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Abstract

The lubrication approximation is used to analyse a variety of unsteady three-

dimensional flows of thin films on an inclined plane. Specifically, flows of slender

non-uniform rivulets and flows around slender dry patches are considered, the flow

in each case being driven by gravity or a constant shear stress at the free surface.

First, we consider gravity-driven flow of rivulets of Newtonian fluid. Two distinct

physically realisable similarity solutions are obtained, corresponding to rivulets

whose cross-sectional profiles are “single-humped” and “double-humped”, respec-

tively. Each solution represents both a sessile rivulet that narrows and thins with

distance down the plane but widens and thickens with time, and a pendent rivulet

that widens and thickens with distance down the plane but narrows and thins

with time. To investigate the stability of these similarity solutions, we examine

numerically the evolution of small superposed perturbations; the numerical results

suggest that the solutions for sessile rivulets are stable whereas those for pendent

rivulets are unstable. We then extend the work to obtain similarity solutions for

gravity-driven flow of rivulets of a non-Newtonian power-law fluid; in particular,

we analyse the effects of strongly shear-thinning and strongly shear-thickening be-

haviour on the solutions. We then consider surface-shear-stress-driven flow of a

power-law fluid, for which we show that there is not only a physically realisable

similarity solution for a rivulet but also an analogous similarity solution for flow

around a dry patch (unlike the case of gravity-driven flow). Lastly, we obtain

a different kind of similarity solution, namely a travelling-wave solution for both

gravity-driven flow and surface-shear-stress-driven flow around a dry patch. In

each case the dry patch has a parabolic shape, and travels down the plane at con-

stant speed; also the thickness of the fluid film increases monotonically away from

the dry patch.
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Chapter 1

Introduction

1.1 Thin-Film Flow

Thin-film flows occur in many situations, including in geophysical, biological and

industrial contexts. Owing to their great practical importance, there is a consid-

erable scientific literature on thin-film flows.

For instance, in geophysical applications, the slenderness of various mud and

lava flows has been exploited to develop thin-film theories to describe them. These

types of flow have been investigated theoretically and experimentally by several

authors, such as Coussot and Proust [21] and Wilson and Burgess [106] for mud

flow, and Balmforth et al. [6] and Osiptsov [71] for lava flow. Thin-film theories

also help in understanding the spreading of oil on the sea (Hoult [40]) and the flow

of ice sheets (Morland and Johnson [64]).

In industrial contexts, thin-film flows occur in, for example, coating and lubri-

cating processes, inkjet printing, painting, textile dyeing, spray forming and flow

in heat exchangers, as well as in the manufacture of solar cells. In the coating

process known as lithography, a topography template is pressed into a thin layer

of fluid on a substrate, the intention being that the impressed fluid should, in gen-

eral, replicate the structure of the template; hence it is crucial to understand the

evolution of the thin fluid layer after the template is removed. Colburn et al. [19]

1



Chapter 1 2

Figure 1.1: Ice accretion on an aircraft wing. Picture courtesy of Aviation Educa-

tion Multimedia Library.

applied a thin-film approximation to obtain an effective approach for fluid deliv-

ery for dispensing low viscosity imprint solutions in such a lithography technique.

Another example is ice accretion, which occurs when a layer of ice builds up on

solid objects that are exposed to freezing precipitation, supercooled fog or cloud

droplets (as shown in Figure 1.1). Its occurrence on aircraft wings is one of the

major causes of aircraft accidents, and has been the subject of intense study for a

long time (see, for example, Myers et al. [68]).

In biological contexts, thin-film flows occur in various places throughout the

human body, such as in the cornea of the eye, in the ureter, in lubrication layers

in joints (for example, in knees) and in mucus films lining airways. For example,

Braun and Fitt [17] used a thin-film theory to model the drainage of the precorneal

tear film in human eyes once the eyelid has opened after a blink. This thin tear

film is important in lubricating and protecting the cornea. Thin-film theories have

also been used in describing the function of the human ureter and predicting its

shape (see, for example, Lykoudis and Roos [54]).

Since thin-film theories have been applied to a wide range of problems, from

large scale natural phenomena (such as the spreading of lava in a volcanic eruption)

to small and complex flows (such as in the manufacture of transistors and electronic
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circuits), one may ask what exactly is meant by the term “thin”. It is important

to understand that thin here does not necessarily mean “small” in everyday terms.

A more precise definition is that a thin film is one whose typical thickness, H, is

much smaller than its typical length, L, that is, its non-dimensional aspect ratio is

small: δ = H/L � 1, and the flow is predominantly in the direction in which the

film has the longer length scale. The flow may have either (stationary or moving)

prescribed boundaries or unknown free surfaces, and may be driven by forces

such as gravity, surface shear stress, rotation, surface tension and surface-tension

gradients, as well as a variety of thermal effects.

In general, the flow of an incompressible fluid is governed by the balance of

linear momentum (Newton’s second law)

ρ
Du

Dt
= ρf + ∇ · σ, (1.1)

and the incompressibility condition

∇ · u = 0, (1.2)

where ρ is the fluid density, f = f(x, t) is the body force (per unit volume), u =

u(x, t) is the fluid velocity, x is the spatial position, t is time, ∇ is the usual vector

differential gradient operator,
D

Dt
=

∂

∂t
+ u · ∇ is the usual convective derivative,

and σ is the stress tensor (which for many materials, is a symmetric tensor, as

may be shown by consideration of angular momentum).

A Newtonian fluid (discussed further in Section 1.2) is one whose constitutive

equation is given by

σ = −pI + σ
′, σ

′ = 2µe, (1.3)

where p is the fluid pressure, I is the identity tensor, σ
′ is the extra stress tensor,

µ is the fluid viscosity and e is the rate-of-deformation tensor, given by

e =
1

2

[

(∇u) + (∇u)T
]

. (1.4)

With (1.3) and (1.4), equation (1.1) yields the well-known Navier–Stokes equation

ρ
Du

Dt
= ρf −∇p+ µ∇2u. (1.5)
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Figure 1.2: Sketch of the slider-bearing problem.

In general, equations (1.2) and (1.5) must be solved numerically; however, when

the film is thin, we may simplify these equations considerably via a “thin-film” or

“lubrication” approximation based on the smallness of the aspect ratio δ defined

above. The simplest way to present this idea is to consider the well-known steady,

two-dimensional slider-bearing problem from classical lubrication theory, in which

one rigid surface slides over another plane rigid surface to which it is nearly parallel,

lubricated by a thin film of fluid in between. A sketch of such a bearing is shown in

Figure 1.2, where L is the length of the bearing and H is the maximum gap of the

bearing. The lower planar surface y = 0 moves in the x direction with a constant

velocity U while the upper non-planar surface y = Hh(x/L) is stationary.

First, we re-scale and non-dimensionalise the problem in the natural way by

writing

t =
L

U
t∗, x = Lx∗, y = Hy∗,

u = Uu∗, v =
UH

L
v∗, p− pa = µ

UL

H2
p∗,

(1.6)

where pa denotes the ambient pressure. With the star superscript dropped for

clarity, equation (1.2) and equation (1.5) (with f = 0) in the x and y directions

become
∂u

∂x
+
∂v

∂y
= 0, (1.7)
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Re δ2

(

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)

= −∂p
∂x

+

(

δ
∂2u

∂x2
+
∂2u

∂y2

)

, (1.8)

Re δ4

(

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)

= −∂p
∂y

+ δ2

(

δ2∂
2u

∂x2
+
∂2u

∂y2

)

, (1.9)

respectively, where Re = ρUL/µ denotes the Reynolds number. At leading order

in the thin-film limit δ → 0, equations (1.7)–(1.9) become

∂u

∂x
+
∂v

∂y
= 0, (1.10)

0 = −∂p
∂x

+
∂2u

∂y2
, (1.11)

0 = −∂p
∂y
, (1.12)

respectively, to be solved subject to the non-dimensional boundary conditions

u = 1, v = 0 at y = 0, u = 0, v = 0 at y = h. (1.13)

Equations (1.10)–(1.12) demonstrate how the mathematical problem for the flow

has been simplified dramatically by means of a thin-film approximation based

on the assumptions that both the aspect ratio δ � 1 and the reduced Reynolds

number Re δ2 =
ρUL

µ
δ2 � 1 are small. Note that the Reynolds number Re need

not be small, provided only that Re δ2 � 1. Equations (1.11) and (1.12) may be

solved subject to (1.13) to give

p = p(x), u =
1

2

dp

dx
y (y − h) + 1 − y

h
. (1.14)

Then, integrating equation (1.10) from y = 0 to h and using boundary conditions

(1.13) for v yields
1

6

d

dx

(

dp

dx
h3

)

=
dh

dx
. (1.15)

This is called the Reynolds equation, from which p may be determined if the form

of h(x) is prescribed and the values of p at the ends x = 0, 1 of the bearing are

known. Integrating equation (1.15) twice and assuming that p = 0 at x = 0, 1 we

obtain

p(x) = 6

∫ x

0

h(x̄) − h0

h3(x̄)
dx̄, (1.16)
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where h0 is a constant, determined by

∫ 1

0

h(x̄) − h0

h3(x̄)
dx̄ = 0. The slider bearing

involves prescribed rigid boundaries, but the thinness of, for example, thin films

bounded by free surfaces or by deformable solid may be exploited in an analogous

fashion.

The simplicity of the equations arising in thin-film theory has allowed analytical

and numerical progress to be made on a wide range of thin-film flow problems.

Thin-film theories and their development have been reviewed by several authors,

for example, by Oron et al. [70], by O’Brien and Schwartz [69], by Colinet et

al. [20], and recently by Craster and Matar [22].

1.2 Newtonian and Non-Newtonian Fluids

Fluids may be categorised very broadly into Newtonian and non-Newtonian fluids.

In many types of flow, the behaviour of a fluid can be understood in terms of the

relationship between two fundamental quantities, namely the shear stress and the

local shear rate. This may be illustrated by reference to the steady simple shearing

flow shown in Figure 1.3, in which a fluid is located between two parallel plates

of area A. The upper plate moves with velocity V due to the action of a shearing

force F as shown, whereas the lower plate is stationary; this creates a shearing

friction which shears the fluid. The ratio of the force F to the surface area over

which it is applied, A, is the shear stress, τ (that is, τ = F/A), whereas the ratio

of the difference in velocity between the two plates to the distance between them,

h, is the shear rate, γ (that is, γ = V/h). The ratio of shear stress to shear rate is

the fluid viscosity, µ, which describes the resistance of fluid to flow (a measure of

internal friction) and is one of the most important material properties in rheology1.

A Newtonian fluid, named after Sir Isaac Newton, is a fluid for which the shear

stress at any point is proportional to the shear rate at that point, i.e. the viscosity

1Rheology, which comes from the Greek word rheo (whose root meaning is “to flow”), is the

study of the deformation and flow of matter.
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of the fluid is independent of shear rate. Water and air are common examples of

fluids that can be well modelled as Newtonian fluids over a wide range of physical

conditions. The equation of motion for a Newtonian fluid is the Navier–Stokes

equation (1.5).

Generally, a fluid showing any deviation from the simple Newtonian behaviour

(i.e. stress proportional to shear rate) is called a non-Newtonian fluid; such fluids

are extensively studied in rheology. Some common examples of non-Newtonian

fluids are ketchup, paint and quicksand. Non-Newtonian fluids are of great interest

because they have many applications in our daily life, in nature and in industry,

and can exhibit complex behaviour. For instance, since the viscosity of ketchup

depends on its shear rate, the quickest way to pour the ketchup is by shaking

it first to reduce its viscosity. However, to escape quicksand it is best to reduce

the stress by trying to move slowly. Some occurrences of non-Newtonian fluid

behaviour in nature and industrial situations have been described by Ferguson

and Kemblowski [28], Chhabra and Richardson [18] and Tanner [102].

The simplest type of non-Newtonian fluid model is the so-called generalised

Newtonian model, in which the viscosity µ is a known function of the local shear
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rate γ, i.e. µ = µ(γ), where γ is defined by

γ =
(

2 tr(e2)
)

1
2 . (1.17)

The constitutive equation of a generalised Newtonian fluid is given by

σ
′ = 2µ(γ)e. (1.18)

The simplest generalised Newtonian model is the power-law fluid, which can be

useful in describing non-Newtonian behaviour of many materials over restricted

ranges of values of γ. For a power-law fluid the viscosity is given by

µ = kγN−1, (1.19)

where k and N > 0 are material constants. The constant k is a measure of

the consistency of the fluid (the larger the value of k the more viscous the fluid)

and the power-law index N is a measure of the non-Newtonian behaviour. With

equations (1.4) and (1.18), equation (1.1) becomes

ρ
Du

Dt
= ρf −∇p+ µ∇2u + (∇µ) ·

[

(∇u) + (∇u)T
]

. (1.20)

A power-law fluid may be either shear-thinning (a pseudoplastic fluid, like ketchup)

when N < 1, or shear-thickening (a dilatant fluid, like quicksand) when N > 1;

the case N = 1 corresponds to a Newtonian fluid. For a shear-thinning fluid, the

viscosity decreases with increasing rate of shear, whereas for a shear-thickening

fluid, the viscosity increases with increasing rate of shear. Barnes et al. [9] give

examples of materials that exhibit power-law behaviour, such as toothpaste and

skin cream (which are shear-thinning) and anti-misting solution in jet fuel (which

is shear-thickening). Hamrock [34] and Szeri [99] describe the use of power-law

fluids in modelling non-Newtonian lubricants in geometries with rigid boundaries.

An improvement to the power-law model is the Carreau model, for which the

viscosity function is given by

µ− µ∞

µ0 − µ∞
=
[

1 + (kγ)2]
N−1

2 , (1.21)
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Figure 1.4: Sketch of the relationships between shear stress, τ , and shear rate, γ,

for Newtonian and certain generalised Newtonian fluids in simple shearing flows.

where µ0 and µ∞ are material constants, and 0 < N ≤ 1. This model essentially

reduces to the power-law model at moderate values of shear rate, but predicts a

finite viscosity µ0 at zero shear rate and a constant viscosity µ∞ at infinite shear

rate. Myers [67] gives comparisons between predictions of the power-law model

and the Carreau model in thin-film flow on an inclined plane and in flow in a

channel.

Other popular types of generalised Newtonian model are the Bingham and

Herschel–Bulkley models for viscoplastic fluids. In these two models there is a

critical value of the shear stress, τy (known as the yield stress) which has to be

exceeded before the fluid will start to flow, and below which it behaves like a solid.

When the stress exceeds the yield stress a Bingham plastic material behaves like

a Newtonian fluid with shear stress τ − τy, whereas a Herschel–Bulkley material

exhibits non-Newtonian pseudoplastic behaviour with shear stress τ − τy. These

two models have been used to describe mud and slurries, as well as lava. Figure 1.4

summarises the relationships between shear stress and shear rate for Newtonian
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Figure 1.5: Sketch of possible flows when a thin film of fluid drains under gravity

down an inclined plane, including rivulets, dry patches and droplets.

and certain generalised non-Newtonian fluids (dilatant power law, pseudoplastic

power law, pseudoplastic Carreau, Bingham plastic and Herschel–Bulkley).

It is worth noting that there are many other types of non-Newtonian fluid,

including viscoelastic materials and time-dependent thixotropic and rheopectic

materials (for which the viscosities depend on the duration of shear stress). How-

ever, in this thesis we utilise only the power-law model for our work concerning a

non-Newtonian fluid.

1.3 Review of Previous Literature

Figure 1.5 shows a sketch of possible flows when a thin film of fluid drains under

gravity down an inclined plane, including rivulets, dry patches and droplets. In

this thesis, we shall focus our attention on various unsteady three-dimensional

similarity solutions for flows of thin rivulets and for flows of thin films around dry

patches on an inclined plane for both Newtonian and non-Newtonian power-law

fluids. We shall consider the flow to be driven either by gravity or by a constant
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Figure 1.6: Sketch of a simple air-knife coating process.

shear stress at the free surface. In this subsection, we will review some of the

previous work that is relevant to our studies, and present some key ideas required

for our analysis.

1.3.1 Thin-film flow driven by an external force

A thin-film flow can be driven by various external forces such as gravity, surface

shear stress and imposed pressure differences. Some technologically significant

examples are the icing of aircraft wings (mentioned in Section 1.1), and the so-

called “air-knife” coating process where a strong jet of air is used to remove excess

fluid from a coated substrate. A sketch of such a simple air-knife coating process

is shown in Figure 1.6. One simple everyday occurrence is rainwater running down

a window of a house or of a moving car (see Figure 1.7).

Several of these flows involve rivulets driven by gravitational effects. Generally,

a rivulet is a narrow stream of fluid (sometimes also called a “trickle”) that flows

on a substrate and shares a curved free surface with the surrounding atmosphere.

Rivulets have contact angles at the three-phase contact lines between the fluid,

the substrate and the surrounding atmosphere. The motion of rainwater on the

windscreen of a fast moving vehicle provides an everyday example of a rivulet
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(a) (b)

Figure 1.7: Examples of (a) drops of rainwater on a window, and (b) rivulets of

rainwater on a moving car window. Pictures courtesy of Prof. S. K. Wilson.

flow driven by both gravity and external forces (including both pressure and shear

stress) due to the motion of the air. In industrial applications, rivulets may occur

in, for example, condensers and heat exchangers. Due to the many practical oc-

currences of rivulet flow, there is considerable previous literature on both steady

and unsteady flows of rivulets and thin films.

(a) Steady flows of rivulets

The study of steady three-dimensional gravity-driven flow of a slender non-uniform

rivulet of a Newtonian fluid down an inclined plane was pioneered by Smith [92],

who considered steady flow of a symmetric rivulet driven by gravity g when surface-

tension effects are negligible. On the solid substrate z = 0 the fluid velocity is zero

(no-slip and no-penetration conditions), while on the free surface the usual normal

and tangential stress balances and the kinematic condition apply, and there is a

symmetry condition at the middle of the rivulet at y = 0. The free surface is

denoted by z = h(x, y), where the x and y axes are in the downstream and cross-

stream directions, respectively and the z axis is normal to the inclined plane z = 0.

The partial differential equation (which will be derived carefully in Chapter 2)

satisfied by h is

cosα
(

h3hy

)

y
− sinα

(

h3
)

x
= 0, (1.22)
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Figure 1.8: Smith’s [92] steady rivulet solution.

where α is the angle of inclination of the plane to the horizontal. The volume flux

of fluid down the plane is given by

Q =
ρg sinα

3µ

∫ a

−a

h3 dy, (1.23)

where a = a(x) is the semi-width of the rivulet. Smith [92] obtained the unique

similarity solution

h = hm

(

1 − y2

a2

)

, a = (cx)
3
7 , (1.24)

where the maximum middle height of the rivulet hm = h(x, 0) and the constant c

are given by

hm =
3c tanα

14 (cx)
1
7

, c =
7 cotα

3

(

105µQ̄

4ρg sinα

)
1
3

, (1.25)

where Q̄ > 0 is the prescribed constant value of Q. A typical plot of Smith’s [92]

rivulet solution is shown in Figure 1.8. His similarity solution predicts that the

rivulet has a parabolic transverse profile with a single global maximum h = hm

at y = 0, and that it widens according to x3/7 and thins according to x−1/7. This
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solution may be interpreted as both a sessile rivulet (on the upper side of the

plane) and a pendent rivulet (on the lower side of the plane). For cosα > 0 (so

that c > 0) the solution represents a widening and shallowing sessile rivulet in

x > 0, while for cosα < 0 (so that c < 0) it represents a narrowing and deepening

pendent rivulet in x < 0. Smith’s [92] similarity solution was found to be in good

agreement with his own physical experiments, and subsequently with numerical

solutions of the unsteady thin-film equations at large distances from the source

obtained by Schwartz and Michaelides [89] and by Lister [52], and by Higuera [36]

in the case when the slope of the inclined plane is small (α � 1). Numerical

solution obtained by Schwartz and Michaelides [89] will be discussed in detail in

Chapter 3.

Several papers have been written in the spirit of Smith’s [92]. Most no-

tably, Duffy and Moffatt [24] generalised Smith’s [92] similarity solution to include

surface-tension effects. When surface-tension effects dominate those of gravity in

the transverse direction the partial differential equation for h becomes

σ
(

h3hyyy

)

y
+ ρg sinα

(

h3
)

x
= 0, (1.26)

where σ denotes the coefficient of surface tension. The volume flux of fluid down

the plane is still given by equation (1.23). Duffy and Moffatt [24] obtained a one-

parameter family of solutions parameterised by G0 ≥ 0 which may be written in

the form

h = hm

(

1 − y2

a2

)(

G0 −
Sy2

24a2

)

, a = (cx)
3
13 , (1.27)

where

hm =
3|c|ρg sinα

13σ (cx)
1
13

, |c| =
13σ

3ρg sinα

(

3µQ̄

Iρg sinα

)
1
3

, (1.28)

S = sgn(c) and the function I = I(G0) is given by

I =

∫ 1

−1

[

(

1 − η2
)

(

G0 −
Sη2

24

)]3

dη =
32

35
G3

0 −
4S

315
G2

0 +
1

6930
G0 −

S

1297296
.

(1.29)
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Duffy and Moffatt’s [24] similarity solution predicts that the rivulet widens ac-

cording to x3/13 and thins according to x−1/13. For S = 1 (so that c > 0) this

solution represents a widening and shallowing rivulet in x > 0, while for S = −1

(so that c < 0) it represents a narrowing and deepening rivulet in x < 0.

Also based on the work of Smith [92] is the paper by Wilson2 and Burgess [106],

who generalised it to the case of a non-Newtonian power-law fluid, with power-law

index N . They obtained a similarity solution that predicts that the rivulet widens

according to x(2N+1)/(5N+2) and thins according to x−N/(5N+2), and found that since

the exponent of x does not change greatly as N is varied, the profile of the rivulet

is rather insensitive to the value of N .

Wilson et al. [110] considered steady rivulet flow on an inclined plane driven

by either gravity or a constant shear stress at the free surface of the fluid. In

general, they found that the solutions for a shear-stress-driven rivulet are qualita-

tively similar to those for a gravity-driven rivulet. Wilson et al. [110] considered

both Newtonian and power-law fluids. In particular, for gravity-driven flow, they

recovered the solutions of Wilson and Burgess [106], while for shear-stress-driven

flow, they found that the rivulet widens according to x1/3 and thins according to

x−1/6. Note that for shear-stress-driven flow the exponent of x is independent of

N .

All the works described above concern similarity solutions, but other types

of solution for steady rivulet flow have been obtained. For example, Towell and

Rothfeld [104], who studied steady unidirectional flow of a rivulet flowing down

an inclined plane in the presence of significant surface-tension effects, calculated

the profile of the rivulet numerically and found excellent agreement with their

own experimental results. Subsequently, Allen and Biggin [5] and Duffy and Mof-

fatt [23] used the lubrication approximation to obtain an asymptotic solution in

the case when the transverse profile of the rivulet is thin. Duffy and Moffatt [23]

2Note that the first author of this work is S. D. R. Wilson, who should not be confused with

S. K. Wilson, who is one of the supervisors of the present work.
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also interpreted their results as describing the locally unidirectional flow down a

plane of slowly varying slope in the longitudinal direction, and in particular, used

them to describe the flow in the azimuthal direction round a large horizontal cir-

cular cylinder. Bentwich et al. [12] considered a wider range of contact angle of

the rivulet and obtained numerical results for the flow on an inclined plane and

a vertical plane. Wilson and Duffy [108] and Sullivan et al. [98] studied steady

unidirectional flow of a symmetric rivulet of a non-perfectly wetting fluid on a

vertical plane and of a perfectly wetting fluid on an inclined plane, respectively,

subject to a constant longitudinal shear stress at its free surface; they showed that

there are five possible types of cross-sectional flow pattern, and investigated the

quasi-steady stability of the rivulet, as well as determining conditions for it to be

energetically favourable to split into sub-rivulets.

More generally, there has been work on other thin-film flows subject to surface

forces and pressure gradients due to an air flow. For example, King et al. [45]

studied steady periodic surface waves on an infinite sheet of fluid on an inclined

plane whose draining due to gravity is resisted by the pressure and shear forces

associated with an upward stream of air flowing over its free surface. Their model

is based on lubrication theory and thin-airfoil theory, and they assumed that the

surface shear stress is constant but that the pressure gradient is influenced by the

shape of the free surface of the film. They deduced that steady waves are possible

only for a restricted range of values of mass flux, those of largest (finite) flux being

sinusoidal, and those of smallest (non-zero) flux being solitary waves. Using a

similar approach King and Tuck [44] considered the corresponding problem for a

steady two-dimensional ridge of fluid of finite width on an inclined plane. They

found numerically that a steady solution is possible only if the slope is below

a critical value, but that below this value there are either one or two possible

solutions.
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(b) Unsteady flows of rivulets and thin films

In two-dimensional gravity-driven spreading on a horizontal plane the free-surface

profile h(x, t) is governed by the second-order nonlinear diffusion equation

ht + (hn hx)x = 0, (1.30)

with n = 3 for a Newtonian fluid. Note that equation (1.30) is known as the second-

order porous medium equation, and it has been studied extensively in various

contexts, for example, in ground water filtration (Barenblatt [8]), in the diffusion

of dopants in semiconductors (King [46]), and in the propagation of heat in an

isotropic medium (Pert [80]).

Pioneering work on unsteady diffusion was performed by Zel’dovich and Kom-

paneets [116] and subsequently by Pattle [75] who obtained a similarity solution

describing diffusion of a substance (of concentration h) from an instantaneous

point source at the origin in one, two and three dimensions when the diffusivity

is proportional to hn for some exponent n. It was found that the diameter of the

region of diffusing substance varies according to t1/(sn+2), and that the concentra-

tion at the origin varies according to t−s/(sn+2), where s = 1, 2 or 3 for planar,

axisymmetric and spherically symmetric geometries, respectively.

By adopting Pattle’s [75] analysis in the case n = 3, Smith3 [93] described

the gravity-driven spreading of a sessile thin film of a constant volume of fluid

over a horizontal plane in two and three dimensions (corresponding to Pattle’s [75]

solution with s = 1 and s = 2, respectively). It was found that the fluid spreads

according to t1/5 in two dimensions and according to t1/8 in three dimensions; in

both cases, the slopes of the free surface at the (moving) contact lines (i.e. the

contact angles) are infinite.

Wilson and Burgess [106] noted a formal analogy between their steady three-

3Note that the author of this work is S. H. Smith, who should not be confused with P.

C. Smith, who obtained the steady similarity solution for a rivulet described in the previous

subsection.
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Figure 1.9: Sketch of the geometry of two-dimensional unsteady flow down an

inclined plane studied by Huppert [41].

dimensional rivulet problem and an unsteady two-dimensional nonlinear diffusion

problem, specifically equation (1.30) (with the time variable t replaced by a space

variable), and Perazzo and Gratton [79] used this analogy to obtain solutions to

a variety of free-surface thin-film flow problems, and, in particular, to recover the

similarity solution of Wilson and Burgess [106] from the known solutions of the

diffusion problem given by Zel’dovich and Kompaneets [116] and Pattle [75].

An extension of the Pattle’s [75] and Smith’s [93] problems was studied by

Huppert [42] (see also Huppert [43]) who obtained similarity solutions describ-

ing two-dimensional and axisymmetric gravity-driven spreading of a thin film of a

Newtonian fluid emanating from a time-dependent source on a horizontal plane.

Huppert [41] also studied two-dimensional unsteady flow of a thin film of a Newto-

nian fluid down an inclined plane as sketched in Figure 1.9. In this case h satisfies

the governing equation

ht +
ρg sinα

3µ

(

h3
)

x
= 0. (1.31)

In particular, he obtained the simple similarity solution

h =

(

µ

ρg sinα

)
1
2 (x

t

)
1
2
, (1.32)

which is valid at long times and predicts that the height of the free surface varies

with x and t according to x1/2 and t−1/2. By truncating this solution appropriately,
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Huppert [41] found that the “nose” (i.e. the front) of the flow x = xN (t) is given

by

xN =

(

9A2ρg sinα

4µ

)
1
3

t
1
3 , (1.33)

where A =

∫ xN

0

h(x, t) dx is the (prescribed) area of the film, showing that the

length of a fixed volume of fluid varies according to t1/3. His similarity solution is

in remarkably good agreement with his own physical experiments. Huppert [41]

pointed out that surface-tension effects would become significant in the vicinity

of the front of the film, and subsequently Moriarty et al. [63] constructed an

appropriate uniformly valid composite solution to describe this, which they found

to be in good agreement with their numerical solutions to the unsteady thin-film

equations.

Lister [52] obtained similarity solutions describing unsteady flow of a New-

tonian fluid down an inclined plane from a point source and a line source for

short times and long times which were found to be in good agreement with his

own numerical and experimental results. Recently, Takagi and Huppert [100] ob-

tained similarity solutions representing unsteady flow of a finite volume of a Newto-

nian fluid along horizontal and inclined channels with semi-circular and V-shaped

boundaries, and showed that these solutions are in good agreement with their

own experimental results. Subsequently, Takagi and Huppert [101] investigated

unsteady flow of a Newtonian fluid inside slowly varying channels and fractures

with the fluid volume increasing with time; in the case of a constant flux, their

similarity solutions are again in good agreement with their experimental results.

Gorodtsov [30] obtained similarity solutions describing unsteady two-dimensional

and axisymmetric gravity-driven spreading of a power-law fluid on a horizontal

plane, generalising the earlier solutions for a Newtonian fluid given by Smith [93]

(for the case when the volume of fluid is constant) and Huppert [42] (for the case

when the volume changes according to some power of t). These solutions were re-

discovered independently by Pascal [72] (in the two-dimensional constant-volume
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case), Pascal [73] (in the axisymmetric constant-volume case), and Gratton et

al. [31]. Gorodtsov [30] also obtained a similarity solution describing spreading

of a power-law fluid on a horizontal plane with vertical side-wall boundaries, and

Gratton et al. [31] obtained a variety of waiting-time and travelling-wave solutions

for thin-film flows of a power-law fluid on a horizontal plane.

Perazzo and Gratton [77] found a similarity solution describing unsteady two-

dimensional gravity-driven flow of a power-law fluid down an inclined plane which

predicts that the height of the free surface varies according to (x/t)N/(N+1), gen-

eralizing the result given by Huppert [41] for the Newtonian case N = 1. Perazzo

and Gratton [77, 78] also obtained families of travelling-wave solutions for thin-

film flows of a power-law fluid on an inclined plane. For instance, Perazzo and

Gratton [77] found three families of solution, namely downslope travelling waves

with a front and downslope travelling waves without a front for the case c > 0, as

well as upslope travelling waves for the case c < 0, where c is the travelling-wave

speed. Figure 1.10 shows the profile of the travelling wave for these three families

of solutions with power-law index N = 0.9, 1 and 1.1.

The fourth-order nonlinear diffusion equation

ht + (hn hxxx)x = 0, (1.34)

with n > 0 has also been the subject of extensive investigations. Equation (1.34)

has several physical interpretations; for example, in the case n = 3, it represents

surface-tension-driven flow of a thin film of a Newtonian fluid. Smyth and Hill [94]

obtained exact waiting-time solutions for all n except for n = 2 and n = 4, and an

exact closed-form similarity solution for n = 0 and n = 1. Smyth and Hill’s [94]

similarity solution for n = 1 was proved to be linearly stable by Bernoff and

Witelski [13]. Witelski [111] obtained exact closed-form similarity solutions of

(1.34) and presented some examples of spreading and contracting solutions for

a range of values of n including n = 3. Equation (1.34) was also studied by

King [47], who generalized it to two degenerate fourth-order parabolic equations,
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the dashed lined represent downslope travelling waves without a front, and the

thick lines represent downslope travelling waves.

one of which is relevant to surface-tension-driven flow of a power-law fluid. Betelu

and Fontelos [15] obtained a travelling-wave solution and a similarity solution

describing two-dimensional spreading of a power-law fluid with N < 1 (shear-

thinning fluid) driven by surface tension. Subsequently, Betelu and Fontelos [16]

used the same approach to investigate the spreading of a circular drop of a shear-

thinning fluid. An extensive review of surface-tension-driven flows of a thin film

and their applications has been written by Myers [66].

In the case of unsteady flow driven by surface shear, Eames et al. [25] used

a similar approach to that of Lister [52] to obtain similarity solutions describing

the effect of a constant surface shear stress due to the flow of an overlying fluid

on a spreading viscous gravity current emanating from a point or line source in

a horizontal channel; they found that their analytical and numerical solutions are
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in good agreement with their own experimental results for the cases of a constant

volume and a constant flux of fluid released from a point source. Pascal [74] studied

the two-dimensional spreading of a fixed volume of a power-law fluid over a slightly

denser ambient layer of Newtonian fluid subject to gravity and a constant shear

stress at the free surface. He obtained numerical solutions for both single-layer and

two-layer models, and an analytical solution for a single-layer model. He found

that this problem can be treated as a single-layer model only in the case when the

ambient layer is relatively deep.

There have also been many studies of unsteady flows subject to surface forces

and pressure gradients due to an external air flow. For example, McKinley et

al. [59] studied the spreading of a ridge of fluid and of a droplet on a horizontal

plane subject to a non-uniform pressure associated with a jet of air blowing nor-

mally onto it, and subsequently McKinley and Wilson [57, 58] investigated the

linear stability of the ridge and droplet, respectively.

1.3.2 Flows around dry patches

A dry patch can occur in a fluid film for many reasons, including there being insuff-

ficient fluid to wet the substrate, a high temperature of the substrate which causes

the fluid to dry out, the presence of air bubbles within the film, inhomogeneities

in the substrate, or the presence of surfactant in the fluid. A common example

of dry patch formation is when a thin film of fluid runs down an inclined plane,

forming fingers (rivulets) with dry patches in-between, as sketched in Figure 1.11.

This problem is of considerable practical interest, especially in industrial contexts

such as in heat exchangers and coating processes. In a heat-transfer device, the

presence of dry patches must generally be avoided because it may reduce the ef-

ficiency or may result in overheating or corrosion of the dry area in the device.

In coating processes the formation of dry patches is also clearly undesirable, and

therefore it is crucial to understand when a layer of fluid will leave a hole on the

substrate and whether the holes that exist will persist or will close up during the
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coating process.

Dry patches or holes can occur within a stationary film or a flowing film. A pi-

oneering study of a dry patch in a stationary film was performed both theoretically

and experimentally by Taylor and Michael [103]. They considered an infinite film

of fluid on a horizontal plane under the influence of surface tension and gravity ef-

fects. They found a unique axisymmetric equilibrium hole configuration provided

that the film is sufficiently thin. By considering the energy of this equilibrium

configuration they showed that these holes are unstable, and obtained a criterion

for when holes would open and when they would close; specifically they found

that a hole would close if its radius is smaller than the unstable equilibrium hole,

but would open if it is larger. Moriarty and Schwartz [62] analysed numerically

the unsteady dynamics of an axisymmetric hole in a thin fluid film in a bounded

geometry, including the motion of the contact line. In particular, they found that

in this case there are two equilibrium hole configurations, a smaller unstable one

and a larger stable one. They also found that the criterion given by Taylor and

Michael [103] holds except for holes with radius slightly larger than the unsta-

ble equilibrium hole which can either close or open. Subsequently, Wilson and
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Duffy [107] studied equilibrium holes in the asymptotic limit when the radius of

the hole is small. López et al. [53] performed a three-dimensional linear stabil-

ity analysis on the axisymmetric equilibrium solutions obtained by Moriarty and

Schwartz [62]. They found that larger holes are stable to axisymmetric pertur-

bations, whereas smaller ones are unstable, but that all solutions are unstable to

asymmetric perturbations.

One of the first studies of a dry patch in a flowing film draining vertically under

gravity and surface shear stress was performed by Hartley and Murgatroyd [35].

They obtained two different criteria, namely a force-balance criterion (based on

the balance between surface-tension and inertia forces at the stagnation point at

the apex of a dry patch) and a minimum total-energy-flow criterion (including

kinetic and surface energy) which they used to predict the critical film thickness

and the maximum flow rates of fluid for the dry patch to persist. Subsequently,

Murgatroyd [65] included the effects of surface shear stress and form drag in this

analysis. Murgatroyd’s [65] theoretical prediction has been validated experimen-

tally and numerically using computational fluid dynamics (CFD) simulation by

Penn et al. [76].

Hobler [37] used a minimum total energy criterion similar to that of Hartley

and Murgatroyd [35] and included the effect of contact angle to calculate when

it is energetically favourable for a film on a vertical substrate to break up into

rivulets. Ponter et al. [84] derived corresponding conditions for a dry patch to

persist in a film flowing down a vertical plane in the presence of mass transfer,

and showed that their theoretical prediction is in good agreement with their own

experiments. In their experiment, they noticed the formation of a “collar” of fluid

near the contact line at the apex of the dry patch, which is absent in the theory of

Hartley and Murgatroyd [35]. Wilson [105] developed a more sophisticated model

to incorporate the presence of this collar/ridge, and he concluded that the sur-

face tension and contact angle play an important role in collar formation in a dry

patch. Subsequently, Bankoff [7] compared the total energy flow in a uniform thin
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film of fluid and in a periodic array of rivulets (of the same size) draining down

a vertical wall to determine when the fluid film will break up into rivulets. He

assumed that rivulets will occur when the two configurations have the same total

energy flow. Mikielewicz and Moszynski [60] adopted the approach of Hobler [37]

and Bankoff [7], but accounted for the dry areas between the rivulets. They also

pointed out the algebraic error in Bankoff’s [7] analysis which yields an unphysical

result when corrected. Later, Mikielewicz and Moszynski [61] improved their ear-

lier analysis by using conformal mapping technique to determine the exact form

of velocity distributions in rivulets driven by a prescribed uniform longitudinal

surface shear stress and by gravity, and used these in an improved energy analysis.

El-Genk and Saber [26] determined the velocity distribution within a rivulet nu-

merically to predict the break-up of a thin film into rivulets based on the minimum

total energy flow. Later, Saber and El-Genk [87] extended their work to investi-

gate the break-up of thin film flowing down or climbing up a vertical or inclined

surface subject to a prescribed non-uniform longitudinal surface shear stress. The

solutions from both of their works are in good agreement with experimental results.

Wilson et al. [109] obtained two steady similarity solutions for a flow around a

non-uniform slender dry patch in a thin film draining under gravity on an inclined

plane, namely one for the case of weak surface tension and one for the case of

strong surface tension. In the case of weak surface-tension effects, so that the flow

is purely driven by gravity, the free surface profile h satisfies equation (1.22), and

the average volume flux around the dry patch down is given by

Q =
ρg sinα

3µ
lim
y→∞

y−1

∫ y

a(x)

h(x, y)3 dy =
ρg sinα

3µ
h3
∞, (1.35)

where a = a(x) is the semi-width of the dry patch and h∞ is the uniform height

of the film far from the contact line. Wilson et al.’s [109] similarity solution takes

the form

h =
c tanα

2
G (η) , η =

y

(cx)
1
2

, (1.36)

where the function G = G(η) satisfies the second-order ordinary differential equa-
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tion
(

G3G′
)′

+ η
(

G3
)′

= 0, (1.37)

subject to the boundary conditions

G(1) = 0, lim
η→∞

G(η) = G∞, (1.38)

where the constant G∞ satisfies

Q =
ρg sinα

3µ

(

c tanαG∞

2

)3

. (1.39)

The exact solution of (1.37) is not available, but asymptotic analysis reveals that

near the contact line η = 1 the relevant solution satisfies

G = K (η − 1)
1
4 − 4

7
(η − 1) +

48

245K
(η − 1)

7
4 + o (η − 1)

7
4 (1.40)

as η → 1, where the constant K > 0 is not determined locally, showing that the

lubrication approximation fails near the contact line; at leading order in the limit

G∞ → 0 it is found that K =
√

2G
3/4
∞ , and that

G ∼ G∞ + Lη−1 exp

(

− 3η2

2G∞

)

(1.41)

as η → ∞, where the constant L is not determined locally, showing that G ap-

proaches G∞ monotonically. There is a unique solution for G for all values of

G∞. The solution predicts that the dry patch has a parabolic shape and that the

transverse profile of the free surface has a monotonically increasing shape. For

cosα > 0 (so that c > 0) this solution represents a widening sessile dry patch in

x > 0, whereas for cosα < 0 (so that c < 0) it represents a narrowing pendent dry

patch in x < 0. Figure 1.12 shows a typical plot of a solution for cosα > 0. An

existence theory for solutions of Wilson et al.’s [109] mathematical problem was

provided by Agarwal and O’Regan [4].

In the case when surface-tension effects dominates the flow, the free surface

profile h satisfies equation (1.26), and the average volume flux around the dry
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Figure 1.12: Wilson et al.’s [109] steady dry patch solution.

patch is again given by equation (1.35). In this case, Wilson et al.’s [109] similarity

solution takes the form

h =
cρg sinα

4σ
G (η) , η =

y

(cx)
1
4

, (1.42)

where the functionG = G(η) satisfies the fouth-order ordinary differential equation

(

G3G′′′
)′

+ η
(

G3
)′

= 0, (1.43)

subject to the boundary conditions (1.38), where the constant G∞ satisfies

Q =
ρg sinα

3µ

(

cρg sinαG∞

4σ

)3

. (1.44)

The exact solution of (1.43) is not available, but asymptotic analysis reveals that

the relevant solution satisfies

G = K (η − 1)
3
4 +

64

429
(η − 1)3 +

192

6851
(η − 1)4 + o (η − 1)4 (1.45)

as η → 1, where the constant K > 0 is not determined locally, showing that the

lubrication approximation again fails near the contact line η = 1, and that

G ∼ G∞ + Lη−
2
3 exp

[

−3

8

(

3

G∞

) 1
3

η
4
3

]

cos

[

3
√

3

8

(

3

G∞

) 1
3

η
4
3 + ψ

]

(1.46)
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as η → ∞, where the constant L and the phase shift ψ are not determined locally,

showing that G approaches G∞ in an oscillatory manner. There is a one-parameter

family of solutions (parameterised by ψ) for G for G∞ ≥ G∞c (where G∞c ' 2.4).

The solution predicts that the dry patch has a quartic shape and that the transverse

profile of the free surface has an oscillatory shape with a characteristic “capillary

ridge” near the contact line.

Betelu and Diez [14] examined the evolution of two contact lines of a fluid (with

contact angle ϑ) that meet to form a dry line. This dry line is gradually “welded”

at a point (a “welding point”) that moves at constant velocity V along the contact

line, so that eventually the dry line will vanish. A sketch of their problem is shown

in Figure 1.13. They obtained a similarity solution that shows that the velocity

in the region behind the advancing welding point is larger than that ahead of it,

and that the slope behind the welding point is smaller than the contact angle of

the fluid.

The shapes and stability of dry patches in a flowing film on a partially wetting

inclined plane were studied both theoretically and experimentally by Podgorski et

al. [81]. They observed the presence of a collar of the fluid at the apex of the dry

patch, and derived a simple model to describe the flow which is similar to the model
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proposed by Wilson [105]. Their model is based on a balance between surface-

tension forces and the weight of the collar of fluid. Podgorski et al. [81] found that

the dry patch becomes narrower with increasing flow rate and increasing inclination

angle, and they determined the critical flow rate below which the dry patch will

persist but above which it will be swept away. Their theoretical prediction is in

satisfactory agreement with their own experimental results. A similar experiment

was subsequently conducted by Podgorski et al. [83] for a flow with a larger contact

angle. An improved model was studied by Sébilleau et al. [91] which includes

contact line curvature, hydrostatic pressure in the fluid film and inertial effects.

Their solution is in good agreement with experimental results of Podgorski et

al. [81] and their own experimental results. Rio et al. [85] and Rio and Limat [86]

studied the shape of a dry patch experimentally using a laser sheet. Rio and

Limat [86] investigated the effect of increasing and decreasing the flow rate; in

particular, they discovered that the contact angle distribution is uniform along the

contact line for an increasing flow rate, whereas the situation is more complicated

for a decreasing flow rate. They also obtained the minimum and maximum flow

rates for the dry patch to persist. Some of their experimental results are shown

in Figure 1.14, which shows that the dry patch becomes narrower as the flow rate

increases and becomes wider as the flow rate decreases.

1.3.3 Other driving mechanisms

The works mentioned so far are mainly concerned with steady and unsteady flow

of a thin film that is driven either by gravity, by shear-stress or by surface-tension

effects. However, fluid flow can be driven by other forces such as Marangoni effects

or other thermal effects. Here, we briefly discuss some examples of these types of

flow which are relevant to the work presented in this thesis.

There are many studies of flow driven by gradients of surface tension induced

by surface-temperature gradients (i.e. the well-known Marangoni effect). Surface-

shear-driven flows of this type were considered by, for example, Fanton et al. [27],
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Figure 1.14: The evolution of the shape of dry patches with increasing and de-

creasing flow rate obtained experimentally by Rio and Limat [86]. R is the radius

of the contact line curvature at the apex of a dry patch. Reprinted with permission

from Rio and Limat [86]. Copyright 2006, American Institute of Physics.

who studied the climbing of a film on a vertical or tilted wall theoretically and ex-

perimentally, and predicted the thickness and shape of the film, and Schwartz [88],

who obtained the thickness of a film of a fluid being withdrawn from a bath onto

a vertical plane theoretically and found good agreement with the experimental

results of Fanton et al. [27]. Recently, Gatapova and Kabov [29] considered ef-

fects of both air flow and a temperature gradient in their studies of flow in an

inclined rectangular microchannel sheared by gas flow with a local heater at the

bottom of the channel. As well as a surface temperature gradient, surfactants are

known to lower the surface tension of a fluid, and this effect can induce gradients

in surface tension in flow. Some studies of fluid with insoluble surfactant on an
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inclined plane have been performed by Levy et al. [50], and recently by Manukian

and Schecter [55].

Thin-film flows on an inclined plane that is either heated or cooled relative

to the surrounding atmosphere have been considered by Holland et al. [39] for

a rivulet flow, and by Holland et al. [38] for a flow around a dry patch. They

obtained steady similarity solutions for a flow driven by thermocapillarity, gravity

or a constant surface shear stress.

1.3.4 Sliding drop on an inclined plane

Similarity solutions have also been used successfully for describing the shape of a

drop sliding down an inclined plane.

Podgorski et al. [82] showed that a drop running down a partially wetted in-

clined plane can develop various shapes, with the formation of a corner, or a cusp,

or with smaller drops being shed (known as “pearling”) with increasing velocity

(by an increase in the inclination angle). The evolution of the drop shape from a

rounded drop to the pearling drops with increasing velocity is shown in Figure 1.15.

In their experiments Podgorski et al. [82] found that the transition between differ-

ent shapes depends on the capillary number, Ca = µU/σ (where U is the velocity

of the drop), and is independent of the size of the drop. They also measured the

angle between the contact line and the direction of motion at the trailing edge of

the drop, θ (shown in Figure 1.16). Podgorski et al. [82] argued that in the corner

region, the effective capillary number is Ca sin θ and that the contact line adapts

to keep the velocity in the direction of its normal constant; together these imply

the scaling sin θ ∝ 1/Ca.

Following on from Podgorski et al.’s [82] experiments, there have been several

theoretical studies of similarity solutions for drops which are steady in a frame

moving with the drop. Ben Amar et al. [10, 11] predicted the shape of the corner

by assuming that it has a “saddle-point” structure, based on a balance of gravity

and surface-tension forces. On the other hand, Stone et al. [97] obtained a simi-
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Figure 1.15: Transition of a sliding drop on an inclined plane with increasing

velocity obtained experimentally by Podgorski et al. [82]: (a) and (b) rounded

drop with circle and oval shape, respectively, (c)-(e) formation of a corner, (f)

corner becomes sharper and forms a cusp which releases small drop, (g) pearling

drop releasing smaller drops of constant size at a constant rate, and (h) pearling

drop releasing periodic series of smaller drop. Reprinted with permission from

Podgorski et al. [82], Phys. Rev. Lett., 87, 036102-2, 2001. Copyright 2001 by the

American Physical Society.

larity solution to describe the shape of the corner based on a balance of viscous

and surface-tension forces, in which case the corner has a conical structure. Sub-

sequently a three-dimensional similarity solution of this problem was obtained by

Limat and Stone [51]. Limat and Stone [51] also confirmed the scaling used by

Podgorski et al. [82] (that the relevant capillary number is Ca sin θ rather than Ca)

and showed that the contact angle ω is nonzero at the threshold and is uniquely

related to θ, which is different from the assumption of Podgorski et al. [82] that

ω vanishes at the threshold. More detailed studies and further experiments on

this problem have been performed by Le Grand et al. [49]. They presented results
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that are in agreement with those of Stone et al. [97] and Limat and Stone [51] in

describing the structure of the corner, and other results that are in agreement with

those of Ben Amar et al. [10] in the cusp regime. Snoeijer et al. [96] investigated

the self-similar velocity fields that occur within the corner, and performed experi-

ments using particle image velocimetry (PIV) measurements at the rear of sliding

drops to verify the model. They also addressed the effect of contact line curvature

at the corner. Subsequently, Snoeijer et al. [95] accounted for the formation of a

slender rivulet from the sliding drop both theoretically and experimentally. They

predicted the opening angle at the tip of the drop, the velocity of the drop and the

width of the rivulet, all of which are in good agreement with their experimental

results.

Schwartz et al. [90] obtained numerical solutions which predict the motion of

a drop sliding on a perfectly homogeneous vertical wall using a finite-difference

method. Their theory was based on a disjoining-pressure model that assumes that

there is a thin precursor layer of fluid on the substrate. Their computed solutions

capture the evolution of sliding drops and show similar shapes to those in the

experiments of Podgorski et al. [82]. However, the computed drop breaks up into

an almost chaotic pattern which is quite different from the carefully controlled ex-

periment of Podgorski et al. [82] where the drop breaks up into a periodic pattern.

Recently, Koh et al. [48] performed numerical studies to simulate the motion of
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a sliding drop on an inclined plane using a multigrid method, and reported good

agreement with the experiments of Podgorski et al. [82] and Le Grand et al. [49].

They also noted that both the thickness of the precursor layer and refinement of

the numerical grid play important roles in the accuracy of the solutions.

1.4 Outline of Thesis

The aim of this thesis is to analyse unsteady three-dimensional flows of thin slender

non-uniform rivulets and flows of thin films around slender dry patches on an

inclined plane. We shall consider both gravity-driven and constant surface-shear-

stress-driven flows of both Newtonian and non-Newtonian power-law fluids, and

obtain two fundamentally different types of similarity solution.

In Chapter 2 we consider the unsteady flow of a gravity-driven rivulet of a

Newtonian fluid on an inclined plane. We obtain a similarity solution of the

appropriate governing equations which we analyse numerically and asymptotically

in appropriate asymptotic limits.

In Chapter 3 we analyse the stability of the similarity solutions obtained in

Chapter 2 numerically using the finite element package COMSOL Multiphysics.

In order to validate our numerical procedures we seek to recover previously known

similarity solutions obtained by Smith [92], Duffy and Moffatt [24], Smith [93] and

Huppert [42]. By doing this, we also obtained new numerical results that verify

Duffy and Moffatt’s [24] similarity solutions.

In Chapter 4 we use the general approach of our work on rivulets of a Newtonian

fluid in Chapter 2 to obtain similarity solutions describing unsteady gravity-driven

draining of a rivulet of a non-Newtonian power-law fluid.

In Chapter 5 we extend our work of Chapter 2 and 4 to consider similarity so-

lutions for unsteady shear-stress-driven flow. Both Newtonian and non-Newtonian

power-law fluids are studied. Unlike the analysis of gravity-driven flow in Chap-

ter 2 and Chapter 4 in which corresponding solutions for flow around dry patches
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are found to be impossible, for shear-stress-driven flow, solutions corresponding

to dry patches are obtained and analysed. We also present comparison between

the solutions for shear-stress-driven rivulets and the solutions for gravity-driven

rivulets obtained in Chapter 2 and Chapter 4.

In Chapter 6 we consider a completely different kind of similarity solution,

namely travelling-wave solutions for flows around dry patches. Here, we consider

both gravity-driven and shear-stress-driven flows of a Newtonian fluid draining on

an inclined plane, obtaining similarity solutions for dry patches for both types of

flow. However, it is found that there are no corresponding travelling-wave solutions

for rivulets.

Finally, in Chapter 7 we summarize the key ideas and highlight the main find-

ings of the thesis and include some suggestions for possible further work.

1.5 Presentations and Publications

Various aspects of the work discussed in Chapters 2 and 3 were presented at the

British Applied Mathematics Colloquium in Manchester in 2008, the Edinburgh

Mathematical Society Postgraduate Students’ Meeting in Edzell, Scotland in 2008,

the University of Strathclyde Research Day in 2008, the European Consortium for

Mathematics in Industry (ECMI) Conference in London in 2008, the European

Postgraduate Fluid Dynamics Conference in Keele in 2008, the 7th EUROMECH

Fluid Mechanics Conference in Manchester in 2008, and the EUROMECH Col-

loquium 497 in Edinburgh in 2009. A short account of the work presented in

Chapters 2 and 3 has been published in the Proceedings of European Consor-

tium for Mathematics in Industry (ECMI) Conference 2008 (Yatim et al. [115]),

and a full version has been accepted for publication in the Quarterly Journal of

Mechanics and Applied Mathematics (Yatim et al. [113]).

The work in Chapter 4 and some of Chapter 5 was presented at the British

Applied Mathematics Colloquium in Nottingham in 2009, the 22nd Scottish Fluid
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Mechanics Meeting in Oban, Scotland in 2009, and the European Coating Sympo-

sium in Karlsruhe, Germany in 2009. The work presented in Chapter 4 has been

published in the Journal of Non-Newtonian Fluid Mechanics (Yatim et al. [114])

and the work presented in Chapter 5 has been submitted to the Journal of Engi-

neering Mathematics (Yatim et al. [112]).

Recently, the work in Chapter 6 has been presented at the British Applied

Mathematics Colloquium in Edinburgh in 2010, the European Consortium for

Mathematics in Industry (ECMI) Conference in Wuppertal, Germany in July 2010,

and the 8th Euromech Fluid Mechanics Conference (EFMC8) in Bad Reichenhall,

Germany in September 2010. A full account of the work in Chapter 6 is currently

in preparation for submission.



Chapter 2

Unsteady Gravity-Driven

Rivulets of a Newtonian Fluid

In this chapter we investigate unsteady three-dimensional gravity-driven flows of

thin slender non-uniform rivulets of a Newtonian fluid on an inclined plane using

the lubrication approximation.

2.1 Problem Formulation

Consider the unsteady flow of a thin rivulet of Newtonian fluid with constant

density ρ, surface tension σ and viscosity µ driven by gravity g down a planar

substrate inclined at an angle α (0 < α < π) to the horizontal. When 0 < α < π/2

the fluid is on the upper side of the inclined plane (a sessile rivulet), and when

π/2 < α < π it is on the lower side of the inclined plane (a pendent rivulet).

Cartesian coordinates Oxyz with the x axis down the line of greatest slope and

the z axis normal to the substrate are adopted, with the substrate at z = 0. We

denote the free surface profile of the rivulet by z = h(x, y, t), where t denotes time.

We restrict our attention to flows that are symmetric about y = 0 (i.e. to solutions

for which h is even in y) with (unknown) semi-width a = a(x, t), so that h = 0 at

the contact lines y = ±a. The geometry of the problem is sketched in Figure 2.1.

37
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Figure 2.1: Sketch of the geometry of the problem.

With the familiar lubrication approximation, the velocity (u, v, w), pressure p and

the height h satisfy the governing equations

ux + vy + wz = 0, (2.1)

µuzz − px + ρg sinα = 0, (2.2)

µvzz − py = 0, (2.3)

−pz − ρg cosα = 0, (2.4)

subject to the boundary conditions of no slip and no penetration on the substrate

z = 0:

u = v = w = 0, (2.5)

and balances of normal and tangential stress on the free surface z = h:

p = pa − σ∇2h, uz = vz = 0, (2.6)

where pa denotes atmospheric pressure, together with the kinematic condition on

z = h, which may be written in the form

ht + ūx + v̄y = 0, (2.7)
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where the local fluxes ū = ū(x, y, t) and v̄ = v̄(x, y, t) are defined by

ū =

∫ h

0

u dz, v̄ =

∫ h

0

v dz, (2.8)

and the zero-mass-flux condition at the contact lines y = ±a(x, t):

v̄ = ±axū. (2.9)

Integrating equations (2.2)–(2.4) subject to boundary conditions (2.5) and (2.6)

yields

p = pa + ρg cosα (h− z) − σ∇2h, (2.10)

u =
(ρg sinα− px)

2µ
(2h− z) z, (2.11)

v = − py

2µ
(2h− z) z. (2.12)

Substituting (2.11) and (2.12) into (2.8) gives

ū =
ρg sinα− px

3µ
h3, v̄ = − py

3µ
h3, (2.13)

and hence the kinematic condition (2.7) yields the governing partial differential

equation for h, namely

3µht = ∇ ·
[

h3∇
(

ρg cosαh− σ∇2h
)]

− ρg sinα
[

h3
]

x
. (2.14)

We will consider the case in which the rivulet is slender, i.e. it varies much more

slowly in the longitudinal (x) direction than in the transverse (y) direction; corre-

spondingly, the term px in (2.2), (2.11) and (2.13) may be neglected in comparison

with ρg sinα (see later in this section), and hence (2.14) simplifies to

3µht =
[

h3 (ρg cosαh− σhyy)y

]

y
− ρg sinα

[

h3
]

x
. (2.15)

In general, it is not possible to obtain similarity solutions of equation (2.15)

when all four terms appear simultaneously; however, just as Smith [92] and Duffy

and Moffatt [24] found in their corresponding analyses of steady rivulet flow, it is

possible to make progress in the cases when surface-tension effects are either much
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weaker or much stronger than gravity effects in the transverse direction. In this

thesis, we will consider the case of weak surface-tension effects only, in which case

equation (2.15) becomes

3µht = ρg cosα
[

h3hy

]

y
− ρg sinα

[

h3
]

x
. (2.16)

From (2.13) we have ū = 0 at y = ±a, so the zero-mass-flux condition (2.9) at the

contact lines reduces to v̄ = 0 at y = ±a; thus we have the contact-line conditions

h = 0 at y = ±a, h3hy → 0 as y → ±a. (2.17)

We seek an unsteady similarity solution of equation (2.16) in the form

h = h0|x|m|t|nH(η), y = y0|x|r|t|sη, (2.18)

where the exponents m, n, r and s, the positive (dimensional) constants h0 and

y0, and the function H = H(η) are to be determined. Here, H and η are defined

to be dimensionless, and H ≥ 0. With (2.18), the terms in (2.16) balance provided

that

m =
1

2
, n = −1

2
, r =

3

4
, s = −1

4
, (2.19)

and if we choose

h0 =

(

µ

ρg sinα

)
1
2

, y0 =

(

4µ cos2 α

9ρg sin3 α

)
1
4

(2.20)

then the solution (2.18) takes the form

h =

(

µ|x|
ρg sinα |t|

)
1
2

H(η), y =

(

4µ cos2 α |x|3
9ρg sin3 α |t|

)
1
4

η, (2.21)

and (2.16) reduces to the second order ordinary differential equation

St

[

1

2
ηH ′ −H

]

= Sg

[

H3H ′
]′

+ Sx

[

1

2
η
(

H3
)′ −H3

]

(2.22)

for H, where a dash denotes differentiation with respect to η, and we have intro-

duced the notation St = sgn(t) = ±1, Sg = sgn(cosα) = ±1 and Sx = sgn(x) =
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±1. The cases St = 1 and St = −1 correspond to time running from 0 to ∞ and

from −∞ to 0, respectively; also Sg = 1 and Sg = −1 correspond to the sessile

and pendent cases, respectively, and Sx = 1 and Sx = −1 correspond to the fluid

being in x > 0 and x < 0, respectively.

For a symmetric rivulet, regular at y = 0, appropriate boundary conditions are

H = H0, H ′ = 0 at η = 0, (2.23)

where the parameter H0 ≥ 0 is to be determined. The (unknown) position where

H = 0 is denoted η = η0 (corresponding to the contact-line position y = a), so

that from (2.17)

H = 0 at η = η0, H3H ′ → 0 as η → η0. (2.24)

The middle height of the rivulet, hm = h(x, 0, t), and the semi-width of the

rivulet vary with x and t according to

hm =

(

µ|x|
ρg sinα |t|

)
1
2

H0, a =

(

4µ cos2 α |x|3
9ρg sin3 α |t|

)
1
4

η0, (2.25)

predicting that at any time t the rivulet widens or narrows according to |x|3/4 and

thickens or thins according to |x|1/2, and that at any station x it widens or narrows

according to |t|−1/4 and thickens or thins according to |t|−1/2. Also (2.25) shows

that the rivulet has a nose (at which h = 0 and a = 0) that remains stationary at

O for all t.

The cross-sectional area of the rivulet (2.21) at any station x, denoted by A,

is given by

A = 2

∫ a

0

h dy =

(

4µ3 cos2 α |x|5
9ρ3g3 sin5 α |t|3

)
1
4

I1, (2.26)

and the volume flux of fluid draining in the longitudinal direction, denoted by Q,

is given by

Q = 2

∫ a

0

ūdy =
2ρg sinα

3µ

∫ a

0

h3 dy =
1

3

(

4µ3 cos2 α |x|9
9ρ3g3 sin5 α |t|7

)
1
4

I3, (2.27)
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where the In are constants defined by

In = 2

∫ η0

0

Hn dη. (2.28)

Conditions for the rivulet to be thin and slender are that the length scales in

the x, y and z directions (namely |x|, a and hm, respectively) satisfy hm � a� |x|,
which in turn requires that

|xt|ρg cos2 α

µ sinα
� 1,

|xt|ρg sin3 α

µ cos2 α
� 1, (2.29)

showing that |xt| must be sufficiently large (and that α cannot be close to 0, π/2

or π). In addition, conditions for the neglect of the down-slope pressure gradient

px and of surface-tension effects are

|hx| � 1,
ρgx2

σ
� 1, (2.30)

respectively. In principle, all these restrictions are achieved at sufficiently large

length scales in the x direction.

Note that the solution for h for a three-dimensional rivulet given by (2.21) has

the same x and t dependence as Huppert’s [41] similarity solution representing

unsteady two-dimensional (y-independent) flow of a thin viscous film down an

inclined plane, in which h also varies according to x1/2 and t−1/2.

We non-dimensionalise according to

x = Xx∗, y =

(

4µ cos2 αX3

9ρg sin3 αT

)
1
4

y∗, z =

(

µX

ρg sinαT

)
1
2

z∗, t = T t∗,

h =

(

µX

ρg sinαT

)
1
2

h∗, hm =

(

µX

ρg sinαT

)
1
2

h∗m, a =

(

4µ cos2 αX3

9ρg sin3 αT

)
1
4

a∗,

Q =
1

3

(

4µ3 cos2 αX9

9ρ3g3 sin5 α T 7

)
1
4

Q∗, A =

(

4µ3 cos2 αX5

9ρ3g3 sin5 αT 3

)
1
4

A∗,

(2.31)

where X (> 0) and T (> 0) are length and time scales, respectively, which we may

choose arbitrarily. For convenience we immediately drop the superscript stars on

non-dimensional quantities. Then the solution (2.21) takes the simpler form

h =
∣

∣

∣

x

t

∣

∣

∣

1
2
H, y =

∣

∣

∣

∣

x3

t

∣

∣

∣

∣

1
4

η, (2.32)
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with H satisfying (2.22)–(2.24); from (2.25) the middle height hm and semi-width

a are given by

hm =
∣

∣

∣

x

t

∣

∣

∣

1
2
H0, a =

∣

∣

∣

∣

x3

t

∣

∣

∣

∣

1
4

η0, (2.33)

and from (2.26) and (2.27) the cross-sectional area A and flux Q are given by

A =

∣

∣

∣

∣

x5

t3

∣

∣

∣

∣

1
4

I1, Q =

∣

∣

∣

∣

x9

t7

∣

∣

∣

∣

1
4

I3. (2.34)

2.2 General Results

A closed-form solution of the ordinary differential equation (2.22) is not available,

and so it must, in general, be solved numerically for H subject to the boundary

conditions (2.23) and (2.24), where H0 and η0 are parameters to be determined.

As far as the differential equation (2.22) is concerned, any choice of a set

of values of St, Sg and Sx leads to the same mathematical problem as the set

−St, −Sg and −Sx (though the two sets of values lead to very different physical

interpretations of the solutions, as we shall show). Therefore, there are four distinct

cases to consider, namely Case 1, where St = Sg = Sx (corresponding to either

a sessile rivulet in x > 0 with t > 0, or a pendent rivulet in x < 0 with t < 0),

Case 2, where St = −Sg = Sx (corresponding to either a pendent rivulet in x > 0

with t > 0, or a sessile rivulet in x < 0 with t < 0), Case 3, where St = Sg = −Sx

(corresponding to either a sessile rivulet in x < 0 with t > 0, or a pendent rivulet

in x > 0 with t < 0), and Case 4, where St = −Sg = −Sx (corresponding to either

pendent rivulet in x < 0 with t > 0, or a sessile rivulet in x > 0 with t < 0). In

fact, as we shall show, of these four cases, only Case 2 leads to physically realisable

rivulet solutions.

2.2.1 Behaviour near η0 = 0

We find straightforwardly that H satisfies

H = H0 +
SxH

2
0 − St

2SgH2
0

η2 +O
(

η4
)

(2.35)

as η → 0.
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2.2.2 Behaviour near η = η0

Near the contact line η = η0, we find that H satisfies either

H ∼
[

− 3St

2Sg
η0 (η0 − η)

]
1
3

, (2.36)

valid only when St = −Sg (i.e. in Case 2 and Case 4), or

H ∼ C (η0 − η)
1
4 − 2Stη0

5SgC2
(η0 − η)

1
2 , (2.37)

where C is a positive constant. Note that both (2.36) and (2.37) have H ′ → ∞ as

η → η0, showing that the lubrication approximation always fails near the contact

lines.

The zero-mass-flux condition in (2.24) requires that C = 0. Therefore Cases

1 and 3, in which (2.37) is the only possible behaviour near the contact line, are

immediately eliminated, and so are not discussed subsequently. Determining C,

and, in particular, determining the physical solutions from the condition C = 0,

will be considered later; with this in mind it is useful to note here that integration

of equation (2.22) from η = 0 to η = η0 leads to

6

∫ η0

0

(

StH − SxH
3
)

dη =







0 for (2.36),

SgC
4 for (2.37),

(2.38)

so that C in (2.37) satisfies

C =

[

6Sg

∫ η0

0

(

StH − SxH
3
)

dη

]
1
4

= [3Sg (StI1 − SxI3)]
1
4 . (2.39)

2.2.3 Stationary points of H

From equation (2.22), at any stationary point of the free surface (where H ′ = 0),

we have

H2H ′′ = Sg

(

H2Sx − St

)

, (2.40)

provided that H 6= 0. Since there are two contact lines η = ±η0, at which H = 0,

the function H (≥ 0) must have at least one maximum in |η| ≤ η0.
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In Case 2 (St = −Sg = Sx) equation (2.40) gives

H ′′ =
1 −H2

H2
, (2.41)

so that any stationary point for which H < 1 is a minimum, and any stationary

point for which H > 1 is a maximum. In principle, it is possible for H to have

2n − 1 minima and 2n maxima when H0 < 1, and 2n − 2 minima and 2n − 1

maxima when H0 > 1 (where n = 1, 2, 3, . . . ). However, numerically it was

found that only two types of solution occur (both with n = 1), namely a solution

with one minimum at η = 0 and two symmetrically placed maxima when H0 < 1

(“double-humped” profiles), and one with a single maximum at η = 0 when H0 > 1

(“single-humped” profiles), both of which are consistent with equation (2.35).

In Case 4 (St = −Sg = −Sx) equation (2.40) gives

H ′′ =
H2 + 1

H2
> 0, (2.42)

showing that any stationary point of H is a minimum; thus there is no solution H

with a maximum, and so Case 4 is immediately eliminated.

With Cases 1, 3 and 4 now eliminated, the only case that could possibly lead

to physically relevant solutions for H is Case 2, and so it is this case that we now

discuss in detail.

2.3 Case 2: St = −Sg = Sx

In this case, equation (2.22) becomes

1

2
ηH ′ −H = −

(

H3H ′
)′

+
1

2
η
(

H3
)′ −H3, (2.43)

which was solved numerically for H subject to (2.23) for a given value of H0 by

means of a shooting technique, the value of η0 being determined as the point where

H = 0. As a check, some of the computations were also performed by means of

a finite-difference method, with Newton iteration to solve the resulting nonlinear
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Figure 2.2: Numerically calculated profiles H = H(η) for H0 = 10−5, 10−3, 10−1,

0.5, 0.9990, 2, 3, 4 and 5.

algebraic equations; the solutions obtained in this way were found to be in good

agreement with those obtained by the shooting method. It was found that there

is a solution for all H0 > 0 except in a small “window” near H0 = 1; specifically,

no solutions were found in the interval H01 < H0 < H02, where H01 and H02

were determined numerically to be H01 ' 0.9995 and H02 ' 1.1059. (Here and

subsequently, quantities obtained numerically are given to four decimal places, in

general.) The forms of the behaviour of H as H0 → 0+ and as H0 → ∞ were

obtained by asymptotic analysis which will be described subsequently.

Figure 2.2 shows profiles H for a range of values of H0. Consistent with the

discussion in section 2.2.3, it was found that in the case H0 ≥ H02 (> 1) the profiles

are single-humped, whereas in the case H0 ≤ H01 (< 1) they are double-humped

(albeit for H0 near H01 the curvature of the free surface near the middle of the

rivulet is small, and so the humps are rather flat, as shown in Figure 2.2 in the

case H0 = 0.9990).
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Figure 2.3 shows η0 as a function of H0 calculated numerically from (2.43)

and (2.23), and clearly illustrates that there is a solution for all H0 > 0 except

in the narrow window H01 < H0 < H02, in which there is no solution. Clearly,

the relation between H0 and η0 is not monotonic. For any given value of H0

outside the interval H01 < H0 < H02, there is a corresponding unique value of η0.

However, for any given value of η0 there can be zero, one, two or three solutions,

depending on the value of η0. Specifically, for 0 < H0 < H01 there is no solution

for η0 < 4.1492, one solution for η0 = 4.1492 as well as for η0 > 6.6022, and two for

4.1492 < η0 ≤ 6.6022, whereas for H0 > H02 there is no solution for η0 < 1.1339,

one for η0 = 1.1339 as well as for η0 > 1.7717, and two for 1.1339 < η0 ≤ 1.7717.
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2.3.1 Behaviour in the limit H0 → 0+

In this subsection we analyse the asymptotic behaviour of the solution H of equa-

tion (2.43) subject to (2.23) and (2.24) in the singular limit H0 → 0+.

As sketched in Figure 2.4, the solution comprises an outer solution valid away

from η = 0 and η = η0, a boundary layer of width O(H
3/2
0 ) near η = 0 in which

H = O(H0), and a boundary layer near the contact line η = η0 of width O(η
−1/3
0 )

in which H = O(η
2/3
0 ), with η0 → ∞ as H0 → 0+.

The leading order outer solution is H = (3η2/5)
1/3

. In fact, this form of H is a

solution to the unapproximated differential equation (2.43), but it does not satisfy

the boundary conditions (2.23) and (2.24).

In the boundary layer near η = 0 we scale variables according to

H = H0Ĥ (η̂) , η = H
3
2
0 η̂, (2.44)
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and so in this region equation (2.43) gives

1

2
η̂Ĥ ′ − Ĥ +

(

Ĥ3Ĥ ′
)′

= 0 (2.45)

at leading order, which is readily solved numerically subject to the boundary con-

ditions

Ĥ (0) = 1, Ĥ ′ (0) = 0. (2.46)

Figure 2.5 shows a plot of the leading order inner solution near η = 0, together

with the inner limit of the (rescaled) leading order outer solution Ĥ = (3η̂2/5)
1/3

(represented by a dashed-dotted curve) as η̂ → ∞.

In the boundary layer near η = η0 we scale variables according to

H =

(

3η2
0

5

)
1
3

H̃ (η̃) , η = η0 − η
− 1

3
0 η̃, (2.47)

and so in this region equation (2.43) gives

6
(

H̃3H̃ ′
)′

+ 45
1
3

(

H̃3
)′

= 0 (2.48)

at leading order, which may be solved subject to H̃(0) = 0 and H̃ → 1 as η̃ → ∞,
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yielding the implicit solution

− H̃ +
1

6
log

1 + H̃ + H̃2

(1 − H̃)2
+

1√
3

tan−1

( √
3H̃

H̃ + 2

)

=
1

2

(

5

3

)
1
3

η̃. (2.49)

Figure 2.6 is a plot of this leading order inner solution near η = η0, which clearly

shows that H̃ is a monotonically increasing function of η̃.

To complete the solution we must determine η0, and to do this we must consider

the first order outer solution, and so we write

H =

(

3η2

5

)
1
3

+ h, (2.50)

where h� (3η2/5)
1/3

, and hence h satisfies

6η2h′′ + 29ηh′ + 2h− 45
1
3η

4
3 (3ηh′ − 2h) = 0. (2.51)

In particular, the inner limit as η → 0 of the outer solution (2.50) takes the from

Ĥ =

(

3η̂2

5

)
1
3

+ ĥ(η̂), (2.52)

with ĥ satisfying

6η̂2ĥ′′ + 29η̂ĥ′ + 2ĥ = 0, (2.53)
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which may be solved exactly to give

ĥ = Âη̂m1 + B̂η̂m2 , (2.54)

where Â and B̂ are (unknown) constants, and the exponents m1 and m2 are given

by

m1 =
−23 +

√
481

12
' −0.0890, m2 =

−23 −
√

481

12
' −3.7443. (2.55)

As η̂ → ∞ we thus have

h ∼ H0Â

(

η

H
3/2
0

)m1

= ÂHm∗

0 ηm1 , (2.56)

where m∗ = 1 − 3m1/2 ' 1.1335, and the constant Â is determined numerically

by solving the inner equation (2.45) for Ĥ subject to (2.46), and evaluating

Â = lim
η̂→∞

1

η̂m1

(

Ĥ(η̂) −
(

3η̂2

5

)1/3
)

' 0.4212. (2.57)

Motivated by (2.56) we write the solution h of (2.51) as

h = A (η)Hm∗

0 ηm1 (2.58)

with A(η) → Â as η → 0; hence A = A(η) satisfies

6η2A′′ + (12m1 + 29) ηA′ − 45
1
3 η

4
3 (3ηA′ − 2m∗A) = 0, (2.59)

and we seek a solution as a function of X = Dη4/3, for some constant D. With

the choice D = (355)1/3/8 ' 1.3338, equation (2.59) reduces to

XA′′ + (b−X)A′ − aA = 0, (2.60)

where

a = −m
∗

2
' −0.5668, b =

12m1 + 31

8
' 3.7415. (2.61)

The general solution of (2.60) is

A = A1M (a, b,X) + A2U (a, b,X) , (2.62)
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where A1 and A2 are arbitrary constants, and M (a, b,X) and U (a, b,X) are Kum-

mer functions (Abramowitz and Stegun [3]), and so the general solution of (2.51)

is

h = [A1M (a, b,X) + A2U (a, b,X)]Hm∗

0 ηm1 . (2.63)

We can obtain the values of A1 and A2 by matching the outer limit of the inner

solution, given in (2.56), with the inner limit of the outer solution (2.63) as η → 0+

(i.e. as X → 0+), in which M → 1 and U → −∞, leading to A1 = Â and A2 = 0,

and therefore

h = ÂM
(

a, b,Dη
4
3

)

Hm∗

0 ηm1 . (2.64)

This outer solution breaks down near η = η0, since h→ ∞ there, and so at leading

order the value of η0 is given by setting H to zero at η = η0 in (2.50), that is,

(

3η2
0

5

)
1
3

+ ÂM
(

a, b,Dη
4
3
0

)

Hm∗

0 ηm1
0 = 0. (2.65)

Since

M (a, b,X) =
Γ(b)

Γ(a)
eXXa−b

[

1 +O

(

1

X

)]

(2.66)

as X → ∞, at leading order equation (2.65) yields

(

3η2
0

5

)
1
3

+
ÂΓ(b)

Γ(a)
eXXa−bHm∗

0 ηm1
0 = 0. (2.67)

Recalling that X = Dη4/3 we write X0 = Dη
4/3
0 to obtain

X
− 39

8
0 eX0 − Y = 0, (2.68)

where

Y = −
(

3

5

)
1
3 Γ(a)Da

Γ(b)ÂHm∗

0

(> 0). (2.69)

Equation (2.68) may be solved to give

X0 = −39

8
W

(

− 8

39Y
8
39

)

, (2.70)



Chapter 2 53

(a) (b)

PSfrag replacements

−12 −6 −30 −15126 3015

2 4

4
8

ηη

H(η)H(η)

Figure 2.7: Profiles of H obtained numerically (full curves) and from the leading

order asymptotic solution in the limit H0 → 0+ (dashed curves) for (a) H0 = 10−10

and (b) H0 = 10−50.

where W is Lambert’s W function (Abramowitz and Stegun [3]). Then in the limit

H0 → 0+ (i.e. Y → ∞), with W(z) ∼ log(−z) → −∞ as z → 0−, we obtain

X0 = Dη
4
3
0 ∼ 39

8
log

(

39Y
8
39

8

)

, (2.71)

so that the leading order asymptotic solution for η0 is given by

η0 ∼
(

−m
∗

D
logH0

)
3
4

=

(

−
(

31 −
√

481
)

(355)
1
3

logH0

)
3
4

(2.72)

' (−K logH0)
3
4 → ∞ as H0 → 0+,

where K = (31 −
√

481)(355)−1/3 ' 0.8498.

Figure 2.7 shows a comparison between profiles H computed numerically and

the leading order asymptotic solution as H0 → 0+ in the cases H0 = 10−10 and

H0 = 10−50, demonstrating that, because η0 in (2.72) grows only extremely slowly

as H0 → 0+, extremely small values of H0 are needed for the leading order asymp-

totic solution to be in reasonable agreement with the exact numerical result. Fig-

ure 2.3 also includes the leading order asymptotic solution as H0 → 0+ as a dashed

curve; again the agreement is good only for extremely small values of H0.
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2.3.2 Behaviour in the limit H0 → ∞

In the limit H0 → ∞, it is found that H = O(H0) and η0 = O(H
1/2
0 ), and so we

write

H = H0H̄ (η̄) , η = H
1
2
0 η̄, η0 = H

1
2
0 η̄0. (2.73)

At leading order equation (2.43) reduces to

(

H̄3H̄ ′
)′ − 1

2
η̄
(

H̄3
)′

+ H̄3 = 0, (2.74)

which is readily solved numerically subject to the boundary conditions

H̄(0) = 1, H̄ ′(0) = 0 (2.75)

to yield η̄0 ' 0.7021. Figure 2.8 shows a sketch of this asymptotic solution, and

Figure 2.9 shows a comparison between profiles H computed numerically and the

leading order asymptotic solution as H0 → ∞ in the cases H0 = 3 and H0 = 10,

demonstrating that this asymptotic solution is in good agreement with the exact

numerical solution even for values of H0 as small as 10. Figure 2.3 also includes

the leading order asymptotic solution as H0 → ∞ as a dashed-dotted curve; again
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Figure 2.9: Profiles of H obtained numerically (full curves) and from the leading

order asymptotic solution in the limit H0 → ∞ (dashed curves) for (a) H0 = 3

and (b) H0 = 10; in part (b) the two curves are virtually indistinguishable.

the agreement with the exact numerical solution is good even for relatively small

values of H0.

Figures 2.10 and 2.11 show three-dimensional plots of the pendent rivulets

(St = −Sg = Sx = 1) predicted by the similarity solution (2.32) in the cases

H0 = 0.8 and H0 = 2, respectively, at times t = 1, 10 and 100, and illustrate that

the rivulets become wider and thicker as they flow down the plane, and that they

become narrower and thinner (while maintaining their cross-sectional shapes) as

time elapses. As shown in the insets, for H0 = 0.8 (or generally H0 < H01) the

cross-sectional profile is double-humped, and for H0 = 2 (or generally H0 > H02)

it is single-humped.

Figure 2.12 shows plots of I1 and I3 defined in (2.28) as functions of H0. Using

the asymptotic solutions described above we find that

I1 ∼ 2

(

3

5

) 4
3

(−K logH0)
5
4 ' 0.8258 (− logH0)

5
4 → ∞,

I3 ∼
2

5
(−K logH0)

9
4 ' 0.2773 (− logH0)

9
4 → ∞

(2.76)

in the limit H0 → 0+, and

I1 ∼ k1H
3
2
0 ' 1.2298H

3
2
0 → ∞,

I3 ∼ k3H
7
2
0 ' 1.0137H

7
2
0 → ∞

(2.77)
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together with the leading order asymptotic solutions (2.77) in the limit H0 → ∞
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in the limit H0 → ∞, where the constants kn are defined by

kn = 2

∫ η̄0

0

H̄n dη̄; (2.78)

the asymptotic forms (2.77) are included (represented by dashed-dotted curves) in

Figure 2.12.

Thus far we have obtained a one-parameter family of solutions of (2.22), (2.23)

and (2.24)1, parameterised byH0, and with η0 determined in terms ofH0. However,

this does not fully answer the problem of determining all physically realisable

solutions of (2.16) of the form (2.18); to do this we must also impose condition

(2.24)2, or equivalently the condition C = 0. It was found that determining the

coefficient C in (2.37) from the behaviour of the numerical solution H near η = η0

is rather sensitive (presumably because of the infinite slope there); a more robust

(and simpler) way of calculating C is to use (2.39), and Figure 2.13 shows a plot

of C as a function of H0, calculated this way. It is found that
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C ∼
(

6

5

)
1
4

(−K logH0)
9
16 ' 0.9551 (− logH0)

9
16 → ∞ (2.79)

in the limit H0 → 0+, and

C ∼
(

6k3H
7
2
0

)
1
4 ' 1.3205H

7
8
0 → ∞ (2.80)

in the limit H0 → ∞; the asymptotic form (2.80) is included (as a dashed-dotted

curve) in Figure 2.13. Figure 2.13 shows that C = 0 at H0 = H01 and H0 = H02,

and that C is non-zero for all other values of H0. We thus arrive at our main

result, namely that there are precisely two physically realisable solutions of the

type sought, that these occur only for Case 2, and that they correspond to the

values H0 = H01 ' 0.9995 and H0 = H02 ' 1.1059 of the scaled middle height

H0; the corresponding values of η0 are η0 ' 6.6022 and η0 ' 1.7717, respectively.

Note, incidentally, that the relationship (2.39) shows that I1 = I3 for both of these

solutions, in agreement with Figure 2.12.

Each solution represents both sessile and pendent rivulets; Figures 2.14 and
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Figure 2.14: Three-dimensional plot of the free surface z = h of a sessile rivulet

predicted by the similarity solution (2.32) with H satisfying (2.43) for H0 = H01

at times t = −100, −10 and −1 in Case 2 with St = −1, Sg = 1 and Sx = −1.

2.15 show three-dimensional plots of the sessile rivulets (St = −Sg = Sx = −1)

for H0 = H01 and H0 = H02, respectively, at times t = −100, −10 and −1. Note

that, although the profile in Figure 2.14 is double-humped, the curvature near

the middle of the rivulet is small (since H01 is very close to 1), and hence the

double-hump is barely discernible in Figure 2.14.

2.4 The Special Case H0 = 0

The behaviour in the case H0 = 0 requires special consideration, different from

the general case H0 > 0.

Near η = 0, we find that H satisfies either

H ∼
(

− 3St

5Sg

η2

)
1
3

, (2.81)

valid only when St = −Sg (i.e. in Case 2 and Case 4), or

H ∼ H2η
2 +

(7H2Sg + Sx)H
3
2

St
η6, (2.82)
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or

H ∼ Hη 1
4 − 14St

45H2Sg
η

3
2 , (2.83)

the latter two valid in all cases, where H2 and H are positive constants. Note

that the asymptotic forms (2.81) and (2.83) are not smooth at η = 0, and the

condition H ′(0) = 0 must be abandoned in these cases. Near the contact line

η = η0, equations (2.36) and (2.37) again hold.

We may again eliminate Cases 1, 3 and 4 from consideration, using the same

arguments as in the case H0 6= 0 in sections 2.2.2 and 2.2.3. We therefore now

consider Case 2 only.

Equation (2.43) was solved numerically (again via a shooting technique) sub-

ject to boundary conditions obtained from equations (2.81)–(2.83) in turn. The

numerical computation cannot be started from η = 0, so instead it was started

from a position η = δ, where δ (> 0) is small; the computation was then repeated

with smaller values of δ (as small as δ = 10−20 in some cases) until the solution

converged to within a given tolerance. For example, for (2.83) the approximated
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boundary conditions are

H (δ) = Hδ 1
4 +

14

45H2
δ

3
2 , H ′ (δ) =

1

4
Hδ− 3

4 +
7

15H2
δ

1
2 , (2.84)

and similarly for (2.81) and (2.82). The computation was considered successful

if a contact-line position η = η0 where H = 0 was achieved, but was abandoned

if it became clear that H was never going to become zero. Using this method, we

could not find any solution in the cases satisfying (2.81) or (2.82).

However, solutions of (2.43) subject to (2.83) were found for all values of H > 0;

Figure 2.16 shows cross-sectional profiles H(η) for a range of values of H, and

Figure 2.17 shows η0 as a function of H for this family of solutions.

In the limit H → ∞, we write

H = H 8
7 H̄ (η̄) , η = H 4

7 η̄, η0 = H 4
7 η̄0, (2.85)

for some η̄0. Then at leading order, equation (2.43) again reduces to (2.74), which

is readily solved numerically subject to the boundary conditions H̄
(

δ̄
)

= δ̄
1
4 and
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H̄ ′
(

δ̄
)

= 1
4
δ̄−

3
4 , where δ̄ = H−4/7δ, from which we find that η̄0 ' 1.3384. The

asymptotic form (2.85) of η0 as H → ∞ is included (as a dashed-dotted curve) in

Figure 2.17.

Integrating equation (2.43) from η = 0 to η = η0 subject to (2.37) at η = η0

and (2.83) at η = 0, we find that (2.39) no longer holds, and that C is now given

by

C =

[

6

∫ η0

0

(

H3 −H
)

dη −H4

]
1
4

= (3I3 − 3I1 −H4)
1
4 . (2.86)

In particular, it is found that

C ∼ H
(

6

∫ η̄0

0

H̄3dη̄ − 1

)
1
4

' 1.2493H → ∞ (2.87)

in the limit H → ∞. Figure 2.18 shows C as a function of H from (2.86), together

with the leading order asymptotic solution (2.87) as H → ∞ (shown as a dashed-

dotted curve). Clearly C is nonzero for all the values of H shown; we may therefore

conclude that there are no physically realisable solutions in the special case H0 = 0.
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2.5 Unsteady Flow around a Slender Dry Patch

We use the same approach as discussed previously for rivulet to investigate the

possibility of obtaining similarity solutions of type (2.18) for unsteady gravity-

driven flow of an infinitely wide thin film around a symmetric slender dry patch

|y| < a(x, t) on an inclined plane, the fluid film being of finite depth far from the

dry patch. The free surface profile is again governed by (2.16), and with (2.18) it

is found that equation (2.19) must again hold, and so with the choice (2.20) the

solution takes the form (2.21), where H(η) again satisfies the ordinary differential

equation (2.22). We have four cases to consider, namely Cases 1–4 as defined in

Section 2.2 for the rivulet problem.

We seek a solution H satisfying H → H∞ as η → ∞, where H∞ is a positive

constant. Then equation (2.22) gives StH∞ = SxH
3
∞, which requires both that

St = Sx and that H∞ = 1. Therefore equation (2.22) becomes

St

[

1

2
η
(

H −H3
)′ −

(

H −H3
)

]

= Sg

[

H3H ′
]′
, (2.88)
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and the appropriate far field conditions are

H → 1, H ′ → 0 as η → ∞; (2.89)

also the (unknown) position of the contact line where H = 0 is again denoted

η = η0 (and the fluid region now corresponds to |η| ≥ η0).

It is found that H satisfies H = 1 + F (with |F | � 1) as η → ∞, where

F = F (η) satisfies

SgF
′′ + StηF

′ − 2StF = 0 (2.90)

and F → 0 as η → ∞; hence if St = Sg then

F ∝
(

1 + η2
)

erfc

(

1√
2
η

)

−
√

2√
π
η exp

(

−1

2
η2

)

, (2.91)

so that

F ∝ η−3 exp

(

−1

2
η2

)

as η → ∞, (2.92)

while if St 6= Sg then no solution is possible. Therefore for a dry patch solution

of this type it is necessary that St = Sg = Sx (i.e. only Case 1 is possible), and

then the transverse profile of the dry patch approaches its uniform value of unity

monotonically as η → ∞. Moreover, from equation (2.88) with St = Sg, at any

stationary point of the free surface, we have

H ′′ =
H2 − 1

H2
, (2.93)

showing that any stationary point with H < 1 (H > 1) would be a maximum

(minimum), and we conclude that H must increase monotonically from H = 0 at

η = η0 to H = 1 as η → ∞, with 0 ≤ H < 1.

Near the contact line η = η +
0 , behaviour (2.36) (now valid only when St = Sg)

still holds for a dry patch, whereas (2.37) is replaced by

H ∼ C (η − η0)
1
4 +

2Stη0

5SgC2
(η − η0)

1
2 , (2.94)

where C is a positive constant. However, as before, the zero-mass-flux condition

v̄ = 0 at the contact lines requires C = 0, and so (2.94) is eliminated. Then
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integrating equation (2.88) with St = Sg from η = η0 to η = ∞ leads to
∫ ∞

η0

(

H −H3
)

dη = 0, (2.95)

which is impossible for monotonic H satisfying 0 ≤ H < 1. Hence, we conclude

that there are no dry-patch solutions of the type (2.18) with finite depth far from

the dry patch.

2.6 Discussion

We have obtained similarity solutions describing the unsteady gravity-driven flow

of a thin slender rivulet of Newtonian fluid down an inclined plane. The velocity

and pressure are given by (2.10)–(2.12) in terms of the free surface profile h,

which in turn is given by (2.21), where H(η) satisfies (2.22)–(2.24), in which H0

and η0 are parameters that are determined as part of the solution. There were

four cases to consider (labelled Cases 1, 2, 3 and 4), but we quickly showed that

there are no solutions in Cases 1, 3 and 4, leaving just Case 2, for which either

St = −Sg = Sx = 1, corresponding to pendent rivulets in x > 0 with t > 0, or

St = −Sg = Sx = −1, corresponding to sessile rivulets in x < 0 with t < 0.

Numerical and asymptotic considerations led to the conclusion that for each of

these there are just two physically realisable solutions, one for H0 = H01 ' 0.9995

and one for H0 = H02 ' 1.1059. The rivulet has a double-humped cross-sectional

profile in the case H0 = H01, and a single-humped profile in the case H0 = H02.

Each rivulet has a nose that remains stationary at O at all times. At any time

t (> 0) a pendent rivulet widens with increasing x (> 0) according to x3/4 and

thickens according to x1/2, and at any station x (> 0) it narrows according to t−1/4

and thins according to t−1/2. Meanwhile, for a sessile rivulet, at any time t (< 0)

it narrows with increasing x (< 0) according to (−x)3/4 and thins according to

(−x)1/2, and at any station x (< 0) it widens according to (−t)−1/4 and thickens

according to (−t)−1/2. Each solution exhibits a finite-time singularity, becoming

infinite everywhere at t = 0.
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It is interesting to note that Huppert’s [41] analysis of two-dimensional un-

steady flow of a thin film down an inclined plane may be recovered from (2.16)

by setting hy ≡ 0, so that h = h(x, t). This leads to Huppert’s similarity solution

h ∝ x1/2/t1/2 for t > 0, corresponding to (two-dimensional versions of) our Case 1

for a sessile rivulet in x > 0, and our Case 2 for a pendent rivulet in x > 0, thick-

ening with increasing x but thinning with increasing t in both cases. Equation

(2.16) with hy ≡ 0 also has the similarity solution h ∝ (−x)1/2/(−t)1/2 for t < 0,

corresponding to (two-dimensional versions of) our Case 2 for a sessile rivulet in

x < 0, and our Case 1 for a pendent rivulet in x < 0, thinning with increasing x but

thickening with increasing t in both cases, and exhibiting a finite-time singularity

at t = 0.

So far we have interpreted each of our solutions as representing an infinitely

long rivulet, involving an infinite volume of fluid. In the spirit of Huppert’s [41]

analysis, we may alternatively interpret each solution as representing a rivulet of

(prescribed) finite volume, by truncating it at some finite length L = L(t), so that

it occupies 0 ≤ |x| ≤ L. The volume of fluid in such a rivulet, denoted by V , is

given by

V = Sx

∫ SxL(t)

0

∫ a

−a

∫ h

0

dz dy dx = Sx

∫ SxL(t)

0

A dx =

(

45µ3 cos2 αL9

95ρ3g3 sin5 α |t|3
)

1
4

I1,

(2.96)

and so the length L of the rivulet at time t is given by

L =

(

95ρ3g3 sin5 αV 4

45µ3 cos2 α I4
1

)
1
9

|t| 13 . (2.97)

Figures 2.19 and 2.20 show three-dimensional plots of sessile rivulets of finite vol-

ume for H0 = H01 and H0 = H02, respectively, at different times. Equation (2.97)

and the corresponding expressions for a and hm at x = L obtained from (2.25)

involve the same scales as in Lister’s [52] solution for the large-time behaviour of

a rivulet emitted from a point source on an inclined plane, in the case when V

increases in proportion to some power of t (see the second entry of his Table 1).
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Lastly, it is worth commenting that although unsteady similarity solutions of

(2.16) of the form (2.21) may at first sight seem feasible for the rather different

physical context of gravity-driven flow of a thin film of fluid around a slender dry

patch on an inclined plane (analogous to the steady similarity solutions obtained

by Wilson et al. [109]), the analysis given in Section 2.5 shows that there are, in

fact, no such dry-patch solutions.
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Unsteady Numerical

Computations of Thin-Film Flows

In Chapter 2, we obtained the similarity solution (2.21) for unsteady gravity-driven

flow of a thin and slender rivulet in the case St = −Sg = Sx. Physically, the case

St = −Sg = Sx = 1 corresponds to a pendent rivulet in x > 0 with t > 0,

whereas the case St = −Sg = Sx = −1 corresponds to a sessile rivulet in x < 0

with t < 0. We showed that there are two values of H0 for physically realisable

solutions, namely H0 = H01 ' 0.9995 and H0 = H02 ' 1.1059.

We are interested in determining the stability of these two solutions. Grundy

and McLaughlin [32] studied the stability of Pattle’s [75] two-dimensional and ax-

isymmetric unsteady similarity solutions of the nonlinear diffusion equation (1.30)

(described in Chapter 1). For both of these similarity solutions, they constructed

an asymptotic solution in the limit t → ∞, with the appropriate similarity solu-

tion as the leading term. Pattle’s [75] similarity solutions have an infinite slope

at the contact line and this leads to singular terms in the expansion. Grundy

and McLaughlin [32] overcame this difficulty by using a “strained coordinate”

transformation. In this transformation, a new independent variable (the strained

coordinate) is introduced to provide a new expansion in which the singularity is

removed. Grundy and McLaughlin [32] showed that the large-time perturbations

68
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in Pattle’s [75] similarity solutions decay in time, and concluded that both the

two-dimensional and the axisymmetric solutions are linearly stable at large time

to two-dimensional and axisymmetric perturbations, respectively. Mathunjwa and

Hogg [56] extended the analysis of Grundy and McLaughlin [32] to consider the

stability of Pattle’s [75] axisymmetric similarity solution subject to asymmetric

perturbations. They encountered a similar difficulty to Grundy and McLaugh-

lin [32], and to overcome this problem, they transformed the dependent variable so

that the slope at the contact line becomes finite. Mathunjwa and Hogg [56] found

that the similarity solution is linearly stable to both axisymmetric and asymmet-

ric perturbations. Mathunjwa and Hogg [56] also showed that an axisymmetric

perturbation decays faster than an asymmetric perturbation of equal amplitude,

which implies that the flow with an axisymmetric perturbation approaches the

similarity solution faster than the flow with an asymmetric perturbation.

However, for our solution obtained in Chapter 2, even a restricted stability

analysis of this kind is likely to be a formidable task since our solutions are fully

three-dimensional. Instead, in this chapter we take a more pragmatic approach

by investigating the stability of the similarity solutions numerically using the fi-

nite element package COMSOL Multiphysics. Specifically, this chapter reports on

computations of various thin-film flows and, in particular, a numerical study of

the stability of the similarity solution (2.21) obtained in Chapter 2.

3.1 A Brief Introduction to COMSOL

COMSOL Multiphysics (formerly known simply as FEMLAB) is a commercial

finite element analysis code, used for modelling and simulation of various physical

systems and engineering applications, such as acoustics, diffusion, fluid mechanics,

structural mechanics and electromagnetics. Basically, it uses the finite element

method to solve systems of coupled partial differential equations (PDEs). There

are three types of formulation provided within COMSOL to solve a system of
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PDEs, namely a “coefficient form” (for linear or almost linear PDEs), a “general

form” (for nonlinear PDEs) and a “weak form” (using a weak formulation of the

PDEs). In the present computations, we used the general form formulation.

In COMSOL, the general form of a time-dependent PDE for a single unknown

variable u = u(x, t), where t denotes time and x denotes spatial position in a

prescribed domain Ω, is given by

ea
∂2u

∂t2
+ da

∂u

∂t
+ ∇ · Γ = F in Ω, (3.1)

where ea is called the “mass coefficient”, da is called the “damping coefficient”, Γ

is called the “flux vector” and F is a scalar. The quantities ea, da, Γ and F can

be functions of x, t, u and its space and time derivatives. Equation (3.1) is solved

subject to either the general Neumann boundary condition

−n · Γ = G +

(

∂R

∂u

)T

κ on ∂Ω, (3.2)

or the Dirichlet boundary condition

R = 0 on ∂Ω, (3.3)

where n is the outward unit normal to the boundary ∂Ω of Ω, both G and R are

scalars which can be functions of x, t, u and its space and time derivatives, the

superscript T denotes transpose, and κ is a Lagrange multiplier1 associated with

the Neumann boundary condition.

In COMSOL, there are two alternative methods to solve unsteady problems,

namely, a “backward differential formula” (BDF) method and a “generalized-α”

method, where α is a parameter in the algorithm. The BDF method is used for

a wide range of problems, whereas the generalized-α method was initially derived

to solve structural dynamics problems, and is often used for wave-equation type

1Within COMSOL, if R 6= 0 then (3.2) simply gives the value of κ (which is not of interest

to us) and in effect only (3.3) is imposed, whereas if R ≡ 0 then (3.3) gives no information and

only (3.2) is imposed (for which κ has now disappeared).
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problems. There are several choices of linear system solver, categorised into direct

solvers and iterative solvers. Direct solvers, such as UMFPACK and SPOOLES,

are commonly used for one-dimensional problems, two-dimensional problems, and

also for three-dimensional problems with few degrees of freedom. They are gener-

ally stable and reliable, but the downside of this type of solver is that they require

considerable memory, especially for three-dimensional problems. Iterative solvers,

such as GMRES and FGMRES, are more efficient in solving three-dimensional

problems. However, iterative solvers are generally less stable (so that convergence

of the solution is not guaranteed) and require considerable computational time.

Further information on COMSOL Multiphysics can be found in [2]. In the present

computations, we used a BDF method with a GMRES linear system solver.

COMSOL can also be linked to MATLAB for the purpose of preprocessing

data and postprocessing solutions. In this chapter we will use both COMSOL

and MATLAB packages for the numerical computation of various thin-film flow

problems.

3.2 Validation of the Numerical Procedure

The main purpose of this section is to validate the accuracy and reliability of

the numerical procedure that we will use for the stability study of our similarity

solution (2.21). In order to validate our numerical procedure we seek to recover

previously known similarity solutions as the long time behaviour of unsteady nu-

merical computations for appropriate thin-film flows on an inclined plane and on

a horizontal plane with and without injection of fluid. Specifically, we seek to

recover the similarity solutions of Smith [92], Duffy and Moffatt [24], Smith [93]

and Huppert [42] described in Chapter 1. In doing this, we also obtained new nu-

merical results, notably in recovering the steady similarity solution of Duffy and

Moffatt [24] from an unsteady numerical computation.

In all our computations, we used a Cartesian coordinate system (x,y,z) with
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x and y denoting longitudinal and transverse coordinates, respectively, and z de-

noting the normal to the plane. The free surface profile z = h(x, y, t) satisfies the

partial differential equation (derived in Chapter 2)

3µht = ∇ ·
[

h3∇
(

ρg cosαh− σ∇2h
)]

− ρg sinα
[

h3
]

x
. (3.4)

We wish to solve a variety of unsteady thin-film problems described by (3.4) by

neglecting some of the terms appropriately. Therefore, in the general PDE given

by (3.1), h is the variable u, Γ depends on the governing equation that we want

to solve, and F depends on the injection of fluid (where F = 0 correspond to no

injection of fluid), and we set ea = 0 and da = 1.

The numerical problems were solved on the rectangular domain Ω with X1 ≤
x ≤ X2, |y| ≤ Y , where X1, X2 and Y were chosen to be sufficiently large that the

(nominal) contact lines of the film remained well away from the domain bound-

aries ∂Ω during the computations. The domain was discretized initially using

triangular mesh elements and the mesh was refined appropriately to increase the

accuracy of the solution. In each mesh refinement, each element is divided into

four smaller triangular elements. However, the resulting calculations then require

more computational time and therefore the number of mesh elements was cho-

sen appropriately in order that a balance was achieved between accuracy of the

solution and computational effort required.

We applied the boundary conditions hx = 0 and hy = 0 at the boundaries of

the domain Ω, and the initial condition h(x, y, 0) = hp, where hp is the uniform

thickness of a thin precursor layer covering the domain at t = 0, included in order

to alleviate any singularities at any moving contact lines that may be present. We

found that the precursor layer was needed in certain computations, especially when

the domain had a very refined mesh (a large number of mesh elements) or when

the computation was run for larger times. These boundary and initial conditions

were used in all computations in this section, unless mentioned otherwise.
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3.2.1 Steady similarity solutions

In this subsection we describe numerical solutions of unsteady thin-film flows on

an inclined plane computed using COMSOL that approach the steady similarity

solutions obtained by Smith [92] in the case of weak surface-tension effects and

Duffy and Moffatt [24] in the case of strong surface-tension effects at large times

and length scales.

(a) Smith [92]

As described in Chapter 1, Smith [92] obtained the unique steady similarity so-

lution (1.24) describing a slender non-uniform rivulet driven by gravity on an

inclined plane. This similarity solution was validated numerically by Schwartz

and Michaelides [89] using a finite difference method. Specifically, Schwartz and

Michaelides [89] studied the unsteady problem of a thin film of fluid being sup-

plied by continuous injection at a constant rate through a circular hole of radius

R0 centred at (0, 0, 0) on a plane inclined at an angle α to the horizontal. The gov-

erning equation of the thin-film problem solved by Schwartz and Michaelides [89]

is given by (3.4) with the surface-tension term neglected but with the addition of

an appropriate source term, which yields

3µht = ρg cosα
[

(

h3hy

)

y
+
(

h3hx

)

x

]

− ρg sinα
(

h3
)

x
+ w, (3.5)

where w = w(r) is the prescribed (parabolic) injection velocity normal to the plane

given by

w =











6µΓ0

πR2
0

(

1 − r2

R2
0

)

for r < R0,

0 for r ≥ R0,

(3.6)

where

Γ0 =

∫ 2π

0

∫ R0

0

w r dr dθ (3.7)

is the constant rate of volumetric injection, and r =
√

x2 + y2 is the radial distance

measured from the centre of the hole.
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Equation (3.5) may be non-dimensionalised using R0 as a characteristic length

scale and T = 3µ/ρgR0 as a characteristic time scale to yield

ht = cosα
[

(

h3hy

)

y
+
(

h3hx

)

x

]

− sinα
(

h3
)

x
+ w̄, (3.8)

where w̄ is the non-dimensional injection velocity given by

w̄ =







2χ

π

(

1 − r2
)

for r < 1,

0 for r ≥ 1,
(3.9)

and χ = 3µΓ0/ρgR
4
0 is a non-dimensional measure of the rate of volumetric in-

jection. Based on the experimental results of Hallworth et al. [33], Schwartz and

Michaelides [89] chose the parameter values so that χ = 0.844 and (for a sessile

rivulet) α = 15◦. Their computations were performed using central differences in

space, and were advanced in time using a marching scheme. The evolution of the

flow was calculated from the start of the flow at t = 0 (at which time the plane was

unwetted) until t = 1200. Schwartz and Michaelides [89] found that at sufficiently

large t their numerical results are in a good agreement with the similarity solution

obtained by Smith [92] except near the source and near the leading edge.

We also solved equation (3.8) numerically using the same values of χ and α. For

the computational domain in COMSOL, X1, X2 and Y were taken to be −10, 110

and 20, respectively, and the domain was discretized uniformly with approximately

79000 triangular mesh elements. The precursor layer was taken to have thickness

hp = 10−5 so that there was a good compromise between numerical accuracy and

computational effort, and the computation was run from t = 0 until t = 1200.

Figures 3.1(a) and (b) show the cross-sectional profiles at y = 0 as functions

of x and the cross-sectional profiles at x = 15.2 as functions of y, respectively,

obtained numerically (represented by full curves), together with the similarity

solution (1.24) obtained by Smith [92] (represented by dashed curves) at times

t = 200, 400, 600, 800, 1000 and 1200. These figures show good agreement between

the numerical results and the steady similarity solution for large t except near the
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Figure 3.1: Plots of the cross-sectional profiles of a sessile rivulet (a) at y = 0 as

functions of x, and (b) at x = 15.2 as functions of y (full curves), together with

Smith’s [92] similarity solution (1.24) (dashed curves) at times t = 200, 400, 600,

800, 1000 and 1200.
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source (shown in Figure 3.1(a)) and near the leading edge (shown in Figure 3.1(b)).

Our numerical results thus confirm the results obtained by Schwartz and Michaelides

[89] and the validity of Smith’s [92] similarity solution.

(b) Duffy and Moffatt [24]

As we have just described, Schwartz and Michaelides [89] validated the steady

similarity solution of Smith [92] for a slender gravity-driven rivulet with weak

surface-tension effects, but to our knowledge no-one has previously performed the

corresponding validation for the steady similarity solution obtained by Duffy and

Moffatt [24] for a slender gravity-driven rivulet on an inclined plane with strong

surface-tension effects.

To do this we used the same approach as that described above for Smith’s [92]

solution. In this case, the partial differential equation for h is given by (3.4) with

the first gravity term on the right neglected but with the addition of an appropriate

source term, which yields

3µht = −σ
[

(

h3hyyy

)

y
+
(

h3hxxx

)

x

]

− ρg sinα
(

h3
)

x
+ w, (3.10)

where w is the prescribed injection velocity normal to the plane again given

by (3.6). Equation (3.10) is non-dimensionalised in the same way as before to

give

ht = −A
[

(

h3hyyy

)

y
+
(

h3hxxx

)

x

]

− sinα
(

h3
)

x
+ w̄, (3.11)

where w̄ the non-dimensional injection velocity again given by (3.9) and A =

σ/ρgR2
0 is an inverse Bond number denoting a non-dimensional measure of surface-

tension effects. We used the same values of χ and α as before, and in the absence

of any corresponding experimental results, we chose A = 1 for simplicity. For

the computational domain, X1, X2 and Y were taken to be −10, 160 and 10,

respectively, and the domain was discretised uniformly with approximately 24000

triangular elements. The precursor layer was taken to have thickness hp = 10−2

and the computation was run from t = 0 until t = 1000.
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Figures 3.2(a) and (b) show the cross-sectional profiles at y = 0 as functions

of x and the cross-sectional profiles at x = 20 as functions of y, respectively,

obtained numerically (represented by full curves), together with the similarity so-

lution (1.27) obtained by Duffy and Moffatt [24] (represented by dashed curves)

at times t = 200, 400, 600, 800 and 1000. Duffy and Moffatt’s [24] similarity

solution (1.27) involves a free parameter G0; we chose the value of G0 randomly

at first and adjusted it manually to improve the agreement with the numerical

solution. We found that there is a good agreement between numerical and similar-

ity solutions for the cross-sectional profiles at x = 20 when G0 = 0.08. However,

for the cross-sectional profiles at y = 0, the numerical solution and similarity so-

lution agree only to a certain extent. In Figure 3.2(a) the numerical solutions

show the occurrence of a capillary ridge near the front of the film which is typical

in flows with significant surface-tension effects but is not captured in Duffy and

Moffatt’s [24] similarity solution. Figures 3.3(a) and (b) show three-dimensional

plot and contour plot of free surface profile h satisfying (3.11) at time t = 1000.

3.2.2 Unsteady similarity solutions

Thus far we have considered thin-film flows which recover known steady similarity

solutions, but the same approach can be applied to unsteady similarity solutions.

Similarity solutions for axisymmetric gravity-driven spreading of a sessile thin

drop on a horizontal plane with negligible surface-tension effects were obtained by

Smith [93] (for the case when the volume of fluid is constant) and by Huppert [42]

(for the case when the volume of fluid is constant or changes with some power of

t). The governing equation for h is given by

3µht =
ρg

r

(

rh3hr

)

r
, (3.12)

where r is the radial coordinate measured from the centre of the drop. We non-

dimensionalised equation (3.12) in the same way as before to yield

ht =
1

r

(

rh3hr

)

r
. (3.13)
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Figure 3.2: Plots of the cross-sectional profiles of a sessile rivulet (a) at y = 0 as

functions of x, and (b) at x = 20 as functions of y (full curves), together with Duffy

and Moffatt’s [24] similarity solution (1.27) (dashed curves) in the case G0 = 0.08,

at times t = 200, 400, 600, 800 and 1000.
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(a) Smith [93]

Axisymmetric spreading of a drop of constant volume on a horizontal plane was

considered by Smith [93], who found a similarity solution to (3.12) which is given

by

h(r, t) =

(

9µ

16ρg

)
1
3

t−
1
4

[

(

1024V 3ρg

243π3µ

)
1
4

− r2t−
1
4

]
1
3

, (3.14)

where

V =

∫ ∞

−∞

∫ ∞

−∞
h dy dx (3.15)

is the constant volume of the drop. To solve this problem numerically using COM-

SOL, we write (3.13) in Cartesian coordinates (x, y, z) to give

ht =
[

(

h3hx

)

x
+
(

h3hy

)

y

]

. (3.16)

We used a square domain with Y = 2 (so that X1 = −2 and X2 = 2), and

the domain was discretised uniformly with approximately 9400 triangular mesh

elements. The initial shape of the film was chosen to be a paraboloid, so that the

initial condition is given by

h(x, y, 0) =







1 − r2 for r < 1,

0 for r ≥ 1,
(3.17)

where r =
√

x2 + y2 is the radial distance measured from the centre of the

paraboloid. We found that for this problem, the computation can be run (within

a specified time) without the precursor layer and therefore hp was not required

here. The computation was run from t = 0 until t = 50.

Figure 3.4 shows a comparison between the cross-sectional profiles obtained

numerically (represented by full curves) and the profiles from the similarity solution

obtained by Smith [93] (represented by dashed curves) at times t = 0, 1, 10, 20,

30, 40 and 50. Initially (at t = 1), the numerical solutions predict that the height

at the middle of the drop is lower and the width of the drop is larger than those

predicted from the similarity solution. However, the numerical solution and the
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Figure 3.4: Plot of the cross-sectional profiles of an axisymmetric spreading sessile

thin film in the case when the volume of fluid is constant (full curves), together

with Smith’s [93] similarity solution (3.14) (dashed curves) at times t = 0 (only

for the numerical solution), 1, 10, 20, 30, 40 and 50.

similarity solution are in good agreement at large times (specifically from about

t = 10).

(b) Huppert [42]

Axisymmetric spreading of a drop on a horizontal plane governed by equation (3.12)

was also considered by Huppert [42]. He recovered the similarity solution of

Smith [93] for the case when the volume of the drop is constant and extended

his study to the case when the volume of the drop changes according to a pre-

scribed power of t. In the latter case he obtained a similarity solution in the
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form

h(r, t) = ξ
2
3
N

(

3µQ

ρg

)
1
4

t
γ−1

4 ϕ

(

ξ

ξN

)

, ξ =

(

3µ

ρgQ3

)
1
8

rt−
3γ+1

8 , (3.18)

where

V = Qtγ = 2π

∫ rN

0

rh(r, t) dr, (3.19)

in which Q and γ are prescribed constants, and

ξN =

(

2π

∫ 1

0

zϕ(z)dz

)− 3
8

(3.20)

is the value of ξ at front of the drop given by

r = rN =

(

ρgQ3

3µ

)
1
8

ξNt
3γ+1

8 , (3.21)

with ϕ = ϕ(z) satisfying the ordinary differential equation

(

zϕ3ϕ′
)′

+
1

8
(3γ + 1) z2ϕ′ − 1

4
(γ − 1) zϕ = 0, (3.22)

where z = ξ/ξN (so that z = 1 at the front of the drop). Note that solutions of

(3.22) are singular at the origin r = 0 for γ 6= 0 due to the fact that the fluid

is being introduced there. The case when the volume of the drop is constant

considered by Smith [93] corresponds to γ = 0 and the case when the flux of fluid

into the drop is constant corresponds to γ = 1.

In the case γ = 1 the similarity solution can be obtained by solving (3.22)

numerically subject to the boundary conditions

ϕ(1 − δ) =

(

3

2

)
1
3

(

δ
1
3 − δ

4
3

12

)

, ϕ′(1 − δ) =

(

3

2

)
1
3

(

− 1

3δ
2
3

+
δ

1
3

9

)

, (3.23)

where δ (> 0) is a small offset from the contact line z = 1 and is introduced

because the numerical computation cannot be started exactly at the contact line

z = 1 due to the singularity there. Thus the computation was started from a

position z = 1 − δ, and was then repeated with smaller values of δ (as small as

δ = 10−10) until the solution converged to within a given tolerance.
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Figure 3.5: Plot of the cross-sectional profiles of an axisymmetric spreading

sessile thin film when the flux of fluid is constant (full curves), together with

Huppert’s [42] similarity solution (3.18) calculated by solving (3.22) numerically

(dashed curves) at times t = 1, 10, 20, 30, 40 and 50.

We already solved the case γ = 0 and we now consider the case γ = 1. Again,

we used the same approach as that described previously. The non-dimensional

governing equation for h is given by (3.16) with the addition of an appropriate

source term, namely

ht =
(

h3hy

)

y
+
(

h3hx

)

x
+ w̄, (3.24)

where w̄ is the non-dimensional injection velocity again given by (3.9) and Γ0 = Q

is the constant rate of volumetric injection (3.7). For definiteness we used the same

value of χ as before and the problem was solved in a square computational domain

with Y = 5 (so that X1 = −5 and X2 = 5), and the domain was discretised

uniformly with approximately 9400 triangular mesh elements. Again, we found
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that the precursor layer was not required here, and the computation was run from

t = 0 until t = 50.

Figure 3.5 shows a comparison between the cross-sectional profiles obtained

numerically (represented by full curves) and the profiles from the similarity so-

lution (3.18) obtained by Huppert [42] calculated by solving (3.22) numerically

(represented by dashed curves) at times t = 1, 10, 20, 30, 40 and 50. As before,

numerical solutions predict that the height at the middle of the drop is lower and

the width of the drop is larger than those predicted from the similarity solution.

However, the two solutions are in close agreement except near x = 0 (where the

similarity solution exhibits a singularity) at large times.

3.3 Numerical Investigation of the Stability of

the Similarity Solutions in Chapter 2

We now arrive at the main purpose of this chapter, namely, a numerical investi-

gation of the stability of the two similarity solutions (2.21) obtained in Chapter 2

for H0 = H01 and H0 = H02, in the case of a sessile rivulet and in the case of a

pendent rivulet. To do this we solve the partial differential equation (3.4) (with

the surface-tension effects neglected by setting σ = 0). First, we re-scale (3.4)

according to (2.31) so that it becomes

ht =
1

2
Sg

[

(

h3hy

)

y
+ λ

(

h3hx

)

x

]

− 1

3

(

h3
)

x
, (3.25)

where again Sg = 1 corresponds to a sessile rivulet and Sg = −1 corresponds to a

pendent rivulet, and the new parameter λ, given by

λ =
2| cosα|

3

(

µ

ρg sin3 αXT

)
1
2

, (3.26)

is a measure of slenderness of the rivulet (the smaller the value of λ, the more slen-

der the rivulet is). Note that choosing λ = 0 corresponds to the non-dimensional

version of the partial differential equation (2.16) for a slender rivulet studied in
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Chapter 2. In the present computations, we chose λ to be small (λ � 1); specif-

ically, we chose λ = 0.1. Since λ 6= 0, perfect agreement cannot be expected

between the numerical solutions and the similarity solutions (2.21), but we would

like to examine the extent of agreement between these two solutions as time elapses.

3.3.1 Stability of a sessile rivulet (Sg = 1)

In the case of a sessile rivulet in x ≤ 0 with t < 0, the similarity solution blows up

at t = 0 and becomes infinite everywhere. Thus, for the computational domain,

X2 was taken to be 0 and X1 (< 0) was chosen to be sufficiently far from X2; also

Y was chosen to be sufficiently large that the contact lines of the rivulets remained

well away from the domain boundaries y = ±Y during the evolution.

Using the same numerical procedure as in Section 3.2, we solved equation (3.25).

As the initial condition for h we imposed the similarity solution at some chosen

time t = t0. As the boundary condition at x = X2 = 0 we imposed simply h = 0,

thereby preventing the nose of the rivulet from advancing down the plane. At

x = X1 (< 0) we imposed a boundary condition in the form of the similarity

solution with a small-amplitude perturbation superposed, so that

h(X1, y, t) = hss (X1, y, t) [1 + f(y, t)] , (3.27)

where hss(x, y, t) denotes the similarity solution given in (2.21), and f(y, t) (with

|f(y, t)| � 1) denotes the perturbation. In all the rivulets described subsequently

f was taken to be sinusoidal in the y direction, either continuously or over a short

time interval only; specifically we chose three different types of perturbation at the

boundary x = X1, namely

f(y, t) = ε cos
(nπy

2a

)

, (3.28)

f(y, t) = ε sin
(nπy

a

)

, (3.29)

and

f(y, t) =







ε cos
(πy

2a

)

for t ≤ t1,

0 for t > t1,
(3.30)
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Figure 3.6: Sketch of the computational domain with the prescribed boundary

conditions in the case of a sessile rivulet.

where a = a(x, t) is the non-dimensional semi-width of the rivulet given by (2.33)2,

and ε, n and t0 < t1 < 0 may be chosen appropriately. At y = ±Y we imposed

the boundary condition hy = 0. These boundary conditions are represented in the

sketch of the computational domain shown in Figure 3.6.

For the computations we chose x = X1 = −30 and t = t0 = −1. The computa-

tions were run from t0 = −1 until they failed at times between t = −0.1 and t = 0

(consistent with the fact that the similarity solutions become singular everywhere

at t = 0). Firstly, we ran the computation without any perturbation at x = X1

(so that f(y, t) ≡ 0) with λ = 0.1. Then, the computations were run with the

three different types of perturbation at x = X1 given by equations (3.28), (3.29)

and (3.30). This procedure was carried out for both similarity solutions, i.e. for

H0 = H01 and H0 = H02.

Similarity solution with H0 = H01

For H0 = H01 ' 0.9995, Y was taken to be 200, with approximately 180000 mesh

elements in the computational domain. We first ran the computation without

any perturbation at x = X1. Figures 3.7(a) and (b) show the cross-sectional

profiles of an unperturbed rivulet at x = −20 and y = 0, respectively, at various
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times, obtained from the numerical solution of equation (3.25) with λ = 0.1 (full

curves) and the similarity solution (2.21) (dashed curves) for the case H0 = H01.

In particular, Figure 3.7 shows that the numerical solutions are in satisfactory

agreement with the similarity solutions. The middle height and the width of the

numerical solutions are slightly larger than the similarity solutions as time elapses

from t = −1 to t = −0.1. However, as shown in Figure 3.7(a) the maximum height

near the leading edge obtained from the numerical solutions is slightly lower than

the similarity solutions, since the rivulet tends to spread (its width becoming

larger) because λ 6= 0.

We then imposed the perturbations (3.28) with ε = 0.01 and n = 5, (3.29)

with ε = 0.05 and n = 4, and (3.30) with ε = 0.05 for a short time interval

−1 ≤ t ≤ −0.9 at the boundary x = X1. Figures 3.8 and 3.9 show examples

of the evolution of perturbed rivulets with continuous perturbations of the form

(3.28) and (3.29), respectively, at various times, for H0 = H01. Figures 3.8 and

3.9 show that the rather large perturbation seen in Figures 3.8(a) and 3.9(a) does

not grow with x. Figures 3.10(a) and (b) show examples of the evolution of a

perturbed rivulet with a perturbation of the form (3.30) for a short time interval

−1 ≤ t ≤ −0.9, at various times for H0 = H01. Figure 3.10(b) shows that the

perturbation (the smooth “bump” on the free surface) is convected with the flow

without growing.
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Figure 3.7: Plots of the cross-sectional profiles at (a) x = −20 and (b) y = 0, at

times t = −1, −0.9, −0.8, . . . , −0.1, of an unperturbed rivulet obtained from the

numerical solutions of equation (3.25) with λ = 0.1 (full curves) and the similarity

solution (2.21) (dashed curves) for H0 = H01 in the case X1 = −30.
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Figure 3.8: Plots of the cross-sectional profiles at (a) x = −30, (b) x = −25 and

(c) y = 0, at times t = −1, −0.9, −0.8, . . . , −0.1, of a rivulet perturbed according

to (3.28) with ε = 0.05 and n = 5, in the case X1 = −30 for H0 = H01.
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Figure 3.9: Plots of the cross-sectional profiles at (a) x = −30, (b) x = −25 and

(c) y = 0, at times t = −1, −0.9, −0.8, . . . , −0.1, of a rivulet perturbed according

to (3.29) with ε = 0.05 and n = 4, in the case X1 = −30 for H0 = H01.
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Figure 3.10: Plots of the cross-sectional profiles at (a) x = −25 and (b) y = 0,

at times t = −1, −0.9, −0.8, . . . , −0.1, of a rivulet perturbed according to (3.30)

with ε = 0.05 for −1 ≤ t ≤ −0.9, in the case X1 = −30 for H0 = H01.
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Similarity solution with H0 = H02

For H0 = H02 ' 1.1059, Y was taken to be 50, with approximately 42000 triangu-

lar mesh elements in the computational domain. Figures 3.11(a) and (b) show the

cross-sectional profiles of an unperturbed rivulet at x = −20 and y = 0, respec-

tively, at various times, obtained from the numerical solution of equation (3.25)

with λ = 0.1 (full curves) and the similarity solution (2.21) (dashed curves) for

H0 = H02. As before, Figure 3.11 shows that the numerical solutions are in satis-

factory agreement with the similarity solutions, the middle height and the width

of the numerical solution being slightly larger than the similarity solution as time

elapses from t = −1 to t = −0.1.

We then imposed the perturbations (3.28) with n = 5, (3.29) with n = 3,

and (3.30) for a short time interval −1 ≤ t ≤ −0.9 at the boundary x = X1

with ε = 0.05 in each case. Figures 3.12 and 3.13 show examples of the evolution

of perturbed rivulets with continuous perturbations of the form (3.28) and (3.29),

respectively, at various times forH0 = H02. Again, Figures 3.12 and 3.13 show that

the rather large perturbation seen in Figures 3.12(a) and 3.13(a) does not grow

with x. Figures 3.14(a) and (b) show examples of the evolution of a perturbed

rivulet with a perturbation of the form (3.30) for a short time interval −1 ≤ t ≤
−0.95, at various times, for H0 = H02. Again, these figures demonstrate how the

perturbation is convected with the flow without growing.

All of the perturbations applied to the rivulets appear not to grow. Thus, we

may conclude from these results that the similarity solutions with both H0 = H01

and H0 = H02 in the case of a sessile rivulet are stable to perturbations of the type

investigated.
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Figure 3.11: Plots of the cross-sectional profiles at (a) x = −20 and (b) y = 0, at

times t = −1, −0.9, −0.8, . . . , −0.1, of an unperturbed rivulet obtained from the

numerical solutions of equation (3.25) with λ = 0.1 (full curves) and the similarity

solution (2.21) (dashed curves) for H0 = H02 in the case X1 = −30.
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Figure 3.12: Plots of the cross-sectional profiles at (a) x = −30, (b) x = −28 and

(c) y = 0, at times t = −1, −0.9, −0.8, . . . , −0.1, of a rivulet perturbed according

to (3.28) with ε = 0.01 and n = 5, in the case X1 = −30 for H0 = H02.
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Figure 3.13: Plots of the cross-sectional profiles at (a) x = −30, (b) x = −28 and

(c) y = 0, at times t = −1, −0.9, −0.8, . . . , −0.1, of a rivulet perturbed according

to (3.29) with ε = 0.05 and n = 3, in the case X1 = −30 for H0 = H02.
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Figure 3.14: Plots of the cross-sectional profiles at (a) x = −23 and (b) y = 0,

at times t = −1, −0.9, −0.8, . . . , −0.1, of a rivulet perturbed according to (3.30)

with ε = 0.05 for −1 ≤ t ≤ −0.95, in the case X1 = −30 for H0 = H02.
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Figure 3.15: Sketch of the computational domain with the prescribed boundary

conditions in the case of a pendent rivulet.

3.3.2 Stability of a pendent rivulet (Sg = −1)

An analogous procedure was used to consider the stability of a pendent rivulet in

x ≥ 0 with t > 0, for both H0 = H01 and H0 = H02. In this case X1 was taken

to be 0 and X2 was chosen to be sufficiently far from X1; also Y was chosen to be

sufficiently large that the contact lines of the rivul ets remained well away from

the domain boundaries y = ±Y during the evolution.

As the initial condition for h we imposed the similarity solution at some chosen

time t = t0. As the boundary condition at x = X1 = 0 we imposed simply h = 0.

At x = X2 (> 0) we imposed hx = 0 to allow flux to escape at this boundary. At

y = ±Y we imposed simply hy = 0. The boundary conditions discussed above are

represented in the sketch of the computational domain shown in Figure 3.15. For

the computations we chose x = X2 = 30 and t = t0 = 1, and the computations

were run with λ = 0.1.

However, unlike in the case of a sessile rivulet described previously, the numer-

ical computations for a pendent rivulet ran for only a very small time, and failed

to produce any reliable results for either H0 = H01 or H0 = H02 even without

any perturbation being applied at the boundary. Several attempts were made to
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resolve this problem, such as changing the numerical method, the boundary con-

ditions at x = X1 and x = X2, values of tolerances, number of mesh elements

and time steps, and including a precursor layer as an initial condition, but all to

no avail. Using COMSOL, we then computed solutions to one-dimensional linear

“forwards-diffusion” and “backwards-diffusion” problems, for which the governing

equations are given by

ht = Shxx, (3.31)

where S = 1 corresponds to a forwards-diffusion equation, and S = −1 corresponds

to a backwards-diffusion equation, subject to the boundary conditions

h(0, t) = 1, h(1, t) = 0, (3.32)

and the initial condition

h(x, 0) = 0. (3.33)

We found that for the forwards-diffusion problem, the computation produced a

reliable result; however, for the backwards-diffusion problem, which is highly un-

stable, the computational process failed in the same manner as in our problem.

Thus we may speculate that for our equation (3.25) with Sg = −1, which is a non-

linear backwards-diffusion equation, the similarity solutions for both H0 = H01

and H0 = H02 in the case of a pendent rivulet are unstable.



Chapter 4

Unsteady Gravity-Driven

Rivulets of a Non-Newtonian

Power-Law Fluid

In this chapter we generalise our approach in Chapter 2 to consider unsteady

gravity-driven flow of thin slender non-uniform rivulets of a non-Newtonian power-

law fluid on an inclined plane.

4.1 Problem Formulation

Consider the unsteady flow of a thin slender rivulet of a non-Newtonian power-law

fluid with constant density ρ and variable viscosity µ = µ0γ
N−1, where µ0 is a con-

stant, γ is the local shear rate and N > 0 is the power-law index, down a planar

substrate inclined at an angle α (0 < α < π) to the horizontal subject to grav-

itational acceleration g when surface-tension effects are negligible. As described

previously in Chapter 1, when 0 < N < 1 the fluid is shear thinning, when N > 1

it is shear thickening, and when N = 1 the special case of a Newtonian fluid with

constant viscosity µ0 is recovered.

We adopt the same Cartesian coordinates Oxyz as in Chapter 2 and denote

99
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the free surface profile of the rivulet by z = h(x, y, t). We restrict our attention

to flows that are symmetric about y = 0 with (unknown) semi-width a = a(x, t),

so that h = 0 at the contact lines y = ±a. The geometry of the problem is again

given by Figure 2.1.

With the usual lubrication approximation the velocity (u, v, w) and pressure p

of the fluid satisfy the governing equations

ux + vy + wz = 0, (4.1)

(µuz)z + ρg sinα = 0, (4.2)

(µvz)z − py = 0, (4.3)

−pz − ρg cosα = 0. (4.4)

Since the rivulet is taken to be thin and slender, and since we will be considering

only problems in which uz is always non-negative, the shear rate is given by γ = uz

approximately (see Appendix A), and therefore the viscosity µ in (4.2) and (4.3)

is given by µ = µ0u
N−1
z . Equations (4.1)–(4.4) are to be integrated subject to the

boundary conditions of no slip and no penetration (2.5) on the substrate z = 0,

and balances of normal and tangential stress on the free surface:

p = pa, µuz = µvz = 0 on z = h, (4.5)

where pa denotes atmospheric pressure, together with the kinematic condition (2.7)

on the free surface and the zero-mass-flux condition (2.9) at the contact lines

y = ±a.
Integrating equations (4.2)–(4.4) subject to boundary conditions (2.5) and (4.5)

yields

p = pa + ρg cosα (h− z) , (4.6)

u =
N

N + 1

(

ρg sinα

µ0

)
1
N [

h
N+1

N − (h− z)
N+1

N

]

, (4.7)

v = − N

N + 1
py

(

(ρg sinα)1−N

µ0

)
1
N
[

h
N+1

N − (h− z)
N+1

N

]

, (4.8)
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and substituting (4.7) and (4.8) into (2.8) gives

ū =
N

2N + 1

(

ρg sinα

µ0

)
1
N

h
2N+1

N , v̄ = − Npy

2N + 1

(

(ρg sinα)1−N

µ0

)
1
N

h
2N+1

N .

(4.9)

The kinematic condition (2.7) then yields the governing partial differential equa-

tion for h, namely

2N + 1

N
µ0

(

ρg sinα

µ0

)
N−1

N

ht = ρg cosα
[

h
2N+1

N hy

]

y
− ρg sinα

[

h
2N+1

N

]

x
. (4.10)

Once this is solved for h, the complete solution for p, u and v is given by (4.6)–

(4.8). Note that in the special case N = 1, equation (4.10) reduces to (2.16)

studied in Chapter 2. From (4.9) we have ū = 0 at y = ±a, so that the zero-mass-

flux condition (2.9) reduces to v̄ = 0 at y = ±a; thus we have the contact-line

conditions

h = 0 at y = ±a, h
2N+1

N hy → 0 as y → ±a. (4.11)

We shall be concerned with unsteady similarity solutions of (4.10) of the form

h = h0

∣

∣

∣

x

t

∣

∣

∣

N
N+1

H(η), y = y0

( |x|2N+1

|t|N
)

1
2(N+1)

η, (4.12)

where H (≥ 0) and η are defined to be dimensionless, and h0 and y0 are positive

constants, which, without loss of generality, we may write as

h0 =

(

µ0

ρg sinα

)
1

N+1

, y0 =

(

N + 1

2N + 1

)
1
2
(

µ0| cosα|N+1

ρg sinN+2 α

)
1

2(N+1)

. (4.13)

Hence (4.10) reduces to the ordinary differential equation

St

[

1

2
ηH ′ −H

]

= Sg

[

H
2N+1

N H ′
]′

+ Sx

[

1

2
η(H

2N+1
N )′ −H

2N+1
N

]

(4.14)

for H, generalising equation (2.22), where a dash denotes differentiation with re-

spect to η. As in Chapter 2, we again introduced the notation St = sgn(t) = ±1,

Sg = sgn(cosα) = ±1 and Sx = sgn(x) = ±1.
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For a symmetric rivulet, appropriate boundary and symmetry conditions are

given by (2.23). The (unknown) position of the contact line is denoted by η = η0,

so that with (4.11) we have

H = 0 at η = η0, H
2N+1

N H ′ → 0 as η → η0. (4.15)

The middle height of the rivulet, hm = h(x, 0, t), and the semi-width of the rivulet

vary with x and t according to

hm = h0

∣

∣

∣

x

t

∣

∣

∣

N
N+1

H0, a = y0

( |x|2N+1

|t|N
)

1
2(N+1)

η0, (4.16)

predicting that at any time t the rivulet widens or narrows according to |x|(2N+1)/2(N+1)

and thickens or thins according to |x|N/(N+1) as it flows down the plane; moreover,

at any station x, it widens or narrows according to |t|−N/2(N+1) and thickens or

thins according to |t|−N/(N+1).

The volume flux of fluid across any section x = constant, denoted by Q, is

given by

Q = 2

∫ a

0

ūdy =
N(N + 1)

1
2

(2N + 1)
3
2

(

µ3
0| cosα|N+1|x|3(2N+1)

ρ3g3 sinN+4 α |t|5N+2

)

1
2(N+1)

I, (4.17)

and the cross-sectional area of the rivulet at any station x, denoted by A, is given

by

A = 2

∫ a

0

h dy =

(

N + 1

2N + 1

) 1
2
(

µ3
0| cosα|N+1|x|4N+1

ρ3g3 sinN+4 α |t|3N

)
1

2(N+1)

J, (4.18)

where the constants I and J are defined by

I = 2

∫ η0

0

H
2N+1

N dη, J = 2

∫ η0

0

H dη. (4.19)

Conditions for the rivulet to be thin and slender are that the length scales in

the x, y and z directions (namely |x|, a and hm, respectively) satisfy hm � a� |x|,
which in turn requires that

|x||t|Nρg| cosα|N+1

µ0 sinN α
� 1,

|x||t|Nρg sinN+2 α

µ0| cosα|N+1
� 1, (4.20)
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showing that |x||t|N must be sufficiently large (and that α cannot be close to 0,

π/2 or π).

For simplicity in plotting results, we now re-scale according to

x = Xx∗, y = y0

(

X2N+1

TN

)
1

2(N+1)

y∗, z = h0

(

X

T

)
N

N+1

z∗, t = T t∗,

h = h0

(

X

T

)
N

N+1

h∗, hm = h0

(

X

T

)
N

N+1

h∗m, a = y0

(

X2N+1

TN

)
1

2(N+1)

a∗,

Q =
N(N + 1)

1
2

(2N + 1)
3
2

(

µ3
0| cosα|N+1X3(2N+1)

ρ3g3 sinN+4 αT 5N+2

)

1
2(N+1)

Q∗,

A =

(

N + 1

2N + 1

)
1
2
(

µ3
0| cosα|N+1X4N+1

ρ3g3 sinN+4 α T 3N

)
1

2(N+1)

A∗,

(4.21)

where X (> 0) and T (> 0) are length and time scales, respectively, which we may

choose arbitrarily. Then, with superscript stars dropped immediately for clarity,

the solution (4.12) takes the slightly simpler form

h =
∣

∣

∣

x

t

∣

∣

∣

N
N+1

H(η), y =

( |x|2N+1

|t|N
)

1
2(N+1)

η, (4.22)

with H satisfying (4.14)–(4.15); from (4.16) the middle height hm and semi-width

a are given by

hm =
∣

∣

∣

x

t

∣

∣

∣

N
N+1

H0, a =

( |x|2N+1

|t|N
)

1
2(N+1)

η0, (4.23)

and from (4.17) and (4.18) the flux Q and cross-sectional area A become

Q =

( |x|3(2N+1)

|t|5N+2

)

1
2(N+1)

I, A =

( |x|4N+1

|t|3N

)
1

2(N+1)

J. (4.24)
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4.2 Results

A closed-form solution of the ordinary differential equation (4.14) is not available,

and so it must, in general, be solved numerically for H subject to the boundary

conditions (2.23) and (4.15), where H0 and η0 are parameters to be determined.

As far as the differential equation (4.14) is concerned, any choice of a set of

values of St, Sg and Sx leads to the same mathematical problem as the set −St, −Sg

and −Sx (though the two sets of values lead to different physical interpretations

of the solutions). Therefore there are four distinct cases to consider; however, we

shall show below that by using the same arguments as in Chapter 2, only the case

St = −Sg = Sx can lead to physically realisable solutions.

Near η = 0 we find straightforwardly that H satisfies

H = H0 +
SxH

N+1
N

0 − St

2SgH
N+1

N

0

η2 +O
(

η4
)

(4.25)

as η → 0, and near the contact line η = η0 we find that H satisfies either

H ∼
[

−(2N + 1)Stη0

2NSg
(η0 − η)

]
N

2N+1

, (4.26)

valid only when St = −Sg, or

H ∼ C(η0 − η)
N

3N+1 − (3N + 1)Stη0

2 (4N + 1)C
N+1

N Sg

(η0 − η)
2N

3N+1 (4.27)

as η → η0, where C is a positive constant.1 However, the zero-mass-flux condition

in (4.15) requires that C = 0, and so cases where St = Sg, in which (4.27) is

the only possible behaviour near the contact line, are immediately eliminated.

Determining the physical solutions from the condition C = 0 will be discussed

shortly.

In cases where St = −Sg, at any stationary points of the free surface (where

H ′ = 0) equation (4.14) gives

H ′′ = H−N+1
N − SxSt, (4.28)

1Note that both (4.26) and (4.27) have H ′ → ∞ as η → η0, showing that the lubrication

approximation again fails near the contact lines.
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provided that H 6= 0. Since the rivulet has two contact lines, at η = ±η0, the

function H (≥ 0) must have at least one maximum in |η| ≤ η0. In the case where

St = −Sg = −Sx, equation (4.28) shows that any stationary point of H is a

minimum, so there can be no solution for H with a maximum, and therefore this

case is eliminated. In the case where St = −Sg = Sx, equation (4.28) shows that

any stationary point for which H < 1 (H > 1) is a minimum (maximum); later,

we will show from the numerically determined profiles H that there are in fact

only two types of solution in this case, one with a minimum at η = 0 and two

symmetrically placed maxima when H0 < 1 (double-humped profiles), and one

with a single maximum at η = 0 when H0 > 1 (single-humped profiles).

With all other cases eliminated, the only case that could lead to physically

realisable solutions is the one where St = −Sg = Sx, corresponding to a converging

sessile rivulet in x < 0 with t < 0, or a diverging pendent rivulet in x > 0 with

t > 0. In this case, equation (4.14) becomes

N

3N + 1

(

H
3N+1

N

)′′
=

1

2
η
(

H
2N+1

N −H
)′

−
(

H
2N+1

N −H
)

, (4.29)

which was solved numerically by means of a shooting method subject to (2.23) to

find η0 for a given value of H0 (> 0). Again, as a check, some of the computations

were also performed by means of a finite-difference method, with Newton iteration

to solve the resulting nonlinear algebraic equations; the solutions obtained in this

way were found to be in good agreement with those obtained by the shooting

method.

Figure 4.1 shows η0 as a function of H0 for several values of N . For each

value of N there is a solution for every H0 except in a narrow window H01 <

H0 < H02, where H01 = H01(N) < 1 and H02 = H02(N) > 1, in which there

is no solution. This window is larger for larger values of N , with H01 and H02

taking correspondingly smaller and larger values, respectively. For example, for

N = 1/20, we found that H01 ' 0.9999 and H02 ' 1.0178, whereas for N = 20, we

found that H01 ' 0.9993 and H02 ' 1.1409; furthermore, in the Newtonian case
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Figure 4.1: Plot of η0 as a function of H0 for N = 1/20, 1/10, 1/5, 1/2, 1, 2, 5, 10

and 20.

(N = 1), H01 ' 0.9995 and H02 ' 1.1059, in agreement with the values given in

Chapter 2.

In order to choose the physically realisable solutions from this family of solu-

tions, we impose the condition (4.15), or equivalently the condition C = 0. As

discussed in Chapter 2, a simple way to determine C accurately is by integrating

equation (4.14) from η = 0 to η = η0 and using (2.23) and (4.15) to obtain

3 (3N + 1)

2N

∫ η0

0

(

H
2N+1

N −H
)

dη =







0 for (4.26),

C
3N+1

N for (4.27),
(4.30)

so that the coefficient C in (4.27) is given by

C =

[

3 (3N + 1)

2N

∫ η0

0

(

H
2N+1

N −H
)

dη

] N
3N+1

=

[

3(3N + 1)

4N
(I − J)

] N
3N+1

,

(4.31)

which we use to find C from the numerical solution for H obtained with a given

value of H0. Also these values of C were checked against those obtained from the

behaviour of the numerical solution near η = η0, according to (4.27).
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Figure 4.2 shows a plot of C calculated from (4.31) as a function of H0 for the

values of N used in Figure 4.1. From this plot, we see that for each value ofN there

are precisely two values of H0 for which C = 0, namely H0 = H01 and H0 = H02.

Thus we arrive at our main result: there are precisely two physically realisable

solutions of the type sought for an unsteady rivulet, these solutions corresponding

to the two values H0 = H01 (with associated η0 = η01) and H0 = H02 (with

associated η0 = η02).

Equation (4.31) shows that I and J satisfy I = J for both H0 = H01 and

H0 = H02, and Figure 4.3 shows plots of I (= J) as a function of N .

Figures 4.4 and 4.5 show numerically calculated profiles H = H(η) of the two

physically realisable solutions with H0 = H01 and H0 = H02, respectively, for a

range of values of N . These two sets of solutions have different types of profiles,

namely a (barely discernible) double-humped profile for H0 = H01 and a single-

humped profile for H0 = H02, consistent with the earlier discussion of stationary

points.

Figure 4.6 shows a plot of H01 and H02 as functions of N ; the inset shows an

enlargement of the H01 curve, as the details are hard to distinguish at this scale.

Figure 4.7 shows a plot of η01 and η02 as functions of N ; we see that η01 > η02 for

all N .
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4.2.1 Asymptotic solution in the limit N → 0+

In this subsection we shall discuss the behaviour of the solution for H in the limit

of a strongly shear-thinning fluid, N → 0+.

For the case in which H0 = H02 and N is small, our numerical solutions suggest

that η0 ∼
√
N and that H = 1+O(N) and H

2N+1
N = O(1) except very close to the

contact line η = η0. Therefore in the limit N → 0+ we re-scale H and η according

to

H = 1 +Nĥ(η̂), η =
√
Nη̂, η02 =

√
Nη̂02. (4.32)

With the result limN→0(1 +Nĥ)1/N = eĥ = O(1), equation (4.29) then yields

(

eĥ
)′′ − 1

2
η̂
(

eĥ
)′

+ eĥ = 1 (4.33)

at leading order in N , whose solution subject to the boundary condition ĥ′(0) = 0

is

ĥ = log

(

eĥ0 +
1 − eĥ0

2
η̂2

)

, (4.34)

where ĥ0 = ĥ(0) = (H02 − 1)/N (> 0) is the (unknown) value of ĥ at η̂ = 0. The

solution (4.34) is valid provided that eĥ0 + 1
2
(1−eĥ0)η̂2 > 0, which requires η̂ < η̂02,

where

η̂02 =

(

2eĥ0

eĥ0 − 1

)
1
2

, (4.35)

and we note that ĥ = 0 at η̂ =
√

2, and that η̂02 >
√

2.

To determine ĥ0 we use equation (4.31) with C = 0 (that is, I = J), leading

to ĥ0 = log(3/2). Then equations (4.34) and (4.35) become

ĥ = log

(

6 − η̂2

4

)

, η̂02 =
√

6, (4.36)

and hence to first order we have

H ∼ 1 +N log

[

3

2

(

1 − η2

η2
02

)]

, H02 ∼ 1 +N log
3

2
, η02 ∼

√
6N, (4.37)

in the limit N → 0+. Lastly the integrals I and J in (4.19) satisfy

I ∼ 2

∫

√
Nη̂02

0

6N − η2

4N
dη = 2

√
6N, J ∼ 2

√
Nη̂02 = 2

√
6N (4.38)
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Figure 4.8: Sketch of the asymptotic solution (4.37) for H to O(N) in the limit

N → 0+ for H0 = H02.

in the limit N → 0+; there is a boundary layer in the solution for H near η = η0,

but it does not contribute to these integrals to this order.

A sketch of the asymptotic solution for H given in (4.37) is shown in Figure 4.8,

and Figure 4.9 shows a comparison between profiles H computed numerically (rep-

resented by full curves) and the asymptotic solution (4.37) in the limit N → 0+

(represented by dashed curves) in the cases N = 1/2 and N = 1/20; the asymp-

totic solution is in good agreement with the exact numerical solution away from

the contact line.

The asymptotic forms of H02 and η02 in the limit N → 0+ given in (4.37)

are included in Figures 4.6 and 4.7 as dashed-dotted curves, and similarly the

asymptotic forms for I (= J) are included in Figure 4.3 as a dashed-dotted curve.

Numerical calculations indicate that the behaviour of the solution for H in

the case H0 = H01 in the limit N → 0+ is somewhat similar to (4.37) but with

multiplicative factors and terms in logN which we have not been able to determine

with certainty.
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Figure 4.9: Profiles H for the case H0 = H02 obtained numerically (full curves)

and from the asymptotic solution to O(N) in the limit N → 0+ given by (4.37)

(dashed curves) for (a) N = 1/2 and (b) N = 1/20.

4.2.2 Asymptotic solution in the limit N → ∞

In the limit of a strongly shear-thickening fluid, N → ∞, the solutions for both

H0 = H01 and H0 = H02 may be expressed as regular expansions in powers of 1/N

about the solutions for 1/N = 0, and so we write

H(η) = H̄0 +
1

N
H̄1 +O

(

1

N2

)

,

H0k = H̄00 +
1

N
H̄01 +O

(

1

N2

)

,

η0k = η̄00 +
1

N
η̄01 +O

(

1

N2

)

(4.39)

for k = 1 and 2. Then equation (4.29) gives

1

2
ηH̄ ′

0 − H̄0 = −
(

H̄2
0H̄

′
0

)′
+

1

2
η(H̄2

0 )′ − H̄2
0 (4.40)

at leading order in 1/N , and

(

H̄2
0H̄1

)′′
+

1

2
η
[(

1 − 2H̄0

)

H̄1

]′ −
(

1 − 2H̄0

)

H̄1 =

(

1

2
ηH̄ ′

0 − H̄0

)

log H̄0

− H̄0H̄
′
0

(

H̄ ′
0 −

1

2
η

)

(4.41)
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Figure 4.10: Asymptotic solution in the limit N → ∞ for the case H0 = H01:

comparison between H̄1 (dashed curves) and N(H−H̄0) (full curves) for (a) N = 5

and (b) N = 20.

at first order. Equations (4.40) and (4.41) were solved numerically subject to the

boundary conditions

H̄0(0) = H̄00, H̄ ′
0(0) = 0, H̄1(0) = H̄01, H̄ ′

1(0) = 0, (4.42)

where the constants H̄00 and H̄01 are chosen so that conditions obtained from

(4.31) with C = 0, namely

∫ η̄00

0

(H̄2
0 − H̄0) dη = 0 (4.43)

and
∫ η̄00

0

[

H̄1

(

1 − 2H̄0

)

− H̄2
0 log H̄0

]

dη = 0, (4.44)

are satisfied. For H0 = H01, we find that H̄00 ' 0.9993, η̄00 ' 9.2811 and H̄01 '
0.0002592; for H0 = H02, we find that H̄00 ' 1.1434, η̄00 ' 2.5190 and H̄01 '
−0.05084. Figure 4.10 shows comparisons between H̄1 and N(H − H̄0) for N = 5

and N = 20, respectively, for H0 = H01, and Figure 4.11 shows the corresponding

results for H0 = H02; the asymptotic solutions are in good agreement with the

exact numerical solutions for both H0 = H01 and H0 = H02. The corresponding

asymptotic forms of H01, H02, η01 and η02 in the limit N → ∞ are included in

Figures 4.6 and 4.7 as dashed curves. Also using these asymptotic solutions we
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Figure 4.11: As in Figure 4.10, but for the case H0 = H02.

find that

I ∼ 2

∫ η̄00

0

[

H̄2
0 +

1

N

(

H̄2
0 log H̄0 + 2H̄0H̄1

)

]

dη, J ∼ 2

∫ η̄00

0

(

H̄0 +
1

N
H̄1

)

dη

(4.45)

in the limit N → ∞, so that

I = J ∼ a +
1

N
b, (4.46)

where a ' 18.4903 and b ' −9.1214 for H0 = H01, and a ' 4.7804 and b '
−2.3697 for H0 = H02; these asymptotic solutions for I (= J) in the limit N → ∞
are included in Figure 4.3 as dashed curves.

4.3 Discussion

We have obtained unsteady similarity solutions for gravity-driven flow of a thin

slender rivulet of a power-law fluid down an inclined plane. We found that there

are physically realisable solutions only in the case St = −Sg = Sx, and then there

are two distinct solutions for each value of the power-law index N , namely one for

which H0 = H01, with a double-humped cross-sectional profile, and one for which

H0 = H02, with a single-humped cross-sectional profile.

Physically, the case St = −Sg = Sx = 1 corresponds to pendent rivulets in

x > 0 with t > 0, whereas the case St = −Sg = Sx = −1 corresponds to sessile
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rivulets in x < 0 with t < 0. However, results of a numerical study of the stability

of corresponding similarity solutions for a Newtonian fluid in Chapter 3 suggest

that the sessile case is stable but that the pendent case is unstable. Presumably

the same is true in the non-Newtonian case, that is, only the sessile case St =

−Sg = Sx = −1 is likely to be stable. Figure 4.12 shows three-dimensional plots

of the free surface z = h in the cases H0 = H01 and H0 = H02 for N = 5, at times

t = −100, −10 and −1, for the sessile case St = −Sg = Sx = −1; the insets show

the cross-sectional profiles.

Each solution predicts that at time t, the rivulet (in x < 0) narrows according

to (−x)(2N+1)/2(N+1) and thins according to (−x)N/(N+1) as it flows down the plane,

the nose of the rivulet remaining stationary at O at all time. At any station x, the

rivulet widens according to (−t)N/2(N+1) and thickens according to (−t)N/(N+1), for

t < 0; at t = 0, both solutions exhibit a finite-time singularity, becoming infinite

everywhere at that instant.

So far we have interpreted each of our solutions as representing an infinitely

long rivulet, involving an infinite volume of fluid. As described previously in

Chapter 2, we may alternatively interpret each solution as representing a rivulet

of (prescribed) finite volume, by truncating it at some finite length L = L(t), so

that it occupies −L ≤ x ≤ 0. The volume of fluid in such a rivulet, denoted by

V , is given by

V =

∫ 0

−L

∫ a

−a

h dy dx =
2

3

(

N + 1

2N + 1

) 3
2
(

µ3
0| cosα|N+1L3(2N+1)

ρ3g3 sinN+4 α|t|3N

)

1
2(N+1)

I; (4.47)

thus the length L of the rivulet at time t is given by

L =

[

(

2N + 1

N + 1

)N+1(
9V 2 sinα

4I2| cosα|

)
N+1

3 ρg sinα

µ0

]
1

2N+1

|t| N
2N+1 , (4.48)

generalising equations (2.96) and (2.97), respectively.

Lastly, we also used the approach described for the rivulet to investigate

whether there are corresponding similarity solutions for the rather different phys-

ical context of unsteady gravity-driven flow of an infinitely wide thin film of a
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Figure 4.12: Three-dimensional plots of the free surfaces h of the sessile rivulets

for the cases (a) H0 = H01 and (b) H0 = H02 with N = 5, at times t = −100, −10

and −1. The insets show the cross-sectional profiles.
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power-law fluid around a symmetric slender dry patch |y| < a(x, t) on an inclined

plane (so that the fluid occupies |y| ≥ a(x, t), and its free surface z = h again

satisfies (4.11)). In that case the governing equation (4.10) again holds, and if we

seek a similarity solution of the form (4.12) then H(η) again satisfies the ordinary

differential equation (4.14). We now look for a solution H satisfying H → H∞ as

η → ∞, where H∞ is a positive constant; then equation (4.14) immediately gives

StH∞ = SxH
2N+1

N
∞ , which requires both that St = Sx and that H∞ = 1, so that

the appropriate far-field conditions for (4.14) are H → 1 and H ′ → 0 as η → ∞.

Moreover, H must again satisfy the contact-line conditions (4.15), where η0 again

denotes the position of the contact line.

Consideration of the far-field behaviour of H shows that only the case St =

Sg = Sx could possibly lead to physical solutions. From equation (4.14) with

St = Sg = Sx, at any stationary point of the free surface we have H ′′ = 1−H−N+1
N ,

showing that any stationary point with H < 1 (H > 1) would be a maximum

(minimum); we conclude thatH must therefore increase monotonically fromH = 0

at η = η0 to H → 1 as η → ∞, with 0 ≤ H < 1.

Near the contact line η = η0, behaviour (4.26) still holds for a dry patch but

now with St = Sg, whereas behaviour (4.27) is replaced by

H ∼ C(η − η0)
N

3N+1 − (3N + 1)η0

2 (4N + 1)C
N+1

N

(η − η0)
2N

3N+1 , (4.49)

where C is a positive constant; however, as in the earlier analysis of rivulet flow,

the contact-line conditions then require that C = 0, so that (4.49) is eliminated,

and only (4.26) need be considered. Then integrating equation (4.14) from η = η0

to η = ∞ gives
∫ ∞

η0

(

H −H
2N+1

N

)

dη = 0, (4.50)

which is impossible for monotonic H satisfying 0 ≤ H < 1. Therefore, using the

same kind of argument as in Chapter 2, we conclude that there are no dry-patch

solutions of the type sought.
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Unsteady Shear-Stress-Driven

Flows of Newtonian and

Non-Newtonian Power-Law

Fluids

In this chapter we extend our analysis in Chapter 2 and 4 to investigate unsteady

shear-stress-driven flows for both Newtonian and non-Newtonian power-law fluids

on an inclined plane.

5.1 Problem Formulation

Consider again unsteady flow of a thin film of a non-Newtonian power-law fluid

with constant density ρ and variable viscosity µ = µ0γ
N−1, where µ0 is a constant,

γ is the local shear rate and N (> 0) is the power-law index, on a planar substrate

inclined at an angle α (0 ≤ α ≤ π) to the horizontal, but this time the flow is

driven by a constant shear stress τ (> 0) at its free surface directed down the

plane. As before, surface-tension effects are neglected. We shall be concerned

with both unsteady rivulets of a power-law fluid and unsteady dry patches in a

119
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Figure 5.1: Sketch of the geometry of the rivulet problem.

film of such a fluid.

We adopt Cartesian coordinates (x, y, z) as in Chapter 2 and we denote the

free surface profile of the film by z = h(x, y, t). Again, we restrict attention to

flows that are symmetric about y = 0. We denote the (unknown) semi-width of

the rivulet or dry patch by a = a(x, t), so that h = 0 at the contact lines y = ±a;
for a rivulet the fluid occupies |y| ≤ a, whereas for a dry patch the fluid occupies

|y| ≥ a. Figures 5.1 and 5.2 show the geometries of the rivulet and dry-patch

problems, respectively.

With the usual lubrication approximation the velocity (u, v, w), pressure p and

film thickness h satisfy the governing equations

ux + vy + wz = 0, (5.1)

(µuz)z − px + ρg sinα = 0, (5.2)

(µvz)z − py = 0, (5.3)

−pz − ρg cosα = 0, (5.4)
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Figure 5.2: Sketch of the geometry of the dry-patch problem.

where g denotes gravitational acceleration. We consider the case in which the

rivulet or dry patch is slender and the draining down the plane caused by gravity

is negligible in comparison with the flow down the plane driven by the surface

shear stress τ , so that the terms px and ρg sinα in (5.2) may be neglected (see

later in Section 5.3). Equations (5.1)–(5.4) are to be integrated subject to the

boundary conditions of no slip and no penetration (2.5) on the substrate z = 0,

balances of normal and tangential stress on the free surface z = h:

p = pa, µuz = τ, µvz = 0, (5.5)

where pa denotes atmospheric pressure, together with the kinematic condition (2.7)

on z = h and zero-mass-flux condition (2.9) at the contact lines y = ±a(x, t).
Since the rivulet and dry patch are slender, and since we will be considering

only problems in which uz is always non-negative, the shear rate is again given

by γ = uz approximately (see Appendix A), and so the viscosity µ in (5.2), (5.3)

and (5.5) is again given by µ = µ0u
N−1
z . Therefore integrating equation (5.2) once
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subject to (5.5)2 on z = h gives

γ =

(

τ

µ0

)
1
N

= constant, µ = µ0u
N−1
z = µ0

(

τ

µ0

)
N−1

N

= constant. (5.6)

Integrating equations (5.2)–(5.4) subject to (2.5) on z = 0 and (5.5) on z = h

yields

p = pa + ρg cosα (h− z) , (5.7)

u =

(

τ

µ0

)
1
N

z, (5.8)

v = − py

2µ

(

2hz − z2
)

. (5.9)

Substituting (5.8) and (5.9) into (2.8) gives

ū =
1

2

(

τ

µ0

)
1
N

h2, v̄ = − py

3µ
h3, (5.10)

and then the kinematic condition (2.7) yields the governing partial differential

equation for h, namely

3µht = ρg cosα
[

h3hy

]

y
− 3τ

2

[

h2
]

x
, (5.11)

which, we note, is independent of N . From (5.10) we have ū = 0 at y = ±a, so

that the zero-mass-flux condition (2.9) at the contact lines reduces to v̄ = 0 at

y = ±a; thus again we have the contact-line conditions

h = 0 at y = ±a, h3hy → 0 as y → ±a. (5.12)

5.2 A Similarity Solution

Equation (5.11) has an unsteady similarity solution of the form

h =
(µ0

τ

)
1
N
∣

∣

∣

x

t

∣

∣

∣H(η), η =

(

3

ρg| cosα|

)
1
2
(

τN+2

µ2
0

)
1

2N |t|
|x| 32

y, (5.13)

where the function H = H(η) (≥ 0) and the independent variable η are dimen-

sionless. Hence (5.11) reduces to the ordinary differential equation

St (ηH
′ −H) = Sg

(

H3H ′
)′

+ Sx

(

3

4
η(H2)′ −H2

)

(5.14)
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for H, where a dash denotes differentiation with respect to η, and the notation

St = sgn(t) = ±1, Sg = sgn(cosα) = ±1 and Sx = sgn(x) = ±1 are used. We

note that, like (5.11), equation (5.14) is also independent of N .

We now investigate solutions of the type (5.13) representing a rivulet in Sec-

tion 5.3 and a dry patch in Section 5.4.

5.3 A Rivulet

For a symmetric rivulet, appropriate boundary and symmetry conditions on H

are again given by (2.23) and the (unknown) position where H = 0 is denoted by

η = η0, so that with (5.12) we have

H = 0 at η = η0, H3H ′ → 0 as η → η0. (5.15)

From (5.13) the middle thickness of the rivulet, hm = h(x, 0, t), and the semi-width

of the rivulet vary with x and t according to

hm =
(µ0

τ

)
1
N
∣

∣

∣

x

t

∣

∣

∣H0, a =

(

ρg| cosα|
3

)
1
2
(

µ2
0

τN+2

)
1

2N |x| 32
|t| η0, (5.16)

predicting that at any time t the rivulet widens or narrows according to |x|3/2 and

thickens or thins according to |x|, and that at any station x the rivulet widens or

narrows according to |t|−1 and thickens or thins according to |t|−1, independent of

the power-law index N . Again, the rivulet has a nose that remains stationary at

the origin O for all time.

Conditions for the rivulet to be thin and slender are that the length scales in

the x, y and z directions (namely |x|, a and hm, respectively) satisfy hm � a� |x|,
which in turn requires that

|ρg cosαx|
τ

� 1,
τ

N+2
2N |t|

|ρg cosαx| 1
2µ

1
N

0

� 1, (5.17)

showing that α cannot be close to π/2, and that |x| and |t| must be sufficiently

large (and, in particular, that |t| � (µ0/τ)
1/N ). Moreover, the condition that the
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gravity-driven draining is negligible in comparison with the flow driven by τ is

that ρg sinα hm � τ , leading to

τ
N+1

N |t|
ρg sinα |x|µ

1
N

0

� 1. (5.18)

The cross-sectional area of the rivulet at any station x, denoted by A, is given

by

A = 2

∫ a

0

h dy =

(

ρg| cosα|
3

)
1
2
(

µ4
0

τN+4

)
1

2N |x| 52
t2

I1, (5.19)

and the total volume flux of fluid across any section x = constant, denoted by Q,

is given by

Q = 2

∫ a

0

ū dy =

(

τ

µ0

)
1
N
∫ a

0

h2 dy =
1

2

(

ρg| cosα|
3

)
1
2
(

µ4
0

τN+4

)
1

2N |x| 72
|t|3 I2, (5.20)

where In is defined as

In = 2

∫ η0

0

Hn dη. (5.21)

The area of a finite length L0 of the wetted part of the inclined plane in 0 ≤ |x| ≤ L0

(that is, the “footprint” of that part of the rivulet), denoted by A0, is given by

A0 = 2

∫ L0

0

a dx =
4

5

(

ρg| cosα|
3

)
1
2
(

µ2
0

τN+2

)
1

2N η0L
5
2
0

|t| . (5.22)

For simplicity in plotting the results, we now re-scale according to

x = Xx∗, y =

(

ρg| cosα|
3

)
1
2
(

µ2
0

τN+2

)
1

2N X
3
2

T
y∗, t = T t∗, h =

(µ0

τ

)
1
N X

T
h∗,

A =

(

ρg| cosα|
3

)
1
2
(

µ4
0

τN+4

)
1

2N X
5
2

T 2
A∗, Q =

1

2

(

ρg| cosα|
3

)
1
2
(

µ4
0

τN+4

)
1

2N X
7
2

T 3
Q∗,

A0 =
4

5

(

ρg| cosα|
3

)
1
2
(

µ2
0

τN+2

)
1

2N L
5
2
0

T
,

(5.23)

where X (> 0) and T (> 0) are length and time scales, respectively, which we may

choose arbitrarily. Then, with superscript stars dropped immediately for clarity,

the solution (5.13) takes the simpler form

h =
∣

∣

∣

x

t

∣

∣

∣
H, η =

|t|
|x| 32

y, (5.24)
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with H satisfying (5.14), (2.23) and (5.15); from (5.16) the middle thickness hm

and semi-width a are given by

hm =
∣

∣

∣

x

t

∣

∣

∣
H0, a =

|x| 32
|t| η0, (5.25)

and from (5.19), (5.20) and (5.22), the cross-sectional area A, flux Q and wetted

area A0 become

A =
|x| 52
|t|2 I1, Q =

|x| 72
|t|3 I2, A0 =

η0

|t| . (5.26)

In the differential equation (5.14) there are again four distinct cases to consider,

namely St = Sg = Sx, St = −Sg = Sx, St = Sg = −Sx and St = −Sg = −Sx.

As discussed in previous chapters, each of these cases has two different physical

interpretations but the two cases will have exactly the same mathematical solution.

In fact, we shall show shortly, by using the same arguments as before, only the

case St = −Sg = Sx can lead to physically realisable solutions.

Near η = 0, we find straightforwardly that H satisfies

H = H0 +
SxH0 − St

2SgH
2
0

η2 +O
(

η4
)

(5.27)

as η → 0 when H0 6= 0, and near the contact line η = η0, we find that H satisfies

either

H ∼
[

−3Stη0

Sg
(η0 − η)

]
1
3

(5.28)

provided that Sg = −St, or

H ∼ C(η0 − η)
1
4 − 4Stη0

5SgC2
(η0 − η)

1
2 (5.29)

as η → η0, where C is a positive constant1. However, with (5.29) the zero-mass-

flux condition (5.15)2 would require that C = 0; therefore the two cases with

St = Sg, in which (5.29) is the only possible behaviour near the contact line, are

immediately eliminated.

1Note that both (5.28) and (5.29) have H ′ → ∞ as η → η0, showing that the lubrication

approximation again fails near the contact lines.
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Since the rivulet has two contact lines, at η = ±η0, the function H (≥ 0) must

have at least one maximum in |η| ≤ η0. From equation (5.14), at any stationary

point of the free surface (where H ′ = 0) for the cases with St = −Sg we have

H2H ′′ = 1 − StSxH, (5.30)

provided that H 6= 0. In the case St = −Sg = −Sx, equation (5.30) shows

immediately that any stationary point of H is a minimum, so there can be no

solution for H with a maximum, and therefore this case is eliminated.

With all other cases eliminated, the only case that could lead to physically

realisable solutions is St = −Sg = Sx. In this case, equation (5.14) becomes

(

H3H ′
)′ − 3

4
η(H2)′ + ηH ′ +H2 −H = 0. (5.31)

Again a closed-form solution of the ordinary differential equation (5.31) is not

available, and so it must, in general, be solved numerically. Using the same pro-

cedure as in Chapters 2 and 4, we did this in two stages, first by using a shooting

method to solve (5.31) subject to (2.23) to determine the value of η0 in (5.15)1 for

a given value of H0, and then by using the condition C = 0 to select the physically

realisable solutions from this family of solutions; H0 and η0 are thus determined as

part of the solution. Figure 5.3 shows the results for η0 as a function ofH0 obtained

by the shooting method. This function has four branches, labelled as branches 1, 2,

3 and 4 in Figure 5.3; branch 1 extends from H0 ' 0.0000 to H0 ' 0.9250, branch

2 from H0 ' 0.9250 to H0 ' 1.0000, branch 3 from H0 ' 1.0000 to H0 ' 1.2708,

and branch 4 from H0 ' 1.2708 to large values of H0, there being asymptotes to

the function at H0 ' 0.9250, H0 ' 1.0000 and H0 ' 1.2708. There is a solution

η0 for every value of H0 except at the asymptotes, at which there is no solution.

Figure 5.4 shows numerically calculated cross-sectional profiles H for a range of

values of H0 on the different branches. Equation (5.30) shows that any stationary

point for which H < 1 is a minimum, and any stationary point for which H > 1 is

a maximum. Solutions on branches 1 and 2 are double-humped, with a minimum
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Figure 5.3: Plot of η0 as a function of H0, obtained by solving (5.31) numerically

subject to (2.23). The dashed-dotted curve is the leading-order asymptotic solution

in the limit H0 → ∞.

at η = 0 and two equal maxima symmetrically placed about η = 0, and solutions

on branch 3 are triple-humped, with a maximum at η = 0, and two equal maxima

and two equal minima symmetrically placed about η = 0; solutions on branch 4

are single-humped, with a single maximum at η = 0.

As discussed previously in Chapter 2, we can understand the large-H0 limit

shown in Figure 5.3 by analysing the behaviour of H and η0 in the limit H0 → ∞.

From the numerically calculated solutions, it is found that H = O(H0) and η0 =

O(H0), and so we write

H = H0H̄ (η̄) , η = H0η̄, η0 = H0η̄0; (5.32)

then at leading order equation (5.31) reduces to

(

H̄3H̄ ′
)′ − 3

4
η̄
(

H̄2
)′

+ H̄2 = 0, (5.33)

which is readily solved numerically subject to the boundary conditions

H̄(0) = 1, H̄ ′(0) = 0, (5.34)
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Figure 5.4: Numerically calculated cross-sectional rivulet profiles H = H(η) for

H0 = 0.1 and 0.9249542 (branch 1), 0.94 and 0.99 (branch 2), 1.01 and 1.2 (branch

3), and 1.3 and 10 (branch 4).

to yield η̄0 ' 0.6801. Figure 5.5 shows comparisons between profiles H for H0 =

3 and H0 = 10 computed numerically (full curves) and from the leading order

asymptotic solution in the limit H0 → ∞ (dashed curves), demonstrating good

agreement between the two for sufficiently large H0. Also Figure 5.3 includes (as

a dashed-dotted curve) the leading order asymptotic solution for η0 as a function

of H0 in the limit H0 → ∞.

Next we choose the physically realisable solutions from the family of solutions

shown in Figure 5.3. In order to do this, we again impose condition (5.15), or

equivalently the condition C = 0 in (5.29). We determine C by integrating equa-

tion (5.31) from η = 0 to η = η0, which leads to

∫ η0

0

7H2 − 8H dη =







0 for (5.28),

C4 for (5.29),
(5.35)
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Figure 5.5: Cross-sectional rivulet profiles H = H(η) obtained by solving (5.31)

numerically subject to (2.23) (full curves) and from the leading order asymptotic

solution in the limit H0 → ∞ (dashed curves) for (a) H0 = 3 and (b) H0 = 10.

so that C in (5.29) is given by

C =

[
∫ η0

0

7H2 − 8H dη

]
1
4

=

[

1

2
(7I2 − 8I1)

]
1
4

, (5.36)

which is evaluated with the numerical solution for H(η). Also these values of

C were checked against values that we obtained from (5.29) using the numerical

solution near η = η0. Figure 5.6 shows a plot of C calculated from (5.36) as a

function of H0. From this plot we see that there is only one value of H0 for which

C = 0, namely H0 ' 1.2708, for which the corresponding value of η0 is η0 ' 1.9152.

Thus our main conclusion is that there is a unique physically realisable solution

of the type sought for an unsteady rivulet. This solution has a single-humped

cross-sectional profile; the associated values of I1 and I2 in the expressions (5.19)

and (5.20) for the cross-sectional area A and flux Q are given by equation (5.21)

as I1 ' 4.2495 and I2 ' 4.8565, consistent with the fact that 8I1 = 7I2 in the case

C = 0.

As mentioned previously, although the cases where St = −Sg = Sx = 1 and

St = −Sg = Sx = −1 have the same mathematical solution, the two cases have

different physical interpretations, the former representing a pendent rivulet and

the latter a sessile rivulet. However, numerical results of a stability study of
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dashed-dotted curve is the leading-order asymptotic solution in the limit H0 → ∞.

corresponding similarity solutions for a gravity-driven flow of a Newtonian fluid

in Chapter 3 suggest that the sessile case is stable but that the pendent case

is unstable, indicating that we may also tentatively eliminate the possibility of a

pendent rivulet for the present problem. Figure 5.7 shows a three-dimensional plot

of the free surface z = h of the sessile rivulet predicted by the similarity solution

(5.24) for the physical solution H0 ' 1.2708, η0 ' 1.9152, at times t = −3, −2

and −1; the inset shows the (single-humped) cross-sectional profile of the solution.

In particular, Figure 5.7 illustrates that the sessile rivulet becomes narrower and

thinner with |x| as it flows down the plane, but becomes wider and thicker as time

elapses (from t → −∞ to t = 0), eventually exhibiting a finite-time singularity,

becoming infinite everywhere at t = 0.

As before, we may alternatively interpret the solution (5.13) as representing a

rivulet of (prescribed) finite volume, by truncating it at some finite length L =

L(t), so that in the sessile case it occupies −L ≤ x ≤ 0. The volume of fluid in
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Figure 5.7: Three-dimensional plot of the free surface z = h of the sessile rivulet

predicted by the present similarity solution (5.24) with H satisfying (5.31) subject

to (2.23) and (5.15), for which H0 ' 1.2708 and η0 ' 1.9152, at times t = −3, −2

and −1. The inset shows the cross-sectional profile.

such a rivulet, denoted by V , is given (in dimensional terms) by

V =

∫ 0

−L(t)

∫ a

−a

h dy dx =
2I1
7t2

(

µ4
0

τN+4

)
1

2N
(

ρg| cosα|L7

3

)
1
2

, (5.37)

and so the length L of the rivulet at time t is given by

L =

(

147V 2τ
N+4

N

4µ
4
N

0 ρg| cosα|I2
1

)
1
7

t
4
7 , (5.38)

decreasing with t according to t4/7.
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5.4 A Dry Patch

The approach discussed in Section 5.3 may also be used to investigate unsteady

shear-stress-driven flow of an infinitely wide thin film of non-Newtonian power-law

fluid around a symmetric slender dry patch on an inclined plane. In that case the

governing equation (5.11) again holds, but now the fluid occupies |y| ≥ a, where

a = a(x) denotes the semi-width of the dry patch, the region |y| < a of the inclined

plane being dry. Seeking a similarity solution of the form (5.13) we find that H(η)

again satisfies the ordinary differential equation (5.14), now valid in |η| ≥ η0, where

η = η0 again denotes the (unknown) position of the contact line where H = 0 (and

the fluid region now corresponds to |η| ≥ η0). The similarity solution predicts

that at any time t the dry patch (whose semi-width a is as in (5.16)) widens or

narrows according to |x|3/2 and the film thickens or thins according to |x|, and that

at any station x the dry patch widens or narrows like |t|−1 and the film thickens

or thins like |t|−1, independent of the power-law index N . Conditions for the dry

patch to be thin and slender and for the gravity-driven draining to be negligible

in comparison with the flow driven by τ are again given by (5.17) and (5.18),

respectively.

We look for solutions H satisfying H → H∞ as η → ∞, where H∞ is a positive

constant representing the depth of the film far from the dry patch; then equation

(5.14) immediately gives StH∞ = SxH
2
∞, which requires both that St = Sx and

that H∞ = 1. Therefore appropriate far-field conditions are

H → 1, H ′ → 0 as η → ∞ (5.39)

(so that the dimensional film thickness satisfies h → (µ0/τ)
1/N |x/t| as y → ±∞,

showing that the film becomes uniform in y far from the dry patch, but varies with

x and t). From equation (5.39) H satisfies H ∼ 1 +F with F → 0 as η → ∞, and

so by (5.14) with St = Sx we find that F = F (η) satisfies

SgF
′′ + St

(η

2
F ′ − F

)

= 0 (5.40)
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at leading order as η → ∞. If St = Sg then (5.40) has general solution

F = c1

(

1 +
η2

2

)

+ c2 exp

(

−η
2

4

)

H−3

(η

2

)

, (5.41)

where c1 and c2 are constants and H−3 denotes a Hermite function of degree −3

(see [1]); then equation (5.39) requires that c1 = 0, and therefore

H ∼ 1 + c2η
−3 exp

(

−η
2

4

)

as η → ∞, (5.42)

showing that H approaches its far-field value 1 monotonically as η → ∞. On the

other hand if St = −Sg then no solution of (5.40) satisfying F → 0 as η → ∞ is

possible; therefore only the case St = Sg = Sx could possibly lead to a physically

realisable dry-patch solution of the type sought.

The free-surface profile H must again satisfy the contact-line conditions in

(5.15). Near the contact line η = η0, the asymptotic behaviour of solutions of

(5.14) given in (5.28) also holds for a dry patch (now with St = Sg and η ≥ η0),

but (5.29) is replaced by

H ∼ C(η − η0)
1
4 +

4Stη0

5SgC2
(η − η0)

1
2 (5.43)

as η → η+
0 , where C again denotes a positive constant. However, (5.15) again

requires that C = 0, implying again that only the case St = Sg = Sx could lead to

a physically realisable solution, in which case equation (5.14) becomes

(

H3H ′
)′

+
3

4
η(H2)′ − ηH ′ −H2 +H = 0. (5.44)

From equation (5.44), at any stationary point of the free surface we have

H ′′ =
H − 1

H2
, (5.45)

showing that any stationary point with H < 1 (H > 1) would be a maximum

(minimum); we conclude that H must increase monotonically from H = 0 at

η = η0 to H = 1 as η → ∞, with 0 ≤ H < 1.

As in the corresponding analysis for a rivulet described previously, we solved the

ordinary differential equation (5.44) numerically by means of a shooting method.
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For a dry patch we may shoot either from some far-field position η = η∞ � 1

(using approximate boundary conditions obtained from (5.42)) until the solution

achieves a contact line at some position η = η0, or from a chosen position η = η0

to see whether the solution settles down to a constant value H = 1 as η becomes

large; we chose to use the latter method. The numerical computation cannot be

started exactly at the contact line η = η0 (because of the singularity there), so

instead it was started from a position η = η0 + δ, where δ (> 0) is small; thus in

practice we solved equation (5.44) subject to approximated boundary conditions

obtained from (5.28), namely

H(η0 + δ) ∼ (3η0δ)
1
3 , H ′(η0 + δ) ∼

( η0

9δ2

)
1
3
. (5.46)

This procedure was then repeated with different values of η0. In this way we

arrived at our main conclusion, namely that there is only one physically realisable

dry-patch solution of the type sought, and that for this solution η0 ' 0.9573.

As in the rivulet case, it may again be anticipated that the sessile solution will

be stable whereas the pendent solution will be unstable. Figure 5.8 shows a three-

dimensional plot of the solution (re-scaled as in (5.23) and (5.24)) for a sessile film

(St = Sg = Sx = +1) at the instant t = 1; the inset shows the cross-sectional

profile of the solution. In particular, Figure 5.8 illustrates the widening of the dry

patch and the thickening of the film with x; also we note that, as for the rivulet,

the dry patch has a nose that remains stationary at O for all time.

The film is of infinite lateral extent, and its cross-sectional area (at constant

x) is infinite, as is the volume flux of fluid down the inclined plane. However,

the difference between the cross-sectional area of a film of thickness (µ0/τ)
1/N |x/t|

(uniform in y) and that of a film containing a dry patch with the same thickness

far from the patch, denoted 4A, is finite and is given (in dimensional terms) by

4A =

(

4ρg| cosα|
3

)
1
2
(

µ4
0

τN+4

)
1

2N |x| 52
|t|2 (η0 + J1), (5.47)

and similarly the difference in volume flux in the two films, denoted 4Q, is finite
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Figure 5.8: Three-dimensional plot of the free surface z = h of the sessile dry

patch predicted by the present similarity solution (5.24) with H satisfying (5.44)

subject to (5.15) and (5.39), for which η0 ' 0.9573, at time t = 1. The inset shows

the cross-sectional profile.

and is given by

4Q =

(

ρg| cosα|
3

)
1
2
(

µ4
0

τN+4

)
1

2N |x| 72
|t|3 (η0 + J2), (5.48)

where we have defined the constants Jn by

Jn =

∫ ∞

η0

1 −Hn dη, (5.49)

so that J1 ' 0.2382 and J2 ' 0.4090. (Integration of (5.44) from η = η0 to η = ∞
leads to 7J2 − 8J1 = η0, numerical confirmation of which provides a check on the

accuracy of the numerical solution.) Also the area A0 of a finite length L0 of the

dry part of the inclined plane in 0 < |x| < L0 is again given by (5.22).
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5.5 Discussion

We have obtained similarity solutions of the form (5.13) representing unsteady flow

of a thin slender rivulet of a non-Newtonian power-law fluid and unsteady flow of

a thin film of such a fluid around a slender dry patch on an inclined plane, the flow

in each case being driven by a constant longitudinal shear stress applied at the free

surface. There were four cases to consider for each problem, but we showed that

the only cases that could lead to physically realisable solutions are St = −Sg = Sx

for a rivulet and St = Sg = Sx for a dry patch. In the case of a rivulet we found

that there is only one physically realisable solution, with a single-humped cross-

sectional profile of thickness H0 ' 1.2708 and semi-width η0 ' 1.9152, and in the

case of a dry patch there is again only one physically realisable solution, of semi-

width η0 ' 0.9573, independent of the power-law index N . Although N also does

not appear in the partial differential equation (5.11) for h, nor in the powers of x

and t in the similarity solution (5.13), nor in ordinary differential equation (5.14)

for H, it nevertheless affects the nature of the solutions; this may be illustrated by

a comparison of the rivulet solution for a power-law fluid with N 6= 1 with that for

a Newtonian fluid (for which N = 1) of the same density ρ, on the same incline α,

subject to the same driving surface shear stress τ , as follows. With a superposed

hat used to denote quantities for the Newtonian fluid, at a given position x and

time t we have
hm

ĥm

=
a

â
=
A0

Â0

=
µ

µ̂
,

A

Â
=
Q

Q̂
=

(

µ

µ̂

)2

, (5.50)

where µ = µ0(τ/µ0)
(N−1)/N again denotes the viscosity of the power-law fluid

in this flow. Thus for a shear-thinning fluid (N < 1), if, for given values of

µ0 and µ̂, τ satisfies τ < τc, where τc is defined by τc = (µ̂N/µ0)
1/(N−1), then

µ > µ̂, so that the quantities in (5.50) are greater than 1, whereas if τ > τc

then µ < µ̂, so that the quantities in (5.50) are less than 1. Therefore a rivulet

of a shear-thinning fluid subject to a weak shear stress (τ < τc) will be wider

and thicker than a corresponding rivulet of a Newtonian fluid, whereas such a
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rivulet subject to a strong shear stress (τ > τc) will be narrower and thinner than

a corresponding rivulet of a Newtonian fluid; a converse statement holds for a

rivulet of a shear-thickening fluid. On the other hand, if, for given values of τ and

µ̂, µ0 satisfies µ0 > µ0c (µ0 < µ0c), where µ0c is defined by µ0c = µ̂N/τN−1, then a

rivulet of a power-law fluid will be wider and thicker (narrower and thinner) than a

corresponding rivulet of a Newtonian fluid, independent of whether the power-law

fluid is shear thinning or shear thickening. Analogous statements hold for flow

around a dry patch.

Both the rivulet and dry patch have a nose that remains stationary at O for

all time. The solution for a sessile rivulet again exhibits a finite-time singularity,

becoming infinite everywhere at time t = 0.

Finally, it is worth mentioning that there are significant differences between

shear-stress-driven flow studied herein and gravity-driven flow studied in Chapter 2

and 4. In gravity-driven rivulet flow there are two physically realisable solutions

(one with a double-humped cross-sectional profile and the other with a single-

humped cross-sectional profile), whereas in shear-stress-driven flow there is only

one physically realisable solution (whose cross-sectional profile is single-humped).

Furthermore, there are no dry-patch similarity solutions of the type sought in

gravity-driven flow, whereas there is a dry-patch solution in the present shear-

stress-driven problem.
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Travelling-Wave Similarity

Solutions for Flows around

Slender Dry Patches

In this chapter we consider a completely different kind of similarity solution,

namely a travelling-wave solution. We investigate unsteady flows of thin films

of a Newtonian fluid around slender dry patches moving with constant velocity on

an inclined plane driven either by gravity or a constant surface shear stress.

6.1 Problem Formulation

Consider a thin film of Newtonian fluid with constant density ρ and constant

viscosity µ on a planar substrate inclined at an angle α (0 < α < π) to the

horizontal, subject to gravitational acceleration g and a prescribed constant shear

stress τ on its free surface (acting up or down the slope), and with the substrate

moving parallel to itself at constant speed U0 up or down the slope. We shall be

concerned with unsteady flow of such a film around a dry patch on the substrate,

as sketched in Figure 6.1.

The same Cartesian coordinates Oxyz as in previous chapters are adopted,

138
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Figure 6.1: Sketch of the geometry of the problem: a moving dry patch in a thin

film.

and the free surface profile of the film is denoted by z = h(x, y, t). The substrate

velocity is U0i, with U0 > 0 (U0 < 0) if the substrate is moving downwards

(upwards); also τ > 0 (τ < 0) if the prescribed surface shear stress acts down (up)

the substrate.

Again, we take the dry patch to be slender (varying much more slowly in the

longitudinal (x) direction than in the transverse (y) direction), and we neglect

surface-tension effects. Then with the familiar lubrication approximation, the

velocity (u, v, w), pressure p and thickness h satisfy the governing equations

ux + vy + wz = 0, (6.1)

µuzz + ρg sinα = 0, (6.2)

− py + µvzz = 0, (6.3)

− pz − ρg cosα = 0, (6.4)

subject to the boundary conditions of no slip and no penetration on the substrate
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z = 0:

u = U0, v = w = 0, (6.5)

balances of normal and tangential stresses on the free surface z = h:

p = pa, µuz = τ, vz = 0 (6.6)

where pa denotes atmospheric pressure, and the kinematic condition (2.7) on z = h.

Integrating (6.2)–(6.4) subject to (6.5) and (6.6) yields

p = pa + ρg cosα (h− z) , (6.7)

u =
ρg sinα

2µ
(2h− z) z +

τ

µ
z + U0, (6.8)

v = −ρg cosα

2µ
hy (2h− z) z. (6.9)

Substituting (6.8) and (6.9) into (2.8) gives

ū =
ρg sinα

3µ
h3 +

τ

2µ
h2 + U0h, v̄ = −ρg cosα

3µ
h3hy, (6.10)

and hence the kinematic condition (2.7) yields the governing partial differential

equation for h:

ht =
ρg cosα

3µ

(

h3hy

)

y
− ρg sinα

3µ

(

h3
)

x
− τ

2µ

(

h2
)

x
− U0hx. (6.11)

Once h is determined from (6.11) the solution for p, u and v in (6.7)–(6.9) is

known.

In the case of a film of constant uniform thickness h∞ the solution takes the

form p = p∞ = p∞(z), u = u∞ = u∞(z) and v = v∞ = 0, where

p∞ = pa + ρg cosα (h∞ − z) , u∞ =
ρg sinα

2µ
(2h∞ − z) z +

τ

µ
z + U0, (6.12)

representing steady unidirectional flow up or down the substrate, with depth-

averaged velocity U i, where

U =
ρg sinα

3µ
h2
∞ +

τ

2µ
h∞ + U0, (6.13)
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which may be positive, negative or zero. We are concerned with unsteady flow

around a dry patch in a film of thickness h∞ at infinity (that is, in a film that

would be of uniform thickness h∞ if the dry patch were absent). We shall restrict

attention to dry patches that are symmetric about y = 0 (so that h is even in y)

with (unknown) semi-width a = a(x, t), so that the fluid occupies |y| ≥ a, and

h = 0 at the contact lines y = ±a. From (6.10) we have ū = 0 at y = ±a, so that

the zero-mass-flux condition (2.9) at the contact lines reduces to v̄ = 0 at y = ±a,
and therefore again we have the contact-line conditions

h = 0 at y = ±a, h3hy → 0 as y → ±a. (6.14)

6.1.1 A similarity solution

We seek an unsteady travelling-wave similarity solution of (6.11) in the form

h = h∞F (η), η =
y

[`(x− ct)]n
if `(x− ct) ≥ 0,

h = h∞ if `(x− ct) < 0,











(6.15)

where ci (with c positive, negative or zero) is the velocity of the dry patch up or

down the substrate, the constant ` is to be specified, and the exponent n and the

dimensionless function F = F (η) (≥ 0) of the dimensionless similarity variable η

are to be determined. The dry patch lies in the region where `(x − ct) ≥ 0, and

the fluid in the region where `(x − ct) < 0 (ahead of or behind the dry patch)

is of uniform thickness h∞; at x = ct the thickness h and its derivative hy are

continuous (so that u, v and p are continuous there), except at the singular point

x = ct, y = 0, at which the free surface is normal to the substrate, occupying

0 ≤ z ≤ h∞. With (6.15)1 the terms in (6.11) balance provided that n = 1/2 (so

that ` has physical dimensions of length), and then (6.11) reduces to an ordinary

differential equation for F (η), namely

4ρg cosαh3
∞

(

F 3F ′
)′

+ `η
[

2ρg sinαh2
∞F

3 + 3τh∞F
2 − 6µ(c− U0)F

]′
= 0, (6.16)

where a dash denotes differentiation with respect to η.
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We denote the (unknown) position where F = 0 by η = η0 (corresponding to

the contact-line position y = a), so that the fluid lies in |η| ≥ η0, and

a =
√

` (x− ct) η0,
y

a
=

η

η0
, (6.17)

showing that the dry patch has a parabolic shape. From (6.14) we have

F = 0 at η = η0, F 3F ′ → 0 as η → η0; (6.18)

in addition, F must satisfy the far-field condition

F → 1 as η → ∞. (6.19)

6.1.2 Behaviour near η = η0

Near the contact line η = η0 we find from (6.16) that F satisfies

F ∼
[

9η0µ`(c− U0)(η − η0)

2ρg cosαh3
∞

]
1
3

(6.20)

as η → η+
0 , which can be valid only if

` cosα(c− U0) > 0. (6.21)

Also (6.20) shows that the fluid film has infinite slope at the contact line η = η0,

and so the lubrication approximation fails there.

6.1.3 Behaviour in the limit η → ∞

In the limit η → ∞ we write F = 1 + f with |f | � 1 in (6.16), in which case

f = f(η) satisfies

f ′′ +Kηf ′ = 0, (6.22)

where we have defined the constant K by

K =
3µ`

2ρg cosαh3
∞

(

ρg sinαh2
∞

µ
+
τh∞
µ

+ U0 − c

)

. (6.23)
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The solution of (6.22) satisfying f → 0 as η → ∞ has the far-field behaviour

f ∝ 1

η
exp

(

−Kη
2

2

)

(6.24)

as η → ∞, provided that K > 0; equation (6.24) shows that the transverse profile

of the fluid film approaches the uniform far-field value in (6.19) monotonically.

6.1.4 Physical forms of the solutions

The condition K > 0 together with condition (6.21) shows that a dry patch is

possible only if

` cosαh∞τ0 > µ` cosα (c− U0) > 0, (6.25)

where we have defined τ0 = ρg sinαh∞ + τ (so that τ0, which may be positive,

negative or zero, represents the shear stress µdu∞/dz at z = 0 acting on the

substrate due to the flow (6.12) of a film of uniform thickness h∞). Thus in the

sessile case (cosα > 0) if τ0 > 0 then ` > 0 and c > U0, so that the dry patch

occupies x ≥ ct, moves downwards relative to the substrate, and has semi-width

a =
√

`(x− ct) η0, widening with increasing x, the fluid in x < ct being of uniform

thickness h∞, whereas if τ0 < 0 then ` < 0 and c < U0, so that the dry patch

occupies x ≤ ct, moves upwards relative to the substrate, and has semi-width

a =
√

|`|(ct− x) η0, narrowing with increasing x, the fluid in x > ct being of

uniform thickness h∞; analogous remarks apply to the pendent case (cosα < 0).

The forms of the dry patch in these various cases are sketched in Figure 6.2, in

which (a) and (b) show sessile cases, and (c) and (d) show pendent cases; in (a) and

(c) the dry patch is moving downwards, and in (b) and (d) it is moving upwards.

Other things being equal, at any given instant t the free-surface profile in a

sessile or pendent case on a substrate inclined at an angle α is the mirror image

in the plane x = ct of the free-surface profile in a pendent or sessile case on a

substrate inclined at an angle π − α.

The limit τ0 → 0 corresponds to c → U0, that is, to a dry patch that is

stationary relative to the substrate; in this case the local behaviour (6.20) no
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Figure 6.2: Sketch of the possible forms of the moving dry patch: (a) and (b) show

sessile cases, and (c) and (d) show pendent cases; in (a) and (c) the dry patch is

moving downwards, and in (b) and (d) it is moving upwards.
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longer holds, and it is found that there can be a physically realisable solution only

if ` cosα > 0, τ < 0 and τ0 > 0, and then (6.20) is replaced by

F ∼
[

−3η0`τ(η − η0)

2ρg cosαh2
∞

]
1
2

. (6.26)

The motion of the substrate with constant velocity U0i corresponds to a “shift”

in the value of c by an amount U0 in (6.16); thus a particular solution (6.15)

representing an unsteady flow with a dry patch moving with velocity ci on a

substrate moving with velocity U0i also provides a solution for a steady flow (with

a stationary dry patch) on a substrate moving with velocity (U0 − c)i provided

simply that x− ct is replaced with x in η.

6.1.5 Cross-sectional area and volume flux

The film is of infinite lateral extent, and its cross-sectional area (at constant x) is

infinite, as is the volume flux of fluid down the substrate. However, the difference

between the cross-sectional area of the part of the film of uniform thickness h∞ in

the region where `(x− ct) < 0 and that of the part of the film in the region where

`(x− ct) ≥ 0 containing the dry patch, denoted 4A, is finite and is given by

4A = lim
y∞→∞

2

(

h∞y∞ −
∫ y∞

a

h dy

)

= 2h∞
√

`(x− ct) qarea (6.27)

for `(x− ct) ≥ 0, where the constant qarea is defined by

qarea = η0 +

∫ ∞

η0

(1 − F ) dη. (6.28)

Similarly the difference in volume flux in the two parts of the film, denoted 4Q,

is finite and is given by

4Q = lim
y∞→∞

2

(

Uh∞y∞ −
∫ y∞

a

ūdy

)

, (6.29)

that is,

4Q = 2h∞
√

`(x− ct)

[

Uη0 +

∫ ∞

η0

ρg sinαh2
∞

3µ
(1 − F 3) dη

+

∫ ∞

η0

(

τh∞
2µ

(1 − F 2) + U0(1 − F )

)

dη

]

(6.30)
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for `(x − ct) ≥ 0; however, an integration of (6.16) by parts and use of (6.18),

(6.24), (6.27) and (6.28) shows that (6.30) reduces to simply

4Q = c4A = 2h∞
√

`(x− ct) cqarea. (6.31)

Of particular interest are the cases of flow on a stationary substrate (U0 ≡
0) driven by gravity with no surface shear (τ ≡ 0), and flow on a stationary

substrate (U0 ≡ 0) driven by surface shear with the down-slope component of

gravity neglected (equivalent to setting g sinα ≡ 0); these two cases are now

considered in more detail separately, in Section 6.2 and Section 6.3, respectively.

6.2 Gravity-Driven Flow

For purely gravity-driven flow on a stationary substrate (so that τ ≡ 0 and U0 ≡ 0)

equation (6.16) reduces to

(

F 3F ′
)′

+
` tanα

2h∞
η
(

F 3 − c

U
F
)′

= 0, (6.32)

where, from (6.13), U = ρg sinαh2
∞/3µ (> 0) is the depth-averaged speed of the

flow (6.12) in this case. Conditions (6.25) for the similarity solution to be valid

reduce to

` cosα > 0, 0 < c < 3U, (6.33)

and without loss of generality we now write ` in the form

` = 2h∞ cotα. (6.34)

The result c > 0 shows that the dry patch moves down the substrate, not up, and

the result ` cosα > 0 means that in the sessile case (cosα > 0, so that ` > 0)

the dry patch occupies x ≥ ct, with semi-width a =
√

`(x− ct) η0 (widening with

increasing x), whereas in the pendent case (cosα < 0, so that ` < 0) it occupies

x ≤ ct, with semi-width a =
√

|`|(ct− x) η0 (narrowing with increasing x), as
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sketched in parts (a) and (c) of Figure 6.2. Also since now U 6= 0 we may write

(6.31) in the form

4Q = c4A = 2Uh∞
√

`(x− ct) qflux, qflux =
c

U
qarea. (6.35)

We non-dimensionalise and re-scale variables according to

x = Xx∗, y =
√

|`|Xy∗, z = h∞z
∗, t =

X

U
t∗, h = h∞h

∗, a =
√

|`|Xa∗,

c = Uc∗, 4A = h∞
√

|`|X4A∗, 4Q = Uh∞
√

|`|X4Q∗,

(6.36)

where X (� h∞) is a length scale in the x direction, which we may choose arbitrar-

ily. Then with stars dropped for clarity, equation (6.33) requires that 0 < c < 3,

and the solution (6.15) takes the slightly simpler form

h = F (η), y =
√

Sg (x− ct)η, a =
√

Sg (x− ct)η0,
y

a
=

η

η0
(6.37)

(where we have defined Sg = sgn(cosα)), with F satisfying

(

F 3F ′
)′

+ η
(

F 3 − cF
)′

= 0, (6.38)

to be integrated subject to (6.18) and (6.19). Also from (6.27) and (6.35) we have

4A = 2
√

Sg (x− ct) qarea, 4Q = 2
√

Sg (x− ct) qflux, qflux = cqarea, (6.39)

with qarea given by (6.28).

Conditions for the dry patch to be thin and slender are that the length scales

in the x, y and z directions, namely X,
√

|`|X and h∞, satisfy h∞ �
√

|`|X � X,

so that

X � h∞| tanα|, X � h∞| cotα|, (6.40)

respectively, showing that X must be much larger than h∞ and that α cannot be

close to 0, π/2 or π.

Near the contact line η = η0 we have from (6.20)

F ∼ [3cη0(η − η0)]
1
3 (6.41)
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in the limit η → η+
0 . Also from (6.24) we have

F − 1 ∝ 1

η
exp

(

−3 − c

2
η2

)

(6.42)

in the limit η → ∞.

6.2.1 Numerical solution for F (η)

Since a closed-form solution of (6.38) is not available, we solved it numerically for

F . Again, we did this using a shooting method, by shooting from a chosen value

of the contact-line position η = η0, with a chosen value of c. The solution F was

monitored to see if it satisfied (6.19) to within a prescribed tolerance; if not then

the value of c was changed and the calculation repeated until a solution satisfying

(6.19) was found. In fact, the numerical computation cannot be started at η = η0

(because of the singular slope there, given by (6.41)), so instead it was started

from a position η = η0 + δ, where δ (> 0) is small; thus we solved (6.38) subject

to the approximated boundary conditions

F (η0 + δ) = (3cη0δ)
1
3 , F ′(η0 + δ) =

( cη0

9δ2

) 1
3
, (6.43)

obtained from (6.41).

Figure 6.3 shows a plot of c as a function of η0 obtained in this way, and

Figure 6.4 shows examples of cross-sectional profiles F (η) for various values of

η0. As Figure 6.3 shows, c is a single-valued function of η0, but behaves non-

monotonically; specifically, c decreases from its value c = c0 ' 1.8507 when η = 0

to a (local) minimum value c = cmin ' 1.8501 when η0 ' 0.0040, then increases

to a (global) maximum value c = cmax ' 1.8674 when η0 ' 0.0450, and thereafter

decreases monotonically towards the value c = 1 as η0 → ∞. Thus the speed of

the dry patch satisfies 1 < c ≤ cmax for any value of η0, more restrictive than the

necessary condition 0 < c < 3 found earlier. Moreover, for a given value of c there

is one corresponding value of η0 if either c = cmax or 1 < c < cmin, two if either

c0 < c < cmax or c = cmin, three if cmin < c ≤ c0, and none if either c > cmax or

c ≤ 1; thus there can be zero, one, two or three different dry patches that travel
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Figure 6.3: Plot of c as a function of η0 for gravity-driven flow, together with the

asymptotic value c = c∞ = 1 in the limit η0 → ∞ (shown as a dashed line). The

inset shows an enlargement of the behaviour near η0 = 0; the point c = c0 ' 1.8507

at η0 = 0 is shown as a dot, as are the minimum c = cmin ' 1.8501 at η0 ' 0.0040

and the maximum c = cmax ' 1.8674 at η0 ' 0.0450.PSfrag replacements
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Figure 6.4: Cross-sectional profiles F (η) for gravity-driven flow for several values

of η0.
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at a given speed c.

Figure 6.4 shows that the cross-sectional profiles F increase monotonically with

η, from F = 0 at η = η0 to F = 1 as η → ∞ (which means that, as expected,

4A > 0 and 4Q > 0). Figure 6.5 shows three-dimensional plots of the free-surface

profiles h in a sessile case with η0 = 1 at times t = 0, 1 and 3.

In the similarity solution (6.15) the value of η0 is not determined as part of the

solution, so that (6.15) represents a family of possible solutions. It is of interest

to investigate the solutions in the asymptotic limits η0 → 0 and η0 → ∞, and, in

particular, to compare them with numerical solutions.

6.2.2 Asymptotic solution in the limit η0 → 0

In the limit of a narrow dry patch, η0 → 0, we write

η = η0 + η̂, F = F̂ (η̂), c = c0; (6.44)

then at leading order equation (6.38) gives

(

F̂ 3F̂ ′
)′

+ η̂
(

F̂ 3 − c0F̂
)′

= 0, (6.45)

and the boundary conditions (6.18) and (6.19) give

F̂ = 0 at η̂ = 0, F̂ 3F̂ ′ → 0 as η̂ → 0, F̂ → 1 as η̂ → ∞. (6.46)

At leading order in the limit η̂ → 0 the solution of (6.45) and (6.46) for F̂ has the

asymptotic form

F̂ ∼
(

3

5
c0η̂

2

)
1
3

. (6.47)

We solved (6.45) for F̂ numerically using a shooting method similar to that de-

scribed above, subject to approximated boundary conditions obtained from (6.47),

namely

F̂ (δ) =

(

3

5
c0δ

2

)
1
3

, F̂ ′(δ) =
2

3

(

3c0
5δ

)
1
3

, (6.48)

where 0 < δ � 1. From this numerical solution it was found that c0 ' 1.8507,

confirming the value obtained earlier.
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Figure 6.5: Three-dimensional plots of the free-surface profiles h for gravity-driven

flow in a sessile case with η0 = 1 at times t = 0, 1 and 3.
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Figure 6.6: Numerical solutions of (6.38) for gravity-driven flow in the cases (a)

η0 = 0.2 and (b) η0 = 10−2, together with numerical solutions of the leading-order

equation (6.45) in the limit η0 → 0 (shown as a dashed line).

Figure 6.6 shows a comparison between the numerical solution for F of equa-

tion (6.38) and the leading-order asymptotic solution for F̂ in the cases η0 = 0.2

and η0 = 10−2; clearly the agreement is good for small enough η0.

Using the asymptotic solution we find that qarea in (6.28) and qflux (= cqarea), in

terms of which the “area difference” 4A and the “flux difference” 4Q are given

by (6.39), satisfy

qarea →
∫ ∞

0

(

1 − F̂
)

dη̂ ' 0.5267, qflux → c0qarea ' 0.9748 (6.49)

in the limit η0 → 0.

6.2.3 Asymptotic solution in the limit η0 → ∞

In the limit of a wide dry patch, η0 → ∞, we write

η = η0 +
η̃

η0
, F = F̃ (η̃), c = c∞; (6.50)

then at leading order equation (6.38) reduces to

(

F̃ 3F̃ ′
)′

+
(

F̃ 3 − c∞F̃
)′

= 0, (6.51)
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Figure 6.7: Numerical solutions of (6.38) for gravity-driven flow in the cases (a)

η0 = 1 and (b) η0 = 5, together with the leading-order asymptotic solution (6.53)

in the limit η0 → ∞ (shown as a dashed line).

which is readily solved subject to the boundary conditions

F̃ = 0 at η̃ = 0, F̃ 3F̃ ′ → 0 as η̃ → 0, F̃ → 1 as η̃ → ∞ (6.52)

to give the implicit solution

η̃ =
1

2
log

(

1 + F̃

1 − F̃

)

− F̃ , c∞ = 1. (6.53)

Figure 6.7 shows a comparison between the numerical solution for F of equa-

tion (6.38) and the leading-order asymptotic solution for F̃ in (6.53) in the cases

η0 = 1 and η0 = 5; the agreement is good for large enough η0. The asymptotic

value c = c∞ = 1 is included in Figure 6.3 as a dashed line.

Using the asymptotic solution we find that qarea in (6.28) and qflux (= cqarea)

satisfy

qarea ∼ qflux ∼ η0 (6.54)

in the limit η0 → ∞.

Figure 6.8 shows plots of qarea and qflux as functions of η0, together with the

asymptotic values (6.49) in the limit η0 → 0 and the asymptotic form (6.54) in

the limit η0 → ∞; each of them decreases from its value at η0 = 0 to a minimum

value, and then increases monotonically to ∞ as η0 → ∞ according to (6.54).
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Figure 6.8: Plot of qarea in (6.28) (lower curve) and qflux (= cqarea) (upper curve) as

functions of η0 for gravity-driven flow, together with the asymptotic values (6.49)

in the limit η0 → 0 (shown as dots) and the asymptotic form (6.54) in the limit

η0 → ∞ (shown as a dashed line).

6.3 Shear-Stress-Driven Flow

The analysis for purely shear-stress-driven flow on a stationary substrate (so that

g sinα ≡ 0 and U0 ≡ 0) proceeds very similarly to that for purely gravity-driven

flow given in Section 6.2, and so the details need only be summarised here. Equa-

tion (6.16) reduces to

(

F 3F ′
)′

+
3τ`

4ρg cosαh2
∞

η
(

F 2 − c

U
F
)′

= 0, (6.55)

where, from (6.13), U = τh∞/2µ (> 0) is the depth-averaged speed of the flow

(6.12) in this case, and without loss of generality we now take τ > 0. Conditions

(6.25) for the similarity solution to be valid reduce to

` cosα > 0, 0 < c < 2U, (6.56)

and without loss of generality we now write ` in the form

` =
4ρg cosαh2

∞

3τ
. (6.57)
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The result c > 0 shows that the dry patch moves in the direction of τ , and the

implications of the result ` cosα > 0 concerning the shape of the dry patch are the

same as for the gravity-driven flow, as sketched in parts (a) and (c) of Figure 6.2.

Also 4A and 4Q are again given by (6.35) with the appropriate form for U and

with qarea again given by (6.28).

We non-dimensionalise and re-scale variables as in (6.36); then with stars

dropped for clarity, equation (6.56) requires that 0 < c < 2, and the solution

(6.15) for h again takes the form (6.37), with F now satisfying

(

F 3F ′
)′

+ η
(

F 2 − cF
)′

= 0, (6.58)

to be integrated subject to (6.18) and (6.19). Also 4A and 4Q are again given

by (6.39). The conditions h∞ �
√

|`|X � X for the dry patch to be thin and

slender now require that

X � τ

ρg| cosα| , X � ρg| cosα|h2
∞

τ
, (6.59)

respectively, showing that X must be sufficiently large and that α cannot be close

to π/2.

Near the contact line η = η0 the behaviour of F is again given by (6.41) in the

limit η → η+
0 , but from (6.24) we now have

F − 1 ∝ 1

η
exp

(

−2 − c

2
η2

)

(6.60)

in the limit η → ∞.

6.3.1 Numerical solution for F (η)

We solved (6.58) numerically for F subject to (6.43), using the same procedure as

in Section 6.2. Figure 6.9 shows a plot of c as a function of η0, and Figure 6.10

shows examples of cross-sectional profiles F (η) for various values of η0. As these

figures show, the behaviour of the solution in this case is qualitatively similar to
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that in the case of gravity-driven flow; in particular, the cross-sectional profiles F

again increase monotonically with η.

It is found that c = c0 ' 1.5424 when η = 0, and that c has a (local) minimum

value c = cmin ' 1.5421 when η0 ' 0.0040 and (global) maximum value c = cmax '
1.5503 when η0 ' 0.0470, and again satisfies 1 < c ≤ cmax for any value of η0; also

there can again be up to three different dry patches that travel at a given speed c

in this interval.

Figure 6.11 shows three-dimensional plots of the free-surface profiles h in a

sessile case with η0 = 1 at times t = 0, 1 and 3; these are qualitatively similar to

those in Figure 6.5.

6.3.2 Asymptotic solution in the limit η0 → 0

In the limit of a narrow dry patch, η0 → 0, we again write η, F and c in the form

(6.44); then at leading order equation (6.58) gives
(

F̂ 3F̂ ′
)′

+ η̂
(

F̂ 2 − c0F̂
)′

= 0, (6.61)

with F̂ satisfying (6.46).

At leading order in the limit η̂ → 0 the solution of (6.61) and (6.46) for F̂

has the asymptotic form (6.47), and we solved (6.61) for F̂ numerically using the

method described above, subject to the approximated boundary conditions (6.48)

obtained from (6.47). From this numerical solution it was found that c0 ' 1.5424,

confirming the value obtained earlier. Figure 6.12 shows a comparison between

the numerical solution for F of equation (6.58) and the leading-order asymptotic

solution for F̂ in the cases η0 = 0.2 and η0 = 10−2; again the agreement is good

for small enough η0.

Using the asymptotic solution we find that qarea in (6.28) and qflux (= cqarea)

satisfy

qarea →
∫ ∞

0

(

1 − F̂
)

dη̂ ' 0.7418, qflux → c0qarea ' 1.1441 (6.62)

in the limit η0 → 0.
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Figure 6.9: Plot of c as a function of η0 for shear-stress-driven flow, together

with the asymptotic value c = c∞ = 1 in the limit η0 → ∞ (shown as a dashed

line). The inset shows an enlargement of the behaviour near η0 = 0; the point

c = c0 ' 1.5424 at η0 = 0 is shown as a dot, as are the minimum c = cmin ' 1.5421

at η0 ' 0.0040 and the maximum c = cmax ' 1.5503 at η0 ' 0.0470.PSfrag replacements
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Figure 6.10: Cross-sectional profiles F (η) for shear-stress-driven flow for several

values of η0.
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Figure 6.11: Three-dimensional plots of the free-surface profiles h for shear-stress-

driven flow in a sessile case with η0 = 1 at times t = 0, 1 and 3.
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Figure 6.12: Numerical solutions of (6.58) for shear-stress-driven flow in the cases

(a) η0 = 0.2 and (b) η0 = 10−2, together with numerical solutions of the leading-

order equation (6.61) in the limit no→ 0 (shown as a dashed line).

6.3.3 Asymptotic solution in the limit η0 → ∞

In the limit of a wide dry patch, η0 → ∞, we again write η, F and c in the form

(6.50); then at leading order equation (6.58) reduces to

(

F̃ 3F̃ ′
)′

+
(

F̃ 2 − c∞F̃
)′

= 0, (6.63)

which is readily solved subject to the boundary conditions (6.52) to give the im-

plicit solution

η̃ = −F̃ − F̃ 2

2
− log

(

1 − F̃
)

, c∞ = 1. (6.64)

Figure 6.13 shows a comparison between the numerical solution for F of equa-

tion (6.58) and the leading-order asymptotic solution for F̃ in (6.64) in the cases

η0 = 1 and η0 = 5; again the agreement is good for large enough η0. The asymp-

totic value c = c∞ = 1 is included in Figure 6.9 as a dashed line. Using the

asymptotic solution we find that qarea and qflux again satisfy (6.54) in the limit

η0 → ∞.

Figure 6.14 shows plots of qarea and qflux as functions of η0, together with the

asymptotic values (6.62) in the limit η0 → 0 and the asymptotic form (6.54) in the

limit η0 → ∞; the behaviour is qualitatively similar to that in Figure 6.8.
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Figure 6.13: Numerical solutions of (6.58) for shear-stress-driven flow in the cases

(a) η0 = 1 and (a) η0 = 5, together with the leading-order asymptotic solution

(6.64) in the limit η0 → ∞ (shown as a dashed line).
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Figure 6.14: Plot of qarea in (6.28) (lower curve) and qflux (= cqarea) (upper curve)

as functions of η0 for shear-stress-driven flow, together with the asymptotic values

(6.62) in the limit η0 → 0 (shown as dots) and the asymptotic form (6.54) in the

limit η0 → ∞ (shown as a dashed line).
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6.4 Discussion

We have obtained unsteady travelling-wave similarity solutions of the form (6.15)

for an infinitely wide thin film of Newtonian fluid of nominal uniform thickness

h∞ flowing around a symmetric slender dry patch moving at constant velocity

ci on an inclined planar substrate, the flow being driven by gravity, a constant

shear stress at the free surface, and/or steady motion of the substrate parallel

to itself. The dry patch has a parabolic shape, which may be concave up or

concave down the substrate, as indicated in Figure 6.2. If τ0 > 0 (corresponding

to a surface shear stress τ that either acts downwards or acts upwards but is

sufficiently weak) then the dry patch moves down the substrate, whereas if τ0 < 0

(corresponding to a sufficiently strong surface shear stress τ that acts upwards)

then the dry patch moves up the substrate. Numerical solutions in the particular

cases of purely gravity-driven flow and purely shear-stress-driven flow were found

to be qualitatively similar; in both cases the film thickness increases monotonically

away from the dry patch.

The parameter η0 is not determined as part of the solution, so that (6.15)

represents a one-parameter family of solutions; some additional criterion would be

required to determine η0.

The solutions obtained are valid for any value of h∞, showing that for these

solutions there is no critical thickness or critical flux below which a dry patch

persists but above which it is “swept away” by the bulk flow.

Finally, it is worth noting that since there is no non-trivial solution near η = 0

satisfying F ′(0) = 0, we may conclude that the corresponding rivulet solutions are

not possible for this case.
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Conclusions and Further Work

7.1 Conclusions

In this thesis we obtained unsteady three-dimensional similarity solutions for a

variety of flows of thin slender non-uniform rivulets and flows of thin films around

slender dry patches on an inclined plane using the lubrication approximation.

Specifically, we investigated the flows of Newtonian and non-Newtonian power-

law fluids driven by either gravity or a constant shear stress at the free surface

directed down the plane, and found two very different types of similarity solutions.

In Chapter 2 we derived a similarity solution describing the unsteady flow of

gravity-driven rivulet of a Newtonian fluid. The similarity solution predicts that

at any time t the rivulet widens or narrows according to |x|3/4 and thickens or

thins according to |x|1/2, and at any station x it widens or narrows according to

|t|−1/4 and thickens or thins according to |t|−1/2. Initially, we had four cases to

consider, depending on the signs of St, Sg and Sx. However, we found that only

the case with St = −Sg = Sx = ±1 leads to a physically realisable solution. The

case St = −Sg = Sx = 1 corresponds to a pendent rivulet in x > 0 with t > 0, and

the case St = −Sg = Sx = −1 corresponds to a sessile rivulet in x < 0 with t < 0.

To solve the ordinary differential equation governing the similarity solution, we

first used numerical and asymptotic methods to obtain a one-parameter family of

162



Chapter 7 163

solutions parameterised by the (appropriately scaled) middle height H0; then by

imposing the condition of zero mass flux at the contact line, we showed that, of this

family of solutions, only two are physically realisable, one with H0 = H01 ' 0.9995

(having a double-humped cross-sectional profile) and one with H0 = H02 ' 1.1059

(having a single-humped cross-sectional profile).

In Chapter 3 using the finite element package COMSOL we performed numer-

ical investigations of the stability of the two similarity solutions corresponding to

H0 = H01 and H0 = H02 for sessile and pendent rivulets by imposing three types

of perturbations as boundary conditions. The numerical solutions showed that

for a sessile rivulet the perturbations do not grow, whereas for a pendent rivulet

our numerical computations failed at a small time (showing the same failure as

occurs in numerical computation of a linear backwards-diffusion problem), which

led us to the conclusion that the sessile rivulet is stable, whereas the pendent

rivulet is unstable. In validating our numerical procedure, we solved a variety of

problems concerning unsteady gravity-driven flow on an inclined plane and on a

horizontal plane. The numerical solutions obtained were found to approach known

similarity solutions at sufficiently large times and length scales. In particular, we

obtained new numerical results for gravity-driven flow of a rivulet with strong

surface-tension effects that verify the similarity solutions obtained by Duffy and

Moffatt [24].

In Chapter 4 we generalised our approach in Chapter 2 to consider unsteady

flow of a gravity-driven sessile rivulet of a power-law fluid (of index N). We

obtained two physically realisable solutions with different middle heights H0 = H01

(< 1) and H0 = H02 (> 1) for each value of N ; these solutions predict that at

time t, the rivulet (in x < 0) narrows according to (−x)(2N+1)/2(N+1) and thins

according to (−x)N/(N+1) as it flows down the plane, and at any station x, the

rivulet widens according to (−t)N/2(N+1) and thickens according to (−t)N/(N+1).

As the value of N is increased, H01 decreases whereas H02 increases. We also

presented asymptotic solutions in the strongly shear-thinning limit N → 0 and in
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the strongly shear-thickening limit N → ∞.

In Chapter 5 we extended our studies in Chapters 2 and 4 to investigate

unsteady surface-shear-stress-driven flow for both Newtonian and power-law fluids.

For this type of flow we obtained similarity solutions for both rivulet flow and

flow around a dry patch (whereas in gravity-driven flow there is no corresponding

solution for flow around a dry patch). The similarity solution predicts that at any

time t the rivulet and dry patch widen or narrow according to |x|3/2 and thicken

or thin according to |x|, and that at any station x the rivulet and dry patch widen

or narrow like |t|−1 and the film thickens or thins like |t|−1, independent of the

power-law index N . Unlike in the case of gravity-driven flow, in this case, we found

only one physically realisable solution, with H0 ' 1.2708 (having a single-humped

cross-sectional profile) for a rivulet in the case St = −Sg = Sx, and one physically

realisable solution with scaled semi-width η0 ' 0.9573 for a dry patch in the case

St = Sg = Sx. For all the similarity solutions obtained in Chapter 2, 4 and 5, the

nose of the rivulet remains stationary at O at all time; also at t = 0, the solution

exhibits a finite-time singularity, becoming infinite everywhere at that instant.

Finally, in Chapter 6 we obtained a completely different kind of similarity

solution, namely a travelling-wave solution for unsteady flow of a thin film of

Newtonian fluid around a slender dry patch driven by either gravity or a constant

surface shear stress. The similarity solution predicts that for both sessile (Sg = 1)

and pendent (Sg = −1) cases the dry patch travels either up or down the plane at

constant speed c, that it has a parabolic shape, its scaled semi-width η0 varying

like (x−ct)1/2 and that the thickness of the fluid film increases monotonically away

from the dry patch. We found that for any choice of η0 there is a unique solution

whose non-dimensional wave speed c takes values in a finite interval 1 < c ≤
cmax. However, for any choice of c, there can be zero, one, two or three different

dry patches (of different width) that travel at the same speed. Solutions for a

shear-stress-driven flow are qualitatively similar to those for gravity-driven flow.

Unlike in previous chapters, there are no corresponding travelling-wave similarity
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solutions for rivulets.

7.2 Further Work

Despite the progress that has been made, there are still many interesting open

questions. Throughout the present work, we assumed that surface-tension effects

were negligible for simplicity. Therefore, the most obvious extension of the current

work is to consider unsteady three-dimensional similarity solutions in cases when

surface-tension effects dominate the flow. As discussed previously in Chapter 1, a

steady similarity solution for a flow of this type was already obtained by Duffy and

Moffatt [24] for the case of a gravity-driven rivulet, but corresponding unsteady

solutions have not been investigated.

In Chapter 2 we performed a numerical investigation of the stability of the

similarity solutions for an unsteady gravity-driven rivulet using the finite element

package COMSOL. It would be of interest to use the same numerical procedure

to investigate the stability of the other similarity solutions for unsteady rivulets

and dry patches for both Newtonian and power-law fluids obtained in Chapter 4,

5 and 6.

In addition, to further our understanding of the problems discussed here, it

would be useful to conduct appropriate physical experiments. The question then

arises as to how the flows described by the similarity solutions can be established

in experiments. For instance, in the case of a gravity-driven sessile rivulet, it would

be necessary to supply fluid far upstream and to arrange for the downstream nose

of the rivulet to be fixed, so that the fluid piles up there with time, whereas in the

case of a pendent rivulet, presumably an initial “lump” of fluid could simply be

allowed to drain down the plane. In the case of shear-stress driven flow of sessile

and pendent rivulets, it may be possible to use the same set up as in the case

of gravity-driven rivulet, but with a jet of air blown along the free surface of the

rivulets directed down the plane. In the case of shear-stress driven flow around a
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dry patch, a jet of air could be blown at the fluid surface so that the dry patch

will form.

Finally, in Chapter 6 we obtained a travelling-wave solution for an unsteady

flow of a thin film of Newtonian fluid around a slender dry patch on an inclined

plane driven by either gravity or a constant surface shear stress. It would be of

considerable interest to examine the combined effects of both gravity and surface

shear stress on the flow, and to compare the results with any available experimental

data. It should also be possible to generalise the solution obtained in Chapter 6

to the case of a power-law fluid.

As discussed previously in Chapter 1, thin-film flows play a significant role in a

variety of geophysical, biological and industrial contexts, and many open problems

in this area continue to attract attention from theoreticians and experimentalist.

While this thesis has provided some insights into problems concerning unsteady

thin-film flows, in particular, for rivulets and dry patches, a wealth of other inter-

esting and important problems remain to be tackled.
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Derivation of the result γ ' uz

In this Appendix we derive the result γ ' uz, used in Chapters 4 and 5. From

(1.17) the local shear rate γ is given by

γ =
(

2 tr(e2)
)

1
2 , (A.1)

where the rate-of-deformation tensor e is

e =
1

2

[

(∇u) + (∇u)T
]

. (A.2)

If we write u = (u(x, y, z, t), v(x, y, z, t), w(x, y, z, t)) then

e =











ux
1
2
(uy + vx)

1
2
(uz + wx)

1
2
(vx + uy) vy

1
2
(vz + wy)

1
2
(wx + uz)

1
2
(wy + vz) wz











, (A.3)

and substituting (A.3) into (A.1) we obtain

γ =











2 tr











ux
1
2
(uy + vx)

1
2
(uz + wx)

1
2
(vx + uy) vy

1
2
(vz + wy)

1
2
(wx + uz)

1
2
(wy + vz) wz











2









1
2

, (A.4)

leading to the general result

γ =
[

2u2
x + 2v2

y + 2w2
z + (uy + vx)

2 + (uz + wx)
2 + (vz + wy)

2
]

1
2 . (A.5)
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For either a thin slender rivulet or a slender dry patch in a thin film we non-

dimensionalise according to

x = Lx x
∗, y = Ly y

∗, z = Lzz
∗,

u = Uu∗, v = εUv∗, w = εδUw∗, γ =
U

Lz

γ∗,
(A.6)

where Lx, Ly and Lz are characteristic length scales in the x, y and z directions,

respectively, satisfying Lz � Ly � Lx, and δ and ε are aspect ratios defined by

δ =
Lz

Ly
� 1 and ε =

Ly

Lx
� 1. Dropping the superscript stars for clarity we obtain

γ2 = u2
z + ε2v2

z + δ2u2
y + 2ε2δ2

(

u2
x + v2

y + w2
z + uyvx + vzwy + uzwx

)

+ ε2δ4w2
y + ε4δ2v2

x + ε4δ4w2
x (A.7)

from (A.5), showing that γ2 = u2
z +O(ε2, δ2) in the limit ε, δ → 0, and hence that

γ ' |uz|. Therefore for flows with uz ≥ 0 considered in this thesis, the shear rate

is given approximately by γ ' uz.
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