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Abstract

Quantum simulation is the notion of experimentally controlling and manipulating

physical quantum mechanical resources such that their evolution can be mapped onto

a problem that is much harder to solve by any other means. Realising a fully general

quantum computer is still a work in progress but we can currently use devices that

are purpose built to solve particular classes of problems, so called analogue quantum

simulators, to investigate many-body quantum systems.

In this thesis we first consider benchmarking the performance of realistic hardware

implementations of quantum simulators through simulations of many-body dynam-

ics, where we are able to demonstrate that even with current levels of experimental

errors, analogue simulators in ongoing experiments are able to out-perform the best

classical algorithms. We next propose how to use these devices in order to study

strongly correlated phases induced by interactions in topological band structures,

where we place a strong emphasis on how to experimentally realise, prepare and

detect these phases for atoms in a Creutz ladder and in a Lieb lattice. We find

that in these systems there is an enhanced tendency for interaction induced pair-

ing, allowing for novel pair superfluid phases to be prepared in experiments with

ultracold atoms. Finally, we consider additions to these simulators such that they

map more closely to many-body systems in realistic solid state settings by including

dissipative mechanisms. Specifically, we demonstrate that we are able to classically

simulate this behaviour by modifying and hybridising existing numerical methods

to allow for the simulation of open many-body systems beyond the Born-Markov

approximation. We benchmark this numerical approach by simulating the dynamics

of electrons coupled to a phonon environment, where we find substantial qualitative

differences compared to standard open system techniques.
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Introduction





Chapter 1

Introduction

Many-body quantum mechanical problems are notoriously difficult to solve. This is

due to the superposition principle of quantum systems where they can exist in more

than one state simultaneously. Thus in order to model these systems we must use

a probabilistic approach with complex probability amplitudes resulting in computa-

tions that scale exponentially with the size of the system considered.

In order to attempt to solve these problems there have been many methods de-

veloped over the past decades to perform classical simulation of specific classes of

many-body problems, including restricting the number of variables based on phys-

ical arguments, such as tensor network methods [1] or open quantum system ap-

proaches [2], or through statistically sampling the Hilbert space with Monte-Carlo

approaches [3] or through phase space methods [4]. However, for studying general

problems it has become clear that another solution is required, especially for novel

out-of-equilibrium situations such as the dynamics of states far from any eigenstate.

An interesting proposal, inspired by an insight from Richard Feynman [5], is to

use physical quantum mechanical resources in controlled experimental situations in

order to simulate the desired quantum system. This concept, is in principle not



impacted by the scaling issues of a classical simulation as the quantum mechanical

bits of information (qubits) naturally encode the correct features needed to describe

the quantum states. Additionally, these architectures can collectively work with

data that grows exponentially compared to the amount of physical resources utilised.

This potentially turns the main barrier in solving quantum mechanical many-body

problems into the foundation for an incredibly powerful computational tool, which

can in principle be exploited to create a quantum computer.

In the 40 years since this solution was first conceptualised, there has been huge

growth in this idea of quantum simulation [6], which has culminated in S. Haroche

and D. Wineland being awarded the Nobel prize for their demonstrations of experi-

mentally controlling and manipulating individual quantum mechanical particles [7–

10]. This has then lead to proposals and first demonstrations of quantum computa-

tion in trapped ions [11], superconducting qubits [12], cold atoms [13] and Rydberg

atoms [14], however there are limitations preventing practical universal quantum

computers that arise from noise, decoherence and/or heating. These effects are not

yet at fundamental levels and so continued development in the field will be able

to solve these technological difficulties, while progress on the theoretical side will

ensure that these devices are ready to be utilised to their full potential. This has

already been illustrated with previous important insights in this area, such as the

demonstration that useful classical problems can be mapped to the quantum bits, for

instance Shor’s factorisation algorithm [15], opening up interest into universal quan-

tum computation [16], and quantum annealing methods [17, 18], to solve complex

optimisation problems that are currently relevant to industry

Although a universal quantum computer that has enough physical resources to

solve useful problems is still a work in progress, there are many interesting situations

that can currently be explored using so called analogue simulation experiments as
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a short term alternative to a full digital computation. Analogue simulation is an

experimental computation tool that has been purpose built to solve a very specific set

of problems, e.g. many interacting particles (both fermions and bosons) in periodic

potentials, which for the fermionic case has strong connections to electron dynamics

in solids. There are a number of experimental architectures, such as ultracold atoms

in optical lattices [19], ion traps [20, 21], cavity QED [22], Rydberg atom arrays

[23] and superconducting circuits [24], which can now exhibit precise control over

quantum systems that are large enough so that relevant practical calculations can

be performed. While all of these platforms are undergoing rapid development, there

are still many challenges that need to be overcome in order to apply these systems

to larger problems. For the case of cold atoms, the limitation is the ability for single

atom addressing and readout and for the others, the main limitation is the ability

to scale up the system size.

These experimental simulations have already verified many theoretical predic-

tions and many believe they can already be operated in regimes that go beyond

what we can do with a classical simulation. The idea is to use these systems to learn

more about the role of noise and dissipation on a many-body system in a control-

lable setting so that we can either exploit or mitigate these effects to increase the

efficiency and scalability of experimental implementations for full universal quantum

computation. Over the next decade it is expected that both analogue and digital

quantum computation will greatly mature and will be able to demonstrate what the

pioneers of quantum simulation first proposed, an unequivocal quantum advantage.
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Overview

1.1 Overview

In this thesis we demonstrate, by considering a few interesting examples, the power of

a quantum simulator and illustrate how it can be used to solve important problems

relating to many-body quantum systems. We break this down into three related

sub-problems: 1) benchmarking the relative performance of these devices, 2) un-

derstanding the microscopic properties of the individual components of a quantum

simulator (for example atom-atom and atom-photon interactions) and 3) demon-

strating how to realise particular systems and prepare novel many-body states so

that their properties can then be studied experimentally.

For problem 1), explicitly demonstrating that a realistic experimental implemen-

tation of a quantum simulator can be used to study regimes that are out-with the

ability of classical simulation is extremely important as this will demonstrate the

sophistication of this growing field, we consider this in Ch. 6. Then in Ch. 7 we

focus on problem 2) and demonstrate how knowledge of the microscopic properties

of atomic and quantum optical experiments can aid quantum simulation, where we

investigate the regime of strong atom-atom interaction and assess the validity of the

usual approximations in mapping the behaviour in these experiments to important

theoretical models. This analysis will allow future quantum simulation experiments

to better define the limitations of these devices as they are applied to solve particular

many-body problems. We then consider problem 3), where in Ch. 8 & 9 we consider

how to realise and prepare novel systems with topological band structures in cold

atom experiments and then in Ch. 10 we consider how to include controlled dissipa-

tion in the experimental architectures, such that these systems can more accurately

simulate the behaviour in real solid state devices.

Before directly focusing on these problems, we begin by covering the broader
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Overview

background to this field, where in Ch. 2 we introduce the notion of quantum simula-

tion describing how the properties of quantum mechanics can be exploited for useful

applications. We summarise and compare two conceptually different approaches to

quantum simulation: digital simulation, which allows for universal quantum compu-

tation but where current experimental architectures are limited due to experimental

imperfections, and analogue simulation which can be used in the short term to ac-

curately capture the dynamics of a small subset of relevant problems. We describe

one particular realisation of analogue simulation, ultracold atoms in an optical lat-

tice which will be the primary focus of the work in this thesis and explain that

they can be used to precisely tune and control the parameters of the system. We

derive the microscopic scattering properties of interacting atoms where we describe

the approximations invoked in mapping these experimental systems into describing

seminal models in theoretical physics such as the (Bose-)Hubbard model. Addition-

ally, in Ch. 3 we describe the features of many interacting particles when they are

confined to one-dimension where we present a solution for the low energy properties

and correlation functions from Luttinger liquid theory.

Then in Ch. 4 we summarise an approach for classically simulating many-body

quantum systems, matrix product states. As well as offering many important insights

into the fundamental properties of quantum systems, these methods are necessary to

develop along side the experimental hardware as they are paramount to being able to

benchmark the simulators and ensure confidence in the results. In Ch. 5 we next ex-

plain the methods for treating open quantum systems where the system is connected

to a much larger environment, which is necessary so that the effects of dissipation

or a finite temperature can be included. We summarise the main approximations

that are invoked and discuss their validity in quantum optical experiments. We will

make use of both of these techniques often throughout the thesis in order to perform

7



Overview

classical simulations of the expected dynamics, which can be used to benchmark and

calibrate the experimental resources of the quantum simulator.

We then move on and present the new contributions from this thesis beginning

with part II where we focus on benchmarking. First, in Ch. 6 we aim to benchmark

quantum simulation generally, where we quantitatively compare the hardware re-

quirements needed to demonstrate a quantum advantage in analogue simulation to

universal digital quantum computation for continuous time dynamical simulations.

We predict that current experimental architectures for analogue simulation are al-

ready able to demonstrate an advantage over state-of-the-art classical algorithms and

that the quantum advantage point for digital simulation is within closer reach than

many previously expected, for the types of problems considered. This has important

implications for the short term development of the field of quantum simulation as a

whole. Next in Ch. 7, we consider a more specific example where we present results

from our collaboration with an experimental group from the University of Innsbruck.

We simulate and understand the microscopic processes behind their observations of

atomic losses in terms of three-body recombination effects, which enabled us to bet-

ter define the regimes in which these loss processes must be considered. This will

then allow future experiments to more easily either avoid these regimes or prepare

exotic phases that utilise these strong loss features.

We then take a more in depth look into some specific applications for quantum

simulation. In part III we consider using the experimental hardware to probe the

effects of strong interactions in topological band structures. First in Ch. 8 we analyse

the properties of interacting bosonic atoms in a one-dimensional ladder that, due to

the geometry, causes a complete suppression of single particle dispersion. We propose

an experimental analysis of novel two-body features and many-body phases that are

manifested in these systems and we perform proof-of-principle classical simulations

8



Overview

on the ability to prepare these phases experimentally and predict observations of

dynamical properties. Next in Ch. 9, we consider a two-dimensional lattice where

some of the states have their dispersion suppressed, but others have large kinetic

energy. We investigate the interplay of these effects by performing numerical cal-

culations on a one-dimensional ladder strip which preserves the main qualitative

features of the full two-dimensional geometry, where we find that the many-body

phases for fermions have enhanced cooper pairing perhaps allowing for a realisation

of superconductive phases with quantum simulation experiments.

In part IV we describe our incorporation of matrix product state methods into a

new promising numerical method for time-evolving open quantum systems in regimes

beyond those usually considered. This allows us to simulate the dynamics of open

many-body systems well into the non-Markovian and strong coupling regimes. We

benchmark this method by applying it to a system of electrons coupled to an en-

vironment of dispersive phonons (the dispersive Holstein model) and show that we

can capture important distinct features that are out with the range of conventional

methods, as well as discussing how this can be realised in cold atom experiments.

This work opens up the possibility for future theoretical investigations into the novel

effects induced by the combination of many-body features and strong coupling to a

non-Markovian environment, and so extends the range of cases that are able to be

classically benchmarked.

Finally, in part V we provide a conclusion, discuss the implications of our con-

tributions to the wider field of quantum simulation and discuss possible avenues for

future research.
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Chapter 2

Quantum simulators

In this chapter we introduce the ideas behind analogue and digital simulators where

we explain that analogue simulation can be used as a short-term alternative to fully

universal computation in order to solve important problems related to the dynamics

in many-body quantum systems. We describe how to derive, under well-controlled

approximations the microscopic many-body models from first principles [25–28]. We

emphasise that experiments that aim to investigate the microscopic properties of

atom-atom or atom-photon interactions are separate from quantum simulation. Of

course, detailed knowledge of these mechanisms - which has only been made possi-

ble through previous experimental breakthroughs in this area - are paramount for

creating a reliable and accurate physical architecture for a quantum simulator which

attempt to simulate the properties of a target model or Hamiltonian. The goal of this

chapter is to explain the approximations that are required for our quantum optical

experimental simulations to give rise to the fundamental many-body Hamiltonians

studied in the context of low energy solid state physics.



Analogue and digital simulation

Figure 2.1: Digital Simulation. We can decompose the exact time-evolution operator into a
sequence of experimentally feasible two site operations, at the cost of an error that becomes larger
with an increasing time-step.

2.1 Analogue and digital simulation

Digital simulation

Experimental advances in quantum optical systems now allow us to create general

quantum devices which can be used for a wide range of applications. For example,

the ability to trap and localise quantum particles with magnetic or optical fields

allows for the manipulation of their internal state through the application of laser

pulses. This then gives an experimental realisation of a quantum bit of information,

or qubit, and offers a way of applying quantum logic gates [21] and then creating

sequences of these to perform quantum algorithms which then offers a way of per-

forming universal quantum computation [16]. The great challenge here arises from

experimental imperfections which limit the number of gates that can be applied

before decoherence effects become important.

More relevant to the context considered here, is that these systems can also be

used to simulate the dynamics of many-body quantum systems [29, 30], although at

the moment these are limited in system size. Say we want to model the dynamics of
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Analogue and digital simulation

a large many-body quantum system by solving the Schrödinger equation,

ih̄
∂

∂t
|Ψ(t)〉 = Ĥ|Ψ(t)〉 → |Ψ(t)〉 = U(t)|Ψ(0)〉, (2.1)

where U(t) = exp(−iĤt/h̄) is the unitary time-evolution operator. The concept of

digital simulation relies on the ability to discretise this operator through a so called

Trotterisation [31], U(∆t) ≈
∏

i Ui, which naturally comes with an error proportional

to the length of the time step, see Fig. 2.1. We must also decompose the discrete time

evolution operator into a sequence of the universal quantum gates that the specific

architecture can perform which are usually single and two site operations which may

come with a further error.

These approaches have been assumed to be non ideal because even with a small

error at each time step, this may grow to non-negligible values after many time steps.

However, it has been shown recently that for specific circumstances these errors are

bounded even for an infinite evolution time [32], which gives these schemes some

promise for future applications. We will discuss more the implementations of these

features and the accumulated errors when we consider the timescales and hardware

requirements necessary to achieve a quantum advantage in Ch. 6.

Analogue simulation

As an alternative to fully universal quantum computation architectures, we can also

utilise the control available in quantum optics experiments to create so called ana-

logue quantum simulators. These architectures are highly controllable devices, but

do not aim to be fully general purpose quantum computers instead aiming to ac-

curately explore specific questions in many-body dynamics. Example architectures

for realising these principles include, ultracold atoms in an optical lattice [19, 33–

15



Analogue and digital simulation

Figure 2.2: Analogue Simulation. The quantum state, |Φ(t)〉 = U |Φ(0)〉, can be simulated
by mapping to a physical experimental system that approximately captures the same effective
dynamics, Ueff ≈ U , and reading out the output by measuring the final state, |Ψ(t)〉.

36], neutral atoms in optical tweezer arrays [37, 38] or experiments with trapped

ions [20, 39, 40].

Most notably, analogue simulation experiments can be used to model the contin-

uous time dynamics of a many-body quantum system and can be used to probe both

the equilibrium properties as well as the out-of-equilibrium dynamics induced by

various local and global perturbations and/or the application of an applied potential

(bias voltage). These principles will allow us to learn more about the role of quan-

tum mechanical interactions in the transport of information through real nano-scale

materials and even allow us to incorporate dissipative or driving elements to assess

their impact on the performance of quantum electronic devices [41]. See Ch. 10 for

an investigation into these effects.

The principle of analogue simulation, see Fig. 2.2, is to create a scale model out

of quantum mechanical resources such that the dynamics of the scale model satisfy,

Ueff ≈ U , under well controlled approximations. The quantum state is mapped onto

the experimental resources, |Φ(0)〉 → |Ψ(0)〉, and the physical system is then allowed

to evolve naturally. Finally we map the physical state onto the quantum basis of

interest, |Ψ(t)〉 → |Φ(t)〉, usually through measurements of the physical resources.

Take for example the case of ultracold atoms confined in an optical lattice. The
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Analogue and digital simulation

quantum system that we want to simulate is usually electrons flowing through a

conventional material, where the number of electrons are of the order of Avogadro’s

number ∼ 6× 1023, and the lattice spacing is of the order of an angstrom 10−10 m.

We then map this onto an experiment consisting of around 106 atoms with a lattice

spacing around ∼ 0.5 µm. Thus, our quantum simulation can be thought of as a

scale model, where in contrast to the usual case in the field of engineering or product

design, our model is many orders of magnitude larger. This larger lattice spacing of

our scale model gives a number of advantages such as an increased ability to measure

the position of individual atoms to within individual lattice sites [42–49].

Comparison

As we can see there are a number of conceptual differences between analogue and dig-

ital quantum simulation. The key difference is that realisations for digital simulation

are in principle able to perform universal quantum computation, whereas analogue

simulators are usually only able to simulate a small class of problems. However, as

we will see in Ch. 6, in terms of the current generation of devices, analogue simu-

lators are usually more accurate and usually lead to smaller errors in the problems

that they are designed to solve - compared to an equivalent simulation with a digital

device. Of course, as the sophistication of the experimental hardware continues to

increase realisations of digital simulation will eventually be able to out-perform ana-

logue devices as they will be able to investigate a much wider variety of problems.

However, most estimates predict that analogue simulation will be able to lead to

useful insights into many important problems in much shorter timescales compared

to a digital quantum simulator with many speculating that they are already able

to do so (see Ch. 6). For example these analogue devices can already be used to

accurately simulate the Hubbard model which has strong connections to solid state
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devices and so these experiments have the potential to lead to useful and practical

benefits in areas outside of fundamental physics.

2.2 Ultracold atoms in an optical lattice

The experimental achievements in the field of quantum optics have made it possible

to engineer optical lattice experiments, where the confined atoms moving through

a periodic laser potential play the role of electrons moving through a real material.

These systems allow for extreme control over all parameters of this artificial crystal

to very high precision [19, 34]. Additionally, due to the sophistication of the ex-

perimental architectures, these systems are relatively robust against defects and are

extremely well isolated from the environment, thus noise and heating effects play a

minimal role on the relevant dynamics of the system, although can be included in a

controllable way in order to explore their effects (see Ch. 7 & 10).

The explicit demonstration of the control and versatility of applying these quan-

tum optical principles came with the realisation of the quantum phases transitions

between superfluid and Mott insulating phases in bosonic systems [43, 50–53], and

then in fermionic systems [54, 55]. Since then, the number of applications of these

platforms have gown significantly and they have been used successfully to probe the

properties of many-body quantum systems in the presence of disorder [56–60], with

driving and dissipation [61], for quenches across a phase transition [62–64], and in

novel lattice geometries [65–78].

Motion of an atom in a standing wave potential

If we neglect for the moment the effects of quantum noise, such as spontaneous

emission, we can write down the Hamiltonian for a single two-level atom in the
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presence of an applied laser,

H =
p̂2

2m
−∆|e〉〈e| − Ω(x)

2
(|g〉〈e|+ |e〉〈g|), (2.2)

where ∆ = ω − ωeg is the detuning of the laser which has a frequency, ω, and the

energy spacing (h̄ = 1), ωeg, between the ground state, |g〉 and excited state, |e〉. The

Rabi frequency is defined as Ω(x) = 2d̂eg • Ê(x, t), where Ê(x, t) is the electric field

component of the applied laser field and d̂eg is the dipole matrix element between

the two atomic energy levels. For a standing wave potential, |Ê(x, t)| = E0 cos(~k •x),

we can define, Ω(x) ≡ Ω0 cos(~k • x), where Ω0 = 2|d̂eg|E0.

Say we have the initial state defined by,

|Ψ(x, t〉 = ψg(x, t)|g〉+ ψe(x, t)|e〉, (2.3)

where ψg(x, t) and ψe(x, t) are complex numbers. We can then solve the Schrödinger

equation, which takes the form

i
∂ψe(x, t)

∂t
=

(
p̂2

2m
−∆

)
ψe(x, t)−

Ω(x)

2
ψg(x, t),

i
∂ψg(x, t)

∂t
=

p̂2

2m
ψg(x, t)−

Ω(x)

2
ψe(x, t).

(2.4)

Far detuned case

In the limit of large detuning compared to the system dynamics, such that ∆ �

Ω(x), p̂
2

2m
, then we can adiabatically eliminate the excited state by setting ∂ψe(x,t)

∂t
≈ 0.

This leads to the new differential equation for the motion of the atom in the ground

state,

i
∂ψg(x, t)

∂t
=

(
p̂2

2m
+

Ω2
0

4∆
cos2(~k • x)

)
ψg(x, t). (2.5)
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The interpretation of this equation is that an atom in the presence of an applied

laser field with a large enough detuning remains effectively in its internal ground

state, however the effects of the driving laser are still felt in the form of a potential

energy term proportional to the intensity of the applied field. This effective shift of

the ground state energy is known as the AC Stark shift. The result is that the atom

moves in a periodic potential and so obeys similar dynamics to an electron moving

through a real solid state crystal.

Quantum simulation

Simply investigating the dynamics of the atoms confined in this optical potential does

not necessarily constitute quantum simulation. Of course creating this experiment

would allow one to investigate the whether the above approximations are satisfied

experimentally and would lead to many insights into the properties of the interac-

tions between atoms and photons and between atoms. However, in order for a similar

experiment to be classified as a quantum simulator, we must be able to accurately

map an effective Hamiltonian that is responsible for the dynamics of the atoms in

this system to that of another model that is perhaps more complex to be realised

by another means. For example, as we will see below, it is possible to conduct

these optical lattice experiments in particular regimes such that the dynamics of the

atoms can be driven by an effective Hamiltonian that is equivalent to the Hubbard

model [27]. This is an important theoretical model in the field of condensed matter

which describes the (unitary) dynamics of electrons moving in a periodic potential.

This means that we can use these quantum optical experiments to perform an ex-

perimental simulation of this theoretical model in a variety of parameter regimes

allowing us to both better understand the features of the experimental hardware

and the behaviour of the target model.
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2.3 Effective field theory

Treating interactions in these systems can be a little more complicated as we need to

consider many-body field theory. However, we illustrate here that if we assume a low

energy limit then the interaction terms can be simplified. In this section we derive the

form of this effective Hamiltonian explaining the assumptions and approximations

that are used and we explain why they are valid in the experimental systems.

The first assumption that we make is that the atoms are sufficiently dilute so

that we only need to take into account two body interaction events. So we can write

our field theory Hamiltonian as,

H =

∫
dxΨ†(x)

(
− h̄2

2m
∇2 + V (x)

)
Ψ(x)

+
1

2

∫
dxdx′Ψ†(x)Ψ†(x′)Ṽ (|x′ − x|) Ψ(x′)Ψ(x),

(2.6)

where we have assumed that the two body interaction potential, Ṽ (|x′ − x|) does not

depend on the absolute position, but is simply a function of the relative coordinates.

The Ψ(x) are many-body field operators and they satisfy the commutation rela-

tion (for fermions this is an anti-commutation relation),
[
Ψ(x),Ψ†(x′)

]
≈ δ(x′ − x).

Furthermore we have assumed that we can consider the composite atoms as single

(identical) particles, which is valid so long as the scattering wavelengths are suffi-

ciently large so as not to depend on the small scale structure of the atoms. For

higher energy scattering processes, or highly dense gases, the composite nature of

the atoms will lead to small corrections in the commutation relations.

In a cold atom experiment, this contact interaction is of the Van-der Waals form,

Ṽ (r) = −C6/r
6, although this does not take into account the behaviour at very

small distances, where other effects will come into play such as the repulsion of the
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nuclei of the two atoms and so it should be understood that this potential should be

modified for short distances such that Ṽ (r)→ +∞ as r → 0.

In quantum optical experiments the atoms typically exist at incredibly low en-

ergy scales, meaning that their de Broglie wavelengths are large compared to the

characteristic length scale of the interaction potential and so the specific microscopic

properties are in principle unimportant. It is then possible to replace the form of

the interaction with a mathematical expression that is easier to work with but that

gives the same scattering behaviour in the low energy limit.

Realistically, the scattering wavefunction for two atoms will have large momen-

tum modes within the range of the interaction potential invalidating a practical

perturbation theory. However, due to the diluteness assumption the probability of

the atoms being sufficiently close so as to populate these modes is very small∗ and can

be ignored and the most prominent effect of the interactions is to introduce a phase

shift in the long range behaviour of this wavefunction. The effects of this phase shift

can be completely contained in a single parameter, as known as the characteristic

scattering length and we can approximate the interaction potential as an infinitely

hard sphere with a radius given by this length. This motivates the introduction of

an effective Hamiltonian that is mathematically simpler to work with but gives rise

to the same low energy scattering behaviour,

H =

∫
dxΨ†(x)

(
− h̄2

2m
∇2 + V (x)

)
Ψ(x) +

g

2

∫
dxΨ†(x)Ψ†(x)Ψ(x)Ψ(x), (2.7)

with g = 4πh̄2as/2m. This is an effective field theory where a large momentum

cut-off has been introduced, leading to effectively a short distance cut-off over length

scales much shorter than this scattering length. We will now justify the simplification

∗In a typical 87Rb BEC experiment with a million atoms only around 5 atoms will be close
enough to excite these modes [79].
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of this interaction term.

Born approximation

At large distances we can write the total wavefunction for two scattering identical

particles as a linear superposition of an incoming wave and an outgoing scattered

wave,

ψ(+)(r) = eik
•r + f(k, k′)

eikr

r
, (2.8)

where r = |x′−x| is the relative coordinate of the two particles, r = |r|, k = |k| and

f(k, k′) is the scattering amplitude,

f(k, k′) = − m

4πh̄2

∫
dr′e−ik

′•r′Ṽ (r′)ψ
(+)
k (r′), (2.9)

where m is the reduced mass of the two particles and k′ = rk/r. We can then

substitute the expression for ψ(+)(r) into the scattering amplitude, which results in

an infinite series with increasing numbers of interaction events, this is known as the

Born series. However, we can make the Born approximation and only take the first

term in this series,

f(k, k′) ≈ − m

2πh̄2

∫
dr′e−i(k

′−k)•r′Ṽ (r′), (2.10)

which is valid for low energy scattering and allows, for certain potentials, for an

analytical solution.
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Characteristic scattering length

For a completely spherically symmetric scattering potential we can then expand the

total wavefunction in terms of angular momentum eigenstates,

ψ(+)(r) =
∞∑
l=0

√
2l + 1

4π
Pl(cos θ)

χl(k, r)

r
, (2.11)

where Pl(cos θ) are the Legendre polynomials. We can assume that the long range

behaviour of the radial wavefunction, χl(k, r), can be expressed as a superposition

of forward and backward propagating plane waves,

χl(k, r) = A
(
(−1)l+1e−ikr + e2iδleikr

)
, (2.12)

where A is a normalisation constant and there is a relative phase in the ingoing and

outgoing plane waves based on the parity of l. In this ansatz, we have assumed

that at long distances away from the effective range of the scattering potential that

we can simply incorporate the scattering effects by a phase shift δl. By solving

the 1D Schrödinger equation for the radial wavefunction χl(k, r) we can express the

scattering amplitude as,

f(k, θ) =
∞∑
l=0

(2l + 1)
e2iδl − 1

2ik
Pl(cos θ). (2.13)

For higher partial wave components, l > 0, there is the centrifugal barrier term

present in the 1D radial Schrödinger equation ∼ l(l + 1)/r2 which for sufficiently

low scattering energies will dominate the short distance behaviour and these wave

components will not even see the interaction potential. We therefore expect that at

the energies that cold atom experiments operate (and this has been experimentally
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verified [80, 81]) that we can ignore all higher order partial wave components and it

is enough simply to consider the l = 0 mode, giving,

f(k, θ) ≈ f(k) =
e2iδ0 − 1

2ik
=

1

k cot(δ0)− ik
. (2.14)

Because we expect that the scattering will be symmetric, we can expand the s-wave

phase shift in even powers of k, which by convention (and the reason why will become

clear) is done in the following way,

k cot(δ0) = − 1

as
+
r0k

2

2
−O(k4), (2.15)

where r0 is the effective range and as is the s-wave scattering length. For an infinitely

hard sphere potential such that, U(r) = 0 for r > a and U(r) =∞ for r < a gives for

the s-wave scattering, as = a and for the effective range of the potential, r0 = 2a/3.

In the limit that kr0 � 1, we can write the scattering amplitude as,

f(k) = − as
1 + ikas

. (2.16)

And from the relation, k cot(δ0) ≈ −1/as, we can see that a diverging scattering

length corresponds to the phase shift approaching ±π/2.

Thus it is clear that the low energy description of two-body scattering processes

can be completely described by a single parameter, the scattering length as. At the

very least then, any simplification of the scattering potential must reproduce the low

energy description with the same scattering length.
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Zero-range pseudopotential

The simplification of the interaction term in the many-body Hamiltonian is through

the introduction of a pseudopotential. The simplest form for this is the zero-range

pseudopotential [82],

Ṽ (r)→ gδ(r)

[
∂

∂r
(rψ(r))

]
r=0

≡ gδ(r)C[ψ(r)], (2.17)

where g = 4πh̄2as/m. Note that this is the simplest possible form with only one free

parameter, as.

We can see that this gives rise to the same scattering amplitude as before by

writing,

f(k, k′) = − m

4πh̄2

∫
dr′e−ik

′•r′Ṽ (r′)ψ
(+)
k (r′)

= −asC[ψ(+)(r)].

(2.18)

From which we see that,

ψ(+)(r) = eik
•r − asC[ψ(+)(r)]

eikr

r
, (2.19)

and allows us to express,

C[ψ(+)(r)] =

[
∂

∂r

(
rψ(+)(r)

)]
r=0

=

[
∂

∂r

(
reik

•r − asC[ψ(+)(r)]eikr
)]

r=0

= 1− ikasC[ψ(+)(r)]

=
1

1 + ikas
,

(2.20)
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which gives for the scattering amplitude,

f(k) = − as
1 + ikas

. (2.21)

This is exactly the same expression that we had in Eq. 2.16, thus we have illustrated

that the peudopotential gives the same scattering results as the low energy limit for

any spherical interaction potential. This is valid as long as kr0 � 1, which does not

require that the scattering length is small, meaning that this pseudopotential can

be used to analyse cold gases in the region of a Feshbach resonance (see below) and

diverging as. For a typical cold atom experiment with Caesium atoms, the effective

range of the Van der Waals interaction is r0 ∼ 6 × 10−10 m [83] and the scattering

length can be tuned around as ∼ 0 → 100 r0. This means that the regularisation

of the delta function is then a valid approximation for temperatures T � 200 mK†,

and as typical optical lattice experiments operate in the nano-Kelvin regime this is

usually well satisfied.

However, in the limit of small scattering length such that kas � 1, this leads

to the approximation that C[ψ(+)(r)] ≈ 1, which then allows us to write our pseu-

dopotential simply as a delta function. Our interaction Hamiltonian then becomes,

1

2

∫
dxdx′Ψ†(x)Ψ†(x′)Ṽ (|x′ − x|)Ψ(x′)Ψ(x) ≈ g

2

∫
dxΨ†(x)Ψ†(x)Ψ(x)Ψ(x).

(2.22)

It is clear then, that for larger values of k that the full regularisation of the delta

†The range of temperatures, T , is calculated by,

kr0 � 1⇒ k � 1

r0
⇒ E � h̄22π2

mr2
0

⇒ T � h̄22π2

mr2
0kb

,

where m is the mass of the atom and kb is Boltzmann’s constant.
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function will need to be retained in order to accurately describe the physics. But we

can use this effective field theory Hamiltonian for low energy descriptions with the

knowledge that we have effectively introduced a cut-off of higher energy modes. For

a description of the two-body physics in the strongly interacting regime that properly

takes into account this regularisation see Ref. [84, 85] for two atoms confined in a

harmonic trap and Ref. [86] for two atoms confined in a lattice.

Feshbach resonance

We can also continuously vary the effective interaction strengths between atoms

through the application of an applied magnetic field [87, 88], thus allowing us to

realise a wide variety of effective Hamiltonians. For low scattering energies, the

interaction strength can be parameterised by a single value, known as the character-

istic scattering length, as, see Eq. 2.22. Varying an applied magnetic field varies the

separation of internal energy states of the atoms, which then modifies the effective

coupling of these states through the interactions, thus varying the strength of the

effective interaction strength [79]. There are particular values for the magnetic field

strength where the effective scattering length is zero, and there are also regions where

it diverges, this is known as a Feshbach resonance. See Fig. 2.3 for a plot illustrating

the typical features of such a resonance. Near the resonance, we can approximate

the scattering length dependence on the strength of the applied magnetic field, B,

through the expression,

as(B) = as,0

(
1− ∆B

B −Bres

)
, (2.23)

where as,0 is the background scattering length, Bres is the value at which the reso-

nance occurs and ∆B is referred to as the width of the resonance. These parame-
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Figure 2.3: Typical features of a Feshbach resonance in arbitrary units.

ters can be calculated by taking into account effective coupling to molecular bound

states [89] and have shown to have good agreement to experiments [90]. These Fes-

hbach resonances allow for the realisation of extremely novel phases of matter, for

instance they allow for the instantaneous shift from strong repulsive interactions

(as → +∞) to strong attractive interactions (as → −∞) by only a relatively small

change in the applied field, giving rise to some interesting meta-stable phases [91].

2.4 The Bose-Hubbard model

We can further simplify the above low energy effective field theory by expanding

the many-body field theory operators, Ψ(x), in terms of the single particle local

Wannier function basis associated with the periodic potential [92], such that Ψ(x) =∑
nw

α
n(x)b̂αn, where b̂αn is the annihilation operator for an atom in energy band α at
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site ~Rn. For a simple periodic potential these Wannier functions are given by

wαn(x) =
1

2π

∫
dkφαk (x)e−i

~k· ~Rn , (2.24)

which are centred at site ~Rn and where φαk (x) are the Bloch functions of the energy

band α. Then we can write our many-body Hamiltonian in Eq. 2.7 as a discrete

lattice model,

H = −
∑
i,j

Jn,mi,j

(
b̂n†i b̂

m
j + b̂m†j b̂ni

)
+

1

2

∑
i,j,k,l

Un,m,o,p
i,j,k,l b̂n†i b̂

m†
j b̂okb̂

p
l , (2.25)

where Un,m,o,p
i,j,k,l and Jn,mi,j are the interaction and hopping parameters respectively,

Un,m,o,p
i,j,k,l = g

∫
drwn

∗

i (~r)wm
∗

j (~r)wok(~r)w
p
l (~r),

Jn,mi,j = −
∫
drwn

∗

i (~r)

(
− h̄2

2m
∇2 + V (~r)

)
wmj (~r).

(2.26)

If the lattice potential is sufficiently strong and the interaction strength suffi-

ciently weak then we can approximate the dynamics as being completely confined to

the lowest Bloch band, which drastically simplifies the above model. Also note that

the Wannier function basis is not unique and by choosing different phase factors in

the Bloch functions we can have multiple sets of Wannier functions with different

properties, but when these phase factors are chosen so as to be as smoothly varying

as possible around the Brillouin zone, this produces unique real Wannier functions

that are exponentially localised around each site, ~Rj [92]. The choice of Wannier

basis does not change the tunnelling coefficients, Ji,j (if no mixing between bands

is taken into account, see Ch. 9 for this more general case) but may significantly

alter the interaction elements, Ui,j,k,l. However, as this is simply a basis transfor-
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mation, the resulting dynamics and physically observable properties do not change,

which can be understood from realising that the local basis corresponding to the

Hamiltonian is also altered by using a different Wannier basis. So for a sufficiently

localised Wannier basis we can ignore longer ranged interaction terms leading to the

Bose-Hubbard model,

H = −J
∑
j

(
b̂†j b̂j+1 + b̂†j+1b̂j

)
+
U

2

∑
j

b̂†j b̂
†
j b̂j b̂j. (2.27)

This has the advantage that all interactions are onsite and that the basis of the

Hamiltonian consists of elements that are centred and exponentially localised on

each site, which is physically intuitive and convenient to work with.

Many-body features

The Bose-Hubbard model is deceptively simple but has rich physics that are still

not completely understood beyond homogeneous equilibrium situations. There is a

non-trivial interplay between the kinetic energy term and the quantum mechanical

interaction term, which can drastically alter the behaviour of the bosonic gas. For

small U , the system has superfluid properties and behaves as a BEC on a lattice,

with long range order and linear excitations. But for very large and positive inter-

action strength the particles become strongly localised and a Mott insulating state

is realised, where (for commensurate densities) each particle is localised on a single

site and it becomes unfavourable for particles to tunnel to neighbouring sites as this

would incur a huge interaction energy. For moderate U the situation is more compli-

cated as the effects of these terms are on more of an equal level and lead to non-trivial

features. In 1D the equilibrium properties of this model can be solved numerically

to machine precision with matrix product state techniques [93] (see Ch. 4), where
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it has been found that the transition between superfluid to insulating behaviour in

this model is not continuous as the ratio U/J is varied but has a well defined tran-

sition point. At zero temperature this is a quantum phase transition, characterised

by a diverging correlation length and a closing of the energy gap in the spectrum

[94, 95]. These phases have been experimentally realised both for bosons [43, 50–53]

and also for the metal to insulator transition for fermions [54, 55]. Note that the

out-of-equilibrium dynamics of this model, with or without the inclusion of dissipa-

tive processes or including multi-species, is still a very active area of research [96]

(see Ch. 6).

In part III we will investigate the equilibrium and dynamical properties of this

model in novel ladder geometries which then modifies the single particle kinetic

energy terms and brings with it a more complex interplay between the conventional

dynamics and the interactions resulting in novel many-body phases and behaviour.

Controllability

The main advantage of these experimental systems comes in the amount of control

that can be placed over the parameters of the system [25, 27, 28, 33]. For example,

by varying the intensity of the applied laser controlling the optical potential, we can

vary the ratio of the kinetic energy terms to the terms describing interactions and

in this way engineer situations where either one type of process dominates the other

or where they affect the dynamics equally. Additionally, through the influence of a

magnetic field on the internal energy states of the atoms, we can tune the charac-

teristic scattering length (see above) describing the low energy scattering properties

allowing for a further tuning of this ratio, and even allowing us to realise either

attractive or repulsive effective interactions. These parameters can even be varied

time-dependently in a controllable way throughout an experimental sequence, for
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example typical timescales for the dynamics of the atoms in an optical lattice are on

the order of J ∼ 100−1000 Hz and the parameters of the Hamiltonian can be varied

on > 10 kHz timescales [33, 62], allowing for an effective instantaneous quench of

the lattice parameters. This then allows these experiments to probe novel highly

out-of-equilibrium dynamical features.

Additionally, it is also possible to vary the lattice parameters on timescales much

longer than those for the dynamics, allowing for procedures which result in the

preparation of strongly correlated eigenstates of a Hamiltonian through adiabatic

state preparation. The adiabatic theorem is at the heart of preparing non-trivial

many-body ground states in optical lattice experiments, made possible only by the

incredible ability to fine tune the experimental lattice parameters. The principle is

that if we change the parameters of the Hamiltonian sufficiently slowly, then the

physical properties will adjust so that the state is a continuous eigenstate of the

time-dependent Hamiltonian. We can explicitly derive a condition for this adiabatic

ramp by expanding our state into a superposition of eigenstates of the Hamiltonian

at time t,

|Ψ(t)〉 =
∑
n

cn(t)|φn(t)〉. (2.28)

Substituting this into the Schrödinger equation we obtain the expression for the

dynamics of the coefficients, cn(t),

ih̄
∂

∂t
cn(t) =

(
En(t)− 〈φn(t)|ih̄ ∂

∂t
|φn(t)〉

)
cn(t)

−
∑
m6=n

〈φn(t)| ∂
∂t
H(t)|φm(t)〉

Em(t)− En(t)
cm(t).

(2.29)

We can see that to avoid mixing between the nth and mth eigenstate that the second

term on the right hand side should be zero. We can thus write the condition, such
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that there is no time-dependent mixing between eigenstates so that the adiabatic

theorem is satisfied as,

|〈φn(t)| ∂
∂t
H(t)|φm(t)〉| � |Em(t)− En(t)|, (2.30)

which indicates that the Hamiltonian should be varied on timescales much longer

than the separation of the energy states.

In this way, and by choosing the appropriate initial and final Hamiltonian, we

can begin in a state that can be prepared experimentally, such as a product state

with an exact number of particles on each site, and produce a non-trivial highly

entangled many-body state [97–99]. These features are important for realising many

of the proposed physics presented in this thesis (see Ch. 8 & 9).

However, for many interesting situations the ground state of many-body systems

are not separated in energy from the excited states in the thermodynamic limit,

i.e gapless excitations. In these cases, the condition for adiabaticity in Eq. 2.30

can never be satisfied. Although, in practice realising these phases with a finite

lattice size opens up small energy gaps in the spectrum and so makes it in principle

possible to prepare these states on timescales proportional to the inverse of this

gap. This comes with the caveat that not performing the adiabatic ramps slow

enough leads to significant errors in the overall state fidelities and many important

observables [100, 101]. We will see this explicitly in Ch. 8 & 9 where we observe

a reduction in the correlation length in the prepared state compared to the target

ground state for ramp times that are too short.
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2.5 Summary

Here we have summarised the description of ultracold atoms in optical lattices which

is a platform for analogue quantum simulation and will be a heavy focus for real-

ising the physics presented in this thesis. We have explained the well controlled

approximations that are valid in these experiments such that they can be used to

simulate the behaviour of seminal models in theoretical physics, for example the

(Bose-)Hubbard model. In Ch. 6 & 7 we will present benchmarking simulations of

these types of quantum simulators, where we directly assess the relative performance

in capturing dynamical properties compared to state-of-the-art classical algorithms

and then quantitatively analyse the effects of atomic losses.

In this chapter we also illustrated that through precise tuning of the experimen-

tal parameters over long or short timescales (compared to the atom dynamics) that

novel equilibrium states or highly out-of-equilibrium scenarios respectively can be

engineered and probed. We will make use of these features to propose how to experi-

mentally investigate the equilibrium and dynamical behaviour of strongly interacting

ladder systems in Ch. 8 & 9 and the dynamics in the presence of strong dissipative

mechanisms in Ch. 10.
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Chapter 3

One-dimensional quantum systems

In the previous chapter we derived a simplified effective field-operator Hamiltonian

for many interacting ultracold atoms, illustrating the controlled approximations that

are valid in these experiments making it possible to derive Hubbard type models

in the limit of a strong lattice confinement. In this chapter we describe how to

more generally analyse the equilibrium and dynamical properties of the effective

field theory in one-dimensional systems. As this thesis predominantly focuses on the

properties of 1D lattices, understanding the theoretical and analytical results for the

general situation in 1D is important, so that we are able to better understand the

novel features that are manifested when we consider more specialised situations.

In some cases, restricting the dynamics to one dimension, which results in peculiar

features where both bosonic and fermionic systems (in certain limits) share univer-

sal behaviour, offers the ability to analytically calculate many important correlation

functions by mapping to the so-called Luttinger liquid model [102–105]. However,

including additional features into the Luttinger liquid theory, such as inter-spin inter-

actions or a lattice confinement - which are features that we will analyse in this thesis

- complicates this simple theory. So in this chapter we summarise some important
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known results which we will refer back to often throughout the thesis, in particular

in part III when we consider many-body ladder systems with novel coupling terms

between each leg.

3.1 The Tomonaga-Luttinger liquid

The problem of interacting quantum particles in a one-dimensional system is not

only an interesting theoretical question, but is now becoming increasingly more and

more relevant to experimental physics. Using cold atom systems we can now tightly

confine atoms in asymmetric traps, such that there is a huge energy cost for excit-

ing particles in the radial directions, producing an effective 1D geometry [106–109].

These experimental capabilities allows us to confirm many novel physical predic-

tions and to now begin to probe exotic regimes that are outwith the grasp of current

theoretical or numerical techniques - as we will illustrate in Ch. 6. However, under-

standing the behaviour of approximate models will allow us to help to benchmark

these experimental platforms which throughout this thesis we aim to do through

a combination of numerical approaches and the analytical results presented in this

(and the previous) chapter.

Features of 1D

In one-dimension, interactions have drastic effects that cannot be captured by a

simple effective (perturbative) free quasi-particle theory. This is easy to see by con-

sidering that when a particle tries to propagate in 1D it necessarily pushes on its

nearest neighbours and the effects of these interactions cannot be mitigated by the

particles moving around one another. Thus, excitations in a 1D interacting gas of

atoms must behave in a very collective way and the system can have drastically
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different properties even for weak interactions. We can compare this to higher di-

mensions where the effects of interactions can be added perturbatively into most low

energy descriptions, see Landau’s Fermi liquid theory for example [110].

Furthermore, in higher dimensional systems when creating an excitation with

some energy there is an uncertainty to its momentum components because only the

magnitude effects the energy, i.e. there are a variety of different momentum vectors

that can lead to the same excitation energy. In 1D, this is not the case because

the direction of the momentum vectors are extremely limited - they can either be

left moving or right moving. However, for excitations around the Fermi-energy

with momentum kF , processes which transform a right mover into a left mover (or

vice-versa) require a large change in momentum, 2kF , and so are unlikely, meaning

that the low energy particle-hole excitations have both a well defined energy and

momentum. This meets the minimal requirements for being a well-defined quasi-

particle which because they are formed of both a particle and a hole, necessarily

have integer spin. Hence the fundamental excitation in 1D is bosonic because they

consist of the simultaneous destruction and creation of a fermionic excitation. This

observation forms the heart of Luttinger liquid theory and is the key to solving the

one-dimensional problem [102–105].

Bosonisation

If we only consider low energy excitations around the Fermi surface, kF , then we

can approximate the excitations with a linear dispersion, E(k) ≈ vF (k − kF ). The

difficulty now comes in treating the interaction terms which we cannot straightfor-

wardly diagonalise. However, it has been shown that we can transform to a basis

consisting of two bosonic fields which results in a quadratic Hamiltonian of the same

form as the non-interacting system [104], and so allows us to treat the interactions
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exactly (in the low energy effective field theory) and we find that the excitation

spectrum remains qualitatively the same, but with a rescaled velocity. This is the

technique referred to as bosonisation, and we sketch out how to transform to this

basis [111–113].

We begin with the 1D effective many-body Hamiltonian for free spinless fermions,

H =

∫
dxψ†(x)

(
−1

2
∇2

)
ψ(x) +

g

2

∫
dxψ†(x)ψ†(x)ψ(x)ψ(x), (3.1)

where h̄ = m = 1. This model can be derived by invoking similar approximations as

for the bosonic version (see Eq. 2.7) where a higher energy cut-off has been introduced

which allows us to regularise the contact interaction. As these are fermionic fields,

they satisfy the anti-commutation relations, {ψ(x), ψ†(x′)} ≈ δ(x − x′). We then

decompose our single particle field operators into right movers and left movers,

ψ(x) = ψL(x) + ψR(x). (3.2)

Then we define the following two bosonic fields,

∇φ(x) = −π
[
ψ†R(x)ψR(x) + ψ†L(x)ψL(x)

]
,

∇θ(x) = π
[
ψ†R(x)ψR(x)− ψ†L(x)ψL(x)

]
,

(3.3)

which physically correspond to the density and current fluctuations in the system

respectively, and allow us to write the Hamiltonian for non-interacting fermions

(g = 0) as,

H =
vF
2π

∫
dx
[
(πΠ(x))2 + (∇φ(x))2

]
. (3.4)

Here the bosonic field φ(x), and its conjugate momentum density, πΠ(x) = ∇θ(x),

satisfy the commutation relation, [Π(x), φ(x′)] = iδ(x − x′), and vF is the Fermi
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velocity. Note that these fields, φ(x) & θ(x), are dimensionless which can be seen

from Eq. 3.3 as ∇φ(x) & ∇θ(x) have dimensions of 1/Length.

This basis transformation may seem strange at first, but it also allows us to write

the interaction terms (for spinless fermions),

g4

2

[
ψ†R(x)ψR(x)ψ†R(x)ψR(x) + ψ†L(x)ψL(x) ψ†L(x)ψL(x)

]
=

g4

4π2

[
(∇φ(x))2 + (πΠ(x))2] ,

g2ψ
†
R(x)ψR(x)ψ†L(x)ψL(x) =

g2

4π2

[
(∇φ(x))2 − (πΠ(x))2] ,

(3.5)

where we have allowed for the possibility that there are different interaction strengths,

g4, g2 for the different processes. Here we have ignored the possibility for a left mover

to be transformed into a right mover (and vice versa) because this would require a

large change in momentum, ±2kF , as we have restricted ourselves to excitations

around the Fermi-level.

These transformations allow us to write the many-body Hamiltonian as,

H =
u

2π

∫
dx

[
K(πΠ(x))2 +

1

K
(∇φ(x))2

]
, (3.6)

where we have introduced the rescaled characteristic velocity of the excitations, u

and the dimensionless Luttinger liquid parameter, K, which are defined through,

uK = vF

(
1 +

g4

2πvF
− g2

2πvF

)
,

u

K
= vF

(
1 +

g4

2πvF
+

g2

2πvF

)
.

(3.7)

We can see then, that in this bosonized basis, that the form of the Hamiltonian

41



The Tomonaga-Luttinger liquid

remains the same with the inclusion of two-body contact interactions. We can see

that the effects, are to rescale the characteristic velocity of the low energy linear

excitations, u, and also to introduce the so called Luttinger liquid parameter, K,

which rescales the relative weighting between the current and density fluctuations.

In order to realise particular values of K we need to start with different initial

interaction strengths in the underlying fermion basis. For K < 1 the system is

dominated by charge density wave fluctuations and corresponds to repulsively in-

teracting fermions, whereas for K > 1 the system is dominated by superconducting

fluctuations and is realised for attractive interactions. Note that K = 1 corresponds

to free non-interacting fermions, which can be seen because the Luttinger liquid

Hamiltonian in equation 3.6 reduces to the non-interacting case of equation 3.4.

Here we have presented a simple derivation of the Luttinger liquid Hamiltonian

which approximates a linear dispersion relation around the Fermi level, however, it

is possible to derive this in a much more rigorous way, where it has been shown that

it is a valid description of the low energy properties of any massless∗ one-dimensional

system [105], which brings in small corrections to the expressions for the correlation

functions that we will present below. In this more general case however, it is not

possible to straightforwardly calculate the parameters of this model, u and K, and

one must usually resort to finding them through a numerical calculation.

It should also be clear that this Hamiltonian is quadratic, and can thus be diag-

onalised exactly, and so all low energy properties of Luttinger liquids are completely

known once the two parameters, u and K, are obtained. However, we will see below

that including additional terms in the model, such as a spin component or a lattice

potential, incorporates correction terms making the model no longer quadratic and

so not as amenable to finding simple solutions.

∗i.e any Hamiltonian that has a gapless linear excitation spectrum.
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3.2 Physical consequences

We now summarise some important physical quantities that can be predicted from

solving the Hamiltonian in Eq. 3.6, and show that these can be expressed in terms

of the Luttinger liquid parameters. We have already stated that the excitation

spectrum above the ground state is known, and is directly related to the parameter,

u,

Ek = u|k|. (3.8)

Many thermodynamic properties are also known [102, 114], such as the specific heat,

CV =
TLπ

3u
, (3.9)

where L is the length of the system, and the compressibility,

κ =
K

uπ
. (3.10)

But perhaps more interesting is that the long range correlations can be analyti-

cally calculated, giving insights into the quantum features of general one-dimensional

systems. To calculate these, we first write the fermionic field operator for the density

in terms of the bosonic fields [102],

ρ(x) = ψ†L(x)ψL(x) + ψ†R(x)ψR(x) + ψ†L(x)ψR(x) + ψ†R(x)ψL(x)

=
1

π
∇φ(x) +

1

2πξ

(
ei2kF xe−i2φ(x) + e−i2kF xei2φ(x)

)
,

(3.11)

where ξ is a short distance cut-off parameter, which is introduced by limiting the ef-

fective field theory to low energies similar to the case studied in the previous chapter.

In the above equation this means that the coupling between left movers and right
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movers only occurs for higher energies when the cut-off, ξ, is small. It should be

understood that in all cases where this cut-off appears throughout the chapter that

the limit ξ → 0 should be taken, however in certain physical situations, this cut-off

could be the lattice spacing, or the effective range of the interactions for example.

We must also use the expressions for the correlations of bosonic fields [102],

〈[φ(x)− φ(0)]2〉 =
K

2
log

(
x2 + (iu|τ |+ ξ)2

ξ2

)
,

〈[θ(x)− θ(0)]2〉 =
1

2K
log

(
x2 + (iu|τ |+ ξ)2

ξ2

)
,

〈φ(x)θ(0)〉 = − i
2

arctan

(
x

iuτ + ξ

)
,

(3.12)

which as the Hamiltonian is quadratic can be easily derived using the path integral

representation, see Ref. [102] for details.

We can then calculate the density-density correlations as a function of space, x

and time, τ [102, 111],

〈ρ(x, τ)ρ(0)〉 = − K

2π2

u2τ 2 + x2

(x2 − u2τ 2)2 +
2

(2πξ)2
cos(2kFx)

(
ξ√

x2 − u2τ 2

)2K

. (3.13)

It appears then for any physical value for the Luttinger liquid parameter, K > 0, that

the (zero temperature) correlations decay algebraically. This is a general property of

one-dimensional systems [102] and means that it is not possible to achieve phases with

real long-range order where the correlations can asymptotically approach a non-zero

constant value like the case for Bose-Einstein condensates or superconductivity in

three-dimensions. At best in 1D we can achieve only quasi-long-range order where the

correlations decay algebraically due to the effects of quantum fluctuations, further

validating the argument in the beginning of this chapter that interactions in 1D
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always play an important role.

We see similar behaviour in other types of correlation functions. In order to

derive these we must use another element of the bosonisation toolkit and write the

field operators as [102],

ψr(x) =
Ur√
2πξ

eirkF xe−i(rφ(x)−θ(x)), (3.14)

where r = L,R and Ur is an operator which creates a fermion and commutes with the

bosonic fields. Its role is to ensure an exact mapping between the original fermionic

basis and the new basis in terms of the bosonic fields, and leads to small corrections

in some cases. However, it does not contribute to the correlation functions [102].

We can then calculate the pairing correlations, OSU(x) = ψL(x)ψL(x + ξ) +

ψR(x)ψR(x+ ξ) + ψL(x)ψR(x+ ξ) + ψR(x)ψL(x+ ξ) [102, 111],

〈O†SU(x, τ)OSU(0)〉 =
1

(πξ)2

(
ξ√

x2 − u2τ 2

) 1
2K

. (3.15)

Comparing this to the density-density correlations (Eq. 3.13) we can see that as we

increase K → ∞, which corresponds to strong attractive interactions, the density

correlations decay faster (in space and time) whereas the pair correlations decay

slower. This indicates that for greater attractive interactions that the system mani-

fests more superconductive like pair fluctuations but less charge fluctuations. Con-

trast this to strong repulsive interactions, K < 1, the pair fluctuations are suppressed

and the charge fluctuations are enhanced.

Comparing these two correlations to the single particle Greens function [102, 111,

115, 116],
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〈ψR(x, τ)ψ†R(0)〉 =
ei2kF x

2πξ

(
ξ√

x2 − u2τ 2

)K+K−1

2

exp

(
i

2
arctan

(
x

iuτ + ξ

))
, (3.16)

we see qualitatively different behaviour. Away from K = 1, which is the case of

non-interacting fermions, the decay of these single particle correlations is increased,

indicating that single particle fluctuations in interacting one-dimensional systems are

unfavourable.

3.3 Incorporating additional features

The bare Luttinger liquid theory is elegant in its simplicity resulting in a quadratic

Hamiltonian which can therefore be used to analytically calculate the form of many

important observables. However, including additional features in order to more

closely match physical situations results in the appearance of more complicated

terms, which are not so straight forward to treat. These additions are particu-

larly relevant when we come to investigate spinful Fermions in Ch. 6, 9 & 10 and

bosonic ladder systems in Ch. 8. However in some cases, as we will present here, the

effects of these are to simply include corrections to the Luttinger liquid parameters

that appear in the expressions for the observables, and so progress can be made by

either treating them on a weak perturbative level, applying a renormalisation group

analysis or by extracting the parameters from a numerical calculation. The latter

can be achieved either by utilising the Bethe ansatz [117] or applying matrix prod-

uct state techniques - see Ch. 4 for a discussion of these methods and Ch. 8 for a

demonstration on how to map the results to the Luttinger liquid theory.

In this section, we summarise the differences to the bare Luttinger liquid theory

upon including a spin component in the fermion picture, applying a weak lattice
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confinement and when confining bosons to 1D.

Spin

In order to analyse more realistic physical situations in the solid state, as will be

considered in Ch. 6 & 10, it becomes necessary to include in the bosonisation analysis

both spin components and interactions between them. For spinful fermions we can

also perform a similar bosonisation scheme [102, 114, 118], but we now have two

degrees of freedom, one for the total charge and one for the total spin,

ρ(x) =
1√
2

(ρ↑(x) + ρ↓(x)) ,

σ(x) =
1√
2

(ρ↑(x)− ρ↓(x)) .
(3.17)

We can then define two types of bosonic fields,

φρ(x) =
1√
2

(φ↑(x) + φ↓(x)) ,

φσ(x) =
1√
2

(φ↑(x)− φ↓(x)) ,
(3.18)

and a similar set for the current fluctuations.

The Hamiltonian then decouples in the charge and spin degrees of freedom,

H = Hρ +Hσ + g1

∫
dx cos(2

√
2φσ(x)), (3.19)

where g1 is the inter spin interaction strength and Hρ & Hσ are of the form given

by the bare Luttinger liquid Hamiltonian in equation 3.6, however with different

Luttinger liquid parameters. Because there is no need for the Luttinger liquid pa-

rameters for the spin and charge sector to be the same, this means that these two
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degrees of freedom separate and propagate with different velocities through the sys-

tem. This separation between spin and charge excitations gives another indication

that it is not possible for a single particle to be excited in a purely 1D system, which

can be seen by realising that a single particle would carry both a well defined spin

and charge which would travel through the system at the same rate.

From the Hamiltonian in Eq. 3.19 we can see that the charge sector is charac-

terised by the bare Luttinger liquid theory, but the spin sector has a cosine term

resulting in the sine-Gordon Hamiltonian [119] which can only be treated on an

approximate perturbative level [102]. This then allows for an analysis with renor-

malisation group methods giving us rescaled Luttinger liquid parameters for the

emergent effective theory.

Ignoring for the moment the cosine term we can calculate the power law de-

pendence for the charge density wave (CDW) and spin density wave (SDW) density-

density correlations using the same techniques described in the previous section [102],

〈O†CDW (x)OCDW (0)〉 ∝
(

ξ√
x2 − u2τ 2

)Kρ+Kσ

,

〈Ox†
SDW (x)Ox

SDW (0)〉 ∝
(

ξ√
x2 − u2τ 2

)Kρ+1/Kσ

,

〈Oy†
SDW (x)Oy

SDW (0)〉 ∝
(

ξ√
x2 − u2τ 2

)Kρ+1/Kσ

,

〈Oz†
SDW (x)Oz

SDW (0)〉 ∝
(

ξ√
x2 − u2τ 2

)Kρ+Kσ

,

(3.20)

for the operators,
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OCDW (x) = ψ†R,↑(x)ψL,↑(x) + ψ†R,↓(x)ψL,↓(x),

Ox
SDW (x) = ψ†R,↑(x)ψL,↓(x) + ψ†R,↓(x)ψL,↑(x),

Oy
SDW (x) = −iψ†R,↑(x)ψL,↓(x) + iψ†R,↓(x)ψL,↑(x),

Oz
SDW (x) = ψ†R,↑(x)ψL,↑(x)− ψ†R,↓(x)ψL,↓(x),

(3.21)

which give us the bare Luttinger liquid theory for the two-component bosonic fields.

One way to analyse the corrections to these correlations arising from the cosine

term is to apply a renormalisation group approach [102, 119]. This is valid for weak

values for g1 and it is found that for Kσ > 1 that the cosine term is irrelevant, mean-

ing that for long length scales it is unimportant and its only effect is to renormalise

the Luttinger liquid parameters in the simple quadratic Hamiltonian, meaning that

all expressions for the correlation functions map directly over. However, if g1 is above

some critical value, solving the renormalisation group equation results in a non-zero,

but finite, weight for the cosine term which opens up a gap in the excitation spec-

trum for the spin sector, indicating that there are large corrections to this Luttinger

liquid theory in the strongly interacting regime, whereas the density sector can retain

its Luttinger liquid behaviour. For Kσ < 1 the cosine term is relevant and so this

term dominates over all length scales meaning that the Luttinger liquid behaviour

of the spin sector is suppressed and the Luttinger liquid parameter, Kσ flows to

smaller and smaller values, meaning that the x and y spin correlations above decay

rapidly. In some cases the density sector may retain its Luttinger liquid behaviour

and the CDW and the z SDW correlation functions keep their algebraic decay now

completely controlled by Kρ.
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Lattice potential

Including a lattice potential also complicates the above analysis on the universal

behaviour of one-dimensional systems, meaning that, in general, it is no longer pos-

sible to obtain exact, analytical expressions for correlation functions. This is also

particularly relevant for the analysis presented in this thesis as throughout we pre-

dominantly consider the case of deep potentials in optical lattice experiments such

that the dynamics can be described by the (Bose-)Hubbard model, which was derived

in the previous section. Therefore in this section we summarise the bosonisation of

the Hubbard model [102] and present the Luttinger liquid parameters and discuss

the corrections to the Luttinger liquid behaviour in different limits. Note that in

certain cases in the limit of strong lattice confinement and strong interactions it is

possible to analyse the behaviour by mapping the problem to a spin model which

then allows for a direct mapping to the bare Luttinger liquid theory [120, 121]. Here

we consider the Hubbard model,

H = −J
∑
n,σ

(
ĉ†n,σ ĉn+1,σ + h.c.

)
+ U

∑
n

n̂n,↑n̂n,↓, (3.22)

where, ĉ†n,σ is the creation operator for a fermion with spin σ = {↑, ↓} on site n,

and n̂n,σ = ĉ†n,σ ĉn,σ. This Hamiltonian is valid for strong lattice confinement and

an interaction strength that is much smaller than the spacing between energy bands

- this is the fermion version of the Bose-Hubbard model derived in the previous

chapter.

In this case we obtain a Hamiltonian of a similar form as Eq. 3.19, but where the

Hubbard interaction strength, U controls the sine-Gordon term,

H = Hρ +Hσ +
U

2π2ξ2

∫
dx cos(2

√
2φσ(x)). (3.23)
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The Luttinger liquid parameters are then related to the Hubbard coefficients by,

uρKρ = uσKσ = vF ,

uρ
Kρ

= vF

(
1 +

U

πvF

)
,

uσ
Kσ

= vF

(
1− U

πvF

)
.

(3.24)

As the form of this Hamiltonian is the same as Eq. 3.19, just with different values

for the coefficients, we can apply the same renormalisation group analysis. In order

to proceed in the regimes where the effects of the cosine term grows during the

renormalisation group flow, then this problem must be approached differently, for

example using a numerical method such as matrix product states (see Ch. 4 & 6).

Bosonisation of bosons

A peculiarity of bosonic systems is that the interacting case has very different proper-

ties compared to the non-interacing case as for zero interactions all particles occupy

the same lowest energy state. This means that it is never possible to begin with the

non-interacting theory and incorporate interactions perturbatively like in the case

for higher dimensional Fermions. Nevertheless, in 1D we can still solve this problem

for repulsive interactions by using the techniques from bosonisation [102, 105]. The

Hamiltonian is exactly of the form of the spinless fermion Luttinger liquid Hamilto-

nian of Eq. 3.6. The results summarised here for one-dimensional boson systems, will

play a crucial role in understanding the many-body behaviour of the Creutz ladder

that we analyse in Ch. 8.

There are important differences to the fermion theory, for example the field op-
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erator (for bosons now) is [102, 105],

ψB(x) =
√
ρ0

∑
p

e−i2p(πρ0x−φ(x))eiθ(x), (3.25)

where ρ0 is the mean density and p is an integer. Contrast this to the expression for

fermions in Eq. 3.14, where 2p = ±1. This leads to the same power law dependence

for the density-density correlations [105],

〈ρ(x, τ)ρ(0)〉 = ρ0 −
K

2π2

u2τ 2 + x2

(x2 − u2τ 2)2 + Ã cos(2πρ0x)

(
1√

x2 − u2τ 2

)2K

, (3.26)

where Ã is a model dependent constant. But the differences appear in the expression

for the single particle Greens function [105],

〈ψ(x, τ)ψ†(0)〉 ∝
(

ξ√
x2 − u2τ 2

) 1
2K

, (3.27)

where now for large K, these correlations decay slowly indicating that there can be

large single bosons fluctuations. Contrast this to the case for fermions where the

exponent was proportional to K+K−1, so that if K moved away from one (the non-

interacting fermion case) then the correlations decayed faster, meaning that single

fermion excitations are suppressed in the interacting case.

We can use these correlation functions to interpret the Luttinger liquid parameter,

where we can see that as K →∞ the charge fluctuations (Eq. 3.26) are suppressed

whereas the superfluid fluctuations (Eq. 3.27) are constant, this case corresponds

to non-interacting bosons. As K decreases towards one this corresponds to increas-

ing the (repulsive) interaction strength, where the superfluid fluctuations are still

dominant over the charge fluctuations. At K = 1 the Luttinger liquid model then
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describes non-interacting fermions, which through the Jordan-Wigner transforma-

tion we know corresponds to hardcore (U → ∞) bosons, which is connected to the

fermionisation of bosons [108]. This description in terms of the Luttinger liquid is

only valid for repulsively interacting bosons, so there is not so obvious an interpre-

tation for K < 1, but from the correlations it is clear that the system is dominated

by charge fluctuations. This regime can only be realised if there are longer range

repulsive interactions present in the underlying model. In Ch. 8 we will use these

results to characterise the many-body phases for interacting bosons in the Creutz

ladder.

Extension to ladders

In part III of this thesis we will consider many interacting particles confined in novel

ladder geometries and so it is important then to consider how the above results for

one-dimensional quantum systems are affected when two 1D chains are connected

together to form a simple ladder. In general, including this coupling can significantly

affect the long distance behaviour of the correlation functions we presented in the

previous section and in some cases can open up a gap in the excitation spectra sup-

pressing the algebraic decay of the correlations. But in other cases it has been found

that these ladder systems can also exhibit similar quasi-long-range order and pre-

serve the separation between the charge and spin sectors. It appears then that going

a little beyond 1D does not destroy these characteristic features of one-dimensional

systems, but leads to a much richer array of physics as we will sketch out below.

For a ladder system of spinless fermions that can be described by a Hubbard

model with a nearest neighbour interaction, V , the Hamiltonian in terms of the
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boson fields is given by [102],

H = H1 +H2 −
J⊥
2πξ

∫
dx cos (φ1(x)− φ2(x)) cos (θ1(x)− θ2(x)) , (3.28)

where H1 and H2 are the bare Luttinger liquid Hamiltonians for each of the two

coupled chains and J⊥ describes the tunnelling between chains. Due to the presence

of the double cosine term, this means that we must analyse its features using the

renormalisation group equations. However, it is much more convenient to analyse

this after performing a basis transformation,

ρρ(x) =
1√
2

(
ψ†1(x)ψ1(x) + ψ†2(x)ψ2(x)

)
,

ρ‖(x) =
1√
2

(
ψ†1(x)ψ2(x) + ψ†2(x)ψ1(x)

)
.

(3.29)

This leads to the Hamiltonian,

H = Hρ +H‖ +

√
2J⊥
π

∫
dx∇φ‖(x),

+

∫
dx

2g⊥
(2πξ)2

cos(
√

8φ‖(x)) +
2gf

(2πξ)2
cos(
√

8θ‖(x)),

(3.30)

where

g⊥ = −V ξ (1− cos(kF ξ)) ,

gf = V ξ cos(kF ξ).
(3.31)

From this we can observe that the two sets of bosonic fields ρρ(x) and ρ‖(x) are

separated and uncoupled. This means that there will be regimes where the power law

behaviour in Kρ, survives for some correlation functions, see Eq. 3.20. In particular,

it has been found that this system can host phases dominated by superconducting
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like pairs [122, 123], which can be characterised through an algebraic decay of either

a symmetric superconductive pairing operator,

OS
SD(x) = ψL,0(x)ψR,1(x) + ψL,1(x)ψR,0(x), (3.32)

or an antisymmetric operator,

OA
SD(x) = ψL,0(x)ψR,1(x)− ψL,1(x)ψR,0(x), (3.33)

by tuning the strength of the interactions. In this way realising 1D phases with

analogous counterparts in higher dimensions to s-type and d-type superconductivity

respectively, indicating that even with two coupled chains that there are features

that one would expect from two-dimensions [102]. In contrast to a pure 1D chain,

it has been found that in the ladder system the symmetric superconductive pairing

is actually robust to the effects of disorder [124], indicating that there are potential

advantages in these quasi-1D systems compared to the pure 1D case. Ladder systems

with spin have also been analysed where it has been shown that similar features for

the correlations and phases can also be manifested with certain regimes that are able

to realise quasi-long-range order in the superconducting correlations for repulsive

interactions [125–130].

Similar analysis has also been carried out on a ladder system of three coupled

chains [131, 132] where it has been shown that the system shares more similarities to

a single chain compared to the two chain case, and is actually more likely to manifest

quasi-long-range order for a wider range of parameters. A qualitative understanding

of this is that two chains become strongly coupled and together decouple from the

degrees of freedom of the third allowing the fluctuations in this free chain to propa-
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gate freely. The crossover to two-dimensions has also been considered as the limit of

this analysis to infinite chains [133] where it has been shown that there is a strong

even-odd effect where for an odd number of chains the system behaves more like

a single chain for similar reasons to the arguments above and for an even number

of chains the system behaves more like the two-leg ladder system. Of course, for a

real 2D geometry, these unique features of 1D systems should be destroyed, however

there are uncertainties as to the precise crossover point of this behaviour [133] and

that taking this infinite chain limit is not so straightforward.

3.4 Summary

In this chapter we have summarised the solution of the Luttinger liquid model and

presented some of the most important results, such as the long range behaviour

of the correlation functions. This is a theory that (in the massless case) can be

directly mapped onto the low energy properties of interacting particles confined in

one-dimension. As we predominantly consider one-dimensional systems in this thesis,

understanding the features of this simple model will allow us to better understand the

physics that are unique to the more specific situations that we will analyse. We also

presented the effects on the main predictions upon including a strong lattice confine-

ment, which is relevant for comparing to quantum simulations with optical lattice

experiments and we considered extending the model to describe spinful Fermions

and ladder systems, the results of which we will use to help us analyse many-body

effects in topological band structures in part III.
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Chapter 4

Methods for classical simulation

The ability to classically simulate many-body quantum systems has led to profound

insights into the properties of these systems, but is now becoming even more im-

portant in the context of quantum simulation. Given that the goal is to have the

simulators operating in a regime beyond what is capable of investigating with classi-

cal algorithms, how then are we to confirm that the results are correct? One approach

is to benchmark the experimental architecture against state-of-the-art classical algo-

rithms in regimes that are accessible and then gradually extend the parameters of

the experiment to regimes beyond those classically obtainable. So in order to ensure

the smallest margin of error it is therefore optimal to use classical algorithms that

are valid in the largest of possible regimes. In other words it is paramount that

we have the best way of benchmarking the experimental architectures for quantum

simulation so that we can have confidence that the results are actually correct.

For quantum systems that are too large for a classical computer to manipulate the

full set of basis states, matrix product states (MPS) [1, 134–137] are a very powerful

but fairly abstract way of representing the state of the system. This representation

allows for a reduction in the region of the Hilbert space that must be considered
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based on the entanglement properties of the state. As it happens the low energy

properties of many one-dimensional Hamiltonians, in particular those that have local

interactions and have a gapped excitation spectrum [138], are very amenable to an

efficient representation with these matrix product states offering us a way forward

in calculating the properties of many-body phases to a high level of accuracy. There

have also been algorithms proposed in this language to evolve an MPS in time which

have led to many further successes in probing the out-of-equilibrium dynamics of

many-body systems after a quench [139–145]. However, in most cases entanglement

grows under time-evolution [146] which means that the compression of the MPS

becomes less and less accurate leading to the rapid growth of errors, see Ch. 6.

These techniques have had extraordinary successes in quantitatively describing the

many-body physics of interacting quantum systems in one-dimension and so in this

chapter we summarise the main features of some of the algorithms for calculating

ground states and performing time-evolution that we will utilise in later chapters.

4.1 Entanglement in many-body systems

Entanglement is a measure of non-classical correlations between two systems [147],

where measuring the state of one system not only collapses the wavefunction of that

system, but also gives knowledge and affects the state of the other. If we think of

our total system, Φ, as representing the combined two sub-systems ΦA and ΦB, these

could be two halves of a 1D system for example, then we can write the total state

as a superposition of simple product states through a Schmidt decomposition [147]

(also referred to as a singular value decomposition (SVD))

|Φ〉 =
r∑

m=1

sm|αm〉 ⊗ |βm〉, (4.1)

58



Entanglement in many-body systems

where |αm〉 and |βm〉 are orthonormal bases associated with sub-system A and B

respectively, r is the Schmidt rank of the bipartition and the sm are the Schmidt

coefficients which are real and satisfy
∑

m s
2
m = 1.

In general the larger the number of terms r in the expansion, the larger the

entanglement between the two sub-systems, for example with a product state, |Φ〉 =

|ΦA〉 ⊗ |ΦB〉, there is no entanglement and we can completely describe this with

a single term in the decomposition. Entanglement in general pure states can be

quantified through the Von-Neumann entropy [148],

E = −
r∑

m=1

sm log(sm). (4.2)

The interpretation of this quantity, is how much sub-system B would be affected by

performing measurements only on sub-system A. Thus, if the entropy is larger, then

projecting A onto particular basis states through projective measurements would

affect B more, meaning that there was more entanglement or correlations present

between the two sub-systems.

The low energy equilibrium properties of locally interacting, gapped Hamiltonians

are such that these systems obey an area law in the entanglement scaling [149], where

the entanglement in the system grows with the area of the boundary of a bipartition

as opposed to the more general scenario where it could scale with the volume [150].

As the boundary of a bipartition in one dimension remains constant irrespective

of the size of the two sub-systems, this means that we can describe these states

by only retaining a small number of Schmidt coefficients (and basis states) at each

nearest neighbouring bond. We will see below that it is these principles that are

behind the success of matrix product state techniques, where it turns out that these

types of states that obey area laws are very amenable to an efficient representation
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with a compressed matrix product state offering us a way forward in calculating the

properties of the many-body phases to a high level of accuracy [151, 152].

Out-of-equilibrium

While the equilibrium properties of the low energy states of these Hamiltonians

obey an area law it is a different story when they are driven out-of-equilibrium, for

example by applying a instantaneous global quench [139–141]. The entanglement at

each bipartition point of the system then grows linearly in time [146, 153, 154] and

which in order to achieve a given accuracy with the MPS representation we must

exponentially grow the number of Schmidt coefficients that are stored, which can

be seen from the logarithm present in Eq. 4.2. This means that we quickly run out

of classical resources and it becomes an incredibly intensive calculation in order to

evolve these states for any significant length of time.

This feature of out-of-equilibrium entanglement scaling in many-body quantum

systems can be understood in terms of the propagation rate of information, which

is characterised through the Lieb-Robinson bounds [155, 156]. This states that for

a locally interacting Hamiltonian there is an upper bound to the velocity at which

correlations spread, and is usually given by a constant linear rate, but there are

corrections for systems with long range interactions [142, 144, 145]. This means the

number of lattice sites or particles that become correlated or entangled scales linearly

with time resulting in the linear growth of entanglement which impedes an efficient

classical algorithm. This has led to substantial interest in encoding the problem in

physical quantum resources in order for a quantum simulation to help us understand

more about the long time thermalisation properties of many-body systems.
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4.2 Matrix product state representation

Throughout this chapter we will make use of tensor network diagrams, where each

tensor, labelled with three indices α, d, and β for example, is represented as,

Aα,d,β = Aα

d

β

.

Tensor contraction is then depicted through connected edges,

∑
β Aα,d1,βBβ,d2,γ = A Bα

d1

β

d2

γ

.

The MPS representation involves decomposing our state vector in terms of the

local indices. These local dimensions can represent the number of particles on a

particular lattice site for example. The decomposition is carried out with succes-

sive SVDs at each bipartition, and can be understood in terms of a tensor network

diagram,

|Ψ〉

· · ·
dn−2dn−1 dn dn+1dn+2

· · ·
= · · · A−2 A−1 A0 A1 A2

dn−2 dn−1 dn dn+1 dn+2

.

· · ·

At first this appears to only complicate things with no benefit, because in order

to capture all states in the Hilbert space, these matrices must grow exponentially as

the system size is increased and so suffers from the same scaling in computational

complexity as for the state vector representation. However in the MPS form, we

have the ability to implement a truncation scheme that allows us to efficiently store
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and work with these matrices in practice. This truncation, which incorporates an

upper bound in the number of Schmidt coefficients at each bond, limits the amount

of entanglement that the MPS can accurately capture as we have discussed in the

previous section.

Canonicalising an MPS

Again through SVDs (or equivalently QR decompositions) we can bring the MPS

into a so called canonical form,

|Ψ〉 = · · · Ai−2
L Ai−1

L AiC Ai+1
R Ai+2

R · · ·
.

where the new left canonicalised tensors, AL, and the right canonicalised tensors,

AR, satisfy the following contraction properties,

AiL

AiL

=

AiR

AiR

=
.

And we have also defined a central canonicalised tensor, AC which is related to AL

and AR by,

AiC = AiL Ci
= Ci AiR

.

The matrices Ci contain the Schmidt coefficients of a bipartition of the system at

the bond between site i and i+1. We can limit the size of these matrices by removing

the smallest Schmidt coefficients and in this way we compress the MPS but retain

the components with the largest magnitude and hence of the most importance. It
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is this property of the MPS that is responsible for the accurate representation of

low entangled many-body states, where the size of these matrices does not need to

be too large to exactly capture many important states of the low energy physics of

many-body Hamiltonians in one dimension.

4.2.1 Variational ground state search

The most successful algorithm for calculating the ground state involves a local varia-

tional optimisation of the parameters contained in the matrices of the MPS. This al-

gorithm is often referred to as the density matrix renormalisation group (DMRG) for

historical reasons, [134, 135], which has since been formulated in the MPS language,

[1]. The algorithm emphasises another main advantage of the MPS representation:

it allows us to optimise the parameters of a small local region rather than attempt-

ing to diagonalise the entire state vector. After sweeping this local optimisation

procedure from site to site the total energy of the current state should continuously

decrease and after many successive sweeps should converge to a well defined value. If

the bond dimension of the MPS is sufficiently large, the final state should be (close

to) the ground state.

First we must write the Hamiltonian, H, in the form of a matrix product operator

(MPO) which is done in a similar way as for a state with SVDs for each local

dimension. In the notation for a tensor network diagram, the energy expectation

value is given as,

〈H〉 = · · ·

Ai−2
L Ai−1

L AiC Ai+1
R Ai+2

R

H H H H H

Ai−2
L Ai−1

L AiC Ai+1
R Ai+2

R

· · ·

.
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In order to apply the variational optimisation for site i, we must remove the local

tensor AiC and contract the remaining tensors to obtain an effective left and right

environment for the local site,

· · ·

Ai−2
L Ai−1

L Ai+1
R Ai+2

R

H H H H H

Ai−2
L Ai−1

L Ai+1
R Ai+2

R

= Lienv H Ri
env

.

· · ·

which we can solve for the eigenvector with the lowest eigenvalue. This eigenvector

is then our new optimal tensor for AiC . We then move the canonicalisation centre

with an SVD (or QR decomposition),

ÃiC = ÃiL Ci Ci Ai+1
R = Ai+1

C

.

so that we can calculate the new effective left environment in order to optimise Ai+1
C ,

Li+1
env

= Lienv

ÃL

H

ÃL .

The optimisation procedure sweeps from left to right and right to left like this until

subsequent optimisations do not change the state.
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4.2.2 Tangent space methods for time evolution

There are many methods for time-evolving an MPS that all have various advantages

and disadvantages. The difficulty here is that while there is an efficient representa-

tion of the Hamiltonian as an MPO, there is in general no straightforward way to

represent the time-evolution operator in MPO form. So various approximations must

be used, such as the time evolving block decimation procedure (TEBD), [157, 158],

or adaptive time-dependent DMRG, [136, 137], which rely on a decomposition of

the total evolution operator into a product of two site gate operators, [31]. Or

Runga-Kutta type methods which decompose the evolution operator into a product

of global Hamiltonians, [159]. But these methods suffer from an unavoidable growth

of the bond dimension of the MPS, requiring a suitable truncation scheme in order to

ensure the computational complexity remains practical. This truncation naturally

suffers from errors and the most optimal scheme for performing the compression

varies from case to case.

Here we summarise a variational optimisation method, known as the time-dependent

variational principle (TDVP), [160], which given an MPS, |Ψ(t)〉, finds the optimal

state, |Ψ(t + dt)〉, such that the bond dimension is preserved. The algorithm is

derived by considering the effect of applying a local time-evolution operator and

then projecting onto the variational manifold for the MPSs with the given bond

dimension.

In a similar way as for the DMRG algorithm above, we compute the left and

right environments for a particular site and solve the linear differential equation for

the local tensor,
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Ȧ = −i

A

Lenv H Renv

.

We then shift the canonicalisation centre, but evolve the matrices C backwards in

time according to the equation,

Ċ = i

C

Lenv Renv

.

before contracting it with the next site to be evolved. We then sweep through every

site from left to right and then right to left, which evolves the state by a single time

step with an error scaling of O(dt3).

4.3 Summary

In this chapter we explained the importance and impact that matrix product state

techniques have had in probing the properties of many-body quantum systems.

Throughout this thesis, we will often utilise these techniques to predict the equi-

librium and dynamical properties of one-dimensional lattice systems and to perform

simulations which can be used to benchmark quantum simulation. In particular, in
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Ch. 6 we will utilise these techniques to compare the relative performance of current

hardware implementations of analogue simulators to these state-of-the-art classical

methods. Additionally, in Ch. 8 & 9 we will exploit the ability to time-evolve these

states to simulate adiabatic preparation schemes for strongly correlated ground states

of topological ladder systems and in Ch. 10 we will combine these techniques with a

promising new numerical algorithm (see Ch. 5) which we demonstrate allows us to

simulate open many-body systems beyond the usual weak coupling approximation.
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Chapter 5

Open quantum systems

In many realistic experimental situations it is not possible for us to approximate our

quantum system of interest as being completely isolated. Naturally there is always

an external environment which influences the dynamics of the system. For example,

in state-of-the-art quantum optics experiments the atoms in our system are placed

in a near perfect isolation, but through spontaneous emission to the electromagnetic

vacuum, this can still lead to non-negligible effects. While this can sometimes be

neglected on short time scales we must be able to treat these types of effects in more

general and complex settings. Unfortunately, we are usually unable to accurately

simulate the entire unitary dynamics of the large system-environment Hamiltonian,

due to the exponential growth of the size of the Hilbert space.

This problem has inspired a variety of (classical) numerical and analytical meth-

ods for the simulation of the effective dynamics of only the system and usually rely

on integrating out the state of the environment. These methods, developed due to

a need to describe the increasingly sophisticated quantum optical experiments [161–

167], have had great successes in modelling the system-environment dynamics in

these experimental settings [41, 168–170], offering a way forward if certain approx-
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imations are satisfied. In these experiments there is generally a large separation in

energy scales between the dynamics of the system and the environment, which allows

us to employ the Born-Markov approximation (see below) which can drastically sim-

plify the problem [2]. These allow us to write down an effective equation of motion

for the density matrix of the small system, known as the Master equation, which

takes into account the energy exchange with the larger environment.

However there is also great interest in going beyond these approximations [171–

173], where a necessary criteria is that the environment instantaneously relaxes after

exchanging energy with the system, and as such retains no memory of previous

interactions. In recent years there has been many studies into the transport of

energy and correlations in the presence of environments with memory effects which

lead to non-trivial features [173–175], such as the coherent back flow of information

from the environment into the system. So, after illustrating the derivation of the

Lindblad master equation, we present a promising numerical technique for studying

these more novel situations.

5.1 Lindblad Master equation

The notion of constructing a Master equation for a reduced system was first put

forward by V. Gorini and A. Kossakowski [176] and G. Lindblad [177], and was

formulated to generalise the unitary evolution of closed system Hamiltonians so as

to be able to describe irreversible processes, involving energy exchange between the

quantum system of interest and the wider environment. Let us write the total

Hamiltonian in terms of a contribution from the system, HS, the rest of the universe

(the environment), HE, and a term that contains all the interaction or coupling
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between the system and the environment, HSE. We can write the Hamiltonian as,

H = HS +HE +HSE. (5.1)

And we assume that the total system, H, is itself is a closed system so that the total

density matrix evolves unitarily. We can therefore write the time evolution of the

total density matrix for the system and environment as (h̄ = 1),

d

dt
ρSE = −i[HS +HE +HSE, ρSE]. (5.2)

This is simply the Schödinger equation but for the density matrix, ρ = |Ψ〉〈Ψ|. We

then apply a unitary transformation to rotate our Hamiltonian and density matrix

from the Schödinger picture to the interaction picture,

H(t) = ei(HS+HE)tHe−i(HS+HE)t,

ρSE(t) = ei(HS+HE)tρSEe
−i(HS+HE)t,

(5.3)

which simplifies Eq. 5.2,

d

dt
ρSE(t) = −i[HSE(t), ρSE(t)]. (5.4)

We then explicitly integrate this from time 0→ t [178–180],

ρSE(t) = ρSE(0)− i
∫ t

0

dt′[HSE(t′), ρ(t′)], (5.5)
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and substitute this back into Eq. 5.4 to obtain [171, 181, 182],

d

dt
ρSE(t) = −i[HSE(t), ρSE(0)]−

∫ t

0

dt′[HSE(t), [HSE(t′), ρSE(t′)]]. (5.6)

And we can always make the first term on the right hand side equal to zero by

choosing the correct definition of the coupling Hamiltonian and assuming that the

initial state is an uncorrelated state between the system and environment.

But we are only interested in the evolution of our small system, so we integrate

out the contributions from the environment in the density matrix by taking the

partial trace,

ρ(t) = TrE (ρSE(t)) . (5.7)

Which yields (note the partial trace commutes with the time derivative),

d

dt
ρ(t) = −

∫ t

0

dt′TrE ([HSE(t), [HSE(t′), ρSE(t′)]]) . (5.8)

The result of Eq. 5.8 is a Master equation and is so far exact. However, it

is incredibly complicated, and numerically costly, to solve in itself even for simple

coupling Hamiltonians, so in order to make progress we have to invoke the following

approximations.

Born approximation

We assume that the coupling between the system and the environment is weak,

such that throughout the entire evolution we can write the total density matrix as a

product state [181],

ρSE(t) ≈ ρ(t)⊗ ρE, (5.9)
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where ρE is the reduced density matrix for the environment, which we assume to be

time independent on the system timescales, which is valid if the correlations between

the system and the environment decay on timescales much faster than the system

dynamics. These approximations make sense if the environment is much larger and

is mostly unaffected or influenced by the system.

Markov approximation

In the Markov approximation the environment does not retain any memory of pre-

vious interactions with the system [2, 181]. This means that if energy escapes from

the system to the environment it is quickly dissipated away from the system and

never comes back in the same form. A necessary requirement is that the excitation

dynamics of the environment are at much larger frequency scales compared to the

dynamics of the system and consequently the environment returns to the equilibrium

state very quickly (relative to the system timescales) after being excited.

In terms of our above expression, this means that the density matrix at time t

is not dependent on the density matrix from any previous time. So we may replace

the argument of the density matrix in the right hand side of Eq. 5.8 by t and we can

write our Master equation as (combined with the Born approximation) [181],

d

dt
ρ(t) = −

∫ t

0

dt′TrE ([HSE(t), [HSE(t′), ρ(t)⊗ ρE]]) . (5.10)

In order for the Markov approximation to be valid, the environment correlation

functions must decay instantly in time and so we may extend the limits of the integral

to infinity without consequence to even further simplify the master equation [181],

d

dt
ρ(t) = −

∫ ∞
0

dt′TrE ([HSE(t), [HSE(t′), ρ(t)⊗ ρE]]) . (5.11)
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It has been shown that invoking these approximations (together referred to as

the Born-Markov approximations) results in a Master equation (Eq. 5.11) that is

equivalent to taking a perturbative expansion of the exact Master equation (Eq. 5.8)

up to terms of second order in the coupling strength [173, 178]. This means that this

is only a valid description for a system and environment that are weakly coupled.

Linear coupling and rotating wave approximation

Generally speaking most physical couplings between various systems and environ-

ments can be written in the so called linear coupling form. If we have the system

operators, ci and c†i , and the environment operators, bk,j and b†k,j, then we will have

terms in the coupling Hamiltonian given by,

HSE(t) =
∑
i,j

∑
k

αij

(
ci(t) + c†i (t)

)(
bk,j(t) + b†k,j(t)

)
, (5.12)

where the αi,j are coupling parameters and the sum over k is over the energy modes

corresponding to environment j. The operators in the interaction picture, ci(t), are

related to the operators in the Schrödinger picture, ci(0), as,

ci(t) = ci(0)e−iωit, (5.13)

where the ωi are some energy scales of the system (and depends on the specific Hamil-

tonian considered) and there is a similar expression for the environment operators.

We can then write the interaction Hamiltonian as,

HSE(t) =
∑
i,j

∑
k

αi,j

(
ci(0)b†k,j(0)e−i(ωi−ωk,j)t + c†i (0)bk.j(0)ei(ωi−ωk,j)t+

ci(0)bk,j(0)e−i(ωi+ωk,j)t + c†i (0)b†k,j(0)ei(ωi+ωk,j)t
)
.

(5.14)

74



Lindblad Master equation

We assume that the frequency of the relevant environment excitations, ωk,j, are

approximately equal to the energy scales of the system, ωi, and so, ωi−ωk,j � ωi+ωk,j

for all i and j. Therefore, the third and fourth terms on the right hand side of Eq. 5.14

oscillate much faster than the other two, so when we integrate over the time variable

in the master equation (Eq. 5.11) the fast oscillating terms both average to zero. This

is the rotating wave approximation. We can write the general form of the coupling

Hamiltonian as,

HSE(t) =
∑
i,j

∑
k

αi,j

(
ci(0)b†k,j(0)e−i(ωi−ωk,j)t + c†i (0)bk,j(0)ei(ωi−ωk,j)t

)
. (5.15)

So by collecting these approximations together, substituting the coupling Hamil-

tonian (Eq. 5.15) into our Master equation (Eq. 5.11) and defining the system-

environment coupling rates,

γi =
∑
j,k,k′

|αi,j|2
∫ ∞

0

dt′e−i(ωi−ωk,j)(t−t
′)〈bk,j(0)b†k′,j(0)〉,

γ∗i =
∑
j,k,k′

|αi,j|2
∫ ∞

0

dt′ei(ωi−ωk,j)(t−t
′)〈b†k,j(0)bk′,j(0)〉,

(5.16)

we can write the Markovian master equation in Lindblad form (in the interaction

picture and ignoring additional rotating terms) [2, 181],

d

dt
ρ(t) = L(ρ) =

∑
i

γi

(
2ciρ(t)c†i − c

†
iciρ(t)− ρ(t)c†ici

)
+γ∗i

(
2c†iρ(t)ci − cic†iρ(t)− ρ(t)cic

†
i

)
.

(5.17)

Here we denote the dissipation terms by the superoperators, L(ρ). Note that the

terms γi,j correspond to the removal of energy from the system, while the terms γ∗i,j
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correspond to the insertion of energy.

5.2 Unravelling of the Master equation

Unravelling the Master equation refers to the procedure of decomposing the dynamics

of the density matrix into an ensemble average of the dynamics of many pure states

undergoing a stochastic trajectory in the Hilbert space [2, 173], such that ρ(t) =

E [|ψ(t)〉〈ψ(t)|]. The advantages created through this procedure, is that we only

have to solve for the dynamics of the state, |ψ(t)〉, thus saving on computational

resources as the state has dimension D as opposed to the density matrix which

will have dimension D2. This approach then allows us to time-evolve many-body

systems in the presence of dissipation through the incorporation of matrix product

state techniques [41] (see Ch. 4). As we will apply a similar technique in order to

treat open many-body quantum systems beyond the Born-Markov approximations

in Ch. 10, we briefly summarise the Markovian version here before considering the

generalisation of these methods in the next section.

Explicitly, say we have the following Lindblad master equation in the Schrödinger

picture,
d

dt
ρ(t) = −i[H, ρ(t)] + ΓLρ(t)L† − Γ

2
L†Lρ(t)− Γ

2
ρ(t)L†L, (5.18)

then one possible unravelling is (in Stratonovich form),

d|ψt〉
dt

= −iH|ψt〉+ (L− 〈L〉)
(
z∗t − 〈L†〉

)
|ψt〉 −

Γ

2

(
L†L− 〈L†L〉

)
|ψt〉, (5.19)

where z∗t is a complex white noise with the properties E [ztz
∗
t′ ] = Γδ(t − t′) and

E [ztzt′ ] = 0, where E is an ensemble average. It can be shown that averaging of

the time-dependent pure state over many simulations (or trajectories) with different
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realisations of the stochastic noise term, z∗t , gives the same results as the Master

equation for the average dynamics of the system.

Physical interpretation of the trajectories

The above unravelling of the Master equation is known as a quantum state diffusion

equation, but as we have presented it so far, there is no physical interpretation for

the individual trajectories. They are simply abstract paths through the Hilbert space

which give the correct behaviour for the density matrix when taking the ensemble

average. In quantum optics, many unravellings have been formulated with a physical

continuous measurement process in mind [2, 183], where one monitors the state of

the environment and thus, due to the coupling between the system and environment,

gains knowledge on the state of the system without destroying the state (a so called

non-demolition measurement). In this context, the type of measurement performed

on the environment chooses the form of the unravelling.

For example, a convenient type of unravelling, which has an intuitive physical

picture, is a quantum jump process [163, 169], where rather than having continuous

stochastic noise terms, involves discrete jumps corresponding to an instantaneous

exchange of energy between the system and environment. This was first derived in

Ref. [169] to describe the continuous measurement of a single driven multi-level atom

interacting with the electromagnetic environment, where if a photon is measured by

an external detector, then this corresponds to a spontaneous emission event and the

atom is then projected (through a quantum jump) into the ground state. Now each

trajectory gives realistic dynamics for an experimental procedure, where averaging

over successive experimental runs (or averaging over many trajectories) gives the

same predictions as the full master equation for the density matrix.

Additionally, strongly mixing the output photons with a local oscillator before
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performing the measurement, so called homodyne detection [165, 166, 183], leads to

a physical unravelling with a continuous noise process closer in form to the quantum

state diffusion above, but now we can also gain intuitive physical knowledge from

each trajectory.

5.3 Beyond the Markov approximation

The Born-Markov approximation is a very special regime of open quantum systems,

which has received a great deal of attention in recent years, due to both the simple

form of the resulting equations and that it can be easily reached in atomic and

quantum optical experiments [2]. However, it is important to assess the effects of

going beyond these limits, particularly because these approximations are not usually

valid in a solid state setting∗ [184]. There has been great interest and work along this

line over recent years [173], for instance non-Markovian effects have been observed

to enhance coherence during quantum transport [174, 185] and to produce entangled

steady states [175] .

In this section we describe and derive the hierarchy of pure states (HOPS)

method [186, 187], which is a promising numerical strategy for the classical sim-

ulation of non-Markovian environments that can also go beyond the weak coupling

(Born approximation) regime. The method is an extension to the Markovian stochas-

tic Schrödinger equation described in the previous section, and treats the memory

effects of the environment through the introduction of auxiliary states which are

coupled with the physical state. The strategy is then to integrate the set of cou-

pled system and auxiliary stochastic differential equations under the influence of

∗In quantum optical experiments, there is a large separation in the dominant energy scales
between the system and environment making it possible to accurately apply the approximations
considered in this chaper. However, this is not usually the case for more general situations.
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correlated noise for the pure states and take an ensemble average to reproduce the

dynamics for the density matrix. Note that while the original derivation and appli-

cations have focused on a bosonic environment, the method has been extended to

environments with fermionic modes [188].

Non-Markovian quantum state diffusion

We begin by deriving the non-Markovian generalisation for the stochastic Schrödinger

equation [189, 190], which assumes that the system and environment are initially un-

correlated. For a harmonic environment that couples linearly with the system, Hs,

H = Hs +
∑
m

ωma
†
mam +

∑
m

gm(La†m + L†am), (5.20)

where am and L are the environment and system operators respectively. We expand

the state of the environment into a coherent state basis, with a|z〉 = z|z〉,

|ΨT 〉 =

∫
d2z

π
e−|z|

2 |Ψ(z∗, t)〉 ⊗ |z〉 =

∫
d2z

π
e−|z|

2

Gz(t)|ψ0〉 ⊗ |z〉, (5.21)

where

Gz(t) = 〈z∗| exp (−iHst− iHIntt) |0〉. (5.22)

Then we can write the Schrödinger equation for the parameterised system state,

|Ψ(t)〉 ≡ |Ψ(z∗, t)〉, in the interaction picture with respect to the environment as,

∂t|Ψ(t)〉 =∂tGz(t)|ψ0〉 = −iHs|Ψ(t)〉 − iL
∑
m

gmz
∗
me

iωmt|Ψ(t)〉

− iL†
∑
m

gme
−iωmt〈z∗m|am exp (−iHst− iHIntt) |0〉|ψ0〉.

(5.23)
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Dealing with the final term is a little tricky, but it can be simplified by defining,

ãm(t) = exp (iHst+ iHIntt) am exp (−iHst− iHIntt) , (5.24)

which through the Heisenberg equation of motion,

∂tãm(t) = −igme−iωmtL̃(t), (5.25)

leads to,

ãm(t) = ãm(0)− igm
∫ t

0

dsL̃(s)eiωms. (5.26)

we can then make the substitution,

δ|Ψ(t)〉
δz∗m

≡ 〈z∗m| exp (−iHst− iHIntt) L̃(t)|0〉|ψ0〉, (5.27)

which gives us the equation,

∂t|Ψ(t)〉 =− iHs|Ψ(t)〉 − iL
∑
m

gmz
∗
me

iωmt|Ψ(t)〉

− L†
∑
m

∫ t

0

dsg2
me
−iωm(t−s) δ|Ψ(t)〉

δz∗m
.

(5.28)

Then defining a new noise term,

z∗t = −i
∑
m

gmz
∗
me

iωmt, (5.29)

we can express the stochastic Schrödinger equation as,

∂t|Ψ(t)〉 = −iH|Ψ(t)〉+ Lz∗t |Ψ(t)〉 − L†
∫ t

0

dsα∗(t− s)δ|Ψ(t)〉
δz∗s

, (5.30)

80



Beyond the Markov approximation

where α(t− t′) = 〈a(t′)a†(t)〉 =
∑

m g
2
me

iωm(t−t′) is the environment correlation func-

tion and z∗t is a complex coloured noise with the property, E [ztz
′∗
t ] = α(t− t′). This

is a quantum state diffusion equation, first put forward in Ref. [189, 190] and is of a

similar form as for the Markovian version considered in the previous section.

The hierarchy of pure states

Historically, the difficulty in working with Eq. 5.30 is the functional derivative term

on the right hand side, δ|Ψ(t)〉/δz∗s . The insight which led to the HOPS algorithm

is in writing this as a new auxiliary state,

|Ψ(1)(t)〉 =

∫ t

0

dsα(t− s)δ|Ψ(t)〉
δz∗s

≡ Dt|Ψ(t)〉, (5.31)

and deriving a new stochastic equation for its dynamics. Subsequently, we must

introduce many more auxiliary states defined through,

|Ψ(k)(t)〉 = Dk
t |Ψ(t)〉. (5.32)

If for the moment we consider an environment with a single mode which has a

correlation function of the form, α(τ) = exp(−wt), then this leads to the set of

coupled equations for the system (k = 0) and the auxiliary states (k > 0),

∂t|Ψ(k)(t)〉 = (−iH − kw + Lz∗t ) |Ψ(k)(t)〉+kα(0)L|Ψ(k−1)(t)〉−L†|Ψ(k+1)(t)〉, (5.33)

with the initial conditions, |Ψ(0)(t)〉 = |Ψ(t)〉 and |Ψ(k)(t)〉 = 0 for k > 0. The non-

Markovianity in these hierarchical equations of motion come in through the time-

correlated stochastic noise and through the auxiliary states, where the system state

influences the auxiliary states which can then re-influence the system at a later time.
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This process works up and down the hierarchy throughout the dynamics. The choice

of environment is quite particular, although we can realise this exactly in cavity

QED experiments [191–193], but it is possible to extend the hierarchy to sums of m

modes with the cost of introducing m indices in the hierarchy, provided all modes

have correlation functions of exponential form. For arbitrary bath correlations it is

necessary to find a decomposition in terms of a series of exponentials in order to

apply this method.

Strictly speaking, for a bosonic environment like this we must have an infinite

number of auxiliary states, but it is found that in practice it is possible to truncate

the hierarchy at some suitably chosen and problem dependent level - in practice this

has to be chosen carefully and for most applications is usually around kmax ∼ 6,

but it must be ensured that the numerical results have converged upon increasing

this parameter [186, 187]. There are a variety of ways that have been proposed in

order to terminate the hierarchy, for example one choice of terminator for the final

auxiliary state at k = kmax is,

|Ψ(kmax)(t)〉 =
α(0)

w
L|Ψ(kmax−1)(t)〉, (5.34)

but note that the results are usually independent of the choice of terminator for a

suitable hierarchy depth [186, 187].

Also presented in Ref. [186, 187] is a modification to this method to make a

non-linear stochastic Schrödinger equation which has better convergence properties,

∂t|Ψ(k)(t)〉 =

(
−iH − kw +

(
z∗t +

∫ t

0

dsα∗(s− t)〈L†〉s
)
L

)
|Ψ(k)(t)〉

+kα(0)L|Ψ(k−1)(t)〉 −
(
L† − 〈L†〉t

)
|Ψ(k+1)(t)〉,

(5.35)
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where, 〈L†〉t = 〈Ψ(0)(t)|L†|Ψ(0)(t)〉. As can be seen from the second term on the right

hand side, this equation explicitly takes into account previous states of the system

in the stochastic noise elements, thereby further incorporating memory effects into

the dynamics. It should also be emphasised that although we are assuming that

initially the system and environment are uncorrelated the method is able to capture

the build up of these correlations time-dependently.

5.4 Summary

In this chapter we introduced the notion of the Lindblad master equation where

we presented its derivation and emphasised the Born and Markov approximations

that are paramount for its validity. We will utilise these techniques in Ch. 6 & 7

to model realistic mechanisms in optical lattice experiments such as heating due to

spontaneous emission and dissipation due to three-body loss respectively.

We also derived the non-Markovian generalisation of the stochastic Schrödinger

equation allowing for the simulation of the dynamics of open systems beyond the

usual approximations. In Ch. 10 we will make use of these techniques, and in partic-

ular the HOPS algorithm that we also presented here, in order to classically simulate

the dynamics of electrons in a one-dimensional system that is strongly coupled to a

non-Markovian reservoir.
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Chapter 6

Achieving a practical quantum

advantage in quantum simulation

Over the past couple of decades there has been an incredible improvement in the

experimental capabilities surrounding the control of quantum mechanical resources,

which has led to attempts to use physical quantum systems in order to exceed the

computational abilities of classical algorithms. In this chapter, we ask the ques-

tion, what is the most simple, but non-trivial problem, where a quantum simulation

can unequivocally demonstrate a practical quantum advantage? A demonstration

of this form, will prove the level of sophistication that these quantum devices have

reached, and give further validation that they can now be used to probe the prop-

erties of novel quantum many-body systems, such as those considered in the subse-

quent chapters of this thesis. By considering the out-of-equilibrium dynamics of the

Hubbard model, which has strong connections to materials science and solid state

physics, we quantitatively compare the performance of the state-of-the-art classical

algorithms to architectures for quantum simulation, such as ultracold atoms in opti-

cal lattices, taking into account realistic sources of errors. By extrapolating beyond
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the classically simulable regime, we demonstrate that the quantum advantage point

is accessible for current analogue simulators, while for digital simulation the hard-

ware requirements in order to reach these regimes are significantly reduced compared

to previous estimates. This is particularly timely due to the recent interest in the

notion of quantum supremacy where it was recently demonstrated that a quantum

computer can out perform classical computation in a particular example which can

be used in generating random numbers [194].

6.1 Introduction

The requirements on the experimental hardware in order to demonstrate an advan-

tage over classical computation will, of course, be highly dependent on the particular

choice of problem used to perform the comparison. We have chosen the Hubbard

model [27, 195], firstly because this has many connections to problems in materials

science and so is of interest to fields outside of fundamental physics, and secondly,

this model is very well suited to being solved on a realisation of analogue quan-

tum simulation in particular with ultracold atoms in an optical lattice [19, 33–36],

but similar seminal lattice models can now be realised in neutral atoms in tweezer

arrays [37, 38] or trapped ion experiments [20, 39, 40].

In particular, there has been recent work on comparing the performance through

the ability to capture (or prepare) the properties of the many-body ground states [196,

197] but this comparison will be incredibly dependent on the particular parameter

regime as well as the model. Here we instead consider the ability for the simulation

to capture the dynamical properties of important local observables and two-point

correlations after a global quench [117, 198], which offer a much more general way

to compare classical, analogue and digital simulation as the resulting dynamics in
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many systems obey almost universal behaviour [156, 199, 200].

We should emphasise that this type of continuous time dynamical problem while

being very well suited to analogue simulation, is potentially an area where a digital

simulation will perform poorly in [16, 29, 30, 201], for example due to errors arising

from a discretised time-step, nevertheless this allows for some indication of their

relative performance. Of course, we cannot apply a direct comparison between these

two simulation approaches as an architecture for digital simulation will in principle

be able to realise universal computation and so has a much greater flexibility over the

types of problems that it can be applied to, whereas analogue devices are purpose

built to solve the types of problems that we are considering. Additionally, there are

many different ways that one could optimise the digital logic circuit which is an area

that is under constant development [202] and so here we simply compare the errors

arising from the discretised time-step neglecting errors from individual logic gates

and ignoring considerations about optimising circuit depths and gate counts, which

we leave as a future objective.

After introducing the model that we will study, we first explain the limitations of

the state-of-the-art classical algorithms where we present the time-dependent errors

that are introduced if the numerical precision is limited to numerically tractable val-

ues. We then analyse sources of errors in analogue simulators, such as in preparing

the initial state, the existence of additional unwanted terms in the Hamiltonian and

the effects of heating and dissipation. We show that the dominant source of error

in the observables that we consider arise through a calibration error, i.e. an uncer-

tainty in the parameters of the model, but we show that these errors are bounded to

values much lower than those introduced in the classical simulation, thus demonstrat-

ing that for sufficiently small calibration errors, analogue simulators can currently

demonstrate a quantum advantage. Finally, we compare the errors generated to the
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errors arising in a digital implementation with a particular value for the discretised

time-step with a 4th order Trotter decomposition and discuss balancing this error

with the total number of logic gates in the circuit.

The Models

We first consider the Hubbard model which describes a system of many interacting

electrons moving through a lattice. This is a seminal model with strong connections

to solid state physics [203] and can be realised with ultracold atoms in optical lattices

where it can be derived from first principles under well-controlled approximations [25,

27, 28, 33]. Explicitly the Hamiltonian is,

H = −J
∑
n,σ

(
ĉ†n,σ ĉn+1,σ + h.c.

)
+ U

∑
n

n̂n,↑n̂n,↓, (6.1)

where, ĉ†n,σ is the creation operator for a fermion with spin σ = {↑, ↓} on site n, and

n̂n,σ = ĉ†n,σ ĉn,σ is the number operator. The model is defined by two parameters, J ,

describing the rate at which electrons tunnel through the system and U , the strength

at which electrons interact when occupying the same site. These parameters can

be tuned over a wide range of values by varying the intensity of the applied laser

producing the lattice confinement and by varying an applied magnetic field around

a Feshbach resonance.

Additionally, we will compare some of the results to those in a Transverse Ising

model for interacting spins [94], of the form

HS =
∑
n<m

J (n,m)Ŝnz Ŝ
m
z +B

∑
n

Ŝnx , (6.2)

where Ŝnσ is a spin operator at site n and σ ∈ {x, y, z}. Here, B corresponds to an
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applied transverse field, and J (n,m) describes the strength of Ising coupling between

different spins. It is possible to realise this form of coupling matrix with trapped ion

systems [204, 205] with J (n,m) ≈ J0/|n−m|α. In the following we consider the case

of long-range interactions with α = 2.

As opposed to capturing the errors in the total state fidelities, which would

characterise the errors in all complex coefficients of the wavefunction, we instead

consider errors in the physical observables. Specifically, we calculate the global

errors in each observable, On according to,

ε =

√
1

M

∑
n

|〈ψsim(t)|On|ψsim(t)〉 − 〈ψex(t)|On|ψex(t)〉|2, (6.3)

where |ψsim(t)〉 is the state as simulated on the experimental hardware with a given

source of error and |ψex(t)〉 is the exact state.

Limits for classical simulation

We perform the classical simulations using state-of-the-art MPS techniques which

were discussed in Ch. 4 [1, 136, 137]. These methods utilise the ability to decompose

the full state vector into a product of matrices but in order to ensure the problem

remains tractable on classical resources the dimension of these matrices (known as

the bond dimension D) is truncated to some maximum value. It has been shown

that this truncation is equivalent to throwing away the least important basis states

of the reduced density matrix of a bipartition at that bond, i.e. restricting to the D

basis states that have the largest Schmidt coefficient [1]. But this is only an accurate

compression scheme if the values of the Schmidt coefficients decay rapidly, and so if

there are many large coefficients which is the case for highly entangled states, then

these methods quickly lead to large errors.
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In Fig. 6.1(a) we plot the time-dependence of the entanglement entropy beginning

in a product state, |Ψ(0)〉 = | ↑, ↓, ↑, ↓, · · · 〉, and it can be seen that the entanglement

grows linearly in time [146, 153, 154]. However, the bond dimension required to cap-

ture this linear growth must grow exponentially, and we can see that truncating to

only the most important basis states at each time significantly distorts the entangle-

ment growth. Here we have used a 4th order two-site TEBD algorithm [157] with

particle number and total spin conservation, and we truncate the bond dimension

by performing singular value decompositions on each neighbouring pair of two-site

tensor and then only retain components with the D largest singular values.

But we can ask, if we restrict the bond dimension to values that are efficiently

simulable on classical computers, how then do the errors in the observables compare

to the errors produced through experimental imperfections in analogue simulation?

We include the results of this analysis in Fig. 6.1(b-d) for different observables where

we compare the values to the case for the calculation with D = 1024 using Eq. 6.3.

We can see that these errors grow exponentially in time and reach values that are on

the order of 100% in some cases. We will see below that these are significantly larger

than those from a calibration uncertainty in analogue simulation. This analysis in-

dicates that timescales greater than tJ ∼ 3 (even in one-dimension) are significantly

beyond what is possible to simulate with the state-of-the-art classical algorithms and

while it may be possible to extend this using an advanced supercomputer this would

not allow for a significant timescale increase due to the need to exponentially scale

the number of resources for only a linear increase in performance (see Fig. 6.1(a)).

This comparison will also only get worse if we simulate two-dimensional systems, as

correlations will still propagate linearly, but now in all directions, meaning that the

dynamics can entangle many more particles in the same time compared to 1D.

Note that one could perform this analysis using different MPS time evolution
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Figure 6.1: Errors in classical simulation of the Hubbard model upon restricting the bond dimen-
sion, D = {512, 256, 128, 64, 32, 16} (blue,red,yellow,purple,green,cyan), compared to D = 1024. (a)

Entanglement entropy at the centre bond. (b) Error (Eq. 6.3) in On = c†n,↑cn,↑. (c) On = c†M/2,↑cn,↑

(d) On = c†M/2,↑cM/2,↑c
†
n,↑cn,↑. System size, M = 20.

algorithms [160, 206] and even different ways that we could perform the compression

to a lower bond dimension such as through a variational approach [1]. These will

also lead to quantitative differences, but we do not expect any to give a significant

advantage or allow a classical simulation to evolve to significantly longer times.
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6.2 Sources of errors in analogue simulators

State preparation

In Fig. 6.2 we plot the errors in the observables of the Hubbard model due to an

error in the preparation procedure of the initial state, |Ψ(0)〉 = | ↑, ↓, ↑, ↓, · · · 〉. This

can arise from thermal fluctuations during the preparation process which can result

in certain particles having enough energy to escape the optical trap creating defects

in the periodic initial state. For state-of-the-art experiments this has ∼ 1% chance

of occurring, so in the following we assume that in our 20-site system that only one

defect will be manifested in a single simulation.

In order to model this we remove a particle from a single lattice site at time

t = 0 and perform different simulations for the removal at different sites. In (a) we

average the global error, Eq. 6.3, over removing the particle at each lattice site. In

(b-d) we show the local error upon removing the particle at a particular lattice site,

where the initial position of the removed particle is indicated in the legend. We can

see that while the average error is large, even at initial times, this is dominated by

local errors around the position of the incorrectly prepared site. We can see that at

positions far away that the errors are negligible.

Note that these are the error values given that the state has been incorrectly

prepared. But as this will only occur ∼ 1% of the time, these values should be

multiplied by 10−2 before comparing to the errors induced through the calibration

errors.

The Hamiltonian

It is also possible that there are additional mechanisms influencing the dynamics

in analogue simulation experiments. Typically in optical lattice experiments we
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Figure 6.2: Errors in the Hubbard model due to an error in the preparation of the initial state
for system size, M = 20. (a) Global error (Eq. 6.3) averaged over removing a single particle at

one lattice site in the initial state. Errors in On = c†n,↑cn,↑ (blue), On = c†M/2,↑cn,↑ (red) and

On = c†M/2,↑cM/2,↑c
†
n,↑cn,↑ (yellow). (b-d) Local errors for removing a particle from the initial state

at a particular lattice site (indicated in the legends). (b) O = c†n=11,↑cn=11,↑. (c) O = c†M/2,↑cn=11,↑.

(d) O = c†M/2,↑cM/2,↑c
†
n=11,↑cn=11,↑.

can tune the parameters such that only nearest neighbour tunnelling and onsite

interactions are important [25], if the laser intensity is large enough to suppress

longer range terms. The first order corrections to this approximation will take the

form of a next-nearest neighbour tunnelling,

HJnn = −Jnn
∑
n,σ

(
ĉ†n,σ ĉn+2,σ + h.c.

)
, (6.4)

95



Sources of errors in analogue simulators

0.5 1 1.5 2 2.5 3

10
-5

10
-4

10
-3

10
-2

0.5 1 1.5 2 2.5 3

10
-5

10
-4

10
-3

10
-2(a) (b)

Figure 6.3: Errors in the Hubbard model due to the presence of additional terms in the Hamil-
tonian for system size, M = 20. Errors in On = c†n,↑cn,↑ (blue), On = c†M/2,↑cn,↑ (red) and

On = c†M/2,↑cM/2,↑c
†
n,↑cn,↑ (yellow). We compare the cases where the terms have a magnitude of

1% (solid) and 5% (dashed) compared to the nearest neighbour tunnelling J and the onsite inter-
actions U . (a) Errors due to the inclusion of a next-nearest neighbour tunnelling term, Eq. 6.4.
Due to the increased growth of entanglement in this case, accurate results can only be calculated
up to TJ ∼ 2. (b) Errors due to the inclusion of a nearest neighbour interaction, Eq. 6.5.

or a nearest neighbour interaction,

HV nn = Vnn
∑
n

(n̂n,↑ + n̂n,↓) (n̂n+1,↑ + n̂n+1,↓) . (6.5)

The ratio of Vnn/U and Jnn/J can be tuned by varying the intensity of the applied

laser potential, that as the intensity increases these ratios are reduced. However,

increasing the intensity also reduces J , which then slows the dynamics manifested

in the system. This means that careful tuning of these parameters is necessary in

order to mitigate these unwanted terms while ensuring that the tunnelling rates are

fast enough in order that sufficient dynamical features can be observed in timescales

before the effects of heating and decoherence become important. Typically, these

values are < 1% with values for J ∼ 1 kHz.

In Fig. 6.3 we plot the resulting errors in the observables upon including one of

these additional terms at the level of 1% (solid) and also 5% (dashed) in order to

exaggerate their effects and be able to understand their influence. For values around
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1% we can see that the errors are smaller than those induced from a calibration error

on the level of 0.1%.

Additional corrections could arise from strong interactions mixing with higher

energy bands, the dominant effect of this would be to renormalise the onsite and

tunnelling coefficients, however, as the band gap energy is typically between 10 −

100 kHz, and we are considering interactions on the order of J , these effects will

give rise to corrections to the J and U terms that are much smaller than the level

of calibration errors that we are considering.

Time limits for propagation in analogue simulators

The other element to consider for analogue simulators is that decoherence and heat-

ing can create errors that grow in time, and that these will at some point dominate

over every other source of error. These come from sources that are again typically

well characterised in experiments [207] including spontaneous emission [208, 209]

and noise on the trapping lasers [210, 211]. First we incorporate the latter and per-

form simulations of the Hubbard model with time dependent parameters where the

fluctuations in U and J are anti-correlated, i.e. if the laser intensity increases, the

potential barrier height increases which gives rise to a lower tunnelling rate but a

larger onsite interaction strength. In Fig. 6.4(a-b) we explicitly compare these errors

to those produced from a calibration error (see the discussion in the next section),

where the calibration uncertainty is equal to the relative uncertainty in the value

for the laser intensity, ∆, and we calculate the parameters U(t) and J(t) from the

resulting Wannier functions arising from the new potential at each time. The errors

in each case have the same qualitative time dependence where they saturate after

a rapid initial increase but are at a much lower magnitude compared to the effects

from a calibration uncertainty.

97



Sources of errors in analogue simulators

0.5 1 1.5 2 2.5

0

0.01

0.02

0.03

10
-3

10
-2

10
-1

10
-3

10
-2

10
-1

0.5 1 1.5 2 2.5

10
-4

10
-3

10
-2

0.5 1 1.5 2 2.5

10
-4

10
-3

10
-2(a) (b)

(c) (d)

Figure 6.4: (a-b) Comparison of the calibration errors (solid) to the errors from laser fluctuations
(dashed) in the Hubbard model for different observables and magnitudes of error, ∆ = 1% (a) and

∆ = 0.1% (b). We compare the errors, Eq. 6.3, in On = c†n,↑cn,↑ (blue), On = c†M/2,↑cn,↑ (red) and

On = c†M/2,↑cM/2,↑c
†
n,↑cn,↑ (yellow). (c) Errors in On = c†M/2,↑cn,↑ due to spontaneous emission

with rate γ/J = {0.001, 0.01, 0.05, 0.1, 0.2} (blue, red, yellow, purple, green). (d) Errors due to
spontaneous emission at tJ = 3 for different observables with the colour coding as in (a-b). System
size, M = 20.

We also analyse the effects of spontaneous emission by applying a quantum trajec-

tory approach to the Lindblad master equation [2, 41] where we include independent

jump operators at each site, Ln =
√
γ (n̂n,↑ + n̂n,↓). In Fig. 6.4(c-d) we plot the er-

rors in observables where we have exaggerated the values of the spontaneous emission

rate, γ, in order to make the error scaling more explicit. For γ = 0.001J the level

of error is comparable to errors due to calibration uncertainty of 0.1%. Note that

state-of-the-art analogue simulations are quoting spontaneous emission rates on the

order of 10−3 Hz [212] which correspond to values for γ � 0.001J meaning that in

realistic experiments the effects will be significantly smaller for the timescales that
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we are considering. This analysis of decoherence and heating allows us to conclude

that for the timescale we’re interested in, that they can be neglected for typical

experiments.

Errors in measurement and readout

We have not considered here other potential sources of errors, such as those arising

from an imperfect measurement of these observables. In this case, these errors are

well understood and will most likely only contribute a small error that is constant

throughout the simulation as these will not affect the observables in a dynamical

way. Nevertheless these are important considerations and will need to be brought

down to minimum levels. The error analysis presented in this chapter assumes that

the errors in the measurement can be neglected as they are much smaller than the

errors induced through a calibration error.

6.3 Calibration errors and Trotter errors

We apply MPS techniques to capture the errors in the two different approaches for

quantum simulation. Firstly, for the calibration error in an analogue simulation,

we sample the model parameters from a normal distribution with some standard

deviation given by the value of the calibration error. After performing numerous

simulations with different realisations of the parameters, we compare the observables

to the target model, which corresponds to parameters with the mean value of these

distributions. Experimentally, these parameters are set globally, by some external

laser for example, and so the errors can be considered homogeneous. With this in

mind we take model parameters that are uniform over the entire system for a given

simulation, but we have compared this to the case of local calibration errors and
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found no qualitative difference.

Secondly, we calculate the errors in the same observables for a digital quantum

simulation which approximates the time-evolution operator with a sequence of two-

site gates with a particular time-step, τ . The choice of the decomposition can be of

the form of a left-right sweep, [31], or a Suzuki-Trotter decomposition of the odd/even

bonds, [1] (in the case of the Hubbard model). We have compared the 2nd and 4th

order versions of these methods with errors that scale with τ 2 and τ 4 respectively.

For the 4th order sweep methods there are additionally several decompositions which

have different ratios of errors against complexity. Here we present results using the

version of the 4th order decomposition which gives rise to the lowest errors,

(1)T (1)(1)T (−2)(1)T (1)T (1)T (1)T (1)(1)T (1)(1)(1)(1)(−2)T (1)(1)T (1), (6.6)

where (s) corresponds to a single left-to-right sweep and (s)T to a right-to-left sweep

with a timestep, sτ/12, such that the total cumulated timestep of all sweeps in

Eq. 6.6 give τ . For the Hubbard model there is also the additional choice of further

decomposing the two-site operator into a contribution from the tunnelling, J , and

the onsite interactions, U . We find that it is more experimentally feasible (i.e.

requires fewer logic gates) to decompose these into separate time evolution operators

even though this results in a slightly larger error. So it is this version that we

present here, but note that we include a comparison of different decompositions in

the supplementary material of Ref. [213].

In Fig. 6.5 we plot the results of this analysis for the off-diagonal correlation func-

tion for the Hubbard model with J = U = 1, beginning in the product state |Ψ(0)〉 =

| ↑, ↓, ↑, ↓, · · · 〉 and for the long range transverse Ising model, with Jz,0 = 1 = B = 1,

beginning with all spins projected along the sx direction, |Ψ(0)〉 = |+,+,+,+ · · · 〉,
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Figure 6.5: (a) Hubbard model, system size M = 20. Comparison of the errors in the off-diagonal

correlation functions, Eq. 6.3 with On = c†M/2,↑cn,↑. For analogue simulation we compare a 1%

calibration error (solid blue) and a 0.1% calibration error (solid red). For the digital we have
plotted the 4th order decomposition (Eq. 6.6) with a splitting of the interaction and kinetic energy
terms, for the time steps Jτ = 3 (circles), Jτ = 3/2 (stars), Jτ = 1 (plus sign) and Jτ = 1/2
(crosses). (b) Transverse Ising model, system size M = 20. Comparison of the errors in the off-

diagonal correlation functions, Eq. 6.3 with On = S
M/2
+ Sn

−. For analogue simulation we compare a
1% calibration error (solid blue) and a 0.1% calibration error (solid red). For the digital we have
plotted the 4th order decomposition (Eq. 6.6), for the time steps J0τ = 4 (crosses), J0τ = 2 (stars),
and J0τ = 1 (plus sign).

for a system size of 20 lattice sites and spins respectively. The solid lines correspond

to the errors in the observable in an analogue simulation comparing a calibration

error of 1% (blue) and 0.1% (red). The symbols correspond to the errors in a digital

simulation with varying timestep for a 4th order left-right gate sweep. We can see

that the errors rapidly increase for short times but then remain approximately con-

stant but with some small oscillation and are similar in both models and simulation

approaches.

For the final time (tJ = 3 for the Hubbard model and tJ0 = 4 for the Ising

model) we extrapolate the critical timestep, τ ∗, needed for the errors in the digital

simulation to match or exceed the errors in the analogue simulation with a given
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level of calibration error. For example, this 4th order decomposition for the Hubbard

model has a critical time step of Jτ ∗ ≈ 2.7 (Jτ ∗ ≈ 1) when comparing to a calibration

error of 1% (0.1%), whereas for the Ising model J0τ
∗ ≈ 2.6 (J0τ

∗ ≈ 1.5) for a

calibration error of 1% (0.1%). Note that these estimates for τ ∗ only weakly depend

on system size and the particular observable, but can be reduced by at most a factor

of 3 for some of the more inefficient Trotter decompositions (see Ref. [213]).

Comparing the results for the calibration errors in Fig. 6.5 to the errors in the

classical algorithms in Fig. 6.1 it is clear that for sufficiently small levels of cali-

bration errors that the analogue simulation can achieve a much greater accuracy,

even for the timescales that we have explicitly considered. Additionally, the er-

rors induced through a calibration uncertainty, are bounded and appear to oscillate

around a constant value indicating that the errors will not significantly increase for

longer timescales, meaning that we can extrapolate these estimates to benchmark

longer time simulations. This then indicates that for this problem, we can accu-

rately simulate the dynamics in regimes that are beyond what we can achieve with

the state-of-the-art classical algorithms.

Digital gate count

Specific implementations of digital quantum simulation will involve a competition

between the error in the corresponding Trotter decomposition, and the errors as-

sociated with individual gates. In order to make some sort of comparison between

analogue and digital simulation we have assumed that the total error in a digital

simulation arises through the Trotter decomposition which requires either individual

gate fidelities of F > 0.999999 or a fully fault tolerant algorithm which then comes

with additional complexity and restrictions on the types of logic gates that can be

applied.
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With these considerations taken into account, we calculate the number of logic

gates required for a digital simulation to simulate this problem with the same er-

ror as the analogue simulation, arising through a calibration error. In particular,

we have shown in Ref. [213] that we can extrapolate these results and consider a

two-dimensional geometry and simulation times of TJ = 10 such that we can go

well beyond what we can calculate on a classical computer. We find in this case

comparing a 4th order Trotter decomposition to an analogue simulation with a 0.1%

calibration error that for NISQ systems, would require on the order of 400, 000 (ro-

tation+CNOT) logic gates and for fully fault tolerant quantum computations with

built in error correction, this would require on the order of five million gates (for

an inhomogeneous model), which is a factor of 103 improvement over previous esti-

mates [201]. This improvement arrises from our problem choice, where we realised

that for many applications only the observables need to be accurately simulated and

not necessarily the total state fidelities.

6.4 Conclusions

We have quantitatively analysed the effects of various sources of errors in analogue

quantum simulators on the dynamics of observables in the Hubbard model, where

we have shown that the dominant sources of errors (those due to a calibration uncer-

tainty) give rise to uncertainties that are bounded well below 1% for experimentally

achievable levels. This is in contrast to the errors introduced through restricting the

precision of classical algorithms to numerically practical levels, indicating that we

can currently apply analogue simulators to regimes beyond those that are classically

accessible. Furthermore we demonstrated that simulating the dynamics with the

same accuracy as the analogue devices on digital simulation is actually within much
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closer reach than previous estimates and perhaps this can even be further improved

upon finding better optimisations of the logic circuits.

Note also that this comparison was carried out at the quantum advantage point,

and so increasing the size of the system (or the length of the time evolution) requires

even more digital logic gates to match the accuracy that can be achieved in the

analogue experiments. This demonstrates clearly that analogue simulation is the

best way to accurately compute observables in these types of problems - provided

that the Hamiltonian can be encoded in the native environment of the quantum

simulator - and gives a strong indication that analogue simulators can currently

demonstrate a quantum advantage.
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Chapter 7

Analysis of three body loss in an

optical lattice experiment

In this chapter, we present the results of a collaboration with the experimental

group of Prof. Hanns-Christoph Nägerl in Innsbruck, where we have studied atomic

loss process induced by three-body recombination and the resulting effects on the

dynamics of cold atoms in an optical lattice. ∗

An important aspect for realising quantum simulation is in obtaining detailed

and precise knowledge of the microscopic properties of the physical resources in a

specific hardware implementation. This is paramount for being able to reliably re-

alise specific dynamical features that can be mapped onto particular target models,

see Ch. 2. Throughout this thesis we predominantly consider realising the proposed

systems in quantum optical experiments involving ultra-cold atoms confined in an

optical lattice and in particular, we are interested in using these systems to explore

regimes dominated by strong interactions. However, going beyond the usual ap-

∗This work is presented in Ref. [214], for which the theoretical part was written primarily by
the author of this thesis. In this chapter we also separately summarise the experimental work for
comparison with our theoretical calculations.
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proximations presented in Ch. 2 is necessary when considering these experimental

systems with dense atomic samples and strong interactions as this can introduce

strong Efimov resonances [215] leading to three-body induced losses. This can have

a significant impact on the behaviour of the atoms in this system, requiring us to

include additional mechanisms in our theoretical description that go beyond the

usual Bose-Hubbard model. Although these effects are not always detrimental, for

example once these loss effects begin to dominate over the other coherent processes,

novel many-body phases have been predicted to form [216–223] which are stabilised

through a continuous quantum Zeno suppression of triply populated lattice sites. It

is clear then that investigating these features present in these experiments is impor-

tant, firstly, for defining the regimes where these novel phases can exist so that we

are more easily able to realise them with a quantum simulation experiment. But

more importantly in the context of this thesis, understanding these loss mechanisms

are necessary for evaluating the dominant errors and thus the limitations of applying

these experiments as a simulator for Hubbard type models.

7.1 Introduction

As described in Ch. 2, ultracold atomic gases in optical lattices provide a platform

for investigating novel many-body coherent and dissipative dynamics in a highly

controllable environment [19, 33, 41, 224, 225]. In particular, strong loss processes

such as three-body recombination can exhibit the continuous quantum Zeno effect

[226–229], where dissipation can prevent certain coherent dynamics from taking place

[230, 231]. Although we often seek to avoid these loss mechanisms, there are pro-

posals to use them to realise effective three-body interactions through three-body

loss [232–235]. However, there are important open questions related to how these
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dynamics work when the loss rates become comparable to or larger than the energy

band gap, invalidating a standard Bose-Hubbard (BH) description. In this work, we

explore the interplay between coherent and dissipative dynamics for bosonic atom

pairs, comparing the dependence of the three-body loss on the interaction strength

to theoretical models beyond the standard BH Hamiltonian that combine lattice

dynamics with on-site three-body dynamics that takes into account the renormalisa-

tion of the coefficients for coherent interactions and loss. Understanding these effects

across different regimes provides a path for future studies of exotic quantum phases

induced by strong local three-body loss [216–223].

We make use of the control available in optical lattice systems and study inter-

acting Caesium atoms in the vicinity of a broad Feshbach resonance [215], which

allows for the s-wave scattering length as to be tuned in the experiment and there-

fore the interactions can be varied from weak to strong and from repulsive (as > 0)

to attractive (as < 0). The two-body interaction mechanisms of the system are well

understood [80, 236, 237] and we can accurately prepare an initial state with two

atoms on each site. Quenching to strong interactions then leads to the formation of

pairs, known as doublons, which are stable due to a lack of dissipative mechanisms

present in the experiment that can remove energy on short timescales [238, 239].

However, by increasing the interaction strength one enters a regime where the en-

ergy associated with strong three-body dissipative processes [240, 241] can easily

exceed the band gap in the lattice. This raises questions on how to treat this system

with an effective BH model [27, 80, 86, 236, 242], including the question whether

off-site loss mechanisms become important in understanding the resulting dynamics.

Below, we investigate the effects of strong three-body losses starting with dou-

bly occupied sites and find unexpected phenomena arising from an off-resonant loss

process where a single particle tunnels into a virtual triply occupied site. For strong
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attractive interactions, we observe an interesting nonlinear dependence of the dou-

blon decay rates on as, and attempt to model this with a BH-type model resulting in

values for decay rates that are too large if nearest neighbour losses are included, but

too low if they are simply ignored. This indicates that the mixing with higher energy

bands is causing a renormalisation of both the off-site and the on-site coefficients.

When further increasing the attractive interaction strength, we observe a decrease

on the decay rate similar to a quantum Zeno type suppression [231], which we expect

to manifest in this region and would suppress the occurrence of triply occupied sites

through the strong three-body loss terms. However, through first-principle calcu-

lations of the on-site losses induced through mixing with three-body Efimov states

[240, 241, 243–245], we find that on-site loss rates are too low to induce this type of

suppression which instead suggests that the decrease of the decay rates is due to an

additional renormalization of the terms responsible for the coherent dynamics.

Experimental set-up

The experiment consists of a pure Bose-Einstein condensate (BEC) of 105 Cs atoms

confined in a three-dimensional optical lattice. The system is prepared in an n = 2

Mott insulating state by an adiabatic ramping of the lattice potential to an initial

depth set to V x,y,z = 30ER, where ER =h2/(2mλ2) is the atomic recoil energy with

the mass m of the Cs atom.

To start the experimental procedure, a magnetic field is ramped around a Fes-

hbach resonance to tune the interaction strength to a particular value of repulsive

(as > 0) or attractive (as < 0) interactions. The lattice depth in one-direction, V z,

is then quenched to the desired value and the system is then allowed to evolve for a

particular hold time, tH, after which the dynamics are interrupted by quenching the

lattice depth back up to its original value and the remaining number of doublons are
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then measured. The doublon decay rate is then extracted from these measurements

by fitting a decaying exponential to the measurement data. The resulting experimen-

tal values for the doublon decay rates are presented in Fig. 7.1 for different scattering

lengths, as and lattice potential depths, Vz, where these are then compared to the

theoretical predictions which are explained below.

7.2 Analysis of the effects of three-body recombi-

nation

We attempt to model the behaviour in the experiment with an extended Bose-

Hubbard model, which consists of on-site and nearest-neighbour two-body inter-

actions as well as dissipative on-site three-body loss. The Hamiltonian is given by

(h̄ = 1),

H = −J
∑
〈i,j〉

b†ibj +
U

2

∑
i

b†ib
†
ibibi + Ũ

∑
i

[b†ib
†
ibibi+1 + b†ib

†
i+1bi+1bi+1 + h.c.]

− i γ3

12

∑
i

b†ib
†
ib
†
ibibibi .

(7.1)

The coefficients, calculated through the Wannier functions associated with the lowest

Bloch band centred at a position zi in the longitudinal direction, w(z − zi), and ri

in the radial direction, w⊥(~r − ri), are given by

U =
4πh̄2as
m

∫
d~r|w⊥(~r − ri)|4

∫
dz|w(z − zi)|4,

Ũ =
4πh̄2as
m

∫
d~r|w⊥(~r − ri)|4

∫
dz|w(z − zi)|2w∗(z − zi)w(z − zi+1),

γ3 = 2L3(as)

∫
d~r|w⊥(~r − ri)|6

∫
dz|w(z − zi)|6 .

(7.2)
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Furthermore, as denotes the scattering length, J the single particle nearest-neighbour

tunnelling amplitude, and L3(as) is the experimentally measured three-body loss

parameter that strongly varies with as [215]. The approximation of restricting the

dynamics to 1D is valid as long as the radial trapping frequency is much larger

than the longitudinal trapping frequency, ωr � ωz. Additionally, note that we

have taken into account three-body Efimov resonances by incorporating the short

distance cut-off term, that has to be introduced to regularize the zero range three-

body pseudo-potential [246, 247], as a pre-factor for a three-body delta-function

contact interaction [232, 248]. These Efimov resonances are large loss features in

the energy spectrum for three atoms, each interacting pairwise through a two-body

contact interaction. When the two-body scattering length is large enough to strongly

couple higher single particle states, these features can manifest themselves strongly

rescaling the bare two-body energies and through coupling with molecular bound

states introduces renormalised coherent interactions as well as effective decay rates

from the optical trap [240, 241].

Note that we neglect terms corresponding to site-to-site three-body loss. For large

values of |as|, it would usually be expected that there would be large contributions

from off-site loss processes. However, this picture only holds for sufficiently small

loss rates compared to the band separation energy when the lowest-band Wannier

functions provide a good local basis. In the presence of large loss rates, as is the

case for large |as|, the Wannier states mix with states from higher bands and we find

that the initial overlaps of nearest-neighbouring wavefunctions lead to a very rapid

initial decay, although only resulting in a very small loss of atoms. This happens

on timescales much faster than the experimental measurements, resulting in renor-

malised states that are more localized on each lattice site. Atom loss is then driven

by on-site decay only, combined with non-resonant tunnelling processes, including
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density-assisted tunnelling from nearest neighbour interactions. Furthermore, we

believe that this density-induced tunnelling can substantially modify the coupling

of the initial state into a virtual triply occupied site which then, through mixing of

the on-site three-body eigenstates with diatomic molecular states, leads to decay of

atoms from the trap, [240, 241].

We attempt to capture these mechanisms in two complementary approaches. In

a first approach, we calculate the lattice coefficients of the extended Bose-Hubbard

model using the single-particle Wannier functions associated with the lowest Bloch

band, and use for the on-site loss the analytical (zero-range, zero-temperature) fit-

ting function for the three-body recombination rate coefficient L3 for Cs atoms, with

parameters extracted from fitting the experimental data in Ref. [215]. We also in-

clude single-particle loss terms, which account for residual heating induced by the

lattice light and/or background gas collisions [81]. We then evolve the initial doubly-

occupied Mott state using a Lindblad master equation (see Ch. 5), and extract the

decay rate from an exponential fit to the computed doublon density. The master

equation is given by,

d

dt
ρ = −i[Heff , ρ] + 2Lρ(t)L† + 2Lsρ(t)L†s, (7.3)

where L =
√
γ3/12b3

i . We have included a single particle loss rate, Heff = H + Hs,

where

Hs = −iS̃
∑
i

b†ibi, (7.4)

and Ls =
√
S̃bi. For the loss rate, we use a value S̃ = 0.006 Hz [81]. We then

calculate the time-dependent expectation value of the total doublon number in the

system, and fit an exponential to this function, 〈N̂(t)〉/N(0) = exp(−Γt), to extract
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the decay rate, Γ.

In our second approach, we again extract the decay rates from the time evolution

of the master equation, but account for modified lattice parameters. Specifically,

we now use the lowest on-site three-body energy level obtained by using the hyper-

spherical adiabatic representation [240, 244], which allows for energy shifts to the

lowest Bloch band due to three-body interactions mixing with higher energy bands.

Similar to Ref. [243], these calculations provide the on-site decay rates of three-body

energy levels. For the on-site two-body interactions we also take into account mixing

with higher energy bands using the result presented in Ref. [84] for a single harmonic

trap. Note that for now, we do not modify the nearest-neighbour tunnelling and in-

teraction terms. Inserting these coefficients into our extended Bose-Hubbard model

(Eq. 8.3) allows us to approximate these dynamical features with an effective single

band Hubbard model.

In Fig. 7.1, we compare the atomic decay rate obtained from the two approaches

with the experimental data. We find that for repulsive interactions the decay

rates increase with increasing as, in accordance with the predictions. We also find

that the first approach (solid lines) predicts a minimum in the decay rate around

as = −800 a0, which coincides with the strong Efimov resonance in the L3 parame-

ter [215], and which is not observed in our lattice experiment. Our second approach

(crosses), incorporating mixing with higher energy bands, predicts a suppression of

the L3 resonance and we obtain values for the decay rate that qualitatively match

the experiment. This peak suppression is due to the interplay between the Efimov

resonance, the mixing with higher bands and the lattice potential, which creates a

spread of the particles in momentum space. This spread is of the same magnitude

as the temperature-induced energy spread that was found to suppress the Efimov

resonance in previous measurements [215, 249]. In addition, effects of mixing with
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Figure 7.1: Decay rates for strong interactions. Experimentally measured doublon decay rate
with V z =10 (circles), 12 (squares), 14 (diamonds), 16 (triangles) ER plotted against a S. Also
included are the theory predictions: the solid lines use only the lowest Bloch band whereas for the
crosses we have included the renormalised onsite coefficients through mixing with higher energy
bands. This figure is partially reproduced from Ref. [214] and includes experimental data from our
collaborators as well as theoretical results from the author of this thesis.

higher excited states introduce further modifications to the on-site (which are taken

into account with our three-body energy level calculation), but also the off-site (an

effect which is not currently included in our model), loss coefficients. A detailed un-

derstanding of this will require future analysis on the renormalisation of the nearest

neighbour terms, however this part of the analysis confirms that both the off-site

and on-site loss coefficients must be modified by mixing with higher energy bands in

the lattice. Specifically, we know that the on-site coefficients must be rescaled due

to the experiment not observing the large Efimov resonance and we know that the

off-site processes must also be affected, because this is the most dominant feature

not currently taken into account and would explain the lack of agreement between

theory and experiment.

For positive scattering lengths, the calculation with the renormalised onsite co-

efficients (solid lines with symbols) leads to an even larger discrepancy compared

to the naive calculation with the bare coefficients in the lowest band (dotted lines).

This is a strong indication that in this regime there are also important corrections
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Figure 7.2: The predicted renormalised tunnelling coefficients, JEff = |3
√

6Ũ −
√

6J | (solid line
with crosses) from the model which includes coupling to higher energy bands, such that Eq. 7.5
(which is only valid for J � U) reproduces the experimentally measured decay rates in Fig. 7.1. We
also compare to these tunnelling values predicted from the extended Bose-Hubbard model (dotted
line with filled circles), for V z = 10( red), V z = 16( blue), respectively.

to the nearest-neighbour tunnelling processes arising from the mixing with states in

higher energy bands. Additionally, both approaches predict a much larger depen-

dence on the trapping potential than is experimentally observed, indicating that the

renormalisation effects may be stronger for tighter trapping potentials.

Furthermore, including corrections from strong interactions (solid lines with sym-

bols) predicts that, for increasingly large attractive interactions, the decay rates also

increase, in sharp contrast to the experimental data. We initially interpreted the

trend in the measurements to be due to a quantum-Zeno-type suppression of the

losses [231], but the values of the renormalised coefficients in our calculation predict

on-site loss rate values that are too low for this to occur (see Ref. [214]). Instead,

we believe that this trend can be accounted for through the incorporation of two

effects not currently taken into account in our model: mixing between ground and

excited on-site three-body states [237] and a further renormalisation of the effective

tunnelling elements.

The experiment from the Innsbruck group, enables us to estimate what the values
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of the rescaled tunnelling coefficients must be, so that the current model reproduces

the measured decay rates. This gives us a rough indication of these effects and allows

us to predict an upper bound for the rescaling of the coherent tunnelling terms. If we

set the single particle loss rate, S̃ = 0, we can calculate the decay rate analytically

through second-order perturbation theory with J � U ,

∆E(2) = −2
|3
√

6Ũ −
√

6J |2

E3B(as)− 2U2B

, (7.5)

where E3B(as) and U2B are the energy shifts due to three and two interacting atoms,

respectively. The decay rate is then found through

P (t) = 〈φ|ei(∆E(2)∗−∆E(2))t|φ〉 = e−i2Imag(∆E(2))t, (7.6)

giving us an expression for the decay rate, Γ = 2Imag(∆E(2)). We then use this

expression to find the rescaled value for JEff = |3
√

6Ũ −
√

6J |, such that the model

(with rescaled on-site coefficients) gives rise to the experimentally observed decay

rates. Note that we only perform this fit for larger values of |as| (where the pertur-

bation theory is most valid) because for lower scattering lengths the calculated decay

fits the experimental measurements quite well and is dominated by the single particle

losses. Our obtained estimates for JEff (Fig. 7.2) predict a strong enhancement of the

tunnelling rates for positive scattering lengths. For negative as there is a saturation

of the magnitudes of the rescaled tunnelling rate, an effect that is more pronounced

for shallow lattices. This analysis shows that, we can drastically improve the quanti-

tative agreement between the calculations and measurements with only a relatively

small variation of the tunnelling terms. This simple estimate and the calculation of

the renormalised onsite loss coefficients, indicate that the reduction in the overall

decay rate is not due to a continuous quantum Zeno type suppression, but instead
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arises from slower coherent dynamics induced by the strong onsite losses mixing with

higher energy states. This then has implications for future experiments attempting

to realise the novel many-body phases induced by strong three-body losses [232–235].

7.3 Conclusions

In summary we have investigated the dynamics of bosonic doublons across a broad

Feshbach resonance. We found that for strong two body interactions (both attractive

and repulsive) the dynamics are dominated by off-resonant decay processes induced

by on-site three-body losses. We found that there is a large renormalisation of the

coefficients in both the dissipative and coherent processes, induced by strong on-site

losses and interactions mixing with higher energy bands, which lead to a lack of

a quantum Zeno suppression in a regime where we would normally expect to find

it. Additionally, we have confirmed that in order to explore the regime of strong

interactions in highly dense lattice systems in these experimental architectures, then

mechanisms that go beyond the standard Hubbard model must be incorporated to

accurately describe the dynamical features.

The reported experiments and our theoretical analysis not only form the basis

to elaborate more refined descriptions of strongly interacting and dissipative lattice

bosons, which is important for high-fidelity molecular formation, [250], but also

opens routes to investigate exotic many-body states, such as antiferromagnetic states

formed by attractively bound doublons [216], quantum lattice liquids of repulsively

bound doublons [217] or those that are stabilised by an effective three-body hardcore

constraint [216–223].
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Chapter 8

Superfluid properties of bound

pairs in a Creutz ladder

There is a growing interest in using cold-atom systems as a quantum simulator to

explore the effects of strong interactions in systems that have band structures char-

acterised by a non-local order parameter, which result in novel global features that

are in a separate classification from conventional phases [251, 252], so called topo-

logical insulators. While the single particle properties are generally well understood

and have recently been measured experimentally [253–255], there are still many open

questions relating to interacting quantum systems in these band structures. Recent

experimental advances in cold atom systems now allow us to use optical lattice exper-

iments to study these questions and investigate the physics of topological quantum

systems in the presence of strong interactions [67–74, 256–258]. In this chapter we

investigate the effects of interacting bosons in a topological band structure where

the single particle kinetic energy is completely frustrated, [259–269], and find that

the topology enhances the formation of bound pairs allowing them to remain stable

for higher temperatures. We find that going beyond the regime of perturbative in-
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teractions that pair superfluid phases can be engineered, prepared and detected in

current optical lattice experiments. This opens up ways of exploring the complex

interplay between topological band structures and strongly interacting systems with

current analogue quantum simulators allowing for experimental investigations into

the effects on the many-body phases and on the resulting dynamical properties.

8.1 Introduction

We analyse the properties of bosons in a Creutz ladder (shown in Fig. 8.1) which

is characterised by complex tunnelling amplitudes along the legs of the ladder while

also having diagonal tunnelling components between the legs [270]. In this system

geometrical frustration results from the combination of these tunnelling terms where

there is a destructive interference effect that completely suppresses the single particle

kinetic energy and gives rise to flat energy bands. However, it has been proposed

that including an onsite interaction can lead to the formation of bound pairs that

are stable even for infinitesimal interaction strength which now have dispersion com-

pletely dictated by the interactions [263–269]. There is growing interest in repulsively

interacting bound pairs in general cold-atom systems [238, 271] as well as in more

novel band structures [272–277], but pairs are usually only stable for large interaction

strengths compared to the tunnelling. By analysing the dispersion relation for single

bound pairs in the Creutz ladder beyond the limit of weak interactions we find that

in contrast to those formed in conventional lattices, the pair kinetic energy grows

with increasing interaction strength. This shows that the topology of the lattice

plays an important role and enhances the formation and properties of these pairs.

After investigating the properties of single pairs we consider the many-body case,

where the system has been shown to be able to realise a phase transition between a
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charge density wave (CDW) and a superfluid phase made up entirely of pairs [263,

264]. Going beyond the previous works on this system [263, 264] which analyse

the properties of these novel phases for low densities, we investigate the system for

higher densities and find large density regions where both CDW and pair superfluid

phases exist simultaneously, which is an indication of a lattice supersolid, [278–286],

but in a regime where there are no contributions from single particles. Additionally,

we offer new perspectives in the ability to prepare and detect these phases, by first

proposing an experimental preparation scheme for a pair condensate using adiabatic

manipulations of the optical lattice potential [97, 287], which can be achieved in

timescales that are reachable in current experiments. Secondly, we illustrate that

the domination of pair over single particle correlations survives for a large range of

finite temperatures. For experimental detection we calculate dynamical properties

so as to be able to connect to local measurements following an applied perturbation

which also allowed us to analyse the features in the dispersion relations of the excited

states. Finally, we determine the properties of these phases by mapping to a universal

Luttinger liquid description.

The model

In Fig. 8.1 (a) we include the Creutz ladder which is characterised by complex tun-

nelling amplitudes that, through a destructive interference effect, gives rise to a dis-

persion relation with only flat energy bands (see Fig. 8.1 (b)). These two bands are

also characterised by a non-zero integer Zaks phase, indicating that they have a non-

trivial topology which manifests itself in the existence of edge states [270, 288, 289].

There are various ways to produce this experimentally, for example most proposals

utilise a synthetic dimension [270, 290, 291], where each leg of the ladder corresponds

to two atomic internal states. However including interactions will then require careful
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Figure 8.1: Creutz ladder geometry (a) and band structure (b), where a is the lattice spacing
between the unit cells and we have highlighted in the blue box all non-zero components of the
Wannier functions associated with each (highest +, lowest −) flat band. We have highlighted the
two sites of the unit cell as A and B. (c) For the case U ≡ UA = UB a comparison of the effective
nearest-neighbour pair-tunnelling in the lowest energy dispersive two-atom bound state, Jeff (blue)
to that for conventional doublons with a kinetic energy, |J2/U | (purple). The green dashed line
indicates an upper energy bound for the weakly interacting regime and the red line is the energy
band gap between the lowest dispersive two-atom band and the first excited one, see blue and red
curves in Fig. 8.2.

tuning of the inter-component and intra-component strengths. If there are non-zero

inter-component or unequal intra-component interactions then this will result in

additional terms appearing, complicating the simple bound state picture presented

below, however if they are small, will lead to qualitatively the same features which we

demonstrate explicitly below. We also propose an alternative realisation, requiring

only atoms in a single internal state confined in a dimerised ladder optical potential,

so is not affected by these concerns. All the tunnelling amplitudes, with the cor-

rect phase relations, are produced from only two applied fields to facilitate multiple

two-photon Raman assisted tunnelling processes (see section 8.4).

Explicitly the Hamiltonian including an onsite two-body contact interaction, UA
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for the A-sites and UB for the B-sites, is given by (h̄ = 1),

H =
∑
n

J
[
b̂†nân+1 + â†nb̂n+1 + ib̂†nb̂n+1 − iâ†nân+1 + h.c.

]
+
∑
n

[
UA
2
â†nâ

†
nânân +

UB
2
b̂†nb̂
†
nb̂nb̂n

]
,

(8.1)

where â†n (b̂†n) creates a particle on the A (B) site in the nth unit cell. In order to

analyse the bound states in this system, it is advantageous to apply a basis transfor-

mation to the local Wannier basis that diagonalises the single particle Hamiltonian.

This basis is shown in blue in Fig. 8.1 (a) and the transformation is,

ân =
1

2
Ŵ+
n +

1

2
Ŵ−
n −

i

2
Ŵ+
n+1 +

i

2
Ŵ−
n+1,

b̂n = − i
2
Ŵ+
n −

i

2
Ŵ−
n +

1

2
Ŵ+
n+1 −

1

2
Ŵ−
n+1,

(8.2)

where the Ŵ±
n annihilate a boson at unit cell n in the higher/lower band. This trans-

formation allows us to explicitly see that the single particle dynamics are suppressed,

H = −2J
∑
n

Ŵ−†
n Ŵ−

n + 2J
∑
n

Ŵ+†
n Ŵ+

n

+
α

8

∑
n

[
1

4
Ŵ †
nŴ

†
nŴnŴn +

1

4
W̃ †
nW̃

†
nW̃nW̃n + Ŵ †

nŴnW̃
†
n+1W̃n+1

−1

4
Ŵ †
nŴ

†
nW̃n+1W̃n+1 −

1

4
ŴnŴnW̃

†
n+1W̃

†
n+1

]
− β

2

∑
n

[
iŴ †

nŴ
†
nŴnW̃n+1 + iŴ †

nW̃
†
n+1W̃n+1W̃n+1 + h.c

]
,

(8.3)

where α = UA + UB, β = UA − UB, Ŵn = Ŵ+
n + Ŵ−

n and W̃n = Ŵ+
n − Ŵ−

n .

This non-local Wannier function basis makes two novel features of this system

apparent: firstly it illustrates the vanishing single particle kinetic energy upon diago-
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nalising the single particle Hamiltonian, and secondly it has illuminated the existence

of strong pair tunnelling terms, Ŵ †
nŴ

†
nW̃n+1W̃n+1, as well as nearest neighbour in-

teractions, Ŵ †
nŴnW̃

†
n+1W̃n+1, which are both proportional to the onsite interaction

strength. The effect of an imbalance in the interactions, UA 6= UB, is to introduce

complex single particle density assisted tunnelling terms.

8.2 Enhanced topological bound pairs

If we consider the case of, U ≡ UA = UB and only two particles, then we can apply

an additional basis transformation into a two atom bound state picture. Because the

Hamiltonian in Eq. 8.3 does not contain any terms that correspond to the motion of

a single particle, we have two types of bound state that cannot mix with one another.

One set of states corresponds to two atoms on the same unit cell,

α̂i = 1√
2
Ŵ−
i Ŵ

−
i , β̂i = 1√

2
Ŵ+
i Ŵ

+
i , γ̂i = Ŵ+

i Ŵ
−
i , (8.4)

and the second set corresponds to the two atoms on neighbouring unit cells,

α̃i = Ŵ−
i Ŵ

−
i+1, γ̃i = Ŵ+

i Ŵ
−
i+1,

β̃i = Ŵ+
i Ŵ

+
i+1, κ̃i = Ŵ−

i Ŵ
+
i+1.

(8.5)

Transforming to this basis gives rise to a Hamiltonian containing only quadratic

terms. If we consider the case where we only have two atoms in the system, then

this forms an orthonormal basis set and we can solve the system exactly. Explicitly,

the momentum space Hamiltonian is,

H =
∑
k

Ψ†kHkΨk, (8.6)
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where

Ψk =



α̂k

β̂k

γ̂k

α̃k

β̃k

γ̃k

κ̃k


, (8.7)

and

Hk =



−4 + U/4(1− cos k) U/4(1− cos k) iU
√

2/4 sin k 0 0 0 0

U/4(1− cos k) 4 + U/4(1− cos k) iU
√

2/4 sin k 0 0 0 0

−iU
√

2/4 sin k −iU
√

2/4 sin k U/2(1 + cos k) 0 0 0 0

0 0 0 −4 + U/4 −U/4 U/4 −U/4

0 0 0 −U/4 4 + U/4 −U/4 U/4

0 0 0 U/4 −U/4 U/4 −U/4

0 0 0 −U/4 U/4 −U/4 U/4


. (8.8)

In Fig. 8.1 (c) we plot the resulting dispersion of the lowest bound state band,

Jeff (blue) as a function of the onsite interaction strength U where there is an asym-

metry between repulsive and attractive interactions, which arises through different

couplings between the two single particle bands depending on the sign of the inter-

actions. In Fig.8.2 we plot the energy spectrum for repulsive and attractive onsite

interaction strength, U , where we can see that changing the sign of the interactions

inverts the dispersion relation meaning that the lowest energy band in the repulsive

case corresponds to that of the highest band in the attractive interacting case. There

are overlaps between two qualitatively different sets of energy bands, one set disper-

sive, corresponding to a bound state where each single particle is in a Wannier state

centred on the same unit cell, and a set of dispersionless bands, corresponding to

each single particle centred on a nearest neighbour unit cell. Note that for a single
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Figure 8.2: Two atom (single bound pair) dispersion relations for UA = UB , found by diagonalising
the effective bound state Hamiltonian, Eq. 8.8, where each line represents the dispersion relation
for the different types of two-atom bound state. Many two-atom bands now have some dispersion
due to the interactions, but many others remain flat (horizontal lines). Here a is the lattice spacing
between the unit cells.

bound state, there are no terms that can mix these two types of bound state. We will

see below that in the many-body case there is mixing between these two states, the

strength of which varies with density, resulting in a complex phase diagram which

one would not observe if these bosonic pairs were not made up of two individual

atoms.

The asymmetry in Fig. 8.1 (c) arises from a qualitative difference in the disper-

sion relations for the lowest dispersive bands (blue) depending on the sign of the

interactions, where for attractive interactions a Dirac cone forms in the lower bands,

see Fig. 8.2, at the point of maximum bound state kinetic energy and then further

increasing the strength of the interaction the width of this band begins to decrease
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due to the strong interactions mixing states within the two single-particle bands,

explaining the kinetic energy observations for attractive interactions. For repulsive

interactions the lowest band is not affected by this mechanism, and although there

are still strong mixing between the single-particle bands, this only imposes an upper

bound to the dispersion of the bound states making it possible to realise a large

kinetic energy for a wide range of interaction strengths.

From Fig. 8.1 (c) we see that for increasing attractive interactions the kinetic

energy increases to a maximum and then begins to decrease again, agreeing with

previous predictions for excitations on top of a fermion background in the Creutz

ladder [268]. This is in contrast to the repulsive side where the kinetic energy asymp-

totically approaches a value very close to the single particle tunnelling amplitude. In

the figure we also include the effective tunnelling for pairs in a simple lattice (purple),

which can be calculated in the limit that U � J through second order perturbation

theory and is J2/U [271]. Comparing these kinetic energies we can see that on the

repulsive side, for interaction strengths large enough so that we expect the conven-

tional pairs to be stable (U > 10J), that the topological pairs in this system have a

larger kinetic energy by nearly an order of magnitude. This difference in behaviour

arrises because the pairing in conventional lattices occurs with both atoms on a single

site, whereas in the case of the Creutz ladder, both atoms exist in the same Wan-

nier basis function, shown in Fig. 8.1(a), allowing components to exist where each

atom is bound but on different sites. These offsite binding components can then

tunnel through the system due to a strong interaction induced nearest neighbour

coupling between Wannier states centred at different unit cells, see Eq. 8.3. This

has consequences for the critical temperature for superfluidity, which because it is

proportional to the tunnelling amplitudes, means that the temperatures required to

produce a superfluid with the topological pairs in this system are similar to those
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needed for a single particle condensate and is an order of magnitude larger than

those needed to prepare one for pairs in a conventional system.

Even though these bound pairs exist in a novel effective topological band struc-

ture, see Fig. 8.2, the many-body phases will be dominated by pairs condensing in

the lowest bands, hence our focus on the kinetic energy of this branch. While in prin-

ciple there are interesting aspects to the higher energy bands, particularly the Dirac

cone at U = ±4J , we focus on the low-energy properties of the repulsively bound

pairs and leave the analysis of these higher-energy features for a future study. Nev-

ertheless, we will see in section 8.5 that the topologically enhanced properties of the

lowest effective two-atom energy band leads to shorter timescales for the dynamical

features, for example allowing for the preparation of states with (quasi) long range

pair correlations in experimentally feasible timescales. Note that previous studies on

the properties of interacting pairs in other flat band systems do not observe a strong

enhancement of kinetic energy [269], even in those that are also characterised by

a topological invariant [292]. This indicates that the enhancement is not a general

feature for flat band systems but is unique to the Creutz ladder geometry due to the

unique form of the underlying Wannier basis, which are completely localised on only

two neighbouring unit cells.

Topological properties of bound pairs

As we have an effective single particle dispersion relation for these bound pairs,

an interesting question to ask is if these interacting states retain the topological

classification of the underlying single particle Hamiltonian as for those found in an

SSH model [276, 277]. Although this effective two-particle model is convenient for

analysing the dispersion relations, the basis transformation that is employed does

not allow for the usual calculation of the Zaks phase for inversion symmetric lattices.
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This is because the effective lattice in this bound state model is not the same as the

real space lattice of the Creutz ladder. Instead, we use an ansatz for excitations

formulated in the language of uniform matrix product states [293–304] to find the

momentum-dependent eigenstates for these interacting bound states with eigenvalues

corresponding to the same values as those for the (much simpler) effective model.

This ansatz, which retains the information in the same basis as the original real

space lattice, allows us to compute the Zaks phase of each quasi-particle branch in

the usual way for an inversion symmetric system, which is given by [305]

Zn =
1

π
Arg [〈ψk=0(Bn)|π̂|ψk=0(Bn)〉〈ψk=π(Bn)|π̂|ψk=π(Bn)〉] , (8.9)

where n labels the quasi-particle branch and π̂ is the inversion operator which has a

clear physical meaning in the real space basis. Note that while all of the dispersive

quasi-particle branches cross a non-dispersive branch and become degenerate at two

points in the Brillouin zone (k = ±π/2), we can see from the Hamiltonian that there

are no terms that couple these dispersive and non-dispersive two particle states,

meaning that they are protected from crossing and we can treat these two types of

quasi-particles separately when computing the Zaks phase.

We include a chemical potential term, µ = 10J , which allows us to separate

out the contributions to the excitation spectrum from single particle states and two

particle states. We plot the results in Fig.8.3 where we find that we obtain the same

dispersion relation as with the effective model, and we can successfully calculate the

correct non-zero Zaks phase for the single particle bands using this excitation ansatz.

We also find that all the non-dispersive two particle bound states have a zero Zaks

phase indicating that they do not retain the topology of the single particle spectrum.

For low onsite interactions (U < 4 J) all three dispersive bound states do retain the
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Figure 8.3: Excitation Spectrum for one and two bosons in the Creutz ladder using the uniform
matrix product state (uMPS) excitation ansatz [293–304] with an onsite interaction strength U ≡
UA = UB . Included in the legend are the Zaks phases (see equation 8.9) for each quasi-particle
branch. The black (solid) lines are the energy values for two non-interacting particles, and the two
bands with the lowest energy (dashed lines) are the single particle solutions. The other branches
labelled with coloured markers are the two-particle bound states.

topology and have a non-zero integer Zaks phase. However, at the point U = 4 J

there is a topological transition in the two-particle spectrum and for U > 4 J the

two highest energy dispersive states (squares and circles) have a zero Zaks phase,

whereas the lowest energy dispersive state (diamonds) still retains the topology and

a non-zero Zaks phase for all U .

8.3 Many-body phases

We now consider the many-body bosonic case and characterise the phases that are

manifested by the topological pairs as we vary the density. For the moment we

restrict the study to interaction strengths that are symmetric U ≡ UA = UB and

that are weak compared to the separation of the single particle energy bands by
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employing a perturbative Schrieffer-Wolff transformation [263, 264, 266, 306]. This

approximation allows us to focus on the lowest flat band in isolation but qualitatively

preserves the main features of the full model.

We variationally calculate the ground state directly in the thermodynamic limit

using a matrix product state (MPS) algorithm that assumes an infinite and uniform

ansatz [307], note that we increase the local dimension such that all bosonic fluctu-

ations are captured. We include a chemical potential term, (2− µ)
∑

n Ŵ
−†
n Ŵ−

n , in

Eq. 8.3 and calculate the pair correlations in the site basis, 〈â†rb̂†râ0b̂0〉, for a range of

densities controlled by the ratio of the chemical potential to the onsite interaction

strength, µ/U . In all cases the single particle correlation function is exponentially

suppressed, reflecting the lack of single particle dispersion in this system. Addi-

tionally, we find that these off-site pair correlation functions dominate over terms

of the form, 〈â†râ†râ0â0〉, reflecting that the topologically enhanced pairs exist in a

superposition of separate sites, in contrast to conventional repulsively bound dou-

blons [271]. The different phases are then characterised by algebraically or exponen-

tially decaying pair correlations for the pair Luttinger liquid (PLL) and pair charge

density wave (CDW) phases respectively, examples of which we have included in

Fig. 8.4(a-b). The phase diagram is shown in Fig. 8.4(c) where we have highlighted

the superfluid pair Luttinger liquid (PLL) phases and the CDW phases and we have

also plotted the value of the CDW order parameter [93, 308], which is given by,

ODW = limr→∞(−1)r〈δn̂rδn̂0〉, where δn̂i = Ŵ−†
i Ŵ−

i − ρ. Note that analysing the

density-density correlation functions (with the exception of the ρ < 1 PLL phase, see

section 8.7) the component that oscillates with wave-vector ka = π is strongly dom-

inant. This is due to the strong nearest neighbour interaction term in Eq. 8.3 which,

as there are no longer range interactions present, ensures that this commensurate

order is stabilised for all densities considered.
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Figure 8.4: (a) Pair correlation functions for the pair Luttinger liquid (PLL) phases. (b) Pair
correlation functions for the charge density wave (CDW) and lattice pair supersolid (PSS) phases.
(c) Phase diagram for weakly interacting bosons as the chemical potential, µ, is varied relative to the
interaction strength, U . The CDW order parameter (blue) and the density (orange) are included.
The PLL, CDW and the PSS phases are indicated. Note that there is no physical significance here
to the boundaries of the µ/U axis, this is simply the regime where we have focused our analysis.

In all cases the single particle correlation function is exponentially suppressed,

reflecting the lack of single particle dispersion in this system. The different phases

are then characterised by algebraically or exponentially decaying pair correlations

for the PLL and CDW phase respectively, examples of which we have included in

Fig. 8.4(a-b), and either a vanishing or finite ODW . We agree with the predictions of

Ref. [263, 264] whose authors analyse the same system but restrict their analysis to

low densities, where we find a PLL phase for densities between 1/2 < ρ < 1 (per unit

cell) and a phase transition to a CDW for ρ = 1. We then investigate larger densities
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Figure 8.5: Comparison of the pair correlations, Φ = |〈â†r b̂†râ0b̂0〉| (solid lines) and the single
particle correlations, Φ = |〈â†râ0〉| (crosses) for an imbalance between the onsite interactions, UA 6=
UB , in the ρ < 1 pair Luttinger liquid (PLL) phase, µ/UA = 0.1.

where we find a second PLL phase, indicating that the ρ = 1 CDW is unstable to

the addition of more pairs. Upon further increasing the density we find large regions

at incommensurate density where distinct phases exist that share features of both

the PLL and CDW. We denote these phases lattice pair supersolid (PSS) and are

characterised by algebraically decaying pair correlations but with a non-zero density

wave order parameter. Note that if we go beyond the weakly interacting regime,

that the coexistence of these phases is suppressed and we either have a PLL or a

CDW phase with a clear phase transition point.

Now we include an imbalance between the onsite interaction strengths, UA 6= UB,

and perform the same analysis on the ρ < 1 PLL phase. We plot the resulting single

particle and pair correlations in Fig. 8.5 where we see that there are still dominant

algebraically decaying pair correlations, but now there are exponentially decaying sin-

gle particle correlations. For values of UA/UB close to 1, the pair correlations greatly

dominate over the single particle correlations, indicating that the novel properties

of this phase survive well into the imbalanced interaction regime. We can see that

as UA/UB decreases the single particle correlations decay with a smaller correlation

length indicating the onset of a conventional superfluid phase for UA/UB → 0.
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8.4 Experimental realisation of the Creutz ladder

Two experimental realisations of the Creutz ladder have been proposed in Ref.

[270, 290], but require the manipulation of two internal states of an atom where

each represent each leg of the ladder, which may result in an imbalance between

onsite interactions, UA 6= UB and potentially lead to a nearest neighbour interaction

between sites within the unit cell. This is an interesting regime to investigate in its

own right and has been considered in Ref. [309].

Here we propose a different experimental realisation with only a single internal

atomic state, allowing us to easily satisfy the considerations above. Our scheme

requires one Raman-assisted tunnelling processes and a two-site superlattice see

Fig. 8.6. In order to produce this, we find it convenient to redefine the tunnelling

amplitudes through a gauge transformation, see Fig. 8.6 (a). This results in the same

topological physics because the phases accumulated when moving around loops in

the lattice are unmodified. Now the tunnelling elements along each leg of the ladder

are real and it is the diagonal tunnelling terms that carry the complex phase. Notice

also that there is a dimerisation of the diagonal phase resulting in a doubled peri-

odicity and a larger unit cell and therefore a different local Wannier function basis.

The new basis is shown in Fig. 8.6 (b) and is very similar to the one used to derive

our effective Hamiltonian where it is also perfectly localised to two unit cells as be-

fore. This new basis results in the same single particle spectrum and transforming

the many-body Hamiltonian into this basis results in the same model. We confirm

that the Creutz ladder shown in Fig. 8.6(a) is able to quantitatively reproduce all

features presented in this chapter, while also offering a more viable experimental

implementation.

For this scheme we require a particular separation for the onsite energy levels,
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Figure 8.6: Experimental scheme to produce the Creutz ladder in a cold-atom experiment. (a)
Illustration of gauge transformed phase components for the tunnelling amplitudes, resulting in
the new unit cell highlighted in grey, now consisting of four sites (A,B,C,D). (b) The non-zero
components of the four new local Wannier basis functions, where for terms marked with ± the
top is for the lower energy band and the bottom for the higher energy band. (c) One possible
configuration for the direction of the applied fields, where ω1 > ω2. Requiring λ1 ≈ λ2 = 4a
and θ1 = −π/2 and θ2 = π/2 relative to the x-axis. (d) Level scheme showing the distribution of
onsite energies for the lattice sites indicated in (c). (e) Illustration of the Raman-assisted tunnelling
process for an optical-lattice with an energy offset between neighbouring sites.

shown in Fig. 8.6(d) (note that there is a flexibility in the energy differences). We

then apply a Raman assisted tunnelling processes, requiring two fields (shown in

Fig. 8.6 (e)), to create the two complex diagonal tunnelling processes and the real

processes along the legs. This can be achieved with a single laser with a sideband

allowing the necessary phase relations to be easily enforced. The effects of these
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applied fields is to induce tunnelling processes between off-resonant sites, [310]

Jα =
Ω1Ω∗2
δ

∫
d~rφ∗(~r)eiδ

~kα~rφ(~r − a ~Rα), (8.10)

where φ∗(~r) are the onsite Wannier functions, δ~k = ~k1−~k2 is the difference between

the wave-vectors of the two lasers in a single Raman process, |~ki| = 2πa/λi, δ is the

detuning between ω1, ω2 and the excited internal state (see Fig. 8.6(e)) and Ωi is the

Rabi frequency of the applied laser with frequency ωi.

Assuming that the distance between sites, a, is the same in both directions, then

the phase factor in the tunnelling amplitudes between each site labelled in Fig. 8.6(c)

is,

JCB ∝ exp
(
ia2 (δkx,CB + δky,CB)

)
; JBC ∝ exp

(
ia2 (δkx,BC − δky,BC)

)
,

JDA ∝ exp
(
ia2 (δkx,DA − δky,DA)

)
; JAD ∝ exp

(
ia2 (δkx,AD + δky,AD)

)
,

JDB ∝ exp
(
ia2 δkx,DB

)
; JCA ∝ exp

(
ia2 δkx,CA

)
,

(8.11)

where all terms correspond to tunnelling events from left to right in the lattice, along

the directions of the arrows in Fig. 8.6(a). The right to left processes are then the

complex conjugates.

If we assume that the difference in the frequencies of the two fields in a Raman

pulse is much smaller than the magnitudes, |ω1 − ω2| � ω1, ω2, where ω1 > ω2 then

we can assume that the wavelengths for each component has the same magnitude,

λ ≡ λ1 ≈ λ2, when calculating the phases appearing in the tunnelling amplitudes.

Then assuming each field is applied in a general direction in the x-y plane, results

in the phases, (where the angles are given relative to the x-axis)
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φCB =
a

2
(δkx,CB + δky,CB) ≈ aπ

λ
(cos θ2 − cos θ1 + sin θ2 − sin θ1) ≡ π/2,

φBC =
a

2
(δkx,BC − δky,BC) ≈ aπ

λ
(cos θ1 − cos θ2 − sin θ1 + sin θ2) ≡ π/2,

φDA =
a

2
(δkx,DA − δky,DA) ≈ aπ

λ
(cos θ2 − cos θ1 − sin θ2 + sin θ1) ≡ −π/2,

φAD =
a

2
(δkx,AD + δky,AD) ≈ aπ

λ
(cos θ1 − cos θ2 + sin θ1 − sin θ2) ≡ −π/2,

φDB =
a

2
δkx,DB ≈

aπ

λ
(cos θ2 − cos θ1) ≡ 0,

φCA =
a

2
δkx,CA ≈

aπ

λ
(cos θ1 − cos θ2) ≡ 0,

(8.12)

where on the right we have shown the values that would produce the Creutz ladder

shown in Fig. 8.6(a). It is then simply an exercise in finding the optimal direction

for the applied fields in order to produce the desired phase differences between each

of the tunnelling terms. There is a huge flexibility over the relative angles and the

value of the applied λ. The relationship between the angles must satisfy, θ1 = −θ2,

and as an example, we plot one possible choice in Fig. 8.6(c) where θ1 = −π/2 and

θ2 = π/2, which would then require a wavelength, λ = 4a.

8.5 Experimental preparation

Here we present a scheme to prepare a many-body eigenstate with strong pair super-

fluid correlations which can be achieved in a cold-atom experiment by varying the

relative intensity of the lasers that create the optical potential. We begin the exper-

imental sequence by applying a large dimerisation to the optical potential such that

sites that are populated with atoms are at a much lower energy than neighbouring

sites leading to atoms that are strongly localised. We then adiabatically vary the

optical potential in order to slowly remove this dimerisation, which amounts to a

ramp of onsite energy and allows the atoms to gradually delocalise throughout the
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time-dependent ramp which then prepares the eigenstate of the final Hamiltonian if

the ramp time is long enough [97, 287].

In cold-atom experiments, if the temperature is much smaller than the critical

temperature for condensation then effectively the system is at zero temperature

and we can model the dynamics as a pure state. The main consideration in the

preparation of low energy eigenstates is in reducing the overall entropy of the many-

body state. In adiabatic state preparation this is achieved by first producing a low

entropy initial state, in this case by projecting single atoms onto single sites, and

ensuring that the state is the ground state of the initial Hamiltonian, in this case by

having the onsite energies of populated sites at a much lower energy than the others.

This also ensures that the trapped atoms have no dynamics. We then ramp the

parameters of the lattice so as to create the final Hamiltonian that we are interested

in. If this ramp process is slow enough, so as not to induce unwanted heating effects,

but fast enough so that decoherence effects can still be ignored then we can produce

the desired low energy eigenstate with also a low entropy.

We begin with atoms populating only particular unit-cells, where the number of

populated unit cells is chosen to give the required density and are equally distributed.

On a populated unit cell, we have a single atom on each of the two sites, and we

have the onsite energies of these populated sites at a significantly lower energy,

E0/J = −µ0 compared to the rest, E = 0. We then ramp the energy of the populated

sites to the value of the other sites, using the following exponential ramp,

E(t) = −µ0
e5(1−t/T ) − 1

e5 − 1
, (8.13)

where T is the total time for the ramp. We ensure that the initial state is an

eigenstate by beginning with a product state where we have the atoms localised on
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these initial sites and with all nearest-neighbour tunnelling amplitudes set to zero.

We then linearly ramp all tunnelling terms from zero to one in a time TJ = 10.

The resulting state only has a small amplitude on sites around the ones with a lower

onsite energy and has an overlap with the initial product state > 0.9, but there

are important phases in these new components which ensure that all tunnelling

processes to sites at higher energy (although very highly suppressed in the product

state) exactly cancel on the Creutz ladder geometry for the eigenstate.

We consider the case of large interaction strength, U ≡ UA = UB = 6J , so that we

have a large pair kinetic energy (see Fig. 8.1(c)), allowing the correlations to spread

to the entire system in timescales that are sufficiently fast so that we can ignore

heating and dissipation effects, where we set the initial energy offset to µ0 = 20J . In

principle, once a condensate has been prepared, we can ramp the interaction strength

to weak values in order to prepare the phases predicted in the previous section.

In Fig. 8.7 we plot the results of this process for M = 192 sites and for N = 72

bosons, where it is clear that we can produce a many-body state with significant pair

correlations, 〈â†rb̂†râ0b̂0〉 and vanishing single particle correlations, 〈b†rb0〉 and 〈a†ra0〉,

in experimentally feasibly timescales (tJ = 210∗). However, as we are attempting

to prepare a phase that is gapless in the thermodynamic limit we expect that as

we increase the system size that the total ramp time to achieve the same level

of correlation decay will continue to increase. The analysis for short ramp times

(tJ = 40) indicates that for larger systems we could still produce a pair superfluid

in experimentally achievable timescales with the cost of introducing effective finite

size effects in the correlations.

Note that the correlations of the time-dependently produced state will always

∗Note that compared to the Ch. 6, we can simulate these timescales to a high accuracy because
the state remains close to an eigenstate throughout the entire ramp process.
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Figure 8.7: (a) Comparison of the single particle and pair correlations for the final produced
state of the adiabatic ramp process for a system size of M = 192 sites and N = 72 bosons. (b)
Pair correlations for finite temperatures for M = 48 sites, using the technique presented in Ref.
[311, 312]. For all cases, U = 6J and µ = 1.52J .

decay faster than the correlations of the ground state. This discrepancy arrises from

the breakdown of the adiabatic principle due to the energy gap closing at the end

of the ramp process. However the state that is produced is an eigenstate of the

many-body Hamiltonian with a low energy variance, and from exact diagonalisation

analysis of smaller systems, we find that the prepared state is actually the first

excited state.

We also consider the effects of a finite temperature on the pair correlations in the

system and we use an imaginary time MPS algorithm which utilises a purification

of the density matrix to calculate the state at a given temperature [311, 312]. In

Fig. 8.7 (b) we plot the pair correlations at varying temperature and find that the

correlations are exponentially suppressed at high temperatures (T̃ > 20J) where they

become numerically indistinguishable from the exponentially small single particle

correlations. Note that at short distances the single particle correlations remain
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qualitatively the same as those of the ground state (see. Fig. 8.7 (a)) where they

dominate over a distance of several unit cells, simply because the particles are spread

into the Wannier basis states. For intermediate temperatures (2J < T̃ < 15J), the

correlations begin to approximate those of the ground state at short distances but

still decay exponentially, with a correlation length that grows as the temperature

is decreased. For temperatures T̃ < 2J the pair correlations very closely match

the zero temperature case, indicating that these pair superfluid phases are robust

to finite temperatures. There are small discrepancies for the longer range tails but

these will be experimentally indistinguishable.

8.6 Detection through many-body dynamics

We move on and consider experimental detection of these phases. One possible way

to do this is through measurements of the time-dependent onsite particle number

after a local quench, in this case after the application of the number operator on a

single unit cell. Equivalently, the dynamical structure factors can be experimentally

probed use angle-resolved photoemission spectroscopy (ARPES) [313, 314]. To this

end we have calculated the dynamical structure factors for each phase (within the

weakly interacting and isolated flat band limit) using an MPS algorithm for time

evolving infinite systems after a local perturbation [315, 316]. Explicitly we calculate

the unequal time two-point correlator, A(r, t) = 〈Ψ0|δn̂r(t)δn̂0(0)|Ψ0〉, where |Ψ0〉 is

the initial state and δn̂r(t) = Ŵ−†
r (t)Ŵ−

r (t)− ρ where ρ is the density. We then take

the Fourier transform which we plot in Fig. 8.8 for the different phases. Note that

in all cases, UA = UB. Additionally, these dynamical structure factors give some

knowledge of the spectrum of excitations above the ground state and so we can use

this analysis to also determine if the suggestive supersolid like features of the ground
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Figure 8.8: Dynamic structure factors for the density-density correlations for each phase. (a) For
the ρ = 1.62, µ/U = 0.63 pair Luttinger liquid (PLL) phase. (b) The ρ = 2, µ/U = 0.80 charge
density wave (CDW) phase. (c) The ρ = 1.84, µ/U = 0.68 lattice pair supersolid (PSS) phase. (d)
The ρ = 2.25, µ/U = 0.995 PSS phase (d).

state are also manifested in the excitations.

We can see for the PLL phase (a) there is a dominant linear excitation originating

from the k = π mode matching the predictions from Luttinger liquid theory (see next

section) and for the CDW phase (b) there are well defined gapped energy branches,

which can be interpreted as collective quasi-particle excitations. For the lattice

supersolid phases (Fig. 8.8(c-d)) we can see gapless excitations that are linear for low

energies and originate from ka = 0 and ka = π which is set by the underlying CDW
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order of the ground state, but there are also sinusoidal excitation branches present at

higher energies similar to those in the CDW phase indicating the coexistence of the

two phases also exists in the excitation spectrum. In Fig. 8.8(c-d) we also observe in

the lower energy branches a breaking of translation symmetry as there is a doubled

periodicity in k−space indicating that the low energy superfluid features exist on top

of a dimerised ground state. Additionally in Fig. 8.8(d) there is a local minimum in

the low energy dispersion which resembles the helium roton spectrum [317–319], with

a roton mode local minimum close to zero gap. These calculations clearly illustrate

that the distinct features of each phase are manifested in the excitation spectrum

offering a way to experimentally resolve the phases through measurements of the

dynamics produced after a local quench.

8.7 Universal behaviour in the pair superfluid phases

As we have a 1D superfluid, we expect to be able to describe the superfluid phases

by mapping to a homogeneous Luttinger liquid model (see Ch. 3) [102], (h̄ = 1)

H =
u

2π

∫
dr

[
K(πΠ(r))2 +

1

K
(∇φ(r))2

]
, (8.14)

where the bosonic field, φ(r), and its conjugate momentum density, Π(r), satisfy

the commutation relation, [Π(r), φ(r′)] = iδ(r − r′). All low energy properties of

Luttinger liquids are completely known once the two parameters, u and K, are

obtained, hence the benefit of mapping our phases into this model. In the following

we extract these quantities by first fitting an algebraically decaying function to the

off-diagonal pair correlation functions to obtain K,

〈W †
rW

†
rW0W0〉 ∼ r−1/2K . (8.15)
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We use the pair correlation function because we know that the fundamental particles

in the superfluid are pairs, and also that the single particle off-diagonal correlation

function is zero for all distances. Note that the algebraic decay persists for close to

1000 unit cells before numerical errors destroy this behaviour, allowing us to very

accurately extract the decay exponents. We then plug the value for K into the

expression for the compressibility to obtain u,

κ =
dρ

dµ
=
K

uπ
, (8.16)

where we have evaluated the dρ/dµ numerically from our data presented in Fig. 8.4.

The parameter u is the effective speed of sound in the condensate which is the

gradient of the linear dispersion of the excitations. The parameter K controls the

thermodynamic properties of the system, for example, it has been shown in Ref. [320]

that if K > 1 then the density transport in the system is completely robust against

a single impurity, but for K < 1 the effect of an impurity is to completely suppress

transport. In Ref. [321] it was shown that K controls the thermal conductivity.

There has also been recent interest in going beyond the assumptions in the Lut-

tinger liquid theory, namely assuming that the excitations follow a linear dispersion

relation. We can compute the leading order correction to this, the effective mass,

m∗, for a non-linear Luttinger liquid theory [322], through,

1

m∗
=

u

K

d

dµ
(u
√
K). (8.17)

We begin with the ρ < 1 superfluid phase and apply the Luttinger liquid for-

malism. Ref. [263] maps this phase onto a spin 1/2 system where |2〉 = | ↑〉 and

|0〉 = | ↓〉, and while they test the validity of this mapping for small system sizes,

we find that the mapped spin 1/2 system does not yield the same physics as the full
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boson model for the infinite system considered here. We find that we need to account

for the possibility of up to four bosons existing on a given site in order to properly

account for all the bosonic fluctuations. Our predictions are not qualitatively differ-

ent, but the critical value for the chemical potential at the phase transition is shifted.

However, if this mapping was valid then this commensurate-incommensurate quan-

tum phase transition at ρ = 1 would be mathematically equivalent to that for gapped

spin 1/2 chains in a magnetic field [102, 121]. By comparing the correlation func-

tions of the bosonic ground state to these predictions we can quantify the deviations

away from the spin 1/2 regime. If the mapping was valid, then we would be able to

exactly derive the critical exponents of the phase transition on the incommensurate

side simply by knowing the value of the Luttinger liquid parameters at the phase

transition point. Because the deviations away from the spin 1/2 regime are small,

we can still estimate these quantities.

We extract the Luttinger liquid parameters numerically through the procedure

described above and plot these in Fig. 8.9 (a). The Luttinger liquid parameter

K is always less than one, indicating that the superfluid is dominated by charge

fluctuations induced by the effective nearest neighbour interactions, and the value

at the phase transition point can be extrapolated, K∗ ≈ 0.3.

We also plot the inverse effective mass, 1/m∗ in Fig. 8.9(a) where we see that for

smaller values of the chemical potential it is much smaller than the other parameters,

indicating that there are only small corrections to the conventional Luttinger liquid

theory. However, for larger chemical potentials - and so larger densities - the values

become negative with magnitudes that are larger than the u, signifying that there

may be features beyond that of a Luttinger liquid.

The long distance behaviour of the density-density correlation functions for a

145



Universal behaviour in the pair superfluid phases

0.1 0.2 0.3

0

0.2

0.4

0.6

0.5 0.55 0.6

0

0.5

1

0 1 2 3

10
-2

1

10

40

0.5 0.55 0.6
0

0.1

0.2

0.3

(a) (b)

(c) (d)

Figure 8.9: Luttinger liquid parameters for the ρ < 1 PLL phase (a) and for ρ > 1 (b). (c) Static
structure factors for the density-density correlation functions for ρ < 1, on a log scale. (d) The
fraction of the static structure factor in close to the k = π mode for ρ > 1.

spin 1/2 system in the presence of an applied magnetic field is given by,

〈n̂rn̂0〉 ∼ cos{π(1 + 2δρ)r}r−2K , (8.18)

where δρ is the deviation in the spin magnetisation (or the density for the bosonic

system considered here) from the commensurate regime. This correlation function

predicts peaks in the Fourier transform (static structure factor) at values of q± =

π(1 ± 2δρ). We calculate these structure factors for our system and plot these in

Fig. 8.9 (c) for a range of µ/U and we find that the peaks do indeed correspond to
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the values predicted by the Luttinger liquid theory. Even though there are terms

present in the model which give rise to an effective nearest neighbour interaction (see

Eq. 8.3) these are clearly negligible in this phase as the features can be predicted

from the Luttinger liquid theory. This can be understood by realising that the

relative magnitudes of the terms in the Hamiltonian will be dependent on density,

for example 〈W †
nWnW

†
n+1Wn+1〉 ≈ ρ2, and so the nearest neighbour interactions

are dominated by the other processes in this phase. A similar analysis was carried

out in Ref. [265] on a Sawtooth lattice but the commensurate phase is a ρ = 1/2

CDW made stable by the dispersionless energy band and the incommensurate phase

occurs for increasing densities. Here we find qualitatively the same features but our

gapless commensurate phase is a CDW stabilised by the effective nearest neighbour

interactions.

For the superfluid phase for ρ > 1 it is not possible to map to the results from

the spin 1/2 theories, however we apply the same numerical strategy and find that

the Luttinger liquid parameters are always ≥ 1, (see Fig. 8.9 (b)) indicating that

the phase is dominated by superfluid fluctuations and the effects of the nearest

neighbour repulsion becomes suppressed. What is quite interesting is that there is

a region around µ = 0.5U where K ≈ 1 which corresponds to the case for hard-

core bosons [102], indicating that we can realise a regime where the physical onsite

interactions are weak but the effective onsite interactions are infinite.

The values for the inverse effective mass approach the same magnitude as the u

values for smaller chemical potential values, indicating that there may be additional

features present that are beyond Luttinger liquid theory. In particular we can see

from Fig. 8.8(a) that the excitation spectrum in this phase is dominated by a linear

branch, which is predicted from Luttinger liquid theory, but there is also clearly a

sinusoidal branch present further indicating that there are additional features present
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here.

We also calculate the density-density structure factors and find that it is peaked

at k = π for all µ/U , which is due to the strong nearest neighbour interaction in

Eq. 8.3. While in this phase these terms do not give rise to a charge density wave,

they lead to features that oscillate with a given period and set the commensurate

ordering in k-space. In Fig. 8.9(d) we plot the fraction of the population that is in

this peak, which indicates that the system is strongly condensed for larger µ/U and

when K ≈ 1 the condensate peak is somewhat suppressed by the strong effective

interactions.

8.8 Conclusions

We have considered the experimental opportunities of using the Creutz ladder to

investigate the interplay between topological band structures and strong interac-

tions. By analysing the properties of single repulsively bound pairs we found that

the topology greatly enhances the stability and kinetic energy of formed pairs making

it possible to realise and investigate pair superfluid phases in experiments with cold

atoms. We considered the ability to prepare and detect these phases where we illus-

trated an experimentally feasible preparation scheme allowing us to prepare a pair

superfluid in realistic timescales and demonstrated that these phases can be resolved

through measurements of the dynamical properties. This opens up opportunities for

understanding and exploring the unique many-body phases that can be produced

with strong interactions in more general topological band structures.

While previous analysis on other systems with flat energy bands have found sim-

ilar superfluid phases dominated by bound pairs that share qualitative features as

the pair superfluid phases presented here, such as in the sawtooth and Kagome lat-
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tice [266] or the diamond chain [323] they have not been considered in the context of

practicalities for experimental detection. In particular, the latter system must have

a very precise value for the tunnelling phases in order for it to manifest a pair su-

perfluid, in contrast to the robustness of these phases in the Creutz ladder to similar

phase deviations [264] and even to an interaction imbalance or finite temperatures

as analysed here. The stability of these features in the Creutz ladder is due to the

enhanced properties for single repulsively bound pairs, which in contrast to the saw-

tooth lattice [269] or the diamond chain [292], we find have a kinetic energy that

grows with increasing interaction strength, arising from the particular topology of

the Creutz ladder. This distinct behaviour for the Creutz ladder opens up many

questions relating to the features of other flat band systems, in particular those with

additional dispersive energy bands [324].
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Chapter 9

Enhanced pair correlations in a

Lieb ladder

Inspired by growing interest in probing many-body phases in novel two-dimensional

lattice geometries [75, 256–258, 325–331], in this chapter we consider how to use

ultracold atoms in optical lattices in order to perform a quantum simulation of

these systems and investigate the role of strong interactions. We noted in the

previous chapter that there has been great interest recently in exploiting the fea-

tures of novel lattices in order to realise unique many-body phases that have su-

perfluid [266, 331, 332] or superconducting features [324] dominated by interaction

induced pairing that have been enhanced by the presence of flat energy bands which

we explicitly demonstrated for a 1D system. However, classical methods for quan-

titatively analysing these phases in two-dimensions are not currently practical for

large systems. While there has been some recent numerical analysis on a minimal

quasi-2D model for superconductivity [333], it is an interesting opportunity to poten-

tially use quantum simulators to improve the understanding of strongly correlated

phases in two-dimensions. To this end, we consider an experimental realisation of
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an optical Lieb lattice, where we directly calculate experimentally realistic values for

the coefficients in the many-body Hubbard model as a function of the parameters of

the optical potential, allowing for a mapping between experimental and theoretical

parameters. We demonstrate how to prepare the ground state of attractively inter-

acting fermions at half filling, where the excitations are dominated by states in the

flat band and we perform benchmarking calculations of the correlations in a 1D Lieb

ladder where we show that the pair correlations greatly dominate over the single

particle correlations for a range of strong attractive interactions. These calculations

enable the investigation into the strongly interacting phases manifested in the Lieb

lattice and raise interesting questions regarding the behaviour of the correlations

for the full two-dimensional Lieb lattice which can be accessed with the aid of this

presented experimental proposal.

9.1 Introduction

The Lieb lattice is shown in Fig. 9.1, and is characterised by a novel band struc-

ture with a flat energy band that touches a dispersive band at a single k-point.

This dispersionless (or flat) single particle energy band arises through a destructive

interference effect of the single particle wavefunction, [259–262], leading to an in-

finite energy degeneracy without a well defined energy minima in the band. One

consequence is that conventional single particle correlations are suppressed due to

the effective mass → ∞ and the effective tunnelling amplitudes → 0. It has been

shown that interactions allow the atoms to form into bound pairs, breaking the

energy degeneracy and leading to mobility [269]. For bosons these pairs can push

the system into condensing into a pair superfluid even for infinitesimal interaction

strength [263–265, 332, 334]. For fermions there is a similar enhancement of pair
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correlations [324, 335] where it has been shown that the critical temperature for su-

perconductivity can be much larger than for conventional systems [336, 337]. How-

ever, most analysis on two-dimensional systems exploit mean field approximations

but there are questions here on the validity of a conventional BCS treatment in a flat

band, as the interactions strength dominates the dynamics resulting in strongly cor-

related phases even for weak interactions. A full quantum treatment in 1D has also

been explored [268, 338], but usually only in the isolated flat band approximation.

However, there are additional questions here as to the effects on these properties in

systems that have a flat band as well as dispersive bands, such as the Lieb lattice,

and in particular when the interaction strengths are strong enough to mix states in

different bands.

In order to allow future experiments to more easily explore these questions, we

derive experimentally realistic values for the coefficients in a Hubbard model as a

function of the laser intensity through calculating the single particle Wannier func-

tions localised on each site. We then consider the many-body fermion case at half

filling where we show that pair correlations appear quasi-long range, strongly domi-

nate over exponentially suppressed single particle correlations and are at sufficiently

large magnitudes to be resolved experimentally. Furthermore we show that the pair

correlations become further enhanced when there is greater mixing between states

in the flat band and in the higher dispersive bands due to increasing the interac-

tion strength. Finally, in order to be able to realise these phases experimentally

we describe and demonstrate an experimentally feasible adiabatic ramp process for

preparing these ground states.
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Figure 9.1: (a) Creation of an optical Lieb lattice by superimposing two optical potentials,
{VA, VB} given by Eq. 9.1. (b) Beam configuration and polarisation for each optical potential,
reproduced from Ref. [331]. (c-e) Single particle energy band structure for tight binding model on
the Lieb lattice for different ratios of the onsite energies, {EA, EB , EC}, for each site of the unit
cell (EC = EB for all), given in units of the nearest neighbour tunnelling rate, J , and the unit cell
spacing, a.

9.2 Hubbard coefficients

In the Lieb lattice for the case where every site is degenerate the system manifests

a three band touching point, with a Dirac cone that crosses the flat band, but

by tuning the ratio of the onsite energies it is possible to realise different energy

gaps, see Fig. 9.1. Here we consider producing the Lieb lattice experimentally by

superimposing two optical potentials [331],

VA(x, y) = −V1[cos2(k1x) + cos2(k1y)],

VB(x, y) = −V2

4
[cos(k2x)− cos(k2y)]2,

(9.1)
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(a) (b)

(c) (d)

Figure 9.2: (a) Optical potential for the Lieb lattice produced using Eq. 9.1 with V1 = 34.5ER2

and R = V2/V1 = 1.07. The Wannier functions associated with each energy band for a single
particle in the optical potential. (b) Higher band. (c) Flat band. (d) Lower band.

where the wavevector ki = 2π/λi, and λ1 ≈ 2λ2. In Fig. 9.1(a) we illustrate the

direction of the beams and the values required for the wave-vectors. Usually, V1, V2

are expressed in units of the recoil energy, ERi = h̄2k2
i /2m. The above potential can

be produced experimentally using the configuration shown in Fig. 9.1(b) which has

been reproduced from Ref. [331]. For VA (red) we use laser light that is polarised in

the plane of the lattice and for VB (blue) we use a polarisation that is orthogonal to

the plane.

By tuning the ratio R = V2/V1 (achieved experimentally by varying the intensities
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of the two superimposed lasers) around 1, the relative depth of the trap at the A

sites and the B,C sites can be varied, which then modifies the single particle energy

band structure, see Fig. 9.1(c-e). Under well controlled approximations it has been

shown that atoms confined in an optical lattice can be described with a Hubbard

model [27] for sufficiently large potential depths. We will see below that for the Lieb

lattice we require laser intensities of around V1, V2 ∼ 40ER2 so that the next nearest

neighbour tunnelling rates are below 1% of the nearest neighbour components. In

this case the Hubbard model on this geometry takes the form,

H =
∑
n,σ

EAa
†
σ,A,naσ,A,n + EBa

†
σ,B,naσ,B,n + ECa

†
σ,C,naσ,C,n

− J
(
a†σ,A,naσ,B,n + a†σ,A,naσ,C,n + a†σ,B,naσ,A,n−~x + a†σ,C,naσ,A,n+~y + h.c

)
+ UAa

†
σ,A,na

†
σ̄,A,naσ̄,A,naσ,A,n + UBa

†
σ,B,na

†
σ̄,B,naσ̄,B,n

+ UCa
†
σ,C,na

†
σ̄,C,naσ̄,C,naσ,C,naσ,C,n,

(9.2)

where a†σ,κ,n creates an atom at the unit cell n on site κ. The index σ runs over the

distinguishable species, and for bosons, σ = σ̄.

In order to analyse the effects of strongly interacting systems in novel band struc-

tures it is necessary to derive the coefficients of this model so that we are able to

accurately describe the dynamics induced in these systems. While it is now routine

to realise Hubbard models in simple periodic potentials, up to well controlled approx-

imations [25, 27, 28, 33], it can still be a challenging task to derive the coefficients

in models for more complicated lattices. So in order to allow future experiments to

more easily explore these questions in the Lieb lattice, we first derive experimentally

realistic values for the coefficients in a Hubbard model as a function of the laser

intensity through calculating the single particle Wannier functions localised on each
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site [339].

Single particle Wannier functions can be found by first diagonalising the single

particle Hamiltonian, to obtain the Bloch functions, φmk (~r), associated with each

band m,

wnj (~r) =
1

2π

∫
dkUk

n,mφ
m
k (~r)e−i

~k· ~Rj , (9.3)

where Uk
n,m is a k-dependent 3 × 3 unitary matrix. For the case where each Uk is

diagonal and we find the appropriate choice for the phase factors then we can obtain

unique and real Wannier functions that are exponentially localised to a single unit

cell and each represent particles in an individual energy band [92]. This phase is

chosen so that the Bloch functions are as smoothly varying as possible around the

Brillouin zone. In this way, the Wannier functions for the Lieb lattice can be found

as shown in Fig. 9.2.

However, calculating the terms in the Hubbard model using these ordinary Wan-

nier functions would result in a model with many long range tunnelling and interac-

tion processes. It is then advantageous to calculate a new set of basis states which

themselves are localised on individual sites, and will allow for the realisation of a

Hubbard model of the form of Eq. 9.2 with only nearest neighbour processes. In

general, this can be a non-trivial task particularly when the lattice geometry has a

complicated spatial structure and connectivity. To this end, we use the method pre-

sented in Ref. [339] which finds the optimal superposition of the ordinary Wannier

functions, by iteratively optimising each Uk
n,m, such that we obtain a new set of or-

thogonal functions, but which are much more localised. The effect of the off-diagonal

elements of Uk
n,m is to mix the Bloch functions of each energy band, thus the new

basis set corresponds to particles localised on individual lattice sites, but which exist

in a superposition of the three energy bands.
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This new maximally localised onsite basis is most convenient for calculating the

coefficients of a Hubbard model because we can use them to obtain the tunnelling

amplitudes between nearest neighbouring sites and the onsite energy and interaction

coefficients as a function of the optical lattice laser potential values which is im-

portant for experimentally realising theoretical predictions that require knowledge

of the interaction strength and are paramount for being able to reliably explore the

physics of many-body systems in complex geometries. These coefficients are shown

in Fig. 9.3 for the regimes where the tight binding spectrum is well approximated,

where we can see that the onsite interaction strengths can be tuned to values close

to the tunnelling rates for moderate scattering lengths.

Note that compared to a conventional square lattice, which requires intensities

of V0 ∼ 10−50ER in order to accurately approximate a tight binding model, we find

here that we must be in the upper limit of this range to reproduce a spectrum similar

to the tight binding case in Fig. 9.1(c-e). However, as can be seen from Fig. 9.2(a)

the potential is greatly dominated by the large peaks which creates the distinct

pattern of the Lieb lattice and the potential barriers between nearest neighbouring

sites are much lower, giving values for the nearest neighbour tunnelling rates on the

order of J ∼ 1 kHz for all parameters considered in Fig. 9.3. This means that while

we require a higher laser power to produce the tight binding spectrum compared to

conventional lattices, the dynamics manifested in this system will be at a similar

rate.

We are also able to calculate corrections to a standard Hubbard model and in

Fig. 9.3(b) we also plot the next-nearest neighbour tunnelling and a nearest neigh-

bour density induced tunnelling coefficient where we can see that these values are

on the order of 1% for the potential values illustrated here. The most dominant

effect of the next nearest neighbour tunnelling term is to introduce a small curvature
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(a) (b)

Figure 9.3: Hubbard coefficients produced from Eq. 9.1 as a function of the laser intensity, where
UA (UB) are the onsite interaction strengths for the A (B) sites of the unit cell, where UC = UB .
JNN are the next-nearest neighbour tunnelling rates between A (B) sites in different unit cells, red
(yellow) and Utun are the dominant interaction strengths between nearest neighbour sites. With
V2 = 1.07V1, the wavelength λ1 = 1024 nm, a harmonic trap in the z-direction with ωz = 2π×200 Hz
and for a scattering length as = 250 a0. For all values the nearest neighbour tunnelling is on the
order of J ∼ kHz.

and band width for the flat energy band, however, this is also much smaller than the

dominant nearest neighbour tunnelling rates (< 1%) indicating that these corrections

will have a negligible effect on the dynamics as they are significantly dominated by

the conventional Hubbard terms.

9.3 Many-body correlations at half filling

In order to perform a quantitative analysis of the many-body phases produced in

the Lieb lattice we focus on a one-dimensional ladder cut, shown in Fig. 9.4, and

variationally calculate the ground state using matrix product states [1] (see Ch. 4).

This allows us to quantitatively calculate the properties of the ground state in the

strongly interacting regimes while also preserving the main qualitative features of

the full Lieb lattice, where we have an energy band structure with a flat band and

a Dirac cone (see Fig. 9.4). In the following we consider the case of fermions at half

filling as in this regime the lower two energy bands are filled and the flat band is
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Figure 9.4: (a) One-dimensional Lieb ladder strip with the most dominant components of the
maximally localised flat band states highlighted, compare to Fig. 9.2(b). (b) Energy band structures
for the ladder, EB = EC for all. (c-f) Matrix product state calculation (bond dimension, D = 1024)
of the ground states at half filling where we compare the single particle (Eq. 10.49) and pair
correlations (Eq. 9.5) for EA = EB = EC = 0 (c-d) and EA = J ; EB = EC = 0 (e-f). System size
of 20 unit cells (100 sites) and 50 spin up and 50 spin down fermions.

half filled, meaning that all excitations and dynamics around the Fermi level will be

dominated by states in the flat band.

We calculate the ground state for attractive interactions as the interaction strength

is increased for the two band structures illustrated in Fig. 9.4. We calculate the single

particle correlations,

Φ(r) = 〈a†↑,Aa↑,r〉, (9.4)

where we first apply the creation operator on the A site in the centre of the system
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and then apply the destruction operator at every other site to the right in the system.

We compare these to the cooper pair correlations

Φpair(r) = 〈∆†B∆r〉, (9.5)

where

∆r = a↑,ra↓,r, (9.6)

and we first apply the pair creation operator to the B site in the centre of the system.

We plot the results in Fig. 9.4, where we can see that for non-zero interactions the

pair correlations dominate over the single particle correlations for both regimes.

Due to the spatial distribution of the flat band eigenstates (shown in Fig. 9.4)

we find that the dominant pair correlations occur between B and C sites, where the

noticeable dips in the plots for lower interaction strengths occur when the subsequent

destruction operator is applied to an A site. As the interaction strength is increased

these features are washed out, indicating that there is strong mixing with Wannier

states associated with the higher energy bands, but intriguingly, the overall decay

of the correlations seems to actually be enhanced by this mixing, whereas the single

particle correlations become further suppressed.

We can also see that in the regime EA = EB = EC with the Dirac cone (a-b), that

the pair correlations are suppressed for weak interactions, but for strong interactions

the pair correlations seem to become even larger than the case with a gap in the

band structure (EA = J) and for U = −4J appear to remain almost constant over

the entire length of the system that we have considered. Of course, with these long

range correlations, finite size effects become important, making it difficult to really

unequivocally determine if these correlations decay algebraically, or simply have a

correlation length that is larger than the system. Nevertheless, these results are very
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suggestive of quasi-long range superconducting pairing, and also demonstrate that

strongly mixing with dispersive energy bands, rather than destroying the novel pair

dominated phases in flat bands, can actually enhance these properties.

9.4 State preparation

We consider the ability of preparing these novel many-body phases in a realisa-

tion of the Lieb lattice with an optical lattice. This preparation scheme is based

on adiabatic state preparation [97, 287] and utilises the ability of these systems to

time-dependently vary the onsite energies, interaction strengths and tunnelling am-

plitudes. In order to achieve this experimentally requires precise knowledge of the

relationship between the parameters of the optical potential and the coefficients in

the effective Hubbard model which can be understood with the help of the analysis

presented in the previous sections.

We require the preparation of an initial product state where a single fermion

is projected onto each of the blue sites shown in Fig. 9.5(a). Our initial state in

this process is the case where all tunnelling rates are zero which can be achieved

with strong laser intensity creating large potential barriers and where the onsite

interaction strengths are also zero, which can be tuned with a magnetic field around

a Feshbach resonance [340]. Additionally, we require a large detuning between onsite

energies with much lower energies for the sites that are initially populated, which can

be achieved by varying the relative intensity of the two optical potentials creating our

lattice in Eq. 9.1. We then simultaneously time dependently ramp the tunnelling,

the onsite energy and the onsite interaction strength to the desired value.

First in Fig. 9.5(b) we consider the case for zero interactions, with EA = 1;

EB = EC = 0, where we linearly ramp the parameters in the Hubbard model.
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Figure 9.5: (a) Initial onsite energies for the adiabatic preparation process and the time depen-
dence for the parameters. (b) The error in the fidelity, F = |〈Ψgs|ψT 〉|2. of the time-dependently
produced state compared to the non-interacting fermion ground state as a function of the total
ramp time, T (linear ramp) and for different number of 5 site unit cells (shown in Fig. 9.4(a)). For
an even number of unit cells (Mu = 2 & Mu = 4) these states are at half filling, for an odd number
of unit cells (Mu = 3) the states are at half filling ±1 atom (yellow/red). (c-d) ED results for
the adiabatic preparation of the interacting ground state at half-filling for Mu = 2, with the ramp
process in Eq. 9.7, where EA is the onsite energy of the A sites, see Fig. 9.4(a), which is constant
throughout the ramp.

For the non-interacting case the ground state is highly degenerate so we plot the

projection of the final state onto the ground state manifold for small system sizes

using exact diagonalisation. We can see that for ramp times that are achievable

before decoherence effects begin to lead to errors (TJ ∼ 200) we can achieve fidelities

> 1− 1× 10−3 for the system sizes considered here.

Next we investigate the more interesting case of interacting ground states. We

begin with the same initial state, but we now apply an exponential ramp for the

parameters,
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E(t) = −Ein
e5(1−t/T ) − 1

e5 − 1
,

J(t) = J

(
1− e5(1−t/T ) − 1

e5 − 1

)
,

U(t) = U

(
1− e5(1−t/T ) − 1

e5 − 1

)
,

(9.7)

from t = 0 to t = T . As the energy gap between the ground state and first excited

state decreases as we ramp these parameters, with the final state being gapless in

the thermodynamic limit we find it optimal to apply this exponential ramp which

ensures that there is a slower change in the parameters as the gap decreases. This

ensure that the adiabatic principle is not as strongly violated compared to the case

for a linear ramp. Fig. 9.5(c) we plot the projection of the final state onto the ground

state using exact diagonalisation on a small system for both band structures with

EA = J and EA = 0. We consider a range of attractive interaction strengths where

we can see that as we increase the interaction strength, the projection on the ground

state improves. It is also apparent that we can achieve near perfect fidelities for

experimentally achievable ramp times (TJ ∼ 200) for strong interaction strengths,

which are the phases with the most dominant pair correlations, see Fig. 9.4.

Of course, as this analysis was carried out on small system sizes, we are only able

to prepare these states so accurately due to finite size effects introducing effective

energy gaps in the spectra. So, we also simulate the same ramp processes on larger

system sizes using time-evolution techniques with MPS [159, 206], where in Fig. 9.6

we compare the correlations produced through the time-dependent preparation to

those for the ground state, again for both band structures, EA = J (a) and EA = 0

(b).

We can see that as we increase the total ramp time, the correlations of the pre-
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Figure 9.6: Comparison of the pair correlations in the half filled ground state (blue dia-
monds) with the time-dependently prepared state with a total ramp time, TJ = (50, 100, 200) =
(red,yellow,purple), for EA = J (a) and EA = 0 (b). U = −2J and system size of 10 unit cells (50
sites). Calculated with a 4th order Runge-Kutta MPS time evolution algorithm [159] with Jτ = 0.1
and D = 512.

pared state quickly approach those of the ground state, where for experimentally

feasible ramp times (TJ ∼ 100) the deviations become too small to be resolved ex-

perimentally. Note that in all cases, the single particle correlations are exponentially

suppressed. These states are gapless in the thermodynamic limit, so as the size of

the system is increased the total ramp time needed to accurately prepare the ground

state will increase due to the closing of the energy gap. Therefore, we have also

included the correlations for the state produced with a faster ramp time, TJ = 50,

which shows that while there are deviations at larger distances, the short distance

behaviour of the pair correlations is preserved. This analysis indicates that while

preparing these ground states with near perfect fidelities may not be possible using

adiabatic preparation schemes, due to the fact that the states are gapless in the

thermodynamic limit, it is clear that we can feasibly prepare states with strong pair

correlations that have a similar dependence to those of the true ground state for short

distances. In this way we introduce an effective finite size for our condensate, with

the benefit of being able to prepare them in realistic timescales before decoherence

effects begin to dominate.

165



Conclusions

9.5 Conclusions

We have considered an experimental realisation of the Lieb lattice and how to prepare

phases that have enhanced Cooper pair correlations. By performing numerical calcu-

lations on a one-dimensional ladder system we quantitatively demonstrated that we

can prepare the half filled fermion ground state in experimentally realistic timescales.

Additionally we provided predictions for the ground state correlations for attractive

interactions where we found that due to the flat energy band the pair correlations

dominate and can be further enhanced by increasing the interaction strength such

that there is strong mixing with the higher dispersive energy bands. We also found

that in the strongly interacting regime, mixing between the flat band states and

states close to the Dirac cone resulted in correlations that were almost constant

throughout the full system that we considered.

On the theoretical side this work has implications for understanding strongly

interacting phases in flat band systems and how mixing with additional dispersive

bands affects the properties of these phases. Additionally, our analysis also has

potential to impact quantum simulation more generally, as our experimental proposal

demonstrates that it is in principle possible to realise phases with strong Cooper pair

correlations in current cold atom experiments.
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Chapter 10

Non-Markovian state diffusion for

open many-body systems

In this chapter we develop and apply a new method for classically simulating open

quantum systems beyond the Born and Markov approximations to study dynam-

ics of open many-body quantum systems in one-dimension strongly connected to a

non-Markovian environment. We have hybridised a recently proposed technique, the

hierarchy of pure states [186, 187] (see Ch. 5) and incorporated matrix product state

algorithms allowing us to generalise the method to many-body systems, which is

particularly relevant for understanding quantum dynamics in real materials, as the

Born-Markov approximation is usually strongly violated in a solid state setting [184].

As well as opening up new avenues for theoretically investigating these novel sys-

tems, this algorithm allows us to extend the regimes that we are able to classically

benchmark which is important for calibrating future quantum simulators.

As an initial proof-of-principle for the algorithm, in this chapter we present the

simulation of dynamics of a system that cannot be treated, or can only be treated ap-

proximately, by other means. In particular, we consider immersing an optical lattice
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system in a Bose-Einstein condensate (BEC) such that our quantum simulator can

be better mapped to real world materials through the incorporation of the effects

of interactions between electrons (lattice atoms) and phonons (BEC excitations).

Classically simulating these effects is very computationally expensive, as it results

in a combined electron-phonon Hilbert space that is too large to accurately handle,

even with matrix product states and progress cannot be made with a conventional

open quantum system approach as this results in very non-Markovian properties for

the phonon environment. While this system is unlikely to lead to a quantum en-

hancement, it is equally as important to understand as finding any regimes where the

effects of lattice phonons somewhat preserves quantum correlations would potentially

allow for better practical real world quantum devices to be developed. Additionally,

we have already seen in Ch. 6 that the correlations and entanglement grow rapidly

in time and we quickly go beyond what we are able to simulate classically, but an

obvious question is then how does this situation change for a system with realistic

material properties and how can this be investigated with a quantum simulator?

10.1 Non-Markovian treatments of open systems

in quantum optics

Advances in cold atom systems offer a controlled experimental way of probing the

effects on dissipative and coherent dynamics in many-body systems through strong

coupling to a non-Markovian environment [174, 341]. By utilising the controllability

of cold atom experiments it is possible to accurately tune parameters allowing us

to probe the transition from Markovian to non-Markovian induced dynamics [342–

344]. However, there are still important open questions regarding the numerical

170



Non-Markovian treatments of open systems in quantum optics

simulation of many-body systems that are strongly coupled to a non-Markovian en-

vironment. While there are previous techniques for going beyond the Born-Markov

approximations, such as the hierarchical equations of motion (HEOM) [345, 346] or

the time evolving matrix product operator technique (TEMPO) [347, 348], these

studies have been limited to small systems. For larger systems, there are quantum

trajectory techniques [41] which have proved invaluable for understanding dissipation

in a many-body context but are usually only valid within weak coupling approxi-

mations. Thus new methods must be developed in order to benchmark or describe

these novel experimental situations. To this end, by combining the recently devel-

oped hierarchy of pure states (HOPS) method [186, 187], which is a numerically ex-

act quantum stochastic diffusion (QSD) equation, with matrix product state (MPS)

techniques [1, 136, 158] we have been able to derive a numerical algorithm that

is capable of quantitively calculating the dynamics of an open many-body system

(in one-dimension) in regimes beyond those available within standard Born-Markov

approximations [2]. This opens up opportunities for future studies to answer impor-

tant questions related to the effects on many-body dynamics due to being strongly

coupled to a reservoir and to quantitatively calculate the resulting non-Markovian

features without invoking strong physical approximations.

We benchmark this method by considering the out-of-equilibrium dynamics of

the Holstein model [349–359] going beyond the limit of dispersionless phonons. This

regime has only been explored by applying approximate methods, (such as quantum

Monte Carlo approaches [360–363]), because a full quantum treatment requires ap-

plying open quantum system techniques, and due to the nature of this system the

resulting dynamics (in regimes that are interesting, such as for strong coupling) can

only be described by going beyond conventional quantum trajectory methods [41].

Although we find that compared to the dispersionless phonon limit, (previously mod-
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elled with closed system MPS techniques [364]), the physics remains qualitatively the

same, our approach here allows us to more easily incorporate additional features such

as correlations within the environment or finite temperatures. This study demon-

strates an excellent proof-of-principle for our numerical technique where we are able

to illustrate that we can access physics in an open many-body system beyond the

weak coupling and Markov approximations.

10.2 The HOPS + MPS algorithm

The hierarchy of pure states (HOPS) method is a QSD equation that can be applied

to a wide range of problems where it is numerically exact. There are very few

approximations invoked in its derivation (see section 5.3): 1) we assume that the

environment can be expressed in a coherent state basis, 2) we assume that the system

and environment are linearly coupled and 3) we assume that initially, the system and

environment are uncorrelated. In general however, the stronger the violation of the

Born-Markov approximations the more numerically costly the algorithm becomes,

and so in a practical sense we are somewhat limited in the scope of problems that

can be solved with this method. Additionally, in order to apply the method we must

know the correlation function for the environment operators that couple with the

system, which in most cases can only be analytically derived for environments with

quadratic Hamiltonians. This means that in general, in order to reliably apply this

method to interesting problems more detailed knowledge of the form of the coupling

between the system and environment must be obtained, compared to a conventional

Born-Markov treatment.

Here we consider the case that we have N different effective environments, each

coupled locally to a single site, labelled by n. One requirement for HOPS is that the
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correlation function of the environment must be expanded into a sum of exponentials,

so for the moment we assume that the properties of each environment n can be

approximated with a Lorentzian spectral density giving rise to a correlation function

of the form,

αn,m(t− t′) = 〈ân(t)â†m(t′)〉 = e−b|n−m|e−κ|t−t
′|−iω(t−t′), (10.1)

where b is a parameter controlling the spatial correlations between environments

coupled to site n & m, κ controls the decay of the temporal correlations and ω is the

dominant energy mode in the environment. We assume a linear coupling between

the system and environment,

HInt =
∑
n

Lnâ
†
n + L†nân, (10.2)

where Ln and ân are the system and environment operators respectively. We can

then write the (non-linear) HOPS algorithm as [186, 187]

∂t|Ψ
~k(t)〉 =

(
−iH −

∑
n

kn (κ+ iω) +
∑
n

z̃n(t)Ln

)
|Ψ~k(t)〉

+
∑
n

Lnkn|Ψ
~k−~un(t)〉 −

∑
n

(
L†n − 〈L†n〉t

)
|Ψ~k+~un(t)〉,

(10.3)

where, ~k is an N dimensional vector representing the auxiliary state component

for each environment mode, ~un is a unit vector in the nth direction of the hierarchy,

〈L†n〉t = 〈Ψ(0)(t)|L†n|Ψ(0)(t)〉 and the noise terms have the properties, E [zn(t)zm(t′)∗] =

αn,m(t− t′), which in the non-linear version of HOPS are modified time dependently

according to,

z̃n(t) = zn(t) +
∑
m

∫ t

0

dsα∗n,m(t− s)〈L†m〉s. (10.4)
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This form of noise effectively takes into account modifications to the environment

modes due to being coupled to the system. See the next section for a numerical

way for generating noise with the required statistics. Additionally, we truncate each

direction of the hierarchy (where each run from kn = 0→ kn,max) with the terminator

|Ψkn,max(t)〉 =
α(0)

κ+ iω
Ln|Ψkn,max−~un(t)〉. (10.5)

It should be understood here that the index, kn,max, in the above expression should

be a vector with the coefficient kn,max in the nth direction of the hierarchy and

arbitrary coefficients in all other directions. The choice of terminator does not have

a significant effect on the dynamics, for a suitable hierarchy depth [186]. Nevertheless

this choice of terminator has been proposed because when the limit kmax = 0 is taken

we recover a single equation of the same form as a conventional Markovian quantum

state diffusion (QSD) equation [186].

Notice that due to the simple system-environment coupling, that we can split

the Hamiltonian into pieces that act locally. We will now exploit this to re-write the

time-evolution in terms of an MPS algorithm. We simply incorporate the auxiliary

states in the hierarchy of an environment mode into each local tensor. We do this

by connecting a set of new tensors Kn,

|Ψ〉 = · · ·

K

A

K

A

K

A

K

A

K

A · · ·

where the dimension of each hierarchy, σ, is represented by the open indices at the

top. We initialise this new tensor network by setting all elements except the physical

σ = 0, to zero and incorporate the initial (pure) state in the A tensors. For the
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case considered here where each environment has a Lorentzian spectral density the

dimension for each Kn is simply, σ = kn,max, however, if more general environments

are considered, such that we must approximate the spectral density for each environ-

ment (where environments are coupled to individual sites) as a sum of p Lorentzians

then naively the dimension of each Kn then must grow according to, σ = (kn,max)p.

This tensor network works well for the applications considered here, but note

that it is in principle possible to extend this method to more complicated situations,

even those with a non-local system-environment coupling with terms of the form

LmL
†
nan, with the cost of including bonds between eachK tensor. There are still open

questions to how well this method would perform upon truncating the dimension of

these bonds to numerically tractable sizes.

We then evolve the state with a TEBD algorithm, [136, 158], where we split the

evolution of the physical degrees of freedom dn and the hierarchy σn and apply two

separate sets of local time-evolution operators, U
d′n,d

′
n+1

dn,dn+1
, which evolve the physical

dimensions, dn, and then Ũ
d′n,σ

′
n

dn,σn
, which mixes the auxiliary states by including the

contributions from the HOPS algorithm.

The dimension of this hierarchy can be quite large, around ∼ 6 for a single mode,

and can be considerably larger if we consider environment correlations that must

be approximated by a sum of exponentials. So after each application of the time-

evolution operator, we include an additional step where we transform the hierarchy

indices to an optimal local basis, then truncate the terms with the lowest weight,

similar to that performed in [353, 364]. To implement this procedure we first, for

each tensor, calculate the reduced density matrix,
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ρn =

K

A

K̄

Ā

then we diagonalise this matrix and truncate elements with eigenvalues smaller than

some cut-off value, E → E0,

ρn = RER† ≈ R0E0R
†
0. (10.6)

This gives us a transformation to a new basis of a lower dimension. We then trans-

form the hierarchy indices of the state and the time-evolution operator for the aux-

iliary states,

R0

K

A Ũ
d′n,σ

′
n

dn,σn

R†0

thereby reducing the number of basis states needed to represent the hierarchy. Note

that only one of the hierarchy indices of Ũ
d′n,σ

′
n

dn,σn
is transformed, because we must

ensure that the time-evolution operator is able to allow the state to access to the

full basis during the evolution. If instead we transformed both indices, σ′n & σn the
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state would remain in the reduced basis leading to errors.

Numerical generation of coloured noise in the time domain

First we must define a response function, R(t),

R(t) =
1

2π

∫ ∞
−∞

dωG(ω)e−iωt, (10.7)

where G(ω) is related to the correlation function through,

G(ω) =

(∫ ∞
−∞

dtα(t)eiωt
)1/2

. (10.8)

Finally, we then calculate the coloured noise, z(t), through,

z(t) =

∫ ∞
−∞

dsR(s)ξ(t− s), (10.9)

where ξ(τ) = 1/
√

2 (ξ′(τ) + iξ′′(τ)) and ξ′(τ), ξ′′(τ) are real independent gaussian

white noise terms. The coloured noise then has the desired properties,

M [z(t)z∗(t)] = α(t− t′),

M [z(t)z(t)] = 0.
(10.10)

Numerical generation of coloured noise in the frequency domain

This derivation follows Ref. [187]. Usually the correlation function (including all

examples in this note) is given in terms of a spectral density,

α(τ) =
1

π

∫ ∞
0

Ω(ω)e−iωτ ≡ 1

π

∫ ∞
−∞

Ω̃(ω)e−iωτ , (10.11)
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which we can approximate this by the Riemann sum,

1

π

∫ ∞
−∞

Ω̃(ω)e−iωτ ≈
n−1∑
k=0

∆ω

π
Ω̃(ωk)e

−iωkτ , (10.12)

allowing us to define the coloured noise through,

z(t) =
n−1∑
k=0

√
∆ωΩ̃(ωk)

π
ξ(k)e−iωkt, (10.13)

where ξ(k) is a complex gaussian white noise process, satisfying,

M [ξ(k)ξ∗(k′)] = δ(k − k′),

M [ξ(k)ξ(k′)] = 0
(10.14)

This corresponds to a numerical integration from ω0 − ∆ω/2 to ω1 + ∆ω/2, using

the midpoint rule. In practice I find it optimal to choose a particular value of dt and

∆ω, which gives rise to the number of terms in the sum n through, n∆ωdt = 2π.

Choosing ω0 = ∆ω/2 then allows us to calculate ω1, and we should check that the

value of Ω̃(ω1) is close to zero so that the spectral function is reliably approximated.

We can actually compute this coloured noise very efficiently using the Fast Fourier

Transform (FFT),

z(t) = e−iω0t

√
∆ω

π
FFT

(√
Ω̃(ωk)ξ(k)

)
. (10.15)
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10.3 Benchmarking: CDW melting in the disper-

sive Holstein model

We then benchmark this algorithm by applying it to solve for the out-of-equilibrium

dynamics of a Holstein model going beyond the approximation of dispersionless

phonons. We take a phenomenological approach, where we assume that we can

capture the phonon dispersion with a Lorentzian spectral density and that each site

of the lattice couples to its own effective phonon environment. This approximation

is useful as this form of spectral density is efficiently simulable with HOPS and it

can be easily seen that upon taking the phonon dispersion to zero we recover the

seminal model for dispersionless phonons, which results in a highly non-Markovian

environment with an infinite correlation time.

At the end of this chapter, we will consider the possibility of creating this system

in cold atom experiments by immersing a lattice system in a weakly interacting

BEC. We show that in certain limits it may be possible to experimentally model

the dynamics that we are classically simulating here, with effective independent

environments with Lorentzian spectral densities.

We will approximate the Hamiltonian for a one-dimensional lattice, taking for

the moment spinless fermions, immersed in a global (also 1D) phonon environment

with a model where each lattice site is connected to its own environment,

H = ω0

∑
n

c†ncn − J
∑
n

(
c†ncn+1 + cnc

†
n+1

)
+ g

∑
n

n̂n
(
ân + â†n

)
, (10.16)

where ân, â†n are the environment operators with correlations of the form,

αn(t− t′) = 〈ân(t)â†n(t′)〉 = e−κ|t−t
′|−iω(t−t′), (10.17)
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where a is the spacing between lattice sites, ω is the phonon energy level in the

environment and κ is the gradient of the linearly dispersive phonons. Taking the

limit of κ→ 0 we recover the Holstein model which describes dispersionless phonons.

In the following, we set ω0 = 1/2J and ω = J , and vary κ and g.

For an experimental realisation in quantum optical experiments, we can usually

make the approximation that ka� 1 allowing us to neglect spatial correlations be-

tween the environment modes which gives rise to a model where each site is connected

to an independent environment. However, we note here that a feature of HOPS is

that it can also be used to describe situations where this approximation is relaxed

without additional computational cost, if one can find a way to numerically generate

the coloured noise terms, zn(t), with the required statistics and correlations.

As we make use of a QSD equation we must integrate the equations of motion

many times with different realisations of the noise terms and average the observables

to obtain the results predicted from a full density matrix description, however in

practice these trajectories can be solved in parallel. Note that for the calculation of

observables within this framework follows a similar process as for conventional QSD.

For each trajectory we calculate expectation values using only the physical state, i.e

On,m(t) = 〈Ψ0(t)|On,m|Ψ0(t)〉. (10.18)

Charge density wave melting

Following Ref. [364] we begin with the initial state, |1, 0, 1, 0, · · · 〉, and calculate a

charge density wave order parameter,

OCDW(t) =
1

M

∑
n

(−1)n〈n̂n(t)〉. (10.19)
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We plot this in Fig. 10.1(a) for different coupling strengths, g and phonon dispersions,

κ. We find the same qualitative behaviour as the case for dispersionless phonons,

where for weak coupling, g = 0.1J , the dynamics are similar to the closed system

(g = 0) case where there are oscillations, but for non-zero dissipation, the CDW

melts into a homogeneous steady state. Increasing the coupling strength to g = J

these oscillations are damped and quickly approach the steady state value. Further

increasing the coupling strength we can see that the the charge density wave melt-

ing is somewhat suppressed and slowed for short times and the oscillations become

completely damped for g = 5J .

This is similar to the features observed for the dispersionless phonon case [364],

however they observe a very pronounced plateau in the order parameter which is

then followed by a decay towards zero, as opposed to this constant decay to zero

observed here. This indicates that having some dispersion to the phonons reduces

the effects on the system dynamics, and indeed, if we increase the phonon dispersion

κ we see a reduction in this effect. Note that previous analysis for time-evolution in

the dispersionless phonon case was carried out on system sizes up to M = 13 [364],

but we can go beyond this limit with the HOPS + MPS algorithm.

We compare the results to that of a conventional quantum state diffusion (QSD)

equation valid in the Born-Markov limit (BML). This is achieved by setting kmax = 1

and αn,m(τ) = Γδn,mδ(τ), which physically corresponds to the approximation that

the phonon dispersion is large. In order to match this limit of HOPS with a standard

Markovian QSD equation, we use Γ = 2/κ. Note that we use the non-linear version

of this equation, see Eq. 5.19 in Ch. 5. We see that this model completely fails to

predict the suppression of the order parameter at short times, although agrees with

the steady state behaviour. Also note that the dynamics are now independent of κ.

It is also clear that the observables captured with HOPS for stronger coupling
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Figure 10.1: The charge density wave order parameter, increasing the coupling strength g, sup-
presses the melting somewhat for short times. (a) HOPS, kmax = 8, D = 128, Jdt = 0.01,
Ntraj = 100. (b) Born-Markov Limit (BML), Ntraj = 100. System size, M = 20. Error bars
represent statistical uncertainty in the mean value over all trajectories - where error bars are not
visible they are smaller than the width of the curves.

are less noisy compared to the BML even though there are the same number of

trajectories. This is due to the coloured noise term which is correlated in time,

meaning that on average there are not as many large jumps in the noise processes

compared to the white noise used for the BML. Additionally, from Eq. 10.4 we can

see that the noise terms are also weighted by the correlation function and system

observables from previous times, which will further smooth out the random processes.

This is a nice feature of the non-linear version of HOPS, which is not observed as

prominently in the linear version [186, 187] (see Eq. 5.33 in Ch. 5), indicating that

this is most likely a numerical effect rather than a physical one.
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Figure 10.2: The average entanglement entropy at each bond. (a) HOPS, kmax = 8, D = 128,
Jdt = 0.01, Ntraj = 100. (b) Born-Markov Limit, Ntraj = 100. System size, M = 20. Error bars
represent statistical uncertainty in the mean value over all trajectories - where error bars are not
visible they are smaller than the width of the curves.

Entanglement scaling

We then consider the entanglement properties of the system. We calculate the Von-

Neuman entropy of each bond,

E = −
r∑

m=1

sm log(sm), (10.20)

where sm are the Schmidt coefficients at each bond. We plot the average over all

bonds in Fig. 10.2, where we find that as the phonon coupling is increased, the en-

tanglement in the system decreases. This indicates that the presence of phonons

prevents motion of particles in the system and also suppresses the build up of entan-

glement and correlations. We also observe that as the phonon dispersion is increased,
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Figure 10.3: The average magnitude of the particle current at each bond (see Eq. 10.21). (a)
HOPS, kmax = 8, D = 128, Jdt = 0.01, Ntraj = 100. (b) Born-Markov Limit, Ntraj = 100. System
size, M = 20. Error bars represent statistical uncertainty in the mean value over all trajectories -
where error bars are not visible they are smaller than the width of the curves.

then the entanglement can grow to larger values indicating that the phonons do not

have as much time to affect the system before moving away from the site at which

they were created. Again we compare to the BML and we see that there is qualita-

tive agreement between the two methods, but in particular note that the case with

g = J , κ = 5J has larger entropy compared to those predicted in the BML.

Currents

In Fig. 10.3 we compare the particle currents predicted by the HOPS+MPS method

and the BML. We calculate the current at each bond between neighbouring sites,

In = 4i
(
c†ncn+1 − cnc†n+1

)
. (10.21)
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As we are simulating a global quench here without any applied bias there is no

preferred direction to the currents, but we can still obtain information about the

directionless particle motion in the system by calculating the magnitude of the above

expression. We plot the average at each bond in Fig. 10.3, where we see that as the

coupling strength increases, the current is suppressed and decays towards zero at an

increased rate. Similar to the case of charge density wave melting, the BML fails

to reliably capture the short time dynamics, but predicts a reliable estimate for the

steady state where all motion has been suppressed by the dissipation.

Environment correlations

Through features arising from the HOPS algorithm, we can calculate time-dependent

observables within the environment, thus enabling us to quantify the deviation away

from the initial phonon population as well as capturing the build up of correlations

between the system and the environment. This allows us to directly calculate the

extent of which a Born approximation would be invalid∗. In order to derive the

expression for these quantities, we must exploit one of the assumptions of HOPS

where we can expand the state of the environment in a basis of coherent states,

which allows us to write the total state as,

|ΨT 〉 =

∫
d2z

π
e−|z|

2|ψs(z, t)〉 ⊗ |z〉. (10.22)

We can then calculate observables by,

〈a†aŜ〉 = Tr
[
a†aŜ|ΨT 〉〈ΨT |

]
=

∫
d2z

π
e−|z|

2〈ψs(z, t)|Ŝ|ψs(z, t)〉〈z|a†a|z〉, (10.23)

∗However, this does not necessarily mean that there would be errors in the dynamics for the
system in this approximation [365].
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Figure 10.4: (a) Phonon-phonon correlations. (b) Electron-phonon correlations (see Eq. 10.25).
For a Born approximation to be valid these would all need to be zero. HOPS, kmax = 8, D = 128,
Jdt = 0.01, Ntraj = 100. Error bars represent statistical uncertainty in the mean value over all
trajectories - where error bars are not visible they are smaller than the width of the curves.

where Ŝ and a†a act on the system and environment Hilbert spaces respectively.

Like the dynamical evolution of the state |ψs(z, t)〉 we can compute this quantity

stochastically,

〈a†aŜ〉 = E
[
〈ψs(z, t)|Ŝ|ψs(z, t)〉〈z|a†a|z〉

]
= E

[
〈ψs(z, t)|Ŝ|ψs(z, t)〉|z|2

]
. (10.24)

For the dispersive Holstein model we plot the correlations generated in the en-

vironment in Fig. 10.4(a). Firstly, it is apparent that these values have a larger
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uncertainty associated with them, indicating that in order to obtain reliable quanti-

tative predictions for these observables many more trajectories are needed compared

to the system observables. Nevertheless they allow us to assess the qualitative fea-

tures, where we can see that as the coupling strength is increased the phonon popu-

lation 〈a†a〉av = 1/M
∑

n〈a†nan〉 increases. We also see that as the dispersion of the

phonons is increased that this population decreases and we can see that the (average)

correlations between spatially separated phonon modes in the environment share a

similar dependence. In Fig. 10.4(b) we plot the correlations between the system and

environment,

Λm =
1

M −m
∑
p

〈n̂p+mapa†p〉 − 〈n̂p+m〉〈apa†p〉. (10.25)

We see similar behaviour, which also illustrates why the BML equations failed for

stronger coupling. Firstly from (a) there is a significant deviation away from the

initial zero phonon state, meaning that the environment does not relax back to

thermal equilibrium which may lead an invalidation of the memoryless bath and

the Markov approximation. But more importantly, from (b) we can see there are

significant correlations built up between the system and environment which directly

invalidates the Born approximation.

Finite temperature

We follow Ref. [187] and generalise the HOPS algorithm for environments initially

in thermal states, by simply incorporating a hermitian stochastic contribution to the

system Hamiltonian,

H = HS + L†y(t) + Ly∗(t), (10.26)

where the stochastic noise elements, y(t), satisfy, E [y(t)y∗(t′)] = (exp(βω)−1)−1α(t−

t′) for the case of a single mode, where β is the inverse temperature, β = 1/kbT . But
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more generally,

E [y(t)y∗(t′)] =
1

π

∫ ∞
0

dωn(β, ω)Ω(ω)e−iω(t−t′), (10.27)

where n(β, ω) = (exp(βω) − 1)−1 and the spectral density Ω(ω) is related to the

(zero temperature) correlation function through,

α(t− t′) =
1

π

∫
dωΩ(ω)e−iω(t−t′). (10.28)

We can derive Eq. 10.26 by considering the P-representation of the full density

matrix for an environment initially in a thermal coherent state,

ρT (t) =

∫
d2y

1

πn̄
e−|y|

2/n̄U(t)ρs(0)⊗ |y〉〈y|U †(t), (10.29)

where |y〉 is a normalised coherent state. We can make use of the coherent state

displacement operator, |y〉 = D(y)|0〉, where |0〉 is the vacuum,

ρT (t) =

∫
d2y

1

πn̄
e−|y|

2/n̄U(t)D(y)ρs(0)⊗ |0〉〈0|D†(y)U †(t). (10.30)

Making use of the relation, D(y)D†(y) = 1, and the cyclical properties of the trace,

we can define a new time evolution operator,

Ũ(t) = D†(y)U(t)D(y), (10.31)

which acts on an initial state with a zero temperature environment, and leads to the

modified Hamiltonian,

H̃ = D†(y)HD(y) = HS + Ly∗(t) + L†y(t) +HInt. (10.32)
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We can then write the time evolution for the density matrix as,

ρT (t) =

∫
d2y

1

πn̄
e−|y|

2/n̄Ũ(t)ρs(0)⊗ |0〉〈0|Ũ †(t) =

∫
d2y

1

πn̄
e−|y|

2/n̄|Ψ̃T 〉〈Ψ̃T |,

(10.33)

where

|Ψ̃T 〉 =

∫
d2z

π
e−|z|

2|ψ̃s(z, y, t)〉 ⊗ |z〉. (10.34)

This then gives us,

ρT (t) =

∫
d2y

1

πn̄
e−|y|

2/n̄

∫
d2z

1

π
e−|z|

2|ψ̃s(z, y, t)〉〈ψ̃s(z, y, t)| ⊗ |z〉〈z|, (10.35)

This means that in order to reproduce this density matrix, we now have to

perform two averages over these two noise realisations, y and z. The two integrals

over coherent states in Equ. 10.35 can be interpreted in a Monte Carlo sense, [187],

by sampling trajectories with different realisations of the noise terms which satisfy,

E [z(t)z∗(t′)] =
1

π

∫ ∞
0

dωΩ(ω)e−iω(t−t′) = α(t− t′),

E [y(t)y∗(t′)] =
1

π

∫ ∞
0

dωn(β, ω)Ω(ω)e−iω(t−t′).

(10.36)

This means that we can simply apply the same zero temperature HOPS algorithm

with the only modification to the time-evolution of the individual trajectories being

the addition of the new hermitian stochastic contribution, Ly∗(t) +L†y(t). We note

that to reproduce the correct statistics it is likely that we will need to perform more

trajectories compared to the zero temperature case.

In Fig. 10.5 we plot the results, where we see that the suppression of the CDW

melting is enhanced for increasing temperatures. This is because there is a non-zero

population of phonons in the initial state, allowing for a greater effect on the short
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Figure 10.5: Finite temperature analysis of the charge density wave order parameter with HOPS,
kmax = 8, D = 128, Jdt = 0.01, Ntraj = 100. System size, M = 20. Error bars represent statistical
uncertainty in the mean value over all trajectories - where error bars are not visible they are smaller
than the width of the curves.

time dynamics. This is one prominent advantage of the presented numerical approach

to solving for the dynamics in the Holstein model compared to previous closed system

simulations of the dispersionless case. Even though the qualitative behaviour is very

similar, we can then go beyond the previous studies and investigate the quantitative

corrections to the dynamics induced by finite temperatures, which is an important

consideration for real solid state devices.
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10.3.1 Correlation spreading in the XXZ model

We attempt now to capture the effects of interactions between particles in this sys-

tem and so we consider two component fermion (spin) states. In this section we

assume the limit of strong onsite interactions, such that we can neglect the mo-

tion of the particles and we derive an effective spin model describing super-exchange

processes [366, 367]. If we have two component fermions with onsite contact interac-

tions that satisfy U↑↑, U↓↓ � U↑↓ � J , where J is the nearest neighbour tunnelling

rate and if we have unit density with ρ↑ + ρ↓ = 1, then we have a Mott insulat-

ing state with a single fermion on each site. But we can then have a process that

comes with an exchange of the ↑ and ↓ species on neighbouring sites through a super-

exchange interaction, which can be derived through second order perturbation theory

as J2/U↑↓. For bosonic atoms the super-exchange between the same component can

be neglected because U↑↑, U↓↓ � U↑↓, whereas for fermions the Pauli blocking com-

pletely suppresses these terms. We can then write this as a flip-flop spin model by

mapping which gives rise to the Hamiltonian,

HXY = ω0

∑
n

σzn −
J2

U↑↓

∑
n

(
σ+
n σ
−
n+1 + h.c

)
, (10.37)

where ω0 = E↑ − E↓.

Then including a nearest neighbour density-density two-body interaction,

HV =
∑
m

(V↑↑n̂↑,mn̂↑,m+1 + V↓↓n̂↓,mn̂↓,m+1 + V↑↓n̂↑,mn̂↓,m+1 + V↑↓n̂↓,mn̂↑,m+1) ,

(10.38)

leads to the effective spin model,
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HV =
∑
n

(
Ṽ σznσ

z
n+1 + Ṽ σzn

)
, (10.39)

where Ṽ = V↑↑ + V↓↓ − 2V↑↓. Combining these pieces together we obtain the XXZ

model,

HXXZ = ω̃0

∑
n

σzn +
∑
n

(
−2J2

U↑↓
σxnσ

x
n+1 −

2J2

U↑↓
σynσ

y
n+1 + Ṽ σznσ

z
n+1

)
, (10.40)

In the XXZ model it is clear that the total occupation number on each site is

a conserved quantity. This means that in terms of the interaction Hamiltonian of

Eq. 10.61, c†ncn + c̄†nc̄n in the spin model is an identity and so we can neglect the

effects of this term. We then only consider the Heisenberg limit of the XXZ model

where all couplings between different spin components are equal. Combining these

things together, we can write the Hamiltonian as

H = ω̃0

∑
n

σzn + J
∑
n

(
σxnσ

x
n+1 + σynσ

y
n+1 + σznσ

z
n+1

)
+
∑
n

g
(
ân + â†n

)
σxn, (10.41)

where in the following we consider, ω̃0 = 1/2J and we again approximate the envi-

ronment correlations as

αn,m(t− t′) = 〈ân(t)â†m(t′)〉 = δn,me
−κ|t−t′|−iω(t−t′), (10.42)

with ω = J .

In Fig. 10.6 we plot the correlations within the system beginning in a charge

density wave state, | ↑, ↓, ↑, ↓, · · · 〉. We note here that we required a much larger

number of trajectories compared to the previous section in order to obtain a low

sampling error in these observables, Ntraj = 1000. In terms of the physics we can
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Figure 10.6: Correlation spreading in the XXZ model with dissipation. Calculated with HOPS,
kmax = 6, D = 128, Jdt = 0.01, Ntraj = 1000. System size, M = 20. Error bars represent
statistical uncertainty in the mean value over all trajectories - where error bars are not visible they
are smaller than the width of the curves.

see from (a) that increasing the coupling strength suppresses the magnitude of the

nearest neighbour correlations and decreasing κ (i.e. increasing the memory of the

environment) also suppresses these correlations. This indicates that effects beyond

the Born-Markov approximations will in general result in a suppression of the maxi-

mum correlations in this model. For longer range correlations (b-d), firstly it is clear

that there is more uncertainty, but it appears that the correlations grow faster for

strong coupling (g = 3J & g = 5J), albeit reaching much smaller values. In all cases,
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the steady state appears to be around the same non-zero value, indicating that in

some cases strong coupling does not destroy all correlations.

This analysis demonstrates that we can efficiently simulate the dynamics of spin

models in the presence of dissipative effects beyond the Born-Markov approximation

with this numerical technique and we have shown that we can consider different

couplings between the system and environment which results in different physical

features, but does not significantly impact the performance of the method.

10.4 The extended Hubbard-Holstein model

We now consider the full model of two-species fermions taking into account both

their kinetic energy and their interactions. Explicitly this is given by

H = ω0

∑
n,σ

c†n,σcn,σ − J
∑
n,σ

(
c†n,σcn+1,σ + cn,σc

†
n+1,σ

)
+ U

∑
n

n̂n,↑n̂n,↓

+
g

2

∑
n

(
n̂n,↑ + n̂n,↓ + c†n,↑cn,↓ + c†n,↓cn,↑

) (
ân + â†n

)
.

(10.43)

If there were no spin flip processes, c†n,↑cn,↓ and c†n,↓cn,↑ then this would be known as

the Hubbard-Holstein model [368–372], however, our derivation of this model in cold

atom experiments, presented in the next section, means that we may also include

them, which leads to novel features that we will see below. We refer to this case as

the extended Hubbard-Holstein model.

It has been shown that in the Hubbard-Holstein model the coupling to the

phonons shifts the effective electron-electron interaction strength which if the cou-

pling is large enough can give rise to an effective attractive interaction that can lead

to phases with superconductive like pairing [373–375]. This can be understood by

considering the large phonon frequency limit, ω � J , which gives then an effective
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interaction strength of Ueff → U − 2g2/ω. Below we will assess the dynamical be-

haviour of this model away from this simple limit, specifically for the case where

ω = J . Additionally we will allow for dispersive phonons such that the correlation

functions are,

αn,m(t− t′) = 〈ân(t)â†m(t′)〉 = δn,me
−κ|t−t′|−iω(t−t′). (10.44)

By applying our MPS + HOPS algorithm to this problem we are able to assess

the fully quantum corrections to the previous predictions with the complimentary

approach of quantum Monte Carlo techniques [373–375], although we then limit

ourselves to one-dimensional systems, where the previous studies are also valid. In

the following we begin in the initial product state, | ↑, ↓, ↑, ↓, · · · 〉 and consider the

parameters, ω0 = 1/2J ; U = J ; ω = J . Similar to the previous sections we then

vary g and κ.

Additionally, we find that the increased dimension for the local Hilbert space

and the resulting increased growth of entanglement means that we are limited in

the length of time evolution for a similar range of numerical parameters as in the

previous sections. However, we are still able to capture the most interesting features

which occur during the short time transient regime.

Charge density wave melting

First we calculate the charge density wave order parameter,

OCDW(t) =
1

M

∑
n

(−1)n〈n̂n,↑(t)〉, (10.45)
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Figure 10.7: The charge density wave order parameter in the extended Hubbard-Holstein model.
HOPS, kmax = 8, D = 128, Jdt = 0.01, Ntraj = 500. Error bars represent statistical uncertainty
in the mean value over all trajectories - where error bars are not visible they are smaller than the
width of the curves.

and plot this in Fig. 10.7 for different coupling strengths, g, and values for the phonon

dispersion, κ. We can see that in contrast to the spinless case (see Fig. 10.1), that the

melting of the charge density wave is enhanced for stronger coupling and/or smaller

phonon dispersion where the oscillations (present for small coupling, g = J) are

strongly damped for g = 3J and g = 5J . We believe that this is due to two features

of the coupling Hamiltonian: firstly, the total particle number operator, n̂↑ + n̂↓,

which when two species are on a single site will allow them to interact stronger with

the phonon environment meaning that it is more favourable for the initial state,

with a single particle on each site, to melt into the case where there two particles on

each site. This is related to the manifestation of the effective attractive interaction

strength along the lines detailed above. Secondly the presence of the additional spin

flip dissipative terms will further enhance this melting. The steady state values in

this case, where the dynamics have been suppressed are similar to the behaviour for

the spinless case.
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Currents

To get an insight into the dynamical features of the system we calculate the par-

ticle, spin and pair currents. Again, as we are simulating a global quench with no

favourable direction, we simply compare the average magnitudes of the currents at

each bond. This will allow us to get an idea of the ability for the system to conduct

a net current, in the event that an applied bias voltage is included.

In Fig. 10.8, we compare the particle current,

In,σ = 4i
(
c†n,σcn+1,σ − cn,σc†n+1,σ

)
, (10.46)

the spin current,

In,spin = 4i
(
σ+
n σ
−
n+1 − σ−n σ+

n+1

)
, (10.47)

where, σ+
n = (σ−n )

†
= c†n,↑cn,↓, and the pair current,

In,pair = 4i
(

∆†n∆n+1 −∆n∆†n+1

)
, (10.48)

where ∆n = cn,↑cn,↓.

We can see that similar to the spinless case, the single particle currents are sup-

pressed for stronger coupling and lower phonon dispersion. We also compare the spin

currents which have different qualitative behaviour compared to the particle currents

and peak at later times, due to the spin charge separation of one-dimensional systems

(see Ch. 3), although are also similarly suppressed. In the figure we also compare

the pairing currents, where for the case of no coupling to the phonons, g = 0, there

is no net motion for pairs. We can see here that as the coupling to the phonon

environment is increased, there is an enhancement of the pairing currents, although

these values are at magnitudes much smaller than the single particle currents, it
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Figure 10.8: Comparison of the (a) single particle (Eq. 10.46), (b) spin (Eq. 10.47) and (c) cooper
pair (Eq. 10.48) currents in the extended Hubbard-Holstein model to the case where g = 0 (blue
line). The average magnitude of the current at each bond. HOPS, kmax = 8, D = 128, Jdt = 0.01,
Ntraj = 500. Error bars represent statistical uncertainty in the mean value over all trajectories -
where error bars are not visible they are smaller than the width of the curves.

is clear that these grow if the coupling strength is increased. These features bring

in interesting questions regarding how to exploit this enhanced pairing for practical

uses in quantum transport experiments. In particular, for systems to exhibit su-

perconductive transport, it is not a necessary requirement to have superfluid pair

correlations [124]. A future analysis would involve investigating these features in

the presence of a potential gradient, or upon attaching leads to either end of the

system, in order to investigate if the system can host pair transport that is robust

to imperfections or defects.
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Figure 10.9: Single particle correlation functions in the extended Hubbard-Holstein model. Av-
eraged over values for n in the 10 central sites of the system. Calculated with HOPS, kmax = 8,
D = 128, Jdt = 0.01, Ntraj = 500. System size, M = 20. Error bars represent statistical uncer-
tainty in the mean value over all trajectories - where error bars are not visible they are smaller
than the width of the curves.

Correlations

We also calculate the correlations that are generated in this system, where we com-

pare the single particle correlations

〈c†n,↑cn+r,↑〉, (10.49)

to the spin correlations,

199



The extended Hubbard-Holstein model

0 0.5 1 1.5
10

-3

10
-2

10
-1

0 0.5 1 1.5
10

-3

10
-2

10
-1

0 0.5 1 1.5
10

-3

10
-2

10
-1

0 0.5 1 1.5
10

-3

10
-2

10
-1

(a) (b)

(c) (d)

Figure 10.10: Spin correlation functions in the extended Hubbard-Holstein model. Averaged over
values for n in the 10 central sites of the system. Calculated with HOPS, kmax = 8, D = 128,
Jdt = 0.01, Ntraj = 500. System size, M = 20. Error bars represent statistical uncertainty in the
mean value over all trajectories - where error bars are not visible they are smaller than the width
of the curves.

〈σ+
n σ
−
n+r〉, (10.50)

where σ+
n = (σ−n )

†
= c†n,↑cn,↓. In Fig. 10.9 the single particle correlations are shown,

where we can see that as the coupling strength is increased or the phonon dispersion is

reduced that these correlations are more suppressed. This indicates that the phonon

environment reduces the quantum correlations in the system.

Additionally, in Fig. 10.10 we illustrate the spin correlations. Where we can see
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Figure 10.11: Average spin superfluid order parameter, 〈σ+〉av, in the extended Hubbard-Holstein
model. HOPS, kmax = 8, D = 128, Jdt = 0.01, Ntraj = 500. Error bars represent statistical
uncertainty in the mean value over all trajectories - where error bars are not visible they are
smaller than the width of the curves.

again that the magnitudes of these correlation functions decrease as the coupling

strength increases. However, similar to the XXZ model considered in the previous

section (see Fig. 10.6) the correlations seem to grow faster at short times for stronger

coupling, which is due to the spin-flip processes in the coupling Hamiltonian. These

correlations for strong coupling, although at an overall lower magnitude, appear

to decay at a slower rate spatially, indicating that perhaps there is a small super-

fluid weight which would result in an algebraic decay of the correlations. Indeed, in

Fig. 10.11, we plot the order parameter for a spin superfluid, which is zero for the

closed system and increases for increasing coupling strength and for lower phonon

dispersion. Note that the pair superfluid and single particle superfluid order param-

eters remain zero for all coupling strengths considered here, indicating that this may

be a phase dominated by superfluid correlations in the spin sector, but suppressed

correlations in the charge sector. While it is difficult to unequivocally decide if this

is a spin superfluid, as we cannot reliably calculate the exponent for the algebraic

decay due to the small system size considered here, these results are quite suggestive

and indicate that coupling to a dissipative environment does not completely suppress

quantum correlations in all cases.
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We should also note that these results allow us to get an understanding into the

numerical performance of the HOPS+MPS method that we have derived. The values

for the correlation functions in this case have a relatively low error arising from the

sampling over the trajectories. They indicate that we can achieve accurate results

for certain correlation functions with this numerical method with a feasible number

of numerical resources, opening up a way to study future non-Markovian systems

that may exhibit even more novel properties.

10.5 Experimental realisation of non-Markovian

systems

Physical systems where there are non-Markovian effects on the dynamics are fairly

ubiquitous, in particular there are many examples in solid-state physics [184], how-

ever, it would be beneficial to be able to produce these interesting features in highly

controlled quantum optical experiments. In order to realise dissipative systems with

strong non-Markovian features with cold atom experiments there are a number of

proposals involving extending current schemes for dissipative cooling [343, 376–382]

where a system of impurity atoms (confined in a harmonic trap or optical lattice)

is immersed in a weakly interacting BEC that is produced with a different species

of atoms, leading to system dynamics that are strongly influenced by the presence

of the BEC environment. The idea is that the BEC atomic species does not see the

optical potential, but can interact with the trapped atoms [343, 344]. The contact

interaction of the (single species) atoms in the lattice and the atoms in the BEC is,

HInt = gab

∫
d3rΨ†(r)Φ†(r)Φ(r)Ψ(r), (10.51)

202



Experimental realisation of non-Markovian systems

where Ψ(r) (Φ(r)) is the many-body field theory operator for the atoms in the lattice

(BEC) and we have already made the Born approximation allowing us to replace the

two-body contact interaction with a delta function, see section 2.3.

First, we expand the BEC operators into a classical component,
√
ρ, and a quan-

tum fluctuation [343, 344],

Φ(x) =
√
ρ+

1√
V

∑
k

(
ukbke

−ikr + vkb
†
ke
ikr
)
, (10.52)

where V is the volume of the BEC, uk & vk are coefficients used to enforce the

correct commutation relations and bk is the annihilation operator for a Bogoliubov

quasi-particle with wavevector, k, that has the dispersion relation [383],

Ek = h̄

√
c2|k|2 + h̄2 |k|4

4m2
, (10.53)

where m is the mass of the atoms in the BEC and c2 = gbρ/m is the effective speed

of sound. We then insert this expansion into the interaction Hamiltonian but we

keep only terms linear in the Bogoliubov operators,

HInt = gab

√
ρ

V

∫
d3rΨ†(r)Ψ(r)

∑
k

√
S(k)

(
b†ke

ikr + bke
−ikr
)
, (10.54)

where S(k) = (uk + vk)
2 = |k|2/2mEk, is the static structure factor. For a quan-

titative evaluation of the effects of the additional terms that are quadratic in the

Bogoliubov operators see Ref. [344].

Next we expand the lattice operator in terms of a localised basis, but we allow

for the atom to be in one of two possible internal states, cn and c̄i respectively,
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Ψ(r) =
∑
n,α

(wα(r − rn)cn,α + wα(r − rn)c̄n,α) , (10.55)

where rn is the lattice vector and we have assumed that the Wannier basis functions,

wα(r − rn), are the same for both internal states, n labels the lattice site and α

labels the energy level (band). Also transforming the sum over k to an integral

1/V
∑

k →
∫
dk, then leads to the linear interaction Hamiltonian,

HInt =
∑
n

∫
d3k

(
Gn(k)bk +G∗n(k)b†k

) (
c†ncn + c̄†ncn + c†nc̄n + c̄†nc̄n

)
, (10.56)

where

Gi,j
α,β(k) = gab

√
S(k)ρV e−ikri

∫
d3rw∗α(r)wβ(r + ri − rj)e−ikr, (10.57)

We assume that the lattice confinement is sufficiently strong so that the localised

basis can be approximated by harmonic oscillator eigenstates and that the overlaps

of nearest neighbouring functions are zero, such that,

Gi,j
α,β(k) = δi,jG

i,j
α,β(k) ≡ e−ikriGα,β(k). (10.58)

Giving us,

Gα,β(k) = gab
√
S(k)ρV IR

∫
dzφ∗α(z)φβ(z)e−ikzz, (10.59)

where IR = 1/2πa2
R (IR = exp(−k2

Ra
2
R/4)) for a 1D (3D) BEC, with aR the char-

acteristic length of the radial trap (assuming identical trapping for the lattice and

BEC atoms) and

φn(z) =
1√
2nn!

(πa2
z)
−1/4e

− z2

2a2zHn

(
z

az

)
, (10.60)
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where Hn are the (physicists) Hermite polynomials and az =
√
h̄/mωz is the char-

acteristic harmonic oscillator length. We also assume that the separation between

energy bands is sufficiently large, that the first excited energy level is never popu-

lated, meaning that we only need to consider the terms α = β = 0. This will lead

to the case of onsite non-Markovian dephasing for the case of a single species of

impurity atoms, but there are also additional terms describing transitions between

the two internal energy states,

HInt =
∑
n

(
ân + â†n

) (
c†ncn + c̄†ncn + c†nc̄n + c̄†nc̄n

)
. (10.61)

where the effective environment modes are given by,

ân =

∫
d3ke−ikzanG̃(k)bk (10.62)

where a is the spacing between lattice sites, and

G̃(k) = gab
√
S(k)ρV IRe

− k
2
za

2
z

4 . (10.63)

The correlation functions for the effective environment can be calculated (for zero

temperature) as,

αn(t− t′) = 〈ân(t)â†n(t′)〉 = g2
abρV

∫
dkS(k)I2

Re
− k

2
za

2
z

2 e−iωk(t−t′), (10.64)

where we have ignored the spatial correlations by assuming that kza � 1. If the

relevant modes are in the phonon regime of the Bogoliubov dispersion (Ek ≈ ch̄k,

S(k) ≈ k/2mch̄) and we assume a 1D BEC then this gives (omitting the index n),
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α(t− t′) = g̃

∫
dωωe−

ω2

2c̃2 e−iω(t−t′), (10.65)

where c̃ = c/az and,

g̃ =
g2
abN

8π2mc3a4
Rh̄
. (10.66)

In order to qualitatively map this proposed experimental realisation, to the nu-

merical simulations in the previous sections of this chapter, it is convenient to at-

tempt to derive an approximate form of the above correlation function in terms of a

single (complex) exponential. When benchmarking our HOPS+MPS algorithm we

used environments with Lorentzian spectral densities, due to the method being sig-

nificantly more efficient when using a single exponential for the correlation function

and it is an interesting question to ask how well this approximation is able to capture

the features of this experimental realsiation.

To this end we substitute for the full correlation function in Eq. 10.65 with the

exponential correlation function of the form,

α̃(τ)→ g̃′ exp

(
− c̃

2
|τ |
)
, (10.67)

where,

g̃′ ≈ c2

πa2
z

g̃ =
h̄2a2

sN

πm2
redma

4
Ra

2
zc
, (10.68)

as gab = 4πh̄2as/mred, where as is the characteristic scattering length for the intra-

species interaction.

In Fig. 10.12, we explicitly compare the correlation function given by Eq. 10.65

and the approximate form given by Eq. 10.67, where we can see that for short

times, the dependence is qualitatively preserved. In the full correlations there are

additional oscillations not captured by the exponential form, but these should provide

206



Experimental realisation of non-Markovian systems

a good initial estimate for the dynamics. In the figure, we also compared the spectral

densities, Ω(ω), which are defined through,

α(t− t′) =

∫
dωΩ(ω)e−iω(t−t′). (10.69)

We can see that the most dominant energy modes are well approximated, however,

the behaviour around ω → 0 is qualitatively different, with the real spectral density

going to zero in contrast to our approximate form which goes to a non-zero (but

small) value. As these low energy modes only strongly influence the long time dy-

namics we should in principle be able to accurately capture the short time transient

behaviour with this approximation. Given that the HOPS method is significantly

more efficient when using a single exponential for the correlation function, this ap-

proximation offers us a nice way of initially benchmarking the numerical method and

gaining insight into the resulting dynamics, but note that investigating the dynam-

ics using the full correlation function (Eq. 10.65) is part of our short term future

objectives.

In the previous sections we have simulated the lattice dynamics for these param-

eters with g̃′ and c̃ around order 1 − 10 in units relating to the nearest neighbour

tunnelling amplitude, J . To get an estimate on typical experimental values for the ve-

locity of sound in a BEC and the effective coupling term, we consider Caesium atoms

in an optical lattice with {Vz, Vx,y} = {5, 50}ER and a lattice spacing of a = 512nm

immersed in a BEC of N = 1000 atoms of a species that has half the mass of the

Caesium atoms. We then have a sound velocity of c = 1 × 10−3ms−1 =
√
gbρ/m,

which in dimensionless units corresponds to c ≈ 3.5aJ/h̄, and chemical potential,

µ = mc2 ≈ 2.5J . This means that for energies around Ek ∼ J , the Bogoliubov

excitation spectrum (Eq. 10.53) is well approximated by the linear phonon regime.
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Figure 10.12: Comparison of the short time dependence of the correlation function (left) given
by Eq. 10.65 (solid) to the approximate correlation function given by Eq. 10.67 (dashed). The
correlation functions have been normalised at τ = 0. Similar comparison of the resulting spectral
densities (right) where the maximum values have been frequency shifted to overlap.

Then for an intra-species scattering length of 0.25a0, the dimensionless interaction

strength is,
gabIR
az
≈ 0.06J, (10.70)

where J is the nearest neighbour tunnelling amplitude for the lattice atoms. This

then gives, g̃′ ≈ 0.66ms−2, which in dimensionless units corresponds to g̃′ ≈ 4aJ2h̄−2.

This indicates that we can realise the desired range of parameter regimes considered

below with these experimental values combined with varying the characteristic scat-

tering lengths using a Feshbach resonance.
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10.6 Discussion

The results for the dynamics of the dispersive Holstein model are consistent with

what is expected from previous analysis of similar models. Increasing the phonon

dispersion means that the phonons have less effect on the system because they can

move away from the point where they were created and the environment around the

site can then relax. We also compared this to the case for phonons with infinite

dispersion such that the environment instantaneously relaxes and a Born-Markov

approximation is valid which results in even smaller effects. These cases are in

contrast to a dispersionless excitation which remains in the vicinity of its creation

point which can then influence the dynamics of the particles in the system to a much

greater extent. Upon increasing the temperature of the phonon environment, we

observed a greater effect and an increased suppression of the melting of the charge

density wave which arrises because there is now an initial non-zero phonon occupation

which can then interact with the atoms in the system leading to a greater effect on

the short time dynamics.

Of course, the case considered here of dispersive phonons is the more natural one

compared to the dispersionless case, as it is similar to the behaviour of real physical

systems and thus it is actually incredibly useful to be able to explore and to under-

stand in a completely quantitative way. Even though the corrections compared to

the dispersionless limit are small, they could be very important when considering

practical real world examples, such as the thermal and electrical conduction proper-

ties of realistic materials, where even tiny quantitative differences can have a huge

impact on practical considerations.

Additionally the analysis of the extended Hubbard-Holstein model allowed us to

further benchmark our numerical method where we illustrated that even with the
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increased numerical intensity for the spinfull case we were able to capture the inter-

esting short time dynamics. We observed that with a feasible number of trajectories

we could obtain a relatively low error in many important two-point correlation func-

tions. In terms of the physics we found some qualitative differences to the spinless

case where there is an enhanced melting of the charge density wave, and we observed

features hinting towards the ability for the system to host superconductive currents

and to generate spin superfluid phases in the steady state.

More generally however, our combination of the HOPS algorithm with MPS

techniques opens up the ability to explore a wide range of new and interesting regimes

that were previously only possible to simulate qualitatively and/or through invoking

some strong approximation. By considering the dispersive Holstein model, which is

the simplest possible example, and extending this to the Hubbard-Holstein model,

we demonstrated that we can simulate the dynamics of open many-body systems

well into the non-Markovian and strong coupling regimes.
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Conclusions and Outlook





In this thesis we have discussed quantum simulation and how it can be used

to solve problems in many-body quantum physics that are beyond the capabilities

of classical computers. We quantitatively demonstrated that even with the current

generation of experimental hardware that purpose-built analogue simulators are able

to go beyond state-of-the-art classical algorithms in out-of-equilibrium dynamical

problems in many-body quantum physics models. These simulations are particularly

relevant to problems in materials science or in the field of nano-electronic devices

as the microscopic behaviour of electrons in these systems can be well captured by

the Hubbard model [384] and the dissipative effects of lattice phonons can also be

included by employing the Hubbard-Holstein model [368–372].

Additionally we demonstrated that these simulators can also be used to investi-

gate novel lattice geometries with topological band structures which are outside the

usual phase classification scheme. In particular, we illustrated that quantum simula-

tion can be used to quantitatively probe the properties of strongly correlated phases

induced by strong interactions in these novel band structures. We explicitly consid-

ered systems with flat energy bands where we demonstrated experimentally feasible

ways of producing, preparing and detecting the features of the novel phases that are

dominated by interacting bound pairs. This offers a roadmap towards experimen-

tally probing the effects of strong quantum mechanical interactions in regimes where

conventional single particle dynamics are suppressed and perhaps also allowing for

an investigation of strongly interacting regimes in more general topological systems.

Finally we considered additional incorporations to the simulators in order to

controllably simulate the dissipative effects of phonon modes on the dynamics of

particles confined in the lattice, such that we are able to simulate dynamics in a

way that is more akin to the solid state. We demonstrated that by modifying a new

numerical technique we can classically benchmark the quantum simulators in these
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situations beyond the usual approximations of weak coupling and fast environment

dynamics. This classical algorithm opens up new opportunities for increasing our

theoretical understanding of one-dimensional many-body systems strongly coupled

to non-Markovian environments in much more general situations than considered in

this thesis and it also allows for the direct calibration of quantum simulation devices

that aim to probe these novel regimes.

The research presented in this thesis, while giving insights into many interesting

regimes, naturally raised many additional questions and so below we briefly sum-

marise the potentially most fruitful lines of future research.

Hardware requirements for demonstrating quantum advantage

For the most part, in Ch. 6 we considered the comparison in performance of ana-

logue simulators to classical algorithms. Although we briefly discussed the hardware

requirements for fully universal digital simulation, where we assumed that all the

errors arise from the discretisation of the time-step. This requires either gates with

a near perfect fidelity, which is not realistic with current experimental hardware, or

an implementation of fully fault tolerant and error corrected algorithms which, in

order to apply this needs an incredibly large number of gates. So, a future objective

would be to better benchmark digital simulators where the errors and sources of

noise are explicitly taken into account in an experimentally realistic way.

Additionally, in our analysis, we decomposed the time-evolution operator into

discrete two site operations in a way that is optimal for the classical algorithms, i.e.

through a trotter decomposition [1]. But recently there has been some interesting

work along the lines of producing better approximations to the time-evolution op-

erator [385] that are optimised for the quantum hardware. So, during our future

benchmarking of the digital simulators for the types of continuous time dynamical
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problems that have been the focus of this thesis we should utilise this recent work

and derive more refined and optimal quantum logic circuits.

Non-Markovian open many-body quantum systems

In Ch. 10 we described and benchmarked our hybridisation of matrix product state

algorithms and the hierarchy of pure states method, allowing us to classically simu-

late one-dimensional open many-body systems strongly coupled to a non-Markovian

environment. We benchmarked this method by considering the Holstein model,

which is important for understanding quantum effects on dynamical properties in

real materials, where in general, features beyond the Born-Markov approximations

lead to a reduction in the correlations present in the system. It has been shown

that Markovian dissipation can in some cases gives rise to steady states that have

quantum enhanced properties for use in metrological applications [386, 387] and so

an interesting question here is to ask if non-Markovian features can be used in a sim-

ilar way. Can these effects be tuned in order to give an advantage over Markovian

dissipation such that either the produced states have further enhanced properties or

they can be prepared faster?

Separately, there are many interesting experiments (both in the solid state and

with cold atoms) probing transport properties, where a small system is connected

to much larger leads at either end [388]. Upon varying either a chemical potential

or thermal bias between the leads the currents produced through the system are

measured. In particular there has been some recent work in this context upon ap-

plying methods from open quantum systems in order to study these features in the

Born-Markov regimes [389, 390] and an obvious extension would be to consider these

transport properties in the presence of non-Markovian dissipation or in the regime

of strong coupling to the leads.
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C. Nägerl, “Realization of an excited, strongly correlated quantum gas phase,”

Science 325, 1224 (2009).

[92] W. Kohn, “Analytic properties of bloch waves and wannier functions,” Phys.

Rev. 115, 809 (1959).

[93] D. Rossini and R. Fazio, “Phase diagram of the extended bose–hubbard

model,” New Journal of Physics 14, 065012 (2012).

[94] S. Sachdev, Quantum Phase Transitions (Cambridge University Press, 2011).

[95] M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher, “Boson

localization and the superfluid-insulator transition,” Phys. Rev. B 40, 546

(1989).

[96] G. Kordas, D. Witthaut, and S. Wimberger, “Non-equilibrium dynamics in

dissipative bose-hubbard chains,” Annalen der Physik 527, 619 (2015).

[97] J. Simon, W. S. Bakr, R. Ma, M. E. Tai, P. M. Preiss, and M. Greiner, “Quan-

tum simulation of antiferromagnetic spin chains in an optical lattice,” Nature

472, 307 (2011).

[98] A. Friedenauer, H. Schmitz, J. T. Glueckert, D. Porras, and T. Schaetz, “Sim-

ulating a quantum magnet with trapped ions,” Nature Physics 4, 757 (2008).

[99] A. S. Sørensen, E. Altman, M. Gullans, J. V. Porto, M. D. Lukin, and E. Dem-

ler, “Adiabatic preparation of many-body states in optical lattices,” Phys. Rev.

A 81, 061603 (2010).

228



BIBLIOGRAPHY

[100] O. Lychkovskiy, O. Gamayun, and V. Cheianov, “Time scale for adiabatic-

ity breakdown in driven many-body systems and orthogonality catastrophe,”

Phys. Rev. Lett. 119, 200401 (2017).

[101] O. Lychkovskiy, O. Gamayun, and V. Cheianov, “Quantum many-body adia-

baticity, topological thouless pump and driven impurity in a one-dimensional

quantum fluid,” AIP Conference Proceedings 1936, 020024 (2018).

[102] T. Giamarchi, Quantum Physics in One Dimension, International Series of

Monographs on Physics (Oxford University Press, 2003).

[103] S.-i. Tomonaga, “Remarks on Bloch’s Method of Sound Waves applied to

Many-Fermion Problems,” Progress of Theoretical Physics 5, 544 (1950).

[104] J. M. Luttinger, “An exactly soluble model of a many-fermion system,” Journal

of Mathematical Physics 4, 1154 (1963).

[105] F. D. M. Haldane, “Effective harmonic-fluid approach to low-energy properties

of one-dimensional quantum fluids,” Phys. Rev. Lett. 47, 1840 (1981).

[106] M. Greiner, I. Bloch, O. Mandel, T. W. Hänsch, and T. Esslinger, “Exploring
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[107] H. Moritz, T. Stöferle, M. Köhl, and T. Esslinger, “Exciting collective oscilla-

tions in a trapped 1d gas,” Phys. Rev. Lett. 91, 250402 (2003).

[108] T. Kinoshita, T. Wenger, and D. S. Weiss, “Observation of a one-dimensional

tonks-girardeau gas,” Science 305, 1125 (2004).

229



BIBLIOGRAPHY

[109] B. Paredes, A. Widera, V. Murg, O. Mandel, S. Fölling, I. Cirac, G. V. Shlyap-
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dimensional structures,” Phys. Rev. Lett. 81, 5888 (1998).

[262] S. Mukherjee and R. R. Thomson, “Observation of localized flat-band modes in

a quasi-one-dimensional photonic rhombic lattice,” Opt. Lett. 40, 5443 (2015).

[263] S. Takayoshi, H. Katsura, N. Watanabe, and H. Aoki, “Phase diagram and pair

tomonaga-luttinger liquid in a bose-hubbard model with flat bands,” Phys.

Rev. A 88, 063613 (2013).

[264] M. Tovmasyan, E. P. L. van Nieuwenburg, and S. D. Huber, “Geometry-

induced pair condensation,” Phys. Rev. B 88, 220510 (2013).
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[335] M. Tylutki and P. Törmä, “Spin-imbalanced fermi superfluidity in a hubbard

model on a lieb lattice,” Phys. Rev. B 98, 094513 (2018).

255



BIBLIOGRAPHY

[336] N. B. Kopnin, T. T. Heikkilä, and G. E. Volovik, “High-temperature surface

superconductivity in topological flat-band systems,” Phys. Rev. B 83, 220503

(2011).
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