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Abstract

The integration of Artificial Intelligence (AI) into Smart Grid (SG) man-
agement presents significant opportunities for enhancing energy efficiency,
reliability, and sustainability. However, deploying AI in critical energy infras-
tructure raises challenges related to robustness, transparency, and fairness,
essential components of trustworthy AI. This thesis addresses these chal-
lenges by proposing novel methodologies and frameworks to enhance trust-
worthiness in AI-driven SG management. First, it introduces a quantita-
tive framework for evaluating and visualizing explainability in deep learning-
based Non-intrusive Load Monitoring (NILM) systems. Next, it presents a
new training enhancement approach that incorporates explainability princi-
ples directly into training of NILM models, achieving improvements in in-
terpretability and predictive performance. Recognizing the constraints of
deploying complex AI models on edge devices, the thesis proposes an ex-
plainability guided knowledge distillation framework that balances model
efficiency with interpretability and reliability, facilitating robust edge de-
ployment without compromising performance. Finally, it addresses equity
concerns in Electric Vehicle Charging Station (EVCS) infrastructure place-
ment by developing a geodemographic-aware placement strategy using Graph
Neural Networks (GNNs), ensuring equitable access across diverse socioeco-
nomic groups. Collectively, these contributions establish a comprehensive
approach to embedding robustness, transparency, and fairness into AI ap-
plications within the SG context, aligning technical innovation with ethical
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and societal imperatives. This work supports broader adoption of trustwor-
thy AI, contributing significantly to sustainable development and equitable
energy transition objectives.
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Chapter 1

Introduction

1.1 Trustworthy Artificial Intelligence in Smart

Grid Management

The integration of AI in SG management systems marks a critical juncture
where technological advancement intersects with ethical imperatives. As AI
systems increasingly control critical infrastructure decisions - from power
distribution to resource allocation and demand forecasting - the need for
responsible implementation has become paramount. This urgency was high-
lighted by documented cases where AI systems exhibited algorithmic bias in
various domains [24, 44, 86], prompting concerns about similar risks in SG
applications [4, 74, 87]. In response, major organizations developed compre-
hensive frameworks for responsible AI implementation, such as the European
Commission’s Ethics Guidelines [36], OECD Principles [93], Toronto Declara-
tion [58], The Bletchley Declaration [127], Seoul Declaration [94] and others,
which established foundational standards positive impact of AI, emphasiz-
ing human rights and well-being, democratic values, fundamental freedoms,
and privacy. Specifically, at the core of Trustworthy AI framework [36] lie
three fundamental pillars: lawfulness, ethics, and robustness. These pillars
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give rise to seven essential requirements that directly shape SG implemen-
tations: human oversight, technical safety, data privacy, transparency, non-
discrimination, societal well-being, and accountability.

In the SG context, each requirement presents distinct challenges with
far-reaching implications. For instance, human oversight must balance auto-
mated efficiency with human control in time-critical grid operations, while
data privacy requirements must protect sensitive consumption patterns with-
out compromising system optimization capabilities. The translation of these
theoretical frameworks into practical SG applications reveals a critical gap
in current research. While extensive work has focused on optimizing tech-
nical performance metrics such as prediction accuracy and computational
efficiency, less attention has been paid to implementing and measuring trust-
worthy AI properties like fairness, privacy, and transparency. This implemen-
tation challenge is compounded by the inherent tensions between different
trustworthy AI requirements. For example, enhancing privacy protection
through data encryption or anonymization can reduce system transparency
and interpretability, while increasing human oversight might compromise
real-time performance in critical grid operations.

These challenges motivate four key research directions in AI-powered SG
systems. First, we need new methods to introduce explainability and trans-
parency into deep learning-based systems, supported by mathematical guar-
antees that ensure the quality and reliability of explanations. Second, we
must develop training processes that incorporate explainability objectives
alongside traditional performance metrics, optimizing both transparency and
robustness simultaneously rather than treating them as separate concerns.
Third, we need innovative approaches to maintain interpretability and relia-
bility when deploying complex systems on resource-constrained edge devices,
where traditional explainability methods may be computationally prohibitive
and relationship between transparency and privacy is often seen as a trade-
off. Finally, we must design decision-making frameworks that holistically
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integrate equity considerations with technical constraints, ensuring that SG
advancements benefit all stakeholders fairly.

1.2 Research Motivation and Aims

The global transition to renewable energy sources represents a fundamental
transformation of energy infrastructure, demanding sophisticated SG tech-
nologies to manage increasingly complex and distributed energy systems.
This transition presents three interconnected challenges: the need for gran-
ular energy monitoring and optimization, the requirement for efficient edge
computing solutions, and the imperative to ensure equitable access to emerg-
ing energy technologies. These challenges must be addressed while adhering
to trustworthy AI principles, creating a multi-dimensional challenge at the
intersection of technical performance and societal impact. At the monitor-
ing and optimization level, NILM has emerged as a crucial technology for
understanding and managing energy consumption patterns. Deep Learn-
ing (DL)-based NILM systems have demonstrated exceptional accuracy in
disaggregating energy data, providing valuable insights for both consumers
and utilities. However, their "black-box" nature presents significant chal-
lenges for deployment in critical infrastructure. The lack of transparency
in these systems raises concerns about reliability, interpretability, and ac-
countability - key requirements for trustworthy AI in practice. The practical
deployment of NILM systems introduces additional complexities, particularly
in edge computing environments. While edge deployment offers advantages
in privacy protection and reduced latency, it creates tension between com-
putational efficiency, model performance, and interpretability. Traditional
explainability methods, often computationally intensive, may not be feasible
on resource-constrained devices. This necessitates novel approaches that can
maintain both performance and trustworthiness under practical constraints.
Lastly, EVCS infrastructure placement decisions often favour affluent ar-
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eas, potentially reinforcing socio-economic disparities, necessitating a need
for more equitable infrastructure planning. These challenges together moti-
vate the research agenda of this thesis, which aims to develop methodologies
and frameworks that advance both technical capabilities and trustworthy AI
principles in SG applications. Thus, this thesis investigates four fundamental
research questions:

RQ1: Quantifying and Evaluating NILM Explainability How can
we effectively evaluate and quantify the explainability of deep learning-based
NILM systems? This question encompasses:

• Development of rigorous metrics for assessing explanation quality

• Validation of explanation faithfulness

• Evaluation of explanation robustness across different scenarios

• Assessment of explanation utility for different stakeholders

RQ2: Explainability-Aware NILM Training How can explainability be
incorporated into the NILM training process to improve both transparency
and performance? Key aspects include:

• Investigation of relationship between explainability and model robust-
ness

• Analysis of the relationship between explainability and predictive per-
formance

• Development of multi-objective training strategies

RQ3: Edge-Deployed Interpretable NILM How can we maintain in-
terpretability and reliability when deploying NILM systems on edge devices?
Critical considerations include:

• Analysis of trade-offs between model compression and explainability
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• Optimization of knowledge distillation for both efficiency and inter-
pretability

• Development of reliable performance guarantees under resource con-
straints

RQ4: Equitable EVCS Infrastructure Planning How can we design
equitable Electric Vehicle (EV) charging infrastructure placement strategies
that balance technical and social factors? This encompasses:

• Development of methods for modeling urban dynamics and social fac-
tors

• Identification of factors influencing utilization patterns and charging
behavior

• Creation of metrics and algorithms for ensuring equitable access

These research questions form an integrated framework for advancing trust-
worthy AI principles in SG applications, addressing both technical challenges
and societal implications of the energy transition.

1.3 Contribution of Thesis

The contributions of this thesis are organized around four critical aspects of
the energy transition:

1. Transparent Load Disaggregation: Development of a comprehen-
sive framework for evaluating and quantifying the explainability of deep
learning-based NILM systems, and introduction of novel visualization
techniques and rigorous evaluation metrics for assessing explanation
quality.
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2. Explainability-informed AI Training: Demonstration of methods
to improve both transparency and performance through explainability-
informed training. Introduction of novel learning mechanisms and loss
techniques to enhance model performance and robustness.

3. Interpretability and Robustness in Knowledge Distillation on
the Edge: Design of a novel knowledge distillation framework that
improves knowledge distillation by providing interpretability and relia-
bility when deploying NILM systems on edge devices. Development of
methods to balance computational efficiency with model performance
and interpretability.

4. Equitable Infrastructure Planning: Creation of a geodemographic-
aware methodology for optimal placement of EVCS. Development of
graph neural network approaches that consider both technical and so-
cial factors in infrastructure planning. Implementation of novel met-
rics and algorithms to ensure fair access across different socio-economic
groups.

This research advances the field in several ways: i) Provides novel frame-
works for evaluating and improving the explainability of AI systems in en-
ergy applications, ii) Demonstrates practical methods for deploying efficient
and interpretable AI models on edge devices, and iii) Introduces innova-
tive approaches to ensure equitable access to emerging energy technologies.
By addressing these challenges, this thesis contributes to the development
of more transparent, efficient, and equitable SG systems that can support
the ongoing energy transition while ensuring that algorithmic decisions ad-
here to principles of Trustworthy AI are, namely transparency, robustness,
and fairness. As a result, this thesis is in line with United Nations (UN)
Sustainable Development Goals (SGDs) [13], specifically, SGD 7.3 regarding
energy efficiency, SGD 16.6 regarding development of effective, accountable
and transparent systems, SGD 9.1 regarding equitable access to infrastruc-
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ture and SDG 11.2 regarding sustainable and accessible transport systems
for all. While the Trustworthy AI principles of transparency, robustness, and
fairness were primary motivators of this thesis, it is important to note that
other principles were indirectly addressed. For example, privacy principle
has a direct link to the edge deployed algorithms for NILM, while metrics
developed for evaluation of interpretability of XAI methods for NILM can be
interpreted as approaches that facilitate human oversight by providing tools
and metrics to understand and evaluate the decisions made by AI models.
Consequently, these advancements in transparency and robustness lay the
groundwork for improved accountability and technical safety. Finally, the fo-
cus on equitable EVCS placement directly promotes societal well-being and
non-discrimination.

1.4 Thesis Chapters Overview

The thesis is organized as follows: Chapter 2 provides a literature review of
key challenges in implementing Trustworthy AI systems for SG management.
Chapters 3 and 4 focus on explainability evaluation and improvement in
NILM systems. Chapter 5 addresses the challenges of edge deployment while
improving interpretability. Chapter 6 presents methods for equitable EVCS
infrastructure planning. Finally, Chapter 7 concludes with a summary of
contributions and future research directions. This introduction provides a
clearer structure and better highlights the key contributions and significance
of the research. It emphasizes how the work addresses important technical
and societal challenges in the energy transition while maintaining focus on
trustworthy AI principles.
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Chapter 2

Literature Review

2.1 Background - Smart Grid and Energy Tran-

sition

Modern energy systems face unprecedented challenges related to integration
of renewable energy sources, distributed generation, and SG technologies.
As the world moves to more renewable energy sources, the impending en-
ergy transition requires significant transformations in the energy sector. Not
only will renewables cause major increases in electricity demand, but they
will also cause substantial supply fluctuations [59]. Solar photovoltaics (PVs)
and wind turbines, the main drivers of renewable technologies, only operate
when sunlight or wind is abundant. Because of this, the electricity grid is
subjected to massive injections of PV or wind power during sunny or windy
days and low inputs during cloudy or calm days, which poses a grid stability
and renewable energy integration challenge. EVs can absorb excess energy
that would otherwise be wasted, improving the economic benefit of wind and
solar power generation [104]. However, this can introduce major changes in
the electricity demand, especially in locations with a large number of charg-
ing stations, where EVs may be charged at the same time during the day,
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leading to a very high load on the distribution grid and uncertainty in elec-
tricity supply meeting demand [96]. Another important element of modern
grids is that an increasing number of energy consumers are becoming pro-
ducers of energy, i.e., prosumers. As a result, the generation, transmission,
distribution, and control operations of the traditional grid need to be able
to accommodate the dramatic changes caused by the transition towards re-
newable energy and the electrification of transport [98]. This need has led to
the emergence of SG systems that aim to facilitate operational efficiency and
reliability of the grid using advances in infrastructure, intelligent information
collection, automation and knowledge extraction [43].

SGs enable the decentralization of distribution and communication and
are at the forefront of efforts geared towards addressing operational com-
plexity introduced by the increased utilization of renewable energy. It aims
to deliver power more efficiently and automatically address any events that
may impact the quality or reliability of the power supply and generation [46].
However, despite the apparent benefits, it is important to note that in some
instances, energy efficiency efforts lead to rebound effects (a phenomenon
where energy efficiency can lead to an increase in the consumption of energy
services). Consequently, rebound effects could offset the expected benefits
of SGs, where lower energy costs induced by them may stimulate additional
energy use. In the context of rebound mitigation, one promising initiative to
boost environmental consciousness is raising awareness of households’ energy
consumption behavior [133]. Knowledge extracted from electricity use behav-
ior can be used to better understand the changing needs of consumers and
prosumers alike and make sense of complex consumption patterns, and the
core technology that enables this is smart metering [42]. Successful operation
of SG infrastructure depends on the ability to collect and extract knowledge
from live load measurements that will enable better monitoring of supply and
demand, reduce operational costs, and optimize energy efficiency. Smart me-
ters enable real-time consumption feedback that is communicated remotely
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to utilities, consumers, prosumers, and other stakeholders with an interest in
meeting energy efficiency targets. Unlike traditional meters, which usually
provide consumption feedback only once a month, smart meters can provide
feedback in real-time. Smart meters represent the core pillar of the SG and
are the key to the successful realization of future energy management systems
that make informed decisions for consumers, electricity producers, and net-
work operators alike. SG technology is essential in lowering carbon emission
goals, as it facilitates the broader incorporation of renewable energy sources
like solar and wind power. This incorporation enables small-scale electricity
production, enhances supply and demand flexibility, assures accurate cus-
tomer billing, and promotes the decentralization of power generation [116].

2.2 Trustworthy AI

The integration of AI in SG management has emerged as a critical challenge
at the intersection of technological innovation and social responsibility [11].
While AI presents unprecedented opportunities for improving energy sys-
tems, recent developments in trustworthy AI frameworks highlight the need
for solutions that not only deliver technical performance but also ensure fair-
ness, accountability, and transparency in critical infrastructure decisions. As
emphasized by the previous work [48], AI applications must align with sus-
tainable development goals while adhering to ethical principles that protect
human rights and promote inclusive growth. The initial push for responsible
AI emerged from early warning signs of AI systems perpetuating or ampli-
fying existing societal inequities. High-profile cases of algorithmic bias in
recruitment, facial recognition, and criminal justice systems demonstrated
how AI trained on historical data could systematically disadvantage certain
populations. Simultaneously, the successful application of AI in projects
like automated monitoring of crop diseases, predictive modeling for poverty
reduction, and climate informatics demonstrated the technology’s potential
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for advancing sustainable development goals and delivering positive social
impact. These contrasting outcomes prompted leading organizations and
institutions to develop comprehensive frameworks for responsible and trust-
worthy AI. The European Commission’s Ethics Guidelines emphasized that
AI systems must be lawful, ethical, and robust to avoid unintended harm.
The Montreal Declaration for Responsible AI and Toronto Declaration specif-
ically addressed the intersection of AI development with human rights and
discrimination concerns. As a result of rapid expansion of generative AI
technologies, many of the frameworks have been expanded and updated,
such as OECD Principles framework [93] which established that AI should
drive inclusive growth while respecting human rights, democratic values, and
diversity. These frameworks collectively stress that trustworthy AI requires
not just technical excellence, but also careful consideration of ethics, fairness,
transparency, and accountability. Correspondingly, Trustworthy AI for SG
management systems would imply that the algorithms trained on user data
obtain good predictive performance but are also designed to emphasize other
important properties such as robustness, fairness, transparency, and privacy.
Accounting for these properties is an essential step towards wider adoption
of AI and an opening for a new, mature era of AI design and deployment.

Building on the established frameworks for trustworthy and responsible
AI [36,58,93,94,127], we can identify three fundamental pillars that must be
addressed in SG applications: lawfulness, ethics, and robustness. The lawful
dimension ensures compliance with energy sector regulations and data pro-
tection laws; the ethical dimension addresses fair access to energy resources
and environmental sustainability; and the robustness dimension guarantees
reliable operation even under adverse conditions or other threats. These pil-
lars support seven key requirements that must be fulfilled: human agency
and oversight, technical robustness and safety, privacy and data governance,
transparency, diversity and non-discrimination, societal and environmental
well-being, and accountability. In the context of SGs, these requirements
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take on specific meanings and challenges. For instance, human oversight
must balance automated grid management with human control over critical
infrastructure decisions. Privacy concerns extend beyond individual con-
sumer data to include industrial energy usage patterns that could reveal
trade secrets. Fairness must consider equitable access to energy resources
while maintaining grid stability, and transparency must be balanced against
potential security vulnerabilities that could be exploited by malicious actors.

However, what is not yet clear is how to effectively implement trustwor-
thy AI principles in practical SG applications while maintaining high perfor-
mance standards. Most studies in the field of AI-powered grid management
have focused solely on technical metrics such as prediction accuracy, response
time, and optimization efficiency, while the crucial aspects of fairness, ac-
cessibility, and transparency have received limited attention. This technical-
centric approach has created a significant gap between theoretical frameworks
for trustworthy AI and their practical implementation in SG systems. Fur-
thermore, it is vital to understand that the pursuit of trustworthiness should
include awareness of the interactions between the properties of the trust-
worthy system, which is particularly important when requirements interfere
with each other. For example, by ensuring strong data privacy guarantees,
the predictive performance of the system may suffer. Additionally, if input
data is significantly altered, it might negatively affect the system’s trans-
parency. Thus, even though there are significant possibilities for progress in
individual instances of trustworthiness, it is equally important to understand
the requirements and interactions of each aspect of the trustworthy system.
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2.3 Towards Trustworthy Artificial Intelligence

in Smart Grid Management

2.3.1 Explainable Non-Intrusive Load Monitoring

NILM Problem Statement and Low-frequency NILM Algorithms

Given a sequence of aggregated power consumption y = (y1, y2, ..., yT ), cap-
tured at time t = {1, 2, ..., T}, the goal of a NILM algorithm is to determine
the individual power contribution xit of appliance i ∈ {1, 2, ...,M}, such that
the aggregate can be represented as a combination of individual power con-
sumption of M appliances and a term ϵt, which denotes noise from unknown
appliances contributing to the aggregate signal and measurement noise:

yt=1...T =
M∑
i=1

xit + ϵt (2.1)

To extract the power consumption of a selected appliance i ∈ {1, 2, ...,M},
the majority of NILM approaches are focused on filtering the noise term ϵ

as well as all other appliance signals, which is a non-trivial problem due to
statistical differences in activation length, time of use, frequency, and peak
power usage. To detect an appliance of interest, NILM can be treated as ei-
ther a classification or regression problem. Classification-based NILM infers
the on/off state of an appliance i at time t, based on the aggregate signal yt.
On the other hand, regression-based NILM aims to directly infer xit.

Very early NILM research primarily utilized high-frequency power mea-
surements, using sampling frequencies in the order of kHz or higher. How-
ever, the landscape has shifted significantly with national rollouts worldwide
of standard smart meters, for which data stored is in the order of 1 sec to
30 minutes. This transition to lower-frequency measurements was driven by
several practical factors: reduced privacy concerns, more manageable data
storage requirements, and simpler data handling processes. Additionally,
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previous research has shown that appliance recognition capability varies with
sampling frequency, with long-duration activations actually benefiting from
reduced sampling rates compared to high-frequency (sub-second measure-
ments) [12, 57]. Furthermore, high-frequency NILM, has already demon-
strated very good disaggregation accuracy, leveraging on ability to identify
transient features and harmonic content, with little room for further im-
provement unlike low-frequency NILM. As a result, the challenges of low-
frequency NILM has been the main focus of research in recent years due
to the abundance of smart meter measurement data and advancements in
machine learning [10].

In order to infer individual appliance consumption, various machine learn-
ing approaches have been proposed in the recent literature, where Deep
Neural Network (DNN) approaches form the basis of state-of-the-art im-
plementations according to the recent review of [10]. Convolutional Neural
Networks (CNNs) form the majority of implementations - [138] propose a
sequence-to-point (seq2point) learning approach using a CNN; [97] address
the high computational complexity of seq2point and propose a CNN architec-
ture for sequence-to-subsequence learning; [35] use a two sub-networks that
are connected in order to infer both regression and classification outputs; [92]
propose a CNN model that provides generalisability to new domains; [85] per-
form multilabel classification using a CNN architecture with pooling layers at
different time scales. Another common DNN approach to NILM are Recur-
rent Neural Networks (RNNs); [139] use a multi-quantile RNN to disaggre-
gate the loads and improve the demand side management of solar energy; [71]
propose a Gated Recurrent Unit (GRU) approach that reduces memory us-
age and computational complexity while achieving good disaggregation per-
formance, while [122] proposes a Convolutional Recurrent Neural Network
(CRNN) approach for multi-label classification of appliances. Lastly, other
literature attempts to introduce new learning mechanisms include Generative
Adversarial Networks (GANs) [97], temporal-causal networks [51] and atten-
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tion mechanisms [136]. A DNN-focused review for low-frequency NILM [56]
provides a detailed review of current DNN NILM approaches, where GRU
and CNN architectures and their variants, including WaveNet with dilated
convolutions [51], have been shown to achieve good performance over a range
of appliances with well documented publicly available code for reproducibil-
ity, and therefore inform the architectures we consider in our proposed work.

Explainable AI for Low-frequency NILM

The increasing integration of AI into SG management, particularly for tasks
like NILM, promises significant benefits in energy efficiency and grid stability.
However, many high-performing AI models, especially DL architectures, op-
erate as ’black boxes.’ Due to their complexity, the internal decision-making
processes are not well understood, making it difficult for human operators,
developers, and even end-users to understand how a particular prediction
or decision was reached. This lack of transparency poses significant chal-
lenges. First, if stakeholders cannot understand or trust the AI’s reasoning,
adoption of these powerful tools in critical infrastructure will be challenged
with skepticism. This is particularly true for consumer-facing applications
like NILM, where understanding energy usage breakdowns is key. Second,
when a black-box model makes an error, diagnosing the cause is incredibly
difficult. Explainability can help reveal flawed logic or biases in the model,
guiding developers towards more robust and accurate systems. Third, in crit-
ical systems like SG management, unexpected or erroneous AI behavior can
have severe consequences. Understanding the ’why’ behind AI decisions is
crucial for ensuring safety, identifying potential failure modes, and building
resilient systems. Lastly, without transparency, it is hard to assess if an AI
system is making fair decisions or if it has learned unintended biases from the
data, potentially leading to inequitable outcomes (e.g., in demand-response
programs or tariff assignments).

The wider problem of explainability of DL models has recently gained
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traction, leading to the emergence of the field of Explainable AI (XAI). Re-
cent literature [9,15,47,109,111,113,118] suggest that XAI can facilitate trust
by providing algorithmic transparency, support assessment of levels of bias,
and improve the overall understanding of the inner workings of DL models.
The majority of XAI work, predominantly tackling computer vision tasks,
primarily centers around the integration and development of techniques that
analyse the outputs of the model and visualise the importance of the input
features. These include approaches such as GradCAM [109], IntegratedGra-
dients (IG) [118], LRP [15], and SmoothGrad [113]. These methods, also
known as feature-attribution methods, are effective in revealing problems in
a model, understanding the model decisions, or revealing dataset bias. Given
a trained DL-based model and an input, the goal is to provide a prediction
and attribute a score in a way that high scores correspond to important fea-
tures of the input. For image modality, this could be an area of the image
associated with the predicted class, while for textual data this could be a
set of important words or tokens. In the context of NILM, an overview of
a XAI-supported system can be seen in Fig. 2.1. The system provides the
prediction, as well as the associated heatmap that shows areas of the signal
that are highly important. It is important to note that such a system doesn’t
provide guarantees of robustness or transparency. For this to be the case,
both the DL model as well as XAI method need to be evaluated.

Explainability refers to the ability to explain both the technical processes
of an AI system and the related human decisions (e.g., application areas of a
system). Technical explainability requires that the decisions made by an AI
system can be understood and traced by human beings. The use of DNNs
generally negatively impacts our understanding of how the decisions are made
by the system. In NILM, previous studies have used explainability tools to
determine local and global feature importance of decision tree approaches
to design a methodology that informs feature selection for each appliance
class [89]. However, when translating to a regression-based task where the
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usage of DNNs is more common, explainability presents a larger problem due
to the naturally less interpretable nature of DNNs compared to decision tree
algorithms. Authors in [90] propose the first XAI methodology for NILM by
using occlusion sensitivity to offer a visual understanding of significant fea-
tures for the prediction of DNN-based NILM model. This method involves
occluding random regions of a signal and analysing the impact it has on
prediction performance. However, this method poses sizeable computational
challenges, primarily because of its sliding window mechanism. Moreover,
this approach occludes parts of the signal by setting the consumption power
values to zero, which is not a realistic scenario and might represent an out-
of-distribution scenario where the model can struggle to produce intelligent
outputs. A recent study [80] compares the success of using the GradCAM
XAI technique against occlusion sensitivity for visualising significant input
features of a NILM classifier. However, authors define a significantly simpler
problem statement where a multi-class CNN is used to determine solely the
existence of an appliance in the input time-series, without inferring the on/off
state or the sample-by-sample energy consumption values typical for regres-
sion approaches. Furthermore, they focus solely on a single XAI method,
which is a major concern, as XAI methods can generate unreliable expla-
nations, contributing to a diminished understanding and opportunities to
exploit the vulnerabilities of the NILM system.

2.3.2 Knowledge Distillation and Edge Deployment for

Privacy Preservation

The deployment of NILM systems on edge devices has emerged as a promis-
ing direction for practical energy monitoring applications. Edge-based ap-
proaches address privacy concerns and reduce latency by processing data lo-
cally rather than transmitting sensitive consumption data to external servers.
While various implementations have been proposed, ranging from Raspberry
Pi [134] to more resource-constrained micro-controllers [120], FPGA [52] and
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Fig. 2.1. Overview of XAI-assisted decision making for NILM. The trained DL
(black-box) model performs predictions, while the XAI method (e.g. GradCAM
[109]) provides explanations for a particular prediction. The resulting visualiza-
tion contains the predicted appliance (y), as well as a heatmap that indicates the
important areas of the signal that correspond to the predicted appliance y. The
red-hued areas show the most important area of a signal that lead to the prediction
of appliance y.

ARM [84] platforms, significant challenges remain in deploying deep learning
models on these platforms due to their computational limitations. DNNs, de-
spite their success in NILM applications, typically contain hundred thousands
or millions of parameters, making their deployment on resource-constrained
devices particularly challenging. Traditional approaches to NILM model
compression for edge deployment have explored various techniques, includ-
ing quantization [5], model design optimization [78], parameter pruning [72],
feature fusion [49] and Knowledge Distillation (KD) [123], as well as a com-
bination of different approaches [119]. However, while these methods have
shown promising in reducing model size and computational requirements,
they often address only the computational aspects without considering the
interpretability and reliability of the compressed models. The challenges of
deploying NILM systems on edge devices, particularly the trade-offs between
model complexity, performance, and interpretability, highlight a critical need
for approaches that can maintain model transparency even after compression.
This has led to an increased focus on XAI techniques specifically designed
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for NILM applications, as described in the previous section. KD has emerged
as a particularly promising approach for edge NILM deployment, as it en-
ables the transfer of knowledge from complex teacher models to more efficient
student models while maintaining or improving predictive performance. Pre-
vious work has explored KD-based weakly supervised learning strategies to
train less complex networks maintaining the classification performance [123].
Starting from a CRNN model considered as the Teacher, several lower com-
plexity CRNNs have been distilled to evaluate how the performance is influ-
enced by removing convolutional layers or recurrent units, showing promis-
ing performance in resource constrained environments. However, existing
research has revealed critical limitations in the knowledge transfer process.
Previous studies, notably [123], overlooked critical aspects of how incorrect
Teacher knowledge impacts Student learning outcomes. Namely, while con-
ventional approaches to distillation focus primarily on optimizing Student
learning processes, they fail to address a fundamental challenge: the pres-
ence of corrupted knowledge in the Teacher network. In the context of NILM,
this corruption manifests in two critical dimensions: state classification accu-
racy and explainability. From a state classification perspective, the Teacher
network’s imperfect nature [123] introduces inherent uncertainties that fun-
damentally compromise the NILM system’s reliability. Simultaneously, from
an explainability standpoint, the absence of rigorous validation of Teacher ex-
plainability prior to and during the distillation raises serious concerns about
the interpretability of the designed system. This indicates that deployment
of NILM systems on edge devices introduces additional constraints beyond
mere model compression. Edge devices must operate effectively across diverse
environmental conditions and usage patterns while maintaining reliable per-
formance, which necessitates not only efficient model architectures but also
robust and interpretable decision-making processes that can be validated and
trusted by end-users. The intersection of these requirements - computational
efficiency, reliability, and interpretability - presents a complex challenge that
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current edge NILM approaches have yet to fully address.

2.3.3 Equitable EV Charging Infrastructure Placement

EVs have emerged as a cornerstone in the strategy towards decarbonisation
of the transport sector and the wider transition towards net-zero. A com-
prehensive range of solutions and policy interventions have been proposed,
aimed at promoting the ownership of EVs and reducing economic costs for
end-users [22]. Globally, EV ownership reached 26 million by the end of
2022 and is expected to rise to over 240 million by 2030 [1]. Notably, China,
as the world’s leading EV market, accounted for 14.1 million of these ve-
hicles [1]. Meanwhile, in the United Kingdom (UK), more than 950,000
EVs were registered by the end of 2022, with numbers predicted to esca-
late quickly in response to increasing demand [114]. Recent advancements in
EV technology and the gradual shift towards price parity with conventional
vehicles are lowering barriers to entry, making EVs increasingly accessible
and attractive to consumers. In addition, a suite of tax benefits and finan-
cial incentives are facilitating this trend in all leading EV markets, including
China, the European Union (EU), the United States, and the UK. The UK
had approximately 37,000 public EV charging devices at the end of 2022,
equivalent to approximately 26 EVs to one charging point [1], though ac-
cording to recent studies [77], the optimal ratio is 12 to 1. Although home
charging currently meets a large portion of charging demand, publicly ac-
cessible charging is increasingly needed to provide accessibility, comfort, and
facilitate long-distance driving akin to refueling a fossil fuel vehicle. This is
particularly important in dense urban areas where access to home charging
is more limited and public charging infrastructure is a key enabler for EV
adoption. To this end, several leading economies have developed national
EV charging infrastructure strategies: China has announced plans to accom-
modate charging infrastructure for more than 20 million EVs by 2025 [101];
the United States announced plans to invest up to $5 billion to promote the
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penetration of EVs through introduction of 500,000 public chargers by 2030,
fiscal incentives and subsidies [101]; Japan pushed forward the national tar-
get of 150,000 charging points by 2030, including 30,000 fast chargers [1];
the European Parliament announced the alternative fuel infrastructure reg-
ulation aimed at delivering charging infrastructure with a particular focus
on fast charging stations and charging for heavy-duty vehicles [1]; the UK
has allocated £1.3 billion in government funding aimed to support the roll-
out of the charging infrastructure, with a particular focus on local on-street
residential charging and targeted plug-in vehicle grants [101].

While numerous studies have explored optimal placement strategies for
EVCS, the socio-economic dimensions of these placements have often been
overlooked. Existing research has predominantly focused on technical and
operational optimization criteria, such as accessibility, speed, and cost of
charging, without adequately addressing the disparities in EVCS distribution
across different locations and socio-economic groups [54]. This has resulted
in EVCS infrastructure that is often dense in high-income neighborhoods
while being sparse and/or underutilized in socially disadvantaged communi-
ties [76,106,115]. As a result, despite the advancements in EVCS placement
strategies, there is a pressing need to address the inequities in EVCS distri-
bution. Equity in EVCS placement ensures that charging infrastructure is
accessible to all community segments. Additionally, some critical gaps re-
main in addressing spatial interdependencies, land use-specific deployment,
and equity integration. Existing approaches predominantly employ spatial
regression [79], clustering [39], or multi-objective optimization [77], treating
urban areas as static grids rather than dynamic networks. For instance, [79]
utilizes multi-scale geographically weighted regression to analyse the spatial
heterogeneity in intra-city public EVCS distribution but neglects the inter-
connected nature of urban zones, overlooking how charger placement in one
area influences demand in adjacent regions. Similarly, [77] applies multi-
objective optimization and TOPSIS optimization to propose equitable place-
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ment by balancing site development costs, equity access, and demand fulfill-
ment. However, the decisions are made without modeling the spatial propa-
gation of charging needs across a city’s graph structure. While [75] employs
agent-based modeling to simulate charging behavior, it treats urban networks
as homogeneous grids rather than interconnected graphs. Similarly, [28] ap-
plies linear regression to correlate charger density with deprivation indices
but ignores demand spillover effects between adjacent zones. Secondly, while
land use categorization is acknowledged in studies like [27], which manually
labels zones, prior works mostly fail to provide granular, land-use-specific pol-
icy recommendations. For example, [100] evaluates accessibility across broad
census tracts and evaluates horizontal and vertical equity using spatial auto-
correlation but does not differentiate optimal charger types (e.g., 22kW vs.
fast chargers) for residential versus industrial zones. Similarly, [66] and [28]
identifies correlations between EVCS distribution and income levels but pro-
vides no framework for zone-specific (residential/commercial) deployment.
Third, equity considerations in existing frameworks are often reductionist.
Studies like [55] correlate EVCS distribution with income levels but omit
multi-dimensional deprivation indices and real-time utilization patterns. [75]
models income-based charging access but omits multi-dimensional depriva-
tion metrics (e.g., health, education). [66] uses census-based approach but
fails to integrate real-time utilization data, masking disparities in deprived
areas.

Above recent research highlights work emerging to cater for inclusive
EVCS placement that considers various socio-economical factors. However,
these prior studies generally contain the following limitations: (i) EVCS
placement decisions are often made without understanding the spatial dy-
namics of the urban network, a crucial aspect of interconnected systems such
as urban EVCS infrastructure, (ii) most works fail to address the challenge
of targeted infrastructure deployment within specific urban land uses, which
is becoming increasingly important as government funding is often targeted
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within certain urban areas of the city, for example, residential, industrial, or
other, and (iii) insufficient consideration of equity, and a lack of integration
of multiple factors influencing equity and local contexts.
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Chapter 3

A Framework for Quantitative
Evaluation of Explainability in
Load Disaggregation

Recently, DL approaches have seen increased adoption in NILM community.
However, DL-NILM models are often treated as black-box algorithms, which
introduces algorithmic transparency and explainability concerns, hindering
wider adoption. In this chapter, we present a methodology for explainability
of regression-based DL-NILM with visual explanations, using XAI. Two ex-
plainability levels are provided. Sequence-level explanations highlight impor-
tant features of predicted time-series sequence of interest, while point-level
explanations enable visualising explanations at a point in time. To facilitate
wider adoption of XAI, we define desirable properties of NILM explanations
- faithfulness, robustness and effective complexity. Addressing the limita-
tion of existing XAI -NILM approaches that do not assess the quality of
explanations, desirable properties of explanations are used for quantitative
evaluation of explainability. We show that the proposed framework enables
better understanding of NILM outputs and helps improve design by providing
a visualization strategy and rigorous evaluation of quality of XAI methods,

27



leading to transparency of outcomes. The content of this chapter is taken
from the work reported in "Towards Trustworthy Load Disaggregation - A
Framework for Quantitative Evaluation of Explainability using XAI" [16].

DL based implementations for NILM have grown sharply over the past
few years with very good performance demonstrated via domain-agnostic
accuracy metrics, such as the popular Mean Absolute Error, across a wide
range of real-world datasets [56]. However, using accuracy metrics as a stan-
dalone determinant for selection of an AI technology is inadequate for wider
consumer adoption, as put forth in [63] and [62]. The latter recommends
that, in order to ensure Trustworthy AI, robustness, fairness, transparency,
and privacy need to be addressed. Indeed, the European Commission has re-
cently published seven principles of Trustworthy AI [36], which include trans-
parency as one of the key elements of trustworthy AI systems. Transparency
is closely linked to traceability of the datasets, as well as explainability of
the technical processes of the AI system and the related AI decisions, and
finally communication of level of accuracy of an AI system and limitations
to the end-users and system developers. For AI-based NILM, the majority
of work has focused on addressing technical robustness in the form of ac-
curacy, reliability and reproducibility across different datasets [56, 69, 130]
and data transparency through the use of public, peer-reviewed and well-
documented datasets [64, 91], with limited research in the area of privacy
protection [26, 125, 140] and technical explainability [18, 80, 90]. The ma-
jority of DL-based NILM approaches are designed as “black-box“ systems
due to their inherent algorithmic complexity and absence of explainability.
Since the underlying mechanics resulting in NILM predictions are not in-
terpretable or explainable, DL based NILM cannot be fully trusted, which
somewhat hinders wider deployment of NILM systems [63]. As the adoption
of smart home devices and energy management systems continues to grow,
the necessity to ensure these technologies are both transparent and under-
standable to consumers grows concurrently. By developing and evaluating
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XAI methods for NILM, the research community can contribute to design
of AI solutions that adhere to consumer standards such as the EU’s vision
of ethical and responsible AI [36] and foster consumer trust in these emerg-
ing technologies, empowering users to make informed decisions about their
energy consumption. Furthermore, understanding the produced outputs can
help improve the design, provide a better overview of the model accuracy,
and facilitate better understanding of failure scenarios. Thus, the role of
explainability is to ensure a transparent inference process of the AI system
by providing decisions that are understood and traceable. As a result, al-
gorithmic transparency facilitated by explainability has been identified as a
paramount challenge in the present landscape of NILM research [63].

The wider problem of explainability of DL models has recently gained
traction, leading to the emergence of the field of XAI. Recent literature
[9,15,47,109,111,113,118] suggest that XAI can facilitate trust by providing
algorithmic transparency, support assessment of levels of bias, and improve
the overall understanding of the inner workings of DL models. The majority
of XAI work, predominantly tackling computer vision tasks, primarily cen-
ters around the integration and development of techniques that analyse the
outputs of the model and visualise the importance of the input features. Such
work frequently illustrates that explainability can enhance the understanding
of the model and foster trust in the AI systems [47]. However, many existing
XAI techniques can lead to unstable explanations in real-world scenarios due
to limited, qualitative evaluation [20,31,110,112]. As a result, subjective eval-
uation of their quality could lead to false sense of trust in the XAI-supported
system. Addressing such issues is particularly important for systems that
can reveal personal information, such as temporal appliance patterns of use,
generated by NILM. XAI approaches for NILM are still in their infancy, with
limited literature available [18, 80, 89, 90]. While previous works have shown
that XAI can be utilized as an important tool for contexts such as model
debugging [18, 90], as XAI-based solutions for NILM continue to grow, it
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is of vital importance to properly evaluate their explainability components.
This assessment can serve as a way to assert that the used explainability
techniques are truly able to be deployed in the real-world scenarios and help
with understanding of model outputs. Therefore, XAI system design that
incorporates robust qualitative and quantitative evaluation procedures for
explainability techniques used in the real-world environment is of crucial im-
portance for the successful adoption in NILM. The main contributions of this
work are summarized as follows:

• A new multi-temporal XAI visualisation technique for regression-based
DL NILM, taking into account the need for different levels of visuali-
sation granularity.

• Definition of three core properties for evaluation of explainable NILM
system: faithfulness, robustness, and complexity, that quantify the
quality of XAI NILM visualisations with respect to the ability to iden-
tify important features of the signal, deal with noisy inputs, and be
human understandable, respectively.

• Demonstration that the proposed approach can provide visualisations
and quantify well the quality of XAI NILM systems using two public,
well documented datasets and five XAI approaches.

3.1 Proposed Explainability Evaluation Frame-

work

The backbone of our proposed XAI framework for NILM is the proposed
visualization procedure, illustrated in Fig. 3.1, that facilitates the genera-
tion of human-interpretable explanations of NILM model outputs. Since the
desired granularity of explanations can vary, the visualization procedure of-
fers an ability to generate explanations for both sequential-level, as well as
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point-level predictions. The sequence-level explanations highlight the areas
of the signal most responsible for the prediction, while the point-level ex-
planations display the reasoning behind a prediction of a particular point
in time. These two layers of explainability can be used interchangeably as
they offer varying degrees of specificity. In the visualization procedure, we
utilize five distinct XAI techniques to formulate explanations. Subsequently,
the created explanations are subjected to a quantitative evaluation of qual-
ity. Taking into consideration a diverse set of needs and possible deployment
scenarios, the quality of an explanation is defined as alignment with three de-
sirable properties of explanations, specifically: faithfulness, robustness, and
low complexity.

AI Model

XAI

Method

Input sequence
Input sequence

sliding windows
Point predictions

Point explanations

Explanation matrix

Sequence explanation

Triangular 

weighting

Matrix

operations

Fig. 3.1. Visual outline of the proposed approach showcasing the mechanism for
visualization of importance at two levels of specificity, leading to point-level and
sequence-level explanations for an input sequence of interest.
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3.1.1 Visualization via heatmaps

We demonstrate how to integrate XAI in the popular seq2point DL-NILM
implementation of [138] trained for load disaggregation of various appliances,
via regression, on two popular datasets: UK-DALE [64] and REFIT [91]. The
full procedure is illustrated in Fig. 3.1. First, to account for the nature of
the seq2point algorithm, sliding windows are used to split the input signal
into small, overlapping segments, and generate the point output predictions.
Then, for a seq2point model with input size δ, for each generated point
along the sliding window, a point explanation heatmap of size δ is created
via existing XAI methods such as GradCAM [109], GradCAM++ [34], Inte-
gratedGradients (IG) [118], LRP [15], and SmoothGrad [113]. If a step size
of 1 is used, and the length of activation window of interest is ω, the total
number of generated heatmaps is:

N = ω − δ + 1. (3.1)

Following this procedure, we observe that a single time step along the
activation window ω can receive up to δ importance scores. However, this
does not hold for all points in ω, in particular the ones at the edges of the
window. For example, two points at the far edge (left and right) of the acti-
vation window receive only one computed importance score. To ensure that
each point along ω captures δ importance scores, we expand the activation
window by δ − 1 on both sides. Thus, we create a window of size:

ω′ = ω + 2 ∗ (δ − 1). (3.2)

Given that the size of activation window of interest, ω, is larger than the
model input size, δ, to map the N resulting heatmaps to a single, sequence-
level heatmap of size ω, which corresponds to the activation of interest, we
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need to transform the results into a new representation. To create a heatmap
of size ω, we first generate a zero matrix of size ω′ × (N + 2 ∗ (δ − 1)). Each
generated heatmap is added to the matrix based on its position relative to the
activation of interest. For example, the first row of the matrix contains the
first heatmap that is followed by zero values, acting as padding, until reaching
ω′ samples. The first element in the second row is set to zero, followed by the
second heatmap, and finally zero values afterward until reaching ω′ samples.
This procedure is repeated until the last row.

Before populating the matrix, we apply a weight function to mitigate
the presence of noise and promote smoothness of heatmaps. Given that
the temporal dimension of the middle point of the input corresponds to the
output point of prediction, and is highly influential to the prediction, we
apply a triangular weight function to the heatmap defined as:

ψ(x) =

 x
m
(pmax − pmin) + pmin if 0 ≤ x ≤ m

x−m
m

(pmin − pmax) + pmax if m < x ≤ 2m
(3.3)

where m represents the middle point value, and pmin and pmax are the
lowest and highest weight values, respectively. The maximum value pmax is
placed at the middle point, while the values drop linearly in both directions
when moving away from the middle point, with the lowest value pmin at
points 0 and 2m. For the purpose of this work, the weight function holds
the maximum value of 1 at the middle point, with the two furthest points
holding a weight of 0.8.

To further reduce the noise, we aggregate the results by first sorting the
matrix column-wise in descending order, corresponding to the time step in
the window of interest, and then creating a vector of size ω′ by computing
the non-zero mean value of the top 40% of values per each column of the
matrix. In the last step, we transform the window to size ω by clipping
the generated vector by δ − 1 on both sides. Following this procedure, the
importance heatmap of the target window of interest is obtained, containing
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the cumulative importance for each of the predicted points of the signal.
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Fig. 3.2. Explanations generated for positive activation of dishwasher in UK-DALE
dataset. We can observe unreliable results from GradCAM, while other methods
offer more accurate and concise explanations.
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3.1.2 Properties of Explainable NILM Systems

Property of Faithfulness

The proposed faithfulness evaluation strategy quantifies the extent to which
explanations attest to the predictive performance of a model. In other words,
faithfulness aims to determine if the feature importance scores, generated by
the visualization procedure, are indicative of importance w.r.t. prediction.
The property of faithfulness addresses a fundamental question: Does the
explanation accurately reflect the decision-making process of a model for a
given prediction? An explanation is considered faithful if the input features
it highlights as important are genuinely the ones the model relied upon.
Conversely, an unfaithful explanation might mislead users by pointing to ir-
relevant features or missing crucial ones. In critical applications like NILM,
where decisions based on AI outputs can impact energy management and
user trust, ensuring the faithfulness of explanations is paramount. Given
that a ground truth explanation can rarely be known, faithfulness is often
assessed indirectly. The most common approach, and the one adopted in
this work, involves perturbation-based evaluation. The core idea is: if an
explanation correctly identifies important input features, then altering or re-
moving these features should significantly degrade the predictive performance
or confidence of a model for that specific instance. Conversely, altering unim-
portant features (as per the explanation) should have minimal impact. To
measure the faithfulness of an XAI-enabled NILM approach, the following
steps are taken:

1. Generate a sequence-level feature importance map of an input signal
of interest.

2. Partition the sequence-level maps into sorted, non-overlapping seg-
ments based on the sum of importance scores over a certain period,
to determine the most important areas of the input signal.
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3. Evaluate the faithfulness of the derived explanations by performing an
iterative perturbation of features by changing the input signal values
in the segments of interest, starting with the segments of highest rele-
vance. The perturbation of input segment is performed by replacing the
power level of the initial signal by the signature of low consuming ap-
pliances (e.g., a combination of TV, Lights and Fridge, equaling around
250W). This perturbation ensures that the activation signal is attenu-
ated, while keeping the input data distribution within the space that
the model has learned on, as opposed to setting the power level to zero,
which would constitute an unfavorable case of an out-of-distribution
scenario.

4. To establish whether there is a significant impact on the predictive
performance, after each perturbation of features we measure the dif-
ference between the performance metrics calculated on predictions of
non-perturbed and perturbed signals.

5. To convey the degradation of performance, we consider both classifica-
tion and regression-based performance metrics. As a way of capturing
the classification performance, we convert the regression output to a
step function and calculate the F1 score as:

F1 =
TP

TP + 1
2
(FP + FN)

, (3.4)

where TP stands for True Positives, FP for False Positives, and FN for
False Negatives. To quantify the disaggregation performance, we utilize
mean absolute error Mean Absolute Error (MAE) between the true (Ei)
and predicted (Êi) consumed energy of the appliance of interest where
MAE is calculated as follows:
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MAE =
1

T
·

T∑
i=1

|Êi − Ei|. (3.5)

6. After each perturbation step, compute the difference between perfor-
mance metrics of altered and original input. The faithfulness score is
the resulting area under curve (AUC) after a set number of iterations,
where more faithful XAI methods correspond to a higher AUC score.
The classification faithfulness showcases the difference in F1 score val-
ues, while regression faithfulness depicts the difference in MAE values.
Iterative perturbation of features that leads to a sharper increase in the
difference between the F1 and/or MAE scores (and thus higher faith-
fulness score) suggests that the feature importance scores generated by
the XAI method successfully assign scores to the highly relevant in-
put features and are indeed indicative of predictive performance of the
model.

Property of Robustness

The growing body of literature in deep learning theory [135] suggests that
robustness of neural networks is closely related to the value of its local Lips-
chitz constant. Intuitively, a Lipschitz constant represents the value by which
neural network’s output is allowed to change relative to its input. It has been
used as a hard constraint to enable adversarial robustness, better generaliza-
tion and training of generative adversarial networks. Moreover, it has been
suggested as a technique for evaluating the robustness of explanations [7].
Given a slight modification of input, and consequently negligibly small effect
on the prediction, a robust explanation should not differ drastically com-
pared to those created from the unmodified input. We aim to investigate the
(in)stability of existing XAI methods w.r.t. slight modifications of household
aggregated consumption signal. Given an explanation function h(·) and input
aggregate signal x, we expose the signal to zero-mean Gaussian noise with
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controlled standard deviation σ to create modified input aggregate signal, x̂.
We define local Lipschitz constant estimate as [7]:

L̂ =
∥h(x)− h(x̂)∥
∥x− x̂∥+ µ

, (3.6)

where µ represents a small value added for numerical stability (µ = 1e−6).
For validity, we repeat this procedure n times and report the averaged ro-
bustness score (RS). Methods with low Lipschitz value scores display a char-
acteristic of being stable under the presence of noise and should be favoured.
In the context of NILM-like data it is important to note that we assume
bounded input space, i.e., that maximum change in the function value is
finite, which can be assumed for NILM signals as the magnitude of the ag-
gregate power signal is bounded.

Property of Complexity

One of the core principles of XAI is to provide human understandable expla-
nations. Previous studies in the area of research focusing on applying XAI
in the energy sector have reported mixed results when applying XAI tools to
real-world energy data [81]. Yet, none of these studies have delved into the
evaluation of explainability methods, particularly the complexity of explana-
tions. We argue that this property is one of the most desirable ones, as it
quantifies the entropy of the XAI output. If most of the input features are
deemed important, it does not provide an adequate level of clarity and low-
ers the human interpretability of explanation. To measure the conciseness of
explanation output, we measure the statistical dispersion of the output map.
The output map is first sorted in ascending order, and indices of the sorted
values are determined. Finally, the conciseness of explanation is formulated
as a Gini index computation [31]:

Gini =

∑ω
a=1(2a− ω − 1) · ha
κ+ ω ·

∑ω
a=1 ha

, (3.7)
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where ha is the a-th point in the sorted XAI output of length of ω, i
is the rank of values in the ascending order, and κ = 1e−8 is a small value
added for numerical stability. A Gini coefficient takes values in the range of
[0− 1], with coefficient of 0 expressing equal contribution of all features, and
1 expressing that only one feature contributes to the resulting heatmap.

Evaluation of explainability is in general a two-step process, where at
first an explanation result is generated using an XAI method considering
the input of the model and the model itself, followed by the measurement
of the desirable property of explanation result. In this sense, explanation
sparseness points to the dispersion of the distribution of the output of the
XAI method (i.e., the complexity of explanation). However, it disregards
information about the complexity of the input variable. We argue that this is
highly important for systems that include time-varying data, as the presence
of noise is a common phenomenon, and the system’s ability to deal with it is
of particular interest. Consequently, explanation sparseness in the context of
NILM does not reflect one of the most common challenges of working with
time-series. One of the existing measures that capture the percentage of
noise in data sample, noise-aggregate measure (NAR) [82], is defined as:

NAR =

∑T
i=1 |y(t)−

∑N
i=1 xi(t)|∑T

t=1 y(t)
. (3.8)

We adapt the formula to measure the noisiness of one particular window
and appliance i of interest defined as:

NAR(i) =
T∑

j=1

∣∣∣1− xj(t)

y(t)

∣∣∣. (3.9)

We observe that the explanation complexity is often similar for inputs
with varying degrees of noise. To establish the relationship between the
complexity of an input variable and the complexity of explanation, we in-
troduce an additional term to the explanation complexity that reflects the
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“noisiness" of the input. Thus, to quantify the complexity of explanation in
the context of NILM, we define the “effective complexity" measure as:

EC(i) =
Gini

1−NAR(i)
. (3.10)

3.2 Experimental results: qualitative and quan-

titative evaluation of explainability

3.2.1 Experimental setup: Datasets and model training

For transparency, we used the most widely used [56] and well documented
REFIT [91] and UK-DALE [64] public datasets. These datasets contain
real-world active power measurements obtained from residential buildings,
exhibiting a realistic spectrum of appliance ownership and usage patterns.
To evaluate explainability across appliance activations with different levels
of power and activation periods, we focus our attention on popular multi-
state and single-state appliances, namely: Washing Machine, Dishwasher,
Microwave, and Kettle. The aggregate data were pre-processed using normal-
ization with mean and standard deviation values computed from the training
set. All models were trained and evaluated by reproducing the procedure out-
lined in [138]. Houses were chosen based on the condition that they must
contain measurements of all four aforementioned appliances. For UK-DALE,
we use houses 1, 3, 4, and 5 for training, while house 2 is used for testing.
In the case of REFIT, houses 2, 3, 6, 11, 13, and 15 were used for training,
while the test set contains data from house 5.

The explainability dataset is created by randomly sampling 30 days when
appliances of interest are running and selecting a window of size ω sam-
ples centered around the appliance activation window from each chosen day.
Given a dataset with granularity of 8 seconds, ω is determined from the typ-
ical operation time of the appliance of interest. For appliances with lengthy
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duration, i.e., Washing Machine (WM) and Dishwasher (DW), activation
length ω = 1024 is chosen, which represents roughly 2 hours and 15 minutes
of measurements, in line with the average length of a duty cycle of most
WM and DW devices. For the Microwave (MW), activation length ω = 80
was chosen, which corresponds to around 10 minutes. Finally, Kettle (KT)
activation length ω is set at 40, corresponding to around 5 minutes. If the
total length of the activation length of interest is larger than ω, the first ω
data samples are selected.

3.2.2 Interpretation of Faithfulness, Robustness and Com-

plexity Scores

Faithfulness is of particular importance to an algorithm designer, as it facil-
itates understanding of how feature importance scores influence the predic-
tion. Conversely, robustness provides an indication of the change in predic-
tion if the input to the DL model changed slightly (e.g., due to appliance
model fluctuations, appliance settings and influence of unknown appliances),
which is a crucial indicator of scalability. Finally, complexity reflects the hu-
man comprehensibility of the visualization. The relative significance of each
score is determined by the use-case, i.e., which property is most desirable to
an algorithm designer, system developer, consumer or technology enthusiast.
Explainability scores (see Subsec. 3.1.1, 3.1.2, 3.1.3) obtained for four differ-
ent appliances are presented in Tables 3.1 and 3.2, for the UK-DALE and
REFIT datasets, respectively. Regression (R) and Classification (C) scores
are calculated as the AUC for MAE and F1 scores, as described in Sec. 3.1.2.
For long duration appliances (WM and DW), we perform 75 perturbation
steps, while for MW and KT we perform 10 and 5 steps, respectively. To
calculate the sorted, non-overlapping segments of importance (as per 3.1.2),
for appliances with a long activation period, we choose segments containing
40s of measurements, while other appliances contain 24s of measurement.
High faithfulness score indicates that the explainability method is able to
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correctly identify the important features of the input signal, thus leading to
a large drop in prediction accuracy after perturbation. The Robustness score
is calculated as mean and standard deviation of n = 35 computations of Lips-
chitz constant estimate, defined in Eq. 3.6, where µ and σ values of Gaussian
noise are 0 and 0.1, respectively. Low robustness score indicates the ability
of the explainability method to deal with noise. The Effective complexity
is calculated as per Eq. 3.10. High effective complexity suggests that the
explainability method is able to generate explanations that are concise and
human understandable.

Table 3.1
Comparison of explainability and predictive performance of seq2point model for UK-DALE
dataset.

Appliance XAI Method RF CF Robustness Gini EC

Washing Machine

GradCAM 1413.384 19.800 0.485± 0.308 0.485 0.833
GradCAM++ 1908.446 17.183 0.602± 0.161 0.189 0.325
LRP 2466.142 23.560 0.113± 0.113 0.880 1.510
IG 1888.325 20.253 0.393± 0.168 0.412 0.708
SG 1889.292 19.454 0.306± 0.119 0.500 0.859

Dishwasher

GradCAM 37.942 5.934 1.606± 0.734 0.486 0.658
GradCAM++ 2014.717 20.704 0.617± 0.216 0.342 0.462
LRP 3186.500 26.973 0.517± 0.289 0.784 1.061
IG 2375.636 12.329 0.699± 0.433 0.592 0.801
SG 3262.523 19.823 0.459± 0.175 0.662 0.897

Kettle

GradCAM 1721.840 1.699 0.062± 0.060 0.421 0.476
GradCAM++ 1653.429 1.667 0.034± 0.034 0.432 0.488
LRP 1386.882 1.478 0.225± 0.140 0.692 0.782
IG 1235.617 1.205 0.309± 0.159 0.490 0.554
SG 516.182 0.394 0.129± 0.081 0.428 0.484

Microwave

GradCAM 598.240 4.298 0.155± 0.150 0.478 0.74
GradCAM++ 602.853 4.456 0.055± 0.045 0.490 0.759
LRP 479.337 3.810 0.127± 0.085 0.798 1.236
IG 547.137 4.450 0.148± 0.085 0.756 1.171
SG 435.108 3.983 0.128± 0.081 0.775 1.200

* RF: Regression Faithfulness, CF: Classification Faithfulness, EC: Effective Com-
plexity

Tables 3.1 and 3.2 suggest that LRP-ϵ achieved the most success across
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Table 3.2
Comparison of explainability and predictive performance of seq2point model for REFIT
dataset

Appliance XAI Method RF CF Robustness Gini EC

Washing Machine

GradCAM 517.966 0.454 1.070± 0.667 0.405 1.257
GradCAM++ 339.881 0.213 0.532± 0.240 0.165 0.514
LRP 1794.590 4.751 0.434± 0.357 0.661 2.052
IG 1381.301 2.561 0.847± 0.296 0.394 1.224
SG 1098.127 2.001 0.700± 0.301 0.461 1.431

Dishwasher

GradCAM 2773.987 9.538 1.323± 1.017 0.539 1.242
GradCAM++ 2934.133 10.385 0.940± 0.942 0.276 0.635
LRP 4312.670 14.862 0.367± 0.235 0.683 1.572
IG 6530.439 26.035 0.764± 0.369 0.577 1.329
SG 5469.436 17.727 0.804± 0.451 0.575 1.324

Kettle

GradCAM 1158.721 2.161 0.188± 0.234 0.472 0.671
GradCAM++ 1325.057 2.415 0.059± 0.049 0.355 0.503
LRP 1160.369 2.073 0.205± 0.170 0.608 0.862
IG 1011.075 1.667 0.197± 0.099 0.598 0.849
SG 910.304 1.637 0.172± 0.081 0.562 0.797

Microwave

GradCAM 628.539 3.520 0.296± 0.239 0.512 0.754
GradCAM++ 720.156 4.069 0.116± 0.140 0.443 0.666
LRP 672.775 3.712 0.229± 0.124 0.785 1.180
IG 677.663 3.857 0.272± 0.132 0.528 0.794
SG 634.402 3.363 0.282± 0.195 0.482 0.724

* RF: Regression Faithfulness, CF: Classification Faithfulness, EC: Effective Com-
plexity

the proposed properties that explainable NILM systems based on sequence-
to-point learning should satisfy. This can largely be attributed to the ability
to deal with gradient noise as the relevance is propagated through the lay-
ers of the network. We report a strong relationship between the choice of
parameter ϵ and the results in performance metrics, where ϵ value should
be guided by the noisiness of the dataset. As the REFIT dataset is known
to be significantly noisier than UK-DALE, we set the parameter ϵ to be a
large value (ϵ = 1) compared to UK-DALE (ϵ = 0.1). Contrary to previ-
ous studies in the energy sector that recommended GradCAM as the best
XAI method [81], our analysis indicates that GradCAM is not the ideal XAI
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approach for time-series NILM applications employing sequence-to-point ar-
chitectures. Notably, GradCAM’s faithfulness scores for dishwashers were
significantly lower compared to other methods, implying an inability to iden-
tify crucial signal features. This observation is further supported by Fig. 3.2
and the results for the noisier REFIT dataset in Table 3.2, where faithful-
ness scores for both WM and DW were unsatisfactory. In an attempt to im-
prove the score, we explored guided gradient technique used for GradCAM,
but our findings point to further degradation of performance. On the other
hand, our findings reveal that GradCAM++ method does outperform the
original GradCAM, achieving better faithfulness and robustness. However,
while the results demonstrate significant enhancements of GradCAM++ over
GradCAM in these two aspects, the complexity of explanations generated by
Grad-CAM++ is observed to be less than ideal. This finding suggests that
the enhancements in faithfulness and robustness of GradCAM++ may come
at the cost of increased complexity. Intriguingly, IG exhibited excellent per-
formance for the complex signals (i.e., WM and DW) within the REFIT
dataset. This implies that a zero signal is an appropriate choice for the
baseline value of the IG algorithm for NILM-like data. Meanwhile, Smooth-
Grad produced robust results across most scenarios due the nature of the
algorithm.

We acknowledge certain limitations in our work that necessitate further
exploration. A primary constraint of the proposed evaluation framework is
its inability to present specific steps for enhancing the effectiveness of ex-
plainability techniques. Nonetheless, our approach facilitates the compar-
ison of various XAI methods, which remains valuable for identifying their
strengths and weaknesses and guiding future research and development ef-
forts. Furthermore, a crucial aspect involves examining the relationship and
trade-offs between faithfulness, robustness, and complexity in XAI for NILM
systems. Striking a balance among these metrics is vital for ensuring the
utility, transparency, and, ultimately, trust in XAI NILM systems. Addi-
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Fig. 3.3. Visual outline of the proposed approach showcasing an example of false
positive prediction of washing machine for UK-DALE dataset, and the derived
explanations using LRP. Two levels of explainability provide general, sequence-
level (top image), and specific, point-level explanations (a and b), under a test
scenario of signal incorrectly predicted as a washing machine.

tionally, a key assumption in the context of XAI methods that were used in
this chapter are that the proposed methods assume feature independence,
which is a well-known issue in the field of XAI. To mitigate this, a new field
of causal discovery has emerged; however the field is in infancy and its prac-
tical usefulness is still limited. Another assumption is related to robustness
measure where we assume continuity, i.e., that small changes in the input
(through introduction of Gaussian noise) will lead to small changes in the
output explanation. Furthermore, to calculate the robustness score, we as-
sume bounded input space, i.e., that maximum change in the explanation
function is finite, which can be assumed for NILM signals as the aggregate
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function is bounded.

3.2.3 Visualisation via heatmaps

The proposed approach enables two levels of explainability. On one hand,
point-level explainability provides visual understanding of how a prediction
of a single time step was made. It is specific to a point of reference. On the
other hand, the visualization algorithm generates another, sequence-level ex-
planation, showcasing the aggregate importance of the input signal for the
prediction of the output, and acting as a more general representation of the
importance. Point-level explanation is preferred to illuminate the features
that have contributed to an individual point of the prediction especially if
that point prediction is an outlier. Sequence-level explanations are more ap-
propriate if trying to comprehend the decision on inference of a complete
appliance duty cycle, such as why a time-series sequence was predicted as
a Washing Machine. A key aspect of a good explanation is the ability to
align with human intuition. For NILM, an end-user or a domain expert
might expect explanations to highlight periods of significant power change
corresponding to appliance turn-on/off events, or stable consumption periods
characteristic of a continuously running appliance (e.g., a refrigerator). The
heatmaps generated (as shown in Fig. 3.2 and 3.3) offer a visual medium for
such subjective assessment. For instance, an explanation that consistently
highlights irrelevant noise or assigns high importance to periods where the
target appliance is clearly off would be deemed counter-intuitive and unhelp-
ful, regardless of its quantitative scores on certain metrics.

Our visualization approach offers several advantages over the previously
proposed methods. We tackle the more challenging regression scenario for
the NILM problem compared to earlier work, which utilized a multi-class
CNN for the simpler task of detecting appliance presence without recogniz-
ing on/off states [80]. Moreover, our method has been rigorously validated
on numerous real-world datasets, demonstrating its adaptability and gen-
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eralizability across diverse contexts. Unlike previous work that relied on a
single dataset, our approach handles varied energy consumption patterns and
appliance configurations, ensuring its practicality and resilience. In compar-
ison to the regression-based XAI visualization method in NILM [90], our ap-
proach is more computationally efficient, as gradient-based methods require
fewer iterations and calculations than occlusion sensitivity, making them well-
suited for real-time applications and large-scale datasets. Additionally, our
approach avoids the introduction of out-of-distribution scenarios caused by
setting parts of the input signal to zero, ensuring that the generated explana-
tions are more faithful to the model’s behavior. A key strength of our method
lies in its ability to provide multi-temporal explanations, offering insights
into both local and global patterns at various levels of granularity, such as
point-level and sequence-level explanations. This enhanced interpretability
facilitates a better understanding of the NILM model’s decision-making pro-
cess and allows users to make more informed decisions based on the model’s
output. Furthermore, the gradient-based XAI methods can be applied to a
wider range of DL-based NILM algorithms.

Fig. 3.2 provides an example of point explanations for a Dishwasher sig-
nal prediction from the UK-DALE dataset. This is a true positive prediction
where the primary features contributing to the prediction of the middle point
(marked with a blue pentagon) are displayed in a form of heatmap. We ob-
serve that most XAI methods highlight the true positive part of the input
signal. However, different XAI methods produce varying heatmap visual-
izations, underscoring the necessity for their quantitative quality evaluation.
Comparing the results in Fig. 3.2 with the results displayed in Table 3.1 and
Table 3.2, LRP and SmoothGrad indeed showcase the best performance. We
observe that both heatmaps highlight the truly important parts of the signal,
suggesting high faithfulness, and that explanations are concise, pointing to
low complexity. On the other hand, GradCAM shows the lowest faithful-
ness score, which can be observed from Fig. 3.2 as the GradCAM visualised

47



explanation highlights an area that is not related to high activity of the
dishwasher signal, suggesting a case of instability. To a smaller extent, this
phenomenon is also observed in the case of IG. While the localization of fea-
ture importance scores in GradCAM++ improved compared to GradCAM,
we observe a higher complexity of generated explanation. Comparing to
LRP and SmoothGrad, we observe that the explanation heatmaps of Grad-
CAM, GradCAM++, and IG cover a larger area of the input signal, and
are of noticeably higher complexity, which is a finding that is reinforced by
the complexity evaluation scores. Another scenario showcasing the mecha-
nism behind a false positive prediction of a NILM DL model is presented in
Fig. 3.3. In this example, a DW signature is incorrectly predicted as WM.
We observe that the general explanation (on the top) enables us to assign
the importance scores to the areas of the signal that the network deemed as
indicative of a WM duty cycle. Looking further, the point-level explanations
(a and b) enable us to understand that the DL model recognizes that there
may be multiple cycles in a typical WM signature, which is supported by high
importance score assigned to past signal spikes that look similar to a WM
duty cycle. This can help the algorithm designer to improve the training and
tuning process or adopt a multi-classification approach to better distinguish
these multistate appliances with similar power level, duty cycle and duration.

3.3 Summary

This chapter proposes a methodology for determining the explainability of
a time-series DNN regression NILM problem. Specifically, we propose visu-
alization via heatmaps approach by integrating XAI methods into the DL
NILM and quantify explainability via faithfulness, robustness and complex-
ity scores. As a way of overcoming the problem of transparency inherent
to DL algorithms, the proposed approach provides a dual mode of explain-
ability, one at a general, sequence level, and other at a specific, point level.
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Both levels of explainability can be used interchangeably based on the use
case, as they provide varying degrees of specificity, i.e., they can deal with
different scenarios when the decisions of NILM systems are unclear or dif-
ficult to explain. We show that this can be achieved without changing the
architecture of the model. Furthermore, we define the core properties that
should be considered when designing explainable NILM systems, and provide
a strategy for quantitative evaluation of their explainability. We show that
XAI methods, such as LRP, that have an inherent ability of dealing with
noise, can lead to explanations that satisfy properties of being faithful to
the performance of the model, robust to slight changes of input, and offer
unambiguous interpretation of resulting heatmaps. The choice of the most
appropriate methods should be guided by the target user of explanation, be it
a domain expert, researcher, or customer, considering the trade-off between
the aforementioned properties. By using the proposed method, the diverse
set of needs of various users of the system can be satisfied, while maintain-
ing the predictive performance and facilitating trust in the NILM system
deployed in a real-world scenario.
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Chapter 4

Explainability Informed Training
Enhancement for Load
Disaggregation

Previous studies in the field of XAI primarily focus on the development of
techniques that increase the model transparency by quantifying the impor-
tance of individual input features through explanations. These methods, also
known as feature-attribution methods, are effective in revealing problems in
a model, understanding the model decisions, or revealing dataset bias. How-
ever, feature attribution methods may place too much importance on unde-
sirable features, provide unstable explanations under the presence of input
noise, or rely on too many features when low complexity of explanations is
desired [20]. As a result, more recent literature has emphasized the need for
a mathematical definition of explanation quality and evaluation of feature
attribution methods [8, 9, 20]. XAI approaches for NILM are still in their
infancy, with limited literature available [80,89,90]. As XAI-based solutions
for NILM continue to grow, it is of crucial importance to properly account for
transparency property outlined in the EU requirements for Trustworthy AI.
Additionally, explanation heatmaps show what features were important, but
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they do not inherently explain why the model learned to consider those fea-
tures important, or why its internal decision thresholds are set the way they
are. It remains unclear how existing NILM architectures, with demonstrated
high accuracy, can be made more explainable, for example, by considering
model explainability during the training process. Notably, to the best of our
knowledge, combining the use of explainability during the training phase with
a comprehensive quantitative evaluation of explainability in the context of
NILM, has not been attempted before. This gap in the literature presents a
significant opportunity to enhance both the interpretability and performance
of NILM models.

Building upon recent advances in AI research, recent work has made sig-
nificant strides in various aspects of Trustworthy NILM. AI-based NILM
has leveraged on various architectures to provide accuracy and reliability of
predictions [92], embedding human oversight through inclusion of user or
expert knowledge in the learning process [126], or XAI methods for trans-
parency [16,18,89]. However, there has been no work that aims to unite the
three aforementioned principles of technical robustness, transparency, and
human oversight in a single system. In this chapter, we propose the first
explainability-informed NILM training framework for low-frequency NILM.
The content of this chapter is taken from the work reported in "XNILM-
Boost: Explainability-Informed Load Disaggregation Training Enhancement
using Attribution Priors" [17].

The proposed framework aims to directly mitigate shortcomings of ex-
isting NILM approaches in line with EU guidelines for Trustworthy AI, by
prioritising robustness, transparency, and human oversight during the learn-
ing process, leveraging on prior human intuition about the behavior of ex-
planations of AI outputs to constrain the model explanations during training
and help the model be more accurate and reliable. The vital benefit of our
approach is the ability to directly train the NILM neural network to be more
explainable, by manipulating the gradients during the training process. In
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addition, we show that such enhancement can improve the technical robust-
ness of the system by improving the predictive performance across multiple
real-world scenarios. Lastly, we generalise our findings by evaluating the
predictive and explainability performance across multiple and distinct model
architectures and show the link between architectural choices and explain-
ability performance.

In summary, the contributions of this study are as follows:

• We propose the first explainability-informed learning framework for
load disaggregation/NILM systems that jointly promotes Trustworthy
AI principles of Human agency and oversight, Transparency, and Tech-
nical robustness and reliability.

• We present attribution prior NILM training, an iterative algorithm that
leverages on human intuition to constrain the NILM model towards
better explainability by preventing incorrect assignment of feature at-
tributions.

• We demonstrate how the proposed explainability-informed learning
framework can improve the robustness of NILM models by improving
their predictive performance.

• We demonstrate how the proposed explainability-informed learning
framework can improve the transparency of NILM models by improv-
ing their explainability performance across various NILM-specific ex-
plainability evaluation metrics, using quantitative metrics presented in
Chapter 3.

• We present a comprehensive evaluation of explainability and predictive
performance across three state-of-the-art NILM architectures: convo-
lutional, recurrent, and causal networks, as well as four distinct XAI
methods by utilizing three publicly available datasets comprising real-
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Fig. 4.1. Overview of the proposed explainability-informed NILM training frame-
work.

world measurements from households in the UK, United States, and
Greece.

4.1 Methodology

Our explainability-informed learning framework for low-frequency NILM is
shown in Fig. 4.1. The backbone of our approach is the explainability-
informed optimisation engine, which is responsible for the optimisation of
explainability performance depending on the training requirements. The
proposed framework iteratively trains a NILM neural network by proposing
an explainability-informed training enhancement strategy by first receiving
the information related to dataset statistics, as well as explainability evalu-
ation results for the properties of robustness and complexity, which can be
inferred without any labeled data. The training is performed incrementally
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until the explainability improvement requirements are met.
To diversify the experimental evaluation and generalisability of our pro-

posed approach, we train on three different state-of-the-art architectures,
with the aim of incorporating a broad set of techniques including convolu-
tional, recurrent, and dilated causal layers. Lastly, we perform a rigorous
experimental evaluation of explainability performance under various real-
world scenario datasets, including an ablation study. The following subsec-
tions provide a detailed overview of the proposed techniques, as well as the
explainability-informed training workflow.

4.1.1 Explainability Evaluation Dataset

The explainability evaluation dataset is sampled per appliance. First, to
gather the appliance activations, we gather dataset characteristics and define
the power-on threshold of appliance activation, as well as minimum on and
off duration. Next, after applying the threshold and computing the on/off
events, we calculate the distance between the subsequent on and off events
to obtain the appliance activation duration. Finally, we select n=30 random
samples of activations that are longer than a predefined appliance-specific
length and select a window of size ω centered around the appliance activation
window. Given a dataset with a granularity of 8 seconds, ω is determined
from the typical operation time of the appliance of interest. For appliances
with lengthy duration, i.e., Washing Machine (WM) and Dishwasher (DW),
activation length ω = 1024 is chosen, which represents roughly 2 hours and
15 minutes of measurements, in line with the average length of a duty cycle
of most WM and DW devices. For the Microwave (MW), activation length ω
= 80 samples was chosen, which corresponds to around 10 minutes. Finally,
if the total length of the activation length of interest is larger than ω, the first
ω data samples are selected. In the case of Plegma dataset, which contains
10 second granularity measurements, activation length of WM appliance is
set to ω = 820, while Boiler and AC appliances have activation length set to
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Fig. 4.2. Model architecture for the four NILM models used in this chapter. The
upper subfigure describes a WaveNet network [51], whereas the middle and bottom
subfigures indicate CNN [138] and GRU [103] architectures, respectively.

ω = 700 and ω = 1000, respectively.

4.1.2 Low-frequency NILM Algorithms

For the purpose of demonstrating the adaptability and generalisability of our
proposed methodology across diverse contexts, we employ three distinct DNN
architectures. To best exemplify the variety of algorithmic approaches for
NILM, we use CNN-based [138], GRU-based [103], and WaveNet-based [51]
NILM networks. One of the most cited CNN-based approaches for NILM is
seq2point architecture [138]. The seq2point algorithm slides a window across
the input aggregate signal to predict the energy consumption at the cen-
tral point of the sliding window. Previous studies show that this produces
a favorable approximation of the target distribution compared to previous
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NILM approaches [61]. On the other hand, RNN-based approaches have been
consistently popular in the NILM literature. In this paper, we use a GRU ar-
chitecture, a variant of the Long Short Term Memory (LSTM) network, that
is designed for time series data. Compared to LSTMs, GRU networks deal
better with the vanishing gradient problem and are designed to be more com-
putationally efficient. Lastly, given varying activation periods and lengths of
appliances, WaveNet-based networks that employ dilated causal convolutions
have proven to achieve good disaggregation performance [51]. To capture
various input time steps, dilated causal layers have various dilation factors
that grow in depth and allow the network to capture very long-range depen-
dencies. For more details on the selected NILM architectures, readers are
referred to [138], [103], and [51].

4.1.3 Explainability Enhancement using Attribution Pri-

ors

The proposed explainability-informed training using attribution priors refers
to the process where the model’s gradients are altered during the model train-
ing process to optimise the explainability performance of attribution methods
used for visualisation of important features of the model. Rather than con-
sidering explainability as a post-processing step of model development, this
approach enables learning of correct assignment of input feature attributions.
Since it is often unknown which input features will contribute highly to the
prediction of a model, we define an attribution prior that captures human
oversight and guides model towards correct attribution assignment.

In the context of training a typical DNN model, the primary objective is
to learn a non-linear function f characterised by a set of parameters θ. This
learning process utilizes a dataset comprising n samples, each represented as
a pair (x, y). The goal is to minimize a loss function L, which can be formally
expressed as:
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f = argminθ
1

n
L(θ;x, y) + αR(θ), (4.1)

In this formulation, α represents a scalar value that modulates the influ-
ence of the regularization function R. This approach is commonly employed
in supervised learning scenarios, where the regularization term helps prevent
overfitting and improves the model’s generalization capabilities.

The concept of attribution prior can be formalized for a given feature
attribution method m(θ, x) as a function p : R → R. This function assigns
a scalar weight to the attribution features of the function f with input x. In-
corporating this notion, the attribution prior-based training can be expressed
mathematically as:

f = argminθ
1

n
L(θ;x, y) + αR(θ) + βp(m(θ, x)), (4.2)

In this formulation, β serves as a scalar value that modulates the impact
of the attribution prior p. To optimize computational efficiency and reduce
training time, the function m is calculated using the standard approach of
multiplying the input with the gradient. Within the scope of this research,
we explore and implement two distinct types of attribution priors p, each
offering unique characteristics and potential benefits to the training process.

Our first approach is motivated by the observation that explainability
methods become less effective and human-interpretable when they deem most
input features as important. To address this, we introduce a low-complexity
prior that encourages models to assign importance to a limited number of
input features during training of a model. This approach improves the clar-
ity and interpretability of explanations by highlighting only the most crucial
features. To quantify the conciseness of the explanation output, we employ
a differentiable function that calculates the Gini coefficient, measuring the
statistical dispersion of the generated attribution values. This choice is sup-
ported by previous research [31] indicating that the Gini coefficient serves
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as a reliable indicator of model explanation complexity. Formally, given a
feature attribution method m, we define a low complexity attribution prior
that promotes more focused and interpretable explanations while maintain-
ing model performance:

p(m(θ, x)) =

∑ω
a=1(2a− ω − 1)m(θ, x)

k +
∑ω

a=1m(θ, x)
, (4.3)

where k is a small value added for numerical stability. This complexity prior
penalizes neural networks for creating complex attributions that assign high
importance to numerous input features.

Additionally, we propose an alternative method focused on gradient smooth-
ness to reduce incorrect feature attribution. This approach, which we term
the robustness prior, applies a total variation denoising algorithm to feature
attribution maps. It is defined as:

p(m(θ, x)) =
∑
i

|mi+1(θ, x)−mi(θ, x)|. (4.4)

The robustness prior aims to minimize unstable attributions and pro-
mote gradient smoothness, encouraging attribution maps that are faithful to
model outputs and predictive performance. The complexity and robustness
priors, though distinct in their immediate objectives, function as comple-
mentary approaches to enhance the interpretability and reliability of feature
attributions in neural network models. The complexity prior aims to reduce
the number of important features, promoting concise explanations, while the
robustness prior focuses on smoothing the gradient to ensure stable and con-
sistent attributions. Together, they guide the model towards simpler, more
stable decision boundaries. This synergy can lead to models that are both
more interpretable and more robust to input variations. Both priors can
be viewed as regularization techniques in the attribution space, contribut-
ing to the broader goal of regularizing explanations in interpretable machine
learning. Lastly, it is important to note that albeit faithfulness property
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Table 4.1
Comparison of XNILMBoost performance for REDD

Appliance AI Model MAE F1-Score

Dishwasher

GRU 24.20 0.427
GRU + Prior 20.74 0.538
CNN 19.55 0.696
CNN + Prior 17.23 0.775
WaveNet 24.91 0.408
WaveNet + Prior 24.42 0.477

Microwave

GRU 16.87 0.538
GRU + Prior 17.11 0.523
CNN 19.18 0.362
CNN + Prior 17.12 0.516
WaveNet 16.54 0.603
WaveNet + Prior 16.97 0.619

Refrigerator

GRU 33.35 0.805
GRU + Prior 33.35 0.806
CNN 28.47 0.84
CNN + Prior 27.53 0.843
WaveNet 38.31 0.758
WaveNet + Prior 36.69 0.765

introduced in Chapter 3 is an important metric to measure the quality of
assigned attributions, it is not a suitable attribution prior due to a high
computational overhead related to iterative obfuscation of input features.

4.1.4 Explainability-informed Training

Finding the optimal attribution prior that represents the best trade-off be-
tween explainability and predictive performance can be a tedious task. To
address this, we propose an explainability-informed selection process using a
novel metric: the Robustness-Trust metric (ROTR). This approach enables
us to iteratively determine the optimal prior for a given NILM model while
considering multiple performance aspects simultaneously. Instead of evaluat-
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Table 4.2
Comparison of XNILMBoost performance for UKDALE

Appliance AI Model MAE F1-Score

Washing Machine

GRU 6.39 0.77
GRU + Prior 5.68 0.78
CNN 6.82 0.63
CNN + Prior 8.55 0.62
WaveNet 7.00 0.65
WaveNet + Prior 6.61 0.69

Dishwasher

GRU 30.78 0.67
GRU + Prior 25.15 0.73
CNN 35.4 0.7
CNN + Prior 34 0.74
WaveNet 30.38 0.66
WaveNet + Prior 30.12 0.68

Microwave

GRU 6.63 0.18
GRU + Prior 6.38 0.28
CNN 5.85 0.51
CNN + Prior 5.30 0.63
WaveNet 6.36 0.44
WaveNet + Prior 6.36 0.45

ing metrics independently, we consider multiple metrics within a single term
that exemplifies the improvement in transparency of a trained model. ROTR
metric can be defined as:

ROTR =
XFprior

XFbase

XRbase

XRprior

XCprior

XCbase

, (4.5)

where XF , XR, and XC represent the faithfulness, robustness, and effective
complexity metric scores, respectively.

This metric quantifies the improvement in explainability performance,
with scores above 1 indicating beneficial improvement. For more informa-
tion related to considered explainability metrics, readers are referred to [18].
To thoroughly explore the trade-offs between the smoothness and low com-
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Table 4.3
Comparison of XNILMBoost performance for Plegma Dataset

Appliance AI Model MAE F1-Score

AC

GRU 38.41 0.773
GRU + Prior 38.20 0.792
CNN 42.49 0.745
CNN + Prior 39.64 0.772
WaveNet 58.15 0.662
WaveNet + Prior 53.68 0.699

Boiler

GRU 4.42 0.970
GRU + Prior 7.48 0.929
CNN 4.44 0.939
CNN + Prior 4.04 0.929
WaveNet 18.27 0.837
WaveNet + Prior 18.98 0.867

Washing Machine

GRU 2.63 0.543
GRU + Prior 1.96 0.590
CNN 3.23 0.481
CNN + Prior 2.97 0.560
WaveNet 3.42 0.586
WaveNet + Prior 3.17 0.620

plexity priors, we employ an iterative optimization process. This process
involves systematically varying the influence of both priors through their
β hyperparameters and analyzing their combined impact on model perfor-
mance. We have observed that while the smoothness prior enhances gradient
stability, it may occasionally conflict with identifying sharp feature bound-
aries. Conversely, the low-complexity prior promotes concise explanations
but might oversimplify complex data relationships. The optimal balance be-
tween these priors often yields the best ROTR scores, though this balance
can vary depending on the specific NILM task and the characteristics of the
data set.

To gather data for ROTR computation, the procedure described in Sub-
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section 4.1.1 is used with a distinction that activation samples are collected
from the trained base model instead of the ground truth, which allows evalu-
ation without ground truth labels. This is beneficial because, under such
a framework, any existing NILM architecture that theoretically supports
explainability-informed training can be retrained or fine-tuned.

ROTR is a metric that determines the overall improvement of explaian-
bility performance of a NILM model trained in our proposed framework. For
each metric contained in ROTR, the values are calculated before and after
applying the prior. ROTR combines multiple metrics in a multiplicative
way to indicate the overall improvement of the model. This is achieved by
computing the relative change of individual metrics of explainability and ag-
gregating them under a single term that balances all contributing metrics.
ROTR score greater than 1, indicates that the proposed prior achieves a
beneficial improvement. In such a case, the model is considered “explainabil-
ity enhanced” and can be passed to the evaluation module. On the other
hand, scores below 1 indicate no change, or degradation of performance,
thus triggering a new iteration of the optimization engine. Therefore, ROTR
indicates the relative change in the improvement of explainability-informed
training, which considers both predictive and explainability performance as
an indication of performance quality.
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Fig. 4.3. Comparison of relative F1 and MAE performance improvement after
explainability-informed training for GRU, CNN, and WaveNet architectures for
(a) REDD dataset (b) UK-DALE dataset, and (c) Plegma dataset.

ROTR formulation enables iterative training of an explainability-informed
NILM model. To frame the problem, an expert needs to define the optimal
starting priors, given the real-world scenario. For the purpose of this work,
we utilize the aforementioned smoothness and low complexity priors. Then,
iterative training is performed by selecting a range of β hyperparameter val-
ues that indicate the relative importance of the prior during training. Rec-
ognizing the interdependency of these parameters, we adopt a grid search
optimization strategy within a predefined parameter space, guided by the
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computed ROTR values. The metric is defined such that values exceeding
1 signify a net improvement in accuracy-explainability trade-off, providing a
unified criterion for model optimization. This iterative process begins with an
initial set of β hyperparameters, which are incrementally adjusted based on
their impact on ROTR. During each iteration, the model undergoes training
and evaluation, after which ROTR is calculated to assess the joint improve-
ment. If ROTR > 1, the adjustments are considered to have contributed
positively, and the hyperparameters are further fine-tuned in the direction
that maximizes ROTR. In contrast, if ROTR < 1, it indicates stagnation or
deterioration in explainability, prompting a reevaluation of hyperparameter
adjustments. This feedback loop creates a mechanism in which the model
self-adjusts, seeking hyperparameter configurations that elevate ROTR above
the threshold of 1. To ensure a thorough exploration of the hyperparame-
ter space while avoiding local optima, we employ adaptive hyperparameter
selection. This method not only facilitates a granular optimization but also
embeds a learning paradigm where the model iteratively converges towards
an optimal balance between explainability and predictive accuracy, improv-
ing the design of DL-based NILM systems. By systematically varying the
influence of the two priors on the training process, we identify the opti-
mal combination that minimizes the objective function, a composite measure
of performance accuracy, gradient smoothness, and explanation complexity,
thereby demonstrating the effectiveness of our dual-hyperparameter regu-
larization framework that aims to improve the explainability performance
without comprising the predictive performance.

4.1.5 Explainability Methods

To quantify the explainability performance of the networks used in this chap-
ter, we adapt the explainability methods and evaluation methodology de-
scribed in Chapter 3. To accommodate to different architectures used in
this chapter, the visualization procedure is modified for GRU and WaveNet
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Table 4.4
Appliance Characteristics for UK-DALE and REDD datasets

Dataset Appliance Training Houses On Threshold [W] Min On [s] Min Off [s]

UK-DALE

Washing Machine 1, 3, 4, 5 20 1800 150
Dishwasher 1, 3, 4, 5 10 1800 1500
Microwave 2, 3, 5 200 12 30

REDD
Dishwasher 2, 3, 4, 5, 6 10 1800 1500
Microwave 2, 3, 5 200 12 30
Refrigerator 2, 3, 5, 6 50 60 15

Plegma
AC 1, 3, 4, 5, 7, 8, 11, 12, 13 50 100 2100
Boiler 1, 3, 4, 5, 6, 7, 9, 11, 12, 13 50 30 300
Washing Machine 1, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13 50 30 112

networks. GRU network performs prediction of the last point of the input
signal. Thus, to compile the sequence-level explanation, a triangular weight-
ing function gives the highest importance to the end of the window. On
the other hand, the WaveNet architecture computes sequential output of the
same length as the input, thus sequence-level explanation is inherently pro-
vided. In this chapter, we utilize 4 popular XAI methods: GradCAM [109],
GradCAM++ [34], IntegratedGradients [118], and SmoothGrad [113]. The
created sequence-level explanations are subjected to a quantitative evalua-
tion of quality. Considering a diverse set of needs and possible deployment
scenarios, the explainability evaluation is defined as alignment with three de-
sirable properties of explanations presented in Subsection 3.1.2-faithfulness,
robustness, and low complexity.

4.2 Experimental Results

This section provides descriptions of the datasets used to conduct experi-
ments, metrics used to evaluate the proposed methodology, as well as pa-
rameters to enable reproducibility of results.
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4.2.1 Datasets and Appliances

To evaluate our approach, we conducted experiments on appliances from
UK-DALE [64], REDD [70] and Plegma [14] datasets. All three datasets
contain aggregate and appliance level energy consumption, where UK-DALE
contains measurements from five houses in the UK with up to 4.3 years of
data, REDD contains measurements from six different houses in the United
States with up to 6 weeks of data,while Plegma contains measurements from
13 different houses in Greece over a period of 12 months. Energy consump-
tion was sampled at a 6s, 1s, and 10s intervals for UK-DALE, REDD, and
Plegma, respectively. For the purpose of this study, the data for UK-DALE
and REDD datasets were resampled to 8s resolution, while Plegma kept the
original resolution of 10s. Detailed dataset characteristics and selection of
houses for training data is described in Table 4.4. We evaluate our approach
by training appliance-level models for Dishwasher, Washing Machine, Mi-
crowave, Refrigerator, AC, and Boiler appliances. The models were tested
on unseen houses excluded from the training set. In UK-DALE, houses 1,
3, 4, and 5 were used for training and house 2 for testing, while in REDD
houses 2, 3, 4, 5, and 6 were used in the training set while house 1 was pre-
served for model evaluation. For Plegma dataset, all houses except 10 and 2
were used for training, while house 10 was used for validation, and house 2
for testing. Aggregate measurements were normalised using z-normalization
z = x−µ

σ
, where x represents the recorded power measurement (in Watts),

µ mean power value in the whole training dataset, while σ represents the
standard deviation of the values in the training dataset.

4.2.2 Model architectures and training

To enhance the generalisability and robustness of our proposed framework,
we base our evaluation on three distinct NILM model architectures: a con-
volutional network [138], a recurrent network [103], and a WaveNet neural
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network [51] network, as illustrated in Fig. 4.2. Recurrent architectures
process sequential data by iterating through the input elements and main-
taining a hidden state. This allows them to capture temporal dependencies
in the data. However, RNNs often struggle with long-term dependencies
due to the vanishing gradient problem. More advanced variants like GRU
networks address this issue by introducing gating mechanisms to better con-
trol information flow. CNNs, on the other hand, use convolutional layers
that apply filters across the input data, typically in a sliding window fash-
ion. This allows them to detect local patterns regardless of their position in
the input. CNNs also often include pooling layers to reduce dimensionality
and increase robustness to small translations. Lastly, WaveNet networks use
dilated causal convolutions to create very large receptive fields to model long-
range temporal dependencies in time series data while maintaining computa-
tional efficiency. For further details on selected NILM architectures readers
are referred to [138], [103], and [51].

We selected model hyperparameters based on optimal validation perfor-
mance across all considered parameters. All models are trained using Adam
optimizer with a predefined learning rate of 0.001, and a batch size of 64
samples. Input window lengths of the three selected networks are kept the
same as in the original work. The training of the prior model maintains
the same learning rate as the initial baseline model, with the β parameter
chosen through a grid search of values on a logarithmic scale ranging from
[10−10, 100]. To thoroughly explore the trade-offs between the smoothness
and low complexity priors, we implemented an iterative optimization process.
This approach involves systematically varying the influence of both priors
through their respective β hyperparameters and analyzing their combined
impact on model performance. Our observations reveal that the smoothness
prior, while enhancing gradient stability, may occasionally conflict with the
identification of sharp feature boundaries. In contrast, the low-complexity
prior promotes concise explanations but risks oversimplifying complex data
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relationships. In particular, we found that the optimal balance between these
priors often yields the best ROTR scores, although this equilibrium can vary
significantly depending on the specific NILM task and the characteristics of
the dataset.

4.2.3 Computational Complexity

For the purpose of performing the experiments, a PC with the following spec-
ifications is used: Intel(R) Core(TM) i9-10980XE CPU @ 3.00GHz, 258GB
RAM, and two NVIDIA GeForce RTX 3080 GPUs. When analyzing the
computational complexity of our framework across various architectures, we
observed that incorporating priors consistently affects training speed. Specif-
ically, the recurrent architecture experiences the most substantial impact,
with training time increasing by 50% compared to the baseline model with-
out priors. The convolutional architecture exhibits a 39% increase in training
duration, whereas the dilated causal network shows a 32% increase. These
differences in computational overhead result from the additional calculations
required for priors and their interaction with the distinctive structural charac-
teristics of each architecture. The recurrent network’s higher computational
cost may be due to the sequential processing nature of recurrent architec-
tures. The convolutional architecture’s moderate increase likely stems from
the integration of priors with its feature extraction process, while the di-
lated causal network’s smaller overhead might result from its inherent ability
to handle temporal dependencies more efficiently when combined with pri-
ors. These findings underscore the trade-off between improved explainability
and increased computational cost, highlighting the importance of consider-
ing both model architecture and prior implementation when optimizing for
NILM applications, especially in scenarios where training time and resources
are limited.

68



4.2.4 Evaluation Metrics

Finding the optimal model requires an objective metric that quantifies the
predictive performance. Since the models used in this chapter are primarily
developed for a regression task, we quantify the regression performance using
the MAE measure. MAE between the true (Ei) and predicted (Êi) consumed
energy of the appliance of interest is calculated as:

MAE =
1

T
·

T∑
i=1

|Êi − Ei|. (4.6)

Whilst MAE is the most common measure for evaluating regression or
disaggregation performance [56], the F1-score measure is typically used in
the NILM literature to evaluate the classification performance [10]. To gen-
erate events from the regression output, we apply a threshold, as explained
in Subsection 4.1.1. Specifically, as a way of capturing the classification per-
formance, we convert the regression output to a step function and calculate
the F1 score as:

F1 =
TP

TP + 1
2
(FP + FN)

, (4.7)

where TP stands for True Positives, FP for False Positives, and FN for
False Negatives.

In terms of explainability evaluation, we quantify the relationship between
attribution quality and predictive performance using a faithfulness algorithm
defined in [16], where the performance degradation after iterative removal of
most important features is measured for both the regression and classification
scenarios.

To measure the (in)stability of assigned attributions with slight modifica-
tions of the input signal, we use a Lipschitz metric defined in [16]. Given an
explanation function m(·) and input aggregate signal x, we expose the signal
to zero-mean Gaussian noise with standard deviation σ to create modified
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aggregate signal, x̂. We define local Lipschitz constant estimate as [7]:

L̂ =
∥m(θ, x)−m(θ, x̂)∥
∥x− x̂∥+ µ

, (4.8)

where µ represents a small value added for numerical stability (µ = 1e−6).
For validity, the procedure is repeated n times. Methods with low Lipschitz
value scores display a characteristic of being stable under the presence of
noise and should be favoured.

Lastly, to measure the overall ease of understanding the produced ex-
planation, an effective complexity measure is used, as described in Chapter
3. To quantify the complexity of explanation in the context of NILM, we
define the “effective complexity” measure as a combination of the attribu-
tion conciseness measure - Gini index, and the dataset complexity measure -
NAR [82]:

EC(i) =
Gini

1−NAR(i)
. (4.9)
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Fig. 4.4. Performance evaluation of the proposed XNILMBoost method for train-
ing of a) UK-DALE Dishwasher, b) UK-DALE Washing Machine, c) UK-DALE
Microwave. The radar plot axes are scaled based on the maximum values of the
respective category. The arrows indicate if higher or lower value is better.
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4.2.5 Experimental Results and Discussion

Does training for better explanations lead to improved predictive
performance?

The first experimental analysis is designed to examine if explainability-informed
training can lead to improved model performance, instead of the often ar-
gued conjecture of trading-off between explainablity and accuracy [36]. As
can be seen in Tables 4.1 and 4.2, training with attribution priors can gener-
ally lead to significant regression and classification performance improvement
compared to the case when no priors are used. Note that, explainability-
informed training leads to varying degrees of improvement across different
architectures and appliances. To better illustrate this, Fig. 4.3 showcases rel-
ative change in F1 and MAE score after training with the proposed method.
For the UK-DALE scenario, applying an attribution prior to a GRU archi-
tecture leads to a slight regression performance improvement for Microwave
appliance. However, regression performance improvement in appliances with
long and sparse activations (Washing Machine and Dishwasher) is significant,
reaching over 15%. On the other hand CNN, whilst significantly improving
results for the Microwave, underperformed for the case of Washing Machine,
where the MAE value increased, suggesting a nuanced relationship between
model architecture, attribution priors, and appliance characteristics. Gen-
erally, we observe that the improvement in one predictive metric follows
the improvement in other, indicating that the trained models produce more
robust predictions in both classification and regression domain. However,
there are also cases where F1 improvement is drastically higher than MAE
improvement, as is the case for Microwave trained with GRU model. This
phenomenon is probably due to poor initial classification performance of the
Microwave GRU model, leading to a higher relative increase. The effects of
explainability-informed training are very similar for the REDD dataset. We
note great improvement for the case of Dishwasher appliance, where F1 im-
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provement surpassed 25%. On the other hand, Refrigerator appliance showed
minimal relative improvement over all models, which can be explained by ex-
cellent initial predictive performance of the baseline models. Important fining
is that WaveNet architecture only led to slight improvements in F1 and MAE
scores, except for the case of Dishwasher appliance in REDD dataset. Possi-
ble cause for such behaviour is added complexity of introducing explainability
due to large number of dilated causal convolutions. Analyzing the Plegma
dataset results (Table 4.3), we observe trends in performance improvement
with explainability-informed training similar to REDD and UK-DALE, but
with some notable differences. For the AC appliance, all models show im-
provements with attribution priors, with WaveNet demonstrating the largest
relative gains. The Boiler appliance presents mixed results - GRU and CNN
models without priors perform better in terms of MAE, though CNN+Prior
achieves the best overall MAE while maintaining a high F1-Score. WaveNet
shows significant improvement with priors for the Boiler. For the Washing
Machine, all models consistently benefit from attribution priors in both MAE
and F1-Score. Notably, WaveNet models show consistent improvement with
attribution priors across all appliances in the Plegma dataset, contrasting
with the minimal improvements observed in REDD and UK-DALE.

The impact of attribution priors on model training can be attributed
to multiple interconnected mechanisms. When attribution priors are in-
troduced, they appear to synergize differently with various model architec-
tures (GRU, CNN, WaveNet), potentially enhancing the inherent ability of
each model to capture appliance-specific behavioral patterns. Attribution
priors serve a dual purpose: they act as an effective regularization mecha-
nism that guards against overfitting, while simultaneously strengthening the
model’s capacity to generalize from training data. This relationship is partic-
ularly evident in the WaveNet architecture, where the inherent complexity-
performance trade-off suggests that attribution priors help strike an optimal
balance, resulting in more robust performance on new data, while improv-
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ing explainability. Since WaveNet processes complete sequences rather than
individual samples, this behavior could indicate that, when the proposed ap-
proach is utilized, optimal trade-off might be achieved with either a larger
model input window or lower sampling rates. Each appliance exhibits dis-
tinctive operational signatures and power consumption patterns, which fun-
damentally affect how much improvement can be achieved across different
devices. Thus, the varying degrees of improvement might be influenced by
the baseline performance of each model-appliance combination, with initially
poor-performing models showing more dramatic improvements. For exam-
ple, for the REDD dataset, largest improvements in F1 score are observed for
the GRU-Dishwasher pair (26%) and CNN-Microwave pair (42.5%). How-
ever, they also hold the lowest baseline F1 scores - 0.427 and 0.362, respec-
tively. A similar trend is seen in the case of UKDALE and Plegma datasets,
where the highest improvement in F1 performance is held by UKDALE-
GRU-Microwave (55%) and Plegma-CNN-Washing Machine (16.1%) - where
both cases correspond to poor performing baseline models which were im-
proved. Lastly, it is important to note that very strong robustness prior
might lead to extremely smooth explanation heatmaps. While highly robust
to noise, these smooth explanations could obscure fine-grained, sharp tempo-
ral features that are genuinely important for distinguishing certain appliance
states, potentially reducing faithfulness or even slightly degrading predictive
accuracy for appliances reliant on such subtle cues. Additionally, an overly
aggressive low-complexity prior might force the model to rely on an extremely
sparse set of features. While yielding very simple explanations, this could
lead to the model ignoring less dominant but still relevant contextual infor-
mation, potentially impacting its ability to handle nuanced scenarios and
decreasing faithfulness to the model’s complex decision process or even its
predictive power.
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Fig. 4.5. Performance evaluation of the proposed XNILMBoost method for training
of a) REDD Microwave, b) REDD Washing Machine, c) REDD Refrigerator. The
radar plot axes are scaled based on the maximum values of the respective category.
The arrows indicate if higher or lower value is better.
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Does training for better explanations lead to improved explainabil-
ity performance?

Next, we evaluate how the models are affected by measuring their explain-
ability performance. Applying the proposed explainability-informed training
algorithm, we report several findings averaged across the selected explainabil-
ity methods. Tables 4.8-4.9 showcase the performance across various NILM-
specific explainability metrics. Focusing on the results of IntegratedGradi-
ents (IG) method, the average C. Faithfulness can be increased by 25.89% in
REDD and by 80.61% in UK-DALE dataset. By comparing the obtained re-
sults, we observe that higher improvement in the UK-DALE dataset is largely
due to poor baseline performance, i.e., in cases where the baseline metric indi-
cates sub-optimal Faithfulness, the proposed explainability-informed training
leads to largest improvements, suggesting that our training method partic-
ularly benefits models struggling in explainability. Notably, improvements
in C. Faithfulness often mirrored those in R. Faithfulness, which can be ex-
plained by the fact that artifacts in the predicted appliance signature are no
longer being produced due to improved gradient smoothness and explanation
complexity after explainability-informed training. Observing the results, we
corroborate previous findings that some explainability methods lead to un-
stable performance [8,9,18]. This is particularly evident in the case of Grad-
CAM, while other methods provide more stable results. Furthermore, IG
provides an overall satisfactory faithfulness performance across most appli-
ances and architectures, reaffirming the previous hypothesis that that a zero
signal is an appropriate choice for the baseline value for NILM data [18]. In
terms of Robustness metric, we observe that WaveNet models lead to highest
relative decrease of 16.64%. However, even with a significant improvement,
WaveNet models still exhibit poor robustness performance, possibly due to
their architectural design that is based on causal, dilated convolutional lay-
ers, which prevents robust explanations. In the case of CNNs, we observe
that Robustness improvements correspond to lower MAE and increased F1
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scores, as shown in Microwave model for UK-DALE dataset. Eff. Complexity
has achieved highest improvement for the REDD dataset, where the relative
increase achieves 89.26%, with WaveNet showing the highest relative and
absolute increases. Additionally, we observe a link between Faithfulness im-
provement and Eff. Complexity improvement, in particular in cases of long
running appliances such as Diswhasher trained on GRU with UK-DALE data.
This finding suggests that the explainability metrics are interdependent, and
that improved gradient smoothness and complexity leads to better overall
explainability of the NILM system. The Plegma dataset results, as shown
in Tables 4.11-4.13, further corroborate and extend the findings observed in
the REDD and UK-DALE datasets, while also revealing some unique pat-
terns. Across CNN, WaveNet, and GRU models, we see substantial improve-
ments in both R. Faithfulness and C. Faithfulness for many appliances when
using priors, particularly for the AC appliance. For instance, CNN mod-
els show significant gains in R. Faithfulness for AC and Washing Machine,
while WaveNet models demonstrate even more pronounced improvements
across all appliances. GRU models present a more mixed picture, with some
appliances showing improvements and others slight decreases. Robustness
generally improves with the use of priors across all architectures, although
the magnitude of improvement varies. Overall, it can be concluded that the
utilization of explainability-informed NILM mode training can lead to ex-
plainability improvement across various architectural approaches, which is
validated through relative improvement in individual explainability metrics,
as can be further seen in Fig. 4.5, 4.4 and 4.6. However, while some models
exhibit significant gains in both explainability and predictive performance,
others show marginal improvements, underscoring the need for a more tai-
lored approach in explainability-informed model training.
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Fig. 4.6. Performance evaluation of the proposed XNILMBoost method for training
of a) Plegma AC, b) Plegma Boiler, c) Plegma Washing Machine. The radar plot
axes are scaled based on the maximum values of the respective category. The
arrows indicate if higher or lower value is better.
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What is the relationship between the improved predictive perfor-
mance and explainability?

Finally, it becomes evident that the trade-off between explainability and
predictive performance, particularly within the context of attribution pri-
ors, presents a opportunity for evaluation of overall explainability-informed
NILM system performance. To best illustrate the trade-off, we jointly vi-
sualize the explainability and predictive performance metrics in Fig. 4.5,
4.4 and 4.6. Figures are organized as radio plots where each axis repre-
sents one of the core metrics on the explainability-informed NILM system,
while the arrows indicate if lower or higher values are favoured. We ob-
serve that in the case of UK-DALE, GRU models that achieve higher C. and
R. Faithfulness, generally lead to lower MAE values, as shown in the case
of Dishwasher appliance, where 89.54% R. Faithfulness improvement corre-
sponded with 18.29% decrease in MAE score. Similarly, GRU model trained
on Dishwasher in REDD dataset when improved on the R. Faithfulness lead
to improved F1 and lower MAE value. However, in the case of Microwave,
improvement in R. and C. Faithfulness did not lead to improvement in pre-
dictive performance, albeit it did improve the Eff. Complexity result. This
indicates that appliances with longer and sparser activations might benefit
more from explainability-informed training. CNN model has also showed
positive correlation between explainability improvement and predictive per-
formance improvement. In cases of increased R. Faithfulness, CNNs tend
to obtain better F1 and MAE score in both datasets, as shown in the case
of Microwave for REDD dataset where 176.7% increase in R. Faithfulness
corresponded with 42.54% increase in F1 score. In the case of WaveNet, we
observe that increases in R. and C. Faithfulness, despite improving MAE
and F1 scores, do not lead to dramatic improvements, suggesting that the
complexity introduced through causal convolutions might be a limiting fac-
tor. However, for traditionally challenging-to-disaggregate appliances, such
as the Washing Machine in the Plegma dataset (Fig. 4.6 (c)), our proposed
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approach demonstrates simultaneous improvements in both explainability
and predictive performance. The GRU model’s results are particularly note-
worthy, showing a significant decrease in MAE that correlates strongly with
enhanced faithfulness metrics. This suggests that improvements in regression
performance (MAE) may have a more substantial impact on explainability
compared to classification performance gains (F1 score).

These findings emphasize the importance of carefully tailored approaches
in machine learning applications, where model architectures and additional
model inputs, such as priors, must be thoughtfully matched to specific tasks
and datasets. The observed improvement in predictive and explainability
performance validates our initial hypothesis that training explicitly for ex-
plainability can produce more robust and transparent NILM models. Fur-
thermore, our proposed training procedure effectively quantifies the trade-off
between model performance and explainability. More broadly, these results
reveal a symbiotic relationship: more robust models naturally lead to bet-
ter explainability, and conversely, enhanced explainability can contribute to
increased model robustness.

Table 4.5
Comparison of XNILMBoost explainability performance improvement for CNN trained on
REDD dataset

Appliance Model R. Faithf.↑ C. Faith.↑ Robustness ↓ Eff. Complexity↑

Dishwasher

GradCAM (Baseline) 2370.588 3.122 4.838 ± 0.782 0.900
GradCAM (Prior) 2331.422 3.441 5.489 ± 1.407 1.105
GradCAM++ (Baseline) 1143.810 1.565 3.722 ± 0.662 0.570
GradCAM++ (Prior) 2154.310 2.614 4.483 ± 0.881 0.741
IG (Baseline) 2367.930 4.594 1.267 ± 0.284 1.039
IG (Prior) 3231.460 4.877 1.287 ± 0.319 1.067
SG (Baseline) 2166.520 3.830 2.235 ± 0.442 0.745
SG (Prior) 2343.960 2.531 1.852 ± 0.287 0.869

Microwave

GradCAM (Baseline) 97.923 0.474 0.190 ± 0.285 0.477
GradCAM (Prior) 81.905 0.761 0.203 ± 0.181 0.405
GradCAM++ (Baseline) 134.440 0.689 0.192 ± 0.123 0.502
GradCAM++ (Prior) 74.320 0.605 0.279 ± 0.147 0.429
IG (Baseline) 86.190 1.468 0.190 ± 0.106 0.739
IG (Prior) 238.280 1.409 0.253 ± 0.131 0.723
SG (Baseline) 106.320 1.534 0.224 ± 0.167 0.735
SG (Prior) 242.720 1.263 0.298 ± 0.172 0.687

Refrigerator

GradCAM (Baseline) 45.915 0.350 1.559 ± 0.886 0.558
GradCAM (Prior) 155.915 0.684 1.684 ± 0.939 0.999
GradCAM++ (Baseline) 30.081 0.281 1.418 ± 0.749 0.521
GradCAM++ (Prior) 140.081 0.572 1.761 ± 1.302 0.616
IG (Baseline) 147.179 4.111 1.147 ± 0.275 1.210
IG (Prior) 386.144 4.445 1.400 ± 0.275 1.206
SG (Baseline) 173.086 2.454 1.105 ± 0.377 0.920
SG (Prior) 283.086 2.788 1.330 ± 0.721 1.373
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Table 4.6
Comparison of explainability performance for WaveNet trained on REDD dataset

Appliance Model R. Faithf. ↑ C. Faith. ↑ Robustness ↓ Eff. Complexity ↑

Dishwasher

GradCAM (Baseline) 1251.456 1.636 4.417 ± 2.830 0.161
GradCAM (Prior) 1285.666 2.056 3.297 ± 2.707 0.411
GradCAM++ (Baseline) 1644.69 3.185 15.091 ± 3.709 0.687
GradCAM++ (Prior) 1695.69 2.445 14.851 ± 3.709 0.872
IG (Baseline) 403.440 4.311 9.188 ± 2.567 0.982
IG (Prior) 638.560 4.401 9.508 ± 2.027 1.322
SG (Baseline) 1724.060 3.068 1.040 ± 0.037 1.574
SG (Prior) 1856.620 3.189 1.030 ± 0.061 1.804

Microwave

GradCAM (Baseline) 340.729 0.646 3.203 ± 2.830 1.391
GradCAM (Prior) 572.829 1.066 2.976 ± 2.707 2.056
GradCAM++ (Baseline) 599.720 2.195 13.876 ± 1.709 1.117
GradCAM++ (Prior) 982.850 1.455 14.728 ± 3.709 2.092
IG (Baseline) 280.440 3.321 8.860 ± 2.567 1.512
IG (Prior) 638.560 3.411 8.278 ± 2.027 2.362
SG (Baseline) 850.790 2.078 6.205 ± 0.037 1.814
SG (Prior) 1143.780 2.199 6.030 ± 0.061 1.912

Refrigerator

GradCAM (Baseline) 52.900 0.835 5.632 ± 1.600 1.843
GradCAM (Prior) 75.828 1.496 2.057 ± 1.277 1.951
GradCAM++ (Baseline) 446.130 2.384 6.966 ± 2.839 2.447
GradCAM++ (Prior) 485.850 1.885 13.31 ± 1.586 2.092
IG (Baseline) 403.440 3.510 9.066 ± 0.607 2.082
IG (Prior) 638.560 3.841 9.496 ± 1.273 2.552
SG (Baseline) 525.500 2.267 5.164 ± 0.507 1.927
SG (Prior) 646.780 2.529 4.275 ± 0.291 2.827

Table 4.7
Comparison of explainability performance for GRU trained on REDD dataset

Appliance Model R. Faithf. ↑ C. Faith. ↑ Robustness ↓ Eff. Complexity ↑

Dishwasher

GradCAM (Baseline) 223.006 0.883 0.39 ± 0.174 1.348
GradCAM (Prior) 696.664 1.753 0.048 ± 0.024 1.025
GradCAM++ (Baseline) 220.897 3.745 0.669 ± 0.758 0.956
GradCAM++ (Prior) 646.830 1.812 0.131 ± 0.041 1.321
IG (Baseline) 139.350 4.884 0.544 ± 0.283 1.311
IG (Prior) 762.740 1.633 0.132 ± 0.163 1.365
SG (Baseline) 63.089 4.012 0.381 ± 0.231 1.294
SG (Prior) 727.400 1.818 0.062 ± 0.058 1.043

Microwave

GradCAM (Baseline) 33.042 0.372 0.095 ± 0.071 0.570
GradCAM (Prior) 60.477 0.622 0.077 ± 0.372 0.513
GradCAM++ (Baseline) 136.350 1.276 0.076 ± 0.068 1.032
GradCAM++ (Prior) 73.660 0.366 0.126 ± 0.624 0.861
IG (Baseline) 74.100 0.884 0.011 ± 0.660 0.910
IG (Prior) 215.690 2.280 0.064 ± 0.057 1.112
SG (Baseline) 211.100 2.156 0.054 ± 0.035 1.127
SG (Prior) 166.050 1.814 0.033 ± 0.802 1.106

Refrigerator

GradCAM (Baseline) 14.373 0.243 0.402 ± 0.216 0.995
GradCAM (Prior) 18.811 0.040 0.478 ± 0.295 0.896
GradCAM++ (Baseline) 38.778 0.455 1.356 ± 0.85 0.695
GradCAM++ (Prior) 24.392 0.191 1.351 ± 0.73 0.825
IG (Baseline) 12.732 0.137 1.895 ± 1.113 1.039
IG (Prior) 29.447 0.250 1.918 ± 1.108 0.843
SG (Baseline) 20.765 0.240 0.386 ± 0.193 0.777
SG (Prior) 60.503 0.474 0.414 ± 0.177 0.759
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Table 4.8
Comparison of XNILMBoost explainability performance improvement for CNN trained on
UK-DALE dataset

Appliance Model R. Faithf. ↑ C. Faith. ↑ Robustness ↓ Eff. Complexity ↑

Dishwasher

GradCAM (Baseline) 122.465 0.301 1.547 ± 0.825 1.080
GradCAM (Prior) 38.162 0.399 0.931 ± 0.255 1.353
GradCAM++ (Baseline) 62.629 0.102 1.740 ± 0.800 0.556
GradCAM++ (Prior) 96.980 0.799 1.223 ± 0.474 0.871
IG (Baseline) 386.797 0.845 0.623 ± 0.238 1.200
IG (Prior) 823.590 2.309 0.627 ± 0.190 1.191
SG (Baseline) 425.304 0.783 0.364 ± 0.154 1.082
SG (Prior) 672.290 1.754 0.441 ± 0.141 1.074

Washing Machine

GradCAM (Baseline) 1969.986 13.165 1.734 ± 0.822 1.616
GradCAM (Prior) 1987.535 13.191 3.046 ± 1.076 1.066
GradCAM++ (Baseline) 1971.088 13.231 4.067 ± 1.740 0.954
GradCAM++ (Prior) 2095.426 13.284 4.211 ± 1.348 0.824
IG (Baseline) 1987.030 13.236 0.811 ± 0.271 1.428
IG (Prior) 2057.740 13.174 0.978 ± 0.320 0.778
SG (Baseline) 1943.557 13.167 0.580 ± 0.305 1.034
SG (Prior) 1992.919 13.117 0.934 ± 0.513 0.820

Microwave

GradCAM (Baseline) 134.827 2.021 0.223 ± 0.165 0.401
GradCAM (Prior) 142.935 2.058 0.193 ± 0.158 0.507
GradCAM++ (Baseline) 138.070 2.044 0.352 ± 0.180 0.355
GradCAM++ (Prior) 146.050 2.071 0.396 ± 0.265 0.383
IG (Baseline) 138.700 2.069 0.230 ± 0.119 0.831
IG (Prior) 143.090 2.094 0.200 ± 0.109 0.870
SG (Baseline) 129.650 2.004 0.193 ± 0.080 0.839
SG (Prior) 143.460 2.087 0.176 ± 0.105 0.866

Table 4.9
Comparison of explainability performance for WaveNet trained on UK-DALE dataset

Appliance Model R. Faithf. ↑ C. Faith. ↑ Robustness ↓ Eff. Complexity ↑

Dishwasher

GradCAM (Baseline) 1044.074 2.314 88.782 ± 47.135 0.897
GradCAM (Prior) 1158.106 3.406 44.120 ± 12.400 0.913
GradCAM++ (Baseline) 77.794 0.270 12.967 ± 8.725 1.237
GradCAM++ (Prior) 490.15 1.102 3.769 ± 1.823 1.435
IG (Baseline) 74.801 0.829 9.854 ± 3.316 1.238
IG (Prior) 385.56 1.118 8.925 ± 2.350 1.312
SG (Baseline) 661.983 1.652 0.179 ± 0.213 1.472
SG (Prior) 1279.98 3.314 0.260 ± 0.194 1.513

Washing Machine

GradCAM (Baseline) 974.101 0.835 204.055 ± 57.858 1.234
GradCAM (Prior) 1946.377 2.367 118.583 ± 27.907 1.300
GradCAM++ (Baseline) 1212.77 1.242 22.100 ± 5.100 1.330
GradCAM++ (Prior) 1042.89 1.529 28.685 ± 7.333 1.429
IG (Baseline) 1666.70 1.577 22.030 ± 6.618 1.713
IG (Prior) 1878.02 3.261 28.524 ± 11.33 1.709
SG (Baseline) 1108.20 1.200 0.029 ± 0.050 1.913
SG (Prior) 482.810 0.740 0.277 ± 0.122 1.941

Microwave

GradCAM (Baseline) 56.567 0.504 21.416 ± 6.017 0.110
GradCAM (Prior) 109.918 0.486 19.519 ± 6.415 0.110
GradCAM++ (Baseline) 68.626 0.567 0.256 ± 0.644 0.068
GradCAM++ (Prior) 75.018 0.553 0.651 ± 1.465 0.087
IG (Baseline) 263.044 3.584 0.164 ± 0.744 0.878
IG (Prior) 378.743 4.880 0.213 ± 0.905 0.892
SG (Baseline) 83.429 0.666 0.241 ± 0.100 0.940
SG (Prior) 86.459 0.678 0.144 ± 0.144 0.542
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Table 4.10
Comparison of explainability performance for GRU trained on UK-DALE dataset

Appliance Model R. Faithf. ↑ C. Faith. ↑ Robustness ↓ Eff. Complexity ↑

Dishwasher

GradCAM (Baseline) 300.885 1.250 0.346 ± 0.233 0.625
GradCAM (Prior) 354.444 1.273 0.414 ± 0.329 0.901
GradCAM++ (Baseline) 172.887 0.458 0.395 ± 0.662 0.449
GradCAM++ (Prior) 487.953 2.190 0.248 ± 0.631 0.567
IG (Baseline) 399.699 1.441 0.298 ± 0.446 0.526
IG (Prior) 757.573 3.146 0.249 ± 0.304 0.796
SG (Baseline) 436.021 2.005 0.185 ± 0.198 1.090
SG (Prior) 788.257 2.980 0.185 ± 0.153 1.162

Washing Machine

GradCAM (Baseline) 2004.603 11.255 0.487 ± 0.300 1.663
GradCAM (Prior) 2140.319 11.440 0.53 ± 0.316 1.669
GradCAM++ (Baseline) 2362.02 12.391 0.96 ± 1.105 1.642
GradCAM++ (Prior) 1960.83 10.782 1.036 ± 0.557 1.514
IG (Baseline) 2017.31 12.384 0.426 ± 0.314 1.674
IG (Prior) 1944.02 11.014 0.256 ± 0.211 1.614
SG (Baseline) 1080.61 5.342 0.361 ± 0.233 0.772
SG (Prior) 1486.52 6.482 0.466 ± 0.335 0.600

Microwave

GradCAM (Baseline) 65.804 0.388 0.115 ± 0.168 0.738
GradCAM (Prior) 41.809 0.176 0.082 ± 0.055 0.761
GradCAM++ (Baseline) 20.458 0.018 0.200 ± 0.171 0.618
GradCAM++ (Prior) 85.312 0.358 0.382 ± 0.335 0.767
IG (Baseline) 89.247 0.453 0.021 ± 0.012 0.795
IG (Prior) 201.395 1.660 0.031 ± 0.035 0.845
SG (Baseline) 149.567 0.759 0.018 ± 0.010 0.779
SG (Prior) 170.971 1.153 0.025 ± 0.044 0.794

Table 4.11
Comparison of explainability performance for CNN trained on Plegma dataset

Appliance Model R. Faithf. ↑ C. Faith. ↑ Robustness ↓ Eff. Complexity ↑

AC

GradCAM (Baseline) 508.908 0.120 0.752 ± 0.402 0.438
GradCAM (Prior) 883.792 1.141 0.269 ± 0.210 0.370
GradCAM++ (Baseline) 153.922 0.359 0.937 ± 0.593 0.836
GradCAM++ (Prior) 540.328 0.816 0.976 ± 0.800 0.791
IG (Baseline) 1530.439 2.657 0.984 ± 0.460 0.936
IG (Prior) 2147.258 3.737 0.812 ± 0.327 1.027
SG (Baseline) 918.024 0.766 1.321 ± 0.638 0.794
SG (Prior) 1042.599 0.867 1.685 ± 1.310 0.757

Boiler

GradCAM (Baseline) 3197.939 0.695 0.068 ± 0.125 0.614
GradCAM (Prior) 956.829 0.103 0.056 ± 0.035 0.613
GradCAM++ (Baseline) 408.272 0.097 0.420 ± 0.354 0.321
GradCAM++ (Prior) 524.275 0.090 0.188 ± 0.276 0.540
IG (Baseline) 3920.85 0.275 0.098 ± 0.085 0.970
IG (Prior) 4404.764 0.640 0.128 ± 0.101 0.931
SG (Baseline) 3561.111 0.608 0.079 ± 0.046 0.905
SG (Prior) 3110.081 0.336 0.079 ± 0.038 0.841

Washing Machine

GradCAM (Baseline) 58.216 0.180 1.240 ± 0.701 0.441
GradCAM (Prior) 152.773 0.301 0.971 ± 0.611 0.469
GradCAM++ (Baseline) 84.957 0.139 1.627 ± 1.233 0.268
GradCAM++ (Prior) 313.451 0.312 1.430 ± 0.814 0.356
IG (Baseline) 263.044 0.307 1.240 ± 0.489 0.727
IG (Prior) 282.065 0.237 1.218 ± 0.549 0.824
SG (Baseline) 83.429 0.666 1.229 ± 0.692 0.385
SG (Prior) 226.415 0.292 1.021 ± 0.645 0.405
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Table 4.12
Comparison of explainability performance for WaveNet trained on Plegma dataset

Appliance Model R. Faithf. ↑ C. Faith. ↑ Robustness ↓ Eff. Complexity ↑

AC

GradCAM (Baseline) 385.709 0.923 133.234 ± 60.912 0.503
GradCAM (Prior) 823.906 1.535 130.22 ± 51.595 0.541
GradCAM++ (Baseline) 463.939 2.003 47.312 ± 40.933 0.798
GradCAM++ (Prior) 955.981 2.493 20.821 ± 12.211 1.170
IG (Baseline) 1842.737 3.145 26.331 ± 23.487 0.854
IG (Prior) 1671.350 3.941 13.091 ± 15.238 0.991
SG (Baseline) 1115.153 1.006 0.205 ± 0.127 1.077
SG (Prior) 1295.212 0.707 0.222 ± 0.121 1.077

Boiler

GradCAM (Baseline) 3189.995 2.384 97.028 ± 46.832 0.460
GradCAM (Prior) 3243.791 1.466 58.910 ± 48.569 0.202
GradCAM++ (Baseline) 1607.980 0.768 1.058 ± 3.527 0.200
GradCAM++ (Prior) 2405.809 0.907 1.019 ± 2.507 0.414
IG (Baseline) 3329.980 3.209 6.900 ± 4.990 0.900
IG (Prior) 3348.476 3.304 4.607 ± 3.718 0.914
SG (Baseline) 985.985 0.194 0.247 ± 0.090 0.976
SG (Prior) 1053.160 0.347 0.217 ± 0.100 1.012

Washing Machine

GradCAM (Baseline) 108.316 1.048 0.680 ± 0.472 0.868
GradCAM (Prior) 375.831 1.392 1.093 ± 0.714 1.187
GradCAM++ (Baseline) 12.015 0.652 0.618 ± 0.495 1.125
GradCAM++ (Prior) 89.671 1.255 0.462 ± 0.268 1.297
IG (Baseline) 127.221 0.575 1.051 ± 0.451 1.210
IG (Prior) 393.303 1.005 0.955 ± 0.345 1.212
SG (Baseline) 185.971 1.117 0.446 ± 0.234 0.863
IG (Prior) 454.246 1.482 0.478 ± 0.421 0.703

Table 4.13
Comparison of explainability performance for GRU trained on Plegma dataset

Appliance Model R. Faithf. ↑ C. Faith. ↑ Robustness ↓ Eff. Complexity ↑

AC

GradCAM (Baseline) 2160.41 5.461 1.572 ± 1.238 0.633
GradCAM (Prior) 1486.443 3.010 1.596 ± 1.142 0.686
GradCAM++ (Baseline) 2517.897 6.393 1.139 ± 0.814 0.637
GradCAM++ (Prior) 1925.591 5.707 1.041 ± 0.640 0.751
IG (Baseline) 2046.526 4.840 0.681 ± 0.520 0.730
IG (Prior) 1818.143 5.049 0.563 ± 0.403 0.781
SG (Baseline) 1244.548 4.323 0.454 ± 0.324 0.694
SG (Prior) 1489.35 3.631 0.501 ± 0.496 0.734

Boiler

GradCAM (Baseline) 3197.939 0.695 7.028 ± 6.832 0.614
GradCAM (Prior) 3189.995 2.384 0.068 ± 0.125 0.460
GradCAM++ (Baseline) 408.272 0.097 0.420 ± 0.354 0.321
GradCAM++ (Prior) 1607.98 0.768 1.058 ± 3.527 0.200
IG (Baseline) 3329.98 3.209 6.900 ± 4.990 0.900
IG (Prior) 3038.328 2.847 4.607 ± 3.718 0.914
SG (Baseline) 1053.16 0.347 0.247 ± 0.090 1.012
SG (Prior) 985.985 0.194 0.217 ± 0.100 0.976

Washing Machine

GradCAM (Baseline) 348.845 0.685 74.287 ± 26.595 0.733
GradCAM (Prior) 588.488 1.392 41.83 ± 25.994 1.187
GradCAM++ (Baseline) 532.696 1.163 4.799 ± 5.113 1.628
GradCAM++ (Prior) 107.717 0.522 14.809 ± 9.998 1.484
IG (Baseline) 183.145 1.551 9.248 ± 7.377 1.365
IG (Prior) 473.062 1.762 12.146 ± 10.751 1.481
SG (Baseline) 85.301 0.423 0.201 ± 0.091 1.757
SG (Prior) 142.333 0.823 0.245 ± 0.091 1.694
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4.3 Summary

In this chapter, we proposed a framework for enhancement of state-of-the-
art NILM models that takes into account characteristics of Trustworthy AI
systems. The experimental results from our study highlight the significant
impact of explainability-informed training on the performance of energy dis-
aggregation models. This approach, which integrates attribution priors into
the training process, demonstrates substantial improvements in both regres-
sion and classification performance. Additionally, we proposed an iterative
optimisation procedure that along with a novel explainability metric en-
ables explainability-informed training of NILM models. Experimental re-
sults validate that our approach binds improved predictive performance with
improved explainability results across various architectures and appliances.
Three different research questions were addressed — First, we show that
training for better explanations can lead to improved predictive performance
of a NILM system and provide increased robustness; second, we show that
the proposed explainability-informed training can enhance the explainabil-
ity performance of various state-of-the-art architectures across multiple ex-
plainability metrics; and third, we provide new insights into the relationship
between the improved predictive performance and explainability for various
NILM architectures. The proposed framework was applied across different
architectural approaches, including convolutional (CNN), recurrent (GRU),
and dilated causal (WaveNet) architectures. Worth noting is that although
WaveNet models have achieved enhanced performance, the relative improve-
ment achieved is much greater for CNN and GRU, suggesting that such ar-
chitectures can benefit more from explainability-informed training. Various
explainability methods were explored, including GradCAM, GradCAM++,
IG, and SmoothGrad. Experimental results suggest that in the context of
NILM, explainability methods that are design to deal with noise, such as
IG and SmoothGrad, can generally obtain better ability to produce expla-
nations that are faithful to the performance of the model, robust to slight
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changes of input, and more easily interpretable due to low complexity of out-
puts. Overall, the proposed methodology suggests that the incorporation of
explainability considerations into the training process can substantially en-
hance the transparency of a model, as well as the ability to more accurately
predict energy consumption of high-consumption appliances.
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Chapter 5

Explainability on the Edge
through Explainability Guided
Learning

Building upon the ideas of perception aligned gradients and evaluation of ex-
plainability, in this chapter we try to answer a question: Can edge deployed
systems benefit from explanability enhancement? To achieve this, a novel
idea of explainability guided knowledge distillation is proposed. The core in-
tuition is can we condition a student model to imitate not only the predictions
of a teacher, but also localization of it’s explainability heatmaps. Addition-
ally, we ask a question of can more explainable teachers lead to downstream
improvement of explanability of the student model. In recent years, knowl-
edge distillation [53] emerged as an effective approach to address concerns of
resource-heavy computational complexity, generalisability, privacy and band-
width requirements. This technique involves transferring knowledge from a
large, complex model (Teacher) to a smaller, more computationally-efficient
model (Student), effectively balancing computational efficiency with perfor-
mance. This reduction in computational complexity directly addresses the
energy efficiency conflict highlighted by [21], as the distilled models require
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substantially less energy for inference tasks. The Student model, while main-
taining comparable accuracy to its Teacher counterpart, requires significantly
fewer parameters and computational resources, making it more suitable for
deployment on edge devices. Moreover, KD enhances model generalization
ability, as the distillation process often acts as a form of regularization, help-
ing the Student models learn more robust and generalizable features from
the Teacher’s knowledge [60,123]. However, current KD approaches primar-
ily focus on optimizing Student performance metrics without adequately ad-
dressing the quality and interpretability of the transferred knowledge, which
remains a crucial barrier to deploying reliable and trustworthy edge AI sys-
tems. The interpretability challenge in edge AI systems is particularly sig-
nificant as these systems often operate in critical applications where under-
standing model decisions is essential for user trust and system reliability.
When deploying compressed models through KD, maintaining interpretabil-
ity becomes even more complex as the knowledge transfer process itself may
introduce additional lack of transparency in decision-making mechanisms.
This creates a compound challenge: not only we must ensure efficient model
compression for edge deployment, but we must also maintain or enhance the
interpretability and reliability of the resulting systems.

NILM serves as an exemplary case study of these challenges. Through dis-
aggregation of aggregate metered energy consumption into individual appliance-
level usage patterns, NILM provides granular insight into energy consump-
tion without costly sub-metering, thus empowering consumers to make in-
formed decisions about their energy usage and enabling utilities to implement
more effective demand-response programs [102]. This application is partic-
ularly relevant as it encompasses the key challenges of edge AI deployment:
it requires real-time processing of continuous data streams, demands high
accuracy for appliance load disaggregation, and operates in diverse environ-
mental conditions that rely on model generalisability. Furthermore, personal
smart meter data never leaves the premises, thus preserving the privacy of
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the household. To address the aforementioned concerns, we propose a robust
methodology focused on ensuring interpretability and reliability, by jointly
focusing on improvements in interpretability and reliability of KD mechanism
learned from the Teacher. We evaluate our method in a domain adaptation
scenario that mimics real-world NILM deployment scenario by identifying
activation state of five common appliances in residential buildings and per-
forming rigorous evaluation of predictive and explainability performance of
the NILM models.

The content of this chapter is taken from the work reported in "Improving
knowledge distillation for non-intrusive load monitoring through explainabil-
ity guided learning" [18] and "Interpretability and Reliability-driven Knowl-
edge Distillation for Non-intrusive Load Monitoring on the Edge" which is
currently under review. Interpretability and Reliability-driven Knowledge
Distillation (IR-KD) implements a structured approach for training individ-
ual student networks for each appliance, leveraging a complex multi-label
Teacher classifier trained on diverse, cross-domain datasets. Our frame-
work introduces three key novelties to enhance the knowledge distillation
process. First, we identify the main type of inconsistency in transfer of ex-
plainable knowledge, and propose explainability guided learning that aims to
alleviate erroneous knowledge transfer during the distillation process. Sec-
ond, we address the interpretability challenge by proposing a regularization
technique based on perception-aligned gradients, which ensures the model’s
decision-making process closely mirrors human intuition. This alignment is
particularly crucial in NILM applications, where the model must identify in-
terpretable features such as characteristic power consumption patterns and
temporal usage signatures that energy experts and consumers can readily
understand. Third, we address the challenge of incorrect knowledge transfer
through the introduction of a specialized loss term that optimizes Teacher
training and subsequent knowledge distillation. This approach leverages hid-
den information extracted from weak labels [123], significantly improving the
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quality and reliability of knowledge transferred to Student models. By focus-
ing on refining the Teacher’s knowledge directly, our method achieves com-
putational efficiency while avoiding the time-consuming and often ineffective
process of correcting Student models post-distillation. Lastly, our evalu-
ation methodology encompasses both traditional performance metrics and
NILM-specific explainability measures. We assess model robustness through
predictive performance analysis and employ specialized metrics to quantify
explainability improvements. These metrics evaluate the model’s capability
to identify salient input features, maintain resilience against input perturba-
tions, and generate simplified, interpretable feature attribution maps.

The key contributions of this work can be summarized as follows:

• The main type of inconsistency in the process of transfer of explanation
knowledge in the KD framework for NILM is identified.

• A technique for alleviation of explanation inconsistencies in KD NILM
via a new, explainability guided loss function.

• A KD framework that specifically addresses Teacher limitations to en-
sure both reliability and interpretability in computationally efficient
Student models.

• A perception-aligned gradients approach that enhances model inter-
pretability by aligning the decision-making process with human under-
standing, while simultaneously improving the capture of robust and
transferable features.

• A learning strategy that exploits hidden information from weak labels,
enabling both Teacher and Student models to capture more reliable
and transferable features from locally collected data, thereby enhancing
state classification performance across new environments.

These contributions collectively advance the field of model compression
and knowledge transfer, exemplified by NILM applications, that is robust,
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interpretable, and computationally efficient. Our approach not only improves
model performance, but also ensures greater reliability and interpretability
in practical applications, addressing the concerns of trustworthy approaches
to NILM. The overall framework of the proposed approach is presented in
the following section.

5.1 Methodology

This section details our proposed IR-KD framework, which incorporates
weakly supervised explainability-guided learning, perception-aligned gradi-
ents, and zero-strong labels in the distillation framework, as illustrated in
Fig. 5.1. We start with defining the NILM problem, followed by an in-depth
discussion of the theoretical foundations and practical implementation of the
newly introduced components.

5.1.1 Distillation Framework

The proposed framework employs a weakly supervised approach [121, 122]
that requires only weak labels from the target environment, significantly
reducing the labeling burden. Weak labels are proposed in [121, 122] as a
trade-off to lighten the annotation effort but still providing supervision during
training and achieving results comparable to fully supervised approaches.

The core idea of weakly supervised learning is to train the DNN by only
using coarse information collected in the target environment. This approach
reduces the labeling effort while retaining sufficient information to refine the
model’s performance for the target environment. Thus, the framework aims
to estimate the precise state of each appliance sn(t) on a sample-by-sample
basis, despite using coarse-grained supervision.

Raw samples of the aggregate signal y(t) are referred to as instances, and
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Fig. 5.1. Interpretability and Reliability-guided Knowledge Distillation (IR-KD)
framework. Teacher fine-tuning and Student distillation are depicted. The data
available for training are annotated with weak labels that specify only if an ap-
pliance is active or not inside a certain aggregate window. GT represents ground
truth labels. The associated heatmap represents the outputs of XAI visualization,
where colors closer to red represent areas of high importance for the prediction.

the related labels are represented by one-hot vectors s(t) ∈ RN×1 defined as:

s(t) = [s1(t), s2(t), . . . , sN(t)]
T . (5.1)

A segment of y(t) with a length L is referred to as a window. Assuming that
y(t) is divided into disjointed segments, the j-th window is represented by
the following vector:

yj = [y(jL), . . . , y(jL+ L− 1)]T ∈ RL×1. (5.2)
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Fig. 5.2. Strong and weak labels graphical representation. When the weak label is
zero (as for the dishwasher) each strong label associated is zero as well. Instead, if
the weak label is equal to one, some strong labels are ones, other zeros.

The related weak label is again encoded as a one-hot vector wj ∈ RN×1.
Notably, wj depends on the instance labels within the segment. The assign-
ment of the labels is based on the presence or not of an activation inside a
certain aggregate window. Thus, if for each yj(t) of the j-th window the n-th
appliance is never active (all sn(t)), the label wn provided by the annotator
from the target environment is equal to 0. On the contrary, if the appliance
has been active at least for one sn(t), the wn provided by the annotator is
equal to 1. For clarity, a real example is depicted in Fig. 5.2.

Denoting with Sj = [s(jL), s(jL+ 1), . . . , s(jL+ L− 1)] ∈ RN×L the set
of instance labels related to segment j, the mathematical relationship can be
represented by a pooling function b : RN×L → RN , such that:

wj = b(Sj). (5.3)

The Teacher network initiates the KD process by training on extensive
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data from public consumption datasets, establishing a robust foundation of
transferable knowledge and generalisability. Then, due to the large differ-
ences that occur between different domains (houses and different countries
in terms of energy load profiles), a fine-tuning phase is necessary to ensure
good performance on the target domain. For this fine-tuning process, only
weak labels are assumed to be collected from the target environment, to
lighten the annotation process and reproduce the realistic scenario whereby
annotated data for particular domains is not available in the absence of sub-
metering or manual offline annotation [123]. Then, the fine-tuning loss Lft

has the form of Binary Cross-Entropy Loss (BCE):

Lw = − 1

N

N∑
n=1

[wn log(ŵn) + (1− wn) log(1− ŵn)] , (5.4)

where the segment index j has been omitted for simplicity of notation. ŵn is
the weak prediction for the n-th appliance and wn is the related weak label.
Once the Teacher is ready to transfer its acquired knowledge to the Student,
the following distillation loss is used to train the Student network:

Ldist = βLsoft

(
σ

(
Zst

j

T

)
, σ

(
Zte

j

T

))
+ (1− β)θ(e)Lw(ŵ

st
j ,wj), (5.5)

where T is the temperature parameter always included to obtain soft Teacher
and Student logits Zst

j and Zte
j before applying the sigmoid activation function

σ(·). Both Lsoft and Lw are expressed using the binary cross-entropy function
and Lsoft is the loss related to the soft strong-level output of the Teacher and
the Student. The parameter β balances the contributions of Lsoft and Lw

during the distillation, while θ(e) adjusts the relative magnitude of the losses
at each training epoch e.
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5.1.2 Explainability Guided Learning

KD minimizes the divergence between the probability distributions of the
Teacher and Student models [53], with the aim of aligning the logits pro-
duced by the Student with those of the Teacher. This process achieves ef-
fective transfer of knowledge by conditioning the Student model to mimic
the outputs of the Teacher. However, we observe that KD might not always
be successful in transferring the explainable knowledge of the Teacher. In
particular, we note the main erroneous case of inconsistency in the explana-
tion knowledge transfer, that is, given identical inputs, Teacher and Student
networks produce dissimilar output explanations for a given class. This phe-
nomenon is illustrated with an example in Fig. 5.3 a)-b) in the form of a
heatmap, where the highest values correspond to input features most impor-
tant for the predictive output of the Washing Machine class. We observe
that the distillation process has been unsuccessful in transferring the mag-
nitudes of most relevant importance values to the Student, possibly causing
the occurrence of a false positive prediction. We hypothesize that a reduc-
tion of such inconsistencies might be a crucial step in the optimization of the
distillation process, leading to a more stable predictive performance.

To prevent inconsistencies in the transfer of explainable knowledge, we in-
troduce the loss term Lϕ

xai, which focuses on reducing dissimilarities between
the Teacher’s and Student’s explanation maps, which represent areas of the
input sequence that are attributed by XAI method with having high levels of
importance for model prediction. As explanation heatmaps are represented
in vector form, the inconsistency between two explanations is quantified using
a loss function based on cosine similarity, defined as:

Lϕ
xai(a, b) = −

ab

∥a∥∥b∥
= −

∑n
i=1 aibi√∑n

i=1 (ai)
2
√∑n

i=1 (bi)
2
, (5.6)

where a and b represent two generated explanations, while ϕ represents the
output type to be compared (weak or strong). It is expected that two similar
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vectors will have a similar angle between them, leading to the conclusion
that the similarity of two vectors increases as the value of their cosine angle
increases. To this end, in order to promote the minimization of the loss
function, we invert the sign of the generated cosine similarity measure.

To alleviate inconsistencies w.r.t transfer of explainable knowledge in KD,
we introduce a modification to the KD loss function by including the cosine
similarity-based loss between the explanations produced by the Teacher and
the Student networks. Thus, the explainability-guided knowledge distillation
loss function is defined as:

Lxai−guided = Ldist + γ · Lϕ
xai(ht, hs), (5.7)

where ht and hs represent explanations generated by Teacher and Student
networks, respectively, while γ is a parameter that adjusts the influence of
the cosine similarity loss component Lϕ

xai.
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Fig. 5.3. Explanations for prediction of Washing Machine on a sample from the test
set in the REFIT-to-REFIT domain adaptation scenario. a) Teacher explanation
b) baseline Student explanation, displaying the inconsistent transfer of explanation
knowledge c) Corrected Student explanation and prediction after explainability
guided learning. Strong predictions are displayed before quantization.
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5.1.3 Interpretability and Reliability-driven Learning

Despite being larger and more complex, the Teacher model cannot be as-
sumed to be inherently trustworthy, particularly when processing signals
from novel target domains. This fundamental limitation can lead to the
propagation of errors through the distillation process, affecting both the Stu-
dent model’s predictions and the quality of generated explainability maps.
These issues manifest in two primary ways: through incorrect predictions
that get transferred to the Student, and through inconsistent or misleading
explainability maps that fail to properly highlight relevant features in the
input signal (see Fig. 5.4).

To address these Teacher-induced distillation artifacts, we propose a novel
dual-component methodology that enhances the quality of knowledge trans-
fer:

• Zero-strong Label Loss. We introduce a Teacher enhancement frame-
work that optimizes the model’s learning process during target domain
fine-tuning. This component specifically addresses the critical need
to minimize the propagation of corrupted knowledge to the Student
model by maximizing information extraction from weak labels, thereby
improving classification performance through systematic reduction of
false positive predictions. The same concept is then adopted during
the distillation, to additionally filter uncertainties transferred to the
Student.

• Perception Aligned Gradient Learning. We implement an explainability-
guided learning optimization that systematically improves the qual-
ity of Teacher-generated gradients. This enhancement ensures that
the Student model mimics more accurately behavioral patterns dur-
ing the distillation process. The optimization procedure incorporates
techniques aimed at generating gradients that are in line with human
perception to generate more precise and reliable explainability outputs.
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Zero-Strong Label Loss

We propose the so-called zero-strong label loss to exploit as much information
as possible from weak labels collected in the target domain. Weak labels, by
definition, contain window-level information about the appliance usage. If
a window is assigned a positive weak label (wn = 1), determining the exact
activation localization becomes an ill-posed problem, as it is not possible to
derive where the appliance is active within that window and for how many
time instants. On the contrary, if the appliance is never active in the window
(wn = 0), no temporal mapping is needed, and the appliance can be assumed
inactive at every time instant within that window. In this case, all the strong
labels can be set equal to the corresponding weak label.
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(a) XAI-guided Teacher

0 500 1000 1500 2000 2500
Timestep [s]

0

1000

2000

3000

4000

5000

6000

7000

Po
w

er
[W

]

Aggregate
Predicted
Ground Truth

0.0

0.2

0.4

0.6

0.8

1.0

(b) IR-KD Teacher
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(c) XAI-guided Student

0 500 1000 1500 2000 2500
Timestep [s]

0

1000

2000

3000

4000

5000

6000

7000
Po

w
er

[W
]

Aggregate
Predicted
Ground Truth

0.0

0.2

0.4

0.6

0.8

1.0

(d) IR-KD Student

Fig. 5.4. Comparison of predictions for Dishwasher appliance and their correspond-
ing XAI attribution maps.

This assumption not only provides useful strong labels for windows with-
out activations but it also reduces the quantity of false positives produced
by the Teacher without the necessity for collecting additional data from the
target environment. For this reason, the loss function used for Teacher fine-
tuning is as follow:

Lft = Lw + Lz−s, (5.8)

where the Lz−s loss function is defined as the BCE computed only for the
windows where wn = 0. This loss considers the strong output of the Teacher,
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strengthening the training process by leveraging strong information derived
from weak labels. As a consequence, it ensures consistency between strong
and weak predictions, at least for inactive periods, effectively preventing the
presence of improper false positives.

During the distillation, the same principle is applied but we restructure
the loss in (5.5) by applying the weak labels to suppress incorrect Teacher
predictions generating false positives. Thus, the loss becomes:

LIR−KD = βLsoft

(
σ

(
Zst

j

T

)
, σ

(
Zte

j

T

)
·wj

)
+(1−β)θ(e)Lw(ŵ

st
j ,wj). (5.9)

In this way, we directly correct the information transferred by multiplying
by wj = 0 or wj = 1 the soft labels σ

(
Zte
j

T

)
generated by the Teacher.

This distillation contribution aims to additionally filter other mistakes of
the Teacher predictions. The soft labels become reliable at least for the
windows with wj = 0. For the other windows, they are unchanged due to
multiplication by wj = 1.

Perception Aligned Gradient Learning

Since during distillation the Student is forced to mimic the Teacher to gener-
ate the same explainability maps (related to correct outcomes), we want to
ensure the Teacher produces high-quality XAI maps. Extending the concept
of explainability-guided KD, as shown in Fig. 5.1, we incorporate perception-
aligned gradients to create explainable and robust distillation models. This
approach aims to improve both the explainability and predictive performance
of a model by ensuring that the model’s decision-making process aligns more
closely with human perception. The key idea behind perception-aligned gra-
dients is that models with gradients that better align with human perception
tend to be more robust and interpretable [40,105]. This alignment is achieved
through gradient regularization during training. Specifically, we introduce a
gradient norm penalty to the knowledge distillation loss function to enforce
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this alignment.
We first train a large Teacher network using regularized gradient training

to promote the development of perception-aligned gradients. Thus, referring
to Equation (5.8), the fine-tuning loss becomes:

Lft = Lw + Lz−s + Lreg, (5.10)

where the term Lreg ensures meaningful gradient alignment via gradient nor-
malization, and is defined as:

Lreg = λ · 1
N

N∑
i=1

||∇xLω(xi)||22. (5.11)

This approach encourages the models to be sensitive to perceptually rel-
evant changes in the aggregate power signal, potentially leading to more ro-
bust disaggregation decisions. For NILM, these explainable features should
highlight temporal regions corresponding to actual appliance state transitions
and characteristic power consumption patterns. We validate this assumption
of transfer of perceptually meaningful features by examining the gradients
with respect to the input power measurements, as seen in Fig. 5.5. We
observe that incorrect feature attribution of teacher has been transferred
to the student, coinciding with poor predictive performance. On the other
hand, IR-KD approach led to improved teacher gradients, which correspond
with high Dishwasher activation cycle, which was correctly transferred to the
Student.

5.2 Experimental setting

To assess the validity of our method, we used the datasets, training procedure,
and evaluation metrics described in the following paragraphs. Moreover, we
provide a description of the benchmark methods.
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Fig. 5.5. Comparison of Teacher XAI and predictive performance improvement
using the proposed loss function.

5.2.1 Datasets

To evaluate the generalization effectiveness of the proposed distillation method-
ology, we used the widely adopted datasets UK-DALE [65] and REFIT [91],
collected from different regions in the UK. For testing, 70% of the aggregate
measurements from houses 2, 4, 8, 9, and 15 in the REFIT dataset (spanning
2013 to 2015) were used, while the remaining data were used for fine-tuning
and distillation. Training data, used as the source for knowledge transfer,
was derived from UK-DALE houses 1, 3, 4, and 5 over a two-year period.
To ensure consistency between the datasets, REFIT data was up-sampled
to match the 6-second granularity of UK-DALE. To address differences in
the number of active samples among the monitored appliances, the datasets
were balanced as in [122,123]. To evaluate the generalization effectiveness of
the proposed distillation methodology, we used the widely adopted datasets
UK-DALE [65] and REFIT [91], collected from different regions in the UK.
For testing, 70% of the aggregate measurements from houses 2, 4, 8, 9, and
15 in the REFIT dataset (spanning 2013 to 2015) were used, while the re-
maining data were used for fine-tuning and distillation. Training data, used
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as the source for knowledge transfer, was derived from UK-DALE houses
1, 3, 4, and 5 over a two-year period. To ensure consistency between the
datasets, REFIT data was up-sampled to match the 6-second granularity of
UK-DALE. To address differences in the number of active samples among
the monitored appliances, the datasets were balanced as in [122,123].

To validate our proposed approach, we use real-world UK-DALE [64]
and REFIT [91] datasets. UK-DALE contains aggregate and appliance-level
power measurements from 5 buildings acquired at a granularity of 1 s and
6 s, respectively, while REFIT contains power measurements collected from
20 houses at 8 second intervals. To account for different sampling rates in
the two datasets, we resample the UK-DALE aggregate and REFIT measure-
ments to 6 s, using back-filling to upsample REFIT data. To account for class
imbalance, the datasets have been balanced as in [122]. Houses 2, 4, 8, 9, and
15 in REFIT have been used for testing. We extract a portion of this data
for fine-tuning and distillation (30% of the total number of windows). To
evaluate the success of our approach in performing domain adaptation, two
different scenarios are used to pre-train the Teacher network, where training
data are taken from UK-DALE houses 1, 3, 4, and 5 (UK-DALE-to-REFIT
scenario). The UK-DALE-to-REFIT scenario is used to evaluate the per-
formance of the proposed method when pre-training and target environment
domains are different. The selected appliances (kettle, microwave, washing
machine, dishwasher and washer dryer) are the most common devices mon-
itored based on the NILM literature and allows for easier comparison with
prior studies. A similar rationale guided the selection of houses from the
UK-DALE and REFIT datasets. We do not distinguish between the mul-
tiple states assumed by some devices during an activation because the aim
is to identify the entire period of activation. The validation set is extracted
from the pre-training set, as well as the mean and standard deviation values
used to normalize the input signals.
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Appliance γ µ
Washing Machine 0.50 weak
Dishwasher 0.85 strong
Washer-Dryer 0.60 weak
Kettle 0.30 weak
Microwave 0.70 weak

Table 5.1
Training hyperparameters used for training of XAI-guided Student models.

5.2.2 Benchmarks

We compare our proposed perception guided method with [72,78], which were
adapted for this task, and perform ablation study using only explainability
guided learning [18].

EdgeNILM [72] uses pruning and tensor decomposition. For our exper-
iments, we used the source code made available by the authors to ensure
reproducibility. To adapt the EdgeNILM for multi-label appliance classifica-
tion, we modified the last layer of the Sequence-to-Point CNN by replacing
it with a sigmoid function to output the state probability and used the BCE
loss function during training. As in [72], we trained a separate network for
each appliance, and applied the 60% iterative pruning method for complexity
reduction, as this approach demonstrated the lowest average disaggregation
error [72]. A window size of 99 samples was adopted for all the appliances in
EdgeNILM, based on the results presented in [72].

The LightweightCNN proposed in [78] adopts a model design approach
and consists of only two convolutional layers and one dense layer. To ensure a
fair comparison, the lightweight network was implemented and trained within
the same framework as EdgeNILM, using a window size of 199 samples as
specified in [78]. Similar to EdgeNILM, a separate network was trained
for each appliance in this approach. Finally, we compare the perception
aligned approach with the results of XAI-guided NILM [18], to highlight the
improvements and benefits.
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Model Size (MB) FLOPS (M)
EdgeNILM Unpruned [72] 69.1 32.11

EdgeNILM Pruned 60% [72] 11.15 5.23
LightweightCNN [78] 10.65 5.01

XAI-guided NILM Student [18] 0.44 7.5
IR-KD 0.44 7.5

Table 5.2
Model Size (MB) and FLOPS (M) for the benchmark methods and the proposed approach.
The model size and the number of FLOPs are calculated on all the networks used to classify
N = 5 appliances.

In Table 5.2 a computational complexity comparison between our ap-
proach and the benchmarks is reported. The analysis is conducted based
on memory occupancy (MB) and FLOPs as in [72] to ensure an appropri-
ate comparison independently from the selected hardware. The size of our
networks (IR-KD), as for XAI-guided NILM, is widely reduced compared
to LighweightCNN and EdgeNILM Pruned 60%. In terms of FLOPs, our
method requires a larger number of operations that impacts on the inference
time. For consistency, the same post-processing steps applied for our method
were applied to the raw predictions of the benchmark methods to obtain the
state of appliance. Seeds have been fixed to reproduce the experiments and
the best models have been chosen based on the performance on the validation
set. Lastly, we optimize the hyperparameters using a grid search approach,
and the best values found for each network related to each appliance are
reported in Table 5.1 for the Student models.

5.2.3 Classification and energy-based metrics

Our experiments aim to demonstrate that the proposed method effectively
reduces false positive predictions, first in the Teacher model and then in
the Student model during the distillation process. Four metrics commonly
used in the NILM literature have been considered to evaluate our method.
Defining True Positives (TP) as the number of correctly classified active
samples, False Positives (FP) as the number of inactive samples incorrectly
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classified as active, and False Negatives (FN) as the number of active samples
incorrectly classified as inactive, we used the Recall (RE) and Precision (PR)
defined as RE = TP/(TP + FN), PR = TP/(TP + FP ) to evaluate the
percentage of active samples that are not detected and percentage of inactive
samples predicted as active, respectively. The F1-score is the harmonic mean
between Precision and Recall and is formulated as F1 = 2 · P ·R/(P +R).

In order to evaluate energy efficiency of a household, it is useful to re-
port consumption and duration. For this reason, it is important to evaluate
our method based on the energy correctly assigned. For each activation, the
related energy consumption can be calculated, and the accuracy of this as-
signment can be assessed using the Total Energy Correctly Assigned (TECA)
metric [70], defined as follows:

TECA = 1−
∑

n

∑
t |p̂n(t)− p̄n(t)|
2
∑

t ȳ(t)
, (5.12)

with ȳ(t) =
∑

n p̄n(t). The terms p̂n(t) and p̄n(t) denote, the product of the
average power consumed by appliance n at the time instant t, and respec-
tively, estimated states ŝn(t) and the ground-truth states sn(t). The average
power consumed by each appliance is determined based on the average power
consumed by the appliances in the training set.

5.3 Results and Discussion

In this section, we first discuss the state identification performance in Sec-
tion 5.3.1, followed by an analysis of interpretability performance in Sec-
tion 5.3.2, using metrics introduced in Chapter 3. Lastly, in Section 5.3.3,
we jointly discuss the performance on both interpretability and state identi-
fication.
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5.3.1 State identification performance

We begin by describing the performance of the Teacher model using our pro-
posed fine-tuning strategy, which leverages strong information for windows
with weak labels wj = 0.

Table 5.3 shows that both PR and RE for the IR-KD Teacher are im-
proved compared to the XAI-guided Teacher. As a consequence, the F1-
score also improves, with an average increase of 4.7%. In terms of energy
correctly assigned, TECA shows an even greater improvement, with an in-
crease of 10.16%. For almost all appliances the occurrence of false positives
is reduced, based on the PR scores. For the washing machine, false negatives
are reduced based on the RE scores.

We observe that the explainability guided learning led to an increase in
performance compared to the baseline model for all appliances. In the context
of low-granularity NILM time series (e.g., sub-30 second data), appliance
activations are often sparse and short-lived relative to the entire observation
window. This means that the corresponding explanation heatmaps are also
likely to be sparse, with high importance scores concentrated in relatively
small regions corresponding to these activations, and near-zero or very low
scores elsewhere. This could be one of the reasons for good performance of
cosine similarity measure, as if an appliance is off (and thus has near-zero
true importance), and both models correctly attribute low importance to

Appliances IR-KD Teacher XAI-guided Teacher [18] IR-KD Student XAI-guided Student [18]
Metrics PR ↑ RE ↑ F1 ↑ PR ↑ RE↑ F1 ↑ PR ↑ RE↑ F1 ↑ PR↑ RE↑ F1 ↑
Kettle 0.78 0.45 0.57 0.77 0.42 0.55 0.73 0.60 0.66 0.31 0.97 0.47
Microwave 0.49 0.97 0.66 0.43 0.98 0.60 0.75 0.93 0.83 0.69 0.96 0.80
Washing machine 0.53 0.77 0.63 0.56 0.69 0.62 0.56 0.89 0.69 0.55 0.81 0.65
Dish washer 0.58 0.75 0.65 0.49 0.84 0.62 0.51 0.90 0.65 0.52 0.83 0.64
Washer Dryer 0.82 0.80 0.81 0.79 0.77 0.78 0.78 0.76 0.77 0.75 0.81 0.78
AVG. 0.64 0.75 0.66 0.61 0.74 0.63 0.67 0.82 0.72 0.56 0.88 0.67
TECA 69.25 62.86 72.65 61.39

Table 5.3
Comparison between the XAI-guided Teacher and Student [18] with the IR-KD Teacher
and Student. Bold represents the best scores when Teachers and Students are compared,
respectively. Underlined are the best scores among all the networks.
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Appliance
Model Kettle Microwave Washing Machine Dishwasher Washer Dryer Average

EdgeNILM Unpruned [72] 0.64 0.01 0.43 0.19 0.23 0.25
EdgeNILM Pruned 60% [72] 0.68 0.03 - 0.07 - 0.13

LightweightCNN [78] 0.75 0.33 0.51 0.53 0.42 0.43
XAI-guided NILM Teacher [18] 0.55 0.60 0.62 0.62 0.78 0.63
XAI-guided NILM Student [18] 0.47 0.80 0.65 0.64 0.78 0.67

IR-KD Student 0.66 0.83 0.69 0.65 0.77 0.72

Table 5.4
Comparison in terms of F1-score between the proposed approach and the benchmarks.
For the Edge-NILM Pruned 60% approach, Washing Machine and Washer Dryer are not
reported because the model was not able to learn with a high pruning percentage.

that region, these areas contribute little to the dot product but still factor
into the magnitude calculations. The measure becomes more sensitive to
whether both models agree on the few important, active regions. When
comparing with the Teacher model, we note improvements for all appliances,
except for WD, where the F-score remains unchanged, and KT, where the
F-score decreased, but still remained significantly higher than the baseline
model. A possible reason for the poor performance for KT is the fact that in
this case, the Teacher model might not be ideal for knowledge distillation, as
its low recall value suggests that it exhibits a high number of false negative
predictions.

The IR-KD Student, distilled from the refined IR-KD Teacher, achieves
notable improvements: a 14.28% increase compared to the XAI-guided Teacher,
a 9.09% increase compared to the IR-KD Teacher, and a 7.46% increase com-
pared to the XAI-guided Student. In particular, the results for kettle and
washing machine show even greater enhancements due to inclusion of the pro-
posed IR distillation loss contribution. Kettle signatures can be confusing in
presence of spikes that last seconds or minutes and that easily occur in a com-
mon day consumption signal. The benefits on washing machine predictions,
on the other hand, depend on its complex activations. This demonstrates
that exploiting more information from weak labels enhances both Teacher
and Student knowledge, specifically reducing the number of false positives.

Table 5.4 evidences that our approach outperforms also benchmark com-
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plexity reduction strategies. Specifically, it achieves an average F1-score that
is four times higher than EdgeNILM Pruned 60% and improves by 67.4%
compared to LightweightCNN. It is important to clarify that for the Ed-
geNILM Pruned 60% approach, Washing Machine and Washer Dryer are
not reported because the model was not able to learn with a high prun-
ing percentage. This suggests the underpinning importance of the fine-
tuning phase while moving into a real-world scenario while reducing com-
plexity that benchmark methods did not consider. The same holds for the
LightweightCNN. Despite this, it exhibits the best score for kettle. For our
approach, this incorrect behavior on the kettle could be justified by the lower
score of the Teacher, from which our Student will learn and that can not over-
come completely Teacher’s mistakes. For microwave, washing machine and
dishwasher the proposed approach matches the desired result of having lower
complexity with improved performance.

5.3.2 Explainability performance

The experimental results, shown in Table 5.5 and Fig. 5.6, provide com-
pelling insights into the explainability characteristics of both teacher and
student models across different NILM KD approaches. Our analysis focuses
on three key metrics: faithfulness (F), robustness (R), and complexity (C),
each offering unique perspectives on model interpretability. Faithfulness,
which measures how accurately explanations reflect model behavior, is par-

Appliances IR-KD Teacher XAI-guided Teacher [18] IR-KD Student XAI-guided Student [18]
Metrics F↑ R↓ C↑ F↑ R↓ C↑ F↑ R↓ C↑ F↑ R↓ C↑
Kettle 18.731 19.620 0.927 17.257 19.683 0.925 23.055 20.025 0.982 16.821 20.073 0.982
Microwave 6.662 19.916 0.918 4.863 19.953 0.920 15.344 20.146 0.932 11.227 20.154 0.98
Washing machine 12.701 19.620 0.921 10.383 19.682 0.919 18.731 19.62 0.927 17.257 19.682 0.925
Dish washer 7.810 19.724 0.920 4.778 19.720 0.907 24.33 19.854 0.908 22.87 20.18 0.931
Washer Dryer 14.027 19.833 0.940 12.093 19.880 0.937 15.129 19.294 0.911 12.953 19.671 0.872
AVG. 11.986 19.743 0.925 9.875 19.784 0.922 19.318 19.788 0.932 16.226 19.952 0.938

Table 5.5
Comparison of explainability performance between the XAI-guided NILM Teacher and
Student [18] with the IR-KD Teacher and Student.

110



WM DW MW WD KT

0

10

20

30

40

50

60

Im
p
ro

v
e
m

e
n
t

P
e
rc

e
n
ta

g
e

(%
)

TEACHER F1

TEACHER Faith

STUDENT F1

STUDENT Faith

Fig. 5.6. Relative improvement over the XAI-guided NILM Teacher and Student
[18] of explainability (Faithfulness - “Faith”) and predictive performance metrics
(F1 − score)

ticularly crucial in NILM contexts where understanding feature importance
directly impacts the reliability of appliance detection. Our implementation
quantifies faithfulness through feature perturbation analysis, where higher
scores indicate stronger correlation between identified important features
and model predictions. The results demonstrate distinct patterns between
IR-KD and XAI-guided approaches, with IR-KD Teacher models exhibiting
consistently higher faithfulness scores (mean F = 11.986) while maintaining
stable robustness (average R = 19.743) and strong complexity scores (mean
C = 0.925). In contrast, baseline XAI-guided Teacher model shows lower
faithfulness scores (mean F = 9.875) with comparable robustness scores (av-
erage R = 19.784). The KD process yields particularly interesting results
in model behavior, with IR-KD students showing great faithfulness improve-
ments across all appliances (average increase over the teacher of 89.4%). This
improvement is particularly pronounced for high-power appliances, with the
dishwasher showing a 211.5% increase in faithfulness scores compared to
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the teacher. Cross-appliance analysis reveals important patterns in model
behavior. High-power appliances (kettle, dishwasher) consistently demon-
strate exceptional faithfulness improvements under IR-KD distillation while
maintaining high complexity scores (> 0.90) with minimal robustness degra-
dation (< 2% increase). Appliances with variable operating modes (washing
machine, washer dryer) show more moderate faithfulness improvements (47-
68%) but exhibit greater variations in complexity scores. These patterns
suggest that appliance characteristics significantly influence the effectiveness
of different distillation approaches. Overall, the results indicate that gradient
normalization is most effective for appliances with distinct, high-power sig-
nature spikes, where the clear separation between operational and idle states
allows for more precise feature attribution localization. This indicates that
the proposed method helps improve the localization of the attribution maps,
while keeping the robustness and complexity relatively stable.

The architectural implications of our results suggest that IR-KD is partic-
ularly effective at transferring feature importance recognition while maintain-
ing the overall explanation stability of XAI-guided NILM. Notably, student
models consistently show improved faithfulness despite their reduced capac-
ity, indicating that model compression through knowledge distillation can en-
hance, rather than compromise, interpretability. This finding has significant
implications for edge computing deployments, where both model efficiency
and interpretability are crucial considerations. Additionally, our results re-
veal interesting trade-offs between different explainability metrics. The con-
sistent improvement in student model faithfulness, coupled with maintained
complexity scores, suggests that smaller, more efficient models can provide
more reliable and interpretable results than their larger counterparts. How-
ever, the lack of improvement in robustness metrics indicates a potential for
further work on jointly improving explanation accuracy and stability.
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5.3.3 Interpretability and Reliability joint discussion

Interestingly, the performance-explainability relationship in IR-driven KD
shows varying patterns across different appliance types. For complex appli-
ances like the washing machine, modest improvements in F1-score (0.63 to
0.69, 9.5% increase) are accompanied by larger gains in faithfulness (12.701
to 18.731, 47.5% increase). This suggests that enhanced interpretability does
not always translate to proportional improvements in predictive performance,
particularly for appliances with more complex operation patterns.

The recall metric (RE) (Table 5.3) shows consistent improvements across
all appliances in the student model, with an average increase from 0.75 to
0.82. This improvement aligns with higher faithfulness scores, suggesting that
better feature identification leads to more reliable appliance state detection.
However, we observe a trade-off in precision (PR), where some appliances
show slight decreases (e.g., kettle: 0.78 to 0.73), despite improved faithful-
ness. This indicates that while enhanced interpretability generally supports
better recall, it may not always contribute to improved precision.

A notable observation is that appliances with the highest relative im-
provements in faithfulness (microwave and dishwasher) also show the most
substantial gains in recall, suggesting that better feature attribution particu-
larly benefits the model’s ability to identify true positive cases, possibly due
to more stable model gradients. The washer dryer, which shows the smallest
improvement in faithfulness scores (7.9% increase), also demonstrates the
least improvement in predictive metrics, further supporting the correlation
between explainability and performance. The preservation of complexity
scores (C) in the student model (maintaining values above 0.9) alongside
improved F1-scores suggests that the IR-KD approach successfully transfers
both performance capabilities and interpretability characteristics. This is
particularly important as it indicates that the compression of model size
does not compromise either predictive performance or explanation quality.
These findings have important implications, suggesting that optimization for
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explainability through IR-KD can lead to improved predictive performance.
The strong correlation between faithfulness improvements and F1-score gains
indicates that focusing on interpretability during the knowledge distillation
process can enhance overall model effectiveness, rather than presenting a
trade-off between explainability and performance.

5.4 Summary

Energy-efficient and low-complexity algorithms are essential for deploying
DNNs on resource-constrained edge devices. While KD has emerged as a
prominent technique for model compression, our work addresses critical gaps
in existing approaches that primarily focus on performance metrics while
overlooking interpretability and reliability challenges. Additionally, previous
studies overlooked critical aspects of how incorrect Teacher knowledge im-
pacts Student learning outcomes, negatively influencing the aforementioned
challenge. Through our proposed IR-KD framework, we demonstrate that in-
corporating perception-aligned gradients and weak label information during
knowledge transfer can significantly enhance both model interpretability and
reliability. Our evaluation in the context of NILM applications reveals that
the IR-KD approach not only maintains computational efficiency, but also
enhances decision-making transparency across diverse deployment scenarios.
Quantitative explainability metrics confirm that the proposed method leads
to more faithful explanations, while keeping the explanation visualizations
robust and low in complexity. On the other hand, the improved learning
strategy demonstrates enhanced predictive performance. These results indi-
cate that training explicitly for transparency and reliability can substantially
improve the knowledge distillation process.
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Chapter 6

Towards Equitable EV Charging
Station Placement Using Graph
Neural Networks

While major world economies have announced ambitious charging infras-
tructure plans, current deployment patterns risk reinforcing socio-economic
inequalities. Previous studies have highlighted numerous barriers that hin-
der the widespread adoption of EVs [73]. The high initial costs associated
with EVs pose a significant challenge. Without adequate financial subsidies,
steep upfront expenses can deter potential buyers. As discussed above, this
challenge has been the main focus of national efforts worldwide. The time
required for a full battery recharge - which far surpasses the refueling time
for fossil fuel vehicles - further complicates the attractiveness of EVs [19].
Furthermore, driving range anxiety, i.e., the fear that an EV will not have
sufficient battery capacity to complete a desired journey, remains a signifi-
cant concern. Recharge time and range anxiety have mostly been addressed
from the perspective of investments in the development of battery technol-
ogy, lightweight body and material design, and improved powertrain, leading
to better utilization, higher capacity, and improved driving range. How-
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ever, effective installation of charging infrastructure directly or indirectly
addresses the above concerns of potential EV adopters. Early adopters of
EV technology tend to be homeowners residing in high-income areas, uti-
lizing home-based charging [23]. On the other hand, to achieve widespread
adoption of EVs, a substantial number of newer EV adopters should belong
to moderate-income groups residing in multifamily residential communities
that are less likely to have access to home charging [30]. Thus, public EVCS
infrastructure holds a substantial importance for the adoption of EVs, espe-
cially in deprived communities [54]. Previous research suggests that areas
with greater deprivation and lower economic position are associated with
higher levels of pollutants [41]. In the context of EV adoption, this means
that those who could benefit the most from low-carbon technology are the
least able to afford it. Therefore, as EV adoption continues to rise, ensur-
ing that EV infrastructure is placed in a fair and just way that benefits
all members of society is of utmost importance for achieving an equitable
transition towards net-zero, in line with UN Sustainable Development Goals
(SDGs) [13], specifically, SGD 9.1 regarding equitable access to infrastruc-
ture and SDG 11.2 regarding sustainable and accessible transport systems
for all.

To address these disparities, researchers have proposed various approaches
to incorporate equity considerations into EVCS planning. Quantification of
social equity w.r.t. EVCS access is proposed in [77] with a social equity access
function that incorporates the Quality of Life (QoL) index and spatial factors,
including distance to EVCSs, saturation index of current EVCSs, distance
to EV demand points, and average traffic flow, aiming to identify regions
with low QoL index scores and poor accessibility to EVCSs. A combination
of socioeconomic indicators, spatial accessibility measures, and policy inter-
ventions is suggested in [54] to address equity concerns in EVCS placement.
A multi-objective optimization model that considers site development costs,
social equity access, and EV demand fulfillment is proposed in [79], whereby
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social equity access is quantified using a combination of socioeconomic fac-
tors and spatial accessibility measures. A systematic and analytical approach
is presented in [100] to investigate the equitable distribution of public EV
charging infrastructure, considering both horizontal and vertical equity, using
census data to measure accessibility and evaluate inequity using spatial au-
tocorrelation analysis and the Gini index. A more design-oriented approach
investigates the influence of charging station accessibility and agglomera-
tion effect on utilization rates in [39], considering the operational aspects
of charging stations and the market competition among multiple operators.
Authors in [45] present a methodology for optimal placement of charging sta-
tion energy hubs (CS-EHs) using data aggregation from various open-source
datasets, including information on renewable energy sources, traffic density
patterns, and EV charging behaviors in Norway. [30] models the choice of
charging location for PEV drivers as a function of various demand drivers,
including the cost of charging at home and work, characteristics of charging
infrastructure, and demographic factors. The viewpoints of EVCS owners,
grid operators, and EV users are incorporated in the multi-objective op-
timization model of [77], balancing the trade-offs between minimizing site
development costs, maximizing social equity access, and maximizing EV de-
mand fulfillment. The spatial clustering of public EVCS infrastructure and
their associated characteristics in the Chicago metropolitan area is proposed
in [27], considering the perspectives of both EV users and charging infras-
tructure providers, highlighting the wealth disparity and the need to balance
efficiency with equity in EVCS placement.

In contrast to prior work, this chapter presents a methodology that pro-
poses a novel approach leveraging GNNs to enhance EVCS placement. By
embedding diverse multi-modal data sources, including existing EVCS uti-
lization, infrastructure information, traffic flow patterns, points of interest,
deprivation indices, and parking infrastructure, our model provides a holistic
and practical solution to EVCS distribution. The focus on underserved areas
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through the proposed placement utilization metric and the consideration of
specific land uses directly addresses equity concerns often overlooked in pre-
vious studies. Our approach offers targeted recommendations for different
land use types (residential, working/industrial, commercial), acknowledging
the varying charging needs across urban contexts. We conduct extensive in-
frastructure placement evaluations using multi-source data from the selected
urban areas of major cities of Scotland. Specifically, the methodology brings
the following contributions by modelling of GNNs aimed to achieve equitable,
geodemographic aware EVCS planning:

• Integration of multiple socio-economic and environmental factors to
support equitable EVCS infrastructure location and capacity place-
ment.

• Modeling of urban EV charging demand via graphs and development
of a novel GNN architecture to learn complex urban dynamics and
correlation between charging demand influencing factors to facilitate
identification of optimal areas for EVCS placement.

• Detailed analysis of EVCS utilization and distinct usage patterns in res-
idential, working/industrial, and commercial zones, as well as between
deprived and non-deprived areas in major cities of Scotland.

• Targeted placement decisions informed by urban land use requirements,
and historical EVCS utilization and capacity, ensuring that placements
are aligned with local policy goals.

• The evaluation of impact of targeted EV infrastructure deployment in
promoting higher EV uptake in deprived areas with significant poten-
tial.
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6.1 Data Processing and Labeling Methodol-

ogy

(a) Charging and parking spots (b) Public service and social POI

(c) SIMD values per data zone (d) Isochrone distance from node

Fig. 6.1. Charging demand node area description and data used in this study

6.1.1 Case Study

The primary objective of the electrification of transport is to mitigate Green-
house gas (GHG) emissions on a global scale. However, EVs are often pow-
ered by electricity derived from non-renewable energy sources, specifically
power stations run on fossil fuels. This means that while EVs themselves do
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not directly emit GHG, the overall reduction in GHGs depends largely on
how the electricity they use is generated. Therefore, for EVs to effectively
benefit the climate and to ensure the sustainability of the entire energy sys-
tem, the use of renewable energy sources for EV charging is essential. To this
end, Scotland represents an interesting case study, as it is the UK leader in
renewable energy production, continuously generating more electricity than
it needs, with net electricity exports amounting to 15.9 TWh in 2023. In
Scotland, the total electricity generation from renewable sources in 2023 was
33.3 TWh, of which 77.5% came from wind energy, 13.8% from hydro, and
the rest from biomass and other sources [124]. As a result, in the context
of EV ownership, Scotland was identified as a UK region with the highest
lifecycle assessment evaluations aimed at quantifying the reduction of carbon
footprint per vehicle [131]. Given its leading position in renewable energy
generation, Scotland can more effectively leverage public EV charging to
achieve higher EV uptake, charging utilization, and a substantial decrease in
GHG emissions, setting a standard for other UK regions to follow. Glasgow
and Edinburgh were selected as primary case cities to extend the relevance
and application of this study. These cities represent distinct urban mor-
phologies with significant variations in spatial layout, population density,
and transportation infrastructure, which are primary factors affecting EV
charging demand patterns. The socio-demographic diversity within these
cities spans multiple critical dimensions, including substantial variations in
income levels (from affluent neighborhoods to areas of high deprivation), car
ownership rates, racial makeup of population, housing types (detached homes
to high-density apartments), and transportation access.

Glasgow and Edinburgh are not only the two largest cities in Scotland
but also present largest EV adoption and existing infrastructure, vital for
a comprehensive analysis: Glasgow contains 391 or 7.8% of Scotland’s to-
tal number of active charging points, whereas Edinburgh has a total of 298
charging points. Furthermore, the selected cities exhibit high variability in
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socio-economic conditions, reflected in their deprivation indices. Consid-
eration of such factors is essential to understand potential barriers to EV
adoption and to ensure that the benefits of the electrification of transport
are equitably distributed.

6.1.2 Data Collection and Processing

To fully capture metrics that drive charging demand, we base our analysis on
the various charging demand influencing factors [3]. To effectively capture
these factors within a specific area, we introduce the concept of charging
demand nodes. These nodes are defined as 500-meter radius circles centered
around charging stations or parking spots, a distance that aligns with the
observed preference for shorter walking distances to charge vehicles [128].
This approach allows us to encapsulate and analyze the relevant influencing
factors within a practical and accessible range. To illustrate this concept, we
provide visual representations of these charging demand nodes in Fig. 6.1,
where each subfigure showcases a demand node centered on a charging sta-
tion. The 500-meter radius of these nodes encompasses a variety of pertinent
influencing factors that contribute to charging demand. Our study takes
into account a diverse range of these factors, which we will explore in detail,
to provide a holistic understanding of the dynamics driving electric vehicle
charging demand in urban environments.

Existing EVCS Infrastructure and Charging Utilization Data

To collect EVCS infrastructure data, National Chargepoint Registry [38] was
used. The registry contains detailed records of over 4,000 public EVCSs in
Scotland, including station name, location, operational status, tariffs, avail-
ability, charging power output, charging plug type, etc. To collect EVCS
session data, ChargePlace Scotland registry [32] was utilized. Developed as
a national network of EVCS on behalf of the Scottish Government, Charge-
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Place Scotland registry includes detailed historical records of public EV
charging across Scotland. For the purpose of this study, key factors such
as the geographic coordinates of each station, charging power output, types
of connectors available, and the frequency and duration of charging sessions
are used. Fig. 6.2 illustrates the public EVCS heatmaps for Glasgow and
Edinburgh, which indicates locations where charging sessions were performed
between October 2022 and January 2024. Only active, public EV chargers
were considered.

Parking Infrastructure Data

The process of identifying potential locations for EVCS relies on Open-
StreetMap (OSM) data, a comprehensive and crowd-sourced mapping re-
source [95]. The data collection encompasses a wide range of parking lo-
cations, including on-street parking, as well as parking facilities at event
venues, hospitals, universities, and other key locations, all identified through
the ’parking’ amenity type in OSM. While our study does not explicitly
model investment costs, the methodology inherently considers cost efficiency
through its strategic focus on existing parking infrastructure. By identi-
fying potential EVCS locations exclusively from existing parking spots, we
significantly reduce installation costs by eliminating the need for land acqui-
sition, demolition, or major construction work. In addition, this approach
significantly reduces initial capital expenditure by eliminating the need for
land acquisition and new construction. Second, existing parking lots are al-
ready integrated into the urban fabric, ensuring immediate accessibility and
connectivity – factors crucial for user convenience and adoption rates. By re-
purposing existing parking spaces, this strategy aligns with sustainable urban
planning principles, minimizing the environmental impact typically associ-
ated with new construction projects. Lastly, this approach also facilitates
quicker deployment of charging infrastructure, accelerating the transition to
EVs and supporting broader environmental and public health goals.
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(a) Glasgow (b) Edinburgh

Fig. 6.2. Heatmaps of historical EVCS utilization

Demographic and Deprivation Data

The study incorporates elements related to the Human Development Index,
as detailed in the Scottish Index of Multiple Deprivation (SIMD) dataset
[108]. Notably, SIMD data is organized into “data zones", which are specific
areas designated for small-scale statistics related to deprivation in Scotland
(as seen in Fig. 6.1.c). These statistics include relevant domains such as
income, employment, education, housing, health, crime, and geographical
access. Integrating SIMD data into the analysis offers valuable insights into
the socioeconomic context of potential EVCS sites, ensuring that infrastruc-
ture is strategically placed to be effective and beneficial, particularly in areas
that might otherwise lack sufficient EV infrastructure. For each existing or
potential charging spot, we collect data based on the data zone it is located
within, enabling us to precisely align socio-economic and spatial factors in
our placement strategy. In this study, we classify areas as “deprived" if they
fall within the lower 50th percentile of the SIMD index, while those above
this threshold are categorized as “non-deprived". For the purpose of this
study, the latest SIMD report was utilized [108]. To address potential bi-
ases, instead of relying on the aggregate SIMD rank, a charging demand
node incorporates individual socioeconomic indicators that comprise SIMD
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as node attributes, specifically: Population density, Working population, In-
come rate, Employment count, Reachability metrics, and Crime rate.

Point of Interest Data Categorization

Point of Interest (POI) represents a specific location or landmark within a
city that is relevant to travelers, residents, or urban planners. These are typ-
ically places that people might want to visit, navigate to, or use as reference
points when moving around a city. Previous research consistently identifies
POIs as crucial indicators of EV charging demand [2,29,45]. Our study lever-
ages the comprehensive OpenStreetMap (OSM) [95] dataset to collect and
analyze POI data, providing a rich source of information on potential charg-
ing demand hotspots. In our approach, we categorize POIs into two primary
types: social and recreational. Social POIs encompass locations such as ed-
ucational institutions (schools and universities), healthcare facilities (hospi-
tals and GP practices), financial centers (banks), and other essential services
(pharmacies). These represent areas where people spend significant time
during their daily routines. Recreational POIs, on the other hand, include
leisure and entertainment venues like restaurants, cafes, theatres, cinemas,
and shopping centers, which attract visitors for shorter duration but often in
higher volumes. The inclusion of both social and recreational POIs ensures
that our charging infrastructure planning accounts for a wide spectrum of
public activities, from daily necessities to leisure pursuits. The distribution
of POIs aids in strategically placing charging stations in areas where drivers
are likely to spend significant time, enhancing charging convenience.

Traffic Flow Data Creation

Traffic flow data is sourced from the UK Government’s Road Traffic Statis-
tics [37], and includes vehicle movement patterns, traffic volumes, and peak
usage times across the national road network. By incorporating this data into
our model, we can accurately identify high-traffic areas where the demand for
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EV charging is likely to be significant. Traffic count data is typically collected
at specific points along roads, using methods such as fixed sensors or periodic
manual counts. However, EV charging demand is not limited to these spe-
cific data collection points but extends to broader areas where vehicles might
park and charge. This mismatch between point-based data collection and
area-based charging demand necessitates a method to approximate traffic
data to cover potential charging locations. To overcome this, we developed
a robust, adaptive approach that captures spatial variability and accounts
for data sparsity. Starting with a 1km radius around each potential charg-
ing location, we collect all available traffic flow data points within this area.
We then calculate an initial average traffic flow for each potential charging
location. Subsequently, the algorithm enters a recursive phase, expanding
the dataset in each iteration by incorporating both official traffic data and
previously calculated approximations for charging points. This expansion
allows for the estimation of traffic flow at locations initially lacking data by
considering newly calculated values from nearby areas. The process iterates,
progressively refining and propagating traffic flow information across the net-
work of potential charging locations. Convergence is reached when successive
iterations yield no significant changes in traffic flow estimates, indicating a
stable and comprehensive set of values.

Land Use Label Creation via Clustering

Land use is a critical factor in determining optimal locations for EV charging
stations. It influences accessibility, demand patterns, and dwell times, which
are essential for meeting charging needs efficiently. Different land uses offer
varying levels of existing electrical infrastructure, affecting installation costs
and feasibility. Zoning regulations and future development plans tied to land
use also impact where stations can be placed. However, detailed land use
information for Scotland is not easily accessible. To improve the placement
of new EVCS infrastructure, we conducted a comprehensive land use labeling
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process for both existing and potential locations. This approach is crucial
for maximizing accessibility and efficiency, as strategic alignment with ex-
isting and planned land use ensures that charging infrastructure effectively
supports high-demand areas such as residential neighborhoods, commercial
zones, industrial hubs, and transportation hubs, thereby enhancing conve-
nience for EV users. Our methodology employs k-means clustering on a
range of geodemographic influencing factors throughout the whole of Scot-
land. These factors included income deprivation rates, traffic flow, counts
of social and recreational POIs, existing charger numbers, reachability met-
rics, normalized population and employment deprivation figures, and crime
rates. Setting k = 4, this initial clustering yielded four distinct land use
groups that were labeled as: Residential, Rural, Working/Industrial, and
Commercial areas, closely aligning with previous findings reported in [2].

This initial clustering, performed on a Scotland-wide scale, provided a
general categorization of land use. However, refinement was necessary due
to the distinct urban fabric of Glasgow and Edinburgh compared to the
broader Scottish context used in the initial clustering. To refine the initial
cluster labels, we utilized OSM Landuse data [107]. OSM Landuse dataset
describes the primary use of land by humans, where land use features are
identified with a landuse tag. The database contains over a thousand tag
values for landuse used in the OSM Landuse dataset. In this chapter, we
refine our results by using ’residential’ tag to denote Residential land use,
’industrial’ tag to denote Industrial/Working land use, and ’retail’ tag to
denote Commercial land use. In cases where initial clustering labels differed,
the land use was refined based on the corresponding OSM Landuse tag. This
allowed us to more accurately classify areas within these cities, particularly in
distinguishing between residential and working/industrial areas, a challenge
in urban settings where these uses often overlap or exist in close proximity.
The impact of this refinement is substantial and clearly demonstrated by the
shifts in classification for both cities.
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OSM land use data was collected based on the location of each poten-
tial EVCS location within OSM tiles, supplemented with gap-filled data if
stations fell outside tile boundaries. No rural areas were detected within
Glasgow City or City of Edinburgh councils. This refined approach enabled
a more nuanced classification, rectifying many areas initially identified as
working/industrial that were, in fact, predominantly residential. The result
is a more accurate representation of land use patterns, crucial for informed
EVCS placement decisions. To illustrate the outcomes of this labeling pro-
cess, we provide a visual overview of the labeled areas for all charging and
available parking infrastructure in Glasgow and Edinburgh, along with per-
area statistics, in Fig. 6.3. Differences in charging frequency, duration, energy
consumption, utilization, and charging power output within various land use
types are shown in Table 6.1.
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(b) Refined GL Sites per Area Statistics

(c) Refined EDI Sites per Area
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(d) Refined EDI Sites per Area Statistics

Fig. 6.3. Site statistics per location (R - residential, W - working/industrial, C -
commercial) after refinement with land use data for Glasgow City (GL) and City
of Edinburgh (EDI).

Table 6.1
Daily average EV charging session statistics for different locations

City Location Daily
Sessions

Charge Duration
per Session (mins)

Energy Delivered
per Session (kWh) Utilization Rate (%) Charger Capacity (kW)

Glasgow
Residential 1.35 198.11 19.70 7.36 17.31

Working/Industrial 1.00 132.87 23.38 4.05 35.95
Commercial 1.43 167.82 12.58 4.56 16.60

Edinburgh
Residential 1.96 172.86 16.71 5.33 25.42

Working/Industrial 0.83 134.16 17.98 4.70 18.53
Commercial 0.96 209.44 14.78 2.68 22.00
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6.1.3 Utilization-based Charging Demand Node Label-

ing

In our effort to improve the placement of EVCSs, we recognize the critical
importance of leveraging historical data to inform future infrastructure deci-
sions. To this end, we have developed a methodology that utilizes historical
utilization rates of existing charging stations to identify areas with potential
for successful EVCS deployment. The cornerstone of our approach is the anal-
ysis of EVCS utilization that includes detailed historical charging demand
information. By examining this data, we aim to uncover patterns and factors
that contribute to the success of charging stations in different locations. This
data-driven method allows us to move beyond theoretical assumptions and
base our decisions on actual usage patterns, thereby increasing the likelihood
of placing new EVCS infrastructure in areas where they are most needed and
likely to be well-utilized. To facilitate this analysis, we classify existing charg-
ing nodes into three distinct categories based on their historical utilization
records: low, medium, and high utilization. This classification serves as a
ground-truth labeling system, enabling us to identify the characteristics and
contextual factors associated with well-performing charging stations. In cal-
culating EVCS utilization, we adopt an energy-based metric rather than a
time-based one, as proposed by [19]. This choice is motivated by the need
to account for potential overstay periods and to more accurately reflect the
actual usage and efficiency of each charging station. The utilization rate for
an EVCS over a T -hour period is calculated as:

UT
j =

1

cj ∗ T
∑
i

ϵji , (6.1)

where UT
j represents the utilization rate of EVCS j over period T , cj denotes

the power output of EVCS j in kilowatts (kW), and ϵji signifies the energy
consumed by EV i from station j.

Crucially, we extend this classification system to nearby parking infras-
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tructure. Parking spots within the charging demand node radius of an ex-
isting EVCS are labeled with the same utilization potential as the charging
station itself. This process allows us to identify the potential of parking
areas for EVCS installation, even if they do not currently have charging fa-
cilities. To ensure comprehensive coverage and account for the influence of
neighboring areas, we employ a recursive labeling algorithm. Initially, we
label parking spots within the immediate radius of existing charging stations
based on the historical utilization potential of the station. For subsequent
iterations, we consider both the labeled parking spots and the original charg-
ing stations. This expanded dataset allows us to label previously unlabeled
parking areas that fall within the radius of newly labeled spots. We repeat
this process, propagating potential labels across the network of parking in-
frastructure until reaching convergence, a point where no new parking spots
are labeled or changed in an iteration. By analyzing the utilization patterns
of existing and potential stations, we can identify areas with similar char-
acteristics that currently lack adequate charging infrastructure. These areas
are then classified as having potential for new EVCS placement. We split
the data into three balanced classes: low, medium, and high utilization.

6.2 Methodology for Geodemographic-aware EVCS

Location Planning for Equitable Placement

Our proposed framework for optimizing EVCS infrastructure placement in-
tegrates geodemographic data with a spatially-aware GNN approach, as il-
lustrated in Fig. 6.4. This approach comprises four key components designed
to capture the complex dynamics of urban charging demand and inform
strategic infrastructure decisions: 1) First, we employ graph representation
learning to model and analyze the intricate relationships within the urban
charging ecosystem, capturing spatial dependencies and connectivity pat-
terns [Subsecs. 6.2.1, 6.2.2]; 2) Building upon these representations, we uti-
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lize a clustering module to categorize nodes based on their characteristics and
identify low, medium and high potential installation areas based on historical
EVCS utilization [Subsec. 6.2.3]; 3) Finally, we employ a utility-informed site
selection process based on area potential, taking into account installation re-
quirements, such as the number of chargers to be installed, their installation
utility, and how they affect the overall charging potential of surrounding ar-
eas within specific land use [Subsec. 6.2.3]. This integrated approach allows
for a holistic evaluation of potential EVCS sites, considering both micro-level
factors and macro-level impacts. In the following subsections, we describe
each component in detail.

6.2.1 Geodemographic-aware GNN

Let G = (V , E) represent a graph where V and E denote sets of nodes and
edges, respectively. In the context of the EVCS placement problem, we define
a charging demand node v ∈ V as the area within a radius r of an existing EV
charger site. The edges E represent undirected connections between proxi-
mate nodes, with two nodes being connected if their physical distance does
not exceed r. These edges define the physical and functional connectivity
within the network, affecting the flow and demand of EV charging. We de-
fine A ∈ 0, 1|V|×|V| as the adjacency matrix of the graph, where au,v = 1 if an
edge exists between nodes u and v, and au,v = 0 otherwise, for all pairs of
nodes u, v ∈ V . Additionally, we set au,u = 0 for all u ∈ V , as self-loops are
not considered in this model.

Each node in the graph is characterized by an F -dimensional feature
vector, h ∈ H, where H ⊂ R|V|×F . This feature vector encapsulates a di-
verse array of information within the radius r of each node, including socio-
demographic composition, land use, density and types of POIs, traffic pat-
terns, and existing parking infrastructure. By incorporating this multifaceted
dataset into the graph structure, we can develop a sophisticated understand-
ing of the EV charging demand dynamics at each node.
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Fig. 6.4. ChargeDEM EV charging site selection approach.

GNN are particularly well-suited for the EVCS placement problem due
to their ability to model complex spatial and relational data structures in-
herent in transportation networks. This approach enables the creation of
EVCS placement systems that accurately capture the intricate topology of
urban road networks, with nodes representing potential station locations and
edges denoting connecting routes. Furthermore, this framework facilitates
the seamless integration of heterogeneous data sources, such as geospatial,
demographic, land use, and traffic flow information, as node and edge fea-
tures, providing a comprehensive basis for informed decision-making in the
placement of EVCS.

6.2.2 Urban Charging Graph Representation Learning

We approach the challenge of capturing structural information and encoding
the relational context of urban charging demand through the lens of graph
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representation learning, specifically utilizing graph autoencoders. This ap-
proach allows us to effectively capture and leverage the complex relationships
inherent in the graph structure of urban charging demand. These relation-
ships encompass a wide array of influencing factors, including spatial char-
acteristics, existing demand patterns, urban vitality indicators, demographic
composition, traffic flow dynamics, area reachability, and safety consider-
ations. Using graph auto-encoders, we can distill these multifaceted and
interconnected elements into a comprehensive representation that faithfully
reflects the intricacies of urban EV charging ecosystems.

The application of autoencoders for unsupervised graph representation
learning based on GNNs has been proposed in [68]. An autoencoder archi-
tecture typically comprises three key components: an encoder, latent repre-
sentations, and a decoder. The primary role of an encoder function is to map
the input data into a compact latent space, while the decoder attempts to
reconstruct the original input from these latent representations. This recon-
struction process is guided by a specified reconstruction criterion, ensuring
that the learned representations capture essential features of the input data.
In the context of graph autoencoders, let fe denote the graph encoder func-
tion and fd represent the graph decoder function. The fundamental objective
of graph autoencoders is to learn the following mappings:

H ′ = fe(A,X), G′ = fd(A,H
′), (6.2)

where for an input X, H ′ denotes the latent space, while G′ represents the
reconstructed features of the graph computed by the decoder.

[99] introduced completely symmetric graph convolutional autoencoders
that leverage both the graph structure and node attributes throughout the
entire encoding-decoding process. This approach addresses the instability is-
sues commonly associated with graph convolutional layers by incorporating
Laplacian sharpening layers, which counteract the smoothing effects typically
observed in these models. While this method effectively resolves several com-

133



mon graph representation learning challenges, it does not provide a mecha-
nism for dynamically weighting node importance. In the context of GNNs,
node representations are typically learned using a set of node features. The
conventional GNN approach involves node-level feature aggregation within
a defined neighborhood, iteratively learning node representations by aggre-
gating information from neighboring nodes to create a latent representation
H ′. However, this standard methodology often assumes uniform importance
across all neighbors, assigning aggregation weights based solely on degree
distance. This uniform weighting approach, while computationally efficient,
may not accurately capture the nuanced relationships and varying degrees
of influence between nodes in complex networks, such as those represent-
ing urban EV charging demand. The inability to dynamically adjust node
importance can potentially limit the model’s ability to discern and leverage
critical patterns in the data, particularly in scenarios where certain nodes
or relationships carry disproportionate significance in determining optimal
EVCS placement.

To address these limitations, we employ the self-attention mechanism
during the encoding phase using Graph Attention Networks (GATs) [132].
Unlike conventional GNNs, GATs dynamically assign weights to neighboring
nodes based on their relative importance within the neighborhood, utilizing
a masked attention mechanism. The input to a GAT layer is a set of node
features X = X1, X2, ..., X|V|, where Xi ∈ RF represents the feature vector
of node i. The layer then computes an output H ′ = H ′

1, H
′
2, ..., H

′
|V|, where

H ′
i ∈ RF ′ and cardinality F ′ may differ from the input feature dimension F .

The key innovation of GATs lies in their computation of attention coefficients
αij. These coefficients quantify the importance of the feature vector of node
j to node i. The coefficients are computed only for nodes j ∈ Ni, where Ni

represents a defined neighborhood of node i in the graph.

αij =
exp(a(WHi,WHj))∑

k∈Ni
exp(a(WHi,WHk))

, (6.3)
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where W ∈ RF ′×F represent a network weight matrix, and a denotes the
attention function. This masked self-attention mechanism allows the model
to focus on relevant local structures while ignoring irrelevant or distant nodes.

As an urban graph tends to have a large amount of neighbors, to address
the “neighbor explosion" problem often encountered in large urban graphs,
we implement a data sampling procedure inspired by [137]. This approach
involves obtaining a set of subgraphs by sampling the original training graph
and then constructing the graph autoencoder based on these subgraphs. This
sampling strategy allows for efficient processing of large-scale urban networks
while maintaining the integrity of local structures.

6.2.3 Node Clustering and Site Selection Algorithm

The generated graph embeddings are utilized as input for a k-means cluster-
ing procedure, employed to create a classification of the utilization potential
of EVCS locations. The classification scheme is based on utilization data,
which was categorized into three balanced classes: low, medium, and high
utilization. By classifying areas into these utilization categories, we can pri-
oritize medium and high utilization zones for further analysis in the charging
station placement process, thereby optimizing the potential impact and effi-
ciency of new EVCS installations.

To identify the best charging location among a set of potential candidate
sites, we focus our analysis on medium and high utilization areas identified
through clustering techniques. Our primary objective is to maximize area
demand coverage by simulating the impact of adding new charging stations
that can fully meet existing local demand. To quantify this impact, we
introduce Incremental Coverage Difference metric (ICD). The ICD metric
evaluates the “usefulness" of potential infrastructure placement by measuring
the incremental change in an area’s total charging output when a new station
is added. This metric is designed to favor locations where new chargers
can completely fulfill the existing demand in the area, thus maximizing the
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“impact" of each new installation. The ICD metric is based on the core
charging demand factors and requires knowledge of three key elements: 1)
total annual EV flow within the demand node, 2) average annual power
requirement of an EV, and 3) maximal annual power output of a demand
node. To estimate the approximate number of EVs in each city, we multiply
the number of registered private vehicles N c

CAR with the assumed 10% EV
penetration rate: N c

EV = 0.1×N c
CAR. Applying this formula to our case study

cities yields the following estimates: NGlasgow
EV = 20, 480 and NEdinburgh

EV =

17, 850.

Vehicle Model Battery Capacity (kWh) Range (km)

Tesla Model Y 60-75 455-542
MG4 51-77 349-520
Audi Q4 e-tron 82 455-543
Tesla Model 3 60-78 513-528
Polestar 2 82 555-653
Volkswagen ID.3 62-82 430-558
Kia e-Niro 68 463
BMW i4 83.9 413-589
Volkswagen ID.4 82 515-550
Skoda Enyaq iV 82 538-547

Table 6.2
Battery capacity and range of the most sold EVs in the UK in the year 2023 [114].

To quantify the charging frequency of EVs within city limits, we first
establish key parameters based on existing data. Drawing from statistics
on the most purchased vehicles in the UK shown in Table 6.2, we set the
average EV driving range to rangeavg = 466.45 km and the average battery
capacity to capacityavg = 68.20 kWh. These figures provide a baseline for our
calculations. We then incorporate traffic data from the UK Department of
Transport Road Traffic Statistics for 2022, which reports total annual traffic
for private cars and taxis as tGlasgow = 2.684 billion kilometers in Glasgow
City and tEdinburgh = 2.293 billion kilometers in the City of Edinburgh. Using
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these figures, we calculate the average annual travel distance per car in each
city using the formula:

dcCAR =
1

N c
CAR

tc[
km

year
]. (6.4)

This yields dGlasgow
CAR = 13,105.47 km

year
for Glasgow and dEdinburgh

CAR = 12,845.94
km
year

for Edinburgh.
Assuming that EV users typically recharge their vehicles only when the

battery capacity falls below 20%, we can calculate the yearly charging fre-
quency of an EV:

f c
EV = dcCAR ÷ (rangeavg × 0.8)[

charges

year
]. (6.5)

This yields fGlasgow
EV = 35.12 charges

year
for Glasgow and fEdinburgh

EV = 34.42 charges
year

for Edinburgh.
Similarly, the average charging need of an EV per year is:

ecEV = f c
EV ∗ (capacityavg ∗ 0.8)[

kW

year
]. (6.6)

which results in eGlasgow
EV = 1916.14 kW

year
for Glasgow and eEdinburgh

EV =

1877.96 kW
year

for Edinburgh.
To determine the charging power output of each station, we focus on a

circular area with a radius of 500 meters centered on each charging station.
This radius is chosen based on previous studies, such as [128], which indicate
that 500 meters is generally considered a comfortable walking distance to a
charging station. This approach allows us to define charging demand nodes
that realistically represent areas where EV users are likely to utilize a given
charging station. Within each of these 500-meter radius nodes, we calculate
the annual traffic flow, taking into account the assumed 10% EV penetration
rate. This calculation is crucial for estimating the potential charging demand
in each node i and is expressed as:
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flowi
EV = 0.1× flowi

CAR. (6.7)

where flowi
EV represents the annual EV traffic flow within node i, and

flowi
CAR is the total annual traffic flow in that node.

Building upon our previous calculations, we next determine the total
annual energy requirement for each demand node:

Ci
total = flowi

EV × eEV [kWh]. (6.8)

To assess the current charging need within each demand node, we calcu-
late its annual output based on the existing infrastructure. This calculation
takes into account the average charger power output (Oavg) measured in kW,
and assumes maximal (24-hour) energy utilization. The current annual out-
put of a demand node is expressed as:

Ci
current = 24× 365× no_chargersi ×Oi

avg[kWh]. (6.9)

As a result, the current demand node coverage can be estimated as:

Ci = min[
Ci

current

Ci
total

, 1][%]. (6.10)

To evaluate the impact of adding a new charging station to a demand
node, we calculate the updated coverage of the node. This calculation con-
siders the additional charging power output provided by the new charger,
which has an output of cout measured in kilowatts (kW). The new coverage
of the demand node after adding this charger is expressed as:

Ci
new = min[

Ci
current + 24× 365× cout

Ci
total

, 1][%]. (6.11)

In this formula, Ci
new represents the new total coverage of demand node

i after the addition of the new charger.
To quantify the impact of adding a new charging station to a demand
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node, we introduce the ICD. This metric provides a measure of the im-
provement in output relative to the node’s energy requirements. The ICD is
calculated using the following formula:

ICDi = Ci
new − Ci[%]. (6.12)

As a result, this study adopted a problem setup tailored to identify ar-
eas or communities that would benefit most from the installation of a single
charging point. Our approach focuses on a methodology that assesses the
impact and accessibility for underserved regions rather than following tradi-
tional optimization frameworks. We model the urban context by framing a
graph-based problem where each potential or existing charging point repre-
sents a charging demand node that holds information about existing charging
and parking infrastructure, traffic flow, socio-demographic factors, POIs, and
charging utilization within the demand node area, as defined in GNN graph
construction process explained in Section 6.2.1. Following the node cluster-
ing step, as indicated in Fig. 6.4, the potential sites are ranked based on their
ICD values. Each potential site is a binary variable: either it gets a charging
point or not, while constraints include the number of sites selected, ensur-
ing geographic spread, and the selected nominal power of a charging point.
Algorithm 1 presents a systematic method for identifying locations for new
charger installations based on their ICD scores. This approach considers the
installation of k number of new chargers with a predefined power output
and assesses the incremental benefit of adding a new charging station to an
existing demand node. The algorithm focuses on a charging demand node
area, which contains ncharging existing chargers and nparking parking stations.
As a result, the computed ICD values are sorted in descending order, as seen
in Fig. 6.7 and Fig. 6.8. A higher ICD score indicates a demand node with
unmet charging needs due to insufficient infrastructure, where installation of
a new charging point would make a significant impact on meeting the area
needs, making it a prime candidate for new charger installation. Conversely,
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sites that already meet or exceed the local charging demand are excluded
from consideration, ensuring efficient resource allocation. This data-driven
approach allows for targeted expansion of the charging network, prioritizing
areas where new installations will have the most substantial impact on im-
proving charging accessibility and meeting the growing demands of EV users.
As a result, by systematically evaluating potential sites based on their ICD
scores, urban planners and policymakers can make informed decisions that
optimize the distribution of charging infrastructure across the city, ultimately
enhancing the overall EV ecosystem.

6.2.4 EVCS Access Equity Evaluation

To address broader transportation justice concerns and ensure that the pro-
posed methodology does not exacerbate existing socio-spatial disparities,
Lorenz curves and the associated Gini coefficients were calculated based on
data-zone-level EVCS accessibility. Given increasing policy emphasis on just
transition in transportation electrification, this metric provides valuable in-
sight in distributional inequality. This is further motivated by previous work
in evaluating equity of spatial planning [25,129]. In the context of EVCS in-
frastructure, the Lorenz curve plots the cumulative percentage of the popula-
tion on the horizontal axis against the cumulative percentage of accessibility
to EVCS infrastructure on the vertical axis. A perfectly equal distribution
corresponds to a 45-degree line, often called the line of equality, where each
fraction of the population has equal access to EVCS infrastructure. The area
between the Lorenz Curve and the line of equality quantitatively captures
inequality within the distribution, where a larger area indicates greater in-
equality. Formally, the Lorenz Curve L(p) can be defined mathematically
as:

L(p) =

∫ p

0
F−1(q) dq∫ 1

0
F−1(q) dq

.
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L(p) is the value of the Lorenz curve at percentile p, F−1(x) is the in-
verse cumulative distribution function of EVCS accessibility values, while p
represents the proportion of the population. The Lorenz Curve facilitates
the computation of numerical measures of inequality, such as the Gini coeffi-
cient, which quantifies the deviation of the observed distribution from perfect
equality. The Gini coefficient is calculated as twice the area between the line
of equality and the Lorenz Curve:

Gini = 1− 2

∫ 1

0

L(p) dp.

A Gini coefficient of 0 represents perfect equality (the Lorenz curve follows
the line of perfect equality), while a value of 1 indicates maximum inequality.

Finally, it is important to note that, although not a conventional opti-
mization formulation, the presented approach could be viewed as a greedy
search method based on GNN embeddings. The objective function includes
the equity aspect through calculation of Gini coefficient, in addition to the
coverage delta calculated through Gini index. Decision variables depend on
the parking lots that are assigned as new charging stations, while constraints
include the number of new stations installed, as well as the charger nominal
power.
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Algorithm 1 Site Selection Algorithm for New Charging Sta-
tions
Require: Charging nodes V , Number of chargers to be in-

stalled k, New chargers power output cout [kW]
1: Initialize list of new stations: newStations← []
2: for i = 1 to k do
3: maxICD ← 0
4: maxICDStation← null
5: for each node v ∈ V do
6: Calculate ICDv(Eq.6.12)
7: if vtype == parking and nv

parking ≥ 1 then
8: if ICDv > maxICD then
9: maxICD ← ICDv

10: maxICDStation← v
11: end if
12: end if
13: end for
14: Add site maxICDStation to newStations
15: for v ∈ V do
16: Calculate the distance distv from node v to

maxICDStation
17: if distv ≤ r then
18: nv

parking ← nv
parking − 1

19: nv
charging ← nv

charging + 1
20: Recalculate node coverage given newly added cout

(Eq. 6.11)
21: end if
22: end for
23: end for
24: return newStations
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6.3 Experimental Results and Discussion

6.3.1 Clustering Evaluation Metrics

To assess the quality of utilization-based clustering, we use three common
performance evaluation metrics: Accuracy, Adjusted Rand Index (ARI) [88],
and Normalized Mutual Information (NMI) [117]. Accuracy evaluates clas-
sification accuracy within three possible utilization classes, while the Rand
Index (RI), defined as:

RI =
p+ q(

n
2

) , (6.13)

calculates a similarity between two cluster results by comparing all points
within the same cluster. p is the number of pairs correctly placed in the same
cluster, q is the number of pairs correctly placed in different clusters, and n

is the total number of elements. Adjusted Rand Index (ARI), defined as:

ARI =
RI− E[RI]

max(RI)− E[RI]
, (6.14)

extends RI by accounting for different models of random clusterings, with
values ranging from approximately 0 for random labeling to 1 for perfect
agreement. Normalized Mutual Information (NMI), calculated as:

NMI = 2× I(U, V )

H(U) +H(V )
, (6.15)

quantifies the shared information between predicted and true clusterings,
where I(U, V ) is the mutual information and H(U), H(V ) are the entropies
of the clusterings. NMI ranges from 0 (no sharing) to 1 (perfect correlation).

The above complementary metrics offer a comprehensive quantitative as-
sessment of our algorithm’s clustering performance, capturing different as-
pects of the results’ quality and reliability.
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6.3.2 Results: EVCS Land Use Identification and Sta-

tistical Analysis

A key component of our proposed approach involves the localization of land
uses within the council limits of Glasgow City and the City of Edinburgh.
The land use clustering procedure, as illustrated in Fig. 6.3, reveals distinct
patterns in local land use characteristics across both cities. In Glasgow and
Edinburgh, the analysis identifies commercial areas predominantly within
the city centers. These zones correlate strongly with a high concentration
of social and especially recreational POIs, reflecting the diverse entertain-
ment options typically found in urban cores. Notably, these commercial
areas also coincide with lower car traffic volumes, likely influenced by the
implementation of low-emission zones in both city centers. The distribution
of EVCS infrastructure shows a significant concentration within commercial
zones. This pattern may indicate a potential saturation of charging facilities
in these areas, suggesting a need for strategic reassessment of future EVCS
placements. Commercial zones also exhibit lower rates of income (measured
by the percentage of the population receiving income support) and employ-
ment deprivation (measured by the percentage of the population who are em-
ployment deprived), but also the highest population density and the highest
incidence of reported crime, aligning with typical urban center characteris-
tics. Working areas, as identified by our analysis, are characterized by higher
traffic counts and notably, the highest rates of income and employment de-
privation. The distribution of EVCS infrastructure in working areas appears
less consistent, with some zones showing a lack of facilities compared to res-
idential areas, while others contain large concentrations of deployed EVCS
infrastructure. Residential areas, in contrast, generally report lower levels of
traffic in Glasgow, while showing high variability in Edinburgh, possibly due
to a large number of residential housing along major roads. Results indi-
cate that EVCS infrastructure is severely lacking in residential areas in both
cities.
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(c) Deprived areas of Edinburgh
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Fig. 6.5. Average hourly EVCS utilization statistics per area

Observing per-area hourly EVCS utilization shown in Fig. 6.5, we quan-
tify distinct patterns in EVCS usage across Glasgow and Edinburgh, high-
lighting urban disparities and lifestyle differences. Glasgow generally exhibits
higher utilization rates than Edinburgh, particularly in residential charging
within deprived areas. In Glasgow, deprived residential areas show similar
utilization compared to non-deprived areas. This suggests possible under-
utilization of non-deprived charging, explained by the fact that the majority
of Glasgow falls within deprived areas, as seen in Fig. 6.7. The city center
falls within non-deprived areas, where the majority of EVCSs are located.
Thus, the results could indicate a general under-utilization of city center
EVCS charging. In terms of time patterns, the utilization generally peaks
around 6 PM, coinciding with the approximate time of commute home from
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work. Commercial areas indicate utilization peak around 9 AM, possibly
due to the large amount of commuters parking their cars within the city
center charging locations, where there is the highest overall recorded utiliza-
tion peak. Working areas of Glasgow showcase similar utilization patterns as
commercial areas in deprived areas, peaking in the morning hours and grad-
ually lowering the utilization, which is explained by workers commuting back
home. In non-deprived areas, this trend is less apparent and the utilization
is relatively consistent throughout the working hours.

In Edinburgh, the most striking difference in utilization is between de-
prived and non-deprived residential areas. While non-deprived utilization
peaks at around 10% in the morning, deprived areas experience only 5%
utilization, which rapidly lowers throughout the day. This indicates limited
access to public charging within deprived areas of Edinburgh, which has a
direct impact on utilization due to high overstay periods and limited charg-
ing opportunities in the second half of the day. Utilization in commercial
areas is relatively consistent between deprived and non-deprived communi-
ties, peaking in the morning, and sharply declining until the end of the day.
Interestingly, utilization in working areas, while lower, experiences a simi-
lar pattern between non-deprived working areas of Glasgow and Edinburgh,
indicating similar charging behavior within these areas.

6.3.3 Results: Utilization-based Clustering

In this subsection, we present detailed quantitative analysis of our proposed
placement methodology, focusing on the performance of our GNN-based clus-
tering approach for selecting potential candidate sites based on their utiliza-
tion potential, as described in Subsection 6.1.3. Table 6.3 compares the
performance of our proposed method against several widely-used cluster-
ing techniques, including K-means, Spectral, and Hierarchical Agglomerative
Clustering, as well as other graph-based approaches such as [50]. This com-
parison provides a comprehensive quantitative evaluation of our approach
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within the broader context of clustering methodologies. K-means and spec-
tral clustering analyse the data based solely on its inherent features, offering a
baseline for traditional clustering techniques. In contrast, GraphSAGE em-
ploys an unsupervised graph representation technique, aggregating feature
information from a node’s location and environment.

The performance discrepancies observed in Table 6.3 between traditional
clustering methods and our proposed GNN-based approach highlight the
inherent complexity of identifying high charging demand areas for EV in-
frastructure. Traditional clustering techniques, while effective in many sce-
narios, struggle to capture the non-linear relationships between the diverse
factors influencing charging demand. This limitation is particularly evident
in Glasgow, where the accuracy of conventional methods is notably lower,
primarily due to the city’s intricate urban topology and mixed-use nature
of many neighborhoods. Such a diverse and interconnected urban landscape
makes it challenging to delineate clear boundaries between high, medium, and
low utilization areas using conventional clustering techniques. The blending
of different land uses and activities creates a more nuanced charging de-
mand pattern that requires a more sophisticated analytical approach. In
contrast, Edinburgh presents a somewhat easier scenario for traditional clus-
tering methods. The city’s urban structure exhibits a clearer separation be-
tween high, medium, and low utilization areas, likely due to a more distinct
spatial organization of land use areas. Our GNN-based approach demon-
strates superior accuracy by effectively capturing the spatial relationships
between charging demand nodes. By propagating information through the
graph structure, the GNN incorporates broader contextual information about
the surrounding area, which is crucial for understanding the intricate dynam-
ics of urban charging demand. This ability to account for complex spatial
interactions and the multifaceted nature of factors influencing EV charging
demand allows our method to outperform traditional techniques, particularly
in complex urban environments like Glasgow.
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(a) Residential Area (GL) (b) Commercial Area (GL) (c) Working Area (GL)

(d) Residential Area (EDI) (e) Commercial Area (EDI) (f) Working Area (EDI)

Fig. 6.6. ICD performance results for Glasgow (GL) and Edinburgh (EDI)

Table 6.3
Clustering performance for Glasgow (top) and Edinburgh (bottom)

Algorithm Accuracy ARI NMI

Kmeans 0.2566 0.0015 0.0009
Spectral 0.3837 0.0394 0.0213
Agglomerative 0.2020 0.0017 0.0002
GraphSage 0.3589 0.0124 0.0079
Proposed (Ours) 0.5770 0.0458 0.0138

Algorithm Accuracy ARI NMI

Kmeans 0.2383 0.0682 0.0520
Spectral 0.3262 0.0279 0.0303
Agglomerative 0.3262 0.0656 0.0510
GraphSage 0.3817 0.0293 0.0264
Proposed (Ours) 0.6258 0.1467 0.0838
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6.3.4 Discussion: EVCS Localization

The three proposed placement strategies (working/industrial, residential and
commercial) are defined based on the land use processing described in the
study (see Subsection 6.1.2). The “residential area" policy aims to populate
public parking available in residential areas with appropriate power output
of charging stations based on their ICD metric values. Similarly, the other
two policies focus on commercial and working/industrial areas. As shown in
Fig. 6.6, the proposed model behaves differently depending on the proposed
land use and battery capacity. In residential areas, noticeable differences in
behavior were observed between Glasgow and Edinburgh. In Glasgow, the
installation of higher power output stations (34 kW and 50 kW) significantly
improved ICD, with the 50 kW stations achieving around 55%. Conversely,
lower power output stations (7 kW) showed more modest increases, highlight-
ing the limited efficacy of low-power stations in residential urban settings,
likely due to already sufficient residential charging within the city limits. On
the other hand, 22 kW stations showed the best improvement over the initial
50 installations, indicating high potential for 22 kW infrastructure placement
in Glasgow’s residential areas.

Observing the EVCS placements shown in Fig. 6.7, the east end of Glas-
gow has been identified as a high-potential area, particularly the Shettleston
constituency (Fig. 6.7.a - rank 1,3, and Fig. 6.7.b - rank 1,2,3), which
is a good site for fair infrastructure placement, providing much-needed in-
frastructure to region scoring higher than average on the deprivation index.
Additionally, this area also offers high utilization potential due to its proxim-
ity to large supermarkets and parks. The residential EVCS placement with
rank 2 is located in an underserved area near major Linn Park, filling the
infrastructure gap between the non-deprived area in the northwest and the
deprived area in the southeast of the potential EVCS placement location.
Other high-potential residential areas include the borders of Maryhill and
Canal wards (Fig. 6.7.a - rank 11-14), as well as Southside Central ward
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areas around Queens Park, known for its many restaurants and other POIs
(Fig. 6.7.a - rank 5-9). Interestingly, Edinburgh exhibited a more pronounced
response to slow residential charging, with 7 kW stations facilitating up to
a 50% improvement in ICD, indicating that residential areas of Edinburgh
significantly lack needed infrastructure that would fulfill demand by installa-
tion of slow overnight charging. To this end, as suggested in [33], utilization
of existing lamp posts for on-street EV charging in residential areas might
be an effective method for faster expansion of slow overnight charging.
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(a) Residential 22kw Glasgow (b) Working Area 22kW Glasgow

(c) Comercial Area 34kW Glasgow

Fig. 6.7. Proposed EVCS infrastructure placement sites in Glasgow. The top 15
results are displayed with a number on top. Yellow markers are existing charging
stations in the selected areas. Red-blue overlay corresponds to area deprivation,
where blue is less deprived and red more deprived.

Policy focused around the installation of slow overnight charging is es-
pecially effective for deprived areas of Edinburgh, where statistical analysis
performed in Subsection 6.3.2 showed a general lack of infrastructure which
has a further pronounced impact on overall EVCS utilization (as seen in
Fig. 6.5) due to high overstay periods resulting in unavailability of charging
options. Observing the results in Fig. 6.8, the ward of Almond (Fig. 6.8.a
- rank 2) shows high potential for EVCS placement due to its lower-than-
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average EVCS infrastructure numbers, as well as the Liberton area (Fig.
6.8.a - rank 3-4), which is close to major roads and large retail areas. The
non-deprived Corstorphine area (Fig. 6.8.a - rank 5-10), featuring numerous
shops and major roads, as well as Edinburgh Zoo, also shows great potential
for 7-22kW residential charging.

(a) Residential 22kW Edinburgh (b) Working Area 22kW Edinburgh

(c) Commercial Area 34kW Edinburgh

Fig. 6.8. Proposed EVCS infrastructure placement sites in Edinburgh. Top 15
results are displayed with a number on top. Top 15 results displayed with a number
on top. Yellow markers are existing charging stations in the selected areas. Red-
blue overlay corresponds to area deprivation, where blue is less deprived and red
more deprived.

When it comes to EVCS placement in working and industrial areas of
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Glasgow, the results suggest a similar strategy to residential areas, where
22 kW installations might provide the best utility-to-cost ratio, with around
a 30% overall ICD improvement. Based on Fig. 6.7, high-potential areas
include deprived areas at the eastern end of Shettleston (Fig. 6.7.b - rank
1-3), close to large factories, and the Haghill area near a university campus
and a large retail park (Fig. 6.7.b - rank 4), largely due to a lack of infras-
tructure and high charging demand. Other high-potential areas include the
Govan area (Fig. 6.7.b - rank 5,6,8), which hosts a large recycling center,
business centers, the UK Visa and Immigration center, warehouses, and a
subway depot, and lacks general charging infrastructure. Overall, Edinburgh
displays higher potential for ICD improvement within working and industrial
areas. While maximum improvement for fast charging is similar, 7kW EVCS
placements display large improvements over the initial 50 installations. The
highest potential lies in the South Queensferry area (Fig. 6.8.b - rank 2), an
area of high importance due to the construction of a new bridge carrying the
M90 motorway, connecting northern Scotland with Edinburgh. Contrary to
residential land use, the difference in utility gained from installing slow 7kW
and other charging stations, while low in Edinburgh, is significant in Glas-
gow, suggesting a need for rapid infrastructure in the working and industrial
areas. This insight is invaluable for stakeholders, indicating that working
and industrial areas of Glasgow, often close to major roads, are lacking in
EVCS infrastructure.
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(a) Non-Deprived Glasgow (b) Deprived Glasgow

(c) Non-Deprived Edinburgh (d) Deprived Edinburgh

Fig. 6.9. Lorenz curves for EVCS accessibility across different land use and depri-
vation areas before and after the proposed approach.

The proposed policy for infrastructure placement in commercial areas
shows the lowest potential across Glasgow and Edinburgh. In Glasgow, the
installation of higher power output stations (34 kW and 50 kW) demon-
strated a modest improvement in ICD, with the 50 kW stations achieving
around 17%. In contrast, Edinburgh achieved an improvement of more than
25% with 50 kW charging stations. Interestingly, the relative improvement
between the desired charging capacities is similar between the two cities,
suggesting predictable behavior within commercial areas due to similarities
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in existing infrastructure, residential density, presence of points of interest,
and traffic behavior. The preference for higher EVCS output suggests a po-
tential saturation of slow EV charging and the need for faster infrastructure.
In Glasgow, areas away from the city center are favored, which is a welcome
policy, as the city center is designated as a low-emission zone. High-potential
areas include deprived areas in Dennistoun, close to a large retail park, and
retail centers in the deprived Drumchapel area. In Edinburgh, high-ranking
areas include retail areas in South Queensferry, Silverknowes, and the area
close to the historic city center.

0 50 100 150 200

Number of Stations Installed

52

53

54

55

56

57

58

C
h
a
rg

er
s 

in
 D

ep
ri

v
ed

 A
re

as
 [
%

]

(a) 22kW infrastructure,
Glasgow residential area

0 50 100 150 200

Number of Stations Installed

54

56

58

60

62

C
h
ar

g
er

s 
in

 D
ep

ri
v
ed

 A
re

a
s 

[%
]

(b) 22kW infrastructure,
Glasgow working area

0 50 100 150 200

Number of Stations Installed

51

52

53

54

55

56

C
h
ar

g
er

s 
in

 D
ep

ri
v
ed

 A
re

a
s 

[%
]

(c) 34kw infrastructure,
Glasgow commercial area

0 50 100 150 200

Number of Stations Installed

8

9

10

11

12

C
h
a
rg

er
s 

in
 D

ep
ri

v
ed

 A
re

as
 [
%

]

(d) 7kW infrastructure,
Edinburgh residential area

0 50 100 150 200

Number of Stations Installed

7.5

10.0

12.5

15.0

17.5

20.0

C
h
ar

ge
rs

 i
n
 D

ep
ri

v
ed

 A
re

as
 [
%

]

(e) 22kW infrastructure,
Edinburgh working area

0 50 100 150 200

Number of Stations Installed

7.0

7.5

8.0

8.5

C
h
a
rg

er
s 

in
 D

ep
ri

v
ed

 A
re

as
 [
%

]

(f) 34kW infrastructure,
Edinburgh commercial
area

Fig. 6.10. Increase in the ratio of chargers in deprived zones per land use area after
the proposed infrastructure placement strategy.
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6.3.5 Discussion: EVCS Placement and Equity in Ac-

cess to EVCS

The Lorenz curves shown in Fig. 6.9 reveal profound inequities in EVCS ac-
cessibility across different urban contexts. Prior to implementation of the
new placement strategy, residential areas exhibited the most severe inequal-
ity, with high Gini coefficients ranging from 0.799 to 0.901, with deprived
Edinburgh representing the most extreme case. The steep curvature of these
residential lines indicates that approximately 80% of the population has ac-
cess to less than 20% of available charging infrastructure, creating significant
accessibility deserts. Commercial zones, while still inequitable, demonstrated
relatively better distribution (Gini coefficients 0.623-0.727), potentially re-
flecting the concentration of existing infrastructure in business districts and
retail centers. Working areas similarly suffered from poor distribution (Gini
coefficients 0.716-0.827). Notably, a clear socioeconomic gradient emerged,
with deprived areas consistently experiencing higher inequality than their
non-deprived counterparts, except for commercial zones in Glasgow where
the pattern was reversed. Geographic disparities were also evident, with Ed-
inburgh displaying more extreme inequality than Glasgow, particularly in
residential contexts. This landscape reveals systemic biases in EVCS dis-
tribution that likely reflect broader patterns of infrastructure investment
prioritizing commercial centers and affluent neighborhoods, while neglect-
ing residential and working areas, especially in deprived communities. The
extreme bowing of most curves indicates severe concentration of accessibil-
ity resources, potentially creating substantial barriers to EV adoption among
disadvantaged populations and reinforcing existing transportation inequities.

Following implementation of the proposed placement strategy, the Lorenz
curves reveal significant improvements in EVCS accessibility distribution
across all urban contexts. Commercial areas exhibited the most dramatic
transformation, with Gini coefficients falling to the 0.447-0.509 range, rep-
resenting the closest approximation to equitable distribution among all land
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use types. This substantial improvement indicates that strategic placement
effectively countered pre-existing commercial concentration biases. Work-
ing areas showed moderate improvements (post-intervention Gini coefficients
0.607-0.703), with Non-Deprived Edinburgh experiencing the most substan-
tial gains. Residential zones, while improved, retained the highest level of
inequality (Gini coefficients 0.561-0.789), suggesting these areas remain the
most challenging for achieving equitable EVCS distribution—likely due to
complex residential density patterns and infrastructure limitations. Impor-
tantly, these positive outcomes stand in sharp contrast to what would have
occurred with a poor placement strategy. Had the proposed EVCS instal-
lation strategy merely reinforced existing infrastructure patterns or prior-
itized areas with already sufficient coverage, Gini coefficients would have
increased rather than decreased, further exacerbating socioeconomic and ge-
ographic disparities. Encouragingly, the intervention diminished the socioe-
conomic gradient, with deprived areas experiencing proportionally larger im-
provements than non-deprived areas in most contexts. This is particularly
relevant for the case of Edinburgh, where the non-deprived residential ar-
eas achieved the lowest post-intervention Gini coefficient (0.561) among all
residential contexts. While perfect equity remains unachieved, the consis-
tent flattening of all Lorenz curves demonstrates that the proposed strategic
placement can substantially redistribute accessibility resources. The post-
intervention landscape shows that approximately 60% of the population now
has access to 20-30% of charging infrastructure (compared to under 10% pre-
intervention), representing a significant step toward more inclusive EV infras-
tructure development, though persistent gaps indicate ongoing challenges in
achieving truly equitable distribution. Fig. 6.10 provides critical insight into
the mechanism behind these equity improvements, illustrating how the pro-
posed station ranking method progressively affects the proportion of chargers
in deprived areas during installation. Glasgow’s working areas (Fig. 6.10b)
show the most consistent upward trajectory, increasing from approximately
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54% to 62% charger presence in deprived areas, explaining the substantial
Gini coefficient improvement in this context. Similarly, Edinburgh’s work-
ing areas (Fig. 6.10e) demonstrate the most dramatic proportional increase,
more than doubling from 7.5% to around 20%. The fluctuating patterns
in commercial areas (Fig. 6.10c, Fig. 6.10f) align with their more moder-
ate equity improvements, while residential installations show varied patterns
between cities, with Glasgow (Fig. 6.10a) exhibiting earlier prioritization of
deprived areas compared to Edinburgh, with sharp increase after initial 50
installations (Fig. 6.10d).

6.3.6 Discussion: Scalability and Transferability

The proposed methodology can be adapted across different cities, and more
readily within the UK, including cities in England and Wales. Direct ap-
plication is possible due to equivalent socio-economic indicators - the Index
of Multiple Deprivation (IMD) for England and the Welsh Index of Mul-
tiple Deprivation (WIMD) for Wales are directly comparable to the SIMD
data used in our study. These indices share similar underlying domains
including income, employment, health, education, and geographical access,
enabling consistent node feature construction across UK cities. Outwith the
UK, while specific deprivation metrics may differ, a mapping of pertinent
deprivation metrics to the application domain can be made. Regardless, the
core methodology of constructing charging demand nodes and their relation-
ships, as described in Section 6.2, is applicable to all application domains.
The approach requires three fundamental data categories that are typically
available in most urban areas: (1) spatial infrastructure data (obtainable
through OpenStreetMap), (2) socio-economic indicators (available through
national census or similar demographic surveys), and (3) mobility patterns
(accessible through traffic counts or similar transportation data). Cities lack-
ing historical EVCS utilization data could initially calibrate the model using
proxy metrics such as vehicle ownership rates, parking utilization, or traf-
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fic flow patterns. The graph construction methodology, based on 500-meter
radius nodes and their spatial relationships, is geography-agnostic and can
be applied to any urban environment. The GNN architecture itself is flex-
ible enough to accommodate varying numbers and types of input features,
allowing for adaptation to locally available data while maintaining the core
principles of geodemographic-aware infrastructure planning.

6.4 Summary

This research presents a novel geodemographic aware approach to EVCS
placement through GNN modelling. By fusing socio-demographic data, spa-
tial dynamics, and post-installation impacts, our methodology addresses the
critical gaps in existing infrastructure planning strategies. The case study
of Glasgow and Edinburgh demonstrates the effectiveness of this approach,
optimizing EVCS placement for efficiency and equity. Key advantages of
using GNNs include consideration of underserved communities, nuanced un-
derstanding of urban dynamics, and maximization of new charging station
utilization. Experimental results validate the utility of the proposed method,
showing significant improvements in strategic placement and use of EV charg-
ing stations. The proposed GNN-based approach demonstrates strong scal-
ability potential for larger urban environments. Our model leverages GATs
which are inherently more efficient than traditional GNNs due to their se-
lective attention mechanism that focuses on important node relationships,
and can also mitigate over-squashing issues related to large-scale graphs [6].
From a computational perspective, the scalability of GNN architectures has
been demonstrated in substantially larger applications, including citation
networks with millions of nodes, social networks with billions of edges, and
molecular graphs analyzing hundreds of thousands of compounds. The ur-
ban context, being relatively constrained in comparison, with node numbers
in the range of thousands, presents a more computationally manageable en-
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vironment. However, we acknowledge certain limitations of our work. The
primary limitations center around the temporal analysis constraints, as our
model primarily focuses on static spatial patterns and does not fully incorpo-
rate temporal aspects such as seasonal fluctuations or long-term EV adoption
trends. Building on this, to improve estimations of the potential EV count
used for ICD calculation, demographic profiling of potential EV consumers
alongside comprehensive surveys could be utilized. Additionally, notable
gaps include the absence of electrical grid capacity considerations and asso-
ciated infrastructure upgrade requirements, which could significantly impact
implementation feasibility, as well as aspects related to renewable energy
availability and the carbon footprint associated with charging infrastructure
deployment, both of which could greatly impact sustainability outcomes.
Lastly, refining accessibility calculations at specific charging demand nodes
could provide more precise insights, enabling more targeted analysis and im-
proved placement strategies at localised levels.
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Chapter 7

Conclusion and Future Work

7.0.1 Conclusion

The goal of this thesis is to improve trustworthiness of AI systems within
Smart Grid management, firstly driven by a fundamental challenge: the in-
herent instability of XAI methods. Recognizing that true trust in AI cannot
be built on unverified explanations, our initial step was to establish rigorous
quantitative measures for explainability, specifically within the demanding
context of NILM. This work provided a robust framework to not only visual-
ize but also numerically assess the faithfulness, robustness, and complexity of
explanations, transforming XAI from a purely observational tool into a verifi-
able component of AI design. With this foundation, uncovering an actionable
link between transparency and robustness became a goal. We demonstrate
that explainability is not merely a desirable post-hoc feature but can be an
instrument for enhancing the robustness of NILM models. This was pursued
through two novel approaches: First, by directly embedding explainability
principles into the training process through use of regularization techniques.
By actively guiding the NILM models towards explanations that are not only
more transparent but also demonstrably more robust to perturbations and
variations in input data, we show that it can lead to improved model ro-
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bustness. Second, a novel explainability-guided knowledge distillation mech-
anism was introduced. Moving beyond traditional distillation where student
models merely mimic teacher predictions, our approach conditioned the stu-
dent to also replicate the teacher’s explanations. This proved transformative,
showing that by ensuring the faithful transfer of explanations, without any
gradient regularization, even compact student models could achieve signifi-
cant gains in robustness and interpretability, vital for resource-constrained
edge deployments. The resulting framework of quantifying explainability and
leveraging it to bolster robustness provides a powerful toolkit in the context
of NILM. This was extended to address the equally critical, yet distinct, chal-
lenge of fairness and equity in the broader energy transition. Our work on
GNN-informed EV charging station placement, while a different domain, was
fundamentally informed by the principles of developing transparent, robust,
and now equitable AI. By integrating geodemographic factors and system-
atically aiming for fair access, we demonstrated how the lessons learned in
building trustworthy AI components can be applied to ensure that technolog-
ical advancements in smart grids benefit all segments of society. In addressing
the core principles of robustness, transparency, and fairness, this work also
indirectly contributed to other facets of Trustworthy AI. The advancements
in explainability bolster human oversight and are a step towards greater ac-
countability. The research into edge deployment inherently supports data
privacy. Furthermore, the focus on equitable infrastructure planning directly
promotes societal well-being and non-discrimination, ensuring that the bene-
fits of the energy transition are more broadly shared. In essence, this research
has laid out the groundwork for Trustworthy AI in Smart Grids by showing
how trustworthy principles can be integrated in applications such as NILM
and EV charging placement problem to build more robust, transparent and
ultimately fairer AI systems for the energy transition.
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7.0.2 Future Work

Several promising directions for future research emerge from this work. First,
it is important to extensively explore the relationship and trade-offs between
the properties of faithfulness, robustness and complexity in XAI NILM ap-
proaches. For example, a highly faithful explanation that closely reflects the
model’s behavior may be more complex and harder to understand. Con-
versely, a simpler explanation may be more accessible but less faithful to the
model’s true decision-making process. Similarly, there may be cases where
faithful explanations are sensitive to small changes in input data, resulting
in a trade-off between faithfulness and robustness. Thus, striking the right
balance between the metrics of explanation quality is crucial to ensure the
usefulness of the XAI system. As one of the challenges in deploying NILM
systems is the need for real-time processing and interpretation of energy
consumption data, investigating the feasibility of real-time XAI methods for
NILM applications would be a valuable contribution to the field, enabling
more practical and actionable insights for users. Next, future work could
investigate methods to incorporate direct human feedback or domain knowl-
edge into the learning process through active learning and similar approaches,
further strengthening the human agency and oversight principles. Addition-
ally, future work could explore dynamic distillation strategies that adapt to
specific appliance characteristics and operational conditions, as well as meth-
ods to reduce the computational overhead of explanation generation while
maintaining explanation quality. Furthermore, the XAI methods employed
primarily provide feature attribution, indicating what input features are im-
portant. They do not fully delve into the causal relationships or the inter-
nal reasoning at a mechanistic level. Future work could explore integrating
causal inference techniques, counterfactual explanations or mechanistic inter-
pretability to provide deeper insights into why models learn specific patterns
and how their internal decision thresholds are formed. Lastly, in the domain
of equitable infrastructure placement, future research could incorporate tem-
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poral dynamics, analysing grid stability impacts, examine carbon footprint
implications, investigate relationships with other transportation modes, and
perform comparative analysis across different urban environments. Promis-
ing research directions include studying EVCS placement effects on power
grid stability, enhancing GNN models to include alternative transportation
options, interpretability techniques for GNNs and developing reinforcement
learning frameworks for dynamic charging recommendations. Lastly, proxim-
ity to brownfield sites presents an opportunity for more sustainable placement
decisions that could help mitigate potential grid constraints.
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