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Abstract

We explore how the asymptotic structure of a random permutation of [n] with m

inversions evolves, as m increases, establishing thresholds for the appearance and dis-

appearance of any classical, consecutive or vincular pattern. Our investigation begins

with exploring how the asymptotic structure of a random n-term weak integer compo-

sition of m evolves, as m increases from zero. The primary focus of our investigation

into compositions is establishing thresholds for the appearance and disappearance of

substructures, particularly the appearance and disappearance of consecutive compo-

sition patterns. We are then able to transfer the established composition threshold

to establish the thresholds for classical, consecutive or vincular permutation patterns

occurring within our random permutation model.

This thesis is based on the papers [12] and [13].
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Notation

Throughout this thesis, numerous different symbols are used as such, we list the fol-

lowing notation for the benefit of the reader:

Notation Definition

p Probability

q 1 − p (The complement of p).

P
[
A
]

The probability of the event, A.

E
[
X
]

The expected value of the random variable, X.

Var
[
X
]

The variance of the random variable, X.

Cov
[
X,Y

]
The covariance between the random variables, X and Y.

[n] The set {1, 2, . . . , n}.

C An integer composition.

C(i) The ith term of the integer composition, C.

|C| The size of the random integer composition,C.

C+j The integer composition, C which has had 1 added to its jth term.

Cn The set of all n-compositions.

Cn,m The set of all n-compositions of m.

Cn,m The uniform random composition.

Cn,p The geometric random composition.

Ct The evolutionary random composition.

Q A property.

∅ The empty set.

∆
∑

i∼j P
[
Ai ∧Aj

]
(The sum over the dependent pair of indices).

Λ
∑

i∈In P
[
Ai

]2
+
∑

i∼j P
[
Ai

]
P
[
Aj

]
.
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Chapter 0. Notation

Notation Definition

compmax(C) The length of the longest component in C.

gapmax(C) The length of the longest gap in C.

compmin(C) The length of the shortest component in C.

gapmin(C) The length of the shortest gap in C.

max(C) The largest term of C.

log n The natural logarithm of n (unless stated otherwise.)

π A pattern.

|π| The size of the pattern, π.

=π An exact consecutive pattern.

σ A permutation

σ(i) The ith term of the permutation, σ.

σ The complement of the permutation, σ.

Sn The set of all n-permutations.

Sn,m The set of all n-permutations with m inversions.

σn,m The uniform random permutation.

eσ The inversion sequence of the permutation, σ.

eσ(i) The ith term of the inversion sequence of the permutation, σ.

En,m The set of all inversion sequences of n-permutations with m inversions.

e+j The inversion sequence, e which has had 1 added to its jth term.

en,m The uniform random inversion sequence.

e[i, j] The terms of the inversion sequence, e from term i to term j.

σ[i, j] The terms of the permutation, σ from term i to term j.

inv (π) The total number of inversions of the permutation pattern, π.

σ ⊕ τ The direct sum of the permutations, σ and τ.

Furthermore, this thesis uses several different mathematical relations. If f and g are
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Chapter 0. Notation

positive functions of n, then we use the following notation:

f ≲ g if lim sup
n→∞

f/g < ∞,

f ≍ g if 0 < lim inf
n→∞

f/g and lim sup
n→∞

f/g < ∞,

f ∼ g if lim
n→∞

f/g = 1,

f ∼ 0 if lim
n→∞

f = 0,

f ≪ g or g ≫ f if lim
n→∞

f/g = 0.

In particular, f ≪ 1 if lim
n→∞

f = 0, and f ≫ 1 if lim
n→∞

f = ∞.

Note that we use the following equivalences within this thesis:

f ≲ g ⇐⇒ f = O(g), f ≍ g ⇐⇒ f = Θ(g), f ≪ g ⇐⇒ f = o(g).

Though f ∼ 0 is nonstandard, it is used within this thesis to simplify the presentation

of results.
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Chapter 1

Introduction

We consider compositions and permutations from an evolutionary perspective, in an

analogous manner to the Gilbert-Erdós-Renyi random graph [24, 25, 28]. Our two pri-

mary composition models are the uniform random composition Cn,m, drawn uniformly

from the family of n-term weak integer compositions of m, and the geometric random

composition Cn,p, an n-term weak integer composition in which each term is sampled

independently from the geometric distribution where 0 < p < 1 and with parameter

q = 1 − p; that is, P
[
Cn,p(i) = k

]
= qpk for each k ≥ 0 and i ∈ [n]. Our primary per-

mutation model is the uniform random permutation σn,m, drawn uniformly at random

from the set of all n-permutations with exactly m inversions.

Our primary focus is to initially establish the threshold for a consecutive compo-

sition pattern to occur within Cn,p (generally the easiest of our models to work with)

before transferring this threshold between our models to establish the threshold for

a consecutive permutation pattern to occur with σn,m. We conclude this thesis by

establishing the thresholds for classical and vincular patterns to occur within σn,m.

Within the second chapter we introduce our composition models, properties and

thresholds as well as the methodology we utilise to establish many of our composition

thresholds. The third chapter explores components (maximal runs of nonzero terms)

and gaps (maximal runs of zero terms) of weak integer compositions. We also establish

thresholds for different lengths of components and gaps occurring within our compo-

sition models. In our fourth chapter we briefly investigate the largest terms within

2



Chapter 1. Introduction

our composition models. Within the fifth chapter we establish thresholds for exact

consecutive composition patterns occurring within Cn,p and Cn,m. Our sixth and final

chapter introduces our primary permutation model, explores the relationship between

compositions and inversion sequences as well as the relationship between inversion se-

quences and permutations. Finally we establish the thresholds for consecutive, classical

and vincular patterns occurring within σn,m.
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Chapter 2

Random Compositions

An n-term weak composition of m, or just an n-composition of m, is a sequence of n

nonnegative integers (c1, . . . , cn) such that
∑n

i=1 ci = m. Compositions can be con-

sidered to be words over the nonnegative integers, and, if no term exceeds nine, we

sometimes write specific compositions simply as a sequence of digits. See Figure 2.1 for

an example. Alternatively, we can consider such a composition to consist of a sequence

of n boxes, such that term ci is the number of balls in box i ∈ [n] := {1, 2, . . . , n}.

A “stars and bars” argument is a graphical aid for solving certain counting problems.

In particular, we can calculate the number of ways of placing m balls in n boxes. By

utilising this argument, the number of distinct n-compositions of m can be derived.

See Figure 2.2 for an example of a representation of a 13-term composition of 27. In a

“stars and bars” diagram, the “stars” represent balls and the “bars” represent the end

of one box and the start of the next.

If we consider a “stars and bars” diagram representing placing m balls in n boxes,

there are m “stars” and n− 1 “bars”. We can then consider having m + n− 1 empty

spaces and choosing where to place either the m “stars” or n − 1 “bars”. Using this

argument it can be seen that the number of n-compositions of m is
(
m+n−1
n−1

)
=
(
m+n−1

m

)
.

Definition 2.0.1. If C is an integer composition, then we use C(i) to denote its ith

term, and |C| to denote its size, the sum of its terms. Let Cn denote the set of all

n-compositions, and let Cn,m be the set of all n-compositions of m.

We now present three models of random integer compositions.
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Chapter 2. Random Compositions

0 0 2 3 1 0 1 5 0 0 0 3 2 0 1 1 2 2 2 0 4 3 0 0 4 4 4 4 1 0 3 1 5 1 6 3 3 0 1 0 0 0 0 1 0 1 1 2 1 2

Figure 2.1: Bar-chart representation of a 50-term composition of 80

∗ ∗ | ∗ || ∗ ∗ ∗ ∗| ∗ | ∗ | ∗ ∗ ∗ ∗ ∗ ∗ ∗ | ∗ ∗ ∗ | ∗ ∗| ∗ ∗|| ∗ | ∗ ∗∗

Figure 2.2: “Stars and bars” representation of the composition 2,1,0,4,1,1,7,3,2,2,0,1,3

2.1 The Uniform Random Composition Cn,m

The uniform random composition Cn,m is drawn uniformly from Cn,m. Thus, for every

composition C ∈ Cn,m,

P
[
Cn,m = C

]
=

(
m + n− 1

m

)−1

,

each of the distinct n-compositions of m being equally likely. For example, the proba-

bility that C50,80 is the composition in Figure 2.1 is
(
129
80

)−1
.

2.2 The Evolutionary Random Composition Ct

An alternative, evolutionary, perspective comes from taking a dynamic view. We

can consider a process on compositions, namely an infinite sequence of compositions,

0n, C1, C2, C3, . . . , where 0n denotes the empty n-composition (0, . . . , 0), and Ct+1 is

obtained from Ct by the addition of 1 to a single term. Note that there is no maximal

n-composition (unlike the situation with random graphs).

Definition 2.2.1. The evolutionary random composition (Ct)t≥0 is the Markov chain

satisfying C0 = 0n and, for each t ≥ 0 and j ∈ [n],

P
[
Ct+1 = C+j

t

]
=

Ct(j) + 1

n + t
,

where C+j denotes the composition obtained from C by the addition of 1 to its jth
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Chapter 2. Random Compositions

term.

The evolutionary random composition Ct is uniformly distributed over n-compositions

of t or alternatively, Ct+1 is obtained from Ct by adding a star at a uniformly random

place in the stars and bars diagram:

Proposition 2.2.2. For each t ≥ 0, the random composition Ct is uniformly dis-

tributed over Cn,t.

Proof. We use induction on t. Trivially, C0 is uniformly distributed over Cn,0. Suppose

Ct is uniformly distributed over Cn,t, and that C ∈ Cn,t+1. Let C−j denote the compo-

sition obtained from C by the subtraction of 1 from its jth term (if this is possible).

Then,

P
[
Ct+1 = C

]
=

∑
j∈[n], C(j)̸=0

P
[
Ct = C−j

]C(j)

n + t

=

(
n + t− 1

t

)−1 ∑
j∈[n]

C(j)

n + t
=

t! (n− 1)!

(n + t− 1)!

t + 1

n + t
=

(
n + t

t + 1

)−1

.

2.3 The Geometric Random Composition Cn,p

If p ∈ [0, 1), then the geometric random composition Cn,p is distributed over Cn so that

for each C ∈ Cn, we have P
[
Cn,p = C

]
= qnp|C|, where q = 1 − p. Each term of Cn,p

is sampled independently from the geometric distribution with parameter q; that is,

P
[
C(i) = k

]
= qpk for each k ≥ 0 and i ∈ [n]. Note that Cn,p is not defined for p = 1.

For example, the probability that C50,p is the composition in Figure 2.1 equals q50p80.

Definition 2.3.1. To avoid unnecessary repetition, when considering Cn,p in this the-

sis, q always denotes 1 − p. Moreover, we also assume that the definition of any anno-

tated p also defines a similarly annotated q, so we have q1 = 1 − p1 and q+ = 1 − p+,

without stating so explicitly.

We collect here a few basic facts about Cn,p. Each term has mean p/q and variance

p/q2, and its size |Cn,p| satisfies a negative binomial distribution,

P
[
|Cn,p| = m

]
=

(
m + n− 1

m

)
pmqn,

6



Chapter 2. Random Compositions

with mean µn,p = np/q. Note that if p ≪ 1 then µn,p = np/(1 − p) ∼ np/1 = np, and

if q ≪ 1 then µn,p = n(1 − q)/q ∼ n(1)/q = n/q where p = p(n) and m = m(n) are

functions of n.

We now show (Proposition 2.3.3) that |Cn,p| is concentrated in the sense that, for

any ϵ > 0,

lim
n→∞

P
[
1 − ϵ ≤ |Cn,p|

µn,p
≤ 1 + ϵ

]
= 1.

Proposition 2.3.2 ([26, Proposition III.3]). Consider a family of random variables

Xn. Assume that the means µn = E
[
Xn

]
and the standard deviations σn = σ(Xn)

satisfy the condition

lim
n→∞

σn
µn

= 0,

then the distribution of Xn is concentrated.

It can now be proved that |Cn,p| is concentrated.

Proposition 2.3.3. |Cn,p| is concentrated when p ≫ n−1.

Proof. The geometric random composition Cn,p has size |Cn,p|, with mean µn,p = np/q

and variance σ2
n,p = np/q2. If p ≫ n−1, then

lim
n→∞

σn,p
µn,p

= lim
n→∞

√
np/q

np/q
= lim

n→∞

1
√
np

= 0.

By Proposition 2.3.2, |Cn,p| is concentrated.

The size |Cn,p| has variance np/q2, and so exhibits a concentrated distribution as

long as p ≫ n−1. We make a brief further exploration on the upper bound on the

probability of deviation of |Cn,p| by utilising Chebyshev’s inequality.

Lemma 2.3.4 (Chebyshev’s inequality). If X is a random variable with finite mean

and variance, then, for k > 0,

P
[
|X− µ| ≥ kσ

]
≤ 1

k2
.

7



Chapter 2. Random Compositions

By Chebyshev’s inequality, we have the following:

Lemma 2.3.5. P
[∣∣|Cn,p| − np/q

∣∣ ≥ α
√
np/q

]
≤ α−2.

Geometric random compositions of size m are uniformly distributed over Cn,m:

Proposition 2.3.6. A random composition Cn,p whose terms sum to m is equally

likely to be any one of the distinct n-compositions of m.

Proof. Suppose C ∈ Cn,m. Then,

P
[
Cn,p = C

∣∣ |Cn,p| = m
]

=
P
[
Cn,p = C ∧ |Cn,p| = m

]
P
[
|Cn,p| = m

]
=

P
[
Cn,p = C

]
P
[
|Cn,p| = m

]
=

pmqn(
m+n−1

m

)
pmqn

=

(
m + n− 1

m

)−1

.

Thus, Cn,p conditioned on the event |Cn,p| = m is equal in distribution to Cn,m.

Note that this holds for any choice of p and m. As is the case with random graphs, the

probabilistic model is more amenable to analysis, so we prefer to work with Cn,p and

then transfer the results to Cn,m (see Propositions 2.4.5, 2.5.1 and 5.1.3 below).

2.4 Properties

Definition 2.4.1. We consider a property of n-compositions simply to be a subset

of Cn.

For example, the set of n-compositions with no zero terms is a property, as is the

set of n-compositions with at least one term equal to three.

A property Q is increasing if C ∈ Q implies C+j ∈ Q for every j ∈ [n], or equiva-

lently if C ∈ Q implies C + C ′ ∈ Q, where C + C ′ denotes the term-wise sum of two

n-compositions. The complement of an increasing property is decreasing. A property

that is either increasing or decreasing is monotone. For example, the n-compositions

with no zero terms form an increasing property, adding to terms, once all terms are non-

zero, will result in all subsequent n-compositions having no zero terms. On the other

8



Chapter 2. Random Compositions

hand, the set of n-compositions with exactly one term equal to three is not monotone.

For example, if we have the following 5-composition C given by 2, 0, 4, 1, 3, exactly one

term is equal to 3. By adding (enough) to terms C(1), C(2) or C(4) can result in the

property of there being exactly one term equal to 3, no longer holding. Similarly, by

taking 1 from either of the terms C(3) or C(5) will also result in the property no longer

holding.

Both Cn,m and Cn,p behave monotonically with respect to monotone properties:

Proposition 2.4.2. If Q is an increasing property and m1 < m2, then

P
[
Cn,m1 ∈ Q

]
≤ P

[
Cn,m2 ∈ Q

]
.

Proof. P
[
Ct+1 ∈ Q

]
≥ P

[
Ct+1 ∈ Q ∧ Ct ∈ Q

]
= P

[
Ct ∈ Q

]
, since Q is increasing.

The proposition now follows by Proposition 2.2.2.

Proposition 2.4.3. If Q is an increasing property and p1 < p2, then

P
[
Cn,p1 ∈ Q

]
≤ P

[
Cn,p2 ∈ Q

]
.

Proof. Let Cn,p1,p2 denote a random n-composition, each of whose terms is sampled

independently from the following distribution. For each i ∈ [n],

P
[
Cn,p1,p2(i) = k

]
=


q2
q1

if k = 0,

q2
q1

(
1 − p1

p2

)
p k
2 if k ≥ 1.

We claim that Cn,p1 +Cn,p1,p2 has the same distribution as Cn,p2 if Cn,p1 and Cn,p1,p2

are chosen independently, thus providing a way of building Cn,p2 from 0n in two steps

via Cn,p1 .

9



Chapter 2. Random Compositions

To prove this equality of distribution, we use probability generating functions. Let

fp(x) =
∑
k≥0

P
[
Cn,p(i) = k

]
xk =

q

1 − px
,

fp1,p2(x) =
∑
k≥0

P
[
Cn,p1,p2(i) = k

]
xk =

q2(1 − p1x)

q1(1 − p2x)
.

Thus fp2(x) = fp1(x)fp1,p2(x), and equality of distribution then follows from the inde-

pendence of each term in the random compositions.

Hence, by coupling Cn,p1 and Cn,p2 ,

P
[
Cn,p2 ∈ Q

]
= P

[
Cn,p1 + Cn,p1,p2 ∈ Q

]
≥ P

[
Cn,p1 + Cn,p1,p2 ∈ Q ∧ Cn,p1 ∈ Q

]
(where the Cn,p1 are the same)

= P
[
Cn,p1 ∈ Q

]
,

since Q is increasing.

Typically, we are interested in whether a property holds, or fails to hold, in the

asymptotic limit.

Definition 2.4.4. We say that Q holds asymptotically almost surely (a.a.s.) or, syn-

onymously, with high probability (w.h.p.) in Cn,p if P
[
Cn,p ∈ Q

]
∼ 1, and analogously

for Cn,m. If a property holds a.a.s. then its complement asymptotically almost never

holds.

The following trivial example can be considered. Let p ∈ (0, 1) be a constant and

Q1 be the set of all compositions with at least one term greater than 0. Clearly,

P
[
Cn,p ∈ Q1

]
∼ 1. On the other hand (for the same probability), let Q2 be the set of

all n-compositions where all terms are equal to 0, then P
[
Cn,p ∈ Q2

]
∼ 0.

Since |Cn,p| is concentrated around its mean, it is reasonable to expect that, if n

is large, then Cn,p and Cn,m should behave in a similar fashion when m ∼ np/q (the

mean of |Cn,p|), or equivalently, when p ∼ m/(m+n). This is indeed the case, and the

following proposition enables us to transfer results from Cn,p to Cn,m, the probability

that an increasing property holds being the same in both models.

10



Chapter 2. Random Compositions

Proposition 2.4.5. Let Q be an increasing property and α ∈ [0, 1] be a constant.

Suppose p0 = p0(n) and δ = δ(n) ≫ √
p0/(q0

√
n) are such that P

[
Cn,p ∈ Q

]
∼ α for

all p for which p/q differs from p0/q0 by no more than δ. Then P
[
Cn,m0 ∈ Q

]
∼ α,

where m0 = [np0/q0].

Proof. Let p− satisfy p−/q− = p0/q0 − δ, and p+ satisfy p+/q+ = p0/q0 + δ.

Fix any ϵ > 0 and suppose n is sufficiently large such that both P
[
|Cn,p− | >

m0

]
≤ ϵ and P

[
|Cn,p+ | < m0

]
≤ ϵ. Note that |m0/n − p0/q0| < δ. This is possible by

Observation 2.3.5 given that

m0 −
np−

q−
= nδ ≫

√
np0

q0
∼
√
np−

q−
, and

np+

q+
−m0 = nδ ≫

√
np0

q0
∼
√
np+

q+
.

Then

P
[
Cn,p− ∈ Q

]
=
∑
k≤m0

P
[
Cn,k ∈ Q

]
P
[
|Cn,p− | = k

]
+
∑
k>m0

P
[
Cn,k ∈ Q

]
P
[
|Cn,p− | = k

]
≤ P

[
Cn,m0 ∈ Q

]
P
[
|Cn,p− | ≤ m0

]
+ P

[
|Cn,p− | > m0

]
≤ P

[
Cn,m0 ∈ Q

]
+ ϵ. (1)

Similarly,

P
[
Cn,p+ ∈ Q

]
≥
∑
k⩾m0

P
[
Cn,k ∈ Q

]
P
[
|Cn,p+ | = k

]
≥ P

[
Cn,m0 ∈ Q

]
P
[
|Cn,p+ | ≥ m0

]
≥ (1 − ϵ)P

[
Cn,m0 ∈ Q

]
. (2)

So (1) and (2) imply the proposition.

Note that, in general, we cannot remove the requirement that the property be

increasing. For example, if Q is the set of n-compositions with no zero terms whose size

is not a power of 2, then P
[
Cn,m ∈ Q

]
= 0 whenever m is a power of 2, whereas Q holds

11



Chapter 2. Random Compositions

a.a.s. in Cn,p once p is sufficiently large that both conditions hold w.h.p. However, in

some situations we can transfer results concerning non-monotone properties from Cn,p

to Cn,m. For example, Proposition 5.1.3 enables us to do this for exact consecutive

patterns.

2.5 Thresholds

Large random combinatorial objects often show a phenomenon of the sudden appear-

ance and disappearance of properties. This nature of behaviour has been documented

(but not limited to) graph theory [27], compositions and permutations. The latter two

of which are explored within this thesis. We say that a function m⋆ = m⋆(n) is a

threshold for an increasing property Q in Cn,m if

P
[
Cn,m ∈ Q

]
∼


0 if m ≪ m⋆,

1 if m ≫ m⋆,

and that p⋆ = p⋆(n) or q⋆ = q⋆(n) is a threshold for Q in Cn,p if

P
[
Cn,p ∈ Q

]
∼


0 if p/q ≪ p⋆/q⋆,

1 if p/q ≫ p⋆/q⋆.

That is, a property asymptotically almost never holds below its threshold, but

holds asymptotically almost surely above it. Though it is not known if every monotone

property of compositions has a threshold, we establish a number of them within this

thesis.

In many situations, it can be determined that the threshold is more abrupt. A

function m⋆ is a sharp threshold for a property Q in Cn,m, and p⋆ is a sharp threshold

12
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for Q in Cn,p, if, for every ε > 0,

P
[
Cn,m ∈ Q

]
∼


0 if m ≤ (1 − ε)m⋆,

1 if m ≥ (1 + ε)m⋆,

P
[
Cn,p ∈ Q

]
∼


0 if p/q ≤ (1 − ε)p⋆/q⋆,

1 if p/q ≥ (1 + ε)p⋆/q⋆.

Clearly, thresholds are not unique. Indeed, if a threshold for a property Q is not

sharp, then a constant multiple is also a threshold for Q. Sharp thresholds are not

unique either, although a constant multiple of a sharp threshold for a property is not a

threshold for that property. On the other hand, if f1(n) ≫ 1 is a sharp threshold for

a property Q in Cn,m and f0(n) ≪ f1(n) then f1(n) + f0(n) is also a threshold for Q

in Cn,m.

A consequence of Proposition 2.4.5 is that a threshold in Cn,p can be transferred

to one in Cn,m:

Proposition 2.5.1. Let Q be an increasing property that has a threshold p⋆ ≥ n−1 in

Cn,p. Then np⋆/q⋆ is a threshold for Q in Cn,m.

Proof. Let m⋆ = np⋆/q⋆. Suppose m ≫ m⋆ and p+ = m/(m + n), so p+/q+ ≫ p⋆/q⋆.

Now, since p⋆ ≫ n−1, we also have p+/q+ ≫
√
p+/(q+

√
n), so we can find

δ ≫
√
p+/(q+

√
n) such that p+/q+ − δ ≫ p⋆/q⋆. Since Q holds a.a.s. in Cn,p when

p/q ≫ p⋆/q⋆, by Proposition 2.4.5, Q also holds a.a.s. in Cn,m.

Similarly, suppose now that m ≪ m⋆ and p− = m/(m + n), so p−/q− ≪ p⋆/q⋆.

Since p⋆ ≫ n−1, we also have p⋆/q⋆ ≫
√

p−/(q−
√
n), so we can find

δ ≫
√
p−/(q−

√
n) such that p−/q− + δ ≪ p⋆/q⋆. Since Q asymptotically almost never

holds in Cn,p when p/q ≪ p⋆/q⋆, then by Proposition 2.4.5, Q also asymptotically

almost never holds in Cn,m.

To establish the presence of thresholds, we use the First Moment Method and the

Second Moment Method. The First Moment Method is an immediate corollary of

13



Chapter 2. Random Compositions

Markov’s Inequality and gives a sufficient condition for a property to asymptotically

almost never hold.

Proposition 2.5.2 (First Moment Method [27, Lemma 20.2]). If (Xn)∞n=1 is a sequence

of nonnegative integer-valued random variables and E
[
Xn

]
≪ 1, then P

[
Xn = 0

]
∼ 1.

The Second Moment Method, which follows from Chebyshev’s Inequality, gives a

sufficient condition for a property to hold a.a.s.

The following presentation follows [2, Corollary 4.3.4].

Definition 2.5.3. Given an indexed set of events {Ai : i ∈ I}, we write i ∼ j if i ̸= j

and the events Ai and Aj are not independent. We say that Ai and Aj are correlated.

If i ∼ j, we say that i, j is a dependent pair of indices.

For example, if, for each i ∈ [n − 1], the event Ai occurs if the ith and (i + 1)th

terms of Cn,p are identical, then i ∼ j precisely when |i− j| = 1.

Proposition 2.5.4 (Second Moment Method). Suppose, for each n ≥ 1, that

{Ai : i ∈ In} is a set of events. Suppose X = Xn is the random variable that records

how many of these events occur, and let ∆ =
∑
i∼j

P
[
Ai ∧ Aj

]
, where the sum is over

dependent pairs of indices. If E
[
X
]
≫ 1 and ∆ ≪ E

[
X
]2
, then P

[
X > 0

]
∼ 1.

It is possible to determine the probability of a property holding at its threshold.

To do this we use the Chen–Stein Method [17]. The basic idea is that if events are

mostly independent (for some properly defined notion of “mostly”), then the number of

these events that occur tends to a Poisson distribution. As noted in [3], under suitable

conditions, Poisson convergence can be established by computing only the first and

second moments. In particular, this holds in the case of dissociated events [6,7], which

is sufficient for our purposes.

Definition 2.5.5. Let N be a collection of subsets, drawn from the natural numbers,

and suppose that, for each J ∈ N , the random variable XJ can take only the values

0 or 1. The random variables {XJ : J ∈ J } are said to be dissociated if collections

of them which have no index in common are independent. That is, {XJ : J ∈ J } is

independent of {XK : K ∈ K} whenever J ∩ K = ∅.

14
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We adapt the following proposition to be utilised in further results.

Proposition 2.5.6 ([35, Theorem 4]). Consider a random variable W that can be

written as a sum
∑

α∈Γ Iα of 0-1 random variables, where Γ is a finite index set. Let

λ = E
[
W
]

=
∑

α pα, where pα = E
[
Iα
]

= P
[
Iα = 1

]
= P

[
α
]
. Suppose that for each α

there is a subset Γα ⊂ Γ such that Iα is independent of {Iβ : β /∈ Γα} . Then the total

variation distance between the distribution (or “law”) L(W ) of W and the Poisson

distribution Po(λ), with mean µ, is bounded above as follows:

dtv (L(W ),Po(λ)) ≤ max
(
1, λ−1

)∑
α∈Γ

p2α +
∑
α∈Γ

∑
β∈Γα\{α}

(
pαpβ + E

[
IαIβ

]) .

The following is adapted from the above proposition.

Proposition 2.5.7 (Chen–Stein Method). Suppose, for each n ≥ 1, that

{Ai : i ∈ In} is a set of events, and that |In| ≫ 1. Suppose Xn is the random variable

that records how many of these events occur, and let

∆ =
∑
i∼j

P
[
Ai ∧Aj

]
and Λ =

∑
i∈In

P
[
Ai

]2
+
∑
i∼j

P
[
Ai

]
P
[
Aj

]
.

If there exists a constant λ > 0 such that E
[
Xn

]
∼ λ, and ∆ + Λ ≪ 1, then Xn

converges in distribution to a Poisson distribution with mean λ. In particular, the

asymptotic probability that none of the events occur is e−λ.

In particular, the following adaptations were made to [35, Theorem 4] to give Propo-

sition 2.5.7:

Notation used in [35, Theorem 4] Notation used in Proposition 2.5.7

Γ {Ai : i ∈ In}

Γα {Aj : i ∼ j} ∪ {Ai}, if Ai = α

W Xn∑
α∈Γ

∑
β∈Γα\{α}

∑
i∼j∑

α∈Γ
∑

β∈Γα\{α} E
[
IαIβ

]
∆

15



Chapter 2. Random Compositions

In Proposition 2.5.7, the equation has been separated into ∆ and Λ, since ∆ is used

in the Second Moment Method.

16



Chapter 3

Components and Gaps

In the next two sections, we shall investigate the behaviour of how the random compo-

sition evolves as its size increases. We primarily establish our results for Cn,p, before

transferring to Cn,m.

Perhaps intuitively, whenever p ≪ n−1 in Cn,p, all terms are equal to 0 a.a.s. As

the expectation of the number of nonzero terms is equal to np ≪ n
(
n−1

)
= 1, then the

expectation is asymptotically equal to 0. So, by the First Moment Method, every term

is equal to 0 a.a.s.

Our focus in this current section is on components and gaps.

Definition 3.0.1. A component of a weak integer composition is a maximal run of

nonzero terms. A gap is a maximal run of zero terms.

For example, the composition in Figure 2.1 on page 5 has 10 components, the longest

having length 7. It also has 10 gaps, the longest having length 4.

Components in Cn,p are equivalent to maximal runs of heads in sequences of coin

tosses. Here, a head is obtained with probability p and a tail is obtained with probability

q = 1 − p. This topic of study has previously been explored in great detail [23, 30, 32]

(see also [26, pages 308–312]). Furthermore, components are equivalent to maximal

runs of a singular repeating letter in a word over a binary alphabet {0, 1}. A word is a

sequence of the elements of the alphabet.

Components and gaps are dual in Cn,p. Any statement about components can be

converted into one about gaps by reversing the roles of p and q and vice versa. For

17
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example, once q ≪ n−1 the expected number of terms in Cn,p equal to zero, is equal to

nq ≪ 1. Thus, a.a.s., every term is nonzero and so Cn,p consists of a single component

with no gaps. Similarly, once p ≪ n−1, we see that Cn,p consists of a single gap with

no components as every term is equal to zero a.a.s. Here, there would be no gaps and

there would be a lot of structure to investigate.

Below we determine thresholds for the appearance and disappearance of components

of a given length. Initially, however, we have a brief look at the number of components

in Cn,p.

Proposition 3.0.2. In Cn,p, the expected number of components equals nqp + p2, and

the expected number of gaps equals nqp + q2. Therefore, for any positive constant α,

asymptotically,

E
[
number of components in Cn,p

]
∼



0 if p ≪ n−1,

α if p ∼ αn−1,

np if n−1 ≪ p ≪ 1,

npq if p is constant,

nq if 1 ≫ q ≫ n−1,

α + 1 if q ∼ αn−1,

1 if n−1 ≫ q,

and

E
[
number of gaps in Cn,p

]
∼



1 if p ≪ n−1,

α + 1 if p ∼ αn−1,

np if n−1 ≪ p ≪ 1,

npq if p is constant,

nq if 1 ≫ q ≫ n−1,

α if q ∼ αn−1,

0 if n−1 ≫ q.

18
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Proof. We count the left ends of components. The probability that the jth term of

Cn,p is the start of a component equals p if j = 1 and qp if 2 ≤ j ≤ n. Thus the

expected number of components equals p + (n− 1)qp = nqp + p2.

� If p ≪ n−1, then nqp + p2 = np− np2 + p2 ≪ 1 + n−2 ∼ 1. Thus nqp + p2 ∼ 0.

� If p ∼ αn−1, then nqp + p2 = np − np2 + p2 ∼ α − α2n−1 + α2n−2 ∼ α. Thus

nqp + p2 ∼ α.

� If n−1 ≪ p ≪ 1, then nqp + p2 = np− np2 + p2 ∼ np. Thus nqp + p2 ∼ np.

� If p is constant, then nqp + p2 ∼ nqp.

� If q ∼ αn−1, then

nqp+p2 = nq(1−q)+1−2q+q2 ∼ α(1−αn−1)+1−2αn−1 +(αn−1)2 ∼ α + 1.

Thus, nqp + p2 ∼ α + 1.

� If n−1 ≫ q, then

nqp+p2 = nq(1−q)+1−2q+q2 ∼ 0(1−0)+1−2(0)+02 = 1. Thus, nqp+p2 ∼ 1.

Due to the duality of gaps and components, the result of the expected number of

gaps can be established by reversing the roles of p and q.

Thus we have established that whenever p ≲ n−1, there are a finite number of

components and gaps. By the duality of components and gaps, we have also established

that whenever q ≲ n−1, there are also a finite number of components and gaps. We

now establish that for any fixed k ≥ 2, that p ≍ n−1 is the lower bound and q ≍ n−1

is the upper bound for there being at least k components and at least k gaps.

Proposition 3.0.3. Suppose k ≥ 2 is constant. Then,

P
[
Cn,p has at least k components

]
∼


0 if p ≪ n−1,

1 if n−1 ≪ p and q ≫ n−1,

0 if n−1 ≫ q,
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and

P
[
Cn,p has at least k gaps

]
∼


0 if p ≪ n−1,

1 if n−1 ≪ p and q ≫ n−1,

0 if n−1 ≫ q.

Proof. For each i ∈ [n], let Bi be the event that the ith term of Cn,p is the be-

ginning of a component. Thus, P
[
B1

]
= p, and P

[
Bi

]
= qp if i > 1. Suppose

i := (i1, i2, . . . , ik) ∈ [n]k is a vector such that ij+1 ≥ ij + 2 for each j ∈ [k − 1], and

let Ai = Bi1 ∧Bi2 ∧ . . . ∧Bik . If i1 = 1, then P
[
Ai

]
= qk−1pk; otherwise P

[
Ai

]
= qkpk.

If X is the total number of these k-tuples of components in Cn,p, then by linearity

of expectation, their expected number equals

Ek := E
[
X
]

=

(
n− k

k

)
qkpk +

(
n− k

k − 1

)
qk−1pk

=

(
(n− k)!

k!(n− 2k)!

)
qkpk +

(
(n− k)!

(k − 1)!(n− 2k + 1)!

)
qk−1pk

∼
(
nk

k!

)
qkpk +

(
nk−1

(k − 1)!

)
qk−1pk

=

(
nk

k!

)
qkpk +

(
nkk

nq(k)!

)
qkpk

=
nkqkpk

k!

(
1 +

k

nq

)
. (3.1)

Suppose p ≪ n−1. So p = n−1/ω with ω ≫ 1.

E
[
X
]
∼

nk
(

1 − n−1

ω

)(
n−1

ω

)k
k!


1 +

k

n
(

1 − n−1

ω

)


∼

nk
(
nk

ωk

)
k!

(1 +
k

n
(
1 − 1

ω

))

∼ 1

ωkk!
≪ 1.

Thus, by the First Moment Method (Proposition 2.5.2), X = 0 a.a.s., or equivalently,
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w.h.p. Cn,p has fewer than k components.

Now suppose that q ≪ n−1, so q = n−1/ω with ω ≫ 1.

E
[
X
]
∼

nk
(
n−1

ω

)k (
1 − n−1

ω

)k
k!


1 +

k

n
(
n−1

ω

)


∼
(

1

ωkk!

)
(1 + ωk)

∼ 1

ωk−1k!
≪ 1,

since k ≥ 2. Therefore, by the First Moment Method, X = 0 a.a.s., or equivalently,

Cn,p has less than k components.

Finally suppose that p ≫ n−1 and q ≫ n−1. We will use the Second Moment Method

to prove the final part of the proposition. Distinct events Ai and Aj are correlated

(i ∼ j) if there exists a pair of indices ir in i and js in j such that |ir − js| ≤ 1. If,

for any such pair, their difference equals 1, then P
[
Ai ∧ Aj

]
= 0. Otherwise, the event

Ai ∧Aj represents, for some t ∈ [k− 1], the presence of k + t component left ends, with

the indices of k − t of these occurring in both i and j. So, P
[
Ai ∧ Aj

]
= Ek+t. Thus,

for some constant Ck,

∆ :=
∑
i∼j

P
[
Ai ∧Aj

]
=

k−1∑
t=1

(
k + t

k

)(
k

t

)
Ek+t

< Ck

k−1∑
t=1

Ek+t

∼ Ck

k−1∑
t=1

(
nk+tqk+tpk+t

(k + t)!

)(
1 +

k + t

nq

)
(from equation 3.1)

<
Ck

k!

(
1 +

2k

nq

) k−1∑
t=1

(nqp)k+t

=
Ck

k!

(
1 +

2k

nq

)(
(npq)2k − (npq)k+1

npq − 1
.

)
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Suppose that p ≪ 1. So p = n−1ω where 1 ≪ ω ≪ n.

E
[
X
]
∼ nkpkqk

k!

(
1 +

k

nq

)
=

(
nk
(
n−1ω

)k (
1 − n−1ω

)k
k!

)(
1 +

k

n (1 − n−1ω)

)
∼ ωk

k!
≫ 1,

and

∆ ∼ Ck

k!

(
1 +

2k

nq

)(
(npq)2k − (npq)k+1

npq − 1

)
=

Ck

k!

(
1 +

2k

n (1 − n−1ω)

)((
n
(
n−1ω

) (
1 − n−1ω

))2k − (n (n−1ω
) (

1 − n−1ω
))k+1

n (n−1ω) (1 − n−1ω) − 1

)

=
Ck

k!

(
1 +

2k

n− ω

)
(
ω − ω2

n

)2k
−
(
ω − ω2

n

)k+1

ω − ω2

n − 1


∼ Ck

k!

(
ω2k

ω

)
=

Ck

k!
ω2k−1.

Furthermore,

E
[
X
]2 ∼ ((nkpkqk

k!

)(
1 +

k

nq

))2

=

((
n
(
n−1ω

) (
1 − n−1ω

))2k
(k!)2

)(
1 +

k

n (1 − n−1ω)

)2

=


(
ω − ω2

n

)2k
(k!)2

(1 +
k

n− ω

)2

∼
(
ωk

k!

)2

.

Therefore,
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∆

E
[
X
]2 ∼

(
Ck

k!
ω2k−1

)/(
ωk

k!

)2

∼ k!Ck

ω
≪ 1.

Similarly, if ω ≪ n and q = n−1ω, then

∆ ∼ Ck

k!

(
1 +

2k

nq

)(
(npq)2k − (npq)k+1

npq − 1

)
∼ Ck

k!
ω2k−1

and

∆

E
[
X
]2 ∼ k!Ck

ω
≪ 1.

Finally, if p is asymptotically a constant, then

E
[
X
]
∼ nkpkqk

k!

(
1 +

k

nq

)
∼ nkpkqk

k!
= βkn

k

for some constant βk. Furthermore,

∆ ∼ Ck

k!

(
1 +

2k

nq

)(
(npq)2k − (npq)k+1

npq − 1

)
∼ Ck

k!
(npq)2k−1.

Therefore,

∆

E
[
X
]2 ∼

Ck
k! (npq)2k−1

n2kβk
=

(
Ck

β2
kk!

)
(pq)2k−1

(
1

n

)
≪ 1

since
(

Ck

β2
kk!

)
(pq)2k−1 is constant.

So by the Second Moment Method (Proposition 2.5.4), if both n−1 ≪ p and

q ≫ n−1 then X > 0 a.a.s., or equivalently, w.h.p. Cn,p has at least k compo-

nents. By duality between components and gaps, the threshold is identical for gaps as

it is for components.

3.1 The Longest Component and Longest Gap

We now establish thresholds for Cn,p to have a component or gap exceeding a specified

length. This topic of research has been studied in some detail before with similar

methods utilised and, in some cases, applications to other related areas of mathematics
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(see [4], [30]). These properties are monotone, that is, we cannot ‘destroy’ the property

that a component is of at least a certain length by increasing a term of the composition

by 1. Similarly, if a gap is of at least a certain length, we cannot ‘destroy’ this property

by removing 1 from a term of the composition. If C is a composition, let compmax(C)

be the length of the longest component of C, and gapmax(C) be the length of the longest

gap in C.

Given some value of k, for each i ∈ [n + 1 − k], let Ai be the event

“Cn,p(i), . . . ,Cn,p(i + k − 1) are all nonzero”. Then P
[
Ai

]
= pk. So, if X is the

total number of runs of k nonzero terms in Cn,p, then by linearity of expectation,

E
[
X
]

= (n + 1 − k)pk ∼ npk, as long as k ≪ n. Note that if we have a run of exactly

k + 4 nonzero terms for example, we would take that to mean there are 5 runs of k

nonzero terms within these k + 4 nonzero terms.

Distinct events Ai and Aj are correlated (i ∼ j) if |i − j| < k. If i ∼ j and i < j,

then j = i + t for some t ∈ [k − 1], and P
[
Ai ∧Aj

]
= pk+t. So,

∆ :=
∑
i∼j

P
[
Ai ∧Aj

]
< npk

k−1∑
t=1

pt < npk
∞∑
t=1

pt = npk+1/q,

and ∆/E
[
X
]2

≲ p/npkq. Moreover,

Λ :=
∑
i

P
[
Ai

]2
+
∑
i∼j

P
[
Ai

]
P
[
Aj

]
< (n + 1 − k)p2k + nkp2k ∼ nkp2k.

To apply the Chen–Stein Method (Proposition 2.5.7), it is sufficient to show that ∆ ≪ 1

and Λ ≪ 1.

We now establish the threshold for the appearance of a component of at least fixed

length k in Cn,p to be p ≍ n−1/k. Similarly we establish the threshold for the appearance

of a gap of at least fixed length k in Cn,p to be q ≍ n−1/k.
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Proposition 3.1.1. Suppose k ≥ 1 is constant. Then, for any positive constant α,

P
[
compmax(Cn,p) ≥ k

]
∼


0 if p ≪ n−1/k,

1 − e−αk
if p ∼ αn−1/k,

1 if n−1/k ≪ p,

P
[
gapmax(Cn,p) ≥ k

]
∼


1 if q ≫ n−1/k,

1 − e−αk
if q ∼ αn−1/k,

0 if n−1/k ≫ q.

Proof. If p ≪ n−1/k and X is the total number of runs of k nonzero terms in Cn,p

then E
[
X
]
∼ npk ≪ 1, so by the First Moment Method, X = 0 a.a.s., or equivalently,

compmax(Cn,p) < k a.a.s.

If n−1/k ≪ p, then E
[
X
]
≫ 1. If p ≪ 1, then

∆/E
[
X
]2

≲
p1−k

nq
∼ p1−k

n
≪ n−1/k ≪ 1.

So by the Second Moment Method, X > 0 a.a.s., or equivalently, compmax(Cn,p) ≥ k

a.a.s. Since the property of having a component of length at least k is increasing, then

by Proposition 2.4.3 this also holds for larger p.

Finally, suppose that p ∼ αn−1/k. Then E
[
X
]
∼ αk and ∆ < αkp/q ≪ 1. Moreover,

we have Λ < nkp2k ∼ α2kkn−1 ≪ 1. So, by the Chen–Stein Method (Proposition 2.5.7),

the number of components in Cn,p of length k converges in distribution to a Poisson

distribution with mean αk. In particular, the probability that no components have

length k or greater is asymptotically e−αk
as n → ∞.

Thus (using Proposition 2.5.1 to transfer the thresholds from Cn,p to Cn,m), as

m increases, for some constant α, we first see components of length 2 in Cn,m when

m ∼ n(αn−1/2)
1−n−1/2 ∼ αn1/2 a.a.s. Furthermore, for some constant α, we first see compo-

nents of length 3 when m ∼ n(αn−1/3)
1−αn−1/3 ∼ αn2/3 a.a.s and so forth.

Ergo, if m ∼ αnc, for positive constants α and c = 1 − 1/k such that k ∈ N, then
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compmax(Cn,m) is equal to k or k − 1 a.a.s. This is due to

P
[
compmax(Cn,m) ≥ k

]
∼ 1 − e−αk

/∈ {0, 1}. If c ∈ (0, 1) and c ̸= 1 − 1/k, then

compmax(Cn,m) only takes one value a.a.s.

However, in Cn,p, once p ≫ n−1/k or, in Cn,m, once m ≫ n(n−1/k)
1−n−1/k ∼ n1−1/k for

every k (for example, m = n/ log n), a.a.s. the length of the longest component exceeds

any fixed value. In this thesis log denotes loge unless stated otherwise.

Similarly, a.a.s. gaps of length 3 ‘vanish’ in Cn,p once q ≪ n−1/3, or in Cn,m, once

m ≫ n(1−n−1/3)
n−1/3 ∼ n4/3, every gap has length 1, in Cn,p, when q ≪ n−1/2, or in Cn,m

once m ≫ n(1−n−1/2)
n−1/2 ∼ n3/2, and there are no gaps at all, in Cn,p once q ≪ n−1, or in

Cn,m once m ≫ n(1−n−1)
n−1 ∼ n2.

We now turn our attention to the appearance and disappearance of gaps and com-

ponents of length k as k increases with n.

Proposition 3.1.2. Suppose 1 ≪ k ≪ log n. Then, for any ω ≫ 1 and constant α,

P
[
compmax(Cn,p) ≥ k

]
∼


0 if p = e−(logn+ω)/k,

1 − e−eα if p = e−(logn−α)/k,

1 if p = e−(logn−ω)/k,

P
[
gapmax(Cn,p) ≥ k

]
∼


1 if q = e−(logn−ω)/k,

1 − e−eα if q = e−(logn−α)/k,

0 if q = e−(logn+ω)/k.

Proof. First suppose p = e−(logn+ω)/k and X is the total number of runs of k nonzero

terms in Cn,p, then

E
[
X
]
∼ npk = n

(
e−

logn+ω
k

)k
= ne− logn−ω = (n)

(
1

n

)
e−ω = e−ω ≪ 1.

So by the First Moment Method, X = 0 a.a.s., or equivalently compmax(Cn,p) < k

a.a.s.

Now suppose p = e−(logn−ω)/k, then E
[
X
]
∼ eω ≫ 1. If ω ≪ log n, then p ≪ 1 and
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∆/E
[
X
]2

<

(
npk+1

/
q
)

(npk)
2 =

eωp

e2ωq
=

p

q
e−ω ≪ 1.

So by the Second Moment Method, X > 0 or equivalently, compmax(Cn,p) ≥ k a.a.s.

Since the property of having a component of length at least k is increasing, then by

Proposition 2.4.3 this also holds for larger p (faster growing ω).

Finally, if p ∼ e−(logn−α)/k, then E
[
X
]
∼ eα and ∆ < peα/q ≪ 1. Moreover, we

have Λ < nkp2k ∼ nke2α

n2 = e2αkn−1 ≪ 1. So, by the utilisation of the Chen-Stein

method (Proposition 2.5.7), the number of components in Cn,p of length k converges

in distribution to a Poisson distribution with mean eα. In particular, the probability

that no components have length k or greater is asymptotically e−eα as n → ∞.

We continue our investigation into gaps and components of length k as k increases

with n. Once more, we establish a sharp threshold.

Proposition 3.1.3. Suppose k = c log n for some constant c. Then, for any ω ≫ 1,

P
[
compmax(Cn,p) ≥ k

]
∼


0 if p = e−1/c−ω/ logn,

1 if p = e−1/c+ω/ logn,

P
[
gapmax(Cn,p) ≥ k

]
∼


1 if q = e−1/c+ω/ logn,

0 if q = e−1/c−ω/ logn.

Proof. If p = e−1/c−ω/ logn and X is the total number of runs of k nonzero terms in

Cn,p. Then suppose

E
[
X
]
∼ npk = n

(
e−1/c−ω/ logn

)c logn
= ne− logn−ωc = n

(
1

n

)
e−ωc = e−cω ≪ 1.

So by the First Moment Method, X = 0 a.a.s. or equivalently, compmax(Cn,p) < k a.a.s.

Now suppose p = e−1/c+ω/ logn, then E
[
X
]
∼ ecω ≫ 1. If ω ≪ log n, then p tends

to a finite value and
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∆

E
[
X
]2 <

n
(
pk+1

/
q
)

(npk)
2 =

p

npkq
=

pe−cω

q
≪ 1.

So compmax(Cn,p) ≥ k a.a.s. by the Second Moment Method. Since the property of

having a component of length at least k is increasing, then by Proposition 2.4.3 this

also holds for larger p (faster growing ω).

We now establish one final pair of thresholds in this section, one for the longest

gap and one for the longest component. Here we investigate the length k = nc for

some c ∈ (0, 1) and establish the threshold is q = k−1 log n for the appearance of these

components and p = k−1 log n for the appearance of these gaps.

Proposition 3.1.4. Suppose k = nc for some c ∈ (0, 1). Then, for any ω ≫ 1,

P
[
compmax(Cn,p) ≥ k

]
∼


0 if q = k−1(log n + ω),

1 if q = k−1
(
(1 − c) log n− ω

)
,

P
[
gapmax(Cn,p) ≥ k

]
∼


1 if p = k−1

(
(1 − c) log n− ω

)
,

0 if p = k−1(log n + ω).

Proof. First suppose q = (log n+ω)/nc, then p = 1− (log n+ω)/nc and X is the total

number of runs of k nonzero terms in Cn,p.

E
[
X
]
∼ npk = n

(
1 − (log n + ω)/k

)k ∼ ne− logn−ω = e−ω ≪ 1.

So by the First Moment Method, X = 0 a.a.s or equivalently, compmax(Cn,p) < k a.a.s.

We need to use an alternative bound on ∆.

∆ :=
∑
i∼j

P
[
Ai ∧Aj

]
< npk

k−1∑
t=1

pt < nkpk+1.

Thus ∆/E
[
X
]2

≲ pk/n(1 − q)k.

Now suppose q = (log n− ω)/nc, then p = 1 − (log n− ω)/nc and E
[
X
]
∼ eω ≫ 1.
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Furthermore,

∆/E
[
X
]2

<
nkpk+1

(npk)
2 =

kp

npk
∼ kpe−ω ≪ 1.

So compmax(Cn,p) ≥ k a.a.s. by the Second Moment Method.

3.2 The Shortest Component and Shortest Gap

We now establish thresholds for Cn,p to have a component shorter than a certain length

and also for Cn,p to have a gap shorter than a certain length. These are not monotone

properties. For example, adding one to the last term of the composition 413300 yields

413301 which reduces the length of the shortest component from 4 to 1. On the other

hand, removing one from the last term of the composition 413301 yields 413300 which

increases the length of the shortest component from 1 to 4. Similarly, removing one

from the last term of the composition 00021 gives 00020 which reduces the length of

the shortest gap from 3 to 1. On the other hand adding one to the last term of the

composition 00020 gives 00021 which increases the length of the shortest gap from 1 to

3. If C is a composition, let compmin(C) be the length of the shortest component in C,

and gapmin(C) be the length of the shortest gap in C.

For each ℓ ∈ [n− 1] and each i ∈ [n + 1 − ℓ], let Ai,ℓ be the event that the ith term

of Cn,p is the start of a component of length ℓ. Then

P
[
Ai,ℓ

]
=


qpℓ if i = 1 or i = n + 1 − ℓ,

q2pℓ otherwise.

So, assuming ℓ ≪ n, if Xℓ is the number of components of length ℓ in Cn,p, then

E
[
Xℓ

]
= (n− 1 − ℓ)q2pℓ + 2qpℓ ∼ nq2pℓ.

Given some k ≪ n and assuming kq ≪ 1 (so 1− pk = 1− (1− q)k = kq +O(q2) ∼ kq),
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let X be the total number of components of length at most k in Cn,p. Then

E
[
X
]

=
k∑

ℓ=1

E
[
Xℓ

]
∼ nq2(p + p2 + . . . + pk) = npq(1 − pk) ∼ knq2.

Distinct events Ai,r and Aj,s (i ≤ j) are correlated (i, r ∼ j, s) in two situations. If

j ≤ i + r, then the corresponding components overlap in a contradictory manner, so

P
[
Ai,r ∧ Aj,s

]
= 0. If j = i + r + 1, then the corresponding components are separated

by a single zero term and P
[
Ai,r ∧Aj,s

]
= q3pr+s, except when the pair of components

occur at the start or end of the composition, in which case P
[
Ai,r ∧ Aj,s

]
= q2pr+s.

Thus,

∆ :=
∑

i,r∼ j,s

P
[
Ai,r ∧Aj,s

]
=

k∑
r=1

k∑
s=1

(n− 2 − r − s)q3pr+s + 2q2pr+s

∼ n

k∑
r=1

k∑
s=1

q3pr+s = np2q
(
1 − pk

)2 ∼ k2nq3.

Thus ∆/E
[
X
]2 ∼ 1/nq, which tends to zero as long as q ≫ n−1. Moreover,

Λ :=
∑
i,ℓ

P
[
Ai,ℓ

]2
+

∑
i,r∼ j,s

P
[
Ai,r

]
P
[
Aj,s

]
∼ n

k∑
r=1

(r + 2)

k∑
s=1

q4pr+s ∼ 1

2
k2(k + 5)nq4 ≲ k3nq4.

The first of our results in this section establishes the threshold for fixed k, that the

appearance of gaps of length less than k occurs at p ≍ n−1/2, whereas the disappearance

of components of length less than k occurs at q ≍ n−1/2.
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Proposition 3.2.1. Suppose k ≥ 1 is constant. Then, for any positive constant α,

P
[
compmin(Cn,p) > k

]
∼


0 if q ≫ n−1/2,

e−α2k if q ∼ αn−1/2,

1 if n−1/2 ≫ q,

P
[
gapmin(Cn,p) > k

]
∼


1 if p ≪ n−1/2,

e−α2k if p ∼ αn−1/2,

0 if n−1/2 ≪ p.

Proof. Suppose ω ≫ 1 and q = n−1/2/ω and that X is the total number of components

of length at most k in Cn,p. Then

E
[
X
]
∼ knq2 = nk

(
n−1/2ω−1

)2
= k/ω2 ≪ 1,

so by the First Moment Method, X = 0 a.a.s. or equivalently there are no components

of length k or less, and compmin(Cn,p) > k a.a.s.

Now suppose q = n−1/2ω, then E
[
X
]
∼ knq2 = nk

(
n−1/2ω

)2
= kω2 ≫ 1. Further-

more,

∆/E
[
X
]2 ∼ k2nq3

(knq2)2
=

k

nq
=

k

n1/2ω
≪ 1.

So by the Second Moment Method, X > 0 a.a.s or equivalently, compmin(Cn,p) ≤ k

a.a.s.

Finally, suppose q ∼ αn−1/2, then E
[
X
]
∼ α2k. Also,

∆ ∼ k2nq3 ∼ k2n
(
αn−1/2

)3
∼ α3k2n−1/2 ≪ 1.

Moreover, we have

Λ ∼ 1

2
k2(k + 5)nq4 ∼ 1

2
k2(k + 5)n

(
αn−1/2

)4
=

1
2α

4k(k + 5)

n
≪ 1.
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So, the number of components in Cn,p of length at most k converges in distribution to a

Poisson distribution with mean α2k. In particular, the probability that no components

have length k or less is asymptotically e−α2k as n → ∞.

Thus, when p ≫ n−1/2, we see gaps of length 1 in Cn,p a.a.s. While p ≪ n−1/2, or

while m ∼ n(n−1/2)
1−n−1/2 ∼ n−1/2 in Cn,m, there is no gap of any fixed length a.a.s. On the

other hand, components of length 1 do not disappear until q ≍ n−1/2 in Cn,p, or until

m ≍ n3/2 in Cn,m. Here however, by Proposition 3.1.4, the longest components have

length of the order of
√
n log n a.a.s. Once n−1/2 ≫ q however, no component of any

fixed length remains.

We conclude this chapter by establishing the thresholds for the shortest gap in Cn,p

and shortest component in Cn,p as k grows with n.

Proposition 3.2.2. Suppose 1 ≪ k ≪ n. Then, for any positive constant α,

P
[
compmin(Cn,p) > k

]
∼


0 if q ≫ 1/

√
kn,

e−α2
if q ∼ α/

√
kn,

1 if 1/
√
kn ≫ q,

P
[
gapmin(Cn,p) > k

]
∼


1 if p ≪ 1/

√
kn,

e−α2
if p ∼ α/

√
kn,

0 if 1/
√
kn ≪ p.

Note that kq ∼
√
k/n ≪ 1, as required for our asymptotics to be valid.

Proof. Suppose ω ≫ 1 and q = ω−1/
√
kn and that let X be the total number of

components of length at most k in Cn,p. Then

E
[
X
]
∼ knq2 = nk

(
ω−1/

√
kn
)2

= nk
(
ω−2/kn

)
= ω−2 ≪ 1.

So by the First Moment Method, X = 0 a.a.s. or equivalently, there are no components

of length k or less and compmin(Cn,p) > k a.a.s.
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Now suppose q = ω/
√
kn, then E

[
X
]
∼ knq2 = kn

(
ω2/kn

)
= ω2 ≫ 1. Further-

more,

∆/E
[
X
]2 ∼ k2nq3

(knq2)2
=

k

nq
=

k

n
(
ω(kn)−1/2

) =
k3/2

ωn1/2
≪ 1.

So by the Second Moment Method, X > 0 a.a.s. or equivalently, compmin(Cn,p) ≤ k

a.a.s.

Finally, suppose q ∼ α/
√
kn, then E

[
X
]
∼ knq2 ∼ α2 and

∆ ∼ k2nq3 ∼ k2n
(
α3(kn)−3/2

)
=

k1/2α3

n1/2
≪ 1.

Moreover, we have

Λ ∼ 1

2
k2(k + 5)nq4 ∼ 1

2
k2(k + 5)n

(
α√
kn

)4

=
1
2(k + 5)α4

n
≪ 1.

So, the number of components in Cn,p of length at most k converges in distribution to

a Poisson distribution with mean α2. In particular, the probability that no components

have length k or less is asymptotically e−α2
as n → ∞.
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Largest Composition Terms

In this short chapter, we establish thresholds for the largest terms in a composition

that are of at least a specified size.

We first introduce some new notation. Let C be a composition, then max(C) is the

largest term of C.

Proposition 4.0.1. Suppose ω ≫ 1 and p = ω−1. Then, for any constant α,

P
[
max(Cn,p) ≥ r

]
∼



0 if r − logn
logω ≫ 1

logω ,

1 − e−e−α
if r = logn+α

logω ,

1 if logn
logω − r ≫ 1

logω .

Proof. The probability that term i ∈ [n] is less than r is given by

P
[
C(i) < r

]
= q + qp + qp2 + · · · + qpr−1 = q

r−1∑
k=0

pk = 1 − pr = 1 − ω−r.

Suppose r = logn+δ
logω , then

34



Chapter 4. Largest Composition Terms

1 − ω−r = 1 − ω
− logn+δ

logω

= 1 − exp

(
−
(

log n + δ

logω

)
logω

)
= 1 − exp(− log n− δ)

= 1 − e−δ

n
.

Therefore,

P
[
max(Cn,p) < r

]
=

(
1 − e−δ

n

)n
∼


1 if δ ≫ 1,

e−e−α
if δ ∼ α,

0 if −δ ≫ 1.

Thus, max(Cn,p) ∼ log n/ log(1/p) if p ≪ 1 a.a.s. We now consider the case where

p is constant.

Proposition 4.0.2. If p is constant, then for any constant c,

P
[
max(Cn,p) ≥ r

]
∼



0 if r − log1/p n ≫ 1,

1 − e−pc if r = log1/p n + c,

1 if log1/p n− r ≫ 1.

Proof. The probability that term i ∈ [n] is less than r is given by

P
[
C(i) < r

]
= q + qp + qp2 + · · · + qpr−1 = q

r−1∑
k=0

pk = 1 − pr.

If r = log1/p n + δ, then

35



Chapter 4. Largest Composition Terms

1 − pr = 1 − plog1/p n+δ

= 1 − exp
((

log1/p n + δ
)

log p
)

= 1 − exp
((

log1/p n
)

(log p) + log pδ
)

= 1 − exp

(
−
(

log n

log p

)
(log p) + log pδ

)
= 1 − exp

(
log n−1 + log pδ

)
= 1 − pδ

n
.

Therefore,

P
[
max(Cn,p) < r

]
=

(
1 − pδ

n

)n
∼


1 if δ ≫ 1,

e−pc if δ ∼ c,

0 if −δ ≫ 1.

Thus, when p is constant, the distribution of the largest term is concentrated around

log1/p n. We now investigate the case for when p tends to 1.

Proposition 4.0.3. If q ≪ 1, then for any ε > 0,

P
[
max(Cn,p) ≥ r

]
∼


0 if r ≥ (1 + ε)q−1 log n,

1 if r ≤ (1 − ε)q−1 log n.

Proof. The probability that term i ∈ [n] is less than r is given by

P
[
C(i) < r

]
= q + qp + qp2 + · · · + qpr−1 = q

r−1∑
k=0

pk = 1 − pr.
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Thus,

P
[
max(Cn,p) < r

]
= (1 − pr)n

= (1 − (1 − q)r)n

= (1 − exp(r log(1 − q)))n .

Let L = logP
[
max(Cn,p) < r

]
= n log

(
1 − exp

(
r log(1 − q)

))
.

Now, for small enough x, we have −2x < log(1 − x) < −x.

So, if r = (1 + ε)q−1 log n, then for sufficiently large n,

L > n log
(
1 − exp(−rq)

)
= n log

(
1 − n−(1+ε)

)
> −2n−ε.

Thus L ∼ 0, and P
[
max(Cn,p) < r

]
∼ 1.

Similarly, using the tighter bound −x−x2 < log(1−x), if now r = (1− ε)q−1 log n,

then for sufficiently large n,

L = n log(1 − exp(r log(1 − q)))

< n log
(
1 − exp

(
r
(
−q − q2

)))
< n log

(
1 − exp(−rq(1 + q))

)
= n log

(
1 − n−(1−ε)(1+q)

)
< −nε−(1−ε)q.

Thus lim
n→∞

L = −∞ (since q ≪ 1), and P
[
max(Cn,p) < r

]
∼ 0.

Hence, when m ≫ n, a.a.s. max(Cn,m) ∼ m
n log n, a factor of log n more than the

value of the average term.

We conclude this chapter by utilising the previous three results in the following

proposition.

Proposition 4.0.4.

lim
n→∞

P
[

max(Cn,m) ≫ m

n
log n

]
= 0.
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Proof. First suppose p ≪ 1. By Proposition 4.0.1, the maximum term in Cn,p is asymp-

totic to log n/ log (1/p) and

lim
n→∞

P
[

max(Cn,p) ≫
log n

log(1/p)

]
.

By Proposition 2.5.1,

lim
n→∞

P
[

max(Cn,m) ≫ log n

log
(
n
m

) ∼ log n

log n− logm
≫ m

n
log n

]
= 0,

since m ≪ n.

Now suppose p is asymptotically a constant. By Proposition 4.0.2, the maximum

term in Cn,p is asymptotic to log 1
p
n and

lim
n→∞

P
[

max(Cn,p) ≫ log 1
p
n
]
.

By Proposition 2.5.1 and for some constants α, β, γ,

lim
n→∞

P
[

max(Cn,m) ≫ log n
γm

n ∼ log 1
β
n = δ log n

]
= 0.

Since m ∼ αn for some constant α, then m
n log n = α log n and therefore,

lim
n→∞

P
[

max(Cn,m) ≫ m

n
log n

]
= 0.

Now suppose q ≪ 1. By Proposition 4.0.3, the maximum term in Cn,p is asymptotic to

(1 − ϵ)q−1 log n and

lim
n→∞

P
[

max(Cn,p) ≫ q−1 log n
]

= 0.

By Proposition 2.5.1,

lim
n→∞

P
[

max(Cn,m) ≫ m

n
log n

]
= 0

since m ≫ n.
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Patterns

The focus of this chapter investigates the appearance and disappearance of composition

patterns. A composition pattern is simply a sub-composition, under some notion of

containment. In particular, this section focuses on exact composition patterns, in which

terms must take specified values. We then finish by determining the threshold for Cn,p

to be a Carlitz composition (having no adjacent pair of equal terms).

There is quite an extensive literature on patterns in compositions and words. This

includes comprehensive expositions by Heubach and Mansour [33] and Kitaev [37].

However, their approach is different and they do not consider exact patterns.

5.1 Exact Consecutive Patterns

The exact consecutive pattern =r1 . . . rk occurs at position i in a composition C if, for

each j ∈ [k], we have C(i−1+j) = rj . In the language of combinatorics on words, such

a pattern occurs in a composition if it is a factor of the composition. See Figure 5.1

for an illustration. A pattern is nonzero if at least one of its terms is positive.

The presence of an exact pattern is not a monotone property, for example =55 occurs

in the compositions 554 and 655, but does not occur in 654. However, thresholds for a

nonzero exact pattern =π can be established, one for its appearance (lower threshold)

and one for its disappearance (upper threshold). Rather interestingly, if =π = r1 . . . rk,

then the lower threshold, for the appearance of =π, depends on its size |=π| =
∑k

i=1 ri,
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2 0 2 0 3 1 0 2 0 2 0 3 1 0 2 0 3 1 0 2 0 2 0 2

Figure 5.1: A composition containing four occurrences of the exact consecutive pattern
=202 and three occurrences of =02031020

whereas the upper threshold, for the disappearance of the consecutive pattern, depends

on its length, k.

Proposition 5.1.1. If =π is a nonzero exact consecutive pattern of length k, then for

any positive constant α,

P
[
Cn,p contains =π

]
∼



0 if p ≪ n−1/|π|,

1 − e−α|π|
if p ∼ αn−1/|π|,

1 if n−1/|π| ≪ p and q ≫ n−1/k,

1 − e−αk
if q ∼ αn−1/k,

0 if n−1/k ≫ q.

The expected number of occurrences of =π in Cn,p is maximal when p/q = |π|/k.

Proof. Suppose π = r1 . . . rk and |π| = s. For each i ∈ [n + 1 − k], let Ai be the event

that =π, which is of length k and size s, occurs at position i in Cn,p, and let X be the

number of occurrences of =π in Cn,p. Then, P
[
Ai

]
= qkps, and E

[
X
]
∼ nqkps, which,

by elementary calculus, is seen to be maximal when p = s/(k + s).

We begin by handling the first and last ranges of values in the statement of the

proposition.

If p ≪ n−1/s, then E
[
X
]
∼ nps ≪ 1. Similarly, if q ≪ n−1/k, then E

[
X
]
∼ nqk ≪ 1.

Thus, by the First Moment Method, in either case, w.h.p. =π doesn’t occur in Cn,p.

Distinct events Ai and Aj are correlated if t = |j − i| < k. If rℓ ̸= rℓ+t for some

ℓ ∈ [k− t], then P
[
Ai ∧Aj

]
= 0. Otherwise, P

[
Ai ∧Aj

]
≤ qk+1ps+1, since π is nonzero.
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Thus,

∆ :=
∑
i∼j

P
[
Ai ∧Aj

]
≤ n

k−1∑
t=1

qk+1ps+1 ≤ nkqk+1ps+1

and

R := ∆/E
[
X
]2

≲
nkqk+1ps+1

(nqkps)
2 =

k

nqk−1ps−1
.

Moreover,

Λ :=
∑
i

P
[
Ai

]2
+
∑
i∼j

P
[
Ai

]
P
[
Aj

]
∼ nkp2sq2k.

We now consider the third case in the statement of the proposition.

Suppose p = ωn−1/s ≪ 1 and q ≪ ωn−1/k for some ω ≫ 1. Then

E
[
X
]
∼ nqkps ∼ nps = n

(
ωn−1/s

)s
= ωs ≫ 1

and

R ≲
k

nqk−1ps−1
=

k

nps−1
=

k

n
(
ωn−1/s

)s−1 =
k

ωs−1n1/s
≪ 1.

Similarly, since q = ωn−1/k ≪ 1 for some ω ≫ 1, then

E
[
X
]
∼ ωk ≫ 1

and

R ≲
k

ωk−1n1/k
≪ 1.

Finally, if p is asymptotically bounded away from both 0 and 1, then E
[
X
]
≍ n ≫ 1

and R ≍ n−1 ≪ 1. Hence, by the Second Moment Method, if n−1/s ≪ p and q ≫ n−1/k,

w.h.p. =π occurs in Cn,p.

Finally, we analyse the second and fourth cases.

Suppose p ∼ αn−1/s. Then E
[
X
]
∼ αs and ∆ ≤ αskp ≪ 1, and Λ ∼ α2sk/n ≪ 1.

So, by the Chen–Stein Method, the number of occurrences of =π is asymptotically

Poisson with mean αs. Similarly, if q = αn−1/k then E
[
X
]
∼ αk and ∆ ≤ αkkq ≪ 1,

and Λ ∼ α2kk/n ≪ 1, so the number of occurrences of =π is asymptotically Poisson

with mean αk.
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We therefore see how the length and size of consecutive composition patterns affect

their appearance and disappearance in Cn,p. Smaller patterns appear before larger ones

and longer patterns disappear before shorter ones.

We now introduce a result to be utilised in the subsequent proposition.

Proposition 5.1.2 (Stirling’s Approximation [14]). For positive n,

n! ≤
√

2πn
(n
e

)n
e−12/n

or, alternatively

n! =
√

2πn
(n
e

)n
e−c/n

for some positive constant c.

The following proposition enables us to transfer the thresholds for exact consecutive

patterns from Cn,p to Cn,m.

Proposition 5.1.3. If =π is an exact consecutive pattern and m ∼ np/q ≫ 1, then

lim
n→∞

P
[
Cn,m contains =π

]
= lim

n→∞
P
[
Cn,p contains =π

]
.

Proof. Suppose π has length k and size s. For each i ∈ [n + 1 − k], let Pi be the

probability that =π occurs at position i in Cn,m. Then,

Pi =

(
m− s + n− k − 1

m− s

)(
m + n− 1

m

)−1

.

For brevity, let n1 = n − 1, nk = n1 − k and ms = m − s. Note that n1 ∼ nk ∼ n

and ms ∼ m (as along as k ≪ n and s ≪ m), and also that p ∼ m/(m + n) and

q ∼ n/(m + n).
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Then, by Stirling’s approximation, Proposition 5.1.2,

Pi =

(
ms + nk

ms

)(
m + n1

m

)−1

=

(
(ms + nk)!

ms!nk!

)(
m!n1!

(m + n1)!

)
=

(√
(ms + nk)mn1

ms nk (m + n1)

)(
(ms + nk)ms+nk

mms
s nnk

k

)(
mm nn1

1

(m + n1)m+n1

)(
e(1+c)(ms+nk+m+n1−ms−nk−m−n1)

)

∼
(

(ms + nk)ms+nk

ms
msnk

nk

)(
mmn1

n1

(m + n1)m+n1

)
= (ms + nk)m+n1(ms + nk)−s−kms

−msnk
−nkmmsmsn1

nkn1
k(m + n1)

−(m+n1)

∼
(ms + nk

m + n1

)m+n1

(ms + nk)−s−k
( m

ms

)ms

ms
(n1

nk

)nk

n k
1

=

(
m− s + n1 − k

m + n1

)m+n1
(
ms + s

ms

)ms
(
nk + k

nk

)(
msn1

k

(ms + nk)s+k

)
=
(

1 − s + k

m + n1

)m+n1
(

1 +
s

ms

)ms
(

1 +
k

nk

)nk ms n k
1

(ms + nk)s+k

∼ e−s−k es ek ps qk = psqk ∼ P
[
=π occurs at position i in Cn,p

]
.

The result then follows from the fact that the probability of Cn,p or Cn,m containing

an exact consecutive pattern depends only on the asymptotic probabilities of exact

consecutive patterns occurring at a given position.

Specifically, the First and Second Moment Methods and the Chen–Stein Method

make use only of asymptotic probabilities, which we have shown to be identical for

Cn,p and Cn,m, when m ∼ np/q ≫ 1. Note that a correlated pair of occurrences of an

exact consecutive pattern is simply an occurrence of a larger exact consecutive pattern,

so the corresponding asymptotic probabilities also match. Thus, the argument in the

proof of Proposition 5.1.1 could be copied with only trivial changes to yield exactly the

same asymptotic probabilities for P
[
Cn,m contains =π

]
as Proposition 5.1.1 gives for

P
[
Cn,p contains =π

]
.

Thus, as the threshold for an exact composition pattern of size s appearing in Cn,p

is p = n−1/s, then the threshold of the appearance of the pattern occurring in Cn,m
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is m ∼ n(n−1/s)
1−n−1/s ∼ n1−1/s. In general, if γ ∈ (0, 1), and m ∼ nγ , then any exact

consecutive pattern of size less than 1
1−γ exists in Cn,m a.a.s. However, any pattern

with size greater than 1
1−γ does not exist in Cn,m a.a.s.

Similarly, as the threshold for an exact composition pattern of length k disappearing

in Cn,p is q = n−1/k, the threshold of the disappearance of the pattern in Cn,m is

m ∼ n(1−n−1/k)
n−1/k ∼ n1+1/k. If γ ∈ (1, 2) and m ∼ nγ , then every exact consecutive

pattern with length less than 1
γ−1 exists in Cn,m a.a.s. However any pattern with

length greater than 1
1−γ does not exist in Cn,m a.a.s.

These results establish when any given exact consecutive pattern is present. For

example, w.h.p. the pattern =2718281 appears when m ≍ n28/29 and has disappeared

once m ≫ n8/7. If π1 is both shorter and smaller than π2, then =π1 arrives before =π2

and leaves after =π2. For example, w.h.p. =110, =21, =4 and =2021 arrive in that

order, but depart in the order =2021, =110, =21, =4.

We are now able to formally establish the threshold for Cn,m to contain an exact

composition pattern.

Proposition 5.1.4. If c is a non-zero exact composition pattern of length k with

∥c∥ = s, then for any positive constant a,

lim
n→∞

P
[
Cn,m contains c

]
=



0 if m ≪ n1−1/s,

1 − e−as if m ∼ an1−1/s and s > 1,

1 if m ∼ a and s = 1,

1 if n1−1/s ≪ m ≪ n1+1/k.

Proof. This follows from Proposition 5.1.1 and Proposition 5.1.3. If m < s, then Cn,m

doesn’t contain c. If m is bounded and m ≥ s > 1, then

P
[
Cn,m contains c

]
< n

(
m−s+n−k−1

m−s

)(
m+n−1

m

) ∼ m!

(m− s)!
n1−s ≪ 1.

If m ∼ a and s = 1, then a.a.s. Cn,m contains exactly a occurrences of c, this being

the same as having the first few and last few terms equal to zero, and avoiding a finite
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number of patterns, each of size greater than one.

We now prove position independence of exact composition patterns occurring in

Cn,m.

Proposition 5.1.5. Let c be any exact composition pattern of length k. Then, for any

i, j ∈ [n + 1 − k],

P
[
c occurs at i in Cn,m

]
= P

[
c occurs at j in Cn,m

]
.

Proof. The probability of c appearing at position i in Cn,m is equal to

(
(m− |c|) + (n− k) − 1

m− |c|

)
×
(
m + n− 1

m

)−1

,

which does not depend on i.

Therefore, for any i, j ∈ [n + 1 − k], the probability of a consecutive composition

pattern occurring at position i in Cn,m is equally likely to occur at position j in Cn,m.

5.2 Carlitz Compositions

We finish this part of the thesis by establishing the threshold for a composition to be

Carlitz, that is no adjacent pair of terms being equal. These have previously been

well-studied [29,36,38,39].

Proposition 5.2.1. If Q is the set of Carlitz compositions, then

lim
n→∞

P
[
Cn,p ∈ Q

]
=


0 if q ≫ 1/n,

1 if q ≪ 1/n.

Proof. For each i ∈ [n − 1], let Ai be the event “Cn,p(i) = Cn,p(i + 1)” and let X be

the number of pairs of adjacent terms that are equal.
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By summing the probabilities that a pair of adjacent terms both equal k, for each i:

P
[
Ai

]
=

∞∑
k=0

p2kq2 =
q2

1 − p2
=

q

1 + p

Then, by linearity of expectation,

E
[
X
]

= (n− 1)E
[
Ai

]
∼ nq/(1 + p).

So, if q ≪ 1/n, then p → 1 and E
[
X
]
→ 0, and, by the First Moment Method, with

high probability no two adjacent terms of Cn,p are equal.

Distinct events Ai and Aj are correlated (i ∼ j) if |i− j| = 1. For each i ∈ [n− 1],

P
[
Ai ∧Ai+1

]
=

n∑
k=0

p3kq3 ∼ q3

1 − p3
.

So, given that there are 2n− 2 ordered pairs of adjacent terms,

∆ :=
∑
i∼j

P
[
Ai ∧Aj

]
∼ 2nq3

1 − p3
.

Then,
∆

E
[
X
]2 ∼ 2nq3

1 − p3

/(
nq

1 + p

)2
=

2

n

(
1 + 2p + p2

1 + p + p2

)
.

Thus, if q ≫ 1/n then E
[
X
]
→ ∞ and ∆ ≪ E

[
X
]2
. Therefore, by the Second Moment

Method, with high probability Cn,p contains an adjacent pair of equal terms.

An interesting point to note is that we begin to stop seeing adjacent terms at the

same time we begin to no longer see any gaps within the composition a.a.s. (q ∼ 1
n).
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Permutations

Our attention now turns to permutations, though particular results from the explo-

ration into compositions are required to complete our investigation into permutations.

A permutation or n-permutation is considered to be simply an arrangement of the num-

bers [n] := {1, 2, . . . , n}. Let Sn denote the set of all n-permutations. We often display

an n-permutation σ using its plot, the set of points (i, σ(i)) in the Euclidean plane, for

i = 1, . . . , n.

Definition 6.0.1. If σ is an n-permutation, we define its complement, denoted σ, to

be the permutation such that σ(i) = n + 1 − σ(i) for every i ∈ [n]. Thus the plot of σ

is the reflection of σ about a horizontal axis.

See Figure 6.1 for the plots of a 9-permutation and its complement.

We consider three different forms of permutation pattern containment. For a very

brief introduction to permutation patterns, see [10]; for more extended expositions, see

either Bóna [15] or Kitaev [37].

The first form of patterns that we consider in this part of the thesis is consecutive

permutation patterns. A k-permutation π occurs as a consecutive pattern at position

j in a permutation σ if the consecutive subsequence σ(j) . . . σ(j + k − 1) has the same

relative ordering as π. For example, the consecutive pattern 132 occurs twice in the

permutation at the left of Figure 6.1, at positions 2, and 6. See [20–22] for investigations

of consecutive permutation patterns.

47



Chapter 6. Permutations

Figure 6.1: The permutation σ = 319624875 and its complement σ = 791486235

We take a dynamic, or evolutionary, view by considering a process on n-permutations,

namely a sequence of permutations σ0, σ1, σ2, . . . , σ(n2)
, where σt+1 is obtained from σt

by the addition of one inversion (see below). Similar to that of compositions, as a

permutation evolves, we see an abrupt appearance and disappearance of substructures.

6.1 Permutations and Inversion Sequences

In this section, we explore the relationship between permutations and inversion se-

quences, in particular the representation of permutations as inversion sequences. Given

an n-permutation σ, its inversion sequence eσ is the sequence of integers (eσ(j))nj=1,

where

eσ(j) = |{i : i < j and σ(i) > σ(j)}|

is the number of inversions involving σ(j) and the terms of σ preceding σ(j), or equiv-

alently the number of points to the upper left of (j, σ(j)) in the plot of σ.

See Figure 6.2 for an example. The Figure displays the plot of the permutation

314862759 while the numbers at the bottom represent the inversion sequence of the

permutation. The first point has no points to its upper left and so the first term of

the inversion sequence is 0 (this is always the case for the first term of an inversion

sequence). The second point has one point to its upper left and so the second term of

the inversion sequence is 1 and so forth.

Clearly, for each j ∈ [n], it is the case that 0 ≤ eσ(j) and as only j − 1 terms have

come before the jth term in the permutation, then eσ(j) < j. Every integer sequence

satisfying the previous condition whose terms sum to m is the inversion sequence of an

n-permutation with m inversions.
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0 1 0 0 1 4 1 3 0

Figure 6.2: A permutation and its inversion sequence

Figure 6.3: The permutations σ = 254183967 and σ′ = 284153967

Definition 6.1.1. We use En,m to denote the set of such inversion sequences (or integer

sequences) of length n whose terms sum to m and for each j ∈ [n] it is the case that

0 ≤ eσ(j) ≤ j − 1.

Given an inversion sequence e, if e(i) < j−1, then e+j denotes the inversion sequence

obtained from e by the addition of 1 to its jth term. By increasing a term in the inversion

sequence eσ of σ by 1, values of two terms in the permutation σ, switch positions. See

Figure 6.3 for an example, in which eσ = 001303022 and eσ′ = e+5
σ = 001313022.

Observation 6.1.2. Let σ be a permutation. Suppose eσ(j) < j− 1, and that σ′ is the

permutation with inversion sequence e+j
σ . Let i < j be the index such that

σ(i) = max
{
σ(k) : k < j and σ(k) < σ(j)

}
.

Then, σ′(i) = σ(j) and σ′(j) = σ(i), and σ′(k) = σ(k) for each k ̸= i, j.

6.2 The Uniform Random Permutation

Let Sn,m denote the set of all n-permutations with exactly m inversions. The uniform

random permutation, denoted σn,m, is a permutation drawn uniformly at random from
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σ = Ψ(σ) =

Figure 6.4: The bijection used in the proof of Proposition 6.2.1: the point marked is
replaced by that marked ; the consecutive pattern 2341 occurs at position 3 in σ and
at position 4 in Ψ(σ)

Sn,m. The only prior work specifically on σn,m, of which we are aware is that of Acan

and Pittel [1]. Their primary result is a determination of the (sharp) threshold at which

σn,m, becomes indecomposable at m ∼ (6/π2)n log n.

We prove that the distribution of a consecutive permutation pattern in σn,m is

independent of its position for any given n and m. This result allows us to only need

to consider the occurrence of patterns at position 1 in σn,m, making our proofs of fol-

lowing results significantly simpler. This proposition first appeared in the unpublished

preprint [9].

Proposition 6.2.1. For any consecutive permutation pattern π of length k and any

i, j ∈ [n + 1 − k],

P
[
π occurs at position i in σn,m

]
= P

[
π occurs at position j in σn,m

]
.

This result follows from the existence of an operation that removes the last point

from a permutation and adds a new first point in such a way as to preserve the number

of inversions. This operation shifts patterns rightwards.

Proof. As illustrated in Figure 6.4, let Ψ : Sn,m → Sn,m be defined by

Ψ(σ) = Ψ(σ1σ2 . . . σn) = σ• = σ•
0σ

•
1 . . . σ

•
n−1,
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where σ•
0 = n + 1 − σn, and for 1 ≤ i < n,

σ•
i =


σi + 1 if σ•

0 ≤ σi < σn,

σi − 1 if σn < σi ≤ σ•
0,

σi otherwise.

Note that σn contributes n− σn inversions to σ, and σ•
0 contributes the same number

of inversions to σ•. For 0 < i < n, the point σ•
i contributes the same number of

inversions to σ• as σi does to σ. So inv(σ•) = inv(σ), where inv(σ•) and inv(σ) are the

total number of inversions in σ• and σ respectively. Since Ψ preserves length and has

a well-defined inverse, it is a bijection on Sn,m.

If π occurs at position j ≤ n − k in σ, then π occurs at position j + 1 in Ψ(σ).

Hence, if 1 ≤ i, j ≤ n+ 1− k, then π occurs at position i in σ if and only if π occurs at

position j in Ψj−i(σ) since applying Ψj−i(σ) shifts the pattern one space to the right

a total of j − i times.

Similar to that of the previous part of this thesis, we introduce thresholds, this

time for σn,m. A function m⋆ = m⋆(n) is a threshold in σn,m for a property Q of

permutations if

lim
n→∞

P
[
σn,m satisfies Q

]
=


0 if m ≪ m⋆,

1 if m⋆ ≪ m ≪ m+,

for some function m+ ≫ m⋆. We also say that
(
n
2

)
−m ∼ m⋆ is a threshold in σn,m for

the disappearance of a property Q if,

lim
n→∞

P
[
σn,m satisfies Q

]
=


1 if m⋆ ≪

(
n
2

)
−m ≪ m+,

0 if
(
n
2

)
−m ≪ m⋆.

In this part of the thesis, we determine the thresholds for the appearance and

disappearance of patterns in σn,m, such as within our investigation into compositions.

Before we are able to begin our investigation into these thresholds, we first introduce
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one final model.

6.3 Uniform Random Inversion Sequences

If m ∈ [0,
(
n
2

)
], then we use en,m to denote an inversion sequence chosen uniformly from

En,m. We call en,m the uniform random inversion sequence. Since En,m and Sn,m are in

bijection, then we deduce that en,m and eσn,m have the same distribution.

If a consecutive permutation pattern π occurs at position 1 in a permutation σ,

then eπ occurs at position 1 in eσ. This is due to the fact that no terms occur to the

left of π in σ and therefore no terms can occur to the upper-left of π in the plot of σ

which therefore means that the only inversions are the pairs of terms that are inversions

within π itself. On the other hand, if π occurs at position j ̸= 1 in σ, then eπ does not

necessarily occur at position j in eσ. For example, 21 occurs at positions 1 and 3 in

σ = 4231. Here, eπ = e21 = 01 and eσ = e4231 = 0113. We observe that e21 occurs at

position 1 in e4231 but not at position 3.

We now give a formal proof showing that if π occurs at the start of a permutation

σ, then eπ occurs at the start of eσ.

Proposition 6.3.1. Let π be any consecutive permutation pattern. If π occurs at

position 1 in a permutation σ, then eπ occurs at position 1 in eσ.

Proof. If π has length k, then for each j ∈ [k],

eσ(j) =
∣∣{i : i < j and σ(i) > σ(j)}

∣∣ =
∣∣{i : i < j and π(i) > π(j)}

∣∣ = eπ(j).

We now prove the following implication in the opposite direction to Proposition 6.3.1.

Proposition 6.3.2. Let π be any consecutive permutation pattern. If σ is a permuta-

tion and eπ occurs at position j in eσ, then π occurs at position j in σ. Moreover, if π

has length k, then for all i < j and ℓ = j, . . . , j + k − 1, we have σ(i) < σ(ℓ).

Proof. We proceed by induction on the length of the pattern. If π has length 1, then

π = 1 and eπ = 0. Hence, eσ(j) = 0, so there is no point in the plot of σ to the upper

left of σ(j).
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Figure 6.5: The permutation σ = 293481675

Suppose now that the proposition holds for patterns of length less than k, and that

π has length k. Let π′ be the permutation of length k−1 that results from the removal

of the last point of π. If eπ occurs at position j in eσ then eπ′ also occurs at position

j in eσ. So, by the induction hypothesis, π′ occurs at position j in σ, with no point

of σ to the upper left of any of the k − 1 points σ(j), . . . , σ(j + k − 2) that form its

occurrence.

Since eπ(k) < k, at most k − 1 points of σ are to the upper left of σ(j + k − 1), all

of which must therefore be part of the occurrence of π′, forming an occurrence of π at

position j in σ.

For example, let σ = 293481675 (see Figure 6.5 for its plot), so its inversion sequence

is eσ = 001115224. The consecutive permutation pattern π = 312 occurs at positions 2

and 5 in σ, whereas eπ = e312 = 011 occurs at position 2 in eσ but not at position 5.

We observe that eπ occurs at position 2 as σ(1) < σ(ℓ) for all ℓ ∈ {2, 3, 4}.

Propositions 6.2.1 and 6.3.1 immediately imply the following result.

Proposition 6.3.3. For any consecutive permutation pattern π of length k and any

j ∈ [n + 1 − k],

P
[
π occurs at position j in σn,m

]
= P

[
π occurs at position 1 in σn,m

]
= P

[
eπ occurs at position 1 in en,m

]
.

6.4 Compositions and Inversion Sequences

In this section, we investigate the relationship between compositions and inversion

sequences. An inversion sequence e of length n with m inversions is a string of n
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integers such that the terms sum to m and for each j ∈ [n] we have 0 ≤ e(j) < j.

Therefore the set of all such inversion sequences can be considered a special subset of

the set of all n-compositions of m.

We now prove a few results that allow us to transfer thresholds from compositions

to inversion sequences. We begin by establishing the threshold for when Cn,m is an

inversion sequence. Recall that Cn,m is the uniform random composition.

Proposition 6.4.1. The threshold for Cn,m to be an inversion sequence is given by

lim
n→∞

P
[
Cn,m ∈ En,m

]
=


1 if m ≪ n,

0 if m ≫ n.

Proof. We first establish the threshold for the geometric random composition Cn,p to

be an inversion sequence. Recall that C ∈ En,m if C(i) < i for each i ∈ [n].

Now, P
[
Cn,p(i) < i

]
=
∑i−1

k=0 p
kq = 1 − pi. So

P
[
Cn,p is an inversion sequence

]
=

n∏
i=1

(
1 − pi

)
≤

∞∏
i=1

(
1 − pi

)
.

By Euler’s Pentagonal Number Theorem (see [31]),

∞∏
i=1

(
1 − pi

)
= 1 +

∞∑
k=1

(−1)k
(
pk(3k+1)/2 + pk(3k−1)/2

)
= 1 − p− p2 + p5 + p7 − . . . .

If p ≪ 1, then this converges to 1 as n tends to infinity, and so a.a.s. Cn,p is an inversion

sequence.

On the other hand,

P
[
Cn,p is an inversion sequence

]
= q

n∏
i=2

(
1 − pi

)
≤ q.

If q ≪ 1, then this converges to 0 as n tends to infinity, and so a.a.s. Cn,p is not an

inversion sequence.

Not being an inversion sequence is an increasing property. This enables us to

transfer the threshold from Cn,p to Cn,m using Proposition 2.5.1: If Q is an increasing
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property that has a threshold p⋆ ≥ n−1 in Cn,p, then np⋆/q⋆ is a threshold for Q in

Cn,m, where q⋆ = 1 − p⋆. We can take p⋆ = q⋆ = 1
2 to be a threshold for Cn,p to be

an inversion sequence. So, m ∼ n(1/2)
1/2 = n is a threshold for Cn,m to be an inversion

sequence.

In the following result we establish, under certain conditions, that if an exact com-

position pattern a.a.s. occurs in Cn,m, then it also occurs in a suffix of en,m a.a.s.

Proposition 6.4.2. Suppose c is an exact composition pattern, and that m− ≫ 1 and

m+ ≪ n2/ log2 n are such that a.a.s. Cn,m contains c whenever m− ≪ m ≪ m+.

Then, a.a.s. en,m also contains c under the same conditions on m.

Proof. Suppose m ≪ n2/ log2 n. Then,

m

n
log n ≪

√
m

n

log n

log n

n
=

√
m ≪ n

log n
≪ n.

Let k satisfy m
n log n ≪ k ≪

√
m. Then, by Proposition 4.0.4, a.a.s. no term of Cn,m

is greater than k.

Suppose s ≪ m. Then m−(n) ≪ m ≪ m+(n) implies m−(n−k) ≪ m−s ≪ m+(n−k).

So, if a.a.s. Cn,m contains c whenever m− ≪ m ≪ m+, then it is also the case that

a.a.s. Cn−k,m−s contains c whenever m− ≪ m ≪ m+.

Now consider the suffix e′ = en,m[k + 1, n] of en,m. Clearly, e′(i) < k + i for each

i ∈ [n− k], and m−
(
k
2

)
≤ ∥e′∥ ≤ m, with

(
k
2

)
≪ m by the definition of k.

Hence,

a.a.s. Cn,m contains c whenever m− ≪ m ≪ m+

=⇒ a.a.s. Cn−k,∥e′∥ contains c whenever m− ≪ m ≪ m+

=⇒ a.a.s. e′ contains c whenever m− ≪ m ≪ m+

=⇒ a.a.s. en,m contains c whenever m− ≪ m ≪ m+,

as required.

We have now constructed the necessary framework to establish the thresholds for
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the appearance and disappearance of consecutive permutation patterns in σn,m.

Theorem 6.4.3. Let π be any consecutive permutation pattern of length k. If s = inv(π)

and s′ = inv(π), then for any positive constant a,

lim
n→∞

P
[
σn,m contains π

]
=



0 if m ≪ n1−1/s,

1 − e−as if m ∼ an1−1/s,

1 if m ∼ a and s = 1,

1 if n1−1/s ≪ m ≪ n1+1/k,

lim
n→∞

P
[
σn,m contains π

]
=



1 if n1+1/k ≫
(
n
2

)
−m ≫ n1−1/s′ ,

1 if
(
n
2

)
−m ∼ a and s = 1,

1 − e−as
′

if
(
n
2

)
−m ∼ an1−1/s′ ,

0 if
(
n
2

)
−m ≪ n1−1/s′ ,

as long as s > 0 and s′ > 0, respectively.

Proof. If m ≪ n, then by Proposition 6.4.1, a.a.s. Cn,m is an inversion sequence. So,

by Propositions 6.3.3, 6.4.1 and 5.1.5, for any i, j ∈ [n + 1 − |π|],

P
[
π occurs at position j in σn,m

]
= P

[
eπ occurs at position 1 in en,m

]
(by Proposition 6.3.3)

∼ P
[
eπ occurs at position 1 in Cn,m

]
(by Proposition 6.4.1)

= P
[
eπ occurs at position i in Cn,m

]
(by Proposition 5.1.5).

Therefore P
[
σn,m contains π

]
∼ P

[
Cn,m contains eπ

]
.

From Proposition 5.1.4, if m ≪ n1−1/s then a.a.s. Cn,m avoids eπ, and so a.a.s.

σn,m avoids π. The same proposition also gives us the probability at the threshold.

Whenever n1−1/s ≪ m ≪ n1+1/k, then, by Proposition 5.1.4, a.a.s. Cn,m contains

eπ. So, by Proposition 6.4.2, a.a.s. en,m contains eπ, and so a.a.s. σn,m contains π.

Trivially, if s = 1 and m = a ≥ 1, then σn,m contains π.
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The threshold for the disappearance of π then follows from σn,(n2)−m = σn,m since

inv(π) + inv(π) =
(
n
2

)
.

≍ m Consecutive permutation patterns Corresponding inversion sequences

1 21, 132, 213, 1243, 1324, 2134 01, 001, 010, 0001, 0010, 0100√
n 231, 312, 1342, 1423, 2143, 2314, 3124 002, 011, 0002, 0011, 0101, 0020, 0110

n2/3 321, 1432, 2341, 2413, 3142, 3214, 4123 012, 0012, 0003, 0021, 0102, 0120, 0111

n3/4 2431, 3241, 3412, 4132, 4213 0013, 0103, 0022, 0112, 0121

n4/5 3421, 4231, 4312 0023, 0113, 0122

n5/6 4321 0123

Table 6.1: Thresholds for the appearance in σn,m of short consecutive patterns

Therefore, m ∼ n1−1/ inv(π) is the threshold for the appearance of a consecutive pat-

tern π occurring in σn,m, and
(
n
2

)
−m ∼ n1−1/ inv(π) is the threshold for its disappearance

from σn,m. Thus, if γ ∈ (0, 1) and m ∼ nγ , then σn,m contains any consecutive permu-

tation pattern with fewer than 1
1−γ inversions a.a.s. but avoids consecutive permutation

patterns with more than 1
1−γ inversions a.a.s.

Table 6.1 displays all patterns of lengths 2, 3 and 4 that have at least one inversion,

as well as the thresholds at which they appear.

6.5 Classical and Vincular Patterns

In this concluding section of this part of the thesis, we establish two more pairs of

thresholds, once more for the appearance and disappearance of permutation patterns.

Here however, we are looking at two different types of permutation patterns, the first

of which are classical permutation patterns.

We say that a classical pattern π occurs at [i, j] in σ if σ(i) is the first term and

σ(j) the last term in an occurrence of π. Such an occurrence has width w = j + 1 − i.

We use σ[i, j] to denote the permutation of [w] that has the same relative order as

σ(i), . . . , σ(j).

Given an n-permutation σ, we say that it is decomposable if there exists some k < n

such that

57



Chapter 6. Permutations

Figure 6.6: The sum decomposition of a decomposable permutation, and an indecom-
posable permutation

{σ(1), σ(2), . . . , σ(k)} = {1, 2, . . . , k}.

If a permutation is not decomposable, we say it is indecomposable. For exam-

ple, Figure 6.6 displays the plot of a decomposable permutation pattern σ1 at the

left and the plot of an indecomposable permutation pattern σ2 at the right. For

the permutation σ1 = 23175468, we can see that {σ(1), σ(2), σ(3)} = {1, 2, 3} and

{σ(4), σ(5), σ(6), σ(7)} = {4, 5, 6, 7} and {σ(8)} = {8}. On the other hand, for the

permutation σ2 = 76824531, there does not exist any k < 8 such that

{σ(1), σ(2), . . . , σ(k)} = {1, 2, . . . , k}.

Any pattern that is decomposable can be expressed as the combination of two or more

shorter permutations. Given two permutations σ and τ with lengths k and ℓ respec-

tively, their direct sum σ⊕ τ is the permutation of length k+ ℓ consisting of σ followed

by a shifted copy of τ :

(σ ⊕ τ)(i) =


σ(i) if i ≤ k,

k + τ(i− k) if k + 1 ≤ i ≤ k + ℓ.

For example, the permutation at the left of Figure 6.6 is 231 ⊕ 4213 ⊕ 1. Every

permutation has a unique representation as the direct sum of a sequence of one or

more indecomposable permutations, which we call its components. This representation

is known as its sum decomposition. The complement of a decomposable permutation

is indecomposable. The indecomposable permutation at the right of Figure 6.6 is the

complement of the decomposable permutation at the left of the figure.
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Figure 6.7: A permutation containing an indecomposable classical permutation pattern

The following two propositions consider occurrences of indecomposable classical

patterns occurring within a permutation.

Proposition 6.5.1. Suppose α is an indecomposable classical pattern of length k ≥ 2.

If α occurs at [i, j] in a permutation σ, with width w = j + 1 − i, then

inv(σ[i, j]) ≥ inv(α) + w − k.

Proof. If i < ℓ < j and σ(ℓ) does not lie in the occurrence of α then σ(ℓ) forms an

inversion with some term in the occurrence of α. Otherwise we would have α = β ⊕ γ,

with β lying to the left and below σ(ℓ) and γ lying to the right and above σ(ℓ). But

α is indecomposable. Thus each of the w − k terms of σ[i, j] not in the occurrence

of α contributes at least 1 to the number of inversions in σ[i, j] and there are inv(α)

inversions with both end points in α.

Here we give an example for the above proposition. The plot of the permutation

σ = 479318625 in Figure 6.7 contains the indecomposable classical pattern α = 4231

at [2, 8] in σ. We observe that, for ℓ ∈ [3, 7], each σ(ℓ) forms at least one inversion with

some term in the occurrence of α. Thus, each of the three terms of σ[2, 8] not in the

occurrence of α, contributes at least 1 to the number of inversions in σ[2, 8]. Here, α

has width w = 7, length k = 4 and inv(α) = 10 so,

inv (σ[2, 8]) = 17 ≥ 13 = inv(α) + w − k.

We now prove that the containment of an indecomposable pattern implies con-

tainment of a consecutive pattern with the same number of inversions whose length is
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Figure 6.8: A permutation containing an indecomposable classical permutation pattern

bounded.

Proposition 6.5.2. Suppose α is an indecomposable classical pattern of length k ≥ 2

with s inversions. If α occurs in a permutation σ, then σ contains a consecutive pattern

with at least s inversions of length at most ks.

Proof. Suppose α occurs at [i, j] in σ with width w = j + 1− i ≥ k. Let t = inv(σ[i, j]).

By Proposition 6.5.1, we have t ≥ s + w − k. Note that t ≥ s ≥ 1.

Let d = ⌊t/s⌋ and partition eσ[i,j] into d consecutive blocks of almost equal length,

each block having length either ⌊w/d⌋ or ⌈w/d⌉. Since t/d > s− 1, by the pigeonhole

principle, there is a block b, where its terms, eb1 , eb2 , eb3 . . . , are such that
∑

i=1 ebi = |b|

and |b| ≥ s.

Now, w ≤ k + t− s, and

d =

⌊
t

s

⌋
≥ t + 1

s
− 1 =

1 + t− s

s
.

So the length of each block is bounded above by

⌈w
d

⌉
<

w

d
+ 1 ≤ 1 +

(k + t− s)s

1 + t− s

= 1 + s +
(k − 1)s

1 + t− s
≤ 1 + s + (k − 1)s = 1 + ks.

Thus, since this is a strict inequality, there is a consecutive subsequence of eσ[i,j] of

length no more than ks with at least s inversions, and so σ contains a consecutive

pattern with at least s inversions of length at most ks.

Here we give an example for the above. The plot of the permutation σ = 123495678
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in Figure 6.8 contains the indecomposable classical pattern α = 312 at [5, 9] in σ of

width w = 5, length k = |α| = 3 and s = inv(α) = 2. Let t = inv(σ[5, 9]) = 4

and d =
⌊
t
s

⌋
=
⌊
4
2

⌋
= 2. Therefore, we partition eσ[5,9] = 01111 into d = 2 consecutive

blocks. Each of these blocks are to have length
⌊
w
d

⌋
=
⌊
5
2

⌋
= 2 or length

⌈
w
d

⌉
=
⌈
5
2

⌉
= 3.

So, we partition eσ[5,9] into two blocks, one of length two and one of length three. These

blocks are therefore partitioned as either eσ[5,6] = 01 and eσ[7,9] = 111 or as eσ[5,7] = 011

and eσ[8,9] = 11. In either case, there is at least one of the partitioned blocks that sums

to at least s = 2. We also observe that in this example there is a consecutive subsequence

of eσ[5,9] which has length of no more than ks = 6 with at least s = 2 inversions and,

by extension, σ contains a consecutive pattern with at least s = 2 inversions of length

at most ks = 6.

We are now able to establish the thresholds for the appearance and disappearance

of classical patterns in σn,m.

Theorem 6.5.3. Let π be any classical permutation pattern. If s is the greatest

number of inversions in a component of π, and s′ is the greatest number of inversions

in a component of π, then for any positive constant a,

lim
n→∞

P
[
σn,m contains π

]
=


0 if m ≪ n1−1/s,

1 if n1−1/s ≪ m ≪ n,

lim
n→∞

P
[
σn,m contains π

]
=


1 if n ≫

(
n
2

)
−m ≫ n1−1/s′ ,

0 if
(
n
2

)
−m ≪ n1−1/s′ ,

as long as s > 0 and s′ > 0, respectively.

Proof. We first prove that below the threshold a.a.s. σn,m avoids π. Indeed, a.a.s. it

contains no indecomposable pattern with s inversions.

By Proposition 6.5.2, if σn,m were to contain an indecomposable pattern α of length

k then it would also contain some consecutive pattern of length at most ks with at least

s inversions. There are only finitely many such consecutive patterns. Now suppose that

m ≪ n1−1/s. From Theorem 6.4.3, we know that a.a.s. Cn,m contains no fixed finite
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set of consecutive patterns with s or more inversions. Thus Cn,m avoids α, and hence

also avoids π.

We now prove that above the threshold a.a.s. σn,m contains π. Suppose π has sum

decomposition π = α1 ⊕ · · · ⊕ αr.

Let C = Cn,m. For 0 ≤ j ≤ r, let ij = ⌊jn/r⌋, and, for each j ∈ [r], let

Cj = C[ij−1 + 1, ij ]. Thus, C1, . . . ,Cr is a partition of the terms of C, each

Cj having length nj ∈
{
⌊n/r⌋ , ⌈n/r⌉

}
. Let mj = |Cj |.

Since |C| is constant, the covariance between any two distinct terms of C is negative.

Indeed, straightforward calculations show that

Var
[
C(i)

]
=

(n− 1)m(m + n)

n2(n + 1)
,

and

Cov
[
C(i1),C(i2)

]
= −m(m + n)

n2(n + 1)
if i1 ̸= i2.

Hence,

Var
[
mj/nj

]
= Var

[
mj

]
/n2

j < nj Var
[
C(i)

]
/n2

j ∼
rm(m + n)

n3
,

which tends to zero as long as m ≪ n3/2. Thus (by Chebyshev’s inequality), for this

range of values for m the sum of terms in each Cj satisfies a law of large numbers.

Thus, for each j and any ε > 0, a.a.s. we have mj > (1 − ε)m/r. Therefore, if

m ≫ n1−1/s, then mj ≫ n
1−1/s
j for each j ∈ [r].

Thus, if n1−1/s ≪ m ≪ n, for each j ∈ [r], we have the following sequence of

implications:

� By Proposition 5.1.4, a.a.s. Cnj ,mj contains a consecutive occurrence of eαj .

� Thus a.a.s. C = Cn,m contains consecutive occurrences of eα1 , . . . eαr in that

order.

� Since, by Proposition 6.4.1, Cn,m is a.a.s. an inversion sequence, a.a.s. en,m con-

tains consecutive occurrences of eα1 , . . . eαr in that order.
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� By Proposition 6.3.2, these correspond to occurrences of α1, . . . , αr as consecutive

patterns in σn,m, such that no point of σn,m is to the upper left of any point in

any of these occurrences.

� Thus a.a.s. π = α1 ⊕ . . .⊕ αr occurs in σn,m.

The threshold for the disappearance of π then follows as σn,(n2)−m = σn,m.

Interestingly, classical patterns that are equal in length and that have the same

total number of inversions do not necessarily share thresholds for their appearance and

disappearance in σn,m. Examples of this can be seen in Table 6.2.

Pattern

n2/3 321654
(
n
2

)
− n8/9

n4/5 423165
(
n
2

)
− n8/9

n8/9 561324
(
n
2

)
− n4/5

n8/9 456123
(
n
2

)
− n2/3

Table 6.2: Thresholds in σn,m for the appearance and disappearance of four classical
patterns of length six with six inversions

We conclude this part of the thesis with establishing the appearance and disappear-

ance of vincular permutation patterns in σn,m.

In a vincular pattern only some terms are required to be adjacent. Consecutive

terms in a vincular pattern that must be adjacent are underlined. For example, the

vincular patterns 312 and 312 each occur once in the permutation at the left of Fig-

ure 6.1. (see [5, 8, 11,16,18,19,34])

We introduce one more definition before establishing the final pair of thresholds.

A vincular pattern with sum decomposition α1 ⊕ . . . ⊕ αk, has a unique (possibly

coarser) representation as a direct sum β1 ⊕ . . .⊕ βℓ for some ℓ ≤ k, such that

� each βj = αij ⊕ αij+1 ⊕ . . .⊕ αij+rj for some ij and rj , and

� αi and αi+1 are components of the same βj only if the last term of αi is required

to be adjacent to the first term of αi+1.

We say that β1, . . . , βℓ are the pattern’s supercomponents. For example, 23175468

has supercomponent decomposition 231 ⊕ 42135, whereas 23175468 decomposes as
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Figure 6.9: The supercomponents of vincular patterns 23175468 and 23175468

2317546 ⊕ 1. See Figure 6.9 for an illustration, in which the adjacency criteria are

shown by shading.

Before we prove our final theorem, we introduce two results. These following propo-

sitions are similar to that of Propositions 6.5.1 and 6.5.2 where “indecomposable clas-

sical pattern” is replaced with “supercomponent”.

Proposition 6.5.4. Suppose α is a supercomponent of length k ≥ 2. If α occurs at

[i, j] in a permutation σ, with width w = j + 1 − i, then

inv(σ[i, j]) ≥ inv(α) + w − k.

Proof. If i < ℓ < j and σ(ℓ) does not lie in the occurrence of α then σ(ℓ) forms an

inversion with some term in the occurrence of α. Otherwise we would have α = β ⊕ γ,

with β lying to the left and below σ(ℓ) and γ lying to the right and above σ(ℓ). But

α is indecomposable. Thus each of the w − k terms of σ[i, j] not in the occurrence

of α contributes at least 1 to the number of inversions in σ[i, j] and there are inv(α)

inversions with both end points in α.

Proposition 6.5.5. Suppose α is a supercomponent of length k ≥ 2 with s inversions.

If α occurs in a permutation σ, then σ contains a consecutive pattern with at least s

inversions of length at most ks.

Proof. Suppose α occurs at [i, j] in σ with width w = j + 1− i ≥ k. Let t = inv(σ[i, j]).

By Proposition 6.5.4, we have t ≥ s + w − k. Note that t ≥ s ≥ 1.

Let d = ⌊t/s⌋ and partition eσ[i,j] into d consecutive blocks of almost equal length,

each block having length either ⌊w/d⌋ or ⌈w/d⌉. Since t/d > s− 1, by the pigeonhole

principle, there is a block b, where its terms, eb1 , eb2 , eb3 . . . , are such that
∑

i=1 ebi = |b|
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and |b| ≥ s.

Now, w ≤ k + t− s, and

d =

⌊
t

s

⌋
≥ t + 1

s
− 1 =

1 + t− s

s
.

So the length of each block is bounded above by

⌈w
d

⌉
<

w

d
+ 1 ≤ 1 +

(k + t− s)s

1 + t− s

= 1 + s +
(k − 1)s

1 + t− s
≤ 1 + s + (k − 1)s = 1 + ks.

Thus, since this is a strict inequality, there is a consecutive subsequence of eσ[i,j] of

length no more than ks with at least s inversions, and so σ contains a consecutive

pattern with at least s inversions of length at most ks.

The threshold for the appearance of a vincular pattern depends on the greatest

number of inversions in one of its supercomponents. The proof for the following theorem

is very similar to the proof for Theorem 6.5.3, where the two previous results are utilised

and “indecomposable classical pattern” is replaced with “supercomponent”.

Theorem 6.5.6. Let π be any vincular permutation pattern. If s is the greatest num-

ber of inversions in a supercomponent of π, and s′ is the greatest number of inversions

in a supercomponent of π, then for any positive constant a,

lim
n→∞

P
[
σn,m contains π

]
=


0 if m ≪ n1−1/s,

1 if n1−1/s ≪ m ≪ n,

lim
n→∞

P
[
σn,m contains π

]
=


1 if n ≫

(
n
2

)
−m ≫ n1−1/s′ ,

0 if
(
n
2

)
−m ≪ n1−1/s′ ,

as long as s > 0 and s′ > 0, respectively.

Proof. We first prove that below the threshold a.a.s. σn,m avoids π. Indeed, a.a.s. it

contains no supercomponent with s inversions.
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By Proposition 6.5.5, if σn,m were to contain a supercomponent α of length k then

it would also contain some consecutive pattern of length at most ks with at least s

inversions. There are only finitely many such consecutive patterns. Now suppose that

m ≪ n1−1/s. From Theorem 6.4.3, we know that a.a.s. Cn,m contains no fixed finite

set of consecutive patterns with s or more inversions. Thus Cn,m avoids α, and hence

also avoids π.

We now prove that above the threshold a.a.s. σn,m contains π. Suppose π has sum

decomposition π = α1 ⊕ · · · ⊕ αr.

Let C = Cn,m. For 0 ≤ j ≤ r, let ij = ⌊jn/r⌋, and, for each j ∈ [r], let

Cj = C[ij−1 + 1, ij ]. Thus, C1, . . . ,Cr is a partition of the terms of C, each

Cj having length nj ∈
{
⌊n/r⌋ , ⌈n/r⌉

}
. Let mj = |Cj |.

Since |C| is constant, the covariance between any two distinct terms of C is negative.

Indeed, straightforward calculations show that

Var
[
C(i)

]
=

(n− 1)m(m + n)

n2(n + 1)
,

and

Cov
[
C(i1),C(i2)

]
= −m(m + n)

n2(n + 1)
if i1 ̸= i2.

Hence,

Var
[
mj/nj

]
= Var

[
mj

]
/n2

j < nj Var
[
C(i)

]
/n2

j ∼
rm(m + n)

n3
,

which tends to zero as long as m ≪ n3/2. Thus (by Chebyshev’s inequality), for this

range of values for m the sum of terms in each Cj satisfies a law of large numbers.

Thus, for each j and any ε > 0, a.a.s. we have mj > (1 − ε)m/r. Therefore, if

m ≫ n1−1/s, then mj ≫ n
1−1/s
j for each j ∈ [r].

Thus, if n1−1/s ≪ m ≪ n, for each j ∈ [r], we have the following sequence of

implications:

� By Proposition 5.1.4, a.a.s. Cnj ,mj contains a consecutive occurrence of eαj .

� Thus a.a.s. C = Cn,m contains consecutive occurrences of eα1 , . . . eαr in that
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order.

� Since, by Proposition 6.4.1, Cn,m is a.a.s. an inversion sequence, a.a.s. en,m con-

tains consecutive occurrences of eα1 , . . . eαr in that order.

� By Proposition 6.3.2, these correspond to occurrences of α1, . . . , αr as consecutive

patterns in σn,m, such that no point of σn,m is to the upper left of any point in

any of these occurrences.

� Thus a.a.s. π = α1 ⊕ . . .⊕ αr occurs in σn,m.

The threshold for the disappearance of π then follows as σn,(n2)−m = σn,m.
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