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Abstract

In this thesis, we have modelled de Vries type ferroelectric liquid crystals at various

length-scales and various degrees of complexity, hoping to map physical molecular

properties to the existence and optical characteristics of various states of the liq-

uid crystals. At the smallest length-scale we considered interaction potentials that

account for short and long range forces between two rod-like molecules. Using

Fourier decomposition we found that the simplified Maier-Saupe pair potential,

which depends only on the relative molecular orientation, was capable of approxi-

mating these potentials.

At the mesoscopic level the free energy was then calculated using the Maier-Saupe

pair potential and a mean-field approach was taken. The phase behaviour of the

system is then described by two order parameters, representing tilt and biaxiality,

from which the optical axis and birefringence can be calculated.

Next we used a simple phenomenological model to model the phase transition

of smectic A to smectic C at the macroscopic scale. We were able to calculate

the optic axis and birefringence of the model as a function of temperature and

applied electric field. These optical quantities were then fitted to the corresponding

functions calculated using the Maier-Saupe free energy.

Finally, using this phenomenological model, we examined the switching character-

istics of a de Vries material whilst varying molecular parameters. We solved the

dynamic equations using a simple numerical method and employed an adaptive

time-stepping algorithm. The results were visualised using standard τV curves,

which display regions of switching for various applied voltages and pulse lengths.

In this way we have managed to link across length scales allowing us to alter the

molecular properties of our molecules and examine the effect on the physical ob-

servables, the optic axis and birefringence, of the bulk material. Such an approach

could be used to optimise device performance by tailoring molecular parameters.
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1 Introduction 1

1 Introduction

1.1 History

The commonly known states of matter are solid, liquid and gas. The degree to

which the molecules are packed differs greatly across the temperature range. In

the solid crystal state the molecules are closely packed together in rigid patterns.

In the liquid and gas states the molecules are mobile and diffuse, differing in the

degree to which the molecules are spread, see Figure 1.1. The random distribution

of molecules in the gas and liquid states is described as being isotropic, no matter

the viewing angle the molecules’ orientation with respect to one another looks the

same. It is at the transition from liquid to solid that the molecular structure gains

a great deal of order. This ordering breaks the isotropy and we say that the solid

is anisotropic, the molecular orientation and translational order will now differ

depending on the viewing angle.

A fourth state of matter was first discovered in 1888 by Reinitzer and Lehman.

(a) Solid (b) Liquid (c) Gas

Temperature
Figure 1.1: The commonly known states of matter: (a) crystalline solid, (b)
isotropic liquid, (c) isotropic gas. The degree of order, positional and orienta-
tional, decreases as temperature increases.
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On heating a cholesterol related substance Reinitzer observed what appeared to

be two melting points that resulted in first a cloudy liquid and then a clear liquid

[1]. It was the further analysis and experimental design of Lehman that confirmed

the discovery [2]. The cloudy liquid stage was later named the liquid crystal state

as the molecules had the ability to flow whilst maintaining some order.

1.2 Types of liquid crystal

Within the liquid crystal state there are many mesophases, meaning phases be-

tween the solid crystal and the isotropic liquid phase, which are thermodynami-

cally stable, see Figure 1.2. It is from the anisotropic structure of the molecules

that these mesophases are possible, hence we name the liquid crystal molecules

‘mesogenic’. Liquid crystals can be induced in two ways given the mesogens, ther-

motropically and lyotropically. Thermotropic liquid crystals are pure or mixed

compounds of mesogenic molecules where any existing mesophases are temperature

(a) Smectic C (b) Smectic A (c) Nematic

Temperature

k n k n n

Figure 1.2: The (a) smectic C, (b) smectic A, and (c) nematic liquid crystal
phases. The degree of order, positional and orientational decreases as temperature
increases, here k and n are the unit vectors of the smectic layer normal and director
respectively.
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dependent. Lyotropic liquid crystals are created by mixing mesogenic molecules

with a nonmesogenic solvent, hence the concentration of mesogens as well as the

temperature is a factor in the creation of a mesophase. In this thesis we only con-

cern ourselves with a few smectic and nematic thermotropic mesophases formed

with rodlike molecules.

When we talk about these mesophases we invariably discuss the order that exists.

When the rod-like molecules are packed together the long-axis of the molecules

have an average direction named the director, a unit vector n. The two types of

order are positional and orientational which we describe in terms of the director.

Orientational order describes to what degree all the molecules align with the direc-

tor. Positional order describes whether the translational symmetry of the director

is short or long range, see Figure 1.2. For example, an isotropic liquid of rod-like

molecules would have no average direction for the director, the molecules would

be pointed in every direction with a uniform distribution of centres of mass, hence

the lack of orientational or translational order.

1.2.1 The nematic phase

The least ordered mesophase we consider is the nematic phase where only orienta-

tional order is present. The molecules are fully rotationally symmetric around the

director with no translational order, creating a uniaxial phase. A measure of the

orientational order present in the nematic phase is given by the order parameter

S,

S =

∫ (
3

2
cos2(θ)− 1

2

)
f(θ)dθ =

〈
3

2
cos2(θ)− 1

2

〉
,
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where f(θ) is the distribution of molecules with tilt angle θ about the director n.

When the molecules are perfectly aligned with the director S = 1 and when the

molecules are isotropically, i.e. not, aligned S = 0. So when the temperature of

the liquid crystal is decreased the orientational order increases and S increases.

1.2.2 The smectic phases

The smectic phases break the full translational symmetry that is present in the

nematic and isotropic states. The translational order is realised in the formation

of layers with constant layer thickness. In each layer the orientational order is long

range. The least ordered smectic phase, called the smectic A phase, is basically

a layered nematic, the director of each layer is parallel with the layer normal, k.

Ordinary smectic A materials are uniaxial because of the full rotational symmetry

about the director n and the layer normal k. The order parameter S will then be

dependent on the temperature and number density of molecules in the layer.

Smectic layers

z

y
xϕ

θ

Tilt plane

n

y
x

k

Figure 1.3: The cone of Sm C. Director n depends on the azimuthal angle φ and
the cone tilt angle θ around the smectic cone. The tilt plane contains the director
vector and the smectic layer normal k, parallel with z in the layer frame.



1.3 Chirality effects 5

The smectic C phase breaks the rotational symmetry of the smectic A phase when

the director differs from the smectic layer normal. The plane containing the di-

rector and layer normal is named the tilt plane, see Figure 1.3. When viewing

the director from within the tilt plane it appears aligned with the layer normal,

but when viewed above the tilt plane we can see that the director is tilted aeay

from the layer normal. Hence, the director is biaxial. The tilt angle is stable for

a given temperature and density, but the azimuthal angle, the tilt direction, is

independent of energy. A suitable order parameter for the smectic C to smectic

A transition would be dependent on the tilt angle, θ, of the director to the layer

normal.

1.3 Chirality effects

When a molecule loses mirror symmetry it is said to be chiral. Chiral phases can

be found for all of the liquid crystal phases discussed above. A consequence of

chirality is the formation of left or right handed helical structures, see Figure 1.4.

In smectic C* (chirality is denoted by an asterix,*) the tilt direction of each layer

follows a helical path around the layer normal. Another consequence of chirality

k

Helical SmC*
Ps n

Figure 1.4: Director n moves around cone as we progress in the direction of k, the
layer normal. The spontaneous polarization Ps averages to zero over one period.
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is the existence of a spontaneous electrical polarization perpendicular to the tilt

plane of the smectic cone [3]. Therefore each layer has a spontaneous polarization

but the helical structure of the layers denies any macroscopic polarization.

The presence of a spontaneous polarization linked to the tilt of each smectic layer

means that the molecular orientation of the material can be forced into a config-

uration of our choosing by applying an electric field. By varying the polarity and

direction of the applied field the layers can be made to orient how we wish. When

the electric field is removed the liquid crystal will revert to the original helical

structure. Meyer suggested a method for removing the helical property by using

surface effects and bulk elasticity [4], which was proven experimentally by Clark

and Lagerwall [5]. Placing the liquid crystal between two closely spaced plates

that have been treated to encourage molecular alignment on the plate plane, the

surface effect will overpower the bulk helical structure. Due to the planar align-

ment restricting the director to the two orientations possible from the intersection

of the surface plane and the smectic cone, φ = 0, π, the material will be bistable

Surface stabilized ferroelectric liquid crystal

Ps

k
xy

E E
Ps

φ = π φ = 0

Figure 1.5: The surface effect of the plate plane limits the director to two possi-
ble orientations. As such an applied electric field can affect the direction of the
spontaneous polarization, Ps, and azimuthal angle, φ.
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with a macroscopic spontaneous polarization, see Figure 1.5.

Either molecular configuration can be chosen by applying a large enough electric

field with the necessary polarity. The electric field will have to be strong enough

so that the interaction with the spontaneous polarization overcomes the torque

arising from the surface alignment. Such a device configuration is referred to as a

surface stabilised ferroelectric liquid crystal (SSFLC). SSFLCs have the properties

of fast switching between the bistable states, which when combined with cross

polarizers make an effective electro-optic device.

Ferroelectric liquid crystals (FLC) can also have a chiral smectic A* phase at higher

temperatures than the smectic C* phase. However, the spontaneous polarization

that exists in the layers of smectic C* is nonexistent in smectic A*. The zero tilt

of smectic A* means that the rotational symmetry that is present averages the

spontaneous polarization to zero. Garoff and Meyer showed that in the presence

of an applied electric field the molecules polarization will change the molecular

configuration of the FLC to align with the field [6]. This field-induced sponta-

neous polarization will induce a tilt perpendicular to the field. This is called the

electroclinic effect.

The surface anchoring present in the SSFLC allows the bistability that is most

useful for the electro-optic switch but it also leads to a major problem. The

majority of ferroelectric liquid crystals experience layer shrinkage at the transition

from Sm A* to Sm C* transition which can cause defects to occur.

In Sm A* devices the smectic layers are often described as being bookshelf struc-

tured, the smectic layers are the books while the bounding plates are the shelves.
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Shrinkage

Q

SmA SmC

dC

dA

cosQdC = dA

Smectic layer spacing: Layer configuration:

SmA : bookshelf SmC : chevron

smectic layers zigzag defectsubstrates

Figure 1.6: Chevron defects from layer shrinkage. dA is the layer spacing in Sm
A, and dC is the layer spacing in Sm C.

The molecules, spaced with period dA, are anchored by the surface alignment.

Reducing the temperature and transitioning from Sm A* to Sm C*, we generally

cause layer shrinkage, but given the surface layer spacing dA the bulk must col-

lapse into chevrons to accommodate the Sm C* layer spacing dC , Figure 1.6. The

chevron structure was found by Rieker et al. [7] using X-ray scattering techniques.

Zigzag defects, named because of the distinctive lines observed optically, form be-

tween chevrons of opposing fold direction. These defects have severely hampered

the widespread use of SSFLCs as electro-optic devices.

1.4 de Vries type smectics

Materials without substantial smectic layer shrinkage were first discovered by Diele

et al. in 1972 [8]. X-ray experiments found that the layer spacing of the smectic A

phase was the same as the non-chiral smectic C phase. It was noticed that the Sm

A layer thickness was 5-10% smaller than the calculated length of the molecule.

More cases of materials exhibiting tilt without layer contraction have been reported
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for both non-chiral [9, 10] and chiral smectic liquid crystals [11, 12, 13, 14, 15]. A

qualitative model was developed from the ideas presented in a series of papers by

de Vries [9, 10, 16, 17] and Leadbetter [18]. Initially, de Vries suggested that the

molecules of the smectic layers had a uniform tilt, magnitude and direction. In

Sm C each layer’s tilt direction was constant across all smectic layers. But, when

in Sm A the tilt directions of the layers would be randomly distributed. This

meant that when averaged over many layers the material had an optically uniaxial

structure, the director parallel with the layer normal.

This idea was discarded when Leadbetter used X-ray diffraction to show that the

orientational order of the long molecular axes was in the range S = 0.7 − 0.8 for

both the Sm A and Sm C phases, which prompted de Vries to replace his initial

model with the diffuse cone model. He realised that there existed short range

directors in a Sm A layer and a longrange director in a Sm C layer, see Figure

1.7. The transition from Sm A to the tilted Sm C phase occurs by an ordering of

the tilt direction within the layer resulting in a macroscopic tilt direction. The de

Vries model represents the Sm C - Sm A transition as an order-disorder transition

SmC SmA

Diffuse Cone

Figure 1.7: de Vries’ diffuse cone model. The Sm C - Sm A transition as an
order-disorder type.
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and not a structural transition like conventional smectic materials. Both types of

transition are extreme cases and in real smectics C both transition mechanisms

could be present in varying degrees.

In recent work theoretical models capable of describing both de Vries type and con-

ventional tilting transitions have been developed. Using the Landau theory with

order parameters derived from the Q orientational order tensor and the smectic

layer wave vector, Saunders modeled the transition behaviour of uniaxial material

near the tricritical point with first and second order transitions [19, 20]. The optic

tilt, specific and latent heat near tricriticality was calculated with the expected

behaviour. The model also related the layer contraction with the tilting of the

optic axis to produce de Vries type transitions when the nematic order in Sm A

was below a critical value, and conventional transitions otherwise. The transition

type was dependent on the temperature dependence of the nematic order of the

material.

Another theory which models both de Vries type and conventional tilting transi-

tions has been developed by Osipov and Gorkunov [21, 22]. This molecular theory

is built from a general intermolecular interaction pair potential with a mean field

approach. It assumes that the uniaxial molecules have perfect positional order

within the layer so that the potential only depends on the orientations of the

molecule pairs. They also discard any interlayer interactions as being negligible.

The model has order parameters which are readily measured experimentally, but

they can be transformed into the more conventional order parameters of nematic

order, nematic tensor biaxiality and optic axis tilt angle. The theory can model

both types of transition depending on the model parameters of the pair potential.



1.4 de Vries type smectics 11

In this way the orientational distribution function in Sm A is qualitively the same

for both transitions. The factors for determining the type of transition are the de-

gree of increase in the nematic order parameter and the tilt. As the nematic order

increases the layer spacing will increase, while the layer spacing will decrease as

the tilt increases. The change in layer spacing will depend on the balance between

these two actions. This result mirrors that of Saunders [19, 20]. If the nematic

order is high in Sm A, the increase in tilt will cause the layer to contract. If the

nematic order is low in Sm A, the contraction due to the tilt will be compensated

by the increase in the nematic order.

Osipov and Gorkunov also investigated using the Gay-Berne, electrostatic dipole-

dipole, and induction dipole-dipole potentials finding that the Gay-Bernes poten-

tial alone was insufficient to allow a Sm C phase. They used the same method to

investigate chiral molecules [23, 24] and biaxial molecules [25]. This resulted in

a greater number of order parameters needed to describe the phase behaviour of

the molecules. The assumption of perfect layer positioning meant that the smectic

layer spacing was approximated by the average projection of the molecular long

axes on the layer normal. This single layer approach was corroborated by a mul-

tilayer approach [26]. The layer spacing was calculated by minimization of the

free energy and was qualitatively similar to the variation of the average molecular

projection. The correlation of the average molecular projection with the actual

smectic layer period has also been supported experimentally.

Further work looking at smectic phases over multiple layers was carried out by

Emelyanenko [27, 28]. The molecular-statistical theory used a uniaxial molecule

with a quadrupole at the core and a transverse dipole at a terminal. Given
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this molecular model, the dispersion and electrostatic interactions between pairs

of molecules were approximated using a mean-field. It was found that when

the quadrupole was small only the tilted uniaxial phases were seen. When the

quadrupole was large the tilted biaxial subphases were found.

1.5 Outline of thesis

In each chapter of this thesis we introduce a new way of modelling a de Vries

liquid crystal material. In Chapter 2 we concern ourselves with the intermolecular

interactions of a pair of molecules. The potentials we look at model the short and

long range forces of: steric packing, van der Waals attraction, and dipole-dipole

interaction. We will also link these potentials to the Maier-Saupe potential used in

Chapter 3. In Chapter 3 we describe a molecular-statistical theory of the Sm A*-

Sm C*, order-disorder, phase transition. This density-functional approach will use

the mean-field theory to model the interactions of many molecules. In Chapter

4 we will use a simple phenomenological model to investigate device applications.

The optoelectric properties of the phenomenological model will be linked to the

molecular-statistical theory of the third chapter. Introductions to each of these

approaches will be given in each chapter. The overall goal of this thesis is to

link the models together, and in this way investigate the effect of the molecular

parameters on the optoelectric characteristics of a real device.
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2 Modelling intermolecular interactions

2.1 Introduction to molecular potentials

Modelling liquid crystals at the molecular leve,l we hope to map molecular prop-

erties, such as size, shape, dipole location and strength, to the existence of the

various states of the liquid crystal. The ability to understand the creation of

these mesophases (nematic, smectic, etc.), the optoelectric performance, and their

transitions will be of interest to chemists and device engineers.

With the computing power available today it is possible to create molecular mod-

els that deal with the interactions of each atom in the molecule. We could then

model how these molecules interact with each other. However, looking at systems

with the number of molecules needed to simulate these mesophases is computa-

tionally demanding. Choosing lower resolution, less detailed, simple models over

complex atomistic models will help in the understanding of trends relating molec-

ular properties to creation of mesophases, which could allow chemists to construct

liquid crystal molecules which exhibit preferable mesophase behaviour. Therefore,

a good model will use simple mathematical functions, to portray the desired phys-

ical characteristics. Some accessible reviews of molecular modelling which discuss

the creation of the potentials in this Chapter are those by Luckhurst, Rull and

Zannoni [29, 30, 31].

The models in this Chapter describe the interaction of two typical molecules de-

pendent on various molecular properties. A molecule is modeled by a point in

space and the interaction force it feels from another molecule is specified by a po-
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tential energy function. How the system of molecules organises will then depend

on how the system attempts to minimise its free energy. We will introduce the

free energy in Chapter 3.

There have been many potential models to describe interactions between molecules

in fluids. One such potential, which models fluids of spherical atoms, is the

Lennard-Jones (L-J) potential [32], Figure 2.1. Describing the interaction of a

pair of neutral atoms, it uses two distinct forces for short and long range interac-

tions: a repulsive force akin to the steric effect of the space the atom inhabits at

short separations, and an attractive force at long separations describing the van

der Waals dispersion force. The potential, U(r), has the form

U(r) = 4ε

[(σ
r

)12

−
(σ
r

)6
]
,

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
!1

!0.9

!0.8

!0.7

!0.6

!0.5

!0.4

!0.3

!0.2

!0.1

0

U
L!

J(r)

Separation Distance r

!

  "

Figure 2.1: The Lennard-Jones potential. r is the distance between two molecules.
σ is the contact distance, the minimum separation distance. ε is the well-depth of
the potential. For this figure,the parameter values are ε = 1, σ = 1.
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where ε is the depth of the potential well, representing the strength of the attraction

between the two atoms, and σ is the (finite) distance at which the interparticle

potential is zero, which represents the contact distance of two hard atoms. The

potential depends on the distance r between two points, i.e. the centres of mass, in

each of the atoms. The r−6 term describes attraction and the r−12 term describes

repulsion; the repulsion term should depend exponentially on the distance but this

form was chosen solely for efficiency in analytical calculations, as it is the square

of the attractive term.

The Lennard-Jones potential is an effective representation of the repulsive and

attractive forces in a fluid consisting of spherical atoms, but it would be insufficient

to model the non-spherical molecules commonly associated with liquid crystals.

Berne and Pechukas [33] sought to model the shape of roughly ellipsoidal molecules,

using a suitably flexible function such as a Gaussian. In this way it was hoped that

a potential would be found which allowed the contact distance and well-depth to

depend on the orientations of the molecules with respect to each other and on the

intermolecular vector, r12.

The Gaussian to be used is a function of a three dimensional vector x,

G(x) = exp(x · γ−1 · x) , γ = (σ2
‖ − σ2

⊥)uu + σ2
⊥I,

where u is a unit vector along the principal molecular axis and I is the identity

matrix. G represents the distribution of matter in the ellipsoid whose dimensions

are 2σ|| and 2σ⊥.

Two molecules interacting will have a pair potential which is the sum of pairwise
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u₁

x
y

z

u₂

θ₁ Φ₂x
y

ψ

r₁₂

x

y

θ₂

Φ₁

z

Figure 2.2: Geometry of the model. Two molecules, u1 and u2, described by the
cone tilt angles θ1,2 and azimuthal angles φ1,2, and the intermolecular vector r12

between the molecular centres of mass, at an angle ψ from the x-axis. We assume
θ1 = θ2 for de Vries smectics and use φ = φ2−φ1 to describe the relative orientation
of the molecules.

interactions of their respective ellipsoids. This is the Gaussian overlap model

(GO), the model depends on the short range repulsive force which the shape of the

molecule invokes. The interaction of two Gaussian functions will give a potential

of interaction between two ellipsoids of revolution as a function of the relative

orientations of their axial unit vectors u1,u2 and the vector r12 joining their centres,

V (u1,u2, r12) = ε(u1,u2) exp

[
− |r12|2

σ2(u1,u2, r̂12)

]
,

where ε(u1,u2) and σ(u1,u2, r̂12) are angle dependent strength and range param-

eters, and r̂12 is the unit vector in the direction of r12. The strength and range

parameters have the form

σ(ui,uj, r̂ij) = σ0

[
1− χ

2

(
(ui · r̂ij + uj · r̂ij)2

1 + χ(ui · uj)
+

(ui · r̂ij − uj · r̂ij)2

1− χ(ui · uj)

)]− 1
2

,(2.1)

ε(ui,uj) = ε0
(
1− χ2(ui · uj)2

)− 1
2 , (2.2)
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where χ = (κ2−1)
(κ2+1)

, κ =
σ‖
σ⊥

is the length to breadth ratio of both identical ellipsoids,

σ0 and ε0 are scaling constants for the contact distance and the well-depth when

the molecules are in the cross configuration. To first order in anisotropy χ, V

depends on (ui · r̂ij), for i = 1, 2, but not on (ui · uj). This means that we now

have an expression for the range parameter that depends on how each molecule is

orientated with respect to the intermolecular vector.

Berne and Pechukas [33] devised this Gaussian model to provide simple expressions

for the orientation dependence of molecular interactions. They suggested that the

orientation dependent strength and range parameters calculated from the inter-

action of two Gaussian functions could be used in the Lennard-Jones potential.

Thus, the Gaussian overlap potential (GO) would have orientational and distance

dependence,

UGO(u1,u2, r̂12) = 4ε(u1,u2)

[(
σ(u1,u2, r̂12)

r

)12

−
(
σ(u1,u2, r̂12)

r

)6
]
. (2.3)

The distance at which the two ellipsoids will touch is r = σ(u1,u2, r̂12). This

minimum separation distance will depend on u1, u2 and r̂12 and is the separation

at which the repulsive and attractive components exactly balance.

Although this potential has amended the Lennard-Jones potential to take into

account the shape of the molecules being modeled it is not a completely satisfactory

model, it has some unrealistic properties. Firstly the potential well-width increases

with the contact distance σ. Secondly, the potential well-depth depends only on the

angle between the long axes of the respective molecules and not on the angle they

make with the intermolecular vector. This means that the well-depths are the same

for side-side, SS, and end-end, EE, molecular configurations when we would expect
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a stronger interaction for the SS configuration. These unrealistic properties of the

Gaussian overlap potential are evident in Figure 2.3, where various orientations of

two molecules have been plotted.
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Figure 2.3: Gaussian Overlap potential (2.3) for various orientations of two
molecules: (a) side by side orientation θ = 0, ψ = 0, φ = 0 (red) and end to
end orientation θ = π

2
, ψ = 0, φ = 0 (blue), (b) θ = π

6
, ψ = π, φ = π (red) and

θ = π
6
, ψ = π

2
, φ = π (blue), (c) θ = π

6
, φ = 0, ψ = 0 (red) and θ = π

6
, φ = 0, ψ = π

2

(blue). The well-width varies with the contact distance, (1) and (2). The well-
depth is the same for side-side and end-end configurations (3).
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Gay and Berne [34] attempted to overcome these drawbacks in the Gaussian over-

lap model by comparing the GO potential to a site-site Lennard-Jones (SSLJ)

potential. The site-site interaction model has the form

Uss =
∑
α,β

εαβf

(
rαβ
σαβ

)
, (2.4)

where εαβ and σαβ are energy and distance parameters for interactions between

sites α on molecule 1 and β on molecule 2 and f is the Lennard-Jones potential; this

is the n site-site Lennard-Jones potential (nSSLJ). The short range attractive and

repulsive interactions can be effectively represented by designating several sites

in each molecule between which Lennard-Jones potentials act. However, larger

molecules require many sites to adequately represent them which would lead to

inefficiencies in computing.

2.1.1 Gay-Berne potential

Gay and Berne [34] avoid the problem of modelling large molecules with many

LJ sites by modelling the site-site potential with a single-site potential. They

compared a GO potential for molecules with axial ratio 3:1 with a 4SSLJ potential.

The behaviour of the 4SSLJ potential does not have the same drawbacks as the

GO model. The SS well-depth is deeper than the EE well-depth which is more

realistic. The SS-EE well-depth ratio is approximately 5:1. Also, the well-width is

approximately independent of orientations. From this analysis Gay and Berne used

two modifications to remedy the faults of the GO model. The first modification,

which had been suggested by Stone [35], was to use the shifted distance rather

than the scaled separation. This meant that rather than dilate the Lennard-Jones
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potential, the overlap range parameter displaces it. The new form of the potential

would then be

UGB(ui,uj, r̂ij) = 4ε(ui,uj, r̂ij)(R
12 −R6), (2.5)

where R =
σ0

r − σ(ui,uj, r̂ij) + σ0

.

The repulsive and attractive terms still cancel at r = σ so the ellipsoidal core is

retained, but the well-width is independent of orientation. The second modification

remedies the lack of dependence of the strength parameter ε on the molecules’

orientation with respect to the intermolecular vector by introducing a new form

for the parameter

ε(ui,uj, r̂ij) = ε0[ε(ui,uj)]
ν [ε′(ui,uj, r̂ij)]

µ, (2.6)

where ε(ui,uj) is (2.2) and

ε′(ui,uj, r̂ij) = 1− χ′

2

(
(ui · r̂ij + uj · r̂ij)2

1 + χ′(ui · uj)
+

(ui · r̂ij − uj · r̂ij)2

1− χ′(ui · uj)

)
, (2.7)

χ′ =
(κ

′ 1
µ − 1)

(κ
′ 1
µ + 1)

. (2.8)

Here κ′ is the ratio of side-side to end-end well-depths. Gay and Berne found

a satisfactory fit to the site-site potential with parameter values κ = 3, κ′ = 5,

ν = 1 and µ = 2. The single site potential reproduces the behaviour of the site-site

potential rather well. Increasing the number of sites in the SSLJ potential will only

increase the faithfulness of the modified overlap potential as the unoccupied space
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around the sites will reduce, becoming more ellipsoidal as a whole. The Gay-Berne

potential (GB) should not be taken as a mere fit to the SSLJ potential, as evidence

of nematic ordering in a GB fluid has been found in situations where the 4SSLJ
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Figure 2.4: Gay-Berne potential (2.5). The well-depths for various orientations
of two molecules: (a) κ′ = 5, side by side orientation θ = 0, ψ = 0 (red) and
end to end orientationθ = π

2
, ψ = 0 (blue), (b) θ = π

6
, ψ = 0, φ = 0 (red) and

θ = π
6
, ψ = π

2
, φ = 0 (blue), (c)θ = π

6
, φ = π, ψ = π (red) and θ = π

6
, φ = π, ψ = π

2

(blue). The interaction potential has lower minimum when the molecular centres
are closest and the space between molecules is reduced.
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potential leads to no nematic ordering. Figure 2.4 shows the UGB as a function of

r for various orientations of the molecules; when the molecular centres are closest

the potential has minimum energy. We can see that the potential has corrected

the faults of the GO potential. The SS well-depth is lower than the EE and the

well-width does not vary with the separation distance. We can also see that, where

the GO potential had the same well-depths for the molecular orientations in (b)

and (c), the GB potential now depends on the intermolecular vector.

The Gay-Berne model mesogen has four parameters (κ, κ′, µ, ν) which control

the molecular interaction energy and allow investigation of the liquid crystal be-

haviour of different mesogenic molecules. Bates and Luckhurst [36] suggested the

mnemonic GB(κ, κ′, µ, ν) to describe the different Gay-Berne mesogens. Adams

and Luckhurst [37] demonstrated using molecular dynamics simulations that for

the mesogen suggested by Gay and Berne, GB(3,5,2,1), isotropic and nematic

phases formed. Coincidentally Luckhurst and Stephens [38] investigated GB(3,5,1,2)

and discovered the formation of smectic A and smectic B phases also. The change

to the mesogen parameters resulted in increases in well-depth for both side-side

and end-end configurations. Since then many other GB mesogens have been in-

vestigated [29].

2.1.2 Electrostatic dipole-dipole interaction

The Gay-Berne potential models the forces of repulsion and attraction of a simple

ellipsoid shaped molecule only, which means that another potential will need to be

added if the model is to include dipole-dipole interactions. A dipole exists when

there is an inhomogeneous charge density within the molecule, meaning that the
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electrons within the overall neutrally charged atoms of the molecule redistribute

causing localised poles. Dipole interactions have long range effects and are ex-

pected to have a significant contribution to the potential. A chiral smectic C

material will have a spontaneous polarisation component parallel with the short

axis of the molecule bi, which is perpendicular to the plane containing the smectic

layer normal and the long axis (ui) of the molecule, (see Fig 2.5). The resulting

dipole-dipole interaction potential of two molecules each containing a dipole is

UDD(u1, r12,u2) = −r−5d2
⊥[3(r · b1)(r · b2)− r2b1 · b2], (2.9)

where the interacting dipoles are orientated along the axes, di = d⊥bi, r =

r12 + ν(u2 − u1), ν is the dipole location from the centre-of-mass (c.o.m) of both

molecules and r12 is the vector from the c.o.m. of molecule 1 to the c.o.m. of

molecule 2 [22].

b

x y

z

Figure 2.5: Dipole model. The dipole, parallel to short axis b, is perpendicular to
the plane containing the layer normal, z, and the long axis of the molecule.
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2.1.3 Further investigation of the Gay-Berne and dipole-dipole inter-

action potentials

So far we have introduced the Gay-Berne (2.5) and the electrostatic dipole-dipole

(2.9) interaction potentials. These potentials model the steric effect of the shape

of the molecules, the van der Waals dispersion force, and the dipole-dipole inter-

actions. Let us now illustrate the behaviour of these two potentials. Initially, we

will investigate how the orientation of each molecule relative to each other will

affect the energies of the standard GB(3, 5, 2,1) potential and an arbitrary dipole-

dipole potential (ν = 0.6, d⊥ = 0.5). Then, we will vary the model parameters:

molecular length-breadth ratio κ, well-depth ratio side-side/end-end κ′, dipole lo-

cation ν and strength d⊥, and show how they affect the potential. Next, we will

integrate the potentials over the molecular displacement vector r assuming a uni-

form distribution of molecules in r. This will result in a pair potential depending

only on the respective orientations of the molecules, the tilt and azimuth angles

[(φ1, θ1), (φ2, θ2)]. We will then analyse the behaviour of the potential by varying

the model parameters. Fully understanding the behaviour of our model potential

will be useful for later Chapters. We will see in the next Chapter how a potential

describing the interaction of two molecules depending only on (φi, θi) can then be

used to model the phase transition from smectic A to smectic C.

In Figure 2.4 the Gay-Berne potential, GB(3,5,2,1), was plotted for three different

molecular configurations. The orientation variables varied were; θ, the tilt angle,

φ, the difference in azimuth angles, and ψ, the intermolecular angle. From these

plots we can see that the potential well-depths and the separation distance at

which these occur can vary drastically depending on the molecular configuration.
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The potential energy is minimised when the molecular centres are closest and when

the unoccupied space between the two molecules is minimised. In Figure 2.6 the

Gay-Berne (GB) and dipole-dipole (DD) potentials are calculated for a circular

region with radius four at the origin for two different molecular orientations. The

colormap represents the energy of the potential when the first molecules c.o.m.

is located at the origin with orientation φ = 0 and θ1 = θ, and the c.o.m. of a

second molecule, with φ2 = φ and θ2 = θ, is positioned at that point in the space.

Each radial from the origin is representative of Figure 2.4 with angle ψ from the

x axis. The empty centre of the colormap shows where the two molecules would

overlap. In Figure 2.6 (a) and (c) the UGB is minimum when ψ = π
2
, low when

Figure 2.6: The Gay-Berne and dipole-dipole potential as a surface depending on r12, the
variables (r and ψ), for the molecular orientations (φ = 0, θ = π

8 ) in (a), (b) and (φ = π, θ = π
8 )

in (c) and (d).
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the molecules c.o.m are close (r small) and increases as the c.o.m. move further

from one another (r increasing). In Figure 2.6 (b) and (d) the UDD is minimum

when ψ = π
2

and ψ = 0 respectively. These relative orientations allow the dipoles

to align. The GB energy is minimised depending on a balance of the molecular

centres closeness and reduction of unoccupied space between the molecules. The

DD potential is minimised when the ‘negative’ end of a dipole is not positioned

alongside another, but near a ‘positive’ end of a dipole.

We now consider how the molecular parameters affect the related potentials. For

the GB potential we vary κ, the length-breadth ratio of the molecules. In Figure

2.7, the effects of lengthening the molecules can be seen through an increase of
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the preferred separation distance when the configuration would otherwise result

in an overlap of molecules. We also note that the minimum energy decreases

when the unoccupied space decreases. There is no change in (d) due to the cross

configuration of the molecules being unaffected by increasing molecule length.

In Figure 2.8 we consider the dipole-dipole potential and vary the four model pa-

rameters: molecular length to breadth ratio κ, well-depth ratio κ′, dipole location

ν, and dipole strength d⊥ for one molecular configuration. As we increase κ the

separation distance increases also. In the chosen tilted molecular configuration,

lengthening the molecules, increasing κ, has increased the minimum separation

distance σ(2.1) of the Gay-Berne potential. The dipole-dipole potential is inde-

pendent of κ′. The molecular orientation of φ = π
6
, ψ = π

2
aligns the ‘negative’
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part of a dipole on the first molecule with the ‘positive’ part of the dipole on the

second molecule. Sterically, the molecules are closest at their cores, so UDD will

have lowest energy when the dipole is located at the core. As the dipole location

moves further from the core along the molecule, the dipoles move further from

one another due to the relative orientation, thus resulting in UDD increasing. The

dipole-dipole potential energy is proportional to d2
⊥, so as expected, when two

dipoles align UDD will have lower energy when the dipole strength d⊥ increases.
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A complete picture of the Gay-Berne and the dipole-dipole potential calculations

integrated over r12 are shown in Figures 2.9 and 2.10. In Figures 2.9 and 2.10 we

have integrated UGB and UDD over r12 as a surface for −π ≤ φ ≤ π with θ = π
4
,

and as a surface while varying −π ≤ θ ≤ π with φ = π
6

for the four molecular

parameters.

In Figure 2.9, increasing κ decreases the minimum energy and increases, to a lesser

extent, the maximum energy of UGB. The effect of κ on UDD is more complicated.

In Figure 2.9 (a) with a fixed tilt angle (θ = π
4
) we see that increasing κ increases

the minimum energy of UDD but its influence reduces as the molecules lengthen

and the minimum separation distance asymptotes to σ0
cos θ

. In Figure 2.9 (b) with

a fixed azimuthal angle φ = π
6
, the tilt angle at which the UDD has minimum

energy changes when increasing κ. Initially, θ = ±π
2

has minimum energy but as

κ increases θ = 0 or ±π is preferred.

In Figure 2.10 we look at how the remaining molecular parameters affect their

respective potentials. In Figure 2.10 (a) Increasing κ′ appears to increase the UGB

potential energy across all molecular configurations. In Figure 2.10 (b) increasing

ν decreases the minimum and increases the maximum energy of UDD. Fixing

φ = π
6

and increasing ν, we see that the preferred θ stays constant but decreases

the minimum energy, while the θ with maximum energy changes. (c) The dipole-

dipole potential is proportional to d2
⊥ so we see increasing dipole strength magnifies

the potential energy across all molecular orientations.
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(b) UDD as a function of (φ, ν) and (θ, ν). (c) UDD as a function of (φ, d⊥) and
(θ, d⊥).



2.2 An analytic form of the averaged Gay-Berne and dipole-dipole
potentials 31

2.2 An analytic form of the averaged Gay-Berne and dipole-

dipole potentials

The aim of modelling liquid crystals at the molecular level is to be able to map

molecular properties to the existence of various states of liquid crystal. We hope

to understand the effect the microscopic pair interaction potential has on the

thermodynamic behaviour of the macroscopic system. In the next Chapter we

examine in detail how we can calculate the free energy of a system of molecules

from the foundation of the interaction pair potential. Given the current forms of

the two potentials, analysis of the free energy would be impossible. We now try

to find an expression that will allow us to calculate the free energy.

We will assume two molecules on a fixed smectic cone (cone angle θ), integrate out

the r dependence and look at the potential for different positions on the cone. The

GB(3,5,2,1) potential (2.5) was calculated and integrated over r12 and is shown

in Figure 2.11: (a) for three cone angles (θ1 = θ2 = θ) and a range of azimuth

difference angles (φ = φ2−φ1), (b) for three azimuth difference angles (φ = φ2−φ1)

and a range of cone angles (θ1 = θ2 = θ), and (c) over a range of (φ, θ). We repeated

the same process for the dipole-dipole potential (2.9, shown in Figure 2.12, here we

use d⊥ = 0.5, ν = 0.6. It is apparent that the UGB(φ, θ) and UDD(φ, θ) are periodic

functions in φ and θ. As such, we can perform a Fourier series decomposition

that will approximate these potentials. This harmonic analysis will result in a

simpler form of the potentials more suitable for further analysis. We will therefore

calculate a Fourier cosine series in φ and θ in the hope that they will approximate

the molecular potentials sufficiently.
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Figure 2.11: The periodic nature of GB(3,5,2,1): (a) UGB periodic in φ, (b) UGB
periodic in θ, and (c) the surface of UGB(φ, θ) over θ and φ. As θ increases the
minimum at φ = 0 is joined by another minimum at φ = π.

Figure 2.12: The periodic nature of UDD: (a) UDD periodic in φ, (b) UDD periodic
in θ, and (c) the surface of UDD(φ, θ) over θ and φ.
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2.2.1 Fourier Analysis

Assuming the characteristics of the pair potential can be fitted by a harmonic

series, the potential is approximated by

U ≈
N∑

m,n=0

Amn cosmθ cosnφ (2.10)

where, for the following analysis, we have chosen N = 4.

Given the orthogonal nature of the cosine function we can calculate the Fourier

coefficients of the pair potentials as

A00 =
1

2π

∫ π

−π

∫ π

−π
Uppdφdθ, Amn =

1

π

∫ π

−π

∫ π

−π
Upp cosnφ cosmθ dφdθ, (2.11)

where Upp is a pair potential dependent on φ and θ.

To determine which modes are significant in the approximation we will look at

the magnitude of the Fourier coefficients. Using Matlab, the coefficients were

calculated for the Gay-Berne and dipole-dipole potential. The approximations for

the GB(3,5,2,1) (2.5), and the dipole-dipole (v = 0.6, d⊥ = 0.5) (2.9) potentials,

where the modes with coefficients of order O(Amn
A00

) > 0.01, are shown below

UGB =− 4.23− 1.34 cos 2θ − 0.54 cos 4θ − 0.55 cosφ− 0.08 cos 2θ cosφ

+ 0.46 cos 4θ cosφ− 0.35 cos 2φ+ 0.37 cos 2θ cos 2φ− 0.02 cos 4θ cos 2φ

− 0.04 cos 3φ+ 0.02 cos 2θ cos 3φ+ 0.04 cos 4θ cos 3φ

− 0.03 cos 4φ+ 0.04 cos 2θ cos 4φ− 0.01 cos 4θ cos 4φ, (2.12)
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UDD = 0.06 + 0.005 cos 2θ − 0.056 cos 4θ − 0.69 cosφ+ 0.036 cos 2θ cosφ

+ 0.03 cos 4θ cosφ− 0.013 cos 2φ− 0.01 cos 2θ cos 2φ+ 0.027 cos 4θ cos 2φ

− 0.034 cos 3φ+ 0.046 cos 2θ cos 3φ− 0.012 cos 4θ cos 3φ

− 0.0004 cos 4φ− 0.0008 cos 2θ cos 4φ+ 0.0046 cos 4θ cos 4φ. (2.13)

There is a clear drop in the order of magnitude of the Fourier coefficients after the

cos 2φ mode of UGB (2.12), so in order to use the simplest approximation to the

potentials we examine the differences when including only those modes up to cos 2φ

and all modes up to cos 4φ. In Figure 2.13 we have plotted the two pair potentials
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Figure 2.13: Contour plots of the (a) UGB and (d) UDD potentials and two examples
of Fourier series approximations. Approximations include: (b) all modes to cos 2φ
from (2.12), (c) all modes to cos 4φ from (2.12), (e) all modes to cos 2φ from (2.13),
(f) all modes to cos 4φ from (2.13). The simpler approximations (b) and (e) are
sufficient to capture the characteristics of UGB and UDD
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as contour plots and included the approximations to the potentials also. The

general properties of both potentials are also present in the two approximations.

This would suggest that an approximation up to mode cos 2φ would be sufficient

to capture the essence of both potentials whilst also reducing the complexity of

the model.

In Figure 2.14 we have plotted the Gay-Berne potential, GB(3,5,2,1), the dipole-
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Figure 2.14: (a) UGB(φ, θ) and (b) UDD(φ, θ) were combined in (c) Upp(φ, θ). The
Fourier approximation, which captures the characteristics of Upp(φ, θ), is plotted
in (d).
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dipole potential (v = 0.6, d⊥ = 0.5), the combined potential and the Fourier

approximation to the combined potential. The Fourier approximation includes

all combinations of the constant term, cosφ, cos 2φ, cos 2θ and cos 4θ. The dipole-

dipole potential was chosen to augment the Gay-Berne potential but not dominate

it. The Fourier approximation exhibits similar energy levels and locations of the

stationary points as the combined potential.

Now we look at how varying the molecular parameters alters the pair potential and

the coefficients of the Fourier modes approximating it. A base state was chosen

(κ = 3, κ′ = 5, v = 0.6, d⊥ = 0.5) from which we systematically varied a single

parameter while keeping the others constant. The results are plotted in Figure

2.15. We can see that, over the range of model parameters tested, all the Fourier

coefficients are either of significant magnitude or dependent on a model parameter.

The Gay-Berne and dipole-dipole interaction potentials describe excluded volume

effects and dipole-dipole interactions. They allow manipulation of physical charac-

teristics such as the molecular length to breadth ratio, dipole location and strength,

and strength of molecular orientation anisotropy. The aim of calculating a Fourier

series modelling these two pair potentials was simply to be able to analyse how

varying these molecular parameters would affect the phase behaviour of the liq-

uid crystal materials from which these molecules came. We will see how a pair

potential can be approximated to create a free energy in the next Chapter.
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Figure 2.15: The significant general Fourier coefficients are plotted against the
molecular parameters: (a) κ, the molecular length-breadth ratio; (b) κ′, the side-
side to end-end well-depth ratio; (c) ν, dipole location; and (d) d⊥, dipole strength.
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2.2.2 A glimpse at the Maier-Saupe interaction potential

A popular distance independent pair potential used in macroscopic modelling the-

ories is the Maier-Saupe potential derived in 1959 by authors of the same name

[39, 40, 41]. Maier and Saupe modelled the dispersion interaction as their inter-

molecular potential. In the next Chapter we use a simplified dispersion interaction

potential derived by Van der Meer [42, 43], see (3.10). The pair-potential potential

can be expressed as

UMS(φ, θ) = b0 + b1 cos2 θ + b2 cos4 θ + b3 sin2 2θ cosφ+ b4 sin4 θ cos 2φ, (2.14)

where θ is the tilt angle and φ is the difference in the azimuthal angles of molecules 1

and 2. The Maier-Saupe coefficients bi can now be found by performing a Fourier

decomposition with the form given above on the combined pair potential. In

this instance we would have five independent modes describing the pair potential.

Calculating the intermolecular pair potential, Upp(u1,u2), for a sum of the Gay-

Berne and dipole-dipole potentials, and performing a Fourier decomposition with

the form given in (2.14) we can equate the Fourier coefficients with the Maier-

Saupe coefficients. First we will calculate the coefficients of the φ modes, so after

the first stage of Fourier decomposition we will express Upp as

Upp ≈ A0 + A1 cosφ+ A2 cos 2φ (2.15)

where A0, A1, and A2 are the Fourier coefficients given by

A0 =
1

2π

∫ 2π

0

Upp dφ, A1 =
1

π

∫ 2π

0

Upp cosφ dφ, A2 =
1

π

∫ 2π

0

Upp cos 2φ dφ.
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When we try to decompose these coefficients further, this time in terms of the

θ components, we will have difficulty with A0 as our desired form contains non-

orthogonal components. So to calculate coefficients b0, b1, b2, we will have to solve

the system of equations,

∫ 2π

0

A0 dθ =2πb0 + πb1 +
3π

4
b2,∫ 2π

0

A0 cos2 θ dθ =πb0 +
3π

4
b1 +

5π

8
b2,∫ 2π

0

A0 cos4 θ dθ =
3π

4
b0 +

5π

8
b1 +

35π

64
b2.

The decompositions of A1 and A2 are more straight forward

b3 =
4

3π

∫ 2π

0

A1 sin2 2θdθ, b4 =
64

35π

∫ 2π

0

A2 sin4 θdθ. (2.16)

In Figure 2.16, the general Fourier approximation and the Maier-Saupe approxi-
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Figure 2.16: (a) the combined pair potential, (b) the general Fourier approxima-
tion, and (c) the Maier-Saupe Fourier approximation as functions of φ and θ.
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mation to the combined pair potential is plotted. We see that both approximations

to the interaction energy possess the same symmetry and similar energy levels to

the combined pair potential, although the Maier-Saupe has only five independent

coefficients as opposed to the nine of the general Fourier decomposition model.

To compare the general Fourier decomposition (2.12, 2.13) to the Maier-Saupe

potential we rewrite the Maier-Saupe potential using cosine double angle relations.

The modes that are represented by the potential are similar as those chosen during

our Fourier analysis of the combined potential.

UMS(u1,u2) = c0 + c1 cos 2θ + c2 cos 4θ + c3 cosφ+ c4 cos 2θ cosφ+ c5 cos 4θ cosφ

+ c6 cos 2φ+ c7 cos 2θ cos 2φ+ c8 cos 4θ cos 2φ (2.17)

where

c0 = b0 +
b1

2
+

3b2

8
, c1 =

b1 + b2

2
, c2 =

b2

8
,

c3 =
b3

2
, c4 = 0, c5 = −b3

2
,

c6 =
3b4

8
, c7 = −b4

2
, c8 =

b4

8
. (2.18)

We see that only one mode, cos 2θ cosφ, is unrepresented, and also that the eight

modes are dependent on the five independent coefficients. We repeated our analysis

of the model parameters and plot the results in Figure 2.17. We compare the

nine coefficients of the general Fourier decomposition of Upp with the equivalent

Maier-Saupe coefficients. Excluding the missing cos 2θ cosφ mode, the Maier-

Saupe approximation shows similar dependence on the molecular parameters as

the general Fourier approximation. However, the magnitude of the dependence is
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not always matched. The Maier-Saupe is least successful at matching the cos 2φ

terms when varying d⊥, but that may be due to the relative weightings given to
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Figure 2.17: The significant general Fourier coefficients (solid lines) and Fourier
Maier-Saupe (2.17) coefficients (markers) are plotted against the molecular param-
eters: (a) κ, the molecular length-breadth ratio; (b) κ′, the side-side to end-end
well-depth ratio; (c) ν, dipole location; and (d) d⊥, dipole strength.
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the UGB and UDD when combining them. Therefore, the Maier-Saupe potential

would be a simpler yet adequate approximation to the pair potential calculated

from the combination of the Gay-Berne and dipole-dipole potentials.

In Figure 2.18 we have plotted the coefficients of (2.14) as they vary with the

molecular parameters. We fixed the tilt angle θ so the preferred molecular ori-

entation will depend only on the φ Fourier modes. The cosφ mode aligns the

molecules side-side on the smectic cone, φ = 0, when b3 < 0. The cos 2φ mode

aligns the molecules at opposite sides of the smectic cone, φ = π, when b4 < 0.

Increasing any of the molecular parameters will cause b3 to become more negative,
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Figure 2.18: The Maier-Saupe coefficients (2.16) are plotted against the molecular
parameters: κ, the molecular length-breadth ratio, κ′, the side-side to end-end
well-depth ratio, ν, dipole location, and d⊥, dipole strength.
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and side-side molecular orientation to be preferred, but κ and d⊥ have the most

influence. Increasing κ and κ′ also increase the preference for the molecules to lie

on opposite sides of the smectic cone, but increasing ν decreases end-end packing

as the dipoles do not want to move further away from each other. It should be

noted that the magnitude of b3 is always greater than b4 which tells us that in all of

these cases the Maier-Saupe potential will prefer for the molecules to lie side-side

on the smectic cone.

2.3 Summary

In this Chapter, we have investigated the Gay-Berne and dipole-dipole intermolec-

ular interaction pair potentials. We have seen how intermolecular position and

relative molecular orientation have affected the standard GB(3,5,2,1) potential

and an arbitrary dipole-dipole potential (ν = 0.6, d⊥ = 0.5). We then investi-

gated the effect of the molecular parameters (κ, κ′, ν, d⊥) after the potentials

were integrated over the intermolecular vector so that the energy depended on

only the relative orientation of the molecules. This set of varied model parameters

will be used throughout this thesis as we increase the length-scales of our models.

Finally, we used Fourier analysis to find an analytic form of the potentials that

depended on the relative molecular orientation. We found that the Maier-Saupe

potential was capable of being a reasonable approximation to the combination of

the Gay-Berne and dipole-dipole potentials.

In conclusion, it should be possible to create a molecular interaction potential that

accounted for short and long range forces. The Gay-Berne potential, modelling

the steric effect of the molecules and the van der Waals dispersion force, and the
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dipole-dipole potential, modelling the long range force of dipole interactions, can be

combined to model these forces effectively. How these potentials are weighted when

combined is still to be determined. The Fourier approximation of this combined

potential would allow us to calculate coefficients of the Maier-Saupe model from

the Gay-Berne and dipole-dipole potentials. This type of approximation allows us

to model at length-scales larger than the molecule, and in the next Chapter we

look at how the Maier-Saupe theory can be used in this way.
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3 The Maier-Saupe approach

3.1 Introduction to the mean-field theory

The goal of the mean-field theory is to reveal the properties and structures of liquid

crystals that are responsible for the onset of liquid crystal order at the microscopic

level. Themean-field theory depends on the interaction between molecules, but

the intermolecular interaction potentials can only be modelled. They are thought

to be complex in form as the typical mesogenic molecules are complex. This com-

plexity will complicate the statistical mechanics we wish to perform on our model

potentials. Computing capabilities available today do allow us to perform simula-

tions with realistic molecular models but also have their drawbacks. For example,

very large systems using thousands of particles are necessary to model even simple

systems. As well as computer time consumption, one drawback is the difficulty

in relating the macroscopic parameters of liquid phases from empirical data to

the features of simulated molecular structures. An accessible review by Osipov

[44] covers the basics of molecular theories. In this Chapter we will introduce the

intermolecular pair potential used by Maier and Saupe, and the mean-field theory

they employed to calculate the free energy of the de Vries system.

3.1.1 The intermolecular interaction potential

The intermolecular interaction potential is desired because the characteristic prop-

erties of liquid crystals arise from how the molecules interact with each other.

An effective potential should highlight the major qualities and ignore the less
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prominent features. An established molecular theory is that of Maier and Saupe

[39, 40, 41]. They assumed that the interaction of the anisotropic molecular po-

larisations were the cause of nematic order. This assumption was founded in the

observations that molecules in the nematic state have strongly anisotropic po-

larisabilities and that the permanent dipoles are not required for the formation

of the nematic phase. In thermotropic liquid crystals, where transition between

phases depends on temperature, dispersion (van der Waals) interactions must be

included in any model potential. Maier and Saupe used an approximation to the

dipole-dipole dispersion interaction found from performing second order pertur-

bation theory on the electrostatic interaction as their intermolecular interaction

potential.

The dipole-dipole dispersion interaction was simplified by Van der Meer [42, 43] by

assuming the short axes of the molecules rotate around the long axis (a1) without

correlation. Van der Meer therefore averaged the dispersion potential over all short

axes resulting in the expression for an effective uniaxial potential,

Ueff = C − J2
12(a1 · r12)2 − J2

21(a2 · r12)2 − J12 [(a2 · a2)− (a1 · r12)(a2 · r12)]2 ,

(3.1)

where C is a constant and the J coefficients are in terms of the dipole and

quadrupoles. This effective uniaxial potential depends on how two molecules are

orientated in relation with each other and in relation to the intermolecular vector

r12. The next step in understanding the thermodynamic properties of the model

would be to calculate the free energy associated with this pair potential. This

requires summing over all possible pair interactions. Maier and Saupe employed

the mean-field approximation to develop a simple usable form of the free energy.
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3.1.2 The mean-field approximation and the free energy

The free energy of the system, which consists of the internal energy and entropy,

is

F =
1

2
ρ2

∫ ∫
U(1, 2)f2(1, 2)dγ1dγ2 + kTρ

∫ ∫
f2(1, 2)ln [f2(1, 2)] dγ1dγ2,

where U(1, 2) is the interaction potential between molecules 1 and 2, f2(1, 2) is the

pair distribution function of two molecules, γi denotes all microscopic variables of

molecule i, and ρ is the number density of molecules in the system. Integration

is over all pairs of molecules [44]. The mean-field approximation ignores all direct

correlations between different molecules and replaces them with an average inter-

nal field experienced by each molecule. In statistical mechanics this means that

the pair distribution is replaced by the product of two one-particle orientational

distributions, that is f2(1, 2) = f1(1)f1(2).

This gives a free energy for the system,

F =
1

2
ρ2

∫ ∫
U(1, 2)f1(1)f1(2)dγ1dγ2 + kTρ

∫
f1(1)ln [f1(1)] dγ1, (3.2)

where the mean-field interaction potential can now be defined as

UMF = ρ

∫
U(1, 2)f1(2)dγ2. (3.3)
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Minimising the expresssion for the mean-field free energy (3.2) gives

f(γi) =
1

Z
e(−

1
kT
UMF (γi)), (3.4)

where Z =

∫
e(−

1
kT
UMF (γi))dγi, (3.5)

and substituting (3.4) into (3.2),

F =
1

2
ρ

∫
UMFf(γ1)dγ1 + kTρ

∫
f(γ1)ln

[
1

Z
e(−

1
kT
UMF (γ1))

]
dγ1

=
1

2
ρ

∫
UMFf(γ1)dγ1 + kTρ

∫
f(γ1)

[
− 1

kT
UMF (γ1)− lnZ

]
dγ1

= − 1

2
ρ

∫
UMFf(γ1)dγ1 − kTρlnZ. (3.6)

Although Maier and Saupe devised this theory for the nematic phase equations

(3.4) and (3.5) are not restricted to this phase. The one-point distribution function

depends on the relative position r12 so it can be used to describe smectic molecular

distributions.

Unlike the Gay-Berne potential from the previous Chapter the Maier-Saupe theory

enables us to construct a pair interaction potential from the dispersion interaction

energy in such a form that we can analyse its characteristics. We can also use a

mean-field approximation to find a free energy on which we can perform analysis.

This analysis is covered in the following sections of this Chapter.
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3.2 Construction of a mean-field model for de Vries Sm C

Our molecules exist in the 3-d space (x, y, z). The average molecular long axis is

the director, n and is nonpolar so n ≡ −n. We define the molecular long axis as ai,

the molecular short axis, perpendicular to the tilt plane, as bi. The spontaneous

polarisation dipole µ is parallel to bi. The function describing the distribution

of molecules on the cone f = f(ai) is assumed to be symmetric about the mean

azimuth angle φ̄, and
∫
fda = 1. We assume a symmetric distribution around the

cone and a fixed tilt angle to model a de Vries smectic.

Using the molecular long axis we describe the molecules, see Figure (3.1),

ai = i sin θ0 cosφi + j sin θ0 sinφi + kτi cos θ0. (3.7)

k is the unit vector in the z direction, which is the smectic layer normal. Since the

director n ≡ −n the states (θ0, φ) and (π+ θ0, π+φ) must be equivalent. In order

for a(θ0, φi) = a(π + θ0, π + φi) then we must introduce a new variable τi = ±1

which distinguishes between the two molecules a1 and −a1. In this way we need

only consider 0 ≤ θ0 ≤ π
2
, −π < φi ≤ π, and τi = ±1.

The interaction of two molecules will depend on their displacement from one an-

other. If we assume all molecules are contained in a single layer then the displace-

ment vector of two molecules’ centres-of-mass (c.o.m.) is given by

r12 = (cosψ, sinψ, 0), (3.8)

where ψ is the angle of the displacement vector from the x axis. We also assume
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that the c.o.m. are placed randomly so ψ has a uniform probability function.

y

x

z

a

φ

θ0

i

k

i
j

Figure 3.1: Geometry of model. i, j, and k are unit vectors, ai is the molecular
long axis, θ0 is the cone tilt angle, and φi is the azimuthal angle.

3.2.1 Calculating the Maier-Saupe pair potential

Analysis of the free energy using a pair potential calculated from the sum of the

GB and DD potentials would be impossible due to the lack of analytic form. Let

us instead use an interaction potential with a more manageable functional form

and the Fourier analysis discussed in Chapter 2 to combine the two approaches.

Van der Meer’s version of the effective interaction potential (3.1) describes the

electrostatic dispersion interactions between the molecules labelled 1 and 2. The

effective interaction potential is a function of molecules (a1, a2), the displacement

vector between the centre-of-mass (c.o.m) of the two molecules (r12), and the

material dependent constants, Js.

Ueff (a1, a2, r12) =J0 − J1(a1 · a2)2 + 2J2(a1 · a2)(a1 · r12)(a2 · r12)

− J3(a1 · r12)2(a2 · r12)2 − J2
12(a1 · r12)2 − J2

21(a2 · r12)2, (3.9)
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where, as stated previously in equations (3.7) and (3.8),

a1 = (sin θ0 cosφi, sin θ0 sinφi, τi cos θ0) ,

r12 = (cosψ, sinψ, 0) ,

and we assume that all molecules lie on a cone with angle θ0. To calculate the

pair potential we then integrate the two particle potential over r12. The working

is given in appendix A. We can rewrite (3.9) as

UMS(a1, a2) = b0 + b1 cos2 θ0 + b2 cos4 θ0 + b3τ1τ2 sin2 2θ0 cos(φ1 − φ2)

+ b4 sin4 θ0 cos 2(φ1 − φ2). (3.10)

We define the coefficients of the trigonometric functions as:

b0 =
π

2

[
4J0 − 2J1 + 2J2 − J3 − 2

(
J2

12 + J2
21

)]
,

b1 = π
[
2J1 − 2J2 + J3 +

(
J2

12 + J2
21

)]
,

b2 =
π

2
[−6J1 + 2J2 − J3] ,

b3 =
π

2
[−2J1 + J2] ,

b4 =
π

4
[−4J1 + 4J2 − J3] . (3.11)

and the bi coefficients coincide with the definition in (3.9).
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3.2.2 Analysis of UMS

Analysing the intermolecular interaction potential we hope to find the molecular

parameters that minimise the energy. Substituting φ = φ1 − φ2 we differenti-

ate (3.10) to determine when UMS is minimised with respect to φ, the relative

orientation,

∂UMS

∂φ
= (−4b3τ1τ2 sin2 θ0 cos2 θ0 − 4b4 sin4 θ0 cosφ) sinφ.

So
∂UMS

∂φ
= 0 when sinφ = 0 or cosφ = − b3τ1τ2

b4 tan2 θ0

,

ie. when φ = 0, π, or φ = cos−1

(
− b3τ1τ2

b4 tan2 θ0

)
when

∣∣∣∣b3

b4

∣∣∣∣ ≤ tan2 θ0.

Looking at the second derivative we can establish the stability of the solutions.

Case (i) φ = 0

∂2UMS

∂φ2
= −4b3τ1τ2 sin2 θ0 cos2 θ0 − 4b4 sin4 θ0,

minimum when − b3τ1τ2

b4

< tan2 θ0,

maximum when − b3τ1τ2

b4

> tan2 θ0.

Case (ii) φ = π

∂2UMS

∂φ2
= 4b3τ1τ2 sin2 θ0 cos2 θ0 − 4b4 sin4 θ0,

minimum when
b3τ1τ2

b4

< tan2 θ0,

maximum when
b3τ1τ2

b4

> tan2 θ0.
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Case (iii) φ = cos−1
(
− b3
b4
τ1τ2 cot2 θ0

)
,
∣∣∣ b3b4 ∣∣∣ ≤ tan2 θ0

∂2UMS

∂φ2
= −4b2

3

b4

cos4 θ0 + 4b4 sin4 θ0,

minimum when
b3

b4

> tan2 θ0,

maximum when
b3

b4

< tan2 θ0.

Case (iii) is complex when
∣∣∣ b3b4 ∣∣∣ > tan2 θ0, so it is only real as a maximum. Cases

(i) and (ii) describe two possible molecular orientations: two molecules at opposite

sides of the smectic cone [(φ = 0, τ1 6= τ2), (φ = π, τ1 = τ2)], and two molecules

aligned on the smectic cone [(φ = 0, τ1 = τ2), (φ = π, τ1 6= τ2)], see figure (3.2).

This means that we have two possible molecular orientations that locally minimise

the interaction potential. When b3
b4
> tan2 θ0, the interaction energy is minimised

when the two molecules align on the smectic cone, and when b3
b4
< tan2 θ0 the

interaction energy is minimised when the molecules align side by side or opposite

on the smectic cone.

(τ τ = 1, φ = π)1

z z

2
(τ τ = -1, φ = 0)1 2

(τ τ = -1, φ = π)1 2
(τ τ = 1, φ = 0)1 2

Figure 3.2: Diagram of preferred orientations in the mean-field interaction poten-
tial. The two molecules lying at opposite sides of smectic cone will create the
smectic A biaxial phase, the director is along the smectic normal but now appears
biaxial. The two molecules side-by-side on the smectic cone will create the smectic
C phase, the director will be tilted and biaxial.
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3.2.3 Mean-field interaction potential UMF without an external electric

field

In section 3.2.1 we calculated the Maier-Saupe interaction pair potential which we

now use to calculate the mean-field interaction potential as defined in (3.3). This

wil calculate UMF which the one-particle distribution function (3.4) depends on.

Once we have calculated UMF we can calculate an analytic form for the free energy

(3.6). We split (3.10) into three parts: UMF (i) the constant component, UMF (ii) the

cos(φ1−φ2) component, and UMF (iii) the cos 2(φ1−φ2) component. The constant

component will be unaffected due to the properties of the distribution function,

UMF (i) =ρ
∑

τ2=−1,1

∫ π

−π

[
b0 + b1 cos2 θ0 + b2 cos4 θ0

]
f(φ2, τ2)dφ2,

=ρ
[
b0 + b1 cos2 θ0 + b2 cos4 θ0

]
. (3.12)

Next we consider the cos(φ1 − φ2) term in (3.10),

UMF (ii) = ρ
∑

τ2=−1,1

∫ π

−π
b3τ1τ2 sin2 2θ0 cos(φ1 − φ2)f(φ2, τ2)dφ2.

We will rewrite

cos(φ1 − φ2) = cos((φ1 − φ̄)− (φ2 − φ̄))

= cos(φ1 − φ̄) cos(φ2 − φ̄) + sin(φ1 − φ̄) sin(φ2 − φ̄),
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where φ̄ is the mean of the distribution function. The distribution of f(φ2, τ2) is

symmetric about φ̄ and sin(φ2 − φ̄) is an odd function about φ̄. Therefore,

∫ π

−π
sin(φ2 − φ̄)f(φ2, τ2)dφ2 =

∫ π

φ̄

sin(φ2 − φ̄)f(φ2, τ2)dφ2 +

∫ φ̄

−π
sin(φ2 − φ̄)f(φ2, τ2)dφ2

=

∫ π

φ̄

sin(φ2 − φ̄)f(φ2, τ2)dφ2 +

∫ −π+φ̄

−π
sin(φ2 − φ̄)f(φ2, τ2)dφ2

+

∫ φ̄

−π+φ̄

sin(φ2 − φ̄)f(φ2, τ2)dφ2

=

∫ π+φ̄

φ̄

sin(φ2 − φ̄)f(φ2, τ2)dφ2 +

∫ φ̄

−π+φ̄

sin(φ2 − φ̄)f(φ2, τ2)dφ2

since φ2 = π and φ2 = −π are equivalent. So we have

∫ π

−π
sin(φ2 − φ̄)f(φ2, τ2)dφ2 =

∫ π+φ

−π+φ

sin(φ2 − φ̄)f(φ2, τ2)dφ2 = 0 (3.13)

since f is even and sin(φ2 − φ) is odd about φ2 = φ̄. Therefore,

UMF (ii) =b3ρ sin2 2θ0τ1 cos(φ1 − φ̄)V, (3.14)

where we define

V =
∑

τ2=−1,1

∫ π

−π
τ2 cos(φ2 − φ̄)f(φ2, τ2)dφ2. (3.15)

Finally, we integrate the cos 2(φ1 − φ2) term in (3.10),

UMF (iii) = ρ
∑

τ2=−1,1

∫ π

−π
b4 sin4 θ0 cos 2(φ1 − φ2)f(φ2, τ2)dφ2.



3.2.3 Mean-field interaction potential UMF without an external electric
field 56

Using the same approach used to calculate (3.14) we rewrite

cos 2(φ1 − φ2) = cos(2(φ1 − φ̄)− 2(φ2 − φ̄)),

= cos 2(φ1 − φ̄) cos 2(φ2 − φ̄) + sin 2(φ1 − φ̄) sin 2(φ2 − φ̄),

which results in

UMF (iii) = b4ρ sin4 θ0 cos 2(φ1 − φ̄)B, (3.16)

where we define

B =
∑

τ2=−1,1

∫ π

−π
cos 2(φ2 − φ̄)f(φ2, τ2)dφ2. (3.17)

Gathering (3.12), (3.14), and (3.16), the expression for the mean-field potential is

then

UMF =ρ
[
b0 + b1 cos2 θ0 + b2 cos4 θ0

]
+ b3ρ sin2 2θ0τ1 cos(φ1 − φ̄)V

+ b4ρ sin4 θ0 cos 2(φ1 − φ̄)B, (3.18)

where ρ is the number density, the bs are defined in (3.11). The parameters B and

V are order parameters. When B and V are zero the uniform distribution of the

molecules around the smectic cone gives a director with zero tilt angle. When B is

non zero the smectic cone appears biaxial and has a director with zero tilt angle.

When V is non zero, B is non zero and the smectic cone has a tilted director and

appears biaxial.
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3.2.4 Model with external electric field

We assume that the spontaneous polarisation, µ, of a molecule is parallel to the

molecular short axis b. Assuming that b is always normal to the instant tilt plane

we have

b = − k× a

|k× a|
= sinφi− cosφj,

which gives an expression for the spontaneous polarisation vector µ = µ0τ(sinφi−

cosφj), where µ0 is the polarisation specific to the material and τ maintains the

nonpolar property of the molecular distribution.

The contribution to the energy of interaction with the field E = (Ex, Ey, Ez) is

µ.E = µ0τ(Ex sinφ− Ey cosφ),

giving an interaction potential of

UMF =ρ
[
b0 + b1 cos2 θ0 + b2 cos4 θ0

]
+ b3ρ sin2 2θ0τ1 cos(φ1 − φ̄)V

+ b4ρ sin4 θ0 cos 2(φ1 − φ̄)B + µ0τ(Ex sinφ− Ey cosφ). (3.19)

We now have an expression for the mean-field interaction potential that we can

use to calculate the free energy of our system. Minimising the free energy of the

system will give us the order parameters (B, V ) for a specific temperature and set

of model parameters.
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3.3 Free energy

3.3.1 Approximating the mean-field free energy

The mean-field free energy is

F = −1

2
ρ
∑

τ1=−1,1

∫ π

−π
UMFf(φ1, τ1)dφ1 − kTρ lnZ, (3.20)

where Z =
∑

τ1=−1,1

∫ π

−π
e(−

1
kT
UMF (φ1,τ1))dφ1.

The mean-field interaction potential (3.19) was calculated previously but we will

re-express it as a function of (τ1, φ1) to reduce working,

UMF = D0 +D1τ1 cos(φ1 − φ̄)V +D2 cos 2(φ1 − φ̄)B + µ0τ1(Ex sinφ− Ey cosφ),

(3.21)

where we define the coefficients of the mean-field potential as

D0 = ρ(b0 + b1 cos2 θ0 + b2 cos4 θ0), D1 = ρb3 sin2 2θ0, D2 = ρb4 sin4 θ0. (3.22)

We can now calculate the free energy analytically. The first term of (3.20) is

straightforward,

−1

2
ρ
∑

τ1=−1,1

∫ π

−π
UMFf(φ1, τ1)dφ1 = −1

2
ρ
(
D0 +D1V

2 +D2B
2
)

−1

2
ρ
∑

τ1=−1,1

∫ π

−π
µ0τ1(Ex sinφ− Ey cosφ)f(φ1, τ1)dφ1. (3.23)
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The last term in (3.23) can be split in two and integrated separately. First we use

the trigonometric double angle formula,

sinφ = cos φ̄ sin(φ− φ̄) + sin φ̄ cos(φ− φ̄),

cosφ = cos φ̄ cos(φ− φ̄)− sin φ̄ sin(φ− φ̄),

and (3.13),(3.15) to find

−1

2
ρ
∑

τ1=−1,1

∫ π

−π
µ0τ1(Ex sinφ− Ey cosφ)f(φ1, τ1)dφ1

= −1

2
ρµ0

(
Ex sin φ̄− Ey cos φ̄

)
V.

Therefore the first term of (3.20) is

−1

2
ρ
∑

τ1=−1,1

∫ π

−π
UMFf(φ1, τ1)dφ1 = −1

2
ρ
(
D0 +D1V

2 +D2B
2 + µ0

(
Ex sin φ̄− Ey cos φ̄

)
V
)
.

(3.24)

Next we will calculate the last term of (3.20) by first approximating the exponential

term in Z assuming that B, V,Ex, and Ey are small. We truncate the Taylor

approximation about (B = V = Ex = Ey = 0) after order 2,

e(−
1
kT
UMF (φ1,τ1))

= e−
D0
kT − e−

D0
kT

kT

(
D1τ1 cos(φ1 − φ̄)V +D2 cos 2(φ1 − φ̄)B + µτ1(Ex sinφ1 − Ey cosφ1)

)
+

e−
D0
kT

2k2T 2

(
D1τ1 cos(φ1 − φ̄)V +D2 cos 2(φ1 − φ̄)B + µτ1(Ex sinφ1 − Ey cosφ1)

)2
.
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Now we perform the integration over φ1 and τ1,

Z =
πe−

D0
kT

2k2T 2

(
4k2T 2 + µ2(E2

x + E2
y) + 2D1µ(Ex sin φ̄1 − Ey cos φ̄1)V

)
+
πe−

D0
kT

2k2T 2

(
D2

1V
2 +D2

2B
2
)
.

The last step is now to approximate lnZ. Given our assumptions that that

B, V,Ex, and Ey are small we can use the Taylor expansion for logarithms. We

again truncate the Taylor approximation (B = V = Ex = Ey = 0) after order 2,

−kTρ lnZ =− ρ

4kT
(D2

1V
2 +D2

2B
2 + 2D1µ(Ex sin φ̄− Ey cos φ̄))

− ρ

4kT
(8k2T 2 ln 2 + 4k2T 2 ln π − 4kTD0 + µ2(E2

x + E2
y)).

(3.25)

The truncated second order Taylor approximation to (3.20), using (3.24, 3.25), is

F =− ρ

4kT

[
(2kTD1 +D2

1)V 2 + (2kTD2 +D2
2)B2

]
− ρ

2kT
µ(1 +D1)(Ex sin φ̄− Ey cos φ̄)V

− ρD0

2
− ρkT (2 ln 2 + lnπ)− ρµ2

4kT
(E2

x + E2
y). (3.26)

We could now perform some analysis on the approximation of the free energy

to learn more about the dependence of the order parameters on temperature.

However, as the approximation is only to the second order the information we

could learn would be rather limited. Instead, we can follow the same steps but
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truncate the free energy approximation at fourth order and assume E = 0,

F =
ρ

64k3T 3
(D4

1V
4 +D4

2B
4)

+
ρ

8k2T 2
(D2

1D2B − 2kTD2
1 − 4k2T 2D1)V 2

− ρ

4kT
(2kTD2 +D2

2)B2

− ρD0

2
− ρkT (2 ln 2 + lnπ), (3.27)

which will provide more information when we perform the analysis due to the

higher powers of B and V .

3.3.2 Analysis of approximated free energy

The free energy is expressed as an expansion in the order parameters B and V , and

we can now minimise the free energy with respect to these two parameters. This

will enable us to plot phase diagrams which will tell us what phases are possible

in the model. If we consider possible extrema of the free energy (3.27) we need to

investigate,

∂F

∂V
=

ρ

16k3T 3
D4

1V
3 +

ρ

4k2T 2

(
D2

1D2B − 2kTD2
1 − 4k2T 2D1

)
V = 0, (3.28)

∂F

∂B
=

ρ

16k3T 3
D4

2B
3 +

ρ

8k2T 2
D2

1D2V
2 − ρ

2kT

(
2kTD2 +D2

)
B = 0. (3.29)

Solutions of (3.28) are

V = 0 or V = ± 2

D2
1

√
−D1 (D1D2B − 2D1kT − 4k2T 2) kT . (3.30)
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If V = 0 (3.29) gives three possible solutions for B,

B = 0 or B = ±2kT

D2
2

√
2D2 (2kT +D2). (3.31)

If V 2 = − 4
D3

1
(D1D2B − 2D1kT − 4k2T 2) kT then (3.29) becomes

∂F

∂B
=

ρ

16k3T 3
D4

2B
3 − ρ

kT

(
kTD2 +D2

)
B +

ρD2

D1

(D1 + 2kT ) = 0, (3.32)

which has three solutions (B1, B2, B3). So possible phases are therfore

(1) V = 0, B = 0,

(2) V = 0, B = ±2kT

D2
2

√
2D2 (2kT +D2),

(3) V = ± 2

D2
1

√
−D1 (D1D2B − 2D1kT − 4k2T 2) kT , B = B1, B2, B3.

The stability of these phases can be investigated by looking at

∆ =
∂2F

∂V 2

∂2F

∂B2
−
(

∂2F

∂V ∂B

)2

. (3.33)

(1) V = 0, B = 0

∆ = ρ2D1D2

(
D1

2kT
+ 1

)(
D2

2kT
+ 1

)
.

∆ > 0 if

(
D1

2kT
+ 1

)
> 0 and

(
D2

2kT
+ 1

)
> 0 MIN

or

(
D1

2kT
+ 1

)
< 0 and

(
D2

2kT
+ 1

)
< 0 MAX

(3.34)
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The phase V = 0, B = 0 will therefore be a minimum when T > −D1

2k
and

T > −D2

2k
, and a maximum when T < −D1

2k
and T < −D2

2k
.

(2) V = 0, B = ±2kT
D2

2

√
2D2 (2kT +D2)

∆ =

(
± ρD2

1

2kTD2

√
2D2(2kT +D2)− ρD2

1

2kT
− ρD1

)
︸ ︷︷ ︸

F1= ∂2F
∂V 2

(
3ρ

2kT
D2(2kT +D2)− ρD2

2

2kT
− ρD2

)
︸ ︷︷ ︸

F2= ∂2F
∂B2

.

The ± sign denotes usage of ±B to calculate ∆. From (2) we know the phase

V = 0, B 6= 0 will only be real when T < −D2

2k
. The phase V = 0, B 6= 0 will be

a maximum when F1 < 0 and F2 < 0, and a minimum when F1 > 0 and F2 > 0.

Solving ∆2 = 0 for T gives the transition temperatures

TF1 =
D1

4kD2

(
2(D1 −D2)±

√
(2(D1 −D2))2 + 4D2

2

)
,

TF2 = − D2

2k
.

These critical temperatures tell us when F1 and F2 switch sign. It is useful to

know where these temperatures are in relation to one another. The square root

term in TF1 is always positive, so we have T−F1
< T+

F1
. As we stated, the phase will

not exist above TF2 so we will check to see whether TF2 > T+
F1

,

TF2 − T+
F1

= − D2

2k
− D1

4kD2

(
2(D1 −D2)±

√
(2(D1 −D2))2 + 4D2

2

)
= − 1

4kD2

(
2D2

1 − 2D2
2 − 2D1D2 +D1

√
(2(D1 −D2))2 + 4D2

2

)
= − 1

4kD2

(
D1 +

1

4

√
(2(D1 −D2))2 + 4D2

2

)2

> 0,
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provided D2 < 0. The transition temperatures are thus ordered T−F1
< T+

F1
< TF2 .

As we have ordered the transition temperatures we will also investigate what signs

F1 and F2 take as temperature goes to infinity,

as T →∞ F1 → −ρD1 > 0,

F2 → 2ρD2 < 0,

given the existence condition of D1

D2
> 0 and the assumption D2 < 0. Therefore F1

will be negative between (T−F1
, T+

F1
) and positive at all other temperatures, and F2

will be positive below TF2 . The phase V = 0, B 6= 0 will therefore be a minimum

of the energy below TF2 , except between (T−F1
, T+

F1
) where it will be a saddle point.

(3) V = ± 2
D2

1

√
−D1 (D1D2B − 2D1kT − 4k2T 2) kT , B = B1, B2, B3.

It is impossible to solve analytically the ∆ = 0 assosciated with this phase with re-

spect to temperature due to the higher order polynomials. Instead we can approx-

imate the temperature when the phase V = 0, B = 0 transitions to V 6= 0, B 6= 0.

The non-zero solution to (3.30) will exist when the square root term is real,

D1D2B − 2D1kT − 4k2T 2 ≥ 0.

Assuming that B and V are small near the phase transition, then

as B → 0 =⇒ T ≤ −D1

2k
.

Therefore the phase V = 0, B = 0 transitions to V 6= 0, B 6= 0 when T ≤ −D1

2k
.
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3.4 Phase diagrams with order parameters

In the previous subsection we calculated analytic approximations to the order

parameters B and V as functions of temperature under the assumption that B

and V are small. We could also numerically calculate B and V as functions of

temperature using two different methods.

The first method would be to calculate numerically the minimum points in the free

energy for a range of temperatures, see Figure 3.3. Calculating the free energy as

V

B

−1 0 1
−1

−0.5

0

0.5

1

−1 0 1
−1

−0.5

0

0.5

1

−1 0 1
−1

−0.5

0

0.5

1

−1 0 1
−1

−0.5

0

0.5

1

−1 0 1
−1

−0.5

0

0.5

1

−1 0 1
−1

−0.5

0

0.5

1

B

B
B

B
B

V V

V V V

(a) (b) (c)

(d) (e) (f)

Figure 3.3: Cone angle θ0 = π
4
; temperature (a) 0.01, (b) 0.8, (c) 1.2 with an

applied electric field in y direction Ey = 0; temperature (d) 0.01, (e) 0.6, (f) 0.95
with an applied electric field in y direction Ey = 0.05. All stationary points of free
energy surface are found and plotted on the contour plot: minima are blue, saddle
points are green, maxima are red.
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a function of B and V , we are left with a surface. It is non-trivial to detect the

spatial critical points on an arbitrary discrete grid, and our first attempt at finding

the stationary points was to move over a fixed grid finding where both dF
dV

= 0

and dF
dB

= 0 and then calculate the discriminant ∆ (3.33) to classify and organise

the stationary points. However, the discrete nature of the problem meant that

the number of points identified as stationary was dependent on the size of the

discretisation used. We therefore made use of the Matlab contour function which

plots isolines at various levels of a surface, making it ideal to find the zero isoline

of the surfaces dF
dV

and dF
dB

. Next we calculated where the two isolines crossed

using the Matlab function intersections, giving the coordinates (B, V ) of the

stationary points of the free energy. In this way we could calculate the stationary

points for a range of temperature. However, this method is time consuming and

computer intensive, leading us to another alternative method.

The second method would be to solve the simultaneous equations given by the

definitions of B and V ,

B =
∑

τ2=−1,1

∫ π

−π
cos 2(φ2 − φ̄)f(φ2, τ2)dφ2, (3.35)

V =
∑

τ2=−1,1

∫ π

−π
τ2 cos(φ2 − φ̄)f(φ2, τ2)dφ2, (3.36)

and the equation for f in (3.4). All integrations were performed using the com-

posite Simpson’s rule and the system of equations was solved using the Matlab

function fsolve for a range of temperature values. The previous method of calcu-

lating the minima of the free energy surfaces does, however, provide useful initial

guesses of B and V for fsolve at low temperatures. The calculated B and V were

then used for the initial guess of the following temperature. In Figure 3.4 we plot
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Figure 3.4: Cone angle θ0 = π
4
, applied electric field in y direction Ey = 0. Red

denotes a maximum, green a saddle point, and blue a minimum. Analytic and
numerical approximations to the phase diagrams: (a) Phase (B 6= 0, V = 0) is
a saddle point when T < −D2

2k
= 0.104, (b), (c) Phase transition (B = 0, V =

0) to (B 6= 0, V 6= 0) when T < −D1

2k
= 0.9929. Analysis matches numerical

approximation well when B and V are small.

the analytic and numerical approximations for B and V against temperature. We

used the bi coefficients that were calculated from the base set of molecular param-

eters from the previous Chapter. We can see that the temperatures at which the

phase transitions occur are the same for both approximations, and as we expected,

the analytic approximation is less accurate as B and V increase in size.

The full numerical solutions for (3.35), (3.36) have been plotted in Figures 3.5 and

3.6, with cone angles of θ0 = π
4
, π

3
respectively. Not all of the multiple solutions

are minima. A few examples of the energy surface and the numerically determined

stationary point solutions for B and V are shown in Figures 3.3, and 3.7. The

free energy surface was calculated at temperatures to display the various possible

solutions of B and V .
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Figure 3.5: Cone angle θ0 = π
4
. Order parameters B, V , birefringence and optic

axis are plotted against temperature. Blue solutions are minima, green solutions
are saddles, red solutions are maxima, and red circles show multiple solutions.
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3
. Order parameters B, V , birefringence and optic

axis are plotted against temperature. Blue solutions are minima, green solutions
are saddles, red solutions are maxima, and red circles show multiple solutions.
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When (E = 0, θ0 = π
4
), the stable phases that are possible are Sm A* (V = 0, B =

0) and Sm C* (V 6= 0, B 6= 0). When (Ey = 0.05, θ0 = π
4
), the electroclinic effect

causes ordering to appear in the tilt of the previous Sm A* phase (V > 0, B > 0).

As temperature decreases bifurcation occurs and there is another stable solution

(V < 0, B > 0). The energy levels of the stable solutions are not equal, (V >

0, B > 0) is the lowest energy state by design of the electric field interaction term

in (3.19).

The solutions for (3.35, 3.36) when θ0 = π
3

are similar to θ0 = π
4
. However, another

stable phase occurs as temperature decreases below T ≈ 0.1. The minimum is more

apparent in Figure 3.7(a) and (b). When E = 0 the minimum of (V = 0, B ≈ −1)

would suggest a Sm A* biaxial phase. When Ey = 0.05 the stable phase would be

a highly biaxial phase with a low tilt.
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Figure 3.7: Cone angle θ0 = π
3
, temperature T = 0.01 with an applied electric field

(a) Ey = 0 and (b) Ey = 0.05. All stationary points of free energy surface are
found and plotted on the contour plot: minima are blue, saddle points are green,
maxima are red.
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3.4.1 Optic axis and Birefringence

The optic axis and birefringence of a material are of importance when it comes

to device applications. The optic axis is the tilt angle of the director and the

birefringence is the ratio of the difference in refractive index and the difference of

the average refractive index. Clark et al. [45] presented expressions to calculate

the optic axis and the birefringence given the cone angle and distribution of the

azimuthal angle,

tan 2Θ

tan 2θ0

=

[
tan2 θ0 − 1

1
2
(B + 1) tan2 θ0 − 1

]
V, (3.37)

∆n

∆n0

=

[ 1
2
(B + 1) tan2 θ0 − 1

tan2 θ0 − 1

]
cos 2θ0

cos 2Θ
. (3.38)

The full numerical solutions for (3.35, 3.36) were used to calculate the optic axis

and birefringence and have been plotted in Figures 3.5 and 3.6, with cone angles

of θ0 = π
4
, π

3
respectively.

3.5 Investigation of molecular model parameters

The mean-field theory and the Maier-Saupe interaction potential have enabled the

calculation of a free energy for our model 3.6. Given a set of parameters for the

molecular pair interaction potential, we can therefore calculate order parameters

for the system. These order parameters, B and V , are measures of the distribution

of molecules about a cone for a fixed temperature and fixed cone angle. The optic

axis and birefringence of our model are expressed in terms of B and V .

In the previous Chapter we investigated two intermolecular pair potentials, the
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Gay-Berne potential and the dipole-dipole potential. These two potentials have

molecular parameters for steric properties and dipole strength and location. How-

ever, the free energy would be too complicated to calculate analytically for these

potentials so we performed a Fourier analysis. Assuming the form of the pair

potential was that of the Maier-Saupe potential (3.10), we can then couple the

molecular parameters to the coefficients of the terms of the Maier-Saupe poten-

tial. In Figure 3.8 we plotted the bi coefficients (3.11) whilst varying the four

molecular parameters: κ molecular length-breadth ratio, κ′ the side-side to end-

end well-depth ratio, ν the dipole location, and d⊥ the dipole strength.

The order parameters B and V were calculated whilst varying the four molecular

ʼ

Figure 3.8: The Maier-Saupe Fourier coefficients (3.11) are plotted against the
molecular parameters: κ, the molecular length-breadth ratio, κ′, the side-side to
end-end well-depth ratio, ν,dipole location, and d⊥, dipole strength.
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potentials in turn. However, it would be trivial to calculate the related optic axis

and birefringence plots. Figures 3.9 and 3.10 show the order parameters versus

temperature in the absence and presence of an electric field. The predominant

feature when changing any of the molecular parameters is the change in the critical

temperature when E = 0. When an electric field is applied we see an increase in

B and V when we increase any of the four parameters. Varying κ, Fig. 3.9,

and d⊥, Fig. 3.10, had the biggest effect on the transition temperatures, B and

V of the four parameters with the values measured. Increasing κ increases the

length-breadth ratio of the molecules. Longer, slimmer molecules can pack more

efficiently than squatter molecules so we would expect the smectic order to increase

as κ increases. We would expect molecules with increasing dipole strength, d⊥, to

align more tightly than molecules with weak dipoles. The influence of the side-side

to end-end well-depth ratio, κ′, and the dipole location, ν, may be confounded by

the assumptions of a fixed molecular tilt angle and the molecular distribution,

f(φ, θ), not depending on the short axis of the molecule respectively.
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Figure 3.9: Cone angle θ0 = π
12

, minima are blue, saddle points are green. We
vary the molecular parameters: (a)(c)(e)(g) κ = [2.20, 3.02, 3.84, 4.66], increasing
the length-breadth ratio of the molecules increases the temperature for transition;
(b)(d)(f)(h) κ′ = [3, 6.47, 11.11, 15.74], the GB well-depth ratio has little effect on
the phase diagrams.
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Figure 3.10: Cone angle θ0 = π
12

, minima are blue, saddle points are green. We
vary the molecular parameters: (a)(c)(e)(g) ν = [0, 0.55, 0.87, 1.03], dipole lo-
cation appears to have little effect on the phase diagrams; (b)(d)(f)(h) d⊥ =
[0.5, 0.71, 0.92, 1.13], dipole strength has a large effect in scaling the transition
temperature.
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3.6 Summary

In this Chapter we have calculated the free energy given the Maier-Saupe pair

potential using the mean-field theory. We have minimised the free energy with

respect to the order parameters V and B, representing tilt and biaxiality respec-

tively. The optical axis and birefringence were calculated in terms of the order

parameters. The temperature dependence of the order parameters, optical axis

and birefringence can be displayed using phase diagrams. This means that we

have the capabilities to vary the parameters of the intermolecular potential and

see the effect on the optical properties of the bulk of the material. Using the

base parameter sets from Chapter 2, the Maier-Saupe potential parameters were

varied, which in turn varied the phase diagrams of the order parameters against

temperature.

So far we have successfully modelled liquid crystals at the molecular level and the

mesoscopic level, even managing to link the two length-scales. We can alter the

molecular properties of our molecules and see what effect they have on the physical

observables, the optic axis and birefringence, of the bulk material. In Chapter 4 we

will describe a simple model, that will allow us to investigate device applications,

which we will then link to the Maier-Saupe free energy we derived in this Chapter.
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4 Phenomenological model for switching in de

Vries FLCs

4.1 Landau-de Gennes Theory

In previous Chapters we have looked at building models of liquid crystals from the

interactions of the individual molecules with varying degrees of complexity. We

now look at modelling on a different length-scale. The Landau - de Gennes [46]

theory is a phenomenological model which tries to capture important qualities of

the phase transition. Rather than building from molecular interactions to describe

the behaviour of the system, the theory tries to reduce the complexity of the model

and focus on the mesophase transitions.

The phase transitions we are interested in are driven by a change in temperature,

we call this a thermotropic transition. This means that at a higher temperature

there is a less-ordered phase than at a lower temperature. A phase transition can

be identified through the use of an order parameter which often describes a change

in the symmetry properties from one phase to the next.

The structural order of the mesophases will often be distinguishable from each

other by the symmetry present in each mesophase. When operations, such as

translations, rotations and reflections, are applied to the structure of the phase

and the structure is left unchanged, then the symmetry of the phase is said to have

those characteristics. The less ordered high temperature phase will have greater

symmetry than the more ordered low temperature phase. Symmetry is broken at

the phase transition. For example, when we compare the nematic phase to the Sm
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A phase we notice that the degree of translational symmetry differs between the

phases. In the nematic phase translation in any direction by any amount will have

no effect on the nematic phase. However, due to the layers, the Sm A phase will

only allow translation in the direction of the layer normal by a distance which is a

multiple of the layer spacing. There are occasions where a change in symmetry is

not present in the phase transition, the liquid-gas transition for instance. However,

an order parameter depending on liquid density can be used.

The primary property of an order parameter is that it will have a value of zero in

the high temperature phase and will be non-zero in the lower temperature phase.

The phases’ transitions can be first-order discontinuous or second-order continuous

depending on the transition mechanism. The nematic-isotropic phase transition

is first order in the widely used S order parameter, and the Sm A-nematic phase

transition is second-order in the order parameter describing the formation of the

layers. The Landau-de Gennes theory uses an order parameter to describe the

phase transition.

4.2 Free Energy

4.2.1 The thermotropic terms

We are interested in modelling the Sm A (Sm A) to Sm C (Sm C) phase transition

using a Landau-de Gennes type theory. The material is assumed to be a de Vries

liquid crystal so we are primarily interested in the distribution of the molecules

around a cone with fixed tilt angle θ. The distribution of molecules’ azimuthal

angle is assumed to be a uniform probability function of domain (−dφ, dφ), see
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Figure 4.1. We use this simplication because, in reality, the probability density

function will not be uniform but analysis is impossible for a more complicated

case. In the Sm A phase dφ = π and in the Sm C phase 0 ≤ dφ < π. Hence, the

order parameter we will use is Ψ = (π − dφ).

The Landau-de Gennes theory [46] assumes that close to transition in Sm C the

order parameter will be small, so the free energy can be expanded as a power series

in the order parameter. The Gibbs free energy of a system at constant temperature

and volume is

G(Ψ, T ) = a0(T − Ta)Ψ2 + aΨ3 + bΨ4, (4.1)

with positive constants a0 and b and negative constant a. The coefficient of the

leading term of the power series expansion has the form of the simplest temperature

dependence possible, when a = 0, Ta is the transition temperature.

f(  )ϕ

ϕ-dϕϕ +dϕϕ

z

y

x

ϕ
ϕ

dϕ

ϕ

Figure 4.1: Molecular distribution described by the director azimuthal angle φ̄
and the spreads dφ around the Sm cone, and the probability distribution function,
f(θ).



4.2.2 Analysis of the thermodynamic terms 80

4.2.2 Analysis of the thermodynamic terms

Our expression for the Gibbs free energy (4.1) is dependent on our order pa-

rameter Ψ and temperature T , by performing relatively simple analysis we can

ascertain which properties the Landau expansion models. Whichever temperature

we choose, the system will prefer a stable energy state. Therefore, we calculate

the stationary points of the free energy with respect to the order parameter and

assess their qualities. The temperature dependence of the order parameter can be

calculated by solving dG
dΨ

= 0 for Ψ,

dG

dΨ
= 2a0(T − Ta)Ψ + 3aΨ2 + 4bΨ3 = 0, (4.2)

so Ψ0 = 0, or Ψ± =
−3a±

√
9a2 − 32a0(T − Ta)b

8b
, (4.3)

Ψ+ denotes the solution where the square root term is added, and Ψ− denotes the

solution where the square root term is subtracted. The solution Ψ = 0 represents

the lower ordered Sm A phase and the |Ψ| > 0 solutions represent the higher

ordered Sm C phase.

The discriminant of the polynomial on the right hand side of equation (4.2) will

determine when the roots are real or complex. The cubic discriminant has the

form

D3 = α2
1α

2
2 − 4α0α

3
2 − 4α3

1α3 + 18α0α1α2α3 − 27α2
0α

2
3,

where [α0, α1, α2, α3] are the coefficients of [Ψ0,Ψ1,Ψ2,Ψ3] in (4.2) respectively.

When D3 < 0 there is one real root and two complex conjugate roots, D3 = 0
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means there are three real roots with two being equal, and when D3 > 0 there are

3 real distinct roots. Here the discriminant has the form,

D3 = 36(a0(T − Ta))2a2 − 128(a0(T − Ta))3b. (4.4)

The discriminant is zero when

T1 = Ta, or T2 = Ta +
9a2

32a0b
, (4.5)

and we see from (4.2) that when T > T2 there will be one real and two complex

roots; when T = T2 or T = T1 there will be three real roots where two are equal;

and when T1 < T < T2 or T < T1 there will be three distinct roots. The stability of

the roots as it relates to energy can be found from looking at the second derivative

of the energy with respect to Ψ. Using the second derivative test we know that

the solution Ψ0 is a minimum when T > T1. The solution Ψ+ is a minimum when

T < T2, and the solution Ψ− is a minimum when T < T1. The roots and their

stabilities are displayed on Figure 4.2.

At any given temperature the system prefers whichever Ψ solution has lowest free

energy. Given that we have chosen a0 > 0, b > 0 and a < 0 for the model

coefficients, we can calculate which Ψ solution gives lowest free energy. We find

G(Ψ0) < G(Ψ±) when T > Ta + a2

4a0b
, and G(Ψ+) < G(Ψ0,−) when T < Ta +

a2

4a0b
. However, the system may not always lie in the lowest energy state. If

we were to reduce temperature and investigate when the high temperature Ψ0

phase transitions to the low temperature Ψ+ phase, the transition temperature

would be T = Ta rather than T = Ta + a2

4a0b
. This is due to the energy barrier

between the two stable energy states stemming from the discontinuity at T2. We
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Figure 4.2: Ψ = π − dφ versus temperature T . The stability of the branches is
denoted by solid or dashed lines. T1 and T2 are the transition temperatures

can calculate the discontinuity of the order parameter at T2 by substituting this

transition temperature into (4.3),

Ψ = 0, or Ψ = −3a

8b
.

Clearly a < 0 is necessary if Ψ is to be positive and the discontinuity will exist

while a 6= 0.

The thermodynamic terms of the free energy were designed in this way for two

reasons. Firstly, at high temperatures there is one minimum Ψ of the function

and when the temperature decreases past some transition temperature there will

be two minima. Secondly, the Ψ+ minimum has a lower energy than the other

minimum. These two characteristics are modelled using the quadratic, cubic and
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quartic terms of a Landau expansion where the coefficient of the cubic term is

negative to meet the second characteristic.

4.2.3 The dielectric terms

So far we have assumed that the cone tilt angle θ is fixed and allowed the distri-

bution of molecules about the director to change depending on temperature. By

adding dielectric terms to the free energy of the system, we can incorporate electric

field effects and polarisation self-interaction, and investigate the effect these terms

have on the distribution and orientation of the molecules in the steady state.

To construct these dielectric terms we look at the polarisation present in a layer of

our material. The Sm layer lies in the xy-plane and on each molecule there exists a

dipole perpendicular to the long axis of the molecule in this plane. The strength of

Pm

ϕϕ+- m
x

y

zϕ-

x

dϕ

ϕ

ϕ-

m

Pm

x

y
m

PP

ϕ+-

dϕ
Figure 4.3: Dipole of molecule m, Pm, described by the director azimuthal angle
φ̄ and the spreads dφ around the Sm cone
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the dipole is the local molecular polarisation P and the polarisation vector for each

molecule is Pm = P (cosψm, sinψm, 0). The angle between the dipole of molecule

m and the x-axis is ψm = φ̄+ φm + π
2
, and φm is the difference in azimuthal angle

of molecule m from the director azimuth angle φ̄, see Figure 4.3. The distribution

of molecules around the Sm cone is assumed to be uniform from [φ̄− dφ, φ̄ + dφ]

about the azimuthal angle of the layer director φ̄. Therefore, the net polarisation

of the layer is simply the sum of these local molecular polarisations. We then

integrate Pm with respect to the distribution of molecules, f , on the smectic cone

to calculate the net polarisation

P =

∫ dφ

−dφ
Pmf(φm)dφm =

∫ dφ

−dφ
P (cosψm, sinψm, 0)f(φm)dφm

=

∫ dφ

−dφ
P
(

cos(φ̄+ φm +
π

2
), sin(φ̄+ φm +

π

2
), 0
)
f(φm)dφm

= P

∫ dφ

−dφ

(
− sin(φ̄+ φm), cos(φ̄+ φm), 0

)
f(φm)dφm.

Expressing the polarisation vector as a combination of the unit vectors i and j in

the x and y directions we have

P =− iP

∫ dφ

−dφ

(
sin φ̄ cosφm + cos φ̄ sinφm

) 1

2dφ
dφm

+ jP

∫ dφ

−dφ

(
cos φ̄ cosφm − sin φ̄ sinφm

) 1

2dφ
dφm

=− iP

[
sin φ̄

sinφm
2dφ

+ cos φ̄
cosφm

2dφ

]dφ
−dφ

+ jP

[
cos φ̄

sinφm
2dφ

+ sin φ̄
cosφm

2dφ

]dφ
−dφ

=P

(
− sin φ̄

sin dφ

dφ
, cos φ̄

sin dφ

dφ
, 0

)
.

We have now calculated the net polarisation of the layer so we can add dielectric

terms to our Gibbs free energy. The self-interaction energy of a polarisation P
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within a material was presented by Goodby et al [47]. In a material of dielectric

susceptibility χ, the self-interaction energy is given as P2

2χ
. The self-interaction

energy term of the free energy is

Ginter =
P2

2χ
=
P 2

2χ

sin2 dφ

dφ2
. (4.6)

The spontaneous polarisation interacting with an external field E = E(cosψ, sinψ, 0),

where ψ is the angle of E field in relation to the x axis, will have an energy of

−E·P
2

. The final dielectric term of the free energy is

Gelec = −E ·P
2

= −EP
2

sin(ψ − φ̄)
sin dφ

dφ
. (4.7)

4.2.4 The thermotropic and dielectric free energy

The free energy of the system including the thermotropic and dielectric terms is

thus

G =Gtherm +Ginter +Gelec (4.8)

=a0(T − Ta)Ψ2 + aΨ3 + bΨ4 +
P 2

2χ

sin2 dφ

dφ2
− EP

2

sin dφ

dφ
sin(ψ − φ̄), (4.9)

where a is a negative constant, a0 and b are positive constants, P is the local

molecular polarisation, χ is susceptibility, E is an applied electric field with angle

ψ from the x axis, and Ta is a constant temperature near the transition from Sm

C to Sm A phase if P = 0.

The first three terms in (4.9) are derived from the Taylor expansion of the ther-
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modynamic potential function. The thermodynamic terms will exhibit one stable

root of dφ = π when the temperature T > T2, and two stable roots when T < T2.

When T < T1 the root dφ < π is energetically prefered. The negative constant

a causes the stable root dφ < π to have minimum energy. The fourth term of

the energy is the self-energy of a polarisation P within a material of susceptibil-

ity χ. This term has a minimum energy contribution when dφ = π, it prefers the

molecules to be spread apart. The fifth term is the electric-polarisation interaction

term and it prefers the molecules to be ordered dφ = 0 and φ̄ = ψ − π
2
.

These three components of the free energy are plotted separately in Figure 4.4.

The polar term has a maximum at dφ = 0, the function is symmetric at this line

also and it has a minimum at dφ = π. When combined with the thermodynamic

term, the polar term will influence the free energy to choose equilibrium dφ ≥ π.

The electric field term will have a minimum at dφ = 0 when a field, E > 0, is

present with angle ψ = φ̄ + π
2
. This means that the spread of the molecules on

the Sm cone will decrease as the molecules dipoles align with the electric field.

When the electric field is reversed this term prefers an equilibrium dφ ≈ 4.5, the

molecules would overlap at the opposite side of the cone from φ̄ which disrupts

our model design of dφ ∈ [0, π]. In this case we would redefine φ̄ to the opposite

side of the cone, which would flip the electric term of the energy which now has a

minimum of dφ = 0.
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4.2.5 Analysis of the energy including the thermodynamic and polar

components

We have previously found analytic solutions for Ψ depending on temperature T

while only looking at the thermodynamic terms. It is possible to find approximate

analytic solutions for Ψ(T ) from the thermotropic and self-interaction terms of

(4.9). We solve ∂G
∂Ψ

= 0 and for ease of working, we redefine c = P 2

2χ
. The free

energy is now

G = a0(T − Ta)Ψ2 + aΨ3 + bΨ4 + c
sin2(Ψ)

(π −Ψ)2
. (4.10)

A perturbation analysis, near the Sm C - Sm A transition, will allow the charac-

teristics of the free energy to be revealed. Assuming Ψ is small we calculated the

truncated Taylor expansion of our energy about Ψ = 0 to O(Ψ5).

GT =
(
a0(T − Ta) +

c

π2

)
Ψ2 +

(
a+

2c

π3

)
Ψ3 +

(
b− c

3π4
(π2 − 9)

)
Ψ4. (4.11)

Given our model assumptions of a global minimised free energy when dφ ∈ [0, π],

we require that the coefficient of Ψ3 be negative and Ψ4 be positive. This gives us:

a ≤ −2c

π3
, c <

3π4b

π2 − 9
. (4.12)

The first derivative with respect to Ψ will be

dGT

dΨ
= 2

(
a0(T − Ta) +

c

π2

)
Ψ + 3

(
a+

2c

π3

)
Ψ2 + 4

(
b− c

3π4
(π2 − 9)

)
Ψ3,

(4.13)
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which will be zero when Ψ = 0 or

Ψ =±
√

81π5a(π3a+ 4c) + 96π4(c2 − 3bcπ2 + a0(T − Ta)(c(π2 − 9)− 3bπ4))− 540π2c2

8 (3bπ4 + 9c− cπ2)

− 9π4a+ 18πc

8 (3bπ4 + 9c− cπ2)
(4.14)

As previously, the discriminant of the polynomial on the right hand side of equation

(4.13) will tell us when the roots are real or complex. The significant temperatures

are now

Ti = Ta −
c

a0π2
, Tii = Ta −

c

a0π2
+

27

32

(aπ3 + 2c)2

a0π2(3bπ4 + (9− π2)c)
. (4.15)

The relationship between b and c stated in (4.12) determines that the denominator

of the difference Tii−Ti is positive, so Ti < Tii. Therefore the temperature at which

the model transitions from Sm A to Sm C is Tii. Temperature Ti denotes where

the Sm A solution (dφ = π) becomes unstable.
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Figure 4.5: Ψ = π−dφ versus temperature T . The stability of the branches of the
phase diagram are denoted by solid or dashed lines. Ti and Tii are the transition
temperatures. The order of the phase transition depends on parameters a and c.
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We repeated the process of calculating the discrimant (4.4) to determine the stable

roots of (4.13), see Figure 4.5. There will be one real and two complex conjugate

roots when T > Tii, three real roots with two being equal when T = Ti or T = Tii,

and three real and distinct roots when T < Ti or Ti < T < Tii. We can see the

effect of including the polar term to the free energy on the significant temperatures

when we notice that a second order phase transition would be possible, Ti = Tii,

if a = − 2c
π3 .

The approximate temperature at which the stable roots (4.14) have the same

energy is

Tiii = Ta −
c

π2
+

3

4

(aπ3 + 2c)2

a0π2(3bπ4 + (9− π2)c)
, (4.16)

below this temperature the Sm C solution, Ψ > 0 has a lower free energy.

The next step in our analysis of the free energy we have constructed would be to

include the electric field term. Although perturbation analysis can find solutions

for ∂G
∂Ψ

= 0, the form those solutions take are too unwieldy to be given here.

Instead, we will now look at creating a relationship between the Maier-Saupe

model from Chapter 3 and the current Landau-de Gennes model.

4.3 Fitting the model parameters

In this Chapter we have created a simple phenomenological model which we hope

to relate to the Maier-Saupe model of Chapter 3. In Chapter 3 we investigated a

macroscopic level model using order parameters which described the orientational
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distribution of the liquid crystal over a range of temperatures and applied electric

fields. The order parameters were used to calculate the optic axis and birefringence

over the same ranges. The optic axis and birefringence are expressed as

Θ =
1

2
tan−1

[
tan2 θ0 〈cosψ〉 (tan2 θ0 − 1)

〈cos2 ψ〉 tan2 θ0 − 1

]
, (4.17)

∆n

∆n0

=
cos 2θ0

cos 2Θ

[
〈cos2 ψ〉 tan2 θ0 − 1

tan2 θ0 − 1

]
, (4.18)

respectively, where

〈cosψ〉 =

∫ dφ

−dφ
cos(φ̄+ φm)

1

2dφ
dφm =

cos φ̄ sin dφ

dφ
, (4.19)

〈
cos2 ψ

〉
=

∫ dφ

−dφ
cos2(φ̄+ φm)

1

2dφ
dφm =

1

2
+

cos 2φ̄ sin 2dφ

4dφ
. (4.20)

It is the matching of one model’s optic characteristics to the other that we now

undertake.

The mathematical software package Matlab includes an optimisation toolbox that

will aid us in the parameter fitting process. The function lsqcurvefit will fit

unknown model parameters, x, by minimising the sum of squared differences of

two sets of data,

min
x
||F (x, xdata)− ydata||22 = min

x

∑
i

(F (x, xdatai)− ydatai)2. (4.21)

The algorithm lsqcurvefit uses a trust-region-reflective algorithm described in

[48].

In this instance we will be trying to fit the optic axis and the birefringence temper-
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ature and electric dependence of the dφ model, F (x, xdata), to the Maier-Saupe,

ydata, results. This means that we will have to solve (4.9) for dφ. As we noted

in the last section, a perturbation analysis can calculate the approximate solution

(4.13). In the case of E 6= 0 the approximate solution is unwieldy so finding the

numerical solution may be preferable. In the next section we will describe two

possible methods, using a mix of analytic and numerical solutions, for fitting the

model parameters [a0, Ta, a, b, c, P ].

4.3.1 Systematic method

In section 4.2.5 we calculated the approximation to Ψ which minimised (4.10).

Using Ψ we can calculate the optic axis and birefringence of the model for the

case of no electric field, E = 0. For this example, the optic axis and birefringence

for the Maier-Saupe (MS) model representing the Gay-Berne, GB(3,5,2,1), and

dipole-dipole, dd(1.1,0.1), pair potential was calculated.

The function lsqcurvefit compares the optic axis and birefringence curves of

the dφ model to those calculated from the MS model and fits the parameters

[a0, Ta, a, b, c]. However, fitting five parameters is computationally expensive and

time consuming. Instead, we will use some of the information gained from the MS

model to reduce the number of parameters we need to fit. Using three different

approaches to calculating Ψ and hence the optic axis and birefringence, we fit our

parameters systematically.

The first step is to calculate an expression for Ψ at temperatures close to the

phase transition when there is no electric field applied. We know the transition
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temperature ( TMS) and we know that it is a second order transition. It is possible

to enforce these qualities on the dφ model. A second order phase transition for

the dφ model is possible if the coefficient of Ψ3 in (4.11) is zero

a+
2c

π3
= 0⇒ a = −2c

π3
.

Fixing the dφ transition temperature (4.15) to match TMS, we get an expression

for c in terms of (a0, Ta),

TMS = Ta −
c

a0π2
⇒ c = a0π

2(Ta − TMS). (4.22)

Therefore, we can express a in terms of (a0, Ta)

a = −2a0

π
(Ta − TMS). (4.23)

Using these two expressions of (a, c) we can reduce the problem (4.13) to be solved,

dGT

dΨ
= 2a0(T − TMS)Ψ + 4

(
b− a0

3π2
(π2 − 9)(Ta − TMS)

)
Ψ3. (4.24)

Setting dGT
dΨ

= 0, dividing through by a0, and substituting

B =
4

a0

(
b− a0

3π2
(π2 − 9)(Ta − TMS)

)
, (4.25)

we need to solve

0 = 2(T − TMS)Ψ +BΨ3. (4.26)
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Solving for Ψ, we get

Ψ = 0, ±
√

2(TMS − T )

B
. (4.27)

We have now reduced our function for Ψ to one parameter B for small Ψ. If

Ψ ∈ [0, π] then rearranging the second solution (4.27) limits

B >
2(TMS − T )

π2
. (4.28)

Expressions for the optic axis and birefringence are calculated using (4.27), (4.17)

and (4.18). The function lsqcurvefit uses these expressions to fit B given con-

dition (4.28). In Figure 4.6 (a) and (b) the optic axis and birefringence of the MS

model, and the fitted dφ model for small Ψ are plotted. The mean relative error

(MRE) was calculated as

MRE =
1

N

N∑
i=1

|dφi −MSi|
MSi

, (4.29)

where the subscript i is the index of the grid, dφi and MSi are representative of

the respective models’ optic axis or birefringence discretised surfaces, and N is the

number of grid points. At this stage the optic axis is reasonably well fitted with

an error of 5%, while the birefringence has error under 1%.

The second stage in fitting the dφ model is calculating Ψ over a larger temperature

range when E = 0. For this we need to find the numerical solution of Ψ. We
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differentiate the free energy (4.10) with respect to Ψ,

∂G

∂Ψ
= 2a0(T − Ta)Ψ + 3aΨ2 + 4bΨ3 + 2c

(
sin Ψ cos Ψ

(π −Ψ)2
+

sin2 Ψ

(π −Ψ)3

)
. (4.30)

Maintaining the conditions of a second order transition at the same temperature

as the MS model (4.22, 4.23), we rewrite the derivative as

∂G

∂Ψ
= 2a0(T − Ta)Ψ−

6a0

π
(Ta − TMS)aΨ2 + 4bΨ3

+ 2a0π
2(Ta − TMS)

(
sin Ψ cos Ψ

(π −Ψ)2
+

sin2 Ψ

(π −Ψ)3

)
. (4.31)
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Maier-Saupe potential (blue) using the conditions determined from the analysis of
the taylor approximation to the dφ free energy. Initially, for E = 0 only the B
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Lastly, we use the B we fitted by rearranging (4.25) for

b =
a0B

4
+

a0

3π2
(π2 − 9)(Ta − TMS), (4.32)

in (4.31) and note that Ψ is independent of a0. The resulting equation

∂G

∂Ψ
=2(T − Ta)Ψ−

6

π
(Ta − TMS)Ψ2 + 4

(
B

4
+

1

3π2
(π2 − 9)(Ta − TMS)

)
Ψ3

+ 2π2(Ta − TMS)

(
sin Ψ cos Ψ

(π −Ψ)2
+

sin2 Ψ

(π −Ψ)3

)
= 0, (4.33)

is solved numerically for Ψ, using the Matlab function fzero.

Parameter Ta is unknown but is found by fitting to the Maier-Saupe optical surfaces

using Matlab function lsqcurvefit. Figure 4.6 (c) and (d) shows the optic axis

and birefringence of the fitted dφ model and the MS model. The mean relative

errors calculated and the fit after this stage are similar to the first step. The

optic axis is within approximately 6% of the MS model, while the birefringence is

within 1% of the MS model. It is now fair to say that the dφ model can be a good

approximation to the MS model when no electric field is applied.

The final step in this fitting process is to find a value for parameter P , which

models the interaction with the applied electric field. The minimum of the free

energy, including the spontaneous polarisation term and the new expressions for
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(a, b, c), is found by solving

∂G

∂Ψ
=2(T − Ta)Ψ−

6

π
(Ta − TMS)Ψ2 + 4

(
B

4
+

(π2 − 9)

3π2
(Ta − TMS)

)
Ψ3

+ 2π2(Ta − TMS)

(
sin Ψ cos Ψ

(π −Ψ)2
+

sin2 Ψ

(π −Ψ)3

)
− PE

2
sin(ψ − φ̄)

(
cos Ψ

π −Ψ
+

sin Ψ

(π −Ψ)2

)
= 0. (4.34)

(4.34) is solved numerically for Ψ, using the Matlab function fzero. Parameter P

is again found by fitting to the Maier-Saupe optical surfaces using Matlab function

lsqcurvefit. In Figure 4.7 (a), (b), (c) and (d) the optic axis and birefringence

surfaces over [E, T ] of the fitted dφ model and the MS model are shown. Visually

it appears that the dφ model matches the MS model reasonably well. The mean

relative errors calculated tell us that the optic axis is not as well fitted as the

birefringence. The optic axis is within approximately 15.6% of the MS model,

while the birefringence is within 1% of the MS model. In Figure 4.7 (e) and (f),

the relative error for optic axis and birefringence is represented by a filled contour

surface. The worsening of the fit from the previous stage to the current may

indicate that the expression for the spontaneous polarisation is not accurately

describing the MS electric field interaction, or that the stepwise nature of this

fitting process is inadequate. A new method we look at is at the other end of

the spectrum in terms of analysis. For comparison purposes we note that the

final fitted parameters for the systematic method are (Ta = 0.2485, a = 0, b =

0.01095, c = 0, P = 10.8240) with a fitting time of 80 seconds.
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Figure 4.7: The Matlab function lsqcurvefit fits P , the final step of the system-
atic method, using the [E, T ] optical properties surfaces. The mean relative error
contours are shown.
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Figure 4.8: The brute force method fits all 5 dφ parameters using the Matlab
function lsqcurvefit and the [E, T ] optical properties surfaces. The mean relative
error contours are shown.
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4.3.2 Brute force method

Section 4.3.1 detailed a fitting procedure that aimed to limit the computation

time by reducing the number of parameters to be fit from five to three. The

remaining three parameters were fitted systematically simplifying the job of the

Matlab function lsqcurvefit. In this section we instead fit all the parameters

simultaneously. As before we first need to find the functional form of Ψ ∈ [0, π]

by solving, using fzero,

0 =2(T − Ta)Ψ + 3aΨ2 + 4bΨ3 + 2c

(
sin Ψ cos Ψ

(π −Ψ)2
+

sin2 Ψ

(π −Ψ)3

)
− PE

2
sin(ψ − φ̄)

(
cos Ψ

π −Ψ
+

sin Ψ

(π −Ψ)2

)
. (4.35)

The optic axis (4.17) and birefringence (4.18) are derived using Ψ and lsqcurvefit

then fits the five parameters (Ta, a, b, c, P ). The resulting fit is shown in Fig-

ure 4.8. The surface fittings are almost identical to the systematic method and

the calculated mean relative error is of the same magnitude also, optic axis has

9.5% error and birefringence has 0.5% error. The fitted parameters had values:

Ta = 0.3148, a = −0.0379, b = 0.0288, c = 0.5403, P = 11.5696, and a fitting time

of 105 seconds. The fitting time of the brute force method is 25% greater than

the previous method that used analysis to reduce the number of unknown param-

eters. However, the mean relative error of the brute force approach is two thirds

that of the systematic approach. We see a notable difference in the values of the

parameters after fitting. This would suggest that there could be a certain level of

degeneracy present. Degeneracy is where there is a range of values for the unknown

parameters that give a good fit, but these are dependent on the fitting routine,

tolerances chosen and the initial guess as to the parameter value. We examined
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of the parameter pair chosen by lsqcurvefit.
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the extent of degeneracy in the model in Figure 4.9. The five parameters found

using the brute force method are used as the base parameter set. In Figure 4.9 we

varied a combination of two parameters systematically while fixing the remaining

parameters and calculated the sum of squares of residuals, SSRE (4.21). The pair

of parameters chosen by the brute force algorithm matches the minimum level of

the contour plots. This suggests that the fitting algorithm is successful in choosing

the minimum set of parameters at least to this degree. However, we can see that

many of the contours have minimum levels that could include a broad range of

parameter pairs. This is important since there exist directions in parameter space

in which linear combinations of parameters can be varied with very little change in

error. If theoretical results are to be used in conjunction with experimental data,

or to predict material behaviour, these degenerate directions should be checked to

ensure that the results of the model do not vary significantly. For instance, from

Figure 4.9 (top-right subplot) we see that varying a certain linear combination of

c and P will leave the error almost unchanged. It will be important to check that

using different combinations of parameters along this direction in parameter space

will not affect the resulting simulations of a real device.

In future sections of this Chapter we will only consider the brute force method

of parameter fitting. The time saving benefit of the systematic approach is not

significant enough in absolute terms to discard the reduction in MRE of the brute

force approach.
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molecular parameter κ, the free energy is at a minimum when blue and a saddle
point when green.

4.3.3 Investigation of molecular model parameters

In Chapter 3 we investigated the effect of altering the parameters of the Gay-

Berne and dipole-dipole pair potentials on the order parameter phase diagrams of

the Maier-Saupe free energy. For example, in Figure 4.10 we draw the optic axis

and birefringence of the material versus temperature in the absence and presence

of an electric field whilst varying κ, the molecular length-breadth ratio. The

predominant feature when changing any of the molecular parameters is the change

in the critical temperature when E = 0. This was most evident when varying κ and

d⊥ the dipole strength. Using the brute force fitting routine described in section
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4.3.2 we fit the optic axis and birefringence surfaces for the MS free energy while

varying the four parameters. The results are given in Figure 4.11. When we vary

all four molecular parameters Ta follows qualitatively the change in TMS, the MS

transition temperature. As we expected when κ and d⊥ are varied we see greater

parameter variation of (a, b, c) while (a, b, c) remain approximately constant when

κ′, the well-depth ratio, and ν, the dipole location, are varied. The degeneracy

of the dφ model may be contributing to the plateauing of the model parameters

when κ′ is varied. In conclusion, the fitting process we have chosen appears to be

capturing the characteristics exhibited by the Maier-Saupe free energy of Chapter

3. In the next Section we will investigate the dynamic properties of the dφ model.

Switching studies will reveal the influence of the Gay-Berne and dipole-dipole

potentials on the optoelectric properties of the dφ model.

4.4 Dynamic analysis of a liquid crystal cell switching

In this Section we carry out switching studies that will investigate what effect

the parameters of the Gay-Berne (2.5) and dipole-dipole (2.9) potentials have on

the optical properties of the dφ model. The switching study will begin with the

construction of a simple model of a liquid crystal device. The cell is a region

of liquid crystal sandwiched between two surfaces across which a voltage will be

applied to change the orientation of the director, as illustrated in Figure 4.12.

Surface anchoring on both plates will cause the molecules to lie flat on the surfaces.

This means that the Sm cone will only allow two stable equilibrium states at the

surfaces. Thus a bistable device can be created.

Our previous free energy (4.9) will be augmented by the addition of a surface effect
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Figure 4.12: The cell of our device. The tilt angle (Θ) of the director (green) is
measured from the z axis, the electric field angle (ψ) is measured in the xy plane
from the x axis.

term, GSA, to represent the anchoring present at the boundaries to force bistability

in the device,

Gd =Gtherm +Ginter +Gelec +GSA

=a0(T − T ∗)Ψ2 + aΨ3 + bΨ4

+
P 2

2χ

sin2 dφ

dφ2
− EP

2

sin dφ

dφ
sin(ψ − φ̄) + se sin2 φ̄. (4.36)

The GSA term will have minima at φ̄ = 0, π. With this free energy we can now

look at the dynamics of how the molecular orientation changes when an electric

field is applied. Once we have modelled the dynamics we can begin to quantify

and understand the operating voltages and switching characteristics of a bistable

cell using τV-plots, which we will explain later.

The governing equations for the dynamics are found by assuming that the rate of

change of both φ̄ and dφ are proportional to the gradient of the free energy at that
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point [49],

γφ̄
∂φ̄

∂t
= − ∂

∂φ̄
Gd(φ̄, dφ), (4.37)

γdφ
∂dφ

∂t
= − ∂

∂dφ
Gd(φ̄, dφ). (4.38)

The viscosity of the rotation of the distribution around the Sm cone is γφ and the

viscosity of the spreading motion of the distribution is γdφ.

4.4.1 Forward Euler time discretisation

To solve the coupled system (4.37, 4.38) we used the forward Euler numerical

method to approximate the partial derivatives ∂φ̄
∂t

and ∂dφ
∂t

. Calculating the Taylor

series expansion in time of φ̄i+1 gives the approximation

φ̄i+1 = φ̄i −
dt

γφ̄

(
2se sin φ̄i cos φ̄i −

PE

2

sin dφi
dφi

cos(φ̄i − ψ)

)
, (4.39)

by equation (4.37). Similarly, for dφi+1 we have

dφi+1 = dφi −
dt

γdφ

[
−2a0(T − Ta)(Ψi)− 3a(Ψi)

2 − 4b(Ψi)
3
]

− dt

γdφ

[
2c

sin dφi
dφ2

i

(
cos dφi −

sin dφi
dφi

)]
− dt

γdφ

[
EP sin(φ̄i − ψ)

2dφ

(
cos dφi −

sin dφi
dφi

)]
. (4.40)

We now have the dynamic equations of our model approximated using the forward

Euler method in equations (4.39) and (4.40). At each timestep i, the right hand

side of (4.39) and (4.40) are computed using φ̄i, dφi and dt = ti+1− ti, to compute
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φ̄i+1 and dφi+1. In order to maintain numerical stability of this method we need a

relatively small time step size.

4.4.2 Adaptive time

Initial attempts to solve our system of equations used a timestep size of dt which

remained constant throughout each simulation. We were forced to choose a dt

which was small enough to approximate the solution at times when the gradients

of the free energy were steepest, E > 0. This meant that our computation time

was inefficient when E = 0, as the relaxed gradient would allow a larger timestep

to be used.

To combat this problem, we have employed an adaptive time-stepping algorithm

based on [50]. The algorithm involves calculating two approximations (y1 =

(φ̄1, dφ1), ŷ1 = ( ˆ̄
1φ,

ˆdφ1)) to the solution of system (4.37, 4.38), and calculat-

ing the error for the less precise result. The first approximation (y1) is calculated

by solving (4.39) and (4.40) iteratively for two timesteps of size dt. The second

approximation (ŷ1) is calculated by solving (4.39) and (4.40) for one timestep of

size 2dt. We estimate the error of the less precise approximation as |y1− ŷ1|, which

we use to calculate an optimal step size,

dtnew = dt×min

(
facmax,max

(
facmin,fac ·

(
sc

|y1 − ŷ1|

) 1
2

))
, (4.41)

where facmax and facmin are the maximum and minimum scaling factors for dt.

When |y1− ŷ1| < sc, where sc is a user defined tolerance, we accept the computed

step and we advance the solution with y1 and dtnew, otherwise we reject the
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Figure 4.13: An electric field is applied with ψ = −π
4
. The bulk initially spreads

out around the cone while the centre, φ̄, rotates towards −π
4

(time=2.953e-06).
When φ̄ passes −π

4
the bulk contracts until φ̄ = −3π

4
, which is when the molecular

dipole is aligned with ψ (time = 2.5e-05). The field is turned off and the bulk and
centre move towards equilibrium (time=0.0046506). The director is given as the
blue ring (electric field on) and the green ring (electric field off)
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Figure 4.14: An electric field is applied with ψ = −π
2
. The bulk spreads out

around the cone (time=3.041e-06). When dφ > π the centre is switched to φ̄ = π
(time=8.3832e-06) which causes the bulk to contract to allow alignment with the
field (time=5e-05). The field is turned off and the bulk moves toward equilibrium
(time=0.0046756). The director is given as the blue ring (electric field on) and the
green ring (electric field off)
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computed step and use dtnew to compute new approximations (y1, ŷ1). The safety

factor, fac, determines how cautious the next time step will be depending on

acceptance or rejection of the computed step. We will use the values facmax

= 2.5, facmin = 0.1, fac = 0.8 and sc = 5x10−4 and facmax = 1 after a step

rejection.

In Figure 4.13 we give an example of the motion of the bulk when an electric field

is applied at an angle. The electric field is applied at an angle of ψ = −π
4

so we

expect the dipole of the system to align with the field. This would mean that the

molecules should align at the azimuthal angle of −3π
4

. The electric field forces the

centre of the molecular distribution to move around the cone. As φ̄ → −π
4

the

bulk expands and dφ → π. Once φ̄ < −π
4

the bulk contracts and dφ → 0. When

the electric field is turned off the surface effect pulls the centre to φ = π while the

bulk of the molecular distribution moves to equilibrium. The coordinates of the

director are calculated using the optic axis (4.17), a circle radius of 1 and a fixed

cone tilt angle θ0 = π
12

, for the distance from the centre, and φ for the angle. The

(x, y) coordinates are therefore,

director(x, y) =

(∣∣∣∣ tan(Θ)

tan(θ0)

∣∣∣∣ cos(φ̄),

∣∣∣∣ tan(Θ)

tan(θ0)

∣∣∣∣ sin(φ̄)

)
. (4.42)

In Figure 4.14 an electric field is applied at an angle of ψ = −π
2

so we expect the

molecules to align at the opposite side of the cone. This causes the bulk to expand

around the cone. However, the equilibrium value of dφ in this case is greater than

π. Therefore, when dφ > π we switch φ̄ to π which causes the bulk to contract and

dφ→ 0. When the electric field is turned off the bulk of the molecular distribution

moves to equilibrium.
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We now have the algorithm in place to solve the system of dynamic equations

(4.37, 4.38). Before carrying out a τV study of the optic characteristics in relation

to time and voltage, we will look at how we can relate the rotational viscosities to

the Maier-Saupe potential of Chapter 3.

4.4.3 Rotational viscosity

In this Chapter we have created a simple phenomenological model which we hoped

to relate to the Maier-Saupe model of Chapter 3. So far we have matched one

model’s optical characteristics to the other in the equilibrium case. We now in-

vestigate the dynamic behaviour of the dφ model while varying the Gay-Berne

and dipole-dipole model parameters. To solve the dynamic equations (4.37) and

(4.38) we introduce two new variables representing the rotational viscosity of the

model. We will now go on to calculate the rotational viscosity of the Maier-Saupe

potential and use it in the dφ model approximation.

The dynamic behaviour of our model depends on the torque generated by an

applied electric field and the viscosity dependent on reorientating the molecules

about the Sm cone (4.37) and (4.38). The rotational viscosities are proportional

to the tilt angle of the Sm cone θ [51],

γφ, γdφ ∝ λ0 sin2 θ, (4.43)

where λ0 is proportional to the microsopic friction constant. Osipov [52] obtained

an expression for λ0 in terms of the nematic order parameter S and the microscopic

friction constant, λ. A simplified one-particle mean field potential in the Maier-
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Saupe form was chosen,

UMF (a) = −J0SP2(a · n), 〈UMF (a)〉 = −J0S
2, (4.44)

where S, in tensor notation, is the nematic order parameter defined as the average

S = 〈P2(a · n)〉 , (4.45)

P2 is the second order Legendre polynomial, n is the unit vector of the director

and a is the long axis of a molecule. The rotational viscosity coefficient can be

calculated for (4.44) as

λ0 =
1

70
ρλ(7 + 5S)

(J0S/kT )2

2 + J0S/kT
, (4.46)

where ρ is the number density and k is the Boltzmann constant. However, the

Maier-Saupe mean-field potential (3.18) we chose in Chapter 3 is of a different

form to this so we will have to manipulate these expressions to suit our form.

We defined our potential (3.18) using the order parameters (V,B). Gorkunov et al.

[21] gave expressions for the nematic order parameter S, nematic tensor biaxiality

P and optic axis Θ, in terms of (V,B):

tan 2Θ =
V

Sk − 0.5B
, (4.47)

S =
1

4
Sk +

3

8
B +

3V

4 sin 2Θ
, (4.48)

P =
1

2
Sk +

3

4
B − V

2 sin 2Θ
. (4.49)
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Here

Sk = 〈P2(cos θ0)〉 , B = sin2 θ0 〈cos 2φ〉 , V = sin 2θ0 〈cosφ〉 , (4.50)

where (φ, θ0) are the azimuthal and cone tilt angle respectively. We have an

expression for S in terms of our order parameters (4.48) but we still require the

coefficient, J0, of S2 in (4.44), in terms of our model. In Chapter 3 (3.18) can be

simplified and then averaged to give

〈UMF 〉 = C + αB2 + βV 2, (4.51)

C was a constant term encapsulating Sk, (α, β) were coefficients dependent on

molecular parameters. Solving the system of equations (4.47, 4.48, 4.49) in terms

of (Sk, B, V ), we obtain,

V =
1

2
sin 2ΘS, B = P +

1

4
(1− cos 2Θ)S, Sk =

1

2
P +

1

8
(1 + 3 cos 2Θ)S.

(4.52)

We can substitute these expressions for (V,B) to find the coefficient S2 in terms

of (α, β). Therefore

J0 =
α

4
sin4 Θ +

β

4
sin2 2Θ. (4.53)

The rotational viscosity (4.43) can now be approximated using the molecular pa-

rameters and model order parameters we have discussed in the previous two Chap-

ters. The dependence of the rotational viscosity coefficient (4.46) on the molecular

parameters is shown in Figure 4.15. In Figure 4.15 (a) and (d) we can see that
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Figure 4.15: The rotational viscosity constant λ0 calculated while varying the
molecular parameters from base set of parameters (κ = 3, κ′ = 5, ν = 0.6, d⊥ =
0.5): (a) the molecular length-breadth ratio κ, (b) well depth ratio κ′, (c) dipole
location ν, and (d) dipole strength d⊥, respectively. (T = 0.1883).

κ and d⊥ have greatest effect on the rotational viscosity. This is as we would

expect given the dependence of λ0 on S and, in turn, on the MS order parameters

B and V . As the molecular length-breadth ratio increases, λ0 increases almost

linearly. As the well-depth ratio κ′ increases, the effect on λ0 appears to level out,

parameter λ0 changes more rapidly for variations at low κ′, Figure 4.15 (b). The

dipole location ν and dipole strength d⊥ have similar relationships with λ0, Figure

4.15 (c) and (d). λ0 varies more dramatically when the dipole location, ν, moves

towards the end of the molecule of length 1.5. Dipole strength has most effect on

viscosity than all other molecular parameters.
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4.4.4 τV -plot generation

A bistable liquid crystal device has the ability to switch from one state to the other

depending on the strength and length of time that an electric field is applied. This

behaviour can be graphed using a τV -plot which indicates where a bistable cell

switches between states when a specific voltage, V , is applied for a period of time,

τ . The τV -plot shows where in the parameter space switching from one state to

the other occurs. With these plots we can quantify and understand the operating

voltages and switching characteristics of a bistable cell.

To create the τV -plot we will use the brute-force method from section 4.3.2 in

finding the switching regions. The test region is a 2D array made up of discrete

voltages and pulse times. At each point of the array we test whether or not

the system switches. The approximated region produced by this method will be

dependent on the degree of discretisation present. However, we choose this method

due to the relative ease of coding.

In section 4.3.3 we investigated the effect altering the parameters of the Gay-Berne

and dipole-dipole pair potentials had on the parameter values of the dφ model,

Figure 4.11. We now look at what effect this has on the dynamic behaviour of

the model. In Figure 4.16 an electric field was applied with ψ = −π
2

for various

voltages V and pulse lengths τ . The base state of the model was the steady state

spread dφ and the surface anchoring orientation φ̄ = 0. The Figure shows the

voltage and pulse length it is necessary to apply for the bulk average azimuth

orientation to switch to φ̄ = π. A different molecular parameter is varied in each

plot with the remaining parameter values taken from the base set (κ = 3, κ′ =
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Figure 4.16: τV -plots showing the effect of varying molecular parameters: κ
length-breadth ratio, κ′ side-side to end-end well depth ratio, ν dipole location
and d⊥ dipole strength. The boundary of the switching region is shown for each
variation of the tested parameter. Only small variation in τV -plots are exhibited
for κ′ and ν. The most significant variations are for κ and v.

5, v = 0.6, d⊥ = 0.5). The temperature in each graph was chosen as T = 0.97TMS

when the first parameter of the set was used. The largest variation in switching

came from varying κ and d⊥. Increasing κ and d⊥ makes it harder to switch

from one state to the other. We calculated in Figure 4.15 that the rotational
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viscosity had a greater dependence on κ and d⊥, which would obviously reduce

switching for those parameters as they increase. Finally, we know that the optic

axis and birefringence increase, more greatly for a fixed temperature, when κ and

d⊥ increase as opposed to κ′ and ν. This means that the degree of order present

in the system varies more when we vary κ and d⊥ than when we vary κ′ and ν. It

seems sensible to assume that the more ordered a system is, the more difficult it

is to create disorder.

4.5 Summary

In this Chapter, we used a Landau - de Gennes theory to model the thermotropic

phase transition of Sm A to Sm C. The order parameter was dependent on the

spread of the molecules on the Sm cone. The distribution of molecules in the model

was described by a uniform distribution of the azimuthal angle. The free energy

included terms describing the self-interaction and the interaction with an external

field of the spontaneous polarisation. We were able to calculate the optic axis

and birefringence of the model as surfaces over temperature and applied electric

field. The surfaces of the optical quantities were then fitted to the corresponding

surfaces calculated using the free energy of the previous Chapter. We derived two

fitting schemes, one which fit model parameters systematically, and one which fit

all model parameters concurrently. After some testing we chose the latter method

to perform the investigation into the effect of molecular parameters in Chapter 2.

Finally, we carried out switching studies looking at the dynamic behaviour of a

bistable liquid crystal cell when varying the molecular parameters of the Gay-Berne

and dipole-dipole potentials. The rotational viscosities of the dynamic equations
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were found to depend on the order parameters in Chapter 3. We solved the dy-

namic equations using a forward Euler numerical method and employed an adap-

tive time-stepping algorithm to speed up the process. The results were displayed

using τV -plots. We see significant variation in the switching regions of the τV -

plots by varying the molecular parameters.
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5 Conclusions

In this thesis, we have modelled de Vries type ferroelectric liquid crystals at various

length-scales and various degrees of complexity, and are able to map physical

molecular properties to the existence and optical characteristics of various states

of the liquid crystals.

At the smallest length-scale we investigated potentials that could account for short

and long range forces between two rod-like molecules. These were the Gay-Berne

and dipole-dipole intermolecular interaction pair potentials. The Gay-Berne po-

tential modelled the steric effect of the molecules and the van der Waals dispersion

force, while the dipole-dipole potential modelled the long range force of dipole in-

teractions. We investigated how intermolecular position and relative molecular ori-

entation affect the standard GB(3, 5, 2, 1) potential and an arbitrary dipole-dipole

potential (ν = 0.6, d⊥ = 0.5). We then investigated the effect of the molecular

parameters (κ, κ′, ν, d⊥) after the potentials were integrated over the intermolec-

ular vector so that the energy depended only on the relative orientation of the

molecules. An analytic form of the potentials that depended only on the relative

molecular orientation was found using Fourier decomposition. We compared the

Fourier coefficients from the general decomposition to one using the Maier-Saupe

form. We found that the Maier-Saupe potential was capable of being a reasonable

approximation to the combination of the Gay-Berne and dipole-dipole potentials.

The Fourier approximation of this combined potential would allow us to calcu-

late coefficients of the Maier-Saupe model from the Gay-Berne and dipole-dipole

potentials.
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At the mesoscopic level the free energy is calculated using the Maier-Saupe pair po-

tential and the mean-field theory. The mean-field theory allows us to approximate

the numerous intermolecular interactions in the bulk of a liquid crystal material

with a molecule interacting with an average energy. The phase behaviour of the

model is described by the order parameters V and B, representing tilt and biax-

iality respectively. The optical axis and birefringence were calculated using the

order parameters. The temperature dependence of the order parameters, optical

axis and birefringence can be displayed using phase diagrams. This meant that

we have the capability to vary the parameters of the intermolecular potential and

see the effect on the optoelectrical properties of the bulk of the material. In this

way we have managed to link the two length-scales, allowing us to alter the molec-

ular properties of our molecules and see what effect they have on the physical

observables, of the bulk material, namely the optic axis and birefringence.

Next we described a simple model that allowed us to investigate device applications

of a material. This phenomenological model used a Landau - de Gennes theory

to model the thermotropic phase transition of smectic A to smectic C. The order

parameter described the spread of the molecules on the smectic cone. A uniform

distribution of the molecule’s azimuthal angle was used. The free energy included

terms describing the self-interaction and the interaction with an external field

of the spontaneous polarization. We were able to calculate the optic axis and

birefringence of the model as surfaces over temperature and applied electric field.

The surfaces of the optical quantities were then fitted to the corresponding surfaces

calculated using the free energy of Chapter 3. We derived two fitting schemes, one

which fit model parameters systematically, and one which fit all model parameters

concurrently. After some testing we chose the latter method to investigate the
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effect of molecular parameters of the molecular interaction potentials.

Finally, using the phenomenological model we examined the switching character-

istics of a ferroelectric liquid crystal cell when varying the molecular parameters

of the Gay-Berne and dipole-dipole potentials. The rotational viscosities of the

dynamic equations were found to depend on the order parameters of the Maier-

Saupe potential. We solved the dynamic equations using a forward Euler numer-

ical method and employed an adaptive time-stepping algorithm to speed up the

process. The results were displayed using τV -plots, which display regions of no

switching and switching.

The largest variation in switching region came from varying the molecular length,

κ, and dipole strength, d⊥. Increasing these parameters makes it harder to switch

from one state to the other. We have shown that the rotational viscosity increased

more greatly when we increased κ and d⊥, which would obviously reduce switching

for those parameters. Finally, we know that the optic axis and birefringence in-

creases, at a given temperature, more greatly when κ and d⊥ increase as opposed

to κ′ and ν, see Figures 3.9, and 3.10. This means that the degree of order present

in the system varies more when we vary κ and d⊥ than when we vary κ′ and ν.

Regarding areas for improvement and further work, we could remove the restric-

tions we place on the geometry of our model. At present in both the Maier-Saupe

free energy and the Landau - de Gennes free energy we prescribed a fixed tilt

angle of the smectic cone and model only a single smectic layer with the molecules

c.o.m. lying in the xy plane. We also chose a uniform distribution for the phe-

nomenological model. We could investigate the implementation of a more complex

distribution for the molecular azimuthal angles. Finally, we could expand our de-
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vice model to two dimensions and investigate how different initial molecular states

are affected by the location and shape of electric pulses.

Even though we have made many assumptions and used simple models, we have

shown, in principle, that it is possible to vary molecular model parameters and be

able to see how device properties change as a consequence.
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A Calculating the Maier-Saupe pair potential

The Maier-Saupe effective interaction potential is a function of molecules (a1, a2)

and the displacement vector between the centres-of-mass (c.o.m) of the two molecules

(r12).

Ueff (a1, a2, r12) =J0 − J1(a1 · a2)2 + 2J2(a1 · a2)(a1 · r12)(a2 · r12)

− J3(a1 · r12)2(a2 · r12)2 − J2
12(a1 · r12)2 − J2

21(a2 · r12)2, (A.1)

where, as stated previously (3.7) and (3.8),

ai = (sin θ0 cosφi, sin θ0 sinφi, τi cos θ0) ,

r12 = (cosψ, sinψ, 0) ,

and we have assumed that all molecules lie on a cone with angle θ0.

To calculate the pair potential, depending only on the orientations of ai, we in-

tegrate the two particle potential over r12. Due to the form of (A.1) we can do

this term by term. Before we integrate we will separate the brackets of the inte-

grands. To reduce working we will refer to the three vectors: a1, a2, and r12 by

their (x, y, z) components. The terms that depend on r12 and will be integrated
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are:

ai · r12 = aixrx + aiyry,

(ai · r12)2 = a2
ixr

2
x + a2

iyr
2
y + 2aixaiyrxry,

(a1 · r12)(a2 · r12) = a1xa2xr
2
x + a1ya2yr

2
y + (a1xa2y + a1ya2x)rxry,

(a1 · r12)2(a2 · r12)2 = a2
1xa

2
2xr

4
x + a2

1ya
2
2yr

4
y + 2(a2

1xa2xa2y + a2
2xa1xa1y)r

3
xry

+ 2(a2
1ya2xa2y + a2

2ya1xa1y)rxr
3
y

+ (a2
1xa

2
2y + a2

1ya
2
2x + 4a1xa1ya2xa2y)r

2
xr

2
y.

We can now integrate all the terms of (rx, ry) over ψ:

∫ π

−π
r2
xdψ =

∫ π

−π
cos2 ψdψ = π,∫ π

−π
r2
ydψ =

∫ π

−π
sin2 ψdψ = π,∫ π

−π
rxrydψ =

∫ π

−π
cosψ sinψdψ = 0,∫ π

−π
r3
xrydψ =

∫ π

−π
cos3 ψ sinψdψ = 0,∫ π

−π
rxr

3
ydψ =

∫ π

−π
cosψ sin3 ψdψ = 0,∫ π

−π
r2
xr

2
ydψ =

∫ π

−π
cos2 ψ sin2 ψdψ =

π

4
,∫ π

−π
r4
xdψ =

∫ π

−π
cos4 ψdψ =

3

4
π,∫ π

−π
r4
ydψ =

∫ π

−π
sin4 ψdψ =

3

4
π.
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The form of the pair-potential (A.1), after integrating over r12, is thus,

U(a1, a2) =

∫ π

−π
Ueff (a1, a2, r12)dψ

= 2πJ0 − 2πJ1(a1 · a2)2 + 2πJ2(a1 · a2) (a1xa2x + a1ya2y)

− π

4
J3

(
3a2

1xa
2
2x + 3a2

1ya
2
2y + a2

1xa
2
2y + a2

1ya
2
2x + 4a1xa2xa1ya2y

)
− πJ2

12(a2
1x + a2

1y)− πJ2
21(a2

2x + a2
2y). (A.2)

Now we expand the remaining brackets before writing the energy as a function of

(φ1, φ2, θ0). The remaining scalar products are

(a1 · a2)2 = a2
1xa

2
2x + a2

1ya
2
2y + a2

1za
2
2z + 2a1xa2xa1ya2y + 2a1xa2xa1za2z

+ 2a1ya2ya1za2z

= cos4 θ0 + sin4 θ0 cos2(φ1 − φ2) +
1

2
τ1τ2 sin2 2θ0 cos(φ1 − φ2),

(a1 · a2) = a1xa2x + a1ya2y + a1za2z

= sin2 θ0 cos(φ1 − φ2) + τ1τ2 cos2 θ0.

The J2 term of (A.2) is

(a1 · a2) (a1xa2x + a1ya2y) = (a1 · a2) sin2 θ(cosφ1 cosφ2 + sinφ1 sinφ2)

= sin4 θ0 cos2(φ1 − φ2) +
1

4
τ1τ2 sin2 2θ0 cos(φ1 − φ2).

The J3 term of (A.2) is

(
3a2

1xa
2
2x + 3a2

1ya
2
2y + a2

1xa
2
2y + a2

1ya
2
2x + 4a1xa2xa1ya2y

)
= 3 sin4 θ0 cos2(φ1 − φ2) + sin4 θ0 sin2(φ1 − φ2).
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The J12 and J21 terms of (A.2) are

(a2
ix + a2

iy) = sin2 θ0(cos2 φi + sin2 φi) = sin2 θ0.

We can now rewrite (A.2) in terms of (φ1, φ2, θ0). We expand cos2(φ1 − φ2) and

collected like terms:

U(a1, a2) = 2πJ0 − πJ1 + πJ2 −
π

2
J3 − π

(
J2

12 + J2
21

)
+ π cos2 θ0

[
2J1 − 2J2 + J3 +

(
J2

12 + J2
21

)]
+
π

2
cos4 θ0 [−6J1 + 2J2 − J3]

+
π

2
cos(φ1 − φ2) sin2 2θ0τ1τ2 [−2J1 + J2]

+
π

4
cos 2(φ1 − φ2) sin4 θ0 [−4J1 + 4J2 − J3] . (A.3)

Defining the coefficients of the trigonometric functions as

b0 =
π

2

[
4J0 − 2J1 + 2J2 − J3 − 2

(
J2

12 + J2
21

)]
,

b1 = π
[
2J1 − 2J2 + J3 +

(
J2

12 + J2
21

)]
,

b2 =
π

2
[−6J1 + 2J2 − J3] ,

b3 =
π

2
[−2J1 + J2] ,

b4 =
π

4
[−4J1 + 4J2 − J3] , (A.4)

we can rewrite (A.3) as

UMS(a1, a2) = b0 + b1 cos2 θ0 + b2 cos4 θ0 + b3τ1τ2 sin2 2θ0 cos(φ1 − φ2)

+ b4 sin4 θ0 cos 2(φ1 − φ2). (A.5)
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