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Abstract 

 

Diagnostic imaging is the gold standard for differential diagnosis of disease, with 

ultrasound being the second most requested scan after X-ray with more than 8 million 

ultrasounds performed by NHS England in 2021 accounting for over 20% of all imaging 

performed. Ultrasound cross sectional imagery is used every day to make critical 

decisions that could drastically affect patient outcome. While diagnostic ultrasound cross 

sections are clearly defined within a clinical protocol, the clinician is solely responsible 

for acquisition and interpretation of ultrasound imagery, with few safeguards against 

human error. This Canon sponsored EngD looked at the potential of machine learning to 

standardise processes, reduce burden on users by automating the adherence to protocols, 

reduce the time required by streamlining workflows, and lower the skill requirement of 

the clinical user. The initial study was the first to characterise the response of neural 

networks for the classification of cross sections specified by the Japanese abdominal 

scanning protocol. This protocol, one of the largest ultrasound protocols ever studied, 

consists of 16 overlapping cross sectional views of the abdomen, and achieved a 

classification accuracy of 79.9%. This provided a baseline for a transfer learning study, 

utilising pre-trained neural networks to increase training efficiency and lead to an 

increase in accuracy to 83.9%. Small mobile networks were shown to be just as effective 

at classification of ultrasound at a fraction of the system resources, achieving 



 

 

 

comparable accuracies of 84.5%. Novel methods of cost reduction were explored to 

lower the burden of production of datasets for machine learning using power theory and 

active learning, providing a novel cost-effective framework for data collection and 

labelling. In order to overcome the limitations of image-based classification, a novel 

approach of augmenting neural network classification with positional data from lab 

based positional tracking systems was proposed. Ultrasound and positional data were 

collected from an abdominal phantom which allowed for the classification of six 

overlapping and hard to recognise abdominal cross sections with accuracies above 98%. 

A novel pilot study on 11 soft body Thiel cadavers, further refined this technique by 

exploring normalisation as a method to reduce the variability of coordinates produced 

when scanning the abdominal cavity and achieved an accuracy 96.8% using 3 points of 

normalisation. This work has demonstrated the efficacy of classification of abdominal 

ultrasound cross sections using neural networks and overcome the accuracy limitations 

of image-only classification of common ultrasound edge cases using a novel positional 

tracking approach, that achieved results far exceeding the current industry classification 

standards of abdominal cross sections. 
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Chapter 1 

Introduction 

 

1.1. Project introduction 

Medical imaging scans such as those produced by Ultrasound, Xray, CT and MRI, are 

an increasingly essential part of diagnostic process, clinicians rely on imaging modalities 

such as ultrasound to provide evidential proof for confirmation of differential diagnosis. 

Medical ultrasound is one of the most used diagnostic imaging modalities in the world, 

more than 8M ultrasound scans were performed in the NHS in England in 2021 

accounting for 20% of all medical imaging activity [1]. Ultrasound offers a safe, 

portable method for producing real time scans of the human body but relies heavily on 

the skills and experience of the operator limiting further uptake and advancement of the 

modality. Currently, clinical diagnostics depends heavily on the experience and 

vigilance of the increasingly busy clinician to produce images of sufficient quality by 

manually pressing the ultrasound probe against the patient. There is currently no system 

to assist operators in adhering to these guidelines, nor assist in the triaging where 

operator fatigue may play a role in detection of important clinical details vital to correct 

diagnosis. The main goal of this EngD project was to develop AI solutions to assist in 

reducing the burden of these vital diagnostic procedures, with the ultimate goal of 
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automating many common ultrasound tasks, such as capturing cross sectional planes and 

organ scans for diagnostic analysis. This would reduce the skill level required by 

sonographers to product high quality imagery and even open up potential for laymen 

lead scans performed by patients at home. 

1.1.1. Background 

This Future Ultrasonic Engineering EngD project was a collaboration between the 

University of Strathclyde department of Electronic and Electrical Engineering, 

University of Glasgow, department of Engineering and Canon Medical Research with 

the goal of applying machine learning to the collection of abdominal ultrasound cross 

sections. 

Canon Medical Systems Corporation are a leading worldwide manufacturer of medical 

imaging devices, such as CT, MRI, and advanced ultrasound scanners, and have been 

actively involved in the development of medical ultrasound technology since the 1970s. 

The company is committed to innovation and invests heavily in research and 

development to advance medical imaging technology both through in house 

development and through its partnerships with leading academic and research 

institutions to develop new imaging techniques and applications. Canon Medical 

Systems Edinburgh, since its founding as Voxar in 1995 subsequent acquisition first by 

Toshiba Medical and then by Canon Corporation in 2016, has a strong focus on the 

development of ground-breaking medical AI systems. 
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1.1.2. Motivation 

This Canon Medical Research proposed project sought to apply machine learning to the 

process of abdominal ultrasound diagnostic scanning. The main goals of this project 

were to ensure uniformity of the capture, reduce the time taken to perform the scans, 

assist with the triaging, and ultimately automate the whole screening process. 

This project has substantial strategic value to both Canon Medical Systems and 

Strathclyde University. The development of automated and guided ultrasound scanning 

comes at a time where there is not only an increased dependency on imaging modalities 

as the primary focus of confirming a differential diagnosis, but also a worldwide 

shortage of Sonographers capable of performing advanced ultrasound scans. The 

collection of standardised cross sections is of particular interest in Japan due to the 

annual standard screening programs mandated by corporate insurance. Once productised 

this technology will assist operators with lower levels of training and experience in the 

collection of high-quality ultrasound scans. Reducing the skill floor for this workflow, 

allowing it to be undertaken more cost effectively and also decreasing the burden on 

senior clinicians. This will also ensure greater adherence to protocol, vital for ensuring 

adherence to insurance. Automating the collection processes of medical ultrasound using 

machine learning and robotics would allow for increased uptake throughout diagnostic 

medicine as quality and accuracy would no longer be operator dependant reducing the 

burden on clinicians potentially increasing the number of diseases where ultrasound 

could serve as a first line diagnostic modality. 
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1.2. Research Questions 

Primarily this project was designed to explore the potential to automate various aspect of 

the clinical and acquisition workflow in diagnostic abdominal ultrasound. Canon 

medical research specified the following research questions as part of the project 

specification: 

1. How can AI be utilized to automatically annotate ultrasound images to identify 

and mark specific planes in accordance with clinical guidelines?  

2. What methods can be developed to simplify the screening procedure in 

ultrasound imaging, particularly in automating the identification of correct planes 

during a continuous sweep? 

3. How can the accuracy of classifying edge cases in ultrasound imaging, especially 

in the context of the Japanese abdominal protocol focusing on kidneys, be 

improved through AI? 

1.3. Knowledge Contribution 

This thesis made the following contributions: 

Section 2.2: Provided a literature review of the foundational principles of ultrasound 

as well as the reasonings behind its use as a medical diagnostic modality. This 

was contextualised with a discussion of the positives and negatives of 

alternatives diagnostic medical imaging modalities. 
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Section 2.3: An analysis of the Japanese abdominal ultrasound screening protocol, 

providing the clinical reasoning behind the collection of the specified cross 

sections and common diagnosis. 

Section 2.4:  A literature review of neural networks covering the history of its 

development, the transition of deep learning methods, this review includes an 

overview of computer imaging and analysis used during pre-processing of the 

dataset and discussion of the foundational techniques and methods used in 

training a neural network. 

Section 3.4: For the first time a baseline accuracy of neural network 

classification of the Japanese abdominal screening protocol was produced using 

commonly available neural networks. This was then compared to that of 

networks pre-trained using transfer learning from the ImageNet challenge dataset. 

There is a number of consistent classification error due to similarity of the 

ultrasound images and intersecting regions of interest. 

Industry Prototype: The image-only neural networks described in Section 3.4 were 

integrated into an industrial prototype by engineers in Canon Japan with the 

assistance of the author and are currently undergoing testing. 

Section 3.5.1: The accuracy results of neural networks designed for mobile 

applications. Producing accuracy results comparable to that of larger networks, 

suggesting that network size and depth provided limited training improvement 

due to the restricted visual information available in ultrasound scans.  
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Section 4.3: Development of a cost focused framework, using statistical methods 

commonly used in healthcare for collection and labelling of ultrasound data for the 

production of lower cost datasets for pilot studies. Active learning was applied to 

significantly reduce the cost of manual annotation of data. 

Section 5.4: A proof of concept infrared positional sensor system to augment machine 

learning classification was tested on an abdominal phantom to improve the image-

based classification of difficult to identify and edge case abdominal ultrasound cross 

sections. Optical Infrared proved to be a highly accurate method of probe tracking 

but required an expensive camera setup. The IR sensor prototype which was based 

off a VR body tracking setup provided increased classification accuracy using a 

much lower cost setup. This prototype sensor system was then subsequently used in 

a real-life scenario for the collection of cadaver cross sections. 

Section 6.4: The efficacy of Thiel cadaver for ultrasound machine learning datasets 

was examined. Common physiological difficulties that may cause the region of 

interest to look different were explored. 

Section 6.5: The positional tracking system from section 5.4 was testing in a pilot 

cadaver study. This study examined the real-world use of sensor information to 

improve edge case classification of abdominal ultrasound cross sections. Even where 

there was significant deviation from image norms the positional information 

successfully improved classification of those cross sections even when an image 

only approach failed due to the complexity of the imagery. 
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1.4. Publications 

Conference Proceedings: 

A. Lawley, R. Hampson, K. Worrall, and G. Dobie, “Prescriptive method for optimising 

cost of data collection and annotation in machine learning of clinical ultrasound,” in 

45th Annual International Conference of the IEEE Engineering in Medicine and Biology 

Society (EMBC 2023), 2023. Based on chapter four of thesis 

R. Hampson, A. Lawley, and G. Dobie, "Phantom study of arterial localisation using 

tactile sensor array and a normal vs. shear pulse pressure propagation method," in 45th 

Annual International Conference of the IEEE Engineering in Medicine and Biology 

Society (EMBC 2023), 2023. 

T. Vedran, A. Lawley, S. McKnight, E. Mohseni, G. Dobie, T. O'Hare, C. MacLeod, 

and G. Pierce. "Automated Bounding Box Annotation for NDT Ultrasound Defect 

Detection." in IOP Physics Enhancing Machine Learning in Applied Solid Mechanics, 

2022. 

Journal Publications: 

A. Lawley, R. Hampson, K. Worrall, and G. Dobie, "Analysis of neural networks for 

routine classification of sixteen ultrasound upper abdominal cross sections," in 

Abdominal Radiology, pp. 1-11, 2024.  Based on chapter three of this thesis.  
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A. Lawley, R. Hampson, K. Worrall, and G. Dobie, "A cost focused framework for 

optimizing collection and annotation of ultrasound datasets," in Biomedical Signal 

Processing and Control, vol. 92, p. 106048, 2024. Based on chapter four of this thesis. 

A. Lawley, R. Hampson, K. Worrall, and G. Dobie, “Using Positional Tracking to 

Improve Ultrasound Machine Learning Classification” in Machine Learning: Science 

and Technology. Based on chapter five of this thesis. 

1.5. Thesis structure 

The thesis is structures as follows: 

Chapter 2 provides a contextual literature review of the positives and negatives of 

medical ultrasound and alternative modalities. An analysis of the Japanese abdominal 

ultrasound screening protocol with special context to the anatomical and physiological 

concerns of these organs. Following this is a literature review of machine learning, its 

history, and the transition towards more deep learning techniques. A foundational 

overview of computer imaging techniques used in pre-processing of the data and 

machine learning training methods is provided. This is then contextualised with both 

current and future trends in medical machine learning. 

Chapter 3 documents the creation of a baseline response to the Japanese abdominal 

ultrasound protocol. This chapter examines the effectiveness of 9 neural networks using 

transfer learning for 16 abdominal ultrasound cross sections from 64 patient sets to 

establish a baseline response. The highest validation accuracy was attained by both 

GoogLeNet and InceptionV3 is 83.9% using transfer learning and the large sample set of 
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26,294 images. When the first and second highest predictions (top-2) is considered an 

accuracy of 95.1% was achieved using InceptionV3. Alexnet attained the highest 

accuracy of 79.5% (top-2 of 91.5%) for the smaller sample set of 800 images. The 

neural networks evaluated during this study were also successfully able to identify 

problematic individual cross sections such as between kidneys, with right and left kidney 

being accurately identified 78.6% and 89.7% respectively. A further case study of 

mobile and small sized networks confirmed that small efficient network could be highly 

effective for Ultrasound classification. This chapter builds upon existing studies, 

demonstrating the potential accuracy of multiple neural network architectures when 

classifying standard abdominal cross sections. Neural network depth provides only 

limited improvement to classification accuracy with a difference of just 2.2% between 

the top results of the nine networks tested. Dataset size proved a more important factor 

with more complex neural networks providing higher accuracy as dataset size increases 

and simpler linear neural networks providing better results where the dataset is small. 

Chapter 4 seeks to reduce the burden of primary data collection of medical ultrasound 

images, which presents a notable hurdle in the form of the high costs associated with 

clinical data generation and annotation. The challenge of balancing costs against dataset 

size is a concept well-recognised within the realm of clinical trials. Consequently, the 

strategies employed in this domain can be adapted to streamline the data collection and 

annotation procedures, thereby mitigating expenses and timelines in the context of 

machine learning-driven feasibility studies. This chapter introduces a biphasic 

framework designed to evaluate the cost of data collection via iterative predictions of 
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accuracy in relation to sample size. The framework also incorporates active learning 

techniques to guide and optimise comprehensive human annotation specifically for 

machine learning applications within the domain of medical ultrasound imaging. The 

chapter showcases the potential reduction in costs through the utilisation of publicly 

available breast, foetal, and lung ultrasound datasets, as well as presenting a practical 

case study centred around the breast ultrasound dataset. The findings underline the 

ability to predict the correlation between dataset size and ultimate accuracy, echoing a 

pattern akin to that seen in clinical trials. Substantial enhancements in accuracy are 

observed with the utilisation of just 40-50% of the data, contingent on the applied 

tolerance metric. The employment of active learning further reduces the necessity for 

manual annotation, resulting in a marked cost reduction of approximately 66%, while 

maintaining a permissible accuracy deviation of around 4% of theoretical maximums. 

The significance of this work lies in its ability to quantify how much additional data and 

annotation will be required to achieve a specific research objective. These methods are 

already well understood by clinical funders and so provide a valuable and effective 

framework for feasibility and pilot studies where machine learning will be applied 

within a fixed budget to maximise predictive gains, informing resourcing and further 

clinical study. 

Chapter 5 explores the use of positional data to augment machine learning classification 

of six otherwise difficult to identify cross sections. For large protocols like those 

commonly performed on the abdomen, traditional image only machine learning 

classification can provide only limited functionality, for example it can be difficult to 
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differentiate between multiple liver cross sections or those of the left and right kidney 

from image alone. In this proof of concept, positional tracking information was added to 

the image as an additional input to a neural network to provide the additional context 

required to recognise these optical and sensor based infrared tracking (IR) was used to 

track the position of an ultrasound probe during the collection of clinical cross sections 

on an abdominal phantom. Convolutional neural networks were then trained using both 

image-only and image with positional data, the classification accuracy results were then 

compared. The addition of positional information significantly improved average 

classification results from ~90% for image-only to 95% for optical IR position tracking 

and 93% for Sensor-based IR in six common abdominal cross sections. The addition of 

low-cost positional tracking to machine learning ultrasound classification will allow for 

significantly increased accuracy for identifying important diagnostic cross sections, with 

the potential to not only provide validation of adherence to protocol but also could 

provide navigation prompts to assist the user in capturing cross sections in future. 

Chapter 6 explores the suitability of Thiel cadavers for producing abdominal ultrasound 

data for training neural networks. This cadaver data is then used to test positional input 

for improving machine learning classification of difficult to identify abdominal cross 

section. The Thiel embalming method preserves cadavers effectively, maintaining tissue 

properties similar to that of fresh cadavers, making them valuable for medical research 

and teaching. While there have been studies of image quality for organ recognition prior 

to this study, these did not consider the unique requirements of machine learning. Cross 

sectional ultrasound images were taken from 11 Thiel cadavers, aorta, gallbladder, bile 
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duct, portal vein, as well as the left and right kidneys. The chosen cross-sections include 

regions with overlapping structures or visual similarities, simulating the complexity of 

clinical scenarios. The study demonstrates that relying solely on image-based training 

for machine learning models would likely encounter many challenges due to 

physiological variations and incidental findings common in cadavers. These challenges 

arise from morbidity and disease processes, making it crucial to select training data with 

relatively normal anatomy. The previous phantom study showed that infrared positional 

sensor information was shown to improve machine learning classification accuracy to 

~93% for six common difficult to differentiate ultrasound abdominal cross sections, but 

the limitations of this study meant that there was significant overfitting due to the use of 

a single subject and did not allow the calibration algorithm to be fully tested. The 

variation in anatomy visibility coupled with the variability of abdominal cavity size of a 

cadaver allows for additional validation of the positional tracking and calibration system 

for machine learning classification. 6 common abdominal scans and 3 calibration point 

scans were collected from 11 cadavers using an ultrasound probe with an infrared sensor 

attached. Neural networks were trained using image-only and position augmented 

datasets using transfer learning. While an image-only approach using transfer learning 

from the previous phantom trained models failed due to the large variation within the 

cadaver image sample set. The addition of positional inferred sensor data allowed for the 

networks to achieve average classification accuracies of 92.8% for three-point 

calibration. This result suggests that positional tracking could therefore substantially 

improve recognition of edge case and difficult to identify diagnostic ultrasound cross 

sections. The use of machine learning to assist in the collection of ultrasound diagnostic 
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cross sections could not only improve clinical workflows by automatically collecting the 

best image and supporting decision making, but it also provides a route towards 

automating the collection process. 

Overall, this research provides valuable insights into the complexities of using machine 

learning for abdominal ultrasound diagnosis and highlights the importance of 

incorporating positional data for improved accuracy.  
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1.6. Covid-19 Impact Statement 

The COVID-19 pandemic had a significant impact on both university and industrial 

partner operation during the time of this EngD. The initial project specification was a 

software-based machine learning EngD project, supported closely by data from the 

industrial partner. Canon Medical Research was severely affected by COVID-19 and 

was unable to provide required clinical data to move forward with the original project 

plan. In order to mitigate this disruption, it was necessary to switch to a primary 

collection model, using phantom and cadaver studies. While necessitating a much 

smaller scale level of activities, it provided a small-scale ultrasound image dataset for 

traditional machine learning analysis and also provided the opportunity for the 

development of a sensor-based position recognition proof of concept for machine 

learning classification but there are notable limitations due to the sample size of the 

datasets that could be generated using available resources. 
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Chapter 2  

Literature Review 

 

2.1. Introduction 

This literature review is designed to provide an overview of diagnostic medical imaging 

and the difficulties surrounding its collection and analysis. It will provide an overview of 

ultrasound as a modality and outlines the fundamental scientific principles of ultrasound 

imaging and provides a brief discussion on alternative medical imaging modalities. 

There is then an in-depth overview of the Japanese abdominal protocol, looking at the 

anatomical and physiological reasoning behind the collection of these medical cross 

sections and examining the role ultrasound plays in diagnosis. Finally, computer vision 

and machine learning principles are discussed with regards to medical imaging and 

devices. This section provides a general overview of the history of machine learning as 

well as an initial introduction to the foundational techniques underpinning this project. 

Each subsequent chapter has its own literature review focused on its specific specialist 

area. 
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2.2. Diagnostic Medical Imaging 

The utilisation of medical imaging has progressively gained widespread acceptance 

within clinical protocols, as it is able to provide a consistent empirical means of 

confirming differential diagnosis. This shift towards medical imaging stems from a 

collective effort to establish safer and more consistent empirical diagnostic procedures, 

moving away from relying solely on clinical judgment, where individual clinician skills 

could significantly impact the diagnostic outcome [2]. While dissenting opinions exist 

within clinical practice [3, 4], the growing reliance on medical imaging has consistently 

yielded a reduction in diagnostic errors [5-7]. It is estimated that Radiographers make an 

error in around 3-5% [8] of all cases with 60-80% of those error being perception based 

[9], this is where an anomaly is not noticed by the radiographer during reporting. In an 

era characterised by escalating litigation, with 25% of all law suits against clinicians and 

hospitals due to diagnostic error [10], the assurance of confirmatory diagnosis and 

treatment effectiveness stands as a paramount concern. 

Between 1990 and 2000, medical imaging contributed to an estimated 150% surge in the 

average cost of diagnoses [11-13]. This upward trend is anticipated to continue due to 

mounting demand throughout the healthcare system [14]. Notably, from 2014 to 2019, 

the NHS observed an average annual increase of demand of ~5% for ultrasound and ~7% 

for CT and MRI [15]. Almost 10 million ultrasound scans were performed by the NHS 

in 2022, with cancer screening and diagnosis being cited as a significant factor [16]. 

However, investment in scanning technology has not kept up with the increasing 

demand leading to extended wait times for diagnosis confirmation, likely resulting in 
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delayed and overlooked diagnoses. This, in turn, exacerbates healthcare costs within an 

already strained system [17]. Alongside these factors, there is also the time and effort 

required to perform each scan. Ultrasound procedures necessitate clinicians to directly 

apply pressure with the probe against the patient. As patient numbers grow and protocols 

become more involved, the risk of workplace injuries such as repetitive strain injuries is 

increased [18, 19], it is suggested that this may play a significant role in occupational 

burnout [20].  

These factors have culminated in a chronic shortage of skilled sonographers [21, 22]. 

Although clinical personnel are capable of conducting these scans, time constraints limit 

their capacity. Unlike other modalities, such as radiology, in these cases ultrasound often 

lacks the safety net of double reporting [23, 24], where both an expert radiologist and 

diagnosing clinician review the images and approve scans, leaving the operator solely 

responsible for on-the-spot decision-making during the procedure. Clinicians are 

grappling with escalating patient loads, often involving complex cases, resulting in 

fatigue and an increased likelihood of overlooking crucial details in medical image 

analysis, consequently contributing to diagnostic errors [25-27]. This has led to a 

difficulty in both the training and retention of ultrasound skills within the clinical 

community [28-30]. 

Outside of the acute setting, diagnostic screening and monitoring programs are widely 

acknowledged as a useful tool for the early identification of disease [31, 32]. The 

success of screening programmes hinges on both the adherence and uptake of often 

asymptomatic individuals to the specific methodology employed and the nature of the 
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disease under examination [33]. Diagnostics in medical screening is characterised by 

noticing intricate nuances and sifting through a multitude of variables to converge on a 

potential cause using the process of making an early differential diagnosis [34]. The 

early diagnosis and treatment not only has consistently yielded a higher prevalence of 

favourable outcomes, it is also shown to have a lower financial cost associated with 

intervention [35, 36], however, creates a significant workload for those tasked with 

performing the diagnosis [37]. 

2.2.1. Medical Ultrasound Imaging 

Medical ultrasound, also known as diagnostic medical sonography or ultrasonography, is 

a non-invasive imaging technique that uses high-frequency sound waves to create 

images of the internal structures of the human body [38]. It is widely used in the medical 

field to visualise organs, tissues, and various anatomical structures in real time. 

Ultrasound is safe, painless, and does not involve ionising radiation, making it suitable 

for use in a variety of medical settings. 

Medical ultrasound devices are typically small enough to be mounted in a cart (as seen 

in Figure 2.1(a)) allowing for procedures to be performed at the patient’s bedside or 

clinical office. A handheld device called a transducer (as seen in Figure 2.1(b)) emits 

sound waves into the body. These sound waves are then reflected back as echoes when 

they encounter different tissues and structures with varying densities [39, 40]. The 

transducer also receives these echoes and sends them to a computer, which processes the 

information to create real-time images on a monitor. While there are a wide variety of 

the transducers on the market today, the most common transducers used for abdominal 
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ultrasound are curved convex arrays commonly used for capturing standard abdominal 

cross sections and flat, linear probes, more commonly used for visualising 

musculoskeletal (MSK) or vascular structures. The resulting images provide valuable 

information about the size, shape, texture, and movement of the organs and tissues being 

examined (Figure 2.1(c)).  

 

Figure 2.1 - a) example of a typical Canon medical ultrasound device [41].  b) example 

of a typical convex ultrasound transducer [42]. c) example of b-mode medical 

ultrasound image of the liver. 

The market for medical ultrasound devices is expanding rapidly, it is currently estimated 

to be worth around US$6.5billion per annum (p/a) with that number set to grow to 

around US$11.5billion p/a by 2030 [43]. While there are hundreds of manufacturers of 

medical ultrasound devices, the five largest manufacturers are: GE, Siemens, Phillips, 

Hitachi and Canon Medical (previously Toshiba Medical) [43] Typically a cart mounted 

medical ultrasound devices cost around £30,000-100,000 with a transducer costing 

between £6,000 and £20,000. New technologies such as wireless ultrasound scanners 

costing as little as £1,700 are currently being trialled by the NHS with encouraging 
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results [44] but it is important to highlight that there is always a trade-off among 

portability, cost, and image quality. 

2.2.1.1. Fundamentals of Ultrasound 

Ultrasound imaging works by transmitting and detecting high-frequency sound waves 

and analysing how the sound frequency changes as it travels through a scanned material. 

This process allows us to create images of internal structures [45]. The creation and 

measurement of ultrasound is performed using a piezoelectric transducer, built upon the 

discoveries made by the Curie Brothers in 1880 [46]. This transducer leverages the 

ability of piezoelectric materials to convert electrical stimuli into mechanical vibrations 

and vice versa, enabling the precise manipulation and measurement of mechanical sound 

waves via electrical current. The optimal frequency for effective propagation hinges on 

the intended application. Diagnostic medical ultrasound typically operates within the 

frequency range of 2 MHz to 15 MHz [38] with lower typically frequencies used for 

wide area scan of anatomical areas deep within the body. Higher ultrasound frequencies 

enhance spatial resolution for imaging, yet they are hampered by wave attenuation, 

reducing their effective detection distance. This phenomenon of acoustic impedance and 

attenuation significantly influences ultrasound theory. As material density or sound 

wave speed rises, so does the impedance against ultrasound propagation. Attenuation 

occurs as the wave traverses an object, contingent upon its frequency and density [47]. 

Consequently, a trade-off between resolution, wave speed, and scan depth emerges 

during ultrasound scans  [48]. 
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Medical ultrasound devices are composed of transducer arrays arranged for specific 

beam shapes to generate images. B-mode ultrasound (as seen in Figure 2.1(c)) is one of 

the most common ultrasound imaging modes and employs pulse echoes to construct 

cross-sectional images. The amplitude of the returning echo modulates image brightness 

of the returning elements that make up the image. Organ complexity necessitates image 

construction based on transducer angles and echo amplitudes. However, image quality is 

restricted by array type, frequency, and scanning depth. Ultrasound data can further be 

distorted by artifacts and noise during image formation, such as in-filling between array 

elements, leading to interpolation issues [49]. 

Ultrasound artifacts are errors in the visual composition of the image and arises from 

various causes, including technique errors and disease processes. They often cause a 

reduction in ultrasound image quality, crating false landmarks and can obscure 

important visual information in noise and shadow [50]. The three primary types: 

reflection, shadowing, and speckle, have a distinct impact on image quality [51, 52]. 

Reflection artifacts (Figure 2.2(a)) stem from reverberated pulse data, resulting in 

artefacts such as bright lines or trailing, and mirror imaging transposing and obscuring 

anatomical details [53]. Reflection artifacts are known to cause difficulties in machine 

learning as it creates false landmarks and obscure true landmarks  [54].  

Shadowing (Figure 2.2(b)) is due to pulse echo attenuation caused by dense materials 

like bone, calcifications, tumours, gas pockets, and tissues [51]. Speckle, or acoustic 

noise (Figure 2.2(c)), caused by nearby transducer elements, consistently hampers image 

quality, affecting contrast and spatial resolution. This can cause significant difficulties in 
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machine learning [55] especially for segmentation and boundary tasks [56].  Ongoing 

research explores techniques like higher frequencies [57], statistical analyses [58-60], 

and filtering [61, 62] is being explored in order to mitigate speckle that reduces image 

quality. Noise artifacts are known to cause significant reduction in ultrasound image 

quality which could reduce machine learning accuracies [63]. 

 

Figure 2.2- Diagrammatic representation of ultrasound artifacts that can be seen within 

liver scans: a) reflection, b) shadowing, c) speckle. 

Ultrasound is non-invasive and boasts an excellent safety track record with no recorded 

injury due to diagnostic ultrasound in the last 50 years of use although there is an 

accepted non-zero risk of injury [64]. Soundwave transmission from the transducer into 
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the object necessitates direct contact or a coupling medium. With each ultrasound pulse, 

energy is lost as heat, this is often insignificant over short durations, but can build during 

high-frequency operations, or with stationary beams potentially leading to potential 

burns [65]. The accumulation of mechanical energy as cavitation, where high .frequency 

ultrasound generates destructive super-heated bubbles, also poses a limited safety 

concern [66], with cavitation extremely difficult to induce at diagnostic frequencies even 

under lab conditions [67]. Clinical and scientific regulatory bodies tightly govern 

ultrasound's usage. Ultrasound vibrates the tissues of the body which causes a build-up 

of heat energy which can cause tissue damage, this heat energy is measured as a thermal 

index. Vibrations can form into waves that cause the formation of bubbles, which can 

burst causing damage in a process known as cavitation, the measurement of these 

bioeffects is done via a mechanical index. The Safety Group of the British Medical 

Ultrasound Society formulates guidelines dictating its clinical application [68]. These 

guidelines mandate trained operators, strict operational protocols, and recommend a 

thermal index below 1.0 for non-obstetric uses and a mechanical index of below 0.7 

where contrast agents are in use. Minimising mechanical stress by limiting the amount 

of time the probe is pressed against the skin and using the lowest required amplitude and 

frequency to help mitigate the risk of heat damage and cavitation. 

Ultrasound's role in diagnostics is growing, particularly in acute settings where there is a 

necessity for rapid access to imaging data, such as in emergency and surgical 

interventions [69]. Its high response rate also benefits real-time application and 

procedures such as guided biopsies and aspirations, where real time positional awareness 
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is critical to the procedures success [70-72]. The use of more advanced imaging 

techniques such as Doppler (Figure 2.3(a)) which measures the soundwaves that have 

been scattered and reflected off of red blood cells to visualise the movements of blood 

around the body, make it ideal for detecting blood clots and vascular constrictions [73]. 

As well as elastography (Figure 2.3(b)) which creates images of tissue stiffness, using 

either a strain method whereby the tissue displacement is measured in response to 

pressure or through shear wave elastography where the speed of shear waves traversing 

tissue (often generated by a burst of high frequency ultrasound) is measured and used to 

create an image of tissue stiffness [74, 75]. While medical ultrasound affords real-time 

accessibility, safety, and diagnostic imaging potential, it remains constrained by the 

physical limitations inherent of sound waves such as those caused by the frequency and 

amplitude of the ultrasound.  

Diagnostic imaging encompasses a spectrum of modalities, each offering distinct data 

visualisation methods rooted in their underlying physics and mechanical processes. 

Among the most prevalent imaging techniques are X-ray, CT, and MRI, each 

characterised by its own set of advantages and limitations [76], while the use of hybrid 

methods that combine multiple modalities have the potential to enhance imaging [75, 

77], the choice of modality requires careful consideration of the imaging requirements in 

order to make a suitable choice for differential diagnosis and therefore provide context 

for the use of ultrasound. 
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Figure 2.3 - a) example of ultrasound Doppler scan showing blood flow within the liver 

b) example of Elastography ultrasound scan showing different tissue stiffnesses with the 

tissues of the liver [78] 

2.2.2. Alternative modality – Diagnostic Radiography 

Radiography, commonly referred to as X-ray imaging, stands as the cornerstone of 

diagnostic procedures in clinical practice and is the most commonly used modality in the 

world [1]. X-ray scanners (an example of which can be seen in Figure 2.4) finds 

widespread application in clinical scenarios ranging from the diagnosis of fractures and 

mammography to angiography [79]. It employs high-energy ionising radiation capable 

of traversing through the human body. As X-rays pass through the body, they encounter 

varying absorption rates based on the type and density of the tissue they encounter. The 

resulting radiation is then captured by a specially treated plate/film or modern electronic 

sensors designed to detect radiographic wavelengths within the correct spectrum [80]. 

This differential in absorption generates detectable variations that are then translated into 

an image [76, 81].  
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Figure 2.4 - example of an X-ray image showing spinal fusion with metal fixation [82] 

Specialised techniques, such as Fluoroscopy, enable the creation of dynamic images by 

triggering multiple captures in rapid succession. However, it's important to note that 

each frame in Fluoroscopy demands a full X-ray emission, which can elevate both 

patient and operator exposure with each capture [83]. The introduction of contrast agents 

has extended the utility of X-ray imaging by enhancing visibility of anatomical 

structures like veins within the circulatory system that are typically not discernible on 

conventional X-rays [84]. Ongoing research explores how contrast agents might further 

expand the applications of X-ray imaging [85] . 

In a review article, the British Institute of Radiology evaluated the radiation risks 

associated with standard diagnostic X-ray procedures [86]. Their conclusion emphasised 

that the benefits offered by this imaging modality outweigh the proportional risks, given 

that the risks are aligned with the level of exposure and individual risk factors. Standard 

X-ray procedures entail relatively low dose of around 0.02 millisieverts (mSv)for a 
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typical chest X-ray [87] which is well within the average tolerances of naturally 

occurring background radiation (around 2.23 millisieverts (mSv) in the UK) exposure 

over the course of a year. However, the increased utilisation of advanced imaging 

techniques has been linked to as much as a six-fold rise in ionising radiation exposure, 

sparking concerns about potential long-term effects of such cumulative exposure [88, 

89]. 

2.2.3. Alternative modality – Computer tomography (CT) 

Computed Tomography (CT) as seen in Figure 2.5 is a cutting-edge medical imaging 

technique that employs computer-controlled X-ray emitters to construct a composite 

image through numerous scans. This process involves the rapid rotation of the radiation 

emitter and detector on a gantry along a circular track. During each cycle, which takes 

approximately 0.5 seconds, a sequence of 2D slices is generated. These slices are then 

compiled to form a 3D cross-sectional view, allowing for the creation of intricate and 

multifaceted images that far surpass the capabilities of traditional X-ray imaging [76]. 
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Figure 2.5 - example of a cross sectional CT scan of the abdomen with coloured 

segmentation [90] 

In contrast to conventional X-rays, the quality of a CT scan hinges on factors like the 

pitch and speed of the scan [91]. High-speed, high-pitch scans might exhibit increased 

noise and reduced spatial resolution. Any slight movement, even breathing, can cause 

misalignment and blurring in the resulting images, often necessitating a rescan. The 

radiologist will often instruct the patient momentarily hold their breath and be as still as 

possible to minimise movement artifacts [92]. CT's sophisticated approach enables the 

generation of highly detailed imagery, to the extent that scan data could potentially be 

harnessed to construct intricate 3D models of specific anatomical structures of interest 

[93]. The capabilities of CT are further amplified through supplementary techniques 

such as Positron Emission Tomography (PET). This technique combines a 

radionucleotide tracer material with the CT scanner to capture functional and metabolic 

scans. These scans are instrumental in detecting structures like cysts and tumours, 

adding an extra dimension of diagnostic insight [94]. 



 

29 

 

CT's inception revolutionised medical imaging, leading it to be considered the gold 

standard for diagnostic imagery; however, the associated risks of radiation exposure 

must be acknowledged. The radiation exposure from a single CT scan is much higher 

than that of a basic X-ray, according to Public Health England [87] the average 

population of the UK is exposed to 2.23mSv of background radiation a year, with the 

average chest Xray dose being just 0.02mSv, in comparison the dose for the average CT 

abdominal scan can be as high as 10mSv, with subsequent scans further amplify the 

potential for adverse events, particularly an increased risk of cancer [95]. There has been 

a concerted effort to explore alternative modalities, minimise scan size to the smallest 

area of interest, and restrict exposure to the lowest levels necessary for effective imaging. 

Even in relatively modest numbers, the incidence of cancer is discernibly increased due 

to cumulative radiation exposure [96, 97] although recent studies using modern 

constraints suggest repeat low dose CT poses much less risk than previously thought 

[98]. There has been a marked increase in awareness within the medical community 

regarding the risk factors associated with CT scans. While CT remains a safe imaging 

technology, it has been noted in clinical practise manuals and protocols that CT should 

be used sparingly in cases where its ability to provide highly accurate imaging can be 

best utilised and avoided for routine scans or where other modalities may be sufficient 

[99, 100]. 
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2.2.4. Alternative modality – Nuclear Magnetic Resonance 

Imaging (MRI) 

Nuclear Magnetic Resonance Imaging (MRI) as exampled in Figure 2.6, employs non-

ionising magnetic radiation to create high-contrast images by exciting water molecules 

within the human body. The technique capitalises on the behaviour of hydrogen nuclei 

within water cells. When placed within a strong magnetic field, these hydrogen nuclei 

align to a lower energy state. A radiofrequency pulse then energises some of these nuclei, 

prompting them to transition to a higher energy state. As the excited nuclei relax back to 

their lower energy state, data is acquired by the MRI's coil receiver, capturing the decay. 

This data is subsequently converted into image data. By applying gradients selectively to 

the magnetic field, only thin slices of the body are influenced at a time. Leveraging this 

principle, MRI machines utilise sophisticated pulse sequences to reconstruct both 2D 

and 3D images [76, 101]. 
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Figure 2.6 - example of a cross sectional MRI scan of the abdomen  [102] 

MRI delivers valuable clinical insights without resorting to ionising radiation, but the 

technology has a number of limitations. The quality of an MRI image is tied to the 

number of slices or scans acquired as well as the stability of the magnetic field. 

Consequently, higher-quality images necessitate more scans, extending the scan duration. 

This can become impractically lengthy, prompting the utilisation of techniques like 

sparse data processing to reduce scan times [103]. Research is currently ongoing into the 

development of high magnetic field MRI devices that have shown to substantially 

improve image quality but are not in wide clinical use [104, 105]. The field stability can 

have a marked effect on the signal and image quality. MRI scans are performed within 

an artificial magnetic field which is prone to drift due to a number of factors such as 

temperature and vibration with as much as a 5% deviation in signal strength reported 
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within a 15 minute scan, not only causing noise and interference but also potentially 

make scans less clear [106]. 

While offering an alternative to ionising radiation for medical imagine, one of the major 

drawbacks of MRI is that the system emits a strong electromagnetic radiation, 

necessitating comprehensive shielding. The strong magnetic field requires cautious 

handling near ferromagnetic materials to prevent accident or damage. This 

contraindication is becoming increasingly problematic due to an increase in the usage of 

medical implantable devices within an aging population [107]. To ensure optimal image 

quality, the electromagnets within MRI machines must be maintained at extremely low 

temperatures. This refrigeration process involves substances like liquid helium and 

nitrogen, which can be expensive to obtain and are susceptible to shortages, potentially 

posing challenges for future scaling of MRI technology [108-111]. 

2.2.5. Modality Comparison 

Ultrasound offers a low-cost medical imaging solution, uses high-frequency sound 

waves to create real-time images, which can be performed in any clinical setting without 

the need for ionising radiation or costly coolants making it ideal for repeated 

examinations such as abdominal health screening and during pregnancy. Ultrasound 

excels in visualising soft tissues, organs, and blood flow but faces a number of 

challenges in its use: 
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• It is highly dependent on operator skill for both collection of data and 

interpretation. 

• It offers only a limited field of view compared to other imaging modalities. 

• There are fundamental limitations in its ability to penetrate deep into the body. 

• Image artifacts can cause interference and reduce image quality. 

• There is substantial difficulty scanning areas surrounded by bone. 

Diagnostic radiology is the most common diagnostic modality in the world today. It is 

invaluable for visualising dense structures like bones and detecting fractures or 

abnormalities such as pneumonia and cancerous tumours. However, X-rays are limited 

in their ability to visualise soft tissues, like muscles and organs, without contrast 

material. C-arm fluoroscopy can provide real-time imaging, but both patient and 

clinician are exposed to repeated doses of ionising radiation during the procedure 

leading to potential increase in cancer risk. Ultrasound has increasingly been seen as a 

replacement for fluoroscopy-based procedures as it is much safer for the operator, who 

potentially performs multiple procedures every day. 

CT is considered one of the highest quality medical imaging modalities currently 

available today, it is the gold standard in diagnosis, producing detailed high resolution 

cross-sectional images throughout the body. CT is particularly valuable for detecting and 

characterising abnormalities, but it is generally more expensive, less portable, and 

requires more patient preparation compared to ultrasound. There are also concerns at the 

amount of ionising radiation required to produce high quality imagery, leading to other 
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modalities such as Ultrasound being prioritised for first line diagnosis, with CT being 

used for follow-up work. 

While MRI offers superb image quality compared to ultrasound and is particularly adept 

at visualising soft tissues, the brain, spinal cord, and musculoskeletal structures 

throughout the entire body, but these MRI facilities are expensive to set up and maintain, 

with coolant shortages likely to curtail future growth as demand outstrips supply. The 

use of a strong magnetic field is contraindicated in patients with implants, as even where 

these implants are not ferromagnetic, the agitation of molecules can cause heating within 

the implant and potential burns. All of these factors will likely make ultrasound a more 

attractive modality over MRI in all but the most specialist use cases. 

When comparing diagnostic medical imaging modalities (as in Table 2.1), it is important 

to understand the landscape with which these devices operate. While individual 

modalities may be considered gold standard for diagnosis, often, their individual 

strengths are used to complement one another within a diagnostic protocol to provide a 

comprehensive evaluation. An initial first differential diagnosis could be performed 

using ultrasound by a general practitioner with a referral for a CT made based on those 

initial findings. The choice between these imaging modalities depends on the clinical 

context, the information needed, and considerations such as radiation exposure and cost. 
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Table 2.1 - Comparison of typical strengths and weaknesses of medical imaging 

modalities for abdominal scans 

 Ultrasound X-ray MRI CT 

Cost £30,000+ £40,000+ £500,000+ £1 Million+ 

Time Till 

Complete Scan 
Real time 

5-10 second 

delay 

15-90 minutes 

dependant on 

resolution 

2-5 minutes 

~20 seconds 

for low 

resolution  

Operator 
Limited 

training 

Trained 

professional 

Specialist 

Radiologist 

Specialist 

Radiologist 

Diagnostic Image 

Quality 
Low Low 

Moderate 

dependant on 

resolution 

High 

dependant on 

resolution 

Contraindications 

Safe within 

standard 

operational 

parameters 

Discouraged in 

pregnancy 

Do not use in 

proximity of 

ferromagnetic 

materials 

Limit exposure 

due to high 

radiation 

Radiation 

Safety 

Ultrasound 

radiation 

Low level 

ionising 

radiation 

Magnetic 

radiation 

Potentially 

high ionising 

radiation 

exposure 

Running Costs 

Low very few 

additional costs 

on purchase 

Low running 

costs after 

initial purchase 

Requires 

expensive coolant  

Expensive to 

setup and run 
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2.3. The Japanese Abdominal Ultrasound Cross Sections 

The Japanese abdominal ultrasound protocol as defined by the Japanese Society of 

Sonographers consists of 16 cross sectional views of the abdomen [112]. The human 

abdominal cavity is located inferior to the thoracic cavity beneath the diaphragm. This 

cavity contains many of the human bodies vital organs such as those of the hepatic, renal, 

lymphatic, endocrine, digestive, and biliary systems, as well as many major circulatory 

structures such as those of the aorta and inferior vena cava that circulate blood 

throughout the body. This screening protocol is used extensively within the Japanese 

health insurance industry as part of a yearly physical. Recipients of this scanning 

protocol are largely working age Japanese males with health insurance provided by their 

employer. Although it is also extensively used for detection and monitoring of 

abdominal diseases and in cancer detection protocols. 

Anatomically, the posterior demarcation of the abdominal cavity is established by the 

vertebral column, extending from the fifth thoracic vertebra (T5) to the first sacral 

vertebra (S1). The anterolateral margin is defined by ribs five through ten and the 

oblique and transverse abdominal musculature, which collectively constitute the external 

abdominal wall. The organs themselves are contained within the Peritoneum, a serous 

membrane lining the cavity creating a highly contained homeostatic environment [113]. 

The concentration of anatomical structures and organs within the abdominal cavity 

necessitates a technique to examine these structures in-situ without causing disruption to 

homeostasis and risks of infection that would occur during exploratory surgery, as such 
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the abdomen has already been a site for major research into diagnostic imaging 

techniques for many years. The 16 cross sections are as follows: 

1. Epigastric sagittal scan: Liver/aorta 

2. Epigastric horizontal scan to right subcostal scan: Hepatic vein 

3. Right Epigastric oblique scan: Horizontal portal vein 

4. Right Subcostal scan: Gallbladder 

5. Right hypochondrium vertical scan: Gallbladder 

6. Right hypochondrium vertical to oblique scan: Extrahepatic bile duct 

7. Right subcostal scan: Liver 

8. Right intercostal upper scan: Liver 

9. Right intercostal mid scan: Liver 

10. Right intercostal lower scan: Liver 

11. Right intercostal scan: Right kidney 

12. Epigastric vertical scan: Extrahepatic bile duct/pancreas 

13. Epigastric horizontal scan: Pancreas 

14. Epigastric oblique scan: Pancreas 

15. Left intercostal scan: Spleen. 

16. Left intercostal scan: Left kidney. 
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(1) (2) (3) (4) 

(5) (6) (7) (8) 

(9) (10) (11) (12) 

(13) (14) (15) (16) 

Figure 2.7 – example of the 16 upper abdominal cross sections outlined within the 

Japanese abdominal ultrasound screening protocol. 

In order to provide context to why these scans are so important to the abdominal 

diagnostic protocol, the anatomical structures and organs featured within the 16 cross 

sections will be discussed as well as any prominent physiological anomalies relevant to 

ultrasound scanning. Abdominopelvic quadrants are used to partition the abdominal 

cavity and provide accurate positional landmarking for organ and structures of interest to 

this protocol. As the probe position overlaps for many cross sections, please refer to the 

protocol for an accurate representation of probe position [112].  
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2.3.1. Aorta and Inferior Vena Cava 

The Aorta (as seen in Figure 2.8) and Inferior Vena Cava (IVC) stand as the most 

significant conduits within the arterial and venous networks, both are fundamental in the 

systemic circulation of blood throughout the human body. Any compromise, injury, or 

occlusion affecting these conduits can precipitate catastrophic injury and mortality. 

Situated medially along the entire abdominal length and anterior to the spine, they 

establish vital connections to major organs via a network of arterial and venous branches. 

Consequently, they often reside posterior to a range of vital anatomical structures and 

therefore can be difficult to visualise. While the aorta is the focus of cross section one, 

the circulatory system can be seen within multiple cross sections within the dataset. The 

role of the circulatory system is so vital to the human body that even the shortest 

disruption can potentially cause irreversible damage from cell ischemia, as such non-

invasive diagnostic methods and anomaly detection that maintain the bodies homeostasis 

remains a major priority for medical imaging research. 

 

Figure 2.8 – example of an ultrasound scan of aorta. 
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The Aorta is the largest artery in the body and as such is exposed to some of the highest 

haemodynamic forces in the body, with each heartbeat, it experiences the highest 

changes in blood pressure outside of the heart itself. These pressure changes render it 

particularly susceptible to vulnerability and disease. In instances where weakening 

occurs due to congenital defects or pathological conditions, there is a greater potential 

risk of aortic rupture leading to an aneurysm. Treatment of an abdominal aortic aneurism 

(AAA) is best achieved prior to any rupture taking place. The lack of clear access 

promotes the need for imaging based diagnosis, for example ultrasound often looks for 

abnormalities to the thickness, displacement and flow rate in order to detect and 

diagnose [114]. Methods such as Doppler and contrast ultrasound allow for the 

visualisation and estimation of flow within the circulatory system, highlighting problem 

areas such as sites of arteriosclerosis. 

Ultrasound has demonstrated effectiveness in identifying and monitoring risk factors 

associated with aortic aneurysms, such as changes in wall thickness and deviations in 

flow [115]. It has been shown to be a reliable method of detecting these anomalies both 

during screening [116, 117] and in an emergency diagnosis [118, 119]. Ultrasound 

operates in real time allowing for the capture of a segment of time alongside three 

dimensions of array data, it is therefore possible to perform a complex assessment of the 

strain occurring as the aorta undergoes a cardiac cycle, this information can be used to 

assess wall health and identify invisible weak points [120]. Blood cells are typically 

invisible to ultrasound but Doppler ultrasound analyses changes in the frequency of the 

ultrasound echo to determine the relative motion of blood using the Doppler effect, 
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which can reliably measure blood flow and potentially indicate a site of calcification or 

other form of blockage that may eventually cause an ischemic event [121]. 

2.3.2. Liver and Hepatic System 

Situated within the upper right quadrant of the abdomen, the liver is a major organ in the 

hepatic system, specialising in the metabolisation of key enzymes and proteins, 

detoxification, and serves as a repository for glucagon, a key component of maintaining 

the bodies levels glucose levels. As seen in Figure 2.7 and Figure 2.9 the liver features 

prominently throughout the cross sections of the dataset either as the main featured 

organ or within the background as a landmark feature. Traditionally, the liver is 

segmented using the Couinaud method [122] which anatomically divides the liver into 

eight segments based on the vascular and biliary anatomy. Each of these segments is 

supplied independently by branches of the hepatic artery, portal vein, and bile ducts. 

This segmentation technique while still the gold standard in surgical planning and 

understanding the liver's functional anatomy is currently under review as several studies 

suggest that this technique of using indirect landmarks may not be accurate or reliable 

enough for modern imaging modalities [123]. 
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Figure 2.9 – example of an ultrasound scan of the liver. 

Fast paced contemporary lifestyles are seen as a contributing factor to the increase in 

hepatic diseases such as fatty liver disease with approximately 15-30% of adults in first 

world nations expected to develop a form of hepatic lipid accumulation throughout their 

lifetime [124]. While adopting healthier dietary habits and incorporating exercise 

routines can prevent long-term damage in many instances, a failure to address these 

concerns can culminate in chronic conditions. Ultrasound has been shown to be an 

effective methodology for detecting lipid build-up with both the detection of steatosis 

and the increase of attenuation of the liver as liver health declines  [125, 126]. 

Ultrasound has also been shown to be effective for early detection of liver cancer in a 

number of studies [127], both in conjunction with liver function blood tests (such as 

AFP) [128], and under contrast [129]. Elastography is increasingly used to detect liver 

cirrhosis, with many commercial devices, such as Fibroscan already in clinical use [130]. 

The global incidence of chronic liver disease is on the rise, propelled by risk factors such 

as increased alcohol consumption, diabetes, fatty diets, obesity, and genetics playing a 
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role in the increase in cases of liver failure which can often lead to requiring 

transplantation [131]. The incidence of hepatic carcinomas (liver cancer) has also seen a 

significant increase [132] throughout the world. 

Research is ongoing to develop quantifiable medical imaging techniques, such as 

grading the liver to assess liver health during long term monitoring. The attenuation 

properties of ultrasound have shown promise as a method of detecting liver diseases but 

has so far struggled with early detection [125], with research looking to use contrast-

enhanced imagery [133, 134] and elastography [135] as potential solutions.  

2.3.3. Kidneys and Renal System 

Positioned within the lateral confines of the upper quadrant, the kidneys fulfil a pivotal 

role in filtration, the regulation of diverse electrolyte concentrations, acid-base 

equilibrium, osmolarity, and the expulsion of toxins. These processes culminate in the 

formation of urine, which is subsequently conveyed through the urinary tract to the 

bladder for eventual excretion. Renal function and the expulsion of toxins is a key 

attribute for overall body health, nephritic anomalies, exemplified by conditions such as 

renal carcinoma, kidney injury, renal calculi, and urinary tract obstructions, all have the 

potential to inflict prolonged physiological damage leading to increased morbidity. As 

seen in Figure 2.10, the kidneys are major features in cross sections 11 and 16 but 

feature in a number of sweeps as incidental landmarks particularly in that of the spleen 

and some right sided subcostal liver scans. 
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Figure 2.10 – example of ultrasound scans of the left kidney (left) and right kidney (right) 

Structurally, the kidney comprises of a large renal cortex housing multiple lobes, each 

containing nephrons responsible for blood filtration and urine generation. While there 

are accurate haematological tests to measure renal function in the form of glomerular 

filtration rate (GFR) and measuring Serum Creatinine levels, systematic dysfunction 

such as cirrhosis can potentially cause sudden loss without significant haematological 

derangement [136, 137]. This is not ideal as these tests rely on extensive clinical 

knowledge of the patient’s history to make an accurate differential, leading to potentially 

missed or delayed diagnosis. As the incidence of kidney diseases continues to rise, 

ultrasound has shown to be an effective imaging modality for assessing a range of renal 

conditions. It has shown effectiveness in the detection of renal masses [138], renal 

calculi [139], and the evaluation of kidney health through vascularisation studies [140]. 

Notably, these approaches are progressively garnering attention within clinical realms, 

particularly as microbubble contrast agents demonstrate the potential to enhance 

Doppler ultrasound's efficiency. Notably, this augmentation occurs without a substantial 

elevation in the risk of air emboli [141]. Due to the highly vascular nature of the kidney, 

contrast-enhanced techniques have proven to be highly effective in pinpointing lesions 

  



 

45 

 

and masses within these organs [142-144], even in cases complicated with chronic 

kidney disease where there may be difficulties with perfusion [145].  

The incidence of renal cell carcinomas has stabilised or even decreased in certain 

regions, early identification remains imperative for successful treatment outcomes [146]. 

Ongoing efforts are dedicated to refining segmentation techniques suitable for imaging 

modalities like ultrasound [147]. Kidney transplantation has the potential to cause 

difficulty when considering machine learning, failed kidneys are routinely left in place 

unless there are suspected complications from the organ, meaning that multiple kidneys 

(or a single organ in the case of the donor) may be located within the abdominal cavity 

which would contraindicate the use of machine learning, as the dataset would need to 

label to detect such anomalies. 

Despite its promise, ultrasound adoption has been slow in comparison to other contrast-

based modalities like contrast X-ray and CT, which have largely dominated the field. 

However, ultrasound holds distinct advantages, including its affordability, safety, and 

portability, all achieved without recourse to ionising radiation [148]. 

2.3.4. Biliary System and Gallbladder 

The gallbladder is a small ‘pear’ shaped hollow organ located medially beneath the right 

lobe of the liver. The gallbladder and bile ducts (as seen in Figure 2.11) are major 

features in cross sections 4, 5 and 12, but also feature as landmarks in a number of other 

cross sections of the liver.  Functionally, it serves as a reservoir for bile, a digestive fluid 

secreted by the liver, which is subsequently dispensed via the bile duct and biliary 
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system into the stomach to facilitate digestion within the stomach. Common aetiology of 

the biliary system is often due to difficulties in drainage, which can cause discomfort. 

Cholecystitis, characterised by inflammation caused by obstruction by a ‘stone’ of 

calcium salts is a prevalent example which has many potential complications such as 

jaundice and pancreatitis [149]. Gallbladder Carcinomas are fairly rare, often 

progressing asymptomatically until later stages, making screening the best option for 

diagnosis [150].  

  

Figure 2.11 – example of ultrasound scans of gallbladder (left) and bile duct (right). 

Ultrasound is the dominant modality during initial investigation of diseases of the 

gallbladder and highly effective at detecting gall stones, small crystallised calcium salt 

stones within the Gallbladder, as well as more complex conditioning such as wall 

thickening and inflammation [151, 152]. There is a notably high learning curve when 

assessing the Gallbladder with Ultrasound, with inexperienced clinicians misdiagnosing 

or simply unable to interpret what they were looking at in comparison to sonographers 

and consultant level experienced users [153]. 
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The Gallbladder can be difficult to image as its size is dependent on the levels of bile 

contained within it at the time of imaging, segmentation techniques and imaging can be 

very limited, with ultrasound considered the gold standard for Gallbladder assessment 

[154]. The partial or complete removal of the gallbladder is one of the most common 

abdominal surgical procedures performed by the NHS with over 60,000 performed every 

year [155], while still a relatively limited occurrence the absence of the gallbladder as a 

landmark should be carefully considered when applying machine learning, as it would 

potentially impact multiple cross sectional views. 

2.3.5. Spleen 

Situated within the upper left quadrant, this organ can be categorised based on function 

into two distinct sections. The red pulp functions as a reservoir and filter for blood cells, 

effectively clearing cellular detritus such as pathogens. In contrast, the white pulp 

predominantly comprises lymph cells that play a pivotal role in orchestrating immune 

responses. This dualistic arrangement facilitates the entry of lymphocytes and 

macrophages into the bloodstream [156]. Cross section 15 (Figure 2.12) represents a 

sweep scan of the spleen, with it also serving as a landmark when localising the left 

kidney in cross section 16. 
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Figure 2.12 – example of an ultrasound scan of the spleen. 

Abnormalities in Spleen physiology have an extremely wide range of aetiologies from 

infections such as malaria, syphilis, endocarditis and HIV, to haematologic disorders 

such as Cirrhosis, leukaemia and lymphoma [157]. While primary spleen carcinomas are 

relatively rare [158], it is often the site of secondary metastases in lung, colorectal, 

ovarian, skin and breast cancer [159]. While segmentation techniques can be complex 

with varying results, modern computer based segmentation procedures are starting to see 

results especially where comparisons can be made with local organs for diagnostic 

procedures [160]. During high trauma events the spleen may rupture causing massive 

internal bleeding due to its high perfusion and therefore it is safer to remove the organ 

entirely. 

Enlargement of the Spleen can be an indication of serious infection, disease or even 

some cancers that may not show any other symptoms, Ultrasound has shown to be just 

as effective at measuring the spleen as a 3D CT scan [161], while being safer, cost 

effective and more accessible. Ultrasound can also be used to detect splenic injury such 



 

49 

 

as small ruptures, cysts and infarction [162]. Doppler can be used as part of a differential 

diagnosis for liver disease although its accuracy as a single attribute is limited [163]. 

Ultrasound has shown to be an effective modality for guided biopsy as it allows for real-

time imaging during a spleen biopsy that is both accurate and low risk [164]. 

2.3.6. Pancreas 

The pancreas occupies a position in the upper left quadrant, located posteriorly to the 

stomach. Its roles encompass the secretion of digestive enzymes into the stomach and 

the release of vital hormones, such as insulin, into the bloodstream to regulate metabolic 

processes [165]. It is featured in cross sections 13 and 14 (seen in Figure 2.13). Imaging 

of the pancreas presents a significant challenge due to its location and structure. Uniform 

uptake of contrast agents may not be achieved, and proximity to adjacent organs can 

introduce interference. Signs of disease can be diffuse and difficult to detect even on 

biopsy, CT, and MRI. This is a pressing problem in clinical diagnosis as pancreatic 

cancer is extremely deadly due to the operation of the pancreas and sparse nature of the 

organ and difficulty to deliver treatment to affected cells [166]. At present, assessment is 

primarily conducted using CT (computed tomography), although a burgeoning body of 

research suggests the potential efficacy of ultrasound for evaluation [167, 168].  
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Figure 2.13 – example of an ultrasound scan of the pancreas. 

Ultrasound has long been considered a viable modality for scanning the pancreas [169], 

although interference from the stomach such as fluids and gasses have been known to 

cause difficulties such as shadows and artifacts that may obscure important anatomical 

details [170] but recent advances in ultrasound contrast have shown positive results in 

improving the accuracy of ultrasound imagery of the pancreas, allowing for better 

visualisation of cysts and tumours within the pancreas [171]. 
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2.4. Machine Learning with Medical Application 

Having established the clinical rationale that underpins the use of medical ultrasound 

and examined the use case behind the Japanese diagnostic screening protocol, it is 

important to provide a contextual overview of the machine learning methodologies and 

techniques that are central to this thesis. 

Machine learning is a sub-field of artificial intelligence research (as seen in Figure 2.14) 

defined in 1959 as branch of computer science that broadly aims to enable computers to 

“learn” without being directly programmed [172] and has evolved over several decades 

to focus on computational algorithms designed to mimic the iterative learning process of 

the human brain. Through the process of iterative learning a machine learning algorithm 

develops and refines a mathematical model within a defined set of rulesets and 

dependencies. [173, 174]. The foundational principles of these models are based on a 

number of mathematical formulas dependant on the task required to be performed, these 

include regression (logarithmic, linear), random (naïve Bayes, random forests), decision 

trees, and clustering (nearest neighbour, components analysis) [175]. The algorithm fine-

tunes its weights and parameters using these strict mathematical principles enabling the 

algorithm to refine its fitting process autonomously without requiring direct human 

intervention. Employing this methodology opens the door to applying the model across 

various tasks, for instance, it can be employed in scenarios involving conditional 

probability. In such cases, the algorithm applies rules founded on associations, such as 

can be seen in classification tasks such as identifying patterns within images or data 

[176]. 
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Figure 2.14 – Diagrammatic representation of machine learning subsets. 

2.4.1. Early Methodologies 

The early history of machine learning focused on predictive techniques such as k-nearest 

neighbour, Bayesian classifiers, decision trees and support vector machines (SVM) 

[177]. While these methods remain highly relevant today, especially for automated data 

mining [178], these techniques have been largely replaced by deep learning and neural 

networks as the tasks faced by machine learning algorithms have become more nuanced 

[179]. Many of these applied methods can be found in Nilsson’s Foundations of 

trainable pattern classifying systems [180] although the statistical methods are a lot older 

[181]. Early examples of these rule based and pattern recognition systems proved 

ineffective at real world medical imaging problems [182]. It would not be until the 
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1980’s and 90’s that computing power would be good enough to further progress with 

Hunt et al [183] using decision trees for diagnostic medical imaging, Altman et al with 

K-nearest neighbour [184], Restricted Boltzmann Machines (RBM) [185]  and 

Kononenko et al experimenting with diagnostic procedural rulesets [186]. One of the 

major reasoning behind the drive for deep learning algorithms is the resource 

requirement of earlier algorithms as seen in Figure 2.15, the more complex and nuanced 

the task requiring to be performed is, the more complex the algorithm must also become, 

conversely a deep methodology can simplify the task by spreading multiple complex 

analyses over multiple layers, allowing for smaller, more efficient use of computing 

resources. 

 

Figure 2.15 – Simple representation of flat/shallow learning vs deep learning algorithm 

shape. 

The K-Nearest Neighbour (KNN) algorithm employs weighted parameters and distances 

from neighbouring data points to effectively classify data. This approach allows the 

algorithm to intelligently group similar data points together. This simple weighting 

technique can be highly successful at simple tissue based classification and segmentation 



 

54 

 

when paired with more complex analysis techniques such as histogram analysis [187] 

and texture-based clustering [188]. 

Decision trees are a widely adopted technique in which a rule-based classification 

system is employed to effectively categorise data [189]. The architecture of a decision 

tree involves a root node from which data branches into distinct nodes, each 

corresponding to specific attributes or categories. The accuracy level and intricacy of the 

data play a crucial role in shaping the size of the decision tree. Notably, as data 

complexity increases, the decision tree's size also expands to ensure precise outcomes. 

The process of node and classifier selection encompasses a range of methodologies, 

accommodating both single and multiple-state attributes based on the metrics under 

examination [190]. There are a number of methodologies for the construction of decision 

trees, including random forest [191] and the J48 algorithm [178] with various levels of 

accuracy dependant on task.  

The Support Vector Machine (SVM) it is commonly used by leveraging pre-classified 

data or rulesets to learn patterns that can be subsequently utilised for predictions [192] 

but can also performs unsupervised clustering [193]. This is achieved through a process 

involving the mapping of data points onto vectors, followed by the application of 

weightings to allocate these points into distinct categories. Consequently, SVM exhibits 

the ability to effectively cluster data points by utilising hyperplanes to partition the 

dataset. One of the notable strengths of SVMs lies in its capacity to yield accurate 

predictions with relatively sparse data, thus mitigating the risk of overfitting, and as such 

has previously been used as a valuable tool for classification tasks, but it is not suitable 
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for large datasets or in cases where the number of features exceed the size of the dataset. 

SVMs have been used in research areas such as breast mass classification [194], kidney 

abnormalities [195], and the identification of tumours within the liver [196]. 

The complexity of the dataset, anatomy and image problem highlighted in Sections 2.2 

and 2.3 suggests that the overlapping cross sectional data and lack of image clarity 

would be ultimately make these methods unsuitable for the classification task associated 

with this thesis. 

2.4.2. Neural Networks & Deep Learning with Medical 

Applications 

Deep learning is a subset of machine learning (as seen in Figure 2.14) that hypothesises 

that it is possible to intelligently solve problems by artificially mimicking the functional 

layout of neurons in the human brain. Initial neural network accuracy was limited by the 

number of neurons within the network [197]. Unlike, early machine learning algorithms 

complex tasks can be spread over a greater number of layers as seen in Figure 2.15, this 

allows for more complex analysis to be spread over multiple layers rather than be 

performed all at the same time. This allows for more efficient task based designs of 

neural networks, which has allowed for more complex non-linear datasets [198, 199]. 

This trend has prompted a shift towards networks featuring increased layer counts, in 

order to move away from the constraints posed by circuit-style functions and advance 

systems that mirror the multi-layered paradigm observed in the human brain. Research 

has indicated that incorporating a greater number of layers might facilitate enhanced 
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predictive capabilities in scenarios involving non-linear datasets, like those encountered 

in natural language processing or image recognition [200, 201]. 

Deep learning is an extremely powerful tool capable of being trained to recognise highly 

complex patterns within large datasets. Convolutional Neural Networks (CNN) (the 

classic layout of a CNN can be seen in Figure 2.16) have become increasingly popular 

for clinical research as medical datasets are primarily made up of imaging data, as 

convolution is already heavily used in computer vision, pattern recognition, and natural 

language processing. While the foundational theories surrounding CNNs can be found in 

Pitts and McCulloch’s 1943 paper [202], it was not until 1958 that Rosenblatt outlined 

the principles of perceptrons [203] and neuro-computing [204]. Widrow and Hoff would 

publish the Widrow-Hoff learning rule in 1960 outlining what would become a common 

sampling method still in use today [205]. CNN research would be further progressed in 

1972 with a fully-fledged theoretical framework for artificial adaptive systems published 

by Kloph at the Air Force Research Laboratories [206]. Two years later the initial 

findings regarding the back propagation optimisation technique for neural network were 

published by Werbos [207] in 1974 and would later be popularised by Rumelhart in 

1985 [208]. 
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Figure 2.16 - Classic layout of a neural network. Image data passes through multiple 

convolution and pooling layers, and fully connected layers before the predictions are 

outputted. 

Early examples of artificial neural networks for classification were published in the 

1970s although these results were not adopted in clinical practice and were severely 

limited by its lack of acceptance by clinical professionals, and the limitations of the 

technology of the time that was not able to process complex medical data at a fast 

enough speed to be accepted within the medical industry [209-211]. While other areas of 

science saw increasing relevance to machine learning techniques, clinical medical 

imaging and diagnostic research lagged behind as clinicians struggled to get to grips 

with the complexity of the task [212]. The 1990’s and early 2000’s saw a resurgence of 
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deep learning for medical imagery in areas with a well-defined problem space such as 

breast mammography [213] or the diagnosis of prostate cancer [214]. 

Today CNNs have proven to being highly effective at processing image data, being 

capable of simplifying the image using a kernel to break down larger images into 

smaller parts that can be better processed and generalised by the neural network [215]. 

Ultrasound presents many challenges to the use of a neural network due to limited image 

detail, noise, and artifacts but is already being examined as a method of detection, 

segmentation, and classification in a wide range of clinical research conditions. While 

detecting anatomical structures can often be straightforward, ensuring precise annotation 

for accurate classification can present challenges. CNNs have demonstrated 

effectiveness in detecting and classifying masses and lesions in organs like the liver [160, 

216], kidneys [217], gallbladder [154], and pancreas [218]. In addition to their 

classification and segmentation capabilities, CNNs offer potential value in diverse 

clinical diagnostic techniques. For instance, they can contribute to the evaluation of 

kidney function, where deep learning using ultrasound Doppler aids in predicting flow 

rates [219]. Similarly, CNNs are instrumental in characterising wall thickness and 

identifying plaque accumulation within the Circulatory system [220], as well as in 

examining liver fibrosis [221]. 

While neural network layer counts and overall size have expanded, challenges such as 

overfitting, where a network begins to fit too closely to the patterns in noise and other 

idiosyncrasies within the training data, resulting in a failure to generalise and poor 

performance on unseen data. Recent research highlights a striking example: a single-
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pixel modification, termed the "one-pixel attack," [222] can lead a neural network to 

erroneously classify an image. In instances like an overfitted convolutional neural 

network, altering just one pixel could shift the image beyond the boundaries of its 

correct category. Models trained exclusively on error-free "ideal" data often lack 

robustness, when confronted with real-world problems and data they are unable to 

reconcile the imperfections within the imagery to that seen in the training, causing a 

reduction of the models ability to generalise [222-225]. The susceptibility of models to 

what can often be basic alterations or changes that can impact their categorisation raises 

concerns about their reliability. This vulnerability is particularly evident in domains like 

medical imaging data, where models have exhibited a significant susceptibility to 

adversarial attacks. Ongoing research aims to establish dependable strategies for 

mitigating these vulnerabilities [226-230]. 

2.4.3. Data Processing Methods 

The processing and curation of data into a standardised, machine-readable format is an 

essential part of any machine learning method. Medical imaging modalities frequently 

encounter challenges related to image quality, noise and artifacts that can significantly 

impede the accuracy of diagnoses and may also reduce the accuracy of any applied 

machine learning. To address these concerns, various image processing and computer 

vision methods are commonly employed during pre-processing or enhancement stages to 

elevate the quality of imaging outcomes. The associated data processing techniques are 

broadly categorised into pre-processing and post-processing procedures, encompassing 

approaches such as contrast equalisation (for example histogram equalisation) for 
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contrast enhancement, noise reduction strategies, and advanced image filtering 

techniques.  

2.4.3.1. Computer Vision Approaches for Image enhancement and 

standardisation 

Over the past two decades, many image processing techniques derived from computer 

vision approaches have been adopted by researchers to enhance medical imaging for use 

in machine learning. Computer vision is a large diverse field of research focused on 

enabling computers to derive information from visual data such as images and video, 

consequently these techniques serve a variety of purposes, ranging from improving 

image quality, facilitating edge detection, feature extraction, filtering, segmentation, and 

classification [231]. These techniques can assist in a wide range of clinical diagnostic 

tasks, that are designed to examine internal body structures in a way that is minimally 

invasive such as X-ray, Computer Tomography (CT), Magnetic Resonance Imaging 

(MRI), Endoscopy, and Ultrasound as described in a previous section. By applying these 

techniques Computer vision has already shown to be capable of supporting reduced 

diagnostic uncertainty and as such increase the accuracy of diagnosis and improve 

workflow, it has also shown to reduce variation that characterises human-based 

diagnostics  [232]. 

Due to how ultrasound is beamformed into an image, pre-processing player a large role 

in image enhancement. In order to produce images, ultrasound uses image forming 

algorithms that take the response from each individual transducer in the array and 

typically logarithmically compresses the amplitude and interpolates the responses 
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together to form an image. Due to this process the signal to noise ratio of the resulting 

image can be quite low, causing speckle noise artifacts [233, 234]. Modern beamforming 

techniques such as dynamically focused transmission and reception [235] attempts to 

increase depth of field without reducing lateral resolution by using a montage process, 

which can increase contrast, resolution and depth of field. The aperture of the transducer 

is weighted using a technique known as apodization examples of which can be done 

using FIR filtering [236] and weighted least-squares filter [237]. As computing 

technologies have advanced, ultrasound beam and imaging pre-processing has allowed 

for the forming of high quality images from ultrasound scan data [233]. Despite this 

improvement in image quality a number of post processing techniques are often still 

required to improve image quality, such as using filters. There are a number of methods 

that can be used to improve image quality such as: kernel based convolution [238-240], 

which can be used to enhance details within the image matrix; and adaptive histogram 

equalisation [241] to enhance images where contrast may be too low. Filters can also be 

used such as gaussian, median, anisotropic diffusion, but Bouma et al [242] suggests that 

the success of these methods are directly associated with the quality of the data and less 

successful on low quality data. 

Ultrasound processing methods that enhance image quality are often subject to 

limitations that effect performance in other areas. Employing techniques that improve 

spatial resolution allow for better visualization of fine details but it reduces penetration 

depth, therefore when scanning deeper tissues, a compromise between spatial resolution 

and penetration [243]. Similarly, there is a trade-off between frame rate and image 
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quality, the speed of ultrasound through tissue is limited, meaning that at faster frame 

rates beam forming algorithms must form images with less data reducing the quality 

[244, 245]. Contrast agents allow for enhanced detection of flow within tissues 

ultrasound imaging, providing many important details for diagnostic assessment but may 

have contraindications in some patients, are present in the target tissues for only a 

limited time and potentially can cause artifacts [246]. 

These were just a selection of methods of pre- and post-image processing, which will 

continue to be refined using a wide variety of techniques. Image processing is an initial 

step within a complex process towards the continuous improvement of clinical 

ultrasound imagery for use in machine learning [233, 234, 247]. While these methods 

will improve the quality of the image being examined an additional step is to process the 

data itself. 

2.4.3.2. Feature Extraction 

Early classification and recognition algorithms were shown to be more effective at 

recognising features after segmentation and feature extraction, as this would allow the 

model to be presented with a smaller, normalised set of features to examine as such is 

most likely to make an accurate prediction. Machine learning algorithms are often 

heavily dependent on the feature engineering and extraction methods involved in the 

process. Feature engineering and extraction focuses on selecting, manipulating and 

transforming raw data into features that can be used in machine learning. These methods 

often enhance existing features within the dataset such as texture [248, 249], intensity 



 

63 

 

(brightness) [250], shape [251], gradient [252], wavelet transformation [253, 254], and 

histograms [255].  

Intensity thresholding is one of the simplest forms of segmentation, where the image 

values are categorised across a stepped range of values, this can be done globally across 

the entire image or locally based upon the neighbouring values as with a kernel. Horsch 

et al [256] used thresholding as part of a process to segment tumours in pre-processed 

breast tissue scans in order to distinguish between benign and malignant masses, this 

work was continued in Drukker et al [257] examining how this technique could be used 

for further feature extraction and differentiation. Texture matching has been shown to be 

successful at recognising features even where ultrasound speckle may confound shape 

algorithms [147, 258, 259]. The Hough Transform filter has been shown to be successful 

at extracting long linear shapes within ultrasound imagery [260]. 

2.4.4. Training Methodologies 

Machine learning requires training to fit the model to the characteristics of the dataset, 

this is typically done via supervised or unsupervised learning methodologies, with 

elements of both methodologies may be utilised dependant on the composition of the 

dataset (Figure 2.17), additional methods such as reinforcement and transfer learning are 

regularly used for their unique attributes to support the training process  [176, 261, 262]. 
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Figure 2.17 - Representation of ground truth data requirement for training method and 

typical tasks associated with that methodology. 

In the context of a classification task, supervised learning typically uses a dataset where 

there is already a known classification. For example, in the case of detection and 

classification of cancer cells there is already an accepted methodology for classifying 

cancerous cells in clinical use. As such, it is common to use these well-defined 

classifiers when examining and training for clinical datasets [176, 261]. The model 

changes the weighting of its ruleset in an attempt to reduce the size of the error after 

each training iteration. An important attribute to note when using supervised learning is 

ensuring that the sample set of classifications for the training data is representative of the 

task it will be required to perform. Because the algorithm looks for the lowest rate of 

error not for the highest accuracy, it is therefore important to ensure that the dataset is 

balanced. Where there is an imbalance in classifiers within a training set the model will 

be biased towards that particular classifier [263]. This is an ongoing challenge within 

machine learning as many databases (such as medical imaging databases) are 

unbalanced. Using methodologies such as oversampling  and under-sampling [264]  has 

shown good results for improving the accuracy of unbalanced datasets [265-268]. The 
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aim of training is to detect generalisations for each category but there is also a risk of 

overfitting, where the model is weighted towards the attributes of the dataset rather than 

generalisations within the data itself, an overfit model will show high accuracy on the 

training set but low accuracy on validation [269]. Overfitting could occur due to a 

number of factors such as overuse of the training set, speed of training, complexity of 

data and under-variance [269-271]. Overfitting is a complex problem, with multiple well 

established, accepted methods to lower its occurrence, such as using: dropout, i.e. 

randomly dropping neurons during training to prevent co-dependency [272]; effective 

backpropagation [273, 274]; and, using regularisation techniques such as applying 

randomisation  [275] although there are studies that suggest this has a limited effect 

[276]. 

Where labelled data for supervised training is not available an unsupervised learning 

methodology may be used, instead the model will examine the dataset and cluster these 

datapoints into categories such as through a method of pattern classification [176, 277, 

278]. While these categories will not be externally validated for accuracy, there is the 

potential for useful categorisation or prediction to be made dependant on the 

mathematical formulas used within the model [279, 280]. 

Transfer Learning encompasses a subset of machine learning methodologies focused on 

the transfer of knowledge across domains [281], one method (as shown in Figure 2.18) 

uses a model has already been trained on a large dataset for a specific task, such as 

image classification, as a starting point, the pre-trained model's parameters are then fine-

tuned or adjusted by training on a smaller more specific dataset for a specialist task. For 
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example, a generalised model could be trained to recognise a tumour, then a more 

specialised model could be trained using that initial trained recognition with additional 

categorisation parameters to recognise different types of tumours. This transfer of pre-

learned generalised behaviour into more specialised models potentially allows for faster 

training as the complexity of the training required is reduced and will build upon the 

accuracy of the previous model without requiring as large a dataset as the initial training, 

although this is also a notable drawback with any bias, error or overfitting potentially 

present in the previous model also passed onto the new model [282-285]. Transfer 

Learning can also be used in conjunction with a semi-supervised approach (as seen in 

Figure 2.17), leveraging pre-trained networks to make assumptions about unlabelled 

data, effectively clustering these unlabelled samples which can then be labelled using 

these predictions [286]. 

 

Figure 2.18 – Simplified flow chart of transfer learning from pre-trained neural 

networks. 
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2.4.5. Criticisms of Machine Learning Research 

While machine learning for medical imaging has great potential to revolutionise 

diagnostics with ever increasing numbers of researchers focusing on this subject area, 

there is a great deal of criticism surrounding methodologies being used in this research. 

Robert et al. [287] published a systematic review of 62 studies of machine learning for 

COVID-19 published in the period between 1 January 2020 to 3 October 2020 and 

identified not a single one had the potential for clinical use. There is also a suggestion 

that machine learning could entrench poor practice and exacerbate bias, potentially 

promoting inequity through the processing of datasets [288]. Many critics of automation 

and machine learning in medicine cite that these methods are deskilling clinicians [289], 

in a study of 50 mammographers [290] there was 14% decrease in diagnostic sensitivity 

when readers were presented with challenging cases marked by computer-aided 

detection. Another study showed a 9% decrease (down to 48%) in clinician diagnostic 

accuracy when reading electrocardiograms (EKGs) when inaccurately labelled by 

machine  [291]. 

One of the major criticisms of machine learning research for medical research is that 

while there are increasing publication of papers showing state-of-the-art performance on 

benchmark data, there is rarely any practical improvement towards solving the clinical 

problem [292]. Poor implementation and data leakage is a major problem with many 

researchers training and testing on the same dataset leading to circular analysis [293], or 

failing to ensure test/train splits are performed at patient level leading to algorithms to 

recognise individual patient markers rather than the disease itself [294]. Exclusion 
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criteria within the initial data processing of the dataset can play an important role in the 

accuracy of a machine learning output, as seen in Caruana et al [295], The initial results 

of this study suggested that there was a lower risk of death from pneumonia if the patient 

also had a history of asthma, while this neural network yielded ‘state of the art accuracy’ 

the result itself was incorrect:  asthma is one of the largest risk factors associated with 

death from pneumonia [296]. 

In order to attempt to standardise publication of machine learning studies a checklist for 

artificial intelligence in medical imaging was published to assist researchers and 

reviewers in validating medical machine learning research [297]. There is also a push 

towards explainable AI, away from ‘black box’ methods so that this is especially true in 

medical imaging where such step by step accountability is important due to medical 

liability [298]. 

Many of these criticisms stem from core challenges faced in applying AI to real world 

problems: 

• Medical information is often time sensitive, for example medical emergencies 

may necessitate real-time scanning with anomalies being detected and displayed 

in real time [299-301].  

• The trustworthiness and interpretability of AI algorithms remains a major 

challenge, for AI to be used to support clinical decision making, clinicians 

require transparent, explainable output that they can clearly understand [302]. 

• Generalizability and Domain Adaptation, remains a complex problem in medical 

imaging, while the anatomy and physiology of the body is often consistent, 
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modalities may display the bones, tissues and organs in a radically different way, 

research is continuing to explore how different domains can be leveraged [303].  

• In the case of rare medical conditions data can be scarce, limiting what can be 

done with AI [304].  

• Regulations surrounding information governance of medical data is highly strict, 

limiting the ability to freely share medical imaging data. Edge computing offers a 

potential solution where by each clinical centre can maintain governance over its 

own data while collaborating over the development of a AI model via cloud 

technologies [305, 306]. 

• There are still many questions surrounding the efficacy of clinical adoption of 

AI, with regulatory bodies slow to provide guidance as to how to develop and 

deploy algorithms [307]. The legal risks of using AI in medical diagnosis are still 

being quantified with much work still to be done to quantify how AI should be 

used safely in the medical field [308]. 

2.5. Conclusion 

This literature review has given an overview of diagnostic medical imaging based on the 

cross sections of the Japanese ultrasound abdominal protocol, in order to ground readers 

for future technical chapters. Provided an overview of the history of medical ultrasound 

and alternative modalities. A history and overview of machine learning was also 

provided before an in-depth look at deep learning history, methods, image processing 

requirements, training methodologies and common criticisms of medical machine 

learning. 
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There are many potential targets for applying machine learning to abdominal ultrasound 

due to the sheer level of complexity of each anatomical and physiological system. This 

thesis focuses on developing techniques to relieve the burden placed on the sonographer 

by providing machine learning solutions to improve the quality of data collection, reduce 

the operator effort required, and ensure adherence to clinical protocols and methods.  

Research on machine learning-based abdominal ultrasound cross-sectional classification 

has been limited, therefore, it was important to establish a baseline neural network 

response to training on the Japanese abdominal ultrasound protocol, this was used to 

identify problems with classification and provide a benchmark for future results. 
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Chapter 3 

Transfer Learning for Classification of Standard 

Ultrasound Abdominal Cross Sections using Neural 

Network Architectures 

 
Abstract 

Abdominal ultrasound screening requires the capture of multiple standardised plane 

views as per clinical guidelines. Currently, the extent of adherence to such guidelines is 

dependent entirely on the skills of the sonographer. The use of neural network 

classification has the potential to better standardise captured plane views and streamline 

plane capture reducing the time burden on operators by combatting operator variability. 

This chapter examines the effectiveness transfer learning through the use of 9 neural 

networks pre-trained on the ImageNet dataset, these networks were then trained to 

recognise 16 abdominal ultrasound cross sections from 64 patient sets to establish a 

baseline response. The highest validation accuracy was attained by both GoogLeNet and 

InceptionV3 is 83.9% using the pre-trained networks and the large sample set of 26,294 

images. A top-2 accuracy of 95.1% was achieved using InceptionV3. Alexnet attained 

the highest accuracy of 79.5% (top-2 of 91.5%) for the smaller sample set of 800 images. 

The neural networks evaluated in this chapter were also successfully able to identify 
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problematic individual cross sections such as between kidneys, with right and left kidney 

being accurately identified 78.6% and 89.7% respectively. A further case study of 

mobile and small sized networks confirmed that small efficient networks could be highly 

effective for Ultrasound classification. This chapter builds upon existing studies, 

demonstrating the potential accuracy of multiple neural network architectures when 

classifying standard abdominal cross sections. More complex neural networks provided 

only limited improvement to classification accuracy with a difference of just 2.2% 

between the top results of the nine networks tested. Dataset size proved a more 

important factor with more complex neural networks providing higher accuracy as 

dataset size increases and simpler linear neural networks providing better results where 

the dataset is small.  
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3.1.  Introduction 

Diagnostic medical ultrasound offers a low risk, non-invasive method to examine 

anatomical features. While this often takes the form of real time diagnostic procedures, it 

can also facilitate longer term screening and monitoring [309]. Ultrasound has seen 

widespread adoption throughout healthcare due to the broad range of applications and 

accessibility of ultrasound equipment, especially in mid to low-income countries where 

access to other modalities may be limited [310, 311]. Diagnostic ultrasound within the 

abdominal-pelvic region has already seen extensive adoption in obstetrics with the 

widespread use of routine foetal monitoring in pregnancy [312] and in cardiology [313], 

but there is now a growing trend to develop techniques for a greater range of abdominal 

organs and procedures [310]. 

In the case of abdominal screening, the sonographer follows clinical guidelines to 

capture specific standard clinical cross sections of anatomical features for monitoring or 

reporting purposes. The obligation to ensure adherence to these guidelines lies with the 

individual sonographer and as such the precision with which these images are captured 

are subject to the attentiveness, knowledge, and experience of the individual [314]. 

However, there is a shortage of adequately trained sonographers meaning that these 

clinical protocols are often performed by users with limited training and experience 

[315]. The use of machine learning to aid the user in plane selection has the potential to 

reduce the variation caused by the operator while also reducing the time taken for the 

procedure due to inexperience, therefore improving workflow and patient comfort. 
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Image classification is a fundamental component of medical imaging research, of which 

deep learning is an increasingly popular subject of interest [316-318]. If we examine 

modern digital medical imagery at its fundamental code level, it is essentially a matrix 

containing information such as brightness and colour similar to that of other image files. 

Current machine learning frameworks such as PyTorch [319] use a more simplistic form 

factor such as a tensor to provide a standardised form factor that a computer algorithm 

can use to detect the intended features and make predictions for classification tasks. 

Despite being one of the most widely used medical imaging modalities in the world, 

ultrasound has seen comparatively little interest from deep learning research in 

comparison to Xray, CT and MRI [320]. This is partly due to the limited availability of 

ultrasound imaging data, as commonly imaging and diagnosis are performed in real time 

by an expert sonographer with only a limited amount of data recorded. As seen in a 

recent review by Avola et al [321], there are very few publicly available clinical 

ultrasound datasets available in comparison to other modalities where an expert clinician 

may examine and report on scans hours or even days later. Another contributing factor is 

that medical ultrasound images provide a far more restricted window of information in 

comparison to other medical scans. Ultrasound is produced by measuring the reflected 

ultrasound waves detected by a small piezoelectric array within the ultrasound probe 

[47], such images are typically two-dimensional, low contrast, and subject to 

interference such as attenuation and shadowing that can hinder classification even for 

experienced sonographers [51, 53].  
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Neural networks have already been successfully applied to many classification tasks 

within medical diagnostic ultrasound such as the detection of masses for cancer 

diagnosis [216, 322], thyroid nodules [323, 324], liver anomalies [325, 326], spine [327] 

and cardiac and aorta cross sections [328-330]. More generalised approaches to 

classification have also been explored with attempts to identify abdominal cross sections 

[331-333] and most commonly for foetal and obstetric cross sections [334-336]. This 

study uses a subset of transfer learning, that uses a neural network that has been 

previously trained on a larger, often more generalised dataset as its template. This has 

previously been shown to overcome many of the problems associated with small 

datasets such as poor generalisation and overtraining as is often the case with ultrasound 

[337, 338].  

Previous studies examining classification of abdominal cross sections with machine 

learning are limited. Cheng & Malhi [331] proved the effectiveness of transfer learning 

using the ImageNet challenge dataset [339] with the successful classification of 11 

standard ultrasound cross sections attaining accuracies of 77.3% using CaffeNet and 

77.9% for VGGNet both of which exceeded the 71.7% accuracy achieved by a 

radiologist. Xu et al [340] examined classification of 11 ultrasound abdominal cross 

sections as part of a wider study on landmark detection, the Single-task learning (STL) 

ResNet-50 attained an accuracy of 81.22% in comparison to the radiologist who 

achieved 78.87%. Reddy et al [333], tested a number of neural networks on 6 visually 

distinct abdominal cross sections achieving an accuracy of 98.77% using a ResNet-50. 
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This chapter further expands the study of abdominal ultrasound plane classification by 

examining 16 abdominal cross sections. This work shall examine the effectiveness of 

transfer learning for a small ultrasound abdominal plane dataset, providing comparative 

accuracy data for a larger number of neural network architectures on standard abdominal 

cross sections than has been previously studied. This will serve both to aid selection of 

neural networks in future, but also further highlights the potential uses and difficulties of 

utilising deep learning for identifying and classifying abdominal cross sections. 

3.2. Structure and Scope 

This chapter establishes a baseline for the 16 upper abdominal cross sections as defined 

by the Japanese abdominal screening protocol [112]. This protocol was chosen due to its 

overlapping coverage of the upper abdomen, which would underline and potential 

difficulties applying deep learning to complex ultrasound abdominal protocols. While 

the Japanese abdominal screening protocol includes pelvic and bladder scans, these were 

excluded from this study to focus on the upper abdomen. This is the first study of 

machine learning classification of the full Japanese abdominal protocol and as such it is 

important to study network response to this dataset, to ascertain future requirements. 

This chapter focuses on the three most popular CNN architectures, those being the 

Linear, Residual, and Inception, using the method outlined in Figure 3.1. The results of 

this initial study suggested high accuracies could be achieved with smaller, less complex 

neural networks. A subsequent follow-on study analysed the performance of four 

popular small scale neural networks designed for mobile applications was also assessed. 
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Figure 3.1 - Flow Chart showing methodology used in this experiment. Data is extracted 

from DICOM files and prepared for use. Train/test split performed, and CNN selected. 

All neural networks are then trained, and a new train/test split performed. 

3.3. Method  

3.3.1. Ultrasound Data Acquisition: 

The ultrasound data is part of a private dataset provided via Canon Medical Europe and 

was captured using a Canon TUS-AI800 [341] using a curved linear array, with each of 

the 16 cross sections (examples of which are displayed in Figure 3.2) classified at the 

time of capture by a single experienced sonographer. While the data is anonymous, 

acceptance criteria were that participants be of adult age with no underlying pathology 

detected by the sonographer that may influence the results at time of recording. The 

sonographer strictly adhered to the standardised capture method defined by the Japanese 

society of sonographers [112], starting the scan in the location defined within the 

method and progressively sweeping through the region of interest ensuring complete 

coverage of the defined target anatomy. The ultrasound data was recorded as a stream of 

8-bit greyscale images of varying length (between 14 and 46 seconds), these sequences 

were effectively raw ultrasound images and contained no text or graphical annotation 
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from the User Interface. These were then stored in a DICOM format [342] and 

anonymised before being provided for use in this work. 

The dataset consists of 64 patient studies with 16 recorded anatomical cross sections 

each for a total of 33,093 individual images. These patient studies were split 50/14 

(approximately 80/20 split) between training and test sets, both training and test sets 

were resampled at the patient level for each training run for cross validation purposes.  

Although this significantly reduces the pool of possible test images it was done to ensure 

no data leakage that could artificially inflate results. Because the resampling must be 

performed at patient level, a holdout method was chosen over folded cross validation to 

ensure validity of the test data. As the neural networks that form the basis for the transfer 

learning experiment are trained on 3 channel RGB images, the single channel greyscale 

images were duplicated into three channels during the process to convert the image into 

tensors, with only a negligible drop in performance noted. The full image was used with 

no cropping or adjustment beyond minor contrast normalisation using the standard 

method provided in PyTorch in order to ensure standardisation across the imagery. 

Two training sets were produced alongside a single test set as reported in Table 3.1. The 

first training set was produced to provide a balanced, idealised dataset by defining a 

single image frame  (an example of which can be seen in Figure 3.2) from each set of 

cross sectional sweeps for a total of 800 images, this was done to simplify the problem 

space, while in many cases a sonographer must move the probe to fully visualise the 

region of interest, reduction to a single ideal cross section provides the neural network 

with the most opportunity to make the correct prediction. The second training set takes 
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into account the entire sonographic sweep and as such essentially consists of multiple 

short videos centred on the correct region of interest during examination and is made up 

of 26,294 images, this data contains significant repetition, minor deviations such as 

changes in attenuation, shadowing, natural physiological changes, and the slight 

movements of the patient and sonographer that occur naturally during clinical 

examination. This provides a more realistic training set but also significantly increases 

the complexity of classification. The test set consists of 224 images with each of the 16 

cross sections represented by 14 precise images. Those images and videos corresponding 

to the test set were excluded from all training datasets. 
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Figure 3.2 - Example of the 16 ultrasound abdominal cross sections. 
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Table 3.1 - Identified plane categories in training and validation sets. 

Abdominal Cross Section 
Training 

Set 1 

Training 

Set 2 

Validatio

n Set 

1. Epigastric sagittal scan: Liver/aorta 50 (6.3%) 
1478 

(5.6%) 
14 (6.3%) 

2. Epigastric horizontal scan to right subcostal scan: 

Hepatic vein 
50 (6.3%) 

1722 

(6.5%) 
14 (6.3%) 

3. Right Epigastric oblique scan: Horizontal portal 

vein 
50 (6.3%) 

1605 

(6.1%) 
14 (6.3%) 

4. Right Subcostal scan: Gallbladder 50 (6.3%) 
1545 

(5.9%) 
14 (6.3%) 

5. Right hypochondrium vertical scan: Gallbladder 50 (6.3%) 
1539 

(5.9%) 
14 (6.3%) 

6. Right hypochondrium vertical to oblique scan: 

Extrahepatic bile duct 
50 (6.3%) 1575 (6%) 14 (6.3%) 

7. Right subcostal scan: Liver 50 (6.3%) 
1528 

(5.8%) 
14 (6.3%) 

8. Right intercostal upper scan: Liver 50 (6.3%) 
1558 

(5.9%) 
14 (6.3%) 

9. Right intercostal mid scan: Liver 50 (6.3%) 
1670 

(6.4%) 
14 (6.3%) 

10. Right intercostal lower scan: Liver 50 (6.3%) 
1609 

(6.1%) 
14 (6.3%) 

11. Right intercostal scan: Right kidney 50 (6.3%) 
1516 

(5.8%) 
14 (6.3%) 

12. Epigastric vertical scan: Extrahepatic bile 

duct/pancreas 
50 (6.3%) 

1717 

(6.5%) 
14 (6.3%) 

13. Epigastric horizontal scan: Pancreas 50 (6.3%) 
1886 

(7.2%) 
14 (6.3%) 

14. Epigastric oblique scan: Pancreas 50 (6.3%) 
1972 

(7.5%) 
14 (6.3%) 

15. Left intercostal scan: Spleen 50 (6.3%) 
1759 

(6.7%) 
14 (6.3%) 

16. Left intercostal scan: Left kidney 50 (6.3%) 
1615 

(6.1%) 
14 (6.3%) 

Total 800 26294 224 
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3.3.2. Neural Network Architectures 

The experiment was performed on a computer with an Intel CPU with a clock speed of 

2.4 GHz and a Nvidia 20 series GPU using the PyTorch framework [319] and Cuda 

toolkit (version 11.6).  As with previous literature [331, 333, 340] publicly available 

neural networks pre-trained on the ImageNet challenge dataset [339] were used as the 

basis for transfer learning. The neural networks architectures chosen for this experiment 

can be classified by the principles behind their design. These being two linear 

convolutional neural networks (Alexnet [343, 344], VGGNet [345]), five residual 

networks (ResNet-18, 32, 50, 101, 152) [346], and two inception networks (GoogLeNet 

(Inception V1) [347] and InceptionV3 [348]). A summary of the exact number of layers 

and parameters used by the neural networks is provided in Table 3.2. These neural 

networks were chosen as typical examples of their respective architectures, with five 

residual networks evaluated to test how the depth of residual network effects network 

response to ultrasound data. Three training procedures were used: transfer learning using 

dataset 1, transfer learning using dataset 2, and a baseline using only training dataset 2 

without pre-trained transfer learning weightings being applied at initialisation. Training 

used the ADAM optimiser [349] with an initial learning rate of 1x10-4 with the learning 

rate degrading every 5 steps, over 20 epochs. The ADAM optimiser was chosen as it 

scales is well suited for sparce and noisy data. It calculates a moving average of the first-

order moments (the mean of gradients) and the second-order moments (the uncentered 

variance of gradients), allowing for fast and efficient convergence. Each network was 

trained 20 times with the training and test sets resampled for each training run in order to 
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benchmark performance while reducing performance variation from any single training 

run. The final layer of each neural network was adjusted from 1000 to 16 in order for the 

neural networks to perform the required classification task, no additional changes were 

made from the standard network architecture. 

The earliest examples of convolutional neural networks use a linear stack of convolution, 

pooling and connected layers to form a hierarchical design, similar to that found in the 

visual cortex. This classic linear design is demonstrated in the Alexnet [343, 344] 

architecture which successfully competed in the ImageNet Large Scale Visual 

Recognition Challenge (ILSVRC) 2012 challenge achieving the lowest top-5 test error 

rate of 15.3% despite only consisting of 8 layers. Inspired by the Alexnet architecture, 

the VGGNet [345] architecture secured second place in the ILSVRC in 2014 challenge, 

this was achieved by producing a deeper neural network by stacking additional 

convolution layers such as VGG-16 which contains 13 convolution layers followed by 

three interconnected layers.  In order to modify these linear models for use, the SoftMax 

function (multinomial logistic regression) was adjusted to transition the model to the 

required classifiers. While there are many variations of linear neural networks available 

the two networks exampled offer a reasonable benchmark against the other neural 

network architectures.  
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Table 3.2 - Summary of Neural Network Shape and Parameters 

Model Method Convolution Fully Connected Parameters 

Alexnet Linear 5 3 57,069,392 

VGG16 Linear 13 3 134,326,096 

GoogLeNet Inception 22 1 11,996,288 

InceptionV3 Inception 48 1 25,145,048 

ResNet18 Residual 18 1 11,184,720 

ResNet34 Residual 34 1 21,292,880 

ResNet50 Residual 50 1 23,540,816 

ResNet101 Residual 101 1 42,532,944 

ResNet152 Residual 152 1 58,176,592 

 

Linear neural network architectures suffer from a significant drawback, known as the 

vanishing gradient problem, as the number of layers within the network is increased 

there is a significant decrease in performance as the size of the gradient is halved within 

rectified linear unit layers. As the network back-propagates up through the layers of 

parameters the size of the gradient decreases with each additional layer, effectively 

decreasing the effectiveness of backpropagation with each additional layer. This limits 

the useful depth possible with linear architectures without significant augmentation [350, 

351]. 

In order to facilitate neural networks with deeper architectures an innovative design 

method was required. One such solution was residual networks or ResNet [346], which 

creates feature maps of specific residual identifiers from a layer. These residual feature 

maps are propagated higher up the neural network with each training epoch effectively 
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creating shortcuts within the model. The use of multiple ResNet depths tests the theory 

that ResNet depth should not adversely affect model accuracy, as such this experiment 

uses Resnet networks of 18, 34, 50, 101 and 152 layers to confirm this did not affect 

performance significantly. 

The Inception architecture uses a modular design approach to mitigate the vanishing 

gradient problem, in GoogLeNet (Inception V1) [347] convolution layers are clustered 

together into modules instead of activated linearly. Auxiliary networks were also added 

to train in conjunction with the main network branch allowing the model to cross 

validate and enhance the gradient at these intervals. InceptionV3 [348] further refined 

this method by providing additional batch normalisation and increased tensor size to 

299x299. Results from version 1 and version 3, as well as the other highlighted 

architectures, are analysed in this work.  

3.3.2.1. Mobile Networks 

Four networks mobile or small-scale networks from residual and modular architectures 

(as seen in Table 3.3) were selected for testing: MobileNetV2, MobileNetV3, 

EfficientNet, and SqueezeNet. All models had been pre-trained on the ImageNet 

challenge dataset [339] and were tested solely on Dataset 2 using the same training 

parameters as the previous set of neural networks. 

MobileNetV2 [352] and MobileNetV3 [353] designed by Google, are based on residual 

architecture design but replaces a number of convolutions into pointwise 1x1 
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convolutions, as well as implementing residual shortcuts similar to those seen in ResNet 

models, allowing for enhanced performance at reduced network sizes. 

EfficientNet [354] is derived from the architecture of MobileNetV2 but the structure has 

been inverted and uses scaling coefficients to scale the network width, depth and 

resolution allowing for networks to be customised to the required task without editing 

the structure of the network itself, allowing for the use of fewer parameters to be used 

dependent on scaling and required task. 

SqueezeNet [355] is a modular convolutional neural network that ‘squeezes’ parameters 

using 1x1 pointwise convolutions, decreases the number of input channels throughout 

the network, down samples late so that convolutional layers have large activation maps, 

which essentially compress the model while maintaining network detail. 

Table 3.3 - Mobile networks shape and Parameters selected for case study. 

Model Method Convolution 
Fully 

Connected 

Size 

(Mb) 
Parameters 

MobileNet V2 [352] Residual 53 1 8.81 3,400,000 

MobileNet V3 [353] Residual 28 1 16.3 5,400,000 

EfficientNet [354] Residual 
237 

(scalable) 
1 15.6 11,000,000 

SqueezeNet [355] Modular 18 1 2.81 421,098 
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3.4. Results. 

The results for highest single neural network accuracy of the nine neural networks (as 

shown in Table 3.4) show that the Inception architecture achieved the highest accuracies 

on the test set for both networks pre-trained on the ImageNet dataset and then trained 

with dataset 2 and the Baseline, with GoogLeNet (InceptionV1) and InceptionV3 

attaining the top result of 83.93% for dataset 2, with inceptionV3 attaining 79.91% and 

GoogLeNet 77.68% for the Baseline. Linear neural network architectures attained the 

highest results for dataset 1 with Alexnet achieving 79.46% and 77.23% for VGG16. 

Table 3.4 - Highest validation accuracy achieved after 20 epochs from nine neural 

networks over 20 training runs. 
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Baseline 

Accuracy 
69.20% 70.09% 77.68% 79.91% 75.06% 73.66% 73.21% 71.88% 71.43% 

Dataset 1 

Accuracy 
79.46% 77.23% 62.05% 71.88% 67.41% 73.21% 73.21% 70.98% 70.54% 

Dataset 2 

Accuracy 
80.80% 82.59% 83.93% 83.93% 83.04% 83.48% 83.48% 82.14% 83.04% 

 

The confusion matrix in Figure 3.3 confirms that the largest misclassification errors are: 

between cross sections within close proximity such as cross sections 8, 9 and 10 which 

focus on the liver; where anatomical structures overlap such as in cross sections 5 and 6 



 

88 

 

which focus on vertically oriented biliary system, as well as 6 and 12 which the bile duct 

is a significant landmark; and differentiating between the kidneys in cross sections 11 

and 16. 
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(a) 

 

(b) 

 

(c) 

 

1. Epigastric sagittal: Liver/aorta, 2. Epigastric horizontal: Hepatic vein, 3. Right 

Epigastric oblique: Horizontal portal vein, 4. Right Subcostal: Gallbladder, 5. Right 

hypochondrium vertical: Gallbladder, 6. Right hypochondrium vertical: Bile duct, 7. 

Right subcostal: Liver, 8. Right intercostal: Liver, 9. Right intercostal: Liver, 10. Right 

intercostal: Liver, 11. Right kidney, 12. Epigastric vertical: Bile duct/pancreas, 13. 

Epigastric horizontal: Pancreas, 14. Epigastric oblique: Pancreas, 15. Spleen, 16. Left 

kidney 

Figure 3.3 - Confusion Matrix for top performing Neural Networks: (a) Alexnet Dataset 

1, (b) InceptionV3 Dataset 2, (c) InceptionV3 Baseline Dataset 
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While assessment of the highest accuracy provides a baseline understanding of neural 

network response, examining top-2 accuracy where both the first and second highest 

prediction is taken into account, allows for the difficulty of the image classification task 

to the scaled by reducing errors due to class ambiguity. Taking this ambiguity into 

account provides a potentially clearer picture of overall network response. Top-2 

accuracy results (shown in Table 3.5) continue the trend with InceptionV3 attaining the 

highest top-2 accuracy of 92.86% for Baseline with the second-best result being 

GoogLeNet with 90.18%. The linear architectures attained the highest top-2 accuracy in 

dataset 1 with Alexnet attaining 91.52% and 90.18% for VGG16. InceptionV3 also 

achieved the highest top-2 for dataset 2 at 95.09% but ResNet 18, 34 and 50 jointly 

attained the second-best result of 94.64%. The neural networks with the highest overall 

accuracy did not correspond to that of the highest top-2 accuracy. Those that did match 

were ResNet101, ResNet152 for Baseline; Alexnet, VGG16 and GoogLeNet 

corresponded for Dataset 1 and VGG16, ResNet34 and ResNet50 for Dataset 2. The 

neural networks with the highest overall accuracy did not correspond to that of the 

highest top-2 accuracy. Those that did match were ResNet101, ResNet152 for Baseline; 

Alexnet, VGG16 and GoogLeNet corresponded for Dataset 1 and VGG16, ResNet34 

and ResNet50 for Dataset 2. 
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Table 3.5 - Highest top-2 validation accuracy attained accuracy after 20 training runs. 
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Baseline 

Top-2 
86.16% 83.04% 90.18% 92.86% 87.95% 87.50% 89.29% 87.05%   

* 

87.05%   
* 

Dataset 

1 

Top-2 

91.52%
* 

90.18%   
* 

79.46%  
* 

88.84% 84.38% 88.84% 87.05% 86.16% 87.05% 

Dataset 

2 

Top-2 

92.86% 93.75%   
* 

94.20% 95.09% 94.64% 94.64% 
* 

94.64% 
* 

94.20% 93.75% 

* = Accuracy and Top-2 attained from same neural network model. 

 

The testing algorithm included category specific accuracy results (shown in Table 3.6) 

allowing for a deeper examination of the strengths and weaknesses of ultrasound plane 

categorisation. When examining the plane specific categorisation results from the 

InceptionV3 neural network trained from Dataset 2 it was possible to correctly 

categorise the right kidney plane 78.57% and the left kidney plane 89.71% of the time 

suggesting sufficient visual information is available to achieve successful classification. 

When examining the overall performance of transfer learning with Dataset 2 (from 

Table 3.6), the cross sections with the lowest accuracy were plane 6 (Right 

hypochondrium vertical to oblique scan: Extrahepatic bile duct) with an average 

accuracy of 64.29%, and Plane 12 (Epigastric vertical scan: Extrahepatic bile 

duct/pancreas) with an average of 67.46%. These cross sections see the highest error in 

each of the three exampled confusion matrixes, this is likely due to intersecting 

anatomical structures within the plane classifiers. 
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Table 3.6 - Accuracy of Individual Cross sections: Highest single neural network 

accuracy trained using Dataset 2 

Category 
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1. Epigastric sagittal: 
Liver/aorta 

92.86% 100% 100% 100% 100% 100% 100% 100% 100% 

2. Epigastric 
horizontal: Hepatic 

vein 
78.57% 92.86% 85.71% 78.57% 92.86% 85.71% 92.86% 85.71% 92.86% 

3. Right Epigastric 

oblique: Horizontal 
portal vein 

92.86% 78.57% 78.57% 78.57% 78.57% 78.57% 85.71% 85.71% 85.71% 

4. Right Subcostal: 
Gallbladder 

71.43% 64.29% 78.57% 78.57% 71.43% 85.71% 71.43% 64.29% 78.57% 

5. Right 

hypochondrium 
vertical: Gallbladder 

71.43% 71.43% 71.43% 78.57% 71.43% 85.71% 71.43% 78.57% 71.43% 

6. Right 
hypochondrium 

vertical: Bile duct 
71.43% 50.00% 64.29% 71.43% 64.29% 57.14% 64.29% 57.14% 78.57% 

7. Right subcostal: 
Liver 

85.71% 85.71% 78.57% 85.71% 92.86% 78.57% 85.71% 78.57% 71.43% 

8. Right intercostal: 
Liver 

78.57% 85.71% 100% 85.71% 92.86% 92.86% 85.71% 78.57% 100% 

9. Right intercostal: 

Liver 
92.86% 85.71% 85.71% 85.71% 78.57% 92.86% 85.71% 78.57% 92.86% 

10. Right intercostal: 
Liver 

78.57% 85.71% 85.71% 92.86% 78.57% 85.71% 85.71% 85.71% 71.43% 

11. Right intercostal: 
Right kidney 

64.29% 78.57% 78.57% 78.57% 85.71% 78.57% 92.86% 85.71% 64.29% 

12. Epigastric 

vertical: Bile 
duct/pancreas 

57.14% 71.43% 71.43% 78.57% 64.29% 64.29% 64.29% 71.43% 64.29% 

13. Epigastric 
horizontal: Pancreas 

85.71% 100% 85.71% 78.57% 92.86% 100% 100% 92.86% 100% 

14. Epigastric 
oblique: Pancreas 

85.71% 78.57% 85.71% 85.71% 71.43% 57.14% 71.43% 71.43% 71.43% 

15. Left intercostal: 

Spleen 
100% 100% 100% 100% 100% 100% 100% 100% 100% 

16. Left intercostal: 
Left kidney 

85.71% 92.86% 92.86% 85.71% 92.86% 92.86% 78.57% 100% 85.71% 

Average Accuracy 80.8% 82.6% 83.9% 83.9% 83% 83.5% 83.5% 82.1% 83% 
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Examining the variation in training outcome between the 20 runs (detailed in Table 3.7), 

by calculating the difference between best and worst performing network, shows that in 

most cases using the full dataset and transfer learning (dataset 2) reduced variation in 

training result with the exception of ResNet-18 with a variation of 13%. Inception based 

neural networks achieved the lowest variance with GoogLeNet having the smallest 

training variation on dataset 2 of 6% and InceptionV2 achieving 7%. Alexnet achieved 

the highest accuracy for dataset 1 but there was notable variance in the result of 22%, 

GoogLeNet achieved the poorest overall accuracy but also smallest variance. 

Table 3.7 - Variance in training outcome based on the standard deviation for neural 

networks over 20 runs. 

Model Dataset 1 Dataset 2 Baseline 

Alexnet 22% 7% 11% 

VGG-16 21% 8% 10% 

ResNet-18 19% 13% 8% 

ResNet-34 21% 9% 15% 

ResNet-50 25% 10% 13% 

ResNet-101 26% 10% 15% 

ResNet-152 22% 10% 13% 

GoogLeNet 9% 6% 14% 

InceptionV3 13% 7% 10% 

 

 

 



 

94 

 

3.5. Discussion 

This chapter examined the effectiveness of transfer learning for a small ultrasound 

abdominal cross-sectional dataset, providing comparative accuracy data for a larger 

number of neural network architectures on standard abdominal cross sections than has 

been previously studied. This will serve both to aid selection of neural networks in 

future, but also further highlights the potential uses and difficulties of utilising deep 

learning for identifying and classifying upper abdominal cross sections. While the size 

of the test set is small, this chapter provides a benchmark as to expected performance of 

neural networks for medical ultrasound classification tasks on 16 upper abdominal cross 

sections. It has been possible to compare machine learning using a relatively small 

medical ultrasound dataset of just 26,294 uneven non-ideal samples, with two transfer 

learning experiments using the ILSVRC data set [339], one leveraging a balanced 

idealised sample set of just 800 and the other using transfer learning the augment the 

entire dataset. Optimisation of techniques for convolutional neural networks has seen 

many improvements with machine learning using the InceptionV3 neural network able 

to achieve a result of 79.91%, just 4.02% lower than the highest result achieved by 

transfer learning in only 20 epochs. Furthermore, with transfer learning it was possible 

to use just 800 samples to train a network to attain an accuracy of 79.46%, just 4.47% 

from the best result from the larger dataset 2. The use of transfer learning and the 

complete dataset produced the best result of 83.93% with the result being shared by both 

Inception neural networks tested. 
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The residual network architecture did not produce the highest accuracy models (as 

seen in Table 3.4) but does improve in accuracy as the size dataset increases with results 

for dataset 2 showing accuracies typically within 1% of the highest result.  As previously 

discussed, residual mapping should have allowed each of the ResNet models to attain 

similar accuracy results with some variation expected from training randomisation. 

ResNet 34 and 50 both achieved the highest accuracies of 73.21% for dataset 1 and 

83.48% for dataset 2 but ResNet18 achieved the highest baseline accuracy of 75.06%. 

The difference between highest and lowest performing ResNet neural network was 3.63% 

for the Baseline, 5.80% for dataset 1, and 1.34% for dataset 2, suggesting that residual 

mapping struggled with the smaller datasets which would also partially account for the 

subsequent drop off in accuracy in the larger ResNet-101 and 152 models. 

Despite the use of 16 upper abdominal cross sections with many overlapping anatomical 

structures the top performing neural networks (Table 3.6) achieved an average overall 

accuracy of 82.94% with greatest error occurring between cross sections containing 

overlapping identifiers. Where the top-2 accuracy is considered, the neural networks 

studied achieved an accuracy between 79.46% and 95.09% with the top 10 models being 

within 2.2% accuracy. The high top-2 accuracy and confusion matrix (Figure 3.3) 

suggests that while a positive prediction was being made the similarities between cross 

sections played a major role in reducing accuracy as the majority of errors correspond 

with cross sections containing the same anatomical structures such as right liver cross 

sections 8, 9 and 10, cross sections 6 and 12 which both contain the extrahepatic bile 
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duct as the main region of interest and differentiating the left and right kidneys in cross 

sections 11 and 16. 

The variation in accuracy recorded suggests that larger neural networks benefitted from 

the larger dataset (dataset 2) and transfer learning the most, ResNet-101 and ResNet-152 

displayed notably lower per-plane accuracy results for dataset 1, improved accuracy 

results for the baseline and then most improved with the addition of transfer learning 

(dataset 2). While variance itself is less relevant than accuracy as a training metric, 

neural networks with a smaller variance are more likely to achieve a result closer to the 

highest accuracy in fewer iterations. Transfer learning can significantly improve 

accuracy but is no substitute for data. While dataset 1 was too small to provide sufficient 

information for machine learning to provide a useful result it was capable of producing 

surprisingly accurate results rivalling the larger baseline dataset and warrants further 

examination of the effect of ultrasound sample size on neural network learning and 

generalisation in future works. This study also suggests that the number of layers was 

less important than dataset size when performing upper abdominal ultrasound plane 

classification with the difference in accuracy of neural networks for dataset 2 being just 

2.2%. Transfer learning also significantly improved neural network accuracy with the 

larger dataset, when comparing dataset 2 with the baseline, the per-plane training 

variance is noticeably reduced with the addition of transfer learning along with a 

significant improvement in accuracy. While dataset size was a more significant factor in 

reducing variance and increasing accuracy, transfer learning allows for significant 
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improvements to ultrasound plane classification accuracy where the data is sufficient for 

the number of parameters in the neural network used. 

While there are limitations to the amount of direct comparison that can be made as 

previous studies used different cross sections, it is possible to highlight a number of 

trends when classifying abdominal ultrasound data. As seen in Table 3.8, comparing the 

accuracy results of transfer learning on dataset 2, the overall the results of this chapter 

are in line with those of previous studies. Smaller networks such as Alexnet achieved an 

accuracy result just 3.13% lower than the highest accuracy network, show significant 

potential to classify ultrasound cross sections, CaffeNet (a variant of Alexnet) achieved 

just 0.6% lower than the significantly larger VGGNet used in Cheng & Malhi [331], and 

3.5% lower in the case of Reddy et al [333]. Linear neural network architectures such as 

these traditionally suffer from the vanishing gradient problem, whereby the size of the 

gradient is halved in rectified linear unit layer, as the network back-propagates up 

through the layers of parameters the size of the gradient decreases with each additional 

layer, effectively decreasing the effectiveness of backpropagation with each additional 

layer. This limits the useful depth possible with linear architectures in complex without 

significant augmentation [350, 351].  
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Table 3.8 - Highest classification accuracy of results in comparison to those previously 

published abdominal ultrasound studies. 

Author Images Sets 
Cross 

sections 
Model 

Average 

Accuracy 

Cheng & Malhi 

[331] 
5,518 185 11 CaffeNet (Alexnet) 77.30% 

    VGGNet (VGG-16) 77.90% 

Xu et al [340] 187,219 706 11 ResNet50 (STL) 81.22% 

Reddy et al [333] 1,906 983 6 Alexnet 95.27% 

    VGG-16 97.37% 

    VGG-19 98.03% 

    GoogLeNet 96.49% 

    InceptionV3 97.89% 

    Resnet-18 97.37% 

    Resnet-50 98.77% 

    Resnet-101 98.24% 

This studies results 26,294 64 16 Alexnet 80.80% 

    VGG-16 82.59% 

    Resnet-50 83.48% 

    Resnet-101 82.14% 

    GoogLeNet 83.93% 

    InceptionV3 83.93% 

 

As in this study, cross sections containing overlapping landmarks and regions of interest 

such as the kidneys are shown to be a significant cause of classification error, in Cheng 

& Malhi [331] and Xu et al [340] both transverse and longitudinal scans of the left and 

right kidneys cause significant additional classification error, Reddy et al [333] while not 

containing multiple kidney classifiers, experienced similar error in liver cross sections 

where the right kidney appeared within the ultrasound image. A small reduction in 

accuracy can also be noted for larger scale Resnet networks in Reddy et al [333] the 
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resnet-50 achieved classification accuracy results 0.53% higher than that of the Resnet-

101 compared to 1.34% in this chapter. While this would be expected in linear style 

networks, residual networks create feature maps of specific residual identifiers. These 

residual feature maps are propagated higher up the neural network with each training 

epoch effectively creating shortcuts within the model therefore reducing the effect of 

vanishing gradient [37]. Despite this, results suggest that standard ultrasound data may 

not have enough visual information to fully utilise networks larger than Resnet-50. The 

inception architecture uses a modular design approach to mitigate the vanishing gradient 

problem in GoogLeNet (Inception V1) [347] and InceptionV3 [348] convolution layers 

are clustered together into modules instead of activated linearly. While more effective in 

this study, it did not achieve highest accuracy in  Reddy et al [333] where results were 

2.28% lower for GoogLeNet and 0.88% lower for InceptionV3. 

The results presented in this chapter are limited by the size of the test set of 14 patients, 

containing just 224 samples, necessary to ensure that no data leakage occurred during 

training. All patient sets are within normal range with no abnormal pathology or 

underlying conditions noted during ultrasound screening. All images were produced by a 

single machine, with all classification occurring at time of sampling by a single 

experienced operator. Only a single manually selected ideal plane image for each of the 

16 plane categories was taken, while it would have been possible to take multiple 

samples from each patient set, there was insufficient differences to warrant including 

these results with a variance of less than 1% when the sample size was quadrupled. 
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Despite the use of 16 abdominal cross sections with many potential overlapping 

anatomical structures the top performing neural networks (Table 3.6) achieved an 

average overall accuracy of 82.94% with greatest error occurring between cross sections 

containing overlapping identifiers. Where the top-2 accuracy is considered, the neural 

networks studied achieved an accuracy between 79.46% and 95.09% with the top 10 

models being within 2.2% accuracy. The high top-2 accuracy and confusion matrix 

(Figure 3.3) suggests that while a positive prediction was being made the similarities 

between cross sections played a major role in reducing accuracy as the majority of errors 

correspond with cross sections containing the same anatomical structures such as right 

liver cross sections 8, 9 and 10, cross sections 6 and 12 which both contain the 

extrahepatic bile duct as the main region of interest and differentiating the left and right 

kidneys in cross sections 11 and 16. 

When examining per-plane accuracy at the network level, the size of the dataset and use 

of transfer learning, were significant for reducing the variance in training results. The 

variation in accuracy recorded suggests that deeper neural networks benefitted from the 

larger dataset (dataset 2) and transfer learning the most, with ResNet-101 displaying 

notably lower per-plane accuracy results for dataset 1, improved accuracy results for the 

baseline and then most improved with the addition of transfer learning (dataset 2). While 

variance itself is less relevant than accuracy as a training metric, neural networks with a 

smaller variance are more likely to achieve a result closer to the highest accuracy in 

fewer iterations. Transfer learning can significantly improve accuracy but is no 

substitute for data. While dataset 1 was too small to provide sufficient information for 
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machine learning to provide a useful result it was capable of producing surprisingly 

accurate results rivalling the larger baseline dataset and warrants further examination of 

the effect of ultrasound sample size on neural network learning and generalisation in 

future works. This also suggests that the number of layers was less important than 

dataset size when performing abdominal ultrasound plane classification with the 

difference in accuracy of neural networks for dataset 2 being just 2.2%. Transfer 

learning also significantly improved neural network accuracy with the larger dataset, 

when comparing dataset 2 with the baseline, the per-plane training variance is noticeably 

reduced with the addition of transfer learning along with a significant improvement in 

accuracy. While dataset size was a more significant factor in reducing variance and 

increasing accuracy, transfer learning allows for significant improvements to ultrasound 

plane classification accuracy where the data is sufficient for the number of parameters in 

the neural network used. 

3.5.1. Mobile Networks 

Based on the previously discussed results of the previous nine networks, a follow-up 

study looked at neural networks designed to be run on mobile devices, typically these 

networks are smaller than 20Mb in size. This was designed to further test the potential 

efficiency and scalability of ultrasound image-based classification that was discussed 

earlier in this section. The use of small efficient networks designed for mobile 

deployment offers the opportunity to fully saturate the network perceptions ensuring the 

most effective possible accuracy result for that network. 
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The results of the mobile network training are compared to the top performing standard 

size neural network in Table 3.9. This not only shows that mobile networks such as 

MobileNet V2 and V3 were able to provide comparable accuracies to standard sized 

networks achieving 82.5% and 81.2% respectively, but EfficientNet exceeded the 

InceptionV3 model accuracy by 0.6%, achieving 84.5% accuracy despite being five 

times smaller at just 15.6Mb in size. While SqueezeNet only achieved an accuracy of 

77.5%, this was done using a fraction of the system resources of the other networks 

tested, being both noticeably faster to run and with a network size of just 2.81Mb. This 

result is in line with previous expectations, suggesting that there is a limited amount of 

useful image information within ultrasound for use in cross section classification as such 

smaller more efficient networks can achieve comparable results to those of larger 

networks. 

 

 

 

 

 

 

 

 



 

103 

 

Table 3.9 – Accuracy of Individual Cross sections for mobile networks vs inceptionV3: 

Highest single neural network accuracy trained using Dataset 2 
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Network size 83.5Mb 15.6Mb 8.81Mb 16.3Mb 2.81Mb 

1. Epigastric sagittal: Liver/aorta 100% 85.94% 84.38% 85.94% 87.50% 

2. Epigastric horizontal: Hepatic vein 78.57% 92.19% 87.50% 87.50% 79.69% 

3. Right Epigastric oblique: Horizontal portal vein 78.57% 84.38% 78.12% 81.25% 75.00% 

4. Right Subcostal: Gallbladder 78.57% 82.81% 82.81% 75.00% 78.12% 

5. Right hypochondrium vertical: Gallbladder 78.57% 85.94% 92.19% 85.94% 79.69% 

6. Right hypochondrium vertical: Bile duct 71.43% 46.88% 51.56% 45.31% 42.19% 

7. Right subcostal: Liver 85.71% 92.19% 90.62% 93.75% 89.06% 

8. Right intercostal: Liver 85.71% 84.38% 82.81% 78.12% 71.88% 

9. Right intercostal: Liver 85.71% 81.25% 76.56% 82.81% 76.56% 

10. Right intercostal: Liver 92.86% 92.19% 85.94% 89.06% 85.94% 

11. Right intercostal: Right kidney 78.57% 71.88% 68.75% 60.94% 59.38% 

12. Epigastric vertical: Bile duct/pancreas 78.57% 79.69% 81.25% 75.00% 75.00% 

13. Epigastric horizontal: Pancreas 78.57% 92.19% 87.50% 84.38% 84.38% 

14. Epigastric oblique: Pancreas 85.71% 90.62% 82.81% 89.06% 82.81% 

15. Left intercostal: Spleen 100% 96.88% 96.88% 95.31% 89.06% 

16. Left intercostal: Left kidney 85.71% 92.19% 90.62% 89.06% 84.38% 

Average Accuracy 83.9% 84.5% 82.5% 81.2% 77.5% 
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3.6. Conclusion 

This Chapter builds upon current knowledge by evaluating the classification accuracy of 

three major neural network architectures using 16 abdominal ultrasound cross sections, 

providing a baseline for future study. Transfer learning using linear, residual and 

inception neural network architectures were all shown to be effective in classifying 

abdominal cross sections with the number of layers in the neural network being a less 

significant factor than the size of the datasets. Transfer learning was capable of 

significantly augmenting dataset size compared to training using the data alone. The 

inception and residual architectures were more effective with larger datasets, while 

classic linear neural architectures remain useful for smaller dataset where the limited 

number of parameters was more effective than the deeper neural networks tested. As 

neural network architectures further develop for image classification techniques it is 

important to continue to test their effectiveness on medical imaging such as ultrasound 

which provides more constrained visualisation data than that of traditional imagery. 

Neural network selection proved to be a less crucial factor when compared to providing 

enough data for training with results suggesting that increasing dataset size would likely 

further reduce the variance between neural network accuracy results. While the 

inception architecture produced the highest accuracy when provided with a sufficiently 

large dataset, the difference in accuracy between neural networks was fairly small. In the 

case of a small dataset transfer learning and a small linear neural network of just 8 layers 

was able to attain the most accurate result. Transfer learning significantly improves 

accuracy and reduces training variance, even where dataset size is small as is often the 
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case with medical datasets in comparison to traditional supervised learning. While the 

limitations of the validation set should be noted, the results are encouraging in that a 

sufficiently accurate classification result can be achieved for multiple abdominal cross 

sections even where overlapping anatomical structures are present. 

Further study of mobile networks confirms that high accuracy results can be achieved 

for ultrasound classification using lightweight networks, with mobile and small network 

classifying comparably to that of substantially larger networks. This is likely due to the 

limited visual information available within ultrasound data, not fully utilising the 

parameters of larger neural networks although this case study suffers from the same 

limitations and the original study, with more data required for further training and 

testing to ensure that the networks are fully utilised. 

The study of neural networks for abdominal plane classification has so far been limited, 

this chapter provides much needed context for further research in the area suggesting the 

potential of gaining high accuracy results while utilising neural networks with fewer 

parameters by using transfer learning as a baseline for further training. The significant 

accuracy gained from transfer learning on the small sized dataset suggests further 

research into what size of dataset is required to achieve a meaningful high accuracy 

classification result for ultrasound data. 

 

  



 

106 

 

Chapter 4 

A Cost Focused Framework for Optimising 

Collection and Annotation of Ultrasound Datasets 

 

Abstract 

The process of collecting primary medical ultrasound images, presents a notable hurdle 

in the form of the high costs associated with clinical data generation and annotation. The 

challenge of balancing costs against dataset size is a concept well-recognised within the 

realm of clinical trials. Consequently, the strategies employed in this domain can be 

adapted to streamline data collection and annotation procedures, thereby mitigating 

expenses and timelines in the context of machine learning-driven feasibility studies. 

This chapter introduces a biphasic framework designed to evaluate the cost of data 

collection via iterative predictions of accuracy in relation to sample size. The framework 

also incorporates active learning techniques to guide and optimise comprehensive 

human annotation specifically for machine learning applications within the domain of 

medical ultrasound imaging. The chapter showcases the potential reduction in costs 

against publicly available breast, foetal, and lung ultrasound datasets, as well as 

presenting a practical case study centred around the breast ultrasound dataset. 
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The findings underline the ability to predict the correlation between dataset size and 

subsequent accuracy, echoing a pattern akin to that seen in clinical trials. Substantial 

enhancements in accuracy are observed with the utilisation of just 40-50% of the data, 

contingent on the applied tolerance metric. The employment of active learning further 

reduces the necessity for manual annotation, resulting in a marked cost reduction of 

approximately 66%, while maintaining a permissible accuracy deviation of around 4% 

of theoretical maxima. 

The significance of this work lies in its ability to predict how much additional data and 

annotation will be required to appropriately train a neural network to the accuracy level 

required. Using methodologies such as power theory to scale trials is already well 

understood by clinical funders and so provide a valuable and effective framework for 

feasibility and pilot studies. This framework can therefore be applied to machine 

learning studies to maximise predictive gains while adhering to a fixed budget [356, 

357]. 
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4.1. Introduction 

While this EngD was initially planned to be an image and data analysis-based machine 

learning project, the industrial partner was unable to provide any additional data, nor had 

the bandwidth to provide assistance in annotation. It was therefore necessary to plan and 

implement a collection protocol that could take into account the limited resources 

available. The lack of data is a common problem in medical data science so finding an 

efficient, cost-effective solution for collection and annotation has merit in itself, 

especially in proof of concept and pilot studies such as those described in later chapters. 

4.1.1. Motivation for Cost Analysis and Optimisation 

Ultrasound is one of the most commonly used diagnostic modalities in the world today 

due to its low cost and minimally invasive approach [358]. Despite this, there are very 

few large-scale public ultrasound datasets available [321] and where clinical data does 

exist there is often no useful annotation to produce an effective ground truth. This is not 

a problem unique to ultrasound. The inherent cost of producing high quality data and 

subsequent complex clinical annotation required to inform the neural network means 

that generating appropriate datasets for diagnostic quality deep learning is a major 

investment [359, 360]. Therefore, when designing or commissioning a research project 

applying machine learning to ultrasound, it is important to factor in the financial and 

clinical cost of producing and annotating the data as well as the machine learning itself. 

There are many methods aimed at optimising neural network response to training, such 

as transfer learning [361], as well as methods for reducing the burden of annotation by 
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reducing human-model supervision [362] and self-supervision [363, 364] such as 

masked autoencoders [365] and few-shot learning [366, 367], as well as methods for 

reducing the burden of annotation by reducing human-model supervision [362] and self-

supervision [363, 364] such as masked autoencoders [365]. These methods while 

effective are not designed to consider the real-world barriers to machine learning 

research, factors such as the cost and time of data collection that could completely 

prevent a study from being performed. Fortunately, there is already a tried and tested 

methodologies within medical research for performing this type of analysis that is well 

known to clinical funding bodies and commissioners: those used for designing clinical 

and random control trials, where is often not clinically or financially viable to sample a 

large population, therefore a smaller feasibility study is first performed, and the results 

analysed to calculate the size of subsequent trials [368]. 

The process of developing a dataset for machine learning has many similarities to 

designing random control trials, the addition of more data has diminishing returns on 

how much it improves the accuracy of the results, some trade-offs can be made to 

maintain the validity of the study while making it cost effective [369]. Where funding 

and clinical resources are finite, it is important to weigh the value of additional data and 

annotation against the time and cost of producing it. This chapter applies a framework 

similar to that of clinical trials [370], such as using a statistical power curve function 

during sampling to quantify diminishing returns in training result. Cost will then be 

further optimised by applying active learning to reduce the cost of data annotation after 

collection by targeting manual annotation to those parts of the data that most require 
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additional attention by an expert clinician. Time and cost are critical metrics to decision 

makers attempting to balance the risks and priorities of medical device and imaging 

research involving machine learning but has seen limited focus in the current literature. 

4.1.2. Cost / Time Optimisation Methods and Applications 

This section introduces the use case for power curve theory in determining dataset size 

before comparing the proposed method to common methods from the literature. The 

challenge of labelling and annotation is then discussed, examining the potential for 

active learning algorithm using an uncertainty sampling methodology to guide manual 

labelling. 

Statistical power analysis is the concept of estimating the effect of a result within a given 

sample and to what extent this can be generalised to a larger sample size based upon its 

statistical significance using a fitted curve. This power curve represents every 

arrangement of power and difference for each sample size when the significance level 

and the standard deviation are held constant. Factors that may affect statistical power are 

as follows: the statistical significance criterion used in the test, the magnitude of the 

effect of interest in the population and the sample size used to detect the effect [371]. 

Statistical power analysis has been previously used to predict classification performance 

[372], to predict dataset sample size with retinal optical coherence tomography (OCT) 

[373] and in magnetic resonance imaging (MRI) [374] but has yet to be explored for 

ultrasound. 
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When proposing a machine learning study, cost can be a limiting factor, especially in 

medical imaging where sample size can play a major role in study cost. One common 

method of sample selection is to use a derivation of the Widrow-Hoff learning rule [375] 

that suggests the use of a number (such as 10, 100 or 1000) of sets of data for every 

imaging feature that will be used in the model. This method is somewhat arbitrary and 

may come up with sample sizes that are too small or large for actual training purposes 

depending on the feature-set being examined with limited possibility for cost to 

performance comparison. Model-based sampling based on the algorithmic 

characteristics such as generalisation [376, 377], or convergence [378] can provide good 

baseline for sample size selection based on threshold criteria but can be more difficult to 

directly relate to costs. The proposed method uses empirical curve fitting for sample size 

determination [379], allowing for accurate prediction of time and cost of producing the 

data similar to that used for control trials [380, 381]. 

Where ultrasound data is available without annotation, there is an opportunity to apply a 

targeted approach to sample labelling. There are many ways to reduce the cost of 

annotation in the early stages of data analysis such as using unsupervised clustering 

methods [382], in this case active learning was used to target manual clinical annotation 

time more effectively. While more expensive than self-supervised and automated 

methods, full human annotation is already recognised as appropriate by regulatory 

bodies for medical device research and as such was used as the benchmark in this study. 

Active learning is a subfield of machine learning aimed at minimising cost of obtaining 

labels for data by allowing the algorithm to directly query the labelling source in this 
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case the clinician performing the annotation [383, 384]. This feedback method allows 

for greater accuracy while using fewer labels. [385]. There are many common methods 

of active learning within machine learning, such as using an unlabelled pool where a 

network chooses the best examples of a classifier known as diversity sampling [386]. In 

this chapter selective uncertainty sampling [387] is used to identify where the neural 

network has the lowest confidence in its prediction and target those images for 

annotation. This sampling method has shown to be highly effective with classification 

problems [388] and has been used previously as a method of dataset selection criteria for 

ultrasound data [389]. This forms an active learning loop, allowing for the consistent 

querying of the learning network to better inform the annotation process (Figure 4.1). 

Active learning has already been successfully applied to breast ultrasound using a 

weakly supervised approach, as well as in the detection of breast masses [390, 391], in 

the multi-model detection of liver fibrosis for ultrasound elastography [392], and in 

semi-supervised covid lung disease classification [393]. 
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Figure 4.1 - Active Learning Cycle based on Settles [383]. This shows the cyclical 

iterative nature of active learning within machine learning. 

4.1.3. Structure and Scope 

This chapter proposes a biphasic prescriptive framework for optimising data capture and 

data annotation. The datasets, machine learning algorithms, and data control measures of 

each phase is shown in section 2. The efficacy of each phase is shown independently in 

sections 3.1 and 3.2. A case study is presented in section 3.3 using publicly available 

data, demonstrating the framework for reducing the cost of data capture and annotation 

compared to the common approach of using fully annotated arbitrary data sets. This 

chapter examines how: 

• Ultrasound dataset size effects neural network accuracy performance for three 

publicly available datasets to determine sampling size effectiveness. 
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• Uses power curves to predict data performance from a small sample to inform 

further data collection for machine learning based on a cost benefit analysis. 

• Compares that sample size prediction compared to the real result from the 

dataset. 

• Tests the effectiveness of uncertainty sampled active learning for ultrasound 

data for reducing the cost of annotation. 

• Combines these methods to determine a sample size and annotation level for 

maximising accuracy whilst minimising cost. 

The use of curve fitting for determination of sample size is not as efficient as formulaic 

or model-based sample size selection methods but uses empirical testing to provide a 

simple robust basis for predictive modelling of dataset cost. While semi-supervised, 

fully automated, or clustering methods may provide less expensive labelling options 

than manual annotation, they are subject to a number of separate difficulties which may 

be expensive to overcome. Where manual annotation must be maintained as the primary 

form of annotation, such as cases where regulatory approval is a consideration, 

uncertainty sampled active learning allows for manual annotation to be targeted at those 

classifications with the weakest predictions while stronger classifiers could potentially 

be labelled using a semi-automated labelling process. When combined, these methods 

form a novel 2 phase process to reduce the cost of producing a dataset for machine 

learning for ultrasound by optimising collection and labelling of data. 
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4.2. Method 

4.2.1. Proposed Method for Optimising Sampling/Annotation 

Phase 1 uses power curves, a method common in determining size of clinical trials based 

on factors such as population size and available resources. Applying this technique 

allows these same factors to be considered during the collection of data for machine 

learning and also to determine a rough performance estimate from the size of the dataset. 

Ensuring a representative sampling within the training set assists in the subsequent 

extrapolation of the statistical power curve. This experiment simulates the data 

collection process, producing a teacher oracle on a small subset of the data, and then 

using the result to extrapolate the power curve. Each subsequent iteration adds data to 

the oracle training subset, representing an additional round of data collection. Phase 2 

uses semi-supervised active learning to automatically annotate a proportion of the 

dataset, where a reduction in performance can be accepted as part of the experimental 

parameters, an error tolerance threshold can be applied, leading to significant cost and 

time savings.  In this work, a convolutional neural network (CNN) is used as described 

in section 2.3, Alexnet is used a well-known and understood benchmark. 

Hyperparameters are also exemplar and not intended as a recommendation of optimal 

settings, but merely to demonstrate the framework in action. 

4.2.1.1. Phase 1 – Optimised Data Set Capture: 

Phase 1: Estimate the power curve and predict required dataset size (Figure 4.2). Below 

are explanatory notes for the flow chart: 
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1. A neural network is trained on a small sample of annotated data (dependent on 

experimental constraints e.g., 10-100 samples). The dataset should be split into 

training and test sets. Validation metrics (such as accuracy) are saved. 

2. An additional subset of annotated samples (ideally in equal chunks) is added to the 

dataset (re-randomising training and validation sets is advised).  

3. Neural network is retrained and tested. The chosen validation metrics are saved. 

4. The validation metrics are plotted against dataset size and a power curve is fitted 

to the data.  

5. Repeat steps 2-4 until curve fit is ‘stable’ at desired statistical power and accuracy. 

Stability is when subsequent sample groups predict end accuracies within your 

desired tolerance (such as within 2%). 

6. Plots of the power curve (e.g., accuracy vs sample size) can then be used to 

determine the required dataset size for desired/acceptable validation metric. 
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Figure 4.2 – Flow diagram of phase 1: Collection cycle and subsequent power curve 

analysis leading to the determination of dataset size based on curve fit. 

4.2.1.2. Phase 2 – Optimising annotation: 

In cases where excess samples have been captured, particularly in large unannotated 

datasets or where data is being repurposed, active learning, detailed in section 2.5, can 

be used to selectively target samples that the CNN has the most difficulty identifying for 

manual annotation, by selecting samples where the neural network has provided the 

lowest predictive accuracy as seen in Figure 4.3. This process uses selective uncertainty 

sampling to minimise manual annotation of remaining data. Below are explanatory notes 

for the flow chart: 

1. Train and validate a neural network on available annotated data (such as the 

sample set produced in phase one). 

2. Identify least certain samples on unannotated data, where the CNN has least 

certainty detecting particular classifiers (e.g., bottom 50 samples). 

3. Manually annotate next batch of data with additional focus on identified weak 

classifiers. 

4. Combine new and old batches and reshuffle the dataset. 

5. Train new neural network and evaluate result using the validation set. 

6. Use the validation metrics (such as accuracy level) to decide if additional samples 

are required. Consideration should be given to the effect of dataset balance on 

classification as well as comparisons made to predicted values from Phase 1 to 

ensure training validity. 
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7. Cease annotation when (cost and accuracy) metrics are within acceptable 

parameters. 

 

Figure 4.3 – Flow diagram of phase 2: Active learning cycle for annotation.  

This iterative process allows this technique to be applied naturally during the data 

collection and annotation process, such as during a pilot study. A new round of training 

can be performed upon receipt of a new batch of data, adding an additional datapoint for 

the power curve. If data is in a single large batch it, like those introduced in subsection 

2.2, can be divided into percentages such as in this study, to produce the required 

increments. This is shown in the case study, Section 3.3. 
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4.2.2. Datasets 

4.2.2.1. Breast Lesion 

The BUSI breast lesion ultrasound dataset [394] (Figure 4.4) consists of breast 

ultrasound images of 600 women between the ages of 25 and 75. The ground truth 

images were presented with original images. The images were categorised into three 

classifiers: normal, benign, and malignant as confirmed by biopsy in the original study. 

The original ground truth for this dataset contained image masks for segmentation, as 

this work focuses on classification, these segmentation masks were not used. 

 

Figure 4.4 - Examples of breast lesion ultrasound classifiers from the BUSI dataset [24], 

left benign, centre: malignant, right: normal. 
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4.2.2.2. Covid Lung 

The lung ultrasound dataset [395, 396] (Figure 4.5), consists of 179 videos (64 COVID, 

49 bacterial pneumonia, 66 healthy), 53 images (18x COVID, 20x bacterial pneumonia, 

15x healthy) from convex probes and 17 videos (6 COVID, 2 bacterial pneumonia, 9 

healthy) and 6 images (4 COVID, 2 bacterial pneumonia) from linear probes. Cases of 

viral pneumonia in the dataset were excluded as it consisted of only 6 cases and there is 

evidence to suggest ultrasound can differentiate between viral and bacterial pneumonia 

[397, 398] meaning including it in a single pneumonia classifier would be counter 

intuitive.  

 

Figure 4.5 - Examples of Covid Lung Ultrasound Dataset [25]. left: Covid, centre: 

bacterial pneumonia, right: normal. 
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4.2.2.3. Foetal Planes 

The foetal ultrasound dataset [334] consists of around 12,000 images from 1792 patients 

and is split into 6 classifiers: foetal abdomen, brain, femur, thorax, maternal cervix, and 

a generic ‘other’ classifier as exampled in Figure 4.6. 

 

Figure 4.6 - Examples of foetal Plane Ultrasound Dataset [29]. a: other, b: abdomen, c: 

brain, d: maternal cervix, e: femur, f: thorax.  

 

4.2.3. Deep Learning 

The experimentation was performed using the PyTorch framework [319], on a computer 

with an Intel CPU with a clock speed of 2.4 Ghz and a Nvidia 3060 GPU. A standard 

Alexnet neural network that had been pretrained using the ImageNet Challenge dataset 

[339] was used with the final layer output reduced to fit the classification requirements 

of the dataset. Alexnet [215] was selected to provide a baseline to study dataset selection 
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size, using the training parameters in Table 4.1. Network selection and hyperparameter 

settings are simple and provides an example of the framework in action but not to be 

optimal for high precision machine learning tasks. Hyperparameter values were based on 

those found to produce stable results for the ultrasound experiments reported in chapter 

3. The complexity of the data and requisite predictors and feature sets should be 

considered when designing machine learning studies using techniques as seen in these 

recent studies [399-402]. The images were contrast normalised and compressed into 

tensors sized 299×299. Test/train split was performed on a per image basis as there is no 

known repeated data within the set. No additional data augmentation was performed as 

this would potentially confound results. 

Table 4.1- Sample Hyperparameters used in training of the example network. 

Hyperparameters Value 

Activation Functions SoftMax 

Learning rate 0.001 

Training iterations 80 

Epochs 20 

Optimiser ADAM 

Momentum 0.9 

Dropout 0.5 
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4.2.4. Training set size 

The dataset was split twice for each experimental run. The dataset was initially split 

using stratified random sampling [403] at a ratio of 80/20 at the subject level to create a 

holdout test set, this was performed to ensure a representative sampling of each classifier. 

The training set was then resampled with a percentage retaining their original labels for 

training the oracle networks. The percentage of the breast and foetal datasets were 

between 1% and 5% then in increments of 10% thereafter. The Lung dataset has a 

smaller sample size and so the smallest split tested was 5%, then in increments of 10%. 

This was done to simulate the collection of data over time. The percentage of data is 

increased with each iteration in order to determine the relationship between sample size 

and accuracy. The labels for the remaining data was removed and new labels produced 

by the teacher oracle network. 

Each experimental training run was performed 80 times over 20 epoch each. Each epoch 

represents a single completed pass of training data through the algorithm. In order to 

account for variability in the training result, that occurs naturally when performing 

machine learning [404], 80 resampling runs for each dataset increment were performed 

in 4 sets of 20. This produced 1,120 networks trained on the breast and foetal datasets 

and 800 networks trained on the lung dataset. The use of an unseen test set means that 

any overfitting that has occurred will already be reflected in the test result that is used in 

the calculation of the power curve, with the accuracy of an overfitted network 

substantially lower when validated on the unseen test data. Each subsequent round of 

collection increases the size of both training and test sets and testing adds a new 
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datapoint to the power curve further refining the curve fit. The exampled approach is 

overly simplified, performing a stratified random split with each new experimental run 

and looking at only very simple classification tasks, more complex datasets should 

consider folded-based cross validation and the potential improvements that could be 

made through careful feature selection and ensemble learning models as methods to 

reduce overfitting as exampled in recent studies [405-407]. 

4.2.5. Active Learning 

At its core, active learning is a technique whereby the learner plays a role in specifying 

the content they learn [385]. An uncertainty sampling [386, 389] method is used 

whereby the images with the lowest confidence was selected for annotation. This was 

performed for each percentage of the dataset from 10-90% with the active learning 

performed on the remaining percentage of the dataset also using a threshold percentage 

to specify an additional proportion of the dataset for annotation (as can be seen in Figure 

4.7). Each active learning threshold was tested 20 times over 20 epochs. 

 

Figure 4.7- Diagram of active learning dataset split method showing proportion of data 

used for training and threshold for additional annotation. 
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4.3. Results. 

4.3.1. Size to accuracy of dataset 

Initial experimentation examined the effect of dataset size on accuracy, examining how 

power curves could be used to determine data requirements without applying active 

learning to the annotation. Figure 4.8, Figure 4.9 and Figure 4.10 provide both mean and 

highest accuracy results to facilitate comparison. The mean curve fit result from 80 

networks controls for variation in training outcome while the curve fit from highest 

accuracy networks suggests what can be achieved with an optimal training path. 

Examining the breast dataset mean accuracy results for 80 neural networks per threshold 

percentage (Figure 4.8), the highest mean accuracy of 85.42% was achieved using 90% 

of the data, contrast to 79.6% using 40% of the data and 75.29% at 20%, a difference of 

5.82% and 10.13% respectively. Increasing dataset size reduces the variation as seen in 

the standard deviation between neural networks with an average of 6.17 at 1% of the 

data, down to 2.42 at 90%. Selecting the neural network with the highest accuracy for 

each percentile shows that the highest accuracy network with 91.72% was produced with 

only 60% of the dataset, in comparison to 82.8% using 20% of the dataset a difference 

of just 8.92%, there were significant diminishing returns on data investment after 30-40% 

of the data is used. 

Using the mean accuracy data, it is possible to extrapolate a close approximation of data 

to fit classification accuracy, a fitted curve from just 10% of the data can be used to 

approximate the amount of additional data required to reach a certain level of accuracy 
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similar to that used in clinical studies, with each additional data point improving the fit 

further. 

 

Figure 4.8 - Accuracy of mean and highest result with associated power curves for 

neural network response for breast dataset. 

In the lung dataset (Figure 4.9) the difference between the highest mean accuracy of 

83.66% and 80.87% using 40% of the dataset was just 2.79%. The trend of reducing 

standard deviation as dataset size increases is less obvious, while the initial deviation is 

12.34 at only 5% of the dataset it is reduced to 7.62 by around 10% of the dataset but 

remains unstable but does achieve the lowest standard deviation at 5.25 at around 90% 

of the dataset. When the highest accuracy neural networks are considered, an accuracy 

of 89.93% is achieved at just 30% of the data, with diminishing returns until 70-80% 

where a significant improvement is achieved with results of 94.36% at 70% and 95.96% 
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at 80% of the data. As previously seen in Figure 4.8 the same data trend is possible and 

is visible in the mean accuracy data for the lung dataset. A statistical curve is used to 

predict CNN accuracy for sample sizes. 

 

Figure 4.9 - Accuracy of mean and highest result with associated power curves for 

neural network response for lung dataset. 

The foetal plane dataset contains over 12,000 samples from over 1700 patients making it 

the largest dataset assessed, using only 20% (around 2400 samples) the mean accuracy 

reached over 90%, with additional data providing diminishing returns for the additional 

data added. The standard deviation trends downwards from 3.40 to 0.54 using 80% of 

the dataset. The foetal data also exhibits the same trend from the power curve (Figure 

4.10) despite containing substantially more data and classifiers than the previous two 

datasets, the difference between mean and highest result after 50% of the dataset (6000 
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samples) is 0.66% of that achieved with 90% of the dataset, it is also within 0.56% of 

the highest achieved result of 94.97%.  

 

Figure 4.10 - Accuracy of mean and highest result with associated power curves for 

neural network response for foetal plane. 

The use of curve fitting as a method of sample selection is empirical and has clearly 

shown to be effective at determining sample size in all three datasets, a clear followable 

trend that can be seen in the network response and can be used to extrapolate data 

requirements based off this trend. The high initial standard deviation in accuracy result 

in training seen in all three datasets is due to factors such as overfitting, sample 

randomisation and training performance. As sample size increases the so does the 

stability of the training process, due the test set being unseen the results from the 

networks form a clear accuracy trend regardless of these factors. Where sample size will 
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be consistently small harmonic mean (F-1 Score in Table 4.2) should be factored into 

result metrics to ensure network response is truly representative of learnt classification. 

The F1 score is the harmonic mean of the accuracy and recall, in cases where there are 

imbalanced classes, using these two values as part of the evaluation metric provides a 

more accurate predictor of performance than accuracy alone.  

4.3.2. Active Learning 

Comparing the results of using active learning to target the lowest predicted accuracy 

using a threshold to that of annotating the same percentage with no targeting shows a 

small consistent improvement. The highest accuracy of 92.99% is achieved at 60% of 

the dataset, as can be seen in Table 4.2, the neural network is already performing 

consistently with a weighted average precision of 90%, recall of 92% leading to an F-1 

Score, the combination of precision and recall of 0.91. 

Table 4.2 - Precision, Recall and F-1 score for top performing network (BUSI (breast) 

dataset based off a network trained on 10% of the dataset with an additional 40% 

annotated using active learning. 

Classifier Precision Recall F1-Score 

0 – Benign 90 88 0.89 

1 – Malignant 94 92 0.93 

2 – Normal 87 96 0.91 

Average 90 92 0.91 

 

Comparing the default annotation values to those using active learning shown in Table 

4.3 and Figure 4.9, shows that the majority of learning can be achieved using between 
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40-50% of the data (in the region of 300-400 sample sets). For example, when 10% of 

the data is used for the teacher oracle network and an additional 30% is annotated using 

active learning then a mean result of 82.99 was achieved that is only 4.3% less than 

when trained with the complete dataset where a mean result of 87.29% was achieved. 

Where 20% of the dataset is used to train the teacher oracle network then this difference 

drops to just 3.28%. The variation of accuracy after 60% of the dataset is likely due to 

the probabilistic nature of neural network training rather than the dataset itself. The 

statistical maximum result of 92.99% was achieved at all subsequent dataset proportions 

above 50% when trained exhaustively, but this may not be feasible to achieve in practice. 

This supports the hypothesis that additional data provides limited, to no, return on 

investment after this point. 

Table 4.3 – Mean comparative accuracy of neural networks trained using Active 

Learning to label a percentage of the BUSI (breast)dataset. 

 Percentage of dataset used for training 
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- 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

0% 70.84 75.29 77.60 79.60 81.69 83.61 83.73 84.29 85.42 85.42 

10%  77.39 80.51 82.99 85.25 86.56 86.62 85.67 85.86 86.85 

20%   80.10 84.01 84.78 85.73 85.57 85.35 86.69 87.20 

30%    83.03 84.94 86.59 85.70 86.08 87.17 86.78 

40%     84.32 85.49 85.46 85.56 85.73 85.99 

50%      84.28 85.16 86.56 86.37 86.07 

60%       85.29 85.64 86.88 87.29 

70%        85.42 85.42 85.42 

80%         85.92 86.14 

90%          86.02 
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When comparing the data for the default annotation technique with active learning for 

the breast dataset (Figure 4.11), the mean active learning consistently is above that of the 

default annotation technique, although this improvement suffers from diminishing 

returns after 50% of the dataset is used. While there is significant improvement in the 

highest accuracy results achieved even with only 10% active learning there is significant 

training variance at lower dataset sizes that would need to be accounted for in the 

training methodology. 

 

Figure 4.11 - Comparison of mean Active Learning (AL) to default annotation for breast 

dataset. Error bars denote variation in accuracy result between the 20 networks trained 

at that data percentage and level of active learning. 

 

Lung ultrasound also performed well with active learning (Table 4.4), with a network 

trained on 20% and an additional 10% active learning was able to achieve a mean 
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accuracy of 82.35%, just 4.3% less than the highest achieved mean accuracy of 86.65% 

from a network trained on 30% of the data and an additional 50% targeted through 

active learning. 

Table 4.4 - Mean comparative accuracy of neural networks trained using Active 

Learning to label a percentage of the lung dataset. 

 Percentage of dataset used for training 
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- 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

0% 70.62 76.55 77.71 80.87 79.79 80.75 82.72 83.66 83.11 84.43 

10%  78.41 78.66 81.09 80.86 84.33 84.24 83.37 84.59 84.59 

20%   82.35 83.77 80.09 83.22 85.69 83.77 85.09 84.43 

30%    81.46 81.91 83.51 82.97 86.65 85.23 84.81 

40%     80.86 83.33 83.90 84.36 84.51 84.57 

50%      84.33 84.81 85.23 83.11 84.59 

60%       84.24 84.36 84.81 85.23 

70%        83.50 85.23 84.43 

80%         84.84 84.81 

90%          84.59 

 

When comparing active learning to default annotation methods (Figure 4.12), the active 

learning does improve mean accuracy results but does not significantly improve training 

of high accuracy models after 60% of the data is in use due to the wide variation in 

training accuracy achieved.  

The variation in training accuracy is highest for this dataset, out of the three, which is 

attributed to the low base dataset size, meaning that the CNN training is more 

susceptible to statistical anomalies in the data, a well-known phenomenon. Despite this, 
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the trend improvement is still evident, although with smaller returns initially than larger 

datasets. 

 

Figure 4.12 - Comparison of mean active learning to default annotation for lung dataset. 

Error bars denote variation in accuracy result between the 20 networks trained at that 

data percentage and level of active learning. 

The foetal ultrasound data has a significantly larger sample size and double the number 

of classifiers than the previous two datasets. As seen in Table 4.5, there was a 2.22% 

improvement when active learning was used to annotate 10% of the dataset but is 

subject to diminishing returns as the highest accuracy result achieved was 94.40% using 

80% of the dataset where the active learning had been trained using a dataset with 60% 

of the data an improvement of only 1.39%. 
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Table 4.5 - Mean comparative accuracy of neural networks trained using Active 

Learning to label a percentage of the foetal ultrasound dataset. 

 Percentage of dataset used for training 
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- 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

0% 87.61 90.79 91.70 92.65 93.08 93.45 93.60 93.65 93.74 94.13 

10%  93.01 93.83 93.95 93.89 93.89 94.19 93.78 94.15 93.92 

20%   93.85 94.10 93.92 93.78 94.02 93.97 93.98 94.09 

30%    94.15 93.91 93.83 94.03 94.00 93.84 94.06 

40%     94.01 93.80 93.77 94.13 94.18 94.08 

50%      93.89 93.92 93.94 94.00 93.98 

60%       93.31 94.40 93.68 94.34 

70%        93.92 93.91 93.95 

80%         93.75 94.23 

90%          94.34 

 

When comparing active learning to default annotation methods in Figure 4.13, an initial 

accuracy boost, after using above 60% data, training variance becomes a significant 

factor with active learning achieving only limited improvements. 
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Figure 4.13 - Comparison of mean active learning to default annotation for lung dataset 

foetal dataset. Error bars denote variation in accuracy result between the 20 networks 

trained at that data percentage and level of active learning. 

The use of uncertainty sampled active learning is shown to boost classification accuracy 

performance of all three datasets with most improvement seen prior to 50% human 

annotation of the dataset with substantial diminishing returns after this point. Where 

more than 50% of the data has been manually annotated, there is little to no performance 

drop, as seen in Table 4.3, Table 4.4 and Table 4.5, suggesting this data could be 

annotated using active learning with almost no loss of reliability despite the potential of 

labelling error. 

 

 



 

136 

 

4.3.3. Case Study 

Having shown in section 3.1 that accuracy vs. sample size follows a power law and 

therefore has significantly diminishing returns after a certain point. As shown in section 

3.2, active learning produces improvements in accuracy with low amounts of initially 

annotated data, again with diminishing returns as annotation proportion increases, we 

can now consider what this means in terms of costs for collection and annotation. 

In order to demonstrate the potential saving incrementally, phase 1 and phase 2 of the 

prescribed method were applied independently to the BUSI data set, and then as a 

combined method considering mean response and max response of the CNNs 

respectively. 

Phase one was applied to the BUSI breast dataset, with an initial sample size of 15. The 

process was iterated until power curve stability was achieved at 150 samples as shown in 

Figure 4.14. This allowed a prediction that 400 samples were required to be within 4% 

of the theoretical maximum accuracy achievable with the full dataset. These remaining 

samples (250) were then ‘collected’ by randomly sampling the BUSI dataset. All 

remaining BUSI data was used for validation. 



 

137 

 

 

Figure 4.14 – Comparison of power curve fit for networks trained with 15-150 samples 

and those trained on the full breast dataset. Each additional set of samples added to the 

dataset improves the fit. 

Phase 2 was then applied with an initial CNN trained on a sub sample of 50, and then 

predicted the annotation for the remaining 350 unannotated datasets with 50 chosen for 

annotation using uncertainty sampling and added to the training set. A new CNN was 

then trained, validated, and then used to select an additional 50 samples from the 

remaining unannotated patient sets. This was repeated until all 400 samples were 

selected as shown in Figure 4.15 for illustrative purposes, but the process would stop 

once the acceptable tolerance is reached. All networks were trained for 100 times for a 

cycle of 20 epoch, using Alexnet and ADAM optimisation method. Depending on the 
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experimental robustness requirements, the best result of the training epochs or the mean 

result can be considered with differing conclusions.  

For the BUSI dataset with 400 samples from Phase 1, with an acceptable tolerance of 

2%, 350 samples of the 400 need annotation for the mean response to be within 

tolerance but only 200 samples of the 400 need be annotated for the maximum result to 

be within acceptable tolerance. 

 

Figure 4.15 - Comparison of the mean accuracy of neural networks trained on a dataset 

produced by active learning compared to training on a fully human annotated dataset. 

Each iteration adds 50 samples to the oracles training set.  

The combined method of phase 1 and phase 2, considering the maximum response from 

the CNNs, an accuracy of 85% was achievable using only 400 samples compared with 
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the theoretical maximum of 88% at the full BUSI dataset size (from Figure 4.8). 

Additionally with only 200 of the 400 samples manually annotated, accuracy only drops 

to 84.7% for a 50% reduction in annotation burden, directly translatable into costs. 

For completeness, the cases of simply performing phase 1 alone (with 400 captured and 

annotated samples) and performing phase 2 alone on the full BUSI dataset, yielding 50% 

annotation, were also considered to illustrated cost differences. Using an initial 

representative costing model of 1:2 for data collection and annotation the relative costs 

of each method and phase can be seen in Figure 4.14 and Figure 4.15, calculated using 

Equation (1), where P is the price of collection or annotation, and N is the numbers 

predicted by phase 1 and 2 respectively. 

 

𝐶𝑜𝑠𝑡 = (𝑃𝐶𝑜𝑙𝑙𝑒𝑐𝑡  × 𝑁𝐶𝑜𝑙𝑙𝑒𝑐𝑡) + (𝑃𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑒  × 𝑁𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑒) (1) 

 

Dependent on accuracy and robustness requirements, significant cost savings can be 

made by optimising collection using a statistical power curve, and by targeting 

annotation by applying active learning as described in our method. Combining the 

methods shows the potential to reduce costs even further, when a 1:2 unit cost for 

collection and annotation is applied, where the best performing network is taken into 

account, cost savings of up to 66% are possible as shown in Figure 4.16. A similar 

analysis has been performed for differing overall acceptable tolerances from the 

maximum prediction from Figure 4.8. This allows for further optimisation of costs when 

accuracy can be acceptably traded. The shape of this graph shows that regardless of the 
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initial costing model used, the prescribed method will always yield a cost reduction in 

comparison to capturing arbitrary amounts of data and annotating it all, which is an 

important result allowing decision makers to optimise their clinical applications of 

machine learning. The scale of the cost saving is related to the complexity of the data, 

the CNN type used, and the costing model, but this method is always expected to return 

a cost reduction for minimal accuracy loss. 

 

Figure 4.16- Cost saving of capture and annotation for methods: Full capture/Full 

annotate (FC/FA), Full capture/Active learning (FC/AL), optimised capture/Active 

learning from mean accuracy (OC/Mean-AL), optimised capture/Active learning from 

max accuracy (OC/Max) 

This case study has shown statistical power curves and active learning allow for 

significant optimisation in both sample and annotation set size. This reduction in sample 

Collection 

Annotation 
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size represents a direct cost reduction in producing a viable dataset. Through the 

example case study on the BUSI dataset, this gave a 50% cost reduction for an accuracy 

loss of 4% when considering mean response or a 66% cost reduction for an accuracy 

loss of 3.75% from theoretical maximums at full dataset size using Alexnet as a 

performance benchmark. Similarly, if theoretical maximum accuracy is required, the 

method allows for a 40-50% cost reduction with negligible loss in accuracy depending 

on the robustness criterion used, demonstrating the power of active learning in boosting 

accuracy at low sample numbers. Even when using just phase 2, a cost reduction of ~25% 

is feasible for no accuracy drop using active learning to take some of the annotation 

burden. If the case study were a ‘quick pass’ feasibility study, then a massive 90% cost 

saving can be made for an accuracy trade-off of 10%. Although cost is important, this 

would be most significant in terms of time as it allows proof of concepts to be 

demonstrated quickly and efficiently. This method is a powerful tool for planners to 

maximise gains and productivity under a fixed budget or time frame. 

4.4. Discussion 

Estimating clinical trial sample size is a standardised practice allowing clinical 

researchers to fit the size of studies, so they are feasible clinically and financially within 

the timeframe available. This same approach has been used to predict the effectiveness 

of increasing the dataset for machine learning and inform researchers as to the 

usefulness of further annotation. Examining the results from the three datasets in this 

simple classifier per image study, the neural network response to sample size trend is 

clear and can be exploited to cap data collection and annotation costs. The breast and 
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lung datasets both showed diminished returns after 40-50% of the dataset with the much 

larger foetal dataset reaching diminishing returns between 10-20%. This means that data 

collection and annotation can be reduced without significant accuracy loss, although the 

exact cost savings is dependent on the dataset. 

Of course, in this study we have access to the full datasets, which we use to demonstrate 

relative cost reductions and accuracy deviation, but this process is designed to work 

where the dataset is unknown or incomplete, to predict how big it needs to be and how 

much should be annotated. When considering the cost saving threshold, it is important to 

consider the cost of misclassification as part of the empirical fit, understanding the 

importance and precision requirement of each classification will greatly affect where 

cost savings can be made. This is an iterative process that can be done throughout the 

data collection process to plan subsequent data capture and annotation with each 

successive cycle providing a more accurate indicator of how much additional data is 

required to achieve the desired results. This is due to the power curve convergence 

observed (Figure 4.14), where the power curve converges onto a stable value predicting 

accuracy for arbitrary sample sizes like that shown in Figure 4.7. 

This process can also be used retrospectively to determine possible accuracy increases 

from additional sampling. Considering Figure 4.17, for the BUSI dataset, extrapolation 

of the BUSI power curve suggests that additional accuracy can be achieved but a 

doubling of sample size will only yield a 4% improvement in accuracy. Similarly, no 

improvement is expected for the large foetal dataset with increasing sample size, 

allowing decision makers to plan appropriately. 
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Figure 4.17 - Power curve extrapolated trends from mean neural network accuracy 

results of all three datasets normalised to a patient set sample size. This chart highlights 

the extrapolation trend which can be used to estimate additional sample size 

requirements for each dataset. 

When evaluating the effectiveness of active learning across each of the datasets using 

Figure 4.11, Figure 4.12, and Figure 4.13, there is a measurable decrease in dataset 

annotation requirement but only up to ~60% dataset usage, above this point, it provided 

minimal improvement over untargeted annotation methods. Using a targeted approach 

such as active learning it is possible to further reduce the sample size by identifying 
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where the neural network is least sure of the result, but this effect also diminishes in 

value as the training set increases in size.  

4.5. Conclusions 

This chapter demonstrated a biphasic method that can be used to perform a cost analysis 

for the collection and annotation of data. Three publicly available ultrasound datasets 

were investigated using the prescribed method: 

• Using an empirical curve-fit model of sample size determination was shown 

to provide an indicative method for determining cost and providing a method 

for scaling research studies at the cost of stability. 

• Uncertainty sampling with active learning provides a cost-effective method 

of augmenting manual annotation by targeting samples with the lowest 

confidence for human annotation while those with high confidence can be 

annotated using active learning. 

• Defining an error tolerance on required performance metrics can be used 

with this framework to substantially lower cost. With a 50% cost reduction 

possible in the case study with an error tolerance of 4%. 

• The point of diminishing returns can be clearly defined using this method, 

potentially reducing over collection for that specific use case. 

• Using this framework aligns machine learning research with other clinical 

trials that already use these and similar sampling techniques. 
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This framework provides ultrasound researchers with an empirical method to answer the 

question ‘how much data do you need?’ using power theory to identify the most 

effective sample size and therefore cost of future collection but also a method to 

maximise the effectiveness of manual annotation, balancing the requirements of many 

regulatory bodies with the need to control annotation costs in smaller studies. In order to 

progress machine learning research further in ultrasound, significant investment in data 

collection and annotation will be required, but this burden can be significantly reduced 

by scaling feasibility studies and using targeted sampling methods. Extrapolating results 

from pilot studies using power theory to design future clinical trials that are feasible both 

clinically and financially is common practice within medical research but has yet to be 

widely applied in the context of machine learning for medical imagery despite facing the 

same sampling problem.  

The use of the proposed methodology will allow researchers to not only predict the cost 

of future studies, but also provides a framework for scaling studies that will allow more 

ultrasound machine learning studies to be funded in future by providing a clear empiric 

indicator of expected performance that is easily converted to cost metrics. Targeted 

annotation using uncertainty sampling provides a robust method of augmenting manual 

labelling maintaining the focus on human annotation as primary focus of labelling, 

allowing the clinician to focus on targets with low predictive certainty, with semi-

supervised active learning labelling those with high confidence. The implications of 

lower cost studies with clear empirical indicators of results that can be expected in future 

studies, is that machine learning research into ultrasound will become a less risky 
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endeavour allowing for more prospective studies to be conducted and more ultrasound 

data suitable for machine learning to become available to the academic community.  
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Chapter 5 

Using Positional Tracking to Improve Abdominal 

Ultrasound Machine Learning Classification 

 
Abstract 

Diagnostic abdominal ultrasound protocol is based around gathering a set of image cross 

sections that ensure the coverage of relevant anatomical structures during the collection 

procedure. This allows clinicians to make diagnostic decisions with the best picture 

available from that modality. For large protocols like those commonly performed on the 

abdomen, traditional image only machine learning classification can provide only 

limited functionality, for example it can be difficult to differentiate between multiple 

liver cross sections or those of the left and right kidney from image alone. In this proof 

of concept, positional tracking information was added alongside image data as an 

additional input to a neural network. This was done to provide the additional context 

required to recognise these otherwise difficult to identify cross sections. In this chapter 

optical and sensor based infrared tracking (IR) was used to track the position of an 

ultrasound probe during the collection of clinical cross sections on an abdominal 

phantom. Convolutional neural networks were then trained using both image-only and 

image with positional data, the classification accuracy results were then compared. The 
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addition of positional information significantly improved average classification results 

from ~90% for image-only to 95% for optical IR position tracking and 93% for Sensor-

based IR in six common abdominal cross sections. The addition of low-cost positional 

tracking to machine learning ultrasound classification will allow for significantly 

increased accuracy for identifying important diagnostic cross sections, with the potential 

to not only provide validation of adherence to protocol but also could provide navigation 

prompts to assist the user in capturing cross sections in future. 
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5.1. Introduction 

Diagnostic ultrasound relies on the capture of cross-sectional images of anatomical 

structures within the body to provide a clinician with the requisite information to make a 

clinical decision. Capturing these anatomical cross sections is time consuming and 

requires a high level of user skill in anatomy and ultrasound operation [28, 408]. 

Machine learning has the potential to reduce the skill floor by assisting and automating 

ultrasound capture procedures [409], but to do so it must overcome the two fundamental 

difficulties described in Chapter 3: The differentiation of anatomical cross sections that 

are in close proximity and those that are visually similar. This is exampled in previous 

studies [331, 332] showing that both experienced clinicians and neural networks have 

substantial difficulty classifying abdominal cross sections where the anatomical 

structures were visually similar from image alone.  

Machine learning has previously been used in the classification of 11 abdominal cross 

sections [331, 332] achieving respective accuracies of 77.9% and 82.2% using transfer 

learning. The use of segmentation and landmarking [332, 410] was also shown to 

improve accuracy with models achieving 85.2% and 83.4% respectively, with increased 

accuracy possible if errors from similar cross sections were excluded. These studies 

show reduced accuracy where cross sections overlap or have visual similarities. Where a 

distinct dataset is used, that avoids these overlaps and visual similarities, accuracies of 

between 95.7% and 98.6% can be achieved [333]. This further highlights the limitations 

of using an image-only approach for abdominal cross sections, due to the lack of 

distinctive landmarks where there are overlapping classes within the imagery. Therefore, 
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additional identifiers should be sought. Positional data has been previously used in 

medical ultrasound applications [411] such as 3D image reconstruction [412] and biopsy 

[413], but has not been utilised to assist machine learning in improving classification of 

diagnostic abdominal cross sections. 

In order to test the efficacy of positional based tracking of an ultrasound probe for 

machine learning, two separate systems were tested: Optical infrared tracking (IR) using 

a Vicon system, and an IR system based upon low-cost application specific integrated 

circuits (ASIC) IR sensors. Vicon has been shown to be highly accurate to within 2mm 

[414], and is effective as a positional and registration reference measurement in other 

medical imaging applications [77, 415]. It also has been shown to achieve high 

accuracies in motion capture, as part of complex automated classification processes such 

as respiratory tracking [416] and pose estimation [417]. The use of optical tracking 

would be difficult to implement within a clinical environment, due to the need for a 

large camera gantry. This necessitated the design of a smaller more mobile IR tracking 

system, better suited for the small spaces found in clinical areas. IR tracking has shown 

to be highly accurate at tracking while maintaining a low latency [418] with previous 

studies of similar positional systems being capable of tracking an ultrasound probe 

mounted to a robotic arm [419], spinal column tracking [420, 421], and tracking 

operator movements when applying machine learning to scanning the median nerve and 

radial artery [422]. 
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5.2. Structure and Scope 

This chapter seeks to present a proof-of-concept method to improve machine learning 

classification accuracy for abdominal scanning using positional information to augment 

image-based classification. This chapter first compares image only machine learning 

classification to optical IR tracking within a Vicon system. Sensor-based IR tracking 

was then tested using a modified HTC virtual reality tracking system. The use of the 

sensor-based IR tracking, while less accurate than Vicon, is to demonstrate the addition 

of positional tracking using a mobile sensor which would be more indicative of what 

could be used in a clinical environment. This chapter does not seek to compare 

positional tracking precision, but the resultant output of the neural network classification 

using these tracking systems. This is to show how effective positional information is at 

improving classification of difficult to identify ultrasound cross sections and edge cases. 

5.3. Method 

In order to make an effective comparison between image-only neural networks and those 

augmented with positional information, image and positional data was collected for six 

standard clinical abdominal cross sections and three normalisation points using an 

ultrasound abdominal phantom. This was performed within a laboratory environment 

using a medical ultrasound device and the optical or IR sensor positional tracking 

systems respectively. This data was then pre-processed into an image tensor and file 

containing classifier and raw coordinate output from the positional device to produce the 

dataset. The dataset was then split 80/20 at the session level to prevent data leakage and 
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used to train a three-channel image only model and then a four-channel image and 

positional model. This model was validated using the unseen validation set data and 

results outputted, the dataset was then re-split and the experiment repeated. This method 

is shown in the flow chart in Figure 5.1. 

  

 

 

 Figure 5.1 - Flow chart of positional tracking pipeline. Ultrasound and positional data 

are collected. Ground truth and additional normalised coordinates generated. Dataset is 

split and networks trained. Cycle continues until experiment complete.   

 

5.3.1. Dataset 

A Kyoto Kagaku ‘Echozy’ ultrasound phantom (Kyoto Kagaku Co., Ltd., Japan) as seen 

in Figure 5.3, was scanned using a SonixTouch Q+ medical ultrasound system 

(SonixTouch, BK Ultrasound, USA) using a curved array, 5-2/60 ultrasound probe. 

These images were captured via HDMI cable using OpenCV [423] and were stored 

as .jpeg and .pt 3-dimensional tensor files. Six cross sections were chosen as regions of 

interest (Figure 5.2): 
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• Right hypochondrium transverse approach for common bile duct. 

• Right intercostal approach sweeping through the liver to visualise the right portal 

vein. 

• Right hypochondrium longitudinal approach for the Gall Bladder. 

• Epigastric longitudinal approach sweeping through the aorta. 

• Transverse approach of the left kidney 

• Transverse approach of the right kidney 

 

 

Figure 5.2 – Examples of cross-sectional ultrasound scans of the phantom. a) common 

bile duct. b) portal vein. c) gall bladder. d) aorta. e) left kidney.  f) right kidney. 

These cross sections were chosen specifically based on classification error seen in 

chapter 3 [424] and in previous studies [332, 333, 425]  and due to visual similarity, 

such as with the left and right kidneys and over lapping region of interest such as with 

Gall bladder and Common Bile Duct. Complex sweep scans of aorta and portal veins 
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that contain both visual similarities and overlapping anatomical structures were also 

chosen to provide added complexity to classification. 

 

Figure 5.3 - Image of Kyoto Kagaku phantom. 

The optical IR dataset is made up of 137 sets of scans totalling 18,614 images, the IR 

sensor dataset is made up of 22 sets of scans totalling 3410 images (Table 5.1). Images 

were captured at a rate of 5 frames per second. Each set was performed as if scanning an 

individual patient with the sonographer using minor pressure and angle variation during 

the capture process while ensuring that the target region of interest (ROI) was visible 

and would adhere to standard clinical collection protocols. This was done to provide 

additional natural variation in the images. 
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Table 5.1 – Comparison of size and composition for the optical IR and IR sensor 

phantom datasets. 

Cross Section Optical Infrared 

Left Kidney 3611 630 

Right Kidney 2629 563 

Aorta 3335 725 

Bile Duct 3488 438 

Gall Bladder 2854 426 

Portal Vein 2697 628 

Total Images 18614 3410 

 

5.3.2. Tracking system 

Two methods of probe tracking for generation of coordinate data were tested: Vicon 

optical IR tracking and IR sensor-based tracking. While the ultrasound and positional 

tracking systems were all capable of a high rate of capture, a capture rate of 5 frames per 

second was used to prevent any de-synchronisation due to potential changes in system 

latency throughout the scanning process. As both Vicon optical IR and IR sensor tracker 

require line of sight and operate within the same frequency band, separate sessions were 

performed for each positional system to minimise any potential interference. 

Electromagnetic sensors would provide a system that does not require line of sight, but 

these systems are expensive and not readily available. 

5.3.2.1. Vicon optical-based IR tracking 

The Phantom was placed on a non-reflective surface within a fully calibrated Vicon 

optical measurement volume utilising a Vicon MX Giganet system [426] with 12 Vicon 
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T160 cameras (16 MP, 18 mm focal length lens) mounted to a professional camera rig 

(Figure 5.4). These cameras detect light reflected off tracking dots at a wavelength of 

~850nm. Volume calibration was performed by placing the origin point on the floor 1 

meter from the lab desk ensuring that coordinates were as similar as possible between 

sessions. The ultrasound machine with the screen at its lowest position and laptop were 

placed at least 2 metres from the phantom and masked in the calibration setup to prevent 

interference with tracking. Vicon tracking markers were affixed to the probe, phantom 

and a Y frame that had been secured to the probe. The addition of the Y frame allowed 

for additional distance between tracking dots therefore increasing the sensitivity of the 

optical camera imagery and also ensuring line of sight can be maintained while the 

operator was positioning the probe. The Vicon API was used to stream the coordinates 

into python which was captured at a rate of 5 frames per second via a Wi-Fi connection 

from the laptop capturing the ultrasound images to a computer running the Vicon optical 

tracking development kit. 



 

157 

 

 

Figure 5.4 – Diagram showing the optical IR camera tracking rig setup with the 

phantom inside the visual field. 

5.3.2.2. IR Tracking 

This positional system is a modified setup based on those used for full body tracking for 

VR [427]. The system itself had been modified to track a single HTC VIVE (3.0) tracker 

(pictured Figure 5.5(a)) [418, 428] which was affixed to the ultrasound probe using a 

strap and hot glue. A Steam VR base station (2.0) (pictured Figure 5.5(b)) [429] was 

attached via a mounting strap to the ultrasound cart which was positioned anteroinferior 

to the Phantom ensuring clear line of sight (Figure 5.6). The base station produces pulses 
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of infrared light at a wavelength of ~850nm which is then detected by simple ASIC IR 

sensors on the VIVE tracker. VIVE tracker has previously been shown to be accurate to 

within 0.68 ± 0.32 cm translationally and 1.64 ± 0.18° rotationally [420] in comparison 

to the Vicon tracking system.  

 

Figure 5.5 -Images of the IR positional sensor system a) probe with VIVE tracker. b) 

Steam lighthouse sensor with strap. 

The Base station was moved after each collection set to mimic moving to a new patient 

or clinical space. Note that anterosuperior scans were performed but excluded as they 

provided conflicting reversed positional data, this data could have been used if the angle 

of the phantom was tracked during the IR experiment, or a second base station used to 

provide additional point of reference. Software requirements for a headset and VR stage 

were bypassed by using a modified system profile and using developer options within 
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the Steam VR software. OpenXR [430] was used to extract the coordinates from the VR 

runtime with a modified API used to stream the coordinates into python which was 

captured at a rate of 5 frames per second using a USB cable to the Steam VR base 

station. 

 

Figure 5.6 – Diagram showing the position of IR tracking rig setup in relation to the 

phantom during experimental data capture. 
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5.3.2.3. Phantom Coordinate Normalisation 

In order for the positional data to be used to effectively track the ultrasound probes 

movement it is necessary to normalise coordinates provided to the neural network so that 

they are of similar scale. In order to test normalisation methods, scans of three fixed 

points on the phantom were taken before each set of scans was performed as shown in 

Figure 5.7: 

• On the right midclavicular line, between the right 9th and 10th ribs. 

• The probe is positioned on the xiphoid notch along the midsternal line with the 

probe positioned anteriorly. 

• On the left midclavicular line, between the left 9th and 10th ribs. 

These anatomical points on the ribcage, are less subject to variation due to patient 

positioning or disease process, are not subject to patient dignity concerns, and can be 

precisely and consistently pinpointed by a clinician. Use of soft tissue landmarks such as 

the umbilicus would be impractical in cases with abdominal distension where these 

features would be subject to greater variation. These defined points on the abdomen 

were used to normalise the coordinates for each axis, where multiple points are used, a 

simple mean is used to provide a single normalisation point. This normalisation point 

was then applied during the conversion to positional tensor. 

Post-capture normalisation for the optical data was not required, as the optical IR 

positional data was automatically calibrated to a point within the measurement volume 

during each collection session, meaning that differences in coordinates between scan 
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sessions was very small. However, the IR sensor base station was moved after each 

cycle of data collection to represent moving between patents and potential changes in 

clinical area.  

 

Figure 5.7 Representation of the relative position of the three points of normalization on 

the human abdomen. The three points are: 1) between ribs 9-10 on right midclavicular 

line, 2) between ribs 9-10 on left midclavicular line, 3) horizontally positioned on 

xiphoid notch. 
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In order to evaluate the amount of normalisation required prior to input into the neural 

networks four sets of normalisation data were produced by setting a new zero point: 

• No normalisation – using the original captured values. 

• 1-point normalisation from point one on the anatomical right side of the 

phantom. This locates a single point on the abdomen within the tracked volume. 

• 2-point normalisation using a simple mean of points 1 and 2 on the phantom. 

These measurements would allow for the sizing of the abdomen along a single 

dimension. 

• 3-point normalisation using a combined simple mean of all three normalisation 

points. This would allow for the two-dimensional sizing of the abdomen. 

These points are used to generate an origin with which all subsequent coordinate data is 

normalised to fit. Where multiple normalisation points are used, a mean point is 

generated and used as the origin. Training of the neural network was performed for 

image only and for each of the normalisation points using the same dataset split so that 

results could be compared. 

5.3.3. Machine Learning Implementation 

All training and testing was performed on a 64bit version of Windows 10, using a intel 

core i9 and Nvidia 40 series GPU using python [319] (version 11.4) and the CUDA 

toolkit (version 11.7). The SciPy metrics library was used to analyse model output. A 

pre-trained ResNet-50 [346] convolutional neural network from the torchvision library 

was used as the basis for study, with weights based on ImageNet challenge dataset [339]. 
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The final layer of this network is adjusted to output 6 classes. Image-only method uses 

the default 3 channel neural network. For the positional study, the neural network was 

adjusted to accept a 4th channel for the inclusion of the positional data. While Inception-

based networks were highlighted as providing the highest accuracy in chapter 3, Resnet- 

50 was selected as it produced a more consistent training result across the baseline, as 

well as datasets 1 and 2. 

As the dataset consists of scans of a single phantom, overfitting is a concern, as such the 

experiment was repeated 50 times to provide an average training response, over a 

maximum of 5 epoch using early stopping [431] and a small batch size of 64 to promote 

better generalisation [432]. Training used a learning rate of 1.00e-04 using the ADAM 

optimiser [349]. Training and validation methodology was identical for both 3 and 4 

channel versions of the network. 

The dataset images were converted into tensors with 3 channels of size 330x370 pixels. 

The optical dataset was split 80/20 into training and validation sets for each 

experimental run, with both the 3 and 4 channels networks trained and validated using 

this split, so that a direct comparison between image-only and positional tracking could 

be performed. For the positional experiments the IR dataset was split 50/50 between 

training and validation sets, this was done to increase the size of the validation set in the 

IR sensor experiment, to reduce the effects of overfitting due to the small sample size. 

The positional data was converted into a tensor, the normalisation sum performed and 

input into the network alongside the 3 image channels. Training was repeated for each 
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normalisation state on the same data split to ensure comparison could be performed. The 

datasets were split at session level to prevent bias due to data leakage. 

5.4. Results. 

5.4.1. Image only vs optical positional tracking classification  

Neural networks trained using the optical dataset produced average accuracies of 91.47% 

for image-only based training and 95.75% with the addition of positional data, an 

average improvement of 4.3% (Table 5.2). The largest accuracy improvements can be 

seen in classification of the bile duct (6.4%) and portal vein (7.8%). The highest 

performing image-only network achieved an accuracy of 96.34% with the largest error 

in the classification of Gall Bladder and Bile Duct. The highest performing optically 

tracked network achieved an overall accuracy of 98.84%, with errors in aorta, bile duct 

and gall bladder classification. Variance in training outcome decreases significantly 

between the networks trained with positional data, achieving an average reduction in 

variance of 23%, this can be seen clearly in Figure 5.8 with significant reductions in 

variance in all classifications. 

When statistically comparing image-only and optical IR tracked results by performing a 

twin tailed T-Test with the assumption of heteroscedastic variance (Table 5.2), the 

optical IR tracking results proved to be statically significant with an averaged P value of 

0.0482. When the results are analysed on a class by class basis, results are shown to be 

highly significant achieving P-values <0.003, however there is insufficient statistical 

significance when comparing aorta classification results (p-value 0.2436). 
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Table 5.2 – Comparison of the average accuracy results for networks trained with 

image-only and augmented optical IR tracking. The training variance of the 50 neural 

networks trained with each method is shown. 

 
Image 

Only 
Optical 

Accuracy 

Improvement 

Training 

Variance 

Comparative 

P Value 

Left Kidney 97.7% 99.6% 1.9% 19.6% 0.0104 

Right Kidney 96.2% 99.2% 3.0% 29.7% 0.0033 

Aorta 95.1% 96.9% 1.8% 14.7% 0.2436 

Bile Duct 85.2% 91.6% 6.4% 15.4% 0.0019 

Gall Bladder 85.2% 90.0% 4.8% 35.1% 0.0298 

Portal Vein 89.3% 97.1% 7.8% 23.6% 0.0003 

Average 91.47% 95.75% 4.3% 23.0% 0.0482 

 

Using Figure 5.8 to compare the accuracy all 50 trained networks, the deviation in 

trained per class accuracy was substantially higher in image only trained network in 

comparison to those using optical tracking data. Misclassification of gall bladder, bile 

duct, aorta and portal vein were the largest cause of deviation for both image-only and 

optically tracked networks. Misclassification of left and right kidney was reduced to less 

than 3% in optically tracked networks with the average network achieving above 99% 

accuracy for the kidney cross section images. 
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Figure 5.8 – Comparison of mean classification accuracy of abdominal cross sections 

for image only and optical tracking methods. Error bars represent the deviation in 

classification accuracy for each cross section over 100 neural networks.  

When examining the networks with the highest accuracy using a confusion matrix 

(Figure 5.9), the largest source of error for both image-only and optically tracked 

network is between bile duct and gall bladder, this error is present throughout both 

network types, and was consistent across all 100 networks tested. If we compare the 

image-only networks to its optically tracked network trained on the same dataset split, 

the optically tracked network improves upon the image only accuracy result by an 

average of 4% with optically tracked always improving on its image only counterpart. 
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Figure 5.9 – Side by side comparison of the confusion matrix of the highest accuracy 

neural networks trained on image-only and optical tracking datasets.    

The inclusion of the IR positional coordinate data into the training and validation sets 

(Table 5.3) saw an average accuracy of 89.70% for image only classification. Positional 

accuracy achieved average accuracy of 92.71% without any form of normalisation, 

93.61% for single point normalisation, 93.73% for two-point normalisation, and 93.28% 

for three-point normalisation respectively. When compared against image-only accuracy 

results, networks trained on non-calibrated positional data achieved an average 

improvement of ~3% improvement, with calibrated positional data achieving ~4% 

improvement in cross section classification. Common bile duct and gall bladder 

classification were the largest sources of error in both image-only and positional tracked 

networks. In comparison, when looking at the maximum achieved network accuracy was 

97.5% for image only, 98.5% for no normalisation, 98.7% one point of normalisation, 

98.3% for two points of normalisation and 97.5% for 3 points of normalisation. 
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While there is a overall improvement in classification accuracy when using IR sensor 

tracking with normalisation, a single factor ANOVA test showed that there is 

insufficient statistical significance (F-Value 0.3521, P-value 0.7038) in the results to 

distinguish between 1, 2 and 3 points of normalisation. This is likely due to a limitation 

of this study as there is insufficient difference in the size of the abdominal cavity to 

confirm efficacy of normalisation. 

Table 5.3 – Comparison of average accuracy for networks trained on image-only and IR 

positional sensor datasets. Average accuracy results for networks trained with 

coordinates normalized with 0, 1, 2 & 3 points are shown. 
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Left Kidney 96.5% 98.2% 99.5% 99.3% 99.5% 

Right Kidney 96.7% 99.1% 99.0% 98.9% 99.0% 

Aorta 95.4% 95.7% 95.6% 95.3% 92.6% 

Bile Duct 81.1% 86.6% 87.1% 85.2% 85.8% 

Gall Bladder 78.7% 84.9% 82.7% 88.2% 85.8% 

Portal Vein 89.8% 91.7% 97.7% 95.4% 97.0% 

Average 89.7% 92.71% 93.61% 93.73% 93.28% 

 

A comparison of the accuracy of the 50 trained networks (Figure 5.10) shows that while 

overall accuracy was improved, there was increased training variance in comparison to 

optical IR. Despite an increase in overall accuracy, networks trained with positional data 

with no normalisation saw an increase in training variance by 5.3%, compared to 
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improvements of 21.7% for one-point normalisation, 18.6% for two-point, and 15.4% 

improvement for three-point normalisation. Accuracy values were also lower than 

image-only results for 12 out of the 50 no normalisation networks, as this also occurred 

in a number of calibrated networks this is most likely due to training variance. This 

notably did not occur in the more accurately calibrated optically tracked networks. 

 

Figure 5.10 – Comparison of mean classification accuracy of networks trained to 

classify abdominal cross sections using image only and positional tracking datasets. 

Positional augmented networks show no normalisation and where 1, 2 & 3 points of 

normalisation have been applied. Error bars represent the deviation in classification 

accuracy for each cross section over 250 neural networks. 

When comparing the confusion matrix for the IR tracking networks (Figure 5.11), the 

gall bladder and bile duct are the most confused classifications. This result is directly 

comparable to that seen in Figure 5.9.  
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Figure 5.11 – Side by side comparison of confusion matrix examining the effect of 

normalisation of coordinates on neural networks trained data augmented with IR 

Positional tracking. 
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5.5. Discussion 

This chapter demonstrates the use of positional data to improve classification of 

abdominal ultrasound cross sections on an ultrasound phantom using both optical and IR 

tracking systems. On average neural networks trained on optical tracking data provided 

the highest accuracy network, followed by IR tracking, and standard image-only 

classification. 

5.5.1. Study Limitations 

While the phantom was designed to provide an accurate representation of ultrasound 

cross sections for clinical training purposes, it is an idealised representation of a human 

abdomen and cannot fully represent the difficulties usually encountered during image 

acquisition in ultrasound scanning such as: 

• Shadowing is limited as phantom materials do not have the same density range 

that would reduce amplitude and obscure ROI. 

• Attenuation changes from different tissue thicknesses or densities present in the 

anterior abdominal wall are not represented in the phantom. 

• Image artifacts common in ultrasound such as those from the digestive tract are 

not present in the phantom, as these artifacts, such as gas pockets are not 

represented in the phantom.The phantom is of fixed size and as such cannot 

represent different sized abdominal cavities, however this does not reduce 

clinical applicability as while the scale would change, in a high proportion of 



 

172 

 

cases the position of cross sectional landmarks would remain the same in relation 

to one another, and as such can still be used for positional identification. 

The use of a single subject (the phantom) also increased image-only classification 

accuracy as there is a high chance that the neural network will recognise the identical 

structural features. It is also important to note that as the data was collected by a single 

sonographer, operator bias in the collection of cross-sectional imagery cannot be ruled 

out. This does not however prevent comparison of image-only and positional 

performance as the same subject and image set is used therefore any bias is present in 

both experimental tests. 

The use of normalisation did increase overall accuracy by ~4%, but there is very little 

difference between 1, 2 and 3 points of normalisation. This is likely a limitation of the 

experimental setup, the phantom is a fixed size, once a fixed point on the abdomen is 

located, no additional variation in abdomen shape or volume is required to be taken into 

account. In a human trial the abdomen could potentially have much greater levels of 

variation and therefore the requirement of additional normalisation points should not be 

discounted in future experimental trials. The networks using positional data with no 

normalisation had the most variance in accuracy result, achieving the worst performing 

network at 73.3%, but still outperforming the image-only networks on average. This is 

likely partially due to the error in rotatory angle [a, b, c] being much smaller than that of 

positional [x, y, z] data. This would be particularly useful in the recognition between left 

and right kidney, which maintained accuracy comparable to calibrated trained networks 
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despite providing positional [x, y, z] values that were likely incompatible with those 

already seen by the network during training. 

5.5.2. Accuracy 

While accuracy has been used as the main metric throughout this chapter, examining the 

harmonic mean for the highest accuracy neural networks (Table 5.4) confirms high 

precision and recall for all methodologies used. This is due to the limited subject matter 

available with using only one phantom. Despite using a single phantom, overfitting has 

been sufficiently reduced using variation in the image capture technique, early stopping, 

small batch size and experimental repetition to provide indicative results, there is a 

distinct correlation between the use of positional information when training a neural 

network and the improvement of classification result. 

Table 5.4 – Harmonic mean F-1 score for highest accuracy neural networks trained 

with optical and IR tracking augmented dataset in comparison to image-only. 
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Left Kidney 1 0.99 1 1 0.99 0.99 

Right Kidney 0.99 1 1 1 1 0.99 

Aorta 0.99 0.99 1 1 0.99 1 

Bile Duct 0.94 0.98 0.97 0.96 0.97 0.96 

Gall Bladder 0.91 0.98 0.96 0.95 0.96 0.92 

Portal Vein 0.96 1 0.98 1 0.99 0.98 
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When comparing the image-only accuracy results between Table 5.2 and Table 5.3, 

there is a significant drop in the average classification accuracy of the gall bladder and 

bile duct between networks trained on the optical set alone vs those trained with 

additional images from the IR sensor dataset. This is not however reflected by the level 

of accuracy achieved by the highest performing image-only networks with the optical 

image-only achieving 96.34% compared to 97.5% with the addition of images from the 

IR dataset. There was also significantly more variance in training result in the IR image-

only networks, with the lowest network result being 79.5%, which is 1.8% lower than 

achieved by the worst performing optical image-only network. It is important to note 

that image-only results would be likely be lower with a larger sample size, imagery 

would also lack the same level of clarity in human trials, where body shape and 

differences in thickness and density would cause changes to attenuation properties that 

that would have to be considered. 

5.5.3. Dataset Variance and Overlap 

As seen in the results for both Optical and IR sensor experiments, the largest source of 

error for all models was between gall bladder and common bile duct. As this was 

consistent across both network types it is important to rule out an error within the dataset 

itself. Analysing the images where this error had occurred revealed that in adjusting the 

probe position to add variation to the dataset, a number of the images capture both gall 

bladder and bile duct (Figure 5.12). These images still contain the target features but 

also cover the other anatomical structure as well. This overlapping visual information is 

the exact type of edge case that was targeted during cross section selection and exists 
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within a number of real clinical protocols. There was a significant improvement in 

accuracy suggesting that probe angle information is making a significant difference in 

the classification of cross sections where the target ROI overlaps. 

 

Figure 5.12 – Example of a transverse ultrasound scan on the phantom showing the 

right hypochondrium: Anatomical regions of interest are labelled: gall bladder (GB), 

Bile Duct (BD), Inferior vina cava (IVC), Portal Vein (PV), Aorta (AO) 

When looking at the variance results in Figure 5.10, there is significantly more training 

variance in the left kidney when compared to the right kidney, this cannot be quantified 

by overfitting or dataset imbalance as in Table 5.1, there is significantly more left kidney 

images within the dataset than the right suggesting that the left kidney should instead be 

favoured as seen in Figure 5.8. The likely cause is that the left kidney slightly more 

difficult to visualise clearly in transverse ultrasound scans as it is located slightly 
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superior compared to the right kidney [433]. A better visualisation could have been 

achieved by placing the phantom in a lateral decubitus or prone position. The 

identification of sweeps of the aorta and portal vein were consistently good despite 

multiple anatomical structures such as the right kidney often being visualised during 

intercostal scanning. 

5.5.4. Clinical practicality 

Optical IR tracking was the most precise position tracking used, providing a 99% 

accurate neural network with the average accuracy result being ~95%, but this was 

achieved using an expensive Vicon measurement volume with an external calibration 

software, and required additional hardware attached to the ultrasound probe to maintain 

line of sight with the camera rig. While excellent at validating positional data as a viable 

method of improving neural network recognition of abdominal cross section views, it is 

not clinically practical outside of specialist facilities. Sensor-based IR tracking while 

being less accurate overall, still achieved ~98% accuracy using simple normalisation 

techniques with an average of ~93%, higher than that achieved by image-only. The IR 

tracking system still required line of sight but was compact with the base station able to 

be easily mounted to the screen arm. The HTC VIVE tracker was small enough not to 

interfere with scanning, initially attachment strap would slip from the probes ergonomic 

design, but this problem was easily solved with hot glue which ensured a tracker 

position on the probe was maintained throughout data collection. During collection of IR 

scans, the position of the base station relative to the phantom was initially a full 360-

degree loop with the base station moved after each set of scans, but due to the use of a 
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single base station, and the fact no tracker was attached to the phantom, it was not 

possible to fully localise the positional data. Therefore, scans taken with the base station 

in an anterosuperior position were mirrored in comparison to the optical tracking data. 

As such all anterosuperior scans were excluded from the IR dataset instead of manually 

adjusting these values and potentially adding additional human error to the training set. 

5.6. Conclusion 

This chapter highlights the potential of positional sensor information as an additional 

data source when training neural networks on diagnostic cross sections that may be hard 

to differentiate using image alone. Optical IR positional tracking was highly accurate 

and substantially increased classification accuracy. Mobile sensor-based IR tracking 

provided a less accurate, but more practical example of applying positional information 

to machine learning for clinical use cases but also highlighted a number of difficulties 

that would need to be overcome before such technologies could be used. With the 

addition of positional data to contextualise cross section imagery that are in close 

proximity, or where there is a high level of visual similarity is no longer a challenge as 

the position of the probe is known both relation to other scans and the patient. 

The collection and use of use of positional information as part of an ultrasound scan will 

allow a neural network to know the position of the probe relative to the patient, opening 

up many exciting opportunities for future research. Immediate future work should focus 

on increasing the sample size using a cadaver study to further test data and normalisation 

requirements. Electromagnetic sensors will be tested as a method of probe tracking as 
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this technology does not require line of sight. An Electromagnetic sensor system is 

already in use for the formation of 3D ultrasound images and could be repurposed for 

use in positional sensing.  Neural networks that can localise the probe to the position on 

the abdomen can provide feedback to the sonographer to assist in the positioning and 

fine tuning of the probe for the collection of potentially higher quality ultrasound cross 

sections that fully capture the required anatomical structures as mandated in the clinical 

protocol. It would also allow a more experienced user to sweep the probe over the region 

of interest with the neural network selecting and potentially annotating the required 

cross sections automatically, speeding up scan times and reducing workload. 

  



 

179 

 

Chapter 6 

Suitability of Theil Cadaver for Classification of 

Abdominal Ultrasound Cross Sections 

 
Abstract 

The use of cadavers as a teaching and research tool is well known to medical scientists, 

thanks to their vast contribution to the field they are often known as the ‘silent teachers’, 

allowing clinicians and researchers the opportunity to study areas otherwise difficult to 

do so. As researchers increasingly include machine learning into their studies, it is 

important to validate the role of the cadaver as part of a dataset for machine learning. 

This chapter examines six common abdominal ultrasound scans from eleven cadaver for 

their suitability for furthering the study of image and positional sensor-based machine 

learning for abdominal cross section classification. This dataset was then used to train a 

neural network to examine the efficacy of positional tracking in comparison to image-

only classification of cadaver and if normalisation coordinates in the abdominal cavity 

improves classification. Findings suggest that Thiel cadavers provide a good testbed for 

ultrasound imaging research, as the tissue maintains very similar ultrasonic properties. 

The variation in anatomical visibility coupled with the variability of abdominal cavity 

size of a cadaver allowed for additional validation of the positional tracking and 
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calibration system for machine learning classification in comparison to the use of 

phantom, improving overall generalisability of machine learning models. However, the 

visual parameters of physiological structures within the cadaver can be drastically 

different, potentially confounding any image-based training if the dataset is not 

sufficiently large. While an image-only approach failed due to the large variation within 

the cadaver image sample set. The addition of positional inferred sensor data allowed for 

the networks to achieve average classification accuracies of 88.3% for one point, 91.5% 

for two-points and 92.8% for three-point patient normalisation. 

This result suggests that positional tracking could therefore substantially improve 

recognition of edge case and difficult to identify diagnostic ultrasound cross sections. 

Cadavers must be carefully selected to ensure that the target organs are clearly visible 

using collection techniques that ensure that the anatomy is not altered too drastically by 

the method of collection. The use of machine learning to assist in the collection of 

ultrasound diagnostic cross sections could not only improve clinical workflows by 

automatically collecting the best image and supporting decision making, but it also 

provides a route towards automating the collection process. 
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6.1. Introduction 

The use of machine learning for diagnostic ultrasound of the abdomen is a valuable tool 

in medical imaging research. However, the collection of ultrasound scans can be 

difficult and expensive, especially if the disease being studied is rare or difficult to 

detect. Cadavers have long been used by clinicians and researchers for the collection of 

medical data, but the effectiveness and suitability of cadavers for image-based 

abdominal ultrasound machine learning has seen limited study. The previous phantom 

study suggested that positional data could improve the overall classification of 

ultrasound abdominal cross sections, but the study was limited due to the small sample 

size. A cadaver study has the potential to increase sample size, providing greater visual 

variation and abdominal cavity size, increasing the validity of the proof-of-concept 

results while not being as costly and time consuming as a clinical trial. Cadavers 

embalmed using the Theil method are soft and malleable maintaining much of their 

original tissue properties [434-437] allowing for much more pliability and range of 

motion, because of this Theil cadavers are increasingly seen as useful tools for medical 

teaching and research [438-440] and share many of the attributes of fresh cadavers, such 

as the density and hardness of the tissue, maintaining similar visual attributes on 

ultrasound [441] compared to formalin-based cadavers [442-444]. Theil cadavers have 

been used heavily used in ultrasound research of regional analgesia [441, 445, 446], 

shear wave elastography [447, 448], Colour Doppler [449] and in therapeutic focused 

ultrasound [450]. 
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There has been limited assessment of the acoustic properties of Theil cadaver, Joy at al 

[448] reported that quality of ultrasound images were representative with good tissue 

differentiation but noted progressively tissue stiffening over time, these results remained 

within range of those recorded in-vivo confirming that ultrasound images in Thiel 

cadaver retained life-like properties despite preservation. 

The image quality of diagnostic medical ultrasound on cadavers has previously been 

assessed with mixed results. A study of imaging quality firm embalmed cadaveric 

subjects suggested that ultrasound imagery would be very poor due to the changes in 

tissue firmness in formalin cadavers that reduces the visual distinctiveness of organs and 

tissues [451]. This would completely negate any worthwhile ultrasound machine 

learning on firm embalmed cadaver as the difference in tissue density completely alter 

the visual and anatomical composition. 

The visual properties of abdominal structures for Thiel cadavers was examined by Balta 

et al [452], who noted not only that tissue densities were very similar to that of fresh 

tissue, that there was a significant improvement in visualisation of the anatomical 

structure of the kidneys, and an overall improved ability to identify the left and right 

lobes of the liver. They also claimed that the aorta, common bile duct and portal vein 

were not visible under ultrasound in cadavers. It was therefore necessary to analyse the 

collected ultrasound imagery from the sampled Thiel cadavers, to ensure the target 

region of interest (ROI) contains the visual information required for a clinician to make 

a positive identification. 
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The Theil embalming method was formulated to reduce the amount of formaldehyde in 

the preservation of cadavers, maintaining a similar tissue density to that of a fresh 

cadaver while allowing for long term preservation and use. The process involves 

perfusing the cadavers via the carotid or femoral arteries with an injection solution 

(Table 6.1) which fixes and sterilises the cadaver before being immersed into a solution 

bath allowing for Theil cadavers to be preserved, and is occasionally washed with a 

maintenance solution allowing for the cadaver to be used for years while maintaining 

much of the tissue density and pliability of fresh cadavers. 

Table 6.1 – Composition of Theil embalming solution used at the University of Dundee 

based off the work of W. Thiel [434, 435] 
 

Perfusion 

Solution 

Immersion 

Solution 

Maintenance 

Solution 

Hot water 6.8L 1250L 20L 

Boric acid 250g 45kg 600g 

Ammonium nitrate 1680g 150kg - 

Potassium nitrate 420g 75kg - 

Sodium sulphate 700g 105kg 1kg 

Propylene Glycol 2.5L 105kg 1L 

Stock II (chlorocresol & 

glycol) 

500mL 30L 200ml 

Formaldehyde solution 

(8.9%) 

2.1L 125L - 

Morpholine 150mL - - 

Alcohol 1L - - 

Total Volume 13L 1720L 22L 
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The phantom study in chapter 5 showed that infrared positional sensors can substantially 

improve classification of ultrasound cross sections from 89.7% to 93.3% an average 

improvement of ~3.6% using machine learning, but phantoms provide an idealised view 

of the abdomen. Rarely so they contain variations such as different thicknesses of tissues 

and fat, that can cause unexpected attenuation and shadowing. It was also not possible to 

fully test the patient normalisation requirements as the phantom abdominal cavity is of 

uniform size. In order to continue study of this method it was therefore important to 

examine the patient normalisation requirement of positional tracking coordinates both 

within the 3D space of the sensor area of detection and of the size of the abdomen. 

A cadaver model was selected as the method to further study how positional data could 

be used to improve machine learning classification of abdominal cross sections. Using 

subjects from the Theil Cadaver facility at the University of Dundee [453], cadavers 

were scanned using an ultrasound probe with infrared sensor attachment which tracked 

the movement of the probe during the procedure. The use of cadavers for machine 

learning of ultrasound usually has a much more limited focus such as the estimation of 

nerve volume [454], regional anaesthesia [455, 456], vascular access [457], and guided 

biopsy [458]. 

6.2. Structure and Scope 

This chapter examines six common ultrasound abdominal scans from eleven cadavers 

for the potential use in an image-based machine learning classification study of 

abdominal cross sections. While Theil cadavers provide a good stand in for human 
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subjects, as previously shown in the literature, some physiological changes do occur that 

effect the ease of collection. This chapter examines the suitability of Thiel cadaver as a 

machine learning dataset and tests the efficacy of the positional tracking system from 

chapter 5 on the cadaver data. 

This chapter first seeks to highlight anomalies found in the collected Theil ultrasound 

image data and discusses potential workarounds to reduce variances that might cause 

confusion to a neural network attempting to classify the required cross sections. This 

also highlights a number of procedural issues and physiological conditions encountered 

during collection that may have affected image or classification quality and compares 

the results to those reported in the literature. Not all cross sections were visible in all 

eleven subjects, limiting the scope of this study. In cases where anatomy was not visible 

the probe positioning and movement was verified against the abdominal protocol and the 

cross section was collected regardless of visual markers, this has been documented in 

Table 6.3 to identify when this occurred. 

Once the data has been analysed, this chapter builds upon the previous phantom study in 

chapter 5 by examining the classification and normalisation of infrared positional 

tracking using human cadavers. This chapter targets one of the limitations of the 

phantom study by adding variability to the cross-sectional images, expanding the sample 

size therefore reducing the likelihood of overfitting. This also adds variation to the size 

of the abdominal cavity therefore allowing for the testing of the patient normalisation 

algorithm within 3D space. This remains a limited pilot study but provides additional 

indication that normalisation to the size of the abdominal cavity improves classification 



 

186 

 

accuracy performance, whereas the previous study did not have the variation within the 

dataset to reliably do so. 

6.3. Method 

6.3.1. Image and Positional Data Collection 

Collection was performed within the Theil Cadaver facility mortuary at the University of 

Dundee [453], using a SonixTouch Q+ medical ultrasound system (SonixTouch, BK 

Ultrasound, USA) with a curved array 5-2/60 ultrasound probe. Scans were collected by 

a trained sonographer with previous expertise in diagnostics and medical imaging 

interpretation to ensure the correct location and anatomical features were collected 

during the scan. Each scan was performed in sequence within a time frame of ~40 

minutes for each subject, with scan sequences captured at a rate of five frames per 

second. 

The ultrasound scans were performed on 11 soft body cadavers, preserved using the 

Thiel embalming system. The subjects consisted of 5 men and 6 women of Caucasian 

decent within an age range of 60 and 90. As part of the requirements for ethical approval, 

this was a blind study with neither the mortuary staff nor the sonographer having prior 

access to the medical records but criteria for acceptance was that the subject would have 

no visual signs of prior surgical intervention on the abdomen on examination. As part of 

the blinding process no identifying features are reported. 
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Six abdominal ultrasound cross sections were selected as regions of interest (Figure 6.1): 

a) Right hypochondrium transverse approach for common bile duct. 

b) Right intercostal approach sweeping through the liver to visualise the right portal 

vein. 

c) Right hypochondrium longitudinal approach for the Gall Bladder. 

d) Epigastric longitudinal approach sweeping through the aorta. 

e) Transverse approach of the left kidney 

f) Transverse approach of the right kidney 

 

 

Figure 6.1 – Example ultrasound scans of the six cross sections of the abdomen from 

Theil cadaver. 

These cross sections are all present on the Japanese abdominal ultrasound protocol and 

are identical to the one used in the phantom experiment in the previous chapter. They 

were specifically chosen due to the presence of overlapping regions of interest such as 
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with gallbladder and bile duct or due to the visual similarity such as with the left and 

right kidneys. While a supine or lateral decubitus approach could have improved 

visualisation of the kidneys, it was not possible to safely rotate, position and secure the 

cadaver in these positions without additional personnel, therefore the less optimal 

transverse approach was selected. A transverse approach remains valid as it is used in 

clinical practice, such as in trauma situations where it might not be possible to reposition 

the patient prior to scanning. Complex sweep scans of aorta and portal veins containing 

both visual similarities and overlapping anatomical structures were again chosen to 

provide added complexity to classification, the additional variation in abdomen size was 

also a factor in how much overlapping anatomy is seen in these cross sections adding 

additional complexity.  

The cadavers could not be transported to the Vicon facility used in chapter 5 and as such 

this experiment uses the ASIC infrared positional sensor setup described in section 

5.3.3.2.  The HTC VIVE (3.0) tracker (as seen in Figure 5.5(a)) [418, 428] was wrapped 

in protective plastic with the sensors left exposed to prevent accidental contamination by 

viscera and affixed to the ultrasound probe using a strap and hot glue.  A Steam VR base 

station (2.0) (as seen in Figure 5.5(b)) [429] was attached via a mounting strap to the 

ultrasound scanner which was positioned anteroinferior to the cadaver ensuring clear 

line of sight (as seen in Figure 6.2). The collection of positional and normalisation point 

data adhered to the method described in section 5.3.2.3, while it was not fully possible to 

test normalisation on the phantom, there was significant variation in the size of the 
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abdominal cavities of the cadaver, allowing for further testing of coordinate 

normalisation. 

 

Figure 6.2 – Representation of equipment setup for collection of cadaver data during 

experiment at cadaver facility. The base station is shown mounted to the monitor arm of 

ultrasound scanner, which is positioned approximately on the midline, inferior to the 

subject. 

6.3.2. Cadaver Analysis 

The scoring and analysis of the cadaver scans was performed by a single subject expert 

several days after the collection session had taken place. Each set of scans was analysed 

within the context of the subject, and looked specifically for visual anomalies that might 

cause difficulties with classification of those cross sections by machine learning. The 

sonographer then rated these deviations as to how disruptive they would potentially be to 

machine learning classification. 
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6.3.3. Machine Learning  

The machine learning methodology of this study is identical to that described in the 

described in section 5.3.3. Training was performed using the hyper parameters in Table 

6.2, training was performed over a maximum of 10 epoch using early stopping [31] and 

a small batch size of 64 to promote better generalisation [32]. The CNN was trained 50 

times for each of the five ground truth variations. The training and validation 

methodology was identical for both 3 and 4 channel versions of the network to ensure 

performance comparisons could be made. A holdout method was chosen over folded 

cross validation because the data must be split along patient sets and not every patient 

had examples of every classifier, this ensured that the training set was representative of 

the available data. 

Table 6.2 - Neural Network Hyperparameters 

Hyperparameters Value 

Activation Functions SoftMax 

Learning Rate 0.001 

Training Iterations 50 

Epochs 10 

Optimiser ADAM 

Momentum 0.9 

Dropout 0.5 
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6.4. Cadaver Study 

6.4.1. Cadaver Results  

The ultrasound images of the cadavers contain a number of anomalous findings that are 

significant enough to change the appearance of the anatomy being classified and 

therefore, affect the result of training and validation when attempting to apply machine 

learning. The ability to visualise the required anatomical structures as well as any 

notable deviations can be seen in Table 6.3. In cases where images of the organs and 

structures have not been successfully generated, this data was still used as the probe was 

correctly positioned on the abdomen. 

Table 6.3 – Visibility results of cadaver ultrasound scans with additional information 

where key details are obscured. 

Subject Aorta Gall Bladder Bile 

Duct 

Portal 

Vein 

Left Kidney Right 

Kidney 

1 Yes 

(compressed) 

Yes No Yes 

(shadows) 

Yes 

(shadow) 

Yes 

(shadow) 

2 Yes Yes No Yes 

(attenuated) 

Yes 

(shadow) 

Yes 

3 Yes Yes No Yes 

(shadow) 

Yes Yes 

4 Yes 

(anomaly) 

Yes No No 

(anomaly) 

Yes No 

5 Yes 

(enlarged) 

Not Visible Yes No 

(shadows) 

Yes Yes 

6 Yes 

(compressed) 

No No No Yes Yes 

7 No No Yes No 

(shadows) 

No No 

8 Yes 

(compressed) 

Yes 

(sludge) 

No Yes 

(attenuated) 

Yes Yes 

9 Yes Yes 

(collection) 

Yes Yes 

(attenuated) 

Yes Yes 

10 No No Yes No Yes No 

11 No No No No Yes Yes 

 



 

192 

 

Cadavers due their nature as diseased individuals and the processing required for 

preservation, often contain deviations from normal anatomical structures, such as 

degradation owing to the subjects advanced age, or injury from cause of death or disease 

process. The use of just 11 subjects means that variation drastically affected neural 

network quality. 

6.4.1.1. Findings when scanning the Aorta. 

The aorta is the main artery that carries blood from the heart and branches off to supply 

the blood of every major organ and structure throughout the body. There was a number 

of difficulties identified during collection including aortic compression owing to the lack 

of pulsatile volume, and physiological anomalies due to disease processes. 

Aortic Compression 

The Aorta is subject to compression by the sonographer during scanning, while in a 

living subject this would not pose a significant issue, the pressure in the aorta is within a 

cadaver is significantly lower as it is not being maintained by pulsatile flow. Therefore, 

it is possible to fully compress the aorta, making it difficult to visualise. The 

sonographer should avoid undue compressive force when performing an aortic scan on a 

cadaver especially where the chest is already sunken as was seen in subject one. This 

can be particularly difficult is cases where the subject has excess fluid in the abdominal 

cavity or in cases of obesity where pressure may be required to compress fluid or tissues 

away from the region of interest. Compression was not permanent, with the tissue 

returning back to its original state prior to compression, allowing for the sonographer to 

make several attempts at correctly capturing the cross section.  
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Figure 6.3 – Epigastric longitudinal ultrasound scan of the aorta, the edges are difficult 

to visualise due to excessive compressive force. 

Aortic Anomaly 

There is substantial deviation in the appearance of the aorta in subject four, potentially 

suggesting an abdominal aortic aneurysm. This should be considered when scanning 

cadavers for images of the aorta, as it will reduce the neural networks potential to 

recognise the typical aortic structure in subjects without anomalies. While the overall 

surrounding landmarks of the liver and overall shape remains the same, there is 

substantial deviation in shape of the aortic walls, that not only appear enlarged but have 

become ill defined on ultrasound, with the potential for an aortic dissection being 

present. 
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Figure 6.4 – Epigastric longitudinal ultrasound scan of the aorta with signs of 

anomalous dilatation of the aorta, the edges of the aorta appear of have sheared 

suggestive of aortic dissection. 

Aortic Enlargement 

Aortic enlargement can occur without anomalous deviation of the aortic wall appearing 

enlarged but well defined as in Figure 6.5. In this case the aorta has become substantially 

enlarged as we scan towards the heart.  While the aorta is enlarged the edges remain well 

defined. While less likely to cause major difficulties in classification experiments, if 

should be noted where segmentation is being performed or in automated anomaly 

detection tasks. 
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Figure 6.5 - Epigastric longitudinal ultrasound scan of the aorta. The aorta appears 

enlarged but the edges are clearly defined.  

6.4.1.2. Gallbladder 

The Gallbladder is a small pouch like organ that stores bile for subsequent use during 

digestion. It was not always possible to positively visualise the gallbladder, nor was it 

known if any subject had received a surgical intervention to remove it. 

Cholelithiasis 

The gall bladder can contain gall stones which may change the gallbladders appearance. 

In the case of subject nine (Figure 6.6), there was a substantial collection of gall stones 

within the gall bladder creating dense hyperechoic structures that cause acoustic 

shadowing. 
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Figure 6.6 – Longitudinal ultrasound scan of the right hypochondrium showing the 

gallbladder deformed with multiple gallstones. 

Sludge in the Gallbladder 

After a long period without secretion, bile within the biliary tract can thicken to a 

sludge-like consistency which can be visualised on ultrasound as a layered mass within 

the gallbladder that does not cast acoustic shadow as can be seen in Figure 6.7. This 

build up significantly alters the appearance of the gallbladder but was present in a 

number of subjects to a greater or lesser extent. 
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Figure 6.7 - Longitudinal ultrasound scan of the right hypochondrium showing bile that 

has solidified into a layered sludge inside the gallbladder. 

6.4.1.3. Bile duct 

As discussed in the literature [452], it is extremely difficult to visualise the bile duct in 

cadavers. Most subjects did not provide a clear visualisation, but the probe coordinates 

were saved despite the lack of visibility. The bile duct is only visible in 4 of 11 subjects 

and did not seem to be related to patient size or factors effecting visualisation of other 

cross sections as the bile duct could not be found in multiple smaller patients, such as 

subject 3, where all other cross sections could be visualised except the bile duct. In other 

subjects where there was difficulty visualising other anatomical structures the bile duct 

was clearly visible (Figure 6.8). 
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Figure 6.8 – Transverse ultrasound scan of the right hypochondrium showing a clear 

visualisation of the bile duct above the aorta. 

6.4.1.4. Portal Vein 

In order to capture the portal vein via the right intercostal approach, the sonographer 

must take the challenging approach of placing the ultrasound probe between the ribs and 

sweeping through the anatomical structures beneath. This approach is not always 

successful due to rib shadows, on assessment there were a number of anatomical 

anomalies such as an abscess and significant calcification within the subjects that also 

would affect visual recognition. 

Rib Shadows 

The portal vein is difficult to visualise due to the ribs. Where visualisation is difficult 

due to rib shadow, the sonographer is suggested to ask the patient to take a deep breath 

and hold it while the scan takes place, this expands the diaphragm and rib cage making it 
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easier to scan between the ribs [459]. This method is not possible in cadaver without 

specialist equipment to inflate the lungs which was not available at the time of scanning. 

While only limited visual information was often seen between the ribs, the coordinates 

of the probe position were still correct. 

 

Figure 6.9 - Right intercostal ultrasound of the portal vein. The scan has been 

obstructed by the subject’s ribs causing shadowing which has obscured the portal vein. 

Hepatic Calcification 

Dietary changes to the liver can cause the laying down of calcified deposits or steatosis 

[460] that are visible as abnormal brightness on ultrasound due to the change in hardness 

as seen in Figure 6.10. This could also be visualised as a diffuse attenuation that in some 

cases could completely obscure visual details of hepatic structures rendering it 

impossible to classify [461]. 
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Figure 6.10 - Right intercostal ultrasound scan of the portal vein showing calcified liver 

steatosis. Severe steatosis is known to completely obscure the portal vein. 

Hepatic Abscess  

In one patient a large hepatic abscess completely obscures visualisation of the portal 

vein as seen in Figure 6.11. This apparent complex subhepatic collection of fluid also 

has deformed the abdominal position of the gallbladder, which required the probe to be 

moved caudally to visualise. The normal anatomical structures are either substantially 

displaced and deformed or entirely absent. 
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Figure 6.11 – a) Right intercostal ultrasound scan taken from an inferior angle showing 

a liver abscess completely obscuring visualisation of the portal vein. b) Longitudinal 

ultrasound scan of the right hypochondrium a liver abscess has deformed the region of 

interest shifting the position of the gallbladder 

6.4.1.5. Left Kidney 

The left kidney is located superior to the right, within proximity to the spleen, this makes 

it more difficult to visualise using a transverse approach [433]. As can be seen in Figure 

6.12 a decubitus view provides a clearer image of the kidney but requires the subject to 

be placed on the side. While in living subjects this is a fairly trivial task, in Thiel cadaver 

there is not only substantial drainage when adopting this position but requires 

considerable assistance to turn and maintain the cadaver in this position for scanning. 
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Figure 6.12 – Comparison of Ultrasound probe positions to visualise the kidney: a) 

Decubital view of left kidney b) Transverse view of the left kidney. 

6.4.1.6. Right kidney 

While in most subjects the right kidney was easy to visualise, there was a number of 

anomalous shadowing of the right kidney.  In Figure 6.13, the entire abdominal cavity is 

dark. This shadowing did not improve with additional application of coupling gel or 

probe movement, it is likely to be a collection of free fluid in the abdominal cavity, but 

this does not fully explain the lack of detail. This is extremely abnormal as even with 

fluid in the abdomen, more detail should be visible suggesting another cause for the 

shadowing. 
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Figure 6.13 - Unexplained shadowing of right lumbar region and kidney. While 

sufficient coupling gel applied to the probe no further details could be made out within 

the lumbar region regardless of probe position. 

These results show that image-only based training will encounter significant difficulty 

during training as there is a large amount of physiological variation due to the 

documented incidental findings. These difficulties stem from signs of morbidity and 

disease processes which are more common in older individuals and cadavers, as well as 

known capture difficulties that could not be easily improved in the same way as in a 

living subject. This could only be avoided by carefully analysing subject history, 

scanning more cadavers, and only selecting those cross sections with relatively normal 

anatomy for training. 
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6.4.2. Cadaver Discussion 

The results of this study have highlighted a number of significant anomalous findings 

within the ultrasound cross sections of the eleven cadavers that would likely affect 

training due to the visual deviation caused by the anomaly. However, this does not 

completely prevent use of these subjects within a machine learning study. A three-step 

grading system was used when analysing the suitability of each subject (Table 6.4), 

scans marked as good were given a score of two, those marked moderate a score of one,  

scans with major anomalies or that did not capture the required anatomy and marked as 

failed were given a score of zero. Scores were classified as follows:  

• Below 5 - poor suitability 

• Score 6-7 – moderate suitability. 

• Score 8+ - good suitability 

Despite all cadavers experiencing some level of visual anomaly or capture failure, four 

cadavers achieved a good suitability score, with two receiving a moderate score. 

Although five of the subjects received poor suitability scores valid cross section captures 

were possible but overall, they did not represent a good use of clinical time as the overall 

quality of the image was lower than other subjects. The presence of these anomalies 

within the data will negatively affect potential training outcomes on what is already a 

small dataset. 
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Table 6.4 - Suitability of Theil cadaver subject for use in machine learning training for 

abdominal ultrasound. 

Subject Aorta Gallbladder 
Bile 

Duct 

Portal 

Vein 

Left 

Kidney 

Right 

Kidney 

Subject 

Suitability 

1 
minor 

anomaly 
yes Fail shadow shadow shadow 

Moderate 

(6) 

2 Yes yes Fail attenuated shadow yes Good (8) 

3 Yes yes Fail shadow yes yes Good (9) 

4 
major 

anomaly 
yes Fail 

major 

anomaly 
yes 

major 

anomaly 
Poor (4) 

5 
minor 

anomaly 
fail Yes shadow yes yes Good (8) 

6 
minor 

anomaly 
fail Fail fail yes yes Poor (5) 

7 Fail fail Yes shadow fail fail Poor (3) 

8 
minor 

anomaly 

minor 

anomaly 
Fail attenuated yes yes 

Moderate 

(7) 

9 Yes 
minor 

anomaly 
Yes 

difficult to 

visualise 
yes yes Good (9) 

10 Fail fail Yes fail yes fail Poor (4) 

11 Fail fail Fail fail yes yes Poor (4) 

 

This study shows that there is a high degree of variability within Thiel cadavers, 

suggesting that while soft body cadavers can produce suitable imagery, when designing 

a cadaver-based machine learning study for medical imaging, an increased number of 

subjects should be scanned to take into account the potential likelihood of anomalies 

within even the most suitable subject.  

6.4.3. Study Limitations 

This limited study examines eleven cadavers of Caucasian decent within the elderly age 

range (70-90) in Scotland. The use of only 11 subjects can provide only a limited view 

of the potential variation possible within the cadaver population of any one area. While 
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most cadavers are elderly and therefore have more significant signs of morbidity and 

degradation, as seen in this study each subject has unique positive and negatives when 

examining for use in machine learning. The required region of interest and population of 

the cadaver should be carefully considered when designing a cadaver study to ensure 

that enough clear examples of the physiology are available to perform classification.  

When the large amount of variation within the data set is considered, the size of the 

dataset is likely not enough to account for the additional variation within the image set. 

Substantially more subjects would be required to properly analyse image-only machine 

learning classification accuracy in cadaver. The abnormal anatomy within the scanned 

cadaver significantly disrupts the normal visual properties of the cross sections, allowing 

for increased repeatability of scans in the case of monitoring. 

6.5. Machine Learning Study 

6.5.1. Machine Learning Results 

6.5.1.1. Image-only 

Initial mean accuracy result for image-only training was 40.9% (Table 6.5), but by the 

harmonic mean (f-1 score) of just 0.37, this means that although the network correctly 

identified the specified cross section, it did so by favouring that classification not 

through actual feature recognition. When accuracy results that achieved a harmonic 

mean (f-1 score) of below 0.5 are excluded the average accuracy result drops to 22.1% 

which is just 5.1% above random chance. These results are of insufficient value for a 

comparative study of IR tracking and therefore are excluded, a significantly larger 
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sample size with less variation in physiology would be required in order for a full 

comparison study to be performed. 

Table 6.5 - Image-only neural network accuracy showing original and corrected 

harmonic mean f-1 results. 

Cross 

Section 

Raw 

Accuracy 

Raw F-1 

Score 

Corrected 

Accuracy 

Corrected F-1 

Score 

Left Kidney 15.4% 0.07 1.5% 0.50 

Right 

Kidney 

33.1% 0.22 3.7% 0.58 

Aorta 42.1% 0.31 6.5% 0.57 

Bile Duct 52.7% 0.60 41.1% 0.70 

Gall Bladder 50.4% 0.48 34.6% 0.65 

Portal Vein 51.9% 0.57 44.9% 0.59 

Average 40.9% 0.37 22.1% 0.65 

     

6.5.1.2. IR positional results 

As can be seen in Table 6.6, the use of Infrared positional sensing in classification by 

neural network significantly augmented cross section recognition, when the average 

accuracy of the trained networks is taken into account a classification accuracy of 88.3% 

was achieved for one point normalisation, 91.5% for two-point normalisation and 92.8 

for 3-point normalisation. Where no normalisation was performed, the network achieved 

an average accuracy of 82.2%, this means that three-point normalisation achieved results 

10.7% higher than that of the average with no normalisation. Each additional 

normalisation point further reduces the variation in the positional coordinates provided 

to the CNN increasing the accuracy of the classification through reduced error. 
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Table 6.6 - Mean normalisation accuracy for classification from 200 neural networks 

Cross Section No Normalisation 1-Point 2-Point 3-Point 

Left Kidney 92.9% 96.6% 96.4% 97.1% 

Right Kidney 94.9% 98.3% 98.0% 99.2% 

Aorta 91.0% 88.5% 92.4% 98.3% 

Bile Duct 55.4% 76.0% 82.7% 83.0% 

Gall Bladder 64.5% 80.3% 84.2% 84.0% 

Portal Vein 94.4% 89.9% 95.4% 95.4% 

Average 82.2% 88.3% 91.5% 92.8% 

Improvement - 6.1% 9.3% 10.7% 

 

Studying the training variance for classification of the abdominal cross sections (Figure 

6.14), shows a clear trend, where additional points of normalisation train neural 

networks with variation in accuracy result. On average there is an improvement to 

classification accuracy with the use of an additional point of normalisation with 3-point 

normalisation being the most accurate with the least variance, this is especially obvious 

for classification of sweeps of the aorta, despite the potential for visually similar or 

overlapping image information.   
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Figure 6.14 - Comparison of the mean classification accuracy of networks trained using 

ultrasound dataset augmented with positional tracking data. Results show both networks 

with no normalisation as well as where coordinates have been normalised using 1, 2 & 

3 points. Error bars represent the deviation in classification accuracy for each cross 

section over 250 neural networks. 

When examining the networks that achieved the highest accuracy result. No 

normalisation achieved 88.5%, with 93.5% for 1-point normalisation, 95.5% for 2-point 

normalisation, 96.8% for 3-point normalisation. As can be seen in Figure 6.15, the 

largest classification error was in recognition of bile duct and gallbladder regardless of 

normalisation level. A notable error in classification is that a small number of images of 

the left kidney were often misclassified as bile duct, these scans do contain incidental 

captures of the right kidney but with surrounding structures being that of the liver and 

not the spleen as would be the case with the left kidney. 
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Figure 6.15 - Side by side comparison of confusion matrix examining the effects of 

normalisation of positional tracking coordinates on classification accuracy. 

Unlike the image-only networks, the harmonic mean (F-1 Score) for the positional 

neural networks as seen in Table 6.7 show that these networks have achieved a robust 

training result in both precision and recall despite the confounding factors within the 

image data. No additional adjustment is required for comparative analysis as the 

produced results are valid.  

 



 

211 

 

Table 6.7 – Harmonic mean f1 score for best performing positional neural networks. 

Cross 

Section 

No 

Normalisation 

1-Point 

Normalisation 

2-Point 

Normalisation 

3-Point 

Normalisation 

Left 

Kidney 
0.96 0.98 0.99 0.99 

Right 

Kidney 
1 1 1 1 

Aorta 0.95 0.97 0.98 1 

Bile 

Duct 
0.7 0.85 0.9 0.94 

Gall 

Bladder 
0.78 0.85 0.86 0.92 

Portal 

Vein 
0.89 0.94 0.96 0.97 

Average 0.88 0.93 0.95 0.97 

 

6.5.2. Machine Learning Discussion 

This study further builds upon the previous phantom study by demonstrating the use of 

IR positional sensor data to improve classification of ultrasound for abdominal 

ultrasound cross sections in a cadaver study. Classification accuracy using IR positional 

sensor data with no normalisation on cadavers was 82.2% compared to 92.7%, one point 

normalisation was 88.3%, two-point normalisation achieved 91.5%, three-point accuracy 

was 92.8%. While these are lower accuracy results than the phantom, a greater number 

of subjects were used, introducing additional variables into the classification task such as 

the difference in abdominal size in the cadaver vs the fixed size in the phantom. The 

highest accuracy network was a 3-point normalised network that achieved and accuracy 



 

212 

 

of 96.8% in comparison to 98.8% in the phantom study achieved by a network using 

single point normalisation. 

6.5.2.1. Normalisation 

The previous phantom study was unable to fully test the normalisation requirements of 

the algorithm, the variation in the abdominal cavity size of the cadavers has provided a 

significant test bed for this study. When examining the standard deviation for the 

variance in the positional coordinates when normalisation is applied (as seen in Figure 

6.16), each additional point of normalisation reduces the size of variance in the 

coordinates, allowing for better training and validation as the network does have to learn 

as wide a number of coordinates. There was a greater initial reduction in variance in the 

x and y axis with 1-point of normalisation, with smaller improvements with subsequent 

additional points of normalisation. The z axis achieved a greater improvement with 2-

points of normalisation but very little subsequent improvement with 3-points. The 

variation in the rotational axis [a, b, c] was less than 2mm and was not affected by the 

number of normalisation points. This is due to the fact that the relative angle of the IR 

sensor attached to the probe to the base station remained the same throughout the 

collection session (as seen in Figure 6.2), while there was some variation in subject size 

and position, the probe remained well within expected normal range for angle data. 
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Figure 6.16 – Spider chart visualising the differences in standard deviation caused by 

normalization of positional coordinates for each individual axis within the ultrasound 

dataset. Results are displayed in millimetres. 

It is possible to see the impact of normalisation by mapping the coordinates in a scatter 

graph (Figure 6.17), when the data is segmented into distinct areas that correspond to the 

cross sections a clear trend is visible. Each additional point of normalisation makes the 

coordinate grouping more distinct and creates a tighter fit, which would allow for neural 

networks to better generalise on the positional data even when using a smaller data set 

such as the one presented in this chapter. 

Coordinates with no normalisation are subject to two sources of variance: the abdominal 

cavity size and the position within the IR sensor field. Use of raw coordinate data 
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increases overall accuracy in comparison to image-only. This method requires careful 

placement of sensor equipment in relation to the patient to reduce variance in the 

coordinate data and potentially would require a much larger dataset to improve neural 

network accuracy to account for the additional sources of variance.  

The use of 1-point normalisation allowed for the positional coordinates to be fitted into 

the same feature space which resulted in a 6.1% improvement to average accuracy. This 

still does not account for differences in patient anatomy and is therefore subject to 

variation caused by differences in abdominal size. This is potentially why 1-point 

normalisation underperformed in the aorta and portal vein scans, as these are moving 

sweeps scan that would require accurate coordinates on multiple axis. 

Applying 2-points of normalisation sets an origin point and reduces coordinate variance 

between patients by controlling for variation in the width of the abdomen. This allowed 

for a significant improvement in average classification accuracy of 9.3%. Accounting for 

width was particularly important in improving accuracy in cross sections that require 

probe movement such as sweeps of the aorta, portal vein, gallbladder and bile duct. 

Normalisation using 3-points, scales the coordinates to three fixed points on the 

abdomen, effectively making the abdominal cavity a set size. Reducing variance in 

abdominal height and width provided only a small 1.4% improvement to average 

accuracy in comparison to two points of normalisation but significantly improved 

training variance in all but the bile duct classification training results. 
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Figure 6.17 – Visual representation of the point cloud of the ultrasound probe X, Y 

angle during cross sectional capture. The effect of normalization on these coordinates 

has been transposed onto an anatomical representation of the human body. 

6.5.2.2. Study Limitations 

The use of cadavers has expanded the sample size substantially, but as reported in 

section 4.1, it has also introduced substantial variation into the image set causing image-

only recognition accuracy to collapse, as seen in the harmonic mean results in Table 6.6. 

The use of only 11 subjects is not enough to account for the additional variation within 
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the image set and therefore should be excluded from study.  Substantially more subjects 

would be required to properly analyse image-only accuracy in cadaver, in comparison to 

harmonic mean in positional trained networks (Table 6.7) which shows stable precision 

and recall despite the poor image-only results. This dataset is not yet large enough, to 

use the power curve method described in chapter 4 to estimate the required dataset size, 

nor would it be possible to accurately estimate the number of cadavers required due to 

the significant amount of physiological variation present in cadavers. It is not possible to 

estimate This suggests that positional information could be used to assist in the 

positioning of the ultrasound probe even in cases where abnormal anatomy significantly 

disrupts the normal visual properties of the cross section, allowing for increased 

repeatability of scans in the case of monitoring. 

6.5.2.3. Comparative Study 

While the image-only results from the cadavers should be excluded, these cross sections 

use the same clinical protocol as the previous study in Chapter 3 and therefore results 

from the cadaver study can be compared to networks resulting from the transfer learning 

methodology. When comparing the six chosen cross sections (as seen in Figure 6.18) in 

the top performing inception-based architectures from the baseline study to those of the 

cadaver positional IR study (in Table 6.8), there is more than a 10% improvement in the 

average classification from 85.72% and 84.52% in the inception networks to 96.83% for 

a network trained with 3-points of normalisation. 
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a) Bile duct. b) Portal vein. c) Gallbladder. d) Aorta. e) Left kidney. f) Right kidney 

Figure 6.18 - Examples of ultrasound scans of cross sections captured on the Canon 

Aplio i800 high resolution ultrasound scanner. 

The trend of Bile duct and Gall bladder being the weakest classification can be seen in 

both inception and cadaver network accuracy results with Gallbladder and Bile duct 

being joint lowest in the inception networks, at 71% and 79% respectively with this 

trend is also present in the cadaver results. There was a substantial improvement to 

classification of left and right kidney in positional networks, even non-calibrated 

networks augmented achieved only 3% error, substantially better than that achieved with 

image-only classification. Classification of the aorta was lower in positional networks, 

but it should also be noted that training was performed on a significantly smaller set of 

data with visualisation of the aorta much more difficult in the cadaver dataset. 
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Table 6.8 - Comparison of accuracy of transfer learnt networks trained on the Canon 

dataset and the positional trained networks trained on Cadaver with positional sensor 

data. 

Dataset Canon (image-only) Theil (image and positional) 

Model Type 
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Left Kidney 93% 86% 97% 99% 99% 98% 

Right Kidney 79% 79% 100% 100% 100% 100% 

Aorta 100% 100% 97% 95% 97% 99% 

Bile Duct 71% 79% 73% 87% 88% 94% 

Gall Bladder 71% 79% 69% 89% 95% 94% 

Portal Vein 100% 86% 94% 91% 94% 96% 
 85.72% 84.52% 88.33% 93.50% 95.50% 96.83% 

 

The results from this cadaver study show that there is a clear improvement in 

classification accuracy of these difficult cross sections when augmenting the dataset 

using positional information even when compared to image-only networks trained on a 

much larger scale dataset. These results also are in line with those seen in the phantom 

study with a 3-point calibrated network achieving an accuracy of 96.8%. The accuracy 

of these networks suggests this method warrants additional exploration in future. 

6.6. Conclusion 

Cadavers are a major source of medical research data and could potentially be extremely 

useful in machine learning medical imaging research. Theil cadavers are a potential 
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source of imaging data for machine learning but contain significant visual variation 

within the examined cross-sectional data. The size of collection must take into account 

the increased amount of visual variation within the subject matter. 

While increasing the number of subjects in future studies should not be ruled out. These 

studies should target more specific machine learning subject areas, such as anomaly 

detection, where the disease process is known, and therefore the medical history of the 

cadaver could be an advantage. It would also be easier to perform quality control with a 

smaller region of interest that could account for the significant variation seen in just 

eleven subjects. 

This cadaver study further underlines the effectiveness of sensor-based positional and 

coordinate information for localising and classifying ultrasound cross sections. In 

providing an additional source of data, these networks are significantly more accurate 

than their image-only counterparts, reducing the misclassification of cross sections 

where there is visual similarity or shared anatomical features. Positional tracking is a-kin 

to the sonographer remembering the position of their hand during the scan. This 

additional information completely changes how the neural network understands the 

provided data by adding additional frame of reference, not just for the individual cross 

sections but also in relation to one another. This result is especially significant as it 

required limited additional investment in ground truth development, whereas improving 

an image-only approaches would require significant additional investment to both 

increase dataset size and potentially to increase the complexity of the annotation. 
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Further study of positional tracking requires additional testing using significantly larger 

sample sizes to further test method to combine image recognition and positional 

normalisation. Additional methods of probe tracking should be explored, especially 

those not requiring line of sight such as electromagnetic tracking, a method already used 

in 3D ultrasound imaging, as this would simplify the tracking procedure. Further 

normalisation points should be tested to correctly size the abdomen and ensure the most 

effective normalisation point has been used. There is also potential to apply ensemble 

learning in future iterations using teacher models on clinical ultrasound datasets to 

augment the smaller cadaver dataset size.  

The use of positional tracking in ultrasound has many potential future clinical 

applications. At its most simplistic, this system will allow a neural network to effectively 

detect and classify abdominal cross sections within a scan with reduced error. This could 

be used to automatically select the best examples of each cross section as the 

sonographer sweeps the probe over the target region of interest, greatly reducing the 

time required to perform each scan. This could also be used in the training of new 

sonographers, with on screen guidance being provided to improve or correct the 

clinicians positioning using both coordinates and image as a guide. Novice operators 

could be guided using ‘imageless’ imaging devices with gamified user interfaces with 

the algorithm feeding backs probe guidance information ensuring that the correct images 

are collected with no specialist knowledge required from the operator. This same 

technology potentially could drive a robotic arm, allowing for fully automated collection.  
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Chapter 7 

Conclusion and Future Work 

 

7.1. Research Conclusions 

Diagnostic medical imaging has become a crucial component of the diagnostic process, 

offering clinicians invaluable evidential support for confirming differential diagnoses. 

Among these imaging modalities, medical ultrasound stands out as one with the most 

potential for worldwide increase in uptake. Its appeal lies in its safety, portability, real-

time imaging capabilities, and cost-effectiveness. However, a significant impediment to 

further progress in this modality is the heavy reliance on operator expertise. Currently, 

clinical diagnostics places a substantial burden on increasingly busy clinicians, who 

must manually perform every scan in order to produce high-quality images. The work 

presented in this thesis examined the practicalities of machine learning neural networks 

to assist in the collection and classification of abdominal ultrasound cross sections and 

was successful in achieving the primary objectives defined in the industrial partners 

project specification: 
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1. Identify what planes are acquired in an image – automatic annotation and 

adherence to guidelines. 

2. Automatically identify the correct planes during a continuous sweep – 

simplification of screening procedure. 

3. Improve classification of hard to differentiate edge cases within the Japanese 

abdominal protocol. 

This was first tested as part of a proof of concept on an abdominal phantom and then 

expanded upon to test calibration on the abdominal cavity within the context of a 

cadaver study. Ultimately, this work provides a new method with the potential to greatly 

improve the accuracy of automation processes of numerous routine ultrasound tasks and 

lower the skill threshold required to capture clinically relevant medical cross sections, 

thereby enhancing the efficiency and accuracy of medical imaging. 

Chapter 2 reviewed the literature in three major areas:  

• The increasing use of medical imaging in clinical practice examining the 

fundamentals of ultrasound and alternative modalities. 

• Contextual anatomical and physiological reasoning behind collection of the 

Japanese Abdominal Ultrasound protocol. 

• An overview of foundational machine learning and computer vision techniques 

and history that underpin this project.  

Medical imaging has become increasingly indispensable in clinical practice, offering a 

dependable means of diagnosis while reducing reliance on subjective clinical judgments 
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and minimising diagnostic errors. However, the surging demand for imaging, 

particularly ultrasound and CT scans, has strained healthcare systems, resulting in 

prolonged wait times for patients. This chapter evaluates the advantages and challenges 

associated with different imaging modalities. Ultrasound, with its non-invasive nature, 

provides real-time visualisation but faces challenges like operator reliance and image 

artifacts. In contrast, X-rays and CT scans employ ionising radiation, which raises 

concerns about cumulative exposure. Magnetic Resonance Imaging (MRI) is a safer 

alternative, despite limitations related to scan duration and equipment. The Japanese 

abdominal ultrasound protocol encompasses 16 cross-sectional views and is a critical 

tool for diagnosing and monitoring abdominal conditions. It enables non-invasive 

assessment of vital organs such as the aorta, liver, kidneys, gallbladder, spleen, and 

pancreas. Specific conditions like aneurysms, liver diseases, gallbladder issues, renal 

problems, splenic abnormalities, and pancreatic disorders can be detected using this 

protocol. Ultrasound's safety, portability, and affordability make it invaluable for early 

detection and monitoring. Machine learning is set to revolutionise healthcare by 

enabling computers to learn and predict without explicit programming. Its evolution, 

from early methodologies to deep learning, is explored. Data processing techniques such 

as image enhancement, standardisation, feature extraction, and segmentation were 

pivotal in enhancing and standardising medical imaging data for machine learning 

purposes. Training methodologies are explained including supervised, unsupervised, 

reinforcement-based, and transfer learning. Finally, this chapter acknowledges criticisms 

and challenges of machine learning, including concerns about poor practice, bias, and 

the need for practical improvements in clinical problem-solving.  
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Chapter 3 examined the effectiveness of nine neural networks utilising transfer learning 

on a dataset comprising sixteen abdominal ultrasound cross sections from sixty-four 

patient sets. The primary objective was to establish this baseline response accurately. 

GoogLeNet and InceptionV3 achieved the highest validation accuracy at 83.9% through 

transfer learning on a sample set of 26,294 images. InceptionV3 exhibited a top-2 

accuracy of 95.1%. For a smaller sample set of 800 images, Alexnet secured the highest 

accuracy at 79.5% (with a top-2 accuracy of 91.5%). The evaluation of these neural 

networks allowed the identification of challenging cross sections and edge cases that 

confounded traditional image only classification, such as between right and left kidneys. 

A case study involving mobile and small-sized networks, demonstrated the effectiveness 

of compact networks in ultrasound classification. This chapter extends the findings of 

previous studies in the literature, highlighting the accuracy potential of various neural 

network architectures in classifying standard abdominal cross sections. The depth of 

neural networks had only a marginal impact on classification accuracy, with a 2.2% 

difference between the top-performing networks among the nine tested. Dataset size 

emerged as a pivotal factor, indicating that more complex neural networks excel with 

larger datasets, while simpler linear networks outshine others in smaller datasets. 

Chapter 4 addressed the challenge of data acquisition in the absence of additional 

support from the industrial partner. This chapter introduces a biphasic framework 

designed to evaluate the cost of data collection by iteratively predicting accuracy 

concerning sample size. This framework incorporates active learning techniques to guide 

and optimise human annotation, specifically tailored for machine learning applications 
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in medical ultrasound imaging. The chapter highlights the potential cost reduction 

through the use of publicly available breast, foetal, and lung ultrasound datasets, with a 

focus on the practical case study of breast ultrasound data. This study revealed a 

correlation between dataset size and ultimate accuracy, resembling patterns observed in 

clinical trials. Substantial improvements in accuracy are achievable with just 40-50% of 

the data, depending on the applied tolerance metric. The integration of active learning 

further reduces the need for manual annotation, resulting in a noteworthy cost reduction 

of approximately 66%, while maintaining a permissible accuracy deviation of around 

4% from theoretical maximums. The significance of this work lies in its ability to 

quantify the additional data and annotation required to achieve specific research 

objectives. These methods align with the understanding of clinical funders, providing an 

effective framework for feasibility and pilot studies with fixed budgets, optimising 

predictive gains, and informing resource allocation for further clinical studies. 

Chapter 5 documented a proof-of-concept study where positional tracking information 

was introduced as an additional element into the neural network's input to provide the 

necessary context for recognising these otherwise complex edge case abdominal cross 

sections. Previous studies showed that distinguishing between multiple liver or left and 

right kidney cross sections based solely on images can be challenging. This chapter 

explores the utilisation of optical infrared (IR) and sensor-based infrared tracking to 

monitor the position of an ultrasound probe while collecting clinical cross sections on an 

abdominal phantom. Convolutional neural networks were trained using both image-only 

and image with positional data inputs, with the results comparing their classification 
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accuracy. The incorporation of positional information led to a substantial enhancement 

in average classification results, elevating accuracy from approximately 90% for image-

only to 95% with optical IR position tracking and 93% with sensor-based IR for six 

common abdominal cross sections. The application of low-cost positional tracking for 

machine learning-based ultrasound classification, not only promises increased accuracy 

in identifying critical diagnostic cross sections, but also holds the potential to validate 

protocol adherence and provide navigational prompts. This will greatly users in 

capturing cross sections more effectively in the future. These results were limited by the 

use of a single phantom which led to overfitting, meaning that results are indicative only. 

Chapter 6 discussed the suitability of cadavers for an abdominal image-based 

ultrasound cross-sectional study, an important step in building upon a previous study 

involving phantom data. In the previous study, the addition of infrared positional 

information improved machine learning classification accuracy by 4.3%, but overfitting 

due to a single subject and not being able to fully test calibration requirements limited 

the resultant outcome. To address these limitations, this chapter explores the use of 

cadavers, which offer more variability in anatomy and abdominal cavity size. The study 

collected abdominal scans and calibration points from eleven cadavers using an 

ultrasound probe.  The results of the study revealed several challenges in using 

ultrasound imaging of cadavers for training machine learning models to recognise 

anatomical structures.  Cadavers, being diseased individuals, often exhibit deviations 

from normal anatomical structures. These variations can result from advanced age, 

injuries, or underlying diseases. These deviations need to be quantified, especially when 
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working with a small sample size. The aorta can be fully compressed during scanning in 

cadavers due to the absence of pulsatile flow, making visualisation challenging. Some 

cadaver subjects exhibited significant deviations in the appearance of the aorta, 

potentially indicating conditions like abdominal aortic aneurysms. Aortic enlargement, 

without anomalous deviation of the aortic wall, was observed in some cases. It was not 

always possible to visualise the gallbladder in cadaver subjects. Gallbladders can contain 

gallstones, which can affect their appearance and cause acoustic shadowing. Bile sludge 

within the gallbladder can alter its appearance without causing acoustic shadowing. 

Visualising the bile duct in cadavers is extremely difficult, with the bile duct being 

visible in only a subset of subjects. The portal vein is challenging to visualise due to rib 

shadows, and expanding the rib cage by asking the patient to take a deep breath is not 

feasible in cadavers. Calcified deposits in the liver can affect visual details and render 

some structures unrecognisable. Large hepatic abscesses can completely obscure the 

visualisation of the portal vein and cause deformation of nearby structures. The left 

kidney, located near the spleen, is more challenging to visualise using a transverse 

approach, requiring special positioning of the cadaver. The right kidney, while generally 

easy to visualise, exhibited anomalous shadowing in some cases, which was not fully 

explained. Overall, training machine learning models solely on image data from cadaver 

subjects presents significant challenges due to the physiological variations, signs of 

morbidity, and disease processes commonly found in older individuals and cadavers. To 

mitigate these challenges, it is recommended to carefully select cadaver subjects with 

relatively normal anatomy for training and analysis. 
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Chapter 7 built upon the previous phantom study where the impact of infrared 

positional information on machine learning classification accuracy for six challenging-

to-differentiate ultrasound abdominal cross sections was demonstrated to be ~4.3%. 

However, this previous study had limitations, notably overfitting due to a single subject 

and incomplete calibration algorithm testing. To address these limitations, this chapter 

leverages the variability in anatomy visibility and abdominal cavity size among cadavers 

to validate the positional tracking and calibration system for machine learning 

classification. The study collected six common abdominal scans and performed three 

calibration point scans on eleven cadavers using an ultrasound probe with an attached 

infrared sensor. Neural networks were trained using image-only and position-augmented 

datasets through transfer learning. Notably, an image-only approach using transfer 

learning from previous phantom-trained models failed due to the substantial variation in 

the cadaver image sample set. However, the inclusion of positional inferred sensor data 

led to average classification accuracies of 88.3% for one-point calibration, 91.5% for 

two-point calibration, and 92.8% for three-point calibration. These findings suggest that 

positional tracking can significantly enhance the recognition of challenging and hard-to-

identify diagnostic ultrasound cross sections. Furthermore, the application of machine 

learning to facilitate the collection of ultrasound diagnostic cross sections holds the 

potential to streamline clinical workflows by automating image capture and supporting 

decision-making. It also paves the way for the automation of the entire collection 

process. 
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This thesis documents a baseline response of neural networks to the Japanese abdominal 

ultrasound screening protocol and provided a potential solution to the difficulties 

surrounding overlapping cross sections and edge cases that confounded image-only 

classification. A two-phase method to cost effectively collect and annotate data for small 

scale trials was developed, showing that in many cases costs could potentially be 

reduced by as much as 50% with only limited reduction in accuracy. A successful 

phantom study of the use of infrared tracking as an additional source of data for machine 

learning classification provided a limited proof for further study showing potential for 

accuracies above 95%, although these results were limited by the small sample size. The 

efficacy of Thiel cadavers for machine learning of abdominals cross sections was then 

examined to understand the potential use of Theil cadavers in a small trial, with results 

suggesting that while cadavers provided multiple deviations from normal physiology the 

anatomy within the images themselves were fairly clear in subjects without 

physiological deviation due to morbidity or old age. A cadaver study of the infrared 

tracking system confirmed that infrared tracking successfully increased the classification 

accuracy of abdominal cross sections but also showed it could be used in cases where 

positioning was correct, but the image was unclear. This also provided a larger, more 

diverse sample size, providing the opportunity to test the calibration of the algorithm on 

the abdominal cavity showing that additional points of calibration greatly improved 

classification accuracy. 

In order to achieve these objectives, it was necessary to solve increasingly complex, 

interconnected tasks and use cases, these include: 
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• The classification of static imagery 

• The sorting and classification of ultrasound video sweeps 

• Localisation of probe in relation to each abdominal within a protocol 

• Improving positional identification by normalising the positional localisation to 

the patient 

Initial work developed a method to sort and classify abdominal images from a static 

dataset.  Convolution neural networks are designed for this type of classification task but 

the lack image detail within the dataset, coupled with the overlapping regions of interest 

(ROI) complicate the classification task. From the initial baseline response, this work 

was progressed of identifying the correct cross sections from full videos of ultrasound 

abdominal sweeps as part of an industry protype with Canon Medical in Japan. This 

image-only method is highly successful in collecting the correct cross-sectional imagery 

when the sonographer is adept at placing the probe in the correct position and angle, 

potentially speeding up collection for expert users as they do not have to press a button 

to collect the correct cross sections but simply sweep the ultrasound probe over the 

correct area and the neural network will automatically collect the best imagery from that 

available, but this method is severely limited in functionality especially in large scale 

protocols with multiple overlapping ROI, edge cases and cannot provide assistance in 

positioning the probe without a significantly larger dataset. 

The significant limitations of an image-only approach, coupled with the lack of a fixed 

positional localisation as frame of reference as is available to other medical imaging 

modalities such as CT and MRI where the patient is moved as required within the 
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scanner. This required the development of a much more complex system than previously 

envisaged, the initial infrared positional prototype showed that positional information 

could significantly improve classification accuracy by localising the ultrasound probe in 

relation to each cross section. This fixed positional method was potentially very limited 

in its use as it did not fit to the patient, leading to a high potential for error. 

In order to further progress the proof of concept, the positional data received by the 

neural network must be normalised to the size of the abdominal cavity to improve 

accuracy. This additional task was achieved by stipulating a number of fixed points on 

the abdomen and using these points to adjust the positional data to normalise it to that 

already seen by the network. The results of the cadaver study suggest significant future 

potential of this system to enhance ultrasound scanning in the future.  

The achievement of these tasks represents a number of significant milestones towards a 

machine learning system for classification of ultrasound that has significant practicality 

within clinical practice. While image-only has significant drawbacks and limitations that 

would limit future clinical use, the development of a positional system could not only 

speed up classification and collection of ultrasound scans by expert users but also could 

be used to provide navigational assistance and adherence to collection protocols.  

7.1.1. Future Works 

Based on the findings and limitations identified in this thesis, there are several future 

works and areas of study that would further advance the field of abdominal ultrasound 

imaging and machine learning: 
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The development of automated and guided ultrasound scanning comes at a time where 

there is not only an increased dependency on imaging modalities as the primary focus of 

confirming a differential diagnosis, but also a worldwide shortage of Sonographers 

capable of performing advanced ultrasound scans. Once productised this technology will 

assist operators with lower levels of training and experience in the collection of high-

quality ultrasound scans. Reducing the skill floor for this workflow, allowing it to be 

undertaken more cost effectively and also decreasing the burden on senior clinicians.  

There are still many restrictions surrounding the use of AI in medical imaging and 

diagnostics, with regulations still evolving, as machine learning technology continues to 

be refined. As part of this there is a push towards ensuring that algorithms produce 

results that are clear and explainable to a human observer. Removing the uncertainty as 

to what features a neural network is using to classify an image, adding much needed 

transparency to the process. 

The development of real-time feedback systems for sonographers during ultrasound 

scans can assist in improving image quality. These systems could provide guidance on 

probe positioning, pressure, and settings to optimise image capture. This level of 

integration should examine the efficacy of sensor tracked machine learning for 

educational programs and resources for healthcare students and professionals to learn 

how to effectively utilise ultrasound scanners. 

The potential for automating the collection process of medical ultrasound using robotics 

would allow it to be utilised similar to that of gold standard high resolution imaging 

modalities such as CT and MRI, allowing for increased uptake throughout diagnostic 
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medicine or even designation as a first line diagnostic modality within a clinical protocol 

which would see mandated widespread adoption. In order for this to happen, this 

technology will require extensive validation studies involving both living patients and 

cadaver to assess the real-world performance of machine learning models. This will be 

critical for ensuring the clinical relevance and safety of these systems. 

Expanding dataset size is crucial to improve the robustness and generalisation of 

machine learning models. Collecting more cadaveric or patient data, ideally from a 

diverse range of sources and demographic backgrounds, would help address the 

limitations of the small dataset used in this thesis. The use of ensemble learning 

techniques should be considered for leveraging neural networks trained on different 

sources of data such as patient and cadaver. This might also include combining 

information from different imaging modalities (e.g., ultrasound, MRI, CT) and sensor 

data (e.g., positional tracking) may lead to more comprehensive and accurate diagnostic 

models. Use of generative AI has the potential to expand the sample size of existing 

ultrasound datasets by leveraging the anatomical features within this data to produce 

new ultrasound images.  

Further research into advanced positional tracking technologies and methods can help 

overcome challenges related to probe positioning. This could include the development of 

specialised tracking devices or algorithms for better accuracy in both living patients and 

cadaveric models. This would include examining electromagnetic tracking systems 

which have submillimetre accuracy and prior clinical use as part of 3D ultrasound 

systems. Machine learning augmented with positional coordinate data has the potential 
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to also enhance the segmentation of human anatomy, with organs identified within the 

cross sections providing more granular information for clinicians. 

Developing automated systems that can identify and flag anomalies or challenging cases 

during ultrasound scans can aid sonographers and improve diagnostic accuracy. This 

should form part art of a broader strategy to investigate potential opportunities for 

effective collaboration between healthcare professionals and machine learning systems. 

This includes studying how clinicians can integrate AI tools into their diagnostic 

workflow and make informed decisions based on AI-generated insights. 

It is also important to consider how this technology fit into broader paradigms within 

machine learning. Federated learning is increasingly popular as it allows for multiple 

sites to contribute to the training of a central algorithm while maintaining local 

processing and storage of source data. Edge computing could also allow for lightweight 

algorithms to be integrated directly into the probe. 

Overall, future research should aim to leverage the potential of machine learning while 

addressing the practical and ethical considerations required for the successful integration 

of AI into clinical practice with the potential of fully automating collection using 

robotics in the future. 
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