pertussis (three dose schedule), polio

(three dose schedule), Hib B (three dose schedule), PCV-7 (three dose schedule),

Meningitis C (three dose schedule) and the Hib/Men C booster. Information on

whether or not each child has received each vaccine is included, as well as the date
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at which the vaccine was administered. Date of birth, Health board of residence,

Gender and Postcode sector are also included where the postcode sector is the

first five entries of a postcode, where the fourth entry could potentially be a space

(e.g. G12 8). In addition, Deprivation quintiles (1=affluent to 5=deprived) and

Deprivation deciles (1=affluent to 10=deprived) are recorded in the dataset. Only

the Hib/Men C booster and the PCV-7 booster are considered in the modelling in

this chapter as it is important that children receive the PCV-7 booster in order to

obtain full protection against pneumococcal disease from the vaccine serotypes.

The Hib/Men C booster is considered since it is administered one month prior

to the PCV-7 booster. Thus, it is likely that any delays in uptake of this vaccine

will result in delays in uptake of the PCV-7 booster.

In order to obtain postcode level variables to be considered in the models, 2001

Census data were downloaded from CASWEB, the web interface to census ag-

gregate outputs and digital boundary data (Census Dissemination Unit 2001)

and linked to the vaccine uptake data by postcode sector. The postcode sec-

tor variables selected for consideration are Percentage of individuals aged 0 to

4 years (‘Aged0-4’), Percentage of households with no car (‘NoCar’), Percent-

age born other EU (‘OtherEU’) (i.e. the percentage born in European Union

countries other than the United Kingdom and Republic of Ireland), Percentage

of individuals who are not of white race (‘NotWhite’), Percentage aged 16-74

years with no qualifications (‘NoQual’), Percentage aged 16-74 years with level 4

qualifications (‘Level4’), Percentage aged 16-74 years who work as large employ-

ers (‘LargeEmp’), Percentage aged 16-74 years who work in routine employment

(‘Routine’), Percentage aged 16-74 years who are unemployed (‘Unemployed’)

and, finally, Percentage aged 16-74 years who work in agriculture (‘Agriculture’).

The variables ‘NoCar’, ‘HighEmp’, ‘Routine’ and ‘Unemployed’ were selected as

measures of income to determine whether or not income has an effect on vaccine

uptake; ‘OtherEU’ and ‘NotWhite’ were selected to examine whether or not na-

tionality and race have an impact on the timing of the vaccine. The variables

‘NoQual’ and ‘Level4’ provide information about the educational status of indi-

viduals in each postcode sector as this may have an impact on vaccine uptake.

These two particular variables were selected as they reflect the two extremes

for which data are available. Those with no qualifications have the lowest educa-
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tional attainment with no high school qualifications such as ‘O’ Grades, Standard

Grades or Scottish Vocational Qualifications. Those with ‘Level 4’ qualifications

have the highest level of attainment with either a first degree, higher degree or a

professional qualification. The variable ‘Agriculture’ is included to identify those

who work in rural areas as opposed to urban areas which may affect the timing

of vaccinations.

8.2 Uptake of PCV-7 and other vaccines world-

wide

8.2.1 Uptake of infant immunisations

In this section, published studies of childhood vaccination uptake are considered.

As discussed in the introductory chapter of this thesis, the heptavalent PCV was

first introduced for routine use in children in the USA in 2000. Thus, there are

not many published studies involving factors affecting routine uptake of PCV-7.

Available studies focus on associations with the vaccine impact on invasive disease

and physician opinions on administering the new vaccine (Abuelreish et al. 2007;

Davis et al. 2003), whilst for the analysis in this chapter interest lies in examining

factors which affect uptake and timing. Unlike Scotland, the USA does not have

a national health service and thus published studies of PCV-7 uptake focus on

financial restrictions associated with vaccine administration (Stokley et al. 2006)

which are not relevant to the analysis carried out in this chapter. In addition,

unlike Scotland, problems arose in vaccine administration in the USA due to

vaccine shortages in 2001 and 2004 which have been taken into account in studies

of routine PCV-7 uptake (Smith et al. 2007).

A 2008 USA study of routine PCV-7 uptake is relevant to the analysis under-

taken in this chapter, acknowledging that the vaccine shortages were likely to

have affected the uptake of PCV-7 but focussing on child, mother and household

characteristics affecting uptake (Nuorti et al. 2008). Most notably, the results
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from the logistic regression analysis of up-to-date (UTD) and age-appropriate

vaccination identified significant effects associated with race, ethnicity, vaccine

provider and household income, with lower age-appropriate vaccinations linked

to black race, Hispanic ethnicity, public health immunisation providers and low

household incomes. Other variables considered in the analysis were mother’s

educational and marital status, number of children in the household, number of

health care providers and place of residence (metropolitan central city, metropoli-

tan non-central city and non-metropolitan area).

As few published studies of routine uptake of PCV-7 exist, published studies of

uptake of other childhood immunisations were assessed to identify factors asso-

ciated with non-receipt or delay in vaccine uptake. Table 8.1 shows a summary

of the studies considered. These represent a sample of vaccine uptake studies to

demonstrate the type of analyses carried out. The studies consider a variety of

factors impacting on childhood immunisations, ranging from problems associated

with adverse publicity for vaccines (Friederichs et al. 2006), changes to schedules

(Cameron et al. 2007) to financial issues (Stokley et al. 2006; Zimmerman et al.

1999) and socioeconomic factors affecting uptake (Nuorti et al. 2008).

Examination of Table 8.1 shows that most published childhood immunisation

studies considered involved the use of logistic regression in the statistical analy-

sis. In general, logistic regression was adopted to assess UTD status of vaccines.

This is defined to be the proportion of children who have received appropriate vac-

cinations by a specified age or during a certain age range (Rodewald et al. 1999).

UTD analysis has been criticised as it does not provide information about delays

in vaccination and delays may help explain persistence of infections (Akmatov

et al. 2008). Thus, survival analysis has been used in various studies to assess

vaccine uptake as this approach allows time-to-event to be assessed and therefore

delays in vaccinations can be examined (Dayan et al. 2006; Akmatov et al. 2008;

Clark and Sanderson 2009). Other studies look at age-appropriate vaccination;

Dombkowski et al. (2002) state that the “distinction between age-appropriate

vaccination and up-to-date vaccination status is important, since children with

lengthier vaccination delays experience longer periods of increased susceptibility

than those with shorter or no vaccination delays”.
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Another statistical technique, a technique used in the analysis in this chapter,

used in the studies assessed is multinomial logistic regression (Akmatov et al.

2008; Datar et al. 2007). Akmatov et al. consider whether the vaccine was not

received, received on time or delayed. Results from this analysis suggest that

differences between countries are of greater importance in the risk of delayed

vaccination than any individual risk factor amongst those considered: place of

residence (city, town, countryside), marital status of mother (currently married,

currently unmarried), education of mother (< 10 years, 10-11 years, > 11 years),

birth order/family size (1, 2, >2). Akmatov et al. (2008) found differences in

vaccination delays for urban and rural areas, with children living in cities at a

higher risk of having delayed vaccinations. This is stated to be attributable to low

socioeconomic status of city inhabitants. Datar et al. (2007) use a multinomial

model to determine the factors affecting whether a child has no cover, some cover

or full age-appropriate vaccination cover. The authors identified the significant

variables of their multinomial models to be the sex of the child, the maternal

literacy and whether or not the child belonged to a tribe household. The analysis

showed that urban India had a higher vaccine coverage than rural India but that

this higher coverage was not universal across the urban areas.

As this chapter contains an analysis of vaccine uptake in Scotland, it is of note

to mention that two of the UK studies displayed in Table 8.1 are Scottish studies

(Friederichs et al. 2006; Cameron et al. 2007). Cameron et al. consider the

uptake of the MMR immunisation and the changes to the DTP, HIB and polio

vaccines in the childhood immunisation schedule in Scotland. This analysis differs

from other uptake studies assessed as, for MMR, the focus is on visually depicting

the age distribution of uptake in children using Kernel Density Estimates (KDEs),

described in the Methods section of this chapter, to assess delays in vaccine

administration. In addition, regression techniques are used to predict final vaccine

uptake figures. KDEs were used to assess differences in the distributions for the

health boards (HBs) and for different levels of deprivation. The study showed

that uptake of the vaccine differs for the HBs and that there are greater delays

for children in the most deprived category than for all other categories. The

study by Friederichs et al. is based on assessing the impact of adverse publicity

about MMR from 1998 and shows evidence of a slight rise in late uptake, with
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late vaccination associated with deprivation. The results suggest that the most

affluent either have the vaccine on time or not at all whilst delays are shown for

the most deprived.

To briefly summarise the findings in the studies considered, one of the key vari-

ables identified in many of the studies shown in Table 8.1 in determining whether

or not vaccines are UTD or delayed relates to family size. The larger the number

of siblings the greater the risk of delayed vaccination (Lieu et al. 2000; Reading

et al. 2004; Dombkowski et al. 2004; Bardenheier et al. 2004; Ozcirpici et al.

2006). In addition, the birth order appears to be important, with first born chil-

dren having an increased odds of receiving the vaccine without delay (Bobo et al.

1993; Dayan et al. 2006).

Educational levels of the care giver, most often the mother, also features in some

of the models. Mothers or fathers with higher levels of education are more likely

to have children with UTD vaccines (Bobo et al. 1993; Dombkowski et al. 2004;

Ozcirpici et al. 2006; Torun and Bakırcı 2006; Datar et al. 2007). Mother’s

marital status is also found to be significant, with married mothers less likely to

have children with delayed vaccinations (Bardenheier et al. 2004; Akmatov et al.

2008). In addition, older mothers were found to be associated with increased

odds of delay (Reading et al. 2004).

Concerning income and financial issues, households with lower income are identi-

fied as less likely to have UTD vaccinations (Guttmann et al. 2006), as are those

receiving assistance with medical expenses (Dombkowski et al. 2004). Health

insurance features as a significant variable in various studies (Bardenheier et al.

2004; Steyer et al. 2005; Dayan et al. 2006; Dombkowski et al. 2004), with no

insurance associated with delays.

Finally, considering area level factors, Ozcirpici et al. (2006) show UTD vaccina-

tions and vaccination coverage is lower for rural over urban areas whilst Akmatov

et al. state that higher delays are found in cities.
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8.2.2 Multi-level modelling of vaccine uptake

Multi-level models have been used in published analyses of vaccine uptake. Only

one multi-level analysis identified involved the uptake of a pneumococcal vaccine.

However, this analysis did not involve PCV-7 but PPV-23, assessing administra-

tion to elderly nursing home residents. The emphasis in this study was comparing

single-level logistic regression to multi-level logistic regression to show how results

may differ (Bardenheier et al. 2005). Similar, but not identical results were ob-

tained on carrying out single-level and multi-level analyses and Bardenheier et

al. state that it is important to consider multi-level analyses where there is some

correlation amongst observations as those variables found to be statistically sig-

nificant using the single-level approach but not in the multi-level approach are

likely to be exhibiting effects attributable to residual correlation. In the analysis

considered by Bardenheier et al., the authors state that the multi-level modelling

approach is preferred as there is apparent between nursing home variation in

the outcome measure. However, the authors state that using multi-level analysis

has some drawbacks in that it is difficult to interpret the parameter estimates

obtained in the model. ORs cannot be interpreted in the same manner as in a

single-level logistic regression due to the model structure and thus all that can

be stated meaningfully is that certain variables increase or decrease the log odds

of the response.

In Vietnam, a multi-level approach was taken by Ali et al. in analysing vac-

cine uptake data as social and ecological factors which are associated with spa-

tial variation were deemed important to assess (Ali et al. 2007). The study

looked at individual-level factors such as age, gender, educational attainment,

and household-level factors such as literacy, age and gender of the head of the

household, affecting uptake of the typhoid vaccine or the hepatitis A vaccine

administered to children of school age in Hue, Vietnam.

A spatial structure was considered in the Ali et al. model as households were

grouped together according to their distance from selected spatial reference points.

Ali et al. use the statistical method kriging to define the spatial pattern of vac-

cine uptake for the area considered. In the multi-level analysis, both school and
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neighbourhood were considered as levels in the model. As the data are not nested,

since students may not necessarily attend a school within the neighbourhood in

which they reside, a cross-classified model was used in the analysis. Thus, stu-

dents are the level one components and both neighbourhood and school are level

two components. Ali et al. consider two types of area; low-vaccine coverage areas

and high-vaccine coverage areas.

The results from the analysis show significant student level and ecological level

factors. Vaccine uptake was higher amongst females and those students with a

younger, male or non-literate head of household. Income also affected the uptake,

with those students from lower income households displaying higher uptake than

those from higher income households. In addition, greater uptake was observed

for those at a greater distance to a hospital. The Ali et al. study provides inter-

esting results. However, the authors state that as the study was created to assess

vaccine effectiveness and not factors affecting vaccine uptake there are poten-

tial drawbacks which include the fact that the uptake was not monitored under

normal public health vaccination conditions. Results showing greater uptake by

low-income and lower educational status households may be due to the greater

levels of promotion of the vaccine and the free availability of the vaccine.

Multi-level modelling techniques were used in two of the childhood immunisation

studies listed in Table 8.1. Both Guttman et al. and Zimmerman et al. consider

patient and provider levels in their UTD analysis as patients who are under the

care of the same physician may have correlated outcomes.

8.3 Methods

The primary aim of this analysis is to determine factors which affect the timing

of the uptake of the PCV-7 booster. The hypothesis is that the timing of the

subject level variable Hib/Men C booster, scheduled to be administered 1 month

prior to the PCV-7 booster, will have an impact on the timing of the PCV-7

booster.
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KDEs are used to provide a picture of the age at which the PCV-7 booster and

the Hib/Men C booster are received, as used by Cameron et al. in their analysis,

described earlier in this chapter, to provide a picture of the uptake of the MMR

vaccine. As with the Cameron et al. analysis, the smoothing parameter used

for the final graphical display presented in the KDEs is chosen through visual

examination, varying the parameter until a smooth distribution can be seen.

KDEs can be used in a similar manner to histograms to determine distributional

shapes. However, unlike the histogram, KDEs display the distribution in the

form of a smooth curve. A kernel function, w, is used to obtain the smooth shape

and the kernel estimator is described as follows:

f̂(y) =
1

nh

n∑
i=1

w

(
y − yi
h

)
(8.1)

where yi are assumed to be independent and identically distributed random vari-

ables. In (8.1), h controls the variance of the kernel function w and is known

as the bandwidth. By varying h, the smoothness of the estimated distribution

is altered. w may be assumed to be any type of symmetric distribution with

zero mean (Bowman and Azzalini 1997). Commonly the Gaussian distribution

is adopted and in the KDEs shown in this chapter the Gaussian distribution was

used.

Single and multi-level modelling techniques are adopted to determine the signif-

icance of various factors which may have an effect on the uptake of the PCV-7

booster. Three levels are considered in this modelling. These are the individual

level, postcode district level and HB level. The postcode district is the first four

entries of the postcode, where the fourth entry could be a space, e.g. G12 or

AB10. Three response variables are considered in this chapter. These are the

binary response variables PCV-7 booster received and PCV-7 booster adminis-

tered late, and the continuous response variable Number of months late PCV-7

booster is administered. All individuals who received the PCV-7 booster prior

to the age of 13 months are classed as ‘not late’ in the binary variable PCV-7

booster administered late, all others are classed as ‘late’. For the continuous re-

sponse variable, only vaccinations classed as ‘late’ are considered. Clearly, these
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response variables are interdependent. The variable PCV-7 booster received is

a censored response as for those who have not received the vaccine it cannot

be determined whether or not these children will receive the vaccine late or will

never receive the vaccine. Children who have not received the PCV-7 booster will

have missing observations in both the PCV-7 booster administered late and the

Number of months late PCV-7 booster is administered response variables and all

those classed as ‘not late’ in the PCV-7 booster administered late variable will be

classed as missing in the Number of months late PCV-7 booster is administered

variable.

Each of the response variables described will be considered separately in single-

level and multi-level models in this chapter. Multi-level modelling techniques

combining these response variables in a multivariate response model will then be

explored.

Multi-level modelling is a technique commonly adopted in the analysis of social

science data as it is able to model complex variability structures involving nested

observations (Snijders and Bosker 1999). Examples of possible uses of multi-

level modelling include educational studies where pupils are nested within classes

or schools, or household studies where individuals are nested within households

within areas (Rasbash et al. 2008). In these examples, pupils or individuals

are considered as the level 1 units, classes or households as level 2 and schools

or areas as the level 3 unit in a multi-level model, where each unit is assumed

to have its own component of variation. Modelling in this manner allows for

the fact that the correlations of pupils within a class, or individuals within a

household, will be greater than those of pupils or individuals between classes or

households. In other words, it takes account of the fact that pupils within a

class will have greater similarity to one another than to pupils in a different class.

Ignoring the variance structure in such data can lead to incorrect conclusions,

with insignificant variables identified as significant and vice versa, although it is

unusual for significant variables to be identified as insignificant.

Multi-level analysis is adopted in this chapter as it is hypothesised that children

living within the same area, postcode district or HB, are likely to have more
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similar vaccination uptake patterns than those in different areas. Another way

in which this analysis could have been carried out is using a spatial approach,

similar to that described by Ali et al. using a statistical technique such as kriging

to model spatial patterns in uptake.

All analysis in this chapter was carried out using MLwiN version 2.11 and R

version 2.9.1.

8.4 Results

8.4.1 The data

The dataset contains information on 28,672 children who all met the criteria

to have been administered the three doses of PCV-7 according to the routine

immunisation schedule, having reached the age of 2 months when PCV-7 was

introduced for routine use. Data were available up to the end of March 2008.

The earliest date of birth for this subset of the data was 1st July 2006 and the

latest was 31st December 2006. As the children have different birth dates they

will have different lengths of follow up. Thus, in order to analyse vaccine uptake

a cut-off of age 22 months was taken as the follow-up time since all children were

followed to at least 22 months of age.

13,974 (48.74%) of the children were females, 14,698 (51.26%) males. Table 8.2

shows the number of children eligible for inclusion in this analysis for each of the

HBs in Scotland. It can be noted that there are 126 (0.44%) individuals with

missing HB information. HBs G (Greater Glasgow) and S (Lothian) contain the

largest number of children to be included in the analysis with over 30% of children

in the data residing in either of these two locations. HB R (Orkney) contains the

fewest with only 0.33% of Scottish children born between 1st July 2006 and 31st

December 2006 residing in this region. Shetland (HB Z) and the Western Isles

(HB W) also have low percentages at only 0.45% and 0.50% respectively.

In the data considered in this analysis there are 932 postcode sector levels. To

reduce the number of levels to be considered in the multi-level modelling, a new

postcode district variable was created by selecting the first four elements of the
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postcode sector character, where the fourth element could be a space. These

postcode districts were matched to a list of possible postcode districts to check

for misclassifications. 30 mismatches were found. Of these, 28 were missing

entries. The other 2 misclassifications were districts “ML55” and “L8” which

were recoded as missing. 409 postcode district levels remained for inclusion in

the analysis. One of the postcode districts was for Cumbria. Thus, the individual

with this postcode district was excluded from the dataset as only Scottish data

are considered in this analysis. Postcode district information was used to identify

some of the missing HB levels.

As mentioned previously, the dataset contains information about two depriva-

tion categories: Deprivation quintiles and Deprivation deciles. Only Deprivation

quintiles is considered in this chapter. The deprivation quintiles are taken from

the Scottish Index of Multiple Deprivation (SIMD). The SIMD was created in

order to have an area measure of relative deprivation for different data zones in

Scotland (The Scottish Government 2009).

Table 8.3: Number of children in each deprivation quintile.

Deprivation quintile 1 2 3 4 5

Number of children 5050 5428 5540 5805 6723

% of total 17.61 18.93 19.32 20.25 23.45

Table 8.3 shows the number and percentage of children that fall into each of the

deprivation quintiles. The percentage increases slightly with increasing depriva-

tion, with fewest children found in the affluent category and highest found in the

most deprived category. As with the HB information, there are 126 children with

missing deprivation quintiles information. Unfortunately, as deprivation is not

specific to postcode sector, this information cannot be recovered.

Considering the vaccine information for all children, amongst those children born

in quarters 3 and 4 of 2006, 28,281 (98.64%) had received the first dose of PCV-

7 by March 2008, 27,881 (97.24%) had received the second dose of PCV-7 and

26,414 (92.12%) had received the third (booster) dose of PCV-7. The earliest
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date at which the first dose of PCV-7 is administered is the 4th September 2006

which coincides with the introduction of the vaccine to the routine immunisation

schedule (Cullen and Gillooly 2006).

On assessment of the dates at which the booster dose of PCV-7 was administered

to children, unusual dates appear. The booster is supposed to be administered

to those aged 13 months. This means that if 2 month old children are being

routinely administered the first dose of PCV-7 from 4th September 2006 then the

routine booster vaccinations should take place from around the 4th August 2007.

The minimum date observed for the booster is 7th September 2006. 222 of the

booster vaccinations were received prior to 4th August 2006.

On examination of the ages of the children who received these 222 early vacci-

nations, it can be noted that the minimum age at which the vaccine was ad-

ministered was 0 months of age and the mean age was 6.67 months (median =

5.97 months). These early vaccinations may perhaps be attributable to children

in high risk groups, such as those who are immunocompromised, receiving the

PCV-7 booster prior to the age of 13 months to ensure that they are protected

against pneumococcal disease. However, all vaccinations administered prior to

the age of 2 months are not considered in the analysis as the routine childhood

immunisation schedule in the UK is in place for children from the age of 2 months.

In total, 13 children received the PCV-7 booster and 28 received the Hib/Men C

booster prior to the age of 2 months. These cases were omitted. All other early

vaccines are retained as it is feasible that some children may receive the vaccines

early if they are at an increased risk of developing infections or disease so it is

unclear whether or not these other discrepancies are errors.

In the final cleaned dataset, 26,067 (90.91%) of children born in quarters 3 and 4

of 2006 received the PCV-7 booster prior to 22 months of age. The mean age at

which the PCV-7 booster was received was 14.76 (standard deviation (S.D.) 1.88)

months. The minimum was 2.73 months of age, after omitting those vaccinated

prior to two months of age, and the maximum was 21.97 months. 25,823 (90.06%)

of children received the Hib/Men C booster by 22 months of age. The mean age

at which Hib/Men C is received is 13.16 months (S.D. 1.81 months). Thus,
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the PCV-7 booster appears to be administered, on average, almost two months

later than the routine vaccination schedule recommendations and the Hib/Men

C booster is administered over a month later than scheduled.

8.4.2 Hib/Men C booster and the PCV-7 booster

The Hib/Men C booster is administered to children routinely at age 12 months.

Interest lies in determining the effect of late administration of the Hib/Men C

booster on the timing of the PCV-7 booster.

Initially, uptake of the PCV-7 booster is assessed and is compared to uptake of

the Hib/Men C booster. Table 8.4 shows a cross-tabulation of PCV-7 booster

receipt by age 22 months by Hib/Men C receipt by age 22 months. Table 8.4

shows that the majority of children (85.66%) received both vaccines. Of those

that received the Hib/Men C booster, only 4.89% did not receive the PCV-

7 booster and, amongst those who received the PCV-7 booster, only a slightly

higher percentage, 5.78%, did not receive the Hib/Men C booster. Overall, 4.68%

of children received neither vaccine by 22 months of age. A χ2 Test of Association

resulted in a significant p-value of less than 0.001. Therefore, there is evidence to

reject the null hypothesis of no association between these two variables. Table 8.4

shows lower observed numbers than expected for children receiving the PCV-7

booster and not the Hib/Men C booster and for children receiving the Hib/Men

C booster and not the PCV-7 booster. Higher observed numbers are shown for

children receiving either both or neither of the vaccines than expected.

Table 8.4: Observed counts for PCV-7 booster received against Hib/Men C

booster received (expected counts in brackets).

PCV-7 booster

Not received Received

Not received 1343 (258.85) 1506 (2590.15)

Hib/Men C booster Received 1262 (2346.15) 24561 (23476.85)

In considering late uptake of PCV-7 up to the age of 22 months, those who had
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not received the vaccination were not included in this analysis. Thus, only 26,067

children are considered. The reasoning behind the exclusion was mentioned in

the introductory section of this chapter. All children who received vaccination

after the age of 395.2 days (roughly 13 months) are classed as having received

the vaccination late. All other children are classed as having received the vac-

cine on time. By this classification, 676 (2.59%) of children who received the

PCV-7 booster received it on time. For those who received the vaccine late, the

mean number of months late is 1.86 (S.D. 1.73 months); the maximum number

of months late is 8.97. The cut-off of 13 months seems strict as the vaccine has

to be administered at age 13 months and anyone aged between 13 and 14 months

is classified as late. Thus, only 2.59% of children receive the vaccine on time

according to this cut-off point. A more appropriate cut-off to use for late vacci-

nations may be those vaccinations administered later than one month after the

recommended age. This cut-off has been adopted in a previous vaccine uptake

analysis (Akmatov et al. 2008). Considering a classification of late uptake as any

vaccinations administered after the age of 14 months, 10,493 (40.25%) children

receive the vaccine on time. Therefore, clearly many children receive the vaccine

between the ages of 13 and 14 months. Histograms and kernel density estimates1

of the number of months late may be assessed. These plots are of months late at

the 13 month cut-off. In both plots of the timing of the PCV-7 booster, Figure

8.1, peaks in the number of vaccinations can be observed to take place between

approximately 0 and 0.3 months late followed by a gradual decline tailing off at

around 6 months late.

For the Hib/Men C booster vaccination, all children who received the booster

after the age of 364.8 days (roughly 12 months) are classed as having received the

vaccine late whilst all other children received the vaccine on time. Once again,

the cut-off for follow-up is 22 months of age. 2,849 (9.94%) of those who received

the Hib/Men C booster were administered the vaccine on time. Amongst children

who received the vaccine late, the mean number of months late is 1.28 (S.D. 1.81

months); the maximum is 9.97 months. As with the PCV-7 booster, plots of the

number of months late the Hib/Men C booster was administered are examined.

1KDE has a Gaussian kernel and bandwidth = 0.15 months.
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The KDE of the number of months late receiving the Hib/Men C booster2, Figure

8.2, shows a much sharper peak at 0 months late than the KDE of months late

receiving the PCV-7 booster, Figure 8.1. In addition, there is a much steeper

downwards slope shown in Figure 8.2, with the majority of those children who

receive the Hib/Men C vaccine late receiving the vaccine within 2 months of the

date at which it should have been administered.

A cross-tabulation of the timing of the PCV-7 booster uptake, where late is

classified as greater than 13 months of age, against the timing of Hib/Men C

booster uptake is shown in Table 8.5. A χ2 Test of Association carried out to

test the relationship between the binary variables PCV-7 booster administered

late and Hib/Men C booster administered late provides strong evidence at the

5% significance level (p-value < 0.001) of an association. The expected counts

calculated in the χ2 Test are also shown in Table 8.5.

Table 8.5: Observed counts for late PCV-7 booster uptake (late if administered

after 13 months of age) against late Hib/Men C booster (expected counts in

brackets).

PCV-7 booster

Not Late Late

Not Late 192 (48.31) 1792 (1935.69)

Hib/Men C booster Late 406 (549.69) 22171 (22027.31)

In Table 8.5, it can be noted that higher numbers of cases are expected than

observed for one vaccine administered on time, the other late; lower numbers are

expected than observed for both administered on time or both administered late.

The correlation between Number of months late PCV-7 booster is administered

and Number of months late Hib/Men C booster is administered is calculated to

be 0.35. Thus, there is a positive relationship between these two variables but it

is fairly weak.

2KDE has a Gaussian kernel and bandwidth = 0.15 months.
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Figure 8.1: Histogram and KDE of months late receiving the PCV-7 booster for
children born in quarters 3 and 4 of 2006.

Histogram of months late receiving the Hib/Men C booster
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Figure 8.2: Histogram and KDE of months late receiving the Hib/Men C booster
for children born in quarters 3 and 4 of 2006.
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8.4.3 Modelling the binary response PCV-7 booster re-

ceived

Descriptive analysis

The first univariate response model considers the variables important in predict-

ing the binary response PCV-7 booster received (‘PCVReceived’). This model,

and the subsequent models, consider the possibility that the variation in the data

can be explained by three levels which are the individual level, postcode district

level and HB level. Postcode district was selected for use in the analysis rather

than postcode sector as this considerably reduces the number of different areas

within level 2 adopted in the analysis. The postcode sector level variables were

aggregated in order to obtain the variables at district level. The individual level

variable ‘Gender’ is considered in the model, as well as the area level depriva-

tion measure ‘SCSIMD5’, as are all of the postcode district level variables from

CASWEB described earlier. Although ‘SCSIMD5’ is an area level measure, it

appears in the model as an individual level variable due to the fact the area at

which this variable is measured is smaller than the postcode sector or district.

The binary variable Hib/Men C booster received (‘HibReceived’) is also consid-

ered. The variables from CASWEB, unlike ‘Gender’ and ‘HibReceived’, are not

individual level variables but have been aggregated to postcode district before

inclusion in the modelling.

Figure 8.3 shows the proportion of children who received the PCV-7 booster

within each HB. Orkney has the lowest uptake of all the HBs; only 58.95% of

children born in quarters 3 and 4 of 2006 received the PCV-7 booster by age

22 months in this HB. The next lowest uptake is observed in the Shetlands.

However, the percentage of children who received the PCV-7 booster is much

higher at 80.47%. HBs H, W and F, the Highlands, the Western Isles and Fife,

also display uptake of less than 90%. There is strong evidence of an association

between HB and ‘PCVReceived’ with a p-value of less than 0.001 obtained in a

χ2 Test of Association.
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Figure 8.3: Barchart of proportion administered the PCV-7 booster by HB
(A=Ayrshire & Arran, B=Borders, C=Argyll & Clyde, F=Fife, G=Greater Glas-
gow, H=Highland, L=Lanarkshire, N=Grampian, R=Orkney, S=Lothian, T=Tayside,
V=Forth Valley, W=Western Isles, Y=Dumfries & Galloway, Z=Shetland).

Table 8.6: Observed counts for PCV-7 booster uptake by gender.

PCV-7 booster

Not received Received

Female 1224 12750

Gender Male 1381 13317

The cross-tabulation of ‘PCVReceived’ by ‘Gender’, Table 8.6, shows no great

difference in PCV-7 booster uptake by sex. 91.24% of females received the vac-

cine and a slightly lower percentage of males, 90.60%, received the vaccine. As

expected, there is no evidence of an association between ‘PCVReceived’ and ‘Gen-

der’ at the 5% significance level (p-value = 0.06) on carrying out a χ2 Test of

Association.

From examination of Figure 8.4, it appears that the proportion of children who

do not receive the PCV-7 booster increases slightly with increasing deprivation.
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Figure 8.4: Barchart of proportion administered the PCV-7 booster by depriva-
tion.

Considering the effect of postcode district on vaccine uptake, there are 48 post-

code districts with a vaccine uptake of less than 80%. Of these 48 districts, 5

districts had no vaccinations; IV28, PA66, PA76, PH23 and PH5. Amongst the

other 43 districts, there is only one child present in each of the postcode districts

IV28, PA66, PH23 and PH5 and only three children in PA76. On average, there

were roughly 70 children per district, with numbers ranging from only one child

in a district to a maximum of 433.

Plots of the postcode district level variables by the proportion of children vacci-

nated in each district are examined to obtain an impression of which variables

may be important to include in a model of ‘PCVReceived’. On examination of

the plots shown in Figures 8.5 and 8.6, none appear to show great differences

in the proportion vaccinated with the PCV-7 booster for differing percentages of

each of the postcode district level variables. Therefore, it does not appear that

any of the postcode district level variables are particularly important in deter-

mining whether or not the vaccine is received. This may be due to the fact that

the uptake is so high there is little scope for predicting areas with low uptake.

In summary, it appears that whether or not a child receives the Hib/Men C

booster is important in determining whether or not the PCV-7 booster is ad-

ministered. In addition, HB appears to play an important part in determining

whether or not a child receives the vaccine, with the lowest observed uptake rates

for the island HBs. Deprivation is also perhaps important as it seems that the
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Figure 8.5: Scatterplots of the postcode district level variables ‘Aged0-4’, ‘NoCar’,
‘OtherEU’, ‘NotWhite’, ‘NoQual’ and ‘Level4’ by the proportion vaccinated in
the district.
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Figure 8.6: Scatterplots of the postcode district level variables ‘LargeEmp’, ‘Rou-
tine’, ‘Unemployed’ and ‘Agriculture’ by the proportion vaccinated in the district.

uptake decreases with increasing deprivation. From assessment of the postcode

district level variables, it does not appear that any are particularly useful in

determining the outcome.

Modelling

Single-level models

Initially, single-level models are considered to examine the importance of each

of the explanatory variables independently in models of ‘PCVReceived’ without

considering variability explained by either postcode district or HB. As this re-

sponse variable is binary, single-level logit models are fitted. The single-level
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logit model can be expressed as follows:

yi ∼ Binomial(ni, πi),

logit(πi) = α + βxi,

var(yi|πi) = πi(1− π1). (8.2)

For the models considered in this section, yi in (8.2) is ‘PCVReceived’, where

each child is followed to the age of 22 months, which is the binary response for

the ith unit, i.e. the ith individual, where i = 1, ..., 28, 640 as there is information

on vaccine uptake for all children in the data. 32 of the observations did not

have either postcode district or HB information and thus could not be linked to

postcode district level variables. Since this is such a small number of the total

number of observations, these 32 children were not considered in the analysis. πi

is the probability that yi = 1, i.e. this is the probability that child i received

the PCV-7 booster vaccination. πi/(1 − πi) is the odds that yi = 1 and exp(β)

is the OR. xi represents the individual value of the variable chosen for inclusion

in the model. Table 8.7 shows the results of Wald Tests of H0 : β = 0 for

each of the single-level models where each explanatory variable was considered

independently as a predictor of ‘PCVReceived’. The Wald Test is based on the

result that the Wald statistic should approximately follow a Normal distribution

with zero mean and variance equal to one and the Wald statistic is defined to

be the estimated coefficient of a variable divided by its estimated standard error

(S.E.). All modelling carried out in MLwiN used the default modelling approach

of first order marginal quasi-likelihood.

The single-level models for ‘PCVReceived’ for each of the explanatory variables

independently show significant non-zero coefficients for all but four of the possible

explanatory variables. The null hypothesis that β = 0 cannot be rejected for

‘Gender’, ‘NoQual’, ‘Level4’, ‘Routine’ and ‘Agriculture’ at the 5% significance

level. ‘HibReceived’ appears to be the most significant of all the explanatory

variables in determining ‘PCVReceived’ as it has the highest Wald Test statistic.

‘SCSIMD5’ has the next highest Wald Test statistic and results in a significant
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effect testing on four degrees of freedom. This variable included as a categorical

variable, with deprivation category 1 as the baseline for comparison, in a single-

level model of ‘PCVReceived’ gives the coefficients -0.166 (S.E. 0.075), -0.319

(S.E. 0.073), -0.380 (S.E. 0.071) and -0.526 (S.E. 0.068) for the four dummy

variables for categories 2 to 5 respectively. The intercept in this model is 2.619

(S.E. 0.056). As the coefficient gets smaller with increasing deprivation there is a

decreased probability of receiving the PCV-7 booster for increasing deprivation.

Table 8.7: Wald Tests for single-level logit models of ‘PCVReceived’.

Predictor Test statistic p-value

HibReceived 3626.066 < 0.001

Gender 3.358 0.067

Aged0-4 4.014 0.032

NoCar 23.662 < 0.001

OtherEU 22.219 < 0.001

NotWhite 10.781 0.001

NoQual 0.069 0.793

Level4 1.257 0.262

LargeEmp 18.089 < 0.001

Routine 0.707 0.400

Unemployed 19.195 < 0.001

Agriculture 0.092 0.762

SCSIMD5 60.955 < 0.001

From assessment of Table 8.7, it is surprising that so many of the postcode dis-

trict level variables appear to have non-zero coefficients as there did not appear

to be great associations between any of these variables and PCV-7 booster up-

take shown in Figures 8.5 and 8.6. However, this is attributable to the fact that

the models being fitted are single-level so all observations are considered in one

estimate whilst the figures are based on over 400 postcode districts. These post-

code district level variables may not be significant on fitting a multi-level model

as ignoring variance structures can lead to insignificant variables being identified

as significant, as mentioned earlier. Therefore, these postcode district variable
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effects will be explored further on consideration of two-level models.

Correlations

The correlations between each of the postcode district variables are calculated to

determine whether or not certain variables may not be required in the model if

other variables are included.

Examination of Table 8.8 shows the highest correlation of -0.89 exists between

‘NoQual’ and ‘Level4’. This high negative correlation is expected as one measures

the lowest group of qualifications in a district and the other the highest in the

census. It is unsurprising that there is a high negative correlation between the

percentage with no qualifications and the percentage who work as large employ-

ers as these positions presumably are appointed on the basis of relevant qual-

ifications. Similarly, it is hardly unexpected that the correlations between the

percentage with no qualifications and the percentage working in routine employ-

ment or who are unemployed are highly positive. The opposite results are true

for the percentage with level 4 qualifications, as expected. Moderately high pos-

itive correlations are observed between ‘OtherEU’ and ‘Level4’ and ‘NoCar’ and

‘NoQual’, respectively. The first of these correlations indicates that the higher

the proportion of individuals born in other EU countries, i.e countries outwith

the UK and Republic of Ireland, the higher the percentage in the district with

higher qualifications. The second correlation makes intuitive sense as the higher

the proportion of unemployed individuals within a postcode district, the higher

the proportion of households with no car. As there are some high correlations

between these variables it may not be necessary to include both variables in-

volved in high correlations in a model of ‘PCVReceived’. For example, there

is evidence that both ‘LargeEmp’ and ‘Unemployed’ have non-zero coefficients

when modelling ‘PCVReceived’ individually. However, it may not be necessary

to include both variables together in a model as both provide measures of income

in a district and there is a relatively high negative correlation of -0.67 between

these variables. Thus, the addition of ‘LargeEmp’ to a model of ‘PCVReceived’

which already involves ‘Unemployed’ may not provide any significant additional

information.
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In consideration of these postcode district variables, it is important to acknowl-

edge the possibility of the presence of ecological fallacy (Robinson 1950). This

is where incorrect interpretations are made about associations between variables

due to the fact that aggregated data are used rather than individual level data.

This means that the assumption is being made that individuals within a postcode

district have the average characteristics of that district which can lead to incor-

rect interpretations. Thus, care must be taken when assessing the results from

the area level variables in the models considered in this chapter. In addition,

the correlations described above for the aggregated data may not be present if

information was available on the individual level.

In further individual level models, HB is considered as a categorical explanatory

variable of ‘PCVReceived’. HB G is taken as the baseline for comparison as

this is the HB in which the largest number of children in the dataset are found.

Table 8.9 shows the coefficients and S.E.s of each of the HBs in the model of

‘PCVReceived’ on comparison with HB G, Greater Glasgow.

In Table 8.9 it can be observed that five of the HB coefficients are negative

indicating that these HBs have a lower probability of receiving the PCV-7 booster

than the baseline comparator HB G. These HBs with negative coefficients are

Fife, Highlands, Orkney, Western Isles and Shetland. The predicted probability

of receiving the PCV-7 booster in Greater Glasgow, HB G, is approximately 0.91.

Table 8.9 shows that most HBs have a high predicted probability of receiving the

vaccine with ten HBs displaying probabilities of greater than 0.90. Orkney has

the lowest predicted probability of receiving the vaccine at only 0.59, whilst the

other islands and the Highlands have much higher predicted probabilities of at

least 0.80.
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Table 8.9: HB coefficients and S.E.s in model of ‘PCVReceived’ and predicted

probabilities of receiving the PCV-7 booster (A=Ayrshire & Arran, B=Borders,

C=Argyll & Clyde, F=Fife, G=Greater Glasgow, H=Highland, L=Lanarkshire,

N=Grampian, R=Orkney, S=Lothian, T=Tayside, V=Forth Valley, W=Western Isles,

Y=Dumfries & Galloway, Z=Shetland).

HB Coefficient S.E. Probability

A 0.263 0.096 0.92

B 0.230 0.166 0.92

C 0.071 0.089 0.91

F -0.049 0.088 0.90

H -0.444 0.099 0.86

L 0.272 0.081 0.92

N 0.134 0.082 0.91

R -1.875 0.214 0.59

S 0.142 0.072 0.92

T 0.024 0.088 0.91

V 0.082 0.099 0.91

W -0.413 0.246 0.86

Y 0.946 0.187 0.96

Z -0.821 0.228 0.80

Two-level models

Next, a two-level model with postcode district as the higher level is considered.

In MLwiN, the parameter estimates for a two-level discrete response model are

found by initially carrying out first order marginal quasi-likelihood, a crude ap-

proximation which can lead to biased estimates, then adopting these estimates as

starting values for the more reliable method of penalised quasi-likelihood (PQL).

The starting values from the crude approach are often required as PQL is a less

stable method which often has convergence problems (Rasbash et al. 2008).

A two-level random intercept model is fitted. In this model the intercept αj is
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split into a fixed component, α, and a random component, υj, which is assumed to

be Normally distributed with zero mean and constant variance σ2
υ. In this model

j represents the postcode district level. Thus, υj is the random effect attributable

to each postcode district level. The parameter estimate for this model is shown:

logit(πij) = αj,

where

αj = 2.270 + υj. (8.3)

The estimated S.E. for α in 8.3 is 0.037 and the estimate for σ2
υ is 0.246 with

S.E. 0.033. An approximate test that may be used to determine whether or

not there is evidence that the postcode district level variation is required in the

model is the Wald Test of (0.246/0.033)2. A p-value of less than 0.001 is obtained

on comparison with the χ2 statistic with one degree of freedom. Thus, there is

significant evidence to reject the null hypothesis that σ2
υ = 0. Therefore, there is

evidence of a significant postcode district effect in determining ‘PCVReceived’.

Three-level models

Next, it is necessary to determine whether or not a third level should be included

to incorporate HB level variation in the model of ‘PCVReceived’. In order to use

MLwiN to perform multi-level modelling the data must be arranged according

to the specified hierarchy which, in this series of models, has to be HB first,

then postcode district within HB, followed by individual within postcode district

within HB. The associations between postcode district and HBs were examined

to determine whether or not postcode district is nested within HB.

21 of the postcode districts were found to be associated with more than one HB

so, as this is only a small number of all the districts, a cross-classified multi-level

model should not be necessary for the modelling. To ensure the hierarchy is as

required for the analysis, each of the postcode districts linked to more than one

HB were grouped into the largest of the two or three HBs with which the district
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was associated. As the majority of the postcode districts associated with more

than one HB are predominantly found in one of the HBs this should not greatly

affect the modelling results.

Initially, a three-level random intercept model is considered. An additional ran-

dom parameter, νk, representing the random effect attributable to each HB is

entered in the model for the random intercept shown in (8.3) and is assumed to

follow a N(0, σ2
ν) distribution. In this model, k represents the HB level. All resid-

ual parameters are assumed to be uncorrelated. A p-value of 0.017 is obtained

on testing the null hypothesis that σ2
ν = 0 in this random intercept model. Thus,

there is evidence of a significant HB effect at the 5% significance level.

As both postcode district and HB have been deemed significant in explaining

variability in ‘PCVReceived’, the next stage in the modelling process is to add

potentially important explanatory variables to the model. Each of the variables

which were found to have non-zero coefficients in the previous individual single-

level models of ‘PCVReceived’ are added to this three-level model, assuming each

of the coefficients do not vary randomly with HB. Table 8.10 shows the coefficients

and S.E.s obtained.

It can be noted from examination of Table 8.10 that ‘NoCar’, ‘Aged0-4’, ‘NotWhite’

and ‘LargeEmp’ are not required in the final model as the p-values obtained from

the Wald Tests for these variables are all greater than 0.05. After removal of these

variables, the final random-intercept model contains ‘HibReceived’, ‘SCSIMD5’

and ‘OtherEU’.

The estimate of α in the final model is 0.335 (S.E. 0.185) and the parameter

estimates for σ2
υ and σ2

ν are 0.087 and 0.381. Therefore, there is more variation

between HBs than between postcode districts.
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Table 8.10: Results from the three-level model of ‘PCVReceived’.

Variable Coefficient S.E. p-value.

HibReceived 2.784 0.047 < 0.001

SCSIMD5cat 2 -0.161 0.079

SCSIMD5cat 3 -0.258 0.079

SCSIMD5cat 4 -0.282 0.080

SCSIMD5cat 5 -0.344 0.082 < 0.001

Aged0-4 -0.025 0.049 0.626

NoCar 0.002 0.004 0.508

OtherEU -0.234 0.065 0.019

NotWhite -0.026 0.014 0.063

LargeEmp 0.009 0.040 0.827

The next stage in the modelling process is the introduction of a random coefficient

for ‘HibReceived’ to allow for the possibility that ‘HibReceived’ could vary by

postcode district and HB. It is reasonable to consider that the uptake of the

Hib/Men C booster, and hence the relation to PCV-7, may vary randomly by

postcode district and health board as evidence had been found that the uptake

of the PCV-7 booster varies randomly by these two area variables. This model

introduces four new parameters to the three-level random intercept model. The

random variance and covariance parameters are:

[
ν0k

ν1k

]
∼ N(0,Ων) : Ων =

[
σ2
ν0 σν01

σν01 σ2
ν1

]

and [
υ0jk

υ1jk

]
∼ N(0,Ωυ) : Ωυ =

[
σ2
υ0 συ01

συ01 σ2
υ1

]
. (8.4)

In (8.4), σ2
ν0 is the variation in the intercepts across the HB summary lines and σ2

ν1
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is the variation in the slopes across the HB lines. σν01 is the covariance between

the HB intercept and slope. The parameters σ2
υ0, σ2

υ1 and συ01 can be interpreted

in a similar fashion for the postcode district within HB variation. A Wald Test

is used to test the significance of these new parameters and a test statistic of

9.942 is obtained on 4 degrees of freedom, giving a p-value of 0.041. Therefore,

the null hypothesis that these parameters equal zero may be rejected at the 5%

significance level. Thus, it appears that the random coefficient for ‘HibReceived’ is

required in the model. The final model of ‘PCVReceived’, including the variance

parameters and S.E.s is shown in Table 8.11.

As HB has only 15 levels and these levels represent all possible categories of

HB, it is possible to fit HB as a fixed effect in a two-level model to examine

the differences in uptake of the HBs. Table 8.12 shows the modelling results.

In the model of ‘PCVReceived’ with a random effect attributable to postcode

district variability and with HB included as a fixed effect, shown in Table 8.12,

the Greater Glasgow HB, HB G, is taken as the baseline for comparison as it

is the largest HB. The coefficients for HBs L (Lanarkshire), S (Lothian) and Y

(Dumfries and Galloway) are positive. Thus, given the other variables included in

the model, children found in these HBs have a greater odds of receiving the PCV-7

booster than those in Greater Glasgow. HBs R and Z, Orkney and Shetland, have

high negative coefficients. Thus, there are lower odds of receiving the booster for

children in these two HBs. The next highest negative coefficient amongst the HBs

is for HB W, the Western Isles. The odds of receiving the booster are lower for

the Western Isles than Greater Glasgow. Thus, clearly there is a lower probability

of receiving the PCV-7 booster for children living in island HBs than for those

living in mainland Scotland. It can be observed that the coefficients and S.E.s

of the other explanatory variables do not differ greatly to those obtained in the

three level model shown in Table 8.11.
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Table 8.11: Parameter estimates and variance components for the final model of

‘PCVReceived’.

Variable Parameter Estimate S.E.

Intercept α 0.323 0.186

HibReceived β1 3.070 0.118

SCSIMD52 β2 -0.154 0.090

SCSIMD53 β3 -0.276 0.090

SCSIMD54 β4 -0.315 0.090

SCSIMD55 β5 -0.385 0.090

OtherEU β6 -0.281 0.058

Variance component Parameter Estimate S.E.

HB intercept σ2
ν0 0.328 0.145

HB intercept and slope covariance σν01 -0.093 0.080

HB slope σ2
ν1 0.120 0.070

PCDIST within HB intercept σ2
υ0 0.208 0.056

PCDIST intercept and slope covariance συ01 -0.094 0.055

PCDIST within HB slope σ2
υ1 0.183 0.074

To summarise, in the final model of ‘PCVReceived’, there are significant ran-

dom effects corresponding to postcode district and HB. Thus, there is evidence

of significant area variation in the uptake of the PCV-7 booster. A random co-

efficient for the variable ‘HibReceived’ was also found to be significant in the

model. The other variables included in the final multi-level logistic regression

model of ‘PCVReceived’ are ‘SCSIMD5’ and ‘OtherEU’. Given the other vari-

ables in the model, the coefficients of each of the categories of ‘SCSIMD5’ are

negative and decrease in size with increasing category from -0.154 on comparing

category 2 to the baseline category 1 to -0.385 comparing category 5 to category

1. Thus, increasing levels of deprivation decrease the log odds of receiving the

PCV-7 vaccine.
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The coefficient of the continuous postcode district level variable ‘OtherEU’ is

negative. Thus, the log odds of receiving the PCV-7 booster decrease as the

percentage of individuals born in EU countries other than the UK and Republic

of Ireland within a postcode district increases.

Finally, the fixed part of the binary covariate for ‘HibReceived’ is positive, taking

a value of 3.07. Thus, the log odds of receiving the PCV-7 booster for a child

who receives the Hib/Men C booster are higher than that for a child who does

not receive the Hib/Men C booster. However, as the coefficient of ‘HibReceived’

varies randomly with postcode district and HB this result may not be true for all

areas. However, the variance components for the slope are estimated at 0.12 and

0.18. Thus, the effect of HB is small in comparison to the fixed estimate of 3.07

and so the effect of the Hib/Men C booster receipt on the PCV-7 booster uptake

is generally in the same direction for all HBs and postcode districts.

8.4.4 Modelling the binary response PCV-7 booster ad-

ministered late

Descriptive analysis

In assessing the variable PCV-7 booster administered late (‘PCVLate’), as men-

tioned earlier, only those who received the vaccine during the first 22 months

of life are considered in the analysis. Thus, information on 26,067 children is

used. Earlier in this chapter, significant associations were identified between this

binary response and the binary explanatory variable Hib/Men C booster adminis-

tered late (‘HibLate’), see Table 8.5. Other explanatory variables are considered

to determine their importance in predicting ‘PCVLate’.

The percentage of vaccinations received on time varies from a very low 0.54% in

Lanarkshire to the highest 8.93% in Orkney where only 56 children were vacci-

nated with the PCV-7 booster. Considering postcode district, of the 408 postcode

districts included in the data, 6 districts (AB1, IV28, PA66, PA76, PH23, PH5)

have no observations for ‘PCVLate’ for children born in quarters 3 and 4 of 2006.

For the 402 districts with PCV-7 booster observations, in 187 (45.83%) there

were no vaccinations administered prior to 13 months old.
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Table 8.12: Results from the two-level model of ‘PCVReceived’ with random

slope for ‘HibReceived’ and HB as a fixed effect (A=Ayrshire & Arran, B=Borders,

C=Argyll & Clyde, F=Fife, G=Greater Glasgow, H=Highland, L=Lanarkshire,

N=Grampian, R=Orkney, S=Lothian, T=Tayside, V=Forth Valley, W=Western Isles,

Y=Dumfries & Galloway, Z=Shetland).

Variable Coefficient S.E.

Intercept 0.652 0.124

HibReceived 3.007 0.061

SCSIMD52 -0.162 0.090

SCSIMD53 -0.275 0.090

SCSIMD54 -0.315 0.089

SCSIMD55 -0.397 0.089

OtherEU -0.283 0.056

HBA -0.080 0.152

HBB -0.177 0.236

HBC -0.120 0.147

HBF -0.239 0.164

HBH -0.467 0.162

HBL 0.217 0.151

HBN -0.253 0.144

HBR -2.256 0.362

HBS 0.003 0.135

HBT -0.146 0.157

HBV -0.222 0.167

HBW -0.949 0.348

HBY 0.635 0.255

HBZ -1.296 0.396

Associations between ‘PCVLate’ and ‘Gender’ and ‘SCSIMD5’ are assessed using

χ2 Tests of Association.
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Table 8.14: Observed counts for late PCV-7 booster uptake by gender.

PCV-7 booster

Not Late Late

Female 320 12430

Gender Male 356 12961

From examination of Table 8.14, it appears unlikely that there is an association

between ‘Gender’ and ‘PCVLate’. Similar figures were obtained for late PCV-

7 uptake amongst males and females, with 97.33% of all vaccinated males and

97.49% of all females recorded as having received the PCV-7 booster late. A χ2

Test of Association confirms there is no evidence of an association between these

two variables (p-value 0.429).

On assessment of Table 8.15, it does not appear that there is a great difference in

the timing of PCV-7 administration to children for each category. A regression

of the odds of receiving the vaccine late by deprivation, treating deprivation as a

continuous variable, gives a p-value of 0.164 which is not significant. Thus, there

is no significant evidence to suggest that the proportion of children vaccinated

late changes with increasing deprivation.

Considering late uptake in each postcode district, only one of the postcode dis-

tricts, KW6, has a proportion of children less than 0.6 who were vaccinated late.

In this district, all children were vaccinated on time. However, this postcode dis-

trict contained only one child. 3 postcode districts had a proportion vaccinated

on time of between 0.3 and 0.5. These districts are PA67, IV21 and FK20, each

with 33.33% vaccinated on time.
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Table 8.15: Observed counts for late PCV-7 booster uptake by deprivation quin-

tile.

Deprivation Category PCV-7 not late PCV-7 late (%)

1 143 4564 (96.96%)

2 122 4875 (97.56%)

3 134 4901 (97.34%)

4 120 5126 (97.71%)

5 155 5830 (97.41%)

Considering a cut-off of 14 months for the age at which the vaccine should be re-

ceived to be considered on time, 92 districts have greater than 50% of vaccinations

received on time.

Plots of the postcode district level variables by the proportion of children vacci-

nated late in each district are examined to obtain an impression of which variables

may be important to include in a model of ‘PCVLate’. In these plots, the cut-off

for the PCV-7 booster to have been received on time is 13 months. On examina-

tion of the plots shown in Figures 8.7 and 8.8, there does not appear to be any

substantial difference in the proportion vaccinated late with the PCV-7 booster

for differing percentages of each of the postcode district level variables. Thus, it

does not appear that any of the postcode district level variables are particularly

important in determining whether or not the vaccine is received late.

In conclusion, it appears that the individual level measurement ‘HibLate’ is asso-

ciated with ‘PCVLate’. It also appears that HB may be important in determining

‘PCVLate’. No postcode district level measurements appear to have a particu-

larly large effect on whether or not the PCV-7 booster is administered late.

Modelling

Single-level models

As with the modelling procedure adopted for ‘PCVReceived’, the hierarchical
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Figure 8.7: Scatterplots of the postcode district level variables ‘Aged0-4’, ‘NoCar’,
‘OtherEU’, ‘NotWhite’, ‘NoQual’ and ‘Level4’ by the proportion vaccinated late
in the district.
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Figure 8.8: Scatterplots of the postcode district level variables ‘LargeEmp’, ‘Rou-
tine’, ‘Unemployed’ and ‘Agriculture’ by the proportion vaccinated late in the
district.

nature of the data is initially ignored to determine which variables are poten-

tially important in determining ‘PCVLate’ when the postcode district and HB

level variation are not taken into account. Since ‘PCVLate’ is a binary response

variable, the modelling is the same as that for ‘PCVReceived’. Table 8.16 shows

the results of Wald Tests of H0 : β = 0 for each of the single-level models.

Considering Table 8.16, the null hypothesis that β = 0 may be rejected at the 5%

significance level for the models containing the explanatory variables ‘HibLate’,

‘Aged0-4’, ‘NoCar’, ‘OtherEU’, ‘NoQual’, ‘Level4’, ‘Unemployed’ and ‘Agricul-

ture’. ‘Gender’, ‘NotWhite’, ‘LargeEmp’ and ‘Routine’ do not appear signifi-

cant in determining ‘PCVLate’. Assessing the categorical variable ‘SCSIMD5’

in a model of ‘PCVLate’, ‘SCSIMD5’ does not appear useful in determining

‘PCVLate’ as a p-value of > 0.05 was obtained comparing this model to the null

model.

From examination of Table 8.13 it can be observed that the percentage of late vac-

cinations is extremely high for each HB. Thus, a less strict cut-off of 14 months is

examined. The predicted probabilities of receiving the vaccine late for this cut-off
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are shown in Table 8.17. Differences between the HBs are much more noticeable

for the 14 month cut-off for the vaccine to have been received late. Examination

of Table 8.17 shows that most HBs have a probability of between 0.54 and 0.62

of receiving the PCV-7 booster late. The lowest predicted probability is 0.49 for

HB Y, Dumfries and Galloway, whilst the highest probability for HB T, Tayside,

is much greater than that for all other HBs at 0.89.

Table 8.16: Wald Tests for single-level logit models of ‘PCVLate’.

Predictor Test statistic p-value

HibLate 370.250 < 0.001

Gender 0.579 0.447

Aged0-4 31.050 < 0.001

NoCar 6.394 0.011

OtherEU 44.364 < 0.001

NotWhite 1.714 0.190

NoQual 7.105 0.008

Level4 13.870 < 0.001

LargeEmp 0.002 0.964

Routine 0.171 0.679

Unemployed 4.767 0.029

Agriculture 21.902 < 0.001

SCSIMD5 6.174 0.187

Two-level models

To determine whether or not a second level should be added to the model of

‘PCVLate’ to account for variability between postcode districts, a random inter-

cept model is fitted for the two-level model with i indexing the individuals and

j the postcode districts. A Wald Test was carried out to test H0 : σ2
υ = 0, i.e. to

test whether or not there is significant evidence that the postcode district level

variance is required in the model. A test statistic of 36.678 is obtained, giving a

p-value of less than 0.001. Therefore, the null hypothesis may be rejected. This
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means there is significant evidence to retain the postcode district level in the

model of ‘PCVLate’.

Table 8.17: Predicted probabilities of receiving the PCV-7 booster late at 14

month cut-off for each HB (A=Ayrshire & Arran, B=Borders, C=Argyll & Clyde,

F=Fife, G=Greater Glasgow, H=Highland, L=Lanarkshire, N=Grampian, R=Orkney,

S=Lothian, T=Tayside, V=Forth Valley, W=Western Isles, Y=Dumfries & Galloway,

Z=Shetland).

HB Probability

A 0.63

B 0.61

C 0.54

F 0.61

H 0.58

L 0.59

N 0.55

R 0.61

S 0.62

T 0.89

V 0.55

W 0.52

Y 0.49

Z 0.59

Three-level models

The random effect of HB is considered in a three-level random intercept model.

A p-value of 0.024 is obtained on testing the null hypothesis that σ2
ν = 0 in this

random intercept model. Thus, there is evidence of a significant HB effect.

Next, the individual level and postcode district level variables found to have non-

zero coefficients in the single-level models are all entered into a three-level model.
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As with the procedure adopted for the three-level model of ‘PCVReceived’, vari-

ables are removed one by one after carrying out a Wald Test of H0 : βi = 0 for the

variable with the highest S.E. comparative to its coefficient in the model. The

final three-level random intercept model is shown in Table 8.18.

Table 8.18: Results from the three-level model of ‘PCVLate’.

Variable Coefficient S.E.

HibLate 1.904 0.101

NoCar -0.021 0.007

Level4 -0.045 0.017

The final random intercept model of ‘PCVLate’ includes the variables ‘HibLate’,

‘NoCar’ and ‘Level4’.

There is no evidence to suggest that it is necessary to allow ‘HibLate’ to vary

randomly by postcode district and HB, with a p-value of 0.47 obtained on carrying

out a Wald Test on four degrees of freedom for the additional four parameters

included for this random effect.

The final model of ‘PCVLate’ adopting a 13 month cut-off for late vaccinations is

shown in Table 8.19. In addition, the same model was fitted to the data with late

classified as greater than 14 months. ‘NoCar’ is no longer significant in the model

when the cut-off for late PCV-7 booster administration is 14 months. The random

effects of HB and postcode district have greater significance in this model than

in the model with the 13 month cut-off. ‘Level4’ was found to be significant in

both the 13 month and the 14 month model. However, the direction of the effect

of this variable differs in the models. In the 13 month cut-off model, the odds

of receiving the vaccine late decreases as the percentage of individuals with level

4 qualifications increases. In the 14 month cut-off model, the odds of receiving

PCV-7 late increases as the percentage of individuals with level 4 qualifications

in a district increases.

As with the modelling for ‘PCVReceived’, a two-level model is fitted to ‘PCVLate’
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with HB entered as a fixed effect. The results from the modelling are shown in

Table 8.20.

Table 8.19: Results from the three-level model of late PCV-7 booster, with late

classified as greater than 13 or 14 months of age.

13 months 14 months

Variable Coefficient S.E. Coefficient S.E.

Intercept 3.349 0.370 -0.677 0.188

HibLate 1.901 0.101 1.118 0.052

NoCar -0.027 0.006 -0.001 0.003

Level4 -0.016 0.008 0.006 0.004

In the two-level logistic regression model of ‘PCVLate’ with HB, shown in Table

8.20, HB L, Lanarkshire, is the only HB with a positive coefficient. Thus, the

odds of receiving the vaccine late are highest for this HB compared to all others.

On comparison with Greater Glasgow, the odds of receiving the vaccine late are

lowest for Orkney at 0.123 times that of Greater Glasgow.

To summarise the modelling of ‘PCVLate’ with the 13 month cut-off, significant

random effects attributable to HB and postcode district are included. The other

variables in the final three-level logistic regression model are the individual level

variable ‘HibLate’ and the postcode district level variables ‘NoCar’ and ‘Level4’.

The binary variable ‘HibLate’ has a positive coefficient. Thus, the log odds

of receiving the PCV-7 booster late are higher for those children who receive

the Hib/Men C booster late than for those who receive the booster on time,

which makes intuitive sense. The coefficients of ‘NoCar’ and ‘Level4’ are both

negative. Thus, the first result suggests that as the percentage of households

with no car increases in a postcode district, the log odds of receiving the vaccine

late decreases. The second result suggests that as the percentage of households

with the highest level of qualifications increases, the probability of receiving the

vaccine late decreases. The second result appears logical as it implies that the

higher the educational attainment of a district, the more likely it is for children

in that district to be vaccinated according to schedule. ‘NoCar’ is a measure
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of deprivation and the results indicate that districts with low car ownership are

more likely to receive the vaccine on time than late. With the 13 month cut-off,

the vast majority of children, 90.91%, are classed as receiving the vaccine late.

Thus, with such a small proportion of children receiving the vaccine on time, it

appears that it may be more appropriate to use the less stringent cut-off of 14

months for late vaccinations as discussed previously.

In the three-level model for the 14 month cut-off for the PCV-7 booster to have

been classed as late, only the variables ‘HibLate’ and ‘Level4’ are found to be

significant. ‘HibLate’ in this model was defined as in the 13 month model with

those aged over 12 months of age classed as late. ‘NoCar’ is not required in

the model. The coefficient of ‘HibLate’ for this model is 1.118. Thus, the log

odds of receiving the PCV-7 booster late for a child who receives the Hib/Men C

booster late are higher for a child who receives the Hib/Men C booster on time.

The coefficient of ‘Level4’ is positive, 0.006, in this model suggesting that as the

percentage with the highest level of qualifications increases within a postcode

district, the odds of receiving the vaccine late increase. This contradicts the

result obtained for the 13 month cut-off.

8.4.5 Modelling the number of months late PCV-7 booster

is administered

Descriptive analysis

In this final univariate response variable model, the variables important in pre-

dicting the continuous response Number of months late PCV-7 booster is admin-

istered (‘PCVMonthsLate’) are identified. In this analysis, only those children

who receive the vaccine after the age of 13 months, i.e. those classed late in

the response ‘PCVLate’, are considered. Thus, in total, 25,378 children are con-

sidered. The individual level variables ‘Gender’ and ‘SCSIMD5’ are considered

in this model, as are all of the postcode district level variables assessed in the

previous two models. The continuous individual level variable Number of months

late Hib/Men C booster is administered (‘HibMonthsLate’) is also considered.
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Table 8.20: Results for the fixed effect estimates of the two-level model of

‘PCVLate’ with HB as a fixed effect (A=Ayrshire & Arran, B=Borders, C=Argyll

& Clyde, F=Fife, G=Greater Glasgow, H=Highland, L=Lanarkshire, N=Grampian,

R=Orkney, S=Lothian, T=Tayside, V=Forth Valley, W=Western Isles, Y=Dumfries

& Galloway, Z=Shetland).

Variable Coefficient S.E.

Intercept 4.299 0.399

HibLate 1.896 0.100

NoCar -0.028 0.006

Level4 -0.017 0.007

HBA -1.443 0.248

HBB -1.634 0.334

HBC -0.508 0.263

HBF -1.012 0.287

HBH -1.833 0.289

HBL 1.025 0.377

HBN -1.862 0.246

HBR -2.097 0.727

HBS -0.257 0.235

HBT -0.123 0.356

HBV -0.918 0.299

HBW -1.999 0.492

HBY -1.509 0.332

HBZ -1.035 0.729

First of all the individual level variables are considered. The correlation be-

tween ‘PCVMonthsLate’ and ‘HibMonthsLate’ is 0.35. Thus, ‘HibMonthsLate’

does not appear to be particularly useful in determining ‘PCVMonthsLate’. The

mean number of months late the PCV-7 booster is administered does not appear

to differ greatly by gender, with an average of 1.85 months for females and 1.88

months for males. A 95% confidence interval for the difference in the mean num-

ber of months late for males and females is (-0.012, 0.073). Since the interval
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straddles zero, there is insufficient evidence to reject the null hypothesis that the

mean number of months late differs by gender. The deprivation measure, ‘SC-

SIMD5’, also does not show great differences in ‘PCVMonthsLate’ between each

quintile. The mean number of months late is 1.75 for category 1, 1.90 for cate-

gory 2, 1.83 for category 3, 1.86 for category 4 and 1.95 for category 5. Therefore,

it is not clear that ‘SCSIMD5’ is important in determining ‘PCVMonthsLate’.

However, there is a slight indication that the number of months late may perhaps

increase with increasing deprivation as the lowest number of months late is 1.75

which is observed in the most affluent category and the highest number, 1.95, is

seen in the most deprived category.

Next, the postcode district level variables are considered. Table 8.21 shows the

correlations between each variable and ‘PCVMonthsLate’ at the individual level

and at the spatial, postcode district, level. To consider the variables from the

postcode district level perspective, ‘PCVMonthsLate’ is aggregated by postcode

district and correlations between postcode district level ‘PCVMonthsLate’ and

the postcode district level variables are assessed.

All individual level correlations between ‘PCVMonthsLate’ and the postcode dis-

trict level variables are extremely small, see Table 8.21. The highest correlation

is only 0.019 between ‘OtherEU’ and ‘PCVMonthsLate’. The correlations over

postcode district are also fairly small. The highest spatial correlation observed is

for ‘Agriculture’ at 0.205, followed by ‘Level4’ at 0.165. It does not appear that

the postcode district level variables are strongly associated with ‘PCVMonths-

Late’.

Table 8.24 shows the mean of ‘PCVMonthsLate’ for each of the HBs of residence.

The lowest mean number of months late is 1.47 months, observed in Dumfries

and Galloway; the highest is 2.44 in Tayside. A one-way ANOVA with response

log(PCVMonthsLate) and HB as the explanatory variable shows a significant

difference between at least two HBs (p-value < 0.001). The transformation of

the response variable was used as the distribution of the number of months late

was skewed.

Kernel density estimates are used to examine the differences in the distribution
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of the number of months late the PCV-7 booster is administered for each of the

HBs. Figures 8.9 to 8.11 show these distributions. On examination of the KDE

plots, most HBs show a peak shortly after 0 months late. However, Figure 8.10

show that Orkney has the greatest delay until the peak number of months late

the vaccine is administered, followed by Tayside. However, Orkney displays a

higher uptake around 0 months late than Tayside which shows a gradual incline

to the peak at around 1 month late.

Assessment of Figure 8.9 shows that for HB A, Ayrshire and Arran, the majority

of late vaccinations occur between the age of 13 months and 15 months. In the

Borders, three peaks can be seen in the KDE. The first, largest peak occurs at

around 0.5 months late, followed by a second smaller peak at around 1.5 months

late and, finally, a much smaller peak can be observed around 3 months late.

In HB C, Argyll and Clyde, the peak occurs at 0 months late and by 2 months

late, the majority of late vaccinations have been administered. In Fife, HB F, a

peak occurs at 0 months late followed by a second peak of roughly the same size

at approximately 1 month late. Greater Glasgow and Highland, HBs G and H,

show a similar picture to that of Argyll and Clyde with most late vaccinations

administered by 2 months late.

The smaller HBs for the islands, such as Orkney, show more variability in the

distributions due to the fact that a much smaller number of children are found

in these HBs. Shetland, HB Z, shown in Figure 8.11, shows an initial peak just

before 1 month late, followed by a subsequent much smaller peak at around 3.5

months late. The KDE for the Western Isles, again displayed in Figure 8.11,

displays two peaks in the number of months late; the first large peak occurring

just before 0.5 months late, the second at around 1.8 months late. Orkney, shown

in Figure 8.10, shows the majority of late vaccinations are administered at around

1.2 months late, but all late vaccinations are administered within around 6 months

of the age at which the PCV-7 booster should be received. Lanarkshire, HB L,

in Figure 8.10 shows peak uptake around 0 months late which gradually tails off

whilst the KDE for Grampian, HB N, shows a peak just before 1 month late.

Lothian, HB S, and Forth Valley also have the highest uptake around 0 months

late.
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Figure 8.9: KDEs of number of months late the PCV-7 booster was administered
in HBs A to H.
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Figure 8.10: KDEs of number of months late the PCV-7 booster was administered
in HBs L to V.
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Figure 8.11: KDEs of number of months late the PCV-7 booster was administered
in HBs W to Z.
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√

PCVMonthsLate.

As the KDEs and histograms of ‘PCVMonthsLate’ shown in this section all ap-

pear skewed, it is likely that a transformation of ‘PCVMonthsLate’, such as the

logarithm or square root of this variable, will be required to fulfill the necessary

model assumptions. Figure 8.12 shows histograms of two possible transforma-

tions of ‘PCVMonthsLate’. The transformations of ‘PCVMonthsLate’ shown in

Figure 8.12 still appear to be a little skewed but are an improvement on the un-

transformed variables. The transformation log(PCVMonthsLate) appears to be

the least skewed and thus will be considered in the modelling.

Modelling

Single-level models

As with the modelling approach used for the response variables PCV-7 received

and PCV-7 administered late, single-level models involving each of the possible

explanatory variables independently are fitted to discover which variables are

significant in determining ‘PCVMonthsLate’. A single-level model for this con-

tinuous variable is described using the following equation:

yi = α + βxi + εi. (8.5)

In this model, yi is log(PCVMonthsLate) for individual i, where i = 1, ...,
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25, 378 since 25,378 children in the data set received the PCV-7 booster by age 22

months and received it after 13 months of age; α is the intercept parameter and β

is the slope parameter. xi is the value of the explanatory variable x for individual

i and εi is the residual error for individual i. εi is assumed to follow the Normal

distribution with mean 0 and variance σ2
ε . Table 8.23 shows the coefficients and

S.E.s for each of the models of ‘PCVMonthsLate’ involving a single explanatory

variable. In each of these models, and subsequent models with this response

variable, iterative generalised least squares (IGLS) is used to obtain parameter

estimates.

Table 8.23: Results from the single-level models of log(PCVMonthsLate).

Variable Coefficient S.E. p-value

HibMonthsLate 0.059 0.002 <0.001

Gender 0.017 0.011 0.127

Aged0-4 -0.005 0.008 0.553

NoCar -0.001 0.0004 0.063

OtherEU 0.043 0.009 < 0.001

NotWhite 0.00001 0.002 0.996

NoQual -0.002 0.0006 0.001

Level4 0.001 0.0006 0.024

LargeEmp 0.004 0.005 0.384

Routine -0.001 0.002 0.416

Unemployed -0.002 0.004 0.688

Agriculture 0.003 0.002 0.179

SCSIMD52 0.069 0.018

SCSIMD53 0.025 0.018

SCSIMD54 0.051 0.018

SCSIMD55 0.080 0.017 < 0.001

Examination of Table 8.23 shows the significant variables for determining

log(PCVMonthsLate) in the single explanatory variable models are ‘HibMonth-

sLate’, ‘OtherEU’, ‘NoQual’, ‘Level4’ and ‘SCSIMD5’. The models of the sig-
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nificant variables shown in Table 8.23 have R2 values of 0.0432, 0.0009, 0.0005,

0.0002 and 0.0012. Thus, ‘HibMonthsLate’ appears to be the most important

variable amongst those available in determining log(PCVMonthsLate), although

this variable alone only explains 4.32% of the variability in the response variable.

A model involving all of these variables gives an R2 value of 0.0524. Thus, a

total of 5.24% of the variability in log(PCVMonthsLate) is explained by these

significant variables.

Table 8.24 shows the coefficient and S.E. for each HB using HB as a categorical

variable in a model of log(PCVMonthsLate). As usual, HB G is the comparator.

Table 8.24: Results from the single-level model of log(PCVMonthsLate) by HB

(A=Ayrshire & Arran, B=Borders, C=Argyll & Clyde, F=Fife, G=Greater Glas-

gow, H=Highland, L=Lanarkshire, N=Grampian, R=Orkney, S=Lothian, T=Tayside,

V=Forth Valley, W=Western Isles, Y=Dumfries & Galloway, Z=Shetland).

HB Coefficient S.E.

A 0.155 0.024

B 0.084 0.041

C 0.009 0.024

F 0.142 0.024

H 0.133 0.032

L 0.099 0.021

N 0.030 0.022

R 0.011 0.122

S 0.128 0.019

T 0.427 0.023

V 0.025 0.027

W -0.029 0.082

Y -0.138 0.034

Z 0.223 0.087

In Table 8.24, two of the fourteen coefficients are negative, indicating that these

HBs have a lower mean for log(PCVMonthsLate) than the baseline comparator
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Greater Glasgow. These HBs with negative coefficients are the Western Isles

and Dumfries and Galloway. All other HBs have a higher predicted mean than

Greater Glasgow.

Two-level models

Next, two-level models are considered to examine the importance of each of the

explanatory variables. The equations below describe the random intercept two-

level model, or variance components model as it is also known:

yij = αj + βxij + εij,

αj = α + υj. (8.6)

In this model, yij in (8.6) is log(PCVMonthsLate) for individual i in postcode

district j. xij corresponds to an individual level explanatory variable with fixed

coefficient. As this is a random intercept model, α is indexed by postcode district.

In (8.6), it can be seen that αj can be expressed in terms of a fixed parameter,

α, and a random parameter, υj. υj provides an estimate of the departure of each

of the j postcode district intercepts from the fixed intercept. υj in this model

is classed as a level two residual which is assumed to take the same value for

all children in postcode sector j (Rasbash et al. 2008). Both υj and εij are

random components in this two-level model. Both are assumed to be Normally

distributed with means equal to 0 and variances equal to σ2
υ and σ2

ε respectively.

A further assumption is that these random residual parameters are uncorrelated.

The parameter β in (8.6) remains fixed, as in (8.5).

To determine whether or not postcode district is important in explaining the

variability in log(PCVMonthsLate) a random intercept model is fitted to the

data. The fitted model is:

yij = αj + εij,
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αj = 0.379 + υj. (8.7)

The S.E. for the fixed part of α is estimated as 0.013. The estimate for σ2
υ

is 0.038 and for σ2
e is 0.672. A Likelihood Ratio Test was carried out to test

the importance of the random postcode district component. Using the approach

described by Rasbash et al. (2008), this random-intercept model is compared to

a model where σ2
υ = 0, i.e. the single-level intercept only model. The difference

in minus twice the log-likelihoods of these two models is equal to 591.12. This

test statistic is compared to the χ2 statistic with one degree of freedom as only

one additional parameter is included in the variance components model (p-value

< 0.001). Clearly, there is significant variation between postcode districts.

In the analysis, five of the postcode district levels are not considered in the model.

From these five levels, four of the postcode districts have no children adminis-

tered the PCV-7 booster (PA66, PA76, PH23 and PH5) and one has no children

administered the vaccine late (KW6). Thus, these districts have no information

on the number of months late the vaccine is administered.

The variance partition coefficient (VPC) is 0.054 (σ2
υ/(σ

2
υ + σ2

ε )). Thus, only

about 5.4% of the total variance in the mean of log(PCVMonthsLate) is at-

tributable to differences between postcode districts which accounts for the low

correlations observed between the postcode district level variables and ‘PCV-

MonthsLate’.

Three-level models

Next, a third level, HB, is considered. The three-level random intercept model

can be expressed as follows:

yijk = αjk + βxijk + εijk,

αjk = α + νk + υjk. (8.8)
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It can be noted from comparison of (8.8) with the two-level random intercept

model (8.6) that an additional random parameter has been included in the model,

νk. This is the random departure from the fixed intercept, α of each of the HBs.

Notice now that υ is indexed by both j and k to represent the random effect for

postcode districts within HBs. As with εijk (the individual level residual within

postcode district within HB) and υjk (the postcode district level residual within

HB), νk is assumed to follow a Normal distribution with 0 mean and constant

variance, σ2
ν . All residual parameters are assumed uncorrelated.

Fitting the three-level random intercept model to the vaccine uptake data gives

the following parameter estimates:

yijk = αjk + εijk,

αjk = 0.373 + νk + υjk. (8.9)

The S.E. of α in (8.9) is 0.033, more than twice the S.E. for the fixed intercept

of (8.7). The estimates of the three residual components, σ2
ν , σ

2
υ and σ2

ε are

0.013 (S.E. 0.006), 0.022 (S.E. 0.003) and 0.673 (S.E. 0.006), respectively. The

estimate for σ2
υ has decreased in size by the addition of the random component

for HB residuals. However, the estimate for σ2
ε remains the same. A Wald Test

of H0 : σ2
ν = 0 gives a p-value of 0.025. Thus, there is evidence to suggest that

there is significant variability in log(PCVMonthsLate) between HBs. Therefore,

the random effect of HB should be retained in the model.

Considering the VPCs, the proportion of the variance which is attributable to

differences between HBs, the intra-HB correlation, is 0.018 (σ2
ν/(σ

2
ν + σ2

υ + σ2
ε )).

This can be considered as a measure of the similarity of individuals within the

same HB. Thus, 1.8% of the variation is at the HB level. The proportion of the

variance which is due to differences between postcode districts, the intra-postcode

district correlation, equals 0.049 ((σ2
ν+σ2

υ)/(σ
2
ν+σ2

υ+σ2
ε )). This can be considered

as a measure of the similarity of individuals within the same postcode district

within the same HB. 4.9% of the variation is at the postcode district and HB

level.
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The similarity of postcode districts within the same HB can be measured using

the formula shown in (8.10).

σ2
ν

σ2
ν + σ2

υ

. (8.10)

A similarity measure of 37.14% was found for this model. Thus, knowing the

number of months late the PCV-7 booster is received in one postcode district

is relatively informative for determining the number of months late the PCV-7

booster is received in another postcode district within the same HB.

As both postcode district and HB have been deemed significant in explaining

variability in log(PCVMonthsLate), the next stage in the modelling process is to

add potentially important explanatory variables to the model. From the previous

single-level modelling, ‘HibMonthsLate’ appears to be significant in determining

log(PCVMonthsLate). This variable was added to the three-level variance com-

ponents model. The parameter estimates obtained are shown in (8.11).

yijk = αjk + 0.065x1ijk + εijk,

αjk = 0.486 + νk + υjk. (8.11)

As ‘HibMonthsLate’ is an individual level variable, the coefficient of ‘HibMonth-

sLate’ (x1ijk) is similar to that obtained in the single-level model and the S.E. is

the same. Thus, this variable is significant in determining log(PCVMonthsLate)

in the three-level model. The estimate of the variance parameter for the random

effect of HB, σ2
ν , is 0.018 (S.E. 0.007) which is slightly larger than the parameter

estimate obtained in the three-level intercept only model. The estimate for the

variance parameter for the postcode district random effect is 0.012 (S.E. 0.002),

which is lower than the 0.038 estimate for the random intercept model. This

implies that some of the variability between postcode districts within HBs has

been explained by the inclusion of the variable ‘HibMonthsLate’. Similarly, the

individual level residual variance estimate is reduced from 0.672 to 0.476 (S.E.

0.006) by the addition of this variable in the three-level model. Therefore, this

variable also explains some of the variability between individuals within postcode
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district in HB. The Likelihood Ratio Test can be employed to test the signif-

icance of the inclusion of this variable in the model. This model is compared

to the three-level variance components model and a test statistic of 29698.54 is

obtained which is clearly highly significant when compared to a χ2 statistic with

one degree of freedom. Thus, ‘HibMonthsLate’ should be retained in the model.

A Wald Test of H0 : σ2
ν = 0 shows that there is still significant variability be-

tween the HBs even after adjusting for the number of months late the Hib/Men C

booster is administered (p-value 0.019). Next, the possibility that the coefficient

of ‘HibMonthsLate’ varies randomly with postcode district and HB is explored.

This random coefficient model can be described as follows:

yijk = αjk + βjkx1ijk + εijk,

where

αjk = α + ν0k + υ0jk,

and

βjk = β + ν1k + υ1jk. (8.12)

The random variance and covariance parameters are as described in (8.4). The

parameters α and β are estimated to be 0.370 (S.E. 0.045) and 0.142 (S.E. 0.025)

respectively in this model. The estimates of each of the variance and covariance

parameters are shown:

Ων =

[
0.025 (S.E. 0.011) −0.010 (S.E. 0.005)

−0.010 (S.E. 0.005) 0.009 (S.E. 0.003)

]

and

Ωυ =

[
0.018 (S.E. 0.003) −0.004 (S.E. 0.001)

−0.004 (S.E. 0.001) 0.002 (S.E. 0.0004)

]
.
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The estimate for σ2
e is 0.446 (S.E. 0.006). The addition of the random slope to

the model has reduced the residual variance from 0.476 to 0.446. Comparing

this model with the three-level random intercept model with fixed slope for ‘Hib-

MonthsLate’ gives a change in deviance of 578.67. The change in deviance should

be compared to a χ2 distribution with four degrees of freedom as there are four

new parameters in (8.12). This is highly significant (p-value < 0.001). Thus, the

random slope model is preferable to the random intercept model.

Further explanatory variables deemed significant in the single-level models of

log(PCVMonthsLate) are added to the model. From the single-level models of

each explanatory variable used independently to predict ‘PCVMonthsLate’, re-

sults shown in Table 8.23, ‘SCSIMD5’ is found to be significant. On adding this

variable to the model, assuming the coefficient of ‘SCSIMD5’ does not vary by

postcode district and HB, a change in deviance of 99.69 is obtained. This is sig-

nificant when compared to the χ2 statistic with four degrees of freedom for the

four new dummy variables entered for ‘SCSIMD5’. Therefore, ‘SCSIMD5’ should

be retained in the model. Fitting the other variables in order of significance in

the single-level model in the three-level model one by one and examining de-

viance statistics results in a final model involving ‘HibMonthsLate’, ‘SCSIMD5’

and ‘NoQual’ shown in Table 8.25.

Table 8.25: Results for the fixed effects of the three-level model of ‘PCVReceived’.

Variable Coefficient S.E.

Intercept 0.458 0.026

HibMonthsLate 0.143 0.059

SCSIMD52 0.044 0.020

SCSIMD53 0.031 0.021

SCSIMD54 0.036 0.022

SCSIMD55 0.083 0.023

NoQual -0.004 0.001

The estimates of the residual variance parameters are:
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Ων =

[
0.025 (S.E. 0.011) −0.011 (S.E. 0.005)

−0.011 (S.E. 0.005) 0.009 (S.E. 0.004)

]

and

Ωυ =

[
0.017 (S.E. 0.003) −0.004 (S.E. 0.001)

−0.004 (S.E. 0.001) 0.002 (S.E. 0.0004)

]
.

These estimates are almost identical to those obtained for the three-level model

with random intercept term and ‘HibMonthsLate’ as the only explanatory vari-

able, with a coefficient which varies randomly with HB. The fixed part of the

coefficient of ‘HibMonthsLate’ in this final model is positive, indicating that

log(PCVMonthsLate) increases as the number of months late the Hib/Men C

booster is administered increases. The negative coefficient of ‘NoQual’ suggests

that as the percentage aged 16-74 years with no qualifications in a postcode dis-

trict increases, the number of months late the PCV-7 booster decreases.

The model assumptions must be verified. These are that the residuals for the

three-levels each follow a Normal distribution with zero mean and constant vari-

ance.

Figures 8.13 and 8.14 can be used to assess the model assumptions for the in-

dividual level residuals, εijk. The Normality plot, Figure 8.13, shows a slight

curvature with some departures from a straight line. However, the assumption of

normality appears reasonable. The plot of residuals against fitted values, Figure

8.14, shows the assumptions of zero mean and constant variance are questionable

as there appears to be a slight impression of a negative slope to the plot. This

suggests that the model is under-predicting at long delays in vaccine uptake and

over-predicting at shorter delays.

The assumptions that the postcode district level residuals follow a Normal dis-

tribution with zero mean and constant variance all appear reasonable from ex-

amination of Figures 8.15 and 8.16. The Normality plot, Figure 8.15 shows a
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Figure 8.13: Normality plot of individual level residuals for final model of
log(PCVMonthsLate).

relatively straight line and the plot of residuals against fitted values, Figure 8.16,

shows a random scatter of points around zero.

From examination of the plots for the HB level residuals, Figures 8.17 and 8.18,

the model assumptions appear reasonable for these residuals.

HB may be considered as a fixed effect in this model for the continuous variable

log(PCVMonthsLate) with HB. The results are shown in Table 8.26 where it can

be observed that all coefficients are positive. Therefore, all HBs have a higher

estimated mean number of months late than the comparator Greater Glasgow.

The HB with the highest mean number of months late is Tayside, HB T, with

the largest estimated coefficient.

In conclusion, as with the other univariate models discussed, significant random

effects are found for both HB and postcode district in the model of ‘PCVMonth-

sLate’. The final three-level model involved the variables ‘HibMonthsLate’, ‘SC-

SIMD5’ and the postcode district level variable ‘NoQual’. There is significant

evidence that a random coefficient is required for ‘HibMonthsLate’. Thus, the

number of months late the Hib/Men C booster is received is allowed to vary by

postcode district within HB. The fixed coefficient of ‘HibMonthsLate’ is positive.

Thus, the mean number of months late the PCV-7 booster is administered in-

creases as the number of months late the Hib/Men C booster is administered
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Figure 8.14: Individual level residuals by fitted values for final model of
log(PCVMonthsLate).

Figure 8.15: Normality plots for the random intercept & coefficient of ‘HibMonth-
sLate’ for PCDIST level residuals for final model of log(PCVMonthsLate).
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Figure 8.16: PCDIST level residuals by fitted values for the random intercept &
random coefficient of ‘HibMonthsLate’ in final model of log(PCVMonthsLate).

Figure 8.17: Normality plots for the random intercept & coefficient of ‘HibMonth-
sLate’ for HB level residuals for final model of log(PCVMonthsLate).
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Figure 8.18: HB level residuals by fitted values for the random intercept & random
coefficient of ‘HibMonthsLate’ in final model of log(PCVMonthsLate).

increases. The coefficients of each of the levels of ‘SCSIMD5’ are positive, with

the coefficients of both category 2 and 3 found to be equal. Thus, given the other

variables included in the model, there does not appear to be a difference in the

mean number of months late the PCV-7 booster is administered for these two

classes compared to the baseline category 1, least deprived. The coefficient of

category 5, most deprived, is highest compared to the baseline category. Thus,

the greatest difference in the mean number of months late appears to be between

those least and most deprived, with those most deprived displaying a greater mean

number of months late than those least deprived. The coefficient of ‘NoQual’ is

negative. Thus, this suggests that the mean number of months late the PCV-7

booster is administered decreases with increasing percentages of individuals with

no qualifications within postcode districts.

Conclusions from the univariate models of PCV-7 uptake and timing

To summarise the results from the univariate models of ‘PCVReceived’, ‘PCVLate’

and ‘PCVMonthsLate’, all three models had significant random effects attributable
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Table 8.26: Results from the two-level model of log(PCVMonthsLate) with a

random slope for ‘HibMonthsLate’ and HB as a fixed effect (A=Ayrshire & Ar-

ran, B=Borders, C=Argyll & Clyde, F=Fife, G=Greater Glasgow, H=Highland,

L=Lanarkshire, N=Grampian, R=Orkney, S=Lothian, T=Tayside, V=Forth

Valley, W=Western Isles, Y=Dumfries & Galloway, Z=Shetland).

Variable Coefficient S.E.

Intercept 0.293 0.050

HibMonthsLate 0.116 0.007

SCSIMD52 0.041 0.020

SCSIMD53 0.030 0.021

SCSIMD54 0.031 0.022

SCSIMD55 0.081 0.023

NoQual -0.004 0.001

HBA 0.205 0.038

HBB 0.305 0.060

HBC 0.113 0.041

HBF 0.286 0.043

HBH 0.082 0.046

HBL 0.192 0.039

HBN 0.130 0.037

HBR 0.147 0.133

HBS 0.282 0.035

HBT 0.481 0.041

HBV 0.302 0.046

HBW 0.181 0.111

HBY 0.014 0.054

HBZ 0.250 0.117

to variations between postcode district and HB. Thus, it appears that area is

important in determining patterns in vaccine uptake and timing. In addition, the

models of both ‘PCVReceived’ and ‘PCVMonthsLate’ involve random compo-

nents in the coefficients of the variables associated with uptake of the Hib/Men
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C booster; ‘HibReceived’ in the first case and ‘HibMonthsLate’ in the second.

No evidence was found that the variable ‘HibLate’ varied randomly by postcode

district and HB in the model of ‘PCVLate’. However, Hib/Men C booster uptake

and timing was found to be significant in each of the three models as expected

since this vaccine is scheduled to be administered not long prior to the PCV-7

booster. Those who have received the Hib/Men C booster have a higher odds of

receiving the PCV-7 booster; those who receive the Hib/Men C booster late are

at an increased odds of receiving the PCV-7 booster late.

Deprivation was identified as a significant variable in both the model for ‘PCVRe-

ceived’ and the model for ‘PCVMonthsLate’. The results suggest that the odds of

receiving the vaccine decrease with increasing levels of deprivation and that the

number of months late the vaccine is received is greatest for the most deprived.

In contrast, no association was found between deprivation and the binary variable

‘PCVLate’.

Educational level was found to be statistically significant in determining late vac-

cine uptake. However, contradictory results were obtained. The model of the

binary response of late uptake with 13 month cut-off showed the odds of late

uptake decrease as the percentage of individuals with the highest level of ed-

ucation increases within a postcode district. This result is in agreement with

results obtained regarding parental education levels in studies of vaccine delay

discussed previously (Bobo et al. 1993; Dombkowski et al. 2004; Ozcirpici et al.

2006; Torun and Bakırcı 2006; Datar et al. 2007). However, the logistic regres-

sion model with 14 month cut-off for late uptake resulted in a positive estimated

coefficient for ‘Level4’, contradicting the result from the previous model. The

model of log(‘PCVMonthsLate’) had a negative coefficient for the no qualifica-

tions variable, indicating that the number of months late the vaccine is adminis-

tered decreases with increasing proportions of low educational attainment within

an area. It is worth noting once again the importance of considering the possibil-

ity of ecological fallacy in the analysis. Individual level information on parental

educational status would have been of higher value in establishing whether or not

a relationship exists between educational level and timing of vaccine.
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Country of birth was identified as significant in determining whether or not the

vaccine is administered with lower odds of receiving the PCV-7 booster as the

proportion of individuals within a postcode district born in EU countries outwith

the UK and Ireland increases.

‘NoCar’, a proxy for income within a district, was only found to be significant

in one of the univariate models- the 13 month cut-off model for ‘PCVLate’. The

coefficient is negative indicating that the odds of receiving the PCV-7 booster

late decrease as the proportion of households without a car within a postcode

district increases.

8.4.6 Modelling the multivariate response combining PCV-

7 received and PCV-7 administered late

In this section of the chapter, a model involving a combination of two of the

univariate responses discussed previously will be considered. This model involves

both the response ‘PCVReceived’ and ‘PCVLate’. This multivariate response,

‘PCVUptake’, has three categories; the first category refers to those children who

have not received the PCV-7 booster by 22 months of age, the second refers

to children who receive the vaccine on time and the third refers to those who

receive the vaccine late, i.e. after 13 months of age. Thus, a multinomial logistic

regression analysis, such as that adopted by Akmatov et al., is appropriate to use

to determine significant explanatory variables for this response. The cut-off of 14

months for late vaccinations is also considered.

The models discussed here take into account the variables found to be significant

in determining the original binary responses separately. Both original models

involve the random effects of postcode district and HB. The significant individual

level and postcode district level variables considered are ‘HibReceived’, ‘HibLate’,

‘SCSIMD5’, ‘OtherEU’, ‘NoCar’ and ‘Level4’. ‘HibReceived’ and ‘HibLate’ may

be combined in the same manner as ‘PCVReceived and ‘PCVLate’ for inclusion

in this model. As ‘Level4’ is considered in this model, the correlated ‘NoQual’ is

not considered.
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The combined model is considered to examine the effects of several factors on

vaccine uptake and timing. This type of modelling approach in a multi-level

framework has been looked at previously with data involving survey participation

(Durrant and Steele 2009). In this analysis, Durrant and Steele were interested

in determining the variables that affect whether or not individuals respond to a

survey, as well as the variables that determine why an individual may not re-

spond. The two possibilities for non-response considered are non-contact, where

an eligible household cannot be contacted, and refusal, where the household re-

fused to be interviewed following contact. Thus, the response variable considered

distinguishes between two possible mechanisms of non-response just as the anal-

ysis considered in this section distinguishes between two different mechanisms of

vaccine receipt: on time or late. In the Durrant and Steele analysis, these two

processes of non-response are contrasted with cooperation in the survey, whilst in

the vaccine uptake analysis carried out in this section both mechanisms of vaccine

receipt are contrasted with not received.

Durrant and Steele state that the benefit of this type of analysis, combining

the different categories of non-response with the response category, over using

separate logistic regression is that the effects of the variables on the probability

of being in either of the non-response categories can be evaluated simultaneously

and tested for equivalence. Thus, in this vaccine uptake analysis, the probabilities

of receiving the vaccine on time and late may be considered in this manner using

the approach adopted by Durrant and Steele.

Descriptive analysis

As both unvaccinated and vaccinated children are considered in the response

variable, all data can be used in the analysis. As mentioned previously, 2,605

(9.09%) children did not receive the vaccine. Considering the 13 months of age

cut-off for late PCV-7 booster uptake, 676 (2.36%) received the vaccine on time

and 25,391 (88.56%) received the vaccine late. For the 14 months of age cut-off,

10,493 (36.60%) received the vaccine on time and 15,574 (54.32%) received it late.

Tables 8.27 and 8.28 provide information on each of the response categories for

each of the potential explanatory variables for both the 13 months and 14 months
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cut-offs for late uptake. Focussing on ‘HibUptake’, from examination of Tables

8.27 and 8.28 it can be observed that for the 13 month cut-off a high percent-

age, 93.22%, of children who received the Hib/Men C booster late received the

PCV-7 booster late, as observed previously. However, the relative change in the

timing of the vaccines is not so apparent for the 14 month cut-off. This is likely

attributable to the fact that, although a less stringent cut-off is used for late clas-

sification of PCV-7 booster, the strict cut-off of 12 months for late classification

of the Hib/Men C booster is used in both models. Concerning deprivation, as

observed previously, the percentage who do not receive the vaccine increases with

increasing deprivation. No clear trends can be seen for deprivation for the other

two categories of response for the 14 month cut-off. However, for the 13 month

cut-off, it appears that the percentage of late vaccinations decreases as the level

of deprivation increases.

Table 8.27: Percentage distribution for each category of uptake for the PCV-7

booster using the 13 month cut-off for the potential explanatory variables.

Variable Not received On time Late Total

Individual level Number

HibUptake (%) Not received 47.14 2.74 50.12 2815

On time 2.70 9.42 87.89 2015

Late 5.07 1.71 93.22 23545

SCSIMD5 (%) 1 6.79 2.83 90.38 5048

2 7.94 2.25 89.81 5413

3 9.12 2.42 88.47 5513

4 9.63 2.07 88.30 5777

5 10.98 2.31 86.72 6624

Postcode level

OtherEU (mean) 0.91 0.89 0.92

NoCar (mean) 28.94 28.12 27.28

Level4 (mean) 20.52 20.61 21.20

Total 2553 670 25152 28375
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Table 8.28: Percentage distribution for each category of uptake for the PCV-7

booster using the 14 month cut-off for the potential explanatory variables.

Variable Not received On time Late Total

Individual level Number

HibUptake (%) Not received 47.14 11.30 41.56 2815

On time 2.70 65.91 31.39 2015

Late 5.07 37.11 57.81 23545

SCSIMD5 (%) 1 6.79 38.87 54.34 5048

2 7.94 35.11 56.95 5413

3 9.12 37.44 53.45 5513

4 9.63 36.81 53.56 5777

5 10.98 35.36 53.67 6624

Postcode level

OtherEU (mean) 0.91 0.89 0.92

NoCar (mean) 28.94 28.12 27.28

Level4 (mean) 20.52 20.61 21.20

Total 2553 10399 15423 28375

Modelling

Single-level models

First, single-level models are examined. Let yi be the outcome for individual i.

Then yi is coded as follows:

yi =


0 for not received,

1 for received on time,

2 for received late.

The probability of obtaining each response may be denoted π
(s)
i where s = 0, 1, 2.

The baseline category for comparison is not received. Thus, the multinomial

model for s = 1, 2, with x
(s)
ij and β(s) representing the vectors of explanatory vari-
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ables and coefficients respectively, may be expressed using the following equation:

log

(
π

(s)
i

π
(0)
i

)
= β(s)Tx

(s)
ij . (8.13)

The model shown in (8.13) represents two simultaneous equations. When s = 1,

the logarithm of the ratio of the probability of receiving the PCV-7 booster on

time to the probability of not receiving the vaccine is represented and when s = 2,

the logarithm of the ratio of the probability of receiving the vaccine late to that

of not receiving the vaccine is represented. In the study by Akmatov et al., the

baseline category in the multinomial logistic regression is vaccination received

according to schedule. However, a different baseline category is chosen in this

analysis as interest lies in the contrasts between those who do not receive the

vaccine by age 22 months and those who receive the vaccine on time or late.

Using R version 2.9.1, a multinomial model was fitted to the response ‘PCVUp-

take’ using the multinom function from the nnet library. The variables deemed

significant in the separate binary logistic regression models and a combined vari-

able defining the Hib/Men C booster uptake as ‘0’ for not received, ‘1’ for received

on time and ‘2’ for received late, as adopted for ‘PCVUptake’ were included in

the model. To determine whether or not each of the variables is required in the

model, stepwise model selection procedures were used to identify the final model,

similar to those used in the HES analysis in Chapter 5. In order to use stepAIC

in the modelling, all missing data must first be omitted. Thus, 28,375 individuals

are considered in the modelling in this section. The function dropterm in R is

also used to examine the significance of each of the variables using the χ2 Test.

All explanatory variables considered are found to be significant and the results

from the single-level multinomial model are displayed in Table 8.29. In Table

8.29, the subscript 1 denotes the category of ‘PCVUptake’ for PCV-7 booster

received on time, 2 denotes that the booster was received late. Not received is

the comparator for ‘HibUptake’ and category 1 is the comparator for ‘SCSIMD5’.

The variable ‘Level4’ is not significant in a model of ‘PCVUptake’ with the 14
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month cut-off for late uptake. As mentioned previously, the benefit of using a

multinomial model combining the response categories is that the effects of each

of the explanatory variables included in the model can be compared for each

response.

Table 8.29: Results from the multinomial model of ‘PCVUptake’, with not re-

ceived as the baseline category for comparison. The subscript 1 denotes on time

and 2 denotes late.

13 months 14 months

Variable Coefficient S.E. Coefficient S.E.

Intercept1 -1.849 0.271 -0.925 0.115

Intercept2 0.666 0.136 0.342 0.100

HibUptakeOn time1
4.066 0.194 4.614 0.152

HibUptakeOn time2
3.392 0.142 2.553 0.146

HibUptakeLate1
1.738 0.132 3.436 0.071

HibUptakeLate2
2.850 0.049 2.553 0.051

SCSIMD521 -0.368 0.151 -0.336 0.088

SCSIMD522 -0.235 0.084 -0.166 0.084

SCSIMD531 -0.395 0.151 -0.385 0.087

SCSIMD532 -0.359 0.084 -0.312 0.084

SCSIMD541 -0.469 0.159 -0.396 0.088

SCSIMD542 -0.343 0.086 -0.280 0.085

SCSIMD551 -0.247 0.166 -0.471 0.093

SCSIMD552 -0.374 0.090 -0.281 0.089

OtherEU1 0.265 0.877 -0.367 0.039

OtherEU2 -0.253 0.051 -0.236 0.036

NoCar1 -0.015 0.005 0.004 0.002

NoCar2 -0.0002 0.002 -0.001 0.002

Level41 -0.023 0.008 - -

Level42 -0.005 0.004 - -

Formal tests to assess these effects have not been carried out in this chapter.

However, informal tests may be carried out by simply examining and comparing

338



the coefficients of the explanatory variables. For example, in the 13 month cut-off

model shown in Table 8.29, it can be observed that although the coefficients of

the explanatory variables show differences when comparing received on time or

received late to not received they generally have the same sign so the effect of

each variable is the same on each response category compared to the baseline.

The only variable that is different for each of the response categories compared

to not received is ‘OtherEU’ where one coefficient is negative, the other positive.

Similarly, for the 14 month cut-off it can be observed that the coefficients of

the explanatory variables generally have the same sign for comparing received

on time or received late to not at all. Only ‘NoCar’ displays differences when

comparing received on time to not received and received late to not received.

However, it is of interest to note that in both the 13 month and 14 month cut-off

models the ‘NoCar’ explanatory variable, one of the coefficients is not statistically

significantly different to zero.

The ORs for each of the levels of ‘HibUptake’ for the multinomial model with 13

month cut-off and that with 14 month cut-off can be observed in Table 8.30. The

greatest OR of 100.89 is observed for the 14 month cut-off model, comparing the

odds of receiving the Hib/Men C booster on time (OT) to being unvaccinated

with the Hib/Men C booster (Unv) for the model of PCV-7 booster received on

time compared to not being received. For the 13 month cut-off model, this OR

is also very high at 58.32. This makes sense as it has already been shown that

there are strong associations between receipt and timing of the PCV-7 booster

with the receipt and timing of the Hib/Men C booster.
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Table 8.30: ORs for each Hib/Men C booster uptake category for the single-

level multinomial models of ‘PCVUptake’ with 13 and 14 month cut-offs for late

uptake.

13 month cut-off 14 month cut-off

Hib OT vs. Unv L vs. Unv OT vs. Unv L vs. Unv

β exp(β) β exp(β) β exp(β) β exp(β)

Unv 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000

OT 4.066 58.323 3.392 29.725 4.614 100.887 2.553 12.846

L 1.738 5.686 2.850 17.288 3.436 31.062 2.553 12.846

Table 8.31 shows the ORs for each category of deprivation for the model with 13

month cut-off for late vaccination and the model with 14 month cut-off.

Table 8.31: ORs for each deprivation category for the single-level multinomial

models of ‘PCVUptake’ with 13 and 14 month cut-offs for late uptake.

13 month cut-off 14 month cut-off

Dep. OT vs. Unv L vs. Unv OT vs. Unv L vs. Unv

β exp(β) β exp(β) β exp(β) β exp(β)

1 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000

2 -0.368 0.692 -0.235 0.791 -0.336 0.715 -0.166 0.847

3 -0.395 0.674 -0.359 0.698 -0.385 0.680 -0.312 0.732

4 -0.469 0.626 -0.343 0.710 -0.396 0.673 -0.280 0.756

5 -0.247 0.781 -0.374 0.688 -0.471 0.624 -0.281 0.755

From the ORs shown in Table 8.31, it can be observed that the probability of

receiving the vaccine on time rather than not at all decreases as deprivation

increases from category 1 to 4 for both the 13 month cut-off model and the 14

month cut-off model. However, this pattern continues to the lowest deprivation

level, category 5, for the 14 month cut-off model but not for the 13 month cut-off
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model, where the probability of receiving the vaccine on time rather than not at

all increases. Comparing those who receive the vaccine late (L) to those who are

unvaccinated, the probability of receiving the vaccine late decreases as deprivation

increases from level 1 to level 2 for both models. However, the magnitude of the

estimates of the other deprivation categories compared to deprivation level 1 do

not show great differences.

On consideration of the other variables in the 13 month and 14 month cut-off

models, for the 13 month cut-off, ‘OtherEU’ has a negative coefficient for the

comparison of receiving the vaccine late and not receiving the vaccine. Thus, it

appears that the odds of receiving the PCV-7 booster late decrease with increasing

percentages of individuals born in other EU countries compared to not receiving

the vaccine. However, ‘OtherEU’ is not significant for the 13 month cut-off model

on comparison of on time to not at all. This is not the case for the 14 month

cut-off, where ‘OtherEU’ is significant for both comparisons and both coefficients

of ‘OtherEU’ found to be negative. The S.E.s for ‘OtherEU’ in the 14 month

cut-off are similar due to the fact that the numbers of children falling into each

of the PCV-7 response categories are more evenly split for this cut-off.

Considering ‘NoCar’, the coefficients are both negative in the 13 month cut-off

model. However, ‘NoCar’ is not significant in the model comparing late uptake

to not received. Thus, only the comparison of PCV-7 booster received on time

and PCV-7 booster received late should be assessed for ‘NoCar’. The results

show that the odds of receiving the vaccine on time to not at all decrease as the

percentage of households without a car increases within a postcode district. This

seems reasonable since having a car is associated with higher income and lower

deprivation and it has already been observed that children in the more deprived

classes are less likely to receive the vaccine. In the 14 month cut-off, once again

‘NoCar’ does not appear to be required in the model comparing late uptake to

not received. However, the coefficient of ‘NoCar’ is positive comparing vaccine

received on time to vaccine not received. Thus, the odds of receiving the vaccine

on time for this cut-off increase as the percentage of households within a postcode

district with no car decreases.
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‘Level 4’ does not appear in the 14 month cut-off model. In the 13 month cut-off

model, the ‘Level4’ variable is not significant in the model comparing late uptake

to not received. However, in the model comparing on time to not at all, this

variable is significant and has a negative coefficient. Thus, the odds of receiving

the vaccine on time decrease as the percentage of individuals with the highest level

of qualifications increases in a postcode district. Thus, it appears that children

in postcode districts with greater high levels of education are less likely to receive

the vaccine.

To summarise, it appears that in both the 13 month and the 14 month models

the effect of deprivation is similar for both comparisons. However, the effects of

car ownership, education status and country of birth are more important for one

comparison or the other.

To assess the ability of the final models shown in Table 8.29 in determining the

correct classification of children in the dataset, a script was created in R to al-

locate each child into the class for which the child has the highest probability of

response. Cross-tabulations of the predicted uptake against the true ‘PCVUp-

take’ can then be assessed to identify how strongly the model is able to determine

the correct class. The probabilities of correct classification can be observed, and

also the misclassification probabilities to the different classes, on assessing the

cross-tabulation. The probability of correct classification for a certain class is

calculated as the number of children in the dataset correctly identified in a class

divided by the total number of children in that class. To establish the class of a

new child entering the dataset, the values of the explanatory variables for that

child may be substituted in the final models shown previously. The child is as-

signed to the class for which the highest probability is found. To assess how

effectively the model can predict the class of a new child, cross-validation meth-

ods can be employed to discover whether or not the model is able to determine

the correct outcome for the child. The cross-tabulation in Table 8.32 shows the

proportion of children in each group correctly classified to each outcome, as well

as the proportions misclassified for the final model with the 13 month cut-off.
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Table 8.32: Cross-tabulation of the proportion of children classified to each of the

PCV-7 booster uptake outcomes for the model using the 13 month cut-off.

Predicted class

True class Not received On time Late Number in class

Not received 0.134 0.000 0.865 2553

On time 0.042 0.000 0.958 670

Late 0.009 0.000 0.991 25152

From assessment of Table 8.32, it can be noted that the model of ‘PCVUptake’

displayed in Table 8.29 correctly classifies a high percentage, 99.1%, of children

who receive the vaccine late but only a small percentage, 13.4%, of children who

do not receive the vaccine. The model is unable to correctly classify any of the

small number of children who receive the vaccine on time. The Kappa statistic

was calculated to assess the agreement between the predicted and true classes,

adjusting for the amount of agreement expected by chance (Cohen 1960). A

statistic of 0.82 was obtained indicating strong agreement between the numbers

in the predicted and true classes. Table 8.33 shows the proportions of correct

and incorrect classifications for the model with the 14 month cut-off for late

vaccinations. A Kappa statistic of 0.40 was obtained for this model indicating

fair agreement.

Table 8.33: Cross-tabulation of the proportion of children classified to each of the

PCV-7 booster uptake outcomes for the model using the 14 month cut-off.

Predicted class

True class Not received On time Late Number in class

Not received 0.449 0.021 0.530 2553

On time 0.024 0.128 0.847 10399

Late 0.065 0.041 0.894 15423

The model for the 14 month cut-off has a greater ability to determine those who do

not receive the vaccine and those who receive the vaccine on time than the model
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for the 13 month cut-off. 44.9% of children who did not receive the vaccine and

12.8% of children who received the vaccine on time are correctly classified. 89.4%

of children who received the vaccine late are identified. The correct classification

rate of those who received the vaccine on time, although improved upon for the

14 month cut-off rather than the 13 month cut-off, is still very poor. It appears

that the model struggles to distinguish between those who receive the vaccine on

time and those who receive it late as 84.7% of children who received the vaccine

on time are incorrectly classed as late receivers.

Five-fold cross-validation is used to assess the predictive ability of each of the

‘PCVReceived’ models. To carry out this cross-validation the data are split into

five groups of equal size, ensuring there are roughly equal numbers of children

with the different classifications in each group. Thus, for example, within each

group for the model with 13 month cut-off there are approximately 510 children

who do not receive the vaccine, 134 who receive the vaccine on time and 5,030

who receive the vaccine late. The model is fitted to data from the first four of

the five groups. This model is then used to predict the class of the fifth group.

Then this method is repeated and four other groups are combined in the model

and this model is used to predict the class of the group omitted. In total, five

models are fitted and predictions for five different groups are made. The average

percentage of children classified to each of the vaccine uptake categories can then

be determined. The averages for the 13 month cut-off are shown in Table 8.34

and for the 14 month cut-off in Table 8.35.

Table 8.34: Average percentage of children classified to each of the PCV-7 booster

uptake categories for the 13 month cut-off using five-fold cross-validation.

Predicted class

True class Not received On time Late Number in class

Not received 14.924 0.039 85.037 2553

On time 4.179 0.000 95.821 670

Late 1.069 0.000 98.931 25152
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Table 8.35: Average percentage of children classified to each of the PCV-7 booster

uptake categories for the 14 month cut-off using five-fold cross-validation.

Predicted class

True class Not received On time Late Number in class

Not received 44.810 2.115 53.075 2553

On time 2.547 13.033 84.419 10399

Late 6.035 5.005 88.960 15423

As expected from the cross-tabulations shown in Table 8.32 and Table 8.33, nei-

ther model has a high ability to correctly classify children who receive the PCV-7

booster on time. However, the cross-validation classifications are very similar to

the raw percentages shown in these two tables suggesting the models are robust.

The model for the 13 month cut-off is unable to correctly identify any of the

children who fall into this category, with overall 95.8% of children who fall into

this category predicted to be in the late vaccination class. The 14 month cut-off

model performs a bit better, correctly determining the class of 13.0% of these

children. However, almost 85% of these children are incorrectly classed as late

vaccinations. The cross-validation shows that only 14.9% of children are correctly

predicted to fall in the unvaccinated class for the 13 month cut-off, with 85.0% of

this class of children incorrectly predicted to be vaccinated late. For the 14 month

cut-off, a higher percentage are classed correctly as unvaccinated. However, still

more than half of these children are incorrectly classed as vaccinated late.

On assessment of the histograms of estimated probabilities for each of the two

models, Figure 8.19, it can be observed that the peak of the distribution for the

13 month cut-off occurs between 0.9 and 0.95. In the model a child is assigned

to the class with the highest probability. In general, it is good to observe that

the peak of the distribution occurs at such a high probability value as this means

the classification for many children was strong. If the peak of the distribution

were to occur at a lower value of 0.4 it would mean that it would be difficult to

assign children to the correct class by simply using the model to find the highest

probability. The number of children with estimated probabilities greater than
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0.7 is calculated to be 23,725. Therefore, it appears that approximately 83.61%

of the children in the dataset have decisive classifications based on the method

of classification according to the highest probability. This appears odd as the

model does not perform well in correctly classifying children who do not receive

the vaccine and those who receive the vaccine on time. However, with this cut-off

of 13 months, the vast majority of children, around 88%, in the dataset fall into

the vaccinated late class and thus, since the model is able to correctly classify

over 98% of these children, it makes sense that there is a high probability of

overall successful predictions. For the 14 month cut-off, the peak probability is

much lower at between 0.55 and 0.6. For this cut-off, the number of children with

estimated probabilities of greater than 0.7 is much lower at only 22. Thus, in

this model, only a tiny 0.08% of children have a decisive classification. A reduced

classification of 0.6 still would only result in 11.75% correct classifications overall.

HB has been shown to be statistically significant as a fixed effect in previous

models discussed in this chapter. Thus, HB is entered as a fixed effect in both

the 13 month and 14 month cut-off multinomial models for ‘PCVUptake’. HB is

significant as a fixed effect in both models.

In the final 13 month single-level model including HB, in the comparison of re-

ceived on time to not received, ‘SCSIMD5’ and ‘NoCar’ are the only significant

variables. The coefficients of ‘SCSIMD5’ have changed slightly following the in-

clusion of HB in the model but all remain negative and show the same pattern

as before. The coefficient of ‘NoCar’ is positive in this model, not negative as it

was in the model without the HB effect. Comparing received late to not received,

‘NoCar’ and ‘Level4’ are not significant in this model. ‘OtherEU’ has a negative

coefficient as in the model without the HB effect. The coefficients of the ‘SC-

SIMD5’ dummy variables are all negative as in the model without HB. However,

the results are altered as, in the model without HB the coefficient of category

4 of ‘SCSIMD5’ is less negative than that of category 3. This is not the case

in the model with HB where the coefficients are more negative with increasing

deprivation category.
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Figure 8.19: Histograms of the estimated probabilities for the correct class of

PCV-7 booster uptake obtained from the models with 13 month cut-off and 14

month cut-off for late vaccination respectively.

Comparing received on time to not received in the 14 month cut-off model, only

‘SCSIMD5’ appears in addition to HB. The coefficients of ‘SCSIMD5’ changed

in this model following the inclusion of HB but, as with the 13 month cut-off

model, the general pattern observed remains the same. Similarly, ‘SCSIMD5’ is

the only variable in addition to HB which appears in the model comparing late to

not received. As with the 13 month cut-off model, comparing late to not received

the coefficient of ‘SCSIMD5’ becomes more negative with increasing deprivation.

This was not the case in the model without the HB effect.

The variable ‘HibReceived’ does not appear in either the 13 month or the 14

month cut-off model after inclusion of HB.

In the multinomial model, differences in the effects of each of the explanatory

variables comparing vaccinated on time to not at all and vaccinated late to not

at all can be examined. For the 13 month model it can be observed that the coef-

ficients for the deprivation categories in each model are both negative. However,

the patterns appear to differ for the two comparisons. The odds of receiving the

vaccine late to not at all decrease with increasing deprivation whilst the odds of

receiving the vaccine on time compared to not at all decrease with increasing de-

privation to the fourth deprivation category. The odds of receiving the vaccine on
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time are higher for those in the most deprived category than for those in the sec-

ond most deprived category. This is not true of the 14 month model where both

comparisons show reduced odds with increasing deprivation. In the 13 month

model both ‘NoCar’ and ‘Level4’ have different effects in the two comparisons.

HB had the greatest variation in effect with health boards B (Borders), F (Fife)

and V (Forth Valley) showing a different sign of coefficient when comparing re-

ceived on time or received late to not at all in both the 13 month and the 14 month

cut-off models. In addition, in the 13 month cut-off model, HB C (Argyll and

Clyde), H (Highland), L (Lanarkshire), N (Grampian) and W (Western Isles) all

displayed different effects for the two comparisons whilst for the 14 month cut-off

the effects were most apparent in HBs A (Ayrshire and Arran), S (Lothian) and

T (Tayside). In addition HB N (Grampian) in the 14 month cut-off model, al-

though having the same sign of coefficient in each of the comparisons, had a much

larger effect when comparing received late to not received than when comparing

received on time to not received.

The parameter estimates for the 13 and 14 month cut-off models are shown in

Tables 8.36 and 8.37. By using the category with the highest estimated probabil-

ity to classify each child, all children in the 13 month cut-off model are classed as

receiving the vaccine late. Thus, this model does not perform as well as the model

without the HB effect in classifying children into the not received category, where

13.4% were correctly classified. Neither model was able to correctly classify any

children in the received on time classification.

For the 14 month cut-off model, 1.4% of children who do not receive the vaccine

are correctly classified, 3.5% of children who receive the vaccine up to the age

of 14 months and 97.2% of children who receive the vaccine after the age of

14 months are correctly classified. Thus, the model does not perform well in

predicting the children in two of the three categories. The model with the HB

effect does not perform as well as the 14 month cut-off model without HB as using

this model 44.9% of children were correctly classified as having not received the

PCV-7 booster and 12.8% were classed as having received the vaccine on time.
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Two-level models

In the next stage of modelling, a random effect for postcode district is entered in

the model. MLwiN is used to carry out the multi-level modelling. As with the

binomial multi-level models, the model is first fitted using first order MQL and

then, following convergence, second order PQL is adopted as first order MQL pro-

duces severely biased estimates in multinomial logistic regression (Rasbash et al.

2008). In this multi-level multinomial model a random term, υ
(s)
j , representing

unobserved postcode district level characteristics is entered into the model de-

scribed in (8.13). The random effects are assumed to follow a bivariate Normal

distribution with mean 0 and variance Ω, where Ω is defined to be

(
σ2(1) σ(12)

σ(12) σ2(2)

)
. (8.14)

In (8.14), σ2(1) represents the residual between postcode district variance in the log

odds of receiving the vaccine on time against not receiving the vaccine. Similarly,

σ2(2) is the residual between postcode district variance in the log odds of receiving

the vaccine late against not receiving the vaccine. Finally, σ(12) is the covariance

between the postcode district effect on the probabilities of receiving the vaccine

on time and receiving it late.

The variance components models for both the 13 month cut-off and the 14 month

cut-off, i.e. the model with only a random intercept on postcode district, show

zero S.E.s for the estimates of σ2
υ0 and συ01.
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Table 8.36: Results from the multinomial model of ‘PCVUptake’ including fixed

effect of HB with 13 and 14 month cut-off, comparing on time to not received

(A=Ayrshire & Arran, B=Borders, C=Argyll & Clyde, F=Fife, G=Greater Glas-

gow, H=Highland, L=Lanarkshire, N=Grampian, R=Orkney, S=Lothian, T=Tayside,

V=Forth Valley, W=Western Isles, Y=Dumfries & Galloway, Z=Shetland).

13 month 14 month

Variable Coefficient S.E. Coefficient S.E.

Intercept1 -1.919 0.388 2.167 0.86

SCSIMD521 -0.397 0.148 -0.232 0.083

SCSIMD531 -0.464 0.150 -0.395 0.080

SCSIMD541 -0.623 0.158 -0.517 0.079

SCSIMD551 -0.522 0.164 -0.734 0.077

OtherEU1 -0.092 0.116 -0.293 0.040

NoCar1 0.010 0.006 - -

Level41 0.007 0.009 - -

HBA1
1.126 0.219 -0.026 0.104

HBB1
1.497 0.311 -0.071 0.179

HBC1
0.440 0.222 0.021 0.096

HBF1
0.558 0.242 -0.256 0.097

HBH1
0.942 0.252 -0.569 0.112

HBL1
-0.735 0.297 0.043 0.087

HBN1
1.492 0.223 0.044 0.093

HBR1
-0.071 0.510 -2.289 0.275

HBS1
0.351 0.208 -0.001 0.086

HBT1
-0.589 0.306 -1.439 0.113

HBV1
0.625 0.253 -0.036 0.107

HBW1
1.294 0.438 -0.455 0.267

HBY1
1.925 0.323 0.973 0.193

HBZ1
-0.082 0.639 -1.102 0.260
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Table 8.37: Results from the multinomial model of ‘PCVUptake’ including fixed

effect of HB with 13 and 14 month cut-off, comparing late to not received

(A=Ayrshire & Arran, B=Borders, C=Argyll & Clyde, F=Fife, G=Greater Glas-

gow, H=Highland, L=Lanarkshire, N=Grampian, R=Orkney, S=Lothian, T=Tayside,

V=Forth Valley, W=Western Isles, Y=Dumfries & Galloway, Z=Shetland).

13 month 14 month

Variable Coefficient S.E. Coefficient S.E.

Intercept2 3.202 0.185 2.172 0.084

SCSIMD522 -0.180 0.078 -0.141 0.079

SCSIMD532 -0.382 0.078 -0.356 0.078

SCSIMD542 -0.493 0.079 -0.473 0.076

SCSIMD552 -0.654 0.082 -0.608 0.674

OtherEU2 -0.174 0.057 -0.233 0.038

NoCar2 -0.005 0.003 - -

Level42 -0.009 0.005 - -

HBA2
0.109 0.109 0.906 0.101

HBB2
-0.042 0.179 0.248 0.173

HBC2
-0.035 0.097 0.060 0.094

HBF2
-0.205 0.109 0.072 0.094

HBH2
-0.637 0.122 -0.378 0.108

HBL2
0.114 0.094 0.312 0.086

HBN2
-0.098 0.111 9.125 0.092

HBR2
-2.282 0.228 -1.949 0.243

HBS2
0.111 0.091 0.342 0.084

HBT2
-0.063 0.102 0.536 0.093

HBV2
-0.114 0.116 0.049 0.105

HBW2
-0.582 0.254 -0.435 0.264

HBY2
0.732 0.200 0.806 0.193

HBZ2
-1.073 0.239 -0.828 0.246

Thus, there is clearly some issue with convergence of this multi-level modelling

in MLwiN. Under the belief that this problem is due to the possibility that the
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random effect of postcode district is not significant in this multinomial model, a

simulated response with postcode district effects was created to test this theory.

In this simulated response variable, for half of the postcode district levels a third of

the number of observations within the district were classed as 0, a third as 1 and a

third as 2. For a further quarter of the postcode districts, 4/5 of the observations

were classed as 0; 1/10 as 1 and 1/10 as 2. Finally, for the last quarter of the

districts, 2/5 of the observations were classed as 0, 2/5 as 1 and 1/5 as 2. Thus,

postcode district level variation should be observed in this response. However,

on fitting the variance component model in MLwiN similar convergence issues

were experienced. As a number of postcode districts have very few numbers of

children within them, it is believed that this is the likely cause of the convergence

problems. Thus, in the remaining analysis in this chapter only single-level models

are considered and a fixed effect of HB is entered in the models to take into

account area level variation.

8.4.7 Modelling the multivariate response PCV-7 received

combined with PCV-7 received late and months late

In this final section of the vaccine uptake analysis chapter, a combination of all

three of the univariate responses considered previously is analysed. In order to use

a multinomial approach, as adopted for the modelling combining ‘PCVReceived’

and ‘PCVLate’, the number of months late at which the vaccine is administered

is split into categories. The first categorical model looks at five categories where

0 represents children who have not received the vaccine by 22 months of age, 1

represents that the PCV-7 booster has been administered on time, i.e. by 13

months of age, 2 is the category for vaccinations administered up to 1 month

late, 3 represents those vaccinated between 1 and 3 months late and 4 represents

children vaccinated over three months late. Of the 28,672 children in the dataset,

2,605 (9.09%) fall into category 0; 676 (2.36%) are found in category 1; 9,964

(34.75%) in category 2; 10,527 (36.72%) in category 3 and 4,900 (17.09%) in

category 4. Multinomial logistic regression was used for a similar purpose in an

analysis of delays in uptake of the DTP vaccination in the USA, where uptake

was split into three categories: 1 to 6 months delay, 7 or more months delay, no
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vaccinations recorded (Dombkowski et al. 2004). Dombkowski et al. state that

the benefit of this type of analysis is that it is possible to characterise children

of all different states of vaccination uptake status. Thus, factors affecting both

delays and whether or not the vaccine is UTD may be determined.

As mentioned in the previous section, the significant variables for determining

either ‘PCVReceived’ or ‘PCVLate’ are ‘HibReceived’, ‘HibLate’, ‘SCSIMD5’,

‘OtherEU’, ‘NoCar’ and ‘Level4’. For the continuous response ‘PCVMonths-

Late’, which has been considered in categories to carry out the modelling in this

section, the variables ‘HibMonthsLate’, ‘SCSIMD5’, and ‘Level4’ were found to

be significant. As there are three different explanatory variables involving the up-

take of the Hib/Men C booster, these variables are combined in a similar fashion

to that of the response variable describing the PCV-7 booster uptake.

Modelling

Single-level models

Single-level multinomial models for this five category response, ‘PCVTiming’,

may be fitted in the same manner as in for the previous model. Once again, the

category for children who have not received the PCV-7 booster is taken as the

baseline for comparison in the analysis. The model shown in (8.13) now represents

four simultaneous equations. As before, when s = 1, the logarithm of the ratio

of the probability of receiving the PCV-7 booster on time to the probability of

not receiving the vaccine is represented. When s = 2, the logarithm of the ratio

of the probability of receiving the vaccine up to one month late to that of not

receiving the vaccine is represented, when s = 3, the vaccine received between 1

and 3 months late is compared to not at all and, finally, when s = 4, the vaccine

received over 3 months late is compared to not at all.

Results from the multinomial regression of ‘PCVTiming’ using the same approach

in R 2.9.1 as in the previous multinomial single-level model are shown in Table

8.39. The categorical explanatory variable involving the uptake and timing of the

Hib/Men C booster, ‘HibTiming’, is not included in the final model as this term
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is not deemed significant using stepAIC in R.

Table 8.38: Percentage distribution for each category of timing for the PCV-7

booster for each of the potential explanatory variables.

Variable Unv OT <1M 1-3M >3M Total

Individual level Number

HibTiming (%) Unv 47.14 2.74 8.78 20.99 20.36 2815

OT 2.70 9.42 56.60 24.38 6.92 2015

<1M 2.75 1.86 49.28 35.77 10.35 15631

1-3M 6.32 1.13 7.78 57.38 27.39 5235

>3M 16.19 1.96 13.80 27.67 40.39 2679

SCSIMD5 1 6.79 2.83 36.46 38.97 14.95 5048

2 7.94 2.25 33.51 38.50 17.80 5413

3 9.11 2.42 35.49 36.75 16.23 5513

4 9.63 2.07 35.23 35.66 17.42 5777

5 10.98 2.31 33.60 34.52 18.59 6624

Postcode level

OtherEU (mean) 0.91 0.85 0.90 0.89 0.90

NoCar (mean) 28.94 31.85 28.09 27.71 28.11

Level4 (mean) 20.52 19.06 20.65 20.86 20.89

Total 2553 670 9875 10422 4855 28375

On comparing the effect of each of the explanatory variables in the four com-

parisons with the baseline category of not received in this multinomial model, it

can be observed that ‘Level4’ appears to have the same effect in all comparisons.

The negative coefficient of ‘Level4’ suggests that as the percentage of individuals

within a postcode district increases the odds of receiving the vaccine on time,

less than one month late, one to three months late or over three months late

each decrease when compared to not received. Different effects are observed for

the variable ‘NoCar’ with the comparisons between received on time, received

between one and three months late or received more than three months late all

showing negative coefficients for this variable whilst the coefficient for ‘NoCar’

comparing received up to one month late to not received is positive. Different
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effects are also observed for the variable ‘OtherEU’ with the comparisons of re-

ceived up to one month late, received between one and three months late and

received more than three months late to not received all showing negative co-

efficients. The comparison of received on time to not received has a positive

coefficient.

On assessment of ‘SCSIMD5’ in the four comparisons made in this model, it is

of interest to assess whether the patterns of effect with increasing deprivation

differ. All deprivation coefficients in the model are negative. On assessment of

the coefficients in the comparison of received on time to not at all, the moduli

of the coefficients generally become larger with increasing deprivation, indicating

higher odds of receiving the vaccine on time to not at all for more deprived classes.

However, the modulus of the coefficient for the most deprived class is lower than

that of the second most deprived class. Similarly, on comparison of receiving the

vaccine between one and three months late to not at all the negative coefficients

become smaller with increasing deprivation. The same pattern is not observed

for the other two comparisons. However, all four comparisons show the smallest

negative coefficient for the most deprived classification.

Each child in the dataset is assigned to one of the five classes of ‘PCVTiming’

according to the highest probability determined by the model shown in Table

8.39. The cross-tabulation shown in Table 8.40 shows the proportions of predicted

classifications for each of the true classes.

From examination of Table 8.40, it can be noted that the model performs poorly

in distinguishing between the five classes, only classifying children into categories

3 and 4 of ‘PCVTiming’. No children are correctly classified as not receiving the

vaccine, receiving the vaccine on time or receiving the vaccine up to 1 month

late. Each true class of ‘PCVTiming’ has between 24% and 35% of children

incorrectly classified as receiving the vaccine between one to three months late

and between 65% and 76% incorrectly classed as receiving the vaccine greater

than three months late. A Kappa statistic of 0.35 shows fair agreement between

the model predictions and the true observations. Retaining ‘HibTiming’ in the

model results in little difference in the predictions.
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By combining categories 1 and 2 in the response variable ‘PCVTiming’ to allow

vaccinations received on time to be up to the age of 14 months, a new response

variable is created with 0 representing not vaccinated, 1 representing vaccinated

by 14 months of age, 2 representing vaccinated between 14 and 16 months of age,

i.e. between 1 and 3 months later than scheduled, and 3 representing vaccinated

greater than 16 months of age. As with the model with 5 categories, the cate-

gorical variable involving the Hib/Men C booster is not found to be significant.

Unfortunately, this model also is unable to correctly identify the classification of

the child on assessment of the highest probability. The results from this method

are shown in Table 8.41. On assessment of the agreement, a Kappa statistic of

0.25 is obtained indicating fair agreement.

Table 8.39: Results from the multinomial model of ‘PCVTiming’, with not re-

ceived as the baseline category for comparison.

Variable Coefficient S.E. Variable Coefficient S.E.

Intercept1 -0.234 0.240 Intercept3 2.244 0.126

Intercept2 2.087 0.127 Intercept4 1.198 0.140

SCSIMD521 -0.399 0.147 SCSIMD523 -0.248 0.081

SCSIMD522 -0.341 0.081 SCSIMD524 -0.038 0.089

SCSIMD531 -0.462 0.147 SCSIMD533 -0.477 0.081

SCSIMD532 -0.486 0.081 SCSIMD534 -0.291 0.090

SCSIMD541 -0.606 0.155 SCSIMD543 -0.558 0.082

SCSIMD542 -0.578 0.083 SCSIMD544 -0.251 0.091

SCSIMD551 -0.521 0.161 SCSIMD553 -0.724 0.086

SCSIMD552 -0.812 0.086 SCSIMD554 -0.283 0.095

OtherEU1 0.271 0.086 OtherEU3 -0.103 0.049

OtherEU2 -0.330 0.052 OtherEU4 -0.155 0.056

NoCar1 -0.016 0.004 NoCar3 -0.004 0.002

NoCar2 0.002 0.002 NoCar4 -0.005 0.002

Level41 -0.021 0.008 Level43 -0.010 0.004

Level42 -0.003 0.004 Level44 -0.003 0.005
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As previous models considered in this chapter show a significant HB effect when

entering this variable as either a random or fixed effect, HB was entered as a fixed

effect in the model of PCV-7 timing outcome with five categories. HB is found

to be significant in the model, with both HB and deprivation category appearing

as the most significant determinants of PCV-7 timing outcome. For brevity, the

results for this modelling are not presented in the thesis. However, these are avail-

able on request. No great differences in the effect of HBs R (Orkney), Y (Dumfries

and Galloway) and Z (Shetland) were observed for the four model comparisons.

All other HBs displayed different effects in the four model comparisons.

Table 8.40: Cross-tabulation of true PCV-7 timing outcome with five categories

against predicted outcome.

Predicted class

True class Unv OT <1M 1-3M >3M Number in class

Unv 0.000 0.000 0.000 0.315 0.685 2553

OT 0.000 0.000 0.000 0.240 0.760 670

<1M 0.000 0.000 0.000 0.349 0.651 9875

1-3M 0.000 0.000 0.000 0.295 0.705 10422

>3M 0.000 0.000 0.000 0.301 0.699 4855

Table 8.41: Cross-tabulation of true PCV-7 timing outcome with four categories

against predicted outcome.

Predicted class

True class Unv OT 1-3M >3M Number in class

Unv 0.000 0.000 0.590 0.410 2553

OT 0.000 0.000 0.625 0.375 10545

1-3M 0.000 0.000 0.592 0.408 10422

>3M 0.000 0.000 0.589 0.411 4855

In all multinomial models considered in this chapter, the results for the post-

code district level variables should be interpreted with caution as the hierarchical
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structure of the data has not been included in the model. Therefore, these signif-

icant variables may not have been found to be significant had this structure been

incorporated.

Conclusions from the multivariate models of PCV-7 uptake and timing

In summary, the multivariate models of PCV-7 uptake and timing were created

by combining the univariate responses considered in the previous section of the

chapter. The benefit of combining the responses was the possibility of comparing

the effects of each of the explanatory variables for the different response categories.

The explanatory variables identified as significant for determining the univariate

responses were included in the combined model. Unfortunately, the multi-level

structure adopted in the creation of the univariate models was not possible for

reasons discussed previously. Thus, the final models are individual level models

only. However, as it is expected that there is variation between the different HBs,

dummy variables representing this variable were entered into the model to assess

area level variation.

The first multinomial model considered involved only three categories for vaccine

not received, received on time and received late using both a 13 month and a 14

month cut-off. As with the univariate models, strong associations were observed

between PCV-7 booster uptake and timing and the Hib/Men C booster uptake

and timing. On consideration of deprivation category, the probability of receiving

the vaccine on time rather than not at all decreases with increasing deprivation.

On comparison of late uptake to non-receipt, the probability of receiving the

vaccine late decreases as deprivation increases from level 1 to 2 but there does

not appear to be a clear trend as the coefficients of categories 3 to 5 are all fairly

similar.

Considering country of birth, the odds of receiving the PCV-7 booster on time

compared to not at all decrease as the percentage of individuals born in other

EU countries increases. Comparing late receipt to not receiving the vaccine, the

odds of late receipt increase as the percentage born outwith the UK and Ireland

increases. This is not true of the 14 month cut-off where the odds of late receipt

decreases as the percentage born in the EU outwith the UK and Ireland increases.
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As the proportion of households with no car increases, the odds of receiving the

vaccine on time compared to not at all decreases and the odds of receiving the

vaccine late compared to not at all decreases also. However, this is not true of

the 14 month cut-off where the odds of receiving the PCV-7 booster on time

compared to not at all increases with increasing proportions of households with

no car.

Finally, on addition of HB to the model, differences were observed for the 13 and

14 month cut-offs. For the 13 month cut-off comparing on time to not received,

HBs L, R, T and Z all have negative coefficients. Thus, these HBs have a lower

odds of receiving the vaccine on time to not received than the comparator HB

G. However, on assessment of the 14 month cut-off, HBs A, B, F, H, R, S, T, V,

W and Z all have lower odds of receiving the vaccine on time to late than HB G.

Comparing the category received late to not at all, HBs B, C, F, H, N, R, T, V,

W and Z all have a lower odds than HB G of receiving the vaccine late for the

13 month cut-off whilst for the 14 month cut-off, only H, R, W and Z have lower

odds.

The next multinomial model considered all three of the univariate responses con-

sidered in the previous section, with the number of months late grouped into

three arbitrary categories: up to 1 month late, between 1 and 3 months late and

more than 3 months late. In addition to these categories, not received and on

time were considered as before. The same explanatory variables as considered in

the first multinomial model were included in this model.

Considering deprivation quintiles in this model, the negative coefficients become

greater in size with increasing deprivation comparing up to one month late to not

received and between 1 and 3 months late to not received. Comparing received

on time to not received, the negative coefficients of categories 1 to 4 increase in

size but decrease from category 4 to 5. Comparing the more than 3 months late

category to received on time, there is no observable pattern to the coefficients for

deprivation.

The coefficient of the variable representing the proportion born in the EU outwith

the UK and Ireland is positive comparing receiving the vaccine on time to not
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at all. Therefore, as the proportion of individuals born in other EU countries

increases in a district, the odds of receiving the vaccine on time compared to

not at all increases. The coefficient of this variable comparing the other vaccine

timing categories to not received are all negative indicating decreasing odds of

late receipt with increasing proportions of individuals born in other EU countries.

All coefficients are negative for the educational attainment variable, indicating

decreased odds are observed of receiving the vaccine on time, up to 1 month late,

1 to 3 months late or more than 3 months late compared to not at all as the

percentage of individuals with the highest educational attainment increases.

On examination of the coefficients for the variable for the percentage of households

with no car in a postcode district, negative values are observed comparing on time

to not at all, between 1 and 3 months late to not at all and more than 3 months

late to not at all. The coefficient for this variable comparing up to 1 month late

to not at all is positive. Thus, in this case, the odds of receiving the vaccine up

to 1 month late increases with increasing proportions of households with no car.

Finally, considering the area measure HB, lower odds of receiving the vaccine

on time to not at all are observed for HBs L, R, T and Z compared to HB G.

Comparing receiving the vaccine up to 1 month late to not at all, lower odds are

observed for all HBs other than Y which has a higher odds than the comparator G.

Examining the model for the next category, comparing between 1 and 3 months

late to not at all, the HBs with positive coefficients and thus higher odds compared

to HB G are A, B, L, N, S, T and Y. Finally, comparing more than 3 months late

to not at all, HBs A, B, F, L, S, T and Y have higher odds of late uptake than

HB G.

8.5 Conclusions

In this chapter, the uptake and timing of the newly introduced PCV-7 in Scotland

was considered. Two 2006 birth cohorts with a 22 month follow-up period were

assessed in this analysis. The uptake of PCV-7 was high for these cohorts, with

over 90% of the children receiving each dose. The focus of the analysis in this
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chapter was on the uptake of the booster dose at 13 months of age. 90.91% of the

children received this dose by age 22 months. However, a substantial proportion

of children did not receive the vaccine according to schedule. Using the stringent

cut-off of 13 months, only 2.59% of children received the vaccine on time. The

less strict cut-off of 14 months still results in a substantial percentage of late

vaccinations, with only 40.25% receiving the vaccine by this age. On average,

the PCV-7 booster was administered almost two months later than the routine

vaccination recommendations.

The analysis carried out in this chapter involved the creation of separate univari-

ate models to describe the PCV-7 booster uptake and timing, followed by the

assessment of multivariate models combining the univariate response categories.

The benefit of combining the response categories was that it became possible to

make direct comparisons of the effects of each of the explanatory variables when

comparing scheduled or late receipt to non-receipt. However, the benefit of using

the univariate models was that it was possible to assess not only categorical vari-

ables but also the continuous response variable for the number of months late.

Since a multinomial modelling approach is used, this response had to be split into

categories. An approach based on the techniques adopted in survival analysis,

such as those used by Dayan et al. (2006), Akmatov et al. (2008) or Clark et al.

(2009), would perhaps have been more appropriate so that the number of months

late could have been treated as a continuous response whilst allowing for those

unvaccinated to also be dealt with.

In all of the three univariate response models considered, significant random

variation attributable to both postcode district and HB was found. Therefore, it

appears that area effects are significant in determining vaccine uptake and timing.

This corresponds with another vaccine uptake analysis undertaken in Scotland

in which varying patterns were observed in MMR uptake for the different HBs

(Cameron et al. 2007). The smaller, island HBs show the greatest variability

in the timing of vaccine administration. Orkney has the lowest uptake of the

PCV-7 booster by age 22 months, with only approximately 59% of children in

this HB receiving the vaccine. However, Orkney had the lowest proportion of

late vaccinations of all HBs using the 13 month cut-off for late vaccinations. The
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results are different for the 14 month cut-off, where Orkney still has amongst the

lowest late vaccination percentages. Thus, it appears that in Orkney the vaccines

are either received on time or not at all. For the 13 month cut-off, Dumfries and

Galloway had the lowest proportion of late vaccinations. The odds of receiving

the vaccine late were highest for Lanarkshire and Tayside for the 13 month cut-

off. For the 14 month cut-off, Tayside has a much higher predicted probability of

late vaccinations than all other HBs at 0.89.

The timing of the Hib/Men C booster is important in determining whether or not

the subsequent PCV-7 booster is administered in a timely fashion, with delays

in receipt of the Hib/Men C booster leading to delays in receipt of the PCV-7

booster. In addition, those who received the Hib/Men C booster had a higher

odds of receiving the PCV-7 booster than those who did not.

As with previous Scottish analyses of vaccine uptake (Cameron et al. 2007;

Friederichs et al. 2006), deprivation was identified to be an important deter-

minant of vaccine uptake and timing. Cameron et al. observed greater delays

in vaccine uptake for children in the most deprived category which corresponds

with the analysis in this chapter in which the number of months late the vaccine

was administered was highest for those most deprived. Friederichs et al. observe

that the most affluent in Scotland either have the MMR vaccine on time or not

at all. This may be the case with the PCV-7 booster where the greatest delays

are observed amongst those most deprived. However, the odds of receiving the

vaccine decrease with increasing deprivation. Thus, the least deprived are more

likely to have the vaccine.

Educational level was identified to be significant in determining the timing of

the vaccine administration. However, contradictory results were obtained on

comparison of the model of the binary variable for PCV-7 booster timing and the

continuous variable for the number of months late the booster is administered.

The results for the binary model, where the odds of receiving the vaccine late

increase as the percentage with high educational attainment within a postcode

district decreases, correspond with observations from other studies (Bobo et al.

1993; Dombkowski et al. 2004; Ozcirpici et al. 2006; Torun and Bakırcı 2006;
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Datar et al. 2007). However, the model for the continuous response contradicted

these results. The correlations between area educational attainment and months

late, both at the individual level and postcode district level, are fairly small.

Thus, it is unclear how much information educational attainment contributes to

the determination of the number of months late.

The country of birth and the percentage of households without a car were also

identified as significant in one or other of the univariate models. The country

of birth has an impact on whether or not the PCV-7 booster is received with

lower odds of receipt associated with higher proportions of individuals born in EU

countries outwith the UK and Ireland. This corresponds with the role of ethnicity

in age-appropriate vaccinations observed in the USA (Nuorti et al. 2008). The

results for the percentage of households with no cars, a proxy for the income of

a district, are that the odds of receiving the PCV-7 booster late decrease with

decreasing proportions of households without a car within a postcode district.

This also corresponds with results from other vaccine analyses in which lower age-

appropriate or UTD vaccinations are observed for households with lower incomes

(Nuorti et al. 2008; Guttmann et al. 2006).

In the three-level models, no significant associations were identified between PCV-

7 uptake and timing and the variables representing the different types of employ-

ment in a postcode district or the percentage who are not of white race within

a district. The percentage of individuals who were not of white race within a

postcode district is generally very low, with only up to around 8% of individuals

in a district listed as not white. Similarly, the percentages of unemployed indi-

viduals and large employers was fairly low, ranging from around 0 to 10%. No

significant effects were found for those working in agriculture. This variable was

included in an attempt to have some variable representing urban and rural areas

as higher percentages of individuals working in agriculture would imply rurality.

This variable was highlighted as an important variable in some vaccine uptake

analyses (Akmatov et al. 2008; Ozcirpici et al. 2006). However, contradictory

results were obtained in these analyses, with Akmatov et al. observing higher

delays in urban areas and Ozcirpici et al. observing higher delays in rural areas.

This is likely to be due to the nature of the studies. Akmatov et al. state that
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living in urban areas in CIS countries represents lower socioeconomic status and

lower standards of living. However, in the Ozcirpici et al. study in Turkey, the

opposite is true as there are inadequate health services and lower socioeconomic

status in rural areas. Thus, the effect of how urban or rural an area is on the

uptake and timing of vaccination appears to be confounded with other factors.

Therefore, this may explain the reason this variable is not important in the anal-

ysis of the uptake of the PCV-7 booster in Scotland as these other socioeconomic

factors, such as deprivation, have been included.

The other variable found not to have an association with the timing and uptake

of the PCV-7 booster was the percentage of individuals aged 0 to 4 years living

within a district. In other vaccine uptake analyses, the number of children within

a household was found to be significant in determining vaccine status, with a

larger number of siblings associated with a greater risk of delayed vaccination

(Lieu et al. 2000; Reading et al. 2004; Dombkowski et al. 2004; Bardenheier

et al. 2004; Ozcirpici et al. 2006). Thus, perhaps if information on the households

of the children had been included in this analysis, then the number of children

within a household may have had a significant effect. However, in contrast, the

study involving PCV-7 uptake in the USA did not find significant associations

between the number of children in a household and UTD vaccine status (Nuorti

et al. 2008) so this variable may not be important in Scotland.

Multi-level modelling was not possible for the multivariate models combining the

responses for the PCV-7 booster uptake and timing. However, HB was entered as

a fixed effect in the models to attempt to describe the area variability in uptake.

Using a similar approach to Akmatov et al. (2008), in which three categories of

response are considered: not received, received on time and delayed, the impor-

tance of the cut-off chosen for late uptake was apparent as different results were

obtained for the model with the 13 month and the model with the 14 month

cut-off. For the country of birth, both cut-off points show decreasing odds of

receiving the vaccine compared to not at all as the percentage of individuals born

in other EU countries increases, as observed in the univariate models. However,

contradictory results are compared for the different cut-off points comparing re-

ceived late to not received. For the 14 month cut-off, the probability of late
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receipt increases as the percentage born outwith the EU increases. This suggests

that for the 14 month cut-off, there is an increased chance of receiving the vaccine

late.

Contradictory results were obtained for car ownership, with the odds of receiving

the vaccine on time increasing with increasing proportions of households with

no car within a postcode district for the 14 month cut-off, whilst the opposite

is true for the 13 month cut-off. The result for the 14 month cut-off is not

intuitive as car ownership should aid in the receipt of vaccine. In addition, if car

ownership provides a measure of higher income, then to correspond with other

vaccine uptake analyses, higher income should correspond with increased odds of

uptake. For both models, the odds of receiving the vaccine late decrease with as

the percentage of households with no car increases.

Concerning HB, different results are obtained for the two cut-off points. For the

13 month cut-off, Lanarkshire, Orkney, Tayside and Shetland have lower odds

than Greater Glasgow of receiving the vaccine on time to not at all, whilst for

the 14 month cut-off, many more HBs have lower odds: Ayrshire and Arran,

Borders, Fife, Highlands, Lothian, Forth Valley and the Western Isles in addition

to the HBs with lower odds from the 13 month cut-off apart from Lanarkshire.

Comparing late uptake to not received, the highland and island HBs appear with

reduced odds of late uptake using the 14 month cut-off. This corresponds to the

KDEs of the timing of the PCV-7 booster where the peak uptake is observed

early, at around 1 month late, for these HBs.

The other multinomial modelling carried out in this chapter involved a combina-

tion of all three univariate responses. Once again, deprivation, HB, country of

birth, educational attainment and car ownership feature in this model.

Limitations of the modelling, commented on earlier, include the fact that, al-

though postcode district level variables were available to attempt to gauge fac-

tors such as levels of education and unemployment, no variables specific to the

household or parent of the child are available. In other studies of uptake and

timing of childhood immunisations, the educational status of the parent and

variables relating to family size have been deemed statistically significant (Bobo
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et al. 1993; Bardenheier et al. 2004; Dayan et al. 2006). Thus, this study per-

haps could have been improved by having parental and household characteristics

rather than postcode district characteristics.

In future work, other approaches to assess the spatial variability in vaccine uptake

could be adopted, such as kriging as used in the study in Vietnam by Ali et al.

(2007). Furthermore, approaches involving the continuous variable for months

late may be more appropriate for the combined models. Techniques such as

survival analysis could be adopted to reflect the censored observations for those

who have not received the vaccine.
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Chapter 9

Conclusions

9.1 Introduction

On the introduction of a new national immunisation schedule to prevent dis-

ease and infection it is important to examine the costs, benefits and potential

limitations of such an intervention.

S. pneumoniae is responsible for a great burden of disease and infection world-

wide, particularly amongst infants and the elderly so vaccines have been developed

and introduced in recent years to combat these diseases. The recently introduced

PCV-7 is routinely administered to children under the age of two years and is

anticipated to not only prevent disease within this age group but throughout the

population through herd immunity. In this thesis, factors which could potentially

prevent the vaccine from having long term efficacy were explored, all of which

will have an impact on the cost-effectiveness of this intervention. The aim of this

thesis was to add to existing research on these problems through the examination

of the importance of the genetic MLSTs in pneumococcal carriage and disease

through the use of mathematical models and also statistical techniques to exam-

ine the types of pneumococci involved in disease. In addition, problems relating

to limited vaccine effectiveness due to missed or delayed booster vaccinations were

explored.
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9.2 Main results

In order to theoretically investigate the importance of MLSTs and the relation-

ship of these genes to the pneumococcal serotypes in carriage of the bacterium,

differential equation models were created. These models explored the possibility

of capsular switch occurring in the population by assuming that MLSTs could

be associated with more than one serotype, only one of which was assumed to

be a VT serotype. The conclusions from the modelling were that a vaccine,

assumed to be completely effective in preventing carriage of VT serotypes, can

result in elimination of a MLST only if the MLST is solely associated with the

VT serotype.

The relationship between MLSTs and serotypes involved in pneumococcal car-

riage was modelled by adapting the 1997 Lipsitch serotype model of pneumo-

coccal carriage. No existing mathematical models of pneumococcal carriage or

disease identified considered MLSTs in the modelling. The fundamental conclu-

sion reached from the modelling in this thesis was that in order for coexistence

of MLSTs to occur within a population, it is essential for coexistence of MLSTs

or serotypes to occur within an individual.

The importance of issues affecting vaccine effectiveness such as serotype replace-

ment, occurring either through a capsular switch process or by NVT serotypes

becoming more prevalent through the eradication of VT serotypes, and herd im-

munity were considered in the review of the literature on the assessment of the

cost-effectiveness of PCV-7. As PCV-7 is a costly intervention, the impact of herd

immunity on overall disease in the population was identified to be fundamental

for the vaccine to be found to be cost-effective. However, the herd immunity

effect may be offset by the impact of serotype replacement and antibiotic resis-

tance. Thus, it is important to continually assess the effectiveness of the vaccine

in preventing disease and the circulating bacterial types involved in disease to

update the cost-effectiveness models.

Through the use of Negative Binomial models, it was found that hospital episodes

of pneumococcal and unspecified meningitis and septicaemia, as well as unspeci-

fied pneumonia, increased between 1995/96 and 2005/06 in England and Wales.
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Pneumococcal pneumonia was observed to decrease in England and Wales be-

tween 1995/96 and 2003/04, after which the cases began to increase. Thus, if the

pneumococcal diseases were predominantly caused by VT serotypes then PCV-7

may prevent a substantial proportion of disease, particularly if the herd immunity

effects within the UK match those observed in the USA.

In Scotland, the specific bacterial types involved in IPD prior to the use of PCV-7

were examined to identify any trends in disease-causing pneumococci. In addition,

associations with 30 day mortality were identified. Through the use of logistic

regression models, the VT serotype 14 was identified to be decreasing in cases of

IPD in Scotland, whilst the NVT serotype 1 was found to significantly increase

in disease prior to PCV-7 use. In correspondence with this result, there was

significant evidence that MLST 306, commonly associated with serotype 1 in

Scotland, increased in IPD. This could lead to problems with the long term

effectiveness of PCV-7 as serotype 1, and other NVT serotypes, may cause greater

levels of disease following the use of PCV-7, impacting on any conclusions reached

on the cost-effectiveness of PCV-7.

On examination of the associations between serogroups and mortality, serogroup

3, a NVT serotype, was found to have the highest CFR in Scotland and the

NVT serotype 1 the lowest. MLST 180, commonly associated with serotype 3

disease, had the highest CFR of all MLSTs, and MLST 306 the lowest. Using

Fisher’s Exact Tests, serogroup 1 was found to be significantly associated with a

reduced risk of fatality, whilst serogroups 3, 11, 16 and 19 were associated with

an increased risk of fatality.

The multi-level modelling undertaken in Chapter 8 of the thesis allowed the in-

dividual level and area level factors affecting the uptake of PCV-7 booster in

Scotland to be determined. Generally, the uptake of the three doses of PCV-7 in

Scotland is high but the uptake is lower for the booster dose than the other two

doses. If children do not receive all doses of the vaccine or are subject to delays

in vaccine administration this can impact on the effectiveness of the vaccine in

preventing disease in the population. Area was found to be a significant factor in

determining the uptake and timing of the PCV-7 booster, with island HBs in par-
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ticular showing great variability in the timing of the vaccine. Timing and uptake

of the Hib/Men C booster is also critical for determining the uptake and timing

of the PCV-7 booster, with delays in uptake of the Hib/Men C booster leading

to delays in the subsequent vaccination. Deprivation, education and country of

birth were also identified to be significant.

9.3 Discussion

The work summarised in the previous section shows the diverse range of analyses

involved in the determination of the effectiveness of a new vaccine intervention.

The mathematical modelling undertaken in Chapters 2 and 3 provide an insight

into the relationship between MLSTs and serotypes found in pneumococcal car-

riage and show that should the MLST be identified as important in the ability

of the bacterium to cause disease this could result in problems for the vaccine

effectiveness if MLSTs are associated with a VT and a NVT serotype. The mod-

els assume the vaccine to be completely effective in preventing carriage of the

pneumococcal serotype which may not be a realistic assumption. However, the

assumption that a proportion of children remain unvaccinated allows for the pos-

sibility of VT serotypes to remain in the population at equilibrium. The critical

conclusion reached through the modelling was that coexistence should be con-

sidered possible within the individual in order to allow two MLSTs to coincide

in a population at equilibrium. Thus, it is recognised that future modelling is

required incorporating coexistence. In addition, in order to fully examine the

relationship between MLSTs and serotypes, information from large longitudinal

carriage studies is required in which both the MLSTs and serotypes are recorded

so that parameter estimates may be obtained to use with these theoretical math-

ematical models.

The statistical analyses of cases of disease in England and Wales show that hos-

pital episodes of pneumococcal disease were rising prior to the use of PCV-7.

Thus, there is the potential for PCV-7 to have an impact on reducing this disease

burden. However, the results from Scotland show that disease attributable to the

NVT serotype 1 was increasing prior to PCV-7 use and that the NVT serotype 3
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CFR was the highest in Scotland. This leads to concerns about the effectiveness

of the vaccine in reducing disease and fatalities attributable to pneumococcal dis-

ease. However, it is acknowledged that no co-morbidities were recorded for use

in the mortality association analysis and that some serotypes are likely to be op-

portunistic in behaviour when causing disease, commonly targeting those weaker

individuals within the population. Thus, further studies are required in the UK

in which co-morbidities are recorded in addition to the mortality information.

Furthermore, data on cases of disease and the serotypes and MLSTs associated

with IPD following the introduction of PCV-7 should be analysed in order to

properly gauge the effect of vaccine use. This information could not only affect

the results of the cost-effectiveness analysis of PCV-7 but could have an impact

on the development of future pneumococcal vaccines.

The analysis of the vaccine uptake in Scotland could perhaps be improved by

adopting a spatial approach in the analysis since problems were encountered

using the multi-level approach with multivariate response variables. In addition,

it would be useful to obtain information relating to the specific household of each

child in order to clearly examine associations between the educational level and

employment of the parents or care-givers and deprivation, as well as information

regarding to numbers of children within the household which was identified to be

important in previous studies relating to vaccine uptake and timing.

9.4 Conclusions

In conclusion, in this thesis preliminary models of the association between ML-

STs and serotypes have been examined. These are the first mathematical models

involving both MLSTs and serotypes to have been considered. These models

have shown that the vaccine does not result in elimination of a MLST in carriage

unless the MLST is solely associated with a VT serotype and that coexistence

of MLSTs or serotypes within an individual is a necessary prerequisite for coex-

istence of MLSTs within the population. The models considered in this thesis

could be extended to consider more biologically appropriate models which explore

the possibility of coexistence of bacterial types within an individual.
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In addition, in this thesis, various analyses were carried out to examine factors

important in determining the both the health and cost benefits of the use of PCV-

7 and the elements which could prevent the vaccine from having long-term efficacy.

The analyses carried out relating to disease could be extended by consideration

of more recent post-vaccination data to determine the effect of PCV-7.
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Appendix A

Global stability analysis

A.1 Model of two MLSTs with transmission due

to MLST

The following global stability analysis is for Re > 1 when (T1 + VT1)(0) > 0 and

(T2 + VT2)(0) > 0.

Let N = X + V + T1 + VT1 + T2 + VT2 . Given ε > 0, ∃ t1 such that for t > t1,
L
u
− ε

β2
6 N 6 L

u
+ ε

β1
and X + V 6 N . Consider

d

dt
(T1 + VT1 + T2 + VT2) = β1(X + V )(T1 + VT1) + β2(X + V )(T2 + VT2)

− (γ + u)(T1 + VT1 + T2 + VT2),

= (β1(T1 + VT1) + β2(T2 + VT2)) (X + V )

− (γ + u)(T1 + VT1 + T2 + VT2),

= (β1(T1 + VT1) + β2(T2 + VT2))×

(N − T1 − VT1 − T2 − VT2)−

(γ + u)(T1 + VT1 + T2 + VT2),
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6 β1(T1 + VT1 + T2 + VT2)(N − T1 − VT1 − T2 − VT2)

− (γ + u)(T1 + VT1 + T2 + VT2), since β1 > β2,

so

d

dt
(T1 + VT1 + T2 + VT2) 6

(
β1

(
L

u
+

ε

β1

− T1 − VT1 − T2 − VT2

)
− (γ + u)

)
(T1 + VT1 + T2 + VT2).

Let T = T1 + VT1 + T2 + VT2 . By the usual argument (see, for example, the

argument on page 64), ∃ t2 > t1 such that for t > t2

T 6
(γ + u)(Re − 1)

β1

+ ε

(
1 +

1

β1

)
.

Therefore,

N −X − V 6
(γ + u)(Re − 1)

β1

+ ε

(
1 +

1

β1

)
,

so, since N > L
u
− ε

β2
,

X + V >
L

u
− (γ + u)(Re − 1)

β1

−
(

1 +
1

β1

+
1

β2

)
ε,

=
γ + u

β1

−
(

1 +
1

β1

+
1

β2

)
ε.

Similarly,

1

T

dT

dt
> β2

(
L

u
− ε

β2

− (T1 + VT1 + T2 + VT2)

)
− (γ + u).

By the usual argument ∃ t3 > t2 such that for t > t3,
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T >
(γ + u)(Re2 − 1)

β2

− ε
(

1 +
1

β2

)
.

Hence arguing as above,

X + V 6
L

u
− (γ + u)(Re2 − 1)

β2

+ ε

(
1 +

1

β2

+
1

β1

)
,

=
γ + u

β2

+ ε

(
1 +

1

β1

+
1

β2

)
.

When β1 = β2, it has been shown that X + V → γ+u
β1

and T1 + VT1 + T2 + VT2 →
L
u
− γ+u

β2
as t→∞.

When β1 > β2, ∃ t4 such that for t > t4, X + V > 1
2
γ+u
β1

> 0.

Consider

d

dt

(T1 + VT1)

(T2 + VT2)
=

(Ṫ1 + ˙VT1)(T2 + VT2)− (T1 + VT1)(Ṫ2 + ˙VT2)

(T2 + VT2)
2

,

=
β1(X + V )(T1 + VT1)(T2 + VT2)− (γ + u)(T1 + VT1)(T2 + VT2)

(T2 + VT2)
2

− β2(X + V )(T1 + VT1)(T2 + VT2)− (γ + u)(T1 + VT1)(T2 + VT2)

(T2 + VT2)
2

,

=
(β1 − β2)(X + V )(T1 + VT1)

T2 + VT2

,

> (β1 − β2)
1

2

(γ + u)

β1

(
T1 + VT1

T2 + VT2

)
, for t > t4.

Let ξ =
T1+VT1

T2+VT2
. ξ is able to be defined as such since T2(t)+VT2(t) > 0. Therefore,

1

ξ

dξ

dt
> (β1 − β2)

1

2

(γ + u)

β1

> 0.
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So, ξ →∞ as t→∞. Hence, 1
ξ
→ 0 as t→∞. This means that

T2 + VT2

T1 + VT1

→ 0 as t→∞.

It can be deduced that, given ε > 0, ∃ t5 such that∣∣∣∣T2(t) + VT2(t)

T1(t) + VT1(t)
− 0

∣∣∣∣ < ε ∀t > t5.

So, 0 6 T2 + VT2 6 ε(T1 + VT1) and T1 + VT1 6 2L
u

for t > t6 > t5. Therefore, for

t > t6, 0 6 T2 + VT2 6 2εL
u

. So T2 + VT2 → 0 as t → ∞ since ε can be made as

small as required.

Given ε > 0, ∃ t7 > t1 such that for t > t7, T2 + VT2 6 ε. For t > t7,

1

T1 + VT1

d

dt
(T1 + VT1) = β1(X + V )− (γ + u),

6 β1

(
L

u
+

ε

β1

− (T1 + VT1)−
(γ + u)

β1

)
. (A.1)

This is true since X + V = N − T1 − VT1 − T2 − VT2 and

β1(X + V ) = β1(N − T1 − VT1 − T2 − VT2),

6 β1(N − T1 − VT1), since T2 + VT2 > 0.

Hence, from inequality (A.1) by the usual argument it can be deduced that ∃
t8 > t7 such that for t > t8

T1 + VT1 6
L

u
− γ + u

β1

+

(
1 +

1

β1

)
ε. (A.2)

By a similar argument using N > L
u
− ε

β2
for t > t7,

1

T1 + VT1

d

dt
(T1 + VT1) > β1

(
L

u
− ε

β2

− T1 − VT1 − ε−
γ + u

β1

)
,
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so ∃ t9 > t8 such that

T1 + VT1 >
L

u
− γ + u

β1

−
(

2 +
1

β2

)
ε for t > t9, (A.3)

again by the usual argument. Hence, combining (A.2) and (A.3) and letting

ε→ 0, T1 +VT1 → L
u
− γ+u

β1
as t→∞ and X+V = N−T1−VT1−T2−VT2 → γ+u

β1

as t→∞.

To determine the limiting values of X, V , T1, T2, VT1 and VT2 , first consider

d

dt
(X + T1 + T2) = L(1− f)− u(X + T1 + T2).

Therefore,

X + T1 + T2 →
L(1− f)

u
as t→∞.

It is known that T2 + VT2 → 0 as t → ∞. It can be deduced that, T2 → 0 and

VT2 → 0 as t→∞ since T2 > 0 and VT2 > 0. Hence, X + T1 → L(1−f)
u

as t→∞.

Next, consider

d

dt
(V + VT1 + VT2) = Lf − u(V + VT1 + VT2).

As a consequence,

V + VT1 + VT2 →
Lf

u
as t→∞,

so

V + VT1 →
Lf

u
since VT2 → 0 as t→∞.

Let X = (1− f)X̄, T1 = (1− f)T̄1, T2 = (1− f)T̄2, V = fV̄ and VT1 = fV̄T1 and

VT2 = fV̄T2 . Therefore,
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dX̄

dt
= L− uX̄ − β1X̄(T1 + VT1) + γ(T̄1 + T̄2)− β2X̄(T2 + VT2),

dT̄1

dt
= β1X̄(T1 + VT1)− (γ + u)T̄1,

and

dT̄2

dt
= β2X̄(T2 + VT2)− (γ + u)T̄2.

Since X + T1 → L(1−f)
u

as t→∞,

(1− f)X̄ + (1− f)T̄1 →
L(1− f)

u
.

Therefore,

X̄ + T̄1 →
L

u
.

It can be deduced that

dT̄1

dt
→ β1

(
L

u
− T̄1

)(
L

u
− γ + u

β1

)
− (γ + u)T̄1 = β1

L

u

(
L

u
− γ + u

β1

)
− β1

L

u
T̄1.

Consider some arbitrary ε > 0. ∃ t10 such that for t > t10,

dT̄1

dt
6 β1

L

u

(
L

u
− γ + u

β1

)
− β1L

u
T̄1 + ε.

To begin, consider T̄1 decreasing. T̄1 is decreasing when dT̄1

dt
< 0. dT̄1

dt
< 0 when

β1
L

u

(
L

u
− γ + u

β1

)
− β1

L

u
T̄1 + ε < 0.
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This is the case when

T̄1 >
L

u
− γ + u

β1

+
εu

β1L
. (A.4)

By the usual argument, ∃ t11 > t10 such that

T̄1 6
L

u
− γ + u

β1

+
2εu

β1L
∀t > t11.

Once T̄1 goes beneath the level L
u
− γ+u

β1
+ 2εu

β1L
it can never rise above this level.

Similarly, ∃ t12 > t11 such that

T̄1 >
L

u
− γ + u

β1

− 2εu

β1L
∀ t > t12.

So, once T̄1 is above L
u
− γ+u

β1
− 2εu

β1L
it can never drop beneath it. Therefore, for

t > max(t11, t12), ∣∣∣∣T̄1 −
(
L

u
− γ + u

β1

)∣∣∣∣ 6 2εu

β1L
.

But ε > 0 is arbitrary. It can thus be observed that T̄1 → L
u
− γ+u

β1
as t→∞ so

T1 → (1− f)

(
L

u
− γ + u

β1

)
as t→∞.

Since X + T1 → L(1−f)
u

,

X → L

u
(1− f)− (1− f)

(
L

u
− γ + u

β1

)
as t→∞.

Therefore,

X → (1− f)
γ + u

β1

.

It has been established that X + V → γ+u
β1

. So,
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V → γ + u

β1

− (1− f)
(γ + u)

β1

= f
(γ + u)

β1

as t→∞.

Since V + VT1 → Lf
u

as t→∞,

VT1 → f

(
L

u
− γ + u

β1

)
.

In conclusion, when Re > 1, T1(t) + VT1(t) > 0 and T2(t) + VT2(t) > 0,

X → (1− f)
γ + u

β1

, V → f
γ + u

β1

, T1 → (1− f)

(
L

u
− γ + u

β1

)
,

VT1 → f

(
L

u
− γ + u

β1

)
, T2 → 0 and VT2 → 0 as t→∞.

A.2 Model of two MLSTs with transmission due

to serotype

A.2.1 Global stability analysis for Re > 1 when T1(0) > 0,

or VT1
(0) > 0 and T2(0) = VT2

(0) = 0.

Let T = (Pβ1 + (1− P )β2)T1 + β2VT1 . Then

dT

dt
= [(Pβ1 + (1− P )β2)X + β2V − (γ + u)]T.

Since X + T1 → L(1−f)
u

and V + VT1 → Lf
u

as t→∞,
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1

T

dT

dt
→
[
(Pβ1 + (1− P )β2)

(
L(1− f)

u
− T1

)
+ β2

(
Lf

u
− VT1

)
− (γ + u)

]
,

(A.5)

i.e.

1

T

dT

dt
→ (Pβ1 + (1− P )β2)

L(1− f)

u
+ β2

Lf

u
− (γ + u)− T as t→∞.

Hence, if Re1 6 1, X → (1−f)L
u

, T1 → 0, V → Lf
u

, and VT1 → 0 as t→∞.

When Re1 > 1 it can be shown that

T → (Pβ1 + (1− P )β2)
L(1− f)

u
+ β2

Lf

u
− (γ + u) as t→∞.

dT1

dt
→

(
L(1− f)

u
− T1

)(
(Pβ1 + (1− P )β2)

L(1− f)

u
+ β2

Lf

u
− (γ + u)

)
− (γ + u)T1,

=
L(1− f)

u

(
(Pβ1 + (1− P )β2)

L(1− f)

u
+ β2

Lf

u
− (γ + u)

)
−

(
(Pβ1 + (1− P )β2)

L(1− f)

u
+ β2

Lf

u

)
T1.

Therefore,

T1 →
L(1−f)

u

(
(Pβ1 + (1− P )β2)L(1−f)

u
+ β2

Lf
u
− (γ + u)

)
(Pβ1 + (1− P )β2)L(1−f)

u
+ β2

Lf
u

= (1− f)

(
L

u
− γ + u

(Pβ1 + (1− P )β2)(1− f) + β2f

)
, as t→∞.
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Similarly,

VT1 = f

(
L

u
− γ + u

(Pβ1 + (1− P )β2)(1− f) + β2f

)
, as t→∞.

Hence,

X →lim
t→∞

(
L(1− f)

u
− T1

)
=

(1− f)(γ + u)

(Pβ1 + (1− P )β2)(1− f) + β2f

and

V →lim
t→∞

(
Lf

u
− VT1

)
=

f(γ + u)

(Pβ1 + (1− P )β2)(1− f) + β2f
as t→∞.

A.2.2 Global stability analysis for Re > 1 when T1(0) +

VT1
(0) > 0 and T2(0) + VT2

(0) > 0

Similarly to previous arguments, it can be shown that when T1(0) + VT1(0) > 0

and T2(0) + VT2(0) > 0, T1(t) + VT1(t) > 0 and T2(t) + VT2(t) > 0 ∀ t. Let

a = Pβ1 + (1− P )β2, b = β2 and c = Qβ1 + (1−Q)β2.

Consider

d

dt

(
aT1 + bVT1

cT2 + bVT2

)
=

(aṪ1 + b ˙VT1)(cT2 + bVT2)− (aT1 + bVT1)(cṪ2 + b ˙VT2)

(cT2 + bVT2)
2 ,

= (a− c)X (aT1 + bVT1)

(cT2 + bVT2)
,

= ((Pβ1 + (1− P )β2)− (Qβ1 + (1−Q)β2))X
(aT1 + bVT1)

(cT2 + bVT2)
.

That is, if it can be shown that X > ε > 0 for t > t0 for some ε, t0 then for

Pβ1 + (1− P )β2 > Qβ1 + (1−Q)β2
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aT1 + bVT1

cT2 + bVT2

→∞, as t→∞,

whereas for Qβ1 + (1−Q)β2 > Pβ1 + (1− P )β2,

aT1 + bVT1

cT2 + bVT2

→ 0, as t→∞.

If Qβ1 + (1−Q)β2 = Pβ1 + (1− P )β2,

d

dt

(
aT1 + bVT1

cT2 + bVT2

)
= 0.

So, in this case,
aT1+bVT1

cT2+bVT2
is constant.

However, X + V + T1 + VT1 + T2 + VT2 → L
u

as t→∞. Therefore, ∃ t1 such that

for t > t1, X + V + T1 + VT1 + T2 + VT2 6 2L
u

.

For t > t1,

dX

dt
> L(1− f)− (u+ aT1 + bVT1 + cT2 + bVT2)X,

> L(1− f)−
(
u+ max(a, b, c)2

L

u

)
X.

For

X 6
L(1− f)

2
(
u+ max(a, b, c)2L

u

) , dX

dt
>

1

2
L(1− f) > 0.

So, ∃ t2 > t1 such that

X >
1
2
L(1− f)

u+ max(a, b, c)2L
u

for t > t2.
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That is, X > ε > 0 for t > t2 as required.

Write ξ̂ =
aT1+bVT1

cT2+bVT2
. ξ̂ may be defined this way since cT2(t) + bVT2(t) > 0 as

T2(t) + VT2(t) > 0 and b, c > 0.

1

ξ̂

dξ̂

dt
= ((Pβ1 + (1− P )β2)− (Qβ1 + (1−Q)β2))X.

Suppose first that Pβ1 + (1− P )β2 > Qβ1 + (1−Q)β2. Then, since X > ε > 0,

((Pβ1 + (1− P )β2)− (Qβ1 + (1−Q)β2))X > 0 so ξ̂ →∞ as t→∞. Therefore,
1

ξ̂
→ 0 as t→∞. That is,

cT2 + bVT2

aT1 + bVT1

→ 0 as t→∞.

It can be deduced that, given ε > 0, ∃ t3 such that∣∣∣∣ cT2(t) + bVT2(t)

aT1(t) + bVT1(t)
− 0

∣∣∣∣ < ε ∀t > t3.

Hence, 0 6 cT2 + bVT2 6 ε(aT1 + bVT1) and aT1 + bVT1 6 2 max(a, b)L
u

. So,

0 6 cT2 + bVT2 6 2εL
u

. As a consequence, T2 and VT2 → 0 as t → ∞ since b and

c are strictly positive constants.

Consider

d

dt
(X + T1 + T2) = L(1− f)− u(X + T1 + T2).

So,

X + T1 + T2 →
L(1− f)

u
as t→∞.
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Similarly,

d

dt
(V + VT1 + VT2) = Lf − u(V + VT1 + VT2).

So,

V + VT1 + VT2 →
Lf

u
as t→∞.

However, T2 → 0 and VT2 → 0 as t → ∞. Therefore, X + T1 → L(1−f)
u

and

V + VT1 → Lf
u

as t → ∞. Then the same argument as that shown previously in

Chapter 3 for the GSA of Re > 1 and T2(0) = VT2(0) = 0 (given in Appendix

A.2.1) can be applied to show that as t→∞

X → (1− f)(γ + u)

(Pβ1 + (1− P )β2)(1− f) + β2f
,

T1 → (1− f)

(
L

u
− γ + u

(Pβ1 + (1− P )β2)(1− f) + β2f

)
,

V → f(γ + u)

(Pβ1 + (1− P )β2)(1− f) + β2f
,

and

VT1 → f

(
L

u
− γ + u

(Pβ1 + (1− P )β2)(1− f) + β2f

)
.

A similar argument shows that if Qβ1 + (1−Q)β2 > Pβ1 + (1− P )β2, as t→∞

X → (1− f)(γ + u)

(Qβ1 + (1−Q)β2)(1− f) + β2f
,

T2 → (1− f)

(
L

u
− γ + u

(Qβ1 + (1−Q)β2)(1− f) + β2f

)
,
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V → f(γ + u)

(Qβ1 + (1−Q)β2)(1− f) + β2f
,

and

VT2 → f

(
L

u
− γ + u

(Qβ1 + (1−Q)β2)(1− f) + β2f

)
.

When Qβ1 + (1−Q)β2 = Pβ1 + (1− P )β2 then the equations become

dX

dt
= L(1− f)− uX − (Pβ1 + (1− P )β2)X(T1 + T2)

− β2X(VT1 + VT2) + γ(T1 + T2),

d(T1 + T2)

dt
= (Pβ1 + (1− P )β2)X(T1 + T2) + β2X(VT1 + VT2)

− (γ + u)(T1 + T2),

dV

dt
= Lf − uV − β2V (VT1 + VT2)− (Pβ1 + (1− P )β2)V (T1 + T2)

+ γ(VT1 + VT2),

and

d(VT1 + VT2)

dt
= β2V (VT1 + VT2) + (Pβ1 + (1− P )β2)V (T1 + T2)

− (γ + u)(VT1 + VT2).

The next result follows from that of the global stability argument described in

the previous section of this appendix (A.2), with T1 replaced by T1 + T2 and VT1

replaced by VT1 replaced by VT1 + VT2 . That is,

T1 + T2 → (1− f)

(
L

u
− γ + u

(Pβ1 + (1− P )β2)(1− f) + β2f

)
,
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X → (1− f)(γ + u)

(Pβ1 + (1− P )β2)(1− f) + β2f
,

VT1 + VT2 → f

(
L

u
− (γ + u)

(Pβ1 + (1− P )β2)(1− f) + β2f

)
,

and

V → f(γ + u)

(Pβ1 + (1− P )β2)(1− f) + β2f
as t→∞.

X, T1, T2, V , VT1 , VT2 tend to the surface given by X = (1 − f)(L
u
− ξ), V =

f(L
u
− ξ), VT1 + VT2 = fξ and T1 + T2 = (1− f)ξ, where

ξ =
L

u
− γ + u

(Pβ1 + (1− P )β2)(1− f) + β2f
.

Furthermore, aT2 + bVT2 = k(aT1 + bVT1) where k is a constant. On the above

surface, if VT1 = α1fξ then 0 6 α1 6 1 and VT2 = (1 − α1)fξ. Similarly, if

T1 = α2(1− f)ξ then 0 6 α2 6 1 and T2 = (1− α2)(1− f)ξ. Now,

d

dt

(
T1

T2

)
=
Ṫ1T2 − T1Ṫ2

T2
2 ,

=
1

T2
2 (T2(aXT1 + bXVT1 − (γ + u)T1)− T1(aXT2 + bXVT2 (A.6)

− (γ + u)T2)) ,

=
X

T2
2 (T2T − T1kT ),

where, as before, T = aT1 + bVT1
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=
XT

T2

(
1− T1k

T2

)
.

It can be asserted that ∃ t5 > 0 and ε1 > 0 such that for t > t5, T > ε1 > 0. Note

that

X + V → γ + u

(Pβ1 + (1− P )β2)(1− f) + β2f
<
L

u
.

Hence, ∃ ε2 > 0 and t6 > 0 such that for t > t6∣∣∣∣X + V − L

u

∣∣∣∣ > ε2 > 0.

∃ t5 > t6 such that for t > t5,
∣∣N − L

u

∣∣ 6 ε2
2

. For t > t5, (k+ 1)T = |aT1 + bVT1 +

aT2 + bVT2| > min(a, b) |T1 + VT1 + T2 + VT2 | = min(a, b)|N − (X + V )|. But

|N − (X + V )|+ |N − L
u
| > |L

u
− (X + V )|. Hence, for t > t5,

|N − (X + V )| >
∣∣∣∣Lu − (X + V )

∣∣∣∣− ∣∣∣∣N − L

u

∣∣∣∣ > ε2
2
,

so

T > ε1 =
min(a, b)

2(k + 1)
ε2 > 0.

Hence ∃ t7 > 0 and ε, ε1 > 0 such that for t > t7, X > ε > 0, T > ε1 > 0 and

T2 6 2L
u

.

Thus, if k T1

T2
> 1 then d

dt
T1

T2
< 0 and if k T1

T2
< 1 then d

dt
T1

T2
> 0. Using a similar

argument to one used previously it is straightforward to show that T1

T2
→ 1

k
as

t→∞.
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Now,

b(kVT1 − VT2) = k(aT1 + bVT1)− (aT2 + bVT2)− a(kT1 − T2),

= −a(kT1 − T2)→ 0 as t→∞.

So

VT1

VT2

→ 1

k
as t→∞.

Hence

α1

1− α1

→ 1

k
and

α2

1− α2

→ 1

k
as t→∞.

So α1 → α2 as t→∞. Moreover, for all times t,

aT2 + bVT2 = k(aT1 + bVT1),

a(1− f)(1− α2) + b(1− α1)f = k(aα2(1− f) + bα1f),

a(1− f) + bf = α1bf + α2a(1− f) + kaα2(1− f) + kbα1f,

= α1(bf + a(1− f))(k + 1)+

(α2 − α1)a(1− f)(k + 1).

So,

α1 =
a(1− f) + bf − (α2 − α1)a(1− f)(k + 1)

(k + 1)(a(1− f) + bf)
.

Thus,

α1 →
1

k + 1
as t→∞.

So, α1, α2 → 1
k+1

as t → ∞. So X, V , T1, T2, VT1 and VT2 approach the equilib-
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rium point where

X = (1− f)

(
L

u
− ξ
)
, T1 = (1− f)αξ, T2 = (1− f)(1− α)ξ,

V = f

(
L

u
− ξ
)
, VT1 = αfξ, and VT2 = fξ(1− α), for α =

1

1 + k

and 0 < α < 1. k is given in terms of the initial conditions by

aT2(0) + bVT2(0)

aT1(0) + bVT1(0)
.
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H. Schennach, G. Schäfer, F. Frauscher, M. Boniol, G. Severi, C. Robertson,

and P. Boyle (2008). Tyrol Prostate Cancer Demonstration Project: Early

Detection, Treatment, Outcome, Incidence And Mortality. British Journal

of Urology International 101 (7), 809–816.

Beall, B., M. C. McEllistrem, R. E. Gertz Jr., S. Wedel, D. J. Boxrud, A. L.

Gonzalez, M. Medina, R. Pai, T. A. Thompson, L. H. Harrison, L. McGee,

C. G. Whitney, and the Active Bacterial Core Surveillance Team (2006).

Pre- And Postvaccination Clonal Compositions Of Invasive Pneumococcal

Serotypes For Isolates Collected In The United States In 1999, 2001, And

2002. Journal of Clinical Microbiology 44 (3), 999–1017.
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