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Abstract 
 

Inspired by the novel flapping caudal fin and body undulatory mechanisms in nature 

swimmers, simplified physical models are built in Computational Fluid Dynamic 

(CFD) solvers, and used to investigate the self-propulsion performance under 

different conditions with various kinetic and geometric parameters. Two simplified 

physical models, three-dimensional flapping wing model with flexibilities in lateral 

and rotational directions and multi-body system model with rigid components 

connected by revolute joints, are investigated for mimicking typical bio-inspired 

locomotion. 

 

The study was firstly carried out on a three-dimensional wing with a freedom in 

translational direction under a prescribed flapping motion. The investigation focused 

on how the system kinematics and structural parameters affect the dynamic response 

of a wing with a relatively small span length. It shows that the induced wing motion is 

a result of the system stability breakdown, which has only been observed by previous 

researches in the two-dimensional case. The results obtained indicate that the 

evolution of the wing locomotion is controlled not only by the flapping frequency and 

amplitude, but also influenced by the system inertia as well as the wing aspect ratio 

and density ratio. Moreover, initial perturbation effect on wings flexibility plays a role 

in the evolution development. 

 

Subsequently, a comprehensive investigation is carried out on the dynamics response 

of a three-dimensional flapping wing with two degree of freedoms in lateral and 

rotational direction under a zero initial velocity condition. Distinguishing from the 

limited existing studies, present work performs a systematic examination on the 

effects of wing aspect ratio, inertia, torsional stiffness and pivot point on the dynamics 

response of a low aspect ratio rectangular wing under an initial zero speed flow field 



Abstract 
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condition. The reduced rotational pitching help with the symmetry breakdown of the 

flapping wing and results in a forward/backward motion. When the wing reaches its 

stable periodic state, the induced pitching frequency is identical to its forced flapping 

frequency. However, depending on various kinematic and dynamic system parameters, 

(i.e. flapping frequency, density ratio and pitching axis), the lateral induced velocity 

shows a number of different oscillating frequency. Furthermore, compared with one 

degree of freedom wing in lateral direction only, the propulsion performance of such a 

two degree of freedom wing relies very much on the magnitude of torsional stiffness 

adding on the pivot point, as well as its pitching axis. In all cases examined, thrust 

force and moment generated by a long span wing is larger than that of a short wing, 

which is remarkably linked to the strong reverse von Kármán vortex street formed in 

the wake of a wing. 

 

In a separate study, the undulatory motion of fish body is mimicked with a series of 

linked rigid bodies, i.e. a multi-body system. The connection between two adjacent 

rigid components can be modelled as the revolute hinge joint, with either a passively 

induced pitch motion or actively prescribed pitch motion. Emphasis is put on the 

development for solving the problems of coupling multi-body dynamics with fluid 

dynamics by implementing Mobile Multi-body System (MMS) algorithm with CFD 

solver. Verifications are carried out by repeating the previous work, and innovative 

cases are tested on a prototype with three-linked rigid body system with an active 

joint and a passive joint. The investigation is made on the flexibility effect of tail on 

the propulsion performance. It shows there are optimized stiffness and damper 

coefficients at the passive joint leading the most efficient propulsion and fastest 

velocity through varying the posture of undulatory trajectory. 



 

1 
 

Chapter 1 Introduction 
 

 

1.1 Introduction to Bio-Inspired Locomotion System 

The so-called bio-inspired engineering/design is a new scientific discipline and has 

drawn a lot of attentions in the last few decades. It is a subject of learning the 

advanced principles from animals and then applying on the improvement of industrial 

devices. The principles come from wide range of species in nature, from the 

nano-scaled and micro-scaled living cells, tissues to the macro-scaled reptiles, bird, 

fish and mammal, and their applications cover many industry fields, e.g. biomedical 

devices, robot design, aerospace, naval architecture, etc. 

 

The bio-inspired locomotion system is a sub-category of bio-inspired system, and it is 

about learning biological concepts from nature and applying them into the design of 

man-made propulsion devices. After billion years of evolution and natural selection, 

the flying and swimming animals in nature have developed their extraordinary 

locomotion abilities. They have high locomotion efficiency, low noise production, fast 

maneuvering and are normally environment friendly. All of these abilities can be 

utilized for designing vehicles with better propulsion performance and less damage to 

the environment. In this thesis, we concern only normal scale aquatic animals, and the 

hydro-wing models as well as multi-body models are designed and tested accordingly 

for exploring their propulsion performances. 

 

Studies of bio-inspired locomotion system can be divided into two stages. In the first 

stage, the biological shapes and locomotion are directly copied into man-made 

vehicles, called bio-mimicry stage. Most of the robotic fishes and birds are the 

examples in this stage. The second stage, which is more advanced, is to learn from the 

nature, understand the mechanism and apply to improve the existed devices, such as 

the muscle-like bio-actuators, etc. In this thesis, most of the effort is devoted to focus 

on the simplified bio-mimicry system and investigate the fundamental mechanisms, 

while in the last past of this thesis, we present our preliminary study which can be 
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classified in the second stage. In the following, we combine these two stages together 

and review the most relevant work. 

 

In this section, the classification of ways of fish swimming is firstly reviewed. The 

classic studies mimicking both undulatory body motion and tail flapping motion with 

models of simplified geometry are examined. The hydrodynamic performance of the 

bio-inspired locomotion systems is indicated on mainly two aspects, high quality of 

propulsion performance and outstanding energy harvesting ability. The concept of 

biomimetic applications has been developed for a few decades, and the robotic 

devices are also briefly introduced. 

 

Figure 1.1 Classification of fish cruise. Courtesy of Sfakiotakis et al. (1999). 

 

 

1.1.1 Classification of Bio-inspired Locomotion System 

The bio-inspired locomotion system can be classified in different ways, and one of the 

typical classifications is to sort them by the flexibility of the fish body. As shown in 

Figure 1.1, fish under undulatory locomotion propel themselves by waving the entire 
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body, whereas those under oscillatory locomotion generate propulsion by flapping 

their caudal fins. The relevant simplified physical models are developed for scientific 

studies. For example, following the undulatory mode, the slender body theory is 

developed with the assumption that the entire body undergoes a traveling wave, and 

considering the different ways of oscillatory motion on the fish fin, there are 

investigations on the models of fish fins with the rest parts of body relatively rigid and 

stationary. In the present study, the flapping foil and flapping wing models are 

developed to represent the oscillation fins, and the undulatory motion is mimicked by 

a multi-body system that is inspired from the concept of muscle-like bio-actuators. 

The studies are reviewed based on two physical models, i.e. undulatory motion and 

flapping motion. 

 

 

Figure 1.2 Fish swimming in a traveling wave form, (a) Anguilliform mode, (b) Subcarangiform 

mode, (c) Carangiform mode. Courtesy of Sfakiotakis et al. (1999). 

 

 

1.1.1.1 Undulation Motion 

As shown in Figure 1.2, concerning the body motion of Anguilliform, Subcarangiform 

and Carangiform modes, the whole body or most of the body participate in large 

amplitude undulation, which can be simplified as a traveling wave plate. Since the 

wave is transported backward, the undulation body pushes the surrounding water to 
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downstream. According to acting and reacting law, the surrounding water also exerts a 

thrust force on the undulation body. The differences among these modes are the 

wavelength and the amplitude being different for different modes. 

 

In addition, the traveling wave model is also confirmed to be beneficial for the drag 

reduction. Taneda and Tomonari (1974) used the hot-wire anemometers to measure 

the flow field around a wavy wall. They concluded that the wavy plate accelerates its 

surrounding fluid, and meanwhile supressed the turbulent fluctuation. Recently, with 

the direct numerical simulation tools, Shen et al. (2003) captured the flow separation 

above the wavy wall. They further demonstrated that the separation disappeared once 

the phase velocity was larger than the flow velocity. 

 

Figure 1.3 Schematic of flapping motion of a caudal fin. Courtesy of Sfakiotakis et al. (1999). 
 

 

1.1.1.2 Flapping Motion 

On the other hand, concerning Carangiform and Thunniform modes in Figure 1.1, 

fishes gain the thrust by oscillating their caudal fins, whereas their main body can be 

considered as a rigid body. Most of the large marine mammals, such as whale and 

shark, swim in this way, and their caudal fin is in crescent shape. As shown in Figure 

1.3, the locomotion of the caudal fin can be decomposed into two parts, i.e. the 

translational motion along vertical axis and the rotational motion with respect to its 

peduncle. This kind of motion is normally called flapping. Meanwhile, the cross 
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section of the caudal fin can be simplified as foil geometry. Therefore, from a 

hydrodynamic point of view, scientist would like to employ the flapping wing or foil 

model to study the propulsion performance of fish swimming with Carangiform or 

Thunniform modes. 

 

It is worthy of mention that the flapping wing/foil model is not only employed by fish 

swimming, but also applied in the study of bird and insect flying. As shown in Figure 

1.4, if we has a close inspection to the wings of a dragonfly, the locomotion can also 

be decomposed into two parts, i.e. the translational motion and rotational motion, 

where the flapping wing/foil is also applicable. 

 

 

Figure 1.4 Trajectory of a flapping wing of a dragonfly. Courtesy of Wang (2005). 

 

1.1.2 Hydrodynamic Performance of Bio-Inspired Locomotion 

System 

As mentioned in the last section, there are mainly two typical models, i.e. undulating 

body and flapping foil, which are used in this thesis to study the bio-inspired 

locomotion. In the last three decades, theoretical, experimental studies as well as 

numerical simulation have been focused on these subjects. In the following 

sub-sections, relevant research work will be introduced within two categories, i.e. 

propulsion bases system and energy harvesting based system. In details, concerning 

propulsion based locomotion, the body is propelled with a prescribed undulation or 
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flapping motion. Within a specific range of kinematic parameters, the body can gain a 

thrust from its surrounding fluid, and move forward. For the energy harvesting based 

system, the body motion is either prescribed or induced by the incoming flow, 

connecting with an energy harvesting device or material. 

 

1.1.2.1 Propulsion Based System 

In the past few decades, large amount of efforts have been paid into the explorations 

on aquatic animal propulsion mechanism. The aforementioned two physical models 

are applied, either in theoretical investigations, or numerical and experimental studies. 

In this section, we review the available works based on the propulsion mechanism 

thoroughly. 

 

In 1960s, Sir M. J. Lighthill first developed the slender plate theory (Lighthill, 1960, 

1971) to study the hydrodynamic performance of a wavy plate model. In his studies, 

the motion of undulation body can be described as a traveling wave with increased 

amplitude from head to tail along the fish body central line. His theory proved that 

once the traveling wave speed is larger than the flow speed, the wavy body could gain 

thrust and move forward. After then, T. Y. Wu in California Institute of Technology 

employed the wavy plate model (Wu, 1961, 1971a, b, c), and systematically 

investigated the effects of wave frequency and wave number. Recently, with the 

development of computational fluid dynamics (CFD), large amount of numerical 

simulation work focus on this topic. Carling et al. (1998) numerically studied a 

released fish under free motion with self-propelled velocity calculated from the 

Newton’s Second Law to calculate the fish self-propelled velocity. Dong and Lu 

(2005) studied the effects of phase velocity and wave amplitude on the propulsion 

performance of the wavy plate, and they found that a large wave amplitude 

corresponds to a high propulsion efficiency. Deng et al. (2006) conducted a 

two-dimensional simulation taking the thickness of the wavy plate into account. 

Leroyer and Visonneau (2005) employed the RANS turbulent model to study fish 

swimming performance at high Reynolds number. On the other hand, there are also 

certain studies concerning the group fish swimming. In 1970s, Professor Weihs (1973) 

first gave a comprehensive analysis of the hydrodynamics of fish schooling. As shown 

in Figure 1.5, schooling fish normally assemble in a diamond shape formation. Fish B 
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in Figure 1.5 is in the midline of the wake of Fish A and Fish C, and the shed vortices 

from Fish A and Fish C can help with the Fish B for better propulsion. 

 

Figure 1.5 Schematic of fish schooling. Courtesy of Weihs (1973). 

 

 

From 1980s, scientists started to apply the flapping foil/wing model to study 

biological locomotion of fish tail. The pioneer work is done by Freymuth (1988) that 

the reverse Kármán vortex street in the wake of a plunging and pitching wing in a 

wind tunnel was experimentally captured with a narrow strip of liquid titanium 

tetrachloride deposited from the leading to the trailing edge. From 1990s, the research 

group of Professor Triantafyllou at Massachusetts Institute of Technology (MIT) 

conducted several experimental work on the flapping wing. They indicated that a 

flapping wing obtaining either a thrust force or a drag force depends on the 

appearance of reverse Kármán vortex street, and was also corresponding to the 

non-dimensional flapping frequency, i.e. the Strouhal (St) number (Triantafyllou et al., 

1991). They reported that when the St number is in the range of 0.25-0.35, the 

flapping wing obtains thrust and the vortex wake appears as a reverse Kármán vortex 

street (Triantafyllou et al., 1993). They then systematically studied the propulsion 

performance of the flapping wing, which includes high efficiency flapping motion 

mode (Anderson et al., 1998), effects of flapping parameters (Read et al., 2003), 

attack angle profile (Hover et al., 2004) and asymmetric flapping (Schouveiler et al., 

2005). 
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Concerning the numerical investigation, Wang (2000) first simulated a 

two-dimensional oscillating foil. Lewin and Haj-Hariri (2003) used the same model 

and investigated the leading edge vortex structures under different St number and the 

correlation of St number to propulsion efficiency. Guglielmini and Blondeaux (2004) 

extended the previous model to a fully flapping foil model with coupled heaving and 

pitching motions, it showed in their results that the coupled pitching motion can 

enhance the thrust and propulsion efficiency. Later on, a parametrical simulation was 

conducted by Pedro et al. (2003), using the Arbitrary Lagrangian-Eulerian method 

(ALE). Direct numerical simulations of a three dimensional flapping wing were also 

reported recently. Blondeaux et al. (2005) used a moving reference frame to handle 

the flapping wing motion, cases with two typical St number were investigated. At 

relatively lower St number of 0.175, the interactions between vortex rings are weak, 

whereas at St number of 0.35, the interactions are enhanced and the vortex rings begin 

to connect with each other. Dong et al. (2006) used immersed boundary/ghost cell 

method to simulate an elliptical wing, three aspect ratios were investigated. Shao et al. 

(2010) systematically investigated the effect of aspect ratio on the propulsion 

performance and vortex structures in the wake. 

 

1.1.2.2 Energy Harvesting Based System 

In the last two decades, scientists start to focus on the design of energy harvesting 

devices. Apart from the traditional turbine-like facilities, there are a lot of devices 

developed from the inspiration of fish motion. Although the traditional devices can be 

highly efficient, they have certain disadvantages, e.g. it has fast rotating blades which 

are threats to aquatic animals and it requires high qualities of operation conditions, 

such as stably high speed flow and deep depth water, etc. Recently, people start to 

employ the flapping wing model on flow energy harvesting devices, and it is believed 

that it can be smarter with flexible motion and more efficient in wider sea regions 

than the traditional devices. In particular, it is easy to be manufactured and it is 

feasible to be planted in shallow water in groups. Two prototype designs are given in 

Figure 1.6. 
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(a) 

(b) 

Figure 1.6 (a) Tuna-inspired tidal power system (Stingray tidal stream energy device); (b) 

Oscillating marine current energy convertor by Pulse Tidal. 

 

 

McKinney and DeLaurier (1981) first proposed a wingmill device which can extract 

flow energy through the flapping motion of an aerofoil. According to the degrees of 

freedom of the system, people normally categorized the flapping based energy 

harvesting system into three types, i.e. fully-active system, semi-active system and 

purely passive system (Xiao and Zhu, 2014), the schematics are shown in Figure 1.7. 

Most of the studies focus on the fully active model. Kinsey and Dumas (2008) 

investigated the energy harvesting efficiency of a single oscillating aerofoil, which 

reaches as high as 35%, and it is also confirmed by their experiment (Kinsey et al., 

2011). Cho and Zhu (2014) further studied the hydrodynamic performance of a 

flapping foil energy harvesting system in shear flow, to mimic the real flow condition 

of energy harvesting device. For three-dimensional simulation, Deng et al. (2014) 
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proved that the flapping wing with aspect ratio of AR=4 was the most appropriate 

choice for energy harvesting system under a sinusoidal pitching motion. Xiao et al. 

(2012a) applied a trapezoidal-like profile of the pitching motion and they found an 

optimal profile which can dramatically enhance the power output and energy 

harvesting efficiency. 

 

 

Figure 1.7 Classification of flapping foil energy harvesting system, (a) fully active system, (b) 

semi-active system and (c) purely passive system. Courtesy of Xiao and Zhu (2014). 

 

 

In the aspect of control simplicity, the semi-active system or purely passive system is 

more feasible than the fully active system that requires complicated mechanical 

system for the coupled rotational and translational motion. Zhu and Peng (2009) first 

employed the semi-active system, they suggested that the hydrodynamic efficiency of 

the semi-active system depends on several parameters which include pitching 

frequency, pitching amplitude, location of pitching axis and the damping constant. 

Recently, Deng et al. (2015) investigated the inertial effect on the performance of the 

semi-active system, in their study, the mass ratio varies from 0.125 to 100. Peng and 

Zhu (2009) also developed a purely passive model, in which the flapping foil is 

mounted with a damper and a rotational spring. In their numerical simulation, four 

different responses were captured. They shows that stable energy can be harvested 

once the periodic pitching and heaving motions are reasonably excited. Furthermore, 

Zhu (2012) also studied the performance of purely passive system in shear flow. 
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(a) 

 

(b) 

Figure 1.8 (a) Robotuna (Charlie I) and (b) Robotuna II at MIT. 

 

 

1.1.3 Applications of Bio-Inspired Locomotion System 

At the same time of carrying on scientific investigations, various robots are designed 

with bio-inspired locomotion systems. It is expected that the newly designed 

locomotion systems can have better performance than the conventional transportation 

systems. For example, they may cost less energy, make lower noise and be more 

environmental friendly, despite the fact that it is difficult to fully mimic the 

locomotion of real animals by the man-made bio-inspired system. At present, most of 
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the bio-inspired systems are aiming to imitate the kinetic motion of real animal 

actively. In the future, scientists may move forward to locomotion mechanism from 

the aspects of both mechanical and biological, such as taking the muscle and other 

internal body actions into account. Here in this section, we would like to briefly 

introduce a few typical man-made bio-inspired systems. 

 

The research group of Professor Triantafyllou at MIT is one of the pioneer groups in 

robotic fish design. In the period from 1993 to 1995, the first generation robotic fishes, 

RoboTuna (Charlie I) and RoboTuna II, were designed and fabricated in the 

laboratory (Figure 1.8). Their design focused on the oscillation of caudal fins, and the 

hydrodynamic mechanism is investigated by the induced local flow structures. There 

are six servomotors and each of them provides two horsepower. 

 

After then, the MIT research group began to design the second generation of robotic 

fish, RoboPike, upon the model Pike which is a good example for fast start and 

manoeuvring. In 2000s, a new generation of robotic fish was born by mimicking a 

turtle, i.e. RoboTurtle (Licht et al., 2004) in the same laboratory. The RoboTurtle has 

four fins as shown in Figure 1.9, each of which leads a combined pitching and rolling 

motion. This kind of locomotion facility provides a possibility that the whole robot 

can turn around with 180 degrees within a very small radius area. Besides the research 

group at MIT, there are several groups focusing on the design of robotic fish, such as 

Japan Maritime Research Institute where the PE-600 and UPF-2001 robotic fish is 

born, and Beijing University of Aeronautics and Astronautics where the fast 

swimming robofish is designed and tested. 

 

Recently, the concept of soft robot comes out, and the designs based on this concept 

become popular. Although the development of rigid robots turns mature, the rigid 

structure may cause non-negligible performance losses due to limited adaptability in 

the hardware that cannot be easily compensated by the software, and also partially 

because of the lack of flexibility in conventional actuation mechanisms. In contrast, a 
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soft robot structure be deformed to keep balance in uneven ground and be suitable for 

operating in harsh environments. With smaller stiffness, soft bodies can deform to be 

more flexible and absorb energy more efficiently than rigid bodies. This makes it 

extremely attractive in the case of a crash, as well as conformable to unknown objects 

and conditions. These inherent advantages bring soft robots closer to biological 

capabilities observed in nature. To this end, in the past few years, various new types 

of soft robot and AUVs are developed. 

 

 

 

(a) 

 

(b) 

Figure 1.9 (a) Actuator element and (b) general view of RoboTurtle at MIT. 
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U.S. Naval Undersea Warfare Centre and Office of Naval Research recently funded a 

multi-university, national-wide $5 million project. The ultimate goal is to install a 

self-powered, autonomous machine in water for the purposes of surveillance and 

environment monitoring. Two robotic jellyfish of different sizes, as shown in Figure 

1.10, are built by a project team at Virginia Tech, USA. At current stage, the work is 

focused on reducing power consumption and improving swimming performance so as 

to better mimic the real morphology of natural jellyfish. 

 
Figure 1.10 Robotic jellyfish of Virginia Tech. USA. 

 

 

Figure 1.11 Robotic octopus in EP7 project. 
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Meanwhile, in Europe, OCTOPUS project funded by the European Commission 

under the 7th Framework Program (FP7), aims at investigating and understanding the 

key principles of the octopus body and brain. The models are shown in Figure 1.11. It 

is expected to build a soft 8-arm octopus robot, which is able to move in water, with 

its arms to elongate and grasp flexibly. 

 

More recently, the first autonomous entirely soft robot was invented by a team at 

Harvard University, called ‘Octobot’ to mimic the octopus, which is 3D-printed 

(Wehner et al., 2016). 

(http://news.harvard.edu/gazette/story/2016/08/the-first-autonomou

s-entirely-soft-robot/) This new conceptual robot is pneumatic-based (Figure 

1.12), and it is powered by gas under pressure. A reaction inside the bot transforms a 

small amount of liquid fuel into a large amount of gas, which flows into the octobot’s 

arms and inflates them like balloons. 

 

 

Figure 1.12 First autonomous entirely soft robot invented at Harvard University, called ‘Octobot’. 

 

 

The fish-like soft robot is also invented with the help of development of flexible 

linked joint under control of actuators and motors. Professor Hu at University of 

Essex made a stunning fish robot for pollution detection. As shown in Figure 1.13, the 

robot is fully fish like and swims with undulatory motion. There is a rigid head, inside 

which the computers, sensors and battery locates, and flexible links concavely 
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connect together for the body and the tail section, so this can be driven by the electric 

power to bend the body like a real fish. The other outstanding project is funded by the 

Envirobot project, lead by the Biorobotics Laboratory in Ecole Polytechnique 

Federale de Lausanne (EPFL). An amphibious robot is built for outdoor robotics tasks, 

taking inspiration from snakes and elongate fishes as shown in Figure 1.14. Various 

types of adaptive controllers based on the concept of central pattern generators are 

tested for achieving the most proper locomotion controlling nerual network. 

 

Figure 1.13 Robotic fish designed in University of Essex. 

 

 

 

 

Figure 1.14 An amphibious snake robot, AmphiBot. 
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1.2 Physical Problems and Study Scope 

According to the review of bio-inspired locomotion in previous section, a few models 

are proposed for further study. With a special emphasis on the hydrodynamic 

mechanism, the work in this thesis is mainly about two simplified physical models: 

three-dimensional flapping wing model with flexibilities in lateral and rotational 

directions, and multi-body system model with rigid components connected by 

revolute joints. Both of the flapping motion and undulatory motion are the typical 

bio-inspired locomotion. The former model is inspired from the fish caudle fin’s 

flapping motion as reviewed in the Section 1.1.1.2, and the latter one is applied to 

mimic the undulatory motion of entire fish body referring back to the Section 1.1.1.1, 

and the special treatments on the joints can enable the body undulates both passively 

and actively. The physical problems and study scope is briefly introduced in this 

section. 

 

 

Figure 1.15 Sketch of the simulation model. 

 

The schematic view in Figure 1.15 shows that the flapping wing model is with 

three-dimensional (3D) geometry of rectangular shape with elliptical cross-section. 

The wing is allowed to move actively in plunging (y) direction, and it has freedoms in 

in-line (x) and torsional (around z-axis) directions. The wing starts the plunging 

motion in a fully quiescent water condition with flow velocity as zero in the entire 

domain, and the induced motion in lateral and torsional directions are solely 

determined by the fluid-motion coupling between fluid and wing. A parametric study 
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is carried out throughout the Chapter 3 and Chapter 4 to explore the hydrodynamic 

performance of such a model under various combinations of both geometric and 

kinetic parameters. 

 

The second physical model is a multi-body system, as shown in Figure 1.16, that the 

undulatory fish body is treated as a series of linked rigid bodies connected by hinges. 

The undulatory motion can be mimicked by mechanical systems with rigid segments 

and hinges. Hinge between two adjacent bodies can be modelled as revolute joint, 

with either passively induced pitch motion or actively prescribed pitch motion. The 

more distributed segments can achieve more accurate motion. The entire system can 

move freely in water under the specific propulsive pattern. Special emphasis is put on 

the development for solving the problems of coupling multi-body dynamics with fluid 

dynamics by implementing Mobile Multi-body System (MMS) algorithm with CFD 

solver. Verifications are carried out by repeating the previous work, and innovative 

cases are tested on a prototype with both active joints and passive joints.  

 

 
Figure 1.16 A conceptual schematic of multi-body system as substitution of fish body. 

 

  Three arbitrary adjacent bodies 
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1.3 Critical Review 

Concerning the two basic physical models, i.e. the 3D flapping/plunging wing model 

and the multi-body systems, for investigation in this thesis, relevant research work of 

experiments and numerical simulations in the past a few decades are thoroughly 

reviewed in this section. 

 

1.3.1 Flapping Wings 

The term “flapping” is always mentioned and employed in the study of wing motion 

of various animal species. As aforementioned, in recent decades attentions have been 

focused on the propulsion mechanism under a coupled interaction between animal 

locomotion and its surrounding viscous fluid. In this content, the propulsion motion of 

animal is purely determined by the fluid force and moment generated by its forced 

locomotion (Alben and Shelley, 2005; Hu et al., 2011; Lu and Liao, 2006; Spagnolie 

et al., 2010; Vandenberghe et al., 2006; Vandenberghe et al., 2004). In the classic 

studies, it is simplified to a combined pitching and heaving motion, and propulsion 

performance can be observed by examining the lateral fluid forces under a prescribed 

heaving or pitching motion numerically and experimentally (Dong et al., 2006; 

Heathcote and Gursul, 2007; Lewin and Haj-Hariri, 2003; Triantafyllou et al., 1991; 

Young and S. Lai, 2004). Investigations are carried out by the wings with simple 

geometries, covering various system kinematic and structural parameters, such as 

sectional foil shape, plunging frequency, amplitude, and density ratio. Results from 

these studies showed that the forced plunging or flapping motion leads foil acquiring 

a thrust force or moving, in the direction perpendicular to the prescribed motion. 

 

More recently, the study on the flapping wing problem is developed one step further 

by taking into account of the wing system flexibility (Kang and Shyy, 2013; 

Mountcastle and Combes, 2013; Spagnolie et al., 2010; Zhang et al., 2010). It is well 

known that a key feature in flapping wing flight or natural flyers’ wings is the 
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deformable structure that endures either a passively or actively variable shape, owing 

to their inertial and aerodynamic forces during flight. The aerodynamics and structural 

dynamics of such flapping wings are strongly coupled, which often leads to a complex 

fluid-structure interaction (FSI) problem. Therefore, it is of great importance to 

answer a central question of how the three-dimensional and passive change of wing 

kinematics due to inherent wing flexibility contributes to the unsteady aerodynamics 

and energetics during a flexible flapping wing flight (Nakata and Liu, 2012). 

 

To study the flapping wing system flexible impact on its propulsion performance, one 

common method utilized is to introduce a torsional spring at its flapping pivot point 

(Spagnolie et al., 2010; Zhang et al., 2010). Previous studies by Combes and Daniel 

(2003a) and Combes and Daniel (2003b) on the flexure stiffness variation of a 

hawkmoth and dragonfly observed that the flexibility decays sharply from the wing 

leading edge to the trailing edge and from the root to the tip. With the observation of 

high flexibility around the wing root, a simplified structure dynamic model to mimic 

the flexible role of large wings and appendage in the biologic flapping motion is to 

use a lumped-sum torsional flexibility model. In a context of free flying, the wing is 

free to move in the lateral direction, and is also able to pitch clockwise and 

anti-clockwise. The rotational motion is modelled by elastic torsion spring acting on 

the pivot point (Ishihara et al., 2009; Nakata and Liu, 2012; Vanella et al., 2009). By 

introducing these two Degree of Freedoms (2DoF) in both the lateral and pitching 

directions, the biomimetic model getting close to the nature flapping-based animal 

propulsive motions, where both the translation and pitching modes are passively 

induced. 

 

A systematic numerical and experimental study on an elliptic wing with a forced 

heaving motion but passive pitching about its leading edge was performed by 

Spagnolie et al. (2010). While the simulation was conducted at a much lower flapping 

frequency relative to their experiment, many dynamic characteristics of wings are 

supported by their numerical results. The wing with lateral free movement under 
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propulsion of prescribed plunging motion is conducted experimentally/ numerically. 

Under the conditions of two density ratio (σ = 10 and 1.0) defined as the density of 

wing over the density of surrounding fluid, non-dimensional flapping amplitude of 0.5, 

dimensionless spring constant k = 50000 (torsional spring constant) and shape aspect 

ratio (AR) (thickness divided by chord length), by increasing flapping Reynolds 

number (Refr), four flow regimes are found: (i) no lateral movement with an almost 

left/right symmetric flow without a torsional motion; (ii) an improved lateral motion 

with adding a torsional spring than without it (an increased net force in lateral 

direction); (iii) a deteriorated lateral performance relative to its rigid counterpart; (iv) 

a bi-stable status, hysteretic regime in which the flapping wing can move horizontally 

in either directions. Compared to a 1DoF flapping wing in lateral free movement only, 

one significant finding is that a wing with 2DoF including free-pitching could activate 

its lateral motion at a lower flapping frequency, clearly indicating that the system 

flexibility, represented by a pivot point torsional spring, is beneficial to the lateral 

thrust generation. In addition, the maximum lateral velocity is observed when the 

wing flaps at a frequency around system resonance frequency. The examination of the 

wing shape AR varying from 0.1 to 1.0 also revealed a transition from coherent to 

chaotic motion and then a return to coherent motion when AR = 1.0, where the wing 

becomes a circular cylinder. 

 

The study addressing the role of the foil’s torsional stiffness of pitching flexibility has 

also been pursued by Zhang et al. (2010) recently. Using a multi-block Lattice 

Boltzmann Method (LBM), a so-called flexible plate is modelled by a rigid plate with 

a torsional spring acting on the pivot point at the leading edge of the plate. They 

found that the dynamics response of the plate presented a non-periodic status, a 

periodic forward status and periodic backward status by varying various foil 

kinematic and structure parameters. The exact boundaries between the above three 

regimes relied on the flapping amplitude as well as the wing linear density ratio as 

well as the ratio between the system natural frequency to the forced flapping 

frequency. 
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Two-dimensional (2D) assumption is usually reasonably valid for the wings with large 

aspect ratios, which significantly reduces the computational challenge and time. 

However, in contrast to flying animals, fish tend to have relatively lower aspect ratio 

wings, such as the aspect ratios of four species of labrid fishes ranging from about 1.5 

to 3.5 (Walker and Westneat, 2002), bluegill sunfish and rat fish having pectoral fins 

with aspect ratios of about 2.4 (Drucker and Lauder, 1999) and 2.2 (Combes and 

Daniel, 2001). Limited research on 3D tethered flapping wings shows that the wing 

with low aspect ratio generates high propulsion efficiency and reduced bending 

moment relative to the large aspect ratio wings, whereas thrust increase monotonically 

with aspect ratio (Dong et al., 2006; Visbal et al., 2013; Walker and Westneat, 2002). 

The wake vortex topology also presented a remarkable 3D effect, which is strongly 

linked to the wing kinematic performance. The wake of thrust-producing flapping 

foils with finite AR is dominated by two sets of interconnected vortex loops, whilst 

for the low AR wings, the loops evolve into distinct non-circular vortex rings 

downstream (Blondeaux et al., 2005; Dong et al., 2006). 

 

Although the interesting physical phenomenon of the self-propelled flapping wing is 

well documented in the aforementioned two papers (Spagnolie et al., 2010; Zhang et 

al., 2010), no relevant research has been performed on the three-dimensional wing 

with relatively low AR, i.e. AR ≤ 4.0 (AR is defined as span/chord length). In this 

situation, 3D effect must be taken into account. The question of whether the flow 

phenomena observed from a 2D wing is applicable to a 3D wing under a 

self-propelled 2DoF condition is still open for investigation, and this thesis provides 

new findings in this particular area. 

 

1.3.2 Multi-body System 

In above, the reviewed work mostly focus on the single rigid flapping foil/wing model 

with two or three degrees of freedom. However, the single flapping wing can be only 
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considered to mimic part of the swimming fish (fish tail) or flying insect or bird 

(wings). Independent study of the part of the swimming fish or flying bird, e.g. fish 

tail or bird/insect wings, can help us to understand its mechanism of propulsion or lift, 

while the mutual interaction of the considered part and the other parts is ignored 

which may also plays an important role in the performance of swimming or flying 

(Akhtar and Mittal, 2005). Therefore, it is necessary to create a fully resolved model 

considering both the active parts (fish tail or bird/insect wings) and inactive parts (fish 

head or bird/insect body), and a comprehensive understanding of the 

hydrodynamic/aerodynamic performance of the whole fish/bird/insect may help us to 

better design the biomimetic robots. 

 

Besides the single flapping wing model, the undulation body is also one of typical 

models of bio-inspired locomotion. In the past, as mentioned above, people employed 

the travelling wave plate to represent the undulation body. In detail, the whole fish 

(especially the Anguilliform type in Figure 1.1) is considered to be a wavy plate 

travelling from head to tail, with small oscillation amplitude at the head (inactive part) 

and large amplitude at the tail (active part). In this model, the motion and the shape 

(or the outside surface) are prescribed in every instantaneous. However, this model 

still has few limitations: First, it is only proposed to mimic eel-like fish, and not 

applicable for bird/insect mimicking; Second, from the viewpoints of biology and 

robotic fish/bird/insect design, the internal dynamics, i.e. muscle behaviour from 

biology side and actuators design from the side of robotic design, are also worthy to 

clarified, which may help us to assess the power consumption and efficiency in a 

board coverage of measurement. 

 

Therefore, the motivation for the multi-body system study can be concentrated into 

two aspects: the benefits from using a flexible body and the convenience of 

developing numerical and experimental models. The first aspect mainly relates to the 

improved hydrodynamic performance caused by structural flexibility - such as 

passively induced or actively controlled relative motion between different parts of the 
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entire body. The second aspect is the development and assessment of numerical 

algorithms and the modelling of a multi-body system with rigid linked elements 

compared to a fully elastic, deformable model. Relevant research work is reviewed in 

the following paragraphs. 

 

Firstly, people realized that the body flexibility might play an important role in fish 

swimming and bird/insect flying, whenever it is actively or passively bended. The 

attentions have been paid into the enhanced performance of drag reduction and 

propulsion efficiency increase. The force and power measurement results from an 

experiment work (Barrett et al., 1999) demonstrated that the power required by an 

actively undulatory fish-like body is much smaller than the power needed to tow the 

rigid ones at the same speed. It is also observed that some fish have elastic caudal tails, 

and the softness of such tails have influence on the efficiency (Bergmann et al., 2013). 

Meanwhile, Beal et al. (2006) put a ‘dead’ fish in the wake of a D-section cylinder. It 

was observed that the fish is propelled upstream when its flexible body resonates with 

incoming vortices. Different ways of treatment on the hinge control make the 

multi-body system performs as a flexible body, which may have wide applications in 

both experiment and numerical studies. 

 

In the study of flexible body, concerning the physical basis, scientists have developed 

several different models to investigate the phenomenon induced by body flexibility. 

Argentina and Mahadevan (2005) employed the linearized flag model and derived the 

pressure loading based on thin aerofoil theory. They concluded that the instability 

occurs when the frequency of the lowest mode of elastic bending vibrations coincides 

with the frequency of aerodynamic oscillation of the hinged rigid plate. Alben and 

Shelley (2008) applied the inextensible flexible sheet model and solved the fully 

nonlinear dynamics numerically in an inviscid 2D flow with a free vortex sheet. The 

transition from stable periodic flapping to chaotic flapping with decreasing bending 

rigidity was reported, and both bi-stability and hysteresis were found with this 

nonlinear dynamical model. Using the similar model, Michelin and Smith (2009) 
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imposed a forced heave motion at the head of a flexibly deformable wing, and solved 

the dynamical equations Chebyshev spectral methods. The peaks in mean thrust were 

found to correspond to maximum values in the trailing-edge amplitude, which were 

the results of the resonance between the frequency of heaving motion and the natural 

frequencies of the system. Furthermore, considering the fluid viscous effect, Connell 

and Yue (2007) developed a fluid-structure direct simulation solver coupling a 

numerical simulation of the Navier–Stokes equations with the aforementioned full 

nonlinear model. In addition, the neo-Hookean solid model was also used (van Loon 

et al., 2006; Yu, 2005). 

 

In the field of multi-body system representing flexible body, Farnell et al. (2004b) 

assumed a filament which was composed of several elements, and each element was 

fixed to one another at the hinge with a spring. It was shown in their work that the 

filament oscillation can be suppressed with short length. Meanwhile, the coupled 

states of two flapping filaments were also studied by the same group (Farnell et al., 

2004a). Later on, a series of work is done by Eldredge’s group (Eldredge, 2008; 

Eldredge et al., 2010; Toomey and Eldredge, 2008; Wang and Eldredge, 2015) and 

Kajtar and Monaghan (2010) on an articulated multi-segment system for exploring the 

self-propulsion behaviour. Both passive and active control on the hinges is feasible in 

these studies with an algorithm based on an elimination work of a set of variables. 

The global self-induced motion was investigated when the fish swims with the 

imposed undulatory posture in flow field with various fluid viscosities. The results 

also illustrated the flexibility impact on the force production with a model consisting 

two rigid bodies connected by linear elastic spring under prescribed motion, that the 

lift force and wing deflection were both found to be primarily controlled by the nature 

of wing rotation, and rotation phase lead shifted the instant of peak deflection and 

notably increased the mean lift. These successful works indicated that the treatment 

on the fish body as multi-segment system is a smart way of exploring the flexibility 

behaviours numerically as the algorithm is simplified when mimicking the body 

deformation through solving relative motions between each pairs of adjacent rigid 
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bodies instead of solving the complex finite element equation. 

 

Secondly, from a biological point of view, along with the external hydrodynamic 

behaviours, there are also investigations on the internal dynamics by looking into the 

interactions between internal forces, body stiffness and muscle activations etc. Taking 

fish for an example, the muscle functions may vary significantly in species, but most 

of power is generated by bending body, extending and contracting muscles, and 

transmitted from front towards the tail. The multi-body system can be considered as a 

simple model, in which the hinge properties are used to mimic muscle functions. 

Meanwhile, concerning the design of robotic fish or insect/bird, the structures of the 

main body are mostly designed as multi-body systems for the convenience of control 

(Ostrowski and Burdick, 1998; Porez et al., 2014c). 

 

In the study of muscle functions, the posterior muscle plays a role together with 

passive structures on power transmission (Altringham and Ellerby, 1999). Taking 

body stiffness, muscle activation, and fluid environment into account, a computational 

model of a lamprey was developed by Tytell et al. (2010), and the authors showed that 

there is optimal body stiffness for maximum acceleration and maximum velocity 

respectively. Though the agreement is achieved that the fish could benefit from the 

elastic body structure, there are still difficulties to quantify the effect of flexural 

stiffness on the complex internal and external coupled behaviours. Therefore a 

simplified model for prototyping the fish motion is needed to improve the 

fundamental understanding of how the fish react with different body stiffness. 

 

In the design of robotic fishes, to the knowledge of the author, the best way could be 

using Mobile Multi-body System (MMS) structure. The dynamic behaviour of 

interconnected rigid or flexible bodies is also an important subject. The multi-body 

dynamics algorithms aim to solve the relative motions between each pair of adjacent 

hinge linked components and predict the global movement driven by internal and 

external forces, torques and constrains. Distinguished by the ways of motion actuation, 
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there are fundamentally two types of hinges – passive and active hinges. The 

algorithm for the latter is to calculate the relative hinge motion from available internal 

forces/torques, known as forward dynamics; and the latter is to reconstruct the 

internal forces/torques from the prescribed movements and external forces, known as 

inverse dynamics (Otten, 2003). Recently, Porez et al. (2014c) in Professor Boyer’s 

group has sucessfully developed a “hybrid algorithm” based on a Newton-Euler based 

algorithm with forward manipulator dynamics (Featherstone, 1983) to resolve the 

problem with both forward and inverse dynamics. Comparing with Eldredge’s method 

(Eldredge, 2008), the algorithm developed by Boyer’s group (Khalil et al., 2007; 

Porez et al., 2014b; Porez et al., 2014c) is more efficient and compatible for various 

types of joints. 

 

 

1.4 Objectives of Present Study 

Based on the background and motivation of current research, the main objective of 

this research work is to develop a fully resolved computational model of bio-mimetic 

locomotion system, investigate the hydrodynamic performance of simplified 

bio-inspired models, and aim to understand the fundamental fluid mechanism utilized 

by flapping and undulatory motion for thrust/lift generation and propulsion. In order 

to perform this task, minor objectives are targeted: 

 

 Implementing computational techniques on simulations that require moving 

boundary condition, and developing coupled method between CFD solver and 

kinetic equations for solving self-propelled motion of fluid-structure 

interaction models. 

 Examining hydrodynamic performance of flapping motion with the simplified 

model of three-dimensional rigid wing, and clarifying the effects of different 

geometric and kinematic parameters on propulsion production, especially in 
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the conditions of low aspect ratio with one or two degrees of freedom released. 

 Developing a method to solve the coupling problems with multi-body 

dynamics and fluid dynamics through implementing Mobile Multi-body 

System (MMS) algorithm with CFD solver, which is capable of simplifying 

the numerical simulations on the models with undulatory motion. 

 

 

1.5 Outline of Thesis 

The remainder of this thesis is presented in five chapters. 

 

The computational framework is introduced in Chapter 2. Details are given of the 

general ways of implementing the discretization and numerical schemes to solve the 

governing equations. Typical numerical test cases are performed as pre-validation 

results of the method. 

 

In the third part, a model of 3D flapping wing is generated with one degree of 

freedom in translational direction. The phenomenon of the up-down plunging motion 

of inducing an inline motion of the wing with left-right symmetric geometry is 

documented. The propulsion mechanisms along with the other relevant hydrodynamic 

performance are well indicated by the fully resolved CFD solution results. 

 

This model is extended to include one more degree of freedom in the rotational 

direction in Chapter 4. A parametric study is carried out for exploring the effect of the 

rotational stiffness on the inline motion propulsion. The results are systematically 

analysed through various combinations of both geometric and kinetic parameters. 

 

Following with the fourth part, a separate study is carried out with the multi-body 

systems for validating the coupled method between CFD solver and Mobile 
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Multi-body System algorithm and also investigating the effect of the passive joint on 

the propulsion. 

 

Finally conclusion and summary are drawn in Chapter 6, and suggestions are made 

for future work. 
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Chapter 2 Mathematical Method 
 

 

2.1 Introduction 

To study the Fluid-Structure Interaction (FSI) problems, a major work is to solve the 

fluid motion and momentum around the immersed structure, which falls into the 

subject of fluid mechanics. The basic properties of fluid include density, viscosity, 

pressure and turbulent intensity etc. Approaches of studies on fluid mechanics can be 

classified into three category, theoretical study, experimental study and numerical 

study. 

 

In the manner of theoretical study, by the conservation laws of mass, momentum and 

energy, the simplified governing equations of fluid motion and energy can be created, 

and the velocity field, pressure field, density distribution and temperature distribution 

of the fluid can be analytically solved. However, when the governing equations turn to 

be non-linear which is usually in the case, it is difficult to obtain the exact solutions of 

the governing equations. In the past, for simplification, certain additional assumptions 

were made. For example, in the field of hydrodynamics, the fluid was usually 

considered as inviscid, and hence, the potential function of the fluid motion can be 

derived (Lamb, 1930). On the other hand, concerning low Reynolds number (Re) flow, 

the non-linear part was normally neglected, and the fully governing equations turn to 

be Stokes equations (Kim and Karrila, 1991), which were widely used for the models 

with low speed or low Re number. 

 

In the manner of experimental study, the fluid visualization is the major task. In early 

days, the smoke wire method and relevant techniques were employed to capture the 

flow pattern. The pressure sensors and three or six components balances are used to 

measure the pressure or fluid force acting on certain objects. Nowadays, new 

generation techniques are developed, such as Particle Image Velocimetry (PIV) and 

Laser Doppler Velocimetry (LDV), and helping to capture more detailed flow 

structures. However, the cost of experimental studies are usually high, and meanwhile, 
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it is difficult to handle several problems such as scale effects of model study, etc. 

 

From the middle of twentieth century, computer techniques are developed very fast. 

Scientists began to solve the complicated Partial Differential Equations (PDEs) 

numerically. Normally, the governing equations are discretized into a set of algebra 

equations with acceptable truncation errors. The discretization method can be usually 

classified as Finite Difference Method (FDM), Finite Element Method (FEM) and 

Finite Volume Method (FVM) (Ferziger and Peric, 1996). The FDM follows the 

transformation of the Taylor series expansion of the terms in PDEs, and the physical 

grid is usually locally structured, and the coordinate axes coincide with the grid lines. 

Unlike FDM, FEM adopts unstructured grid and curved cells, which helps to handle 

complex geometries. The solution is assumed to be within a prescribed form, and it 

has to belong to a function space. On the other hand, FVM uses the integral form of 

the governing equation by inducing the divergence theorem, and volume integrals of 

certain terms can be converted to surface integrals. Meanwhile, FVM adopts 

unstructured grid, which benefits users for complex geometry simulation. 

 

In this thesis, the FVM of the numerical method is applied for dealing with the 

complex structure geometries. In addition, in order to model the interaction between 

fluid and the moving structure, special treatment and technics are employed to handle 

the moving body or moving boundary. In the following sections, we will firstly 

introduce the governing equations for solving fluid motion, followed by an 

introduction of FVM. Numerical techniques for FSI are briefly presented along with 

the typical numerical tests.  

 

 

2.2 Governing Equations 

Water is the most common liquid medium, which is considered as a Newtonian, 

incompressible and viscous fluid. Based on the conservation of mass and momentum, 

the well-known Navier-Stokes equations are employed as the governing equations. 
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where u = (u, v, w) is the fluid velocity vector, p is the fluid pressure, µ is the fluid 

viscosity and ρ is the fluid density. Here, with the assumption of incompressible fluid, 

the mass conservation equation turns to the divergent-free of velocity field. 

Meanwhile, the fluid density is considered as a constant that can be taken out from the 

left hand side of the momentum conservation equation. Furthermore, the governing 

equations can be non-dimensionized as 
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Here, Re represents the non-dimensional Reynolds number, with the definition of 

 0Re / ,U L    (2.3) 

where U0 and L are the characteristic velocity and length, respectively, and  is the 

dynamics viscosity of the fluid.  

 

 

2.3 Finite Volume Method (FVM) 

2.3.1 General Introduction 

The finite volume method is employed and a brief introduction of FVM is presented 

in this section. The FVM uses the integral form of the governing equations, and the 

computational domain is divided into a series of control volume (cell). The integral 

governing equations are applied in each cell. The physical computational node usually 

lies at cell centre. With the help of divergence theorem, the volume integrals of certain 

terms can be converted to surface integrals. Meanwhile, the surface and volume 

integrals are approximated using suitable quadrature formulae. As a result of this, an 

algebraic equation for each control volume can be obtained, in which a number of 

neighbour nodal values appear. 

 

For simplification, the steady transport equation, Eq. (2.4), is taken as an example to 

explain the process of FVM. 

 
div(u)=div(grad)q .  (2.4) 

Here, ϕ presents a set of conserved intensive properties, for example, ϕ presents mass 
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conservation and momentum conservation when ϕ=1 and ϕ=ν respectively. qϕ is the 

corresponding source term. With the volume integral in each control volume and the 

divergence theorem, the transport equation can be converted as 

 

d grad d
S S

S S q 


     u n nd 

 (2.5) 

Here, S is the surfaces of the control volume and Ω is the control volume, and the 

surface integrals can be discretized as 

 
f dS  f dS

Sk


k


S  f

k
S

k
k

 .   (2.6) 

Here, f is the component of the convective or diffusive flux vector in the direction 

normal to the control volume face. Taking a two-dimensional case for example, with 

the grid schematic as shown in Figure 2.1, Sk runs all the four adjacent faces as the 

directions of k represents n (north), e (east), s (south), and w (west) respectively. 

 

Figure 2.1 Schematic of grid system and control volume. 

 

Meanwhile, the volume integral can be discretized as 

 
= d .P PQ q q q


       (2.7) 

Here, qp is the value of q at the control volume centre. Normally, this value is 

available at the centre. It is the second-order accuracy if the integral volume is 

discretized in this way. 
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2.3.2 Numerical Schemes 

After the scheme of surface and volume integrals is determined, the variables’ value at 

the surface will be interpolated with certain schemes with different accuracy. Here, we 

will introduce some typical schemes, taking the value at surface e, e , as an example. 

 

(1) Upwind or backwind scheme 

The simplest approximation is the upwind or backwind scheme, which is 

approximated from the first order derivative, hence the upwind scheme is (referring 

Figure 2.1) 

0
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. 

Relevant to the upwind scheme, the backwind scheme is also straightforward, and it 

can be written as 

0
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. 

 

(2) Linear scheme 

The linear scheme means that the linear interpolation is applied between the 

neighbour nodes. Considering the non-uniform nodes, the form of linear scheme can 

be written as 

(1 )e E e P e       , 

where 
e

 is the linear interpolation factor, and it can be determined by 

e P
e

E P

x x

x x
 




. 

Specifically, if the grid is uniform, this linear scheme becomes to the cantering 

differential scheme. 

 

(3) Quadratic Upwind scheme  

Another popular scheme is the Quadratic Upwind scheme (QUICK) scheme. The 

QUICK scheme uses a parabolic profile to approximate the interpolation, and it is 

with higher order accuracy. The specified form of QUICK can be written as 
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1 2( ) ( )e U D U U UUg g          , 

where subscript index D, U and UU represent the downstream, upstream and second 

upstream node. Meanwhile, the coefficients 1g  and 2g  can be calculated as 

1 2

( )( ) ( )( )
, .

( )( ) ( )( )
e U e UU e U D e

D U D UU U UU D UU

x x x x x x x x
g g
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   
 

   
 

where x is the coordinate of the grid. There are also higher order schemes, however, in 

current studies, the second order accuracy can fulfil the requirement. The readers are 

recommended to refer the book of Ferziger and Peric (1996) for further information of 

the high order schemes. 

 

2.3.3 Brief Introduction to Linear Equation System 

After the discretization of governing equations, the discretized equations turn to be an 

algebraic linear equation system, which can be written as 

 . A Q   (2.8) 

Here, the matrix A  is normally sparse, in the other words, most of the elements in 

matrix A  are zero. In fact, with the structured mesh, the matrix turns to be a banded 

matrix. It is worthy to mention that the size of A  is proportional to the cell number. 

Some typical algorithms for solving the linear equation system will be briefly 

introduced as below. 

 

(1) Gauss elimination 

Gauss elimination algorithm is the simplest and most basic method for solving algebra 

equation system. The idea of Gauss elimination is straightforward, after a systematical 

row transformation, i.e. multiple one row with certain factor and then subtract it from 

another row, the original matrix becomes to an upper or lower triangular matrix. This 

process is called forward elimination. Once the forward elimination is processed, the 

value of variable   can be derived with a backward substitution. 

 

Although Gauss elimination method is simple and straightforward, it is rarely used in 

CFD simulation, for the reasons of being difficult on the application to the problems 

with complex geometry and unstructured mesh. Besides, there are some other direct 
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methods (in contrast to the iterative method), such as Lower Upper (LU) 

decomposition and Tri-diagonal Matrix Algorithm (TDMA) method for solving the 

tri-diagonal matrix. However, the feasibilities of these methods rely on the 

complication of the problem, and they are also normally of little interest for CFD 

simulation. 

 

(2) Iterative methods and definition of residual and error 

As mentioned above, although the traditional Gauss elimination method can obtain an 

exact solution of the algebra equation system, it has the drawbacks of time consuming 

and low robustness. Alternatively, the iterative methods provide a simple and fast path 

to approach the solution, with a little sacrifice of the accuracy. 

 

Generally, in the iterative method, we firstly guess a solution and then substitute it 

into the equations. With the certain algorithm, the solution can be improved from the 

guessed solution after a number of iterations. The process will be repeated until the 

error meets the criteria requirement. Assuming n  is the approximated solution after 

n iterations, and the equation in Eq. (2.8) turns to 

 .n n  A Q   (2.9) 

Here, n  is the residual of the equation, which is the error lead by the approximated 

solution. If   is the converged solution, then the iteration error is calculated as 

 .n n      (2.10) 

Combining Eqs. (2.8)-(2.10), it shows 

n n A . 

The purpose of repeating the iteration is to make the residual turns as small as 

possible, ideally zero. Normally, the iterative scheme for linear system can be written 

in a form as 

M n1  N n  B, 

Meanwhile, by the definition, it should fullfil 1n n      when the solution is fully 

converged. Thus, we have 

M N A  and BQ . 

Or more generally, 
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P M N A  and P BQ . 

Here, P is a non-singular pre-conditioning matrix. 

 

There are more methods with iterations, e.g. Gauss-Seidel method, Conjugate gradient 

method, etc. The textbook of Ferziger and Peric (1996) provides more details for the 

reference of the readers. 

 

2.3.4 Solutions for Navier-Stokes Equations 

A brief introduction to general ideas of FVM has been given in the sections above, 

and here in this section, the typical solution for Navier-Stokes equations based on 

FVM is introduced. As we know, the Navier-Stokes equations contain two sets of 

equations corresponding to the mass conservation and momentum conservation. The 

solutions solved from the momentum equation may not satisfy the mass conservation, 

i.e. the velocity field is not divergence free under the incompressible fluid assumption. 

Therefore, the velocity solution should be corrected by the pressure field. The most 

popular algorithm of the pressure correction process is the SIMPLE method, which is 

the abbreviated form for Semi-Implicit Method for Pressure Linked Equations method. 

It is firstly developed by Patankar and Spalding (1972), and with further improvement 

and modifications, the updated method are developed, such as SIMPLER, SIMPLEC 

and PISO. For simplification, only the algorithm of SIMPLE method is introduced 

here. 

 

In SIMPLE, the implicit method is used to calculate the momentum equation, which 

means an out iteration process within every time step is needed to approach exact 

solution. Here, for simplification, the out iteration form can be written as 

 

1
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Here, l  represents the index of the neighbour points of node P, m  is the outer 

iteration counter and m
iu  is the current estimation of the solution of 1n

iu  . For 

simplification, Eq. (2.11) can be expressed as 
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Figure 2.2 Program flow chart of the procedure of SIMPLE algorithm. 
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 (2.12) 

Here, the value of *
,
m
i Pu  dose not satisfy the continuity equation. In order to correct the 

velocity field, we assume the final velocity and pressure can be corrected as 

 
*

, ,
m m
i P i Pu u u   and 1 .m mp p p    (2.13) 

If Eq. (2.13) is substituted into Eq. (2.11) and subtract Eq. (2.12), we can have the 

following simple form 

 

 (2.14) 

and it can be substituted into the continuity equation as 

 

 (2.15) 

Finally, the correction pressure can be derived from Eq. (2.15) and subsequently the 

correction velocity can be obtained from Eq. (2.14). Normally, the last term in Eq. 

(2.15) is neglected during the iteration process, since the exact value of  is 

expected to be zero once the iteration process is finalized. The procedure of SIMPLE 

algorithm can be summarized as the following flow chart as shown in Figure 2.2. 

 

 

2.4 Numerical Techniques for Fluid-structure Interaction 

The physical models, which will be studied in this thesis, that moving solid 

boundaries are normally included in the computational domain, are a common feature 

in Fluid-Structure Interaction (FSI) problems. In the past two decades, there are 

several numerical techniques developed to handle this kind of problems. The most 

traditional way is to include re-meshing process in every time step, which may cost a 

lot of computational time. It is worthy to mention that there are also some other novel 

methods which are quite computationally efficient, such as the immersed boundary 

method (Mittal and Iaccarino, 2005) and fictitious domain method (Glowinski et al., 

1999). However, for these novel methods, the computational efficiency is achieved by 
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scarifying the computational accuracy. In such a situation, the dynamic mesh method 

turns to be an applicable approach, which can handle complicated moving boundary 

and meanwhile retain the requirement of computational accuracy. Therefore, the 

dynamic mesh method is applied in the simulation work of this thesis, and it will be 

briefly introduced here in this section. 

 

The concept of dynamic mesh method is straightforward. The fully immersed solid 

boundary is moving in every time step, inducing the control volumes moving 

accordingly, assuming the moving velocity is bU , the momentum equation can be 

re-formulated in integral form as 

 
 (2.16) 

which is called the Arbitrary Lagrangian Eulerian (ALE) formulation (Ferziger and 

Peric, 1996). 

 

Normally, there are two situations when the dynamic mesh method is applied in the 

moving boundary problems. Firstly, if the moving boundary is rigid, e.g. flapping 

wing, the control volumes in the whole domain can move with the rigid body with the 

same velocity. Secondly, if the moving boundary is flexible, e.g. an undulation fish 

(foil), the method becomes complicated and control volumes at different locations 

may move with different velocity. In the other word, the meshes will be compressed 

or stretched. In the latter situation, special algorithm is required to control the mesh 

deformation. The whole mesh system would be re-meshed according to the quality of 

the mesh. In this thesis, both situations will be applied. 

 

 

2.5 Typical Numerical Tests 

Three typical numerical tests are simulated in this section with the models of 

two-dimensional foil under prescribed plunging and hovering motions. The foil is 

with sinusoidal plunging motion in the first model, and a combination of sinusoidal 

plunging and pitching in the second one. The third model is an innovative test 

directing to fill in the gap of dynamic response of foil to a non-sinusoidal plunging 
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motion. All of them aim to repeat the classic work, and the way of generating 

numerical cases and analysing results can be applied as the baseline knowledge of all 

the simulation work in this thesis. It is noticed that more verification cases are 

presented together with the specific physical models in the individual chapters in the 

following part of this thesis for better describing algorithm and problems. 

 

The computational approach including the solver and definitions of both general input 

and output parametric properties are firstly indicated, and then the results of three test 

cases are described briefly in the following sub-sections. 

 

2.5.1 Computational Approach 

2.5.1.1 Solver 

The unsteady flow field around the foil is solved using the commercial CFD package 

FLUENT versions 12.1, 13.0 and 14.0, with an unsteady incompressible solver and 

second-order upwind spatial discretization method. The flow field is discretized by 

fully structured mesh and assumed to be laminar due to the flow separation on the 

surface of foil boundaries is in an acceptable range for hydrodynamic force prediction. 

The plunging motion of the foil is modelled using the ‘dynamic mesh’ feature, and the 

whole grid and foil is moved as a rigid body. 

 

2.5.1.2 General parameter definitions 

The sinusoidal plunging motion of foil is described as 

  ( ) siny t hc t ,  (2.17) 

where h is non-dimensional flapping amplitude normalized by foil chord length c, and 

ω is the flapping angular frequency, and ω=2πf, with f of the flapping frequency. The 

time period, T, can be obtained by 1/f. 

 

The sinusoidal pitch motion is defined as 

 0( ) sin( )t t     ,  (2.18) 
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where ψ is phase between pitching and plunging motion, and α0 is the pitching 

amplitude. 

 

The Reynolds number and Strouhal number are defined in Eq. (2.19) and Eq. (2.20), 

respectively, where ρ is fluid density, μ is fluid kinematic viscosity, A is the foil 

trailing edge net vertical motion, and U0 is uniform inflow velocity.  

 0Re
cU


 ,  (2.19) 

 
0

fA
St

U
 .  (2.20) 

The output for the flapping foil under prescribed plunging motion can be presented by 

thrust force coefficient, CT, and input power coefficient, P̂ , determined as Eq. (2.21) 

and Eq. (2.22). 

 
21
02

( )T
T

F t
C

U c
 ,  (2.21) 

 
31
02

( ) ( )ˆ LF t y t
P

U c



.  (2.22) 

The propulsion efficiency can be obtained from the ratio of output power upon input 

power in one cyclic revolution. As shown in Eq. (2.23) or Eq. (2.24), the efficiency of 

η1 and η2 are for cases with purely plunging motion and combination motion of 

plunging and pitching respectively. The numerators are the output power given by the 

multiplication of inflow velocity and thrust force, FT (t), and denominators are the 

input power calculated by vertical velocity,  and lift force, FL (t) or angular 

velocity,  and toque, M(t). 
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Figure 2.3 Sketch of foil under purely plunging motion. 

 

 

 

 

Figure 2.4 Mesh around the foil surface in the test case of medium grid. 

 

2.5.2 Foil with Sinusoidal Plunging Motion 

The model with NACA0012 foil section (with chord length c) is shown in Figure 2.3, 

with sinusoidal plunging motion defined in Eq. (2.17) within a uniform inflow 

environment. The Dynamic Mesh Feature is activated for enabling the foil’s 

prescribed plunging motion. The computational domain is 20 and 10 times of foil 
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chord length in stream-wise and perpendicular directions. The grid independence test 

is conducted for a coarse grid (300 intervals on the foil surface, 164905 cells in total), 

a medium grid (400 intervals on the foil surface, 225351 cells in total) and a fine grid 

(500 intervals in the foil body, 297134 cells in total), composed by structured mesh 

near the foil and unstructured mesh in outer domain as in Figure 2.4. Thrust 

coefficients are shown in Figure 2.5, indicating differences due to grid size for a 

time-step size of T/400 (T is flapping period). The time-step size range is selected 

according to the results based on a few preliminary test cases and the common 

settings for the fluid solver in ANSYS FLUENT package. Figure 2.5 shows that the 

medium grid case is able to achieve the accuracy as the fine grid case. Therefore the 

medium grid is used for all computations to ensure the accuracy and minimize the 

time and memory consumption. 

 

 

Figure 2.5 Grid independence test for purely plunging foil (St=0.32, Re=20000 and h=0.175). 

 

The time averaged thrust coefficient ( TC ) and propulsive efficiency (η1) are plotted 

against Strouhal (St) number in Figure 2.6, and it shows the present results are in good 

agreement with the previous results (Heathcote et al., 2008). As St increases, there is a 

larger difference in thrust force between the experimental results and those of 

previous simulations due to uncertainties in the limitations of laminar model and 

numerical deviation; flow separation may appear for a plunging foil at faster flapping 
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frequency and high Re. The results show that the thrust force is proportional to the St 

number [representing plunging frequency (f) when inflow velocity and plunging 

amplitude are constant], while the propulsion efficiency drops down apart from the 

peak point at St number of 0.15. It also confirms that an efficiency peak naturally 

emerges somewhere in the range of 0.1<St<0.4.  

(a) 

(b) 

Figure 2.6 Comparison with Heathcote et al. (2008) of (a) averaged thrust coefficient and (b) 

propulsive efficiency against St number of the case with purely pitching motion (Re=20000 and 

h=0.175). 
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Figure 2.7 Sketch of foil under plunging and pitching motion. 

 

 

2.5.3 Foil with Plunging and Pitching Motion 

The NACA0012 foil is also simulated under hovering motion with both plunging and 

pitching motion following the previous work (Anderson et al., 1998; Garrick, 1937; 

Young and S. Lai, 2007), and as the sketch shown in Figure 2.7, the pivot point is 

located on the centreline of foil and at the distance of 1/3c away from the leading edge. 

The mesh resolution, domain size and time-step size is same as the case in Section 

2.5.2. Results with acceptable deviation are obtained and plotted in Figure 2.8. 

Experiments along with simulations of theoretical and CFD methods reveal the 

occurrence of a peak in propulsive efficiency of such a hovering foil. Young and S. 

Lai (2007) further indicate in their paper that the magnitudes of the peak efficiencies 

are influenced by a number of physical mechanisms, a flow separation and 

leading-edge shedding effects appear to be controlled by the reduced frequency by 

limiting the time available both for vortex formation and convection of the vortex 

over the foil surface. The trend of thrust force coefficient and efficiency with St 

number is similar to the results of other researchers. The thrust coefficient is under 

estimated due to the uncertainties possibly brought by the big flapping amplitude. 

Along with the verification results in Figure 2.6, in which the thrust is over estimated, 

the test cases indicate that the method is feasible of predicting general trends for foil 

models with kinematic motion, however the accuracy of variable quantification is 

subject to individual case. It is necessary to carry out relevant validation tests for all 
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the new built models, and more verification cases are presented together with the 

specific physical models in the individual chapters. 

 

 

(a) 

 

(b) 

Figure 2.8 Comparison with previous results of (a) averaged thrust coefficient and (b) propulsive 

efficiency against St number of the case with plunging and pitching motion. (Re=40000, h=0.75, 

ψ=90°, α0=15°). 
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2.5.4 Foil with Non-sinusoidal Plunging Motion 

Following with the first two cases, investigations on the purely flapping NACA 0012 

foil are conducted under non-sinusoidal motion. The mesh resolution and time-step 

size is same as the case in Section 2.5.2. With an adjustable parameter β, the 

non-sinusoidal trajectory profile is achieved with Eq. (2.25) (Xiao et al., 2010) , and 

the trajectory within one revolution under different β is shown in Figure 2.9. The 

plunging profile becomes more non-sinusoidal with bigger β. 

 

Figure 2.9 Variation of instantaneous plunging profile in one period with h=0.175. 
 

1
, 0 (1 )

2

1 1
sin (1 ) , (1 ) (1 )

2 2 2

1 1
, (1 ) (3 )( )

2 2

3 1 1
sin (2 ) , (3 ) (3 )

2 2 2

1 2
, (3 )

2

hc t

hc t t

hc ty t

hc t t

hc t


 

   
   
 
   

   
   
 
  

   

          

     

         

 


  


.  (2.25) 

 

It is clearly seen from Figure 2.10 that the thrust forces always increase with a higher 

St number while the efficiency has the opposite trend, which are same as the last two 
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cases. The non-sinusoidal squared plunging profile can dramatically enhance the 

thrust force but lead to an inefficient way in general situations. However the 

efficiency achieves the peak value at St=0.32 and β=1.5, which exhibits the propulsion 

efficiency can be improved under the certain parameters. Both instantaneous thrust 

coefficient and input power in Figure 2.11 rise impulsively when the foil changes 

rapidly from upmost to lowest position and vice versa under non-sinusoidal profiles. 

(a) 

(b) 

Figure 2.10 (a) Thrust coefficient and (b) propulsion efficiency of 2D foil under the non-sinusoidal 

motion. (h=0.175, St=0.32 & 0.48, Re=20000). 
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(a) 

 
(b) 

Figure 2.11 (a) Instantaneous thrust force coefficient and (b) input power coefficient for the foil 

under non-sinusoidal motion. (h=0.175, St=0.32, Re=20000). 
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Chapter 3 Flapping Wing with 
Translational Freedom 

 

 

3.1 Introduction 

The aim of the study in this chapter is to extend the work for a flapping foil with one 

degree of freedom (1DoF) in translational direction, to a 3D wing under low aspect 

ratio condition.  

 

 

3.2 Mathematical Model 

3.2.1 One Degree-of-freedom Flapping Wing Model 

Figure 3.1 illustrates the wing under current investigation, i.e. a 3D rectangular wing 

with an elliptical cross-section. The ratio of thickness to chord length is 0.1, and the 

aspect ratio is defined as AR=S/c, where S is the wing span (wing tip to tip distance) 

and c is the chord length. Besides a tethered plunging motion, the wing is allowed to 

move in lateral direction. It has a freedom in in-line (x) direction, which is solely 

determined by the fluid-motion coupling between fluid and wing under the propulsion 

of a prescribed plunging motion in transverse direction. In this chapter, only the 

in-line freedom of wing is released, while the rotational freedom in pitch direction is 

not allowed. 

 

Referring to Figure 3.1, the wing motions  0u , ,b b bu v  can be explained as 

follows: 

a) Specified sinusoidal plunging motion vb is prescribed as 

  ( ) sinbv t hc t 
.  (3.1) 
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b) An induced velocity ub is solely determined by the unsteady fluid forces through 

Newton’s Second Law 

 
b

b x

du
m F

dt
 ,  (3.2) 

where bm  is the mass of wing, xF  is the hydrodynamic force in x direction 

including both pressure force and viscosity force. The density ratio   is defined as 

the ratio between the density of wing and fluid, and bm V , where V is the 

volume of the wing. 

 

Figure 3.1 Sketch of wing with an elliptical cross-section. 

 

The instantaneous propulsion velocity bu  is obtained by integrating Eq. (3.2) with a 

first-order explicit scheme 

 

t t
t t tx
b b

b

F
u t u

m


   ,  (3.3) 

where t
bu  and t t

bu   are x direction velocities at time instants t and t t .  

 

3.2.2 Fluid Solver 

The hydrodynamic force in Eq. (3.2) is integrated from Navier-Stokes equation. The 

flow field is simulated using the commercial CFD package FLUENT version 12.1.4. 

The body’s plunging motion (vb) is imposed on the domain using Dynamic Mesh 

Function in FLUENT. 
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The computational domain is 21, 11 and 18 times of wing chord length in in-line (x), 

transverse (y) and span-wise (z) directions, respectively, which is shown in Figure 3.2. 

Computational boundary conditions are set with fluid velocity and pressure 

disturbance to be zero, and no-slip wall boundary condition is used on the wing 

surface. Initial fluid velocity is set to be zero everywhere in the domain. The flow 

field is assumed to be laminar as the induced translational Reynolds number (Reu) is 

relatively small. The parallel processing setup is established through High 

Performance Computer, which significantly reduces the computing time for unsteady 

problem, especially for three-dimensional cases. 

 

X

Y

Z

VBC=(ub , vb ,0)

VBC=(0, 0, 0)

PBC /n=0

VBC=(0, 0, 0)

VBC=(0, 0, 0)

VBC=(0, 0, 0)

PBC /n=0

PBC /n=0

PBC /n=0

PBC /n=0

 

Figure 3.2 Computational domain and boundary conditions. 

 

 

The mesh over the wing is shown in Figure 3.3. Structured mesh is used near the wing 

surface. Both rectangular and triangular grids are distributed over the section of z = 0, 

and hexahedral and wedge mesh elements are generated along z direction. A 

non-symmetric mesh is distributed over the wing surface along z direction and x 

direction. In particular, near the wing tip area, the mesh is specially refined, ensuring 

the grid numbers are sufficient enough to precisely capture the unsteady wing tip 

vortex. 
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X

Y

Z

 

Figure 3.3 Grid distribution over wing surface. 

 

3.2.3 Fluid – Structure Coupling Algorithm 

The schematic diagram for fluid and wing body motion coupling is shown in Figure 

3.4. Generally, fluid forces and updated positions exchange between fluid solver and 

UDF solver. At each time step, the simulation starts from updating the body position 

with the help of Dynamic Mesh Function. Then the fluid solver updates the flow field 

accordingly by solving Eq. (2.1) with second-order upwind spatial discretization 

accuracy, and first-order implicit discretization accuracy which is limited by the 

dynamic mesh approach adopted in ANSYS-FLUENT. An updated fluid force is 

obtained from the fluid solver, which can be used as an input variable in UDF code. 

The UDF code is written with an algorithm based on Eq. (3.3) for producing an 

updated body velocity and position. The iteration close with imposing the updated 

body position into the fluid solver, and a new time step begins.  

 

Boundary layers 

Rectangular mesh

Triangular mesh 

Z=0 section
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Figure 3.4 Schematic diagram for fluid and wing body motion coupling. 

 

The non-dimensional x direction force coefficient CFx is defined as 

 
 
  21

2

x

x
F

F t
C

f hc cl
 ,  (3.4) 

where Fx is the hydrodynamic force in translational direction, l  is the characteristic 

length assuming one unit herein. 

 

Cycle-averaged input power P input and input power coefficient Cp are calculated by 

the following equation:   
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, (3.5) 

where Fy is the hydro-force in transverse direction. 

 

Two Reynolds numbers are defined here, depending on the various velocities: 

(a) Frequency Reynolds number Refr: 

 
Re

fr

 f hc c


.  (3.6) 

Eq. (3.3) Eq. (2.1) 
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(b) Translational Reynolds number Reu: 

 
Reu 

c ub

 ,  (3.7) 

where ub  is the absolute value of mean horizontal speed in the quasi-steady status. 

In addition, the corresponding instantaneous Reynolds number is represented as , 

based on the instantaneous velocity ub. 

 

Instantaneous non-dimensional translational velocity U is 

 U 
u

b
(t)

f (hc)
.  (3.8) 

 

Moreover, apart from the classic definition as Eq. (2.20), Strouhal number can be 

obtained from the Reynolds number as in Eq. (3.9). 

 
St 

2Re
fr

Re
u

.  (3.9) 

 

 

3.3 Numerical Validation 

3.3.1 Grid Independence Study 

A grid and time-step size independence test is conducted with a fine grid and a 

medium grid, and two time-step sizes, T/200 and T/400 (T is the prescribed flapping 

cycling period), as the following three cases: 

 

 Case 1 (AR1.5-F): 180 intervals over the elliptical edge and 120 intervals 

along the span-wise edge, totally 4 535 550 mesh elements, time-step size 

T/200. 

 

 Case 2 (AR1.5-M): 130 intervals over the elliptical edge and 80 intervals 
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along the span-wise edge, totally 1 281 140 mesh elements, time-step size 

T/200. 

 

 Case 3 (AR1.5-MT): 130 intervals over the elliptical edge and 80 intervals 

along the span-wise edge, totally 1 281 140 mesh elements, time-step size 

T/400. 

 

Computational results of the instantaneous drag force CFx are shown in Figure 3.5, 

indicating a close result between the medium mesh and the fine mesh and these two 

time steps. Therefore the medium grid and the T/200 time-step size are used for all 

computations to ensure accuracy and meanwhile minimize the time and memory 

consumptions. 

 

Figure 3.5 Mesh and time-step sensitivity study for three-dimensional wing (h=0.5, AR=1.5, 

Refr=60, σ=4.0). 

 

Due to an explicit time-marching scheme adopted in in-line x direction [Eq. (3.3)], the 

maximum time step is restricted under scheme stability constrains. To ensure 

numerical convergence, we monitor the iterations at each physical time step. The 
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iteration continues until the momentum equation residual is reduced by three orders of 

magnitude. 

 

 

Figure 3.6 Validation of results comparison with Guerrero (2009) and Alben and Shelley (2005). 

 

 

3.3.2 Validation with Previous Results 

To validate our developed numerical strategies, two test cases are performed. The first 

one is for a forced 3D plunging wing studied previously by Guerrero (2009). The 

results are shown in Figure 3.6 (a) indicating a consistency with the results of 

Guerrero (2009). The second validation test is carried out on a 2D self-propelled 

(1DoF) foil with a prescribed heave motion with free movement in in-line x direction 
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(Alben and Shelley, 2005). This problem is adopted for verifying the capability of our 

in-house developed UDF code based on Eq. (3.2) and (3.3) to deal with a coupled 

fluid-structure-interaction problem. In Figure 3.6 (b), the in-line induced velocity (Reu) 

is compared with Alben and Shelley's data. The range of Refr varies from 20 to 80, 

and the present results show a good agreement at low Refr, but with the 

under-estimated Reu at large Refr. This is probably due to the different numerical 

methods used in the two studies. Unfortunately, no other relevant simulation or 

experimental data are available for our comparison. 

 

 

In the following, investigation is first carried out on comparing the evolution process 

of left-right symmetric wing with large and medium aspect ratios, which are treated 

by 2D and 3D respectively. After then, we further discuss the self-propelled 

phenomenon in the aspects of 3D effect, density ratio effect and perturbation effect on 

the induced in-line (x) direction locomotion ability. Wake structures of wings are 

presented with different aspect ratios, and the dynamic behaviours and propulsive 

properties of passive plunging wing is analysed in terms of typical kinematic 

quantities, such as the mean horizontal speed and the St number. 

 

 

3.4 Results and Discussion 

In this section, effects of amplitude h, aspect ratio AR, frequency Reynolds number 

Refr and mass ratio  are investigated systematically. The parameter ranges are 

summarized in Table 3.1. Here, the non-dimensional flapping amplitude h is 

simplified as 0.5, Refr ranges in 20-80 and  is between 4 and 32, which are consistent 

with other previous work (Lu and Liao, 2006; Miller and Peskin, 2004; Spagnolie et 

al., 2010; Zhang et al., 2010), where these parameters are motivated by the real 

animal locomotion. Aspect ratios (0.5-∞) are varied to explore the 3D effect, and the 

infinite large aspect ratio wing represents a 2D wing. 
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Table 3.1 Parameters list of self-propelled flapping wing. 

Parameters Values 

h 0.5 

Refr 20, 32, 45, 60, 80  

AR  ∞, 0.5, 1.0. 1.5, 2.0, 4.0, 6.0 

  4, 6, 7, 8,10, 20, 32 

 

 

 

Figure 3.7 Evolution process for a symmetric foil with AR=∞ (2D), Refr=80, σ=4.0. (a) (b) (c) (d) 

vortex topology at four instants; (e) instantaneous horizental velocity, fluid force and the 

cycle-averaged-input power coefficient. 
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3.4.1 Evolution Process 

With a two-dimensional symmetric foil model, the propulsion mechanisms of how 

locomotion transduces from the oscillation into translational motion in stationary 

water have been well studied in the past. In particular, the interesting phenomenon of 

symmetry breakdown is well documented in previous studies (Alben and Shelley, 

2005; Lewin and Haj-Hariri, 2003; Lu and Liao, 2006; Vandenberghe et al., 2006; 

Vandenberghe et al., 2004). However, the phenomenon may turn to be different when 

the model is changed to a three-dimensional wing. Here, the evolution process of a 

three-dimensional wing (AR=4.0) in comparison with a two-dimensional foil (AR=∞) 

is first studied. Vortical contours at four instants, fluid forces, lateral velocities and 

cycle-averaged-input powers are plotted in Figure 3.7 and Figure 3.8, where dashed 

arrows present traveling direction and dashed circle presents vortex dipole, and solid 

arrows present velocities of tip vortex. The result of a 3D wing are quantified same as 

that of a 2D foil under same Refr and σ. Since the direction of induced lateral motion 

is randomly selected, the moduli of velocity are used for presenting the evolution 

process and ensuring that a positive Reu is always obtained. In the case of negative 

in-line movement, a reflection plot of the vortex topology is presented. 

 

It can be seen that the evolution mechanisms of a wing (AR=4.0, in 3D) is pretty 

similar as those of a foil (AR=∞, in 2D). In particular, at early stage, both the foil and 

the wing plunge with a flow structure being left-right symmetric. Typical flow 

structures are shown in Figure 3.7 (a) and Figure 3.8 (a). The net force along the 

in-line direction is nearly zero at this moment. As there is no constraint in 

translational direction, any small flow disturbance near the wing will cause the 

asymmetric flow structure and eventually leads to the foil/wing moving to one side 

[Figure 3.7 (b) and Figure 3.8 (b)]. Once the wing starts to move, a transit period is 

needed before it finally reaches to a stable state, within which the vortex collides with 

others, resulting in a vortex dipole [as the dashed circle in Figure 3.7 (c) and Figure 

3.8 (c)] which carries asymmetric suction forces at left and right edges. Consequently, 

horizontal forces vibrate with amplified amplitudes, leading to increased accelerations, 

and further rapidly increasing of horizontal velocities is caused. Finally, a stable 

translational locomotion is achieved as the wake being a reversed von Kármán 

structure [Figure 3.7 (d)] or elongated ring loops [Figure 3.8 (d)]. Both the velocity 



Chapter 3 Flapping Wing with Translational Freedom 

62 
 

and force vary periodically, with net forces around zero. The developing time and 

translational directions is sensitive to the initial conditions, as we will show later. 

Meanwhile, the magnitude of cycle-averaged-input power increases dramatically 

upon the flow symmetry eliminates. After then it returns to a constant at the stable 

state. The negative values indicate an input power on foil and wing. 

 

 

 

Figure 3.8 Evolution process for a symmetric wing with AR=4.0, Refr=80, σ=4.0. (a) (b) (c) (d) 

vortex topology at four instants; (e) instantaneous horizental velocity, fluid force and the 

cycle-averaged-input power coefficient. 

 

 

The evolution process develops similarly but the quantities of final velocity, forces 

vary under different aspect ratios. Therefore, it is necessary to carry out a parametric 

study on understanding the three-dimensional mechanisms. 
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3.4.2 Aspect Ratio Effect 

In this section, we further present the effect of aspect ratio on the translational 

locomotion ability. Horizontal velocity variation of wings with different aspect ratio 

(AR) is plotted in Figure 3.9, where evolution has reached a steady status. It indicates 

that wings with bigger aspect ratios can induce faster velocities. The investigation by 

variation of horizontal fluid force coefficient (Figure 3.10) tells that there is a 

significant increase in the amplitude of thrust coefficient for wings with bigger aspect 

ratios. A similar phenomenon observed on U and CFx curves is that they both oscillate 

at the same frequency as the prescribed plunging motion. Referred to Eq. (3.2), 

translational velocity ub is a function of translational force. Therefore stronger forces 

can lead to faster velocities, which is consistent with the trend of velocity and force 

curves in Figure 3.9 and Figure 3.10. 

 

 

Figure 3.9 Time variation of instantaneous horizontal velocity for wings with AR=1.0, 2.0, 4.0 and 

∞, Refr=80, σ=4.0 (Dashed lines present time instants selected for vortex toplotogy plots 

correlating to different evolution stage in Figure 3.7, 3.8, 3.11 and 3.12). 

 

 

Instant wake topology of wings with AR=2.0 and 1.0 is presented in Figure 3.11 and 

Figure 3.12, along with Figure 3.7 and Figure 3.8 with AR=∞ and 4.0, indicating a 

flow structure variation under different aspect ratios. During the evolution, there 

occurs similar phenomenon, that all wake patterns go through four stages, left-right 
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symmetry pattern, symmetry breakdown process, forming vortex dipoles (as dashed 

circle lines), and achieving quasi-steady locomotion status. In the figures, the wake 

topology plot at each time instant presents a specific evolution stage, and different 

time instants are selected for wings with different AR due to the diverse evolution 

duration. As they are all under the same flapping motion (Refr=80 and A/c=0.5), the 

rings in each set have the same direction of rotation and the oblique angles are similar. 

However, wings exhibit qualitative differences under different AR. The 

three-dimensional rings are formed by tip-vortices (TV, as solid arrow marked in the 

figures) released from the span-wise tips. Wings with short aspect ratios of AR=1.0 

and 2.0 produce circular vortex rings, as the TV are close to each other along a short 

aspect distance. The tip-vortices of wings with AR=4.0 merge with each other with a 

longer distance, and result in the vortex shape being stretched thinner, forming 

elongated loops. The elongated loops are beneficial to facilitating a faster traveling 

speed and generating stronger jet flow than circular vortex rings due to a less power 

loss at the mid-span region. The different aspect ratios of wings lead various vortex 

structures and thus affect thrust force and induced velocity.  

 

Figure 3.10 Time variation of instantaneous horizontal fluid force coefficient for wings with 

AR=1.0, 2.0, 4.0 and ∞, Refr=80, σ=4.0 
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Figure 3.11 Vortex topology at four instants for the wing with AR=2.0, Refr=80, σ=4.0. 
 

 

 

Figure 3.12 Vortex topology at four instants for the wing with AR=1.0, Refr=80, σ=4.0. 
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The relationship between the averaged translational Reynolds number (Reu) 

(corresponding to frequency Reynolds number (Refr)) and aspect ratio (AR) is 

presented in Figure 3.13 for a fixed σ=4.0. Firstly, for all cases, the Reu increases 

monotonically with Refr. Such behavior is well documented in the previous studies for 

two-dimensional self-propelled flapping foils (Alben and Shelley, 2005; Benkherouf 

et al., 2011; Dong et al., 2006; Lu and Liao, 2006). Secondly, Reu turns into a linear 

function of Refr when Refr is over a critical value, ranging from 40-60 in the current 

study, which agrees well with the study of Vandenberghe et al. (2004). Furthermore, 

induced velocity becomes larger as the aspect ratio increases at fixed Refr. Wing with 

small aspect ratio (AR=0.5) wanders very slowly, but the speed rises dramatically 

when aspect ratio is bigger than 1.0.  

 

The present simulations also indicate that low-aspect-ratio wings lead to the same St 

number as large-aspect-ratio ones under stronger flapping frequencies. Besides, the St 

number mostly appears within the interval 0.2-0.5. This is an interval within which 

flying and swimming animal, driven by wing or tail, are likely to achieve and 

maintain high propulsive efficiency. Faster speeds can be achieved, considering the 

hydrodynamic performances alone, by wings with larger aspect ratio. However, if 

applied to animals, penalties can be incurred by the wings for large aspect ratios, for 

example, the need to hold bending moments from stronger and heavier body 

structures. Dong et al. (2006) show that most fish pectoral fins are found to have an 

aspect ratio somewhere between 2.0 and 3.0, within which the wings usually travel 

faster under a potentially high propulsive efficiency. 

 

3.4.3 Density Ratio Effect 

According to the previous study on two-dimensional foils, self-propelled foil 

evolution motion and velocity magnitude are dependent on mass ratio σ. There is a 

critical density ratio, over which foil achieves a steady net movement in one direction 

rather than undergoes a spontaneous forward and backward motion (Alben and 

Shelley, 2005; Lu and Liao, 2006). In the present study, the focus is on the induced 

translational velocity eventually in steady status, thus relatively large mass ratios are 

selected as 4, 20 and 32. 
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Figure 3.13 Averaged translational Reynolds number (Reu) against frequency Reynolds number 

(Refr) under various AR with dashed red lines marking with St number range. 

 

The evolution of the instantaneous Reu is shown in Figure 3.14 (a) with Refr=60. As 

seen, wings reach a similar final average velocity after initial evolution cycles. The 

ones with large mass ratio take more cycles to achieve the quasi-steady velocity, and 

have smaller fluctuations. This shows that the heavy wings are not as sensitive to the 

surrounding instantaneous fluid as light wings. In the stability aspect, the heavy ones 

are more stable. However they are less flexible in terms of their manoeuvrability. 

 

More tests were carried out on wings with various density ratio and aspect ratios. 

Results in Figure 3.14 show that the horizontal speed stays constant within little 

deviation, and similar observation hold for those wings with either big or small aspect 

ratios. The dynamics of aquatic animals involves a complicated interaction of their 

bodies with the surrounding fluid flow. Usually, the flapping mode can naturally stay 

in the regime of a steady movement state to generate a forward flapping locomotion. 
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Figure 3.14 (a) Variation of the instantaneous translational velocity U, AR=1.5; (b)Translational 

Reynolds number Reu with different density ratio σ. (Refr=60) 

 

 

3.4.4 Perturbation Effect 

As described in Sec. 3.4.1, the symmetric foil and wing can travel horizontally with 

unidirectional locomotion, in either left or right with equal probability. During the 

evolution process, the initial perturbation plays an essential role on determining the 

way in the transition period. It is interesting to examine how the self-propelled 
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phenomenon is influenced by initial flow conditions. In the present study, the effects 

of mesh symmetry and imposed perturbation velocities are examined respectively. 

 

The induced moving directions of selected wings under different AR and Refr are 

summarized in Table 3.2. It indicates that the wings with same aspect ratio are likely 

to be moving in the same direction, regardless of Refr, except the wing with AR of 1.5.  

Even though the grid asymmetry is carefully avoided when we generate meshes, there 

are still slight differences between wings left and right over the whole computational 

domain and it may lead to a small perturbation and stimulate symmetric breakdown. 

The results shown in Table 3.2 could be attributed to the fact that the mesh is the same 

with an identical aspect ratio that results in the same direction. A special case is the 

wing with AR of 1.5 for which the induced travelling direction changes with 

increasing Refr, indicating that perturbation can also be induced by the asymmetric 

vortex shedding coming along with dynamic motion effect and aspect length effect. It 

indicates that there are factors inducing initial perturbation, such as asymmetric mesh, 

dynamic motion effect and leading/trailing edges and wing end effect. A guess is 

made that there should exists a criterion condition about the dominating term among 

the factors that induce most initial perturbation, but we are not able to make a further 

investigation due to the limited results obtained in the present study.   

Table 3.2 Directions of induced velocities. <+> represents wing travels in positive x direction, and 

<-> represents wing travels in negative x direction. 

Refr/AR ∞ 0.5 1 1.5 2 4 6

80 - - + + - + +

60 - - + + - + +

45   + - -   

32 - - + - - + +

20 - + + - - + +
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Figure 3.15 Initial pertubation effect on movement directions of flapping wings, by testing 

horizontally flipped mesh (HFM) and various perturbation velocities (up) with (a)AR= ∞; (b)AR= 

1.5; (c)AR=1.0, (Refr=60). 
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Three cases with AR = ∞, 1.5 and 1.0 are selected by simply swapping the left and 

right mesh domain, and the time evolutions of wing velocity are shown in Figure 3.15. 

Obviously, the translational velocities are just opposite with the horizontally flipped 

mesh line (HFM) compared to the baseline, showing that the moving direction is 

sensitive to the initial mesh conditions. 

 

Motivated by the methodology on the symmetry breaking of circular cylinder’s wake 

vortices (Tang and Aubry, 1997), and dynamic stability analysis of flying animal (Gao 

et al., 2011), the induced motion is studied by the imposition of an initial perturbation. 

In order to do this, small specified perturbation velocities (up) are imposed on the 

selected wings as an initial condition of velocity. The up is specified with an opposite 

direction as those without perturbation velocity cases (baseline cases), and various 

velocity magnitudes, with up= 0.00167%, 0.167% and 16.7% of the vertical angular 

velocity (uv=2πhc/ω) respectively. The results of the instantaneous velocity evolution 

process are shown in Figure 3.15. It can be seen that the effect of up on wings with 

different AR shows a non-linear stability. There exists smaller up (up/uv=0.167%) 

which is not strong enough to alter the horizontally moving direction as for cases with 

AR=1.0 and 1.5, and the bigger one (up/uv=16.7%) which is able to change the 

travelling direction for all these three cases. The imposed perturbation affects the 

wing moving direction as well as the initial development time to reach the final 

quasi-steady status. 

 

Generally, it can be seen that the perturbation has no effect on final quasi-steady 

velocity amplitude, but clearly has some effect on travelling direction and evolution 

process. To explain this phenomenon, it is deemed that the perturbation effects are 

mainly valid at the beginning of the transition period. Since the initial fluid flow is 

quiescent, and there is no horizontal constraint, the symmetric foil/wing is highly 

sensitive to the surrounding environment. Thus, small perturbation is able to lead to 

locomotion [as the status in Figure 3.7 (b) and Figure 3.8 (b)]. The small perturbation 

is caused by leading/trailing edge vortex shedding as well as wing end-effect related 

to span-wise length. However, after vortex collision [status in Figure 3.7 (c) and 

Figure 3.8 (c)], relatively stronger hydrodynamic forces are produced, hence those 

very small perturbations can be negligible, and would not change the velocity in the 

final quasi-steady status. This perturbation phenomenon influence may also be 
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explained by a passive mechanism Flapping Counter Torque (FCT) (Faruque and 

Humbert, 2010a, b; Hedrick et al., 2009), and Flapping Counter Force (FCF) (Cheng 

et al., 2010). They suggested that symmetric flapping wings produced restoring torque 

and force making swimmers respond to perturbation by decreasing body rotation, and 

could maintain flight stability by a passive damping coefficient. Therefore, the 

periodic plunging motion in the current study is able to maintain a stable locomotion 

status after slightly initial perturbation.  
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Chapter 4 Flapping Wing with 
Translational and 
Rotational Motion 

 

 

4.1 Introduction 

In the present numerical study, we perform a comprehensive investigation on the 

dynamic response of a 3D flapping wing with 2DoF in lateral and rotational directions 

under a zero-initial-velocity condition. The parametric study is made by considering 

the effects from various parameters, including not only those mentioned in the last 

chapter, i.e. wing AR, flapping frequency (Refr), density ratio (σ), but also those 

induced from the passive pitching motion of system, e.g. torsional stiffness, frequency 

ratio and pitch bias. The hydrodynamic performance of the 3D flapping wing is 

illustrated from the development of system symmetry breakdown, self-propelled 

velocity and efficiency, and related wake structure etc. 

 

 

4.2 Mathematical Model 

4.2.1 Two Degree-of-Freedom Flapping Wing Model 

The numerical model is shown in Figure 4.1. Comparing with the model of last 

chapter, an additional rotational degree of freedom is taken into account. In particular, 

a specified sinusoidal plunging motion is imposed on the wing, which is defined as Eq. 

(3.1). 
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Figure 4.1 Sketch of the simulation model. 

 

 

Beside the lateral hydrodynamics force acting on the foil, the hydrodynamics 

momentum accounting for the rotational motion of the wing, is also monitor in this 

study. The lateral motion of the wing is govened by the same equations show in last 

chapter, while the rotional motion is governed by a rotional momentum euqaiton as 

based on a tosional spring assumption: 

 

2

2 z

d
I k M

dt

     (4.1) 

Where Mz is the fluid moment imposed on the wing, θ is the pitching angle, k is the 

spring stiffness, and I is the inertia moment of wing. The Runge-Kutta method is 

employed to solve the rotational equation as 

  
 (4.2) 
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 ,

  (4.3) 

where n  represents the thn  time step and 
1nt




 and 
nt  are the pitching angles at 

the instantaneous time of ( 1)n t   and n t . 

 

4.2.2 Fluid Solver 

The flow filed around the flapping wing is simulated using the commercial CFD 

package FLUENT version 13.0 with and unsteady incompressible solver. A 

second-order upwind spatial discretization and first-order time discretization is used. 

In addition, to reduce the inaccuracy generated by the mesh deforming and 

re-meshing process, the entire domain is handled as a rigid moving body without 

relative motion between the body and its surrounding mesh. The body’s plunging 

motion (vb) is imposed on the domain using Dynamic Mesh Function in FLUENT. 

The parallel processing setup is established through High Performance Computer 

 

In our studies, the characteristic Reynolds number is calculated by the velocity 

between the wing and the fluid. It ranges from 0 to 1000, and hence, the flow field is 

assumed to be laminar. At each time step, the simulation starts with attaining the flow 

field around wing by solving unsteady continuity and momentum equations associated 

with the Dirichlet and Neumann boundary conditions of velocity and pressure. By 

obtaining the flow data, the integrated wing surface forces and moment acting on the 

wing body are available. The dynamic response of wing is therefore obtained by 

solving Eqs. (4.1) and (4.2) where the system structural parameters, such as the wing 

mass, stiffness are taken into account. 
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4.2.3 Parameter Selection 

The dynamic and non-dimensional parameters used in this chapter are similar to those 

in the last chapter. Additional parameter employed in this chapter is the frequency 

ratio, which is defined as 

 

nf
F

f


, (4.4)
 

where nf  is the wing natural frequency, and defined as 

 

1

2n

k
f

I


,  (4.5) 

where k and I are the stiffness of system and moment of inertia of the wing, 

respectively. The non-dimensional density ratio (σ) indicates the wing system inertia, 

and the frequency ratio (F) represents the rotational stiffness. 

 

Meanwhile, the computed data are summarized with the induced lateral 

non-dimensional velocity (Reu) and the pitching angle (θrms) based on its Root Mean 

Square value (rms), which is defined as  

 

2

1
( )r

i t
avgr

rms i

 
 


 

. (4.6) 

The i in Eq. (4.6) represents the iteration time step, tr  is the pitching angle at the str  

instantaneous time, avg  is the averaged pitching angle. 

 

The vertical overall force coefficient: 

 

 
  21

2

y

y
F

F t
C

f hc cL


. (4.7)
 

 

The pressure force coefficient: 

 

 
  21

2
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F t
C

f hc cL


. (4.8)
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The propulsion efficiency η is defined as: 

 
 

u
b
(t)F

Px
(t)dt

t

tT
v

b
(t)F

y
(t)dt

t

tT , (4.9)
 

where yF  are the force components in vertical direction, 
xPF  is pressure force in the 

lateral direction. 

 

The parameter ranges studied in this chapter are summarized in Table 4.1. Both the 

two-dimensional foil (AR = ∞) and the three-dimensional wing with low aspect ratio 

(AR ≤ 4.0) are investigated. The frequency ratio (F) is mainly selected between 1.5 to 

10.0 to control the wing dynamic response in rotational direction. Obviously, wing 

with F equal to infinity is the indication of one DoF in lateral (x) direction. The 

density ratio examined here is in-between 4.0 to 32, which is usually applied in 

marine models in previous studies (Alben and Shelley, 2005; Lu and Liao, 2006) and 

also the focus of present study. As compared to the relevant mass ratios for live flying 

birds or insects, such as the wings of hawkmoths, bumble bees and frutiflies, which 

are reported to be of 2.0×103, 2.1×103 and 1.1×103, respectively (Buchwald and 

Dudley, 2010; Combes and Daniel, 2003a, b; Willmott and Ellington, 1997a, b), the 

mass ratios for aquatic animals are relatively small. 

 

 

Table 4.1 Various parameters investigated in the present study. 
Density 

ratio  

Plunging 

amplitude (h) 

Flapping Re 

(Refr) 

Frequency 

ratio (F) 

Aspect ratio 

(AR) 

Pitching axis 

position (x/c) 

4-10, 16 0.5 80 1.5-10 
1.0, 1.5, 2.0, 

3.0, 4.0 
0 

4-10, 16 0.5 80 1.5-10 ∞ 
0, 0.1, 0.2, 

0.3, 0.4, 0.5 

4, 20, 32 0.5 
20, 32, 45, 

60, 80 
∞ 

1.0, 1.5, 2.0, 

4.0, 6.0, ∞ 
- 
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In addition, the flapping Reynolds number Refr for the 3D wing in the present study, is 

fixed at 80, which is comparatively small as compared to the normal flapping wing 

cases in biological flights. However, since the main objective of the present study 

aims at unveiling the three-dimensional mechanisms in free-moving 3D wings with a 

specific focus on the phenomenon “symmetry breakdown” and its subsequent 

development into stable states, the parameters selected are consistent with last chapter 

as well as those in relevant papers on a free-moving 2D foils by Alben and Shelley 

(2005) and a flat plate by Zhang et al. (2010) with Refr=0-50 and Refr=0-80, 

respectively. 

 

Pitching axis of the wing is initially set at the center of chord (x/c=0 in Figure 4.1) to 

hold the wing left/right and clockwise/counter clockwise symmetry before the 

bifurcation starts. This is different from the real flyers, where the rotational axis are 

normally at the leading edge (Sane and Dickinson, 2002). As we will show later, the 

stiffness of wing, represented by frequency ratio F, on the induced lateral speed (Reu) 

is remarkably affected by the pivot point. Thus, in the following sections, a systematic 

study is also performed on the pitching axis effect by varying the pivot point from 

leading edge (x/c=0.5) to center-chord (x/c=0). 

 

 

Table 4.2 Summary on mesh size, time-step size and computing time. 

Mesh 
Overall 

cells 

Nodes 

(wing surface)

Nodes 

(span-wise) 

Time-step 

size 

Simulation time 

(8 processors) 
ub/fc 

AR1.5-C 1853675 200 80 T/200 59 hours 4.37

AR1.5-M 2782250 300 80 T/200 75 hours 3.95

AR1.5-F 6327830 400 120 T/200 153 hours 3.91

AR1.5-MST 2782250 300 80 T/150 62 hours 4.24

AR1.5-MBT 2782250 300 80 T/400 140 hours 3.96

(C- course mesh; M- medium mesh; F- fine mesh; MST- medium mesh & smaller time-step size; 

MBT- medium mesh & bigger time-step size) 
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4.3 Numerical Validation 

Based on the validation studies in last chapter, we conduct addition validation work in 

this chapter with special emphasize on the sensitivities of grid size and time-step size. 

Here, it is conducted for a 3D wing with AR of 1.5 under Refr=60, F= and h/c=0.5 

conditions. The computational domain size is exactly same as shown in Figure 3.2, 

which is big enough to capture the flow development around and downstream of the 

flapping wing model. Details of overall volume and surface mesh numbers and time 

step are listed in Table 4.2, along with the computed averaged force coefficient CFx. 

Comparing the cases for mesh density test by AR1.5-C, AR1.5-M and AR1.5-F, the 

force coefficient from medium mesh is close to the one from fine mesh under a 

medium time-step size. And the cases for different time-step sizes test by AR1.5-M, 

AR1.5-MST, AR1.5-MBT present that time-step size of T/200 behaves similar as 

time-step size of T/400. The instantaneous CFx on the medium and fine grids (not 

shown here) indicate that the results on the medium grid with a time-step size of 

dt=T/200 almost coincide with those on the fine grid and dt=T/400. Considering an 

increased computing time as listed in Table 4.2, the time-step size dt=T/200 and 

medium mesh is used in the present simulation. 

 

The numerical methodology developed for solving the problems with unsteady forced 

undulating swimming fish or two-dimensional flapping foil has been extensively 

validated in our previous publication (Hu et al., 2011; Xiao et al., 2011). To further 

validate the strategy utilized to handle the system dynamic response 

(fluid-structure-interaction) associated with the self-propelled feature, a validation on 

a self-propelled flat plate investigated by Zhang et al. (2010) is performed. Given the 

pre-specified plunging motion with a flapping Refr=40, amplitude A/c=0.5 and mass 

ratio σl=2.0, the computed propulsion velocity (ub/fc) and pitching angle (θ) variation 

with frequency ratio are compared in Figure 4.2 with data from Zhang et al. (2010). 

The domain size for this 2D model is 21 and 11 times of chord length in in-line and 

transverse directions. There are 300 mesh cell numbers around the plate, and 

time-step size is selected as T/200. Our results present a general good agreement with 

theirs by capturing the peak ub/fc and sharp varying of ub/fc and θ versus F. The 

comparision on the time-dependent induced pitching angle at F=1.05 presents an 

excellent agreement between two results in terms of the amplitude and phase angle. 
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Apart from this test case, we also simulated a two-dimensional flapping elliptic foil 

that is studied previously by Alben and Shelley (2005). The comparison between our 

results and theirs are presented in the previous chapter in Figure 3.6 (a). 
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Figure 4.2 Comparison with Zhang et al. (2010) with 2DoF flat plate. (a) Induced non-dimensional 

lateral velocity. (b) Induced pitching angle. (c) Variation of induced instantaneous pitching angle 

at F=1.05. 
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4.4 Results and Discussion 

In this section, our numerical results will be present and discussed in detail. Our 

attention will be firstly focused on the symmetric broken phenomenon of this system, 

which is slightly different as the wings with 1DoF in translational direction. As the 

plunging velocity increases, the system symmetric is broken, inducing a translational 

motion of the wing. As following, the flow status will be classified when the system 

reaches a steady state. After then, the effects of various parameters, which include 

aspect ratio, frequency ratio, pivot-point and density ratio, will be discussed in the last 

two sub-sections. 

 

 

4.4.1 Phenomenon of Symmetry Breakdown 

The observations on the evolution of wing heaving motion show that, given the forced 

Refr of 80, the wing under various grouping of aspect ratios, density ratios, frequency 

ratios and pitching bias distance could eventually reach a stable motion, a 

combination of an either forward or backward motion with a periodic pitching motion. 

The evolution of instantaneous  and θ are shown in Figure 4.3 and Figure 4.4, 

for two-dimensional foil (AR = ) and three-dimensional wing (AR = 2). It is clear 

that the wing starts its lateral movement almost at the same time when it rotational 

motion starts, indicating that once the pitching motion is activated, left/right 

symmetry breaks down and thus causes the lateral motion. Meanwhile, the 

three-dimensional wing takes longer developing time than a two-dimensional foil to 

reach its stable state. 

 

To better understand the wing dynamic and the phenomenon of system symmetry 

breakdown, the vorticity contours at three typical time instants, i.e. symmetry, 

asymmetry development and fully developed state (denoted as t1, t2 and t3, 

respectively) are shown in Figure 4.3 (a) and Figure 4.4 (a). The identification of 

three stages is from the observation of the induced lateral velocity evolution curves, as 

the velocity curves of wings roughly go through static zero velocity region, 

dramatically increasing region and quasi-steady region. The vorticity contour plots are 
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captured all the way along the fluid development, and the three time instants (t1, t2 and 

t3) in Figure 4.3 and 4.4 are selected at the time instants when the most typical vortex 

structure can be captured. It can be clearly seen from the plots that, at time t1, the flow 

field sustain a left/right symmetry structure, thus no movement of wing in lateral and 

rotational direction [Figure 4.3 (b-i) and Figure 4.4 (b-i) and (d-i)]. When the wing 

flaps more cycles and reaches time t2, the pitching motion is activated as shown in 

Figure 4.3 (b-j) and Figure 4.4 (b-d-j) with an asymmetry vortex structure around the 

wing. At the fully developed state (t3), a thrust-generating vortex wake is observed 

from Figure 4.3 (b-k) and Figure 4.4 (b-k) and (d-k). Comparison of Figure 4.4 (i) 

with Figure 4.4 (j) and Figure 4.4 (k) on the vortex structure around the wing at 

different span (z), reveals that the flow has a profound three-dimensional feature due 

to the low aspect ratio of wing (AR=2). A comparison between 3D wing symmetry 

plane vorticity contour plot with 2D wing in Figure 4.3 and Figure 4.4 also indicates a 

relatively weak vortex strength associated with 3D wing, implying a weaker 

propulsion feature wake structure. This is the key reason leading to a smaller Reu and 

 as compared to their 2D counterparts, and it will be shown in the follow sections in 

this chapter. 

 

(a) Instantaneous  and θ.  

 

(b-i) t1=0.9T.            (b-j) t2=2.3T.          (b-k) t3=8.8T. 

 

Figure 4.3 Evolution of symmetry breakdown (σ=8.0, Refr=80, F=2.0, AR=∞). 
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(a) Instantaneous  and θ. 

 

 

z/S=0       (b-i) t1=0.9T            (b-j) t2=4.9T           (b-k) t3=9.9T 

 

z/S=0.25      (c-i) t1=0.9T           (c-j) t2=4.9T            (c-k) t3=9.9T 

 

z/S=0.5       (d-i) t1=0.9T           (d-j) t2=4.9T           (d-k) t3=9.9T 

Figure 4.4 Evolution of symmetry breakdown (σ=8.0, Refr=80, F=2.0, AR=2.0). (The contour 

legend is same as in Figure 4.3) 
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4.4.2 Classification of Flow Status 

Different flow status is classified in this parameter space of , F and . The results 

are summarized in Figure 4.5, obtained for the 2D wing and 3D wing (AR = 2.0) 

responses respectively. Each point in these plots represents a simulation data, which is 

collected after a periodic stable state, and different modes (Mode A, B-1, B-2) are 

classified by the frequencies of induced lateral velocity. Typical cases in different 

modes are selected for further investigation, under a range of frequency ratios varying 

from F = 3.0 to F = 8.0 with the same density ratio for both 2D wing and 3D wing. 

The corresponding time history on the instantaneous Reu and , their Power Spectral 

Density (PSD) distribution, and vorticity topology contour are shown in Figure 4.6 

and Figure 4.7. 

 

(a) (b) 

 

(c) (d) 

Figure 4.5 Boundary of various flow status (h/c=0.5, Refr=80). (a) Density-frequency ratio-Reu 3D 

view (AR=). (b) Density-frequency ratio plane view (AR=). (c) Density-frequency ratio-Reu 

3D view (AR=2.0). (d) Density-frequency ratio plane view (AR=2.0).  
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(a-i)                  (a-j)                  (a-k) 

 

(b-i)                  (b-j)                  (b-k) 

 

(c-i)                 (c-j)                  (c-k) 
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(d) 

Figure 4.6 Evolution of instantaneous Refr and , their Power Spectral Density distribution (PSD), 

vorticity contour, and forces (σ=8.0, h/c=0.5, Refr=80 and AR=∞). For vorticity contour, solid 

lines are positive values and dashed lines is negative value. (a) Mode A (F=3.0). (b) Mode B-1 

(F=6.0). (c) Mode B-2 (F=8.0). (d) Instantaneous thrust and lift forces. 
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(c) 

Figure 4.7 Evolution of instantaneous Refr and , their Power Spectral Density distribution, and 

vorticity contour (σ=8.0, h=0.5, Refr=80 and AR=2.0). For vorticity contour, solid lines are 

positive values and dashed lines is negative value. (a) Mode A (F=3.0). (b) Mode B-2 (F=8). (c) 

Instantaneous thrust and lift forces. 

 

 

It is shown in these figures that the wing response in rotational direction () to the 

forced flapping motion is generally more regular than the response in lateral direction. 

The Fast Fourier Transformation (FFT) analysis on the instantaneous  plot, shown in 
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Figure 4.6 and Figure 4.7, dictate that one dominant frequency, i.e. a single spike is 

always observed for all cases studied, which is identical to the flapping frequency 

(Fin/f=1, where Fin is the induced lateral motion frequency and f is the prescribed 

plunging frequency). The FFT is calculated from 10th period to 30th period. For some 

2D wing at a low frequency ratio where F is less than 4.5, a second spike or more is 

observable. This is consistent with our system dynamic feature where the stiffness is 

imposed merely in the rotational direction to manipulate the periodic pitching motion, 

as shown in Eq. (4.1). In contrast, the FFT on  history, which represents the 

dynamic response in lateral direction, reveal a multiple-spike-frequency spectral 

distribution, where the dominant spike does not always correspond to the forced 

flapping frequency. Instead, it depends on a wide range of AR, density and frequency 

ratio investigated. The present results are only capable of providing evidences on the 

induction of multiple-spike-frequencies of lateral velocity, which is probably lead by 

the complicated vortex shedding procedure, but not quantifying the induction of these 

frequencies. In the following, we classify such complicated flow status based on the 

FFT analysis on  into three-fold: 

 

 Frequency ratio: with an increase in frequency ratio (F) or wing stiffness, the 

PSD for  shows a gradual transition from a multiple-spike (2-3 modes) 

state to the single spike frequency state (1 mode). We denote the state 

exhibiting multiple-spike frequency as Mode A, and the state with single spike 

frequency as Mode B. Two subdivisions as Mode B-1 and B-2 are further 

defined corresponding to the Fn/f is equal to 1.0 or 2.0, respectively. It is found 

that the boundary between Mode A and B is affected by the system dynamics 

parameters, i.e. density and frequency ratio. Given a fixed density ratio, the 

wing with large F presents a more harmonic distribution in terms of  vs. 

time plot, indicating the existence of one dominant frequency. This is also well 

reinforced by the instantaneous thrust and lift forces (CFx and CFy) plots in 

Figure 4.6 (d) and Figure 4.6 (c). Obviously, the lift force presents a rather 

regular one dominant frequency, which is irrelevant to the stiffness (F). 
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However, thrust force displays an increased multiple mode with small stiffness, 

which is believed to cause the multiple frequency in . From this point, the 

present results clearly reveal that, the torsional stiffness, represented by the 

spring added at pivot point, definitely plays its role in the overall wing 

dynamic response both in x and  direction. With F approaching infinity, the 

pitching motion is fully eliminated, the wing becomes a rigid body with 1DoF 

in x direction, and thus it is expected to be more stable and regular under the 

external forced flapping motion. Indeed, we found that only one peak 

frequency exists in its PSD. 

 

 Aspect ratio: The wing aspect ratio influences the boundary separating in 

Mode A and B slightly. Decreasing AR leads to the boundary moving to higher 

F. Apart from that, aspect ratio also changes the Mode transition and the ratio 

of  frequency relative to flapping frequency (Fn/f). Comparing 2D wing 

in Figure 4.5 (a-b) with 3D wing in Figure 4.5 (c-d), it is shown that, an 

increase in F causes a 3D wing transferring from Mode A directly to Mode 

B-2. 

 

 Density ratio: Above trends are valid for all density ratios investigated. 

However, the exact boundary location is affected by density ratio (). In fact, 

decreasing density ratio causes the flow regime transition from Mode A to B at 

a relatively large frequency ratio (F). 

 

Along with the key information provided by FFT analysis above, the typical vorticity 

topology contours at a given density ratio  = 8.0 are shown in Figure 4.6 and Figure 

4.7 to represent the relevant wake vorticity structure variation with a gradually 

increasing F from Mode A, B-1 to B-2. All vorticity plots shown in the figures are 

taken at the instantaneous time at which the wing pitches to the maximum angle. For a 

3D wing, the vorticity contour is taken at wing half span section. It is shown that, the 
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vortical structure resembles the classic reverse von Kármán vortex street in the wake 

of a propulsive body, revealing the existence of a forward moving state. This 

behaviour is consistent with the experimental and numerical findings of a 2D foil in 

the work of previous studies (Alben and Shelley, 2005; Lu and Liao, 2006; 

Vandenberghe et al., 2006; Vandenberghe et al., 2004; Zhang et al., 2009). However, 

some differences do exist. For a small frequency ratio (F), a less stiff wing with the 

presence of Mode A, the pitching angle is relatively larger as compared to that of 

large F, where Mode B appears, the vortex shedding street becomes much wider, and 

more vortices sheds within one cycle, which leads to the co-existing of various PSD 

modes in the wake as shown previously. Increasing F causes the increasing of system 

stiffness and thus the wing pitching at a smaller angle. As a consequence, the wake 

becomes narrower and more regular, and fewer vortexes shed in one cycle as 

compared to the cases with small F. Though the above observation is generally true 

for both 2D and 3D wing, the detailed difference can be noticed from the 3D wing 

wake topology plotted using a Q-criterion theory as shown in Figure 4.8. At a low 

aspect ratio, like AR=2.0, a vortex ring forms via the combination of two tip vortex 

generating at the two ends of wing-span direction. 

 

 

 

 

 

 

 

(To be continued.) 
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                 (a)                                 (b) 

Figure 4.8 Vortex topology (Q contour) for 3D wing at different frequency ratio, with magnitude 

of iso-surfaces as 0.0002 ((σ=8.0, h=0.5, Refr=80 and AR=2.0)). (a) F=3.0. (b) F=8.0. 
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(b) 

Figure 4.9 Final approached time-mean Reu and θrms (σ=8.0, Refr=80, x/c=0). (a) Induced 

non-dimensional lateral velocity. (b) Induced pitching angle. 
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4.4.3 Effects of Aspect Ratio, Frequency Ratio (flexibility) and 

Pivot-point 

In this section, the effects of various parameter will be investigated. Our attention 

specially focuses on the aspect ratio (AR), frequency (F) and position of pitching axis. 

The variations of time-averaged lateral velocity (Reu) and the root-squared pitching 

angle (θrms) with the increase of frequency ratio (F) at various aspect ratios (AR) are 

shown in Figure 4.9. The corresponding 1DoF case results (F=) are also present as 

the dash-dot line in the right side of Figure 4.9 (a). 

 

It is shown from Figure 4.9 that, for a moderate AR (ranging from 2.0 to 4.0) and a 

large F (F > 4.0), the differences in Reu and θrms are small. However, a 2D foil (AR = 

) obviously has larger propulsion velocity and pitching angle than those of a 3D 

wing. The impact of aspect ratio becomes more evident when the 3D wing becomes 

very short at AR=1.0, where both lateral and rotational motions are remarkably 

independent on the frequency ratio F, different from the trend observed for AR  1.5. 

 

One striking finding from Figure 4.9 is that, apart from a very low aspect ratio case 

with AR = 1.0, the lateral Reu increses monotonically with frequency ratio of the wing 

for rest of AR examined. This implies that the performance of a wing with torsional 

spring is even worse than a wing without spring, which seems contractory to the study 

of Spagnolie et al. (2010) and Zhang et al. (2010). To find out the problem, we 

performed a series of investigation on the pivot point effect by varying it from 

center-chord (x/c = 0) to leading edge (x/c = 0.5). The results are presented in Figure 

4.10 for a 2D and 3D wing, respectively. Clearly found from the plots, the pivot point 

has a very apparent impact on the stiffness influence for wing propulsion. Our 

two-dimensional results plotted in Figure 4.10 (a) show that, below a threshold 

picthing axis, x/c = 0.3 here, a wing without torsional spring acheieves a better 

propulsion performance than a wing with spring. Beyond this value, Reu vs F curve 

presents a non-monotanical trend. At a low F less than 2.0, where the wing is very 

flexible in rotational direction, the wing propulsion velocity increases sharply with F, 

enhibiting a flexible detrimental effect. Once F is large than 2.0, Reu decreases with F, 

thus indicating a better performance of a flexible wing than a rigid wing. Our results 
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for x/c > 0.3 are remarkably similar to all relavant flexible wing flapping observations 

where the pitching axis is fixed at the leading edge (Spagnolie et al., 2010; Zhang et 

al., 2010). Another notable feature observed from Figure 4.10 is that, such pitching 

axis influence decays when the wing becomes more and more stiff (via increasing F), 

and is expected to lose its impact eventually when the wing turns into rigid. 
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(b) 

Figure 4.10 Effect of pitching axis on Reu vs F (x/c=0 represents the wing pitching at its 

center-chord). (a) AR=∞. (b) AR=2.0. 
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(b) 

Figure 4.11 Frequency ratio (F) effect on the horizontal thrust force and efficiency (σ=8.0, 

Refr=80). (a) Thrust force coefficient. (b) Efficiency. 

 

 

To further demostrate the above facts from the present study, the time-mean thrust  

pressure force (CFpx) in the lateral (x) direction and the corresponding propulsion 

efficiency  defined in Eq. (4.9) are plotted in Figure 4.11 with various frequency 

ratios (F) and AR. Obviously seen from the plots, the thrust force decreases 

monotonically with F for all AR examined. The maximum CFpx reaches at the 
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minimum frequency ratio at around F = 1.5 studied. However, an optimal efficiency is 

obtained around F = 2.0 and F = 3.0 for 2D foil and 3D wing, respectively. This 

definitely reinforces the optimal propulsion mechanism in the field of biology as 

revealed by relavant publications cited above (Kang et al., 2011; Ramananarivo et al., 

2011). Refer to the flow status results presented in Section 5.3, we can conclude that 

the most desirable and efficient propulsion mode is Mode A. Compared to live fliers, 

the relative low efficiency shown in Figure 4.11 (b) might be due to the discrepancy in 

problem parameters selecting, such as flapping frequency (Refr) and density ratio (σ), 

which are different from the real animals as we mentioned in Sec. 4.1. 

 

4.4.4 Effect of Density Ratio 

The results for density ratio () effect on Reu and θ are summarized in Figure 4.12 for 

various aspect ratios (AR) and frequency ratios (F). Generally, the impact of density 

ratio on the lateral velocity Reu is smaller than its influence on θ. In addition, the 

density ratio impact is influenced by the wing aspect ratio. For a 2D wing under 2DoF, 

represented by (∞, *) in the figure, increasing density ratio leads to a slightly enlarged 

Reu and a small pitching angle. This trend is also relevant to wing stiffness (F). Large 

F implies a much stiffer wing, thus the density ratio effect is less apparent. This is 

clearly reflected by the wing with a (∞, ∞) combination, where the pitching angle is 

equal to zero and thus Reu remains a constant as 755. With a 3D wing, given a density 

ratio (), again, we found that large aspect ratio has a relatively large propulsive 

velocity and rotational angle. For the present problem, i.e. a self-propelled 3D wing 

with 2DoF, this finding is especially important, as it links the system dynamic 

response to the external fluid force. In particular, the inertial force influence on the 

system stability via the density ratio. With a fixed density ratio, the mass of a small 

AR wing must be smaller than a wing with large AR. The small mass represents small 

inertia, and more sensible to the variation from the external force or moment.  
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(b) 

Figure 4.12 Density ratio effect on the induced lateral velocity and pitching angle (Refr=80) (a) 

Averaged induced non-dimensional lateral velocity Reu. (b) Induced pitching angle θ. 

 

 

The development history of  and θ are plotted in Figure 4.13 for various density 

ratio at AR = 2.0 and F = 2.0. Obviously seen, due to the larger inertia, the system 

with large density ratio presents a small variation both on  and θ. The evolution 
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time to reach the final stable state is also increased. It should be pointed out that the 

wings of insects and birds usually have much larger density ratios on the order of 

several thousands (Ramananarivo et al., 2011), which compared to the relatively low 

density ratios in the present study, may enhance the stability of the dynamic flight 

system in terms of the nonlinear interaction between aerodynamics and inertial 

dynamics. 
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Figure 4.13 Density ratio effect on the evolution of  and θ (Refr=80, AR=2.0 and F=2.0). (a) 

Induced non-dimensional lateral velocity . (b) Induced pitching angle θ. 
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4.5 Discussion 

The present study aims to understand the fundamental fluid mechanism utilized by 

some live animals using a flapping motion for their thrust/lift generation and 

propulsion, which is made possible by the wings’ inherent flexible with this simplified 

model. Our aim is to investigate this system dynamic response to the symmetry 

breakdown. It is believed that the results obtained are vital to elucidate the flexible 

wing propulsion mechanism. 

 

The simulations show that the development history of lateral and rotational motion is 

similar to the studies of Spagnolie et al. (2010) and Zhang et al. (2010) for a 

two-dimensional foil and flat plate. In particular, the evolution follows left/right 

symmetry, an asymmetry, and eventually a stable forward or backward movement 

combined with a rotational pitching. However, our simulations of a low aspect ratio 

wing show that, a 3D wing takes a longer developing history for breaking the 

symmetric flow structure around the wing and reaching its final stable state than a 2D 

wing. Such a three-dimensional effect that is responsible for enhancing or stabilizing 

force generation can also be observed in flying insects and manoeuvring fish that fly 

or swim at low Reynolds numbers by flapping their wings or pectoral fins with low 

aspect ratios as compared to those of bat and birds. 

 

Analysis of the data within the fully developed flow regimes shows that the wing 

always pitches at the same frequency as forced flapping frequency, irrelevant to the 

wing’s torsional stiffness and this is consistent with the study of Zhang et al. (2010), 

which indicates that the low aspect ratio wing edge does not affect the dynamics of 

passive pitching in this aspect. On the other hand, for the lateral motion, both results 

show that the induced lateral velocity oscillating frequency is profoundly dependent 

on the wing torsional stiffness, varying from multiple frequencies to one dominant 

frequency with the increase in the wing’s stiffness [Figure 7 in Zhang et al. (2010)]. In 

addition, apart from Mode B-2 where the  frequency is twice of flapping 

frequency found by Zhang et al. (2010) for their flat plate, we observed Mode B-1 

state for our 2D wing, in which  oscillating frequency appears to be the same as 

the flapping frequency. Considering the different parameters and geometry examined 
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in the two studies, we can conclude that the dynamic response of such a flapping wing 

system is complicated, and very much dependent on the various system kinematic and 

structural parameters. 

 

Further studies on the hydrodynamic performance of these wings in the fully 

developed state show that, the wing aspect ratio, frequency ratio, density ratio and 

even the pitching axis have remarkable effects on their propulsion performance. The 

wings with large aspect ratios always show large thrust force and thus a large Reu than 

those of short spans. The vortex structure around the wing body shows that this is the 

result of a stronger reverse von Kármán vortex street generated in the wake of large 

AR wing. Surprisingly, we found that the stiffness influence on the wing propulsion is 

strongly linked to the pitching axis. Introduction of the pivot point away from 

chord-centre to the leading edge leads to an improvement of propulsion performance. 

Further studies on this aspect would be our near future direction. In addition, the 

analysis of thrust force and efficiency relation with wing torsional stiffness shows that, 

maximum thrust is generated when the wing flaps at its natural frequency, while the 

optimal efficiency is instead obtained if the wing flaps at the half of its natural 

frequency. This conclusion remarkably resembles the observations from biological 

fliers and swimmers, even though some parameters in the present studied is beyond 

the range of that of real animal. Our results also shows the predominant range for 

torsional stiffness impact on the propulsion of wing is between frequency ratios of 

F=0.7 to 4.0. 
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Chapter 5 Mobile Multi-body 
System 

 

5.1 Introduction 

Here in the current chapter, the basic philosophy of Mobile Multi-body System (MMS) 

model is introduced in aspects of design of MMS model and dynamics of the system. 

Governing equations of MMS model are derived, following by numerical algorithms 

of solutions. A method is illustrated for implementing the multi-body dynamics into 

CFD solver for solving the problems of MMS model in fluid. Emphasis is to create a 

solution for such coupling problems with both internal dynamics (multi-body 

dynamics) and external dynamics (hydrodynamics), so that the induced external 

motion under internal undulatory body propulsion can be predicted accurately through 

fully resolved numerical simulations. The algorithm and verification cases are given, 

and an innovative test case is applied on a simplified model of an articulated fish body 

with a rigid head and soft tail for exploring the flexibility effect on fish propulsion 

performance, in which case the soft tail is modelled by two rigid segments connected 

through a spring joint. 

 

 

5.2 Mobile Multi-body System (MMS) 

We aim to propose a model that has the following advantages: 

 This model can mimic the swimming fish or flying bird/insect as a whole 

system, including both the actuated and passive parts; 

 This model can be considered as a prototype model for the design of robotic 

fish or bird/insect with the internal dynamics being taken into account. 

One of the most effective approaches is to discretize the continuum of the fish/bird 
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body into finite segments/elements to mimic the entire structure or bones, and use 

hinges/actuators to link all the segments to mimic the inertial muscle forces, so the 

internal body dynamics can be taken into account. The present MMS model addresses 

all aspects mentioned above. The treatment of the connection joints enables us to 

study the effect of internal dynamics in the cases of a passive joint (mimicking 

relaxing parts of body with passively induced motion) and an active joint (mimicking 

simulated muscles producing motion actively). 

 

5.2.1 Design of MMS Model – From Two/Three DoF to Many DoF 

The MMS model can be considered as a combination of a series of linked rigid 

segments. With different arrangements of rigid bodies and joints, different structures 

can be created. In the following, serial-type structure and tree-type structure are 

revealed respectively. 

 

5.2.1.1 Serial-Type Structure 

To mimic the undulation of fish body, several rigid bodies are arranged one by one 

serially. The schematic view is shown in Figure 5.1. The red elliptical elements 

represent the rigid bodies, and their sizes can be determined by the real fish geometry, 

e.g. the element sizes are decreasing gradually from the fish head to fish tail in Figure 

5.1. The small black circulars are the hinges, the types of which may have different 

kinematic behaviour at different locations according to the body posture of 

propulsion. 
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Figure 5.1 Schematic of serial-type structure to mimic fish body undulation. 

 

Comparing to a single flapping foil/wing model which has maximum three DoF 

two-dimensionally (two DoF in lateral and translational directions and one rotational 

DoF), current MMS model may have up to 3n DoF in two dimensional space (herein 

n is the number of rigid elements). From the control point of view, with sufficient DoF, 

the manoeuvrability and flexibility of the system can be significantly improved, and 

the fish-like undulation can be mimicked accurately. 

 

5.2.1.2 Tree-Type Structure 

The tree-type structure is given in Figure 5.2, which is used to design a robotic flying 

bird (Porez et al., 2014a). As shown in Figure 5.2, the robotic bird is made up with 

one main body and two flapping wings with two rigid elements in each wing. In this 

model, there are two hinges attached between each pair of adjacent elements, so that 

the rotation motion of the wing can be controlled in two directions. 
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Figure 5.2 Schematic of tree-type structure of a robotic flying bird. Courtesy of Porez et al. 

(2014a). 

 

 

The construction of MMS system is more straightforward comparing to that of fully 

deformable structure. However, the dynamics of the system is not simple due to the 

complexity lead by the interactions between rigid elements and hinges. In the 

following, the governing equations of the model dynamics and the relevant algorithms 

to solve the equation system are demonstrated thoroughly mainly on the 

serial-structure, which is the focus of this study in the current preliminary stage. 

 

5.2.2 Components of MMS Model 

The schematic view of a simple MMS model is shown in Figure 5.3, in which the 

model is with serial-type structure and joints/hinges evolution is governed by 

stress-strain laws or control torques. The model composes of a sequence of (N+1) 

rigid segments interconnected through (N) revolute hinges. Each rigid segment 
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follows the coupled motion induced by adjacent segments and transferred through the 

revolute hinges with 1DoF in pitch direction. 

 
Figure 5.3 Representation of frames location at the MMS model. 

 

Basically, there are two types of joint models considered in this study, i.e. active joint 

and passive joint. The active joint behaves as an actuator with an independent motor 

driving the pair of connected shafts. The pitch motion of passive joint is induced from 

the interaction with its preceded and succeeded segments internally following the 

environment change of external conditions. 

 

The active joint applies angle controlling system model, and the relative angle 

between two adjacent rigid segments are prescribed on the hinge as 

 0 ( )r r t .  (5.1) 

The passive joint operates torsional spring system model. A typical stiffness-damper 

spring system is shown in Eq. (5.2), 

 ,  (5.2) 

where R* and K* represent damping and stiffness respectively, r and  are pitching 

angle and angular velocity, and   is torque applied for driving the motion. 
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5.2.3 Parameterisation and Notations 

In accordance with Figure 5.3, we attach a fixed spatial frame denoted by Fe = (Oe, se, 

ne, ae), where Oe represents the origin of frame, the unit vector ae is normal to the 

model moving plane, se and ne are in the horizontal and vertical directions respectively. 

These links are denoted by B0, B1, …, Bn, from B0 toward the tip of the branch in 

increasing order, and B0 represents the reference body. In the following, j and i (i = j-1) 

are denoted as the indices of the current body and its antecedent in the branch 

respectively. Mobile frame, Fj = (Oj, sj, nj, aj), is attached to arbitrary body Bj, and the 

centre, Oj, coincides with the centre of the joint j (the joint between Bi and Bj). The 

unit vector sj supports the line from Oj to Oj+1, nj is in normal direction, and aj points 

to the angular joint axis. In particular, the origin of F0 locates at an arbitrary position 

on the centreline of reference body and represents the location of entire MMS model 

relative to the fixed frame. 

 

At any time t, the model configuration is expressed with joint relative angles, 

r(t)=(r1,…, rn)T(t), defining the relative angular positions of the joint axis between the 

adjacent bodies. The mobile frame of the reference body, F0, with respect to the fixed 

frame, Fe, is attached through orientation matrix, eR0, and position vector, eP0. The 

time evolution of eR0 and eP0 defines net motion of MMS model. The notation 

convention is defined that for any physical variable modelled by a tensor, the right 

lower index represents body index (to which it is related) while the left upper 

exponent indicates index of the projection frame. When the tensor related to a body is 

expressed in the mobile frame of this body, the upper index is omitted. The temporal 

derivative ∂./∂t is sometimes denoted by a upper dot. 

 

5.2.4 Newton – Euler Framework Application 

The transformation of each pair of frames can be derived based on Newton – Euler 

Framework, and it can be demonstrated as the schematic diagram shown in Figure 5.4. 
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The transformation from Fi to Fj can be achieved in a few steps, and each of them can 

be expressed as a function of relative parameters/variables, shown as below: 

 

Figure 5.4 Representation of frame transformation. 

 

 

 rot(s, αj): rotate the frame with an angle of αj about axis s; 

 trans(s, dj): translate the frame with a distance of dj along axis s; 

 rot(a, rj): rotate the frame with an angle of rj about axis a;  

 trans(a, qj): translate the frame with a distance of qj along axis a. 

 

 

The homogeneous transformation matrix defining frame Fj relative to Fi is a result of 

matrix production in form of a (4×4) matrix, 
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  (5.3) 

 

We define a (3×3) matrix, iRj, and a (3×1) vector, iPj, as orientation matrix and 

position vector of frame Fj with respect to frame Fi respectively. In the present study, 

the relative angle, r, between axis s of two adjacent mobile frames dominant the robot 

configuration, therefore matrix iRj can be represented as iRj(rj). 

 

The transformation matrix of mobile frame relative to the fixed frame can be 

expressed as 

 

( )

( )

0 1

e e i
j i j j

i i
e j j j

i

T T T r

R r P
T



 
  

 
 
. (5.4) 

Position of the origin of mobile frame can be expressed in the fixed frame as 

 e e e i
j i i jP P R P  . (5.5) 

Velocity of Bj is denoted by a (6×1) vector, jVj, and the relation to the velocity of Bi is 

expressed as 

 

 

. (5.6) 

Here, jvj and jwj are (3×1) vectors of linear and angular velocities, represented in the 
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fixed frame. Aj  (03
T , aj

T ) is a (6×1) unit vector, with aj
T  as (0, 0, 1)T representing 

the degree of freedom of joint hinges. Ad j g
i

 is an adjoint map operator allowing to 

change the (6×1) velocity vector iVi from frame Fi to frame Fj , as 

 Ad j g
i


j R
i

j R
i

i P̂
j
T

0 jR
i













  . (5.7) 

Here, the hat notation changes a (3×1) vector into its associated (3×3) 

skew-symmetric tensor, for any vector A in size of 3×1 and tensor B in size of 3×3, 

they have the relationship as ÂB  AB. iPj is considered as a radius displacement 

matrix of transferring the angular velocity to linear velocity, and the transformation is 

made as below, 

 

 

0 ( ) ( )
ˆ ( ) 0 ( )

( ) ( ) 0

i i
j j j j

i T i i
j j j j j

i i
j j j j

P a P n

P P a P s

P n P s

 
 

  
  

 . (5.8) 

 

By time differentiation of Eq. (5.6), the acceleration, , is given by 

  , (5.9) 

where 
j  is a part of acceleration as shown below, 

 . (5.10) 

In addition, the force transformation from frame Fj to frame Fi is expressed as 



Chapter 5 Mobile Multi-Body System 

108 
 

 

( )

0

ˆ

j

i T
j jgi

i
j j

i i i
jj j j

f Ad f

R F

MP R R



  
      

, (5.11) 

where fj is (6×1) force and moment vector exerted by body i on body j. 

 

5.2.5 Governing Equations for Dynamic Motions 

Following derivation of the transformation matrix between different frames, 

governing equation of each element is derived in this section. By applying Newton’s 

Second Law and Euler’s theorem to the jth body, dynamic equations of Bj can be 

obtained in Newton – Euler form as 

 . (5.12) 

Here, fext,j is a (6×1) vector, representing external fluid force and moment exerting on 

Bj, and βj is a (6×1) vector representing Coriolis and centrifugal forces, as shown here 

 
( )

( )

j j
j j j

j j j j
j j j

w w MS

w I w


  
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 . (5.13) 

 

Mj is an (6×6) inertia tensor of body j as below, and Mj, MŜj  and Ij are (3×3) tensors 

of the body mass, the first inertia moments and angular inertia with respect to link j 

respectively. 

 
jj


M
j

MŜ
j

MŜ
j

I
j














  (5.14) 

Up to now, the governing equations of MMS model are derived, but with the 

increasing number of elementary bodies, the solution turns complicated. In the 

following sections, relevant algorithms for solving this equation system is 

demonstrated. 
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5.2.6 Development of Governing Equations 

Eq. (5.12) can be constructed to be an equation system with variables of internal 

interactive forces and moments, acceleration term, and external forces and moments 

of individual segment as shown in Eq. (5.15).  

  (5.15) 

 

A further development can be made on building a recursive equation system by 

coupling Eq. (5.9) with Eq. (5.15). Taking Bi and Bj for example, the dynamic 

equations turn as Eq. (5.16), when the acceleration term of Bj is expressed by the 

relevant terms of Bi based on Eq. (5.9).  

   (5.16) 

 

An adjoint map operator,  j
i

T

g
Ad , transferring variables from Fj to Fi can be multiplied 

on the dynamic equation of Bj, and the internal force and moment component, fj, will 

be eliminated after being added with the equation of the antecedent body Bi. The 

variables in the right hand side of equations are mostly available except the individual 

segment acceleration ( ) and connected joint angular acceleration ( ), where the 

former is the main unknown variable and the latter depends on the joint control 

system. In general, when the elimination procedure is completed from body index N 
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to 0, the acceleration term of reference body (B0) can be calculated through a derived 

equation that is under an expression similar as Newton’s Second Law. 

 

The way to make elimination depends on the joint model. Main differences between 

actuated and passive hinge model are the availability of angular acceleration. Actuated 

hinge has known angular acceleration at the beginning of the recursive time step. 

Passive hinge is under the contrary situation that the angular acceleration is obtained 

as an output variable under the condition of known applied torque. It is noted that the 

solution of actuated joints is straightforward, whereas that of passive joints has one 

additional step of substituting the unknown angular velocity by torque and other 

relevant terms. The details are illustrated in the following sub-sections.  

 

5.2.6.1 Actuated (Active) Joints 

If we assume when body index i belongs to (0, N-1), 

 
i
*  

i
 Ad j gi

T 
j
* Ad j gi

, (5.17) 

 , (5.18) 

and when i = N, 

N
* N , 

N
*  (N  fext,N ), 

all the variables represented in local frame of Bi in Eq. (5.16) turns into a typical 

Newton’s Second Law’s expression as following, after summing up all the dynamic 

equations of bodies with index bigger than i recursively. 

  (5.19) 

 

In the frame of reference body, all the internal forces and moments are eliminated, and 

the acceleration of the reference body turns as, 
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 . (5.20) 

The variables of 0
*  and 0

*  can be calculated through the recursive loops, so that 

the acceleration of reference body can be obtained. Once the accelerations of 

reference body are available, the accelerations for any other bodies can be easily 

computed from Eq. (5.9). The torques applied on the actuated joints by the adjacent 

bodies can be calculated from the following equation: 

  (5.21) 

 

5.2.6.2 Passive Joints 

For passive joints, the torque (τj) can be calculated in advance through typical 

stiffness-damper spring system as Eq. (5.2). Combining Eq. (5.9) and Eq. (5.21) as 

shown below,  

  (5.22) 

the angular acceleration of joint j, , can be expressed as 

  (5.23) 

Thus a substitution of 
 
by τj can be conducted on the governing equation of Bj [Eq. 

(5.12)], and the terms in the right hand side turns in a form as 

 . (5.24) 

If we assume, when i belongs to (0, N-1), 

 * ,j j
i i

T
i i jg g

Ad Ad     (5.25) 

 *
,( ) ,j

i

T
i i ext i jg

f Ad      (5.26) 
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with 

 
j
 

j
* 

j
* A

j
(H

j
)1 A

j
T

j
* , (5.27) 

 * 1 * *( ) ( ) ,T
j j j j j j j j j jA H A          (5.28) 

and when i = N, 

N
* N , 

N
*  (N  fext,N ), 

all the sum-up variables represented in frame of Bi turns to a form as in Eq. (5.19). 

The acceleration of reference body can be obtained similarly as active joint. 

 

5.2.7 MMS Model Solution by a Hybrid Method 

Generally, essential motion variables of the system in global coordinate are 

characterised by a vector, Xstate, including information of the position of reference 

body ( e g
0
, eP

0
, ), linear and angular velocities of reference body ( eV

0
), and angular 

velocity of all the hinge joints ( ). Pcontrol is a variable with information of input 

joint conditions, i.e. pitching acceleration for active joint ( ) and torque applied on 

the passive joint (
p
). Noutput indicates the variables to be obtained from the MMS 

algorithm, with information of torque of actuating the active joint (
a
), and angular 

acceleration of passive joint ( ). 
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Figure 5.5 Flow chart of the proposed hybrid algorithm. [Refer to Fig. 2 in Porez et al. (2014a)] 

 

 . (5.29) 

In accordance with the assumptions and dynamic equations aforementioned, the flow 

chart of solutions algorithm is systematically arranged as in Figure 5.5 refer to the 

previous work from Porez et al. (2014a) (note that a few variables in the chapter are 
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presented by different characters in Figure 5.5). The integrated MMS algorithm can 

be summarised as a function of  as 

   (5.30) 

 

This algorithm resolves three recursive loops, and each set of equations is executed in 

the order of body index (presented with subscript j). The joint type is recognised by a 

conditional operator, bj, and then the passive joints with bj=0 follow the formulations 

in left side of flow chart in Figure 5.5 and treated as the forward dynamics; the active 

joints with bj=1 follow the other side of flow chart and treated as the inverse 

dynamics.  

 

The first loop is a forward recursive loop starting from the first component (body 

index j=0) of the system and ending up at the last component (body index j=n). The 

forces and moments exerted by fluid and joint model, e.g. internal torque (τj) on the 

hinges for passive joints and angular pitch accelerations ( ), are applied as input 

condition in this loop. All the state dependent variables related to subsequent 

computing, such as transformation matrices (iRj), relevant velocities ( jV
j
), inertia 

tensors (Mj), centrifugal forces ( ) external force (fext,j), etc., are calculated and 

relocated in this stage. 

 

Following by a backward loop from the last segment to the first one, inertia matrix 

( *M j ) and centrifugal forces ( j
* ) are calculated, and the dynamic equations of each 

segment can be summed up together. The linear and angular accelerations of the 

reference body ( ) can then be computed accordingly with a transformed type of 

Newton’s Second Law. 

 

The third loop computes accelerations ( ) of the passive joints and torque (τj) applied 
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on the actuated joints, which are the expected outputs of this algorithm. The global 

movement velocity presented by the reference segment ( 0V
0
) and the angular position 

and velocity (  and ) can be obtained and allow updating the external state before 

beginning the next iteration. 

 

The detailed recursive steps are illustrated as below: 

 

a) The First Forward Recursion on the Kinematics 

 

From the available current robot state (Xstate), the algorithm starts by the following 

forward recursion: 

 

For j=0, 1, …, N, compute: 

 The matrices for frame transformation, iRj, iPj , eTj 

and Ad j gi

, in Eq. (5.3), Eq. (5.4), Eq. (5.5) and Eq. 

(5.7); 

 The velocity vector, jVj, in Eq. (5.6); 

 The acceleration term, 
j , in Eq. (5.10); 

 The inertia tensor, Mj, in Eq. (5.14); 

 The body Coriolis and centrifugal forces βj from Eq. 

(5.13); 

 The external forces ext, jf  from FLUENT Solver. 

End for. 

 

b) The Backward Recursion on the External Forward Dynamics 

 

Once all the state-dependent variables are known, the next step of the computational 
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algorithm consists in executing the following recursion:  

 

For j=N, N-1, …, 1, compute: 

If bj=1: 

 The generalised inertia matrix *M j   from Eq. (5.17); 

 The generalised inertia matrix  j
* from Eq. (5.18); 

Else (if bj=0): 

 Hj from Eq. (5.23); 

 
j
from Eq. (5.27); 

 αj from Eq. (5.28); 

 The generalized inertia matrix *M j  from Eq. (5.25); 

 The generalized forces  j
* from Eq. (5.26); 

End for. 

 

Once the recursion loop is carried out, compute the accelerations, iVi, from Eq. (5.19). 

 

c) The Second Forward Recursion on the Internal Dynamics 

 

Finally, the algorithm ends with a second forward recursion initialised by the current 

state and : 

 

For j=1, 2, …, N, compute: 

If bj=1: 

 The acceleration of body from Eq. (5.9); 

 The torque  j from Eq. (5.21); 

Else (if bj=0): 
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 The acceleration of hinge angle  from Eq. (5.23); 

 The acceleration of body from Eq. (5.9). 

End for. 

 

The detailed formulas are well documented in a publication of Porez et al. (2014a). 

This method is successfully implemented on movement prediction of a fish robot 

model constructed by 8 linked rigid segments and a bird robot model as a tree like 

system with a few rigid and elastic segments (Porez et al., 2014a; Porez et al., 2014c) 

coupled with a classic analytical hydrodynamic model (the large amplitude elongated 

body theory). This hybrid algorithm for MMS model can minimize computational 

complexity and save execution time, and offer a simple access to couple with the fluid 

field by the well-arranged recursive loops. 

 

 

5.3 Coupling with Fluid Solver 

After the derivation of governing equations of MMS model, the external force and 

moment terms in these equations are required to be obtained from the fluid solver. 

Similar to the previous chapters (Chapter 3 and Chapter 4), the CFD package 

ANSYS-FLUENT (version 14) is used as the fluid solver, and the MMS algorithm is 

embedded in FLUENT solver by using an in-house User Defined Function (UDF) 

written with C language. The interactive data transferring between two solvers are the 

instantaneous fluid forces and moments and kinetic motions of elements. The detailed 

algorithms are described as in the following sub-sections. 

 

5.3.1 Fluid Solver 

The governing equations for the FLUENT solver are the two-dimensional continuity 

and momentum equations for incompressible viscous fluid, which have been 

presented in Chapter 2 as Eq. (2.1). The Dynamic Mesh and UDF function are 
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activated for calculating and capturing the body motions. The forces and moments 

that exerting on moving surfaces by surrounding fluid are expressed in terms of the 

integrated pressure and viscous stress, and both of them are taken into account at 

every time step in this study. 

 

Figure 5.6 Information of domain size, mesh quality and boundary conditions. 

 

The boundary condition on the rigid segment surface is set as no slip wall, an inlet 

velocity is defined on the left side of computational domain, and a pressure outlet is 

applied on the right boundary as shown in Figure 5.6. Regarding to the dynamic mesh 

method, the re-meshing and smoothing parameters are both chosen carefully. The 

re-meshing is accomplished by the local cell method, and the smoothing process is 

done with a diffusion function. The parameters applied are all well tested by a mesh 

density independent test. 

 

All the settings for fluid solver are based on the availability of schemes of 

ANSYS-FLUENT package. A 2D pressure-based transient fluid solver is selected, and 

the fluid field is set as laminar viscous model. Fractional-Step Method (FSM) scheme 

is activated under pressure-velocity coupling panel. With FSM scheme, the 
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momentum equations are decoupled from the continuity equation using a 

mathematical technique called approximate factorization. The formalism used in the 

approximate factorization allows controlling the order of splitting error, hence 

improves the robustness of solutions with moving boundaries. The spatial 

discretization of both pressure and momentum are with the second order upwind 

accuracy. 

 

Comparing with previous flapping wing models with non-deformable structured mesh, 

a treatment of dynamic mesh is applied on this model for enabling the 

moving-deforming mesh simulation. A high quality triangular mesh is generated for 

the simplification of pre-processing procedure and also for the convenience of 

activating smoothing and re-meshing function. During the simulation, the mesh 

quality is evaluated at every time-step, and both smoothing and re-meshing schemes 

are adapted to update the mesh to meet the resolution requirement. The re-meshing is 

accomplished by local cell method, which recognises and re-meshes the cells based 

on a few parameters, e.g. cell skewness and minimum/maximum length scales. The 

smoothing process is done with a diffusion function, which relocates the boundary 

node position according to the vertex geometric centre. The mesh of a test model is 

illustrated in Figure 5.7 that the mesh quality remains very well around boundary 

surface after undulating 20 periodic cycles and moving to a location that is 25c (c is 

chord length of individual segment) away from the initial position, although the 

surrounding mesh turns coarser comparing to the initial stage. In the test case, there 

are 300 cells distributed along each segment surface and the time-step size is selected 

as 0.001T, which are adequate enough for accurate simulation at relatively low 

Reynolds number condition without flow separation phenomenon. 
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(a) 

 
(b) 

Figure 5.7 Comparison between (a) initial mesh and (b) deformed mesh of two segments after 20 

periodic cycles. 

 

 

5.3.2 Coupling Algorithm 

The coupling process between MMS algorithm and fluid solver is made through an 

interactive data transferring between two solvers with fluid forces and moments (fext) 

of fluid solver and statement vector (Xstate) of MMS model. Basically, the simulation 

iteration loop starts from updating the imposed position which is available from the 

last time step, and fluid domain is solved for obtaining hydrodynamic forces and 
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moments, and then with the fluid forces and moments as input conditions, the 

multi-body dynamic solver calculate updated position for next time step. 

 

Specially, before the next time step starts, a fourth-order predictor and fifth-order 

corrector explicit time discretization method of Eq. (5.31) is utilized to achieve an 

accurate solution of the MMS statement vector. 

 . (5.31) 

 

In current study, it is not achievable to conduct fully iterated correction between fluid 

solver and MMS algorithm simultaneously due to a limitation of the FLUENT 

package that the hydrodynamic forces and moments can be calculated only once 

during each time step. Therefore to ensure the computational accuracy, the iteration is 

employed on the execution procedure of MMS algorithm using criteria of so 

that an accurate motion can be achieved from MMS solutions, and hence the fluid 

solver can work out an accurate hydrodynamic forces and moments accordingly. 

 

Moreover, to ensure the robustness for any choice of body mass, a method of 

identifying and adding a virtual fluid inertia matrix to the body inertia is applied. This 

approach extends a similar approach used by both Shiels et al. (2001) and Eldredge 

(2008). 

 

 

5.4 Validation and Verification 

To assess the reliability of our coupling method with both MMS algorithm and CFD 

solver, two validation cases, with either active joint or passive joint models, are 

carried out for verification. In a sum, the results agree well with the previous 
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numerical work. In addition to these two test cases, another case with active hinges 

controlled by external torque instead of prescribed angle is also tested, and it shows 

that the algorithm is feasible for various control methods and reversible between the 

transformation of angle controlling system and torque controlling system. The 

computational details are presented in the following sub-sections. 

 

 

Figure 5.8 Schematic of three linked rigid bodies. 

 

5.4.1 Validation of Actuated Joint Model 

This case validates the right part (Figure 5.5) of the MMS algorithm for a system with 

active hinges controlled by prescribed angles. Following the previous work of 

Eldredge (2008), the model is built as a massless articulated system consisting three 

linked rigid bodies and the two joints (Figure 5.8). The rigid bodies have identical 

elliptical section area of aspect ratio 0.1 with chord length c, and the distance from tip 

to hinge is set to 0.1c. Each hinge between the pair of the rigid bodies is 

independently controlled, with the prescribed angle as 

 1

2

( ) cos( ),
2

( ) cos( ).

r t t

r t t


  

 
  (5.32) 
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Figure 5.9 Comparison with the results of Eldredge (2008) on the x- and y- velocity components 

and angular velocity. 
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Figure 5.10 Comparison with the results of Eldredge (2008) on vorticity structures. The left 

column is from current results and the right column is from the literature. 

 

The entire linked system has 3DoF in x, y and pitching directions, i.e., it is free to 

move in all directions in two dimensions under propulsion of linked segments 

controlled by prescribed angles. An undulation Reynolds number, fixed at 200, can be 

defined from the peak angular velocity of intersection angle as 

   (5.33) 

where v is the fluid dynamic viscosity. The results are well matched with Eldredge 

(2008) in translational velocity components, angular velocity and vortex structures, as 

shown in Figure 5.9 and Figure 5.10, respectively. In Figure 5.9, U2, V2 and 2 
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represent the horizontal velocity, vertical velocity and the angular velocity of the 

middle body. 

 

5.4.2 Validation on Passive Joint Model 

To validate the left part of the algorithm (Figure 5.5) for passive joints, the model 

with two rigid segments linked by a torsional spring as shown in Figure 5.11 is 

simulated. The upper body has been imposed with sway and pitch motion, and the 

motion of the lower body is governed by fluid forces and constraint of the linked 

hinge. This case has been well illustrated in the previous work from Toomey and 

Eldredge (2008). Our results of the induced angle and the fluid forces agree well with 

numerical simulations as shown in Figure 5.12. 

 

 

Figure 5.11 Schamtic of two linked bodies with a passive hinge. 
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(a)                                   (b) 

Figure 5.12 Comparison with Toomey and Eldredge (2008), (a) induced angle (θ) at the passive 

joint (b) dimensionless total lift force of the entire system (CF). 

 

 

Figure 5.13 External torques applied on the hinges. 
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5.4.3 Controlled by Torque 

For verifying the feasibility of the algorithm applications on different control systems, 

a case is tested with a model of the same geometry as the validation case in Sec. 5.4.1, 

while with hinges controlled by external input torques instead of angles. The 

multi-body system is allowed to move freely in the water. The torques obtained from 

the validation case in Sec. 5.4.1, as shown in Figure 5.13, is applied on the joints as 

the external input torques. 

 

 

Figure 5.14 Comparison of results of induced and prescribed angles at hinges between approaches 

of torque controll and angle controll. 

 

The results show that the induced angle is exactly the same as the prescribed 

sinusoidal profiles (Figure 5.14). The understanding of this test is twofold: the 

algorithm is capable for models with joints using torque control system; the algorithm 

is reversible between different ways of control with angle and torque. The kinetic 

motion of the multi-body system is a consequence of coupling interaction with 

internal dynamics and external fluid forces. Once a certain amount of torque is 

imposed, the fish body turns to expected posture with the help of internal constraints 
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under interactions with external environment. There have been previous research 

studies on exploring the mechanism of internal muscular forces (Altringham and 

Ellerby, 1999; Long, 1998; Tytell et al., 2010). The fish motion can be easily captured 

by camera with experimental observation, however the internal muscle forces are 

hardly caught. An inspiration obtained from this test case is that the coupled 

simulation of MMS algorithm and fluid solvers may be a possible way to estimate the 

internal forces and moments required for achieving a certain posture when the 

movement and muscle elastic properties are known. 

 

 

5.5 Test Case – a MMS Model with Three Rigid 

Components 

The work in the previous chapters has indicated that the pitch flexibility can affect the 

hydrodynamic performance of wing-like system, and there have been applications with 

this mechanism on propulsion and energy harvesting of renewable energy device (Xiao 

and Zhu, 2014) and biomimetic robot design (Shyy et al., 2007) with proper designs. In 

this section, a MMS model is simulated with both passive and active joints, aiming to 

investigate the tail flexibility effect on propulsion, where the tail flexibility is realised 

by applying different spring stiffness and damping coefficients at passive joint, and 

the analysis is made from the hydrodynamic points of view with considerations of 

fluid forces exerting on the model components, power consumption, and efficiency as 

well as vortex structures. 

 

Current model has the same geometry as the case in Sec. 5.4.1, shown in Figure 5.8. We 

assume that the left two rigid bodies mimic fish tail with flexibility consisting of a 

passive joint in the middle, and the right rigid body is fish body with an active joint as 

the tail peduncle. There is a prescribed pitch angle between fish body and tail at the 

peduncle joint, mimicking tail that flaps to propel the entire body. This prescribed 
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relative motion between head and tail is same as r2 in Sec. 5.4.1. The passive joint is a 

stiffness-damper spring, governed by Eq. (5.34), where R* and K* are damping and 

stiffness respectively.  

   (5.34) 

 

 
(a) 

 

(b) 

Figure 5.15 (a) Trajectory of the entire system tracked by the location of the active joint (b) 

Orientation angle of the motion trace [ = atan(Y/X)]. 
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The damping and stiffness can be represented by the non-dimensional coefficients as  

 R  R* / ( fc4 ),  (5.35) 

 K  K *( f 2c4 ),  (5.36) 

where f is the flapping frequency. Referring to the stiffness and damping coefficients 

selected by Toomey et al. (2010), K and R vary between 5.1 to 51.4 and 0.2 to 0.7 

respectively. 

 

In the current study, the parametric test is carried out with combinations of six stiffness 

coefficients (varying from 1 to 27) and two different damping coefficients (0 and 0.245). 

The smaller stiffness leads a softer tail. One more case with rigid tail is also included as 

a baseline for comparison. The rigid tail is designed by prescribing a zero pitch angle on 

the passive joint all over the cycles. 

 

5.5.1 Locomotion Trajectory 

The trajectory of entire system and instantaneous induced angle at the passive joint are 

the most desired kinematic quantities and can be directly measured from the 

simulations. As shown in Figure 5.15 (a), the trajectory is tracked by monitoring the 

location of the hinge joint between articulated fish body and tail, i.e. the position of the 

active joint. The fish motion starts in quiescent flow condition, and accelerates 

gradually into a quasi-steady stage under undulatory propulsive motion. The induced 

motion of the system follows a zig-zag trace, and moving direction is determined 

mainly by phase shift of the induced pitch at passive joint under different stiffness and 

damping coefficients. The orientation angle () of the motion trace line shown in 

Figure 5.15 (b), presenting the moving direction within global coordinate, is 

quantified by inverse tangent formula [=atan(Y/X)] using the trajectory in Figure 

5.15 (a). 

 

As plotted in Figure 5.15, the induced motion reaches the quasi-steady status after 



Chapter 5 Mobile Multi-Body System 

131 
 

approximately 10 revolutions. The fish undergoes a development procedure of 

balancing friction force and thrust force. At start-up stage, thrust force is bigger than 

friction force, and causes accelerated motion. Theoretically in Stokes regime, viscous 

force is proportional to moving velocity, so the viscous force and thrust force can 

balance with each other when the velocity is big enough, then leads to a stable 

quasi-steady stage. Although the studies on start-up stage is of importance to 

understand mechanisms of manoeuvrability and stability, the result analysis in the 

following sub-sections will mainly focus on the fully developed stage. The average 

values of the variables yielding global analysis can provide a general view of the 

induced locomotion under specific undulatory body posture. It is noted that velocities 

and forces in the following sub-sections are all transformed in semi-local coordinates 

with axis along travelling direction and perpendicular direction, which are decided by 

average induced angle [average  in Figure 5.15 (b)] in the quasi-steady stage. 

 

5.5.2 Induced Velocity 

The velocity components, Vx and Vy, are presented in the traveling direction and the 

perpendicular direction respectively. The instantaneous velocities in quasi-steady stage 

with selected combinations of stiffness and damping coefficients are plotted in Figure 

5.16. It is shown that all the amplitudes, mean values and phases of Vx vary with the 

parameters, while the amplitudes of Vy are slightly different with mean value remaining 

zero. In addition, the phase difference of Vx is a consequence of the phase shift of the 

induced pitch motion at the passive joint.  
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(a) 

 

(b) 

Figure 5.16 Instantaneous velocities in a semi-local coordinate, poining to (a) travelling direction 

and (b) perpendicular direction. 

 



Chapter 5 Mobile Multi-Body System 

133 
 

 

Figure 5.17 Average velocity in travelling direction with different stiffness and damping 

coefficients. 

 

Vx is one of the most important variables that used to measure the propulsive 

performance. Therefore, the average Vx is calculated and plotted as in Figure 5.17. It 

can be seen that the mean travelling velocities increase dramatically when stiffness 

coefficient is below 3.95, and decrease gradually after a mild rise to the peak point. The 

effect of damping coefficient on the induced velocity is dependent on stiffness 

coefficient. The average velocities are larger with damper applied when the stiffness 

coefficient is smaller than 11.05, while the differences disappear when the stiffness is 

bigger. It is interesting to observe that the articulated fish models in most cases travel 

faster than the one with rigid tail, and there is an optimal stiffness coefficient, leading to 

the fastest swimming velocity, as a result of appropriately induced angle and phase at 

passive joint. The increase of velocity with flexible tail agrees with findings in the 

previous work from Bergmann et al. (2013), in which similar findings have been 

obtained through examining caudal fin elasticity effect by changing lumped 

parameters.  
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Figure 5.18 Instantaneous induced angle at passive joint (within the undulatory cycle from 18 to 

20). 

 

5.5.3 Induced Pitch Angle at Passive Joint 

The instantaneous induced angles at passive joint (r1) under selected parameters are 

shown in Figure 5.18. The angles are periodic in each revolution, so the amplitude (ramp) 

and phase () are arranged in Figure 5.19 for exploring the trends under different 

parameters. It can be seen that the stiffness plays an important role on both ramp and . 

It is reasonable that ramp is bigger when the joint is less stiff, though a spike occurs 

when the joint stiffness is further reduced. All ramp are smaller than the imposed angle 

amplitude (57o) at the active joint. The phase () decreases with bigger stiffness, and it 

shows that the induced motion turns to be more consistent with the active motion 

when the tail is stiffer. With damper applied, the induced angle has smaller amplitude, 

and the impact of damping coefficient on ramp is dependent on the stiffness, that the 

difference of ramp with or without damper turns to be smaller when the joint stiffness 

becomes bigger. The damper cause delayed action of the passive joint, and lead to a 

bigger phase change. 
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(a) 

 
(b) 

Figure 5.19 (a) Amplitude (ramp) and (b) phase shift () of induced pitch angle. 

 

 

The induced angle at passive joint is always a result coupling with external surrounding 
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fluid and internal elements. It is noticed that the flexibility of the spring determines 

whether the induced pitch is dominated by internal or external variables at the passive 

joint. One example for internal properties domination is that when the spring stiffness is 

big enough, especially in the case of the rigid tail, there is no relative pitch motion 

induced between two connected rigid components. The external environment takes in 

charge of the induced motion when the spring stiffness is small, such that in a case with 

the passive joint as a fully revolute joint with no stiffness and damping, the soft part of 

the tail would just follow the fluid pattern generated by wake structure and bypass flow. 

This can explain the observation in Figure 5.19 (a) that the induced angle turns smaller 

before and after the stiffness coefficient (K) of 1.97, as it transfers from external 

dominating condition to internal dominating conditions. 

 

5.5.4 Fluid Forces and Moments 

The instantaneous fluid forces acting on the rigid components under selected 

parameters are plotted in Figure 5.20. The average forces in both travelling and 

perpendicular directions are approximately zero at the quasi-steady stage. The 

swimming mode falls in a low Reynolds region. The amplitudes of pressure forces 

(Fpx and Fpy) are bigger than those of viscous forces (Fvx and Fvy), but both of them are 

within the same magnitude scope. The middle body always has the biggest pressure 

force comparing with the other two. When the induced pitch at passive joint is less 

excited as a consequence of bigger stiffness, the pressure force reduces dramatically, 

while the viscous force remains the same. 

 

The instantaneous torque history are plotted in Figure 5.21, where 1 is restoring 

torque induced by the interactions of the elements and fluid, and 2 is input torque 

produced by electric actuator motor at active joint. 1 is obtained from the 

stiffness-damper spring equation, and 2 is an output from the function . The torque 

curves are periodic and phase shift exist, the average torque is approximately zero, 

and the amplitude mainly depends on the stiffness. It can be observed from Figure 
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5.22 that the torques of active joints are bigger than those of passive joints, and all of 

them increase dramatically before reaching a flat level with increased spring stiffness. 

The torques of both active and passive joints are slightly bigger in the cases with 

flexible tails than those with rigid tail. 

 

(a) 

(To be continued.) 
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(b) 

Figure 5.20 Instantaneous pressure and viscosity fluid forces over each rigid segment (a) in 

travelling direction and (b) perpendicular direction. 
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(a) 

 

(b) 

Figure 5.21 Torque history (a) at passive joint (1) and (b) at active joint (2). 
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Figure 5.22 Torque amplitude under different parameters. 

 

 

5.5.5 Power 

The power can be used to quantify energy consumed for propulsion. In the current 

multi-body system model, the power applied at active joint is the only input energy 

resource, which contributes to the kinetic motion and can be consumed by the induced 

motion at passive joint only when damper is considered. The power, P, is calculated 

as in Eq. (5.37), power history is plotted in Figure 5.23, and average power is shown 

in Figure 5.24, where P1 is power at passive joint and P2 is input power at active joint. 

 . (5.37) 

 

It is seen from Figure 5.23 that the power curves at passive joint have similar 

amplitudes, and phases shift around according to the applied parameters. The power at 

active joint is constantly positive and with different amplitudes. The positive and 

negative values denote the spring can either store power (negative P) or release power 

(positive P). The phase shift of power curve is a consequence of that of induced pitch 
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angle. The average power at the passive joint without damper is approximately zero as 

shown in Figure 5.24 (a), indicating the spring only store or release power without 

power consumption. While with damper, the average power turns negative, showing 

that power loss exists.  

 

(a) 

 

(b) 

Figure 5.23 Instantaneous power applied on (a) passive joint (b) active joint. 
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(a) 

 
(b) 

Figure 5.24 Average power at (a) passive joint and (b) active joint. 
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5.5.6 Vorticity Contour 

From the vorticity contour shown in Figure 5.25, a typical reverse von Kármán vortex 

street is observed although the undesired vortex leak from the gap between adjacent 

elements. The strength of the vortex street can enhance the thrust force, and the wake 

structure is highly dependent on the undulatory profile, especially the flexibility of the 

tail. The cases with faster swimming speed show stronger vortex strength.  

 

(a)                                   (b) 

 

(c)                                    (d) 

Figure 5.25 Vorticity contour of cases with (a) K=1.97, R=0, (b) K=1.97, R=0.245, (c) K=11.05, 

R=0, (d) K=11.05, R=0.245 at time instant t/T=19. 
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5.6 Discussion 

In nature, fish species can achieve a wide range of body undulatory motion to adapt to 

the changes of hydrodynamic loads under the different environment (Blight, 1976, 

1977). They have developed advanced swimming patterns, for example, the 

carangiform swimming mode is preferred by fast swimmers (e.g. mackerel), and the 

anguilliform swimming mode is beneficial to the swimmers (e.g. eel) requiring 

mobile manoeuvrability and high propulsion efficiency. There are complex 

interactions between muscle mechanical properties, fish body form, swimming mode, 

and swimming speed (Altringham and Ellerby, 1999). This can be seen as a problem 

coupling with two subjects, one is the internal dynamics indicating how fish activate 

body undulation, and the other is external dynamics illuminating how fish move in 

water under specific undulatory pattern.  

 

The proposed method of MMS algorithm coupling with CFD solver is developed and 

proved competently to solve such problems. It is an essential achievement in this 

chapter by creating a general solution for investigating the biomimetic system through 

CFD simulations, especially the multi-body system. Though practically fish motion is 

propelled by muscle stimulation instead of eclectic motor, it is complicated to produce 

man-made muscle to fully mimic the real animal muscle. In this situation, the MMS 

model with participations by internal torque, body stiffness, and phase delay, etc., is 

of importance for providing a clue on advanced biomimetic investigation. The 

undulation motion can be mimicked accurately by adjusting the ways of control on 

linked hinges, and the more segments and hinges applied, the more precise undulation 

motion is achieved. Moreover, the coupling procedure with fluid solver is 

straightforward, and hydrodynamic performance can be obtained by the mature CFD 

techniques.  

 

The test cases in Section 5.5 is very simplified with an articulated fish model, which 

is a three linked rigid segment system with an arbitrary sinusoidal pitch motion 
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applied at active joint between body and tail, and a linear spring model applied at 

passive joint to mimic flexible tail. The test case does not present any specific 

swimming mode in nature, but the flexibility mechanism can be examined from this 

schematic. In general, there is an optimal stiffness, under which the model swims with 

the fastest velocity. Effect of damper can be drawn only when stiffness is small. The 

damper can shift the phase of induced angle by delaying the response of spring, and 

hence change the propulsion posture, which causes different swimming speed. 

Comparing with the rigid tail, the flexible tail lead faster speed when the stiffness and 

damping coefficients are in a suitable range. The properties of spring stiffness and 

damper, the induced/prescribed pitch angle and torques are typical variables from the 

aspect of internal dynamics. The fast speed is a result of increase of lateral forces 

produced by bigger input torque, and also a consequence of less power loss due to a 

properly induced undulatory swimming pattern, which are all related to the subject of 

external dynamics. It is seen form the test case that the variables from both internal 

and external dynamics can be clearly illustrated.  

 

The analysis of the internal variables effect on external behaviour should be more 

enhanced with more investigations. The future work would be to focus on activating 

advanced ways of control, and implement the method on more practical physical 

model for further exploration of undulatory mechanisms. 
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Chapter 6 Discussion 

 

This chapter reviews models and methods to tackle the problems and reflects on the 

results and contributions. Potential further research work is also recommended. 

 

6.1 Key Findings 

All the key findings are arranged in this section, and listed in the individual 

sub-section of each case. 

 

6.1.1 Flapping Wing with 1DoF in Lateral Direction (Chapter 3) 

The locomotion of a prescribed plunging wing with one degree of freedom in lateral 

direction in stationary fluid has been studied systematically by a three-dimensional 

fluid-motion coupling method. The key findings are as below: 

 The 2D symmetry breaking down process is reviewed, and the 3D wing 

phenomenon is illustrated of a transit period within which the vortex collides 

with others, resulting in vortex dipole to accelerate the velocity. Then a stable 

state is achieved when viscous force and propulsion force are balanced. 

 There is a significant increase in the amplitude of thrust coefficient for wings 

with bigger aspect ratios, which lead faster lateral velocities. 

 Wings with short aspect ratios (AR=1.0 and 2.0) produce circular vortex rings, 

as the TV is close to each other along a short aspect distance. For wing with 

AR=4.0, the tip-vortices are not well merged, resulting in the vortex shape 

being stretched thinner and forming elongated loops. Generally, the latter 

structure is beneficial to generating stronger jet flow, reducing energy 

dissipation, and thus facilitating a faster traveling speed. 
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 Reu increases monotonically with Refr. Reu turns into a linear function of Refr 

when Refr is over a critical value, ranging from 40-60 in the current study. 

Induced velocity becomes larger as the aspect ratio increases at fixed Refr. 

 The present simulations indicate that low-aspect-ratio wings lead to the same 

St number as large-aspect-ratio ones under stronger flapping frequencies. 

Besides, the St number mostly appears within the interval of 0.2-0.5. 

 Wings reach similar final average velocities after initial evolution cycles. The 

ones with larger mass ratio take more cycles to achieve the quasi-steady 

velocity, and have smaller fluctuations. 

 The moving direction is sensitive to the initial mesh condition. It can be seen 

that the perturbation has no effect on final quasi-steady velocity amplitude, but 

clearly has some effect on travelling direction and evolution process. 

 

6.1.2 Flapping Wing with 2DoF in Lateral and Rotational 

Directions (Chapter 4) 

The numerical study also investigated the dynamics of a three-dimensional low aspect 

ratio wing that flaps up and down with the pitching and horizontal motions are 

passively induced. The wing system stiffness is introduced and modelled by a 

torsional spring at the pivot point. The key findings are as below: 

 Symmetry breakdown phenomenon also exists, and the wing starts its lateral 

movement almost at the same time when its rotational motion starts. The 

wings with larger aspect ratios take more cycles to break the symmetry and 

generate stronger reverse von Kármán Vortex Street. 

 The spectral analysis dictates that the induced pitch motion follow one 

dominant frequency, while the induced lateral motion vary from multiple 

frequencies to one dominant frequency with increase of wing’s stiffness. 

According to the latter one, the flow status is classified into three different 
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modes. 

 The less stiff wing has relatively wider vorticity shedding street and decreased 

lateral velocity. 

 The wing with large aspect ratios shows large thrust force and thus faster 

induced lateral velocity than those of short spans. 

 The impact of density ratio on the lateral velocity is smaller than its influence 

on induced pitch motion, and the density ratio impact is influenced by the 

wing aspect distance. 

 Adjustment of the pivot point location away from chord-centre to the leading 

edge leads improvement of propulsion performance, and the stiffness influence 

on the wing propulsion is strongly linked to the pitching axis. 

 

6.1.3 Multi-body System (Chapter 5) 

A hybrid algorithm for the multi-body system was implemented into the CFD solver. 

It was evaluated by a self-propelled articulated system with three rigid components 

linked with active and passive joints. The main results shown from this part of work is 

as below.  

 The MMS algorithm is successfully implemented in CFD solver, and the 

validation results match well with the previous published work. 

 The verification and test cases indicate that the method is capable of dealing 

with various undulatory motions through different ways of hinge control.   

 The joint flexibility effect is examined through the innovative test case, and it 

shows that the proper soft tail can enhance the propulsion performance. 
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6.2 Achievements against Objectives 

The main aim of this PhD study was to investigate the fundamental fluid mechanisms 

involved in flapping and undulatory propulsive motion by means of numerical 

simulations of bio-inspired models.  

 

The first minor objective is as follows: 

 Implementing computational techniques on simulations that require moving 

boundary condition, and developing coupled method between CFD solver and 

kinetic equations for solving self-propelled motion of fluid-structure 

interaction models. 

 

Two physical models are investigated with three-dimensional flapping wing with 

flexibilities in lateral and rotational directions, and another independent study is on 

the model of a multi-body system with rigid components connected by revolute joints. 

The numerical techniques are successfully implemented on Fluid-Structure Interaction 

problems with unsteady dynamic moving boundaries. The supplemental validity of 

the developed numerical methods using flow solver ANSYS FLUENT with developed 

User Defined Function code is demonstrated by comparing with previous work. 

 

The second objective is achieved in Chapter 3 and Chapter 4 by flapping wing 

models: 

 Examining hydrodynamic performance of flapping motion with the simplified 

model of three-dimensional rigid wing, and clarifying the effects of different 

geometric and kinematic parameters on propulsion production, especially in 

the conditions of low aspect ratio with one or two degrees of freedom released. 

 

The problems with parameters that control the system kinematic and dynamic features 

are presented along with a systematic analysis on the simulating results. We start with 
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examination on how the lateral and pitching movement of wing is activated by its 

vertical flapping motion, followed by a discussion on the results in the fully 

developed quasi-steady state. Our particular interest is centred on the 

three-dimensional and pitch–pivot-point influence, which is done by comparison of 

two-dimensional and three-dimensional wing data and bias pitching axis. 

 

The following objective is addressed in Chapter 5: 

 Developing a method to solve the coupling problems with multi-body dynamics 

and fluid dynamics through implementing Mobile Multi-body System (MMS) 

algorithm with CFD solver, which should be capable of simplifying the 

numerical simulations on the models with undulatory motion. 

 

A Newton-Euler based algorithm with manipulator dynamics to resolve the problems 

with both forward and inverse dynamics is successfully implemented with CFD solver. 

The numerical method is tested with verification cases, and innovative cases are made 

on a prototype with both active joints and passive joints. The effect of joint flexibility 

on the propulsion is illustrated with a parametric study. 

 

 

6.3 Novelties and Contributions to the Field 

6.3.1 Novelties 

To the best of author’s knowledge, this thesis introduces novel research in the 

following aspects: 

 

 The simplified bio-inspired locomotion system is classified into two categories, 

undulatory motion and flapping motion, and the classic studies on 

hydrodynamic performance of such models are thoroughly reviewed from the 



Chapter 6 Discussion 

151 
 

application on propulsion based system and energy harvesting based system. 

 The simulations are produced along with the proper treatments on both 

pre-processing and post-processing for the self-propelled three-dimensional 

wing model, and the way of generating cases and analysing results can be used 

on the other related models. 

 Physical phenomenon of symmetry breakdown of the three-dimensional 

flapping wing model under various kinetic and geometric parameters is 

recorded systematically in both Chapter 3 and 4. 

 Numerical initial perturbation effect on the self-induced lateral motion is 

documented in Chapter 3. 

 Aspect ratio effect is systematically illustrated from hydrodynamic point of 

view on the three-dimensional flapping wing model with the released freedom 

in either lateral direction or combination of lateral and pitching direction in 

both Chapter 3 and 4. 

 The hybrid algorithm based on Newton-Euler Framework for solving Mobile 

Multi-body System model is successfully implemented into full resolved CFD 

simulations. The coupling method is capable of mimicking the undulatory 

motion and predicting the self-induced motion. 

 Innovative test case is made on a simplified articulated fish model, and the 

hinge type is developed with both passive and active joints. The simulation 

results are illustrated with both internal and external variables, and confirm 

that the flexibility of fish tail can enhance the propulsive performance.  

 

6.3.2 Contributions to Existing Literature  

The following publications were generated throughout the timespan of the PhD 

studies related to this thesis. 
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Journal papers: 

 J. Hu, Q. Xiao*, M. Porez, F. Boyer, A coupling method between 

multi-body dynamics and hydrodynamics for fully resolved simulation of 

bio-inspired robots, under review. 

 J. Hu, Q. Xiao*, Three dimensional effects on the translational 

locomotion of a passive heaving wing, Journal of Fluids and Structures, 

2014, Vol. 4, pp. 77-88. 

 Q. Xiao*, J. Hu, H. Liu, Role of flexibility and inertia on the dynamics 

of low-aspect-ratio flapping wings, Bioinspiration & Biomimetics, 2014, 

Vol. 9, pp. 016008. 

 

Conference papers: 

 J. Hu, Q. Xiao and A. Incecik, Dynamic Response of a Flapping Foil 

with a Non-sinusoidal Kinematic Motion, the 21st International Offshore 

and Polar Engineering Conference, (ISOPE), 2011-NK-02, 2011, Maui, 

Hawaii, USA, Vol.2, pp. 239-245. 

 J. Hu, Q. Xiao, Numerical Simulation for Self-propelled 3D Flapping 

Wing -- Comparison with Two-dimensional Case. 6th International 

Conference on Model Transformation (ICMT), 2012, Harbin, China.  

 J. Hu, Q. Xiao, An Exploration of A Passive Articulated Fish-like 

System, ASME 2013, 32nd International Conference on Ocean, Offshore 

and Arctic Engineering, (OMAE), 10808, 2013, Nantes, France 

 

 

6.4 General Discussion 

In the present study, the bio-inspired locomotion is simplified as the flapping motion 

of a three-dimensional wing model and the undulatory motion of an articulated 
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multi-body system model. CFD simulations are carried out for investigation. The 

particular focus is on the hydrodynamic performance of the self-induced locomotion.  

 

The flapping wing model is designed with left-right symmetric geometry, and 

proposed with induced motion in lateral direction and combination of both lateral and 

pitching directions under prescribed plunging motion in Chapter 3 and 4. The 

drawbacks are that symmetric geometry of the wing is not ideal for propulsion, and 

the prescribed motion profile is also very simplified. The robotic fish caudal fins are 

usually designed with better geometry and use smarter propulsive profiles. However it 

is believed that the results obtained are vital to elucidate the flapping wing propulsion 

mechanism. 

 

Firstly, the phenomenon of symmetry breakdown itself is of interest to locomotion 

start-up and stability issues. The moving direction is selected by the initial 

environment perturbations that play an important role only at the beginning stage. The 

vortex dipoles grow and develop quickly with the symmetry breakdown, and the wing 

finally reaches a quasi-steady status after transit period. The fundamental mechanism 

indicates that it could be effective to improve the design of devices aiming for 

propulsion or balance through adjusting the initial perturbation and controlling the 

generation and development procedure of vortex dipoles. 

 

Secondly, the induced locomotion is highly dependent on geometric and kinematic 

parameters. The wing with longer span-wise length takes fewer cycles to break the 

symmetry, and moves with faster induced lateral velocity in quasi-steady status under 

the same prescribed motion profile. The long span-wise length is responsible for 

enhancing force generation, and the short span-wise length is corresponding to 

stabilizing the motion. This can also be observed in flying insects and manoeuvring 

fish that fly or swim at low Reynolds numbers by flapping their wings or pectoral fins 

with low span-wise length as compared to those of bat and birds. 
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Thirdly, the freedom in pitching can accelerate the symmetry breakdown. Analysis of 

the data within the fully developed flow regimes shows that the wing always pitches 

at the same frequency as forced plunging frequency. Interestingly, the frequency of 

induced lateral velocity is profoundly dependent on the wing torsional stiffness and 

density, varying from multiple frequencies to one dominant frequency with the 

increase in the wing’s stiffness and density. It is noticed that the induced lateral 

velocity can be enhanced when the pitching axis is far from the middle of chord 

centre line. The stiffness influences on the wing propulsion is strongly linked to the 

pitching axis. These findings highly resemble the observations from biological 

fliers/swimmers, even though some parameters in the present studied is beyond the 

range of that of real animal. 

 

Besides the flapping motion, the undulatory motion is achieved by adapting the 

multi-body system model in Chapter 5. The coupling method between MMS 

algorithm and fluid solver holds the potential for mimicking the undulation profile of 

the real fish species. The advantage is that both internal and external variables can be 

clearly captured, and there are multiple ways to control the undulatory profile through 

setting joint types and number of body elements. The verifications and validations are 

carried out for confirming the accuracy of the coupling method. The innovative test 

case indicates the joint flexibility effect on propulsion performance, that the induced 

locomotion is a result of the body posture which is controlled by proper spring 

stiffness and damper applied at the passive joint. It is of importance for the 

exploration of smart bio-inspired control mechanisms. 

 

Regarding the numerical simulation, both structured and unstructured mesh are 

appropriately conducted on different cases. Flow fields of all the cases in this thesis 

are simulated by laminar flow as the problems lie in the acceptable range of low 

Reynolds number with no flow separation. The dynamic mesh plays a significant role 

in the self-included locomotion simulations. It should mention that the comparisons of 

CFD results with experiments are limited in this thesis, whereas the validations are 
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carefully examined by repeating the classic published cases numerically. CFD 

simulations may consume longer time than the fast method based on empirical 

equations, but it could provide enormous information and draw clear picture of the 

physical fluid status. 

 

 

6.5 Recommended Future Work 

In the present study, propulsive performance of individual flapping wing has been 

investigated, and a method using MMS algorithm coupled with CFD solver has been 

successfully established. The major effort has been to mimic bio-inspired swimming 

by the flapping wing model and rigid multi-body system model. However due to the 

limited research period and limited computing resources, the present studies cannot 

cover every relevant topic. In the field of bio-inspired study and biomimetic 

modelling, there are still many interesting phenomenon to be explored. Based on the 

available work, a few points are recommended here for the future work. 

 

 Investigation of the function of different fins and their elasticity effect 

It is widely accepted that fish fins play different roles in fish swimming. The 

future studies should straightforwardly mimic the fish fins with proper 

geometries and advance prescribed propulsive locomotion. The different types 

of fish fins are worthwhile to be investigated. 

 

 Studies on fish starting, manoeuvrability and stability 

Coupling with the recommended study on functions of different kinds of fish 

fins, the hydrodynamic mechanisms of released swimming fish can be further 

explored in the aspects of starting (e.g. C-start), turning, acceleration and 

stability. The structure of entire fish body with fins can be generated with 

multi-body system with tree-type structure. 
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 General applications in modelling and designing biomimetic robot including 

soft robot 

The method of MMS algorithm coupled with CFD solver can be implemented 

on the models with more complicated geometries and more advanced hinges, 

for better imitating the locomotion. It has wide applications in modelling 

biomimetic robot. Recently, studies on soft robot have attracted a lot of 

attentions. The coupled method might be capable of modelling soft robot, such 

as jellyfish, octopus, etc, through smart ways of control.  

 

 Applications based on both active and passive control 

Bio-mimetic studies aim to explore its mechanism and apply them to optimize 

the design of man-made devices. Apart from imitating shape geometry and 

locomotion of animals, the approach based on passive control is also very 

popular. For example, the energy harvesting devices are designed with both 

active and passive control (Xiao and Zhu, 2014). The applications in drag 

reduction and energy harvesting can be further explored. 
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Chapter 7 Conclusions 
 

   The current study has led to greater insight into the hydrodynamics of 

low-aspect-ratio wings, which is common among many species of fish that 

employ flapping-like mode for propulsion. Based on the model of an undulatory 

fish body using rigid articulated component elements, the current study has 

proposed a new method for understanding the fundamental hydrodynamics and 

internal dynamics. Numerical simulations are conducted for the cases with a 

coupling method between CFD solver and in-house codes for dealing with 

self-propelled locomotion. The bio-mimetic locomotion including flapping 

motion and undulatory motion is systematically investigated, and also well 

documented in this thesis.  

 

 The investigation of the flapping wing model shows that the induced wing motion 

is a result of system stability breakdown. Initial perturbation plays a role in the 

evolution development, and the passively rotational pitching help with the 

symmetry breakdown. The wings with larger aspect ratios take more cycles to 

break the symmetry and generate stronger reverse von Kármán Vortex Street. 

When the kinematic motion is fully developed, the wing reaches a periodic stage 

with induced pitching frequency identical to its forced flapping frequency and 

multi-spike frequencies of lateral velocity. There is a significant increase in the 

amplitude of thrust coefficient for wings with bigger aspect ratios, which lead 

faster lateral velocities. Induced velocity turns into a linear function of flapping 

frequency over a critical range. Low-aspect-ratio wings lead to the same St 

number as large-aspect-ratio ones under stronger flapping frequencies. The less 

stiff wing has relatively wider vorticity shedding street and decreased lateral 

velocity. The impact of density ratio on the lateral velocity amplitude is smaller 

than its influence on induced pitch motion, and the density ratio effect is 
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influenced by the wing aspect distance. Adjustment of the pivot point location 

away from chord-centre to the leading edge leads improvement of propulsion 

performance, and the stiffness influence on the wing propulsion is strongly linked 

to the pitching axis. All the findings address the effects of wing aspect ratio, 

inertia, torsional stiffness and pivot point on the dynamics response of a low 

aspect ratio rectangular wing under an initial zero speed flow field condition. The 

results provide fundamental understanding of flapping wing’s kinematic 

performance, and it can definitely provide technical support for the design of 

conceptual underwater devices with flapping wings for propulsion and 

manoeuvrability control, as shown in Figure 7.1. 

 

Figure 7.1 A conceptual underwater device with flapping wings for propulsion and 

manoeuvrability control. 

 

   The other main contribution in this thesis is about mimicking undulatory motion 

with a series of linked rigid bodies, i.e. a multi-body system. A hybrid algorithm 

for the multi-body system is successfully implemented into the CFD solver. The 

connection between two adjacent rigid elements can be modelled as the revolute 

hinge joint, with either a passively induced pitch motion or actively prescribed 

pitch motion. The innovative results are obtained by simulating a simplified 

articulated system and parametric study indicates the tail flexibility plays an 

important role on the propulsion performance. The method leads a way to model 

various machinery controlled undulatory motions. 
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