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Abstract 

 

This thesis focuses on precision agriculture of livestock farming. Precision Livestock Farming 

is a modern farming development that emphasises on deploying advanced information and 

communication technology in physical farms to optimise the contributions of individual 

animals. Relevant techniques such as the Internet of Things (IoT), machine learning and 5G 

communication are all needed for improving the level of automation, intelligence and 

efficiency towards smart farming. With the support of more powerful computing resources, we 

are capable of handling massive volumes of data, where highly automated processes can be 

applied for data capturing,  analysis and improved decision making. In addition to the economic 

benefits, Precision Livestock Farming also meets several social goals, such as high-quality and 

safe food products, efficient and sustainable livestock farming, better animal welfare and low 

footprint to the environment. 

Manual observation of animals is a tedious job, especially over a long time, and it can often be 

affected by the observer’s bias. As a result, IoT enabled AI machine learning-based automatic 

monitoring and management of livestock with image processing and analysis can offer massive 

potential for producing the unbiased status report in a more efficient and effective way. By 

utilizing the real-time monitoring technology, and the corresponding management system can 

boost productivity whilst reducing the cost and environmental emissions in livestock farms.  

To tackle this emerging issue and needs, a Precision Livestock Farming platform has been 

designed and implemented in this thesis, with the support of various sensors and corresponding 

analytics technologies. By continuously recording and analysing live data, it can not only 

recognise the welfare and health status of the animals but also for evidence-based smart 

decision-making with the support of the massive volumes of data. For implementing the 

proposed system, various techniques have been introduced to address the challenging issues, 

especially real-time multi-camera video streaming and transmission in an on-demand manner 

for improving the efficiency and efficacy in mobile/cloud-based environments. 

As a case study, the developed generic platform has been applied for tracking and behaviour 

recognition of pigs. These include background detection, object detection, object classification 

and target selection, followed by object tracking and behaviour recognition. The successful 

application has not only validated the efficacy of the proposed system but also demonstrated 

the flexibility and great potential of the proposed system in a wide range of application areas.  
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Finally, some future directions are also provided after the summary of the contribution points, 

which are expected to benefit the further development of the corresponding fields and the 

automation and intelligence of the livestock farming. 

 

KEYWORDS: PRECISION LIVESTOCK FARMING; GENERIC PLATFORM; ANIMAL 

TRACKING; BEHAVIOUR RECOGNITION; DEPTH IMAGE. 
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Chapter 1.  

Introduction 

Precision Livestock Farming is a modern farming development that emphasises on deploying 

advanced information and communication technologies in physical farms to reduce human 

involvement in the whole management process [1]. It refers to utilise real-time monitoring and 

management to boost the productivity of management and automation of the production 

process in livestock farms. Those devices can introduce more intelligence, reduce the number 

of labours, and provide evidence for smart decision-making. The availability of various sensors 

and analytics technologies have significantly changed the way of modern farming. 

1.1     Motivation 

Livestock production is one of the essential food sources in our daily life. It has a long history 

in the human diet and is able to provide rich protein and nutrition for our daily activities. 

Considering the increasing population worldwide and growing demands for high-quality meat 

and milk, this has posed a challenging question to the government and livestock enterprises as 

to how to produce enough food to feed the growing population. Such demand is expected to 

increase by 70% by 2050, which has called for expanded and efficient production [3][4]. 

Although the price of various sensors and computing devices has been dropping, the adaptation 

of these technologies varies widely in countries and regions as well as across different cultures. 

However, there are mainly three reasons for farmers and governments to rethink their current 

practices and embrace new changes, which are summarised below [5].  

1) Economic benefits through reductions in farm expenditure via the controlled 

applications of agriculture inputs; 

2) Increased yields from targeted management of in-field variability; 

3) Environmental benefits by the precise use of agrochemical applications, which 

increases compliance with national environmental legislation. 

1.2     Objectives 

Although many works have been done for precision livestock farming, their efficiency, efficacy 

and working environment vary significantly in different areas, countries and regions. The main 
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challenging problem is the lack of a standardised generic platform that can integrate up-to-date 

technologies with different farming devices for continuously monitoring and management of 

the animals. These can then be used for routinely capturing real-time images for analysing of 

interested events, detecting abnormal behaviours, and providing instant information to 

stakeholders for smart decision making.  

The major objectives of this study can be summarised as follows: 

• To investigate various sensor applications in the field of livestock farming and propose 

a generic platform for Precision Livestock Farming. 

• To find ways to improve the design and implement the generic platform so that it can 

be running on different operating systems, and capable of expanding the capability by 

integrating IoT devices. 

• To implement the streaming and decoding protocols as well as web-based visualisation 

technology for both RGB cameras and time-of-flight (ToF) cameras. 

• To test the generic platform in real applications such as pigs for image-based automatic 

object recognition and tracking, behaviour analysis and recognition. 

 

For the generic Precision Livestock Farming Platform, communication with different types of 

sensors is crucial. The software needs to be able to connect to cameras and other sensors 

installed in the farm, especially for continuously monitoring of the animals. Ideally, this 

software and the connected sensors need to be running on a 24x7 mode. On the one hand, it 

can thus provide sufficient data for next-step data processing. On the other hand, the data 

collected in a consistent and concentrated manner can be used to build a time-based model of 

events. With rich and more accurate data, we can track down to where and when the event 

happens and why, where a holistic model of the target animal will be formed with the 

accumulating dataset. For the animal growth model, we need to capture not only the image 

frames inside the farm but also other environmental data such as humidity, precipitation, 

illumination, CO2 concentration and temperature of the environment. With all these animal 

associated data, we can achieve more effective analysing of the behaviour and making 

reasonable interventions. The figure below shows the concept of the proposed Precision 

Livestock Farming platform. 
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Figure 1 Concept of the precision livestock farming system. 

1.3     Contributions 

The major contributions of this thesis can be summarised as follows: 

• A generic platform is proposed for Precision Livestock Farming. 

• Comparison of steaming protocols and decoding methods for real-time image processing. 

• Added fusion module into the architecture for integration of external data source. 

• WebSocket technology for image visualisation, where a cross-platform visualisation 

solution for displaying real-time images. 

• Streaming data from TOF cameras and processing the depth images. 

• Animal tracking and behaviour recognition, especially to apply image processing and 

machine learning algorithms for detection and tracking of objects, where the motion 

features are then used for behaviour recognition for animal welfare.  

1.4     Organisation of the thesis 

This thesis includes five chapters. The first chapter introduces the background and motivation 

of the work, as well as the major aims and objectives. The second chapter covers the literature 

review, including related work in precision livestock farming, the technologies behind,  Big 
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Data in agriculture as well as animal behaviour analysis, and corresponding applications. 

Chapter 3 presents the design and implementation of the proposed generic platform in two main 

aspects, i.e. the hardware system and the software, where several technical challenges are 

addressed in detail. Chapter 4 introduces a case study of the proposed generic platform in 

precision livestock farming of pigs. Finally, Chapter 5 concludes the thesis, along with a 

summary of some future directions.  
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Chapter 2. 

Literature Review 

2.1     Background 

The concept of Precision livestock farming (PLF) is rather new. However, some early adopters 

are starting to take advantages of related technologies, such as automatic feeder, weight 

detection and climate control systems. However, the most intelligent part of PLF is constantly 

evolving, in which significant progress has been made in recent years [8]. In this chapter, 

related work will be analysed and discussed in detail. 

One important development is the animal identification, which could enable personalised 

animal management and treatment on a large scale. Providing tailored care to animals could 

optimise the contribution of individual animals and set up a sustainable farming environment. 

Regardless of the scales or species, productivity and welfare of the animals would both be 

improved. The key to unlocking the potential of PLF is to enhance the traceability on each 

animal and share such data in the supply chain [8]. Figure 2 below shows related animal 

identification technologies used so far. 

 

 

Figure 2 Systems for electronics animal identification (Data from [8][10]). 
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2.2     Summary of Different Sensors 

In order to better understand how various sensors and technologies are applied in the field of 

PLF, the following subsections will introduce different sensor technologies such as cameras, 

microphones, thermometers and radio frequency identification etc. and the functionalities of 

these sensors. 

• Cameras 

Cameras with the RGB, Depth and thermal sensors can capture data such as colour, depth, and 

infrared information from the environment. The captured data are usually sent directly to a 

processing unit where the data can be processed by software algorithms. An algorithm consists 

of a series of operations, typically aiming to solve a given task. In farming practices, the value 

of the algorithms usually subjects to its ability to transform the raw data into semantic or 

understandable biological characteristics while presents the outcome in a human-readable 

fashion. Examples of biological characteristics herein include the weight of animals, warfare 

status such as lameness, and aggressive behaviours such as tail biting. Taking all these into 

consideration, data captured from sensors can be combined with the identification of individual 

animals, referenced observations and the production data, and these can be further integrated 

into associated algorithms for providing credible information and alerting the animal welfare, 

health and productivity of the farm [1][2]. 

 

Figure 3 Top view RGB camera in a pig pen (Image from [6]). 

The research developed in [6] demonstrated the use of a top view RGB camera in a pig pen to 

determine the locomotion of pigs in a group with high accuracy. Since locomotion is known to 
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be associated with issues such as lameness, this result can give an accurate indication of the 

health and welfare conditions. 

However, the RGB camera sensor often requires adequate ambient lighting in the environment 

with a contrasting background for differentiating the targeted objects from the background and 

the floor. Therefore, it is not a robust or reliable solution for a long-time continuous run. With 

the increasing advances in computing and availability of inexpensive 3D sensors developed for 

game industry (i.e. Xbox, PlayStation), 3D camera sensors can be combined with growing 

computing capacity for capturing and processing data in the field of PLF. Microsoft Kinect and 

RealSense from Intel are both 3D cameras capable of producing RGB, infrared and depth 

images. The infrared image is quite important for tasks like observing nocturnal behaviours, or 

data capturing with insufficient ambient lighting at the scene. In addition, the depth sensor is 

crucial to measure the distance from the objects to the camera.  

Figure 4 shows as an example a depth image, where the pixels in red and blue within the image 

indicate the farthest and closest distance to the camera, respectively. The working principle 

behind the depth sensors is the Time-Of-Flight (TOF) technology, where the sensor frequently 

emits a light pulse which hits the external surface of the object and returns to the sensor. The 

time it takes to bounce back is then measured to provide depth-mapping of the scene. Also, the 

depth measurement can produce relatively accurate 3D Point-Cloud map of the scene where 

some advanced 3D geometry algorithms can be applied to the dataset such as 3D scanning, 

model creation and visualisation.  

 

Figure 4 Depth camera image of a pig (Image from [9]). 
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• Microphone 

Respiratory diseases are very common in animal farms, causing significant welfare problems 

and economic losses to farmers. Early intervention is crucial for reducing further deterioration 

and the number of antibiotics used in the process specifically for intensification livestock 

farming. Early warning allows in-time treatment. Hence it can lower the risk of spreading the 

diseases so as to reduce the time for the animals to recover [8]. 

Microphone sensors can capture sound waves in farms and convert it into electronic signals, 

and then, the signals can be analysed by specific signal processing algorithms with the intent 

of detecting certain diseases. Once the electronic signal deviates from its normal pattern, an 

alert will be sent to the responders. For example, coughing and squeezing can be reported to 

the respiratory warning system, and stressful or illness sound can be reported to the early 

intervention system [9]. In this way, farmers can be taking immediate actions before the 

detected changes and stop further deterioration among animals. These actions include solving 

technical problems such as blocked feeding lines, adjusting climate settings, or medical 

treatment to the animals, especially the preventive medicines to prevent the further spreading 

of respiratory diseases whilst mitigating the antibiotic resistance issue in the future [8]. 

 

 

Figure 5 Number of coughs per hour – Pig Cough Monitor (Image from [11]). 

 

Figure 5 illustrates a tool developed by the Funcom (Dutch) for continuously monitoring the 

occurrence of coughs in pigs. It consists of an analysing software and two microphones 

installed at different locations to record the sound. The sound is filtered initially to eliminate 

general pig sounds, which is then separated to identify coughs. The software allows farmers to 
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configure the acceptable level of coughing against the pre-defined norms. When the sound 

exceeded the threshold, alarms would be raised with the information displayed in a diagram 

fashion. It can also be used as an early warning tool for tracking the aftereffect of the treatment 

[11]. 

The sound analysis is part of a larger system for PLF. It can provide more detailed information 

about the current threat and historical records, which can be compared with different farms and 

used to manage the risk of a widespread infection within the region. 

• Thermistor and Infrared Imaging 

Temperature is among one of the most classically measured parameters, which is also mostly 

related to various functions of the organism, such as nutrition, reproduction, activity, stress 

responses, and health. Usually, the temperature monitoring system uses a thermistor with an 

embedded data logger, where the thermistor has direct contact with the tissue of the subject in 

order to provide an accurate temperature reading to 0.1ºC [9][12]. Another approach is Infrared 

(IR) technology, which does not require physical contact with animals when measuring the 

temperature. That is because every object emits IR radiation when its temperature above the 

absolute zero (-273.15ºC), thus the wavelength of the IR radiation can be used to measure the 

temperature of the object. There are two types of infrared systems commercially available, IR 

thermometer and thermal camera, which are detailed below. 

IR thermometer consists of a lens which focuses the infrared radiation onto the detector. It 

can convert thermal radiation into electronic signals, which can be displayed as a temperature 

unit. Spot infrared thermometer measures the temperature of a specific small spot area on the 

animal’s body surface. 

Infrared cameras are infrared radiation thermometers that measure the temperature at many 

points over a large area to generate a thermal image, in which each pixel represents the 

temperature unit of the spot. The generated image is called ‘thermogram’, which requires more 

software computing than spot infrared thermometer and usually used for monitoring large areas. 

• Accelerometer 

Wearable sensors are among one of the most rapidly developing electronic devices in recent 

years and contribute quite an amount deployment of new technologies for PLF. One popular 

application in outdoor cattle and sheep farming is the use of geolocation embedded electronic 

devices, usually carried by the animals, and wireless communication networks that transmit the 

collected position data to the users. The wireless communication protocols are based on 
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existent wireless technologies such as GSM, Wi-Fi, or ZigBee. Figure 6 shows the geolocation 

device embedded into a collar carried by a cow [14]. 

 

Figure 6 Cow carrying the collar with the geolocation device (Image From [14]). 

 

In [15], another wearable sensor application has been demonstrated by using a three-axis 

microelectromechanical system accelerometer to determine eating, ruminating and resting 

activities for cattle. The accelerometer fitted in cattle measures their under-jaw accelerations at 

an interval of one second. The raw acceleration data was processed to create twelve variables 

in total, including the mean, variance, and inverse coefficient of variation per minute for the x, 

y, and z axes. The results have shown that the total percentage of correct discriminations 

exceeds 90% in both tie-stalled and grazing cows. 

• Radio Frequency Identification (RFID) 

RFID is perhaps the most well-known technology in animal identification and management. 

The RFID system includes an RFID reader and an RFID tag. The reader is either embedded at 

a fixed position where the animals usually passed by or attached to a mobile device. There are 

three main types of tags used for the animals: boluses, ear tags, and injectable glass tags for 

being injected under the skin. Boluses are capsules, incorporating a radio frequency 

transponder, which is retained in one of the first two stomachs of the ruminants and it has been 

proven to be a safe choice for ruminant identification [16][17]. The injectable transponders, on 

the other hand, can be applied quickly after birth, while the preferable locations differ in each 

animal species [18]. 
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Figure 7 Sheep with an ear tag (Image From https://en.wikipedia.org/wiki/Ear_tag). 

 

In general, RFID tags can be classified into two categories: rewritable and non-rewritable [19]. 

For the non-rewritable tags, it only contains the tag’s number, which can be associated with 

the animal wearing it. Rewriteable tags, on the other hand, can contain, apart from the ID, some 

additional information which can be used for the management of the animals. Information such 

as country ID and farm ID can be used for tracking the animals in a foreign environment. 

However, due to the very limited memory resource within the tag, it is always a good practice 

to choose what description information to be stored carefully.  

Low frequency (LF) – RFID tags are commonly used in farms today for tracking and managing 

animals such as supplying specific food when the animal is detected in front of the feeder. 

However, it has two significant disadvantages. One is the low reading range, which usually is 

less than 1m. The other one is incapable of detecting more than one tag at the same time [20]. 

Ultra-high frequency (UHF) - RFID, on the other hand, can detect animals within 3-10m and 

simultaneous identifications of multiple tags. However, it still struggles with applying this 

technology due to the strong influence of the animal’s tissue, leading to false detections and 

poor reading performance [20]. Other drawbacks of RFID include wear and tear in RFID, 

broken or eaten by other animals, pain and discomfort during installation and removal from the 

animals prior to transportation. 

• Optical Character Recognition 

This is the most classic and widely used identification technology in smart farming. Animals 

with printed symbols, stamps, or written text characters (license number, barcode, QR code et 

al.) on the body surface can be recognised by software algorithms. Large permutations of the 

symbols and colours can be identified by the algorithms without too much pain when marking 

the animals, and the identification marks may not need to be removed prior to transportation. 
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The disadvantage of this system is that the markings can be covered with dirt or wear and tear 

in a few days according to the living environment of the animal, especially for pigs, as shown 

in Figure 8, where the image contains a pig with a painted symbol on the body surface. 

 

Figure 8 Pig with painted numbers. 

• Facial Recognition 

Facial recognition was originally developed for human identification, which uses biometrics to 

map facial features from a photo or video to find a match by comparing the information with a 

database of known faces. However, many research works have been investigating it for PLF, 

which is very much in line with the expectation of this technology. Examples of methods used 

for human face recognition are also applicable to pigs.  

 

 
Figure 9 Pigs used for facial recognition (Image from [22]). 

 

In [21], preliminary results have shown that the Eigenfaces technique could achieve a 

recognition performance of 77% on 10 pigs using the manually cropped faces. In [22], a camera 

is mounted behind a drinker station to take photos while pigs are nearby, these photos are used 
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to develop software to identify the 10 pigs, see in Fig. 9, with an accuracy of 96.7%. The 

algorithms behind it can discriminate pigs mainly from three regions: the snout itself and the 

region above it that contain wrinkles, and the top of the head where the markings are most 

prevalent, and to a lesser extent, the eye regions. 

2.3     Big Data in Smart Farming 

 

Push factors Pull factors 

1) General technological developments 

- Internet of Things and data-driven technologies 

- Precision Agriculture 

- Rise of agri-tech companies 

2) Sophisticated technology 

- Global Navigation Satellite Systems 

- Satellite imaging 

- Advanced (remote) Sensing 

- Robots 

- Unmanned Aerial Vehicles (UAVs) 

3) Data generation and storage 

- Process, machine and human-generated 

- Interpretation of unstructured data 

- Advanced data analytics 

4) Digital connectivity 

- Increased availability to ag practitioners 

- Computational power increase 

5) Innovation Possibilities 

- Open farm management systems with specific apps 

- Remote/computer-aided advise and decisions 

- Regionally pooled data for scientific research and 

advice 

- Online farmer shops 

6) Business drivers 

- Efficiency increase by lower cost 

price or market price 

- Improved management control and 

decision-making 

- Better local-specific management 

support 

- Better cope with legislation and 

paperwork 

- Deal with volatility in weather 

condition 

7) Public drivers 

- Food and nutrition security 

- Food safety 

- Sustainability 

8) The general need for more 

and better information 

Table 1 Push and pull factors for Smart Farming (Data from [1]). 
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‘Smart farming’ is an initiative of using modern technologies to digitalise the traditional ways 

of farming activities by using information and communication based on intelligent analysis and 

automation. New technologies such as the Internet of Things (IoT), machine learning and 5G 

are employed to facilitate this development and introduce more intelligence in farming. 

Massive volumes of data generated during the production process will be used for analysing 

and providing valuable information.   

Big data in the applications of livestock farming has begun to move out of the production 

territory and be integrated into the food supply chain. The advantages of providing evidence 

for operational decisions and real-time farming information to stakeholders have changed many 

business models [1]. This trend is mainly driven by push and pull factors. Pull, because of the 

farming industry has been long desired to increase its productivity. Push, because this new 

technology will raise the standards of the food industry as well as release tremendous 

manpower to boost other industries. Table 1 shows a summary of the relevant push and pull 

factors behind this change. 

2.4     Livestock Behaviour Monitoring and Recognition 

Animal behaviour is often reflected by its interactions with the environment, which can indicate 

the welfare of the animal. It is a response to internal stimuli (physiological) such as hunger or 

external stimulus, e.g. climate and temperature. If the goal of the action can not be achieved, 

the relevant behaviour may change [23]. Figure 10 shows the behaviour cycle of the animal. 

In most cases, farmers are the main observers of the animal behaviour assessment. Therefore, 

the welfare status often depends on who and when the assessment is made. On the other hand, 

the involvement in these tasks would increase the demand for labours and the associated costs, 

which can affect the attention level for each animal. Thus, the traditional way of behavioural 

measurement is often subjective and may fail to notify potential risks over time [23]. 

Monitoring system deployed in the farm can consistently capture real-time images for 

investigation of animal behaviour and welfare states, in a quantitative manner, without the 

operators’ involvement. It can offer non-contact inspection and unbiased reports for the tasks. 

For this reason, the machine vision system is becoming the standard in food-related industries.  

Such a monitoring system usually consists of hardware (camera, computer) and software. The 

hardware generates data to the programmed software to perform behaviour recognition tasks. 
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It is very similar to the human recognition process, in which the human eyes send visual data 

to the brain for interpretation and decision making [23]. 

 

 

Figure 10 Animal behaviour cycle. 

The behaviour recognition process can be divided into four steps as summarised in Table 2 as 

follows, where the recognition process is illustrated in Figure 11. 
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Initialisation 
Configuration stage: all the hardware and software are to be ready for 

processing. Calibration for both hardware and software, data preparation. 

Tracking 
Segmentation stage: objects are identified and separated from the 

background. It can create associations between successive image frames. 

Pose 

estimation 

Identification stage: the state of the target object can be identified in an 

image frame. 

Recognition Successfully identifying the pose and correctly labelling it. 

Table 2 Behaviour recognition process. 

 

 

Figure 11 Recognition process. 

2.4.1 Initialisation 

The initialisation stage often involves hardware and software preparation before running the 

whole system. This can be performed either offline – before running or online – after running. 
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The calibration is the first step, such as changing the illumination of the environment and 

configuring the parameters of the camera, i.e. exposure time, focus and contrast. Well-tuned 

configuration can maximise the usability of the captured images, providing a good data source 

for further processing. This stage is often carried out offline. However, some equipment allows 

for on-the-fly modification. For example, automatic focusing is one of the built-in features in 

some cameras, which can adjust the focal length of the image sensor. ISO sensitivity indicates 

light sensitivity, and its dynamic change allows the image sensor to work better in low lighting 

conditions. Automatic exposure determines the correct exposure for pictures. These settings all 

contribute to improved image quality. 

Other than the hardware initialization, the software running on the computer also needs to be 

carefully examined before running. Settings in the configuration files usually define the 

connection parameters to each camera and image quality related parameters for streaming from 

cameras and controlling parameters for image processing and tracking, they all should be 

examined before carrying out to the next stage. 

The parameters which can describe the target object must be accurate enough for object 

detection. The parameter details can either come from a pre-defined model or, the system 

requires no knowledge of the pre-defined model. These parameters may need to be adjusted 

over time for tracking, clustering, and classifying of the animals [23][24]. The way that these 

parameters are configured has a significant impact on the overall performance of the system. 

In addition, the feature characteristic of the target object also plays a vital role [23]. 

2.4.2 Features and cues selection 

In the monitoring system, accurately identifying the region of interest (ROI) and the target 

object is the key to model construction. For image data, we often define and extract a feature 

to represent the most significant characteristics of the image to distinguish these interested 

events and/or objects. We can combine multiple features to form an accurate model for further 

investigation. 

The features extracted from the image can be classified into temporal, spatial, valued and 

textural types [23]. For example, by comparing the object’s position from two consecutive 

image frames, we can calculate the velocity and acceleration parameters of the object. Since 

we know the sampling rate or timestamp when the two frames are acquired, and if we keep 

tracking the travel distance for a whole day, the activity distribution among the day and the 
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total amount of activities can be calculated for further statistical modelling and comparison. 

The velocity, acceleration, travel distance and overall activity are typically used temporal 

features. Spatial features include shapes of different size and dimensions that represent the 

volume and contour of the target object. Colour information in an image frame can be 

categorised as a valued feature, and it can be used to identify the target object or the background. 

In addition, textural features can be the combination of various features such as colour, shape, 

the temperature of the scene or object, and it could be a template of features. 

Features included in the image are the primary source for identification, but we should also 

think of external sources, such as information from different sensors and environmental 

conditions. For example, illumination is an essential factor in nocturnal animals. They will 

exhibit differently according to whether the environment is ‘light’ or ‘dark’, and their activity 

varies depending on that [23]. Also, air temperature is another crucial factor that would affect 

animal behaviours, and it cannot be extracted from the image and needs to be acquired from a 

temperature sensor or real-time weather information. Other variables in the farm including 

noise level, air quality, feed and drinking station et al. all contribute to the animal behaviours, 

and these factors may affect the current condition and specific actions of the animal. Field 

observation of the animals could help us building the feature set more accurately, which would 

better describe the animal’s behaviours. 

2.4.3 Tracking  

Tracking stage includes the segmentation and temporal correspondence processes. 

Segmentation is to generate information to describe the target object by identifying and 

extracting the feature(s) from image frames. Usually, the result of the segmentation process is 

a group of features to represent the target object and associated other parametric measures of 

the target. Some pre-processing works can increase the accuracy of feature extraction, such as 

cropping the image to eliminate unexpected pixels or upsampling (downsampling) the image 

to change the image resolution et al. 

Temporal correspondence is to find the correlation or correspondence between consecutive 

images. Features that appear in each frame can work as a footprint for establishing relationships 

with previous images. For example, extracting of position feature is vital in tracking because it 

can dramatically reduce the computing time in locating any feature of interests in subsequent 

images. The tracking process is fundamental in analysing the animal behaviours because the 
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animal responses to a stimulus can often be reflected in their movements. By tracking their 

position changes and movements, we can draw a detailed picture of the movement path for 

helping us to accurately understand their behaviours. The responses to a stimulus may vary 

across different animal species, herd size, time of day, or even other associated conditions. This 

is a core component of the system for us to understand the welfare and behaviour of animals in 

farms [23]. 

Four techniques are often used in segmentation and temporal correspondence to extract features 

from images, as summarised in Table 3 below. 

 

Scene-based 

Use background-image as a reference and compare it with the updated 

image. If the background pixel is changed, indicating an object has moved 

or entered the scene. 

Motion-

based 

Use temporal correspondence between frames to determine the movement 

of the object and extract some movement parameters such as velocity, 

direction, and acceleration et al. 

Shape-based 
Use shapes, edges, or points to rebuild the volume information of the object 

within the scene. 

Appearance-

based 

For RGB cameras, we can use visual properties within the image, such as 

colour, intensity, saturation, and hue. For infrared cameras, we can get the 

temperature readings out of the thermal image. For depth cameras, we can 

measure the distance of the target object to reconstruct the 3D scene with 

Point Cloud data. 

Table 3 Feature extraction techniques. 

 

There is no strict order for applying those techniques to an image frame. Any sequence that can 

fit the model and speed up the computing process is feasible. For example, if we have thermal 

images, we can perform the scene-based technique to eliminate pixels below a specific 

temperature value. Usually, it is the floor that will be excluded from the image. After that, the 

shape-based technique can be applied to identify objects in the image, and even classifying 

them into categories or count them. 
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2.4.4 Pose estimation and behaviour recognition 

The pose estimation and behaviour recognition stage determines the correspondence between 

a pose and the characteristic features of the target object, such as the shape, size, colour, and 

position etc. The appearance features can also indicate pose changes among certain species. 

For example, the inside of the bird’s wing may have a different colour to its fur when it is still. 

Therefore, the colour feature can be used as a cue for this change. The behaviour recognition 

stage needs correctly locate corresponding features in the dataset and accurately cross-

reference them in subsequent images [23]. 

2.5     Video Streaming 

To fully achieve the expected performance of PLF, a robust monitoring system needs to be 

deployed in the farm and continuously run in a 24/7 mode. The system should be able to capture 

real-time images and send these to the software for further processing. This actually is the key 

to our goal of the generic platform. After the centre application has received the image frames, 

image processing algorithms can be applied to analyse target objects and interesting events, 

where relevant results can provide instant feedback to the operators and inform potential 

abnormal issues. For example, when animals are infected with a disease, their activities will 

decrease or increase than the regular rate. By recording their daily activity rate, we can compare 

such real-time information with the previous observations to build a disease forecasting model 

[25]. 

Video streaming is the transfer of video data from one point of an established connection to the 

other end [26]. In our case, the hardware (cameras and the computer et al.) will be deployed at 

the farm, and the software runs on the computer needs to be establishing a stable connection 

between them. At farms, the LAN network with the Cat5 cable is often used for this case, where 

the software can connect to the camera in a low latency mode for streaming images and sending 

commands for changing settings of the cameras. 

To illustrate how such a system works, Figure 12 shows the design of the system. As seen, we 

have cameras mounted on the ceiling to monitor the pig behaviours and activities in each pen. 

The data will be fed to the computer for analysis and also transmitted to the mobile end for 

visualisation and interactions. 
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Figure 12 Platform design. 

2.6     Precision Livestock Farming Applications 

Table 10 and Table 11 in Appendix A summarised various machine vision applications 

developed for livestock farming. In these works, 2D and 3D cameras are used as an automatic 

and non-invasive way to monitor various characteristics of cattle and pigs in groups or 

individuals. Some works have tested in commercial farms and reduced workload of manual 

observations. 

2.7     Summary 

In this chapter, relevant background and related works for the development of PLF are 

introduced, including the technologies behind as well as the relationship between Smart 

Farming and PLF, and the factors which would drive this industry. Also, the core stages for 

building such a platform in terms of initialisation, tracking, pose estimation and recognition 

have been covered in detail, along with some key techniques for animal tracking. Many 

research works have been using these techniques in related fields. Based on the study, the PLF 

Platform can be designed, and the detail implementation will be introduced in the next chapter.  
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Chapter 3. 

Generic Precision Livestock Farming Platform 

At present, we are on the verge of a technological revolution, particularly owing to the 

emerging techniques and applications such as the IoT coined in 1995 [106] and advanced 

computing and communication [107]. Our platform can take advantages of this development 

by utilizing various sensors and devices, where detailed information about the surrounding 

environment can be digitalised. In fact, each device can contribute a piece of specific part 

information to the centralised software for building the integrated model. The software which 

connects to the sensors should be flexible and easy to use, able to easily extend the system by 

allowing a new type of sensor to be efficiently and effectively added into it.  

In this chapter, the PLF Platform will be discussed in detail as follows. 

3.1     Introduction 

The generic platform consists of hardware and software. The hardware includes various sensors, 

cameras, and a computer. Those devices should be working in the same LAN network so that 

it can guarantee the stability and accessibility to each other at the farm setting. The software 

runs on the computer, which should be able to stream various types of data for processing. 

3.2     Hardware 

One challenging issue in choosing the hardware for livestock farming is the severe 

environmental condition. In order to make the device running 24x7, the hardware needs to be 

robust to liquids, dust or humidity which are pretty common in any animal farm. These 

requirements are often impossible for consumer electronic devices. However, the industrial 

component is designed for situations like this. It needs to be tested across different 

environments and obtained a rating for the degree of its quality to guarantee its high reliability 

than standard commercial components, especially being able to withstand different operating 

temperatures across a wide range. 

Ingress Protection rating uses a two-digit code to denote the protection level of the enclosure. 

The first and second numbers represent the protection level against solid objects and water, 

respectively. The protection level at 0 means no protection, and levels 6-8 refers to about a full 



23 

 

protection. Therefore, an IP68 rating completely prevents ingress of dust and protects against 

immersion in liquid up to 1 metre. 

Table 4 shows the exact meanings of different levels of Ingress Protection (IP) ratings, where 

the desirable rating of devices for continuously running would be the highest one IP68. 

Ingress Protection (IP) Ratings 

Solids Liquids 

0 No protection 0 No protection 

1 
Protected against objects greater than 

50 mm 
1 

Protected against dripping water or 

condensation 

2 
Protected against objects greater than 

12.5 mm 
2 

Protected against dripping water when 

tilted 15 degrees 

3 
Protected against objects greater than 

2.5 mm 
3 

Protected against water spray at any 

angle up to 60 degrees from vertical 

4 
Protected against objects greater than 

1 mm 
4 

Protected against splashing water 

from any direction 

5 Protected against dust, limited ingress 5 Protected against jets of water 

6 
Dust-tight, totally protected against 

dust 
6 

Protected against high-pressure water 

jets 

  7 
Protected against the effects of 

immersion up to 1 m 

  8 
Protected against immersion beyond 1 

m 

Table 4 Ingress Protection ratings (data from [131]). 

• Cameras 

IP camera is a specific type of camera that has its own IP address. It can be discovered once 

connected to a network. Some of them may equip with an embedded web server, FTP server, 

FTP client, email client, alarm management, and even programmability. We can establish a 

connection between the IP camera and the computer in the same LAN. Most of the IP cameras 

have built-in Real Time Streaming Protocol (RTSP) support, which can be used for streaming 

and controlling media session over endpoints. Also, to overcome the effect of severe working 

conditions, the cameras are normally asked to have the IP68 rating for surviving in animal 

farms. 
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• Computer 

x86 computer can be used as the host machine for running our software at the user end. Other 

than the minimum system requirement, it has to have an enclosure or sealed case to protect the 

inside components from dust and water, because every farm keeps indoor cleaning by using a 

high-pressure water gun on the floor and walls in a regular basis. The IP68 rating is essential 

in this kind of premise setting. 

3.3     Software Architecture and Implementation 

Most farm premises located in rural areas may lack a stable internet connection. Remote 

capturing and transferring real-time data often require reliable internet connectivity. For a real-

time system, it is impractical to send data to the cloud and process over there. The whole system 

needs to rely less on cloud computing and work independently. However, for safety and 

security reasons, all generated reports need to be sent to a remote server for further processing 

and centralised management. 

The system will be subjected to intensive computation pressure, since image processing, the 

core part of the system, consumes most of the computing resources. In order to work efficiently, 

a low-level, close to the hardware layer programming language, would be suitable for our case. 

C / C++ is ideal for performance-critical task and computationally intensive applications. It has 

the ability to access various hardware. Moreover, the cross-platform nature of the language 

would allow deploying the final product in a lower hardware spec which potentially brings 

more selections as well as to reduce running cost on the hardware. 

The general architecture of a monitoring system includes four main steps: initialisation, 

tracking, pose estimation and recognition [23][108]. We have expanded this architect in our 

case, as shown in Figure 13. The green graphs indicate the core modules of the software, which 

will be introduced in detail in the following sections. 

After the Initialization stage, the software can ‘talk’ to sensors. Since the IP camera has built-

in RTSP server, that allows the software to request the real-time video from it by sending RTSP 

request commands, the camera responds to the request commands and send back the encoded 

video stream to the software via an established TCP/UDP session. The received data has been 

compressed, needs to be decompressing and formatting in the decoding module. Data from 

other sensors need to synchronise prior to analysing, that is to prepare and combine all the data 

types that could guide the analysing module. Next, we can apply image processing algorithms 
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to the frames. To do that, firstly, we can use predefined ROI to extract the interesting region, 

and the analysing module will first try to determine whether that region contains target objects 

or not (use segmentation techniques such as scene-based or shape-based to try to find the target 

objects). If it doesn’t, drop the frame and return to the streaming module to process the next 

frame, if it does, the segmentation stage can use features and cues to extract detailed 

information of the target object within the image, such as shape, position, orientation and 

gesture. Further, we need to combine the analysed results with a piece of extra dimension 

information - time, to package this information and save it in local storage or remote database. 

The precise time when the data generated is a piece of crucial information for us to analyse the 

behaviours of target objects. Some works have been done by using consecutive images with 

daily animal activities to compare normal and abnormal behaviours, such as by analysing the 

gait of cattle to detect lameness among them [105], to analyse and predict pig locomotor and 

aggressive behaviour in the barn environment [109]. 

 

 
Figure 13 Workflow of the software. 

 

The communication protocol between the camera and the software is the first step to implement 

the software platform. Generally, each camera manufacturer has its own Software 

Development Kit (SDK) and Application Programming Interface (API) to allow software 

applications to send commands to control the device. However, the commands often do not 

work for another manufacturer. To solve this challenge, a generic access layer which builds 
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over different communication protocols is essential for making the system adaptive to different 

cameras as well as hiding all the implementation details in the sub-modules. The 

communication protocol will be introduced in the next sections. 

3.3.1 Streaming 

Steaming or retrieving data is a way of communicating between the main application platform 

and the sensors. The communication protocol used in transmitting datagram is often chosen by 

the corresponding data types and contents. Streaming video media is our main goal, and the 

most important point is to ensure low latency and low jitter during the operational running of 

the system. However, since the system is designed for continually running, occasional data loss 

is acceptable. 

 

Push and Pull based streaming protocols 

Characteristic Push-Based Pull-Based 

Source 

Broadcast services such as 

Windows Media, Apple 

QuickTime, Cisco 

CDS/DCM 

Web servers such as LAMP, 

Apache HTTP Server, 

Microsoft IIS, Cisco CDS 

Protocols RTSP, WebSocket, QUIC IMAP, HTTP 

Bandwidth usage More efficient Less efficient 

Video monitoring Widely support Very rare 

Multicast support Yes, widely support Limited support 

Table 5 Comparison of push and pull protocols. 

 

Media streaming protocol is defined according to the data structure of the content and the 

algorithms for sending real-time video data over the internet. There are different protocols 

available today, and most of them are just different in connection methods. In general, the two 

categories are push-based and pull-based streaming protocols [110]. In Push-Based Media 

Streaming Protocols, after the connection between the client and the server is established, the 
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server-side starts to send data to the client until the session closed or interrupted. In Pull-Based 

Media Streaming protocols, the Client-side works actively and requires data from the server in 

an on-demand manner. Therefore, the corresponding responses are totally dependent on how 

often the client sends out the requesting messages. These two kinds of streaming protocols are 

compared in detail in Table 5. 

Real Time Streaming Protocol (RTSP) is an application layer protocol that uses established 

sessions to communicate with endpoint devices. It is usually employed in entertainment and 

communication systems for controlling and streaming media. RTSP itself does not streaming 

data between devices. Rather, it uses User Datagram Protocol (UDP) and Transmission Control 

Protocol (TCP) for actual data transmitting tasks, where UDP is for data streaming and TCP 

for data controlling. The RTSP protocol is similar in some ways to the HTTP protocol. 

 

 

Figure 14 RTSP protocol workflow. 

 

The URL structure for RTSP is represented by a “rtps://” header, other than that, it adds various 

controlling commands such as DESCRIBE, OPTION, SETUP, PLAY, PAUSE, RECORD, 

ANNOUNCE and TEARDOWN. The ‘DESCRIBE’ command is for obtaining the 

presentation description, and the request message is “DESCRIBE rtsp://IP_ADDRESS 

RTPS/1.0”. The server responds a Session Description Protocol format message with the 

information for initialisation of the connection and format information of the media streams. 

The SETUP command is for specifying how to transport the media stream. It usually includes 
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a local port for receiving the audio and video data. The server responds a confirmation message 

to the selected parameters and fills in the missing parts such as the port number from the server. 

The DESCRIBE and SETUP commands must be sent before the PLAY command, as they are 

the initialisation and configuration of the media stream. The PLAY command requests the 

audio/video data to be played, which can be specified with a range or not, where the media will 

be played from the beginning to the end instead. The PAUSE command can pair with the PLAY 

command to halt and resume of the media. Finally, the TEARDOWN command can terminate 

the connection and release resources on the server. Other commands (such as OPTION, 

RECORD, ANNOUNCE) are not as important as these commands. As a result, these are not 

explained here. Note that, the RTSP often uses the default port #554 for connection and data 

communication [111]. 

3.3.2 Decoding 

Decoding or format conversion is the process of converting the data from one sourced format 

to a desirable destination format. In this case, efficient transmitting of video data often requires 

encoding the source video with good quality but lower bit rates. A broadcast friendly with 

reasonable compression rate coding technique is needed for this task.   

H.264 coding technique is the modern and most effective video compression standard, where 

high-quality video streaming can be achieved with low bit rates. It is perhaps best known as 

one of the video encoding standards for Blu-ray. The H.264 compressed video stream needs 

just 10% of the bandwidth as an MJPEG compressed video. However, H.264 video quality is 

approximately 95% of those compressed using the MJPEG [112]. As a result, this coding 

method has been widely used in many web videos services, such as YouTube, Facebook, and 

Vimeo. It has also been utilised in television broadcasting, Blu-ray low-latency video 

applications, visual surveillance, and web video etc. [113]. Figure 15 shows the bit rate 

comparison at the same level of image quality. The result showed that H.264 (baseline profile) 

encoder is the most efficient coding technique [112]. 

For implementation, FFmpeg is the main decoding library for the platform, which is popularly 

used to decode video streams. As a multimedia framework for video applications or even 

general purposes utilities, FFmpeg takes care of all the hard work of video processing by doing 

all the decoding, encoding, etc. in one framework. It supports the most popularly used formats 

and also highly portable, as it can be developed and tested across Linux, Mac OS X, Microsoft 
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Windows, BSDs, etc., under a wide variety of environments, machine architectures, and 

configurations [114].  

 

 

Figure 15 Bit rate comparison. (Image from [112]). 

3.3.3 Synchronising 

In a multiple sensor environment, each sensor represents a node and transmits data to the parent 

node (centre application) continuously. As data generated from different nodes are propagated 

towards the centre application, it is vital that the centre application can fuse such data as much 

as possible for increasing the credibility of the report. A fusion or synchronization process is 

needed at this stage prior to sending out any reporting data.  

The synchronisation method often depends on the data types. For video data, one can combine 

every video frame with a variable time-stamp, indicating the exact time when the frame was 

generated. Adding this extra information will bring more evidence for the traceability of the 

scene. For example, if animals are fighting each other, the sudden increased volume can trigger 

an event and allow us to analyse the audio and video clips at exact the same time period. 

Another variable can also be associated with arbitrary data type is the geological information, 

which can tell the location of the generated data. 
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Note that, adding more variables on the fusion stage may put extra computing pressure on the 

analysing step. To tackle this challenge, the data needs to be refined. However, we still need to 

balance between fusion of extensive amount data and the latency incurred in the aggregation 

process to reach our goal of real-time analysis. If the data are unable or unsuitable to fuse at 

this stage, it still viable to pass on the data as long as it is uncorrupted. Since each sensor is 

designed to work independently, the add-on benefit of data fusion is important but not 

extremely necessary. 

3.3.4 Analysing 

The general concepts and related work of feature extraction and cue selection have been 

discussed in sections between 2.3.1 and 2.3.4. Note that the identification of features in image 

frames needs to consider the cost, that includes the cost of time, money, and energy. In practice, 

it needs to meet the demand in terms of the expected accuracy and the computational cost. 

These processes must be capable of locating the target object such that object referencing can 

occur reliably, where false detections can also be minimised in the subsequent recognition stage 

[23][23]. 

3.3.5 Summarising 

Summarisation is an optimisation approach for reducing noise among the extracted feature sets. 

Due to unexpected interruption occurred during the operations such as dropping frames, 

illumination changes, and shadow. The credibility of image frames can be severely affected. It 

is quite a challenge to match all features within a single frame correctly. However, the 

combination of a series frames could increase the reliability of the result and reduce the number 

of false detections. For example, locomotion tracking needs to get the location, orientation, 

velocity, and acceleration features of the targets by comparing the changes in the target objects 

in consecutive frames. We could attach an estimated variable to each feature based on their 

previous trajectory. The estimate can be kept updating by comparing the newly observed results 

with our estimations after the system resumed, where we can decide whether to accept those 

estimations or not. 
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3.3.6 Visualising 

Visualisation is part of the system which provides a human-friendly way of viewing the 

analytic results in a diagram fashion. We can use web technology to show results on browsers 

such as Google Chrome, Firefox in keeping with our platform-independent goal. 

There are two approaches for web-based technologies, HTTP pooling and WebSocket. HTTP 

Polling consists of a serial of request-respond pair messages to communicate between the 

server and the client. Since the HTTP is stateless exchange protocol, the client needs to actively 

ask for the desired information constantly. One could notice that real-time displaying of 

information will put enormous pressure on the server-side. Since the client does not know when 

the data have been updated, thus, it needs to repeatedly request for updates. The server responds 

with a new message if there is one, or with an empty response if no new message is available 

for that client. This technology can work well for a static webpage but not for real-time 

information display. 

Another variation of HTTP Polling is Long Polling, in which the server holds the connection 

open for the client in a fixed period of time. If a new update message is available during the 

time period, the server will send the new message. Otherwise, the server will terminate the 

connection and clean up the resources. This reduces the number of responses to the client when 

there are no new messages. However, it cannot provide a substantial improvement over 

traditional polling [116]. 

WebSocket is a bidirectional communication protocol standardised in 2001, which operates 

through a single socket connection [117]. It does not involve additional request-respond 

headers for communication. Besides, the full-duplex connectivity allows transmitting data at 

the same time from both sides without unnecessary overhead. The most significant benefit of 

WebSocket is it will dramatically reduce network throughput and latency involved in real-time 

web application. 

In comparison to network throughput and latency [116], it tested the performance of HTTP 

polling and WebSocket, as detailed in Table 6 and Table 7. On each test case, every client 

requests updating the data in 1 second interval.  

As can be seen in the comparison results in Figure 16, WebSocket can dramatically reduce the 

network traffic. One reason is that the HTTP has enormous overhead in data transmission, 
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especially the requests and responses header. The situation will be much worsened when the 

data needs to be updated frequently.  

 

HTTP Polling 

Test case Case A Case B Case C 

Client number 1000 10000 100000 

Network traffic 6.6 Mbps 66 Mbps 665 Mbps 

Table 6 HTTP polling performance test (Data from [116]). 

WebSocket 

Test case Case A Case B Case C 

Client number 1000 10000 100000 

Network traffic 0.015 Mbps 0.0153 Mbps 1.526 Mbps 

Table 7 WebSocket performance test (Data from [116]). 

 

 

Figure 16 HTTP Polling and WebSocket throughput comparison (Image from [116]). 

 

Figure 17 shows the workflow of the HTTP Polling and WebSocket. As can be seen in the top 

half of the figure, the half-duplex HTTP Polling introduced a lot of extra latency in transmitting 
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the data. Assume it takes 50ms for a message travels from one side to another, the HTTP 

Polling requires extra requesting messages from the browser to be sent to the server.  

In the bottom half of Figure 17, the WebSocket can significantly reduce the latency. Once the 

connection is established, the data can be sent to the browser the moment they arrive, i.e. with 

almost no delay. The WebSocket connection remains open between the browser and the server, 

so no additional requesting messages are needed in data transmission. 

 

Figure 17 HTTP Polling and WebSocket latency comparison (Image from [116]). 

3.4     Summary 

In this chapter, we have presented the core technology stacks in developing this platform. Some 

modules have multiple implementation options, the one we have chosen for is based on 

functionality, the efficiency of the running cost and cross-platform performance. Employing 

modern technologies has helped farmers to wisely allocate their time and energy on daily 

activities. By collecting and analysing vast quantities of data, PLF can provide stakeholders 

with real-time information on animal’s growth conditions and welfare status.  
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Chapter 4. 

Tracking and Behaviour Recognition of Pigs 

 

4.1     Introduction 

The internal body status and conditions of the animals can usually be reflected through their 

behaviours. Hence sudden changes in their behaviours can be used as a sign of early warning 

of some health or growth related issues or problems. For identifying any potential issue or risk, 

one biggest challenge is to accurately locate the animal within the group [118]. To date, manual 

observation is still the only method applicable for most farms to identify the compromised 

animals. However, given the large number of animals in a modern farm setting, it is an 

extremely challenging task to inspect and score every animal even once a day. Other than that, 

the condition rating of each animal is highly subject to the farmer’s opinion, which may vary 

significantly and become very biased due to the difference in their personal experience. 

The current pig industry is operating with a piglet loss rate of 20.8% from birth to weaning. In 

addition, the industry is dealing with the devastating impact of viruses and bacteria such as 

Porcine Reproductive and Respiratory Syndrome (PRRS), Porcine epidemic diarrhoea (PEDv) 

and Porcine circovirus associated disease type 2 (PCV2). PRRS alone is estimated to result in 

an annual loss of $664 million to the U.S. alone [119]. The outbreak of African swine fever 

(ASF) in China was more devastating. Since the first detected case from China in August 2018, 

it has wiped out more than one-third of the pork industry, leading to a direct loss of over $140 

billion [120]. This is partly due to the reason that intensification farming is more prevalent in 

modern livestock farming. Diseases are more easily transmitted among pigs and worsen the 

situation. Adding all these aspects together, this also indicates that early identification and 

treatment can yield substantial benefits to farmers and producers. In this chapter, the 

application of the PLF Platform will be introduced, as a case study of applying the developed 

generic platform to a commercial farm premise, for tracking and behaviour recognition of pigs.  

4.2     Background 

In recent years, many researchers have demonstrated by using non-invasive and automatic 

methodologies for consistent assessing animal’s conditions. Among those works, the 3D 
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camera has been gaining increasing popularity in livestock farming applications for automatic 

pig monitoring such as weight detection, feeding and drinking monitoring, lying, locomotion 

and lameness behaviour detection. 

3D camera uses the ToF technology to determine the depth of the surrounding environment 

and generate depth information of the measurement. It is relatively inexpensive and accurate 

compared to other 3D depth scanning technologies such as the structured light and LiDAR. 

Figure 18 shows as an example a depth image captured from a 3D camera installed at the roof 

of a pig pen. 

 

Figure 18 Depth image captured in a pig pen. 

The PLF Platform is formed by the hardware and software parts. The hardware system includes 

a depth camera, PC (i7, 8GB RAM, x64), and 4TB hard drive. The depth camera captures depth 

images at a frame rate of approximately 7 frames/sec with a spatial resolution of 320x240 pixels. 

Prior to the start of the test, a manual configuration of the camera’s working range was set to 

4m, which covers the height from the camera to the floor. The depth camera was mounted 

above the pen and connected to the PC via a Cat5 Cable. The PC was put inside closure and 

installed outside of the pen and connected to the Internet. All hardware devices and cables can 

resist high-pressure cleaning water and moisture with an IP68 rating. 
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The software part, which is the intelligent part of the whole platform, needs to be streaming the 

live video frames from the camera, decoding the frame, applying algorithms for extracting 

valuable information from the frame, and finally, visualising the result.  

Chapter 2 and 3 have demonstrated the technology stack, and this study is based on preliminary 

research with the Innovent QScan System [7][130], though the framework has been much 

improved for reliability and robustness. 

4.3     Method 

For tracking and behaviour recognition, the animal objects need to be detected first, followed 

by object tracking and behaviour recognition. Object recognition includes background 

detection, object detection and object classification. The output of the object recognition will 

be the input source for tracking and behaviour recognition process. 

4.3.1 Background detection 

With the camera installed on the ceiling of the pig pen, the first step is to define a valid range 

for producing the depth image frame of the maximised contrast. Herein, we set the minimum 

and maximum threshold value of the depth information for each pixel to exclude pixels outside 

the scope. The equation below shows this process. 

𝐺(𝑖, 𝑗) = {

255             ,            𝐷𝑚𝑖𝑛 ≤ 𝑑(𝑖, 𝑗) ≤ 𝐷𝑚𝑎𝑥

𝑑(𝑖, 𝑗)

16
           ,               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                      

(1) 

Where 𝐺(𝑖, 𝑗) is the new depth value, and 𝑑(𝑖, 𝑗) is the depth from the camera. 𝐷𝑚𝑎𝑥  and 𝐷𝑚𝑖𝑛 

are the maximum and minimum depth threshold from the ceiling. Usually, the 𝐷𝑚𝑎𝑥 should be 

selected a few centimetres higher above the floor for excluding pixel comes from the floor and 

the 𝐷𝑚𝑖𝑛  should be higher than the maximum height of any standing pig. So only depth 

information comes from pigs can fit in our height range, normally the ignored pixels are grey. 

In some cases, the raw depth data captured by the camera may contain values of NaN (Not a 

Number) which is because of the ToF sensor within the camera could not obtain the signal’s 

return pulse in time, or the noise in the environment affects the pixel generating process. NaN 

can be a problem of pixel manipulation; any arithmetic operation with NaN will output invalid 

data. Pre-process of each pixel is necessary at this stage to ensure that the depth frame can only 

have valid depth value. 
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Figure 19 shows the result of this process. The camera is installed on the ceiling at the height 

of 2615mm, the threshold values for 𝐷𝑚𝑎𝑥  and 𝐷𝑚𝑖𝑛  are 2500mm and 1800mm. After this 

process, depth values outside and inside these thresholds are represented by grey and white, 

respectively.  

 

Figure 19 Background detection. 

4.3.2 Object detection 

After thresholding based background detection, the white regions represent objects above the 

floor and below the maximum height. To extracting the objects in the white regions from the 

image, it is important to choose a suitable value for further thresholding. Usually, the histogram 

has two peaks, representing respectively the object and the background. Hence the suitable 

value of threshold can be found at the bottom of the valley. However, it is not easy to select 

the bottom precisely because the valley could be flat or the two peaks are utterly different in 

height [122]. Otsu’s method is a process of automatically determining an optimal threshold to 

separate the foreground and background pixels, especially for images with two peaks in the 

histogram. It is based on a very simple idea, i.e. to determining the threshold that minimizes 

the weighted within-class variance. It is the same as maximizing the between-class variance 

[123]. After applying Otsu’s method to the image, different regions, actually 27, can be 
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extracted from the image, where some of those regions are expected to be pigs. Figure 20 shows 

the detected regions in different colours after this process. 

 

Figure 20 Object detection. 

4.3.3 Object classification 

After object detections, regions with various shapes and size can be extracted from the images. 

In imaging processing, shape, as one of the appearance properties of the object, is a powerful 

feature for describing and differentiating the objects. Often object classification can also be 

completed by making decisions based on the geometric properties of the object [124]. In our 

case, several different shape metrics such as circularity, rectangularity, main radius and 

anisometry are applied to each region for determining the geometric properties of the object. 

1) Circularity 

To calculate the circularity of a region, assume 𝑆 is the area of the region, and the maximum 

radius distance 𝑀  is obtained by measuring the distance from the regional centre to the 

outermost pixel of the region. Thus, we could obtain the circularity 𝐶 as follows [124]: 

𝐶 = min (1,
𝑆

𝑀2 ×  𝜋
) (2) 
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The circularity result of 1 indicates the region is a circle, or non-circular results less than 1. 

2) Rectangularity 

To calculating the rectangularity of a region, a rectangle can be determined if the original region 

has the same first and second order central moments [125]. Let the area of the original region 

be 𝐴1, the area of the determine rectangle be 𝐴2, and the area of the overlapping part be 𝐴3. 

The rectangularity is defined as [124]: 

𝑅 = 1 −
𝐴1 + 𝐴2 − 2𝐴3

𝐴2

(3) 

The rectangularity of a regular rectangle is 1. The more the region deviates from a regular 

rectangle, the less rectangularity value will be. 

3) Main Radius 

As the definition of the central moment, the main radius is calculated by [125]: 

𝑟𝑎 = √2 (𝑀20 + 𝑀02 + √(𝑀20 − 𝑀02)2 + 4𝑀11
2 ) (4) 

𝑟𝑏 = √2 (𝑀20 + 𝑀02 − √(𝑀20 − 𝑀02)2 + 4𝑀11
2 ) (5) 

where 𝑀20, 𝑀02, and 𝑀11 are the central moments of the region, 𝑟𝑎 is the main radius and 𝑟𝑏 is 

the secondary radius. 

4) Anisometry 

The anisometry of the region is simply defined as the ratio of the main radius over the 

secondary radius, which stands for the aspect ratio of the region. 

𝐴𝑛𝑖𝑠𝑜𝑚𝑒𝑡𝑟𝑦 =
𝑟𝑎

𝑟𝑏

(6) 

5) Region’s centre 

The depth information generated from the camera often contains noise pixels around the outer 

edge of the image. That means the pixel information in every frame could be different even at 

the same position. ‘Chop off’ the outermost side of the image by a few pixels could reduce the 

risk of false detection. To do so, simply by defining an ROI (region of interest) of a valid region 

centre and remove the noise pixels. 
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4.3.4 Target selection 

The shapes of the detected objects can be classified into different categories based on their 

geometric properties. In our case, the shape of a pig captured from a top-down camera is more 

likely to be an ellipse. Table 8 shows the derived measurements from the aforementioned 

metrics. 

Valid Parameter Ranges 

Filter Min Value Max Value 

Circularity 0.15 0.35 

Rectangularity 0.65 0.85 

Main radius 80 1000 

Anisometry 2.5 4.5 

Table 8 Filter parameters for pigs. 

Note that in Figure 20, smaller regions may pass all the filters. However, we could not 

recognise them as pigs because of their small sizes. As a result, we can simply exclude these 

tiny objects with an additional constraint on the sizes to minimise false detection. After 

applying this, standing pigs in our desired threshold can be selected, as shown in Figure 21. 

 

Figure 21 Target selection. 
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4.4     Tracking 

After the object detection, we can output all the detected target objects, in our case, the pigs.  

Each object will have associated properties such as the coordinates (x and y represent the 

relative position to the ROI), height (absolute height in pixels), shape (circularity, 

rectangularity, main radius, anisometry), and area (real-world size of the contour). 

For tracking pigs, the camera can be taken as a radar system. It scans the environment and 

produces an image of the pen at a relatively fixed time interval. As pigs can be detected in the 

image, the properties associated with the pigs can be extracted and used as parameters for object 

tracking. Alpha-beta filter is one of the tracking methods being used in our implementation, 

which is actually closely related to the Kalman filters [126]. The main advantage of the alpha-

beta filter is model-free, which does not require detailed knowledge of the system. In the 

simplest form, it maintains two internal states of the system – estimated state and observed 

state, where the estimated state adjusts itself by the value of the observed state over time [127]. 

Figure 22 shows the workflow of this method. 

 

Figure 22 Alpha-beta filter. 

 

In our case, the camera runs at 10 frames per second, so the 𝛥𝑇 in between frames is relatively 

small. Thus, we could assume that the overall velocity of the pig remains unchanged between 

measurements. The position state of the pig is then obtained by: 

�̂�𝑘 = �̂�𝑘−1 + 𝛥𝑇 × 𝑣𝑘−1 (7) 

The velocity state 𝑣 is presumed constant between two frames: 

𝑣 = 𝑣𝑘−1 (8) 

Normally, the estimated position will deviate from the actual observation, that is due to noise, 

and dynamic factors are ignored by this filter. However, the residual 𝑟  is often used to 

compensate for the deviation of the estimation [127]. 
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�̂� = 𝑥𝑘 − �̂�𝑘 (9) 

The alpha-beta filter takes the selected 𝑎𝑙𝑝ℎ𝑎 and 𝑏𝑒𝑡𝑎 constants and uses 𝑎𝑙𝑝ℎ𝑎 times the 

residual 𝑟 to correct the position estimation. For correcting the velocity estimation, the ∆𝑇 

needs to be taken into account as follows: 

�̂�𝑘 = �̂�𝑘 + 𝛼 × �̂�𝑘 (10) 

𝑣𝑘 = 𝑣𝑘 + (𝛽 𝛥𝑇⁄ ) × �̂�𝑘 (11) 

Here, the values of 𝑎𝑙𝑝ℎ𝑎  and 𝑏𝑒𝑡𝑎  are often selected according to the movement 

characteristics of the object. In general, fast moving objects are better to select a larger 𝑎𝑙𝑝ℎ𝑎 

and 𝑏𝑒𝑡𝑎, because it has more tolerance in a sudden change of position while tracking the 

objects. On the other hand, a smaller 𝑎𝑙𝑝ℎ𝑎 and 𝑏𝑒𝑡𝑎 can reduce the deviation between the 

estimated state and the observed state. Appendix B shows the general implementation of the 

alpha-beta filter in C language. 

4.5     Behaviour recognition 

Lying behaviour often reflects the animal’s response to the room temperature. In a high 

temperature room, pigs tend to lie down and avoid physical contact with others, so they can 

transfer as much heat as possible to the floor. At a low temperature, they tend to stick together 

to reserve energy. 

The detection result of lying behaviour has been used as an indicator for adjusting room 

temperature [37][83][130]. In our case, the lying detection is accompanied by a tracking 

process, where the Otsu’s method has excluded objects unlikely to be pigs. The remaining 

objects, which are assumed to be real pigs, have properties such as shape and area that can be 

used for lying behaviour detection. 

First, a reference image needs to be generated. To do so, we record multiple consecutive images 

as the input images and calculate the median value for each pixel. The median values are the 

pixel values of the reference image at the same position, and the reference image is used to 

subtract between the input image and the reference image. The resulting image is the 

subtraction result between those two images, and it usually has noise pixel values because of 

the inconsistent depth information. To exclude the noise pixels, objects which fail to satisfy the 

initial thresholding and the following on object detection as valid pigs are simply ignored. The 

resulting image with shapes similar to pigs is preserved. 
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The pixel value of the resulting image means the distance to the floor. Lying pigs are more 

likely close to the floor, and their pixel values are smaller than standing pigs. 

Figures 23-25 show the images and the corresponding results. 

 

Figure 23 Source Image. 

 

Figure 24 Reference Image. 

 

Figure 25 Result Image. 

 

As seen in the resulting image in Figure 25, there are 4 detected objects believed to be pigs. By 

comparing the average pixel value of the target object, the pixel value between the lying pigs 

and the floor is between 65 to 150, and the pixel value between the standing pigs and the floor 

is within 350 and 440. Therefore, we use 200 as the threshold to detect lying pigs. 

4.6     Results 

In this study, we recorded 350 consecutive images with less grouped activities among pigs. 

There were in total 1682 times that pigs have appeared in the images, in which pigs are found 

lying on the floor in 909 times and in the remaining 773 times the pigs are standing in the 

image. All these are manually labelled as ground truth for quantitative comparison. 

 

Detection Performance Comparison 

Recognition Method Detection Count Error rate Accuracy 

Object Recognition 1591 5.41% 94.59% 

Lying Recognition 823 9.46% 90.54% 

Standing Recognition 768 0.65% 99.35% 

Table 9 Recognition Comparison. 

 

For detection of pigs, there were a total of 1591 times, in which the pigs have been recognised 

accurately with only one false-positive recognition. For the behaviour recognition accuracy of 
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the pigs, there were a total of 823 times that the pigs have been recognised as lying down with 

1 false-positive recognition. For standing pigs, there were a total of 768 times. Table 9 shows 

the result of detection and behaviour recognition. 

4.7     Summary 

In this chapter, we applied the developed generic platform in a commercial pig farm and 

introduced in detail how the system works, especially for the object detection and behaviour 

recognition. First, we excluded pixels outside the valid ranges and cropping a few pixels along 

the edges of the image to get a clean source image. Then, Otsu’s method is used to extract 

foreground objects from the source image. To find out the geometric properties of the objects, 

we applied several shape related filters to determine whether the object is a shape of a pig. 

Afterwards, the remaining objects are detected as pigs, and corresponding features are 

extracted for object tracking and behaviour recognition. 

We used the alpha-beta filter for tracking animals because of the animal’s position features 

often changed linearly. The alpha-beta filter estimates a prediction position which compares to 

the observation position to determine the actual position of the animal for updating the 

estimation model accordingly. The general implementation of the alpha-beta filter is given in 

the appendix B section. 

For behaviour recognition, in our case, determining lying and standing behaviours requires a 

ground image as the reference image. The value of each pixel in the ground image is the median 

value from multiple images for robustness. Hence, the pixel value of the subtraction result 

between the source image and ground image is the height distance to the ground, which can be 

used to determine whether the animal is lying or standing. 

In our study, both the segmentation based detection and behaviour recognition have achieved 

a quite good accuracy rate. Automatic monitoring and analysing can release a huge amount of 

labours in daily warfare assessment work in commercial farms. 
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Chapter 5. 

Conclusion and future work 

 

This chapter summarises the conclusions that can be drawn from the work presented in this 

thesis, along with some ideas provided for further research and development. 

5.1     Conclusion 

In conclusion, PLF has proven the capability in helping farmers to improve the welfare and 

productivity of the animals. They can once again treat their animals as individuals rather than 

a herd, and the data generated during the growth cycle would provide tremendous information 

for feeding companies, veterinarians, and processing companies. A further step would be 

sharing data to consumers which may lead to new approaches in food branding. 

The major contributions of this thesis and several technical tips for developing the platform 

can be summarised as follows: 

• Steaming protocols and decoding methods. 

Chapter 3 has introduced different protocols for streaming images from the cameras. 

Although manufactures often have different APIs for developers, a standard streaming 

protocol with RTSP technology is recommended as the best option for streaming RGB 

images. The image data received are usually compressed and need to be decoded again 

using the FFmpeg prior to any further processing. We also have compared the 

compression ratio and performance of FFmpeg. 

 

• Fusion of external data source. 

The general architecture of the monitoring systems is presented, which includes four 

main stages. As for our case, different types of sensors and data can be fused to 

maximise the potential of PLF. Therefore, we have introduced a fusion module into the 

software architecture. As data generated from various sensors are propagated towards 

the centre application, it is vital that the centre application can fuse the data as much as 

possible for increasing the credibility of the report. This module can add more 

intelligence to the associated analysis software. 
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• WebSocket based technology for visualization. 

Visualization is always an important part of the monitoring system. Cross-platform 

visualisation of the images often depends on the web technology, fro which two 

approaches are often employed for web-based technologies, i.e. HTTP pooling and 

WebSocket. We have compared the details of these two technologies as well as the 

performance, based on which, we have identified that WebSocket is the most reliable 

protocol in terms of data transmitting for web applications. 

 

• Depth image processing. 

A case study application of the generic platform with the TOF camera is introduced in 

chapter 4. The camera needs to pre-configured based on the installation scenarios as 

well as the working range for accurate distance measurement for 3D reconstruction and 

mapping of the scene. Converting the pixel value requires to take care of the NaN values 

in case of invalid data.  

 

• Animal tracking. 

In chapter 4, the alpha-beta filter is introduced for object tracking. First, we applied the 

Otsu’s method on objects to filter shapes similar to pigs, followed by the alpha-beta 

filter for object tracking. In 300 images manually labelled for each pig, the detection 

accuracy is 94.59%. 

 

• Behaviour recognition. 

After successful detection and separation of the objects from the background, quite a 

few metrics, including the height of each object are measured. Considering that the 

pixel value between the lying pigs and the floor is within 65-150, and the pixel value 

between the standing pigs and the floor is between 350 to 440. We set 200 as the 

threshold to separate lying pigs and standing pigs. The results of differentiating lying 

pigs and standing pigs are 90.54% and 99.35%, respectively. 

5.2     Future work 

The value of this technology is dependent on its adaptability to a wide range of sensor 

technologies while transforming the data to the semantic outcome to guide the process of smart 
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farming. Thus, the capabilities of integrating different types of sensors and data processing are 

important.  

Different camera manufacturers often have their own APIs for data acquisition, a generic way 

of accessing the captured image data is to encapsulate the streaming module into a sub-module 

in order to provide a generic access layer to the data. This can hide the implementation detail 

across different APIs without changing the general workflow. The same approach also applies 

to other IoT devices. 

The accuracy of object detection and behaviour recognition can be further improved. Animal’s 

behaviours are often unpredictable, and they usually tend to stick together according to their 

habits. Most research, including this one, does not handle segmentation in very high accuracy. 

Tightly grouped animals are usually ignored in processing because of the difficulty of 

separating touching objects properly. The main reason is the software does not have ‘presence’ 

of the environment information, and the source image is the only input knowledge. 

Reconstruction of the environment prior to processing is a way to reduce the reliance on the 

input data. For example, once a moveable object has been detected, the tracking resilience on 

that object can be increased. When the object is grouped with others, i.e. the segmentation 

process fails, this change can be noted, and thus further arrangements can be scheduled as a 

backup solution. This works well when a pig is lying down on the floor when another one is 

passing through above it. The software can understand there was a lying pig when a collision 

is happed. To this end, the image data is not the priority knowledge at that time. 

Further development on the individualisation of each animal can be achieved, possibly by 

adding the RFID technology to the monitoring system. RFID reader placed in the scene can be 

predefined in the system. Any entry to the reader’s detection range can trigger a single response 

with a unique ID of the animal’s tag. The system would just need to find the nearest animal to 

the reader and establish the link. This platform has reserved the data fusion module. With 

adequate hardware, this method can be implemented for improved reliability and functions. 

Consistently collecting information on each animal is an important step in unlocking the 

potential of PLF. A further step would be to share the collected data with end-users of the value 

chain – consumers. This can help their buying decisions based on farmers’ practice, whilst 

farmers can also optimise their production strategies based on the preferences from the 

consumers’ side. This will be the most beautiful thing about PLF. 
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Appendix A 

Summary of cattle monitoring system 

Monitoring Imaging system Technique Source 

Live weight 

2D (CCD camera) Based on hip height, body length, hip width, and chest depth. [72][91][92] 

2D (Thermal camera) Based on the tail root and front hoof templates. [88] 

3D (TOF sensor) Based on 3D and contour features of the body. [29] 

Body shape and condition 

2D (CCD camera) Based on anatomical points (points around hook and tail). [30][32] 

2D (CCD camera) 
Based on the angles and distances between anatomical points and the ED from each point in the 

normalized tail-head contour to the shape centre. 
[31] 

2D (CCD camera) Based on RGB and body features. [42][95] 

2D (Thermal camera) Based on the thickness of fat and muscle layers. [47][48] 

3D (TOF and depth imaging sensors) Based on body features and back postures. [39][59][79][87][100] 

Health and disease 
2D (Thermal camera) Based on udder surface temperature. [35][41][49][50][64][78][80][101] 

2D (Thermal camera) Based on body surface temperature. [36] 

Feeding and drinking 

behaviour 

2D (Thermal camera) Based on the Viola-Jones algorithm. [75][76] 

3D (Structured light illumination 

scanning) 
Based on the change in the volume of food. [85] 

Lying behaviour 2D (CCD camera) 
Based on the x–y coordinates of the geometric centre of the animal. [34] 

Based on the Viola and Jones algorithm. [74] 

Locomotion and lameness 

behaviour 

2D (CCD camera) 

Based on body features extraction from a binary image. [105] 

Based on the touch and release angles in the fetlock joint of the leg along with pressure mat data. [73] 

Based on the curvature of the back of each animal. [77][96] 

3D (Kinect sensor) Based on 3D and 2D features of depth and binary images. [97] 

3D (Depth video) Based on tracking hooks and spine of animal in depth image. [51] 

Aggressive behaviour 2D (CCD camera) Based on geometric features between animals. [46] 

Mounting behaviour 2D (CCD camera) Based on motion detection and length of moving animals. [94] 

Table 10 Summary image processing methods used for cattle monitoring.  
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Summary of pig monitoring system 

Monitoring Imaging system Technique Source 

Live weight 

2D (CCD camera) 
Based on length and width dimension and boundary area. [33][38][81][82] 

Based on the area, convex area, perimeter, eccentricity, major and minor axis length. [55][99][102] 

3D (Kinect sensor) Based on volume and area of the body. [58] 

3D (Stereo Vision) Based on body length, withers height and back area. [86] 

Body shape and condition 
2D (Thermal camera) Based on shape and contour detection. [62] 

3D (Stereo photogrammetry) Based on triangulating on animal natural skin texture. [103] 

Health and disease 2D (CCD camera) Based on daily movement pattern in binary images. [104] 

Tracking 2D (CCD camera) 

Based on blob edge and an ellipse fitting technique. [54][63] 

Based on x-y coordinates of shape. [93] 

Based on positions of locatable features (kinks) of the body. [40] 

Based on RGB values. [52] 

Based on building up support maps and Gaussian model. [28] 

Learning-based segmentation [69] 

Based on adaptive partitioning and multilevel thresholding segmentation. [45] 

Feeding and drinking behaviour 
2D (CCD camera) Based on fitted ellipse features and distance to drinking nipple. [53] 

3D (Kinect sensor) Based on depth image and x-y coordinates of binary image [60] 

Lying behaviour 2D (CCD camera) 

Based on features of the binary image. [83][84] 

Based on the pixel intensity in the binary image. [37] 

Based on the fitted ellipse and the DT features. [65][66][68] 

Locomotion and lameness behaviour 
2D (CCD camera) 

Based on RGB and image map values. [57] 

Based on the activity index. [71] 

Based on fitted ellipse features in consecutive frames. [56][68] 

Based on the optical flow pattern. [43][44] 

3D (Kinect sensor) Based on Vicon 3D optoelectronic motion analysis. [89][90] 

Aggressive behaviour 
2D (CCD camera) Based on the motion history image and activity index. [70][98] 

3D (Kinect sensor) Based on features from the depth image. [61] 

Mounting behaviour 2D (CCD camera) Based on fitted ellipse features and ED between animals. [67] 

Table 11 Summary image processing methods used for pig monitoring. 
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Appendix B 

C code for alpha-beta filter 

 

 

#include <stdio.h>  
#include <stdlib.h>  
#include <math.h>  
 
 
typedef struct { 
 float alpha; //alpha value (effects x, eg pos) 
 float beta; //beta value (effects v, eg vel) 
 float xk_1; //current x-estimate  
 float vk_1; //current v-estimate  
} AlphaBeta; 
 
void InitializeAlphaBeta(float x_measured, float alpha, float beta, AlphaBeta* pab)  
{ 
 pab->xk_1 = x_measured; 
 pab->vk_1 = 0; 
 pab->alpha = alpha; 
 pab->beta = beta; 
} 

void AlphaBetaFilter(float x_measured, float dt, AlphaBeta* pab)  
{ 
 float xk_1 = pab->xk_1; 
 float vk_1 = pab->vk_1; 
 float alpha = pab->alpha; 
 float beta = pab->beta; 
 
 float xk; //current system state (ie: position) 
 float vk; //derivative of system state (ie: velocity) 
 float rk; //residual error  
 
 //update our (estimated) state 'x' from the system  
 xk = xk_1 + dt * vk_1; 
 //update (estimated) velocity   
 vk = vk_1; 
 //what is our residual error (mesured - estimated)  
 rk = x_measured - xk; 
 //update our estimates given the residual error.  
 xk = xk + alpha * rk; 
 vk = vk + beta / dt * rk; 
 //finished!  
 
 //now all our "currents" become our "olds" for next time  
 pab->vk_1 = vk; 
 pab->xk_1 = xk; 
} 
 
double frand()  
{ 
 return 2 * ((rand() / (double)RAND_MAX) - 0.5); 
} 
 

#include <stdio.h>  
#include <stdlib.h>  
#include <math.h>  
 
 
typedef struct { 
 float alpha; //alpha value (effects x, eg pos) 
 float beta; //beta value (effects v, eg vel) 
 float xk_1; //current x-estimate  
 float vk_1; //current v-estimate  
} AlphaBeta; 
 
void InitializeAlphaBeta(float x_measured, float alpha, float beta, AlphaBeta* pab)  
{ 
 pab->xk_1 = x_measured; 
 pab->vk_1 = 0; 
 pab->alpha = alpha; 
 pab->beta = beta; 
} 

void AlphaBetaFilter(float x_measured, float dt, AlphaBeta* pab)  
{ 
 float xk_1 = pab->xk_1; 
 float vk_1 = pab->vk_1; 
 float alpha = pab->alpha; 
 float beta = pab->beta; 
 
 float xk; //current system state (ie: position) 
 float vk; //derivative of system state (ie: velocity) 
 float rk; //residual error  
 
 //update our (estimated) state 'x' from the system  
 xk = xk_1 + dt * vk_1; 
 //update (estimated) velocity   
 vk = vk_1; 
 //what is our residual error (mesured - estimated)  
 rk = x_measured - xk; 
 //update our estimates given the residual error.  
 xk = xk + alpha * rk; 
 vk = vk + beta / dt * rk; 
 //finished!  
 
 //now all our "currents" become our "olds" for next time  
 pab->vk_1 = vk; 
 pab->xk_1 = xk; 
} 
 
double frand()  
{ 
 return 2 * ((rand() / (double)RAND_MAX) - 0.5); 
} 
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int main(int argc, char *argv[])  
{ 
 AlphaBeta ab_x; 
 AlphaBeta ab_y; 
 double t; //time  
 double x, y; //ideal x-y coordinates  
 double xm, ym; //measured x-y coordinates  
 double xnoise = 0; //noise we are inserting into our system 
 double ynoise = 0; 
 double m_error = 0; //total error (measured vs ideal) 
 double ab_error = 0; //total error (ab filter vs ideal) 
#define DT 0.1 
 //intialize the AB filters  
 InitializeAlphaBeta(1, 0.85, 0.001, &ab_x); //x position 
 InitializeAlphaBeta(0, 1.27, 0.009, &ab_y); //y position 
 srand(0); 
 
 for (t = 0; t < 4; t += DT)  
 { 
  //our 'true' position (A circle)  
  x = cos(t); 
  y = sin(t); 
  //update our simulated noise & drift  
  xnoise += frand()*0.01; 
  ynoise += frand()*0.01; 
  //our 'measured' position (has some noise)  
  xm = x + xnoise; 
  ym = y + ynoise; 
  //our 'filtered' position (removes some noise)  
  AlphaBetaFilter(xm, DT, &ab_x); 
  AlphaBetaFilter(ym, DT, &ab_y); 
 
  //update error sum (for statistics only)  
  m_error += fabs(x - xm) + fabs(y - ym); 
  ab_error += fabs(x - ab_x.xk_1) + fabs(y - ab_y.xk_1); 
 } 
 return 0; 
} 
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