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"The more you understand what is wrong with a figure, the more valuable that figure 

becomes" 

Kelvin 
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Abstract 

Condition monitoring systems are installed in wind turbines with the goal of providing 

component-specific information to wind farm operators, which is the key prerequisite of a 

condition-based maintenance policy. Tbeoretically, adoption of a condition based 

maintenance policy will increase equipment availability, operational efficiency and economic 

yield: this is achieved via maintenance and operating actions based on the condition 

monitoring information. As with many good theoretical ideas, condition monitoring for 

wind turbines is imperfect. 'Mis fact has inhibited widespread utilisation of the technology 

and associated maintenance policies until now. Electricity generation companies' experience 

of such systems is mixed: the most widely-held view being that onshore wind turbine 

condition monitoring systems are not cost-effective (or marginally so), whereas in the 

offshore case, economic and technical benefits of CM systems will be substantial - closer to 

the theoretical case. These views, however, are based on anecdotal evidence and 

extrapolation rather than any kind of analytic approach, and such perceptions cannot take 

account of all the relevant factors. It can be concluded that the economic case for condition 
monitoring applied to wind turbines is currently not well quantified and the factors involved 

arc not fully understood. 

In order to make more informed decisions regarding whether deployment of condition 

monitoring for wind turbines is economically justified, a methodology for capturing the 

processes involved is proposed in this thesis. The specific form of the methodology is 

quantitative analysis comprising probabilistic methods: discrete-time Markov Chains, Monte 

Carlo methods and time series modelling. The flexibility and insight provided by this 
framework captures the operational nuances of this complex problem, thus enabling 

quantitative evaluation of wind turbine condition monitoring systems and condition based 

maintenance in a variety of operational scenarios. The proposed methodology therefore 

tackles a problem which has not been addressed in literature or by industry until now. 
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I Introduction 

Wind power is currently regarded by many policy makers and utilities as the renewable 

energy source most suited to delivering desired targets on carbon emission reductions and 
diversity of supply. For this reason major utilities are driving forward with planning and 

construction of wind farms, with over 10GW wind capacity currently in the UK planning 

system alone (NGT, 2007). Additionally, recent UK policy documents have re-iteratcd 

government support for the wind industry in the form of the renewables obligation (RO) 

until at least 2027 (BERR, 2006). If these trends continue, future utilities will have generation 

portfolios comprising a substantial proportion of wind power. 

The operational nuances of wind turbines (W'I) arc quite different from the existing power 

stations such as coal, gas and nuclear. In the first instance, the operation and maintenance 
(O&Ný of wind turbines is coupled with weather conditions in a way which is not 

experienced by traditional power plants. Furthermore, instead of a single turbine hall 

perhaps comprising less than ten electrical generators rated in 100s of MW, a wind farm is 

likely to be spread over a much larger geographical area, and comprise many more 

generators of perhaps 1-5MW, each with its own independent sub-systcms. It is clear that 

new challenges in terms of O&M will have to be faced, and that traditional approaches may 

not necessarily be effective and efficient in this new environment. 

The role and benefits of condition monitoring (CNý in traditional power plant O&M has 

been well established for some time due to extremely high value of the monitored plant, 

severe cost penalties for unplanned outage of a large generator, as well as health & safety 

considerations. These issues certainly help to make the case for a maintenance strategy at 
least partially based on condition information. From a theoretical perspective, such a 

condition-based maintenance (CBN1) system offers several benefits over scheduled 
maintenance. Implementation and practical difficulties, however, are sometimes a decisive 

factor and will also be investigated in this thesis. 
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Intuitively, and in contrast to large centralised plant, the individual low profit nature of 
discrete WIC units tenders the economic aspects in favour of CM less significant. Ultimately, 

the attitudes of wind farm operators, forever keen to operate their plant as economically as 

possible, can be summed up by the following statement: 

'Any windfarm maintenance polig based on con&fion monitoring information must have clearfinandal 
benefits relative to other maintenance policies. otberuise the initial outlay for the CM gstem and associated 

costs cannot be iusfified, and a more traditional maintenancepolig is likely, to be adopted. II- 

This idea that the value of CM needs to be demonstrated or quantified appears frequently in 

the literature (Radcmakers et al. 2003, Gicbhardt ct al. 2007, Hycrs et al. 2006), and is 

increasingly debated by those within the wind industry. Manufacturers, keen to exploit the 

commercial opportunity, argue the case for the CM equipment and point to the theoretical 
benefits of condition-bascd maintenance such as increased planning scope and efficient use 

of maintenance resources. 

Operators are more pragmatic, and tend to question the technical and economic value of 

condition monitoring. For example, the industrial partners on this research project (the 
biggest wind farm operator in the UK at the time of writing) often ignore the output of their 

condition monitoring systems completely. Until value can be demonstrated, wind farm 

operators are content to apply periodic maintenance even though it may not be cost-optimal. 
The value of this research is that the techno-econornic benefits of Wr CM can be 

quantitatively evaluated, enabling operators to take maintenance policy decisions with more 
insight, but without the 'roadblock' of having to physically apply CM to find out its value. 

Since this research project was initiated in 2005, a number of authors have attempted to 

quantify the benefits of condition-based maintenance for wind farms in economic terms 
(Andrawus et al. 2006,2007, Nilsson and Berding 2007): no literature existed on this subject 

until these items of research were published. However a limitation of all the proposed 

approaches is that they only consider case studies for specific wind farms rather than 
developing a generic approach which can be fed data as it is available: development and 
implementation of such a modelling framework is the primary goal of this thesis. 
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1.1 Key Research Questions 

Scientific investigation of this key issue of the techno-economic benefits of condition-based 

maintenance for wind farms is the main motivation behind the work contained in d-ds thesis. 

Within this overall remit, a number of interesting issues have been uncovered by means of 
literature review and engagement with the academic community as well as wind farm 

operators. More succinctly, the questions of interest are: 

Is condition-based maintenance for wind turbines cost-effective? 
What is the economic value of CBM for VýT units relative to other maintenance? 
What is the technical benefit of CBM for WT units relative to other maintenance? 
What are the necessary conditions for cost-effective WT CM systems? 
Do offshore conditions enable economic viability of wind turbine CM systems? 
Which models and methods of analysis are suitable to quantify the appropriate metrics? 

The first step of this research comprised an in-depth literature review. The purpose was to 

gain knowledge of the methods used to model engineering problems with similar 

characteristics (i. e. the final question in the above sequence). Invariably these published 

models were quantitative in nature, which is hardly surprising, given the background to such 

problems are in engineering, mathematics or physics. Another trend recognised early on was 

that most models were probabilistic in nature as opposed to deterministic. Again, this 

reflects the nature of the problem: probabilistic methods are used to account for the 
inevitable uncertainty which will arise when a complex problem is considered, since not all 
factors may be explicitly modelled. It has not been the intention of the author to discount 

deterministic methods altogether. Rather, it is simply because probabilistic methods more 

effecdvely meet the problem specification. 

In addition to being quantitative and probabilistic, the model framework must take account 

of the questions it is attempting to answer. Therefore, both the technical and economic 

aspects of wind farm operation and maintenance must be captured. Ibis implies the 

operating process of the wind farm will be modelled, enabling the questions above to be 

answered on a quantitative basis. 
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1.2 Dissemination of Research Outcomes 

Ibroughout the course of this research an effort has been made to widely communicate the 
ideas and methodology proposed in this thesis. This audience has not been limited to the 

academic community, however a number of peer reviewed publications have been produced 

and these are fisted below. 

1.2.1 Peer Reviewed Publications 

1. McMillan, D. and Ault, G. W. (2006) "Evaluation of Condition Monitoring and 
Operational Management for Wind Power Plant", Science, Engineering And 

Technology Event (SET '06), Westminster, London, March 2006 (poster) available 

online: h-ttp: //www. 12rosen. org. uk/12ub/set06-mcmfllan-12d 

2. McMiUan, D. and Ault, G. W. (2007) "Towards Quantification of Condition 

Monitoring Benefit for Wind Turbine Generators", Proceedings of European Wind 

Energy Conference (EWEC '07), Milan, May 2007 (conference paper) available 

online: httl2: //w\vw. 12roscn. org. uk/12ub/ewec07-mcmillan-12d 

3. McMillan, D. and Ault, G. W. (2007) "Quantification of Condition Monitoring 

Benefit for Offshore Wind Turbines", Wind Engineering, v 31, n 4, pp 267-285, May 

2007 Oournal paper) available online at htQ2: //,, v-, v-, v. 12rosen. org. uk/12ub/windena. - 
mcmillan. 12df 

4. McMillan, D. and Ault, G. W. (2008) "Quantification of Condition Monitoring 

Benefit for'Onshore Wind Turbines: Sensitivity to Operational Parameters", IET 

Renewable Power Generation, v 2, n 1, pp 60-72, March 2008 Oournal paper) 

5. McMillan, D. and Ault, G. W. (2008) "Specification of Reliability Benchmarks for 

Offshore Wind Farms", Proceedings of European Safety and Reliability Engineering 

Conference (ESREL), Valencia, September 2008 (conference paper) 
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1.2.2 Presentations Delivered to Project Partners 

Additionally, several presentations have been made to the Prosen project partners which 
included a large utility - Scottish Power - and two condition monitoring manufacturers - 
Macom and Insensys. 

1. 'Tolicy-Based Decisions/ Operational Management & Condition Monitoring", 

Prosen project kick-off meeting, Ross Priory, November 2005. 

2. "Quantification of Wind Turbine Condition Monitoring Benefie, ITI Energy visit, 
Aberdeen, May 2006 

3. "Goal directed configuration & Quantification of wind turbine CM benefit", Prosen 

project meeting, University of Stirling, March 2006. 

4. "Validation Procedure For Wind Turbine Condition Monitoring Benefit Models", 

Prosen project meeting, University of Canterbury, September 2006 (Talk delivered 

by Dr. Craig Michic). 

5. "Wind Farm Condition Monitoring System Economic Performance", Prosen project 
meeting, University of Lancaster, April 2007. 

6. "Performance Improvement Measurement for PROSEN Condition Monitoring 

System", Prosen project meeting, University of Essex, August 2007. 

7. "Sensor Failure Data and Condition Monitoring Cost Benefiewrosen project 

meeting, University of Stirling, December 2007. 

Further presentations were given in January 2006 and 2007 during the University of 
Strathclyde "Research Presentation Day", with the audience consisting of academics and 
industrial guests. 

5 



1.3 Existing Key Contributions to Wind Farm Operational Issues 

The work contained in this thesis builds on the existing contributions from researchers 

which have influenced the models produced in this thesis. The research can be broadly 

categoriscd into four thematic areas. 

1. Wind farm reliability (Sayas & Allan, Billinton, Tavner) 

2. Autoregressive models for wind speed characterisation (Box &Jenkins, Billinton) 

3. Asset deterioration and maintenance (Anders & Endrenyi, Barrata & Marseguerra) 

4. Probabilistic wind farm O&M cost quantification (van Bussel, Rademakers et al. ) 

The most relevant characteristics of this body of research are now briefly summarised: Table 

I illustrates the most important contributions influencing the development of the 

methodology presented in this thesis. It is noted that only 50% of the research in Table 1 

concerns wind energy. This shows that the research area of asset management and 

operational issues of wind farms has only recently been deemed important enough to 

warrant significant research effort. It has, however, been possible to port methods from 

other areas such as asset degradation modelling which have yet to be applied in this domain. 

Author, Key Publication Date Principal Contribution (s) 
Sayas and Allan Modelling of wind farm reliability and extreme weather states in a 
1996 single state space. 

Barrata and Marseguerra Use of Markov chains to model equipment deterioration, solved via 
2002 Monte Carlo simulation to avoid excessive model simplification and 

constraints. 

Anders and Endrenyi Development of deterioration and maintenance models for power 
1990 systems assets based on the Markov process, to evaluate technical and 

economic benefits of different maintenance policies. 

Box and Jenkins Time series modelling suitable for capturing wind speed 
1970 characteristics. Definition of simple heuristics for model selection. 

Billinton ct al. Use of various time series models to quantify wind farm reliability 
1996,2004 impact on power system. 

van Bussel and Rademakers Original research enabling costs of offshore wind farms to be 
2003 estimated. Based on probabilistic operation and maintenance models. 

Table 1: Existing Influential Research Contributions 
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The research by Sayas & Allan (1996) comprised binary state wind turbine reliability 

representation combined with wind speed state in a Markov process. This approach results 
in a large state space: however the authors show this is manageable from a modelling 

viewpoint if only binary representation of the wind turbine is required. On the other hand, if 

intermediate states were included for modelling the deterioration process, the method would 
become impractical because of the unmanageable number of states. 

Billinton, a close contemporary of Allan, chose to formulate a wind farm reliability model 
based on Monte Carlo Simulation rather than the analytic approach of Allan. However in 

some studies the physical state of the wind turbines are not part of the model (Billinton and 
Bai, 2004). Billinton also researched time series models for wind speed representation 
(Billinton et al. 1996). It would be churlish to mention these models without acknowledging 
Box and Jenkins (1970), who were the main exponents of its development, enabling 

autoregressive wind speed models to be specified and estimated from data. 

The Markov process is also extensively used by Anders & Endrenyi (1990) in their modelling 

of power system asset deterioration, failure and maintenance processes. 'Mey are interested 

in using multi-state systems to capture the stages of deterioration, usually employing one or 

two intermediate states. Their analytic approach to the problem does not lend itself wen to 
inclusion of constraints and varied operating conditions - this is the main drawback of their 

approach. Such problems are overcome by the ideas of Barrata & Marseguerra (2002) who 

model multi-state deterioration but formulate the problem in discrete time steps and use 
Monte Carlo simulation to solve their models. In this way, constraints and other operational 

characteristics can be easily included in the model, meaning less simplification of the real 

system is necessary. 

Finally, van Bussel and Rademakers (2003) have used probabilistic representations to model 

operations and maintenance of offshore wind farms. They combined reliability modelling 

and time series modelling of wind and wave height. Aspects of an these models have 

influenced this research to varying extents, but the biggest influence is the research of 
Baratta, Marseguerra and associates at the polytechnic university of Milan. 
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1.4 Thesis Outline 

The thesis proceeds as follows: chapter 2 summarises the technological development of the 

modern wind turbine, and considers a techno-economic view of condition monitoring 

systems. A case study, comparing the key operational characteristics of a large wind farm and 

a coal-fired power station, is conducted: some intuitive conclusions are drawn about the 

suitability of different maintenance policies for wind farms. The three main policies available 
for wind turbine maintenance are outlined and detail is given on condition monitoring 

technology and factors affecting wind farm economics. 

Chapter 3 introduces methods of modelling wind turbine component condition and 

operation including reliability models, Markov chains and processes and autoregressive time 

series models. The differences of analytic solution and Monte Carlo simulation are discussed, 

as are discrete and continuous-time variants. 'Me mathematics and assumptions 
underpinning these models are also explored. 

Chapter 4 outlines the process which was used to define various aspects of the models (e. g. 

number of parameters, complexity etc. ) and to estimate the input parameters. Simple 

examples are used as a tool to aid understanding of the proposed approach, and clearly 
demonstrate the methodology in action. 

Chapter 5 contains various applications of the methodology to onshore wind turbines. 
Model validation is achieved by comparing the metrics produced by the program against 

publicly available figures or simple calculations. The effects of varying the input parameters 

are examined and commented on. Chapter 6 contains similar analyses, but for offshore 

conditions. 

Finally, chapter 7 provides discussion and conclusions from both sets of results and 

addresses the key research questions posed in chapter 1. Possible avenues for future research 

are proposed. 
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2 Wind Turbine Technology and Wind Farm Operation 

2.1 Technology Development, Function & Reliability 

Ile primary function of a modem wind turbine (WI) is to convert kinetic energy in moving 

air to electrical power. This is achieved by conversion of the kinetic wind energy: first into 

rotational torque, and finally this torque drives a generator to produce electrical energy. At 

the time of writing, worldwide installed capacity of wind generation totalled around 75GW 

(GWEC 2008), which is becoming comparable to more traditional plants such as nuclear 
(370GW) (World Nuclear Association 2008) and hydro (715GVý) (Ren2l, 2006). Many of 

the technological breakthroughs which have enabled wind generation to be deployed on 

such a large scale were achieved in the latter half of the 20'h century, however the wind 

turbine has had an extremely lengthy technological development which stretches back over 
2,500 years . 

Primitive windmills being designed and utilised long before the birth of Christ: the first 

known machines were vertical axis configurations and were used for grain grinding in the 
Middle East, circa 70013C. The technology is thought to have spread to other parts of Asia, 

with the first horizontal axis machines appearing around 1000AD. It is likely that the 

technical knowledge was carried to Europe via the crusaders, who probably encountered it in 

Persia in the first instance (Ackerman & Soder, 2000). 

The earliest electricity - producing wind turbines were designed and built independently by 

Scottish engineer James Blyth and the more famous U. S. scientist Charles Brush (Price, 

2005) in the 1880's. The slightly later work of the Dane Poul la, Cour has also underpinned 
the development of modern wind turbines. Between 1891 and 1918, la Cour developed a test 

windmill and pioneered the use of wind tunnels for aerodynamic testing. As a result of this 

work around 120 wind turbines were deployed around rural Denmark, each rated between 

20-39kW (Anderscn, 2007). 
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Various design configurations have been tested since the experiments of these pioneers: 
however the Gedser wind turbine, designed by Johannes juul, a student of la Cour, can be 

considered the prototype design for the vast majority of wind turbines on the market 
(Danish Wind Energy Association, 2008). This design came to be known as the 'Danish 

concept', and is the overwhelmingly dominant design for modern large-scale electricity 

production. This is described in the next section. 

2.1.1 Danish Concept Characteristics 

The Danish concept comprises a 3-bladed upwind rotor, which revolves on the horizontal 

axis (sometimes called horizontal axis wind turbine, HAWIý. The coupling between rotor 

and electrical generator is indirect and is achieved via a gearbox in order to increase the 

rotational speed to a level which can drive a relatively small diameter, lightweight generator - 
for reasons outlined later. A conceptual view of the energy conversion process for such a 

typical modern wind turbine is outlined in Figure 1. 

Low speed shaft 
rotWonal speed 
= 10-20 rpm 

High speed shaft 
rotational speed 
c 1500-1900 rpm 
(4-pole gen. ) 

I nput Rotor C-tarbox Generator Ouiput 
Kuwtic WwA convell to lllcreý, Se Convert to Electiv. 11 

Energy RotatimWTomm Rotation spýed Electneity powel 

0-) A r 40 , 

L , o 
Figure 1: Conceptual Representafion of Wind, rurbine Energy Conversion Process 

12 



The whole wind turbine assembly rotates into the prevalent wind direction on its vertical axis 
by means of an electromechanical yaw system. Once facing into the wind, control of the 

mechanical input power is achieved either by aerodynamic design of the rotor (stall control) 

or by actively changing the angle of attack of the rotor blades to the wind (pitch control) via 

electrical motors or hydraulics. 

2.1.2 Electrical Configuration 

The electrical configuration of Danish concept wind turbines are influenced by mechanical 

aspects since one main objective of wind turbine mechanical design is to minimise the 

weight at the top of the tower, where the nacelle (containing the generator) is located in 

modem HAWTs. Tl-ýs means the generator has to be as light as possible, and have a 

relatively small physical footprint. For this reason induction generators are employed: 
induction generators have the added advantage of being more robust than synchronous 

generators, and tend to have fewer electrical faults. However, due to the low rotational speed 

of the wind turbine rotor a gearbox has to be used to increase the rotation from tens of 

revolutions per minute at the gearbox input to thousands at the output. 'Me primary reason 
for this is the low number of generator poles. 

Older Danish concept WFs which operated at fixed speed had employed squirrel cage 
induction generators, however newer variable speed technology has resulted in a switch to 
doubly fed induction generators (DFIG) and these are now the dominant wind turbine 

generator configuration. The reason for the dominance of this configuration is that it 

represents a good compromise between economy and performance. It is relatively economic 
because it has only a partial electronic converter, not a full converter. 

The generator rotor in a DFIG is coupled to the electrical grid through a back to back (AC- 

DC/DC-AC) power converter interface (Pena et al., 1996). I'llis configuration enables two 
important technical capabilities: firstly, since the rotor voltage can be controlled via the 

converter, the rotational speed of the machine can be varied while the generator remains in 

synchronism with the electrical grid. Secondly, reactive power control, which is also 
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extremely important from the viewpoint of interaction with the electrical grid, can be 

achieved. 

Direct drive machines utilising synchronous generators are being developed: however 

accommodating their larger diameter, owing to a far greater number of stator poles, is still an 
issue. Furthermore, the full electrical converter necessary in such a configuration may result 
in a much higher level of electrical faults as compared to the induction generator (ravner, 

2006a), as well as increasing the cost. 

2.1.3 Reliability Metrics for Danish Concept 

Since this thesis is concerned with establishing the techno-economic case for condition 

monitoring of Wrs, a good understanding of the reliability of V)Ts and their components is 

core to exploring this topic in detail. 

General measures of WT reliability are available in literature, with several studies considering 

only the overall number of failures per unit time, X. In this thesis a 'failure' is defined as a 

shut-down of electricity production which requires a maintenance visit. This is in contrast to 
faults which can be corrected using a remote WT reset. 

Very often X is expressed in terms of time units of 1 year (annual failure rate). Table 2 shows 

how X varies for five published studies: the data collected shows quite a large spread of 

values for X. In general these values compare rather unfavourably to equivalent figures for 

more established plant such as gas turbines, which for which X is roughly 0.150 (ravner ct 

al., 2007). 

There are many possible reasons for this large spread of reliability values. Firstly, some of the 

values are estimates by the authors rather than data-based parameters (Sayas & Allan, 1996). 

Negra (2007a) and Van Bussel & Zaaijer's (2001) estimates of X are based on expert 
judgement of wind farm operators. Ile other values are derived from recorded data sets. 

14 



Author & Ribrant & Ribrant & Ribrant & Tavner et Tavner et Negra, et Van Bussel Sayas & 
date Bertling Bertling Bertling al. al. al. & Zaiijer Allan. 

2007 2007 2007 2007 2007 2007 2001 1996 
Country Sweden Finland Germany 

_Germany 
Denmark Denmark Holland UK 

X annual 
failures 0.402 1.380 2.380 1.796 0.434 1.500 4.000 2.200 

Table 2: Annual Wind Turbine Failure Rates 

The studies by Ribrant & Bertling (2007) and Tavncr et al. (2007) are derived from wind 

turbine failure statistics. The Swedish statistics are based on a population of roughly 624 

V)Ts, but no information is given regarding the size of the other samples. The German and 
Danish studies by Tavncr et al. (2007) comprise maximum populations of 4,500 and 2,500 

respectively. Therefore, the greatest statistical significance can be placed in the value of 1.796 

from the German study of Tavner: it is very interesting to note that the mean value of these 

8 estimates of X is 1.762. 

A note of caution must be sounded when interpreting failure statistics such as those analysed 
by Tavner and colleagues. It is important to mark that the method of reporting these results 

may influence the Table 2 values. For example, much depends on how a failure is actually 
defined. Some would argue that any unplanned outage should contribute to X. Others 

counter that short outages, often rectified by remote action, are insignificant. The definition 

of what constitutes a system failure will clearly impact on the reported figures. 

Overall WT failure rates such as those summarised here are adequate for studies focusing on 
high level impact of failures, e. g. impact of a wind farm on the reliability of the power 

system. However, in this thesis operational issues arc of interest. These issues encompass 
day-to-day electricity production, specific component failures, downtime associated with 
different failures, maintenance policy and monitoring capability. 

It is clear that a greater level of detail must be captured for operational issues compared to 
high-level impact of failures. This implies the need for information on the reliability of WT 

sub-components. 
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2.1.4 Reliability at the Sub-Component Level 

It has been established that the analysis of German data by Tavner et al. (2007) represents 

the most statistically credible estimate for overall WT failure rate among the studies 

considered. In their research, the authors principally investigate failure rates for WT sub- 

components, which is of extreme interest for a deeper understanding of wind farm 

operation. The sub-component data extracted from Tavner et al. (2007) is plotted in Figure 

2. 
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Figure 2: Annual Wr Sub-Component Failure Rates - Getman Data. Tavner ct al. (2007) 

Three components from the study have been discarded - air brake, mechanical brake, and 

main shaft. These components are neglected because their annual failure rates are less than 
0.05. This corresponds to a mean time to failure of more than 20 years, which is a common 

assumption for the designed life of a WT. Each of the three discarded components could be 

repaired or replaced if they did fail. That is to say, they do not dictate the designed life of the 

WIL 

Inspection of Figure 2 shows that electrical-related failures (grid or electrical system + 

electrical controls) contribute greatly to the overall failure rate: they are responsible for 0.564 

failures per annum, or around 31% of all failures. It is important to put this into context by 

noting that such failures can be repaired relatively easily, with very little associated downtime 

and loss of production as compared with outage of large mechanical components 
(Echavarria et al. 2007, Tavner et al. 2006a). 

16 



Furthermore, repair or replacement of an electrical of electronic sub-assembly does not 

require hire of heavy equipment such as a crane, since these assemblies are accessed fairly 

easily. It quickly becomes apparent that as well as the probability of an outage event as 
described in this section, the impact of the event must also be considered. This leads to the 

concept of risk, which is explained in section 4.3.2. This in turn implies that factors beyond 

the failure rate have to be considered in any thorough and realistic evaluation of wind farm 

oPeration. 

2.1.5 Wind Turbine Downtime 

In the previous section it was noted that the overall Wr failure rate is not adequate for 

analysis of operational issues such as the techno-econornic evaluation of condition 

monitoring proposed in this thesis. After an equipment failure, the turbine would be stopped 

either by the wind farm operator via the SCADA system, or by in-built damage limitation 

controls triggered by temperature and vibration limits. After production is stopped, the 

problem is diagnosed either through retrospective observation of SCADA data or by a site 

visit. Then, a repair or replacement is scheduled as necessary, dependent on the severity of 

the fault. A replacement part or specialised equipment may have to be sourced. Finally, a 

suitable weather window must exist in tandem with available maintenance crews so that the 

repair or replacement can be conducted, returning the Wr to service. All of this takes time: 

the total time from failure to re-start of production is known as the downtime. 

As with the failure rate, the downtime associated with individual component outages (rather 

than averaged downtime for all failures) should be considered, as specific failures have 

unique operational impacts. Downtime durations are less well documented in the literature 

than failure rates, possibly owing to their even greater conuncrcial sensitivity. Nevertheless, 

some literature does exist, and along with expert opinion from wind farm operators, these 

quantities can be adequately estimated. Figure 3 is an example of such data captured by 

Ribrant & Bertling (2007) for Swedish failures over 2000-2004. 

17 



350 1 

300 

250 
0 

200 
E 

150 

0 100 D 
50 

0 

Since downtime is affected by a great many factors, it is inevitable that estimates vary 

substantially. As an example, it has been possible during this research to get estimates of 

gearbox downtime (in the case of a replacement) from a number of sources. In some cases, 

specific conditions were attached to the downtime: these are summarised in Table 3. 

Source Ribrant & Operator 1. Operator 2. Operator 2. Operator 2. 
Bertling. 2007. 2007. 2007. 2007. 2007. 

Conditions Wear-related Good access to Spare No spare No spare, offshore 
failure site, no spare available weather constraints 

Downtime 601 700 168* 720* 1440* Hours 
Downtime 

25 29 7* 30* 60* Days 
Table 3: Gearbox Replacement Downtimes. ' Denotes an estimate based on experience of Scottish Power. 

The length of time required to source a major component is clearly a major factor in 

downtime duration. In part this may be due to undersupply of wind turbine components, a 

recent problem which has affected not only component lead times but that has also driven 

up component costs (Garrad, 2007). 

Such significant periods of downtime do suggest that there is scope for optimisation of wind 
farm operation via effective maintenance task scheduling. In particular, weather windows for 

maintenance actions (usually measured in days) may be a major constraint, and their impact 

should be carefully considered. This is discussed in more detail in forthcoming sections 
dealing specifically with maintenance. 
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It has been shown that the WTs within a wind farm are each self-contained, independent 

systems each with individual sub-component failure rates and downtimes for specific 
failures. These facts alone make wind farms fundamentally different as compared to 

traditional thermal plant such as gas, nuclear or coal. However, they also have some unique 

operational characteristics. These are highlighted in the next section by way of a case study 

comparison. 

2.2 Operational Comparison of Wind Farm vs. Thermal Plant: A 
Comparative Case Study 

As has been mentioned, the characteristics of a wind farm are quite different from the 

traditional thermal plant equivalent. To illuminate this point further, a comparison of some 
key operational characteristics of two representative projects is given: both projects are 

currently being planned in the UK. The wind farm is Greater Gabbard, a 50OMW offshore 

wind farm which will be built off the coast of Suffolk. The thermal plant is Tilbury power 

station, a 1, OOOMW coal-fuelled plant which will replace a similar existing coal-fired power 

station near the Thames estuary: their characteristics are surnmarised in Table 4. 

The characteristics and costs were derived from (rilbury: Npower 2008) and (Greater 

Gabbard: Airtricity 2008). Clearly there are a number of fundamental differences between 

these two plant types. These can be broadly categorised as econon-dc, technical and logistical 

differences. 

Name Type Rating Capacity Generating Unit Geo- Access Maintenance 
Factor Units Cost graphical Distance Equipment 

Area 
MW % #XMW fm KM2 Km 

Tilbury Coal- 1000 90* 5X 200* -200 <1* 0 Heavy-duty 
fired crane 

Greater Offshore 500 40* 139 X 3.6 -3.6 147 23 Offshore 
Gabbard wind jack-up crane 

farm vessel 

Table 4: Comparison of Coal and Wind Operational Characteristics. Fields marked * are assumed. 
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2.2.1 Comparison of Unit Cost 

Cost of an individual 'unit' in the two cases is very different: L200M in the case of coal-fired 

and L3.6M in the case of the wind turbine - nearly a factor of 10. More expensive units win 

obviously be treated with more care due to the huge amount of capital invested by the 

generation company: this is why condition monitoring is often deployed in large thermal 

units. The case for CM applied to the wind farm is intuitively less persuasive due to the 

much lower value of the individual units. 

2.2.2 Comparison of Maintenance & Logistical Issues 

When an outage does occur, the combination of offshore logistics (die need to travel across 
23km of sea to inspect damage), offshore weather constraints and the need for a highly 

specialised repair vessel (with associated long lead times and costing thousands of pounds 

per day for hire) makes repair and replacement costs much higher than land-based systems. 
Additionally, traditional maintenance inspections become much less trivial for large offshore 

wind farms: in the case of Greater Gabbard there are 139 units spread over an area of 
147km'. Conducting a manual inspection would be both time-consuming and tedious, 

especially compared to the coal-fired station where the turbine hall would contain all the 

generation equipment, and the entire site would cover only 1 or 2 kný. This suggests there is 

scope for scope for cost reduction via CM by reducing the number of unnecessary 
inspections. 

2.2.3 Comparison of Lost Revenue 

One of the main drivers of responsive O&M is to minimise any downtime that occurs after 

an equipment outage. This can be achieved by predicting failures through a CMS or by 

holding spares and having repair teams ready at short notice. In the case of a coal plant or 

wind farm, potential revenue will be lost: the amount of this lost revenue depends on several 

variables. One of these variables is the capacity factor (CF). 
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The capacity factor is a measure of actual electricity production in terms of full load hours 

(FLHý ..... ) relative to theoretical production (i. e. if the generator ran at full output over the 

considered time period - FLH., J. The CF is defined in equation 1: Typically the CF for a 

thermal plant is much higher than for an offshore wind farm, as Table 4 suggests. This is a 
fundamental difference between the two types of power plant. 

CF --- 
FLH,,,,,,., % FLH.. 

(1) 

An estimate of the lost revenue, R,.,, for the coal-fired unit and the wind turbine can be 

calculated by using the CF alongside other variables. These are the length of downtime 

(T,,.., ), electricity and renewables market price (MP,,,, MPý, - discussed later) and rating of 

the generator (G). Equation 2 characterises the lost revenue for both power plants by 

calculating the lost energy in MWh (CF xGxT,, 6. ý ) and multiplying by the economic value 

of each MWh (MPA,, + MPý). 

R,,, = CF xGxT,,., WP, + MP-) (2) 

Table 4 values can be substituted into equation 2, assuming market prices of L36/ MWh and 
ý60/ Wh for MP, and MP., respectively. The plot in Figure 4 shows the lost revenue for 

increasing values of downtime. 

6 

5 

C 

C, 

0 
-j 

0 

Tilbury 20OMW Coal 
Fired Plant Unit i 
Greater Gabbard 
3.6MW V\And Turbine 

5 10 15 20 25 30 

Downtime Days 
Figure 4: Lost Revenue Comparison of Coal Plant Unit and Wind Turbine 
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A large difference in the lost revenue for the two cases can be observed in Figure 4. This 

implies that n-dnirnisation of downtime is a much more critical issue for coal-fifcd plant as 

compared to an offshore wind farm, although it should be noted that multiple WI' outages 

may close this gap. Figure 4 illustrates in very clear terms exactly why coal plant operators 

are keen to use tools such as condition monitoring to avoid lengthy outages. The case seems 
intuitively less clear for wind farm operators. 

2.2.4 Implications of Condition Monitoring False Positives & False 
Negatives 

CM systems for coal plant are very well established, having been refined over many years. 
The techniques are primarily based on vibration analysis and temperature trending. WT CM 

is based on similar technology, but problems have been encountered in using similar tools 

and techniques but applied to plant with very different characteristics. An example of this is 

the dynamic loading on the rotor and resulting variable speed operation of the gearbox and 

generator (Rademakers et al. 2004, Becker & Poste 2006 and Hyers et al. 2006). 'Mis is 

fundamentally different to how thermal plants are loaded - these technical issues are 
discussed later in the thesis. Other problems are transducer unreliability (especially in 

extreme temperatures or high humidity) and intermittent CM errors in extreme weather 

conditions. These two problems are direct consequences of the distributed, physically 

exposed nature of wind farms and are in stark contrast to the relatively controlled 

environment of a thermal power station. 

The result of the issues discussed above is that the CM system can produce erroneous 

signals to the operator: these errors can be placed into two categories. False positives are 

situations where a fault is flagged by the CM system but in reality no fault exists. False 

negatives are situations where the CM system fails to diagnose the problem, informing the 

operator that the system is operating well, whereas in reality the system has deteriorated or 

suffered a fault. Anecdotal evidence obtained by the author from those with front he wind 
farm operating experience suggests that both types of error are a significant problem for 

current Wr CM systems. For example, it has been said that the CM system at Horns Rev has 

caused more downtime than it has saved, due to false positives. This represents an extreme 
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but possible case where a conservative operational approach is adopted, based solely on CM 

information. It would involve shutting down production until an inspection could be 

scheduled, if a fault or incipient fault is flagged by the CM system. In the case of a false 

positive this causes unnecessary downtime, which is exacerbated by the logistical and access 
issues previously discussed. 

It can be derived from anecdotal evidence and literature that CM systems for wind farms 

may be less reliable than their thermal plant equivalent (see Becker & Poste 2006 and Hyers 

et al. 2006). Much research effort is currently being devoted to this topic. However this is a 

current problem which is highly relevant for wind farms in operation today. lberefore, the 

models developed in this thesis include the possibility of a fallible CM system and evaluate 

the impact of this factor on the techno-econornic benefits of W17 CM. 

2.2.5 Summary of Wind Farm - Coal Station Comparison 

In summary, there are conflicting themes which emerge from the presented comparison. 
There seems to be little economic justification for wind farm CM on the basis that the lost 

revenue due to outages is small compared to coal plant (see Figure 4) - although multiple 
Wr outages will increase the lost revenue. Also the capital value of a Wr is relatively small 

compared with a coal unit. In the offshore case the distance to shore, weather constraints 

and access issues make the issue of CM false diagnosis more pertinent. 

Conversely, if the technical hurdles of CM are overcome (or can be adequately controlled), 

this represents a desirable solution to maintenance management, eliminating the need for 

tedious and un-necessary periodic inspection of hundreds of assets, possibly spaced over 
hundreds of km'. 'I'lie very fact that maintenance actions are coupled strongly with weather 

conditions implies the need for increased planning of maintenance activity, which can 

theoretically be provided by CM. Additionally, highly specialised and costly crane vessels are 

required for major maintenance offshore. It is observed that deciding on a maintenance 

policy for a wind farm is not a trivial task due to the many factors involved. The next section 
details the possible approaches to wind farm maintenance. 
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2.3 Wind Farm Maintenance Policy 

Power systems assets are typically operated according to one of three maintenance policies. 
Wind farms, although exhibiting markedly different characteristics to thermal plant, are 

maintained using the same methods. These are (pseudonyms in parentheses): run to failure 

(reactive), periodic (time-based, preventive) and condition-based (predictive) maintenance. 

2.3.1 Run to Failure 

In this case equipment is maintained only after it has ceased to function. The primary reason 
for adoption of this strategy would be because the plant is seen as non-critical, i. e. the 

consequences of an outage arc not severe. The other clear reason is economic constraints: 
however run to failure maintenance may only be economic for systems with very high 

reliability, or where the consequences of an outage are small. 

Other possible reasons for the adoption of run to failure as a maintenance policy arc physical 

constraints such as weather, and restrictions on access to the asset i. e. situations where it is 

impractical for maintenance to be conducted on a routine basis. For power systems assets, 

run to failure is not used for any but the least significant assets (Schneider et al. 2006). 

However, it could be argued that wind turbines conform to the characteristics which may 

enable run to failure: geographical remoteness, comparatively low economic yield of 
individual units and low technical consequences of outage. 

Nevertheless, dialogue with major wind farm operators in the UK indicates run to failure is 

not adopted for wind turbines. The main motivation behind this is the desire to keep in line 

with manufacturers recommendations regarding maintenance. Very often a service 

agreement for the first few years of operation is signed with the manufacturer. This means 

the manufacturer is responsible for maintenance rather than the owner/ operator. Another 

possible reason is the lack of operator experience, with wind being a relatively new plant 

type. Since run to failure is generally not adopted for wind farm operation, it will not be 

considered in this thesis. 
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2.3.2 Periodic Maintenance 

Periodic maintenance is the most widely adopted maintenance paradigm in any industry 

(Schneider et al. 2006). The premise of periodic maintenance is that maintenance actions arc 

carried out at pre-detcrmined intervals, e. g. every 6 months. The primary reasons for its 

popularity are ease of implementation, its position as the 'cncumbent' maintenance policy, 

and the endorsement of manufacturers, whose maintenance recommendations are often 
followed rather rigidly by operators of the equipment. Power system utilities in particular 

tend to be conservative in operation of assets, fearing (perhaps rightly) that a switch to 

unfamiliar maintenance systems would have a negative impact on operation. The main 

problem with periodic maintenance is that it will never be cost- or resource-optimal because 

of the lack of consideration of the actual condition or need of the equipment i. e. does the 

equipment reqmire to be maintained at a specific time? If it does not, the maintenance effort 

and associated cost are wasted. Equally, if a problem occurs between inspection periods, 

there may be no knowledge of this, resulting in a higher probability of failure once the 

equipment has deteriorated significantly. 

2.3.3 Condition Based Maintenance 

The premise of condition based maintenance (CBNý is that maintenance actions are initiated 

pre-emptively according to equipment condition, since the equipment is monitored with 
regularity as compared to periodic maintenance (in the case of on-line monitoring, this is 
done on a continuous basis). Access to the plant condition information means that, in 

theory, maintenance actions can be scheduled in an optimal manner in terms of cost, 
resources and efficiency of effort. 

However, even in the theoretical case there are drawbacks, such as the initial investment in 

monitoring tools. In particular, a supervisory control and data acquisition (SCADA) system 
is required to relay the condition information to a control centre. Additionally, transducers 

are required to carry out the measurements. Furthermore, ongoing costs are incurred. 

Experts and/or data interpretation systems are needed to extract meaningful signals from 
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the condition data. Although some form of human input is needed for maintenance planning 
for all types of maintenance policy, CM systems in particular require continual attention 
because a fault could develop at any continuous point in time. 

These costs (SCADA, transducers and data interpretation system) are easily justifiable for a 

single large rotating plant rated at hundreds of MW, however the case for CM applied to 

wind turbines is intuitively less clear. This is because separate CM equipment is required for 

each turbine, even though WT ratings are relatively modest (in the range 0.5-5MW) 

compared to steam turbines (100's of MW) 

'Me attitudes of wind farm operators in particular reveal several problems associated with 
CM. A group of these problems are simply a function of how CM is perreived in some 
industrial circles, with the main hurdle being the view that CM is ineffective and 

uneconomic. Another group of problems stem from real experience and difficulties with 
implementation of CM systems. Both of these groups are the focus of the next section. 

2.3.4 Specific Problems with Condition Based Maintenance 
Applied to Wind Turbines 

Anecdotal evidence suggests that CM systems are becoming more commonplace, especially 
installation at manufacture of larger MW-class turbines. Nevertheless, there is also a 

widespread perception that operational savings due to the theoretical benefits of the CM 

system (More operational information, increased scope for O&M scheduling and thus higher 

availability) are effectively neutralized by the drawbacks, which can be surnmed up by the 
following commonly-cited problems: 

1. The benefit or value of CM systems for wind turbines is unclear as it cannot be easily 

and accurately quantified. This applies in particular to onshore wind which is 

considered low-margin plant by operators. It is therefore difficult to establish an 

economic argument. 
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2. CM systems for Wrs are too costly to implement and drain resources in terms of 

0 Hardware/ Software 

0 Man-hours required for data mining and interpretation 

a False positives and negatives, leading to un-necessary shutdowns 

3. In the context of a medium or large wind farm with tens or hundreds of turbines, the 
loss of a single (or even a few) machine(s) is not significant from a technical, 

economic or indeed any other significant viewpoint. 

In fact these arguments lead major utilities to simply switch off or ignore the output from 

their WT CM systems, and employ periodic maintenance. From an alternative viewpoint, the 
following could be stated in response to the points above. 

Point 1: It would be useful to quantify the benefit of Wr CM systems and establish what 

conditions need to exist for such a system to be economically justified. Indeed this has been 

identified in other literature (Rademakers et al. 2003, Giebhardt et al. 2007) as a research 
'white spot'. 

Point 2. Development of robust hardware and effective software algorithms is an ongoing 
issue (and, indeed, an important research area - see Hyers et al., 2006, Wilkinson et al., 2007 

and Zaher and McArthur., 2007), which will become less significant as the respective 
designs/ architectures go through successive iterations. Well designed and robust software 
will filter information adequately and ensure that the operator is not overwhelmed with 
information and alarms. Introducing more autonomy to trending and data interpretation may 
also cut down on resources needed to implement the CM system. 

With respect to hardware, the level of installed CM hardware should be reflective of the 
importance of the monitored components, as well as their reliability and case of repair/ 

replacement For example, a gearbox worth -L100,000 merits instrumentation as compared 

to a power electronics subassembly of -5,000 - 10,000. As well as the relative value, access 

to replace a gearbox involves significant difficulty due to its physical position at the top of 

the tower and its large weight - so the value of good maintenance decision making is clear. 
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Point 3: Several factors combine to increase the significance of outage of individual (or small 

numbers of) WTs. Firstly and most generally, is the cost pressure on generators as a result of 

the highly competitive liberalized UK electricity market. This is especially significant in 

countries which provide support to renewable electricity generators in the form of a feed-in 

tariff (or the renewables obligation system in the UK): in such cases increased revenues are 

available for wind farms. Additionally, many countries are considering increased subsidy 

mechanisms for offshore wind, which combined with higher yields and bigger offshore 

turbines, will increase revenue significantly. Futhermore, multiple VIT outages within a wind 
farm may result in significant cumulative lost revenues. One final interesting motivation for 

WT CM is the particular case of Germany, where the use of CM systems has been 

encouraged by the insurance industry. WTs normally require an overhaul after 40,000 hours 

of operation: however this can be circumvented via installation of CM systems (Becker & 

Poste, 2006). 

Despite the drawbacks which have been mentioned in this section, many still consider WT 

CM worthwhile - not least WT manufacturers. The next section provides a deeper 

examination of wind turbine CM and techno-economic issues surrounding its deployment. 

2.4 Technical Overview of Condition Monitoring Systems for 
Wind Turbines 

A comprehensive table of possible monitoring solutions has been compiled through review 

of pubhcations, industry literature and consultation with wind farm operators. This is 

displayed in Table 5, along with the physical position of the components in Figure 5. 

Fiprc 5: Location of Danish (. onccpt I Torizontal Axis Wind Turbine Components 
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FIG 
4 

WT 
Component 

Type of 
Measurement 

Possible Sensor 
Type(s) Associated Failure Mode(s) 

Vibration, Accelerometer, Loss of energy conversion 
I Gearbox Temperature, On- temperature sensing, efficiency, contamination of 

line oil analysis hall effect sensor lubricant, gear tooth damage 

2 Main Tower Vibration Accelerometer Structural fatigue/ failure 

3 Blades 
Vibration, strain jip 
crack detection Optical Strain gauge, Loss of power output, blade failure 

, 
speed 

Ultrasonic, accelerometer (total/ partial), excessive vibration 

4 Main Vibration, Accelerometer, Bearing failure, possible rotor/ 
Bearing Temperature temperature sensing shaft/ generator damage 

5 Power Electrical Optical, Current Excessive Vibration, harmonics 
Output Transformer indicative of mechanical problems 
Insulation PD, Temperature Degradation of insulation- 

6 Oil (WT , DGA Optical, Acoustic, CT electrical short and transformer 
transformer) damage 

7 Hydraulic Pressure Pressure sensor 
Failure to pitch - increased mechanical 

System stress, reduced energy yield 
Actuators Current, voltage, CT, VT, temp sensor, 

Failure to Yaw: reduced energy 
yield (shutdown? ). Failure to pitch: 8 (yaw, pitch temp, moisture, magnetic/optical rotor over speed, or reduced energy etc. ) positional info. position sensing yield 

9 Generator 
electrical checks CT VT Shorts, overheating, possible fire 

Insulation , risk 
10 Coolant for 

Generator Temperature temp sensor overheating of generator 

II inverter/ Power Power input/ output 
CT, VT, electrical 
status signals from Erroneous operation of turbine Electronics health of device device 

12 Mechanical Position sensing, Reed switch, optical, rotor over speed, excessive 
Brake temoerature temn sensor mechanical loadiniz 

Table 5: Overview of Condition Monitorina for Wind Turbines 

The academic interest and literature on wind turbine condition monitoring systems has 

increased considerably in recent times. Many comprehensive summaries of the technology 

are available, as well as new innovations in use of data and development of algorithms for 

condition assessment. A review of contributions in this field of research is now presented. 

2.4.1 Literature on Wind Turbine Condition Monitoring Technology 

Rademakers et al. (2004) gave a high-level overview of wind turbine condition monitoring 

systems, briefly describing systems for the drive train, blades, pitch mechanism, generator, 

electrical control/ sensors, and hydraulic systems. The authors identify the stochastic loading 

of wind turbines as particularly challenging with regards to the diagnosis of problems. They 
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point out that since the ratings and capacity factors of offshore wind turbines are 

significantly higher than their onshore equivalents, the lost revenue is significantly higher 

offshore, and therefore the case for CM investment is clearer from an economic viewpoint. 
Additionally, they argue that maintenance costs increase greatly offshore due to logistics, 

increased difficulty for repair and more severe weather conditions. They reported that one of 

the main drivers for the use of CM in onshore wind turbines is an insurance requirement, 

especiaRy in Germany. 

Becker & Poste (2006) surnmarise the recent trends of gearbox monitoring in wind turbines, 

with particular reference to the German insurance market. The current practice involves 

replacement of all roller bearings in the drive train after 5 years or 40,000 hours of 

operational service (whichever occurs first); unless a drive train condition monitoring system 
is in place: however, they identify misdiagnosis as a source of unnecessary downtime in 

current systems. For vibration monitoring the authors define three levels of monitoring 

which can be carried out. Level I monitoring is threshold monitoring of broadband 

vibration spectra, Level 2 is band-selected thresholds for variable or fixed speed, and signals 

are only analysed thoroughly when the signal exceeds the threshold level. Level 3 includes 

extensive offline monitoring using both time- and frequency-domain analysis and is suitable 
for identiýýing faults with individual components. 

A distinction is made between vibration monitoring of fixed speed and variable speed 

machines: pole switching is used in fixed-speed generators and so these machines operate 

close to maximum capacity which enables signals to be captured relatively easily. In variable 

speed machines (i. e. DFIGS) the rotational speed varies much more and this influences the 

measured vibration: the specific vibration excitation frequencies vary with wind speed and 
this causes a 'blurring' of the data. Other problems are: difficulty in obtaining consistent 

onshore readings due to gusting, the effect of control parameters, and micro variations in 

individual wind turbines having implications on vibration signals. This means that vibration 

sensors and diagnosis algorithms would have to be tuned for each individual turbine. 

Some further insight into the recent trends in the WT CM industry was provided by an 
industry article (Anon, 2005). 'Me article highlights that faults in mechanical systems are 

30 



indicated by hot spot temperatures, vibrations and accumulation of debris in lubricants. It 

identifies vibration, acoustics, and strain measures as indicators of condition in rotor blades. 

For monitoring of gears and rolling element bearings, the systems described are based on 

vibration monitoring. The blade CM systems are characterized by optical strain 

measurements, some of which are installed at manufacture, however retro-fits are possible. 

A snapshot of the state of the art in WT CM systems is provided by Hyers et al. (2006). The 

authors begin by stating that the economic case for CBM for onshore conditions is 

unproven, and that often a 'run to failure'policy combined with inspection may be the most 

economically justified maintenance approach. The case for CM systems is made by 

highlighting the characteristics of future offshore wind farms such as larger machines and 

costlier components. The components identified in the paper as candidates for CM are 
drive-train components (mainly generator, gearbox and associated bearings), rotor blades 

and electronic sub-systems. It is noted that the paper was published after the key 

components featured in this thesis were identified: however the same conclusions have been 

reached. Ibis corroboration with the findings of domain experts adds significant weight to 

the assumption in this thesis, that these identified components are the most important. 'Me 

reason Hyers and colleagues identify these particular components are firstly, the failure 

frequency and secondly, cost of replacement. 

'Me main hurdles for take-up of CBM en masse are twofold. On the one hand, damage 

prognosis methods based on CM information are still in development and require 
refinement to increase prognosis accuracy, to avoid large numbers of false positives. These 

are mainly based on 'physics of failure' models whose parameters are updated via CM 

information. In this case some synergies with military research may be exploited, particularly 
helicopter rotor blade modelling. Related to this is reliability of the CM sensors: again this is 

an area of ongoing research which may be addressed via use of emerging sensor 
technologies. The second hurdle is the 'value proposition' i. e. economic justification. It is 

this topic which this thesis will address. 

Hameed ct al. (2007) provided a highly comprehensive review of fault detection methods for 

condition monitoring of wind turbine components. They outlined existing methods such as 
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vibration analysis and oil analysis for drive-train components, thermography for monitoring 

of electronics and electrical components, physical condition i. e. visual inspection, strain 

measurement for blades, monitoring of process parameters such as control system 

parameters and finally performance benchmarking of the whole turbine. They argue that 

although the initial investment costs of condition monitoring are high, the benefits outweigh 

the development and implementation issues, commenting that: "... the continuous 

production of power without any breakdown offsets this investment cost substantially". It is 

noted that the authors provide no analytical results to underpin the validity of this assertion. 
However they also note that the investment cost of the CMS is high compared to lost 

production yield: so reduction of maintenance costs and component damage through use of 
CM are an important enabler. 

Sanz-Bobi et al. (2006) developed a system supporting predictive maintenance of a wind 
turbine based on artificial intelligence techniques called SIMAP. The approach seeks to link 

maintenance with factors such as weather state, machine stress and hours in service. The 

main components of the system are 'normal behaviour' models based on neural networks, a 
diagnosis module based on a fuzzy expert system and an automated maintenance scheduling 
tool. It is interesting to note the number and nature of parameters used as input to the ANN 

(artificial neural net), with many autoregressive terms included. Ibis suggests that the 

authors lack knowledge about the interactions which affect component health, since the 
ANN is essentially a 'black box' approach for modelling variable interdependency. The rules 

within the expert system have to be developed with extensive data sets and expert 
judgement. Additionally, some of the suggested maintenance effectiveness metrics, based on 
level of equipment recovery after maintenance, are highly subjective and turbine-specific. 

Finally, the work of Sharpe, Infield and Leany underpinned development of a methodology 

to analysc Wr SCADA data to enhance condition monitoring diagnosis accuracy. One 

interesting paper on this topic (Leany et al. 1999) outlined a set of condition monitoring 

techniques based on standard 10-n-ýinute performance data widely available from the wind 
farm SCADA system, with the airn of detecting deterioration and specific faults. The 

methods take account of sitc-spccific factors, such as complex terrain, which need to be 

included for accurate performance evaluation. The factors affecting WT performance 
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mentioned are meteorological, physical, terrain toughness, obstacles, topography and wakes. 
These factors are taken account of in the proposed turbine performance analysis model, 

which is based on at least one year of meteorological data so that long-term wind speeds for 

all wind directions can be deduced. It could be argued, however that 1 year of data is not 

adequate for a wind farm application since a trend should be established based on several 

years of data. 

Additional factors are turbine layout and power curve, which are combined with the other 
factors to predict the output of individual WI7s and thus the whole WE These factors are 

combined to create a normal behaviour model of the wind farm, which also captures spatial 
dependencies such as correlation of wind speeds with turbine separation distance. A 

technique known as Kriging is used and compared with linear regression to estimate wind 

speed levels at different points at the test site - the authors demonstrate that Kriging gives 
lower errors for long-term estimates (i. e. longer than 3 months). Tlie analysis is done offline 
however the authors indicate that an online system is possible since the calculations are not 

prohibitively time-consuming. 

'Me authors identify a set of problems which have a negative impact on WI, availability and 

may increase O&M costs. These are sensor errors causing spurious readings, soiled blades 

reducing energy conversion efficiency, yaw errors reducing energy yield, as well as 

unrcliability of the yaw mechanism, pitch mechanism, gearbox, clutch and generator. The 

authors state that analysis of fault data from the above components indicates that their 
failure is preceded by a general deterioration in performance over a number of months, 

which is an interesting conclusion and illustrates the large potential of CM systems to reduce 

costs via efficient maintenance scheduling. An example is given of a gearbox bearing failure 

which showed performance deterioration three months prior to catastrophic failure, in the 
form of vibration trips and high gearbox temperature. The authors demonstrate that an 
increase in 'power turbulence' or variation of the output power can be an indication of 
bearing failure. 

It can be seen that a fairly modest amount of research effort has been devoted to 

understanding of factors which affect wind turbine performance, and development of 
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methods to increase diagnosis accuracy of condition monitoring systems. This is somewhat 

surprising given the growing pron-dnence of wind farms in the worldwide generation mix. 
The rest of the existing body of literature on Wr CM focuses mainly on development of 

methods for rotor blade monitoring. Burnham & Peirce (2007), Blanch & Dutton (2003) and 
Rumsey et al. (2008) all consider acoustic emission as a novel tool for CM of blades. Each of 

these three independent streams of research is at the early stages of development. Castelitz & 

Giebhardt (2005) use the power output of individual XVTs to detect imbalance in the rotor, 

while Jeffries et al. (1998) employ the power spectral density for the same purpose. Finally, 

Ghoshal et al. (2000) focus on vibration response of pizoceramic sensor patches bonded to 

the blade surface for condition estimation. 

Other WT rotating elements such as gears and bearings receive less attention in the literature 

than rotor blades. One reason for this is that algorithms for condition estimation of rotating 

elements have already been extensively researched. However, the main application is for the 

case of systems with operation at a near constant rotational speed (see Carden & Fanning, 

2004) such as aero engines and steam turbines. The variable speed operation of a wind 
turbine severely limits the effectiveness of these existing algorithms (see Becker & Poste, 

2006). It is surprising to note the lack of research devoted to algorithms specific to the 

variable speed operation of WTs. 

One piece of research which attempts to address this problem Gianyu & Lingfu, 2007) 
develops a method which identifies characteristic defect octave frequencies, which do not 

vary with rotational speed. This is because the expressions for these octave frequencies are 
purely dependent on bearing geometry. This approach may enable classification of WT 
bearing faults despite variable speed operation: however this is the first paper to propose 

such an approach. Therefore, it remains to be seen how effective the implementation win be 

on a real system as opposed to the test system evaluated by the authors. 

The Conmow project (see Wiggehnkhuizen et al., 2007) was run for over 4 years with the 

goal of improving CM algorithms for the WT drive-train (rotor, gearbox and generator) but 

a lack of fault incidences over the period of the project resulted in very little novel output 
from this work. Wilkinson & Tavner (2004) illustrate a test rig for development of fault- 
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finding algorithms for the WT drive-train. Again, the work is at the very beginnings of 
development. 

It is observed that much of the recently proposed advanced sensing and diagnostic capability 
discussed is at a relatively low level of technological maturity. Furthermore, as previously 
discussed, the economic case for CM is even less clear than the technical case. This area of 

research, to estimate the economic benefits of WT CM, has received a growing amount of 

attention in recent years. It is explored in the next section. 

2.4.2 Techno-Economic Analysis of Condition Monitoring 

Wind farm operators and academics have only recently begun to understand the importance 

of wind farm operation and maintenance policy and associated operational issues. This is 

reflected in the papers published since 2006 which are very specifically focused on 
detern-dning the value or discussing the effects of adopting certain wind farm maintenance 

policies. Most of these papers mention the importance of quantifying the economic value of 
WT CM or include models so that a CBM policy can be benchmarked against other 

maintenance policies. 

Giebhardt et al. (2007) discuss economic and technical aspects of CM in the offshore case. 
The authors point out that although availability for modern wind turbines is high (typically 

979/6), the annual frequency of failures has increased significantly as machines get larger: 

however this has a limited effect onshore due to relative ease of repair. Offshore conditions 
may have a large negative impact on WT availability, with logistics being a major factor. 
Some proposed installations located 50krn to shore could pose problems, which combined 
with less frequent maintenance and hostile offshore environment, could reduce availability to 

as low as 65%. This is broadly similar to observed availability of the Scroby Sands offshore 

wind farm (Scroby Sands, 2006) in the second year of production, particularly during winter 

months. 
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The cost-intensive nature of offshore maintenance, due to use of specialised heavy 

equipment, is highlighted by the authors (Giebhardt et al., 2007). The main traits of different 

maintenance policies are summarised: breakdown (reactive) maintenance is discounted 

because of unacceptably lengthy resultant downtimes offshore, reinforcing the assumption in 

this thesis that it should not be considered. Periodic maintenance is criticised for its 

inefficiency, since components are not used for the whole useful life, and the process is 

highly weather depcndant. CBM is the focus of the rest of the paper: the two main 

challenges are use of CM information to estimate remaining fife, and knowing when to 

trigger maintenance actions. The authors assert that more development is required 

particularly to improve the condition estimation algorithms, calling into question the 

robustness of WT CMS and suitability to offshore deployment. However, there are no 

calculations underpinning the assertions of the authors, for example the impact of low 

reliability on offshore yield. 

A discussion of CM techniques follows: the main points yielded from this are a lack of 

empirical data, and thus limited collective experience of different failure modes (since 

operators are reluctant to share information). The large number of possible failure modes on 

the drive-train is complicated by different operational conditions which change the vibration 

characteristics of the drive-train, making fault diagnosis difficult. Despite the practical 
difficulties highlighted by the authors, the possible scope for performing maintenance 

according to significance of faults would result in optimised maintenance, which may make 

the CMS capital outlay worthwhile. Again, this assertion is not supported by any kind of 

calculation of the techno-economic benefit of WICM. 

In terms of actual quantification of WT CM benefit, the study by Ribrant and Bcrtling (2007) 

aims to show how use of condition monitoring systems for improved planning of 

maintenance actions can result in more cost-optimal operation. The authors distinguish 

between corrective maintenance (post-failurc) and preventive maintenance (pre-failure). 

Preventive maintenance is further broken down into scheduled and condition-based 

maintenance. Reliability-ccritted asset management (RCAAý, i. e. the concept of developing 

RCM into a quantitative approach, is suggested as a suitable framework for evaluating the 
impact of various maintenance policies for WTs. life-cyclc cost analysis (LCCA) and present 
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value (PV) calculations are used alongside this in order to quantify the economic Efetime 

benefit of utilizing a CMS. Data are presented regarding maintenance policies and other 

operational information from two wind farms: Olsvenne 2 in Gotland, Sweden and Kentish 

Flats in the UK. The data presented from Vattenfall regards scheduled maintenance: minor 

maintenance requires 4 hours labour and needs 2 people, while major maintenance requires 7 

hours and 2 people. In each case, the cost per hour for a Vestas technician is C54. Scheduled 

maintenance at Kentish Flats costs C750 per day per person. Unscheduled maintenance costs 

are C850 per day per person. 

The main conclusions of the paper are that a decrease in corrective (i. e. breakdown) 

maintenance is needed in order to justify the CMS -a highly intuitive conclusion. In terms 

of quantification, the authors conclude that availability would have to increase by 0.43% 

annually to cover the CMS costs. Alternatively, 45% of corrective maintenance needs to be 

'displaced' by preventative maintenance. No further information is given regarding failure 

rates, downtime or availability, possibly due to the commercially sensitive nature of the data. 

Additionally, very Ettle detail is given on the models used to calculate the results. This lack of 

transparency casts some doubt on the yielded results. 

Andrawus et al. (2006) had produced a paper independently of Ribrant and Bertling which 

used a ncar-identical conceptual approach, but provided much greater transparency in terms 

of presentation of their model. The authors compiled detailed costs and extracted sub- 

component failure rates from 6 years of wind turbine SCADA data, with the goal of deciding 

a suitable maintenance strategy. A reliability-centred maintenance exercise was conducted to 
identify the key operational components. Asset fife-cycle analysis was used to carry out a 

study into the economic viability of the system. Finally, Monte Carlo simulation was 

employed to introduce uncertainty into key variables. Little detail was given on the analytical 

aspects, for example the range of failure rates considered was not discussed or explicitly 

stated. This approach suggested that, for the conditions evaluated, a Condition Based 

Maintenance (CBM) strategy is the most cost-effective option. The total savings of Ll 80,152 

were discounted using net present value, and equate to an annual saving of L385 per turbine 

over the 18 year life cycle of a 26 turbine onshore wind farm. 
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Even for the idealised case of a perfect CM system considered by Andrawus and colleagues, 

these savings are very small and cannot be contextualised since only one scenario of 

reliability level and downtime is considered. Another drawback of the approach in this paper 
is the fact that only two failure modes are considered (gearbox and generator failure). 'Mis is 

because the reliability data are taken from a single wind farm which only experienced these 

two failures. The research in this thesis has attempted to bridge this gap by using WT 

reliability figures over large populations as opposed to individual wind farms. A further 

assumption made by Andrawus et al. is that the CM system can mitigate all failure modes 

experienced by the wind farm. This presents an idealised and hence optimistic picture of the 

cost-effectiveness of the CMS. Ibis assumption is prevalent in all the economic evaluations 

of WF CM which have been published until now, excepting the author of this thesis. The 

models presented in this thesis challenge this idealistic assumption by modelling imperfect 

CM-based diagnosis, i. e. not all failures are caught. 

The same authors (Andrawus et al, 2007) outlined the principle of maintenance optimisation 

with application to wind turbines. The authors highlight the fact that RCM, while a useful 

engineering approach, is qualitative. Iberefore they explore methods to obtain quantitative 

results in order to compare different maintenance approaches for WTs. Two methods are 

summarised for this purpose: modelling system failures (MSF) which resembles reliability 

analysis with a solution obtained via MCS rather than analytically. The second method is 

based on delay time maintenance model, where the 'time to next failure' is based on the 

Homogeneous Poisson Process model. The paper also discusses the data requirements of 

the approaches and gives an example of a WT reliability block diagram, although no results 

are included. 

The strength of the approach presented by Andrawus and associates is its highly detailed 

RCM-style analysis of the WT system to the sub-component level, which will be specific to 

the type of turbine analysed. However this approach also has some limitations which could 
dispute the validity of the conclusions reached by the authors. First of an, the lack of 

consideration of environmental factors such as weather conditions represents a 

simplification of the real case, where maintenance is subject to strict weather constraints. 
Secondly, as metioned previously, the models assume CBM is 100% effective which is a 
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highly disputable assumption. Furthermore, the authors do not indicate how impcrfect CM 

diagnosis could be included in their framework. 

The final issue relates to simulating the process. 'Mere is no mention of how multiple 

machines arc accommodated which implies that parallel simulation will have to be employed. 
This is one area of commonality between the work of Andrawus et al. and that contained in 

tMs thesis. Although the authors claim their approach is less data-intensive than other 

methods, they still need substantial SCADA records to perform their analysis - this implies a 

retrospective element, so offering limited value for projections of future wind farms. Again 

this contrasts with the analysis presented in this thesis, which focuses on utilisation of large 

population samples of reliability data which arc available in literature (see section 2.1.4). This 

has the added advantage of providing a more representative sample of failure rates and 
failure modes. 

Although a growing body of research now exists to address the economic aspects of 

condition monitoring, many of these approaches do not take adequate account of all the 
factors involved, and many have unrealistic data requirements. Furthermore, the number of 

published quantitative studies is very low, and those that are published present specific case 

studies rather than an overall methodology which can be applied to any wind farm. The 

underlying questions posed in this thesis regarding cost-effectiveness of wind farm CMS are 

still largely un-answered. 

2.5 Wind Turbine Maintenance and Economics 

In this section, research on wind farm O&M and economics are summarised: this represents 

a significant addition to the literature presented on technical aspects of CM. The body of 

work focusing on general maintenance and econon-dc issues for wind farms is highly relevant 
for this thesis, since a techno-economic analysis is proposed. 

In this field it is impossible to ignore the contributions of the research groups at the Energy 
Research Centre Netherlands (ECN) and Delft University of Technology. Rademakers et A 
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(2003a) discussed the need for research and development focusing on maintenance of 

offshore wind farms. The authors identified four areas where R&D was required: 
identification of turbine failures, models for O&M cost, optimisation of O&M and the need 
for field data, and the added value of CM as well as its limitations. Data were presented 

showing O&M costs, service contracts and overall failure rates. Additionally, it was 
illustrated that corrective turbine maintenance costs increased with turbine age, and 

substantial uncertainties were encountered after the 5' year due to the expiry of 

manufacturers' service contracts. Other factors affecting this uncertainty were turbine size 

and reliability, water depth, wind and wave characteristics, and distance to shore. The 

outputs of the work are intended to enable optimization of maintenance via design 

alterations or different turbine access systems. The cumulative distribution function (cdo is 

utilized to introduce uncertainty into the failure rate, since the measured value is an expected 
(mean) value. Demonstrating the added value of condition monitoring was identified as one 

area of future research alongside prediction of remaining life. 

A review of reliability and maintenance for large-scale offshore wind farms is compiled by 

van Bussel & Zaaijer (2001). Particularly interesting collections of data regarding turbine 

failure frequency are provided. These were formed from expert opinion, and represent a 

useful set of figures at the sub-component level. It is interesting to note that, while the 

gearbox is considered one of the less reliable components, the inverter and control failures 

are both assigned higher values for failure frequency. New design philosophies are suggested 
in order to reduce failures and downtime in large offshore wind farms, these are: reduce 

number of components (i. e. fixed pitch, direct drive machine), adopt modular design (to 

enable easier and more rapid replacement), use more integrated components, and integral 

exchange policy (replace entire assembly so that damaged assembly can be repaired offline). 

Rademakers et al. (2003b) developed a model specifically for investigating costs, 

maintenance activities and downtime for offshore wind farms. Their approach consists of 

three main aspects: turbine failure behaviour, repair strategy and weather effects. The 

authors make use of Monte Carlo simulation to model stochastic input parameters such as 

costs and failure rate of the wind turbine. The frequency and duration of weather windows 
for maintenance are modelled using real data fitted to the Weibull distribution. The model 
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was implemented in an Excel spreadsheet. Results presented in the report suggest that the 

failure frequency of the main components such as the gearbox, blade and generator arc the 

factors most strongly coupled with cost. 

A very insightful contribution from Ribrant & Bertling (2007) analysed failure statistics from 

four sources: two Swedish, one German and one Finnish. But the focus was mainly on the 

Swedish results. The first major conclusion stated in the paper is that the WT gearbox is the 

most critical Wr component since the downtime per failure is high compared with other 

components. The authors analysis of the data by turbine rating and age showed that while 

smaller rated WT (<IMW) failures tend to decrease over time as they 'bum in', the turbines 

rated over IMW seem to increase their failure rate as they age. The authors propose that the 

cause of this may be higher fatigue loading for WTs than for other rotating machines such as 

steam turbines. 

The authors aimed to identify the most critical WT components by examining the failure 

frequency and downtime per failure of the individual sub-assemblies, with the overall 

objective of finding a balance between maintenance frequency and availability. The authors 

go on to describe the data recording procedures for the various problems such as turbine 

reset, inspection or repair. Information was displayed regarding percentage sub-component 

contribution to failure rate and downtime. "Ibe mean annual failure rate for a Swedish 

turbine was found to be 0.402 failures per year, which is very low compared with other 

sources, while mean downtime was 130 hours per year. However the authors stated that 

downtime for three components: drive train, gearbox and yaw system, was between 250-290 

hours. 

A more detailed study was performed on gearbox failures of the Swedish turbines, 

illustrating the downtime related to each gearbox failure modc. These were as follows: 

bearings 601 hours, gear wheels 378 hours, oil 36 hours, seal 30 hours, not specified 299. 

The bearing failures almost always required a gearbox replacement, while around 59% of the 
'non-specified' failures required a gearbox replacement. The cause of most of these failures, 

as state by the authors, was wear/ fatigue. The long downtimes attributable to gearbox and 
drive train problems are associated with availability of spares and suitable crane vehicles. 
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Juninger et al. (2004) project future costs of offshore wind farms, based on theoretical cost 

reductions achieved through factors such as mass production of large components and high 

utilisation of specialised installation vessels etc. One quantity of interest identified by the 

authors is the offshore turnkey investment which was in the range C1.2 - C1.85 million per 

MW installed capacity. This makes for an interesting comparison with onshore costs of CO. 8 

- CLI million for MW. Actual turbine costs as a function of capital cost were between 30% - 
50% for offshore, and 65 - 75% for onshore. 

The CORLEX project, which aims to reduce costs and extend life of offshore wind farms is 

presented by Bhardawai et al (2007). They developed a risk-based decision model to 

maximise the net present value (NPV) of maintenance actions (e. g. run, repair or replace) for 

offshore wind farms. Expert opinion determined which Wr components had an 

unacceptable level of associated risk, so that these components were the focus of subsequent 

analysis: however the paper included a single component application of the method to the 

tower structure. The remaining life of the structure was estimated via a deterministic 

equation, however the inputs were sampled for a distribution using Monte Carlo methods: 

this was used to calculate the annual probability of failure as the structure ages. A linear 

programming optimisation algorithm was applied to optimise the maintenance actions in 

terms of NPV maxin-dsation. The main weakness of this approach is the focus on the ageing 

period at the end of asset life rather than normal operation which concerns wind farm 

operators currently. Since rotating elements age and are replaced much more frequently that 

the tower structure, the value of the methodology for drive-train or rotor components may 
be hmited. 

The goal of Christensen and Giebel (2001) was to predict the availability of an offshore wind 
farm based on contributions from scheduled and unscheduled maintenance actions based on 
data from the 150MW (75 X 2MVv) Rodsand wind farm. Repair actions were dependent on 

availability of a suitable vessel for large components and also on a suitable weather window. 
The parameters which determine access arc defined by the authors as wind speed, wave 
height, temperature, ice cover, boat icing, snow, fog and visibility in general. The access 

model was based on a Markov Chain which captured probability of occurrence of the 
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relevant climatic conditions needed for access to the wind turbines. The total number of 

weather states was 6 states: these were used in conjunction with the offshore access rules. 
The 6 states were based on simplification of the 1/2hourly access data to 8 hour weather 

windows i. e. the model is approximate. If the access rules were not met then maintenance is 

deferred until arrival of a suitable weather window. Seasonality was not captured due to only 
183 days of data being available. 1he authors suggest that seasonality could be captured via 
different Markov transition probability matrices which define the stochastic behaviour of the 

model. 

Maintenance models were developed for preventive and corrective maintenance, which were 
based on combinations of deterministic and probabilistic times for the sub-events such as 
fault detection, mobilisation, logistics and repair. Data were given for the parameters 
however no indication was given of how these were estimated. For the bi-annual preventive 

maintenance the parameters were 16 hours for deterministic service time however when the 

probabilistic parameters were added (detection, logistics and mobilisation) this was around 
27 hours. For corrective maintenance the downtime appeared to be modelled very similarly: 
however time to failure event was modelled as a Gaussian distribution with mean of 120 

days and a of 5 days. 

Research quantifying cost of operation and maintenance is certainly more developed than 

the specific case of techno-economic analysis of condition monitoring. One of the main 

reasons for this is that it is more difficult to capture deterioration behaviour, and the analysis 
has to be at the sub-component level for a cost/ benefit analysis to be conducted. However 

the techniques are relevant because both cases are essentially a quantitative evaluation of 

operating pohcy. 
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2.6 Chapter 2 Summary 

It is apparent that although CM systems for wind farms are widely deployed, the operators 

of those wind farms remain unsure if condition-based maintenance is an appropriate 

operational policy for their assets. This is because of a combination of the perception of 
CBM as a complex maintenance paradigm as compared with time-based maintenance, real 

problems adapting existing algorithms and techniques for Wr fault categorisation (especially 

vibration monitoring), and the more general difference in operational characteristics of wind 
farms as compared to thermal plant. 

However, it has also been shown that there are persuasive arguments for CBM applied to 
WTs, not least the probable future growth of offshore wind farms. The main problem is that 

the value of such an approach has to be demonstrated - otherwise it is all too easy to keep 

using more traditional approaches to maintenance, such as periodic maintenance. 

Quantitative models can be developed to capture the characteristics of operation, 

maintenance and economics of wind turbines and wind farms. The models proposed in this 

thesis circumvent the problems inherent with the other published models. The most notable 

of these is the simplistic assumption of perfect CM diagnosis which appears in other 

research. Imperfect CM systems wiH be explicitly modeHed in this thesis. 

The models presented in this thesis are not tied to any one data source. Rather, data of 
different forms and from various sources is accommodated. This is a distinct advantage over 

other published approaches, as wind farm operational data are sparse at the time of writing. 
Implicit in this fusion of data sources is the ability of this approach to enable the CM benefit 

to be quantified for realistic ranges of operating conditions. 'Mese include component 

reliability, downtime and capital and operational costs. Such studies are useful for speciýýing 

particular key enablers or 'conditions for success' for WT CM systems. Furthermore these 

can be specially adapted to create particular conditions of interest. For example, offshore 

conditions can be simulated and the impact on the cost-effectiveness of CM evaluated. The 
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flexibility offered by this approach provides insight over and above the existing research on 

this subject, as described in this section. 

'Me methodology presented in this thesis provides valuable insight into wind farm 

maintenance policy decisions. More than this, it will become increasingly necessary for wind 
farm operators to understand how best to operate and maintain wind farms. This will be 

especially pertinent in the coming decades as large numbers of wind turbines come out of 

their warranty period and responsibility for O&M is (generally) transferred from 

manufacturers to utilities. 

The need for the research presented in tbýis thesis has been established in this chapter, with 

reference to the shortcomings of other work in this area. This thesis is concerned primarily 

with investigating techno-econon-dc aspects of condition based maintenance: therefore the 

models which are developed have to satisfy very specific requirements. 'Mese requirements 

are discussed in section 3. 
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3 Wind Turbine Operational Model Requirements and 

Selection 

This chapter of the thesis begins by breaking the problem of quantifying the techno- 

economic benefit of WT CM into three main aspects. The three aspects are: wind turbine 

component deterioration and failure, wind speed and energy yield, and asset management 

and maintenance policies. The chapter proceeds by investigating which methods are suitable 

to meet the technical modelling requirements of each of these three aspects. After defining 

what the capabilities of the models should be, the rest of this chapter compares the 

characteristics of different models which could be applied and assesses their suitability to this 

particular application of quantifying the techno-economic benefit of Wf CM. 'Mrough this 

process, the methodology used in the rest of the thesis is defined. 

3.1 Definition of Model Framework 

In order to achieve the objectives of this research, it is necessary to define the requirements 

of the modelling framework so that suitable models can be selected and developed for this 

application. This framework was developed within the first year of this research after 

consultation with industrial research partners, and consists of three key aspects which should 
be modelled. These are shown in Figure 6 along with possible inputs and outputs. 

Maintenance Policy, Capital 
and O&M Costs, Component 
Costs, Weather Constraints 

Output MetrIcs Enabling 
CM Evaluation 

Wnd Profl I* Data, WT Power 
Curve, Electrlcltyl ROCs 

Market Economlca 
Yield Characterleation, 
Revenue Calculatlon 

Downtime Duration, I WT System Condition Reliability date, Operationýal Characterisation Information, SCADA data TI "-N 7-7-C 
- ------- -- 

Figure 6: Key Model Re(Imic iii, nt, %%it I, 1 11 ()utputs 
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Wind farm economics depend on a multitude of factors. However they can be boiled down 

to capital expenditure (CAPEXý and operational expenditure (OPEXý. CAPEX is already 
fairly well quantified for many projects, however OPEX is less well understood. 
Additionally, the wind farm operator has far more control over OPEX in the form of asset 

management policies, which consist mainly of what sort of maintenance to perform and 

when to perform it. Iberefore, modelling of asset management is essential to any study: 
hence its inclusion in Figure 6. The primary revenue stream for a wind farm is electricity 

sales based on energy yield and, in the case of the UK, revenue generated from the 

renewables obligation (RO) system, which is discussed later. This is the reason for inclusion 

of wind speed and energy yield modelling. 

Finally the reliability of the wind turbine sub-components determine not only the availability 

of the system to generate electricity, but the incurred costs for maintenance and replacement 

of components which can have a very significant impact on the economic performance of a 

wind farm. Potential modelling solutions to each of the three model aspects are discussed in 

the following sections. 

3.2 Models for Deterioration and Failure of Wind Turbine 
Components 

A comprehensive review of literature in the area of deterioration and failure modelling of 

engineering systems was conducted throughout the duration of this research. The airn of this 

exercise was to gain a detailed understanding of models which had been applied in similar 
infrastructure modelling tasks, and to identify which models had the most suitable 

characteristics for the representation of deterioration and failure process of a wind turbine. 
Most of the research in this field can be broadly categorised into classical reliability models, 
Markov chains, Markov processes and time delay models. Furthermore, models can be 

categorised into analytical methods and methods based on simulation (Allan and Billinton, 

1992, p1l). The following sections provide a summary of the various methodologies and 
identify the influential contributions in each area. 
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3.2.1 Analytic Classical Reliability Model 

A classical reliability model characterises the failure behaviour of the system in question in a 

quantitative manner via use of probability-based models. Analytic methods require the 

reliability to be a mathematical expression which is solved using direct or numerical 

methods, depending on the model complexity. Failure rate A(t) of a population of units (the 

number of failures (#F) per unit (#I\) in the time period examined) is a pre-requisite for 

application of probabilistic models (equation 3). Probability density functions (PDFs) are 

used to capture the failure behaviour based on the failure rate: commonly used distributions 

for modelling failure are Poisson and Weibull distributions. Ibcy arc often used in 

theoretical texts because they can capture different stages of equipment life. However the 

most widely used distribution is the exponential distribution, which can only be applied if the 

failure rate is constant over time, as assumed in this thesis. 

This assumption of constant failure rate is often made in studies without much justification 

or discussion of the consequences. The primary reason a more complex expression is not 

used in this thesis is that wind turbine reliability data are dominated by newer machines 
installed in recent years. The theoretical increase in failure rate as the WI' approaches the 

end of the design life (-20 years) has not been reached and so data characterising these 

effects is currently unavailable. The key consequence of the 'constant failure' assumption for 

this thesis is that this model should only be used to characterise the early to middle life of a 

wind turbine. It should not be used to evaluate end of life effects. 

Assuming constant failures, the probability of a component surviving for time t, which is 

called the reliability function R(t), is related to A by equation 4. 

,t 
ý)= gF, 

R(t)e (4) 
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A very important property of the exponential distribution applied to reliability is shown in 

equation 5. That is the probability of failure U(t) in any constant interval of time t is the same 

as the probability of failure on the condition that the component has survived up until the 

time period of interest, U, (t). In other words, the failure probability is independent of the 

previous operating time and is dependent only on the length of the current time interval t. 

The main assumption here is that the probabilities of failure both in the past (a posteriori) 

and the future (a priori) are equal, which is only true if the failure rate is constant, and not 
increasing or decreasing (Allan & Billinton 1992, p 184). 

W=U. W=1 
-e-'j 

A very useful way of approximating equation 5 is yielded firstly by applying the Maclaurin 

series expansion. The result from this is shown in to equation 6. 

W= UM= At 
(Aty (Aty 

-... 2! 3! 

Examining equation 6 more closely, if it is assumed that the product of A and I (i. e. the 

numerator of each term) is very much smaller than unity ()j << 1), then the terms of the 

Maclaurin series tend to approximately cancel out (opposing signs and broadly similar 

magnitudes) with the exception of the first term, At Ibis means that expressions for 

reliability and failure functions are reduced to expressions only a single term of At. This 

represents a simple and convenient simplification. The resulting expressions for unreliability 

and reliability are shown in equation 7 and equation 8 respectively. These correspond directly 

to equation 5 and equation 4 respectively. 

(t)- At M 
(t)-l -At 

By far the best way to appreciate the adequacy of this approximation is to plot the functions 

themselves. This has been done for R(t) in Figure 7 for two different values of I If the plot 

values are closely matched for each value of A then the approximation explained above is 
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adequate. Figure 7 very clearly shows that for small values of t and A (left hand side of plot), 

equation 7 and equation 8 are perfectly adequate for characterisation of component failures. 

It is emphasised that this is only true if constant failure rates can be assumed. 

1.2 
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'" ____j 0.8 
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Fiprc 7: Plot of Exponential Reliability Function c-"' vs. Approximate function 1 -)j 

It follows that reliability or unreliability in a specific time period can be very easily evaluated 
by using the simplified expressions in equation 7 and equation 8. This is achieved by 

substituting in values for the failure rate A (which is estimated by applying equation 3 to a 
data set) and deciding on the length of evaluated time period 1. A very simple example can be 

demonstrated by considering a wind turbine generator with annual failure rate of A =0.1. We 

assume a constant failure rate over time. If the probability of the component being reliable 

was to be calculated for the duration of a single year, then t=1 and according to equation 8 

the probability of the generator being reliable for one year is: 

4)-1 -0. lxl = 0.9 

The above method is adequate for systems where initial problems after installation or age- 

related failures are not of interest: however it can be rather limited in scope. In particular, if 

the time-varying characteristics of reliability are of interest then the exponential distribution 

cannot be applied since the probabilities are no longer constant in time. In this case more 

complex expressions are derived. 
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Tavner and colleagues (2007,2006a, 2006b) comprehensive analysis of wind turbine failure 

trends constitute the state of the art in this field. They have produced numerous influential 

contributions, mainly based on fitting probability distributions to wind turbine failure 

statistics. The power law process (PLP-equation 9), often used for reliability modelling of 

complex repairable equipment, is used as the basis of their failure rate model A(t). The 

parameter P is a model shape parameter estimated from data and 0 is the scale parameter: 

this expression strongly resembles the Weibull distribution, but technically only the time to 

first failure is Wcibull-distributed, after which the process is 'renewed'. The power law 

process simplifies to the homogeneous Poisson process (HPP - equation 10) if P=I (i. e. in 

the constant failure rate region), where 0 is the mean time to failure NTTF) 

2(t) 
(t\ (9) 

A(t) -I 0 
Based on these models, the question of how weather conditions influence wind turbine 

reliability was investigated by Tavner and colleagues (2006b). A dataset comprising Danish 

turbines from 1994 - 2004 was considered, with the population size changing from just 

under 2000 in 1994 to just over 1000 in 2004, probably due to re-powcring projects. Because 

of the large population considered in the database, various WI7 architectures and ratings are 
included within the sample. The data time resolution of one month impacts on the 

subsequent models since gusting and turbulence cannot be captured, however large weather 

systems cover entire countries and thus macro-scale seasonal impact on failures can be 

captured. An index called the wind energy index 'WEI' was used instead of actual wind 

speed, and the authors make the assumption that the turbines are evenly distributed 

throughout the country. 

Plots of the WEI and failure rate, X, show suggestion of coupling between weather effects 

and equipment failures. More rigorous proof is sought by application of cross-correlation 
functions and spectral analysis, which are both discussed in some detail. The main result 
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shows the cross correlation coefficient for WEI and X plotted for individual wind turbine 

sub-assemblies. The components considered to have significant coupling were: whole WT 

44%, generator 46%, Yaw 31%, mech. control 29%, brake 25% and hydraulics 25%, 

although there appeared to be no formal rules for deciding what constituted significant 

correlation. This means that during high winds the probability of failure of these WT 

components increases, with negative implications for energy yield. T'he main drawback of 

the approach is that significant high-resolution events such as gusting are not captured in the 

models due to the low time resolution. 

The authors' main aim in (Tavner et al. 2007) is to understand historic reliability of modern 
WTs and to extract information so that future large WT reliability can be predicted, taking 

account of effects such as design, configuration, time, weather and maintenance policies. 
The size of the WT population examined (6,000 Danish WTs, 20,000 German Wrs) and the 

time interval of the data (10 years) were considered statistically important since the larger 

these are, the higher the probability of failures occurring on each WT during the time 

interval. The two proposed models are the power law process (PLP), which can model any 

stage of the characteristic 'bath-tub' reliability curve, and the homogeneous Poisson process 
(HPP). These models were fitted to the data using maximum likelihood estimation and 
tested using the X' statistical check. The model outputs show a number of interesting 

features: decreasing failure rates with time, higher failure rates for German turbines, and a 

monthly periodicity which the authors attribute to weather effects. 

The authors apply the HPP model to the individual WT assemblies and observe that in 

Germany the main contributors to the overall failure rate are electrical control (i. e. grid/ 

electrical system, yaw systems, and mechanical pitch system), which may be due to the 

increased power electronics involved in variable speed drive technology. This seems to be 

contrary to the widely-held belief that the gearbox is the major cause of WT failures: 

however the mean time to repair for the gearbox is extremely high compared to MTTF for 

electrical failures, due to the physical problems associated with replacement or repair of Wr 

nacelle components. German subassemblies show annual failure rates as follows: gearbox 
0.100, blade 0.223, generation 0.1196, electrical controls 0.223 and grid/electrical system 
0.341. The PLP model was used to plot reliabihty growth curves, with overall long-term 
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values of 0.7 failures per year for Danish WTs and 1.3 failures per year for German %VTs- 

The factors affecting this are the different age of the Danish and German populations, and 

the different sizes of the populations: the German turbines are significantly newer, and the 
German population was 8 times larger than the Danish population in 2004. Finally, the 

authors proved that WTs are more reliable than US diesel units, equally reliable as UK 

CCGT units, and in 10 years may be as reliable as US steam turbines. 

The main issue examined in (Tavner at al. 2006a) is how the configuration of the Wr 

generator and converter in different design concepts affect Wr reliability. Quarterly data 

taken from the windstats database (2004) shows that Wr failure rates are decreasing over 

time. This contrasts with data from LWK (Landwirtschaftskammer, Schlewig-Holstein, 

2008) in Germany which shows an increasing failure rate (possibly attributable to differences 

in the population age). The LWK data had enough detail to enable a direct reliability 

comparison of three WT concepts: fixed speed with gearbox, variable speed with gearbox, 

and variable speed direct drive (no gearbox: synchronous generator). The homogeneous 

Poisson process model was applied to the subassembly reliability data and conclusions 
drawn from the resulting comparison. The main conclusions were that direct drive systems 

are less reliable than models with a gearbox because the potential increase in reliability due to 

elimination of gearbox failures is cancelled out by increased generator, inverter and electrical 

system failures. Overall reliability will also be affected by repair times and in this sense direct 

drive systems may have an advantage, since MTIR for a gearbox is likely to be very much 

more than MTIR for an electronics subassembly: however the authors did not attempt to 

quantify this. 'Mis trend seems to suggest that direct drive machines will be suited to 

environments where repair is especially difficult, for example future offshore wind farms. 

T'hc authors urge that future decisions regarding WT design concepts and procurement 

should be more focused on reliability, rather than solely on capital cost and energy yield 

capability as is currently the case. 

Wilkinson et al. (2006) also analysed two wind turbine reliability databases - windstats and 
LWIC, commenting that the main driver for increased reliability is the future deployment of 
large offshore wind farms. Use is made of reliability analysis (homogeneous Poisson 

process), failure mode and effects analysis (FMEA) and condition monitoring is proposed to 
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mitigate various failure modes. The paper focuses on the LWK survey which consisted of 

one year of data, although the number of turbines is only roughly given as being in the 'tens' 

rather than hundreds. The main findings were: high levels of unreliability for direct drive 

synchronous generators, with each failure cumulatively decreasing the availability and 

economic performance of the WT. The reason for the high number of failures were 
hypothesised. larger diameter machines harder to protect from humidity resulting in 

insulation damage, or manufacturing flaws due to low production runs and resultant 

problems with standardisation of components. Another observation was that hydraulic pitch 

wind turbines are significantly more reliable that electric pitch. 

The FMEA showed that material failure is the most common failure mode: corrosion, 

vibration fatigue and mechanical overload (i. e. wear-typc failures). Shock failures are less 

common but include blade fracture and broken gear teeth. Finally a test rig to develop a CM 

system is illustrated however fault-finding algorithms had not been developed at the time of 

writing. 

Classical analytic reliability methods applied by Tavner and colleagues certainly help interpret 
large volumes of reliability data. However if an entire analysis of wind farm operation is 

required, more diverse aspects need to be considered. In particular for wind farm analysis, 
modelling of wind turbine downtime after failure and site wind resources need to be 

considered. In this case analytic solutions become cumbersome and difficult to formulate. 

For this reason it is often discarded in favour of Monte Carlo simulation (MCS). 

3.2.2 Reliability Model Evaluated via Monte Carlo Simulation 

Monte Carlo simulation (MCS) methods replicate the process they seek to model by use of 
pseudo-random numbers, and are sometimes described as 'a series of real experiments'. 
Instead of finding the direct solution as per the analytical approach in the previous section, a 

series of trials are conducted many times to evaluate the metrics of interest. The outcomes of 
these trials are decided by generating pseudo-random numbers (PRN) and using these to 

sample the process. This approach has many advantages over analytical methods, possibly 
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the most prominent being that many factors can be modelled without having to construct an 

analytic expression. The answer obtained by simulation is an estimate rather than a definite 

answer, the accuracy of which depends on the complexity of the system and how many trials 

have been conducted. 

The equation for a well known PRN generator function, called a linear congrucntial 

generator, is shown in equation 11. A pseudo-random number (I) is generated based on the 

previous value (I,., ) and a set of coefficients which are named multiplier (A), increment (C) 

and modulus (M) according to their purpose in equation 11. The values of each coefficient 

arc chosen with the aim of maximising the period of repetition of the resultant PRN series. 
Values adopted in this thesis are those taken from numerical recipes in Fortran (Press et al. 
1992) and are as follows. A=1664525, C=1013904223 and M=2'2. These generated variates 

should always be used in a series and not split up into 'parallel' streams of simulation since 
this would nullify the randomness of the generator (Press et al., 1992). 

I, =(A xj, _, 
+C)modM 

(11) 

For the purposes of the MCS in this thesis, a number between 0 and I is required (PRN). 
This is obtained by dividing I, by the modulus M (shown in equation 12). It can be seen that 

the latest PRN in the series is related to the previous calculation of the pscudo-random series 
1,., as well as the coefficients A, C and M (Billinton and Allan, 1992, p376). 

PRN, =L m 
(12) 

The initial value of the PRN series at time t=O is known as the seed value. The method used 
in this thesis to set the seed is via use of the CPU clock. The current time in seconds and 

mifliseconds is determined at the start of the MCS and the sum is used as the PRN seed. 

A very simple example of MCS applied to a reliability model can be illustrated by considering 

again the expression for reliability defined in equation 8. By substituting values of X =0.1 and 

t=1 for a wind turbine, the analytic expression for the single year reliability was calculated as 
0.9. The same metric can be derived using MCS, however instead of extracting a single value 
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for the annual reliability, several trials are conducted to arrive at a conclusion: in effect the 

operational process is simulated. Each trial represents 1 year of system operation. 

The crux of the MCS is a comparison of the PRN and the reliability expression. By 

comparing the PRN generated in equation 12 with the expression for reliability in equation 8 

we arrive at a rule for evaluating the reliability of the wind turbine at each trial as shown in 

Table 6. If the PRN is greater than the reliability expression, then the system has failed. If 

this condition is not met, it has stayed in service. 

MCS Condition Wind Turbine System Status 
PRN, >- R(t) Failed 

PRN,: g R(t) Operational 

Table 6: Condition Evaluated at each MCS Trial 

The number of trials needed to estimate the metrics of interest using MCS is very dependent 

on the complexity of the system. In the case of a single plant item with only two possible 

states - failed and operational -a small number of trials is adequate. This is demonstrated in 

Table 7 which shows the different stages to calculate the PRN, resulting in the quantified 

reliability of 0.9 - the same as the analytic case. The initial seed value of 58 was calculated by 

taking the seconds and adding the milliseconds (8+50). To quantify the reliability, the 

average of the simulations is taken i. e. the reliability column is summed and divided by the 

number of trials (9/10). Ibis is a similar calculation to that of estimating the failure rate in 

equation 3. 

Trial Ik (A x Tk) +C mod M Tk+l PRN Reliability 
1 58 7816997155 3522029859 3522029859 0.820 1 
2 3522029859 4.74684E+17 653498816 653498816 0.152 1 
3 653498816 8.80758E+16 738787520 738787520 0.172 1 
4 738787520 9.95707E+16 2257585088 2257585088 0.526 1 
5 2257585088 3.04268E+17 12522176 12522176 0.003 1 
6 12522176 1.68769E+15 526802369 526802369 0.123 1 
7 526802369 7.10002E+16 1532975304 1532975304 0.357 1 
8 1532975304 2.06608E+17 4175682528 4175682528 0.972 0 
9 4175682528 5.62781E+17 953338752 953338752 0.222 1 
10 953338752 1.28487E+17 688650624 688650624 0.160 1 

Ouantified Reliabilitv 0.9 
Table 7: Monte Carlo Simulation of System Reliability 
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Clearly very few systems are as trivial as those presented so far. For example, they may 

contain multiple components, or require multiple states to represent them. Additionally wind 

turbines arc repairable systems and aspects of their operation are coupled strongly with wind 

speed. Thercforc, when MCS has been used in wind farm reliability evaluation, other 

methods arc often used in tandem to capture these other key aspects. In this area, the recent 

work of Negra. and associates (2007a) has been the most insightful from the viewpoint of the 

wind farm operator. Negra has used his extensive knowledge of the offshore wind sector to 

examine the technical implications of wind farm reliability. The focus is on electrical aspects 

of wind farms but a number of environmental and mechanical factors are explored. 

Negra's approach (2007a) comprises a planning and operations tool for offshore WF 

reliability based on MCS. Nine areas of importance were identified from the literature for 

offshore wind generation reliability assessment. These were: Wind speed simulation, wakes 

modelling, WT technology, offshore environment, different wind speeds within the WF site, 

power generation grid, correlation of WT outputs, grid connection configuration and hub 

height variation. The wind speed model is based on a Markov Chain, with data partitioned at 
1m/s intervals. In order to preserve the annual seasonal variations in wind profile, the 

authors defined a separate model for each of the 12 months in the year. It is not explicitly 

stated if the model is discrete or continuous in nature, however since MCS is being applied 

this suggests the wind model is discrcte-timc. 

Some interesting comments are made by the authors regarding reliability modelling of WTs 

in the offshore environment. Firstly they state that the mean time to repair the WT will 
increase significantly compared to the onshore case, due to bad weather, time to reach the 

wind farm and access problems offshore. Secondly, and perhaps more interestingly, they 

suggest that the failure rate of the WT components will increase due to the harsh offshore 

environment. These comments are highly insightful, since the authors are involved in 

operating existing large offshore wind farms in Denmark. 

Data used by the authors, and estimated from seven years of data from Horns Rev offshore 

wind farm indicate a Wr mean time to repair of 490 hours per year (-20 days) and a failure 

rate of 1.5 failures per year, however these figures are for the entire WI' and not for specific 
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component failures. Two interesting results yielded by the authors are that the cable and 

connector reliability has significant impact on WF reliability: their simulations indicate a 
3.5% annual loss of energy due to these failures. The overall WF availability is calculated as 

-90%, however the authors indicate that this figure may be pessimistic, since 1.5 Wr 

failures per year may be at the high end of the unreliability scale. The use of an overall WT 

failure rate and downtime is not appropriate for this thesis because individual components 

need to be considered for detailed O&M modelling. Additionally, if SCADA wind speed 

records are available it is not necessary to apply hub height correction (e. g. log power law) to 

wind speed measurements made from near sea level, as practiced by Negra and associates. 
Furthermore, use of a Markov chain wind model results in simplification because the state 

space needs to be partitioned at discrete intervals. Use of a continuous state-space time- 

series regression model, as proposed in this thesis, could circumvent this simplification. 

Issues affecting offshore wind farm reliability were discussed by Holmstrom and Negra 

(2007b). These were: design and construction, operational reliability, protection and earthing 

and grid problems. A table presented all operational offshore wind farms along with 

technical characteristics such as existence of an offshore substation, rotor diameter of 

turbines, distance to shore, number of transmission line conductors and investment costs. 
The range of capital costs was C1.17M - C2.25M per MW installed capacity. The authors 
distinguish between reliability from two viewpoints: wind farm view and overall system view 

- the paper focuses on the second of these two. The authors' experience from offshore 
installations indicates that the electrical sub-systems of the Wrs are vulnerable to the marine 

climate, vibration and intermittent operation. Other problems encountered are: high failure 

rates of electric power converters, increased frequency of lightning strikes and significantly 
increased time to repair for even trivial problems. 

The authors discuss the need for reliability data, pointing out that the normal source for data 

are failure histories, and reliability studies are normally based on extrapolation of these 
figures. One issue with this approach is that measurements should be taken over a long time 

period in order to be statistically credible (i. e. adequate number of samples): however such 
data does not currently exist for offshore wind farms. An interim solution is to use data from 

onshore sites to populate initial models. 
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It can be seen that a reliability model on its own, while providing a good grounding for 

understanding of applied probability theory, is not sufficient to model the more detailed 

aspects of wind farm O&M. In particular, it is not suitable for modelling deterioration of 

multiple components and thus cannot be used for evaluation of different maintenance 

policies. Additionally, modelling of repair is often very simplistic i. e. one time to repair for 

the entire WI' assembly, neglecting effects of individual component failures. Since this is a 
key requirement of the work presented in this thesis, more detailed modelling approaches 

must be considered which are capable of capturing these aspects. 
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3.2.3 Markov Chain 

Markov chains are based on the original work of Andrey Andreyevich Markov (1856 - 
1922). The basic model is rigorously defined by Romanovsy (1950) as "A simple 
homogeneous Markov chain with a finite number of states and discrete time". Such a clear 
definition is important, since the number of variants of Markov chains, and the continuous 

time equivalent the Markov process (discussed later), are almost bewildering in number. This 

may be due to the academic toots of the framework as a mathematical construction rather 

than a tool for problem solving: however, as an engineer the author is interested in how the 

method may be applied and answer real questions rather than the mathematical theories 

themselves. 

The Markov chain is defined by the states of the modelled system and the transitions 
between those states, the transitions being probabilistic in nature. Considering a system with 
a number (n) of states (s,... xj, and assuming the transitions between them are defined by 

probabflityp,,, where a is the current state and b is a possible state transition, then the system 
in Figure 8 can be defined. The state-based representation is often used to describe 
degradation of engineering systems, and in this thesis is applied to model wind turbines and 
their key sub-components. 

P1.1 P&S 

PI'S 
sl S2 

P&I 
P&I P. 

Pi. n 
PFLR 

Figure 8: Generic Markov Chain 

The probability p,, b is dependent only on the current state of the system, i. e. the system has 

no 'memory': this is expressed in equation 13. The chain is homogeneous, or 'stationary' 

which means that the transition probabilities are constant in time: however this assumption 
is relaxed later to allow for accurate modelling of different wind farm operating conditions 
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(e. g. maintenance). Many other researchers have relaxed the stationary property in order to 

model realistic conditions - see Sayas and Allan (1996) and their modification of Markov 

chain transition probabilities for modelling of increased failure rate for extreme wind 

conditions. Another key property of a Markov chain is that all transition probabilities from 

one state must sum to one, as expressed in equation 14. 

P., 
b =P 

Gb'tk+IIS. 
'tk) 

Z, P., =I 
(14) 

Taking state s, as an example from Figure 8, this means thatpl,, 9PI, 2 andpl, must all sum to 

one. The Markov chain transitions arc often summariscd via use of a matrix of the transition 

probabilities, which in this thesis will be called the transition probability matrix (TPA. The 

general form of this matrix is introduced in equation 15. The TPM values can be estimated 
from data or expert opinion. 

PI'l P1.2 PI'm 

TPM P2.1 P2.2 

P0.1 P.,.. 

In the case of Figure 8, every state was teachable from every other state, either directly or via 

other states: this property is caRed ergodicity (Minton & Anan, 1992 pp265). Systems which 

are not crgodic contain states which cannot be 'escaped' from once entered. 'Ibcse states arc 
known as absorbing states: Figure 9 shows a system containing an absorbing state,. r,, 

P1.1 pa'a 

Pmn 
Figure 9-. Markov Chain with Absorbing State 
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If the state r, is reached via transition p2,., only one transition is then possible. That is p,, - 
the probability of remaining in state n. Clearly according to equation 14 p., will equal 1, 

meaning when the system reachess. it stays there with certainty. Chains of this kind are well- 

suited to modelling systems where there is a specific period of operation, often called 

mission time, An example of this would be a model charactcrising the deterioration of assets 
in order to decide when to perform maintenance tasks (See Hoskins et al, 1999). Absorbing 

states can also be used to good effect within a MCS by re-setting the Markov chain after the 

absorbing state has been reached. Ibis concept is used in this research and is applied in 

chapter 4. 

The advantages of using Markov chains for modelling of wind turbines are that intermediate 

states and multiple components can be modelled, as well as failure, maintenance and repair 

actions. All of these actions and events can be thought of as transitions to different states of 
the model. These aspects are particularly important in terms of realistic capture of O&M. A 

further advantage is that because of its state-based nature, condition monitoring can be 

modelled very intuitively. Since this is a central pillar of the research presented in this thesis, 
it can be seen that Markov chains exhibit many desirable characteristics. 

This section has explained the formulation of a simple Matkov chain. As with the classical 

reliability model, there is more than one method to extract the metrics of interest from such 
a model. The characteristics and merits of each solution method are now discussed. 

67 



3.2.4 Solving a Discrete Time Markov Chain 

Markov chains differ from classical reliability models in that they can be used to model a 

whole process rather than solely failure events. Because of this, there are a number of 

metrics which can be calculated. The simplest is the time dependent probability, which is the 

probability of being in a specified state after a particular number of time steps. 

The time-dependent state probability is calculated by finding the product of the probabilities 

of the transitions which lead to the state of interest. A widely-used method do this 

calculation quickly is the matrix multiplication method, whereby the TPM is multiplied by 

itself by the number of time steps. As an example, consider the generic system in Figure 8: 

the probability of being in r2 after 3 time steps is calculated by taking the matrix in equation 
15 and raising it to the power 3, i. e. TPAV. 'Me new value for Pf, 2 is the probability of being 

in s2 after 3 time steps, assuming the starting state was si. By applying this technique a large 

number of times, the steady-state probabilities can also be deduced. 

Ibc discretc-dmc Markov chain solved via matrix multiplication has been successfully 

applied in many fields. Among the most relevant examples for this thesis is the work of 
Black, Brint and Hoskins who built on the theoretical foundations but focused their work on 

real engineering problems. Furthermore, they relaxed some of the underlying assumptions to 
increase the model flexibility. 

Hoskins et al. (1999) aimed to use condition information as an aid to asset management 
decision-making, using Markov chains to model changes in a plant item's condition over 

time. The authors produced a homogeneous, discrete-time Markov model to represent 

circuit breaker condition, which was solved' using the matrix multiplication method. 
Dielectric strength of the oil was used as the condition monitoring (CNý measure, recorded 
during maintenance and used to populate the model. The time parameter resolution was one 

year, however no explanation was given regarding the criteria used to discretise the oil 

condition into states in the Markov model. Possible factors affecting condition as identified 

in the paper were age, which was considered in the model, and number of circuit breaker 

operations which was not considered. The authors use two methods to deduce the transition 
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probabilities from the data set: maximum likelihood estimation and method of least squares. 
However the data had to be in a very specific format for these types of fitting methods to be 

applied. This data requirement would represent a problem for application of this method to 

the issues examined in this thesis because datasets comprising many years of asset 
deterioration records for wind farms are not generally available. 

The analysis conducted by Hoskins et al. is used to predict the state of circuit breaker fleet in 

future years. The analysis is instructive for this research because it shows that a small 

number of states (in this case, four) is adequate to represent condition deterioration. 

Although repairs are not modelled in this paper, it is observed that with some modification 

repair and replacement could be included. This would provide a suitable framework for 

evaluation of a cyclic system where the equipment is continuously operated and maintained 

over a shorter time scale, such as wind farms. 

Black et al. (2003) proposed use of the sen-d-Markov method to model deterioration of 

assets, using oil-filled switchgear and power transformers as two examples. The transition 

probabilities in the stochastic transitional probability matrix are not constant, rather they are 
dependent on time spent in the current state and are fitted to a Weibull distribution. Ibis 

non-homogeneous transition matrix results in a more flexible approach compared with the 

ordinary Markov chain. The solution for the time-dependent probabilities is obtained by 

forming analytic expressions (see Appendix A at the end of the thesis for a worked example 

of this type of solution). Finding analytic expressions for more complex systems where 
failure and repair are considered is very difficult and for this reason analytic solution is not 

suitable for application in this thesis. 

The authors point out that curve fitting and Mafkov processes are the two most frequently 

used methods for predicting future condition, however the fate of deterioration is uncertain 

and so Markov models fulfil this requirement. Týey identify several successful 
implementations of Markov models, citing pavements, bridges, water and electrical 

networks. An interesting point is the consideration of deterioration itself being of 

continuous nature: the authors argue that characterisation of the transition probabilities in 

the semi-Markov model using probability distributions leads to a more accurate 
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representation of the physical processes. A major drawback of this method, however, is the 

large body of extremely detailed data needed to populate the model. This data requirement is 

even more onerous than for the previous publication (Hoskins et al., 1999) and is prohibitive 

to application of this method to WT CM quantification. 

Black et al. (2005) compared three methods for modelling asset management problems: 
Markov, Semi-Markov and time-delay models. The comparison shows that of the three 

models examined, the scmi-Markov method gives the best results. They discussed problems 

related to modelling condition including the uncertainty of the environment the equipment is 

exposed to (e. g. weather effects), lack of knowledge concerning past operational history, and 
lack of suitable data. These data requirements stem from an assumption that only individual 

sites and the effects of those specific site conditions are of interest. However, it may be the 

case that a more general analysis of O&M policy is desired, as in this thesis. In that case, the 

model parameters could be estimated based on expert domain knowledge, high level 

reliability mctrics (such as annual failure rates) or a combination of both, as proposed in this 

thesis. However in this case it is pointless to apply a semi-Markov model because the data 

needed to exploit its increased accuracy would not exist. 

It can be seen that the Markov chain time-dependent probabilities obtained by matrix 

multiplication are a good way of evaluating a deteriorating system. Ibis method is 

particularly well suited to cases of slow deterioration over many years, such as large, static 
infrastructure items, where the time to failure or time to enter a certain state is desired. There 

are, however some flaws in this method which limit its applicability. 

The primary drawback is that it is difficult to include realistic and multiple operational 

constraints such as the effect of different maintenance policies and weather constrained 

operation. Both of these issues are central to wind farm O&M and therefore must be taken 

account of. Additionally, failures in wind turbines are relatively high in number compared 

with many other infrastructure items: typically the annual failures are more than one failure 

per Wr per annum, (see Table 2). Because of their direct exposure to harsh environments 

and highly dynamic mechanical loads, wind turbines arc relatively unique among power 

system assets in this respect. In general, WI' components, especially rotating elements, 
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deteriorate over a much shorter time period than protected, static items such as circuit 
breakers. Finally, if the system is cyclical (i. e. the Markov chain is renewed after downtime) 

but failures are modelled using absorbing states, the system is defined as non-ergodic and 

steady-state values cannot be calculated based on matrix multiplication. For these reasons, 

the matrix multiplication method is unsuitable for WIC application and other approaches 

must be considered. 

The application of MCS to reliability models was discussed in section 3.2.2. Similar methods 

can be applied to Markov chains to obtain not only the steady-state probabilities, but also 

the overall system reliability, and availability when combined with other metrics. A 

demonstration study is presented in the next section to show the MCS solution of a simple 
Markov chain. 

3.2.5 Simple Monte Carlo Study 

Ile main difference between using MCS to solve a binary reliability model and a Markov 

chain is that often there may be more than two possible outcomes of a trial, as was 
illustrated in Table 6. This means that more than one comparison may be necessary. Taking 

the non-crgodic system in Figure 9 as an example, if the system is in s2 then there are three 

possible transitions (P2,1 h2p2). Table 8 shows a ITM for the non-ergodic system, with the 

absorbing state clearly identified as having probability of unity of staying in the state once it 
is reached (p.,. =l). 

From/ To s, S2 S. SUM 

31 0.8 0.2 01 
S2 0.1 0.8 0.1 1 
sn 0011 

Table 8: Transition Probability Matrix for Basic Non-Ergodic: System 

Since the rows of the Markov TPM sum to 1, this can be thought of as a cumulative 
distribution of the transition probabilities: this is visualised for the case of s2 in Figure 10. 

MCS is applied to this system by comparing the generated PRN, which is uniform between 0 

and 1 (see equations 11 and 12), with the thresholds shown explicitly in Table 9. 
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MCS Condition in s2 Transition 
0.1 1. - PRNI *0 Move to S, 
b. I+0.8)>- PRN, ý- 0.1 Stay in s2 
(0.1 +0.8 +0.1)>-PRN, >-(0.8 +0.1) Move to s. 

Table 9: Monte Catlo Simulation of Markov Chain when regiding in s2 

1 

- 0.8 
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0.5 
0.4 

-T 0.3 
0 0.2 

0.1 
u0 

sl s2 sn 

Figure 10: Cumulative Distribution ofr2 Probability Transitions 

Instead of calculating if the system is simply 'operational' or 'failed' at each trial, as in the 

case of the classic reliability model, or calculating the probability of being in each state, as in 

the matrix multiplication method, the Markov model simulates a condition trajectory of the 

system as if it were actually in operation. Intuitively this is easy to appreciate, since it is 

analogous to the real process. 20 trials of the process are simulated in Table 10, based on the 

same PRN sequence previously used. 

In order to calculate the steady state values of the Markov chain, the frequency of 

occurrence of each state (frj, fs2 and fs) relative to all the other system states must be 

determined over the duration of the 20 MCS trials. 

Trial PRN Pre-Trial State Post-Trial State Trial PRN Pre-Trial State Post-Trial State 
1 0.820 1 2 11 0.773 2 2 
2 0.152 2 2 12 0.315 2 2 
3 0.172 2 2 13 0.795 2 2 
4 0.526 2 2 14 0.916 2 N 
5 0.003 2 1 15 0.506 N N 
6 0.123 1 1 16 0.258 N N 
7 0.357 1 1 17 0.399 N N 
8 0.972 1 2 18 0.884 N N 
9 0.222 2 2 19 0.575 N N 
10 0.160 2 2 20 0.246 N N 

Table 10: Monte Cado, Simulation of Non-Ergodic Markov Chain 
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Based on the proportions of these state frequencies, the steady-state probabilities for each 

state (Ps,, Ps, and Ps, ) are calculated. Equation 16 shows an example of this calculation for 

PSI. 

f S) 
IfS, 

+1: 
20 

IfS2+=. IfS 
Pl. 2: 20 hub. 0" 

From Table 10 it can be calculated that the frequencies fs,, fs, and fs, are 3,10 and 7 

respectively. Therefore applying equation 16 for Pr,: 

33=0.15 
+10+7 20 

Simflar calculations can be carried out for states 2 and n, so that Prl=0.15, Pxý=0.5 and 
P. r, =0.35. How these steady-state probabilities are then used depends on the system being 

analysed and the metrics of interest. 

One engineering metric of interest in this thesis is the availability of the modelled system: 

that is the time that the system is operational relative to the total time period considered. For 

the non-ergodic system considered here (refer to Figure 9), if the states s, and s2 were 

modeRed as 'operatine states and r. was modeUed a 'fafled' state, then the avaflability of the 

system could be calculated based on these definitions. Equation 17 shows the calculation for 

availability, which is a function of the steady-state probabilities previously calculated (PSI, PS2 

and Rr). For this particular example, the availability of the system is 0.65, or 65%. 

A= 
PSý+p3, 

p31+ p33+ PS. 

0.15+0.5 
= 0.15+0.5+0.35 = 0.65 
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Further advantages of using MCS to solve the Markov chain are that repair can be modelled 
in different ways (either as a transition probability, or as an absorbing state which is restored 

to operation after deterministic downtime or probabilistic downtime duration), and that 

constraints are very easily modelled. This key feature is expanded on later in the thesis. 

Markov chains by implication are discrete-time, however a discrete time parameter is not 

always desirable or suitable for all problems. 'Merefore the next section explains how the 

ideas of Markov are extended to continuous-time problems, which are much more abundant 
in the literature on deterioration, maintenance and failure modelling. 

3.2.6 Markov Process 

Ile Markov chain described previously is based on the assumption that time is split up into 

discrete, equal steps, for which the TPM is defined. Intuitively this is a simplification of the 

real process, since deterioration, failure and repair are continuous-time processes. 7herefore 

the Markov process, although based on the same assumption of constant failure rate, is 

defined differently to the discrete-time case. What is of particular interest in the context of 

this thesis, is what extra functionality, detail or drawbacks there are relative to the Markov 

chain. 

Instead of transition probabilities governing the behaviour of the system, transition rates are 

adopted. 'Mey arc associated with the exponential distribution introduced in the classic 

reliability model, since constant failure rates are assumed. The transitions are expressed in 

terms of deterioration rates (AM, 42 etc. ) and repair rates (uzj) - see Figure 11 for an example 

of the continuous-time case of the non-ergodic system considered earlier. Although a 
discrete time period is not specified, clearly the period of time considered must be the same 
for all the transition rates in the Markov process. 

Indeed, it is possible to derive a TPM for the continuous process (equation 18 for the case 

of Figure 11) by introducing a time step At where the transition probability is Mt. To put 

this another way, if the transition rate for a given time step is known, the transition 

74 



probability for any other time step can be calculated proportional to the size of the new time 

step, providing that the probability of more than one event occurring during At is negligible. 
As with the discrete time case, all rows of the discretised continuous-time ITM sum to 1. 

Aýj 

P&I A, 

Figure 11: Markov Process 

A,., &t o 
Tpm (ju"At + A,., W) 'I .. At 

001 

3.2.7 Solving a Continuous Time Markov Process 

Obtaining the solution of a Markov process can be achieved in several ways. The matrix 

multiplication method and MCS can both be applied in largely the same way as for the 

discrete time case (Markov chain). However, the most widely adopted method for solving a 

Markov process is to find the analytical solution to the simultaneous equations which arise 

based on the process. 

The non-ergodic: system in Figure 11 is simplified in order to demonstrate the analytic 

approach. The changes arc as follows: there are no repair rates (U) and all transition rates are 

equal (AI, 2ý Az. = A) - the resultant system is shown in Figure 12. If the single time step At is 

considered so that the probability of simultaneous events is negligible, then the probabilities 

of being in each state after At has elapsed are expressed by equation 19, equation 20 and 

equation 21. 
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I-A I-A 

I 
Figure 12: Simplified Markov Process 

P,, (t+At) = (I-AAt) P,, (t) (19) 

P,, (t + At) = (I - AAt) P, (t) +AP,, At (20) 

PS. (t+, &t) = P"W TAt + P,. (t) (1) (21) 

Taking equation 19 as an example, the probability P,, (t+Aý of being in s, after time step At 

is calculated by multiplying the probability of being in s, at time 1, P,, (ý, by the probability of 

staying in the same state after one time step Equation 20 and equation 21 were 
derived in exactly the same way. Appendix A shows how the expressions can be manipulated 
into matrix form, for which the final expression is equation 22. 

,A0 (22) [P, 
3, 
(t) P'Jt) P,.,. (t)]= I -A A. [P" (t) P, 

ý 
(t) Pý,. (t) ] 

00 01 

Appendix A also shows how the expression for reliability and mean time to failure of the 

system can be derived by manipulation of these equations. The expressions for reliability and 
MTTF are expressed in equation 23 and equation 24respectively. 

(23) 

(24) 
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The numerical values are calculated by substituting the values for A and t into these equations 

(sometimes called direct methods). The simplified expression of reliability in equation 8 can 

be substituted into equation 23 and yields very similar results, as illustrated in Table 11 - It 

can be concluded that, as in the case of the classic reliability model, the use of 'approximate' 

Wj rather than 'exact' e' is adequate for evaluation of a Markov process. This is illustrated 

by the fact that if A=0.01, then the approximate reliability expression, I-at)2, matches the 

exact expression, (1+At)e-11, to four decimal places. 

Xt R(l)-(l+At)e'" R(t)=l-(At)' # decimal places accuracy 
0.1 1 0.99532 0.99000 2 
0.01 1 0.99995 0.99990 4 

Table 11: Accuracy of FuU and Approximate Expressions of Markov Process System Reliability 

Direct solution, as Appendix A illustrates, is an extremely tedious and potentially error-prone 

way of solving a Markov chain, even for very simple cases of only three states and equal 

transition rates. When more states or more transitions such as repair are introduced, the 

degree of difficulty to get the solution increases significantly. 

Alternatively, numerical methods such as Newton-Raphson can be used to solve the 

simultaneous differential equations which arise from equation 22 or equivalent. The main 

advantage of this type of solution is its iterative nature, and resultant suitability of 
implementation using a progranuning language. Numerical techniques are therefore often 

used instead of direct methods to obtain the analytical solution. 

I'lie key exponents of the Markov process in the power systems domain are Anders, 

Endrenyi and colleagues. Their work focuses on applications to various generation, 

transmission and distribution assets and is therefore of high relevance to this thesis. Their 

preferred method of solution is analytic, the early work deriving the expressions directly. 

Anders et al. (1990) presented a probabilistic model to estimate the remaining life of 

generator insulation. Ibis paper is relevant to this thesis because it demonstrates the 

applicability of Markov chains to power generation asset modelling. The author described 
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site-spccific factors affecting the frequency and deterioration of the insulation such as 

temperature, voltage, materials, maintenance and random events, and processes such as 

thermal ageing and abrasion were identified. The authors proposed two main methods of 

measuring such processes: monitoring relevant signals via instrumentation (i. e. CNý and 

effects observable via inspection. The paper includes an interesting section describing the 

discrete- and continuous-time versions of the model, as well as a small section on parameter 

estimation from avaflable data. 

The authors point out that uncertainty in the model can be reduced by taking measurements 
from equipment with similar characteristics. For example, in a WT application, the reliability 

of blades is likely to be the similar for all 2MW 3-bladed Danish concept WTs (i. e. shared 

rating and design configuration). The same is suggested for operating conditions, i. e. 

equipment operating under similar conditions (atmospheric, environmental) could be used to 

characterise a general model for that kind of operating condition. Finally the authors say that 

the two main challenges for future research are the adequate definition of states to represent 

the deterioration, and definition of the transition probabilities as the desired data may not 

exist. 

Endrenyi et al. (1998) present an analytical software tool linking maintenance effects to 

reliability component ageing. 'Me authors describe the maintenance-refiability-economy 

tradeoff for which the program identifies the most suitable maintenance policies. 

The Markov model developed by the authors represents three levels of deterioration and a 
failure state for a single electrical plant item, presumably represented by a single parameter, 

although no information was given on what constituted the condition measure. Minor and 

major maintenance were considered as separate states in the model - as well as a probability 

of a single-step condition improvement the model also included probability of the 

maintenance having no effect and negative effect. This represents a refined representation of 

the effects of maintenance, however this level of detail is not considered in this thesis. The 

reason for this is that it is pointless to include sophisticated maintenance models without 

either data or expert opinion to form an estimate of the frequency of occurrence of these 

unsuccessful maintenance events, and neither were available for the duration of this 
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research. Finally, a CBM policy was considered via a simplified model, and for both models a 

sensitivity study was conducted to yield the optimal maintenance policy. 'Mis is a useful 

approach as it allows the robustness of the solution obtained by the model to be tested. 

Sensitivity studies are used in a similar fashion later in this thesis. 

Endrenyi et al. (2004) compared two methods of evaluating effects of maintenance on both 

reliability and operating costs. Ihese two methods were Rehability-Centred Asset Manager 

(RCAM) and Asset Sustainable Strategy Platform (ASSP) as used by Swedish and Canadian 

utilities respectively. Both methods use reliability analyses to rank the most influential system 

components and examine the impact of maintenance on the failure rates. This approach 

necessitates a very deep analysis of time-varying failure rates which is beyond the scope of 

this thesis. For the WT CM evaluation application considered here, maintenance is 

considered as restoring the equipment to 'as good as new' state. 

RCAM establishes the relationship between maintenance policy, cause of failure and time. 

The revised component reliability is used to compute the new overall system reliability. 
ASSP uses a Markov model for deterioration and maintenance effects, the effectiveness of 

which is measured via mean time to first failure. Ibrough successive iterations the 

maintenance policy is optin-ýised. Some fundamental questions were posed, such as 

quantification of maintenance costs, and how maintenance is defined (e. g. manufacturers' 

specification, experience etc. ). For the purposes of this thesis, time-based maintenance is 

considered to be conducted twice per annum onshore and once per annum offshore, as 

dictated by current wind industry practice. 

Analytic methods are widely applied in the literature. Anders, Endrenyi and associates adopt 

analytic solution in all the referenced papers - see Anders et al. (1990), Endrcnyi et al. (1998) 

and Endrenyi et al. (2004). This is perhaps due to their perceived mathematical rigour and 

greater elegance, a fundamental drawback of analytic methods is the difficulty in budding in 

model constraints for specific operating conditions. Since it is expected that a model of wind 

turbine O&M will include such constraints, analytic solution is not a feasible option. 

Research which has successfully included such constraints often reverts to MCS as the 

solution method, and the same approach is taken in this thesis. 
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Researchers at the polytechnic university of Milan proposed an alternative approach to the 

previously adopted methodology of Markov models solved via analytic solution. Their main 

innovation was use of Monte Carlo simulation to find the solution of a Markov chain as 

opposed to direct or numerical solution. 

A continuously monitored multi-component system is considered by Barrata et A (2002), 

which deteriorates according to a discrete-time Markov chain and is solved via Monte Carlo 

simulation. The main advantage of this approach is that it can cope with the dimensionality 

of problems when several multi-state components make up the system, in contrast to 

analytic methods. The authors take an interesting approach to repair processes: the repair 

times follow a lognormal distribution which is dependent on the level of recovery the 

component achieves. When this time has elapsed, the repair is carried out with certainty 
(probability=1): this can be thought of as a combination of discrete Markov chain and time 

delay model. The cost-optimisation of the model is done via a simple sensitivity study. It is 

noted, however, that the large number of proposed states for the component deterioration 

(-30) is impractical from a parameter estimation viewpoint. Similarly, it is doubtful whether 

enough data exists to derive probabilistic models of downtime duration for a WT 

application. It may be possible in applications with more established regimes for data 

collection, e. g. the aviation industry. 

Marsegucrra et al. (2002) identified two main issues for modelling the implementation of a 

condition-based maintenance (CBNý strategy in the nuclear safety domain: a predictive 

model describing the future deterioration of the system in question, and an evaluation/ 

optimization of the possible maintenance strategies. Use was made of a Markov Chain 

solved by Monte Carlo sequential simulation to characterise deterioration of a single 

component. 'Me model simulates the physical process and attempts to maximize revenue 

and equipment availability by using a genetic algorithm to establish the maintenance 

threshold level. The model assumes a steady deterioration process, but also includes a 

probability of outright 'shock' failure which is assumed to be a linear function of the 

deterioration level. The authors illustrate that the number of states used to characterize the 

deterioration process is an important consideration, with a larger number of states increasing 
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the accuracy of the result. However, the number of states mentioned (71) and the fact that 

no mention is made of the data source used suggests that the modelling framework is the 

focus of the research rather than a real application. That is in contrast to this thesis, and for 

this reason such huge numbers of states are considered highly impractical from the 

viewpoint of data and parameter estimation. 

Zio & Podofillini (2007) explored the spares allocation problem. They explain that holding 

spares, while necessary for safety-critical systems, is very costly and often components are 

never used. MCS is used to model failures and spares, although intermediate deterioration is 

not considered. Apparently ad-hoc rules are applied to the transition probabilities in order to 

replicate real-life behaviour: in one case the transition probability is increased by orders of 

magnitude to ensure an immediate transition to the operational state after a spare has been 

installed. While never calling their model a Markov chain, the model strongly resembles one 

and is rather vaguely called a 'Markov-type model', perhaps because of the relaxation of 

some Markov properties i. e. stationarity, memory etc. Finally the authors discount more 

established methods of optimisation Cgradient methods' i. e. numerical iteration, dynamic, 

integer, mixed integer and non-linear programming) because too many simplifications are 

needed and they need very detailed answers since safety is a primary consideration of their 

work on nuclear power plants. 

The use of a Markov chain or process combined with MCS represents a good enabler 
between use of Markov models as a process model and modelling accuracy in terms of 

constraints and maintenance events. Intuitively, and on the basis of Appendix A, it is clear 
that a large muld-state model will be very difficult to formulate. Such a case is likely for 

modelling of wind turbine deterioration, failure and operations: especially since multiple 

components need to be modelled. Therefore analytic methods are not suitable for this 

problem. 
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3.2.8 Miscellaneous Approaches to Asset Modelling 

The different forms of classical reliability models and Markov models are the most prevalent 

in the literature and also fairly easy to categorise, however other methods have been applied. 

The most promLinent of these is the time delay model (IDN1) of Christer and colleagues. 

Rather than using probability distributions to model the failure rate or reliability function, 

the arrival time of the event is characterised. 

Baker and Christer (1994) chatted the development of the 'delay-time' model, usually 

characterised by a homogeneous Poisson process (HPP). The authors are critical of 

contributions which neglect parameter estimation, model validation or lack of applications to 

real systems. The authors point out that there is very little point in developing complex 

theoretical models if data does not exist to estimate multiple parameters. On the other hand, 

they do suggest that subjective information could be used where data are scarce. The two 

stage delay-time model was described: essentially this is analogous to a three stage Markov 

deterioration model. The paper argues that pragmatic decision rules should be adopted, since 

these have more chance of being adopted in real situations. For some complex systems, all 
failures are pooled into one model, and various assumptions can be made depending on 

which aspects of the problem are crucial. The authors continually emphasise the philosophy 

that 'no purely theoretical model can be expected to cope with all details of practice'. 
Practical experience indicted that a few hundred samples of faults are sufficient to represent 

the systems adequately and to form cost-effective policies via modelling. 

Other research into asset modelling exists which does not fall under the headings previously 
discussed and provides useful contextual information: however none of the methodologies 
meet the requirements of the modelling task as fully as the Markov model coupled with 
MCS. 

Archibald et al. (2004) considered the sensitivity of a pre-defincd optimal maintenance 

strategy to changes in the model parameters, focusing mainly on financial aspects such as 
discount rate and cost of maintenance and replacement. The authors employed a non- 
homogeneous Poisson process as the failure model, applied to a large water filtration system. 
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Their results showed that the model was most sensitive to cost of preventive maintenance 

and repair cost after failure. The idea of testing how the results of asset modelling could 

change with respect to variables of interestý not limited to cost, is a very useful one and win 

be used in this thesis. Cost of maintenance and replacement, as in the work of Archibald and 

colleagues, is of interest as well as technical variables such as component reliability. The 

authors concluded their work by pointing out that more attention needed to be given to the 

nature of maintenance over a long period of time as the equipment ages and completes a 
large number of duty cycles. This aspect is one the wind industry will be keen to address in 

the future as large numbers of wind farms enter the end of their life cycle, but as yet this is 

not a particularly pressing problem owing to the relative immaturity of the wind industry. 

The aim of Ansell et al. (2003) was to lower costs for a water infrastructure utility by 

understanding the underlying failure processes of the equipment. They did this by using a 

data driven approach which did not assume any underlying distribution for the failure rate 

evolution over time. A method called Cox regression was used which enables equipment 

condition rating to be included in the regression lifetime. 'Mis enables an instantaneous 

failure rate at various points in time to be calculated, however the time in between is set to 

zero failure rate, therefore 'smoothing' techniques are used to 'spread' the failure rate over 

time. 1hus a time-dependent failure characteristic was produced, which would not have 

fitted any assumed prior distribution. Averaged costs were used for maintenance and 

refurbishment events because of a lack of information. Data seemed to be a problem for the 

authors since they had only 4 years of operational data for an asset whose life was -40 years. 

They overcame the data scarcity by fitting a model to the early life stage and then using this 

every time a refurbishment occurred. Using this technique they estimated the impact of 

refurbishment compared to increased maintenance costs enabling more informed decision- 

making. Even in the case of this pragmatic approach, a great deal of data was needed: this 

seemed mainly to be because of the very long equipment life of the asset. 

Thomas (1996) considered some fundamental questions regarding representation of 

condition in deterioration models and gave an overview of influential work in the area. 
Suggested areas identified for application of improved maintenance via deterioration 

modelling were: bridges, railways, pipelines and electrical pylons. Particular focus was placed 
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on the successful implementation of Markov models to the management and maintenance of 

the United States highway and pavement systems. 

The author specified three points of importance when building up a deterioration model, 

these were: inspection, classification and decision-making. Inspection focused on how the 
data are to be obtained, classification on how the condition is to be expressed or quantified, 

and decision-making on what actions could be taken to optimise the behaviour of the 

system. Three distinct methods of classifying condition were identified by the author: 

subjective index, overall index comprising weighted terms of many variables, and multi- 
dimensioned description. 'Me last of these three seems most applicable for modern on-line 

condition monitoring. Finally, several methods were introduced for optimisation of the 

maintenance process: linear programming, Markov decision process, expert systems, and 

random search techniques. 

Billinton and Li (2004) illustrated a probabilistic model for power generating units which 

went beyond the conventional up/ down model. Instead of the well-known forced outage 

rate (FOR), often used in reliability studies to derive the generator failure rate, the study used 
derating-adjusted forced outage rates (DAFOR). A method known as the apportioning 
method was used to derive three and four-state generator models instead of the usual two- 
state model. The apportioning method 'absorbs' contributions to its probability on the basis 

of the distance from the 'real' derated levels, thus creating a discrctised muld-state generation 
model. Tbesc intermediate derated states, in which the unit operated at a proportion of its 
full rated output, provide a more complete view of the generation unit operation. 'Me 

authors illustrate this through application of their model, which shows that conventional 
studies based on simple two-statc representation may be conservative due to their lack of 
consideration of these derated levels, which are often prevalent in real systems. 
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3.2.9 Summary of Asset Modelling Methods 

The following conclusions are reached after considering the various modelling options 

available for modelling deterioration, failure, operation and maintenance of wind turbines 

within a wind farm. 

Models and studies representing deterioration and maintenance processes are very 

well established in literature, with applications both numerous and varied. Markov 

models in various forms are the favoured modelling framework. 

Markov models, through their state-based nature, allow the key aspects of the 

condition deterioration process and CM to be captured. They also have the flexibility 

to interface with other models, the physical Markov model typically being interfaced 

with an economic or functional model. 

9 By using MCS to solve the Markov model, the solution can be obtained even if the 

system is highly complex. Through the use of statistical tools, the level of accuracy in 

the results can be as high as required in the simulation time available. 

These factors were taken into account when identifying a suitable methodology to move 
forward with the modelling of wind farm processes, with a view to quantifying the benefit of 

condition monitoring. Figure 13 shows the decision making process, influenced by points 

noted in the literature review. 

Markov Model Continuous-Timse 

Analytical Solution q Probabilistic 

i-ý, [ 

Discrete-Time 0- 
Model 0 
Type 0-[ 

Deterministice 0 
-*. MCS Solution 0 

0 

Figure 13: Asset Modelling Decision Process 
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Thus, the Markov Chain solved via Monte Carlo simulation was identified as the most 

suitable approach for the work contained in this thesis. The chief motivations for this choice 

are: 

High degree of modelling flexibility 

Less constrained than continuous-time models re: muld-component complexity 

Easily able to accommodate new features e. g. operational modelling 
Can be easily tailored for different systems re: number of states and components 

Ease of interface with other layers of modelling 
Timc-dcpendcnce can be achieved with a multi-stage model 

The Markov model represents the physical Wr component condition, and is able to include 

CM information. Other aspects of the WIperformance, such as energy yield, wind regime, 

economics, operations and maintenance policy also have to be considered. The next section 

explains the modelling approach including these aspects. 
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3.3 Wind Speed Characterisation & Energy Yield Model 

Simulation of wind turbine operational practice necessitates adequate representation of wind 

speed. The reason for this is that maintenance actions and access to site are coupled with 

wind speed directly, and also energy yield is based on the wind model coupled with a WT 

power curve. In the case of this thesis a deep understanding of the mechanics of wind 
direction and interaction with structures is not required. Rather the key requirements of the 

wind speed model are: 

1. Maintain sufficient accuracy (c. f. the real profile) 
2. Construct in a form which is easily simulated 
3. A realistic number of parameters, in view of available data 

A literature review of models used for characterisation of wind speed was conducted, with 
the results summarised in Table 12. Since the AR model can capture the wind speed 

characteristics adequately and the parameters are easily estimated, this method was adopted 
for the analysis in this thesis. 

Acronym Description Advantages Limitations 
AR Auto-regressive Well-established heuristic for Low accuracy if applied to non- 

model classification, good stationary data 
understanding of physical process. 

MA Moving average Appropriate for non-stationary data Possible un-nccessary complexity 

ANN Neural network Complex multi-variate inter- Lack of understanding of coupling 
dependencies can be captured. mechanism. High data 

requirements. 
MC Discrete State Intuitive state-bascd modelling Lost detail in statc-based 

Markov chain framework representation. 

Table 12: Possible types of wind speed model and their characteristics 

)+ (25) 

The generalised autoregressive process is shown in equation 25 (Box & Jenkins, 1970 p9). It 

is based on deviation from the mean of the process which is calculated as a sum of 

previous deviation values in the time series 7V-2-P) I- These previous deviation 
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:0 
111 j values are each weighted according to their influence (ol, oz 

... 
o,., ). e system is also sub ect 

to random shocks which arc normally distributed (a) with zero mean. After the AR 

framework has been adopted, there are two further tasks to successfully implement a wind 

speed model. The first of these is commonly referred to as model classification, in this case 

meaning the number of auto-regressive parameters to be included. 'Me second issue is 

parameter estimation, which is discussed in the next chapter. 

3.3.1 Model Classification 

The model classification problem for the AR model can be put in lay-mans terms by 

observing how far back in the past the modeller has to look in order to accurately 

characterise the wind speed. There is no formal procedure for model classification: indeed, 

consultation with mathematical experts throughout the duration of this research has merely 

confirmed this fact. However, some heuristic-based methods are available and have been 

used for similar problems. The rules involve inspection of the auto-correlation and partial 

auto-correlation functions. The autocorrelation function (ACF) is a measure of how well 

correlated a time series is with itself at k time steps (lags) in the past. One component of the 

ACF is the autocovariance, y. At lag k it can be defined in terms of deviations from the mean 

of the seriesp, at time t and at lag k (Box & Jenkins 1970 pp27-28): this is shown in equation 

26. The ACF at lag k, pk, is related to the autocovariance and the variance of the series, 

expressed in equation 27. 

*=lz 

"'-k (26) 

Yk 
Am 

I 
cr, 

(27) 

1herefore, in order to calculate the ACF for a wind speed time series, autocovariance (y), 

variance (cr. ) and mean ([L) must be estimated from wind speed data. Ile mean and 

variance are well-known quantities and are estimated using equation 28 and equation 29 

respectively (Box & Jenkins 1970 p38). 
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Using equation 27, the ACF can be calculated from wind speed data for different lags. The 

algorithm was initially coded in an excel spreadsheet in order to gain a good understanding 

of its mechanism. Figure 14 is a plot from this spreadsheet, and is based on 10 minute 
interval SCADA data from a utility wind farm, which has been averaged to 1 hour intervals. 

The main purpose is to illustrate the influence of time resolution: there is significant 

coupling at high lag values and many, many model parameters would need to be estimated in 

the case of Figure 14. In order to simplify the plotting of ACF, the statistical programming 
language, R, was adopted: this has the useful feature of instantly plotting the ACF without 
having to re-calculate in the spreadsheet model. 

1 
0.9 

0.8 

= 0.7 

0.2 

0.1 

0 

Lag 

Figure 14: Autocortellation Function (ACIý for Wind Data -lI lour 'rime Rcsolution 

Although the ACF is a useful tool for understanding the AR model, it can sometimes suffer 

from distortion if the auto-correlations (P, ... pý are themselves in ter- correlated. The 

practical result of this is that another function, called the partial autocorrelation function 

(PACF) needs to be introduced to remove the correlation between ACF values, enabling 

model classification. The PACF coefficients of interest can be found by solving for Okký (that 

is the last coefficient) in equation 30, where Pk is the autocorrelation of the series at lag k and 

Pk i 'S the autocorrelation at various time steps, i, from lag k. 

k 

-': 1 (30) A 4-'Okipk-i 
, =I 
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It is therefore Okkwhich is plotted at various lag values which constitutes the PACE Figure 

15 and Figure 16 show both ACF and PACF for wind speed data of I hour resolution. The 

dotted line displayed on these plots represent a single plus and nuinus standard deviation 

(refer to equation 29) of the ACF or PACF coefficients. The lines are used as a guide to 

understand the significance of the correlation. A significant correlation value would be larger 

than the single standard deviation line. 

0 

0 

LL 

0 10 20 30 40 

Lag 

Figure 15: Autocorrelation function at time resolution of I hour 
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Figure 16: Partial Autocorrelation function at time resolution of 1 hour 

Figure 15 and Figure 16 are plotted up to a lag of k-40. It can be observed in the ACF that 

coupling is significant at high lag values. Even at lag 40 the ACF is much larger that one 

standard deviation, but this does not necessarily mean that 40 AR parameters would be 

required to adequately model the wind speed at this hourly resolution. However, since the 

90 



wind turbine component degradation model has a time resolution of 1 day, the wind model 
is also only required to have 1 day resolution. Therefore, in the final stage, a wind profile was 
built using 1 day averaged data, wl-dch matches the overall model resolution: the ACF and 
PACF are plotted in Figure 17 and Figure 18. Clearly Figure 17 suggests that a much lower 

order AR model will be adequate for a daily resolution wind model than for hourly 

resolution, because only two ACF coefficients are larger that 1 standard deviation as 

compared with 40 in Figure 15. 
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Figure 17: Autocorrelation function at time resolution of I day 
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Figure 18: Partial Autocorrclation function at time resolution of 1 day 

These two characteristic plots of ACF and PACF in Figure 17 and Figure 18 can be used in 

conjunction with a set of heuristics to classify the AR model (Wang & McDonald, 1994 p13) 

- these heuristics are re-created in Table 13. 
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Model ACF PACF 
AR(l) Exponential or oscillatory decay Okk=O fork> I 
AR(2) Exponential or sinusoidal decay Okk= 0 for k>2 
AR(p) Exponential and/or sinusoidal decay Okk= 0 for k>p 

Table 13: Rules for Classification of Auto Regressive Model 

Figure 17 (ACF) showed exponential decay behaviour, while the PACF in Figure 18 dropped 

off to approximately 0 after 1 time lag (i. e. PACF coefficients were less than one standard 
deviation). Therefore the appropriate model for the wind speed data set examined in this 

thesis according to Table 13 is an AR(1) model. The fact that only one parameter has to be 

estimated speeds up the modelling process and limits the complexity of simulating the model 

when the parameters have been estimated. The quantification of these parameters is 

discussed and demonstrated in section 4.2.1. 

Finally, it is important to contextualise the use of the AR(1) model in terms of data 

availability. Most time series data are available for many numbers of successive 'periods' - 

e. g. financial data for many years trading. In the case of wind profile the period is 1 year, 

which takes into account the seasonality of the data (e. g. in the UK the wind tends to blow 

harder in winter). Unfortunately if two or more years of data are not available, seasonal 

trends cannot be distinguished from other effects. Common practice when dealing with 

seasonal data would involve the removal of the seasonal trend by fitting a time(season)- 
dependent function to it and then subtracting this function from all time series values - in 

much the same way as the mean is subtracted from each time series value in equation 25 (zj-j- 

ju). 
Then the model is fitted to this modified data set, and afterwards when simulating the 

model, the trend is added along with the mean value (see equation 25). 

Iberefore, although the data fit into the AR(l) model, ideally two or more years of data 

would be analysed so that the seasonal trend could be taken account of. This may have 

negative implications for the realism of the model, particularly offshore where the 

seasonality of the wind speed is expected to be a significant factor in maintenance planning. 

As a final point, it is noted that a purely autoregressive approach win not reproduce the 
Weibull-distributed wind speeds that are commonly observed over long-term wind speed 
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measurement. Rather, a Gaussian distribution will be re-produced because the process is 

essentially being driven by white noise (a). This will have the effect of losing some of the 

extreme high-wind events at the 'tail' of the Weibull distribution. There are two anticipated 

effects as a result. Firstly, the electricity generation estimates and capacity factor generated by 

the model may be slightly under-estimated. Secondly the maintenance actions may not be as 
frequently constrained by wind speed as in a real situation. It is also noted, however, that 

these effects have a low probability of occurrence and their impact on evaluation of 

maintenance strategies (IBM, CBM), as exan-dned in this thesis, is thus small. 
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3.3.2 Wind Turbine Power Characteristic 

The amount of theoretical energy in the wind - measured in joules - can be deduced by 

analysing the classical equation for kinetic energy, E., whichrelates kinetic energy to mass M 

and velocity v (equation 31). It can be observed that the mass of air moving through a wind 

turbine rotor (see Figure 19) in one second, m, is proportional to its swept area, air density 

p and velocity v as expressed in equation 32. Substituting equation 32 into equation 31 gives 

equation 33, the amount of theoretical energy in the wind. 

A wind turbine is essentiafly a kinetic-mechanical-electrical energy conversion system, and 

clearly no electro-mechanical system will be 100% efficient in energy conversion due to 
losses in the system (friction, heat, noise, copper losses etc. ). Therefore equation 33 has to be 

further modified by multiplying by a co-efficient of performance Cp. This co-efficient takes 

account of the losses in the conversion process, and is not constant: it varies over the wind 

speed range and depends on the wind turbine in question. 

Eký IMV 
2 

(31) 

Mmr ýP ;T r'v 
(32) 

P ;T r'v(- C) (33) 
2 

Rotor 
'adus 

, metres 

Figure 19: Schematic of Air FlowThrough a Wind'l'urbinc Rotor 
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Thus, the wind turbine rotor can only physicafly convert a proportion of the available 

theoretical energy into torque. This was first observed by Betz who predicted the maximum 

efficiency of the conversion process to be roughly 59% (Boyle 2004, p262) - this upper limit 

is know as the Betz limit. Taking the Betz limit into account, Figure 20 plots the maximum 

recoverable energy in the wind for various typical wind turbine rotor diameters, o. 

8 

7 

r 6 

5 
80m Rotor 0 LM 

4 I OOrn Rotor .1 
w 120m Rotor o 

0L 

3 

2 

Cc 

0123456789 10 il 12 

Air Velocity We 
Figure 20: Maximum Recoverable U. nergy in the Wind According to Betzs'Lirnit 

Wind turbines are designed to extract as much of the available energy as possible, however it 

is simply not practical to build an electro-mechanical system to withstand the entire wind 

speed range. Therefore an upper power output rating and mechanical protection control are 

built in. Mechanical protection control acts to pitch the blades out of the wind if the wind 

speed reaches dangerous levels, shutting down electricity production until the wind returns 

to nominal levels. The upper rating is not exceeded regardless of the wind speed, and 
depends on the WT design and type of generator installed. 

Similarly for the low speed range, it is not mechanically possible to extract energy from the 

wind at very low speeds Oess that 4m/s). The effect of these various factors (theoretical 

characteristic, upper and lower limits) is illustrated in Figure 21, which is a 2M\V wind 

turbine power curve. This characteristic shows that the WT starts generating electricity at a 

wind speed of 4m/s (Cut in wind speed, V,, ), reaching its rated power at 14m/s (Rated wind 

speed, VO and stopping production - cutting out - at 25m/s (Cut out wind speed, V(, ()). 
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Figure 21: 2NIW Wind Turbine Power Curve 

The region of interest in terms of fitting the theoretical equation is that between V(,, and V, 

for this example that is between 4m/s and 14m/s. This region resembles the theoretical 

characteristic in Figure 20: however values of Cp need to be estimated as they are clearly not 

constant, especially as the wind speed reachesVR. To achieve this, equation 33 can be fitted 

to any power curve characteristic by sampling that curve at different points and choosing a 

value of Cp which closely matches the theoretical power (produced by the equation) with the 

sampled power curve. 

For any points in-between the sampled power curve values, Cp can be approximated as a 
linear function of the distance between the two samples - following the well known linear 

equation 34. For this case, x is equivalent to wind speed and y is the value of Q. The 

gradient of the assumed linear function of Cp is m, and c is the value of Cp at 4m/s. 

Y=mx+c 
(34) 

Application of this concept to an actual power curve is best illustrated by a simple example. 
The 2MW power curve previously described can be sampled at any two points on the wind 

speed range - for this example, points at 4m/s and 9.5m/s are chosen. These points are 

used to characterise the power curve between 4m/s and 9.5m/s. The power output and 

resultant value of Cp needed to match the equation with the power curve are displayed in 

Table 14. 
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Wind Speed m/s WT Power Curve Sample Output CP 
m/s kW 
4 85626 0.434783 

9.5 1122687 0.425532 
Table 14: Power Curve Sample & Value of Cp 

The 'gradient' of the straight line approximating Cp is calculated by taking the difference 

between the values of Cp and dividing over the sampled wind speed range. The equation 

governing this procedure is shown in equation 35. 

CP.. "-CP". " -W 
MC'ý 

WS4.1. S95.1. 

(35) 

An application of equation 35 using the Table 14 values is shown below. The gradient in this 

case is calculated as -0.001682. Using this calculated gradient, Cp at any wind speed point in- 

between 4 to 9.5m/s can be estimated by applying the formula for a straight line (see 

equation 34). 

mc, = 
CP,.,, -CP,,.,, 0.434783 -0.425532 0.009251 0.001682 WS4.1. -WS95.1,4-9.5 

-5.5 

In this way, values of Cp for other samples in-between 4 and 9.5 m/s can be accurately 

calculated. The illustrative examples below show the calculations for Cp at 6m/s and 8m/s. 

Utilising these values for Cp and applying equation 33, the power curve for intermediate 

samples can be plotted. 

C, @6mls mm. 7, Ax +C, @4mls --0.001682x(6-4) +0.434783 =0.431419 

C, @8mls -mcýAx +C, @4mls =-0.001682x(8-4) +0.434783 -0.428055 

Figure 22 illustrates both the modeUed linear reduction of Cp over the wind speed 

range4m/s - 9.5m/s and the power curve wMch results from application of equation 33. 

Modelling of Cp as a linear function results in an adequate representation of the non-linear 

region of the power curve. This can be achieved without having to carry out a very large 

number of power curve samples. 
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Figure 22: Fitting Energy Yicld F. quation to Wind Turbinc Powet Curve 

Using this method, the power curve can be generated over the entire wind speed range from 

a relatively small number of samples. This is advantageous since manufacturers' power 

curves are often plotted in data sheets, but the actual data tables are not included. Therefore, 

using this method it is relatively easy to re-create power curves from a manufacturers' data 

sheet and include it in the analysis of various wind profiles. 

3.3.3 Electricity and Renewable Obligation Certificates Market 
Price 

The economic yield of a wind farm depends on the mechanisms in place to incentivise 

renewable-generated electricity, which varies depending on the energy policy of the 

individual country. For the purposes of this thesis, the UK renewables obligation system is 

used as the policy instrument: however modelling of a feed in tariff (typically used in Europe 

and U. S. A. ) is equally straightforward. This means that as well as generating income per 

Mega-Watt hour (MWh) of electricity produced (MPj, the wind turbine will accumulate 

renewable obligation certificates (ROCs) and is also able to get market price for these (MPj- 
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Typical values for the market prices are illustrated in Table 15, although it should be noted 

that ROCs are part of a trading system and their value therefore fluctuates. This fluctuation 

also takes place in the electricity market: however over the course of the equipment lifetime 

of 20 years it is adequate to use a constant value. A decision has not yet been reached on 
how the ROC system will change for offshore wind in the UK. An initial idea is that high- 

risk technologies such as offshore wind will be given a higher number of ROCs per MWh. 

For the purposes of this study it is assumed that offshore wind farms are allocated 1.5 ROCs 

per MWh (BERR 2007): Table 15 also takes account of this possibility. 

Wind Farm ROC Elcc MP ROC MP Rcvenue 
#/MWh J/ MWh J/ MWh : E/ MWh 

Onshorc 1 36 40 76 
Offshorc 1.5 36 40 96 

Table 15: Electricity and Renewables ObEgation Certificate Market Price 

The theoretical annual energy yield (Y,., MWh) produced by a wind turbine is a function of 

annual capacity factor (CF,,,, 9/6), WT generator rating (G, MW) and annual availability (A.. 

0 , 
Yo). Noting that 8760 is the number of hours in one year, equation 36 characterises the 

annual energy yield utilising the variables mentioned. 

Y. =CF. xG xA. x8760 (36) 

Based on this, the amount of theoretical revenue generated per annum (R,. D by a wind 

turbine is calculated on the basis of energy yield and the market prices of electricity and 
ROCs (MPI,,, MPJ. Equation 37 shows the simple nature of the relationship used to obtain 

economic WT yield. 

R.. =Y .. x(MP,,., +MP.,,,, ) (37) 

Clearly the time period can be altered to calculate the yield and revenue for any time step of 
interest - not just annual values. The advantage of these simple calculations is that they 

provide a useful method to validate the models proposed in this thesis, since the outputs 

generated via MCS can be compared directly with ball-park figures derived from equations 
36 and 37. 
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3.4 Maintenance Modelling 

'Me final level of the modelling process as outlined in Figure 6 is the asset management 

policy of the wind farm operator, the techno-economic impact of which forms the basis of 

the analysis in this thesis. Since the Matkov model has been chosen as the most suitable 

representation of the WI' components, maintenance effects in particular must be quantified 

with respect to the Markov model. This is another area where Anders, Endrcnyi and 
associates have published prolifically. 

Most significantly, Endrenyi et al. (2001) presented a review of the most frequently used 

maintenance strategies and showed that the most widespread strategy is fixed interval 

maintenance with breakdown corrections as required (rBM). Ihe authors performed a 

survey of electrical utilities and deduced that methods based on mathematical modelling are 
hardly ever used, and generally utilities do not perform predictive maintenance exclusively. 
They identify the most effective diagnostic tools as gas and oil analysis, surge measurement 

and vibration analysis for rotating machines. In order to model deterioration processes two 

methods are identified: duration-based and physical-based. 'Me main advantages of a 

predictive maintenance regime as identified by the authors arc better outage scheduling, 
increased operational flexibility, and more efficient use of fuel and spare parts. A Markov 

process was adopted by the authors and maintenance modelled in various ways within this 

framework. 

There are several possible methods for modelling maintenance in the Markov model. This is 

one area of modelling where a high number of assumptions are usually made because it is 

very difficult to physically quantify the effects of maintenance actions. Some key distinctions 

of maintenance models are explored below: these are expanded on in the next section. 

0 Perfect or imperfect maintenance i. e. technical consequences of maintenance 
4, Mechanism for capturing downtime after failure or repair 

Modelling economic consequences of maintenance, failure & repait 
Modelling TBM and CBM 
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3.4.1 Technical Impact of Maintenance 

The effectiveness of maintenance actions and resultant impact on performance of assets is a 

subject of debate in industrial circles - as outlined in the keynote paper by Endrenyi et al. 
(2001). It is therefore no surprise that mathematical modelling of such processes is also a 

contentious issue. The simplest method of modelling maintenance actions is that the 

equipment is restored to 'as good as new' condition - also known as perfect maintenance. 
Imperfect maintenance models characterise actions which restore the asset to an operational 
but imperfect condition state. 

Consider again the ergodic, genetic system in Figure 8 (reproduced below) and define st, s2 

and s, as fully up, deteriorated and failed states respectively. In this case if the system were to 

transit to failure - s, - then perfect (reactive) maintenance actions would restore the system 

tos, (fully up) whereas imperfect maintenance would restore the system to s2 (deteriorated). 

P1.1 P2.2 

P1.2 

sl S2 
PLI 

PAI P2, n 

'"_-)I S 
Pf, M I 

PMR 
Figure 8: Generic Markov Chain (Reproduced from page 65) 

Using MCS to model the planned maintenance policies makes the representation 

straightforward. In the case of TBM, a counter is simply set up and the system runs through 

its non-ergodic Markov-based condition trajectory until the maintenance interval is reached. 
At d-ds point maintenance is applied, the deteriorated system being restored to the fully up 

state, incurring the relevant costs and downtime. CBM is more complex, but the idea of 

counting until a maintenance interval has expired and then applying maintenance is the 

cornerstone of modelling both TBM and CBM. The key difference with CBM is that the 

maintenance interval is coupled with the system condition. 
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3.4.2 Mechanisms for Modelling Downtime after Failure and Repair 

There are two main methods of modelling the physical possibility of maintenance in a 
Markov model. The method most used in analytically-solved models is maintenance as a 

repair rate or repair probability (the continuous and discrete-time cases). The alternative is to 

model failure states as absorbing states which last for a modelled amount of time 

(deterministic or probabilistic) and then re-start the Markov model either in fully up (perfect 

maintenance) or deteriorated state (imperfect maintenance). 

Amn 
Figure 11: Markov Process (Reproduced from page 75) 

The Markov process reproduced in Figure 11 shows how the repair rateU2, is used to model 

repair between s2 and st. This could also apply to s. if it were modelled as a failed equipment 

state, in which case the repair rate would beu,,. The advantage of this type of maintenance 

model is that it fits nicely into the Markov model framework and can thus form part of an 

elegant analytical solution. For this reason, repair rates are popular in the literature: however 

it is interesting to note that many papers which employ this method often have a 

mathematical rather than engineering focus. Since the focus of this thesis is very much 

engineering analysis, other methods for downtime modelling are considered. 

The main alternative to repair ratc/probability for repair modelling is to model a downtime 

when the equipment reaches failed system states dcfined as absorbing states. 'Mis downtime 

can be deterministic or probabilistic in nature: in practice this is dependent on the available 
data. In the case of deterministic downtime, a counter is devised which counts up to a 

maximum value e. g. 7 days - throughout this time (t,,,, Fl ... 7) the equipment remains in the 
down state, rfp 
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Figure 23 illustrates the comparison between failure rate repair modelling and absorbing 

state/ deterministic downtime modelling for 7 days of downtime at a time resolution of I 

day. In the probabilistic case, the maximum downtime duration is defined by a suitable 

probability distribution rather than a constant (e. g. 7 days). After the downtime has elapsed, 

the equipment is restored to the relevant functional state. 

A bsorbing State, 
Repair Rate Detenninistk Downtime 

slip Slip 

10 4286 s t= If 

% 

, dt=lDay t,,,, jw= 1.. 7 tý'W' =8 

*= current state 

Figure 23: Modeffing Repair as a Transition Probabdity /Rate and an Absorbing State with Dctcrminisfic 
Downtime 

The advantage of the absorbing state/ deterministic downtime modelling approach is that It 

gives the modeller more control over how different repairs and replacements are modelled. 
For example, a severe failure requiring a replacement part can be modelled with a long 

downtime, whereas a trivial repair might have much shorter duration. When combined with 

MCS this becomes an extremely powerful tool, the key characteristic being the adaptability 

of the combined approach, which is very suitable for capturing operational constraints such 

as maintenance duration. Therefore the method of modelling repair and downtime adopted 
in this thesis is use of absorbing states and deterministic downtime. 

3.4.3 Economic Impact of Maintenance, Failure & Repair 

The economic impact of maintenance actions comprise the capital cost or repair cost of the 
failed component, the cost of maintenance personnel and cost of specialised equipment such 

as heavy cranes, which are often hired as needed by the wind farm operator rather than 

owned. Additionally, the lost revenue (see equation 36 & equation 37) while in the non- 
functional state contributes to the economic implications of maintenance or failure. 
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The largest of these individual costs are the capital costs (Cc4p) of wind turbine components. 
These have been quantified in various publications. In particular, the WindPACT study 

recently conducted by NREL (Poore & Lettenmaier, 2003 p82) compiled costs of Wr 

components is some detail. Simple rules to derive component costs as a percentage of 

overall WT capital cost derived from this study are summarised by Sterzinger & Svrcek 

(2004 p53) - these are presented as generic and therefore useful for this study. The findings 

of the NREL study are summarised in Table 16 and applied to a 2MW wind turbine with a 

capital cost of C1.2m for illustrative purposes (LO. 6M per MW capital cost was assumed - 
towards the high end of the scale proposed by juninger et al. (2004)). 

Component WindPACT 03 
% 

2MW Costs 
f 

Rotor Assembly 28 336,000 
Gearbox & Drivetrain 21.7 260,400 
Generator 17.3 207,600 
Tower & Foundation 7 84,000 
Other Nacelle 26 312,000 
Total 100 1.200.00 

Table 16: Capital Costs of Major Wind Turbine Components 

For major rcpairs or outright component replacements, lifting devices arc needed for 

hoisting components up to the height of the nacelle. These devices arc highly specialised, 

and their use incurs significant cost. A number of sources were used for estimates of crane 

hire costs (see Table 17) including industry articles (*Anon, 2006 pp24) expert estimates 
("Concerted Action on Offshore Wind Energy in Europe, 2001) and UK government 

reports (***Way & Bowerman, 2003 pp34). The large disparity for the offshore cases 

represents the sparsity of data, probably due to the sensitivity of operators to this issue. 

Location Mobilisation Crane Type Hire Rate Total cost per I week action CF. 
E f per week f 

Onshore* Unknown Telescopic Crawler - 1,500 1 500 Hire , 
Offshore" Unknown Jack-Up Vessel -Hire 15,000 15,000 
Offshore*** 50,000 Telescopic Crawler - 11 000 61 000 Installation hire , , 

Table 17: Equipment Costs 
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Ile costs of maintenance staff have been quantified by *Nilsson & Bertling (2007) and 

**Andrawus et al. (2006). Their figures are re-stated in Table 18 as the total labour cost 

(C1.0 per maintenance action, for use in the studies proposed in this thesis. Clearly these 

values are very small compared with component replacement costs: however labour costs 

will be incurred for any fault, no matter how trivial, and therefore are incurred more 
frequently. 

Company 

-Maintenance Type 
Labour Time 

Hours 
Labour Cost 

f per hour 
Total Labour cost per action CL,,, 

f 
Vattenfall - All* 24 32.4 777 
Elsarn - Planned* 24 18.75 450 
Elsarn - Unplanned* 24 21.25 510 
SSE** 24 50 1.200 

Table 18: Ubour Costs 

The costs summarised in this section are fairly generic, however some of them may be 

modified depending on the type of maintenance conducted. The simplest case is reactive 

maintenance, when a component is returned to service after an outright failure. In this case, 

the outage is not planned and therefore the duration of the outage duration will be longer 

than a planned outage, resulting in higher lost revenue. Additionally, outright failures tend to 

be severe: therefore the cost of the repair is likely to be high. 

The cost of individual repairs is very difficult to quantify, however some simple rules can be 

adopted to estimate repair and replacement costs. In the most simplistic case, all failures 

result in a component replacement. In this case the economic impact Co&v is simply the 

component replacement cost Ccp plus labour CLO, equipment hire CE, and lost revenue 
RLOs-r all multiplied by the frequency of failure A of that component. If a spare is not held the 

downtime may be very large, especially for more specialised components with long lead- 

times, meaning RLOsT will be large. The generic case is shown in equation 38, with a 

proportion of failures, P, resulting in a replacement and a proportion arc repairable 1). 

Repairable failures only incur a fraction (a) of the replacement cost (Ccp). 

x(C,.., +C,,.. +CE, +RL.,, 
)+(I-, 6)-A 

x6 -C,..,,. +C,. +C, +R. ) (38) 
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In the simplistic case of all failures resulting in a replacement, P=1 and equation 38 

simplifies to Co,, Af = )L (C(; 4p + CLu + CE, + RLOrT). An estimate of Co, ý, M can be made by 

plugging in values to this equation. For example: a 2MW Wr gearbox failure might occur 

with annual probability A=0.1, and CcAP = D009000 CLAB = ý510 CEq = ý1,500. On the 

basis of a 30 day outage and 30% capacity factor, RLos-r = L32,832, and: 

C.. -O. 1 xý00,000 +510 +L500 +3Z832)-LI3,484 

On the other hand, a repair may be adequate in some cases of outright failure. Failure data 

can be analysed to identify which proportion of outright failures result in replacement of the 

component, for example Ribrant & Bcrtling (2007) showed that 59% of gearbox failures 

resulted in a replacement: this means that P in equation 38 is equal to 0.59. Alternatively, 

these figures could be estimated from expert opinion. In this case the downtime will be the 

time taken to schedule and complete the maintenance action, and so RLos-r is potentially 

much smaHer. 

It is very unlikely that a repair will cost as much as a component replacement, and in the 

absence of repair costs which are very elusive, a proportion, ot, of the component 

replacement capital cost CCp can be used. Taking (x = 0.1, assun-dng repair downtime is 7 

days and applying equation 38: 

C,,. -0.59 xO. 1400,000 +510 +1,500+32,832ý0.41 -0-1 xb. 1 -100,000 +510 +1,500 +7660) 

. *. C... -7,955 +806 -L8,762 

Including more detail in the technical and economic modelling of failures clearly impacts on 

the result of the calculation. 'Mereforc the latter, more detailed approach to modelling failure 

and repair is adopted in this thesis. 

Any maintenance policy will contain an element of reactive maintenance, so the modelling 

explained so far will certainly form part of the overall maintenance effort. However an 

operator is unlikely to adopt a solely reactive maintenance policy, as discussed previously. 
Iberefore the next step is to model TBM and CBM. 
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3.4.4 Modelling Time Based Maintenance and Condition Based 
Maintenance 

The effects of maintenance actions have already been discussed, however implementation of 

different maintenance policies have yet to be specified. Since most wind farms are 

maintained according to a 'IBM policy, this represents the baseline case. Anecdotal evidence 
from wind farm operators, acquired during this research, indicates that TBM intervals are 
dependent on physical location and access to the wind farm. In the case of onshore wind 
farms, the maintenance interval is typically 6 months, corresponding to a maintenance 

frequency of 2 actions per annum. Offshore access constraints inhibit such frequent 

maintenance actions and these are therefore restricted to one action per year (every 12 

months). It is very straightforward to visualise how such a TBM policy is applied within the 

MCS framework. Taking the example of a6 month maintenance interval, - illustrated in 

Figure 24 - if the model time resolution is 1 day, the Markov chain will be simulated until 

182 days have elapsed. 

Slip S117 

s 

T, 11,, d, = 1.. 182 T= 183 

0- current state 
Figure 24: Example ofTime-Based Maintenance Applied via NICS 

During this time the system may transit to a derated state s,,,, Then the system is restored to 

s. and the relevant costs (see previous section on maintenance costs) are deducted. The case 

of TBM on a gearbox lasting 1 day is illustrated below using equation 38 where P=0. 

C. 40.1 -100,000 +510 +1,500 +l094) 

C0, =13, O4 
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Modelling of CBM is more complex than TBM, but is aided by the statc-based nature of the 

Markov model. The key is to couple the Matkov condition state with maintenance actions, as 
CBM is applied in practice, but in a way which realistically balances technical and economic 

aspects. For example, scheduling a maintenance action the same day as a problem is detected 

is probably unrealistic and may result in an unrealistically high number of maintenance 

actions. On the other hand, if the potential failure is identified as being particularly severe, 

the operator may wish to intervene more urgently than if the potential failure had a low 

impact. 

In the case of a wind turbine this can be appreciated by comparing two sub-components 

with different failure severity. A 2MW wind turbine contains a generator and gearbox among 

its sub-components. The characteristics of these two components for this rating of turbine 

are derived from (McMillan & Ault, 2007) and are summarised in Table 19. Assume that the 

probability of failure Prfij (over aI year time step) having detected an incipient fault is 0.1 for 

both components. This is roughly equivalent to the case in equation 38 where I (for the 

moment CL. 4B & CE, are neglected). 

Component Prf,,,, Downtime Lost Revenue Replacement Total Outage Risk 
Duration @ 30% CF Cost Cost (TOC) Prf,, il X TOC 

Probability Days f f f f 
Gearbox 0.1 30 32,832 100,000 132,832 13,283 
Generator 0.1 21 22,982 55,000 77,982 7,798 

Table 19: Outage Severity Characteristics of 2MW Wind Turbine Components 

It can be seen that the total cost of each outage (170C) differs considerably. The product of 
TOC and the probability of the event is defined as the risk, which is the final column of 
Table 19. For this work, the risk is used to set the maintenance 'urgency': that is the time 

between detection of a fault and the scheduling of a preventive maintenance action (i. e. 
CBNý. This is analogous to the fixed time in the TBM model except, of course, that the time 
is coupled with condition. Clearly in the case of the data in Table 19 the gearbox 

maintenance would be of more immediate concern than the generator because the 
(economic) risk associated with a gearbox failure is almost double the magnitude ofthe 

generator risk. How the maintenance interval is set in light of this risk metric will be defined 

late in the thesis in chapter 4. 
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3.5 Chapter 3 Summary: Selection of Models for Wind Turbine 
Processes 

The information presented in this chapter has illustrated the myriad of modelling options 

available to represent the three key aspects of wind farm operation as shown in Figure 6 

(WT component deterioration and failure, wind speed and energy yield, and asset 

management policies). The methodology proposed in this thesis extracts the most useful 

combination of these individual models and combines them, resulting in a framework 

capable of answering the research questions posed in the introduction. Table 20 outlines the 

selection of models adopted for the rest of the thesis. 

Model Aspect Type of Model Selected 

Component Deterioration Markov Chain solved via MCS 

Failure Modelling Absorbing states, Markov chain renewed after downtime. 

Downtime Model Deterministic time constant 

Wind Speed Autorcgrcssive Time Series, simulated via MCS 

Power Curve Energy yield equation fitted to sampled power curve, linear interpolation 

Reactive Maintenance Restore Markov Chain to up state after downtime count - dependent on 
failure severity (repair or replacement). 

Time-Based Maintenance Restore Markov Chain to fully up state after deterministic wait time. 

Condition-Based Restore Markov Chain to fully up state with repair urgency dependent on 
Maintenance system condition status 

Table 20: Selection of Models for Application to Tcchno-Economic Benefit Evaluation of Wind Farm 
Condition Monitoring 

The models used to characterise the processes of interest have been selected, based on 

various aspects of their suitability which have been explained in this chapter. With a well- 
defined modelling framework in place, the next chapter explains how the methodology is 

applied in practice, including issues such as data sourcing, parameter estimation and 
interaction between the models. 
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4 Methodology and Application 

The previous chapters have explained the rationale behind the choice and particular 

combination of models adopted in this thesis. Using Markov chains for component 
deterioration, time series models for wind speed, and Monte Carlo methods for simulation 

of the asset condition trajectory, constraints and maintenance actions provides a flexible and 

practical framework to capture the wind farm processes of interest. However, the models 

require to be defined in terms of which components are represented, how parameters are 

estimated and which constraints are applied. This chapter provides detail and examples of 
how these key modelling decisions arc taken, and clearly sets out the model development 

process. Finally, the fully developed models for Wr component deterioration, wind profile 

and maintenance are presented. 

4.1 Defining a Markov Chain for Wind Turbine Components 

The first questions to be answered when modelling the WT as a Markov chain are which of 

the WT sub-components should be modelled, and how many states are necessary to 

represent each component. This defines the number of states in the overall model and 

enables the modeller to establish which state transitions are possible. The full set of sub- 

components have been listed earlier in the thesis (see Table 5 and Figure 5), and win be 

discussed in more detail in the following sections. Clearly the selected components should be 

those which have a significant impact on the operation of the WT from a techno-economic 

viewpoint. The decision of which components to include in the Markov chain condition 

model was based on four factors: these are listed below. 

Expert opinion of wind farm operator 
Failure rate of components 

Impact of component failure - Downtime and component cost 
Apphcability of condition monitoring techniques 
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4.1.1 Expert Opinion of Wind Farm Operator 

Ile operators' interest was in those components whose characteristics made them 

problematic from a repair/ replacement viewpoint, and also those components with a high 

technical and economic impact of outage (equivalent to total outage cost in Table 19). Three 

components in particular were recommended for inclusion in the modelling. These were the 

generator, gearbox and rotor blades. 

The reason for die high significance attributed to these components was expressed 

qualitatively by the wind farm operator in the points listed below. The fact that the three 
identified components (generator, gearbox and rotor blades) are complex electrical of 

mechanical systems in their own right means that they have a high associated cost. 
Furthermore, at the time of writing there was a significant worldwide supply bottleneck, in 

particular for gearboxes, due to inadequate global WIC manufacturing capability. Ibis has 

resulted in lengthy lead times, for these three components in particular. Since all three 

identified component parts are an integral part of the Wr drive train, they arc an 

inconveniently located at the top of the WT tower (usually between 60-80m above the base). 

This makes in-situ repair difficult because of the physical problems of getting heavy repair 

equipment to the top of the tower as well as wind-induccd nacelle oscillations which make 

the act of carrying out the rcpairs more difficult and dangerous in high winds. If a 

replacement of any of the three components (generator, gearbox and rotor blades) is 

required, the large weight and size of the components means that specialised cranes are 

needed which in turn need low wind conditions to operate. This need for suitable weather 

conditions can complicate component replacement actions, further extending the WT 

downtime. 

1. High capital cost and long lead-time for replacement 
2. Difficulty in repairing in-situ 

3. Large physical size and weight 
4. Position at top of wind turbine tower 
5. Lengthy resultant downtime, compounded by adverse weather conditions 
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Anecdotal evidence obtained from a CM system manufacturer reinforces the final point, 

with a recent gearbox replacement resulting in over 700 hours of downtime at a wind farm 

owned by another UK operator (Matt Smith 2007). The physical position of these 

components is shown in the schematic diagram in Figure 25. 

Gembox 

Generator 

7Rotor 

B)lacle 

Figure 25: Schematic of Wind Turbine Components Identified by Operator 

In addition to the components included because of qualitativc-based recommendations of 

wind farm operators, it is also possible to analyse wind turbine operational data to yield some 

quantitative basis for identification of key WT components. Failure rates of subassemblies, 

and the downtime incurred for each type of failure arc two indicators which arc examined in 

the next sections. 'Mis discussion reinforces the decision on which components should be 

included in the Markov chain. 

4.1.2 Failure Rates of Components 

Section 2.1.3 illustrated one set of annual WT component failure rates from Tavner et al. 
(2007). Several other published studies have examined Wr failure rates in detail. The data 

plotted in Figure 26 shows the full range of WT components and their annual probability of 
failure: the studies arc those by Tavner ct al. (2007), Ribrant & Berding (2007), van Bussel & 

Zaaijer (2001) and Hahn (1999). In the case of Hahn (1999) the author provides failure rate 

proportions rather than absolute figures. These are used to establish the failure rates if the 

overall WT failure rate is 1.5 failures per annum. 
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Figure 26: Comparison of WF Annual Failure Rates 

The authors used contrasting methods to yield these figures: for example, Tavner, Hahn and 
Ribrant & Bertling all used large WF databases, while van Bussel & Zaaijer used expert 
judgement to quantify the sub-component probabilities. Multiple sources of data are plotted 
in Figure 26 to illustrate that there is no single accepted figure for sub-component failure 

probabilities: however there may be a range of values which represent credible 

approximations. This characteristic will be used later in the thesis to define a set of reliability 

scenarios (high, medium and low reliability) which are used to estimate the Markov transition 

probabilities which characterise the deterioration behaviour. 

Van Bussel & Zaiijer (2001), Tavner (2007) and Holstrom & Negra (2007) an mention the 

high contribution of electrical-related failures to the overall WT failure rate in their papers. 

Indeed, if the electrical system, controls and other electrical and electronic components are 

amalgamated into one category, they represent 37% - 49% of all failures (see Figure 27). 
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Figure 27: Contribution of Electrical & Electronic Failures to Overall Annual Wind'Furbinc Failure Rate 

Clearly in all cases this is a significant contribution to the overall failure rate and should be 

captured within the failure models. It should be noted that condition monitoring of the 

electrical sub-systems within wind turbines is not currently practiced, although this has been 

suggested due to higher failure rates of electrical components in direct-drive machines 

(Tavner, 2005). Electrical and electronic (E&E) failures are therefore included in the model 

as outright failures rather than deterioration-type behaviour. 

4.1.3 Impact of Component Failure - Downtime 

The impact of individual component failures has been discussed in section 3.4.4 where thc 

total outage cost (TOC) was introduced as a possible impact metric. An equivalent Table 19 

can be constructed for all components if their probability of failure and typical downtime 

duration are known. Several estimates for the annual failure rates were shown in Figure 26, 

and Figure 3 showed downtime duration from a single study. To get a better understanding 

of downtime estimates, Figure 28 plots values from Ribrant & Bertling (2007), Windstats 

(2006) and an interview of Scottish Power wind farm operations staff (Yusuf Patel, 2005). 

It is very interesting to note and understand the disparity between these values. The 

Windstats data is derived from a sample of 17,000-18,000 WTs and is therefore statistically 

the most credible. Conversely, over 76% of the fadures reported were not classified into any 
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particular category, which dilutes the significance of these figures somewhat. Nevertheless, it 

can be observed that drivetrain, blades and generator are the most significant failures, 

together contributing 59% of downtime per failure event. Scottish Power considered drive- 

train problems to be very frequently associated with the gearbox, and anecdotal evidence 
from other wind farm operators in the UK (Scroby Sands, 2005) suggests this is a valid 

assumption. Therefore drivetrain failures are absorbed into the gearbox category for the rest 

of this thesis. 
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Figure 28: Downtime Estimates from 3 Sources 

There is broad agreement that generator, blades and gearbox are significant failures from a 
downtime viewpoint, which echoes the views of Scottish Power as yielded from section 
4.1.1, however the magnitude of the downtime varies considerably in Figure 28. These three 
key Wr components are precision-engineered and tend to have extremely lengthy lead times 
for purchase from the manufacturer. Generally the under-capacity of wind turbine 

manufacturers has pushed up lead times and component costs since the turn of the century 
(2000-2008) (Garrad 2007). Therefore, availability of a spare has a particularly large impact 

on the downtime for these three key components. 

Table 3 showed a range of gearbox downtime estimates, some of which were estimated 
based on the availability of spares. Many factors affect this lead time issue, not least the 

relative influence of the turbine operator. A small wind farm operator with an interest in this 
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research had been quoted 6 months lead time (-180 days) for a replacement gearbox. The 

large disparity between the estimates for generator, blades and gearbox downtime in Figure 

28 can be partially explained by this hypothesis, as large utilities are likely to be first in the 

component queue. Additionally, much of the European manufacturing base for precision- 

engineered WT components is in Germany, which is the source of the Windstats data 

plotted in Figure 28. The simplified logistics of transporting such cumbersome components 

within a country (i. e. no shipping is required), combined with the inevitable close 

relationships between German WT manufacturers and German wind farm operators may be 

a factor in minin-iising the lead times for key components in Germany. 

The high downtime value of the yaw system failure rate from the study of Ribrant & Bertling 

(2007) is at odds with the other sources, particularly Scottish Power who did not consider 

this a significant failure mode. The Windstats; data shows a typical downtime of less than 1 

day, suggesting a minor repair is very adequate for such failures. 

Similarly, failure modes such as sensor failure, control system failure, and Wr electrical 

system are broadly quantified as low downtime failures. Typically these kinds of failures win 

necessitate a site visit however the repairs are straightforward. In most cases a relatively 

cheap electronic component repair or replacement is necessary, thus the downtime is rarely 

more than I day. The main problem with these failures is their high frequency (see Figure 

26) rather than their downtime, assuming access to the site is straightforward. If access is a 

problem, then these trivial failures may become much more significant. 

4.1.4 Impact of Component Failure - Component Cost 

A set of percentages to calculate major sub-component cost from WIC capital cost were 

proposed by Sterzinger & Svrcck (2004 p53), based on the analysis of Poore & Lettenmaier 

(2003 p82). These percentages were based on wind turbines rated from 500kW - 600kW. 

This method was used to derive component cost estimates in two published papers based on 

the models in this thesis (McMillan & Ault 2008, McMillan & Ault 2007) and were 

summarised in Table 16. 
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Component Nilsson & Bertling 2007 McMillan & Ault 2007 
f Oa, 3MW % CAPEX f (a), 2MW % CAPEX 

Gearbox 180,000 10 100,000 8 
Generator 90,000 5 50,000 4 
Rotor Blade (1) 120,000 7 70,000 6 
E&E Sub 7.200 0.4 5.000 0.4 

Table 21: Major Component Replacement Cost Estimates - MW Class Wind Turbines 

Other more recent component cost estimates differ considerably from the percentages put 
forward by Sterzinger & Svrcek (2004 p53). Taking figures from Nilsson & Bertling (2007) 

and McMillan & Ault (2007), new percentages of CAPEX have been derived (see Table 21) 

assuming CAPEX of L600,000 per MW. Since these are based on MW class turbines, these 

values may provide more accurate component costs based on percentage CAPEX. 

Furthermore, the percentages arc in broad agreement, lending weight to these assumptions. 
Therefore the costs derived in McMillan & Ault (2007) are initially adopted. 

Electrical and electronic-related (E&E) failures (that is sensor failure, control system failure, 

and WT electrical system) incur minimal repair and replacement costs. In the case of a 2MW 

WT, the estimated cost for a replacement was L5,000 (Yusuf Patel, 2005) which is 0.4% of 
CAPEY, This value is assumed to hold true for all E&E failures. 

One point of interest is the relatively modest cost of replacement for a single rotor blade. In 

reality, all three blades in a Danish concept WT must be balanced in order that the rotor 
does not cause excessive and damaging vibrations to the other rotating components. 
T'herefore when a blade fails, typically all three blades must be replaced (Yusuf Patel, 2005). 

Tbc true cost of a blade failure is therefore L360,000 for a 3MW machine and L210,000 for a 
2MW machine, corresponding to 21% and 18% of CAPEX respectively. 

4.1.5 Applicability of Condition Monitoring Techniques 

Section 2.4 discussed the CM options available, and the literature reviewthat followed 

consisted primarily of monitoring systems for the rotating elements of the WT (gearboxes, 

generators, rotors). These are the same three key components identified by the wind farm 
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operator: therefore the condition and deterioration characteristics of these components 

should be captured in the Markov model. Electrical and electronic-related failures are not 

currently the subject of CM and in any case tend to fad instantaneously rather than 

exhibiting slow deterioration behaviour. The Markov model should therefore capture the 

deterioration of the components in Figure 29 as well as modelling instantaneous failure of 
E&E components. 

Through analysis of SCADA data it is been possible to capture specific instances of 

deterioration and failure which are very useful for the purposes of deciding how many states 

are necessary for inclusion of each component in the Markov chain. Figure 30 provides an 

example of the condition of the gearbox as measured via the temperature of the gearbox 

lubrication oil. The trace shows a region of deterioration followed by a failure: this can be 

thought of as corresponding to a three stage Markov deterioration model (i. e. fully up - 
before temperature anomaly, deteriorated - high oil temp, and failed - component outage). 
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Figure 30: Gearbox Oil Condition and State Classification 
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In the fully up region (not shown in Figure 30, since the data for this period were 

unavailable), the temperature of all gearboxes in the wind farm would be broadly similar. In 

the deteriorated state region, the WT of interest clearly has abnormally high temperature, 

indicating a fault. In the failed region the temperature drops off because the components 

stop rotating and generating heat. It is clear that in this case three states are sufficient to 

represent gearbox condition. A more comprehensive view of the failure process is given in 

Figure 31. The gearbox oil prediction model developed by Zaher and McArthur (2007) can 

be applied in order to pick out gearbox failures. In this case the first signs of failure were 

identified at the end of August 2005 with eventual failure in mid-January 2006, resulting in a 

time to failure once an incipient fault has occurred of 4.5 months. Again, in this case 3 states 

are sufficient to represent the equipment condition for the gearbox. 
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-t16 
model 

Figure 31: Wind Turbine Gearbox Condition Measured Via Oil Ternperatute 
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Another example, this time for the condition of the wind turbine generator, is shown in 

Figure 32. This plot shows the temperature of the generator winding which is used to gauge 

the health of the generator itself (the data analysis tool and prediction model were developed 

by Zaher (2007), but have not yet been reported in the literature). The darker trace shows 
higher than expected actual temperature readings, greater than those produced by the model 

(grey trace). Figure 32 also shows that the time to failure after the first sign of an incipient 

fault is approximately 7 months in this case. This is around 2-3 months longer than a 

gearbox failure. Further to Figure 32, the work of Anders et al. (1990) focused on generator 
insulation condition which was quantified using a relatively low number of states (4), 

therefore three states is a credible assumption. 
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Figure 32: Wind'Furbine Generator Condition Measured via Winding'rcmpcraturc 

There was no data available on the characterisation of the deterioration leading up to rotor 
blade failure. However, these failures are primarily caused by mechanical fatigue and wear, 

rather than 'shock'-type, instantaneous failure, suggesting deterioration modelling is highly 

appropriate. This 'longer deterioration' timescale can be captured within the same three state 

representation as used for generator and gearbox simply by appropriate estimation of the 
Markov transition probabilities. In terms of deterioration timeframes, Shokrieh and Rafiee 
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(2006) developed models to describe the deterioration process of WT blades. Their 

conclusions suggest that the fatigue process occurs over a timcframc of years rather than 

months, in contrast to the gearbox and generator. Until more detailed data on blade 

deterioration is available, three states can be used as a starting point for the modelling. 

Finally, it must be noted that all the derived 'times to failure' and resultant probabilities are 

estimates based on very limited existing data and experience of WT component failures. This 

should be remembered when deriving maintenance policies based on these quantities. 
However, it is expected that more accurate estimates will be available in future, as 

understanding of WT component failure mechanisms is developed further. 

4.1.6 Definition of Markov Chain State Space 

It has been established in section 4.1.5 that a 3-state representation should be used for 

generator, gearbox and rotor blades while E&E components require only 2 states since their 
failure tends to be instantaneous. With this information, the state space of the Markov chain 

model of the overall wind turbine system can be defined. 

The first definition to be made is the overall number of system states. In the case of the 

above system, the theoretical number of states is easily calculated as 54, since 3x3x3x2= 

54. Via logical simplifying assumptions, this number can be reduced significantly with little 

impact on the model accuracy. The main assumption used in this thesis is that the time step 

of the model is small enough such that simultaneous deterioration and failure events are not 

possible. Since the time resolution is 1 day, this means that, for example, the gearbox and 
blade cannot fail in the same day. Taking values from Figure 2, and applying equation 8 then 
if At = 1/365, the daily probability of simultaneous blade and gearbox failure can be 

quandfied as 1.67 x 10-7 . Another way of expressing this event is that it happens on average 

once every 44 years. By using the proposed assumption, the total number of system states is 

reduced from 54 to 28, a reduction of around 48%. This makes the system simpler to 

visualise and also limits the number of state transitions to a manageable number. 

126 



The state transitions themselves are limited by using another assumption, that is that if the 

system is modelled with an intermediate state (i. e. gearbox, generator, blade) then the system 

must transit through this state before outright failure. This introduces some simplification 

error, as some of these failures will be instantaneous in nature. The main implications for the 

analysis in this thesis are that it will provide an optimistic appraisal of CM systems, since all 
failures can be detected. However, other modelling can be introduced to counter this and 

make the capabilities of the CM system more in line with reality. This is discussed in more 
detail later in the thesis (see section 5.1.9). 

Taking the earlier assumption of failures modelled as absorbing states, the state space can be 

physically drawn. Figure 33 shows the resultant full state space, with arrows showing 

possible state transitions. The numbers on each large box are the state numbers i. e. 1: s, 2: J., 

.. 28: s, The smaller boxes correspond to the individual component condition Cl - gearbox, 
C2 - generator, C3 - E&E, and C4 - rotor blade. The shading of these component boxes in 

Figure 33 represents a stage of deterioration: fully up (white), deteriorated (grey) and failed 

(black). 
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The failure states are summarised for the system in Table 22. Since the arrows on Figure 33 

show which transitions are possible, it can be clearly seen that no transitions are possible out 

of the failed states (9 to 28) because failures are modelled as absorbing states. 

States Component Number From State To State 
Fully Up & Derated CI, C2, C3, C4 1 8 
E&E Failure C3 9 16 
Blade Failure C4 17 20 
Gearbox Failure cl 21 24 
Generator Failure C2 25 28 

Table 22: States and Components of Wind Turbine Markov Model 

Similarly, repairs from intermediatc/deteriorated states (r2 .. Sý are only enabled at specific 

times - i. e. when the maintenance interval has expired (see section 3.4.4, Figure 24). 

Therefore these transitions are not shown in Figure 33. 

With the states and possible transitions of the Markov model defined, the next point of 
interest is quantification of the transition probabilities between states, often expressed as a 

transition probability matrix (I? Ný. The next section provides detail on how the parameter 

estimation proccss'is carried out for systems such as that shown in Figure 33. 

4.1.7 Markov Chain Parameter Estimation 

Since failures are modelled as absorbing states, repair probabilities do not have to be 

deduced - rather the Markov chain is renewed after downtime, as previously discussed. For 

simplicity, the single component, intermediate state model in Figure 34 can be initially 

considered for the parameter estimation procedure. Therefore, two probabilities need to be 

estimated in order to populate the TPM: 

PUProbability of incipient component failure 

Probability of outright failure when in the deteriorated state 
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FigUre 34: Simplified 3-State Markov Chain for Paranacter Estimation 

Estimation of p2,, was based on both CM data and expert opinion from industrial sources. 

Although the probability of failure is likely to increase the longer the component has been in 

a deteriorated state, at the moment insufficient data exists to implement such a (setni- 

Markov) model. Thus constant transition probabilities are assumed. An example of 

estimation of p2,. is based on typical time to failure of a gearbox once incipient failure has 

occurred, which has been quantified by a CM expert as 4 months (Matt Smith, 2006). The 

SCADA data analysis presented earlier in Figure 31 broadly agrees with this value (4-5 

months), and represents the best estimation possible, due to a lack of extensive research on 

this subject. Based on this information, the equivalent daily probability can be calculated as 
1/120'h of this 4 month figure since the probability is proportional to the size of time step 
being evaluated, assuming a constant failure rate (see equation 8 in section 3.2-1). The 

remaining probability of incipient failure PI, 2 is deduced by conducting a simple 6-step 

sensitivity analysis procedure, which is detailed below. 

1. Estimatep,,. from expert judgement, downtime fors, and decide target failure rates 

The probability of outright failure can be estimated from expert judgement in the 

absence of suitable data (as proposed by Backlund and Hannu, 2002). Downtime 

estimates can be derived from the literature outlined in section 4.1.3, Figure 28. Similarly, 

failure rates have been measured and published (see section 4.1.2, Figure 26). 
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2. Read in new incremental guess for unknown parameter PI, 2 

Begin first iteration at default value of 1x 10'. Otherwise revise up or down depending 

on result of last simulation output. 

Run simulation until steady-state value is reached 

The more states the system has, the more MCS trials will be necessary so that the least 

likely transitions and associated events occur at least once during the simulation period. 

4. Inspect result for annual component reliability -revise p,, 2up or down to match 

When the simulated annual failure rate is obtained, it is compared to the target failure 

rate. If the target failure rate has been under-estimated, p,. 2 is revised upwards. If the 

target failure rate has been over-estimated, pl, 2 is revised downwards. 

5. Repeat steps 2-4 until MCS output adequately matches chosen 'target' failure rates 

The process is repeated, with adjustments to the Markov transition probabilities 
(equivalent to pl, ý up and down as necessary. The process stops when all MCS-generated 
failure rates are within an acceptable degree of accuracy (confidence limit) as compared 
with target values. Definition of the confidence limit is described in section 4.1.8. 

6. Choose this value of pl, 2 which results in best fit to chosen failure rates 

nis TPM value (equivalent to p,,, ) is used for subsequent experimentation using the 
Markov model as part of techno-econornic evaluation of WICM. 

End Sensitivity Analysis 
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It should be noted that the output metrics produced by the simulation also depend on the 

assumed maintenance policy and any applied constraints. For the model fitting procedure, 

this meant that 6-monthly TBM was adopted for the base case. 

Assumptions regarding downtime have a significant effect on other metrics generated such 

as annual failure rate of components, even if the TPM has not changed. The reason for this 

is that the downtime is being used instead of a repair rate in the model. A system with 

relatively small downtime has more time spent in the up states (s, and s2 in the case of Figure 

34). This means that the systems 'exposure' time to potential failures is relatively high. On 

the other hand a system with long downtime has a shorter time during which it is operating 

and has less exposure to failure. The result is that if the Markov I? M is fitted assuming 

small downtimes, and then the downtimes are adjusted upwards, this will have the effect of 

reducing the component failure rates, because the total time the system is exposed to failure 

has reduced, even though the transition probabilities have not been altered. This is roughly 

equivalent to the theory behind equation 8 earlier in the thesis. 

4.1.8 Calculation of Confidence Limit 

The degree of MCS accuracy mentioned earher is determined by calculating the confidence 
limits (L) of the four individual component failure rates, and using this as a measure of how 

well the simulation fits teal values. More generally, the confidence limit is a measure of the 

statistical confidence in the quantity: it is related to the variance, the number of samples 
taken and also to the assumed distribution of samples. 

Often in statistical analysis it is assumed that the sample is normally (Gaussian) distributed. 

However, the most suitable probability distribution to evaluate the level of confidence for 

relatively small numbers of samples (e. g. <30) is the student-t distribution. The relevant 

equations for the student-t probability density function (PDF) are explored in Appendix B. 

In the case of this work, the overall output from each simulation constitutes one sample - 
since 30 samples arc taken, the student-t distribution for 29 degrees of freedom is adopted 
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(degrees of freedom = N-1). The probability density function of the student-t distribution 

for 29 degrees of freedom is plotted in Figure 35. 
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Figure 35: Student-t Probability Density I 'unction for 29 Dcgrecs of Frccdonl 

The modeller sets the degree of confidence (i. e. 0-100% confidence) and a t-score equivalent 
(corresponding to the standard deviation) for this degree of confidence is used to calculate 

the confidence limit. An example of this is shown in Figure 36, where confidence levels of 
90-99% are plotted in relation to their student-t scores. The t-scores correspond to the 

number of standard deviations from the mean of a probability distribution with two tails (i. e. 

the quantity can be under- or over-estimated). Figure 36 shows that for 95% confidence, the 

t-score is 2.045. 
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Figure 36: T-Score for 95% Degree of Confidence 

For each wind turbine component, confidence limit L is calculated using equation 39 where 

2.045 is the t-score of the student-t distribution with 29 degrees of freedorn, is the 

standard deviation of the annual sub-component failure rate and N is the number of 

samples. The steady-state values (step 3 in sensitivity analysis) are reached by conducting a 

large number of MCS trials. This number was 364 (approx. days in year) x 20 (W`T operation 

years) x2 (extra factor to increase likelihood of extreme events) = 14,560. The MCS was 

repeated 30 times to reduce the uncertainty so the total number of trials = 14,560 x 30 = 

436,800. Based on this analysis, an example calculation is shown in Table 23. The final 

column, I, is the calculated confidence limit for the individual component failure rate 

estimates. 

L 
2.045 - (39) 

IN- 

Component Annual Failure Rate Standard Deviation Confidence Limit 
k G L 

Gearbox 0.096 0.056 0.021 
Generator 0.129 0.038 0.014 
Rotor Blade 0.203 0.073 0.027 
E&E 0.638 0.114 0.043 

Table 23: Calculation of Ertor Bounds Based on 95% Confidence Limits 

90% 91% 92% 93% 94% 95% 96% 97% 98% 99% 

Confidence Level 



4.1.9 Example of Parameter Estimation for Markov Chain 

The same parameter estimation procedure as outlined in 4.1.7 can be applied to more 

complex systems such as that displayed in Figure 33, the main difference being that there are 

some inter-dependencies between states and transitions in more complex systems which do 

not appear in simple 3-state systems. However if large numbers of MCS trials are conducted, 

steady-state values are obtained: these fully encompass any interdependency and ensure the 

model is adequately fitted to the assumed input values. 

The first stage of the parameter estimation procedure as outlined in 4.1.7 is to estimate the 

probability of failure after an incipient fault - that is the equivalent probabilities of p2,. for 

the fully defined Markov model of the wind turbine system. In practice this is the most 
difficult parameter to estimate, because it often has to be based on expert knowledge due to 

a lack of Wl' component deterioration data (e. g. there was no blade deterioration data 

available for use in this thesis). Nevertheless, using a n-dxture of domain knowledge and data, 

a set of estimates of these quantities for different components can be produced. These arc 

shown in Table 24. 

Component Time to Failure after Incipient Fault Probabilities from Figure 33 Approx. Probability 
Months Equivalent to p2.. I day resolution 

Gearbox 4* P2.21 P4.22 P 7.2J P8,24 0.00857 
Generator 6** PJ. 25 P4.26 P6,27P8.28 0.00571 
Rotor Blade 24*** P-1 17 plf)qp? 1, vDq in 0.00143 

Table 24: Estimation of Probability of Failure after Occurrence of Incipient Fault 

With respect to the 'time to failure after incipient fauie for each component in Table 24, the 
4* month figure for the gearbox was derived from expert judgement (Matt Smith, 2006) and 
this value was reinforced by the CM data presented in Figure 31. Ilie 6** month figure for 

the generator was derived from inspection of SCADA records, where Figure 32 (CM trace 
for generator winding temperature) suggested a 'time to failure after incipient fault' of 2-3 

months more than the gearbox. Finally, the figure of 24*** months for the rotor blade was 
derived from the assumption that structural fatigue is a relatively slowly developing failure 

mode relative to the equivalent time for the generator and gearbox. Studies have shown that 
blade deterioration occurs over years rather than months (see Shokrieh and Rafiee (2006) 
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The early warning capabilities of rotor blade CM are not yet well known, however for the 

analysis in this thesis it is assumed that deterioration can be detected adequately. 

The first stage of the parameter estimation procedure as outlined in 4.1.7 also required 

downtimes and target failure rates to be specified. The downtime durations for replacement 

are taken as the 'Scottish Power 2005' estimates from Figure 28 - TBM is applied on a 6- 

monthly basis, the effect of which is to restore the WT to the fully up condition ('good as 

new' maintenance). For this example, the target probabilities for the individual annual 

component failure rates are taken from Tavner et al. (2007), which has been presented earlier 

in the thesis. They are summarised in Figure 37, thus completing step one of the parametcr 

estimation procedure. 
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Figure 37: Annual Failure Rates (Yarget Probabilities) for Markov Wl'Component Deterioration Modcl 

The second step of the parameter estimation procedure is to read in a new value for the 

probability of incipient failure. Initial guesses are shown in Table 25 along with the result of 

the first simulation output (Iter 1). The Resid 1 column contains the risiduals: that is the 
difference between the target probability and the simulated value (iter 1 in this case). 

Transition Probability Component TPM Value Target Probability Iter I Resid I 
PR 1-2,3-4,5-7 Gearbox 0.000100 0.100 0.015 -0.085 
PR 1-3,2-4,5-6 Generator 0.000100 0.120 0.018 -0.102 
PR 1-5,2-7,3-6.4-8 Blade 0.000100 0.223 0.003 -0.221 
1-9,2-11,3-12,4-1 S, 5-10,6-14,7-13,8-16 ME 0.002000 0.661 0.734 0.073 

'Fable 25: First Pass ofTPN1 Parameter Estimation Procedure 
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The reason that the E&E TPM values are different from the other initial guesses is that, 

since there is no intermediate state for E&E components, the failure probability can be 

roughly estimated directly from the annual rate, as shown below. 

= 0.661 

At 
365 

(See Figure 37) 

(See equation 7,3.2.1) 

. '. A,.,; 4.002 

Clearly the simulated values after 1 iteration (Iter 1) in Table 25 are very different from the 

desired 'target probabilities', meaning the residuals are unacceptably large (ResId 1). This can 
be intuitively appreciated by observing Figure 38, which shows the target annual failure rates 

compared with the first iteration values ('Simulation V). Clearly the probabilities require 

adjustment: upwards for the case of gearbox, generator and rotor blade, and downwards for 

the case of E&E faflures. 
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Figure 38: Target Annual Failure Rate and Simulated Failure Rate after I Iteration 

The TPM values are therefore adjusted according to Table 26, corresponding to step 4 in the 

sensitivity analysis procedure. The iterative process continues until the difference between 

the simulated values and target probability are within the sui-nulation confidence limits. Since 

the adjustment of the TPM values is essentially a manual process, the number of iterations 

needed to do this varies depending on the judgement of the modeller. For example, in the 
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case of Figure 38 the rotor blade was the least accurate of the failure rates. So the action 

taken in Table 26 is to multiply the transition probability by 50. 

Target Probability Iteration I Residual I Action on Transition Probability NewTPMValue 
0.100 0.015 -0,085 x1o 0.001 
0.120 0.018 -0.102 x1o 0.001 
0.223 0.003 -0.221 X50 0.005 
0.661 0.734 0.073 X 0.90034 0.00180068 

Table 26: Adjustment of'ITNI Values after single Iteration 

For this case, 5 iterations were sufficient to estimate the TPM parameters with accuracy 

determined by the confidence limits. These limits are constant because the number of MCS 

trials is constant for each iteration. The residual error should decrease as the number of 

iterations increases, unless the modeller over-compensates by over- or under- estimating the 

change to the TPM: this can clearly be seen in the plots of the residuals over 5 simulation 

iterations shown for gearbox (Figure 39), generator (Figure 40), rotor blade (Figure 41) and 

E&E failure (Figure 42). 

It can be seen that the residuals generally decrease as the number of iterations increases. 

However in the case of the generator, after iteration #2 the relevant probability was 
increased from 0.001 to 0.0011, which resulted in the residual error increasing in magnitude 
from 0.007 to 0.02 - an example of over-compensation. 
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Figure 39: Residuals for Markov IPM Parameter Estimation of Gearbox 
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Figure 40: Residuals for Nlarkov'113M Parameter FIstimation of Generator 
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Figure 41: Residuals for'Nlarkov TPM Parameter Fstimation of Rotor Blade 

0.07 

0.05 

AR 0.03 
C 

0.01 

-0.01 

L. -0.03 

0 

ui 

-O. D5 

. 0.07 U) 

-o. 09 

-011 

Sectrical 

iL 

Figure 42: Residuals for Nlarkov'rl'M Parameter Estimation of Electronic & Electrical Failure 
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Nevertheless, after 5 iterations all simulated annual failure rates were produced with 

acceptable accuracy. This is best presented by comparing the target quantities and the 

simulated rates after 5 iterations. Figure 43 provides this comparison, demonstrating that the 

parameter estimation procedure is adequate for the purposes of the modelling in this thesis. 
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Figure 43: -rarget Annual Failure Rate and Simulated Failure Rate after 5 Itetations 

The parameter estimation procedure for quantification of the Markov TPM has been 

demonstrated in this section. The primary advantage of this approach is that the model 

outputs can be validated using the known overall component reliability figures as well as 

other known metrics such as typical WT availability. Additionally, much of the calculation 

can be verified by hand based on the output metrics of the MCS which also means the 

operation of the program can be easily vahdated. Once the model has been fitted, the MCS 

of the multi-component system in Figure 33 is conducted exactly as shown earlier in the 

'Simple Monte Carlo Study' section 3.2.5. 

The next stage of the modelling after the WT condition model has been defined is the wind 

speed model. The next section outlines how the parameters of the wind speed model are 

estimated and simulated based on daily averaged SCADA data from an operating wind farm. 
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4.2 Defining a SCADA Data Based Wind Speed Model 

The single parameter autoregressive (AR(I) ) model has been established as the wind speed 

model for use in this thesis, as defined in section 3.3. Heuristic rules were used to classify the 

model based on the ACF and PACF functions, assuming a time step of 1 day (i. e. 10 minute 

SCADA data is averaged over this period). Once the model has been classified as AR(l), the 

model parameters have to be estimated. After this is achieved, the wind speed can be 

simulated for use in the studies in this thesis using MCS methods. 

4.2.1 Parameter Estimation 

The general form of an autoregressive model was outlined earlier in the thesis in equation 

25. An AR(l) model can be expressed as the single parameter version of this generic form, as 

shown in equation 40. 

zt-P =0,6, -, -P)+a, (40) 

Therefore, four parameters in total are required to characterise the wind speed. 

1. Mean of series, p. (see equation 28) 

2. Variance series, or! (see equation 29) 

3. AR model parameter o, 

4. Variance, or. 2 of Gaussian 'white' noise term a, 

'Me "white' noise or error (a) associated with the AR process is modelled via a Gaussian 

(also known as 'normalý probability density function (PDF) with zero mean. 'Mis function is 

plotted in Figure 44 for various values of standard deviation. The standard deviation of a, 
(o,. ) and autoregressive parameter o, are estimated using ordinary least squares (OLS). 
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Figure 44: Standard Gaussian Probability Distribution Function 

OLS is a method for estimating the parameters of a linear model. The concept of ordinary 
(or 'linearý least squares is to minimise the difference between the output of a linear model 

and a set of measured values. In this case, the measured values are the wind speed time 

series. For the purposes of this thesis, the linear model of interest is the AR(l) model 
defined in equation defined in equation 40. For simplicity, this can be expressed in more 

general form in equation 41. 

x, + e, 

Ilis can be re-arranged to express the error between the time series value y, and the linear 

model flixil. This error can be defined as the function 'residuals' r, (see equation 42). Hence 

there will be a residual for each time series value. 

r, =y, -ß, x�=e, (42) 

The 'least squares' approach takes the square of each individual residual (i. e. r, 2 ). The sum of 

these squares (S) of the residuals for the whole series can be taken up to the maximum, m. 
This is displayed in equation 43. 

(43) 
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Ideally, the sum of squares of the residuals will be zero. This would mean that the linear 

model exactly replicates the input data, however in practice it is impossible to have no error 

(i. e. S in equation 43 will never equal zero). It is possible to minimise the sum of squares 

function in equation 43 by setting the derivative with respect to the linear model parameter 

to zero (Box and Jenkins, 1970 p265). This is expressed mathematically in equation 44. 

as 
0 (44) 

aj6 

By doing this, a value of fil is selected which minirnises the difference between the measured 

values and the linear model. For the particular case of the AR(I) model in equation 40, the 

foUowing parameters are equivalent- ol - fil, z, = yj and zt-I = xil. 

After the AR model coefficient ol has been specified, the error is modelled by the noise term 

a, (see Figure 44). The variance of the noise term is determined by the residuals themselves. 

If the residuals show a high amount of scatter around the mean, then the Gaussian 

distribution will be more spread out (note standard deviation of 5 in Figure 44). If there is 

less scatter of residuals about the mean, the Gaussian will be less spread out (note standard 
deviation of 1 in Figure 44). The best way to illustrate these concepts is to apply the 

methodology to a simple wind speed time series. 

4.2.2 Example of Parameter Estimation for Time Series Model 

For the single parameter case examined in this thesis, the solution to equation 44 which 
determines the AR model coefficient 01 is determined by equation 45, which is re-stated 
below for convenience (Draper, 1981). The equations for auto-covariance (y - equation 26) 

and AR coefficient (0, also called p- equation 27) have been presented earlier in the thesis. 

1 A, - 1 G, - #, Xz, -, 
7E-1 (45) 

0. , _LEN 
N "l(Zi-JUZY 
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t Y, Y, - 3ý, Y. Y. - 57. r, c r,. _ 1 9.475 2.155 0.000 0.000 0.000 0.000 
2 8.333 1.012 9.475 2.378 2.407 1.025 
3 4.805 -2.516 8.333 1.236 -3.110 6.332 
4 5.155 -2.166 4.805 -2.293 4.967 4.692 
5 6.088 -1.232 5.155 -1.943 2.395 1.519 
6 7.415 0.094 6.088 -1.009 -0.095 0.009 
7 4.649 -2.672 7.415 0.318 -0.849 7.139 
8 7.393 0.072 4.649 -2.449 -0.177 0.005 
9 10.564 3.243 7.393 0.296 0.959 10.519 
10 9.331 2.010 10.564 3.467 6.968 4.040 

Sum 73.210 63.879 13.465 35.281 
Averne 7.321 7.098 1.496 3.920 

Table 27: Simple Wind Speed Model Parametct Estima6on 

Wind farm SCADA data averaged over 1 day intervals are used as the basis of the wind 

speed model. To illustrate the concept, Table 27 comprises 10 such consecutive daily values 

for wind speed taken from wind farm records. 01 is calculated by taking the average of the y, 

column (auto-covariance) and dividing by the average of the oý column (variance). For the 

data presented in Table 27, the AR (1) parameter 01 = 0.382. 

After the estimate of the AR(1) parameter is made, the variance of the Gaussian noise term 

can also be estimated. This is achieved by calculating the variance of the sum of the squares 

of the residuals between the time series data and the model output (Draper, 1981). Table 28 

calculates the values of o,, as 3.352 and or., as 1.831 This means that the Gaussian noise term 

corresponds to a bell curve between standard deviation of 1 and 2 in Figure 44. 

t Y, -R ri 2 

1 0.907497 0.105 0.011003 
2 0.471612 -2.988 8.928478 
3 -0.87516 -1.291 1.666827 
4 -0.74149 -0.491 0.241082 
5 -0.38514 0.480 0.230023 
6 0.121288 -2.793 7.802105 
7 -0.9345 1.007 1.01395 
8 0.112886 3.130 9.799144 
9 1.323011 0.687 0.471994 

Sum 30.16461 
(; Zctt 3.351623 
cr"t 1.830744 

Table 28: Calculating Variance of Gaussian Noise Term 
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4.2.3 Simulating Wind Speed Process 

Once the AR wind speed model has been classified and the parameters estimated, the model 

is ready for use in the MCS of wind farm operation. The wind speed can be simulated in a 

similar manner to the Markov chain: that is by using the concept of the cumulative 
distribution function, in this case of the Gaussian error term (this is plotted in Figure 45 for 

the previously calculated standard deviation of 1.830744). 
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Figure 45: Cumulative Distribution Function for Standard Normal Distribution 

Using the model parameters derived in the previous section, a set of wind speeds (zj) based 

on the AR(1) model can be simulated using MCS in Table 29. The parameters are expressed 
in terms of the original autoregressive model in equation 40. Such a small number of samples 
(10) is not enough to re-create the characteristics of the real wind profile, but demonstrates 

how the methodology is used to obtain results from data. 

PRN a, Z, -. -p o, 6, 
-, -, u) o, 6. 

-. -, u)., u Z, 
0.963408 3.2 2.155 0.82321 8.14421 11.3 
0.222233 -1.4 4.023 1.536866 8.857866 7.5 
0.315239 -0.9 0.137 0.052283 7.373283 6.5 
0.141327 -2.0 -0.848 -0.32383 6.997172 5.0 
0.344085 -0.8 -2.324 -0.8877 6.433298 5.6 
0.257892 -1.2 -1.688 -0.6447 6.676298 5.5 
0.513462 0.0 -1.845 -0.70468 6.616324 6.6 
0.139871 -2.0 -0.705 -0.26919 7.051814 5.1 
0.130679 -2.1 -2.269 -0.86683 6.454171 4.4 
0.170203 -1.8 -2.967 -1.13333 6.187671 4.4 

Table 29: Simulated Wind Speed Model 
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4.2.4 Wind Coupled Maintenance Weather Constraints 

Compared to thermal plan% wind farm maintenance is unique in respect of their direct 

coupling with weather conditions, and in particular, wind speed. The primary reason for this 

is the use of cranes for heavy lifting of components: however health and safety restrictions 

are also a major driver. In the offshore case maintenance will also be subject to wave height: 

however wave height is highly correlated with wind speed and can be used in the absence of 

wave height data. 

Via dialogue with wind farm operators, these maintenance restrictions have been quantified 
into a rule table which constrains maintenance if wind speeds are beyond a certain threshold, 
depending on the maintenance action. Table 30 shows maintenance constraints which have 

been adopted by the wind farm operator. These are tied directly to the wind speed model 
defined in the previous section, meaning that the system cannot be restored to the up state if 

the wind speed is beyond the relevant threshold value. This means that in the Markov 

model, maintenance actions are inl-dbited in exactly the same way as in real operation. 

Wind Speed 
M/S 

Restrictions 

>30 No access to site 
>20 No climbing turbines 
>18 No opening roof doors fully 
>15 No working on roof of nacelle 
>12 No going into hub 
>10 No lifting roof of nacelle 
>7 No blade removal 
>5 No climbing MET masts 

Table 30: Wind Speed IýWntenance Constraints 

The wind speed model and wind-coupled maintenance constraints have been demonstrated 

in this section. The final and highest-level element of the model architecture in Figure 6 is 

the asset management policy model. It has been mentioned previously that TBM and CBM 

are the two main competing methods of applying maintenance to wind turbines. The next 

sections explicitly define how TBM and CBM are modelled. 
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4.3 Defining a Maintenance Model 

Maintenance models have been discussed in section 3.4 for generic cases. As mentioned 

previously, the crux of maintenance modelling is how to characterise the physical effects of 

maintenance. The economic impacts can be quantified more easily as they can be readily 

measured in the form of annual maintenance expenditure or costs associated with individual 

repaits, equipment hire and labour. 

A substantial body of research exists on the subject of maintenance modelling and technical 

impact of maintenance. Much of it is in the domain of operational research (OR), which has 

its origins in military applications. An early example of OR in the field of maintenance 

modelling can be found in McCall (1965). The author presents a review of maintenance 

models from the early history of O&M modelling. However, at this point in the chronology 

of maintenance modelling, all reviewed models were simple two-state systems (i. e. functional 

or non-functional). 11crefore by definition the repair model must restore the system to 'as 

good as new' in this case, thus only replacements rather than repairs are modelled. More 

recently, Cho and Parlar (1991) reviewed literature on maintenance models focusing on 

muld-unit models. Most of the reviewed studies were concerned with optimisation of spare 

part stocks and buffers. Nearly all the maintenance models assumed component replacement 

after failure, rather than repair. Restoration of the system to 'as good as new' state was 

universally assumed as the technical impact of maintenance, in a similar vein to this thesis. 

Several methods have been developed in the OR domain to account for imperfect 

maintenance. Phann and Wang (1996) present a summary of imperfect maintenance models, 

which do not always assume 'as good as new' repairs. 'Me most basic of these, called the p, q 

rule (also called the Brown-Proschan model), simply models a probability of the 

maintenance having no effect (q) and the remaining probability is 'as good as new' repair p, 

where q=l-p. The authors go to explain more complex models such as p, q with time 
dependence: q(t)=l-p(t). Other models mentioned by the authors are based on cumulative 
damage models using many states, where the level of recovery after maintenance is 

dependent on various functions. 
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These latter models mentioned by Phann and Wang (1996) are a much more in-depth 

representation than required for the models in this thesis and therefore have little relevance 

to this discussion. 'Me p, q rule has been considered for inclusion in this thesis but is not 
implemented due to a lack of suitable data on the effects of maintenance, especially in the 

wind energy domain. 

Imperfect maintenance models are also adopted in the recent papers of Barata et al. (2002) 

and Marscgucrra et al. (2002) which have been discussed in chapter 3. It is again noted that 

the detailed muld-state model of deterioration and repair in these papers is not conducive to 

parameter estimation and is thus impractical when an implementation is dcsircd, as in this 

thesis. Borgonovo et al. (2000) employ the Brown-Proschan model for imperfect 

maintenance mentioned earlier, which represents a good compromise between more realistic 

modelling of maintenance effects and simple parameter estimation of p and q (see earlier 

explanation). It was decided that not enough accessible data currently exists in the wind farm 

domain to properly implement this model: therefore it has not been considered in this thesis. 

Similarly, the imperfect maintenance models proposed by Endrenyi and Anders (2006) are a 

good compromise between model detail and practicality, being quite similar to the Brown- 

Proschan model of imperfect maintenance. For the same reasons Oack of data) this 

imperfect maintenance model is not adopted in this thesis. 

Returning to the theme of modelling of perfect maintenance actions, recently published 

papers still often use the assumption of restoring the system to the 'as good as new' 

condition. Studies by Schneeweiss (1995), Badia et al. (2002), Bris ct A (2003), Cui and Me 

(2005), Duarte et al. (2006), Zio et al. (2006) and Zio and Podofillini (2007) all conform to 

the assumption of 'as good as new' repair. This may be due to a lack of data (as in this 

thesis), the need to keep the model simple in order to solve it more easily, a lack of faith in 

the validity of more complex models of maintenance, or simply that the effects of 

maintenance are not at the heart of the study. In this thesis, the pragmatic view is taken that 

since wind turbine maintenance data are scarce, complex maintenance models cannot be 

properly implemented. The 'as good as new' maintenance model, although simplistic, 
represents an adequate assumption which will be adopted for the rest of the thesis. 
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Having established the underlying technical assumptions in the maintenance model, the next 

section expands the explanation of the maintenance models for TBM and CBM applied 

specifically to the system defined in Figure 33, using case studies to help visualise the 

mechanics of the maintenance models. 

4.3.1 Application of Time Based Maintenance 

The TBM model is implemented to emulate the situation at currently operational wind 

farms. This means that the frequency of TBM actions is once every 6 months for onshore 

wind farms and once every 12 months offshore. The equipment is restored to the fully up 

state (i. e. s, ) following the maintenance actions ('good as new' condition). Costs are incurred 

according to the component- specific repairs which need to be conducted. 

As an example, considers, from the system constructed in Figure 33. A case study of the 

TBM process is Mustrated in Figure 46. Assume the system deteriorates to s, ('current system 

state' on left hand side Figure 46) over the course of a6 month maintenance interval (182 

days). This means that the gearbox (Cl) and generator (C2) will need repair actions to 

restore them to the fully up state r,. Assuming a 2MW WT, taking component costs from 

Table 21 and setting ot = 0.1, this means that the incurred component repair costs total 

L15,000 (see calculation in Figure 46). Additional costs C, 
110, and Ri, ). vT are also incurred and 

deducted from the WT revenue stream, R. 

COal=(O- 1XIOO, 000+0- IX5O, 000)+CIAS 

9 Current WT system state 
R =R-(CO8, +RLOST) 

Figure 46: Time Based Maintenance for Wind Turbine Markov Model 
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4.3.2 Application of Condition Based Maintenance 

The concept of risk and its use as a metric to couple condition and maintenance actions was 
discussed in section 3.4.4. The actual mechanism of this coupling is visualised in Figure 47. 

The CM system monitors the state of the WF components and the information is fed into a 

'condition-based maintenance decision model' (CBMDNý. Figure 47 shows that the 

maintenance decisions will be based on the output of the CBMDM rather than carried out 

on a fixed frequency basis, as with TBM. This difference in maintenance paradigm is central 

to this thesis as the main purpose of this research is to establish the techno-economic 

benefits of adopting CBM. 
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Figuic 4-: Condition Ba. scd Mamicnance Model 

The simplest CBMDM would be to apply maintenance immediately after a deteriorated 

component is detected. Since it is assumed the CM system can infer the systern condition 

with certainty, this is technically possible. However it is not very realistic for two reasons. 
Firstly, it would be difficult to mobilise labour, hire equipment and possibly spare parts with 

no notice. Secondly, in theory the decision on how urgently CBM actions are carried out 

should be based on the importance of the equipment in question. Intuitively this can be 

appreciated because, for example, a small electronic assembly replacement can be sourced 

cheaply, whereas a WT gearbox can be hundreds of thousands of pounds to replace. 
Therefore the CBMDM should reflect the consequences of a possible failure. It should also 

reflect the probability of occurrence that failure. For this reason, a metric is required which 

combines consequence and probability. The concept of risk is the most suited to this 

purpose. 
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A very comprehensive review of risk analysis procedures was produced by Backlund and 
Hannu (2002). The authors focused on the practical issues associated with implementation 

of maintenance policies informed by risk analysis. In particular they were interested in how 

the probability and consequence (impact) of failures could be quantified, an issue often 
ignored in the more theoretical literature. The pragmatic view of the authors highlighted the 

need for data to estimate the parameters, but allowed for the use of expert judgement, 

especially to calculate the frequency (probability) of failure events. This mirrors the approach 

adopted in this thesis, whereby the failure probabilities have been estimated by domain 

experts due to a lack of data (see Table 24 earlier in this chapter). Schwan et al. (2006) use 

risk to analyse overall supply reliability in distribution networks. The supply interruption risk 
from different maintenance scenarios is used to inform maintenance policy decisions. 

The use of risk as part of a 'closed loop' to guide maintenance decisions (e. g. CBMDM in 

Figure 47) has been explored by several authors. Krishnasamy et al. (2005) linked the 

calculated risk of key power station components to the urgency of the maintenance interval, 

in a similar way to that proposed in this thesis. Ibc authors developed probabilistic reliability 

models for the key components in a coal-fired power station and used production loss and 

replacement cost as the impact of failure (this thesis considers only replacement cost for the 

sake of simplicity). The maintenance interval was set in fight of the calculated risk. 'Me same 

authors in a more recent publication (Khan et al, 2008) focus on availability of oil-fired 

generating units, with the risk model specifying when maintenance actions should be carried 
out. 

For the models in this thesis, the risk associated with each state (s,.... x) in the WT Markov 

model can be calculated by quantifying the probability of failure events (pr), impact of those 

events (im) and applying equation 46 for each state. 

Risk., . ýs1pr, xs, i ' Im, 
(46) 

_Risks. _ 
FS,, pr, xs. im, 
-f - 
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The probability of failure events can be calculated from the Markov chain transition 

probabilities, and have been estimated previously in the parameter estimation section 4.1.7. 

Table 24 earlier in this chapter had derived these probabilities for the gearbox, generator and 

rotor blade. For the purposes of the CBMDM, the impact, im, of the individual failure 

events, e, is considered to consist only of component replacement cost. This is a 

simplification, as equipment hire costs and production loss are two other impacts which will 

make the overall impact greater. However this assumption is held for the rest of the thesis. 

Table 21 presented component replacement costs using proportions of the WT capital cost 

as derived in McMillan and Ault (2008). Equation 46 is applied for these values of 

probability of failure events (Pr, ) and impact of those events (itn) and the resulting risk levels 

displayed in Figure 48. These states can be classified according to their risk: low risk 

(risk<500), medium risk (500<risk<1500) and high risk (risk>1500). 
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Figure 48: Risk for Each Wl' Nfarkov Model State 

These three risk levels can be utilised to model CBM, since they are a function of the system 

condition and also reflect the importance of the components. Therefore, instead of a fixed- 

period maintenance policy (1713Ný, the risk levels defined in Figure 48 can be used to 
determine how urgently maintenance should be carried out (i. e. influencing the maintenance 

schedule). How exactly the risk corresponds to the magnitude of the maintenance interval 

depends on the characteristics of the system. It is possible to derive values for each 

maintenance interval, which balance economic and technical impacts of maintenance, by 

running sensitivity analyses on the system. This procedure is outlined in the next section. 
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4.3.3 Derivation of Risk-Based CBM Maintenance Interval 

The impact of the risk-based CBM interval (CBMDM wait time) is observed by chaliPIng tile 

maintenance interval for one of the three risk levels while holding the other two 

maintenance intervals constant at 728 days (2 years). This large value was chosen to eliminate 

any dependence on the other maintenance intervals. Figure 49 shows the WT revenue 

stream as a function of CBMDM wait time, which is varied from 1 to 60 days. It can be seen 

that over this span of maintenance interval time (60 days, -2 months), the impact of 

increasing the maintenance interval is different depending on the risk level. The uneven 

nature of the plots illustrates the significant uncertainty in the simulation results, however 

despite this, two clear trends can be observed in Figure 49. 
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Figurc 49: Revenue Impact of Risk-Based CBM Intervals for All Risk Levels 

The first is that the WT revenue increases as the low risk wait time is increased from 1 to 60. 

This means that it is more cost-effective to delay a low-risk CBM action than to carry it out 

quickly. 

The second clear trend from Figure 49 is that the WT revenue decreases as the medium risk 

wait time is increased (i. e. the opposite effect than for the low risk state). This implies that 

medium risk states should be repaired relatively urgently. This is because the longer the 

medium risk CBMDM time interval becomes, the less Wr revenue is gained, as shown in 

Figure 49. This is clearly a negative outcome for the wind farm operator. 
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Perhaps the most surprising plot in Figure 49 is that for the high risk state. The WT revenue 
does not appear to be very well coupled with the CBMDM wait time. The WT revenue 

remains at a stable level throughout the CBMDM wait time range of 1 to 60 days. Since the 

high risk state represents the case of high product of probability and impact, Figure 49 is 

counter-intuitive. It would be expected that the high risk state be the most clearly coupled 

with CBMDM wait time. 

The reason for the surprising result in Figure 49 can be explained by examining the relative 

frequency of occurrence of the 7 states subject to the CBMDM (states 2-8). This is displayed 

in Figure 50 for a total of 436,800 MCS trials. It is observed that the distribution between 

the states is uneven, with the system spending a high proportion of the simulation period in 

state 5 (A low risk state). 
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Figure 50: Frequency of Occurrence of States 2-8 during NICS 

These states (2-8) can be grouped according to their level of risk (see Figure 48). The 

probability of each of the three risk levels (low, medium and high) can be calculated by 

summing the 'frequency of occurrence' of each risk level and then dividing by the total 

number of MCS trials (436,800). For example, the probability of being in a low risk state can 
be calculated by summing the state frequency for states 3 and 5 (8902+189,300=198,202) 

and dividing by 436,800 to get a probability of 0.454. The resulting probabilities for all risk 
levels are shown in Figure 51. 
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Figurc 51: Probability of Risk Level Occutrence during MCS 

Figure 51 explains the relative lack of coupling between the maintenance interval associated 

with high risk level in Figure 49 and the Wr revenue. There is little effect because high risk 

states are encountered so infrequently, as shown in Figure 51. The other two risk levels have 

a more dominant effect on WT revenue because the associated Markov states occur much 

more frequently. 

In Figure 49, the Wr revenue increased as the 'low risk' wait time was increased from 1 to 

60. This particular risk level wait time is extended over a larger range (10 - 600 days) to 

establish the near-optimal CBMDM wait time. This is shown in Figure 52. The maximum 

value occurs at a wait time of 260 days, and indeed the general trend suggests that the 

characteristic does peak around this value. 
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Figure 52: Revenue Impact of Low Risk Maintenance Interval 
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From a technical viewpoint, the characteristics of the low risk maintenance interval are 
different from those of the revenue impact shown in Figure 52. In particular, availability is 

the metric often used by operators to gauge the effectiveness of maintenance policy. The 

availability is used to measure the technical impact of varying the CBMDM wait time. The 

impact on availability of the low risk CBMDM wait time is plotted in Figure 53 is used for 

this purpose. 
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Figure 53: Availability Impact of Low Risk Maintenance Interval 

Although Figure 52 suggested a revenue-optimal wait time of around 260 days, Figure 53 

clearly shows that this maintenance wait time would not maximise WT availability. 
Therefore, a compromise value of 100 days is adopted in this thesis, which keeps both 

availability and revenue at a relatively high level. In terms of the other two risk levels 

(medium, high), the technical and economic impacts are in closer agreement. 
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Figure 54: Availability Impact of Medium and High Risk Maintenance Interval 
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Figure 54 shows that the general trends for availability are the same as the revenue trends in 

Figure 49, and therefore only revenue impact is discussed. Inspection of Figure 49 suggests a 

value of less than 20 for the medium risk CBMDM wait time. Three Monte Carlo 

simulations for the range 1 to 20 were run in order to estimate a near optimal value for the 

medium risk maintenance interval. 

Figure 55 illustrates the simulation output, and shows that it is difficult to distinguish any 

one maximum in the range 1 to 20, which would be optimal from a Wr revenue viewpoint. 

With this in mind, a figure of 15 days is selected because this would be a reasonable amount 

of time to organise a maintenance action and it is a near-optimal value. 
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Figure 55: Rcvenue Impact of Nfcdium Risk Nlaintcnancc Intcrval 

Similarly for the high risk case, an exact optimal value cannot be discerned, since the 

simulation output shows that it is difficult to distinguish any one maximum in the range 1 to 
20 (see Figure 56). For the same reasons as the previous medium risk case, a figure of 15 

days is selected as it represents a reasonable assumption on the basis of the MCS output. 
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Figure 56: Revenue Impact of High Risk Maintenance Interval 

The CBMDM wait times have been established based on the sensitivity analyses in this 

chapter. The values are summarised in Table 31. These will be used as model parameters in 

the next chapter when the models described in this thesis are applied to answer the questions 

posed in the introduction. 

Risk Level States CBMDM Wait Time 
Days 

High Risk 8 100 
Medium Risk 2,4,6,7 15 
Low Risk 3.5 15 
Table 31: Derived Risk-Based CBM WaitTinics 

4.4 Chapter 4 Summary 

This chapter has shown the methodology which has been developed to quantify tile 

technical and economic aspects of wind farm maintenance policy, with particular focus on 
CBM. The three elements of modelling, which were first illustrated in Figure 6 (WT 

component deterioration and failure, wind speed and energy yield, and asset management 

policies), were each summarised in this chapter. 

The physical WT deterioration and failure model, based on a Markov chain, comprised four 

key WT components (gearbox, generator, rotor blade and E&E). These were selected for 

inclusion in the model based on their annual failure rate contribution, downtime duration on 
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failure and expert opinion of a wind farm operator. CM can be applied to three out of the 
four components. The resultant TPM parameters were estimated using domain knowledge & 

annual failure metrics in concert with sensitivity analysis of the system. 

The wind speed model (built on SCADA wind speed records from an operating wind farm) 

was defined based on inspection of the ACF and PACF in combination with prc-defined 
heuristics (for classification), use of ordinary least squares fitting (for parameter estimation) 

and Monte Carlo methods (for simulation). 

Finally, the reptesentation of TBM and CBM was explained. In the case of TBM this was 

achieved through use of a deterministic maintenance interval which depends on accessibility 

to the wind farm and is derived from industrial domain knowledge. CBM is modelled 
through direct knowledge of the Markov state in the decision-process which informs how 

urgently maintenance should be performed based on the perceived risk of the current system 

state. The risk classifications are system-specific and the near-optimal magnitude of the CBM 

interval is determined via simple sensitivity analyses of the system. This classification took 

the balance between both economic and technical impacts into account. 

AU maintenance actions are the subject of weather constraints which hamper repair efforts 

as in real-life wind farm operation. These are simply added as constraints to the Markov 

model. 

Chapters 3 and 4 have explained the rationale of the methodology proposed in this thesis, 

and have also explained all modelling aspects through use of simple examples. With this 

groundwork in place, the next chapter contains applications of these techniques. Since the 
key aspects of wind farm operation and wind turbine characteristics have been captured, it 

should be possible to answer the key research questions posed at the beginning of tl-ýs thesis. 
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5 Application of Methodology and Models - Onshore 

Wind Turbine Model 

The methodology which has been developed throughout the duration of this research has 

been outlined. In this chapter the methodology is applied to answer the research questions 

posed in the introduction of the thesis. These research questions are re-stated below. 

Is condition-based maintenance for wind turbines cost-effective? 

What is the economic value of CBM for WIC units relative to other maintenance? 

What is the technical benefit of CBM for WT units relative to other maintenance? 

What are the necessary conditions for cost-effective W7 CM systems? 

Do offshore conditions enable economic viability of wind turbine CM systems? 

5.1 Onshore Wind Turbine Model 

The procedure adopted for answering these questions is to conduct case studies which 

explore the issues of interest. These case studies range from validation of the models 

themselves, to establishing base case results, to observing the effect of adjusting key 

parameters in the models. A summary description of the case studies conducted in this 

chapter is provided in Table 32. 

T, J. qrne of Case StudY Thesis Section Number 
Model Validation Procedure 5.1.1 
Onshore Base Case Evaluation of CM Benefit 5.1.2 
Increased Component Costs 5.1.3 
Onshore Wind Turbine Base Case Sensitivity to Component Reliability Levels 5.1.4 
Reparability of Components 5.1.5 
Effect of Maintenance Action Costs 5.1.6 
Effect of Downtime Variation 5.1.7 
impact of Wind Regime 5.1.8 
Impact of Imperfect CM Diagnosis 5.1.9 
Comparison of Results with Existing Research 5.1.10 

Table 32: Summary of Case Studies 
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The model assumptions are those adopted in section 4.1.9. In terms of the O&M cost 

expression (equation 38), the following parameters are defined: M=O. l (estimated) and P=0.6 

(derived from gearbox data in Ribrant & Berding, 2007). This means that a component 

repair incurs 10% of the full replacement cost, and that after a failure, a replacement is 

necessary in 60% of cases. Capital costs, downtime and other model parameters are 

sununarised in Table 33: all of these parameters have been discussed previously. The wind 

speed model was derived from 1 year of SCADA data averaged over I day time periods. The 

mean wind speed over 364 daily samples is 6.95m/s. The model was identified as AR(l) 

using the techniques in section 3.3.1. OLS fitting (see 4.2.1) was used to estimate the 

parameters (o, = 0.5077, variance of a, = 5.706) which were then used in the MCS. 

Metric Gearbox Generator Rotor Blade (1) E&E ROCs per MWh 
Replace Cost 
Downtime 

f 100,000 
30 Days 

f 50,000 
21 Days 

f 90,000 
30 Days 

f 5,000 #/f 
I Days 1.0/40 

WT Rating QAB CFC' Maintenance Freq. Base Case Failure Rates 
2MW f 1,200 f 1,500 6 months Tavner et al. 2007 

Table 33: Onshore Model Parameter Study 

The wind turbine used for the model validation study and subsequent onshore analysis is a 

2MW machine (Vestas, 2008) and has the power curve displayed in Figure 57, which was 

sampled and fitted to the theoretical energy yield expression (equation 33). Other technical 

aspects of the power curve are summarised in Table 34, showing that this combination of 

VVT and wind profile results in a capacity factor of 29.7%. 

WT Rating Rotor Radius Cut in, Rated, Cut out Wind Speed Capacity Factor 
MW m M/S % (a_) mean wind speed 6.95m/s 

2 40 4,14,25 29.7 
Tabic 34: 2MW Onshore Wind Turbine C hatacteristics 
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5.1.1 Model Validation Procedure 

Previous chapters of this thesis have shown how the Markov model is fitted to annual 

reliability figures based on assumptions about downtime, maintenance policy and so on. 
However the other technical and economic model outputs have not yet been validated. To 

evaluate the other metrics of interest such as availability, yield and revenue, the first case 

study was conducted to confirm that the models produce credible outputs as compared with 

real or assumed figures. 

Each run of the MCS comprised a 14,560 trial simulation after which average values were 

taken and stored in counters. This process was repeated 30 times and the statistical metrics 
in Table 35 are based on these 30 values extracted from each MCS. 

Annual Metric Annual Metric (Average) U2 Upper L Lower L 
Availability (*/o) 97.26 0.54 97.46 97.06 
Yield (MWh) 5068 35 5081 5055 
Revenue (fJycar) 308807 12337 313414 304201 
Maintenance Freq. (actions/year) 2.000 NA NA NA 

Overall Turbine 1.054 0.150 1.110 0.998 
Gearbox 0.092 0.050 0.110 0.073 
Generator 0.109 0.041 0.124 0.094 
Blade 0.218 0.050 0.237 0.200 
E&E 0.635 0.114 0.677 0.593 

Table 35: Vafidation of Models - Operational Metrical Obtained via MCS Model 

'Me simulated availability of 97.26% from Table 35 is in line with perceived levels of 

availability in the industry, with 98% being typically quoted. The theoretical yield based on 

this availability assuming a 30% capacity factor can be calculated using equation 36, which 

gives a result very similar to that derived from the MCS (50681AWh). 

Y--CF-xG x. 4-x8760 -0.3 x2 xO. 9726x8760 -5112MWh 

By rc-arrangement of equation 36 the actual annual capacity factor (Cjý, ) of this particular 

wind profile/ wind turbine power curve combination is calculated below as 29.855%. Again, 

this represents a credible value since the individual onshore CF would be expected to be 
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between 20% (badly placed wind turbine, poor wind resource or over-sized Wr for site) to 

35% (good placement, strong wind regime and optimally sized machine). 

Y- 5068 
= 29.855% CF-=-67xA-x8760 0.9726 x2 -x8760 

Based on the yield from Table 35, the theoretical annual revenue RTHjO can be calculated in 

the case of no failures or repair costs (i. e. Co&m = 0). The difference between the MCS 

calculated revenue R, &I(j (L308,807) and RTHEO U385,152) if no failures occur is RDIFF which 

corresponds to CO&m for the MCS results. 

R,,,., - MWh,,. - (MP, 
-,, + AP,, ) -5068-W +36)-L385,152 

R., -R. -R.,,,, -385,152 -308,807 -C,,.,, -L76,345 

Ile annual O&M cost (COmý can be verified by analysing this difference between the 

theoretical revenue and model-generated revenue. There are two key cost components 

within C06, m - reactive maintenance costs (CREcnýT) and preventive maintenance costs 
(CTD,, ý). These costs can be quantified to validate the operation of the models. 

CTBm can be broken down into labour and equipment hire costs (CL4B. CEP), and the cost of 

preventive maintenance repairs (CpREvENT). CLI, and CE. Q are incurred twice per annum, as a 

result of TBM, in addition to the repair cost incurred directly by TBM ac ons (C . r) 
ti PREVEN 

resulting in the equation below. 

C,.,, -2 -(C,, +C,, )+C,,..,, -LS, 400 +C,,, ý,,, 

CPREvENT requires more information to fully quantify since it is based on the state of the 

Markov chain at the time of maintenance. For a MCS of the Markov chain, a maintenance 
frequency count can be produced which indicates which states were encountered in the time 

step before TBM is applied. The states of interest are 2-8 since these ate the intermediate but 

functional states during which maintenance can be applied. 
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Since the MCS is run 30 times, each run comprising 364 x 20 x2 trials, and clearly 364 

represents the approximate number of days in a year, therefore the number of simulation 
'years' is 30 x 20 x2=1,200. Since TBM actions are every 6 months, this means the total 

number of TBM actions in the simulation period is approximately 2,400. Table 36 shows 
how the number of maintenance actions carried out in each intermediate state Al is 

multiplied by the cost of repair to restore the system to the filuy up state (Q. Ibis product is 

summed for each state (2-8) and the cost per TBM action is calculated as -L14,989 which 

according to the bi-annual TBM policy results in annual costs of L29,979. 

State 4 Maintenance Actions, M Cost of Rcpair, f C, f WX C, 
2 29 10000 290000 
3 69 5000 345000 
4 5 15000 75000 
5 1317 21000 27657000 
6 148 26000 3848000 
7 94 31000 2914000 
8 11 36000 396000 

Sum E35,525,000 
Cost pcr action L14,989.45 
Bi-annual TBM. C..., -, - E29.979 

Table 36: Annual TBINI Repair Costs 

The final element of O&M cost is repair and replacement costs after failure, CREAcn; 
7:,. This 

is calculated on the basis of the simulated failure events and uses a modified version of 

equation 38, defined earlier in the thesis. 

C. Mllrý164 CCAP+(l-)6)*A 'a -cc., p 

Ibc full calculation is shown in Table 37 which includes repairs and replacements conducted 

over the operational life of the components. The sum of CRE, 4cnvE is calculated as L40,736. 

Component 
CCAP 

f 
Aucs 
Ann. 

J6 
Replace pr 

CCAPX IX 

f 

I' fl 

Rcpairpr 
a 

Rcpairfactor 
ax CcAPX AX (1-fl) 

f 
Gearbox 100000 0.092 0.6 5500 0.4 0.1 367 
Generator 50000 0.109 0.6 3275 0.4 0.1 218 
Rotor Blade 210000 0.218 0.6 27510 0.4 0.1 1834 
F, &E 5000 0.635 0.6 1905 0.4 0.1 127 

Sum f38,190 Sum f2,546 
Table 37: Corrective Replacement & Repair Costs for MU 
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Taking repair and replacement costs after failure, labour and equipment hire costs and TBM 

repair costs the full Co&, v, is estimated in Table 38 and compared to the value obtained from 

the MCS. The difference between the two values is ý230 which represents a very small 
difference in terms of the total C, ),,,,. 

The final stage of the model validation is to confirm that the annual failure rates are re- 

created accurately as in section 4.1.9. Figure 58 shows the values reproduced by the MCS 

simulation with individual confidence limits, which all fall within the range of the target 

probabilities. It is therefore demonstrated that the simulation program can successfully and 

accurately compute O&M costs as well as making adequate predictions of the other technical 

and economic metrics of interest. This means that other studies can be conducted with 

confidence in the models and meaningful conclusions drawn about wind farm condition 

monitoring techno-economic benefit. 

CO&m element -Annual f 
Repair and replacement cost after failure 40,7ý-6 

Labour and equipment hire cost 5,400 
TBM incurred repair cost 29,979 

Total Manual CO&m 76,115 
MCS Co&M 76,345 
Difference 230 

Table 38: Comparison of Manually Estimated and MCS Generated O&M Cost 
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6.1.2 Onshore Wind Turbine Base Case Evaluation of Condition 
Monitoring Benefit 

Having established that the model is valid, the first evaluation of condition monitoring 
benefit is conducted. The same input parameters are adopted for the base case as for model 

validation: component costs, failure probabilities and downtime durations are held constant 
(see section 5.1.1) while the model factors cx and P are equal to 0.1 and 0.6 respectively. 

In one set of results, TBM is applied in exactly the same way as for model validation. In the 

other set of results CBM is applied as explained in section 4.3.2 (CBM interval: High risk-15 
days, medium risk-15 days and low risk-100 days). The summary results table for the two 

maintenance policies is shown in Table 39. 

Annual Metric TBM CBM 
Availability (%) 97.26 97.94 
Yield (MWh) 5068 5108 
Revenue(f) 308807 316095 
Maintenance Freq. (actions/year) 2.000 1.800 

Overall Turbine 1.054 0.9308 
Gearbox 0.092 0.0250 
Generator 0.109 0.0767 
Rotor Blade 0.218 0.1800 
ME 0.635 0.6492 

Lost Energv MWh (MWh/vear) 137.275 97.03 
Table 39: Onshore Base Case Evaluation of TBM & CBM 

The technical impact of CBM compared with TBM is that the annual availability the WT 

increases by 0.68%. Tl-ýs increase can be traced directly to the reliability improvement 

induced by the CBM policy. Better reliability reduces the number of unplanned outages, 

which in turn means less lost energy due to downtime and also less component replacements 

are required. Also, in this case the annual frequency of maintenance reduces from 2 actions 

for TBM to 1.8 actions per annum for CBM. The increased energy yield corresponds to 

extra revenue of (+ý3040 P. A. ) via avoidance of unplanned outages and reactive 

rnaintenance costs will reduce for the same reasons. 
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Figure 59: Onshore Base Case Revenue Comparison ofTBNI & CBM 

The economic performance of the two maintenance policies for the base case is shown in 
Figure 59. The CBM policy has a net benefit of 0,288 per WT per annum: however care 

must be taken interpreting the result. Firstly, the overlapping confidence hn-uts for TBM and 
CBM show that there is significant uncertainty. Other main caveats at this stage are that the 
CM system is assumed to be 100% accurate in identifying failures, and that incurred cost per 
CBM action is fairly modest (cost of repair + labour + equipment hire). This means that 
CBM actions do not require component replacements. Also the example provided in the 
base case allows CBM actions to be carried out as early as 15 days after detection, which may 

not be long enough to source the necessary parts or specialised equipment. 

The base case demonstrates technical and economic benefits of CBM relative to TBM. 

However, this result is valid only for this particular combination of reliability figures, 

downtime estimates and model cost parameters. Clearly more detailed analyses are needed to 

explore these issues further and, in each case, to establish if a link exists to the techno- 

economic success of WT CM systems. 

5.1.3 Increased Component Costs 

one of the current key issues in wind turbine O&M is the increasing cost of components, 

which is brought about by worldwide bottlenecks in WT manufacture. Until now the 

component costs have been based on assumptions in McMillan and Ault (2008) - see Table 

21 for detafls. 
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To examine the effect of component cost increase, the assumptions of Sterzinger and Svrcek 

(2004 p53) are adopted - see Table 16 for these assumed component costs. The effect on 

the metrics generated by the model is summarised in Table 40, while the revenue impact for 

TBM and CBM is shown in Figure 60. 

Annual Metric TBM CBM 
Availability (%) 97.16 97.99 
Yield (MWh) 5065 5114 
Revenue (f/year) 246968 264476 
Maintenance Freq. (actions/year) 2.000 1.773 

Overall Turbine 1.1083 0.9367 
Gearbox 0.1058 0.0283 
Generator 0.1258 0.0642 
Rotor Blade 0.2108 0.1942 
E&E 0.6658 0.6500 

Lost Energy MWh (MWh/year) 140.379 91.42 
Table 40: Onshore Evaluation of 113M &C BN1 using Increased Component Costs 

-fhe net benefit of the CBM policy is ý17,508 which is over double the level calculated in the 

base case in section 5.1.2. This is intuitive as it suggests that higher component costs 

strengthen the case for CM deployment, increasing the economic consequences of an 

unplanned outage. Furthermore, another effect of increased component costs is to drive up 

the magnitude of the confidence limits in Figure 60. FinaUy, comparing the revenue streams 

of the base case (see Table 39) with increased component costs reveals that the revenues are 

reduced by around 20% if component costs are significantly increased. 
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Figure 60: Revenue Comparison of TBM & CBM using Increased Component Costs 
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5.1.4 Onshore Wind Turbine Base Case Sensitivity to Component 
Reliability Levels 

Mention has been made of the various available sources of WT component rehability data. A 

representative set of these data is shown in Figure 61, illustrating the significant spread of 

possible values. If the extreme high, low and median values from these studies are plotted, a 

creliabihty envelope' can be calculated which represents a spread of credible reliability values, 

as shown in Figure 62. This range of values can be used to establish the influence of 

reliability on CM benefit. 

Tbe model fitting procedure outlined in section 4.1.9 is applied using the three sets of 

reliability figures derived from Figure 62. When these have been fitted it is possible to 

establ-ish the level of sensitivity of CM benefit relative to this component reliability envelope. 
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Figure 61: Spread of Failure Probabilities 
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Figure 62: Wind'Furbinc Reliability Performance Envelope 

Table 41 summarises the results from the various MCS. The general effect of reduction in 

reliability is to reduce availability, energy yield, and revenues, while lost energy increases. 

Average CBM frequency increases from around 1 action per annum in the high reliability 

case to 2.091 actions per annum for low reliability. The CBM policy improves reliability, but 

does not necessitate a very high number of maintenance actions. This is one of the reasons 

that in all cases, the CBM policy out-performs TBM economically and technically. 

Reliability Level High Reliability Med Reliability Low Reliability 
Annual Metric TBM CBM TBM CBM TBM CBM 
Availability (%) 98.24 98.96 97.00 98.16 96.06 97.60 
Yield (MWh) 5119 5157 5053 5121 5004 5093 
Revenue (f/year) 344575 355288 312283 326076 287455 303892 
Maintenance Freq. (actions/year) 2.000 1.001 2.000 1.608 2.000 2.091 

Overall Turbine 0.4975 0.4317 0.9292 0.7242 1.2983 1.0183 
Gearbox 0.0708 0.0183 0.1950 0.0525 0.2975 0 0600 . 
Generator 0.0633 0.0483 0.1000 0.0483 0.1342 0.0875 
Rotor Blade 0.1183 0.0950 0.1717 0.1342 0.2367 0.1883 
ME 0.2450 0.2700 0.4625 0.4892 0.6300 0.6825 

Lost Energy (MWh/year) 85.882 47.95 151.787 84.50 201.504 112.44 
Table 41: Sensitivity of Output Mettics to Reliability l, evcl 
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Figure 63: Revenues and CM Benefit with Dcctcasing Reliability 

Figure 63 shows the annual CM benefit (CBM Revenue-TBM revenue) as a function of the 

reliability level, giving increasing benefit levels of ý10,713, L13,793 and L16,437 with 

reducing reliability. The revenue on adoption of both maintenance policies is clearly coupled 

with reliability, and some coupling between reliability level and CM bcnefit is observed for 

these onshore techno-economic conditions. 

In conclusion, these results indicate that for the range of reliability levels examincd. CBM 

benefit increases as W7 reliability decreases. 
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5.1.5 Reparability of Components 

717he simulations presented in sections 5.1.1 - 5.1.4 have assumed that a reactive repair haN a 

40% chance of incurring repair cost and 60% chance of requiring a component replacement. 

This assumption is varied by means of a sensitivity analysis with the aim of quantifying the 

impact of component reparability on W7 CM benefit. 717he model was run using the 

, medium' refiability level scenario outhned in 5.1.4 and all other model parameters are 

identical to the base case. 

Figure 64 shows how the annual revenue associated with TBM reduces in a broadly linear 

fashion as the probability of repair decreases. Also clear In this diagram is that a CBM 

strategy is not as strongly coupled with repair probability. A possible hypothesis to explain 

this is that the reliability has been increased by the CBM policy to the point where the 

proportion of reactive maintenance is very small compared with condition-based 

maintenance. Therefore the system maintained according to a CBM policy is largely shielded 
from the effects of reparabihty variation. 
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The effect of varying the repair probability on CBNI benefit is shown in Figure 65. 'I'llis 

iflustrates that if the probability of repair is 0.9 (900/6) or higher, then TBNI is more cost- 

effective than CBM. This is interesting since it is by no means impossible that a component 

could be repaired in 90% of cases. On the other hand, data from Nilsson and Bcrtling (2007) 

suggests a repair probability of around 40% for gearboxes, which would have to alter 

considerably for TBM to be more cost-effective than CBM. On the other hand, no data is 

available regarding the reparabihty of the other components (generator, blades) so making 

inferences about these components is more difficult. 

Nevertheless, a lack of component reparability may be identified as a driver for CM 

deployment. 
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5.1.6 Impact of Maintenance Action Costs 

Maintenance costs related to labour (C,,,, ) and equipment hire (CV. 1) are subject to change. 

Tn the case of equipment hire, mobilisation costs for crane hire can be a significant addition 

to the weekly hire rate. Therefore in this section a mobilisation cost of L1,500 is addcd to 

the existing weekly hire cost of ý1,500 defined in Table 17 (C,,. v =ý3,000). 

C, 
_,,, 

is influenced by many factors, one of which is accessibility of the site. If the site is in an 

isolated or inaccessible location this may be reflected in a premium for labour. Additionally, 

a lack of availability of suitably skilled maintenance workers could drive upwards. 
Therefore a factor of 1.5 as applied (CLj, =L1,800) in order to examine the effect of such 
drivers. Figure 66 shows that the impact of the increased maintenance costs as a function of 
decreasing reliability level (CBM benefit reduces from ý18,438 to ý14,882 to L6,552). 
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Figure 66: TBNf & CBM Rcvcnuc undcr Increascd Maintcnancc Coms 

Figure 66 clearly shows that as reliability decreases, the effect is to reduce the CBM benefit. 

This is because the CBM actions become more frequent and therefore the cost is more 

significant as the number of failures increases - siniflar to the base case. However, the effects 

are slightly different. For example, in the high reliability case the CBM bencfit actually 
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increases compared with the base case despite the increased maintenance cost. Conversely, 

the CBM benefit in the low reliability case is much smaller (ý6,552) than the base case 

These effects are investigated by comparing the difference between condition based and 

time based incurred maintenance costs for both base case maintenance costs and increased 

maintenance costs evaluated in this section (see Figure 67). 
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Figurc 67: (CBNI Costs -'I'BNI Costs) for Base Case and Increased Nfainicnaricc Cost Sccnatto 

The relationship shows that in cases where the CBM frequency is less than TBM frequency 

(i. e. less than 2), increased maintenance costs boost the case for CBM. Beyond this 

frequency the opposite is true, and the increased maintenance costs act to make CBM less 

cost-effective. Clearly both the frequency and cost of CBM actions arc key in determining 

the economic case for WT CM. In particular, Figure 67 and Figure 66 suvycst that high 

reliabdity conditions in tandem with high cost of maintenance ictions ctiahlc highly 

economic WT CBM. 
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5.1.7 Impact of Downtime Variation 

Until now, the downtime values have been those suggested by tile industrial research parincr 

('Scottish Power 2005ý. The system is now tested using the downtime assumptions derived 

by Ribrant & Berthng (2007) - see Figure 28. Therefore the downtime for gearbox, 

generator, rotor blade and E&E decreases to 11,9,4 and I day(s) respectively. Table 42 

surnmarises the techno-economic metrics generated when these reduced downtimes are 

simulated in the model. The positive impact on availability and lost energy is clear when 

compared with Figure 63, especially for TBM. Figure 68 compares the CBM benefit as a 
function of reliability level for the two sets of downtime estimates (Scottish Powrr 2005 and 
Ribrant & Bertling 2007). 

Reliability Level High Reliability Mcd Reliability Low Reliability 
Annual Metric TBM CBM TBM CBM TBM CBM 
Availability (%) 99.07 99.45 98.64 99.10 98.12 98.73 
Yield (MWh) 5163 5183 5140 5169 5111 5154 
Revenue(f) 350672 354767 320335 331678 287353 305093 
Maintenance Freq. (actions/year) 2.000 0.981 2.000 1.637 2.000 2,181 

Overall Turbine 0.4483 0.3967 0.8958 0.6950 1.4067 1,0283 
*6 Gearbox 0.0600 0.0192 0.1975 0.0433 0.3209 0,0958 

Generator 0.0575 0,0533 0.0775 0.0650 0.1600 0.0842 
Rotor Blade 0.1008 0.1025 0.1642 0.1317 0.2658 0.1900 
E&E 0.2300 0.2217 0.4567 0.4550 0.6600 0.6683 

Lost Energy (MWh/year) 41.886 21.86 65.339 36.13 94.080 50.86 
Table 42: TBNI & CBM Metrics for Decreased Downtimes (Ribrant & Bcrding, 2007) 
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ne results show that CM benefit for lower downtime is significantly reduced in the case of 
high reliability and marginally reduced for medium reliability cases: however it increases 

slightly for low reliability. This indicates that the effect of downtime reduction is to increase 

the coupling between CBM benefit and reliability level, which can be observed in Figure 68 

by the steeper slope of the trace of 'reduced downtimes'. 

This is a counter-intuitive result since reduced downtime decreases the significaticc of 

unplanned outages, which in a real situation means that the operator does not have to place 

such a high importance on outage avoidance. To illustrate this, consider Figure 69 which is a 

plot of saved energy as a result of CBM for both downtime estimates. Since the base case 
downtime scenario saves more energy with decreasing reliability, this should act to create 
divergence the two traces in Figure 68, however they instead converge. 
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Figure 69: Saved energy as a result ot'(. 'BNf for 2 Downtime IAtimatco 

Clearly downtime is not driving the convergence of CBNI benefit for the base case and 

reduced downtimes illustrated in Figure 68. It is noted that lower downtime results in higher 

Wr availability Oess time spent in a 'down' state). Hence the system will be 'exposed' to 
failure for a longer period of time. The effects of this can be appreciated by comparing the 

low reliability TBM scenario in the 'reliability sensitivity' base case and those calculated ill 

this section, for lower downtimes. 
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TBM Annual Metric Low Reliability, Base Case Low Reliability, Reduced Downtime Increase 
Thesis Section 5.1.4 5.1.7 (current section) 
Availability (%) 96.06 98.12 +2.14% 
Gearbox Failure Rate 0.2975 0.3208 +7.83% 
Generator Failure Rate 0.1342 0.1600 +19.23% 
Rotor Blade Failure Rate 0.2367 0.2658 +12.29% 

A side-effect of the improvement in availability (as a result of reduced downtimes) is to drive 

up the failure rates of the components. The gearbox, generator and rotor blade failure rates 
increase by 7.83%, 19.23% and 12.29% respectively for the low downtime scenario. Since 

CBM benefit is calculated as (D1CBjj-LRTBh), this means that the scope for improving the 

failure rates in the low downtime scenario is larger than for the base case. This is why the 

CBM benefit is surprisingly high for the low reliability, low downtime scenario in Figure 68. 

It is concluded that reducing the downtime to levels proposed in the paper by Fibrant and 
Bcrding (2007) act to reduce CBM bencfit for high and mcdium reliability. INs is driven by 

the reduction of the economic consequences of an outage because the lost energy is SM211 

compared to the base case. 

The low reliability result, where the CBM benefit for the low downtime scenario is larger 

than for the base case (see Figure 68), results from a less obvious consequence of reducing 

Wr downtimes. Because of the higher availability compared to the base case, this mcans tile 

system is exposed to failure for a longer period of tirne and more failures will occur than for 

the base case. This in turn means that application of CBM avoids more failures than tile 

equivalent base case. 
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6.1.8 Impact of Wind Regime 

The site wind regime has clear implications for the energy yield at a wind farm site: however 

it is unclear how the strength of the wind profAc could affect the case for CM. Therefore the 

base case presented in section 5.1.2 is taken and a stronger wind prorilc is used, 

corresponding to conditions found in exposed coastal areas such as the Shetland Isles of 
Scotland. The base case wind profile has a mean wind speed of 6.95m/s whereas the 

increased proffle used in this section has a mean of 7.95m/s. 

Ibc impact of the different wind profiles arc summariscd in Table 43. As expected, the yield, 

revenue and lost energy all increase as a result of the stronger wind profile. Ibc CBM bcncfit 

is reduced compared to the base case - CBM benefit is L3,759 for the high wind profile, 

compared with L7,288 for the base case wind profile. However this difference is probably 

too small to be considered significant because the confidence limits arc of the same order as 

the difference in CBM bencfit (see confidence limits in Figure 59). 

Wind Regime Base Case Wind Profile 6.95m/s High Wind Profile 7.95n-ds 
Annual Metric TBM ClIm TBM CIM 
Availability (*/o) 97.26 97.94 97.12 97.73 
Yield (MWh) 5068 5108 6660 6714 
Revenue (f/ycar) 308807 316095 429029 432788 
Maintenance Freq. (actions/year) 2.000 1.800 2.000 1.902 

Overall Turbine 1.0542 0.9308 1.0800 0.9792 
Gearbox 0.0917 0.0250 0.1033 0.0267 
Generator 0.1092 0.0767 0.1217 0.0825 

7g Rotor Blade 0.2183 0.1800 0.2158 0.2033 
w ME 0.6350 0.6492 0.6392 0.6667 

Lost Energy (MWh/year) 137.275 97.03 190.505 136-88 
Tablc 43: Summary of TBM & CBM hictrics for Differcrit Wind Itcgimes 

Figure 70 iUustratcs how the CBM benefit for the two wind profiles changes with respect to 

reliability level. The comparison of these results is pattiCUl2rly interesting. For the base Case 

wind profile (mean = 6.95m/s), the CBM benefit increases with decreasing reliability. as was 

shown in 5.1.4. Similarly, the stronger wind profile evaluated in this section (mc2n = 
7.95m/s) has the effect of accelerating this trend: the CBM benefit increases with decre2sing 

reliability, but with more pronounced effects at low reliability. 
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Figure 70: CBM Benefit for a Range of Reliability Levels & Two Wind Profiles 

Not only does the stronger wind proffle act to increase CBM benefit, but this benefit 

increases as the system becomes less reliable. The reason for this can be apprcciatcd by 

observing Figure 71, which shows the saved energy revenue due to avoidance of outages 
(acts to increase CBM benefit) minus the incurred cost of CBM actions (acts to decrease 

CBM benefit). 
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Figure 71: CBM Saved Energy Rcvcnuc ininus, Incurrcd CHM Coats 

The balance of these two elements broadly mirrors the trends observed in Figure 70. It can 

be seen that for the case of the stronger wind profile (mcan=7.95m/s), the positive 
difference between saved energy revenue (i. e. RL,,, T, T7w - RLD. ST, r. 1j%j) and incurred CBM cost 

(CBM frequency x (C,,, +Cj,, ý ) is increasing, while in the case of the base case profile 

(mean=6.95m/s) the increase is less marked. This effect is driving the result in Figure 70 and 

shows the importance of the balance between cost of maintenance actions and positive 

economic benefits of CBM. This implies that there is a stronger economic case for 

deployment of CM at high wind sites, especially if reliability is low. 
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Section 4.3.2 explained how a condition-based maintenance model was implemented based 

knowledge of the current state of the Markov chain, alongside condition-based maintenance 
intervals. The main flaw with such an approach is the implied assumption that the CM 

system is fauldess in its diagnosis capability and early warning of potential failures. In this 

section, common problems with condition monitoring systems are explicitly characterised to 
bring the models closer to the real-world case. False negatives and false positives (false Is 
discussed in section 2.2.4 are both taken account of. 

False negatives are situations where the CM system does not detect a change in state of a 

damaged or deteriorating component, meaning the component will fail and a reactive repair 

or replacement is required. This is modelled by introducing a failure capture probability of 

the CM system, which is varied between 1.0 (no false negatives - i. e. base case assumptions) 

and 0.0 (100% false negatives - equivalent to reactive maintenance). 

The technical impact of varying the failure capture probability is shown in Figure 72. nis 

illustrates how the frequency of CBM actions decreases from around 1.4 actions to 0 actions 

as the failure capture probability reduces from 100% to 0%. During this same sequence the 

annual failure rate of the system increases from just over 0.7 to around 1.3 - this final fadure 

rate is the equivalent of a purely reactive maintenance policy. 
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Figure 73: Revenue Impact of CNI False Ncgativcs 

The impact of false negatives on CBM economic benefit is shown in Figure 73, for base case 

conditions and medium reliability levels (see section 5.1.4). Several simulations arc plotted to 

Vve an indicaion of the uncertainty associated with the result. This illustrates that failure 

capture probability of around 50% or over is required to guarantee an economically justified 

W7 CM system. In the range 50-30% failure capture probability, it is uncertain which policy 

is the more cost-effective. Below the threshold of -30% accuracy, a TBM policy is more 

cost-effective than CBM. This is a useful result and is of particularly high relevance to wind 

farm operators wishing to appraise the relationship between the technical capabilitics of CM 

and the economic benefits. It demonstrates the importance of the robustness and accuracy 

of the CM system needed to achieve the theoretical gains. 

False positives are also modelled, and these occur at any time the system is functioning (I. C. 

states 1 to 8). These could be anything from sensor calibration issues, to sensor failure 

events, to erroneous data interpretation, all of which are significant problems in existing \Xrr 

CM systems. Sensor failure events were estimated in Tavner et al. (2006) as 0,1 per annum, 

however anecdotally this represents a significant under-estimation of these events as a whole, 

because issues such as calibration and misinterpretation of data are not included. 'Merefore 

the probability of a false positive was varied starting from a base of I up to 10 events per 

annum - this range was speculative since no data on Wr CM false positives could be found 
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in hterature. The impact of these events on revenue due to lost energy and spurious CBNI 

actions are shown in Figure 74. 
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Figure 74: Economic Tmpact of CNI False Positives 

The lost energy component grows from ý8,200 to L17,804 from annual occurrence of I to 

10 respectively. This is significant, however the costs incurred by un-necessary mobIlisation 

of labour and equipment become greater, although starting from a lower base. 

The impact of false positives on CBM benefit is illustrated in Figure 75. This shows how the 
CBM benefit is eroded as the number of false positives increases. Figure 75 suggests that 

somewhere between 3 and 4 false positives per annum renders CBNI less cost-effective than 

TBM for the conditions evaluated (med reliability, no false negatives). 'Ilijs is a significant 

result, since the cost penalties for more remote or offshore wind farnis may hr 

severe than those evaluated in this example. 
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nese conclusions can be drawn for the specific circumstances evaluated in this example i. e. 

rnean wind speed = 6.95 m/s, medium levels of reliability, base case maintenance costs etc. 

17his chapter has shown that CBM benefit is sensitive to several operating conditions and 

these would all have to be separately evaluated (these issues are discussed further in chapter 
7). However this chapter has also shown that the models are capable of taking the factors 

involved and quantifying CBM benefit The final step is to re-producc results which have 

been observed in an existing publication to provide another layer of model validation. 

5.1.10 Comparison of Results with Existing Research 

Research by academics at Robert Gordon University (Andrawus et al. 2006) into optim2l 

wind farm maintenance policy has been conducted in the same period as the rese2rch 

contained in this thesis. The metrics and input assumptions used in the work of these 

researchers can be used as another demonstration of how the models presented in this thesis 

can be tailored for the available data. 

Ile wind farm considered by Andrawus et al. (2006) is comprised 600MV units. 71c 

component costs, failure rates and downtime were provided in thcp2pcr2nd are fC-CrC2tcd 
in Table 44. Along with new model costs and probabilities, the turbine curve and 

characteristics have to be captured. 

Replace Cost Annual Failure Rate Downtime 
Component f X Days 
Gearbox 50000 0.01282 120 
Generator 19000 0.00641 60 
Blade 28000 0 180 
E&E 1500 0 0 

Tablc 44: Modd Detads from Andrwus ct ski. (2006) 
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Manufacturers data for 600kW wind turbine units was sourced from a 'Wind Turbines and 
Wind Farms Database' (2008) and is shown in Table 45. This reference provided rotor 

radius (r) which is important when fitting the theoretical yield equation 33, which is re-stated 
below. 

WT Rating Rotor Radius Cut in, Cut out Wind Speed Capacity Factor 
MW m m/s %@ mean wind speed 6.95mis 
0.6 22 2.5,24 36 

Table 45: 600kW Wl' Characteristics 

I 
2 ir r2 v(- 

The power curve for the 600kW wind turbine itself was provided in Wizelius (2006). Figure 

76 shows the data points which were sampled and used to fit C, in equation 33 (see 3,3.2). 
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Other assumptions taken from the analysis of Andrawus et al. (2006) are that the cost of 6 

monthly TBM is L5,304 and the incurred cost of CBM per annum excluding repairs is 

ý3,390. Additionally, a catastrophic component failure incurs a component replacement cost 

rather than a repair cost. Furthermore, a subjective rating of the fault detection capability of 

the CIA system was given as 3/5 which is implemented as 40% false negatives. Similirly, tile 

reltabihty of CBM was given as 3/5. 

___________ M 

189 

: :: 

02468 10 12 14 16 18 20 22 24 26 28 



The reliability of CBM is linked with the CM system itself, which in turn is dependent of the 

number of false positives the system produces. The CBM benefit for 1.1-1.7 false positives 

per annum are shown in Figure 77. The annual CBM benefit ranges from ý1626 to L47. In 

their paper, Andrawus et al. (2006) calculate a CBM benefit of 085 per ky'717 per annum. A 

sin-iflar figure is yielded if a CM false positive frequency of 1.5 per annum is adopted (see 

Figure 77). In this case the CBM benefit is L379, similar in magnitude to the values denved 

by Andrawus et al. 
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Figute 77: CBM Benefit as a Putiction of CM False Positivcs 

This result demonstrates that it is possible to re-create specific conditions of interest to 

evaluate CBM benefit using the methodology developed in this thesis, even with fairly 

limited information on CM system performance and a small numbcr of incidences of fadure 

from a single wind farm. Such an example demonstrates the flexibility and applicability of 

the approach, for example a huge volume of time-stamped data is not rcquirctl as witli manN, 

other methods. 

it could be argued that lack of consideration of temporal effects of long term detenoration 

(c. g, decades) is a simplification of the real case, however very few operational wind farms 

are at this stage of life and furthermore, the data are almost impossible to obtain. Therefore 

the approach proposed in this thesis represents a good compromise between input 

parameters and the value of its outputs. 
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5.2 Chapter 5 Summary 

In this chapter, the results of investigation of the onshore WT model were investigated. Tbe 

results showed that increased Wr component costs significantly strengthen the case for 

onshore CBM (economic benefit approximately doubles). For onshore sites with modest 

wind resource (mean-6.95m/s), a high level of component reliability (i. e. X< 1) enables 
CBM because of the resultant decreased maintenance frequency. Onshore CBN1 benefit is 

also highly dependant on cost of individual W1r maintenance actions - labour and 

equipment costs. Doubling of equipment hire costs and increasing labour rates by 50% (Cr, 

, 
CL, 4ý acts to reduce CBM benefit as WT reliability decreases (reversing the base case trend). 

Economic justification of CBM also hinges on reparability of Wr components after failure - 
if 90% or more of outright failures (requiring reactive maintenance) arc fairly minor 

component repairs requiring relatively modest capital ouday, TBM is more cost-effective 

than CBM. 

CBM benefit associated with increased average wind speed exhibits similar behaviour to the 
base case: that is WT CBM benefit increasing as Wr component reEability decreases. if 

downtime for WT component failures is reduced, CBM benefit also reduces for tile c2sc of 
high and medium WT reliability. However, at a low level of WT reliability, the CBM benefit 

increases. This surprising result is discussed further in chapter 7. 

Finally, WT CM system technical capability was appraised. The %VT Chi system has to detect 

30-40% (or more) of all incipient WT component failures to be economically justificd 

onshore (i. e. detecting the change from the Markov chain from 'fully up' state to 2 'dcr2ted' 

state). Alternatively, the system can withstand up to 3 CM-induced false posidves per annum 

and still be more cost-effective than TBM. 

This chapter has dealt solely with quantiýýing CBM benefit under onshore conditions. Ilic 

next chapter of this thesis focuses on offshore WTs, with the objective of inswcring onc of 
the research questions proposed at the beginning of this thesis: 'Do offshore conditions 

enable economic viability of wind turbine CM systems? ' 
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6 Application of Methodology and Models - Offshore 

Wind Turbine Model 

The scenarios which have been presented so far have all been for onshore wind farms. One 

of the key assumptions regarding WT CM has often been that offshore conditions will 

enable more widespread use of the technology and subsequent implementation of CBM. 

There are a number of significant differences between offshore wind farms as compared to 

their onshore equivalents. Turbine ratings are likely to be much larger as a result of 

economics of scale - it does not make financial sense to build small offshore wind farms due 

to the large infrastructure costs associated with foundations and grid connection. 

Furthermore, wind profiles are generally very strong offshore due to small surface friction 

and a lack of obstacles. The combination of larger Wr ratings and stronger wind profilc 

offshore means that higher volumes of energy capture per turbine arc expected than a typical 

onshore WE These large-ratcd offshore WTs have higher capital costs, component costs, 

and repair costs. Additionally the specialised crane vessels required to perform maintenance 

actions are much more expensive than the onshore equivalents, although the magnitude of 

the increase is the subject of debate due to a current lack of experience in offshore projects. 

it is generally accepted that unplanned downtime will increase, mainly because of offshore 
logistics difficulties (floating platform/ jack up crane vessel lead times which have been 

quantified at around 10 days (Phillips ct al., 2005) ), more severe access constraints because 

of adverse weather, and sub-component supply chain bottlenecks due to less mass- 

production of offshore Wrs. 

In terms of electricity generated, it is expected that future offshore wind farms in the UK 

will be subject to increased revenues as they will gain more than 1 ROC per MWh generated. 
At the time of writing it was suggested that offshore projects would gain 1.5 ROCS per 
MWh (BERR, 2007). 
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All of these aspects must be captured within the models developed in this research for an 

adequate analysis of the techno-economic benefits of CM for offshore wind farms. 

Therefore the onshore models used up until now were modified - these changes are detailed 

02468 10 12 14 16 18 20 22 24 26 28 30 

Wind Speed mls 

in the next section. 

6.1 Offshore Wind Turbine Model 

The parameters of the onshore model were adjusted taking account of the issues discussed 

in section 6. Capital cost estimates of Llm per MW were assumed for offshore installations 

- 5MW capacity was assumed - and the resultant parameter values in Table 46 were adopted 
for the offshore model. 

Metric Gearbox Generator Rotor Blade (1) ME ROCs per MWh 
Replace Cost 
Downtime 

f 400,000 
41 Days 

f200, OOO 
32 Days 

f 300,000 
41 Days 

f 20,000 #/f 
2 Days 1.5/60 

WT Rating CLAII CEO Maintenance Freq. Base Case Failure Rates 
5MW f 1,800 f 15,000 12 months Tavner ct al. 2007 

Table 46: Offshore Model Parameter Summary 

Information from a 5MW offshore WT data sheet was used (RePower, 2005) to construct 

Table 47 and to fit the power curve to the theoretical yield equations (see Figure 78). 'nie 

same experimental steps that were carried out for the onshore wind analysis are repeated for 

these offshore conditions, to explore the techno-econon-k case for CBM in the offshore 

environment. 
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Figure 78: 5NfW offshore Willower Curve 
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WT Rating Rotor Radius Cut in, Rated, Cut out Wind Speed Capacity Factor 
MW m m/s %@ mean wind speed 6.95m/S 

5 61.5 3.5,13,30 
Table 47: 5NfW Offshm-c \\TChma(ictisti(s 

Firstly, the offshore model was analysed in order to determine a suitable CBMDM wait time. 

Although the capital costs of a 5MW offshore wind turbine are much higher than the 2MW 

onshore equivalent, the component costs were still derived based on the proportions in 

Table 21. Since it is assumed that the probabilities of failure after occurrence of incipient 

fault do not alter (see Table 24), the magnitude of the risk levels for each state will increase 

in proportion with each other. This is shown in Figure 79, which shows low risk 

(risk<2000), medium risk (2000 <risk< 6000) and high risk (risk>6000) states in the same 

classification as the onshore model. 
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0 

Figmre 79: Offshore Risk Classification 

The revenue impact of varying the CBMDM wait time for the three risk levels is shown in 

Figure 80. Broadly speaking, Figure 80 has similar characteristics to the onshore case (see 

Figure 49): that is, increasing the low risk wait time has a positive effect on revenue, whereas 
for the medium risk case increasing the wait time reduces the revenue. The revenue in the 
high risk case is not very sensitive to the wait time vanation. 
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Figure 80: Revenue Impact of Risk-Based CBM Interval for All Risk Levels - Offshore 

The low risk maintenance interval is examined over a greater range (10-600 days) in Figure 

81. The trend shows the revenue increasing as the maintenance interval is increased to 

around 200 days. After this the revenue appears to level out, suggesting that from a purely 

economic viewpoint, a wait time of more than 200 days would be desirable. 
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Figure 81: Revenue Impact of Low Risk NYVaitTinic - Offshore 

The negative impact on availability (technical impact) over the same range of wait times is 

shown in Figure 82. Availability peaks at around 50 days wait time. Since It is expected that 

offshore yields will be substantially higher than onshore, making availability more important, 

the wait time of 100 days for the onshore case is reduced to 50 days for the offshore model. 
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Figure 82: Availability Impact of Low Risk WaitTimc - Offishorc 

For the medium and high risk wait times, the availability impact is alustrated in Figure 83. 
This is similar to the onshore case, with the medium risk availabihty being clearly coupled 
with CBMDM wait time. Avadabihty reduces from around 97% for low wait times to around 
95% for wait times approaching 60 days for the medium risk wait time. Over the same range, 
the equivalent high risk wait time is largely unaffected at around 94% availability. 
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Figure 83: Availability Impact of MediUm and I ligh Risk WaitTinic 
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Figure 84: Revenue Impact of Medium Risk WaitTimc - Offshore 

Figure 84 shows the revenue impact of varying the medium risk wait time over the range I- 

30 days. There is more variation in the offshore revenue values compared to the onshore 

case (see Figure 55). The revenue is highest for low wait times, and for this reason a 
CBMDM wait time value of 7 days is selected, as this maximises revenue and gives ample 

time to organise maintenance resources and crews. 

Finally, Figure 85 shows the revenue impact of high risk wait time, over the range 1-30 days. 

The revenue is not sensitive to wait time variation compared with the other risk levels, This 

is due to the infrequent occurrence of high risk states, as discussed previously at the end of 

chapter 4. 
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Mgure 85: Revenue Impact of I ligh Risk WaitTime - Offshore 
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However, intuitively the high risk wait time should be less than or equal to the medium risk 

wait time because the product of failure probability and impact (cost) is large. Thcreforc the 
high risk wait time is set to 7 for the offshore model. 

The derived wait times for all risk levels of the offshore CBMDM model arc summarised in 

Table 48. Ilese are included in the Offihore CBM techno-econornic analysis contained in 

the following sections. 

Risk Level States CBMDM Wait Time 
Days 

High Risk 8 50 
Medium Risk 2,4,6,7 7 
Low Risk 3.5 7 

Table 48: Derived Risk-Based CBM Wait Times - Offshore Model 

6.1.1 Model Validation and Onshore Wind Turbine Model 
Comparison 

To enable the offihore analysis, the only changes to the models ate the magnitude of input 

variables, such as downtime and maintenance frequency - the program structure is 

unaltered. Therefore it is not necessary to perform a thorough model validation as was 

conducted for the onshore model in section 5.1.1. To appreciate the changes as a result of 
the offshore cnvironmentý it is adequate to compare the outputs of the onshore and offshore 

rnodcls, the results of which arc shown in Table 49. The magnitude and direction of the 
differences are displayed for greater clarity. 

From the technical viewpoint, the offshore availability drops by 1.74% due to less frequent 

maintenance actions and longer downtimes. The offshore failure rates also increase because 

of the reduction of TBM frequency to 1 action per annum. These technical trends applied to 

offshore WTs have been anticipated by many commentators, industrialists and acaden-ks 
including van Bussell & Zaaijer (2001), Marsh (2007) and Gicbhardt et al. (2007). Despite the 
lower availability and reliability, the offshore yield and revenue are much higher, which is 

because of the 5MW rating and higher number of ROCs per MWh generated - see Table 46. 
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The same wind profile (mean = 6.95m/s) and Markov TPM is used for both cases. The size 

of the WI' rating is also the principal reason for the larger lost energy in the offshore case - 
L52,700 (549 x 96) - compared with the onshore case - L10,433 (137 x 76). Simply 

quantifying these onshore/ offshore differences is of value: however the primary goal is to 

observe the effect of offshore conditions on the technical and economic case for CM. 

Annual Metric Onshore TBM Offshore TBM Difference 0nshore+L Offshore ±L 
Availability (%) 97.26 95.52 -1.74 0.2009 0.3132 
Yield (MWh) 5,068 12,029 +6,961 13.1 43.5 
Revenue (Vyear) 308,807 827,420 +518,613 4,606 (1.9%) 23,432 (2.8%) 
Maintenance Freq. (act/yr) 2.000 1.000 -1.00 NA NA 

Overall Turbine 1.054 1.2642 +0.21 0.056009 0.058249 
Gearbox 0.092 0.1467 +0.05 0.018561 0.022697 
Generator 0.109 0.1633 +0.05 0.015206 0.020761 

79 Blade 0.218 0.3117 +0.09 0.018818 0.031174 
". ME 0.635 0.6425 +0,01 0,042429 0.043239 

Lost Enemy (MWh/vear) 137.275 548.960 +411.68 
Table 49: Comparison of TBM for Onshore & Offshore Conditions 
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6.1.2 Offshore Wind Turbine Base Case Evaluation of Condition 
Monitoring Benefit 

-ne results of the offshore base case comparison between TBM and CBM are shown in 

Table 50 and Figure 86. The results are broadly similar to the onshore case - the CBM policy 

increases the availability, yield and revenue, while decreasing the failure rates and lost energy. 

Annual Metric TBM CBM 
Availability (%) 95.52 97.76 
Yield (MWh) 12,029 12343 
Revenue (f/year) 827,420 841712 
Maintenance Freq. (actions/year) 1.000 2.413 

Overall Turbine 1.2642 0.8775 
Gearbox 0.1467 0.0058 

E Generator 0.1633 0.0692 
Rotor Blade 0.3117 0.1267 
E&E 0.6425 0.6758 

Lost Enerizv (MWh/vear) 548.960 235.77 
Table 50: Offshore Base Case Evaluation of TBM & (IBM 
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Figure 86: Offshore Base Case Revenue Comparison ofTBNI & CBM 

The main difference is that adoption of a CBM maintenance policy increases the frequency 

of maintenance actions, contrasting with the onshore base case where the maintenance 
frequency was reduced on adoption of CBM. There are two reasons for this. One is that the 

offshore TBM frequency is only one action per annum, compared to two actions per annuin 

onshore. Secondly, the shorter wait times derived for the offshore CBMDM model (high, 

medium, low risk wait times = 7,7,50 offshore compared to 15,15,100 onshore) mean that 
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maintenance is carried out more frequently. It is noted that these maintenance actions are 

constrained by a wind speed access model in exactly the same way as the onshore model (i. e. 

according to Table 30). However, this model neglects wave height which is a significant 

obstacle to offshore operations (e. g. heavy lifting of nacelle components). This means that 

the access model presented in these results will paint a more optimistic picture of offshore 
XW maintenance than encountered in real operations. 

Returning to the results in Figure 86, the net benefit of CBM is calculated as L14,293 per 

wind turbine per annum. Although the CBM economic bcncfit is larger than that obtained 
for onshore conditions (L7,288 - in section 5.1.2), the magnitude of the confidence limits in 

Figure 86 is an issue worth investigating. As a percentage of the total revenue, L for offshore 

results (2.8% - see Table 49) is similar to onshore (1.9%). However because of the greater 

rnagnitude of the variance (number of samples and t-score stay constant - see equation 39 in 

chapter 4) the confidence limits for offshore arc almost an order of magnitude larger than 

onshore (±L23,432 offshore c. f, ±L4,606 onshore). Nevertheless, Figure 86 is an interesting 

rcsultý because it demonstrates that offshore conditions are not automatically a clear 

economic enabler for adoption of CBM (as is widely thought), given the confidence limits. 

One way of reducing the uncertainty in Figure 86 is to run more MCS. However because of 

the nature of the confidence limit calculation (equation 39), the confidence limit reduces in a 

tnanncr inversely proportional to the root of the number of samples (N). nercf6re doubling 

the number of samples to 60 means 1/7.75 (x 0.13) as opposed to 1/5.48 (x 0.18) for 30 

samples, i. e. L only reduces by - 5% (0.18 - 0.13). 

lbercfore caution must be used when interpreting the offshore results rc: magnitude of the 

confidence limits relative to CBM benefit. 
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6.1.4 Offshore Wind Turbine Base Case Sensitivity to Component 
Reliability Levels 

The three reliability levels defined in Figure 62 were input to the offshore models to 

establish if coupling exists between reliability and offshore CM benefit. Figure 88 shows that 

the CBM benefit is highest if the WT units are relatively reliable (ý69,993), and the benefit of 

CBM relative to TBM decreases as the WI' units become less reliable (med reliability CBM 

benefit = (66,595). Even for the low reliability case, CBM is significantly more cost-effective 

than TBM (low reliability, CBM benefit = 28,012). 
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Figure 88: Impact of Reliability Level on Offshore TBM & CBM Revenue 

There appears to be coupling between reliability and CBM benefit in the offshore case, and 

It is interesting to note that the trend is the opposite of the onshore case, where CBNI 

benefit increased with reducing reliability (see Figure 63, chapter 5). Figure 89 shows a direct 

comparison between the CBM benefit for the offshore and onshore sensitivity to WT 

reliability level. 
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Figure 89: Comparison of CBM Benefit for Onshore & Offshore Conditions 

One possible hypothesis for this is the significantly higher costs of each CBM action. In the 

case of offshore, Cj, ýC, =L15,000 per CBM action as opposed to ý1,500 for onshore. 
Furthermore, the shorter offshore wait times result in more frequent maintenance actions 

than the onshore model. This combination of effects is clearly shown in Figure 90. 
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Figurc 90: Comparison of Annual CBM Benefit for Onshore and Offshore Models 
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6.1.5 Reparability of Components 

The reparability analysis was carried out in a similar manner to the onshore case presented 

earlier in the thesis. The revenue trend (see Figure 91) is similar to that observed for onshore 

results. The revenue associated with a CBM policy is still far less sensitive to repair 

probability than TBM. Figure 92 shows that TBM becomes the most cost-effective policy if 

more than 60% of reactive maintenance actions do not require a component replacement. 

This is substantially different to the equivalent onshore result (see Figure 65) which showed 

TBM becoming cost effective at over 0.8 repair probability (20% higher). This means that 

for offshore conditions, it only makes sense to employ CBM if components cannot be 

repaired after failure rather than replaced. If the probability of repair is less than 0.6, 

offshore CBM makes economic sense. 
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Figure 91: Revenue Impact of Repatability for Offidiorc TBNI & C. BNI 
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Figure 92: Reparability Impact on Offshore C. B%l Benefit 
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6.1.6 Impact of Maintenance Action Costs 

The estimated cost for offshore crane mobilisation (, ý15,000) is added to the hire co. 'st for a 

single maintenance action resulting in an increased estimate of C1, C) to ý30,000, effectively 

doubling the base case offshore maintenance costs (see Table 46). Figure 93 shows the net 

CBM benefits for high, medium and low WT reliability (for increased maintenance costs). 

These benefits are directly compared to the offshore base case in Figure 94: the figure 

suggests that doubling the maintenance cost has a significant negative effect on offshore 

CBM benefit, particularly the low reliability level when the CBM benefit becomes only 

marginal. 
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Figure 93: Impact of Increased Maintenance Costs on'YBNI & CBINI Revenue 
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Figure 94: Comparison of Maintenance Cost Impact on Offshore CBM Benefit 
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6.1.7 Impact of Downtime Variation 

It is unrealistic to expect that the unplanned downtime for offshore failures would reduce to 

levels below those presented in Table 46 (41 days for gearbox and rotor blade, 32 days for 

generator). Therefore the more conservative downtime estimates used in the equivalent 

onshore section cannot be used. Instead, the values presented by Andrawus et al. (2006) (see 

Table 44) are adopted, which represent a more pessimistic view of downtime duration 

(downtime 120 days gearbox, 60 days generator, 120 days rotor blade, E&E held constant at 
2 days). Figure 95 shows that the impact of these pessimistic downtime durations is to drive 

up CBM benefit in all reliability categories. 
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Figure 95: Impact of Downtimc onTBM & CBN1 Rcvcnue 

It is also worth noting the severity of the availability impact of the increased downtimes. As 

Figure 96 illustrates, the availability impact for the TBM policy is much more severe than 

CBM, with availability dropping below 85% in the worst case TBM scenario. 
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Figure 96: Availability Impact of Increascd Offshore Downtinic 
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The economic benefit of CBM is driven upwards the under this high downtime scenario. 
Figure 97 clearly illustrates that the increased downtimes have a very definite positive impact 

on the economic case for CM, as compared with the offshore base cases. The reason for this 

large level of benefit can be thought out by considering a single major offshore outage event. 
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Figure 97: Impact of Downtime on CBM Benefit 

The increased downtimes in combination with the 5MW offshore VV`T rating and increased 

number of offshore ROCs mean that, the consequences of an outage become very 

significant. For example, a gearbox outage of 120 days duration equates to lost revenue 

(RLO. S7, calculated using equation 37) of nearly L400,000 - see calculation below. 

RLOSTýY-, ý(MPFjý- + MPR-, ) = 
120 

- x8760 0.3 -0.95 x5 ý36 +f60)-f393,984 
(365 )X IX 

The same calculation for the offshore base case would involve an unplanned downtime of 
42 days, or around one third of the calculation above (-ý130,000). Clearly the increased 

downtimes will have a huge positive impact on the case for CM deployment in the offshore 

environment because they can be avoided by performing condition based maintenance 
before the component fails. 
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The basic calculation above confirms that factors involved in offshore wind farms combine 

to increase the economic impact of major outage events so that as well as high downtime, 

the higher WT rating means that the cost of an outage increases very significantly. This is 
further reinforced by Figure 98, which compares the saved energy revenue of a CBM policy 
for both downtime estimates. 

Lo, ý Wd 

High Reliability Med Reliability Low Reliability 

Andrawus 2007 Downtimes 
(Increased) 

ScottishPower 2006 Downtimes' 
(Base Case) 

Figutc 98: Offihotc CHNI Saved Energy llcvcnuc Downtime Comparison 

The increased importance of lost revenue for the increased downtime case results in the 

obvious coupling in Figure 97. This in turn demonstrates that increased downtime is a key 

enabler for adoption of CBM offshore. 
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6.1.8 Impact of Wind Regime 

A stronger wind profile, expected to be encountered in the offshore environment, was 

adopted in this section as in section 5.1.8. The impact of the increase in wind regime on 

CBM benefit is shown in Figure 99 - this Mustrates a significant increase in CM benefit for 

higher wind speeds, however the impact is not as great as the downtime increase in the 

previous section. The stronger wind profile boosts the CM benefit by between ý10,000 and 

, C28,000 per turbine per annum. 

It is instructive to compare the influence of wind profile on CBM benefit for offshore 

conditions with that obtained onshore (see 5.1.8 - Figure 70). In the onshore case, the 

increased average wind speed (7.95m/s) resulted in CBM benefit increasing with reducing 

reliability. This is not the case in Figure 99 - the CBM benefit is coupled with reliability in 

the same way as for other conditions (i. e. CBM benefit reduces with reducing reliability). 

As with the onshore case, the factors driving the CBM benefit characteristic can be 

investigated by drilling down into the result and examining the revenue gained via saved 

energy (for a CBM policy) minus incurred CBM costs: this is shown in Figure 100. 
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Figure 99: Impact of Wind Regime on Offshore CBM Benefit 
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Figure 100: Offshore Saved Lnergy Revenue as a function of Wind Profile and Reliability Level 

Figure 100 illustrates that for the lower wind profile (mean 6.95 m/s), the saved revenue 

grows larger than maintenance costs until the low reliability level is reached. At this point the 

incurred costs of maintenance are more influential than the saved revenue. 

For the high wind profile (mean 7.95 m/s), the saved energy revenue is always greater than 

the incurred maintenance costs, indeed the positive difference grows with decreasing 

reliability. This explains why the CBM benefit is significantly increased if the mean wind 

speed is 1 m/s higher than the base case. 

213 

Low Failure Rate Med f ailure Rate High Failure Rate 
High Reliability Med Reliability Low Reliability 



6.1.9 Imperfect Condition Monitoring Diagnosis Impact 

CM false negatives were applied to the offshore model for medium levels of reliability and 

low wind profile (mean=6.95m/s). The resultant impact on CBM benefit is illustrated in 

Figure 101. Interestingly, the threshold for positive CBM lowers from 0.5 (onshore) to 0.2. 
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Figure 101: Rcvcnuc Impact of CM FaIsc Negativcs (Offshorc) 

This means that the system does not require such a high level of performance as in the 

onshore case as regards false negatives because the potential savings are greater for each 

component outage event. The figure of 0.2 is especially pertinent as anecdotal experience 

suggests that the current performance level of modern WT CM systems is around 30% 

incipient failure detection - 0.3 (Reviewer, Wind Eng paper). Although some of the results 

in this chapter call into question the economic viability of CBM offshore (see section 6.1.6, 

low reliability scenario) the result in Figure 101 demonstrates that offshore conditions indeed 

tip the balance in favour of CBM, even when real-world problems with CBM (in the form of 

false negatives) are factored in. 

False positives were implemented in the same way as for the onshore case. The contribution 

of lost energy and spurious CBM actions to the lost revenue is quantified in Figure 102. 

Comparing this with the onshore case (see Figure 74) shows that the proportion attributable 
to lost energy is significantly higher than the onshore case, which is intuitive given the 5MW 
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rating and offshore wind profile. Although the source and magnitude of the contributions to 

lost revenue change for offshore conditions, the threshold at which CBM becomes 

uneconomic as a result of false negatives is the similar as for onshore (3 false positives per 

annum - see Figure 103, as opposed to 4 onshore). This result is counter-intuitive, given the 

significant impact of offshore conditions on false negatives - Figure 103 suggests that the 

balance of incurred maintenance costs and lost energy does not change. 
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Figure 102: Fconornic Impact of CM False Positives - Offshote 
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Therefore a key conclusion of this research is that offshore conditions do not require such 
high technical capability to be economically viable as onshore, in terms of failure detection 

probability (false negatives) since the potential savings are higher - in terms of lost energy 

and component repairs. These benefits outweigh the incurred cost of more frequent 

rnaintenance actions associated with CBM, and in many cases the benefit is clear even if the 

performance of the CM system is less than perfect (e. g. down to 20% failure detection &2 

false positives per annurn). Nevertheless, Figure 101 and Figure 103 demonstrate that 

offshore CBM benefit is closely coupled with the technical capabilities and robustness of the 

CM system. These are key economic enablers for CBM regardless of the local constraints. 

6.2 Chapter 6 Summary 

The offshore Wr model was investigated in this chapter. The results showed that the 

offshore WF model produces lower overall WT availability but higher energy yields, annual 

revenue, WT failure rates and lost energy than the onshore WT model. Base case WI' CBM 

benefit appears to be significantly larger (x2) for offshore Wrs, however the magnitude of 

the calculated confidence limits makes the size of the benefit unclear. Increased WT 

component costs increase CBM bcncfit by -4 times. This compares with a -2 times increase 

for onshore conditions. It is concluded that the higher cost of wr component replacements 

and repairs for offshore WTs is a major cnablct for offshore WT CM. 

Results for reparability of WT components show that the offshore CBM benefit is more 

sensitive to the case of VVr repair than onshore. If only 30% or less of WT failures have to 

be replaced rather than repaired, TBM is more cost-effective for offshore WTs than CBM. 
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Doubling Wr maintenance action costs (specifically, crane hire mobilisation costs) has 

considerable effect on CBM benefit. CBM benefit across all WT reliability levels is reduced, 

and CBM benefit is marginal for the low Wr reliability, high maintenance cost scenario. 

Downtime increase has large impact on results, clearly tipping the balance in favour of CBM. 

It has been shown that the 'lost energy' component of CBM benefit is driving this impact. 

Thus, high WT downtimes for unplanned outages offshore make a persuasive case in favour 

of CBM, particularly for WTs with low reliability. 

Increase in the mean wind speed (mean=7.95m/s instead of 6.95m/s) boosts the case for 

CBM over all WT reliability levels. However, it is not as influential as the Wr downtime 

increase previously mentioned. 

Finally, the threshold for positive WT CBM economic value in terms of technical capability 

of the CM system (false negatives) decreases from -30/40% (onshore) to -10/20% 
(offshore). Onshore systems require higher levels of CM technical performance in order to 

justify themselves economically. Relatively error-prone CMS can still be more cost-optimal 

than TBM in the offshore environment, because the potential cost savings are very 

significant. Surprisingly, the result as regards false positive threshold at which CBM becomes 

uneconomic is similar in onshore (3 false positives per annurn) and offshore (4 per annum) 

conditions. 

In this chapter, the benefit of CM applied to offshore WTs was evaluated. The final chapter 

of tl-ýs thesis summarises the key findings of the results in chapters 5 and 6, and discusses 

the implications of these results in detail. 
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7 Discussion, Conclusions and Further Work 

It has been established that the models presented in this thesis can quantify the technical and 

economic benefits of CBM relative to a TBM policy, thus establishing if a techno-economic 

case for CM applied to wind farms exists in practice (A theoretical case can be made despite 

the differences between wind farms and thermal plant as outlined in chapter 2). The 

proposed models have been validated by comparison of the outputs with other literature 

sources and verification of the operation of the model. 

In some cases the results challenge the theory that CBM is the most cost-effective 

maintenance policy for wind turbines, having taken operational and practical issues into 

account. It is interesting to note that in most cases a very clear case for CM exists if it is 

assumed that the CM system can detect every failure and does not produce false positives - 
this is an implicit assumption in almost all of the existing literature attempting to benchmark 

tcchno-economic performance of CMS (e. g. Ribrant & Bertling 2007) - however it must be 

noted that the practical experience of wind farm operators indicates that the performance of 

existing Wr CM systems falls well short of this idealised scenario. Tbc analyses produced in 

this thesis show that the performance of the CM system has an important influence on the 

value of CM, and that if the technical performance of the CM system is poor, that this can 

undermine the case for CBM applied to WTs. 

The models in this thesis have gone beyond such rather naive assumptions to fully quantify 
the benefit of Wr CM. The following sections describe the conclusions that have been 

arrived at as a result of the analyses of technical and economic benefit of CM contained in 

chapters 5 and 6. As well as visualising the particular condition-specific techno-econotrxic 
benefits, a set of more genetic 'conditions for success' have been formulated to guide 
prospective operation & maintenance policy decisions. 
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6.1.3 Increased Component Costs 

The WT sub-component costs were increased according to the proportions derived from 

Sterzinger & Svrcek (2004) assuming capital costs of L5rn for a 5MW WT. The absolute 

costs and multiplication factor increase are shown in Table 51. The impact of this change on 

the offshore maintenance policy cost-effectiveness is displayed in Figure 87. 

The primary result of the increase in component cost is that CBM benefit increases from 

, C14,292 to 06,595 annually. This is a very significant increase - approximately 5 times the 

base CBM benefit. This compares with a -2 times decrease for the same experiment run 

under onshore condidons (see 5.1.3). 

Therefore the conclusion reached for this offshore study is that increased component costs 

are an important enabler for offshore CBM. In the offshore case this is even more 

pronounced, as the results show. For this reason, raw material price, manufacturing capacity 

and global demand for turbines could have an indirect influence on maintenance policy. 

Component Cost McMillan & Ault 2007 Sterzinger & Svrcek 2004 Multiplication Factor_ 

Gearbox f400, OOO f 1,050,000 2.625 

Generator f 200,000 f 850,000 4.25 
Rotor Blade (1) 000,000 f 466,666 1.555556 
E&E f 20,000 f 10,000 0.5 

'rable 51: Component Costs for 5NIW Offshore WindTurbiric 
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Onshore Wind Turbine Model Results 

7.1.1 Economic Impacts of Model Input Assumptions 

The sensitivity of the economic impact on the case for CM applied to wind turbines can be 

evaluated by examining how the CBM benefit changes as the input parameters vary. Figure 

104 summarises the CBM economic benefit for a range of model input scenarios (carried out 

in chapter 5) enabling a direct comparison of results. T'hus it is visualised, for example, that 

the combination of increased wind plant maintenance costs and low WT component 

reliability results in a low economic benefit. Similarly, low downtimes and high reliability will 

yield modest CBM benefit. 

The largest benefit is realised for the combination of increased annual wind speed and low 

WT reliability. Increased maintenance costs coupled with high WT reliability also produce a 
high level of CBM benefit. 

25,000 

20,000 

15,000 

10,000 

5,000 

0 

C3 Base Case 

C3 Increased Kbintenance Costs 

0 Reduced Downtime 

13 Increased Annual Wind Speed 

Figure 104: Impact of Model Parameters on F. conomic CBM licnefit - Onshore 

The trend for most of the onshore WT results in Figure 104 shows CBM becoming more 

cost-effective as the WT reliability decreases. This applies for the base case, reduced 
downtime and increased annual wind speed. In these cases, the benefits of CBM (reduced 

amount of downtime, increased energy yield, and overall WT rehabihty improvement as a 

result of the CBM pohcy) grow faster than the incurred costs of maintenance. 
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The only scenario which reverses this trend is the case where the cost of individual WT 

rnaintenance actions is increased. In this scenario, the overall benefit of CBM is reduced 
because the costs of the incurred condition-based maintenance actions grow faster than the 

economic benefits induced by CBM. 

Similar visualisation can be carried out for other input variables such as reparability and 
CBM false negatives - see Figure 105. These results show that under certain onshore 

conditions, it makes more sense to adopt TBM than CBM (CBM benefit < 0). The 'CM 

failure capture probability' is a particularly pertinent variable because this shows the linkage 

between CBM economic benefit and the technical capabilities of the CM system. It is 
debatable that current WT CM systems can successfully classify the 30-40% or more of 
incipient faults necessary to enable cost effective onshore WT CM as shown in Figure 105. 

Sin-tilarly for the reparability of WT components, if only 0-20% of outright failures require a 

component replacement rather than a repair action, it makes economic sense to adopt TBM 

rather than CBM. As more data on Wl' component failure events becomes available, it will 
be possible to establish how repairable real WT systems are, and whether an economic case 
for CBM can be made on the basis of the models in this thesis. 
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Figure 105: Impact of CNI Capability & Reparability on Economic CBM Bcnefit - Onshore 
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7.1.2 Technical Impacts of Model Input Assumptions 

The technical impact on the case for CM applied to wind turbines can be evaluated by 

examining any of the technical output metrics produced by the simulations. A key technical 

rnetric used to evaluate impact of O&M policy is the annual availability of the WE This is 

plotted in Figure 106 and Figure 107. 
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Figure 106: Impact of Model Parameters on Technical CBM Benefit - Availability Onshore 

Figure 106 shows the availability impact of the base case and the reduced downtime 

scenario. It Is clear that the CBM benefit of a Wr with reduced downtime is not as sensitive 

to variation in reliability as the base case. Furthermore, the WT availability benefit associated 

with CBM is higher for the base case, because the adoption of CBM avoids more potential 
downtime in the base case. It is interesting to compare this with the equivalent economic 
benefit in Figure 104, which does not follow a simflar trend to the technical benefit. This 

shows that the technical and economic benefits of onshore WT CBM are not always well 

aligned. 

In contrast to Figure 106, the technical benefits shown in Figure 107 are well aligned with 

the equivalent economic benefits (compare with Figure 105). This is particularly clear for the 

condition monitoring 'failure capture probability' for which the availability benefit closely 
follows the economic benefit in Figure 105. 
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Figure 107: Impact of CNI Capability & Reparability on Technical CBM Benefit - Availability Onshore 

The perception of the potential benefits of WT CBM in the published literature is that the 

technical and economic benefits are well aligned, since one flows from the other (e. g. see 
Hameed et al. 2006). The results presented in this thesis have made explicit linkages between 

the technical and economic aspects of the wind turbines and the condition monitoring 

system. 

The results can help shape wind farm maintenance policy since the adopted modelling 

approach has captured diverse operating conditions, and in doing so, provides a robust 
framework for evaluation of WT CBM benefit. 
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7.1.3 Conclusions Drawn from Onshore Wind Turbine Results 

The following conclusions were reached based on the modelling and analysis presented in 

this diesis: 

Increased WT component costs significantly strengthen the case for onshore CBM. 

T'herefore, the current upwards pressure on WT subcomponent cost (see section 
4.1.3) acts as an enabler for Wr condition monitoring. 

e For onshore sites with modest wind resource (mean-6.95m/s), a high level of 

component reliability (i. e. X< 1) enables CBM because of the resultant decreased 

maintenance frequency. As reliability decreases, CBM benefit increases as there is 

more scope for increased maintenance efficiency and CBM costs are not prohibitive. 
In all base cases CBM is clearly more cost-effective than TBM - if CM system 
diagnosis is 100% and the CM system creates no false positives. 

* Econon-& justification of CBM also hinges on reparability of WT components after 
failure - if 90% or more of outright failures (requiring reactive maintenance) arc 
fairly minor component repairs requiring relatively modest capital ouday, TBM is 

more cost-effective than CBM. Caution should be used interpreting this result due to 

a lack of reliable data on reparability of WI' components and costs of repair (as 

opposed to replacement). 

Onshore CBM benefit is highly dependant on cost of individual WT maintenance 

actions - labour and equipment costs. Doubling of equipment hire costs and 
increasing labour rates by 50% (CE2 CLj acts to reduce CBM benefit as Wr 

reliability decreases (reversing the base case trend). 

If downtime for Wr component failures is reduced, CBM benefit also reduces for 

the case of high and medium WT reliability. However, at a low level of Wr 

reliability, the CBM bcncfit increases. This is due to a 'secondary' effect of low 
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downtime (i. e. not related to lost energy). WI7 Availability is boosted because of the 
low WT failure downtimes, which results in higher component failure rates, because 

the system is 'exposed' to failure for longer time periods. Intuitively, a reduction in 

WT downtime would reduce the benefit of CM, because the consequences of an 

outage arc lower and hence the benefit of avoiding those outages is reduced. 
However, this secondary effect on WT reliability means that the outcome is less 

straightforward than at first glance. 

CBM benefit associated with increased average wind speed exhibits similar behaviour 

to the base case: that is WT CBM benefit increasing as WT component rehability 
decreases. The lost energy' cost component becomes more significant than incurred 

Wr maintenance costs as the system as a whole becomes less reliable, driving up 
CBM benefit. 'Me low reliability Wr system coupled with increased average wind 

speed increases CBM benefit compared to the base case. A major conclusion is that 

lost energy contribution to WT CBM benefit dominates at high wind sites onshore, 
but only if component reliability is relatively low. 

WICM system technical capability was appraised. The WT CM system has to detect 

30-40% (or more) of all incipient WT component failures to be economically 
justified onshore (i. e. detecting the change from the Markov chain from 'fully up' 

state to a 'derated' state). Whether or not current wind turbine condition monitoring 

systems can attain this level of fault diagnosis accuracy is open to debate. 

Alternatively, the system can withstand up to 3 CM-induced false positives per 

annum and still be more cost-effective than TBM. 
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7.1.4 Prerequisite 'Conditions for Success'for Onshore WT CM 

Taking stock of the onshore results, the key conditions to enable CBM for onshore WTs are 
defined in Table 52. Looking at these five conditions for success, three are related to the 

modelling of WI' components - reliability and downtime (#1,2,3). 'Me main factor 

impacting on this sub-set of key cnablers is how maintenance is modelled. For example, it 

has been assumed that CBM actions always restore the system to its fully up state. Although 

this is quite a substantial assumption, the same assumption has been made for TBM. 

Similarly, modelling of component repair incurred during maintenance as a factor (ot) of the 

capital cost is a simplistic, but necessary, assumption - again this is the case for both CBM 

and TBM. If these caveats regarding the modelling are accepted, the key enablers displayed 

in Table 52 can be considered robust indicators for the economic success of onshore CBM. 

# Condition For Success - Onshore Wind Turbine Condition Monitoring 
I Very strong site wind profile in tandem with low reliability 

2 High WT reliability in tandem with high maintenance costs 

3 High downtimes for unplanned outage ('tens' of days) - e. g. no easily accessible spares 

4 Good technical performance of CMS (40%+ good classification of incipient fault) 

5 20%+ of outright failures requiring replacement rather than repair 

Table 52: Key Enablets for Onshore WT Condition Based Maintenance 
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7.2 Offshore Wind Turbine Results 

7.2.1 Economic Impacts of Model Input Assumptions 

The economic case for CBM applied to offshore wind turbines is sun-Lmarised in Figure 108 

and Figure 109. The broad conclusions in Figure 108 (i. e. assuming perfect CM system) are 

somewhat dissimilar to those in the onshore case, with CBM benefit reducing as reliability 

reduces, in contrast with the general onshore trend. Also, the magnitude of the CBM benefit 

generally increases by orders of magnitude. The low reliability scenario always results in a 

reduction in CBM benefit, regardless of the other variables. 

The main inference from Figure 108 is that the increased downtime and increased mean 

wind speeds are two key factors which enable cost-effective offshore CBM. Figure 108 also 

shows that the combination of high WT maintenance costs in tandem with low WT 

reliability results in a very low economic CBM benefit. 
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Figure 108: Impact of Model Parameters on Economic CBM Benefit - Offshore 
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Figure 109 illustrates that the technical performance of the CM system itself (failure capture 

probability) has a strong bearing on the potential economic benefit for offshore VIT CBM. It 

is noted, however, that the threshold at which CBM becomes economically favourable has 

reduced compared with the onshore case (see Figure 105). This reflects the potential cost 

savings for offshore WI7 CBM, as these are much higher than the onshore case. Even 

tapping into a fraction of this potential (i. e. detection of 20% of incipient failures before they 

occur) results in significant economic savings compared to annual TBM. 

The impact of WT 'component reparability' in the offshore environment is also a very 
influential factor in the economic case for offshore WT CBM. Since component costs are 

significantly higher for a 5MW WT, it is not surprising to see this variable gaining in 

significance. More repairable WT components render CBM uneconomic, whereas the 

potential for cost savings is huge if very few repairs can be performed after a failure. If the 

assumptions provided by Ribrant and Bertling (2007) regarding gearbox replacement 

probability of 0.6 can be applied to all offshore WT components, CBM has a clear economic 

case. 
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7.2.2 Technical Impacts of Model Input Assumptions 

Figure 110 and Figure 111 summarise the technical impact of CBM in terms of availability 

for offshore WTs. Figure 110 shows how the increased WT downtime scenario multiplies 

the technical benefit by a factor of -3 relative to the base case. This effect is well correlated 

with the ecoriornic impact of increased WT downtime (see Figure 108). 

Compared to the onshore WT results (Figure 106), the technical benefit of adoption of CBM 

for offshore WTs is much higher. In the case of low WT reliability in tandem with increased 

downtime, the benefit is over 10% in availability improvement. 
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Examination of Figure 111 in comparison with Figure 109 shows that the technical and 

economic benefit relative to CM failure capture probability and component replacernent 

probability is broadly similar. It is interesting to note that the range of values for technical 

impact of CBM for the onshore WT model in Figure 107 is very similar to the offshore WT 

model in Figure 111. 

Despite the technical similarities, the economic impact of the offshore and onshore 

scenarios is very different (as observed by comparing Figure 109 with Figure 105). 
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7.2.3 Conclusions Drawn from Offshore Wind Turbine Results 

Offshore model produces lower overall WT availability but higher energy yields, 

annual revenue, WT failure rates and lost energy than the onshore wr model. These 

effects have been predicted and observed by many commentators, but their 

quantification is now based on solid theoretical and practical foundations. 

Base case WT CBM benefit appears to be significantly larger (x2) for offshore V)Ts, 

however the magnitude of the calculated confidence limits makes the size of the 

benefit unclear. 

Increased WT component costs increase CBM benefit by -4 times. This compares 
with a -2 times increase for onshore conditions. It is concluded that the higher cost 

of Wr component replacements and repairs for offshore WI's is a major enablcr for 

offshore WIr CM. 

CBM benefit is strongly coupled with high and low WT reliability scenarios for 

offshore conditions. The medium reliability has little effect and often generates 

similar effects to the high WIC reliability level (Figure 108). This is because the 
CBMDM model has been specified based on a system with medium Wr reliability 
level. This shows that the results are also dependent on how the model parameters, 

such as CBM wait time, are specified. 

e Results for reparability of WT components show that the offshore CBM benefit is 

more sensitive to the case of WI' repair than onshore. If only 30% or less of wr 
failures have to be replaced rather than repaired, TBM is more cost-effective for 

offshore WTs than CBM. 
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Doubling WI' maintenance action costs (specifically, crane hire mobilisation costs) 
has considerable effect on CBM benefit. CBM benefit across all wr reliability levels 

is reduced, and CBM benefit is marginal for the low WIC reliability, high maintenance 

cost scenario. 

Downtime increase has large impact on results, clearly tipping the balance in favour 

of CBM. It has been shown that the lost energy' component of CBM benefit is 

driving this impact. Thus, high WT downtimes for unplanned outages offshore make 

a persuasive case in favour of CBM, particularly for Wrs with low reliability. 

Increase in the mean wind speed (mean=7.95m/s instead of 6.95m/s) boosts the 

case for CBM over all WT reliability levels. However, it is not as influential as the 

WT downtime increase previously mentioned. 

Ile threshold for positive WT CBM economic value in terms of technical capability 

of the CM system (false -ves) decreases from -30/40% (onshore) to -10/20% 
(offshore). Onshore systems require higher levels of CM technical performance in 

order to justify themselves economically. Relatively error-prone CMS can still be 

more cost-optimal than TBM in the offshore environment, because the potential 

cost savings are very significant. Surprisingly, the result as regards false positive 

threshold at which CBM becomes uneconomic is similar in onshore (3 false positives 

per annum) and offshore (4 per annum) conditions. 
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7.2.4 Conditions for Success for Offshore WT CM 

The impact of offshore conditions on the case for CBM is summarised in Table 53, which is 

an extended version of the equivalent onshore table. One of the key questions posed in the 
introduction of this thesis was: do offshore conditions present a clear case for CBM? 

Broadly speaking, the magnitudes of CBM techno-econon-. ic benefit measured from the 

simulations were much larger in magnitude than the onshore equivalent. Table 53 shows that 

the drivers are broadly similar and do not change much for offshore conditions. Perhaps the 

most surprising of the modifications are the reduced requirement on the robustness of the 
CM system (i. e. lower failure detection probability). 

This shows that the potential benefits offshore are indeed much bigger than onshore, and 

the more reliable the CMS is, the more of this potential techno-economic benefit can be 

unlocked. 

# Condition For Success - Onshore Case Offshore Condition for Success Modification/ 
Comment 

I Very strong site wind profile in tandem with Key enablcr for both cases 
low reliability 

2 High WT reliability in tandem with high High reliability - key enabler. High maintenance 
maintenance costs costs - reduces offshore CBM benefit. 

3 High downtimes for unplanned outage ('tens' of Key enabler for both cases 
days) - e. g. no easily accessible spares 

4 Good technical performance of CMS (40%+ Less dominant than onshore: threshold for positive 
good classification of incipient fault) CBM benefit is reduced to -20% 

5 201/o+ of outright failures requiring replacement More dominant than onshore: threshold for cost 
rather than repair effective TBM is raised to -30% replacements 

Table 53: Key Enablets for Onshore WT Condition Based Maintenance - Offshore hiodifications 
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7.3 Appraisal of Results 

The results presented in this chapter have demonstrated the main innovation of this thesis - 
that is to quantify the benefits of adopting condition based maintenance for wind turbines 

taking into account key factors such as WT operating conditions as well as robustness and 

accuracy of the CM system itself. In the existing literature on this subject, these issues are 

often glossed over and their impact is often not quantified which is detrimental to the model 

accuracy. 

'Me key value of this work is that it provides a quantitative evaluation of the techno- 

economic merits of wind farm maintenance policies which have not been provided until 

now. Maintenance policy decisions are currently based either on manufacturers' 

recommendations or assumptions that wind turbines should be maintained in a way similar 

to other power systems utility assets such as circuit breakers (i. e. TBNý. Tbc proposed 

method can provide decision support for wind farm maintenance policy decision makers 
(operators, utilities, O&M sub-contractors): information and insight which has not been 

availablc until now. 

The analysis contained in this thesis shows that TBM applied to wind turbines may not be 

cost optimal or provide the highest technical benefit. However it also shows that certain 

conditions are prerequisites for the techno-economic benefits of CBM to be realised. Some 

of these conditions are surprising - for example the analyses show that the case for CBM is 

marginal in the case of offshore WTs with a low level of reliability, coupled with high 

maintenance costs. Compared to the TBM policy, which is restricted to one maintenance 
action per annum, the CBM policy will incur more maintenance actions because of the high 

number of incipient failures, and the increased cost of these actions decimates the economic 
benefits of CBM in this case. This is a credible scenario given the hostile conditions 

offshore, which may act to reduce WT reliability. This conclusion is not one which has been 

reached in the existing literature: however it demonstrates the value of the approach 
proposed in this thesis. 
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Similarly, the results have shown that the diagnosis accuracy of the CM system has to be 

higher onshore to justify a cost-effective CM system. Ibis rcflccts the fact that the potential 

savings achieved by adoption of WICBM are larger offshore. It also provides a benchmark 

in terms of successful fault classification, which CM systems should be able to meet in order 

that the CM system is economically justified. 

In terms of the approach taken to the modelling, the Markov chain solved via MCS has been 

demonstrated as a suitable model framework to capture the nuances of wind farm 

operational issues, some of which are neglected by other studies because other frameworks 

cannot handle issues such as modelling of the CM system. As well as being flexible and 

accurate, another advantage of the method is the small number of parameters, which can be 

estimated from limited data. This is important, since the experience during this research was 

that this kind of operational data is sparse or non-existcnt. Another advantage of the 

methodology is that it is not necessarily retrospective - reliability, downtime, costs etc. will 
be known from other wind farm sites or can be estimated from existing bodies of data such 

as windstats. 

It is conceded that the approach proposed in this thesis has some limitations. The most 

obvious of these is that if many intermediate states are modelled, the state space would 

quickly become unwieldy and difficult to visualise. For example, if four states were used to 

characterisc the deterioration of gearbox, generator and rotor blade instead of three states (as 
has been assumed in this thesis), and two states as before for E&E failures, then the 

equivalent number of states would be: 

3 

x2 =128 

Simplifying assumptions could be used to cut this number down (earlier in the thesis this 

reduced the number of states by around 50% - see section 4.1.6). However, this still results 
in around 60 states. Similar problems are encountered if more components are to be 

included in the model. The inclusion of one extra three state component in the model 

presented in this thesis would mean the number of states increasing to: 
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34 x2 =162 

It can be observed that this approach suffers from the so-called 'combinatorial explosion' 

problem which is an issue for many approaches which use the concept of a discrete state- 

space. The counter-argument to this problem questions how many states are actually 

required to characterise deterioration of WT components. This, in fact, is a fundamental 

question in deterioration modelling. 

The answer depends on the application of interest. For example, if the objective of the work 
is to gain a deep understanding of the mechanics of deterioration behaviour, then a higher 

number of states would probably be necessary to capture various stages of the deterioration 

characteristic. An example of this would be a beating fault: this might start with an extreme 
weather event causing excess vibration, damaging a rolling element. The damaged element 

could wear away the bearing race over a period of days or weeks, slowly causing eccentricity 

and then misalignment on the rotor shaft. Finally this misalignment might cause a rotor shaft 

to snap or a serious problem inside the gearbox. Modelling of the intricacies of the 
deterioration process using a Markov chain would probably necessitate many more states 

than the three state representation used in this thesis, because the process stages (as 

hypothesised above) would be modelled in high detail. Conversely, if the modeller is simply 

concerned with typical probabilities (or times to failure), but also wants to capture basic 

deterioration behaviour, three states (as used in this thesis) may be adequate. 

The key strength of this work is that it has enabled the key drivers for implementation of a 
condition based maintenance system for wind turbines to be identified (See Table 53). 
Furthermore, the magnitude of the benefit under various conditions has been calculated. 
These outcomes have been derived on the basis of sound quantitative, probabilistic analysis 
tools as described in tl-ýs thesis. 
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7.4 Future Work 

The work presented in this thesis could be built on in the future to investigate other specific 
issues of interest. 

One interesting concept is the idea of benchmarking the operational performance of 
different WT concepts and maintenance policies. For example, a new muld-generator design 

is being developed by a WT manufacturer, the idea being that the increased redundancy 

could let the WT run even if one or two generators fail - much Eke aircraft engine 

redundancy. It would be very interesting to compare the reliability of different Vr 

configurations alongside the impact of maintenance policies. For example, applying an 

extended CM suite to a conventional Danish concept Wr (could be modelled by assuming a 
high CM capture probability) and comparing technical and economic aspects to muld- 

generator design with TBM applied. The muld-generator WT could be modelled via a 

conventional reliability block diagram coupled with MCS. Similar analyses could be 

conducted for direct drive machines, muld-rotor machines or VAWTs. No analysis of this 

type has ever been published but it would be possible to achieve by making minor 

modifications to the models underpinning tl-ds thesis. 

The primary focus of this thesis has been the ongoing costs of wind farm operation. Capital 

costs of the condition monitoring equipment have not been considered, since CM systems 
including temperature and vibration monitoring are now included at manufacture as 

standard in MW-class turbines (rather than an optional extra). The key question addressed in 

this thesis has therefore been whether or not the CM information will be utilised as part of 

the operational strategy, or simply ignored in favour of TBM. Nevertheless, new CM 

methods are continually being developed, some of which may involve extra capital outlay. 
One area of future work of interest is to appraise the added value of novel, individual CM 

solutions taking into account the capital cost needed for deployment. For example, acoustic 

sensors have been suggested as a novel method for monitoring the deterioration of WT 

rotor blades. If the incipient fault diagnosis accuracy (e. g. false negatives and false positives) 

of an acoustic-based blade monitoring system could be quantified, and the capital costs were 
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known, then the incremental value of such a system could be evaluated using the techniques 

presented in this thesis. 

Another possible avenue for future research, building on this thesis, is the use of the models 

to evaluate the financial viability of wind farms for future economic scenarios. For example, 
it is unknown whether or not that the ROC subsidy mechanism for renewable electricity will 
be supported beyond 2021 (the current lifetime of the ROC system). The model parameters 

could be altered to establish if wind farms could remain economically viable in a future low- 

subsidy environment. Since utilities are interested in staying one step ahead in terms of 
future revenue projections and impacts, the models in this thesis could be modified for this 

purpose, and would be of interest. Investor confidence is always an issue in large 

infrastructure projects and the models produced in this thesis could reduce uncertainty by 

predicting the economic viabUity of future wind farm projects. 
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Appendix A- Solution of Simplified 3-State Markov 

Process 

Derivation of time dependent probabilides, rehability and MTrFof three state system with 

state three set as an absorbing state (necessary for calculating MTTF). 

pl (t+8t) = (1-, td5t) P, (t) (1) 

P2 (t+5t) 
= 

(1-11d5t) P2 (t) +A Pl gt 

P3 (t+ gt) ý- P2 (t) M+ p3 (t) (1) 

Rearranging equations 1,2 and 3 yields: 

P, (t+gt) - P, (t) A 

P2(t+&) -P2(t) 
: -A P2+/l PI 

(5t 
P3(t+5t) -P3(t) 

9t ;A P2 

If 8t becomes sufficiently small then this hnear approximation of the function can be 

expressed as a differential. 'Me three resulting differential equations are best surnmarised in 

matrix form: 

Pf2(t) P? 
3(t)]": Xw t) P2 (t) P3 

239 



In order to solve more easily, firstly transform into the s-domain: 

SP, (s) - pl (0) -2ýp, (s) (1) 

+/ (2) SP2(S)-P2(0)" tPl(S)-11P2(S) 

SP3 
(S) 

- P3 (0) 
=+ AP2 (S) (3) 

Assuming the initial conditions at time t=O are pl(O)=lp P, (O)=O and P3(0)=O, t1len: 

. *. sp. 
(S) 

-i= -Ap. 
(S) 

and 
(s+, ') P, (S) 

=1 (1) 

Sirnilarly: SP2 
(S) 

+ IT2 
(S) 

= Ap, (S) 
and 

(S+11) P2 (S) 
= API (S) (2) 

And SP3 
(S) 

= AP2 (S) (3) 

Rearranging the above expressions yields: 

P, (S) = ;, (1) (S+A) 

(2) P2 (S) PI (S) 
(S+A) 

P3(S) =ýýP2(S) (3) 
s 

Substitute (1) into (2): P2 
A)1 

(S) 
= (S+, Iy or P2(s) (S+, Z) 2 
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Convert expressions for P, and P2 from s-domain back to time domain using Laplace 

transforrns: 

t2-1 e7, 
U 

I. 

A or P2 t e7'u 

To form an expression for reliability, the time dependent probabilities for the functional 

states are summed. This is the final analytic formulation of the reliability - 

. 
*. (t) =P. (t) +Pý(t) =C'll +At C'l' =(1+At)C2' 

Ile mean time to failure is obtained by integrating the expression for reliability: 

MTTF =ýR (t) 
i5t 

.,. MITF =[- e-it+, tf2(-At-1 
mm [- 

e7-, u-t e-, zt_ e-k 
.ZA2 

110 
AA 

10 

m7TF 
2 

e-'tt-t e -, u]ao = [or [__2 ]o MITF 
A0i 

The expression for availability is shown below, based on the analytic calculations. If %=1 per 
annurn and MTIR=1/12 (1 month) the availability can be quantified. 

Availability = 
A17TF 2 

_= 96% MTTF +MTTR 2+0.08333 
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Appendix B- Understanding the Student-t Probability 

Density Function 

Student-t distribution probability density function (pdo is characterised by Equation 1, 

where v is the number of degrees of freedom and I is the random variable. 

(V+l 
t2 (VA= 22 

(2 
1 

V) v 

Equation 1 

In the example considered in this thesis, v=29. Therefore according to Equation 1, the 

Gamma function (T) has to be evaluated at 15 and 14.5 - r(15) & r(14+1/2). For positive 

integer values of v, the gamma function can be approximated by the factorial in Equation 2. 

(v)=(V-I)! 
Equation 2 

T'herefore, for this example IP(15)=(15-1)1=87178291200 - this is the numerator of the first 

term of Equation 1. Finding the gamma function for half-integers (e. g. 14.5 - denominator) 

is more complex. Equation 3 illustrates an identity which can be used to calculate half- 

integers of the Gamma function. 

I, [+ ]=j;;; 
(2v4 )!! 

Equation 3 

tO 
TV! 

Equation 4 
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bmwmvl'ý, 

The double factorial term - (2v-l)!! - can be simplified into the expression in Equation 4. 

Since v+ V2 from Equation 3 is equivalent to 14 + 0.5, the double factorial resolves to 28! 

i. e. 3.04888 x 1029 is the numerator of Equation 3. The denominator is simply 2'=2"=16384. 

Equation 3 becomes: 

r, -- -- 3.0488 xlO'9 
2 'f Ir 2' ý, 

[ )T 16384 = 23092317922 

The first term of the student-t pdf (Equation 1) can therefore be calculated: 

(29+1) 

_87178291200 
29, 29 2.20415xlO" -'J"" 5518579 

This first factor, calculated above, has the effect of scaling the second term (re-stated below) 

of the student-t pdf, which is plotted in Figure 112. This clearly shows the nature of the 

student-t distribution, which is utilised in the thesis to estimate confidence limits. 

[(v+i) 
(t2 12 
I -+1 

1.2 

1 

0.8 

0.6 
L3 

0.4 

0.2 

0 

Figure 112: Sccond Term of Student-t PDF for 29 Degrces of Frecdom 
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