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Abstract 

 

The excitation of a novel cavity based on a two-dimensional periodic structure by an 

energy source, such as relativistic electrons, results in stimulated, single frequency 

coherent emission. A high-Q cavity has been achieved via a resonant coupling between 

surface waves and volume waves. The concept of a Cherenkov maser based on such a 

novel cavity is discussed and results of numerical studies presented. Links between the 

model described and the concept of a surface plasmon amplifier, which has been 

recently introduced are described. It is suggested that a two-dimensional periodic 

structure can complement devices operating at THz frequencies.  
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 Introduction 

 

 

 

 

1.1 Historical Review 

Microwave radiation sources providing high power, broadband, and frequency tuneable 

radiation are used for many important applications, such as plasma heating [1], particle 

acceleration [2], and material processing, and, in recent years the demand for high power 

masers operating at sub GW and GW powers in the frequency range from 30 GHz to 

300 GHz and beyond has significantly increased [3-7]. 

At low power (tens of Watts) there exists a number of highly developed solid state 

sources available covering the wavelength range from centimetres to millimetres and 

beyond. However there exist applications which require frequency controllable radiation 

with high power outputs (kW to MW). The most promising method used to generate 

high power levels at high frequencies (>10GHz) is to use the interaction of an electron 

beam in a vacuum with an electromagnetic wave, and a number of discreet amplifiers 

and oscillators based on this principle are already in use. Problems arise however when 

we seek to increase the operating frequency, therefore reducing the dimensions of the 

1 
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interaction region, whilst still trying to achieve high levels of power. The power density 

can become large this can lead to breakdown inside the interaction space. This issue may 

be addressed via the application of an oversized, (with respect to the wavelength of 

operation) electron beam [8,9]. This allows for a moderate power density inside the 

interaction space to be achieved whilst simultaneously avoiding the formation of beam 

instabilities due to the high beam charge density [10]. One might argue that this now 

oversized system has no apparent method for frequency selectivity or tuneability, but 

this issue may be addressed, and has been previously [15,16], by the application of two-

dimensional distributed feedback to the interaction region [11]. This circumvents the 

problem by providing spatial and temporal coherence of the radiation from the large size 

(in comparison with the operating wavelength) active medium [12-14].  

This chapter begins with an overview of microwave devices to date, before discussing 

the different types of microwave device available, along with the different fundamental 

types of interaction achievable between an electromagnetic wave and an electron beam. 

It then gives introduction to the method of feedback via Bragg scattering and previous 

successful applications to date before considering its limitations and restrictions before 

stating the aim of this work and layout of this thesis. 

1.2 Background 

High power microwaves are generated by transferring the kinetic energy of moving 

electrons to the electromagnetic energy of the microwave fields. This process occurs 

typically in a waveguide or cavity, the role of which is to tailor the frequency and spatial 

structure of the fields in such a way as to optimise the energy extraction from specific 

natural modes of oscillation of the electrons. Analysing this process always deals with 

the interaction between two concepts: (1) the normal electromagnetic modes of the 

waveguide or cavity, and (2) the natural modes of oscillation of the electron beam. 

These two entities exist independently of each other except for certain values of 

frequency and wavelength for which they can resonantly exchange energy.  
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1.3 Types of Microwave Device  

The microwave generation process in all high power microwave sources generally 

always involves an interaction between an active media, such as an electron beam, with 

an electromagnetic wave. This corresponds to resonant interactions between the normal 

electromagnetic wave modes of a cavity or waveguide and the natural modes of 

oscillation in a beam or layer of electrons. The natural modes of oscillation in a beam of 

electrons are formed by either the longitudinal spatial bunching or the rotational phase 

bunching of the electrons in the beam.  Both these cavity modes and beam modes can be 

described by specific dispersion relations relating angular frequency  to axial wave 

number zk . 

In this section, the general dispersion relations of waveguide modes and electron beam 

modes are first described, followed by a general introduction into different kinds of free 

electron maser devices. The three generic interactions, including Cherenkov, FEL and 

Cyclotron interactions, are introduced. Finally the saturation mechanism in microwave 

generation is discussed.  

 

1.3.1 Dispersion Relations 

In this section, the dispersion relations  , zk governing both the normal waveguide 

modes and the natural electron beam modes are described. The conditions for their 

interaction are described and the mechanisms involved for microwave generation are 

discussed for different devices.  

 

1.3.1.1 The Natural Waveguide Modes  

The standard electromagnetic wave behaviour in a smooth wall waveguide (or cavity) 

having uniform cross section is generally described by the dispersion relation [15]: 
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 2 2 2 2
,z co n pk c  

  2 2 2 2
,z co n pk c    (1.1) 

where  2
,co n p is the cut off frequency of the ,n pTM and ,n pTE  modes in a given 

waveguide, where n is the number of azimuthal variations, and p the number of radial 

variations. A plot of this dispersion relation is shown in Figure 1.1 where two axial 

velocities are shown in this figure:  one is a phase velocity in which the wave phase 

advances along the axis, and the gradient of a line connecting a point on the curve to the 

origin, denoted by ph

zk


  , and the other is the group velocity of the EM wave along 

the axis, with the gradient of the ling at a tangent to the curve, g

zk








.           

         

    

                         

 

 

 

 

   

 

Figure 1.1: Dispersion of Electromagnetic Waves 

 

The phase velocity must always exceed the speed of light, c, whilst the group velocity 

must always be less than c. By making changes to the waveguide wall, via either 

zk

 2 ,co n p



ph

g

 2 2 2 2 ,z cok c n p  
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structural modification such as a corrugation or by insertion of a dielectric material, the 

phase velocity of the waveguide modes can be reduced to less than the value c.   

 

1.3.1.2 Electron Beam Modes 

The dispersion curves describing the oscillation in a beam of electrons is dependent on 

the motion of these electrons and also their oscillating mode. The most basic oscillation 

mode for an electron beam is its space charge oscillation wave, which is created by the 

bunching of beam electrons. In its most simple situation, without any consideration for 

the radial boundaries, the dispersion relation describing the space charge wave for a 

beam propagating along the z-axis, is expressed via: 

0

b
z zk


 


   (1.2)

 

where 

1
2 2

0

0 0

b

e

m




 

 
  
 

is the beam plasma frequency for a beam of charge density 0  and 

velocity  b b z   , with 

1
2 2

0 2
1 z

c






 
  
 

 the relativistic factor. The waves having 

frequencies denoted by this equation are known commonly as ‘fast and ‘slow’ space 

charge waves, according to the use of the ‘+’ or ‘-’ sign respectively and are illustrated 

in figure 1.2. There are two distinct cases presented: 1) when no radial boundary is 

present, i.e. an infinite beam, and 2) when the beam is bound within a waveguide, i.e. the 

phase velocity of the space charge waves is always less than c. In either case, with or 

without the radial boundary taken into account, the slow space charge wave is the 

negative energy wave and the fast space charge wave has positive energy [17]. 

Microwave generation occurs at a frequency and wave number roughly given by the 

intersection between the dispersion curves for the slow space charge wave and an 
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electromagnetic mode. When this generation occurs, the electron oscillation taking part 

in the resonance is said to be a negative energy wave.  

Figure 1.2:  Illustration showing the space charge modes of an infinite electron beam (red) and a   
waveguide bounded electron beam (blue dashed). 

 

The total energy of the coupled system, including the EM energy of the waveguide mode 

and the summed energy of the electrons, is positive. However, the total energy is higher 

in the initial equilibrium state with no electron oscillations than it is in the presence of 

the unstable electron oscillation. The electron oscillation has therefore reduced the total 

energy of the system and has a negative energy in the incremental sense. This energy 

reduction does not occur for some electron oscillations, which are said to have positive 

energy waves, and will not interact with the waveguide modes to generate microwaves.  
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1.3.1.3 Free Electron Maser Devices 

There are several aspects to be considered in the beam-wave interaction: (1) waveguide 

and cavity modes, (2) electron motion and oscillation modes, (3) beam-wave interaction 

mechanism, (4) electron beam intensity and (5) operational effects. With respect to 

electromagnetic modes, microwave sources are said to be either fast-wave or slow-wave, 

dependant on the interaction. A fast-wave interaction involves a waveguide mode with a 

phase velocity greater than the speed of light, whilst a slow-wave interaction involves a 

waveguide mode whose phase velocity is less than the speed of light.  

In terms of electron motion, devices are generally classified into three types: Type 1 are 

known as O-type devices, in which the electrons drift axially along an externally applied 

magnetic field. The field helps to guide the beams through the device, and in some cases 

plays an important role in the generation process (parallel field devices); Type 2 are the 

M-type devices in which the electrons drift perpendicular to crossed electric and 

magnetic fields (crossed field devices) and the third variant are known as Space charge 

devices, where the interaction is intrinsically traceable to an intense space charge 

interaction such as a virtual cathode oscillator [18].  

With regard to mode of operation, microwave devices can be classed into two types: (1) 

Amplifier devices, which produce an output signal that is a larger amplitude version of 

some input signal (in the absence of an input signal there is usually no output signal 

other than low-level amplified noise); (2) Oscillators – these require feedback and 

sufficient gain to overcome the net losses per cycle, such that an output signal can be 

generated in the absence of an input signal.  

According to the beam current density, devices are grouped into two operating regimes: 

(1) Compton regime, involving low beam currents. Here, collective space-charge effects 

are negligible and the electrons behave as a coherent ensemble of individual emitters; (2) 

Raman regime of operation, this involves the use of high electron densities with beam 

currents approaching a significant fraction of the space-charge limit. The collective 

modes of electron oscillation play the central role in microwave generation.  
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1.3.2 Beam-Wave Interaction Mechanisms 

In order to realise the various types of interaction between an electron beam and an 

electromagnetic wave, it is necessary to satisfy the synchronism condition associated 

with each type of interaction. The synchronism conditions are met at the cross point 

between an electromagnetic (EM) wave dispersion curve, defined as: 

 2 2

ph zk k     
(1.3) 

and an electron beam line:  

 
z z effk s     (1.4) 

where   is the angular frequency of the EM wave, zk  is the axial wave number, and k  

is the transverse wavenumber,  
ph  is the phase velocity of the wave, z  the axial 

velocity of the electron, s  is the harmonic number and 
eff  is an effective frequency 

corresponding to oscillatory motion of the electrons, which determines the cut-off 

frequency of the waveguide. The interaction points are shown in Figure 1.3. Looking at 

the dispersion curves it is evident that the slow space-charge waves, having 
z

c
k


 , 

cannot couple to the normal fast-wave modes of a smooth wall waveguide, for which  

z

c
k




.
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Figure 1.3: Schematic of the synchronism condition, illustrating the point(s) of intersection between an 
electron beam and a waveguide cavity mode. 

 

Nevertheless, there are ways to achieve the required coupling by either reducing the 

phase velocity of the wave mode, or by up-shifting the electron oscillation mode. To 

achieve these there are three main mechanisms: Cherenkov Interactions, Free Electron 

Laser (FEL) interactions, and Electron Cyclotron Maser (ECM) interactions.  

 

1.3.2.1 The Cherenkov Interaction 

Cherenkov radiation occurs when electrons move in a medium whose refractive index is 

greater than one, 1n  , and z ph   where ph c n  , and c is the speed of light in 

vacuum. This shows that if the refractive index is large enough it is possible to match the 

electron velocity and the EM phase velocity, i.e. z ph  . Referring to Equation (1.4), 

let us note that due to z ph   there is no requirement for electrons to have transverse 

zk



2 2

ph zk k   
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momentum (i.e. 0eff  ) to ensure solutions to Equations (1.1) and (1.2). The 

synchronism condition therefore reduces to 

 
z zk 

 
(1.5)        

1.3.2.1.1 Energy Transfer in a Cherenkov Interaction 

The generation of electromagnetic radiation by an electron beam requires a bunching 

mechanism to impart an ac component of the beam current to the EM wave. This holds 

true for all types of interaction, not just the Cherenkov. In order for bunches to build up, 

and to allow sustained energy transfer, the electrons must remain in close synchronism 

with the EM wave. Bunching and synchronism are two fundamental conditions for the 

generation of coherent radiation in vacuum-electronic devices and can be explained by 

considering the uniform electron beam as follows: 

 In a uniform electron beam the contributions of all the individual electrons to the 

radiation field will be random in phase and therefore the square of the total field 

equals the sum of the squares the individual fields. If however the electrons are 

bunched within a distance comparable to the wavelength of the radiation, their 

fields will add up in phase, thus resulting in the emission of coherent radiation.  

 The power level of the coherent radiation generated by a bunched electron beam 

is typically several orders of magnitude higher than the non-coherent radiation 

generated by a uniform electron beam.  

The process of bunching itself can be thought of by considering the electron 

distributions, where initially, they are uniformly distributed over the distance of the 

waveguide wavelength z ; half of the electrons are accelerated and the other half 

decelerated by the electric field, thus allowing bunches to form as illustrated in Figure 

1.4(a). If the axial velocity is allowed to equal to phase velocity, z ph  ,  the bunches 

will form in the vicinity of the field null which does not allow for transfer of energy. If 
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however the velocity of the electron beam is made slightly greater, i.e. 
z ph  , it will 

travel faster than the wave resulting in the bunch centre to advance into the decelerating 

phase of electric field and therefore resulting in a net transfer of the beam energy to the 

electromagnetic wave, shown in Figure 1.4(b). 

 

 

 

Radiation sources based on this type of interaction are the Travelling Wave Tube (TWT) 

and the Backward Wave Oscillator (BWO), these are linear beam devices (have no 

transverse momentum). The TWT is an amplifier and follows a convective instability, 

such that in addition to the waves growing they also convect away from the location at 

which they were created, shown in Figure 1.5. The BWO is an oscillator and obeys an 

absolute instability, i.e. the instability grows as time progresses without moving from the 

point of origin, shown in Figure 1.6. Alternatively, the waveguide modes can be slowed 

down by modifying the shape of the confining walls by some kind of ‘loading’. This 

‘loading’ effect may be achieved by introducing a periodic variation in the radius of a 

cylindrical waveguide.  

 

 

Figure 1.4: Bunching of an electron beam in 
a linear beam source, by the 
axial electric field of a 
synchronized travelling wave, 
showing (a) bunch formation 
due to the action of the electric 
field, and (b) shift of bunch into 
decelerating phase of electric 
field.  
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         Figure 1.5: Convective instability                                    Figure 1.6: Absolute instability  

 

This is the basis of devices such as the backward wave oscillator (BWO) and the 

travelling wave tube (TWT) in which the device type depends upon whether the 

intersection with the waveguide curve occurs at a point of negative (BWO) or positive 

(TWT) group velocity [19]. Traveling Wave Tubes operate in the region of the 

dispersion curve where the group velocity (
gr

zk








) of the slow wave is positive          

( 0gr  ) and amplify forward waves whereas Backward Wave Oscillators operate 

where the group velocity is negative ( 0gr  ). In Figure 1.7 the dispersion diagram for 

radiation sources based on the Cherenkov interaction is shown. 

 

 

 

 

 

 
 
Figure 1.7:  Dispersion diagram for Cherenkov devices, showing (a) the interaction between the  

n = -1 harmonic of the slow space charge electron beam and the EM wave, which leads to  
a backward wave oscillation, and (b) the interaction between the fundamental harmonic  

     (n = 0) of the slow space charge electron beam wave with the EM wave to produce 
the forward wave interaction of the TWT.  

t 

z 

z 

z 
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1.3.2.1.2 The Smith Purcell Interaction  

The electron beam can also interact with the spatial harmonics of the EM wave. The 

wave spatial harmonics can be observed in periodic structures, whereby Floquet’s 

theorem [17] allows an electromagnetic wave to be represented as the superposition of 

an infinite number of its spatial harmonics; 

 
   , zlik zi t

l

l

E r z e A r e




 



   
(1.6) 

with axial numbers zlk ;   0 2zl zk k l d        (1.7)  

Here d is the period of the structure, l is the harmonic number, 0zk is the wave number of 

the zeroth-order spatial harmonic  0zd k d    , and lA  is the amplitude of the 

harmonic determined by the geometry of the structure. This type of radiation from 

electrons in a periodic structure is known as Smith-Purcell radiation where a spatial 

harmonic has an effective phase velocity, 
lph zlk c    propagating in a medium with 

an effective refractive index, l zln ck  . This allows us to understand Smith-Purcell 

radiation as a kind of Cherenkov radiation.  Let it be noted that the transverse wave 

number of slow waves is imaginary, i.e. 

2

2 2 0l zlk k
c




 
   
 

, therefore the field of the 

corresponding spatial harmonic is localized near the wall of the structure therefore 

electrons must propagate close to the wall in order to couple to this harmonic. An 

example of a radiation source which utilized the Smith-Purcell effect is the Orotron [20]. 

 

1.3.2.2 The Electron Cyclotron Maser Interaction 

Cyclotron Masers are high power microwave sources of coherent millimeter or sub-

millimeter radiation. They take advantage of the interaction between a fast 

electromagnetic wave and electrons to transfer energy from electrons gyrating in a 
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strong guiding magnetic field to an electromagnetic wave. The use of the fast wave 

interaction to generate millimetre-wave power has great potential as the supporting 

structures can be simple smooth waveguides.  

 

1.3.2.2.1 Energy Transfer in an Electron Cyclotron Maser 

In this type of device the electron bunching can be due to the effect of the 

electromagnetic field on both the axial and transverse velocities of the electrons, z  and 

 . The Cyclotron Resonance Maser (CRM) can be designed to operate using either fast 

or slow waves.  

In the case of fast wave CRM’s, we consider a beam of electrons travelling along a 

reasonably strong guide field, 0B  and imagine that the individual electrons have a 

velocity component perpendicular to 0B
 
such that they execute a small orbit Larmour 

rotation about their guiding centres at the cyclotron frequency 0
c

eB

m



  where   is the 

relativistic factor of the moving electrons. The scaling of c  
allows for external tuning 

of the output frequency through an adjustment of either the magnetic field or the beam 

voltage, thus allowing the individual electrons to spontaneously emit Doppler shifted 

cyclotron radiation: 

 
z z ck s     (1.8) 

where s takes the value of any integer not equal to zero. Electrons emitting this radiation 

can interact resonantly with the fast waveguide modes, and, as the cyclotron frequency is 

beam energy dependent, the rotating electrons will become bunched in their rotational 

phase (which is different from the spatial bunching of space-charge waves), illustrated 

Figure 1.8. The generation in ECM devices is therefore based upon the extraction of the 

electrons rotational energy in a magnetic field.  
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Figure 1.8: Schematic of orbital bunching in CRM devices showing, a) the initial position of the 
uniformly distributed electrons, b) interaction between the electron beam and the wave 
and c) the phase slippage between the formed electric bunch and the electric field.  

 

a) At time 0t   (the start time), electrons gyrating in a circular orbit are evenly 

distributed in azimuthal position and they interact with an electric field, either absorbing 

or radiating an EM wave. 

b) The action of the electromagnetic field on the electrons causes them to bunch due to 

the dependence of the electron gyration frequency on the relativistic mass (electron 

energy). After several rotations, a phase bunch is formed. Electrons that are decelerated 

increase in gyro frequency therefore advance in phase, and electrons that are accelerated 

decrease in gyro frequency and retard in phase. 

c) If the electron cyclotron frequency is less than the frequency of the electromagnetic 

field, the position of the bunches are delayed with respect to the phase of the electric 

field, this is known as phase slippage and as a result the net kinetic energy of the 

particles will decrease.  

 

In the case of slow-wave CRMs the dominant effect is axial bunching due to the change 

in Doppler term, this is achieved if the magnetic forces ( B  ) of the wave dominate. 

This is a non-relativistic effect and is known as the Weibel instability. A device which 

utilizes this instability is the Slow Wave Cyclotron Amplifier [21]. 
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Radiation sources based on the Cyclotron interaction include; the Gyrotron [22,23], the 

CARM [24], the gyro-BWO [25,26] and the gyro-TWT [27]. These are all gyro-devices 

driven by annular beams. The most widely known and used ECM is the Gyrotron and 

further details are given in Appendix A.  

 

1.3.2.3 The Free Electron Maser Interaction 

The Free Electron Maser (FEM) uses an electron beam passing through a periodic 

magnetic field of an undulator to produce electromagnetic radiation. They do not require 

slow wave structures and can operate at very short wavelengths/high frequencies. The 

interaction is achieved by a modification, not of the waveguide dispersion, but of the 

space-charge wave dispersion. If a periodic transverse magnetostatic field of alternating 

polarity (known as an undulator or wiggler) is applied inside the waveguide, the result is 

that the dispersion curves for the space-charge waves will be Doppler ‘up-shifted’ in 

frequency by an amount equal to the wiggle frequency of the electrons, w w zk  , 

where 
2

w

w

k



  with w the periodicity of the magnetic field. This can be understood as: 

in the frame moving with electrons, the wiggler field is an electromagnetic wave moving 

towards the electrons; hence the space-charge waves become fast waves capable of 

interacting with the fast waveguide modes. The FEM is therefore a fast-wave device. 

The synchronism condition is similar to a Cherenkov type instability but in this case the 

interaction of electromagnetic waves occurs with a pondermotive wave of the electron 

beam. The operating frequency of an FEM is determined by the condition that the 

electron in its rest frame, observes the radiation and the periodic external force at the 

same frequency. If the beam is highly relativistic the radiation will have a much shorter 

wavelength, determined by the relativistic Doppler Effect. Fast frequency tuning is 

possible by variation of the relativistic factor. The bunching of electrons in the FEM is 

due to the perturbation of beam electrons by the pondermotive well which is caused by 

“beating” of the electromagnetic wave with the spatially periodic undulator field. The 
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essential feature of the FEM mechanism is that the beam electrons undergo axial 

bunching in the combined wiggler and radiation fields -it is the axial bunching that is 

responsible for the generation of coherent radiation. The operating frequency of the 

FEM is dependent on beam energy and undulator period therefore the FEM can be tuned 

over a broad range of frequencies.  

Free Electron Lasers differ from other microwave sources in that they have 

demonstrated output over a range of frequencies extending far beyond the microwave 

spectrum, well in to the visible and ultraviolet range by adjusting the ‘wiggler’ 

frequency via the electron energy. These devices are best known for their applications 

outside of the microwave range, using high energy, low current accelerators. 

Nevertheless, a substantial effort had been devoted to development of FELs as a source 

of mm-waver radiation sources, driven by intense pulsed electron beams [28 - 30].   

 

1.3.2.4 Experimental Observations at Strathclyde 

A Free Electron Maser experiment using two dimensional distributed feedback was 

successfully carried out at Strathclyde [31-35]. The device is capable of producing up to 

60MW of pulsed output power at a frequency of 37.2GHz. In the experiment an 

oversized ( 10
D


 , where D represents the diameter of the waveguide) annular electron 

beam was used to drive the maser. The design comprised of a coaxial cavity with two 

individual 2D corrugated inner conductors separated by a region of plane conductor.  A 

heterodyne frequency diagnostic was used to measure an operating frequency of 

37.2GHz and the efficiency of the Free Electron Maser was found to equal 

approximately 10%. 

 



18 

 

1.3.3 Saturation Mechanism 

In most sources, wave growth is accompanied by a bunching of the electrons in some 

form or another. In some devices electrons form spatial bunches, in others, they will 

bunch the phase of their rotation about the magnetic field lines. In any event, bunching is 

an important phenomenon as it enforces the coherence of the electromagnetic waves that 

are generated. Bunching makes the difference between the incoherent spontaneous 

emission of the initial state, and the coherent stimulated emission of the later state. 

When the beam is strongly bunched, the microwave output power is proportional to the 

number of bunches, bN , and the square of the number density of electrons within the 

bunches, bn : 

 2

b bP N n  (1.9)
 

Of course, the process of wave growth and bunching cannot continue infinitely - 

eventually, given enough time the instability will proceed to saturation and wave growth 

ceases. A variety of mechanisms may lead to saturation, but two are seen most 

commonly as: either the excess kinetic energy of the electrons is exhausted and the 

electron oscillation falls out of resonance, or the electron bunches become trapped in the 

strong potential wells of the electromagnetic waves and begin to reabsorb energy from 

the wave as they move around in the well.  

All these types of device described above have one (or more) thing in common. They all 

possess an interaction region, i.e. a place where the energy can be generated, in some 

form or another. One of the main goals of this thesis is to demonstrate the possibility of 

obtaining MW level radiation at high frequencies (~90 GHz) from either one of the 

device types described above. Currently the output power limitation is the restriction in 

transverse size of the interaction space which is required so as to avoid the excitation of 

spurious modes. This limitation of the interaction space may result in either: breakdown 

due to the high power density, or electron beam instabilities due to the high space charge 

density. An increase in the transverse size is therefore necessary in order to maintain a 



19 

 

low beam current density as well as to keep down the field strength if any increase in 

power is desired, but this generally leads to a loss of mode selectivity (if single mode 

operation is desired). The use of distributed feedback was suggested to overcome these 

problems associated with mode control inside the oversized region and help to achieve 

single mode operation.  

 

1.4 Periodic Structures  

Periodic structures have been used to provide distributed feedback in optics [36] and in 

vacuum electronics over a broad spectral range, from the millimetre through to optical 

wavelengths [37-40]. The advantage of using these structures is that they can provide 

selective feedback where the performance is limited only by the technology available to 

obtain the periodic perturbation of either the waveguide walls or refractive index of the 

dielectric material.  

The method of distributed feedback via Bragg scattering has been successfully employed 

in a variety of devices, where it is used to provide coherent radiation by synchronization 

of transverse components of an oversized active medium, in return allowing for specific 

mode selection and control. There are two distinct types of periodic corrugation relative 

to this work; they are one dimensional structures, having variation in only the 

longitudinal coordinate, and two-dimensional, or ‘doubly periodic’ structures, consisting 

of perturbations not only along the length but across the transverse range also.  

1.4.1 1D and 2D Periodic Structures 

The one-dimensional perturbation can be realised by machining a shallow corrugation 

on the surface of an annular waveguide and may be presented analytically as: 

  0 1 cosa a a Kz M    (1.9)
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where 
0a  is the radius of the unperturbed waveguide, 

1a  is the amplitude of the 

corrugation, 
2

K
d


 , d  is the period of the corrugation along the z direction and M  is 

the corrugation azimuthal index. The wave propagating through the waveguide will 

reflect from each small perturbation of the waveguide wall, where, due to the periodicity 

of the wall perturbations, only waves which satisfy the Bragg resonance conditions [38] 

will be effectively coupled on such a corrugation 

     1 2zK k k M m m     
   (1.10)

 

where k
are the longitudinal wave numbers and 

1,2m are the azimuthal numbers of the 

incident (forward) and scattered (backward) waves respectively. Assuming azimuthal 

symmetry, denoted by 0M  , coupling between the forward and backward waves is 

possible. The coupling coefficient is proportional to the corrugation amplitude 1a  and if 

the amplitude of the perturbation tends to zero no coupling will exist. An increase in the 

amplitude will result in increased wave coupling and the appearance of reflection zones, 

otherwise known as band gaps. This effect is known as Bragg scattering and can be 

illustrated using a Brillouin diagram, Figure 1.9, where both cases are shown, i.e. a) 

corrugation equal to zero and b) finite corrugation. The harmonics of the waveguide 

eigenmodes are shifted along the k-axis according to 
2

n

z

n
K

d




, where n is an integer. 

This direct coupling of forward and backward waves on the 1D corrugation provides 

synchronization of radiation in the transverse direction from different parts of an 

oversized electron beam although cannot provide feedback over the transverse index of 

the wave [41].  

 

 

 



21 

 

 

 

 

 

 

 

 

Figure 1.9a: Brillouin diagram illustrating when the corrugation amplitude tends to zero there is 
no  coupling between modes.  

 

 

 

 

 

 

 

 

 

Figure 1.9b: Brillouin diagram illustrating a finite corrugation which leads to mode coupling, 
where the  coupled mode regions are outlined via red dashed circles. 

 

In order to obtain spatially coherent radiation from the oversized electron beam and 

improve mode control, the use of two-dimensional feedback has been successfully 



zk

No coupling 

zk



2

zd
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implemented [42-51]. This type of feedback can be realised by introducing a shallow, 

periodic double corrugation to the waveguide wall, and can be written as: 

 
    1

1 cos cos cos cos
2

z z z

a
r a k z k k z k k z k         

 
 

(1.11)
 

where a1 represents the waveguide cross section radius. 

This type of lattice offers indirect coupling of nearby waves via near cut off waves of the 

waveguide structure, where the coupling occurs due to Bragg scattering of waves 

propagating through the structure. Only waves satisfying the Bragg resonance condition 

will couple to the corrugation 

i sK k k  
 

 1 2M m m  
 

(1.12) 

where K
 are the longitudinal wave vectors of the structure, corresponding to the 

incident and scattered waves ik  and sk , and 1m and 2m represent the azimuthal numbers 

of the incident and scattered waves. 
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1.5 Previous Studies & Statement of Problem 

Previous studies have shown both 1D and 2D reflectors are a highly efficient method of 

providing feedback in an oversized system [48-51].  

An important point to note is that all of these previous studies listed have only 

considered the use of 1D and/or 2D periodic structures in either planar or coaxial 

configuration, on either one or both conductors. This coaxial geometry has its 

limitations, in that we are restricted to the fact that coupling can only occur for waves 

having zero radial variations as the presence inner conductor limits the generation of 

these modes, even in the presence of the 2D structure, we can still only achieve mode 

selectivity over the azimuthal index.  No attempt, prior to this thesis, has been made to 

investigate the effects a doubly periodic corrugation has upon removal of the central 

line, although it is believed that removal of this additional surface will allow for the 

enhanced modal coupling, due to the additional modes being present, whilst still 

maintaining the coherence and selectivity representative of the coaxial setup.  
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1.6 Thesis Layout 

The thesis begins with an introduction to the history of microwave engineering and the 

different classes of generating source available and prevalent to date further to 

discussing the method of distributed feedback and its history, including citations to 

previous successful applications which incorporate this feature. The chapter discusses 

the current limitations and restrictions of these regimes before proposing a possible 

solution. The layout of work is then given before proceeding to Chapter 2, which is 

primarily devoted to theoretical analysis of a 2D square corrugation in cylindrical 

geometry. Chapter 2 begins with the well known fundamentals of Bragg reflection and 

applies specific boundary conditions relative to our system before suggesting two 

methods with which mode structure and modal dispersion can be calculated.  This leads 

us to Chapter 3, where numerical analysis of a cylindrical waveguide encompassing a 

shallow square corrugation is carried out using two very different types of Numerical 

Algorithm solvers, which should help us to identify mode structure and any subsequent 

interactions taking place. This is applied, not only to one, but three variants of cavity, 

each designed to operate across a different frequency range (Ka-W-THz). Chapter 4 

gives consideration to the experimental analysis of a cylindrical periodic cavity, and 

includes a range of measurements including transmission and reflection profiles, 

demonstration of transverse mode scattering in addition to power density and Q-factor 

measurements. With theoretical, numerical and experimental analysis complete, Chapter 

5 is devoted to providing applications of this cavity to specific types of microwave 

device. Several examples are given and discussed in detail, i.e. beam voltage, current, 

field strength in order to illustrate the wide range of applications possible for this novel 

design. Chapter 6 is the concluding chapter, bringing together all conclusions and points 

of interest discovered throughout this work which also dedicates a significant section to 

possible future work.  
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Theoretical Model 

 

 

 

2.1 Introduction 

In order for us to understand the interaction(s) taking place inside the system, we must 

consider the modes present and how they evolve through the interaction region. This 

chapter will firstly consider EM wave evolution and propagation in a perfectly 

conducting cylindrical waveguide and then advance on these fundamentals to 

accommodate for the perturbation in our cavity, thus providing us with a more accurate 

analytical description of wave propagation and behaviour in our system.  

Attempts will be made to provide a possible numerical and/or graphical solution to this 

problem and relevant conclusions are discussed. 

This chapter commences with a brief description of the 2D feedback mechanism and 

how it affects the EM fields propagating in its vicinity (known as surface modes) 

2 
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followed then by a description of the field structure in a smooth cylindrical waveguide 

(volume modes). An analytical proposal is then given which describes how these fields 

interact with each other leading us to decipher a dispersion diagram for the overall 

system.  

 

2.2 Model Description 

The interaction region used in this work consists of a shallow, chess-board type 

corrugation on the outer wall of a smooth cylindrical waveguide. The introduction of 

this corrugation allows for scattering of electromagnetic waves as they propagate in the 

vicinity of the corrugation. We will consider this design for cavities operating at a 

number of different frequencies (Ka – THz), which are all fundamentally similar in 

operation principle, where the corrugation amplitude is far less than the transverse 

dimension therefore the proposed theory applies to all cases where a D , where a is 

the corrugation amplitude and D is the radius of the waveguide.  

As our system is grossly oversized we must consider the modes propagating through the 

centre, also known as volume modes. These ‘volume’ modes are akin to those present in 

a smooth cylindrical waveguide. This issue was not present in the previous studies due 

to the presence of the inner conductor 

 

2.2.1 Field Components 

This section is given to finding the general solutions to Maxwell’s equations for the 

specific case of wave propagation in a cylindrical transmission line or waveguide, 

having perfectly conducting (i.e. no attenuation) boundaries parallel to the z-axis. 

Application of the appropriate boundary conditions allows us to find a possible solution 

for wave dispersion in this cavity. 
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Assuming time harmonic fields with an i te  dependence propagating along the z-axis, the 

electric and magnetic fields may be written as 

       Re , zi t k z

sA z t r e
 

E E  (2.1) 

       Re , zi t k z

sA z t r e
 

H H  (2.2) 

Where sE and sH describe the transverse field structure inside the guide,  ,A z t  is the 

field amplitude, r  represents the transverse coordinates  ,r 
 
and zk  is the axial wave 

number. All fields obey the source free time harmonic Maxwell equations, which, for a 

simple, homogeneous, isotropic, linear medium where D Eand  B H  are given as 

 

0

.



E  

(2.3) 

 . 0B  (2.4) 

 

t


  



B
E  

(2.5) 

 
0 0 0

t
  


  



E
B J  

(2.6) 

Manipulation of these allows us to obtain the field components of an electromagnetic 

wave. The corresponding field components are written as:   

 

2

1 z z

r

E Hj
E j

r rp






  
   

  
 (2.7) 
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2

1 z zE Hj
E j

r rp







  
   

  
 (2.8) 

 

2

1 z z

r

E Hj
H j

r rp






  
  

  
 (2.9)

 

 

2

1 z zE Hj
H j

r rp







  
   

  
 (2.10)

 

 
21 1

0
z

z

E
r p

Hr r r r 

       
             

 (2.11) 

 2 2 2

0p       (2.12) 

The term p represents the transverse wave number,   the angular frequency,   the 

propagation constant of the fields and  0,  the constitutive parameters of the medium 

in which the fields reside. 

In general, the dielectric waveguide of circular geometry can support a family of 

circularly symmetric 0mTE and 0mTM modes (whose fields are independent of azimuthal 

coordinate) in addition to a range of hybrid nmHE and nmEH modes. Also, studies [1-3] 

have shown that improved guidance of surface waves is achieved when a perfectly 

conducting metal wire is coated with a thin sheet of low-loss dielectric material, this 

technique is also more commonly known as The Sommerfeld-Goubau (SG) Wire. The 

reader will be aware that this SG approximation is indeed different from that depicted in 

textbooks in that for the purpose of this work we have reversed the system such that we 

no longer have a solid core dielectric radiating into free space, instead we have a 

vacuum core encompassed by a thin dielectric layer.  This is the approximation we will 

use for the purpose of our analytical studies as it allows us to fully describe the mode 

properties, both in the volume of our cavity, simultaneously and on the complex surface. 
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2.3 Formulation of Problem 

The reader must understand that all prior analytical studies involving the 2D chessboard 

type corrugation were done so using a planar approximation of the system due to the 

presence of the inner conductor and/or consideration of a perturbation in one direction 

only, i.e. a 1D corrugation. This same approximation cannot be adopted here due to the 

absence of a central conductor and the presence of a 2D corrugation. The resulting field 

components can only be depicted as a sum of spatial harmonics of the system and not as 

a superposition of individual propagating waves, as per [4-7]. The shallow corrugation 

on the outer wall acts as to provide a perturbation in the effective permittivity of the 

electric fields in the vicinity of the structure, i.e. at the walls and can therefore be 

described as an effective dielectric, in that its presence has the same effect on overall 

field structure as an equivalent layer of low loss dielectric. 

The full model can be considered similar to that of a radially inhomogeneous cylinder (a 

full generic description is given in Appendix B), consisting of three regions, with each 

concentric layer having its own permittivity, as illustrated in Figure 2.1. 

 

 

 

 

 

 

 

 

 

 Figure 2.1: Cross sectional view of schematic model of shallow corrugation on the outer wall of 
metallic waveguide, represented as a thin layer dielectric.  

 

 

 

 

r1 

 

r2 

r3 
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The concentric layers of Figure 2.1 may be described as follows:  

 Region 1, for 
1r r ,  is representative of the vacuum region, having permittivity 

1  where 
1 0   as in this case this region is denoted by vacuum.  

 Region 2, 1 2r r r  , is representative of the shallow corrugation and has 

permittivity 
2 .  

 Region 3, for which 2 3r r r   corresponds to the outer copper wall of our 

structure and is assumed to be a perfect conductor, having permittivity denoted 

by 
3  . Beyond the perfect conductor, i.e. for 

3r r , in our case corresponds to 

free space. Only by consideration of the individual field components in each of 

these regions and simultaneous satisfaction of all corresponding boundary 

conditions, can an accurate analytical analysis of the field behaviour inside this 

complex system be given.  

 

In general, the dielectric waveguide of circular geometry can support a family of 

circularly symmetric 0mTE and 0mTM modes (whose fields are independent of azimuthal 

coordinate) in addition to a range of hybrid nmHE and nmEH modes.  

 

2.3.1 The Regional Field Components 

The field components for each region are depicted via the use of equations (2.7) – (2.12) 

with the appropriate substitutions in place for permittivity. In Region 1, all field 

components must be finite, thus are represented as: 

 
   (1)

1 1, jn

z n

n

E r A J p r e 




   
(2.13) 
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   (1)

1 1, jn

z n

n

H r B J p r e 




   
(2.14) 

where the coefficients 
1A
 
and 

1B are arbitrary constants which are also functions of n, 

such that  1 1A A n  , where   1,2,3,.......n . The transverse field components are 

found using equations (2.7) – (2.10) and using the appropriate substitutions for wave 

number  1p p  and permittivity  1 
 

 
 (1)

1 1 0 1 1 12

1

1
, ( ) ( ) jn

n n

n

n
E r A J p r j p B J p r e

p r






 





 
  

 


 

(2.15) 

 
 (1) 0

1 1 1 1 12

1

1
, ( ) ( ) jn

r n n

n

n
E r j p A J p r B J p r e

p r


 





 
   

 


 

(2.16) 

 
 (1) 1

1 1 1 1 12

1

1
, ( ) ( ) jn

r n n

n

n
H r A J p r j p B J p r e

p r


 





 
   

 


 

(2.17) 

    1

1 1 1 1 1 12

1

1
, ( ) ( ) jn

n n

n

n
H r j p A J p r B J p r e

p r






 





 
   

 


 

(2.18) 

Where the prime signifies the derivative of the Bessel function with respect to its 

argument,  1nJ p r is the Bessel function of the first kind of order n  having argument

1p r , and  

 2 2 2

1 1p k    (2.19)
 

 2 2

1 0 1k     (2.20)
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where 
1p
 
represents the transverse wave number, 

1k
 
the total wave number,   is the 

propagation constant, and 
1  

the effective permittivity of Region 1.  

Similarly for Region 2, the low loss dielectric layer having permittivity 2 , the axial 

field components are given as follows: 

        2

2 2 2 2, jn

z n n

n

E r C J p r C Y p r e 




     
(2.21)

 

        2

2 2 2 2, jn

z n n

n

H r D J p r D Y p r e 




     
(2.22)

 

where  2 2 2 2, , ,C C D D    are arbitrary constants.   

Before calculating the transverse field components it is important to note that, due to the 

presence of the perfect conducting outer boundary in our system at 2r r  there can be no 

outward flow of field beyond the 2r  boundary, i.e. the tangential fields must be zero: 

    2

2 , 0zE r    (2.23)
 

    2

2 , 0zH r    (2.24)
 

Thus allowing us to express 2C  and 2D  in terms of 2C  and 2D  and simplify (2.21) and 

(2.22) as: 

  

 
2 2

2 2

2 2

n

n

J p r
C C

Y p r
    (2.25)

 

  

 
2 2

2 2

2 2

n

n

J p r
D D

Y p r
    (2.26)
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Allowing (2.23) and (2.24) to be written as  

 
     

   

 
2 2 2 2

2 2 2

2 2

, ,
n n jn

z n

n n

J p r Y p r
E r C J p r C e

Y p r






 
  

 
  

(2.27)

 

and 

 

     
   

 
2 2 2 2

2 2 2

2 2

,
n n jn

z n

n n

J p r Y p r
H r D J p r D e

Y p r






 
  

 
  

(2.28)

 

 

Using these substitutions, the transverse fields can be found in the similar manner to 

Region 1, with the appropriate substitution of p  by 2p
 
and     by 2  and are given 

over the page in equations (2.29 – 2.32). 

The transverse field components are: 

 

 

 
   

 

 
   

 

2 2 2

2 2 2

2 2(2)

2

2 2 2 20
2 2

2 2

1
,

n n

n

n jn

r

n
n n

n

n

J p r Y p r
j p C J p r

Y p r
E r e

p J p r Y p rn
D J p r

r Y p r












  
     

  
  

     
  

  (2.29) 

 

 

 
   

 

 
   

 

2 2 2

2 2

2 2(2)

2

2 2 2 2

0 2 2 2

2 2

1
,

n n

n

n jn

n
n n

n

n

J p r Y p rn
C J p r

r Y p r
E r e

p J p r Y p r
j p D J p r

Y p r















  
   

  
  

      
  

  (2.30) 

 

 

 
   

 

 
   

 

2 2 22

2 2

2 2(2)

2

2 2 2 2

2 2 2

2 2

1
,

n n

n

n jn

r

n n n

n

n

J p r Y p rn
C J p r

r Y p r
H r e

p J p r Y p r
j p D J p r

Y p r













  
     
  

  
      

  

  (2.31) 
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 

 
   

 

 
   

 

2 2 2

2 2 2 2

2 2(2)

2

2 2 2 2

2 2

2 2

1
,

n n

n

n jn

n n n

n

n

J p r Y p r
j p C J p r

Y p r
H r e

p J p r Y p rn
D J p r

r Y p r














  
     

  
  

     
  

  (2.32) 

Where the prime signifies the derivative of the function with respect to its argument, 

 2nY p r is the second order Bessel function of order n  and argument 2p r , and 

 2 2 2

2 0 2p       (2.33)
 

 2 2

2 0 2k     (2.34)
 

In the case of Region 3, the assumed perfect conductor, it is not necessary to consider 

the decay or propagation of field components, as by definition the fields do not penetrate 

the surface of a perfect conductor. This somewhat simplifies our situation as we now 

have only two sets of field components and two boundary conditions to satisfy, although 

it is possible to include the resistive effect of the non-perfect metal which would in turn 

lead to a more complex situation as the modal dispersion would then have to be 

examined for at least three regions inclusive of the three simultaneous boundary 

conditions, added to the fact that one of these regions being metal, we then would then 

enter the territory of surface plasmons and related phenomenon. Although a very 

interesting and progressive area of scientific research, the time limitations on this work 

do not allow for such considerations to be adopted as yet.   

 

2.3.2 A Method for Calculating the Dispersion Profile 

The propagation constant   of the guided waves on this dielectric lined waveguide will 

be obtained via the dispersion relation, which is derived by enforcing the satisfaction of 
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all boundary conditions simultaneously. At the boundary surface 
1r r  the tangential 

fields must be continuous, that is,  

        1 2

1 1, ,z zE r E r   (2.35)
 

        1 2

1 1, ,z zH r H r   (2.36)
 

        1 2

1 1, ,E r E r    (2.37)
 

        1 2

1 1, ,H r H r    (2.38)
 

Thus, expanding these out yields the following: 

 
   

   

 
2 2 2 1

1 1 1 2 2 1 2

2 2

n n

n n

n

J p r Y p r
A J p r C J p r C

Y p r
   (2.39)

 

 
   

   

 
2 2 2 1

1 1 1 2 2 1 2

2 2

n n

n n

n

J p r Y p r
B J p r D J p r D

Y p r
   (2.40)

 

 

 

 
   

 
 

   

 

1 1 1 0 1 1 1 1

2 2 2 1 2 2 2 1

2 2 1 0 2 2 2 1

2 2 2 2

( ) ( )n n

n n n n

n n

n n

n
A J p r j p B J p r

r

J p r Y p r J p r Y p rn
C J p r j p D J p r

r Y p r Y p r







 

   
        

   

 

 

 (2.41)  



36 

 

 

 
   

 
 

   

 

1 1 1 1 1 1 1 1

2 2 2 1 2 2 2 1

2 2 2 2 1 2 2 1

2 2 2 2

( ) ( )n n

n n n n

n n

n n

n
j p A J p r B J p r

r

J p r Y p r J p r Y p rn
j p C J p r D J p r

Y p r r Y p r







  

   
         

   

 

 

 (2.42).  

The   dependence and the summation have been eliminated for simplicity. Similarly, by 

satisfaction at the 
2r r  boundary such that the tangential fields must equal zero, i.e.: 

    2

2 , 0zE r    (2.43)
 

    2

2 , 0zH r    (2.44)
 

    2

2 , 0E r    (2.45)
 

    2

2 , 0rH r    (2.46)
 

Corresponding to (again omitting the summation and exponent terms); 

 
 

   

 
2 2 2 2

2 2 2 2

2 2

0
n n

n

n

J p r Y p r
C J p r C

Y p r
   (2.47)

 

 
 

   

 
2 2 2 2

2 2 2 2

2 2

0
n n

n

n

J p r Y p r
D J p r D

Y p r
   (2.48)

 

 
   

 
 

   

 
2 2 2 2 2 2 2 20 2

2 2 2 2 22

2 2 2 2 2 2 2

0
n n n n

n n

n n

J p r Y p r J p r Y p rj Dn
C J p r J p r

p r Y p r p Y p r

    
         

     

(2.49)
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 
   

 
 

   

 
2 2 2 2 2 2 2 22 2

2 2 2 2 22

2 2 2 22 2 2

0
n n n n

n n

n n

J p r Y p r J p r Y p rn j D
C J p r J p r

Y p r Y p rp r p

     
          

   

(2.50)

 

 

There now exists two sets of simultaneous equations for the unknown coefficients: 

       1 1 2 1 2 2 2 1 2 2, , , , ,A B C r C r D r D r
 

where:                       2 1 2 2 2 1 2 2C r C r and D r D r  . 

The fields at the 
1r  boundary satisfy: 
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 
 
  
  
     
  
   
 
 
 

 
(2.51)

 

where: 
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The fields at the 2r  boundary satisfy:     (overpage) 
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It is clear that if the determinant of the above set of simultaneous equations is set to zero, 

the dispersion relation for the inhomogeneous dielectric cylinder may be achieved. 

However, as the size of the resultant is directly proportional to the number of layers, it 

becomes efficient to try to reduce the problem. One such proposed method is described 

in [52] which involves the reduction of a large matrix to a set of, more manageable, 4 x 

4 matrices, thus eliminating the need for computation of large matrices. This aside, the 

task of identifying the .vs   behaviour for various modes is complex and difficult, 

although not impossible, to solve analytically for each specific mode as both    and 

permittivity   are frequency dependant.  

Due to various time constraints I did not manage to complete this task of reducing (and 

solving) for the dispersion profile of the multi-layer system, although without a doubt it 

can be added to a list of ‘future developments’ necessary in order for the mode 

behaviours in this system to be fully understood. I did however commence numerical 

calculations so as to try to understand how the dispersion plots could be formed. I 

consulted reference [53] and tried to replicate the plots given on page 250 which is a 

single boundary system and is formed by a solid core dielectric, i.e. the boundary is the 

dielectric-air interface. The graphs represent only the TE and TM modes having zero 

azimuthal dependence, which allow each of them to be graphed separately and overlaid 

to find the intersection points. This process is only possible for azimuthally symmetric 

waves, where the total field can be split into its TE and TM counterparts; generally due 

to the more involved boundary conditions it is not possible to separate the fields.  

My reasoning behind this task was with the idea that I could separate both the surface 

fields propagating along the dielectric and volume modes propagating through the body 

of the structure of the system; plot them separately then overlay them to find the 

intersection points allowing me to construct a dispersion diagram. I did manage to 

successfully replicate the individual plots (of page 250, reference [2]) using 

Mathematica®, although upon trying to superimpose them yielded an error in 

Mathematica®. This clearly needs further investigation as does this ‘graph overlay’ 



41 

 

method in general as to whether or not it would provide viable results (if any) as to 

describe the modal dispersion for a multi-layer model.   

 

2.4 Discussion  

This chapter has given careful consideration to the analytical description of the mode 

structure inside this complex cavity structure and also how a potential solution can be 

reached. The modes propagating in the volume of our system are akin to those of a 

smooth cylindrical waveguide, whilst modes present on the surface are consequently 

presented as hybrids, due to the dielectric representation of the 2D lattice. Together the 

entire system may be approximated to that of a smooth perfect conducting system, 

having hybrid mode ‘regions’ that correspond to the interactions between these surface 

and volume waves. This of course needs further investigation in itself as the prospect of 

wave propagation in a single boundary dielectric is complex in its own rights without the 

further introduction of additional boundary conditions.  
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Numerical Modelling 

 

 

 

3.1 Introduction 

This chapter gives consideration to the electromagnetic wave evolution and interactions 

taking place inside an interaction region defined by a low contrast periodic lattice. 

Numerical investigations were carried out in order to determine the mode structure 

inside various geometry cavities where the sizes were chosen such that the interaction 

regions would operate at specific frequencies, predominantly in the Ka – W – THz 

frequency ranges, independently.  In order to provide coupling between the input fields 

and the waves of the cavity it is necessary to incorporate a TEM stub to the input port, 

this is not required in the presence of an active media such as an electron beam as there 

will be fields present. 

 

 

3 
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3.2 Numerical Modelling Methods 

There are many different numerical techniques used for solving the Maxwell equations 

although common to all numerical approaches is the act of separating the desired space 

into sub-domains, where solutions can be found more easily. To solve the full problem, 

all single-entity solutions are summed up in a usually large system of equations, which 

need to be solved in one way or another. When discussing the properties of the different 

methods, it is necessary to classify them where the major point of difference is the 

domain in which they are operating.  This is either the time domain or the frequency 

domain. On the time domain side we have the Finite Integration Technique (FIT) 

[54,55], the Finite Difference Time Domain (FDTD) in its explicit [56], [57] or implicit 

[58,59] variants and also the Transmission Line Matrix (TLM) method [60], [61]. The 

frequency domain is represented by the Finite Element (FE) method [62,63], the FIT and 

the Method of Moments solvers. All of these methods are volume discretization 

methods, except for the MoM, which is a surface discretization method. 

For the purposes of this research, both FDTD and FI solver based codes were used. The 

FDTD code used was Magic©, which solves the partial differential form of the Maxwell 

equations which are discretized using the central-difference approximation to the space 

and time partial derivatives. The Finite Integration based modeller used was CST 

Microwave Studio, where the FI technique solves the integral form of Maxwell’s 

equations. The use of these two different types of solver allows for consistency checks to 

be carried out. 
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3.3 Numerical Study of Ka-Band Cavity 

Performed using both Magic and CST Microwave Studio, the mode structure inside the 

Ka-band cavity was derived in combination with analytical predictions. The dimensions 

of the structure are as follows: radius = 40mm, number of azimuthal variations = 28, 

periodicity of corrugation is 8mm longitudinal with corrugation amplitude equal to 

1mm, can be seen in Figure 3.1. 

 

 

Figure 3.1: Cavity design for operation in the Ka frequency 
region.   

 

 

 

3.3.1 Magic Results 

Using Magic we were able to find the resonant frequency of this cavity and at this 

frequency view the corresponding field components. The relevant Magic output files are 

show in Figure 2. The system is excited by a broadband TEM pulse (30 – 40GHz) 

resulting in the main resonant frequency occurring at ~37GHz with smaller, although 

notable peaks occurring at ~29GHz and ~33GHz, as per Figure 3.2(a). Although these 

are small compared to the main resonance but they are worth noting and will be 

discussed later in this section. Considering only the main resonance observed at ~37GHz 

and looking at its field components, we can clearly see the induction of surface current. 

This is identified by looking at the E , B and zB  field structure shown in Figure 3.2, 

parts (b) – (d), where the number of azimuthal variations is exactly equal to that of the 

structure which in this case is equal to 28, and the number of radial variations is equal to 

one. 
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If we now consider the remaining field components B , E  and
zE , shown in Figure 3.2, 

parts (e) – (i), we can see that there exists variation across the radius but there is no 

variation in azimuthal field. This suggests the strong presence of a type TM0,n  mode, 

where n relates to the number of radial field variations present, and in this case equal to 

ten. 

  

 

 

 

 

 

 

 

Figure 3.2(a): Magic output results for Ka-band simulation, demonstrating the resonant frequency of 
the cavity to be ~37GHz. 

 

 

 

 

 

 

 

 

 

 

(a) 
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Figure 3.2 (b) – (d): Magic output graphics for the Ka-band simulation showing the field components 
corresponding to the excitation of surface currents on the structure, where b) is a 
cross-section view of the longitudinal magnetic component, c) is a cross-sectional 
view of the azimuthal electric field and d) is the radial magnetic field, again as a 
cross-section. 

 

(b) 

(c) 

(d) 
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Figure 3.2 (e) – (g): Magic output graphics for the Ka-band simulation showing the field components 
corresponding to the excitation of volume modes at the main resonance of 
approx. 37GHz and displaying no azimuthal variation and 10 radial variations, with 
e) showing a cross-section view of the longitudinal electric component, f) is the 
equivalent longitudinal view and g) is the magnetic field around the azimuth.  

(g) 

 

 

(e) 

(f) 
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Figure 3.2 (h) – (i): Magic output graphics for the Ka-band simulation showing the field components 
corresponding to the excitation of volume modes at the main resonance of 
approx. 37GHz and displaying no azimuthal variation and 10 radial variations, h) is 
the axial electric field only as viewed from top down, i.e. bird’s eye view, and i) is 
the radial electric field component, when viewed as a cross-section.  

 

Looking at all components of Figure 3.2 it can be deducted that the resonant frequency 

of this cavity occurs at ~37GHz which may correspond to the interaction between two 

types of mode:  

 A mode whose components are predominantly transverse, having 28 

azimuthal variations and one radial, we call this the surface mode EH28,1 

(i) 

(h) 
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 A mode having no azimuthal variation and 10 radial variations, i.e. the 

volume mode TM0,10. 

This concludes the field analysis for resonance corresponding to ~37GHz and now 

(briefly) the smaller resonance, occurring at ~33GHz is discussed in the next sub-

section. 

 

Resonance at 33GHz 

In order to examine only this resonance, the program was edited to narrow the 

bandwidth of the incident TEM pulse, i.e. in the range 32 – 34GHz. Looking at the field 

components corresponding to the resonance occurring at ~33GHz, given in Figure 3.3, 

we can see a very similar mode structure to that depicted previously for the 37GHz 

resonance, namely the presence of both surface and volume modes. The field structure 

of the surface mode is demonstrated in Figure 3.3(a) – (c) and is in fact identical to that 

of the 37GHz resonance with the only exception that the amplitude of the relative field 

strength is much lower than those corresponding to the 37GHz peak. Likewise, the 

components relating to the volume mode: B , zE  and E (shown in Figure 3.3(d) – (f)) 

are comparable in that they display a definite number of radial variations and none 

around the azimuth. For this 33GHz resonance the number of radial variations is equal to 

9 and not 10 as in the 37GHz resonant case, this is evident upon comparison of the B  

components of each interaction, displayed in Figure 3.4. 
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Figure 3.3(a) – (c): Field components corresponding to the surface mode of the 33GHz observed 
resonance, where a) is a cross-section view of the radial electric field, b) and c) 
are the same views of the magnetic radial and axial components. 

 

(b) 

(a) 

(c) 
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Figure 3.3 (d) – (f): Magic output graphics for the Ka-band simulation showing the field components 
corresponding to the volume mode of the 33GHz resonance, where d) is the radial 
magnetic flux component, e) is the axial electric and f) the radial electric fields, all 
viewed along a cross-section. 

(d) 

(e) 

(f) 
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Figure 3.4: Comparison of field components illustrating different radial variations and their 
respective field strengths where a) is the 33GHz resonance and b) that of 37GHz. 

 

In summary to this section it has been found that coupling between a surface wave 

having 28 azimuthal and one radial variation, i.e. EH28,1 and a volume wave having zero 

azimuthal and nine radial, i.e. TM0,9 occurs, resulting in a resonance peak at ~33GHz. 

~ 33GHz 

~ 37GHz 

TM0,9 

coupling 

TM0,10 

coupling 

(a) 

(b) 
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This resonance however is minor in comparison to the dominant resonance of ~37GHz, 

which occurs for the EH24,1 - TM0,10 interaction.  

An important point to note is that we cannot say for sure whether the surface mode is in 

fact EH or HE type or the relative compositions of each, as we can only (using Magic) 

visualise the resultant field components. Extensive analysis of mode patterns, and indeed 

their excitation order within the system, is achievable via the use of Microwave Studio 

and is detailed in the next section.   

 

3.3.2 CST Microwave Studio Results 

Using CST Microwave Studio (MWS) it is possible to identify the mode excitation order 

inside the specified interaction region. The exact same cavity dimensions were entered 

into MWS and run through the ‘transient’ solver and it was found that the modes excited 

(and their order) follow closely to those of the equivalent smooth waveguide system 

(assuming a perfect electrical and thermal conductor). The modes excited are in fact 

identical with the exception that, at specific frequency ‘bands’ there exists coupling 

between adjacent modes, resulting in the designation ‘hybrid’ in MWS. Table 3.1 (given 

below) is an extract taken from the full mode order list, which is provided in Appendix 

C, and includes results predicted by theory and those given by MWS. To give the reader 

better understanding the first 40 modes for the Ka-band design (radius of 40mm) are 

given below and the term ‘Designation’ refers to the mode number as assigned by MWS  

and the asterisk to some of the designations is indicative of a hybrid mode labelling. It’s 

important to point out that MWS list both polarisations for each mode as separate 

independent modes as observed in the Table 3.1. Looking at these mode numbers, we 

can easily see the presence of the 2D corrugation having an effect on specific modes – 

denoted by the term ‘hybrid’, all other modes are almost a perfect match to those of an 

equivalent smooth waveguide. These modes can also be visualised by means of contour 

plots as shown below, where the first hybrid mode is shown. We know from the table 

above that this hybrid lies in place of the TE1,2 (modes 15* & 16*) and also in place of 
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the left hand polarisation of the TE4,1 mode (mode 14*)  and we therefore assume that 

these hybrids are as a result of these combinations. This fits well with the corresponding 

contour plot, Figure 3.5, and is a perfect demonstration of surface mode coupling via the 

chessboard structure. 

 

 

Mode Order Listing 

  Analytical  MWS  

Mode Root Kc (m-1) fc (GHz) fc (GHz) Designation 

TE1,1 1.84118 46.6121519 2.2255663 2.22 1 & 2 

TM0,1 2.40483 60.88177215 2.9068905 2.92 3 

TE 2,1 3.05424 77.32253165 3.6918789 3.67 4 & 5 

TM11/TE01 3.83171 97.00531646 4.6316627 4.63 6 & 7, 8 

TE3,1 4.20119 106.3592405 5.0782797 5.04 9 & 10 

TM2,1 5.13562 130.0156962 6.2077922 6.24 11 & 12 

TE4,1 5.31755 134.621519 6.4277041 6.34 13 & 14* 

TE1,2 5.33144 134.9731646 6.4444939 HYBRID 15* & 16* 

TM0,2 5.52008 139.7488608 6.6725166 6.7 17 

TM3,1 6.38016 161.523038 7.712157 7.75 20 & 21 

TE5,1 6.41562 162.4207595 7.75502 7.68 18 & 19 

TE2,2 6.70613 169.775443 8.1061803 8.09 22 & 23 

TE0,2 7.01559 177.6098734 8.4802468 8.477 24 

TM1,2 7.01559 177.6098734 8.4802468 8.525 25 & 26 

TE6,1 7.50127 189.9055696 9.067323 8.966 27 & 28 

TM4,1 7.58834 192.1098734 9.1725708 8.22 29 & 30 

TE3,2 8.01524 202.9174684 9.6885954 9.67 31 & 32 

TM2,2 8.41724 213.0946835 10.174522 HYBRID 33* & 34* 

TE1,3 8.53632 216.1093671 10.318462 HYBRID 35* & 36* 

TE7,1 8.57784 217.1605063 10.36865 10.31 37 & 38* 

TM0,3 8.65373 219.0817722 10.460384 10.51 39 

TM5,1 8.77148 222.0627848 10.602717 10.65 40 & 41 

 

 

Table 3.1.  Mode Order Comparison with analytical predictions listed against MWS output. 

 

* = Denotes Hybrid mode 
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Figure 3.5:  Microwave Studio Results demonstrating the coupling of waves on the surface of the 2D 
corrugation and resulting in hybrid mode formation. 

 

This example of transverse wave coupling was given to show that it is indeed possible to 

identify, to a degree, which modes are being effectively coupled via the corrugation. 

This example was straightforward as we were considering only the first say 20 - 15 

modes. The problem however becomes far more complex as we climb through the mode 

probabilities as one must consider not only the modes in the vicinity of the ‘hybrid’ 

mode (or modes) but we must also consider each and every other mode present in the 

system at that instance, i.e. give consideration to all the other modes as propagating 

modes up until that point. This makes the task of identifying the individual modes 

coupled on the corrugation impossible. With this in mind we then look at the other 

region of hybrid modes present in this system which occurs at frequencies ~33GHz and 

then again ~37GHz. These results are given in Table 3.2 where (a) corresponds to ~ 
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33GHz and (b) to ~37GHz. Only the sections involving the hybrid modes have been 

shown here all the modes before/after these follow the order of the smooth waveguide.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.2.  Extracts from MWS mode order table for both (a) ~33GHz and (b) ~37GHz resonance.  

 

Resonance @ 33GHz Resonance @ 37GHz 

Designation Type fc(GHz) Designation Type fc(GHz) 

367 TE5,7 32.665 447 & 448 TE27,1 36.05 

368 Hybrid - 449 TE18,3 36.32 

369 Hybrid - 450 TM24,1 36.61 

370 Hybrid - 451 Hybrid - 

371 Hybrid - 452 Hybrid - 

372 Hybrid - 453 Hybrid - 

373 Hybrid - 454 Hybrid - 

374 TM4,7 32.905 455 Hybrid - 

375 & 376 TE16,3 33.02 456 Hybrid - 

377 Hybrid - 457 Hybrid - 

378 & 379 TM9,5 33.155 458 & 459 TM6,7 - 

380 Hybrid - 460 Hybrid - 

381 Hybrid - 461 Hybrid - 

382 Hybrid - 462 Hybrid - 

383 Hybrid - 463 Hybrid - 

384 Hybrid - 464 Hybrid - 

385 Hybrid - 465 Hybrid - 

386 Hybrid - 466 Hybrid - 

387 Hybrid - 467 Hybrid - 

388 Hybrid - 468 Hybrid - 

389 Hybrid - 469 Hybrid - 

390 Hybrid - 470 Hybrid - 

391 Hybrid - 471 Hybrid - 

392 TM12,4 33.79 472 Hybrid - 

393 TE8,6 33.79 473 Hybrid - 

394 Hybrid  474 TM14,4 37.34 

395 TM15,3 33.9 475 Hybrid - 

   476 Hybrid - 

   477 TE10,6 37.38 

   478 Hybrid - 

   479 Hybrid - 

   480 Hybrid - 

(a) (b) 
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The corresponding contour plots are also shown for each of the resonances, Figure 3.6, 

and although it’s difficult to determine anything useful from the ‘absolute’ contour plot 

we can break down the resultant plot into its respective electric and magnetic 

components, thus simplifying the model greatly. In doing this it was discovered that the 

majority of hybrid modes in and around the 33GHz region posses fields having 28 

azimuthal variations in combination with a varying number of radial indices. Shown in 

Figure 3.6 are (a) the electric and (b) the magnetic longitudinal components of mode 

number 372, corresponding to the ~33GHz resonance, and (c) the electric and (d) the 

magnetic profiles for mode number 486 which lies in the ~37GHz range of hybrids. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6:   Results from Microwave Studio illustrating the field components for both the 33GHz and 
37GHz resonances, where a) is the electric field of the 33GHz resonance with b) the 
magnetic longitudinal component and both c) and d) correspond the electric and 
magnetic components for the 37GHz resonance.  

(c) 

(a) (b) 

(d) (c) 
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In summary to the section devoted to the Ka-band cavity analysis, it has been shown that 

the mode structure can be identified, and this is concurrent across two very different 

numerical codes. It has to be said that in this case, for Ka dimension, that the 

performance of the FDTD code Magic was far superior to that of the finite integration 

code MWS. Full analysis of this design is not possible in MWS due ‘insufficient 

memory requirements’, most probably due to the oversized nature of the cavity in 

comparison to the corrugation depth (40mm vs. 1mm). Despite this, it was still possible 

to deduce the resonant frequency of this structure to be ~37GHz, corresponding to 

interaction between EH21,1 surface mode and a TM0,10 volume mode. It was also noted 

that other resonances are indeed possible, due do interaction of this surface mode with 

different radial modes, although the coupling is not as strong – it is still present. This 

allows for a certain degree of freedom as we can choose which frequency to resonate by 

simple adjustment of the input pulse.  

 

It is a well known fact that the resonant frequency of any cylindrical waveguide 

structure is of course dependant on its transverse dimension, with frequency increasing 

as the radial dimension is decreased. If we apply this, in combination with exactly the 

same reasoning and numerical investigation methods carried out at Ka-band dimensions, 

we should be able to create a cavity whose resonant frequency lies above the 37GHz we 

currently have. This is discussed in the proceeding section. 
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3.4 Numerical Study of W-Band Cavity 

The dimensions for the system designed to operate at or around 90GHz are as follows:  

Radius of cavity – 10mm, 16 azimuthal variations, amplitude of corrugation is 1mm 

having a periodicity in the longitudinal direction of 3.2mm and overall length of 44.8cm. 

This is visualised in Figure 3.7 which is the output from both Magic (a) and MWS (b).  

 

 

 

 

 

 

 

Figure 3.7: Numerical setup of the 90GHz cavity as given by a) Magic® and b) MWS. 

 

 

3.4.1 Magic Results 

The cavity was first excited by a TEM pulse 85 – 95 GHz, shown in Figure 3.8(a); this 

resulted in the appearance of two distinct resonances, one at ~88GHz and the other at 

~96GHz, shown in Figure 3.8(b). The range of the input pulse was then reduced, 86 – 

88GHz shown in Figure 3.8(c), so as to identify only one resonance which resultantly 

occurred at ~88GHz, Figure 3.8(d). This peak, at ~88GHz, was found to correspond to 

the interaction occurring between a TM0,5 volume mode and an EH16,1 surface mode, 

with the relevant field components given in Figure 3.9. 

 

(b) 
(a) 
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Figure 3.8: Various resonances corresponding to differing input pulse characteristics, where a) is the 
broadband TEM pulse, b) is the two resonances produced, c) is the narrower band 
excitation signal with d) the resulting resonance. 
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Figure 3.9:   Field components corresponding to the resonant frequency of ~88GHz, which denotes 
surface wave interaction with the TM0,5 mode, where a) and b) are different views of the 
same axial electric field at the same time instance and c) is the axial magnetic flux at the 
same point in time. 
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3.4.2 CST Microwave Studio Results 

Similarly Microwave Studio predicted a resonant frequency of ~96GHz for this design; 

it did not however pick up on the resonance occurring at ~88GHz. This is due to the 

excitation pulse being of Gaussian nature, Figure 3.10 (a). We can see dominant Ez field 

located towards the centre consistent with TM mode presence, and similarly the 

magnetic component is located to the surface, representing excitation of surface current, 

Fig. 3.10(b)-(d).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10: Microwave Studio output graphics showing a) The Gaussian Excitation Signal and b) The 
stimulation of surface currents. 
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Figure 3.10(c – e): MWS results showing resonance at ~ 97GHz, where c) and d) are the electric and 
magnetic components of the resonance and e) is a graph of the corresponding 
transmission profile. 

96.1GHz 

(d) 
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3.5 Numerical Study of THz Cavity 

The studies were performed using both Magic and CST Studio and the results were once 

again compared. The design parameters of the THz cavity are as follows; the pump TEM 

wave is launched in to a cavity of radius 5mm having 20 azimuthal variations and a 

longitudinal period equal to 1.25mm. The amplitude of the corrugation is 0.8mm and 

overall length is 18cm, shown in Figure 3.11.  

 

 

 

 

Figure 3.11: Cavity design for THz resonance as viewed using Magic. 

 

3.5.1 Magic Results 

In the first instance, the system was excited via a 170-180GHz TEM pulse, allowing it 

resonate at ~ 172GHz, shown Figure 3.12(a)-(b). This corresponds to surface wave 

interaction with the type TM0,6 wave. This may be visualised in Figure 3.12(c)-(d), 

where one can easily depict the number of radial variations as being six. 

 

 

 

 

 

Figure 3.12(a-b): Magic output for the THz design showing a) the launch TEM pulse profile and b) the 
resonant frequency. 

(a) (b) 
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Figure 3.12(c-e): Magic output for the THz design where c) is the longitudinal magnetic component, 
located at the surface, d) the cross-sectional view of the longitudinal electric field, 
which is located to the volume, and e) is the axial view of same electric field 
component. 
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(d) 
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Further to this the same cavity was then excited again with the same 10GHz TEM pulse 

profile, only this time shifted in frequency where the occupied range is now  175-

185GHz. The corresponding output is shown in Figure 3.13, and resultantly causing the 

cavity to resonate at ~182GHz, with a radial variation number equal to seven and surface 

mode number still equal to sixteen. The shallow corrugation has no effect on the radial 

field structure, only the azimuthal structure. Note also, for comparison, the relative 

electric field strength values in both cases, the higher field amplitudes are associated 

with the TM0,7  interaction, when compared to the TM0,6. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13(a-c): Magic Output for the THz design where a) is the 10GHz excitation signal, b) is 
the resonant frequency in the 180 GHz range and c) is the corresponding 
surface excitation fields. 
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Figure 3.13(d-e):  Magic Output for THz cavity design outlining the presence of the volume 
mode where d) and e) are the axial electric field, viewed as a cross-section 
and axially, where seven radial variations are observed. 

 

We also gave consideration as to how the system would behave if the input bandwidth 

were increased from 10GHz to 30GHz, i.e. 155 - 185GHz. The resonant frequency in 

this case was prominent around ~165GHz, but note relatively wide band and low 

amplitude of this pulse in comparison to those of previous, Figures 3.14(a)-(b). With 

respect to identifying mode structure, the results proved inconclusive as although we can 

identify six radial variations along Ez, there also exists now a longitudinal variation 

which was NOT present in any previous case, Figure 3.14(c).  

(d) 

(e) 
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From these we can see the currents induced on the surface of the corrugation only, i.e. 

the shallow periodic structure has no effect on the radial fields of the waveguide, shown 

in the figures previous.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14: Resultant output files corresponding to the TEM 155 - 185GHz input signal, where a) is the 
launched TEM pulse, b) is the resonance(s), and c) is the electric field profile. 

(a) 

(b) 

(c) 
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3.6 Chapter Conclusions 

In conclusion to this chapter we now have a more complete picture of the field 

behaviour inside a (cylindrical) periodic cavity, and have also demonstrated that the 

method of surface mode to volume mode coupling is indifferent to the dimensions of the 

system. Of course, the interacting modes will be different for each system, but the 

principle remains the same throughout and concurrent across a range of frequencies, as 

demonstrated. 

Both codes agree with the mode prediction, but MWS has the advantage that it can tell 

you the exact mode order, cut off frequency and wave impedance and display these in an 

‘on call’ tab, whereas Magic only allows us to visually ‘see’ the resultant field 

components, as ‘snapshots’ through the system, the rest must be pieced together by the 

user.  

Generally, all the results show a ‘range’ of coupling zones which is present regardless of 

the cavity dimensions. This is believed to correspond to the ‘surface’ mode of the 

structure interacting with different radial type modes. Analysis of both field strength and 

surface current density, given from both codes, allows us to determine which radial 

number will provide the most effective interaction for each of our systems. Also, via the 

CST Studio code, we can visualise the entire hybrid mode pattern in addition to the 

individual field components as given by magic, this enables us to determine the exact 

point at which to locate our electron beam, should this cavity design be incorporated into 

such an experiment.  
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Experimental Analysis 

 

 

 

4.1 Introduction 

Experimental investigation of a cavity based on a 2D square lattice type corrugation was 

carried out in order to physically demonstrate the excitation of cavity eigenmodes and 

also provide an estimate for loss and gain factors of the cavity. The cavity considered for 

these sets of experiments is of cylindrical geometry, 80mm diameter and has a 1mm 

corrugation on the outer surface, shown in Figure 4.1, where a photograph of the 

experimental set up with an insert showing the structure studied is presented. The 

periodic structure (insert to Fig.1a) made of copper has the following parameters: radius 

= 40mm, total lattice length 48 mm, number of azimuthal variations = 28 with a 

longitudinal periodicity equal to 8 mm and a corrugation amplitude equal to 1mm. 

To study the 2D surface wave cavity experimentally a set up similar to one used for 

studying coaxial structures [64] has been adopted, with the appropriate adjustments in 

place. In this Chapter results of experimental studies of the Ka-band 2D periodic 

structure are presented. The microwave measurements of the transmission and reflection 

4 
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profiles were conducted, in addition to near and far field measurements of the signal 

amplitude. The apparatus and techniques used in each of the experiments are detailed in 

this next section. 

 

                                               

 

 

 

 

Figure 4.1(a): Photograph of the cylindrical 2D periodic structure which forms the cavity, having 
diameter 80mm, corrugation depth 1mm, 28 azimuthal variations and 
longitudinal period equal to 8mm. 

 

 

4.2 Apparatus and Diagnostics  

The apparatus and diagnostics used in each of the cavity analysis experiments are 

detailed in this section. Each of the experiments utilised a network analyser in 

conjunction with a number of compatible mode convertors and an oversized 

transmission line containing the band gap cavity as the device under test. 

 

4.2.1 Network Analysers  

Network Analysers may be used to measure a wide variation of device and network 

properties, including impedance, Voltage Standing Wave Ratio (VSWR), energy 

loss/gain, isolation and group delay [64,65]. The purpose of network analysers in this 

instance was to measure the transmission and reflection of microwave radiation in the 

upper Ka-band (30 – 40) GHz frequency range. There are two different types of 
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Network Analyser used in these distributed feedback measurements, the Hewlett 

Packard 8757D Scalar Network Analyser, and the Anritsu 37397A Vector Network 

Analyser. The scalar network analyser will measure power against frequency (frequency 

domain measurements) whereas a vector network analyser will measure power with 

phase against frequency (time domain measurements). This extra phase information 

given by the VNA allows for greater calibration accuracy of microwave components. 

Using the Scalar Network Analyser in conjunction with a frequency sweeper, it was 

possible to measure the scattered wave reflections produced in a Bragg cavity as a 

function of frequency. This is helpful when identifying mode structure and interactions 

taking place inside the cavity. Using the Vector Network Analyser allowed us to analyse 

the reflection and transmission properties of the electromagnetic wave cavity. The 

HP8757D scalar Network Analyser is used in conjunction with the HP83752B 

synthesized microwave sweeper. The SNA has an operating bandwidth of (0.01 – 20) 

GHz and a maximum power output of 10dBm @ 20GHz [66]. This bandwidth can be 

extended via the use of a frequency doubling head, allowing for operation in the (26.5 – 

40) GHz range, however, the maximum power achievable @ 40 GHz is reduced to 

7dBm. In order to successfully transfer electromagnetic energy from the network 

analyser to our system, we must make use of a series of compatible mode converters. 

These are detailed in the following section.  

The components and mode transitions that occur from left to right are as follows; 

a) Rectangular  
1,0 1,1TE TE  Circular  

b) Waveguide connector 

c) Circular 
1,1 0,1TE TM

 
Circular  

d) Waveguide connector 

e) Circular 
0,1TM TEM Coaxial  
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4.2.2 Mode Converters 

A series of mode converters are used in these experiments and in order to successfully 

connect either the VNA or SNA to our transmission line system and device under test. 

Illustrated below in Figure 4.2 is a schematic showing the mode convertors used in these 

experiments. The setup consists of three mode convertors which perform the required 

transformation in the desired frequency band, which for Ka is defined as between 35 and 

38GHz [67]. 

 

 

 

 

 

 

Figure 4.2:    Schematic showing the mode conversion section of the experimental set up, a) 
rectangular to circular converter, b) the gradually opening waveguide connector, c) the 
Serpentine mode convertor, d)  waveguide connector, e) circular to coaxial adaptor. 

 

 Section (a) consists of a typical Flann Microwave Ka-band rectangular to circular 

converter, where, the waveguide operates at the fundamental mode in both 

geometries in the region 26.5GHz and 40.0GHz. The cut-off frequency of the 

fundamental mode in the circular waveguide section of 22GHz is the limiting 

factor in this section; however, single mode operation is possible in the region up 

to and including 40GHz. This mode convertor is achieved by gradually changing 

the geometry of the waveguide cross section, shown in Figure 4.3. 
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Figure 4.3: Schematic diagram of the rectangular 
1,0 1,1TE TE

 
circular mode converter, 

where ‘a’ denotes the standard waveguide dimension. The arrows indicate the 
electric field structure at the input and output of the converter. 

 

 Section (b) is a gradually opening section of circular waveguide, from 7.2mm to 

9mm. This allows connection to the next section (c) to be made.  

 Section (c) is a serpentine mode converter, consisting of two curved sections of 

waveguide connected to form an ‘S’ shape. It is this shape modification that 

allows for the mode transformation via an intermediate mode, this is by varying 

the phase of the coupling coefficient along the axial direction. The serpentine 

mode converter is required, in this instance, to convert a 
1,1TE  wave to a 

0,1TM  

wave whilst maintaining high conversion efficiency across the upper region of 

the Ka-band frequency range of 30-40GHz [68]. The serpentine mode converter 

is capable of converting both the forward and backward waves, enabling them to 

be used at both ends of the transmission line. Care must be taken to ensure the 

polarity of both serpentines is matched in order to avoid any parasitic mode 

reflections due to a mismatch in phase.  

 Section (d) is another waveguide connector of increasing aperture, from 9mm to 

12mm. The increase in waveguide diameter is important in order to increase the 

conversion factor of the 
0,1TM wave into the TEM wave of the coaxial guide.  
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 Section (e) is a circular to coaxial adapter. This consists of a cylindrical 

waveguide in which the azimuthally symmetric 
0,1TM  wave traverses and where 

a central cylindrical conductor having 8mm diameter is introduced. This then 

follows on through a gradually opening coaxial horn of length ~60cm and 

gradually increases the radius until the separation between the inner and outer 

conductors reaches a value of 10mm. It is at this point the mode is transformed 

fully into the TEM geometry, thus enabling it to pass in to the transmission line. 

The TEM mode passes through without producing any spurious mode 

transformations and therefore is suitable for launching into the large diameter 

coaxial waveguide section in which the 2D structure is located. 

 

4.2.2.1 Verifying the Operating Range of the Mode Converters 

In order to verify this array of mode converters operates effectively in the desired 

frequency region (26.5 – 40GHz), the transmission properties were measured using the 

Anritsu Vector Network Analyser. A schematic of the experimental setup is presented in 

Figure 4.4 where the serpentines are held together via cylindrical waveguide. The signal 

is fed from the VNA into the mode conversion section via waveguide connections, and 

allowed to return to the VNA via identical mode converters on the return side, allowing 

the transmission properties to be measured.  

The setup was calibrated at the reference planes numbered 1 & 2 prior to any recording 

of measurements. A through-reflect-line (TRL) calibration was performed using two 

lengths of Ka-band waveguide, at 95.30mm and 88.40mm in length combined with the 

appropriate short circuits for the reflection measurements. 
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      Figure 4.4:   Schematic diagram of the experimental set up used to define the operating  
bandwidth of the S-type mode converter.     

 

 

 

 Figure 4.5:  The transmission coefficient of the S-type mode converters in the frequency  
 interval  26.5 – 40 GHz.  
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From the results shown it can be seen that the effective operating frequency range 

lies inside the frequency interval 30 to 40 GHz. 

 

4.2.3 The Transmission Line System 

The Transmission Line System is common to all of the following experimental 

configurations, and is illustrated in Figure 4.6. Coaxial transmission lines, each 

consisting of an input and an output section were used in the investigation of the 

distributed feedback cavity. The central section of the coaxial transmission line 

consisted of inner and outer diameters of 60mm and 80mm, respectively. The operating 

frequency of the DUT is centred around 37.4GHz and a smaller dimension of 

transmission line was applied at both the input and output of the cold test system. 

Diameters of the inner and outer conductors at the transmission line input/output were 

10mm and 28mm respectively. These were then tapered up and connected to the 

oversized cavity.  

 

 

 

 

Figure 4.6: Sketch of the transmission line system inclusive of mode converters. 

 

The entire transmission line is axially symmetrical with corresponding down tapers and 

mode converters, in reverse order, at the output of the DUT (where necessary). This 

enables propagation of radiation through the device with a stated efficiency in the range 

0.9 – 0.99 in the frequency band 30 – 40 GHz, with the highest efficiency achievable in 

the range 35 – 40 GHz [68]. 
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4.3 Experimental Observations 

In order to fully understand the interactions taking place inside the interaction region it 

is necessary to consider the waves inside in absence of any active media, this is 

otherwise referred to as a cold test.  

All of the following experiments were carried out on the Ka-band cavity utilised 

successfully in the previous experiments [69 - 72]. The difference here is that the setup 

is of cylindrical geometry as opposed to the coaxial system used in the above stated 

references. It is important to note that as the following tests omit the use of an active 

media, i.e. an electron beam, it is necessary to introduce a coaxial “stub” at the 

beginning of the launch to allow for efficient mode coupling inside the interaction 

region.  

 

4.3.1 Experiment One – Measuring the Transmission Profile  

An important characteristic of any resonant structure is the excitation of one or several 

eigenmodes which dominate/characterise/define the operating range of such a device.  

An important characteristic of any cavity type structure is to understand how it behaves 

in the absence of any type of active media, for instance and electron beam, more 

specifically examine its ability to transfer or store energy in the form of resonant 

frequencies. Knowing the resonant frequencies of a system allows it to be calibrated to a 

specific user.  

The resonance profile of the system was analysed using a vector network analyser setup, 

as depicted in the section below.  

4.3.1.1 Experimental Setup and Procedure 

The transmission and reflection properties of our Bragg structure were measured using a 

Vector Network Analyser connected, via a series of mode transformers, to an oversized 

coaxial transmission line. A schematic of the setup is shown below in Figure. 4.7(a) 
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which consists of the Anritsu 37397A Vector Network Analyser connected to the 

waveguide mode converters and transmission line system, with the 2D cavity as the 

device under test. The connections were made using Ka-band rectangular waveguide 

(7.2mm x 3.8mm). This setup allows us to determine the transmission through the 

system as a function of frequency, i.e. dB vs. freq. (GHz). Also shown in Figure 4.7(b) is 

a photograph of the completed setup prior to measurement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7:   Experimental measurements where a) is an Illustration of the setup used to measure the 
transmission properties of the Ka-band interaction region and b) is a photograph of the 
completed experimental setup, the insert between the two figures is the numerical output 
from magic of the same scenario. 
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In order to achieve the highest possible accuracy results it is necessary to calibrate the 

transmission line system prior to any measurements being recorded. This was achieved 

by performing a thru cal at reference planes 1 & 2 using two lengths of cylindrical 

waveguide, less than one half wavelength differences (72mm and 126mm). As a 

reference the same measurement was carried out for a smooth wall cavity having exactly 

the same dimensions as the corrugated cavity.  

 

4.3.1.2 Results & Discussion 

The transmission profile for this design was obtained and is shown below in Figure 

4.8(b), represented by the blue line, alongside the same measurement performed for a 

smooth cavity of equal dimensions in length and diameter, shown in red. Photographs of 

the setup are given in Figure 4.8(a). The transmission plot (blue) clearly shows a 

reflection band in the region 37.5 – 37.8 GHz, with the deepest minima occurring at 

37.65GHz. This gap in the spectra is associated with the resonant scattering of the 

incident wave into a surface waves and a near cut-off mode i.e. excitation of the cavity 

eigenmode. This is the value that will be assumed for all proceeding experiments as it 

corresponds to maximum energy transfer/mode excitation for this design of cavity.  
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Figure 4.8: Measurement of transmission line system using open cal method, where a) is pictures of 
the setup and b) the graph showing the frequency dependence of the transmission 
coefficient through both smooth and periodic waveguide as measured using open cal 
method. 
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4.3.2 Experiment Two – Analysis of the Radiated Mode Pattern 

Another important characteristic of microwave radiation from a launching antenna is the 

spatial distribution of power, or mode pattern. Measurement of the spatial structure can 

provide information as to the resonant cavity mode(s) and hence allow us to understand 

further the interaction(s) taking place inside the cavity. 

 

4.3.2.1 Background 

Both the power and field distribution are similar in appearance and are proportional to 

the distance separating the launching antenna and the receiver/detector. The distance 

between the launching antenna and the detector can be divided into three identifiable 

regions without sharp boundaries and are: The reactive near field region (Rayleigh 

field), the radiating near field region (Fresnel region) and the far field (Fraunhofer) 

region. These are all linked to the quantity: 
2

s

D
R


 , where D is the largest dimension 

of the antenna, in this case the circular diameter of the conical horn and   is the 

wavelength of the radiating source. If the distance between the detector and the launch 

horn is denoted by r, then the equation below clearly shows the boundaries for these 

three regions. 

2

2

2 2

2
2

2
2

s

s
s

s

R D
r Reactive near field region

R
r R Radiating near field region

D
r R Far field region





 

 

 

 

Measurements of power distribution are usually conducted in the far field region as in 

the immediate vicinity of the launch antenna there exists a considerable amount of 

incoherent scattering fields in addition to the radiated fields. For our setup the diameter 

of the output horn is 80mm whilst the dominant frequency of the source is 
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approximately 40GHz, thus leading to (as per equation above) the criteria that the far 

field boundary should lie beyond 170cm.  

4.3.2.2 Experimental Setup 

The radiation mode pattern measurements were conducted by a Signal generator (HP 

Sweeper) with direct power meter gives Power, in units of nano-Watt, against Angle, in 

degrees, for a fixed frequency as set by the user. In this case equal to 37.64GHz, as 

depicted via experiment one. The radiation was picked up using a scanning detector (Ka-

band detector) in the radial direction, centred on the aperture of the output horn and was 

fixed according to the point of symmetry, which in this case was at a height of 85cm 

from ground. The detector was positioned at a 2.95m distance from the emitting horn, as 

depicted via the far field relation and shown in Figure 4.9. 

 

 

 

 

 

 

 

 

 

 

Figure 4.9:  Schematic of the experimental setup for the far field radial mode pattern scan and the 
detector (enlarged photograph). 
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In this configuration the reference detector system was held at a fixed position 

throughout the mode scan before being rotated 90° and repeating the measurements so as 

to obtain a complete measurement of both horizontal and vertical field polarisations. The 

reference system consisted of an identical setup and procedure only with the cavity 

replaced with a smooth cavity of equal dimensions. The system was also checked for 

alignment prior to results being recorded, results of which are presented below and 

demonstrate symmetrical radiation pattern, as expected from a half wave dipole. The 

terms ‘horizontal’ and ‘vertical’ here refer to the change in cross section distance from 

point of minimum signal, in this case located at a height of 85cm from ground. The 

power measurement values are given as a sum of both detector polarisations with error 

bars added in the enlarged section for completeness. 

 

 

 

 

 

 

 

 

 

 

Figure 4.10:  Alignment check where blue is the radial and red the azimuthal measurements. The insert 
is representative of error-bars which are too small to visualise on the main graph. 
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4.3.2.3 Results & Discussion 

Results indicate coherent scattering of radiation at the Bragg frequency due to the 2D 

corrugation, as compared to the smooth waveguide of similar dimensions. The results of 

the experimental measurements of the periodic cavity are shown in Figure 4.11 (green 

line) as compared with the scan when the lattice is substituted with the smooth 

cylindrical waveguide (red line). We can see that the radiation from the smooth 

waveguide consists mainly of lower order propagating modes (i.e. majority of the energy 

concentrated at a small angle) with a small presence of higher order modes. The cavity 

radiation mode patterns indicate strong presence of the near cut-off high-order mode 

manifesting itself as periodic variations (periodicity ~5) of the field intensity for the 

observation angle above 45 , Figure 4.11(b) and much smaller radiation intensity for 

angles less than 45, Figure 4.11(a). These are also plotted in polar form and displayed 

in Figure 4.12.  

Figure 4.11(a):  Experimental results from both periodic and smooth walled waveguide showing the 
majority of the radiation passing through at small angles for the smooth case (red) and 
for the periodic case (green) there is a reduction in the amplitudes at lower angles. 
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Figure 4.11(b):  Experimental results from both periodic and smooth walled waveguide showing the 
periodic variations at higher angles (green) for the corrugated waveguide. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12: A polar plot of the same data, i.e. cold test of the smooth waveguide as compared to the 
equivalent corrugated region. 
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4.3.3 Experiment Three – Frequency Dependence  

In order to obtain a complete picture of the cavity behaviour, it is necessary to study the 

frequency dependence of the radiated power, as this provides crucial insight into 

optimisation of signal and how any associated device may operate.  

 

4.3.3.1 Experimental Setup 

The setup depicted here, is similar to that of the previous experiment only with the 

addition of a Scalar Network Analyser (HP 8757D). This allows us to measure the 

transmission and reflection properties of the specific two-port network as a function of 

both angle and frequency over a given range, i.e.  ,P f where the units of 

measurement are dBm for power, degrees for angle and GHz for frequency.  

The signal is once again generated via the synthesized sweeper (including doubler), only 

now it is fed directly into port 1 of the SNA. This acts as our test signal. This signal is 

then launched into the transmission line system as before and allowed to radiate into free 

space, where the signal is detected by the same Ka-band receiving horn as before 

(mounted on the scan plate), only this time the horn is connected back to the SNA (port 

2). This allows us, by definition of scalar network analyser, determine the power density 

variation, if any, with frequency variation, where the frequency range is user defined and 

controlled via LabView. Prior to any measurement being recorded, a system alignment 

check was performed in both the radial and azimuthal planes to ensure symmetry. 

Results are given below. 

 

4.3.3.2 Results 

Frequency variation – frequencies away from resonance pass through unaffected by the 

corrugations, these are represented via the high values at shallow angles, shown in 

Figure 4.13(a). However at transverse angle values there is no field present. This is in 
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direct contrast to the case where resonant frequency is launched – at small angles there is 

a reduced value due to scattering into transverse wave components which is evident in 

the angle range 45° – 90°. Transverse coupling is evident in the region 60° - 80° and 

only occurs at and around the frequency of resonance, Figure 4.13(b). This demonstrates 

that it is imperative the resonance conditions are satisfied in order to achieve successful 

coupling between propagating volume modes and evanescent surface modes.  

 

Figure 4.13(a): Frequency dependence of the signal transmission through the surface field cavity as 
measured by the receiving horn antenna at 2.95m distance from the output, where 
frequencies away from resonance pass through unaffected. 
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Figure 4.13(b): Frequency dependence of the signal transmission through the surface field cavity as 
measured by the receiving horn antenna at 2.95m distance from the output, viewing 

the region [20-90] where transverse coupling is evident for the resonance frequency 
at high angles. 
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4.3.4 Experiment Four - Energy Storage 

 

When measurements are to be made on either non-linear active microwave systems, the 

waveform may not be sinusoidal. This may be due to either amplitude or frequency 

modulations or due to the presence of harmonics or spurious frequencies caused by 

parasitic oscillations. In all these cases it is useful to analyse the actual waveform in the 

time domain and analyse it into its frequency components. This is achieved via the use 

of a fast (12GHz) single shot digitising oscilloscope to measure the output from a 

50GHz rectifying crystal microwave detector in combination with a Vector Signal 

Generator (VSG) where 20ns pulses of a set carrier frequency are launched into the 

cavity and response observed. The experimental setup is pictured below in Figure 4.14. 

The transmission line and all components are the same as before, the only difference is 

the inclusion of the VSG. 

 

 

 

 

 

 

 

     Figure 4.14:  Experimental setup to determine the energy storage of the makeshift cavity. 

 

Results demonstrate that the pulses propagate through the structure without experiencing 

any interference effects if the carrier frequency is located far from the resonance 

frequency, i.e. at 36.9 GHz and 38 GHz. If however the central frequency is located in 

the vicinity of the resonance, Figure 4.15, a decrease in pulse amplitude is observed at 

the cavity exit, this is also visualised in the graph of Figure 4.16 (purple line). This fill 
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and decay time is evidence that the interaction region is storing energy and will only do 

so when the resonance conditions are satisfied.  

It is useful at this point to insert a small discussion regarding the quality factor, Q. The 

quality factor describes how under-damped an oscillator or resonator is, or equivalently, 

characterizes a resonator's bandwidth relative to its centre frequency. A higher Q value 

indicates a lower rate of energy loss relative to the stored energy of the oscillator hence 

the oscillations die out more slowly. The textbook definition for quality factor is defined 

very generally, regardless of the cavity shape, as 2π times the ratio of the time-averaged 

field energy stored in the cavity to the energy lost per cycle: 

2
average stored energy average stored energy

Q
energy lost per cycle power loss rate

  

 

 

where ω is the centre frequency. This definition holds regardless of the cavity shape and 

additionally, Q is related to the resonance line width Δω by:     
2

Q






 

The power loss from a cavity arises from two factors, that is the radiated output power 

and parasitic losses, and, as power losses are additive we can write: 
1 1 1

r pQ Q Q
   

where both r and p represent the parasitic loss terms and of course depend on the 

configuration and the mode used. 

 

At first glance it may appear that maximizing Q is desirable, however for these 

applications the challenge is handling high power in the cavity, it is actually desirable to 

have lower Q at higher values of power. The reason is that the output power is 

proportional to the stored energy divided by Q, therefore a high Q implies high values of 

stored energy and larger electric fields in the cavity. This will raise the wall heating and 

potentially lead to breakdown. Looking at the issue of fill time for cavities, which is the 

http://en.wikipedia.org/wiki/Damping
http://en.wikipedia.org/wiki/Oscillation
http://en.wikipedia.org/wiki/Resonator
http://en.wikipedia.org/wiki/Bandwidth_%28signal_processing%29
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time required for the fields in a cavity to build up to a steady-state level. Looking at the 

definition for Q factor it is apparent that the fill time is proportional to Q, and, for certain 

HPM applications involving cavities, fill time can be an important factor to consider. In 

the accelerating cavity of an RF linac, for example, the goal is to transfer energy to 

electrons rather than extract it. Therefore, a trade-off must be made between raising Q to 

maximize the accelerating field and lowering Q to limit the fill time and resultant 

requirement it places on RF pulse lengths. More information regarding the quality factor 

can be found in almost any accelerator reference text. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15: Experimental results showing the variation in pulse amplitude with time and that 
maximum absorption occurs at the resonance frequency, i.e. 37.64GHz. 
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Figure 4.16: Experimental results show that maximum absorption is clearly observed at the 
resonance of ~ 37.64GHz (which is coloured purple in the graph above) as compared to 
the frequencies away from resonance. 

 

4.4 Chapter Results & Discussion 

This chapter served as to verify the results obtained in chapter 3 relating to the resonance 

frequency and mode behaviour inside the interaction space. The initial experiment 

verified the transmission profile of the Ka-band cavity and from this it was very clear 

that these geometries resulted in specific coupling behaviour for the frequency value 

equal to 37.64GHz. This is the resonance frequency of the device. The following 

experiment, number 2, then looked at the corresponding radiated mode pattern for this 
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fixed frequency. This was viewed in the far-field by making a direct measure of power, 

and, once again results demonstrated that for f = 37.64GHz, the 2D corrugation couples 

near-cut off waves thus resulting in the observed scattering of field amplitude at large 

transverse angles. This was not present for the equivalent section of smooth walled 

waveguide.  

The third experiment looked again at the radiated mode pattern, as in experiment two, 

only this time considered how the pattern is affected by the presence of frequencies 

away from resonance, again strengthening the fact that this coupling is only achievable 

if the resonance conditions are satisfied. It is important to mention that both experiments 

two and three demonstrated a loss factor of around 10%  which agrees with the equation 

relating to the definition of a far-field signal. 

As a final experiment the energy storage ability of the cavity was tested and it was 

discovered that it does indeed display the so-called ‘rabbit ears’ phenomenon relating to 

the rise and decay times of the interaction space. However, this needs further 

investigation as it was included towards the end of the research and time constraints 

didn’t allow for further analysis or investigation. 
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Applications 

 

 

 

 

5.1 Introduction 

This chapter is devoted to providing the reader with examples of how this unique 

interaction region may be applied to a variety of microwave generation mechanisms for 

the successful generation of high levels of power at high frequencies, and providing 

enhanced mode selectivity. The examples are performed using Magic, where the 

interaction region consists only of cylindrical waveguide, having a 2D square 

corrugation on the outer wall. Magic was chosen as it can evaluate both the 

electromagnetic properties and relative particle position properties throughout time 

simultaneously where many other codes fail. Our interaction region is then excited by an 

oversized, annular electron beam and the results observed. For completeness, the 

theoretical basis of both cavity and waveguide excitation is given in Appendix D, as is 

consideration to the dynamics of charged particles.   

5 
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The dimensions chosen for the following designs correspond to the initial statement 

made in Chapter 1, where we seek to obtain high levels of power at equally high 

frequencies, say >40GHz, and also based upon the results of Chapters 3 and 4 where 

cavity resonances were evaluated. With this in mind, this chapter considers one cavity 

which is designed to operate on the ~90GHz range and another, whose design is 

prevalent to the THz range. Both designs are fundamentally similar, the only difference 

being the dimensions, i.e. cross section, period, etc.., where both cases will be discussed 

and be subject to optimisation before any conclusions are drawn.  

 

5.2 High Power 90GHz Maser  

The preliminary design consisted of our cylindrical waveguide having a 2D periodic 

corrugation on the outer conductor as the interaction region, having 16 variations along 

both the azimuthal and longitudinal coordinate with the period of the corrugation 
zd  

equal to 3.2 mm. The mean radius of the waveguide was 1 cm with a corrugation 

amplitude equal to 1mm. In order to excite our interaction region, an annular electron 

beam of 0.85cm radius is applied. Note the relative position of the beam, it’s located 

close to the surface of the corrugation so as to achieve maximum coupling to the surface 

modes (as discussed Chapter 3). The beam current was set to 1.6kA for the entire system 

and the accelerating potential was set to equal 300kV, estimated from the equation 

  2 2 2( ) 510( ) ( ) 1e zU kV kV d         (5.1) 

where /z zd   is the desired frequency of operation for a given lattice parameter, and

/z zc v  . 

The beam is confined in a guide magnetic field of strength 3T (only to suppress any 

transverse oscillation) and is transported through an interaction space of 6 cm in length. 
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Figure 5.1: Simulation the beam propagating through the structure as given by Magic. 

 

The results from this study are presented in Figure 5.2, from which we can see bunching 

of the electron beam occurring close to the structure, Figure 5.2 (a-b), with the operating 

frequency to be in the region of 91GHz and having an average output power of 

approximately 10MW(x16). Note that this study is only performed for one sector of the 

entire structure due to the extensive run time (>50hrs), the corresponding power value 

should therefore be multiplied by 16, giving a value ~150MW. If we now consider these 

results with respect to the initial input power, the efficiency (assume lossless) of this 

design equates to ~30%, which greatly exceeds the current status of other sources to 

date, where values as low as 5% are deemed viable for operation.  

 

 

Figure 5.2(a): Simulation results 
of the maser cross section 
showing one period, where 
surface currents are easily 
identified 
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Figure 5.2(b): Simulation results of the maser illustrating the axial bunching of the electron beam 
inside the interaction space. 

 

 

 

 

 

 

 

 

 

Figure 5.2(c): Simulation results of the W-Band maser showing an operating frequency of ~91 GHz. 
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Figure 5.2(d): Simulation results of the maser showing an average power output of~10MW. Note that 
this is only for the sector simulated, not the entire structure. 

 

Further to this, we gave consideration to maser optimisation, not only the gun but also of 

the cavity itself. We considered variants such as; accelerating, potential, current, 

magnetic field strength for the gun, in addition to corrugation amplitude, structure 

period, and length of the interaction region. This led to an interesting discovery when 

applying variation to the magnetic field strength, we seen that despite any increase in 

applied magnetic field, the operating frequency remained constant at ~91GHz.  

This illustrates that the interaction mechanism is of the Cherenkov type, as it bears no 

response to the applied magnetic field, unlike gyro-devices whose frequency would 

increase in value at a rate proportional to any increase in field.  

Following the optimization period (for achievable maximum power at single mode 

operation), the maser was found to be most responsive to the following parameters; 

accelerating potential equal to 300kV, beam current of 3.2kA, a longitudinal corrugation 

period equal to 3.2mm and amplitude 1mm, and a confining magnetic field strength of 6 

Tesla, shown Figure 5.3 where the dotted lines represent multiple measurements. Any 
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deviation from these selections resulted in either a loss in reproducible power or a loss in 

mode selectivity therefore not viable solutions should we require any form of mode 

control.  

This design was then scaled in order to allow for an increase in the operating frequency, 

detailed in the proceeding section, where THz operation is considered.  

 

 

 

 

 

 

 

Figure 5.3: Design and optimisation, where a) demonstrates the point in field where maximum output 
power may be achieved, and b) illustrates this maximum power as given by Magic.  
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Following the optimization period (for achievable maximum power at single mode 

operation), the maser was found to be most responsive to the following parameters; 

accelerating potential equal to 300kV, beam current of 3.2kA, a longitudinal corrugation 

period equal to 3.2mm and amplitude 1mm, and a confining magnetic field strength of 6 

Tesla, shown Figure 5.3. Any deviation from these selections resulted in either a loss in 

reproducible power or a loss in mode selectivity therefore not viable solutions should we 

require any form of mode control.  

This design was then scaled in order to allow for an increase in the operating frequency, 

detailed in the proceeding section, where THz operation is considered.  

 

 

5.3 High Power THz Maser 

Numerical simulations were performed using Magic to illustrate a THz Cherenkov 

maser where the 0.8cm radius cavity, having 20 azimuthal variations and zd  = 1.28cm, 

is driven by a 20A annular electron beam having a 0.5cm radius and accelerating 

potential of 100kV, with a pulse length of 10ns. The beam is confined, in this first 

instance, by a 1 Tesla magnetic field coil. This initial study demonstrated resonance at 

~196GHz and average power somewhere in the region of 100kW, Figure 5.4. 
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Figure 5.4: Magic simulation of THz cavity, demonstrating frequency equal to 196GHz, with an average 
power b) equal to ~100kW. 

 

 

Once again, optimization of this design, with respect to accelerating potential, beam 

current, magnetic flux density, we found that a maximum power of ~200kW can be 

achieved when the magnetic field is 2T, and beam current 20Amps at a 300kV potential. 

Notice also that the frequency spectrum is more defined than in the previous case for a 

100kV potential. Overall the resonant frequency did indeed remain constant with the 

variation in magnetic field, as predicted by the Cherenkov condition. Once again we 

observed a reduction in mode selectivity when we moved away from these optimised 

parameters, illustrated in Figure 5.5(c) where the accelerating potential has been reduced 

to 50kV, for the exact system above. 

(a) 

(b) 
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Figure 5.5: Optimized THz design where a) the frequency spectrum is refined and remains unchanged 
at ~200GHz, b) maximum radiation power of 200kW, and c) mode selectivity loss for a 
decreased beam voltage. 

 

In order to make this study somewhat more complete, it is necessary to mention, if only 

briefly, some points to consider with regard to the experimental design of a high power 

Cherenkov maser. Incidentally, these points relate to the construction of any HOM 

device and are not restricted to the Cherenkov maser. There are a number of factors to 

consider when designing high power microwave experiments least of all safety. 

(a) (b) 

(c) 
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In its most basic configuration an electron beam guided by a strong axial magnetic field 

is injected into a slow-wave structure, where the microwaves are generated. After 

passing through the slow-wave structure, the beam flares to the wall in the beam dump. 

The key elements may be extracted as: 

 The electron beam (see below) 

 The axial magnet producing the field that guides the beam through the 

device; this field can affect the output resonance and is a major contributor 

to system power demands and size and mass. 

 The slow-wave structure design; this determines the device essentially as 

well as the frequency, output mode structure, and ultimate power- and 

energy-handling capabilities.  

 The beam dump, which is a driver for system cooling and x-ray shielding 

requirements.  

The production of an intense beam of electrons begins at the electron source. The most 

commonly used electron sources in modern day pulsed HPM devices are based on the 

process of explosive emission [108] although other types do exist, namely; field 

emission thermionic emission and photoemission types. Each of these types has their 

own set of working conditions and requirements therefore choice must be made 

carefully. Also, at the end of the interaction region there will be an output port which 

will couple the RF power through an isolator to the output filter. 

The collector is critical to efficient operation. It is the objective of operation that energy 

be transferred from beam to signal, which implies that the velocity of the beam gradually 

decreases as it moves towards the output end. By the time the electrons reach the 

collector they still posses considerable energy and travelling at a lower velocity that 

when they left the gun. Efficient operation is achieved if the electrons are collected in 
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such a way that their velocity is reduced to near zero before they actually hit the 

collector, and this can be achieved by placing a negative voltage on certain collector 

stages to repel the electrons and slow them down. This is referred to as a depressed 

collector.  

Finally, attention must also be given to the diagnostics used as high power devices tend 

to differ from their conventional relatives in several ways, namely: 

 High power means that high electric fields exist and all diagnostics must avoid 

breakdown.  

 The pulse durations are short, less than a microsecond and typically less than 100 

nanoseconds, hence fast response times will be critical.  

 HPM sources have yet to be operated at high repetition rates or continuously, 

therefore diagnostics are typically required only to analyze a single or a few 

shots. 

 

Although the list is not all bad there are some advantages in that high power often means 

that it is possible to directly measure the energy of a pulse in a single shot, and also a 

low shot number means that complex data handling methods are not necessary. 
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5.4 Discussion 

In conclusion to this chapter it has been shown that the novel cylindrical cavity based on 

a 2D square corrugation to the outer wall, can be applied, in conjunction with an annular 

electron beam, and used to generate high power, frequency specific, microwave devices. 

Not only do we have a coherent radiation source capable of generating high levels of 

power, but we also demonstrate frequency stability and mode control under these 

conditions through the interactions between ‘surface’ waves and ‘volume’ modes. 

Furthermore we have also identified the interaction mechanism responsible for the 

energy transfer between the electron beam and the electromagnetic wave as being that of 

Cherenkov type and this can be verified by examination of the relevant coupled beam-

wave simulations where the transfer of energy from beam to wave is clear. Also 

demonstrated was the fact that this cavity, and indeed its entire operating principles, are 

scalable across an entire range of frequencies – the method of operation remains 

constant throughout, more specifically we gave an example of high power THz wave 

generation. This novel design as compared to the current high frequency power sources 

available today, which involve semiconductors or complex etching techniques, requires 

only the machining of a copper cavity. 
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Conclusions  
 & 
Future Work 

 

This chapter brings together all conclusions reached throughout this work before giving 

consideration to potential future work on this project and related areas of interest. 

 

6.1 Conclusions 

We have shown numerically using the 3D code MAGIC that the resonant coupling 

between surface waves and near cut-off waves takes place on the periodic structure 

surface. The full 3D model was used allowing excitation and evolution of the 

azimuthally symmetric and non-symmetric fields to be simulated. The cavity excitation 

and the mode structure were analyzed. Experimental studies of the structure have also 

been conducted and the results observed from numerical simulations agree well with the 

experimental measurements. The radiation mode pattern has been studied and incident 

wave resonant scattering on the periodic lattice demonstrated. A cavity of this nature 

could be used to ensure the stable operation of high-power masers capable of producing 

kW levels of output power at THz frequencies. The topology of the cavity make it also 

6 
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compatible with a broad variety of active media, including relativistic electron beams, 

plasmas and solid matter which can be used as the external drive. The results obtained 

provide a strong basis for the concept and design of a high power maser operating in the 

THz and infrared frequency ranges using a 2D periodic lattice.  

The application of the 2D cylindrical lattice allows mode selection along the radial and 

azimuthal coordinates as well as energy storage in the combined fields of the volume 

and surface waves. This allows one to form the interaction region having the transverse 

dimension (aperture) much larger than the operating wavelength.  

 

6.2 Future Research 

Further work on this project may involve construction of both W and THz type cavities 

and subjecting them to the very same cold test as for the ka-band case; this would allow 

us to experimentally verify the results we observed numerically, via CST Studio and 

Magic, with respect to the transmission properties and dominant resonances of the 

cavity.  

Further on from this it would be advantageous to also set up 'hot' experiments, i.e. 

inclusive of the electron beam, initially using the Ka-design, simply as all 

the mechanisms are present to run the experiment, although prior consideration must be 

given to the choice of beam generation mechanism, subsequent filters, and also as to 

how the energy may be successfully extracted from the interaction region and measured. 

This active experiment may then be repeated for the pre-constructed W/THz designs, 

again these would require manufacture of subsequent peripherals, i.e. transmission line 

and mode conversion system before any measurement can be made. 

Another possible avenue of exploration would be to further exploit the current ever-

increasing demand for THz technologies, whereby the current market is currently 

dominated by quantum cascade lasers and similar solid state electronic devices, although 
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despite their ability to generate coherent CW in to the infrared spectral regions, their 

power outputs correspondingly lower, generally below milliWatt level at the 1THz 

region [73, 74] (for example, for example, 50 μW at 1.8 THz for a Schottky multiplier 

chain [75, 76]. This combined with the fact that their manufacture process is often 

complex due to a) their compact size and b) their solid-state nature.  

   

This work, based on numerical predictions, is able to reproduce coherent  and significant 

levels of power (~kW) at frequencies ~ 3THz, by using a straightforward (in comparison 

to complex etching techniques) workshop manufacturable copper cavity, encompassing 

a square two-dimensional corrugation. Obviously there will be a limitation point 

whereby machining process become impossible, but then again, variants of the 2D 

corrugation could also be considered to see if coherence and/or mode coupling may be 

further enhanced, for example a change in the square pattern for, say rectangular, or 

even circular geometries. Again these are just some thoughts as to how our design may 

be further enhanced so as to maximize the number of potential applications, at minimal 

cost to the user.  

As a final word, the area surrounding surface plasmon research is also of potential 

interest with regard to this work as the results presented here bare striking similarities to 

those obtained in various surface plasmon research experiments, [77-80], where current 

is effectively 'induced' upon some surface, (typically silica of some other substrate) at a 

specific angle via a 'beam' of active media. Again this has only just recently been 

touched upon and further investigations are needed into this phenomenon, those of 

which are currently being carried forward at Strathclyde.  
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Appendix A   

A1.  Gyrotron Review 

A1.1  Introduction 

In its conventional arrangement (shown in Figure A1 below), the gyrotron consists of a 

Magnetron Injection Gun (MIG) that produces an annular beam, an interaction region, 

an output window and a beam collector. The interaction space of the gyrotron is 

immersed in a strong magnet known as a solenoid.  

 

 

 

 

 

Figure A1: Conventional gyrotron arrangement. 

 

When a voltage is applied to the gun, an electric field is created at the cathode and leads 

to electron beam production and acceleration towards the anode. In the region between 

the cathode and the anode the electric field is mostly perpendicular to the magnetic field 

generated by the solenoid. In this region the electrons are in crossed fields and start to 

drift along the azimuthal direction while still moving in E  and B  fields, thus obtaining 

rotational velocity which increases significantly as the electron beam passes through the 

increasing amplitude of guide field. As the electrons reach the end of the cathode-anode 

region, the electric field lines change from mostly perpendicular to parallel to the 

magnetic field lines and the electrons acquire both transverse and axial velocity 
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components before entry into the drift tube. They gyrate helically about a guiding centre 

defined by the magnetic field line, shown in Figure A2, where the radius of the path is 

known as the Larmour radius (
L

c

r



  ). This is usually small compared to the radius of 

the beam, so that the beam remains annular as it propagates. A schematic of the MIG is 

shown in Figure A3 below. 

                  

Figure A2: Beam geometry in a gyrotron resonator. 

 

                           

Figure A3: Schematic of a Magnetron Injection Gun. 

 

The electrons move toward the interaction region through a growing magnetic field and 

the orbital momentum of the electron increases due to magnetic compression, 

2

.
p

const
B

   In the interaction region the magnetic field is uniform and it is here that the 
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electrons interact with the transverse electric (TE) eigenmode of the cavity and 

transform a part of their kinetic energy associated with the transverse momentum into 

microwave energy. The generated microwave power is extracted through an output 

window. For efficient coupling to the wave, the electrons must have a significant 

transverse velocity component as energy transfer occurs as a result of the interaction 

between the transverse velocity component of the gyrating electrons and the transverse 

electric field of the TE modes (RF fields) of the cavity structure. This is known as the 

Cyclotron Resonance Maser (CRM) instability and illustrated in Figure A4.  

                           

Figure A4: Phase bunching in a CRM device, a) Shows the initial position of the electrons, b) Shows the 
interaction between the beam and the wave and c) shows the phase slippage between the 
beam and the electric field. 

 

From the very beginning of the gyrotron development, it was proposed to use resonators 

that were open in the axial direction in contrast with klystrons and magnetrons. This 

axially open design enables selection of modes with different axial indexes; this is 

because the diffractive losses of modes with only one axial variation in such resonators 

is much smaller than losses for modes which have a larger axial index. Such resonators, 

however, do not provide the selection of modes with different transverse indexes. 

Therefore, in the late 1960s, Goldenberg proposed using coaxial resonators for this 

purpose, because these types of resonators can offer an improved selectivity of modes 

with different radial indexes. 

A1.2  High Power Gyrotrons 

One of the main issues associated with the development of long pulse/CW operation of 

gyrotrons is heating of the resonator/cavity. This heating is caused by ohmic losses of 



121 

 

the microwave power in the cavity walls [81,82]. In order to solve this problem it’s 

necessary to increase the volume of the resonator. However an increase in the resonator 

volume results in the generation of very high order modes. This leads to mode 

competition [83-85] and development of the stochastic regime of oscillations. One 

method of mode selection is by appropriate choice of radius of the electron beam, which 

corresponds to the maximum value of coupling impedance between such beam and the 

rotating TEmp mode [86]. This method is especially advantageous for selection of 

whispering gallery modes TEmp, where the azimuthal index, m, is much larger than the 

radial index, p. For the case where the radial index is small (p = 1, 2, 3), the modes will 

be discriminated because the radii of the electron guiding centres are smaller than that of 

their caustics. This is shown in Figure A5. This means that if the electron beam is 

located in the decay region of the mode along the radial coordinate the coupling 

impedance between the beam and the mode is very small. Contrary to the modes with 

larger radial indices which occupy a large part of resonator volume, in spite of the fact 

that it may be stronger coupled to the electron beam, will have larger starting currents 

[86]. The starting current is proportional to the energy density stored in the cavity; 

therefore the effective volume which needs to be filled with RF energy to start 

oscillations is larger for higher order modes.  

 

E  

  

 

             
Figure A5: Schematic of caustic radius and electric field profile for small radial index. In the case of 

large radial index the electron beam radius exceeds the caustic radius, e cR R . 
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This method has proved useful for stable operation at higher modes [87] and [88], 

however due to the fields of these modes being concentrated near the walls of the cavity; 

the ohmic heating is relatively high at megawatts of microwave output power inside the 

interaction space. Therefore if the desired microwave and/or operating frequency is to 

increase then so does the radial index of the operating mode and hence selectivity of 

modes using the above method becomes insufficient. 

 

A1.3  Basic features of mode selectivity in Gyrotron Resonators 

Selection of modes with large radial indexes can be provided by the use of coaxial 

resonators.  Typically, in gyrotrons, a thin annular electron beam is used. Their coupling 

to the transverse-electric (TE) modes of cylindrical resonators are described [89] by 

Bessel functions 2

0( )m sJ k R 
, where m is the azimuthal mode index, s is the cyclotron 

resonance harmonic number, and the “minus” and “plus” signs correspond to the co- and 

counter-rotating modes with respect to the gyration of the electrons in the external 

magnetic field, ,m p wk R  is the transverse wave number which is determined by the 

mode eigennumber 
,m p  and wR is the resonator wall radius with 0R

 
the radius of the 

electron guiding centres. (For TEmp modes this eigennumber is the p
th
 root of the 

equation   0m mpJ   ). The Bessel functions have the largest maximum closest to the 

axis, i.e. when the radial coordinate is close to the caustic radius, which is defined as

 ,c m p wR m R . Therefore by locating the beam at this position one can provide the 

maximum coupling to the field of the desired mode. For the modes having smaller radial 

indexes the beam is located within the exponentially decaying field (along the radial 

coordinate), and therefore beam coupling to these modes is small. For modes with a 

large radial index it is difficult to provide good selection as the beam has to be located at 

a precise radius. These modes do occupy a larger cross section and therefore their 

starting currents can be higher for specific cavity configurations, than that for the desired 
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mode. The effectiveness of this method of mode selection depends on the density of the 

mode spectrum in the vicinity of the desired mode.  

 

A1.4  Coaxial geometry and mode separation 

In a coaxial geometry, the presence of an inner conductor, first of all, changes the 

spectrum of mode eigenfrequencies. In the coaxial resonator the cut off frequencies, 

cut k c  , depend on the ratio of outer to inner conductor, out inC R R where outR  and 

inR are the outer and inner wall radii respectively. More exactly these frequencies are 

determined by the characteristic (or eigenvalue) equation for  ck k  [90]     

     m m m mJ N N J
C C

 
 

   
      

   
     (A1a) 

where mJ   and mN   are the derivatives of the Bessel and Neumann functions of order m,   

and
, ,m p m p outk R     is the transverse eigenvalue. A derivation of this characteristic 

equation starting from Maxwell’s equations is given in Section A2 of this Appendix. 

Equation (A1a) is a transcendental equation (has a algebraic solution) and must be 

solved numerically for k . Once k  is known the cut-off frequency can be determined. 

Solutions for the TM modes can be found in the same manner; the required 

determinental equation is the same as (A1a) except for the derivatives, i.e. 

      m m m mJ N N J
C C

 
 

   
   

   
.     (A1b) 

A typical example of eigenvalue dependence on the ratio of outer to inner conductor is 

shown in Figure A6. This is similar to that presented in [91]. 
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Figure A6: Dependence of transverse eigenvalue 
,m p on coaxial parameter C. 

 

As can be seen from Figure A6, there is a region in which the increase in C, caused by 

the decrease in diameter of the coaxial insert, results in the increase of the cut-off 

frequency where cut k c  . Even for the case where a coaxial insert of constant radius 

is used, the spectrum in the vicinity of the desired mode can be verified and improved 

mode selectivity can be observed. It should be noted that in the case of operating at very 

high order modes it is necessary to position the inner coax close to the caustic region of 

the operating mode, this suppressed modes with a higher radial variation than the desired 

mode. However the ohmic losses of the later mode become too high for continuous wave 

(CW) operation.  

The coaxial waveguide can support TE and TM waveguide modes in addition to the 

TEM mode.  In practice these modes are usually cut off (evanescent), and so have only a 

reactive effect near discontinuities or sources, where they are excited. It is important to 

be aware of the cut off frequencies of the lowest order waveguide modes if the 

propagation of these modes is to be avoided. Avoiding the propagation of higher order 

modes sets an upper limit on the size of the waveguide cross-section, thus limiting the 

power handling capability.  A derivation of the solution for TE modes of the coaxial 

waveguide is given in section 2 of this Appendix which gives derivations for various 
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electromagnetic dispersion relations, (specific location is Appendix A2.3). The TE11 

mode is the dominant waveguide mode of the coaxial line therefore is of primary 

importance.  

 

A1.5  Tapering of the Inner Conductor 

The coaxial insert can also be tapered axially; this yields another opportunity for mode 

selection. If we let any mode be represented by a set of rays propagating in the cavity 

and reflecting from its walls, the rays, which upon being reflected from a down tapered 

insert propagate towards an open output end of the cavity. This reflection from the down 

tapered insert increases the axial wave number, and hence also the group velocity of the 

wave. It also increases the diffractive losses of modes with large radial indexes. This 

may be explained by consideration of the inhomogeneous “string” equation, which, 

when treated with the appropriate boundary conditions, determines the axial structure of 

the mode sf  (s denotes the mode index) in a cold cavity approximation (i.e. neglecting 

the effects of the electron beam). The string equation takes the form 
2

2

,2
0s

s z s

d f
k f

dz
   

where ,s zk  is the mode axial wave number determined by the equation

   
22 2

, , ,s z m pk c k z   . In cylindrical resonators the transverse wave number depends 

upon the resonator wall radius, and this dependence is generally the same for all modes. 

In coaxial resonators this number depends on both the radii of the outer and inner 

conductors. When these radii are slightly tapered such that    ,0out out outR z R R z  and 

   ,0in in inR z R R z   (where ,0outR  and ,0inR  indicate some initial values of there 

radii), the transverse wave number can be expanded in a Taylor series in the vicinity of 

their values for ,0outR  and ,0inR , and correspondingly the axial wave number can be 

determined by the expression: 
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 
,0 ,0

22 2 2

, , ,0 , ,0

,0 ,0 ,0

2 1
out in

out s in s
s z s s

R Rout s in s

R d R dC C
k c k k

R dC R dC

 


 
 

   
        

   

        (A2).  

From these equations it is evident that for coaxial resonators with tapered conductors, in 

contrast to conventional cylindrical resonators, modes that are closely related in 

frequency but have different derivatives, 
sd dC  , will have different axial structures 

and therefore different diffractive losses.  

Considering the case where the outer wall of the coaxial resonator has a constant radius 

and the coaxial insert is down-tapered, i.e.   0, 0out out inR z R R     . In this case 

modes which have 
,0

0
in

s

R

d

dC


  will have an axial structure which corresponds to that of 

modes in an empty cylindrical resonator with a down-tapered outer wall, i.e. 
, 0w eqR  . 

This down tapering reduces diffractive losses of the outgoing radiation, or, in other 

words, increases the diffractive Q factor of the resonator. On the contrary, the modes 

with 
,0

0
in

s

R

d

dC


  in the same resonator will have an axial structure similar to that in a 

cylindrical resonator with an up-tapered wall, i.e.
, 0w eqR  , resulting in large diffractive 

losses, therefore low diffractive Qs (stored energy in resonator). The propagation of 

modes in such a resonator is shown in Figure A7. 

                           

Figure A7: Propagation of modes in a coaxial resonator 

It should be noted that, in parallel with the analysis of coaxial resonators with tapered 

walls, resonators with a periodically slotted outer wall and an absorbing inner coax were 

also studied [92]. This concept was driven by the idea that in the process of their 
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azimuthal rotation, all modes whose azimuthal indexes are not equal to the number of 

azimuthal variations in the corrugation, will be transformed by the corrugated outer wall 

into the modes with large radial indexes whose fields penetrate into the inner absorber. It 

was found, however, that this method of mode selection is sufficiently efficient only for 

operating modes with very small radial indexes. Theoretical studies have also been 

carried out [93] into coaxial gyrotrons in which the outer wall is provided with radial 

metal wedges, also referred to as a magnetron-like structure. 

 

A1.6  Restrictions on the Choice of Operating Modes 

As mentioned earlier, in the CW and high power regimes of operation, one of the most 

critical issues in gyrotron design is accounting for ohmic heating in the resonator walls. 

Since the ohmic Q factor can be estimated by the ratio of the radial distance occupied by 

the RF field, (which in cylindrical resonators is the distance out inR R ), to the skin depth, 

it is evident that to increase the ohmic Q, one should operate at modes with larger radial 

indexes. However, when the radial index becomes very large and the beam remains 

positioned near the caustic of the chosen mode, voltage depression becomes a significant 

issue as the beam is far from the wall of the waveguide. This results not only in the 

decrease of the electron kinetic energy, but also in the increase in the electron velocity 

spread. In such situations, the introduction of an inner coaxial insert is extremely 

beneficial, because locating this insert near the beam solves the problem of voltage 

depression. As was noted above, however, there is a tradeoff between efficient mode 

selection and maintaining sufficiently low ohmic losses in the coax. For efficient mode 

selection, the radius of the coaxial insert should be close to the caustic radius of the 

operating TEmp mode; in this case the modes with larger radial indexes will experience a 

strong influence from this insert, which will result in increasing their diffractive losses. 

Such a positioning, however, can lead to unacceptably high ohmic losses of the 

operating mode power in the coax, because close to the caustic, the field of this mode 

can be sufficiently strong. 



128 

 

A1.7  A Gyrotron with a Corrugated Inner Conductor 

Previous analysis of coaxial gyrotrons with a smooth-walled tapered inner conductor 

[86] have shown that in order to provide efficient mode selection, i.e. to enable the 

discrimination of modes with radial indexes larger than that of the operating high-order 

mode, it is necessary to locate the inner coax rather close to the caustic region of the 

desired mode. Such a location results in excessive ohmic losses of microwave power, 

which leads to overheating of the coax in CW and long-pulse operation [94]. Also, 

diffractive Q factors of the modes with the positive slope of the derivative 0sd

dC




increase, therefore complicating the problem of mode selection. To address these issues, 

it was proposed to use an inner conductor with axial slots, instead of a smooth-walled 

coax [95]. The transverse cross section of such a resonator is shown in Figure A8.  

 

 
 
Figure A8: Cross section of coaxial cavity 
gyrotron with a corrugated inner 
conductor. 

 

 

 

When the number of slots N on the surface of the coax is large enough,  i.e. 2N m ,  

this surface can be characterized by an average surface impedance. This greatly 

simplifies the treatment of such cavities. The first papers on the theory of such 

resonators based on this approach are presented in [96, 97]. When the condition given 

above holds, ( 2N m ), the corrugation parameter W, which represents a normalized 

surface impedance, can be expressed as 

2
tan

L
W d

S





 
  

 
    (A3) 
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 where  

2 inR
S

N


       (A4) 

is the period, L is the width, and d is the depth of the corrugation, 
L and 

S are the 

azimuthal angles corresponding to the width and periodicity of the corrugation. 

Following from Equation A3, when the corrugation depth is equal to 
4


 the surface 

impedance becomes infinitely large and, correspondingly, the RF magnetic field at the 

surface becomes very small. This is the only field that penetrates into the wall of the 

metal (which has finite conductivity) and means that ohmic losses in such a corrugated 

insert can be rather small, much smaller than in the case of the smooth walled insert. 

This is analyzed in [98]. This fact alone is extremely important for multimegawatt class 

gyrotrons intended for operation in the CW and long-pulse regimes. In such a case, the 

Helmholtz equation, which determines the membrane function describing the transverse 

magnetic structure of the TE modes, should be supplemented by the appropriate 

boundary conditions, i.e. the Neumann boundary condition in the case of TM modes and 

the Dirichlet condition  0E   typical for TE modes. The use of this impedance in the 

corresponding boundary conditions results in the following characteristic equation (full 

derivation given in Section A13, which replaces that for the cylindrical case in Equation 

(A1.1):  

      0
mp mp mp mp

m mp m m m mp m mJ N WN N J WJ
C C C C

   
 

          
                

          
 (A5)             

It can be seen from this that when the depth of the corrugations is made vanishing small,

0d   this equation simply reduces to that of the cylindrical waveguide. However at 

finite values of W the above equation yields solutions which are quite different to those 

shown in Figure A6. In general, the axial corrugations offer a way to avoid the positive 

slope of the eigenvalue curve. The part of the eigenvalue curve with positive slope does 
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not disappear, but as the corrugation depth increases, it moves toward higher values of C 

beyond the typical operating range. Considering the fact that the minimum of the 

eigenvalue curve  C in a non-corrugated system corresponds to the caustic radius of 

the mode, modes with larger radial indexes than that of the operating one will exhibit a 

positive slope 0
d

dC


  at even higher values of C. In the operating range of C, an even 

greater number of modes with large radial indexes will have negative slopes 0
d

dC


  

which mean that their diffractive Q factors will become smaller. On the other hand, there 

are always modes with eigenvalues that are close to the eigenvalue of the operating 

mode with large positive slopes, 0
d

dC


 , in the operating C range. These modes 

however, are strongly perturbed by the inner conductor and their field energy is almost 

completely localized inside the grooves. Due to their large positive slope, these modes 

could become serious competitors for the operating mode. However, if the coaxial insert 

were to contain some absorbers, the ohmic Q factor of these modes would be very low, 

and therefore would not cause problems with mode competition.  

It is worth noting here an important result presented in [96]. It states that in order to 

improve stability of the operating mode against competing modes at the fundamental 

and second cyclotron harmonics, it is advisable to choose the depth of the corrugations 

close to 20% of the cut-off wavelength.  

 

A1.8  Variable corrugation depth 

A further improvement of coaxial resonators was proposed in [99]. It was based on the 

use of a corrugated insert with longitudinal corrugations of a variable depth. Here, both 

the corrugation depth and the impedance parameter W depend upon the longitudinal 

coordinate z, therefore the solution  mp C  to the above equation may become a 

complicated implicit function of z.  Results indicate that it is possible to improve the 
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mode selectivity and redistribute and/or diminish the density of ohmic losses in the 

insert by varying the depth of the corrugations along the axial direction. It was also 

found that when the corrugation depth is constant, at high voltages, the gyrotron 

oscillates in the multimode regime whereas when the corrugation depth is variable all 

parasitic modes are suppressed. 

 

A1.9  Energy losses in coaxial gyrotron with corrugated insert 

As is already known the corrugated insert plays an important role in a highly overmoded 

coaxial gyrotron cavity making problems of mode selection and beam voltage 

depression less serious. Therefore, these devices are expected to be capable to reach an 

output power of more than 2 MW in CW regime, that is far beyond of capabilities of 

present-day conventional cavity gyrotrons. The achievement of the record for this type 

of gyrotron in output power (2.2 MW at 165 GHz,) by the Forschungszentrum Karlsruhe 

(FZK) gyrotron group was reported [100]. It should be noted that the increase in power 

level of coaxial gyrotrons is rigidly connected with increasing the azimuthal and radial 

numbers of the operating mode. In particular, a calculation of energy losses in the inner 

conductor of a coaxial cavity is of interest as it may allow future designs to overcome 

one of the main technological restrictions in the coaxial cavity gyrotron progress – 

ohmic overloading of inner conductor walls. 

 

Mathematical Models used for estimation of ohmic losses 

 Spatial harmonics method (SHM) – This is based on the assumption that the 

corrugation width is less than half the oscillation wavelength, therefore the fields 

are homogeneous inside the grooves, although vary between grooves according 

to the azimuthal wave number. An example of this ohmic loss calculation is 

applicable to the coaxial cavity gyrotron with corrugated inner conductor, with 

slots of different sizes, presented in [101, 102]. 
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 Surface impedance model (SIM) – This method relies on the assumption that the 

ratio between tangential E and H fields can be expressed as an impedance type 

boundary condition. It is based on the assumption that the width of the 

corrugation is less than half the wavelength of the oscillations  2L  , which 

means that the field variation along a slot interval is negligible and the 

corrugations may be represented as a homogeneous reactive surface. The groove 

may be approximated as part of a rectangular waveguide. This approximation 

improves as the number of slots per wavelength increases and the thickness of 

the ridge decreases. It is only good for a large number of slots where generally

2N m . Correct calculations of energy losses at the inner conductor by this 

method are not very good as the field near the corrugated surface of the inner 

conductor is enriched by higher spatial harmonics – which are ignored in this 

model. 

 Method of moments – This is a general procedure for solving linear equations. It 

therefore can only account for a limited number of spatial harmonics.  It is only 

valid for modes with not too large an azimuthal index, for an example of this see 

[103].  

 Singular integral equation (SIE) – This is the most accurate method used for such 

calculations.  

 

A1.10 Calculation of Gyrotron Energy Losses 

So far, the theory of coaxial cavity gyrotrons was based on the simplified Surface 

Impedance Model (SIM) of the corrugated inner conductor however, the range of the 

applicability of this model is not completely clear. Usually, the SIM is believed to be 

feasible for gyrotron considerations if N > 2m, where N is the number of slots on the 

surface of the inner conductor, and m is the azimuthal number of the mode (see, for 

example [104]). Hence, as one goes to higher output powers, it becomes increasingly 
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difficult to validate this condition, since N must be very large and is difficult to fabricate. 

For early versions of coaxial gyrotron cavities, it holds with some conditions, i.e. for the 

relevant ITER TE34,19 coaxial gyrotron cavity, it holds very marginally (N = 72 ), and it 

will certainly be violated for the forthcoming designs. Moreover, correct calculation of 

energy losses in the inner conductor using the SIM is hardly possible at all [105], since 

the field near the corrugated surface of the inner conductor is significantly enriched by 

higher spatial or Fourier harmonics, which are ignored in the SIM approach. 

Mathematical details  

The fields inside the coaxial gyrotron cavity with corrugated inner conductor (see Fig. 

A4) contain an infinite number of spatial or Fourier harmonics. The field distribution 

near the corrugated surface is mainly formed by the higher spatial or Fourier harmonics, 

which are either neglected (as in SIM), or for which just a limited number are taken into 

account, (Method of Moments). Since the corrugated surface of the inner conductor 

contains sharp edges, the convergence of the infinite sums in terms of which the total 

fields are expressed, is very bad. They converge non-uniformly and their sharp edges 

result in a strong instability of the numerical results. Moreover, due to the large 

azimuthal and radial numbers of the operating mode, the higher terms of the sums 

contain cylindrical functions of very high order and argument. They cannot be computed 

using standard built-in programs which are restricted in both index and argument. A 

direct computer calculation of them is also impossible since they become either very 

small or even very large which is beyond the tractability of computer calculations. To 

overcome these problems, an approach has been developed which reduces the initial 

multidimensional boundary-value problem for Maxwell’s equations in order to search 

for a function of one variable, in an interval of length which is shorter than the 

wavelength of the cavity field. This allows singularities of the field near the sharp edges 

of the slots (on the surface of the inner conductor) to be treated in a mathematically 

correct manner, allowing for accurate calculations of the field distribution on the 

corrugated surface of the inner conductor. This is known as the Singular Integral 
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Equation method (SIE) and has no simplifying assumptions. Details of the energy loss 

calculation can be found in references [106, 107].  

A2. Derivation of Electromagnetic Dispersion relations 

The construction of a dispersion diagram allows us to visualize how electromagnetic 

waves will behave and interact. This interaction can be explained following a derivation 

of the transverse field components of the cylindrical waveguide.  

 

A2.1  Field components for the TE modes of a Cylindrical Waveguide 

Let the electric and magnetic fields, in a waveguide of length L, be represented as 

       Re , zi t k z

sE A z t E r e
 

      (A6) 

and 

       Re , zi t k z

sH A z t H r e
 

  (A7) 

where sE  and sH describe the transverse structure of the fields inside the guide,  ,A z t  

is the amplitude of the EM field, r  represents the transverse coordinate  ,r  , and zk  

is the axial wave number. The fields sE  and sH obey the following Maxwell equations 

for waves with frequency   and wave number k c in a source-free waveguide: 

 
s s

i
E H

c


    

(A8) 

and  
s s

i
H E

c


   

(A9) 
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These equations assume that both the permittivity and permeability are equal to unity. 

From these equations the wave equation can be obtained as 

 2
2

2
0s sH H

c


    

(A10) 

This is the vector Helmholtz partial differential equation (PDE).  

In the case of TE modes, the longitudinal magnetic field is given as  , zik z

z sH H r e 
 . 

This is a solution of the wave equation and 0zE  . The other EM field components can 

be written in terms of zH via the Maxwell equations as follows: 

2
ˆz z

r

ik dH
H r

k dr

   
2

ˆz zik H
E

k r
 







 

 

2
ˆz zik H

H
k r

 



 


 

2
ˆz z

r

ik H
E r

k r 


 


 

(A11) 

where 2 2 2 2

zk c k   . Expressing the wave equation as a function of zH in cylindrical 

coordinates  

 2 2
2

2 2 2

1 1
0zk H

r r r r 


   
    

   
 

(A12) 

A solution of this equation is found using the separation of variables method. Let it be 

assumed that      sH r R r P    and substitute into the above, to give 

 2 2 2
2

2 2

1r d R r dR d P
r k

R dr R dr P d
     

(A13) 
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Each side of this equation depends only on one single variable. Both sides can therefore 

be equated to a constant, 2k , and represented as  

2
2

2

1 d P
k

P d



     or 

2
2

2
0

d P
k P

d



   

(A14) 

also,  

 
 

2
2 2 2 2

2
0

d R dR
r r r k k R

dr dr
     

(A15) 

   

The general solution to (A14) takes the form of a standing wave 

   sin cos imP A m B m Ce        (A16) 

where A, B and C are constant and m replaces k  and must be an integer to ensure that 

zH  is periodic in the azimuthal angle  . This then leaves us with the radial differential 

equation, as Equation (A15) becomes  
2

2 2 2 2

2
0

d R dR
r r r k m R

dr dr
    . This is 

Bessel’s differential equation whose general solution is of the form 

      m mR r DJ k r EY k r     (A17) 

where mJ  and mY  are the Bessel and Neumann functions respectively. This general 

solution must be well behaved at r = 0, therefore the expansion coefficient E must be set 

to zero. As the second order function  mY k r tends to infinity as 0r   the expression 

for the transverse field component is only a function of the first order Bessel function, 

i.e.     im

s mH r J k r e 

  , where the product of the two constants D and E has been set 



137 

 

to unity. Taking into account the boundary condition that the tangential electric field at 

the waveguide wall must be zero, at radius  wr R allows us to express the azimuthal 

electric field variation as 

 
     

, zi k z m

m

ik
E r z J k r e

k





 

 



  
(A18) 

In order for E to vanish at the conducting surface  wr R
 

it must hold that

  0m wJ k R  . This is the Dirichlet boundary condition. Allowing 
mp to represent the 

roots of  mJ x , i.e.   0m mpJ   , where  
mp  is the p

th
 root of  mJ   , then k  takes the 

value 
mp

w

k
R


  .  

Values of 
mp  are given in mathematical tables.  

It is also known that the given TEmp modes which can propagate in a cylindrical 

waveguide are determined by the perpendicular wave number given above, where m 

refers to the number of azimuthal    variations, and p refers to the number of radial 

 r variations.  It is therefore evident that the transverse wave number k  is a function 

of the waveguide cut off frequency. The propagation constant of the TEmp mode is given 

by 

 
2 2 2 mp

mp z c

w

k k k k
R




 
     

 
 

(A19) 

with a cutoff frequency of 

 

2 2mp

mp

c

k
f

a



   

   
(A20) 



138 

 

The first TE mode to propagate is the mode with the smallest 
mp , which is the TE11 

mode. The other transverse field components are obtained in the same manner and given 

as 

 
    ˆzi k z mz

r m

ik
H J k r e r

k

 





   
(A21) 

 
   

2
ˆzi k z mz

m

ik m
H J k r e

k r



 
 





   
(A22) 

 
   

2
ˆzi k z m

r m

ik m
E J k r e r

k r

 





   
(A23) 

From the wave equation it is known that  2 2 2 2

zc k k   . In order to simplify the 

problem, let us neglect any changes in axial momentum of the beam i.e. zk c , and 

also ignore and interaction with backward waves, represented by the condition 

zk L .    

By plotting the dependence of wave frequency upon axial wave number using both the 

synchronous condition z ck s     and the expression for a cavity mode a dispersion 

diagram for the waveguide can be obtained. The point of efficient interaction between 

the beam and the wave is located where the beam line grazes the waveguide mode 

curve(s).  

 

A2.2  The Characteristic Equation for Coaxial Waveguide Modes 

We are interested in the electromagnetic wave confined between two concentric, 

conducting cylindrical surfaces. The TE11 mode is the dominant mode of the coaxial 

waveguide therefore is of primary importance. For TE modes, 0zE  , and zH satisfies 

the wave equation  
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 2 2 0z zH k H    (A24) 

where    , , , i z

z zH r z h r e    , and 2 2 2

ck k   . 

The general solution to this equation, as derived previously, is given by the product of 

equations (A16) and (A17): 

       im

s m mH r Ce DJ k r EY k r

     (A25) 

In this case, the boundary condition at 0r  does not hold, i.e. inner outerR r R  , 

 outer wallR R  therefore 
mY cannot be disregarded. In this case the boundary conditions 

are   

 , , 0E r z       for ,inner outerr R R  (A26) 

As following the previous derivation, the azimuthal component of electric field is found 

to equal 

 
        

, zi k z m

m m

ik
E r z DJ k r EY k r Ce

k





 

  



    
(A27) 

Applying the boundary condition (A26) to equation (A27) gives the following set of 

equations 

     0m in m inDJ k R EY k R 
    (A27) 

     0m out m outDJ k R EY k R 
    (A28) 

This is a homogeneous set of equations, the only nontrivial  0, 0C D   part occurs 

when the determinant is zero, therefore 
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        m in m out m out m inJ k R Y k R J k R Y k R   
     (A29) 

This is the characteristic equation for k
. The values of k

 that satisfy (A29) define the 

TEmp modes of the coaxial waveguide. Once k  
is known, the propagation constant, or 

cut off frequency can be determined. Solutions for the TM modes of the coaxial 

waveguide are found in a similar manner with the exception that the detrimental 

equation (A29) does not contain derivatives.  

 

 

A2.3 The Transverse Electric (TE) Mode Solution for a Coaxial 
Waveguide Having a 1D Corrugated Insert  

 

The TE11 mode is the dominant mode of the coaxial waveguide therefore is of primary 

importance. For TE modes, 0zE  , and zH satisfies the wave equation  

 2 2 0z zH k H    (A30) 

where    , , , j z

z zH r z h r e    , and 2 2 2

ck k   . The general solution to this 

equation is given by: 

          im

s m m mH r Ce DJ k r E Y k r Y k 

       (A31) 

This is the same as before only now there is an additional boundary to consider. 

As before, the boundary condition at 0r  does not hold, i.e. inner outerR r R  , 

 outer wallR R  therefore mY cannot be disregarded. In this case the boundary conditions 

are   
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 , , 0E r z  
  
 for , ,inner inner outerr R WR R  (A32) 

where W is the corrugation parameter.  

As following the previous derivation, the azimuthal component of electric field is found 

to equal 

 
           

, zi k z m

m m m

ik
E r z DJ k r E Y k r Y k Ce S

k



 
 

   



     
(A33) 

Applying the boundary condition (A32) to equation (A33) gives the following set of 

equations 

         0m in m in m in m inJ k R WJ k R Y k R WY k R   
            (A34) 

     0m out m outJ k R Y k R 
    (A35) 

This is a homogeneous set of equations, the only nontrivial root occurs when the 

determinant is zero, therefore 

           m in m in m out m in m in m outJ k R WJ k R Y k R Y k R WY k R J k R     
              

  (A36) 

This is the characteristic equation for k . The values of k  that satisfy (A36) define the 

TEmp modes of the coaxial waveguide with a 1D azimuthal corrugation. A similar 

solution can be found for the TM modes of a coaxial waveguide. 
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A3. Derivation of the Gyro-Averaged Equations  

The gyro-averaged equations are a set of equations which are used to describe the 

electron motion. This section considers the interaction taking place between electrons 

and a transverse electric (TE) wave inside a cylindrical interaction region. 

 

A3.1  Evolution of Electron Phase and Momentum  

The motion of an electron in a guiding magnetic field interacting with a TE wave can be 

represented by the Lorentz force equation: 

 
 0

1dP
e E H H

dt c


         
 

(A37) 

where P  is the electron momentum,   is the electron velocity, 0H
 
is the external 

magnetic field, E  and H are the electric and magnetic fields of the wave respectively. 

Introduction of the following normalization parameters 

 z z c   (A38) 

 
0p p m c  , (A39) 

 
0A eA m c  , (A40) 

 
0 0 0eH m c    , (A41) 

 
z z c   (A42) 

 c    (A43) 
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allows the above equation (A37) to normalize to: 

 
       1 1

Re Rez zi t k z i t k z

s s

z z z

dp p
z A e E H A e G

dz p

 
 

 

   
               

 
 

       (A44)  

Where  s s sG E H    (A45) 

is the Lorentz force. If we assume that the EM field is much weaker than the external 

magnetic field, the transverse momentum and position of the gyrating electron can be 

written as: 

sinxp p 
    cosyp p 

   (A46a&b) 

cosLx X r      sinLy Y r      (A47a&b) 

 where  

0     0t t    X X c   Y Y c   L Lr r c   

This is illustrated in the Figure A9 where the parameters Lr , X   and Y  represent the 

normalized Larmour radius and guiding centre coordinates of the gyrating electrons. 

These parameters, along with p
  and   , remain constant when the EM field is absent.  
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Figure A9: Projection of an electron orbit on cross sectional plane. 

 

Using the previous relations, the components of the Lorentz force equation can be 

written as: 

   1
sin cos Re zi t k zx

x

z

dp dp d
p A e G

dz dz dz


 






 
     

(A48) 

 
  1

cos sin Re zy i t k z

y

z

dp dp d
p A e G

dz dz dz


 






 
      

(A49) 

 
cos sin cos sin 0L

L L L

drdx dX d
r X r r

dz dz dz dz


   

 
         

  
 

(A50) 

 
sin cos sin cos 0L

L L L

drdy dY d
r Y r r

dz dz dz dz


   

 
         

  
 

(A51) 

 

These are the equations describing the motion of the electron. The transverse 

components of the EM Lorentz force are denoted by xG and yG  , these may be replaced 

by their polar equivalents  
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 cos sinr x yG G G     

 sin cosx yG G G      (A52) 

Performing the polar transformations of the equations of motion yields the following 

expressions for electron motion 

   1
Re zi t k z

z

p A e G








    

(A53) 

   1
Re zi t k z

r

z

p A e G








   

(A54) 

   1
Re zi t k z

z z

z

p A e G




    
(A55) 

   1
Re zi t k z

y

z

X A e G




   
(A56) 

   1
Re zi t k z

x

z

Y A e G




    
(A56) 

It is clear that the Lorentz force G  is a periodic function of the angular coordinate , it 

can therefore be represented as a Fourier series via 

  il

l

l

G G e 






    where  
2

0

1

2

il

lG Ge d



 


                (A57) 

Substituting these into the above equations defining the following phase variable 

l z zt k l      , the equations governing electron motion may be written as 
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 

1
Re li

l

z

p A G e






    

(A58) 

 
 

1
Re li

l lr

z z z

p h l A G e
p p

 





 
     

 
 

(A59) 

 
 

1
Re li

z lz

z

p A G e



    

(A60) 

 
 

1
Re li

ly

z

X A G e



   

(A61) 

 
 

1
Re li

lx

z

Y A G e



    

(A62)      

where it is assumed that p
 , zp ,  , X  , Y  and Lr vary slowly during the interaction 

between the electrons and the electromagnetic field such that the equations may be 

averaged over fast gyrations. These equations are reduced (or gyro-averaged) and are 

similar to (A58 - A62).  

The components of the Lorentz force can be expressed through the membrane function 
 

 
     

2
cos sin

0

,
ik x y

x y e d


 

  
    

(A63) 

Since  is periodic in the   direction it can be represented as an infinite sum of 

harmonics as 

  , il

l

l

x y e 






   ,  where  
2

0

1

2

il

l e d



 


        (A64a&b) 
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Substitution of the membrane function (A63) into the expression for the l
th

 harmonic, 

and allowing for the position of the gyrating electron to be expressed as 

cosLx X r    sinLy Y r    (A65) 

the function becomes 

 
      

2
cos cos sin sin

0

1
.

2

L Lik X r Y r il

l e d e d


      


    

   
 
  

 (A66) 

If we let     , the last integral takes the form of a Bessel function 
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1
, .

l

l Li X Y J k r
k X Y





  
   

  

   ,l L lJ k r L X Y  

(A67) 

Substituting this into 
2

0

1

2

il

l e d



 


    yields the simplified form of the membrane 

function 

 
     , , il

l L l

l

x y J k r L X Y e 








    
(A68) 

where  

 
 

1
,

l

lL i X Y
k X Y

  
   
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(A69). 
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In this case the waveguide is of cylindrical geometry therefore the expressions regarding 

the electron guiding centre must be transferred to polar coordinates using the relations 

  cosX r    and  sinY r  .        (A70) 

The differential operator in 
lL  can also be transformed into polar coordinates as 

  
sin

cos
X r r






  
 

  
 and 

cos
sin

Y r r






  
 

  
 

                 (A71) 

thus obtaining 

 

 
1

,

l

i

lL e i r
k r

 


   
    

   
 

(A72). 

As is known, the membrane function for a TEmp mode of a cylindrical resonator is equal 

to   im

mJ k r e 

 . Here m is the azimuthal index of the mode and p its radial index. The 

transverse wave number mp wk R  where wR  is the radius of the waveguide and 
mp

the p
th

 root of the equation   0mdJ d   .  

Using the following recurrent relation for Bessel functions 

  
   1

m

m m

dJ x m
J x J x

dx x
   

(A73) 

it can be shown that the differential operator given in Ll is equal to 

    i l m

l m lL J k r e


  (A74) 

where 1m  and 1m  correspond to the co- and counter rotating waves with respect to 

the electron gyration. In the case of TE waves, the axial component of the magnetic field 
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zH  can be represented as
zH i  . Substituting this into equations A71 to A74, the 

transverse field components can be expressed in terms of the membrane function, i.e. 

 
2

z
r

k
H

k r





 

(A75) 

 
2

k
E

k r





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(A76) 

 
2
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H
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
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
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
 

(A77) 

 
2

k
E

k r








 

(A78) 

Substituting these into (A74) and remembering the constraint given earlier  zk k  or 

k k  
allows us to express the components of the Lorentz force relation as 

 
1

r

L

G i
k r









 


  

1
G

k r








  0zG         (A79). 

If the membrane function  is now replaced with its full expression given in (A67), the 

equations of electron motion (A53 – A55) become: 
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(A80) 
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1 1
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 
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      
  

(A81) 

 0zp   (A82) 



150 

 

The last equation shows that the axial momentum of the electron remains essentially 

unchanged throughout the interaction with the EM field. These equations describe the 

electron phase and orbital momentum as the electron traverses the resonator. 

 

A3.2  Evolution of Electron Energy  

The rate of change in electron energy along the axial length is denoted by the equation 

of motion for a charged particle which is give as 

 
 .

d
e E

dt


   

(A83) 

which, using normalized variables, may be expressed as  
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.
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eEd

dz m c



 
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 
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(A84) 

Recalling the expression for the azimuthal/orbital component of electric field as 

2

k
E

k r




 



 

The equation A84 may be written as  

 

2

0

. .
z

d e k

dz m c k r



 



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  
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(A85) 

(remembering that  , il

l

l

x y e 






   ) and substituting the membrane function into 

this yields 
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   

0

Re zi t k z il

l l l

lz

pd
A e J k r L e
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


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Recalling (A81) from the previous section (evolution of orbital momentum) and 

rearranging for   
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where it is assumed that 
d

dz


  . 

Normalizing all parameters with respect to the ignition electron energy o  as follows  
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and introducing the normalized axial length 

o oz z

z z


 


  , allows the rate of change of 

electron energy along the axis to be expressed as  
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Appendix B  

 

B1.  The Radially Inhomogeneous Cylindrical Fibre 

Here, an efficient analytical method is given which allows us to calculate the 

propagation characteristics of various modes in fibres whose core radius are not 

constant, i.e. a multi-layer concentric system. Following the same procedure as in 

chapter 2 and dividing the cylinder into s+1 regions, expressions for the tangential field 

components* can be written as follows: 

*Assume that expressions for field components of all modes are multiplied by 

 j n z t
e

   
which is suppressed throughout. 
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Region S + 1: 
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Appendix C  

C1.  Tables of Bessel Roots 

 

These values, for both TE and TM modes were obtained using Mathematica®, where v 

relates to the number of azimuthal variations and n the number across the radius. 

 

TEv,n  ROOTS 

Bessel 
order 

v 

n 

1 2 3 4 5 6 7 8 9 10 11 12 

J'0 3.83171 7.01559 10.1735 13.3237 16.4706 19.6159 22.7601 25.9037 29.0468 32.1897 35.3323 38.4748 

J'1 1.84118 5.33144 8.53632 11.706 14.8636 18.0155 21.1644 24.3113 27.4571 30.6019 33.7462 36.89 

J'2 3.05424 6.70613 9.96947 13.1704 16.3475 19.5129 22.6716 25.826 28.9777 32.1273 35.2755 38.4227 

J'3 4.20119 8.01524 11.3459 14.5858 17.7887 20.9725 24.1449 27.3101 30.4703 33.6269 36.781 39.9331 

J'4 5.31755 9.2824 12.6819 15.9641 19.196 22.401 25.5898 28.7678 31.9385 35.1039 38.2653 41.4237 

J'5 6.41562 10.5199 13.9872 17.3128 20.5755 23.8036 27.0103 30.2028 33.3854 36.5608 39.7306 42.8963 

J'6 7.50127 11.7349 15.2682 18.6374 21.9317 25.1839 28.4098 31.6179 34.8134 37.9996 41.1788 44.3526 

J'7 8.57784 12.9324 16.5294 19.9419 23.2681 26.545 29.7907 33.0152 36.2244 39.4223 42.6115 45.794 

J'8 9.64742 14.1155 17.774 21.2291 24.5872 27.8893 31.1553 34.3966 37.6201 40.8302 44.03 47.2218 

J'9 10.7114 15.2867 19.0046 22.5014 25.8913 29.2186 32.5052 35.7638 39.0019 42.2246 45.4355 48.6369 

J'10 11.7709 16.4479 20.223 23.7607 27.182 30.5345 33.842 37.118 40.3711 43.6068 46.829 50.0404 

J'11 12.8265 17.6003 21.4309 25.0085 28.4609 31.8384 35.1667 38.4604 41.7286 44.9775 48.2113 51.4331 

J'12 13.8788 18.7451 22.6293 26.246 29.729 33.1314 36.4805 39.7919 43.0755 46.3378 49.5834 52.8157 

J'13 14.9284 19.8832 23.8194 27.4743 30.9874 34.4145 37.7844 41.1135 44.4125 47.6883 50.9458 54.1888 

J'14 15.9754 21.0154 25.002 28.6943 32.237 35.6885 39.079 42.4259 45.7402 49.0296 52.2993 55.5531 

J'15 17.0203 22.1422 26.1778 29.9066 33.4784 36.9542 40.3651 43.7296 47.0595 50.3625 53.6444 56.9091 

J'16 18.0633 23.2643 27.3474 31.1119 34.7125 38.2121 41.6433 45.0254 48.3707 51.6874 54.9815 58.2573 

J'17 19.1045 24.3819 28.5114 32.3109 35.9396 39.4628 42.9142 46.3138 49.6744 53.0048 56.3112 59.598 

J'18 20.1441 25.4956 29.6701 33.5039 37.1604 40.7068 44.1781 47.5951 50.9711 54.3152 57.6338 60.9318 

J'19 21.1823 26.6055 30.8241 34.6915 38.3752 41.9446 45.4357 48.8699 52.2612 55.6189 58.9498 62.2589 

J'20 22.2191 27.7121 31.9737 35.8739 39.5845 43.1765 46.6872 50.1386 53.545 56.9163 60.2595 63.5797 

J'21 23.2548 28.8156 33.1192 37.0516 40.7886 44.403 47.933 51.4014 54.8229 58.2078 61.5632 64.8945 

J'22 24.2894 29.9161 34.2608 38.2249 41.9879 45.6243 49.1734 52.6587 56.0952 59.4936 62.8612 66.2037 

J'23 25.3229 31.014 35.3988 39.394 43.1825 46.8408 50.4088 53.9107 57.3622 60.774 64.1538 67.5073 

J'24 26.3555 32.1093 36.5334 40.5591 44.3729 48.0526 51.6394 55.1579 58.6241 62.0493 65.4412 68.8058 

J'25 27.3872 33.2023 37.6649 41.7206 45.5592 49.2601 52.8654 56.4003 59.8813 63.3197 66.7237 70.0993 

J'26 28.4181 34.293 38.7934 42.8786 46.7416 50.4634 54.0871 57.6382 61.1338 64.5854 68.0014 71.3881 

J'27 29.4482 35.3816 39.9191 44.0332 47.9203 51.6629 55.3046 58.8719 62.3819 65.8466 69.2746 72.6723 

J'28 30.4775 36.4683 41.0421 45.1847 49.0956 52.8586 56.5182 60.1015 63.6259 67.1036 70.5435 73.9521 

J'29 31.5062 37.5531 42.1626 46.3333 50.2676 54.0507 57.7281 61.3272 64.8658 68.3565 71.8082 75.2276 

J'30 32.5342 38.6361 43.2807 47.479 51.4364 55.2395 58.9344 62.5491 66.1019 69.6054 73.0689 76.4992 
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TMv,n  ROOTS 
Bessel 
order 

v 

n 
1 2 3 4 5 6 7 8 9 10 11 12 

J0 2.40483 5.52008 8.65373 11.7915 14.9309 18.0711 21.2116 24.3525 27.4935 30.6346 33.7758 36.9171 

J1 3.83171 7.01559 10.1735 13.3237 16.4706 19.6159 22.7601 25.9037 29.0468 32.1897 35.3323 38.4748 

J2 5.13562 8.41724 11.6198 14.796 17.9598 21.117 24.2701 27.4206 30.5692 33.7165 36.8629 40.0084 

J3 6.38016 9.76102 13.0152 16.2235 19.4094 22.5827 25.7482 28.9084 32.0649 35.2187 38.3705 41.5207 

J4 7.58834 11.0647 14.3725 17.616 20.8269 24.019 27.1991 30.371 33.5371 36.699 39.8576 43.0137 

J5 8.77148 12.3386 15.7002 18.9801 22.2178 25.4303 28.6266 31.8117 34.9888 38.1599 41.3264 44.4893 

J6 9.93611 13.5893 17.0038 20.3208 23.5861 26.8202 30.0337 33.233 36.422 39.6032 42.7785 45.949 

J7 11.0864 14.8213 18.2876 21.6415 24.9349 28.1912 31.4228 34.6371 37.8387 41.0308 44.2154 47.3942 

J8 12.2251 16.0378 19.5545 22.9452 26.2668 29.5457 32.7958 36.0256 39.2404 42.4439 45.6384 48.8259 

J9 13.3543 17.2412 20.807 24.2339 27.5837 30.8854 34.1544 37.4001 40.6286 43.8438 47.0487 50.2453 

J10 14.4755 18.4335 22.047 25.5095 28.8874 32.2119 35.4999 38.7618 42.0042 45.2316 48.4472 51.6533 

J11 15.5898 19.616 23.2759 26.7733 30.1791 33.5264 36.8336 40.1118 43.3684 46.6081 49.8347 53.0505 

J12 16.6982 20.7899 24.4949 28.0267 31.46 34.83 38.1564 41.4511 44.7219 47.9743 51.212 54.4378 

J13 17.8014 21.9562 25.7051 29.2706 32.7311 36.1237 39.4692 42.7804 46.0657 49.3308 52.5798 55.8157 

J14 18.9 23.1158 26.9074 30.506 33.9932 37.4082 40.7728 44.1006 47.4003 50.6782 53.9387 57.1849 

J15 19.9944 24.2692 28.1024 31.7334 35.2471 38.6843 42.0679 45.4122 48.7265 52.0172 55.2892 58.5458 

J16 21.0851 25.417 29.2909 32.9537 36.4934 39.9526 43.3551 46.7158 50.0446 53.3483 56.6319 59.899 

J17 22.1725 26.5598 30.4733 34.1673 37.7327 41.2136 44.6348 48.012 51.3553 54.6719 57.9671 61.2448 

J18 23.2568 27.6979 31.6501 35.3747 38.9654 42.4678 45.9077 49.3011 52.6589 55.9885 59.2954 62.5836 

J19 24.3382 28.8317 32.8218 36.5765 40.1921 43.7157 47.174 50.5837 53.9559 57.2984 60.617 63.9158 

J20 25.4171 29.9616 33.9887 37.7729 41.4131 44.9577 48.4342 51.86 55.2466 58.602 61.9323 65.2418 

J21 26.4936 31.0878 35.1511 38.9643 42.6287 46.1941 49.6887 53.1305 56.5313 59.8997 63.2416 66.5617 

J22 27.5679 32.2106 36.3094 40.151 43.8393 47.4252 50.9378 54.3954 57.8105 61.1916 64.5452 67.876 

J23 28.6402 33.3302 37.4638 41.3334 45.0452 48.6513 52.1817 55.6551 59.0843 62.4782 65.8434 69.1848 

J24 29.7105 34.4468 38.6145 42.5117 46.2466 49.8728 53.4207 56.9097 60.353 63.7596 67.1364 70.4884 

J25 30.779 35.5606 39.7618 43.686 47.4438 51.0897 54.6551 58.1596 61.6168 65.0361 68.4244 71.7871 

J26 31.8459 36.6717 40.9058 44.8567 48.6371 52.3025 55.8851 59.405 62.8761 66.3079 69.7077 73.0809 

J27 32.9112 37.7804 42.0467 46.0239 49.8265 53.5112 57.1108 60.646 64.1309 67.5752 70.9865 74.3702 

J28 33.9749 38.8867 43.1848 47.1877 51.0123 54.7161 58.3326 61.8829 65.3814 68.8382 72.2609 75.6551 

J29 35.0373 39.9908 44.32 48.3485 52.1946 55.9174 59.5506 63.1159 66.6279 70.0971 73.5311 76.9358 

J30 36.0983 41.0928 45.4527 49.5062 53.3737 57.1151 60.7649 64.345 67.8705 71.352 74.7973 78.2124 
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C2.  Mode Excitation Order  
 

Mode excitation order for smooth cylindrical waveguide of radius 0.0395m (39.5mm), 

as output from CST Microwave Studio. 

Mode Root Kc (m
-1

) fc (GHz) 

TE1,1 1.84118 47.20974359 2.2540992 

TM0,1 2.40483 61.66230769 2.9441583 

TM11/TE01 3.83171 98.24897436 4.691043 

TE 2,1 3.05424 78.31384615 3.7392107 

TE3,1 4.20119 107.7228205 5.1433858 

TM2,1 5.13562 131.6825641 6.2873793 

TE4,1 5.31755 136.3474359 6.5101105 

TE1,2 5.33144 136.7035897 6.5271156 

TM0,2 5.52008 141.5405128 6.7580617 

TM3,1 6.38016 163.5938462 7.8110308 

TE5,1 6.41562 164.5030769 7.8544434 

TE2,2 6.70613 171.9520513 8.2101057 

TE0,2/TM1,2 7.01559 179.8869231 8.5889679 

TE6,1 7.50127 192.3402564 9.1835708 

TM4,1 7.58834 194.5728205 9.2901679 

TE3,2 8.01524 205.5189744 9.8128082 

TM2,2 8.41724 215.8266667 10.304964 

TE1,3 8.53632 218.88 10.45075 

TE7,1 8.57784 219.9446154 10.501582 

TM0,3 8.65373 221.8905128 10.594492 

TM5,1 8.77148 224.9097436 10.738649 

TE4,2 9.2824 238.0102564 11.364153 

TE8,1 9.64742 247.3697436 11.811035 

TM3,2 9.76102 250.2825641 11.950112 

TM6,1 9.93611 254.7720513 12.164469 

TE2,3 9.96947 255.6274359 12.205311 

TE0,3 10.1735 260.8589744 12.455099 

TM1,3 10.1735 260.8589744 12.455099 

TE5,2 10.5199 269.7410256 12.879185 

TE9,1 10.7114 274.6512821 13.113633 

TM4,2 11.0647 283.7102564 13.546167 

TM7,1 11.0864 284.2666667 13.572734 

TE3,3 11.3459 290.9205128 13.890431 

TM2,3 11.6198 297.9435897 14.225759 

TE1,4 11.706 300.1538462 14.33129 

TE6,2 11.7349 300.8948718 14.366672 

TE10,1 11.7709 301.8179487 14.410746 

TM0,4 11.7915 302.3461538 14.435965 

TM8,1 12.2251 313.4641026 14.966808 

TM5,2 12.3386 316.374359 15.105763 

TE4,3 12.6819 325.1769231 15.526054 

TE11,1 12.8265 328.8846154 15.703084 

TE7,2 12.9324 331.6 15.832734 
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TM3,3 13.0152 333.7230769 15.934103 

TE2,4 13.1704 337.7025641 16.12411 

TM1,4 13.3237 341.6333333 16.31179 

TE0,4 13.3237 341.6333333 16.31179 

TM9,1 13.3543 342.4179487 16.349253 

TM6,2 13.5893 348.4435897 16.636956 

TE12,1 13.8788 355.8666667 16.991382 

TE5,3 13.9872 358.6461538 17.124092 

TE8,2 14.1155 361.9358974 17.281166 

TM4,3 14.3725 368.525641 17.595803 

TM10,1 14.4755 371.1666667 17.721903 

TE3,4 14.5858 373.9948718 17.85694 

TM2,4 14.796 379.3846154 18.114281 

TM7,2 14.8213 380.0333333 18.145255 

TE1,5 14.8636 381.1179487 18.197042 

TE13,1 14.9284 382.7794872 18.276374 

TM0,5 14.9309 382.8435897 18.279435 

TE6,3 15.2682 391.4923077 18.692381 

TE9,2 15.2867 391.9666667 18.71503 

TM11,1 15.5898 399.7384615 19.086106 

TM5,3 15.7002 402.5692308 19.221265 

TE4,4 15.9641 409.3358974 19.544349 

TE14,1 15.9754 409.625641 19.558184 

TM8,2 16.0378 411.225641 19.634578 

TM3,4 16.2235 415.9871795 19.861925 

TE2,5 16.3475 419.1666667 20.013734 

TE10,2 16.4479 421.7410256 20.136651 

TE0,5 16.4706 422.3230769 20.164442 

TM1,5 16.4706 422.3230769 20.164442 

TE7,3 16.5294 423.8307692 20.236429 

TM12,1 16.6982 428.1589744 20.443085 

TM6,3 17.0038 435.9948718 20.817222 

TE15,1 17.0203 436.4179487 20.837422 

TM9,2 17.2412 442.0820513 21.107863 

TE5,4 17.3128 443.9179487 21.195521 

TE11,2 17.6003 451.2897436 21.547498 

TM4,4 17.616 451.6923077 21.566719 

TE8,3 17.774 455.7435897 21.760154 

TE3,5 17.7887 456.1205128 21.77815 

TM13,1 17.8014 456.4461538 21.793698 

TM2,5 17.9598 460.5076923 21.987623 

TE1,6 18.0155 461.9358974 22.055814 

TE16,1 18.0633 463.1615385 22.114334 

TM0,6 18.0711 463.3615385 22.123884 

TM7,3 18.2876 468.9128205 22.388938 

TM10,2 18.4335 472.6538462 22.567559 

TE6,4 18.6374 477.8820513 22.817187 

TE12,2 18.7451 480.6435897 22.949041 

TM14,1 18.9 484.6153846 23.13868 

TM5,4 18.9801 486.6692308 23.236744 

TE9,3 19.0046 487.2974359 23.266739 

TE17,1 19.1045 489.8589744 23.389043 

TE4,5 19.196 492.2051282 23.501064 

TM3,5 19.4094 497.6769231 23.762323 

TE2,6 19.5129 500.3307692 23.889035 
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TM8,3 19.5545 501.3974359 23.939964 

TM1,6 19.6159 502.9717949 24.015134 

TE0,6 19.6159 502.9717949 24.015134 

TM11,2 19.616 502.974359 24.015257 

TE13,2 19.8832 509.825641 24.342381 

TE7,4 19.9419 511.3307692 24.414246 

TM15,1 19.9944 512.6769231 24.47852 

TE18,1 20.1441 516.5153846 24.661793 

TE10,3 20.223 518.5384615 24.758388 

TM6,4 20.3208 521.0461538 24.878121 

TE4,5 20.5755 527.5769231 25.189943 

TM12,2 20.7899 533.074359 25.452426 

TM9,3 20.807 533.5128205 25.473361 

TM4,5 20.8269 534.0230769 25.497724 

TE3,6 20.9725 537.7564103 25.675977 

TE14,2 21.0154 538.8564103 25.728498 

TM16,1 21.0851 540.6435897 25.81383 

TM2,6 21.117 541.4615385 25.852884 

TE1,7 21.1644 542.6769231 25.910914 

TE19,1 21.1823 543.1358974 25.932829 

TM0,7 21.2116 543.8871795 25.9687 

TE8,4 21.2291 544.3358974 25.990125 

TE11,3 21.4309 549.5102564 26.237182 

TM7,4 21.6415 554.9102564 26.495013 

TE6,5 21.9317 562.3512821 26.850296 

TM13,2 21.9562 562.9794872 26.88029 

TM10,3 22.047 565.3076923 26.991454 

TE15,2 22.1422 567.7487179 27.108004 

TM17,1 22.1725 568.525641 27.1451 

TM5,5 22.2178 569.6871795 27.200559 

TE20,1 22.2191 569.7205128 27.202151 

TE4,6 22.401 574.3846154 27.424845 

TE9,4 22.5014 576.9589744 27.547762 

TM3,6 22.5827 579.0435897 27.647295 

TE12,3 22.6293 580.2384615 27.704346 

TE2,7 22.6716 581.3230769 27.756132 

TM1,7 22.7601 583.5923077 27.86448 

TE0,7 22.7601 583.5923077 27.86448 

TM8,4 22.9452 588.3384615 28.091092 

TM14,2 23.1158 592.7128205 28.299953 

TE21,1 23.2548 596.2769231 28.470126 

TM18,1 23.2568 596.3282051 28.472574 

TE16,2 23.2643 596.5205128 28.481756 

TE7,5 23.2681 596.6179487 28.486409 

TM11,3 23.2759 596.8179487 28.495958 

TM6,5 23.5861 604.7717949 28.875726 

TE10,4 23.7607 609.2487179 29.089484 

TE5,6 23.8036 610.3487179 29.142005 

TE13,3 23.8194 610.7538462 29.161348 

TM4,6 24.019 615.8717949 29.405712 

TE3,7 24.1449 619.1 29.559848 

TM9,4 24.2339 621.3820513 29.668808 

TM15,2 24.2692 622.2871795 29.712024 

TM2,7 24.2701 622.3102564 29.713126 

TE22,1 24.2894 622.8051282 29.736754 
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TE1,8 24.3113 623.3666667 29.763566 

TM19,1 24.3382 624.0564103 29.796499 

TM0,8 24.3525 624.4230769 29.814006 

TE17,2 24.3819 625.1769231 29.849999 

TM12,3 24.4949 628.074359 29.988342 

TE8,5 24.5872 630.4410256 30.101342 

TM7,5 24.9349 639.3564103 30.52702 

TE14,3 25.002 641.0769231 30.609168 

TE11,4 25.0085 641.2435897 30.617126 

TE6,6 25.1839 645.7410256 30.831863 

TE23,1 25.3229 649.3051282 31.002036 

TM16,2 25.417 651.7179487 31.11724 

TM20,1 25.4171 651.7205128 31.117362 

TM5,6 25.4303 652.0589744 31.133523 

TE18,2 25.4956 653.7333333 31.213467 

TM10,4 25.5095 654.0897436 31.230485 

TE4,7 25.5898 656.1487179 31.328794 

TM13,3 25.7051 659.1051282 31.469952 

TM3,7 25.7482 660.2102564 31.522718 

TE2,8 25.826 662.2051282 31.617966 

TE9,5 25.8913 663.8794872 31.697911 

TM1,8 25.9037 664.1974359 31.713092 

TE0,8 25.9037 664.1974359 31.713092 

TE15,3 26.1778 671.225641 32.048664 

TE12,4 26.246 672.974359 32.132159 

TM8,5 26.2668 673.5076923 32.157624 

TE24,1 26.3555 675.7820513 32.266216 

TM21,1 26.4936 679.3230769 32.435288 

TE7,6 26.545 680.6410256 32.498215 

TM17,2 26.5598 681.0205128 32.516334 

TE19,2 26.6055 682.1923077 32.572283 

TM11,4 26.7733 686.4948718 32.777716 

TM6,6 26.8202 687.6974359 32.835134 

TM14,3 26.9074 689.9333333 32.94189 

TE5,7 27.0103 692.5717949 33.067867 

TE10,5 27.182 696.974359 33.278074 

TM4,7 27.1991 697.4128205 33.299009 

TE3,8 27.3101 700.2589744 33.434903 

TE16,3 27.3474 701.2153846 33.480568 

TE25,1 27.3872 702.2358974 33.529294 

TM2,8 27.4206 703.0923077 33.570185 

TE1,9 27.4571 704.0282051 33.614871 

TE13,4 27.4743 704.4692308 33.635928 

TM0,9 27.4935 704.9615385 33.659434 

TM22,1 27.5679 706.8692308 33.75052 

TM9,5 27.5837 707.274359 33.769863 

TM18,2 27.6979 710.2025641 33.909675 

TE20,2 27.7121 710.5666667 33.927059 

TE8,6 27.8893 715.1102564 34.144 

TM12,4 28.0267 718.6333333 34.312214 

TM15,3 28.1024 720.574359 34.404891 

TE7,6 28.1912 722.8512821 34.513606 

TE6,7 28.4098 728.4564103 34.781232 

TE26,1 28.4181 728.6692308 34.791393 

TE11,5 28.4609 729.7666667 34.843792 
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TE17,3 28.5114 731.0615385 34.905617 

TM5,7 28.6266 734.0153846 35.046653 

TM23,1 28.6402 734.3641026 35.063303 

TE14,4 28.6943 735.7512821 35.129536 

TE3,8 28.7678 737.6358974 35.21952 

TE21,2 28.8156 738.8615385 35.27804 

TM19,2 28.8317 739.274359 35.297751 

TM10,5 28.8874 740.7025641 35.365942 

TM3,8 28.9084 741.2410256 35.391652 

TE2,9 28.9777 743.0179487 35.476494 

TM1,9 29.0468 744.7897436 35.561091 

TE0,9 29.0468 744.7897436 35.561091 

TE9,6 29.2186 749.1948718 35.77142 

TM13,4 29.2706 750.5282051 35.835082 

TM16,3 29.2909 751.0487179 35.859935 

TE27,1 29.4482 755.0820513 36.052512 

TM8,6 29.5457 757.5820513 36.171878 

TE18,3 29.6701 760.7717949 36.324178 

TM24,1 29.7105 761.8076923 36.373638 

TE12,5 29.729 762.2820513 36.396287 

TE7,7 29.7907 763.8641026 36.471824 

TE15,4 29.9066 766.8358974 36.613717 

TE22,2 29.9161 767.0794872 36.625348 

TM20,2 29.9616 768.2461538 36.681052 

TM6,7 30.0337 770.0948718 36.769322 

TM11,5 30.1791 773.8230769 36.94733 

TE5,8 30.2028 774.4307692 36.976346 

TM4,8 30.371 778.7435897 37.182268 

TE3,9 30.4703 781.2897436 37.303837 

TM17,3 30.4733 781.3666667 37.30751 

TE28,1 30.4775 781.474359 37.312652 

TM14,4 30.506 782.2051282 37.347544 

TE10,6 30.5345 782.9358974 37.382435 

TM2,9 30.5692 783.825641 37.424918 

TE1,10 30.6019 784.6641026 37.464951 

TM0,10 30.6346 785.5025641 37.504985 

TM25,1 30.779 789.2051282 37.681769 

TE19,3 30.8241 790.3615385 37.736984 

TM9,6 30.8854 791.9333333 37.812031 

TE13,5 30.9874 794.5487179 37.936907 

TE23,2 31.014 795.2307692 37.969472 

TM21,2 31.0878 797.1230769 38.059823 

TE16,4 31.1119 797.7410256 38.089328 

TE8,7 31.1553 798.8538462 38.142462 

TM7,7 31.4228 805.7128205 38.469953 

TM12,5 31.46 806.6666667 38.515496 

TE29,1 31.5062 807.8512821 38.572057 

TE6,8 31.6179 810.7153846 38.708808 

TM18,3 31.6501 811.5410256 38.74823 

TM15,4 31.7334 813.6769231 38.850211 

TM5,8 31.8117 815.6846154 38.946072 

TE11,6 31.8384 816.3692308 38.97876 

TM26,1 31.8459 816.5615385 38.987942 

TE4,9 31.9385 818.9358974 39.101309 

TE20,3 31.9737 819.8384615 39.144403 
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TM3,9 32.0649 822.1769231 39.256056 

TE24,2 32.1093 823.3153846 39.310414 

TE2,10 32.1273 823.7769231 39.332451 

TM1,10 32.1897 825.3769231 39.408845 

TE0,10 32.1897 825.3769231 39.408845 

TM22,2 32.2106 825.9128205 39.434432 

TM10,6 32.2119 825.9461538 39.436024 

TE14,5 32.237 826.5897436 39.466753 

TE17,4 32.3109 828.4846154 39.557227 

TE9,7 32.5052 833.4666667 39.795102 

TE30,1 32.5342 834.2102564 39.830606 

TM13,5 32.7311 839.2589744 40.071664 

TM8,7 32.7958 840.9179487 40.150874 

TM19,3 32.8218 841.5846154 40.182705 

TM27,1 32.9112 843.8769231 40.292155 

TM16,4 32.9537 844.9666667 40.344187 

TE7,8 33.0152 846.5435897 40.419479 

TE21,3 33.1192 849.2102564 40.546803 

TE12,6 33.1314 849.5230769 40.561739 

TE25,2 33.2023 851.3410256 40.64854 

TM6,8 33.233 852.1282051 40.686125 

TM23,2 33.3302 854.6205128 40.805124 

TE5,9 33.3854 856.0358974 40.872703 

TE15,5 33.4784 858.4205128 40.98656 

TE18,4 33.5039 859.074359 41.017779 

TM11,6 33.5264 859.6512821 41.045325 

TM4,9 33.5371 859.925641 41.058425 

TE3,10 33.6269 862.2282051 41.168364 

TM2,10 33.7165 864.525641 41.278059 

TE1,11 33.7462 865.2871795 41.31442 

TM0,11 33.7758 866.0461538 41.350658 
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Appendix D 

 

D1.  Cavity and Waveguide Excitation by External Sources 

The interaction region is an important part of any EM wave device and understanding 

how energy is created and transferred is essential towards future development.  This 

section explains how eigenmodes are excited for the case of both cavities and 

waveguides.  

 

D1.1  Cavity Excitation 

It is assumed here that the cavity eigenmodes are excited by the external current on the 

cavity. The current density of the cavity is given by J E  and the electric field E , in a 

cavity can be represented by  

 
s s

s

E A E  (D1) 

where sE is the eigenmode of the cavity and sA  is the amplitude of the eigenmode and 

can be written as: 

 2

2 2 2 2

.

( ) ( )

s s s

s

s s s s

i J E dV i A E dV
A

N N

 

   
 

 

 
 

(D2) 

where 
21

4
s s

V

N E dV


  . 

Assuming that the frequency is approximately equal to the frequency of the eigenmode 
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 ( ~ s  ) then this reduced to 

 

0

2 s
s

i A
A

 

 



 

(D3) 

Therefore and equation relating the electronic adjustment of the eigen-frequency, 
s , is 

found to be 

 2s i     (D4) 

where the conductivity has both real and imaginary parts, i.e. ' ''i    . This can also 

be represented in an expression for the electric field strength as   

 ( 2 ) 2

0 0~ .s si i t i t tE E e E e e
      (D5) 

Now let us introduce the Gain factor,  of the cavity as 

 2 '   (D6) 

where '  is the real part of the complex conductivity. 

If the gain of the cavity is less than zero, 0   then electromagnetic field emission takes 

place. The frequency of the eigenmode can be represented by 

 ' ''s s si     (D7a) 

where ''si represents the power losses. As stated previously if 0   then EM field 

emission will take place, therefore if  '' 0s 
 

then EM field generation and 

amplification of signal will occur. The expression: 
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 ' ''2s      (D7b) 

is known as the detuning of the eigen-frequency of a cold cavity by an electron beam 

and the equation:  '' 2 's    (D7c) 

illustrates the situation when power losses are equal to power gain. Using this condition 

the start current can be calculated. 

The modes excited may be calculated via consideration of the propagation of Maxwell’s 

Equations through a lossy medium which is also conductive. The Faraday and Ampere 

Laws may be written as: 

 4
mE ik H J

c


    

(D8) 

 4
eH ik E J

c


     

(D9) 

Let us assume for clarity that eJ and mJ are monochromatic and that the excited 

eigenmode is also monochromatic. Let permittivity and permeability be complex 

functions such that 

1 2i          and 1 2i     (D10) 

and also let there be no fields on the surface 0S , i.e. 

                             0

0
S

E             and  
0

0
S

H  .  (D11) 

This is a perfectly conducting metal box, with no flux through the walls. Assuming that 

the eigenmodes of the cavity are well known, and s is well defined, we can write  



166 

 

                    s ssE ik H 
     

 and s ssH ik E    (D12a,b) 

where 

 ( ) Re si t

s sE t E e


   ( ) Re si t

s sH t H e


  (D13) 

and ' ''s s si     (D14) 

 

Orthogonality of the Cavity Eigenmodes  

The orthogonality of the eigenmodes sE 'sE  is the important property which indicates 

that the eigenmodes are mutually independent. If we take equation (D12a) and 

multiplying by a different mode of magnetic field strength, denoted by 'sH  as follows 

 
s ssE ik H   (D15a) 

  ' '. .s s s ssH E ik H H   (D15b) 

and adapting equation (D12b) for a different mode of electric field strength, 'sH  and 

multiplying by a different mode denoted by sE gives us 

 
' ''s ssH ik E    (D16a) 

  ' ''. .s s s ssE H ik E E    (D16b) 

Combining both (D15b) and (D16b) gives 

    ' '

' ''. . . .s s s s s s s ss sH E E H ik E E ik H H       (D17) 
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Using the vector relation .( ) .( ) .( )A B B A A B      , the expression (D17) can be 

simplified to 

 '

' ''.( )s s s s s ss sE H ik E E ik H H                                 (D18)

  

therefore it must also be true that 

 
' ' ''.( )s s s s s ss sE H ik E E ik H H                    (D19)  

If we integrate expressions (D18) and (D19), taking into account that there is no net flow 

over the surface, 
0 0

0s sS S
H E  , and using Stokes theorem to convert from a volume 

to a surface integral, the two above equations (D18) and (D19) become: 

 
 

0

'

' ''. 0s s s s s ss s
S

V V

E H dS i k H H dV k E E dV 
 

    
 

    
(D20) 

 

0
' ' ''( ). 0s s s s s ss s

S
V V

E H dS i k H H dV k E E dV 
 

    
 

    
(D21) 

These can be easily simplified to  

 
'

'

0

0

s s

s s

k X k Y

k X k Y

 

 
 

(D22) 

where X and Y are independent variables such that 

 
' 2 2

'

'

det 0
s s

s s

s s

k k
k k

k k

 
   

 
 

(D23) 
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It is clear that (D23) is only equal to zero if both modes are the same i.e. 
's s  and

's sk k . This demonstrates the orthogonality of the eigenmodes. 

The Eigenmode Amplitudes 

In order to determine the amplitudes of the eigenmodes, it is necessary to assume that 

the electric and magnetic fields may be split into their transverse and longitudinal 

components such that 

 t lE E E    and  t lH H H                       (D24a,b) 

where  

 t sSE A E   and   t sSH B H                                 (D25a,b) 

 l eE     and  l mH                        (D26a,b)  

where  
e  

and m  
represent the electric and magnetic scalar potentials. If it is assumed 

that there is no net flux flow in the transverse direction, i.e.: 

  . 0tE    and   . 0tH                  (D27) 

In order to find the amplitudes of the eigenmodes, the curl of the electric and magnetic 

field must be found. Therefore 

    t lE E E                    (D28a) 

    t lH H H      (D28b) 

Using the vector identity   0   with equations (D26a) and (D26b) these become 

  t ss sE E i k A H      (D29a) 



169 

 

  t ss sH H i k B E       (D29b) 

Substituting these into Maxwell’s equations (D8) and (D9) yields 

 
 

4
s ls s s mi k A kB H J ik H

c


      

(D30) 

and 
 

4
s ls s s ei kA k B E J ik E

c


     

(D31) 

therefore rearranging gives 

 4
l sm s

s

J ik H b H
c c

 
     

(D32) 

and 

 

4
l se s

s

J ik E a E
c c

 
    

(D33) 

where  

  s s s sa ic kA k B      and     s s s sb ic k A kB 
 

(D34)
 

The parameters sa  and sb are functions of the eigenmode amplitudes sA  and sB . 

In order to find sa and sb as functions of the eigenmodes sE and sH , it is necessary to 

multiply (D32) by sH  and (D33) by sE  and then integrate over the entire volume, taking 

into account that: 

0s l

V

E E dV   and 0s l

V

H H dV                         (D35a,b) 

equation (D32) becomes: 
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 24 . sm s s

V V

J H dV b H dV     (D36) 

therefore rearranging for 
sb
 
gives 

 1
. sms

s V

b J H dV
N

   
(D37) 

and (D33) becomes 

 24 . se s s

V V

J E dV a E dV    (D38) 

So rearranging for sa gives 

 1
. ses

s V

a J E dV
N

   
(D39) 

where  

 

2 21 1

4 4
s s s

V V

N E dV H dV 
 

   
 

(D40)

 

This is the Norm of the s eigenmode, it is a normalisation parameter. 

Looking back to (D34), it is clear that the eigenmode amplitudes sA  and sB
 
can be 

expressed in terms of sa  and sb
 
by simple rearrangement, such that 

 
2 2

s s s
s

s

a b
A i

 

 


 


 and 

2 2

s s s
s

s

a b
B i

 

 


 


                    (D41a, b) 
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D1.2  Waveguide Excitation 

In the case of amplifiers or oscillators based on absolute instabilities, the cavity is not 

required. Therefore the investigation of waveguide excitation becomes essential. As with 

the cavity it is necessary to be able to find the modes excited in a waveguide.  

The modes excited in a waveguide can be viewed as similar to the fields induced by a 

dipole, which obey the Lorentz Lemma. This can be found by returning to Maxwell’s 

equations and assuming that the RF field, denoted by 1E , 1H  is excited by 1

e
J , 1

m
J  and 

2E , 2H  is excited  by 2

e
J  and 2

m
J . Maxwell’s equations become: 

 
1,2 1,2 1,2

4 m
E ik H J

c


    

(D42) 

 
1,2 1,2 1,2

4 e
H ik E J

c


     

(D43) 

If we assume that both RF fields have the same frequency. It is then possible to show 

that the current and induced fields are reciprocal, i.e. Dot (D42) with 2H to give: 

 
 2 1 1 2 21

4
. . .

m
H E ik H H J H

c


    

(D44) 

Dot (D43) with - 1E to give 

 
 1 2 2 1 12

4
. . .

e
E H ik E E J E

c


     

(D45) 

Subtracting (D45) from (D44) and using the vector identity as before to give 

 
     1 2 2 1 1 2 1 22 1

4
. . . . .

e m
E H ik E E H H J E J H

c


        

(D46) 
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Similarly multiply (D43) by - 2E to give 

 
 2 1 1 2 21

4
. . .

e
E H ik E E J E

c


     

(D47) 

Multiply (D42) by 1H to give 

 
 1 2 2 1 12

4
. . .

m
H E ik H H J H

c


    

(D48) 

Subtract (D48) from (D47) to give 

 
     2 1 1 2 1 2 2 11 2

4
. . . . .

e m
E H ik E E H H J E J H

c


        

(D49) 

Now subtract (D49) from (D46) to give 

 
     1 2 2 1 2 1 1 21 2 2 1

4
. . . . . .

e m e m
E H E H J E J H J E J H

c


         

(D50) 

Taking the volume integral of (D50) and using Stokes theorem to convert from volume 

to surface integral 

 
   1 2 2 1 2 1 2 11 2 1 2

4
ˆ ( . . . . )

e e m m

S
V

E H E H ndS J E J E J H J H dV
c


           

(D51) 

where S is the boundary surface of volume V.  

Assuming that both surface and volume are infinite such that S  andV gives  

 
2 1 2 11 2 1 2( . . . . ) 0

e e m m

V

J E J E J H J H dV     (D52) 
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This is the Lorentz Lemma, or reciprocity principle. It states that the relationship 

between an oscillating current and the resulting electric field is unchanged if one 

interchanges the points at which the current is placed and where the field is measured. It 

can be represented more simply as a pair of dipoles 

 
1 2 2 1(1) (2)PE P E  (D53) 

where 
2 (1)E  is the electric field induced by dipole 

2P  at point 1, and 
1(2)E is the electric 

field induced by dipole 
1P  at point 2. The current induced by each electric dipole may be 

written as 

 1 11 ( )
e

J i P r r     And 2 22 ( )
e

J i P r r                          (D54a,b) 

where 1r and 2r are coordinates of the dipole locations. 

 

D1.2.1 Magnetic Dipole as a Current source 

If the corrugation depth is very small, the field scattering on such a small corrugation 

can be described as coupling between incident and scattered waves via magnetic current 

induction by the incident wave on the surface of the unperturbed waveguide with a 

pattern similar to that of the corrugation. The induced current may be anomalous to that 

induced by a magnetic dipole around a closed loop. 

Consider the integral of magnetic flux density through an element of volume V as 

 m

V

J dV i m   (D55) 

where m is a magnetic dipole. If we now multiply these by the magnetic field induced so 

as to obtain: 
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2 21 1(1) (1)

m

V

H J dV i m H   (D56) 

 
1 12 2(2) (2)

m

V

H J dV i m H   (D57) 

we can achieve the Reciprocity Law:  2 11 2(1) (2)m H m H .  

It is also possible to show the magnetic dipole is related to the electric current density 

around a closed loop: 

 e
m J S

c

 
  
 

 
(D58) 

where S ndS  is the area vector of the closed loop C,  is the magnetic moment, 

denoted by IA  , where A is the area of the loop and I is the current. 

A small contour C with electric current around it induces fields 1E 1H . The fields 2E 2H

are induced by dipole 2P , therefore 

  2 2 21 .
e

V s

e eJ E dV E dS E ndSJ J      
(D59) 

where n  is a unit vector perpendicular to the surface S enclosed by the contour  C, 

1

e eJ dV dSJ , and dS is an elementary part of the contour C. Also from (D15a): 

 
2 2E ik H   (D60) 

with  2 0
m

J  . 
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Substituting this into (D59): 

 
2 2 21 (1) (1)

e

V S

e eJ E dV ik H ndS ik J SHJ      
(D61a) 

which is equal to the field induced by and electric dipole, i.e. 

 
2 2 1

(1)
(1) (2)eik J SH P E

c


   

(D61b) 

This shows that the magnetic dipole m can be related to the electric field strength. 

Now introduction of the following boundary conditions 

 
4 e

n H J
c


    and   

4 m
n E J

c


                        (D62a,b) 

and taking into account the Maxwell equations presented in (D42) and (D43), the 

eigenmodes for the waveguide can be found. 

 

The fields inside the waveguide can be expressed as 

  s ss s

s

E C E C E   and   s ss s

s

H C H C H                 (D63) 

where sE and sE are the eigenmodes, sC and sC are the eigenmodes amplitudes. If the 

modes sE and sE are orthogonal, then the following holds 

    ' ' 0s s s s
S

E H E H ndS       (D64a) 

This may be expanded as  
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     ' 0s s s s

S

n E H n E H dS     (D64b) 

Where the boundary condition that there be no electric field tangential to the surface 

holds, i.e. 

  
0

0
S

nE   (D64c). 

Therefore (D64b) becomes  

          
1 2

' 's s s s s s s s

S S

n E H n E H dS n E H n E H dS         (D65) 

where 1S and 
2S are the surfaces transverse to the direction of propagation. 

A schematic of cylindrical waveguide is shown in the Figure D1 below to illustrate the 

important parameters. 

  

   0S      l 

 1S             2S  0S  

   0S  

Figure D1: Cylindrical waveguide geometry, where the surface 0S
 

is parallel to the direction of  

propagation, denoted by l. 

 

Returning to Maxwell’s equations and assuming that there are no currents, i.e. eJ and 

mJ both equal zero. Taking into account that for flow through surface 2S , n l , and for 

  l  

1S
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flow through 
1S , n l  , and also the boundary condition in (D64c), equation (D64a) 

can be written as 

     '

1

( )

' ' , '
s si k k z

s s s s s s
S

E H E H ldS J e


       (D66) 

where 
, 's sJ is the surface current density of the relevant mode and it is assumed that  

 ~ sik z

sE e  and  '

' ~ sik z

sE e                   (D67) 

and the wave norm is written as:  

 
     ,

4 4 2
s s s s s ss s s

S
S

c c c
N J E H E H ldS E H ldS

  
            

(D68) 

where the  depend on the wave structure.  

 

D1.2.2 Current sheets as sources of plane waves 

The currents induced in a waveguide may be considered as a sheet of surface currents 

and therefore as a source for plane waves. If an electric surface current density exists on 

the z = 0 plane in free space, the resulting fields can be found by assuming that plane 

waves exist on either side of the current sheet and taking into account boundary 

conditions. 

The source does not vary with x or y, the fields will not vary with x or y, but will 

propagate away from the source in the z direction. The boundary conditions to be 

satisfied at the source are 

     0RHS LHS RHS LHSn E E z E E       (D69a) 
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     0RHS LHS RHS LHSn H H z H H J       (D69b) 

where, LHSE  LHSH  are the fields for 
1z z  and RHSE , RHSH  are associated with

2z z .  

Assume that all the current is located in one volume at the centre, and that there is only 

one current source. The electric and magnetic fields in the waveguide are denoted by 

   ss

s

E C E     and    ss

s

H C H     for 
2z z                (D70) 

 ss

s

E C E   and  ss

s

H C H   for 1z z                (D71) 

where s refers to modes propagating in the forward direction and -s refers to modes 

propagating in the backward direction. Using the equations above and the Lorentz 

lemma, expressions for forward and backward propagating waves can be found as 

follows: 

For the case of backward Waves ( 1z z ), the following is true: 

1 ss

s

E C E  2 '' ss

s

E C E  (D72) 

1 ss

s

H C H   2 '' ss

s

H C H   (D73) 

where: -s indicated a backward mode, and –s’ indicated a different backward mode. 

Substitution into (D51) gives expression for backward modes 

 
   ' ' ' '

4
( . . )

e m

s s s s

S V

E H E H ndS J E J H dV
c


          

(D74) 

and for the forward modes ( 2z z ):  
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1 ss

s

E C E  2 '' ss

s

E C E  (D75) 

1 ss

s

H C H  2 '' ss

s

H C H  (D76) 

and the expression for the forward mode is therefore 

 
    ' ' ' '

4
( . . )

e m

s s s s

S V

E H E H ndS J E J H dV
c


       

(D77) 

These can be solved to give 

    
0

' ' ' , ' 0s s s s s

sS

E H E H ldS C J          (D78) 

 
   

2

' ' ' , ' ' '

4
s s s s s s s

sS

E H E H ldS C J C N
c


        

(D79) 

 
   

1

' ' , ' ' '

4
s s s s s s s

sS

E H E H ldS C J C N
c


         

(D80) 

    
0

' ' , ' 0s s s s s

sS

E H E H ldS C J      (D81) 

where J is as defined in (D66).  

Equations (D78) and (D81) are in agreement with the boundary condition (D64c). The 

amplitudes of the forward and backward waves are therefore found to be: 

 
 

1 e m

s ss

s V

C J E J H dV
N

    
(D82) 



180 

 

 
 

1 e m

s ss

s V

C J E J H dV
N

    
(D83) 

Assuming now that there are electric and magnetic currents induced by the surface 

charges of the waveguide, i.e.  

2

e
eJ

t





 and 2

m
mJ

t





                  (D84) 

where   represents the surface charge, and that they are periodic such that ,e m i te  

and 
2

eJ and 
2

mJ become ei  and mi  respectively. 

In this case the surface charges in the volume will tend to zero, i.e.  
0

:z z


 


   

The surface charges will create additional fields denoted by 

 // 2

4
.

e
E J l

i




   and // 2

4
.

m
H J l

i




                              (D85a,b) 

Therefore the total fields will be a product of the above and (D63), hence equal to 

 
  2

4
.

e

s ss s

s

E C E C E J l
i




    

(D86) 

 
  2

4
.

m

s ss s

s

H C H C H J l
i




    

(D87) 

 

 



181 

 

D2.  Dynamics of Charged Particles  

This section is devoted to the theory describing the motion of relativistic charged 

particles in external electromagnetic fields. We consider initially the motion of a single 

charged particle in both electric and magnetic fields before considering how this single 

particle interacts with the electromagnetic wave and then using this to see how an 

ensemble of electrons interact with EM fields, oscillating both in free space and a 

dielectric media.  

 

D2.1  Charged Particle Motion in a Static Magnetic Field  

The motion of a single electron in a uniform and static magnetic induction (no electric 

field) is described here. The force exerted of the electron is given by the Lorentz force 

equation 

 
 

d P e
v B

dt c
   

(D88) 

where   is the particle velocity, B  the magnetic induction. It is important to note that 

the energy in a system is conserved, i.e. 

 

2

2

1
.

1

const
v

c

  



 
(D89) 

and the gyration frequency can be written as 

 

cm

eH

o

o
c


   

(D90) 
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where v  is the particle’s velocity and 0H  the applied magnetic field strength, 
om is the 

rest mass, e is the electron charge, and   is the relativistic (Lorentz) factor, and c is the 

speed of light. It is worth noting that an alternate equation for the relativistic factor may 

be given as 

 
2

0

1 1 2 ( )
eU

W MeV
m c

      
(D91) 

where e is the electron charge, U the accelerating beam potential, 
0m  the electron rest 

mass, c the speed of light in vacuum. 

 

D2.2  Charged Particle Motion in Static Electric and Magnetic Fields 

If we now consider how a charged particle will move under the influence of static 

electric and magnetic fields. Generally the equations of motion for a relativistic charged 

particle in external static fields are as follows: 

 
 

d P e
E v B

dt c
      

(D92) 

 
.

d
ev E

dt


  

(D93) 

where   is the energy, E  is the electric field, v  is the velocity, P  is the momentum and 

B  is the magnetic induction. It is important to note that in a vacuum 0B H  (in SI 

units), and 0B H (CGS units).  Assume that both fields are perpendicular to each 

other, i.e. B E . Equation (D93) shows that the energy of the particle is not constant in 

time. Let us use a Lorentz transformation to simplify the equations of motion as follows: 

Introducing the two different frames of reference: 
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        Frame 1: Reference frame K, Velocity u     (Original frame) 

and 

  Frame 2: Reference frame 'K , Velocity 'u  

 

where the Lorentz force equation for a particle in the 'K  frame is written as 

 
 

'
' ' '

'

d P e
E v B

dt c
      

(D94) 

where 
   

2

' .
1

E E B E


   


   


 
(D95) 

and 
   

2

' .
1

B B E B


   


   


 
(D96) 

with 
v

c
  . If we now assume that the electron’s velocity is perpendicular to both 

fields and that E B , then the velocity of the frame 'K  can be chosen to be  

 
2

'
E B

u c
B


  

(D97) 

Substituting (D97) into (D95) and (D96) we find the fields in the second frame of 

reference 'K are 

'

/ / 0E   ' 0
u

E E B
c



 
    

 
 

(D98) 
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'

// 0B   1
2 2 2

'

2

1B E
B B B

B 


 
  
 

 

(D99) 

The parallel and perpendicular refer to the direction of 'u .  In the frame 'K the only field 

acting is a static magnetic field 'B which acts in the direction of B but is weaker by a 

factor of
1


. The motion in the K’ frame is therefore as considered previously, for a static 

magnetic field only. The electron will spiral around the lines of force. When viewed 

from the original frame of reference, the gyration is accompanied by a ‘drift’ velocity 'u . 

Let us note that due to particle motion with velocity 
cE

u
B

 , it is possible to separate 

charged particles according to their charge and energy (mass). For example if a beam of 

charged particles has a velocity spread, and is incident upon a region of crossed, uniform 

E & B fields, then only the particles with velocities equal to 
cE

B
 will travel through 

without deflection. This allows only a narrow band of velocities around 
cE

B
 to be 

transmitted. If this is then combined with a momentum selector, such as a deflecting 

magnet, then a very pure and mono-energetic beam of particles of definite mass and 

charge may be extracted from a beam of mixed energy and momenta. This is 

advantageous and used in mass/energy spectrometers as well as in accelerators. 

In the case where the electric field amplitude exceeds that of the magnetic, i.e. E B ,  

the field components can be found via transforming from the original static frame 'K  to 

a dynamic one moving with a velocity which can be expressed as: 

    
2

'
E B

u c
E


      (D100) 

The field components therefore become 
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'

/ / 0E   1
2 2 2

'

2

1

'

E B
E E E

E 


 
  
 

 

(D101) 

'

// 0B   ' '
' 0

u
B B E

c


 
    

 
 

(D102) 

      

In the system 'K  the particle is acted on by a pure electrostatic field, this causes 

hyperbolic motion with ever increasing velocity and energy. 

 

D2.3  Single Charged Particle Interacting with Electromagnetic Field 

The interaction between a charged particle and an electromagnetic wave can be 

described by the pendulum equation which is used to represent simple harmonic periodic 

motion. The general expression for pendulum motion is denoted by the nonlinear second 

order Duffing Equation as: 

 2 ( )X X F t   (D103) 

where F(t) is the time dependant external force, X is the pendulum velocity and X is the 

current coordinate. This describes the motion of a damped oscillator with a more 

complicated potential than simple harmonic motion, an example of which could be a 

spring whose stiffness does not exactly obey Hooke’s Law.  

Generally, the Duffing equation does not admit an exact symbolic solution. However, 

many approximate methods work well, such as: 

 Expansion in a Fourier series will provide an equation of motion to arbitrary 

precision.  

http://en.wikipedia.org/wiki/Fourier_series
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 The x
3
 term also called the Duffing term can be approximated as small and the 

system treated as a perturbed simple harmonic oscillator.  

 The Frobenius method yields a complicated but workable solution.  

 Any of the various numeric methods such as Euler's method and Runge-Kutta 

can be used.  

In the special case of the undamped (δ = 0) and unforced (γ = 0) Duffing equation, an 

exact solution can be obtained using Jacobi's elliptic functions. One solution of the 

above equation is: 

 
free force

free force

X X X

X X X

 

 
 

(D104) 

where                
0freeX X and

1( ) ( )forceX X t X t  .    

 (D105) 

For an ensemble of pendulums we have to assume that at t = 0 the phases are uniformly 

distributed in the interval from[0 : 2 ) , i.e. 0 [0 : 2 )  .  

In the “free” case, where ( ) 0F t  , the average position of the electrons is equal to zero,

0X

 .  However introducing ( ) 0F t  results in 0X


  under certain conditions. 

Let us consider the non-relativistic case in which the energy conservation law can be 

presented as, (for ( ) 0F t  )  

 2

.
2

mX
U const     

(D106) 

where U is the potential energy, 
2

2

mX
is the kinetic energy and   the total energy of the 

system. The equation (D103) can be obtained via integration of (D106), i.e. 

http://en.wikipedia.org/wiki/Perturbation_theory
http://en.wikipedia.org/wiki/Frobenius_method
http://en.wikipedia.org/wiki/Numerical_analysis
http://en.wikipedia.org/wiki/Euler%27s_method
http://en.wikipedia.org/wiki/Runge-Kutta
http://en.wikipedia.org/wiki/Jacobi%27s_elliptic_functions
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0

0

0
dU

mX
dX

   
(D107) 

where if ( ) 0F t  , then (D107) can be rewritten as 

 
0

0

( )
dU

mX F t
dX

   
(D108) 

If, for single harmonic oscillations 0 0 0( , ) ( , 2 )X X X       , (where   is energy 

and   phase), is equal to (0) ( ) in

n

n

X e 




 , where 
0t    , with 

0  
the initial phase of 

a pendulum. This indicates linear oscillations, where  is the oscillation frequency of 

the particles in the potential well defined by U. 

 

If the well is not arbitrary and the frequency is a function of energy, i.e. ( )   , then 

assuming that the non-linear part is small i.e. 0 1X X X   and 1

0

1
X

X
 , where 0X

indicates linear oscillations and 1X the non-linear oscillations we can therefore substitute 

it into the equation of motion (D108) which gives: 

 2

0 1 0 12
( )mX m X X mX mX

t


   


 

(D109) 

and also performing a Taylor expansion for ( )U X around 0X , i.e. 

 
2

0 1 0 1 0 1 02

0 0 0 0 0

( ) ( ) .... ( ) ( ) .......
dU d d dU d d

U X X U X X U X X U X
dX dX dX dX dX dX

 
        

 

 

we get 
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 2

0 1 0 1 02

0 0

( ) ( ) ( )
d d

mX mX U X X U X F t
dX dX

     
(D110) 

Taking into account (D107) one gets 

 2

1 1 02

0

( ) ( ) ( )
d

mX X U X F t eE t
dX

     
(D111) 

where  

 2

0 02

0

( ) ( )
d

U X f X
dX

  
(D112) 

This demonstrates that if the well is linear, i.e. 
2

2

0

0
d U

dX
 or parabolic, i.e. 

2

2

0

.
d U

const
dX

 , 

there is no energy on average between the ensemble of oscillators with 0 [0;2 ]  and 

the wave. If ( ) 0F t  the problem has solutions which can be presented as two 

independent variables known as the electron’s energy and phase: 

 (1) (1)

0 0 1 1 2 2( , )X X C X C X     (D113). 

It is possible to show that both (1)

1X  and (1)

2X  are linearly independent solutions i.e. they 

cannot be expressed in terms of each other. Taking into account that  

 (1)

(1)

(0)0 0
1

0 0

0
2

1
.

X X t
X X

t

X
X

  



  
  
  





 

(D114) 

we find that  
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 (1) (1)

1 1

(1) (1)

2 2

det 0
X X

X X

 
 

 
 

(D115) 

This implies that (1) (1) (1) (1)

1 2 2 1 0X X X X  and      

  
2

0 0 0 0 0 0

0 0 0 0 0 0

1 1 1

2

X X X X mX X U

m X m m



         

      
       

       
 

                                                                                                 (D116)  

The general solution is therefore a linear superposition of the solutions (1)

1X and (1)

2X
 

 (1) (1)

0 1 1 2 2

(1) (1)

0 1 1 2 2

X C X C X

X C X C X

 

 
 

(D117) 

Taking into account that ( ) 0F t   the method of validation of the constants can be used 

to find the general solution X . We can now assume that both constants are functions of 

time i.e. 1 1( )C C t and 2 2 ( )C C t . Taking these conditions into account, the solution of 

equation  

 2

2
( )

d U
mX X F t

dX
   

(D118) 

can be represented as  

 (1) (1)

1 1 2 2( ) ( )X C t X C t X   (D119) 

 

in this case: (1) (1) (1) (1)

1 1 2 2 1 1 2 2X C X C X C X C X     (D120) 
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and 

 

(1) (1) (1) (1) (1) (1)

1 1 2 2 1 1 2 2 1 1 2 2X C X C X C X C X C X C X       (D121) 

and we require that 

 

(1) (1)

1 1 2 2 0C X C X   (D122) 

and 

 

(1) (1)

1 1 2 2

( )F t
C X C X

m
   

(D123) 

Multiply (D123) by (1)

1X  to obtain (D124), and then (D121) by (1)

1X to obtain (D125), 

where (D124) and (D125) are as follows 

 (1) (1) (1) (1)

1 1 1 2 2 1 0C X X C X X   (D124) 

 (1) (1) (1) (1) (1)

1 1 1 2 2 1 1

( )F t
C X X C X X X

m
   

(D125) 

Subtracting (D125) from (D124) gives the relation 

 
 (1) (1) (1) (1) (1)

2 1 2 2 1 1

( )F t
C X X X X X

m
    

(D126) 

Carry out the same process again, only multiply (D120) by (1)

2X and (D121) by (1)

2X and 

subtract the results to give 

 
 (1) (1) (1) (1) (1)

1 1 2 1 2 2

( )F t
C X X X X X

m
    

(D127) 

From (D126) and (D127) the following relations are easily derived 
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 (1)

2 1

(1)

1 2

( )
.

( )
.

F t
C M X

m

F t
C M X

m



 

 

 

where 

 
0

1
M

m
  

(D128) 

Direct integration of the set of equations in (D128) allows us to find expressions for the 

constants 
1C  and 2C as 

 

0

(1)

1 0 2 ( ') ( ') '

t

t

C X t F t dt    
(D129a) 

And 

0

(1)

2 0 1 ( ') ( ') '

t

t

C X t F t dt   
(D129b) 

Substituting (D129a) and (D129b) into (D119) gives: 

 
0 0

0 0

(1) (1) ' (1) (1) '

0 2 1 1 2

(1) (1) (1) (1)

0 2 1 1 2 0

( ) ( ) ' ( ) ( ) '

( ( ) ( ') ( ) ( ')) ( ') ' ( , ') '

t t

t t

t t

t t

X X t X F t dt X t X F t dt

X t X t X t X t F t dt g t t dt



 

 
   

 
 

 
   

 
 

 

 

            (D130)

  

This is the solution for single electron perturbed motion under the influence of an 

external force F(t). 
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D2.4  Multiple Electrons Interacting with an Electromagnetic Field of a 
Linear Potential Well 

 

The use of the term liner potential well, refers to the case in which the electrons oscillate 

in free space, interacting with the wave having a vector 
zk

c


 . Considering the 

interaction of the electron beam with the quasi-synchronous wave, there are three stages: 

1) Modulation of the beam by the wave: at this stage electrons situated in the 

accelerating phase of the wave increase and those in the decelerating phase 

decrease their velocity. 

2) Bunching of electrons occurs, i.e. the uniformity of the beam is broken and it 

becomes density modulated, hence of RF current appears. 

3) Deceleration (or acceleration) of the bunches, i.e. exchange of energy between 

the wave and the beam. 

 

Now look at what happens with electrons at input of the interaction space that are 

uniformly distributed within one period of the synchronous wave, i.e. within one 

potential well.  

 If the wave is exactly synchronous to the electron beam, the electrons driven by 

the RF field gather around the zero of the field, the resulting bunch cannot 

exchange energy with the EM wave. 

 If the wave is slightly faster than the beam, the bunch due to velocity mismatch, 

becomes shifted to the accelerating phase of the RF field therefore takes energy 

from it. However if the bunch were in accelerating phase where the bunch would 

extract energy from the RF wave; therefore its density would decrease, giving the 

electrons a stronger velocity spread. 
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 If the wave is slightly slower than the beam the bunch becomes shifted to the 

decelerating phase of the RF electric field and gives a part of its energy to the 

electromagnetic wave, i.e. if the bunch is in decelerating phase it gives energy to 

the RF wave, it therefore becomes more dense and decelerates stronger. 

The average position of an electron ensemble of different phases is given by: 

 2

0

0

1

2
X Xd







   
(D131) 

where : 
0

0 0

2 2

0 0 0 0

0 0

( , ', ) ( ') ' ( ') ' ( , ', ) '
2 2

t t

t t

X g t t F t dt d F t dt g t t dt d

 
  

   
 

      

and 0 [0,2   is the initial phase of the electron. 

This is the case for a single electron, and it is multiplied by an external force, then 

integrated over all phase and time to obtain an average position of the ensemble. 

    

Recalling from (D114) that  

   
(1)

0
1

0

X
X







  
(1)

0
2

X
X







   

 where the phase of the ensemble is given by   0 0 0( , ) ( )t t      .            (D133) 

Also due to the periodic motion, the position at time t may be given as  

 0( , )
( ) ( )

in t

n

n

X t X e
  

  (D134) 

where n is any integer number. 

  (D132) 
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If we now introduce the factors: 

( )

( )
'

n

n

f X

dX
f

d











  

 
'

in

in

g e

d
g in e

d













 
              (D135) 

we can write 
(1)

1,2 ( )X t as
 

 (1)

2 ( )X t 

(0)
in inn

n

n

dXdX d
e X in e

d d d

 

  

  
  

 
  

(D136a) 

 
(1)

1 ( )X t   
(0)

0

in

n

n

dX
X ine

d





   
(D136b) 

where nX is a real function, let us note that *

n n nX X X  , where *

nX  is the conjugate. 

Also to get 
0

0( , ', ) 0g t t


  , 'n n  due to the fact that 
d

d




does not depend on 0 . 

Therefore using the identity  

 (1) (1) (1) (1)

0 1 2 1 2( , ', ) ( ') ( ) ( ) ( ')g t t X t X t X t X t    (D137) 

the function representing the ensemble becomes 

 
 0 2 ( ')

0( , ', ) ( ) in

n

n

d
g t t in X e

d

  







   
(D138) 

Assuming now that the external force F is given by 0

i tF eE e  , equation (D132) 

becomes          
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0 0

0

0 0 0

0

2

0 0

0

( )( ') ( )( )

0

( ') ' ( , ' ) '
2

' 1
( )

t

t

t i t
i n t t i n t ti t

t

X F t dt g t t dt d

e
e e dt e

i n


 


   


 



 

     



     

 



             (D139) 

therefore the average position of the ensemble may be given as 

0

0

( )

0

1

( )

i n T

i t
e

X e
i n

 
 

 

   
 

      (D140) 

This shows that electrons appear and disappear from the interaction space, where T is the 

time interval of an electron being inside the interaction space. Introducing the particle 

life time as  , and the electron life expectancy function as 

  f e           (D141a). 

It is a probability function therefore can be written as 

 
0

1fd


          (D141b) 

with  
1



 .         (D141c) 

Substitution of (D141a) into (D141b) gives 

  0( ) 0

0 00

1 1
( ) ( )

i n T ni
e e d

n i n i

   
 

     



  
   

     (D142) 

 

Hence the average position of the ensemble, taking into account the particle’s life time is 

given by 
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0 2

0

0

1
( )

( )

i t

n

n

d
X eEe in X

d i n

  
   





 
    

  
    (D143) 

This is the solution which demonstrated the electron bunch dynamics under the 

influence of the monochromatic RF field. 

 

D2.5  Multiple Electrons Interacting with an Electromagnetic Field of a  
Non-Linear Potential Well 

In the previous section it was assumed that the electric and magnetic fields were in free 

space, with no material bodies present. In practice this is not often true. Let us now 

assume that the RF wave propagates in a dielectric. For a dielectric material, an applied 

electric field E causes the polarisation of the atoms or molecules of the material to 

create an electric dipole moment, which augments the total displacement flux D . The 

additional polarisation vector is eP . 

If we introduce the density of the dipole moment as 

 
0,

P eN X
 

         (D144) 

where e is the electron charge and N is the particle density. Also introduce the 

displacement flux D  as 

4 eD E P           (D145) 

where   is the dielectric constant (equal to one in a vacuum) and take into account that 

 e eP E ,        (D146) 

where e is the electrical susceptibility, and may be complex. Equation D145 becomes 

  4 1e eD E P E E         ,     (D147) 
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where (1 )e    . This is the constitutive relation, it relates the vector fields D  and E  

where the   can be written as 

  ' ''i                   (D148) 

and is the complex permittivity/dielectric constant of the material. The imaginary part of 

  accounts for losses in the medium, such as heat. 

Equation (D147) may be rearranged to obtain an expression for the dielectric constant 

where it is assumed that 1  . 

 
4

1 P
E


           (D149) 

Now consider the case of a plasma (collection of classical electrons) by substituting the 

expression for electron life expectancy into (D144) and allowing for no external force 

such that the particle moves with motion proportional to 0i t
e
  . Assume the well is 

parabolic, i.e. consider only 1X   and 0nX  for all 1n   . This leads to an expression 

for the dielectric constant, (with substitution of equation (D143)), as 

  

2 2

1 12

0 0

1 4
( ) ( )

X Xd
e N

d i i
  

      

  
    

       

  (D150) 

where N is the particle density.  

Taking into account that the energy  is given by  

22

0 12m X                      (D151) 

and if we also set the plasma to be collisionless such that 0  hence lifetime , 

then (D150) becomes  
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2

2 2

0

4
1

e N d

m d

 


  

 
   

 
      (D152) 

If there are no free oscillations (
0 0  ), then this becomes 

 

2

2
1

p



          (D153) 

where the plasma frequency is expressed as: 
2

2 4
p

e N

m


  .              (D154) 

In the general case for a plasma with collisions, the dielectric constant would be as 

stated in equation (D150) above.  

Let us now assume that ( 0  ), then the dielectric constant   becomes 

 0

2 2 2 2

0 0 0

( )
1 1

( ) ( )
i

i i

  


        

  
    

     
  (D155) 

where  

2

02

p


  . 

 

This illustrated that the dielectric constant has both real and imaginary parts and can be 

represented graphically as per Figure D2 which demonstrates that there is only 

absorption of EM field with zero emmitance as the imaginary component is always 

negative.  
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         Re( )      Im( ) 

 

                                                
0   

0   

  

           

Figure D2: Graphical representation of the dielectric constant. 

 

Now if the well is NOT parabolic there will exist an infinite number of harmonics, for 

which it can be assumed that 0    therefore allowing the dielectric constant to 

become 

 n

n

                   (D156a) 

where 

 

2

2

0 1 2

0

1 1
n

n p

n Xd
m

d n i
  

   
 

 
     

   

            (D156b) 

 

Let us consider n in this case, where 

 1
1

0

A

n i


  
 

 
  and  2

2 2

0( )

A

n i


  
 

 
             (D157) 

and writing the constants 1A  and 2A  

 

2

2

1 0

n

p

d X
A m n

d
 


    and  

22 2 0
2 0p n

d
A m n X

d


 


              (D158) 
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If the initial angular frequency is not a function of energy, i.e. 
0 0( )   then we have 

a linear oscillator therefore
2 0A  and 

2 = 0. It is possible to change the sign of 
1 by 

choosing 

2

0
nd X

d
 thus giving a negative conductivity and observed radiation 

emission. Assume for example that the rate of frequency change with energy is less than 

zero, i.e. 0 0
d

d




 , this is the case for cyclotron oscillations (

0 is the cyclotron 

frequency). This indicates that 2 0A  therefore  

 
2 2

2 2 2 22 2 2 2 2

( )
2

(( ) )
A iA

   


   

  
  

     

           (D159) 

where 0n     . 
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Wave propagation and tunneling through periodic structures
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The phenomenon of tunneling manifests itself in nearly every field of physics. The ability to
distinguish a wave tunneling through a barrier from one propagating is important for a number of
applications. Here we explore the properties of the wave traveling through the band gap created by
a lattice, either as a consequence of tunneling through the barrier or due to the presence of a pass
band inside the gap. To observe the pass band for studying tunneling and propagating waves
simultaneously, a localized lattice defect was introduced. The differences between the two
phenomena are highlighted via waves’ dispersion characteristics. © 2008 American Institute of
Physics. �DOI: 10.1063/1.3033826�

The study of properties of a wave tunneling through a
band gap is one of the fundamental and divisive problems of
physics.1–3 The wave tunneling manifests itself in every field
of physics including quantum computing, signal processing,
optics, electronic, photonics, and condensed matter physics.
In this paper we compare the properties of the electromag-
netic waves tunneling and propagating through the band gap
formed by a one-dimensional �1D� periodic lattice.4 In pre-
vious works3,5 attempts to measure the time required for a
single photon or wave packets to tunnel across the 1D pho-
tonic band gap have been made and compared with the time
required for a photon/wave packet to propagate through the
same distance in free space. These studies triggered a num-
ber of questions and discussions.1,2,6 Here we study the dis-
persions of the propagated and the tunneled waves to distin-
guish and compare their properties. We also demonstrate that
tunneling and propagating photons can be distinguished via
analysis of their dispersion properties.

To conduct the studies a pass band �associated with lo-
calized lattice defect eigenmode� inside the band gap was
created7,8 and the properties of the waves inside and outside
the pass band were compared. By creating a periodic lattice
with a specific defect it is possible to modify the properties
of the lattice band gap and to control the pass band
location.8,9 As a result, 1D periodic lattices, with and without
localized defects, are perfectly suited to study tunneling and
propagating phenomena. In this letter, we demonstrate that if
the 1D lattice has a finite length L, some of the photons
having energy and momentum inside the band gap will pass
through the barrier gaining a phase shift at the output ��
��out−�in proportional to L, where �in,out are the photons’
phases at the input and output of the structure. We show that
an electromagnetic wave at the exact Bragg resonance has a
phase change at the output of the structure equal to 0, i.e.,
��=0, which makes the waves at the input and output of the
structure “indistinguishable,” i.e., changing the phase of the
photon at one side of barrier will result in the same change in
the photon phase at another end of the barrier. We also show
that a localized defect inside a periodic structure significantly
alters the lattice dispersive properties. It is demonstrated that
the gradient of the wave dispersion inside the pass band is

the same as for a propagating wave in a conventional wave-
guide and significantly differs from one outside the pass
band. The gradient difference observed was constant and did
not depend on either the defect or the lattice parameters. This
allows us to distinguish a “tunneled” wave from a wave that
propagates through the barrier due to a lattice defect. We
have also observed that a photon located at the pass band
center gains zero phase change while passing through the
barrier. The results observed are important for determining
the lattice suitability for a number of applications including
narrow band filters, mirrors, and specialized wave guiding.
Also in spite of the fact that the system studied is a 1D
periodic structure based on a cylindrical waveguide, the re-
sults observed are applicable for any particle/wave traveling
or tunneling through a band gap.

The band gap formation due to the interaction between
an electromagnetic wave and a 1D periodic structure takes

place in the vicinity of the Bragg resonance defined as ��

= k̄� −k�i+k�s, where k�i,s are the wave vectors of the incident and
scattered waves and �k�i,s�=2�f /v, v is the speed of light in

the unperturbed medium and f is the wave frequency, k̄� is the

lattice eigenvector �k̄��=2� /d, d is the lattice period, and �� is

the detuning from the resonance condition k̄� =k�i−k�s. In this
letter, a low contrast 1D periodic lattice based on dielectric
inserts, having a periodic refractive index �the variation in
the refractive index �n is small in comparison with the re-
fractive index of the unperturbed dielectric n0 ��n /n0�1��,
inside a smooth cylindrical metal waveguide was studied
�Fig. 1�.8 The annular inserts had inner and outer radii of 5.0
and 11.0 mm, respectively, with an unperturbed refractive
index of �1.87. The periodicity of the refractive index of the
dielectric structure was achieved via a corrugation of the
inner surface of the inserts �the period of corrugation is 10.0

a�Author to whom correspondence should be addressed. Electronic mail:
ivan.konoplev@strath.ac.uk. Tel.: �44-141-5484272. FAX: �44-141-
5522891.
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FIG. 1. �Color online� Schematic of the 1D periodic structures �side view�
with corrugated dielectric insert �the air, dielectric, and waveguide walls are
shown by the white, gray, and black colors� with localized “zero” length
defects of the period. Defect 1 has a radius equal to the maximum radius of
the corrugation; defect 2 has an intermediate radius; and defect 3 has a
radius equal to the minimum corrugation radius.
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mm and the corrugation depth is 4.0 mm�. In the case of the
periodic structure, with a lattice defect, the defect was made
by inserting a dielectric ring between two regular periodic
structures of equal length �Fig. 1�. Figure 1 illustrates three
periodic structures with localized defects having different re-
fractive indices and used in the experiments. The experi-
ments were carried out using a vector network analyzer ca-
pable of both wave amplitude and phase measurements. At
the start the experimental apparatus was calibrated to reduce
the background noise signal and to measure the relative
wave’s phase at the output of the lattice, i.e., to measure the
phase difference between input and output waves. To con-
duct the experiments the fundamental TE11 mode �the pho-
tons having the smallest transverse momentum allowed in
such a structure� of the cylindrical waveguide was used. The
frequency-chirped electromagnetic wave was launched and
the amplitude �transmission coefficient� and the phase of the
signal at the output of the structure were measured in the
frequency range from 11.0 to 13.5 GHz. In this frequency
range the formation of the band gap �barrier� associated with
TE11↔TE11 �11.5–12.8 GHz� wave scattering takes place.8

In this case the expression for the detuning �z ��z is the

projection of �� on the longitudinal axis z� can be simplified

�z= k̄−2kz, where kz=ksz,iz=��2�f /v�2−ks�,i�
2 and ks�,i� are

the transverse wave numbers of the scattered and incident
waves, respectively. In the first set of experiments a conven-
tional 1D Bragg structure was investigated. In Figs. 2�a� and
2�b� the results observed from the measurement of the

wave’s transmission and phase versus frequency are shown.
The phase data observed �Fig. 2�b�� were analyzed and the
dispersion characteristic of the periodic structure was ob-
tained �Fig. 2�c��. The dispersion diagrams have been evalu-
ated from phase data due to the direct link between the lon-
gitudinal wave number kz and the phase of the transmitted
signal ��=kzL, where L is the length of the structure10�. To
obtain the �f ;�z� diagram �dispersion inside the band gap
region�, the Bragg resonance condition was taken into ac-
count. The band gap observed in Fig. 2�c� is indicated as �f
on the right hand side diagram and agreed well with the
profile of the transmission coefficient in Fig. 2�a�. The left
hand figure shows the wave dispersion inside the frequency
interval associated with the band gap �11.5–12.8 GHz�. The
straight line on the left graph �best fit line to the measured
dispersion� is obtained using the following expression: �z

	�k̄−2kz� /g, where g is a constant approximately equal to 4.
Let us note that the dispersion relation for the propagating
wave should be obtained from the definition of the detuning,

i.e., �z	�k̄−2kz�, and it is clear that the gradient of the dis-
persion inside the band gap frequency range is larger as com-
pared with the dispersion outside the band gap �see also the
phase variation in Fig. 2�b��. The gradient observed in the
experiments was the same for different lattice parameters,
i.e., parameter g�4 observed here empirically was constant
for all experiments. It is possible to assume that this param-
eter depends on material properties, for instance, a refractive
index; however more experiments will be required to iden-
tify this dependence. One also notes that the only wave that
tunneled through the band gap at the exact Bragg frequency
gained no phase change. Therefore the wave phase velocity
observed inside the band gap is large as compared with the
phase velocity of the propagating wave but still has a finite
value except for a single point associated with the exact

FIG. 2. �Color online� Experimental study of the regular 1D periodic struc-
ture. �a� Dependence of the transmission profile vs frequency. �b� Variation
in the wave’s phase at the output of the structure vs wave frequency. �c� The
dispersion diagrams of the periodic structure in wave number ranges
�−20;20� �left diagram� and �280, 330� �right diagram� evaluated from ex-
perimental data �bold line� and calculated �thin line�.
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FIG. 3. �Color online� Results of the experimental studies of transmission
through the 1D Bragg dielectric structures with zero length defects. �a�
Dependence of the transmission through the structures with the defects. �b�
Measured wave’s phase variation with the frequency at the output of the
structures.
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Bragg frequency. This indicates a change in the wave’s prop-
erties during the tunneling through such a barrier unless it
has a specific Bragg frequency defined by the lattice.

To compare the properties of the propagating and tunnel-
ing photons, a zero length defect inside the 1D periodic
structure has been introduced and its influence on the band
gap parameters has been studied in the 11.0–13.5 GHz fre-
quency range. In Fig. 3 the transmission coefficients versus
frequency �Fig. 3�a�� as well as the results of the phase mea-
surements �Fig. 3�b�� are shown. The transmission profiles
and the frequency dependence of the phase illustrate the
presence of pass bands associated with the defect, as well as
strong dependence of the pass band location on the value of
the defect’s refractive index. The variation in the defect re-
fractive index results in a frequency shift in the pass band
position �Fig. 3�a�� and alteration of the waves’ dispersions
�Fig. 4�a��. Although the lines of the dispersions associated
with the pass bands are frequency shifted, it is clear that the
dispersions are parallel to each other �Fig. 4�a��. Analyzing
the data the difference between the waves propagating
through the pass band and the waves tunneling through the
barrier �Fig. 4�a� compared with Fig. 2�c�� can be observed.
Indeed, the gradients of the dispersion characteristics �Fig.
4�a�� outside the pass bands coincide well with the gradient
of the dispersion of the lattice without the defect �Fig. 2�c��,
while the gradients of the dispersions inside the pass band
�parallel and frequency shifted lines� are the same as the
gradient of the dispersion of the wave propagating in a
smooth waveguide. Let us note that to obtain the straight
lines �Fig. 4�a��, which fit with the dispersion inside the pass

band, the expression �z= �k̄−2kz� was used. In contrast �z

= �k̄−2kz� /g, where g is a constant approximately equal to 4,
was used to observe the line that either fits with the disper-
sion inside the band gap �Fig. 2�c�� or is parallel �having the
same gradient� in the case of the lattices with the localized
defect �Fig. 4�a��. Analyzing the dispersion diagrams the
boundaries between the pass band and the band gap as well
as the center of the pass band can be defined.

To conclude, 1D band gap structures were investigated,
with the results of the experimental studies presented and
discussed. We demonstrate that the dispersion of the wave
tunneling through the barrier is different from the dispersion
of the wave propagating through the lattice due to a pass
band, allowing us to distinguish two different phenomena. It
is demonstrated that the gradient of the dispersions associ-
ated with the wave that have tunneled through the band gap
is larger as compared with the gradient of the dispersions
associated with the wave propagating through the lattice due
to the presence of the pass band and can be used to differ-
entiate the waves. The analysis of the dispersion characteris-
tics allows one to define the boundaries of the band gaps and
pass bands as well as the position of the defect eigenmodes
�pass band center�. It is demonstrated that the dispersion dia-
grams provide information about lattice structure and can be
used to identify the characteristics of lattice defects such as
refractive index via analysis of pass band location, which
strongly depends on the variation in the defect refractive in-
dex. We have to stress that we did not demonstrate superlu-
minal behavior of wave tunneling through the band gap as
the dispersion’s gradient in this case cannot be considered as
an energy propagation velocity.

The authors thank EPSRC, U.K., for their support.
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Surface wave Cherenkov maser based on a periodic lattice
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The excitation of a surface wave cavity based on a two-dimensional periodic structure by an energy
source, such as relativistic electrons, results in stimulated, single frequency coherent emission. A
high-Q cavity has been achieved via a resonant coupling between surface waves and volume waves.
The concept of a Cherenkov maser based on the surface wave cavity is discussed and results of
numerical studies presented. Links between the model described and the concept of a surface
plasmon amplifier, which has been recently introduced are described. © 2010 American Institute of
Physics. �doi:10.1063/1.3456618�

The intensive studies of periodic structures have resulted
in the development of guiding materials, cavities, and active
devices,1–7 which operate in the gigahertz �GHz�, terahertz
�THz�, and near-infrared frequency range. In 2003 a concept
known as a “Spaser”4 was introduced and later developed by
Zheludev et al.6 It was suggested that a periodic set of split-
ring resonators should ensure spatial and temporal coherence
of radiation, if driven by an external source of radiation via
resonance coupling of surface and volume waves via induced
electric currents. In our work this concept has been further
developed and we propose using two-dimensional �2D� peri-
odic corrugations instead of split-ring resonators to form the
interaction region. In this case the single element of the cor-
rugation �the elementary cell of the periodic surface� is a
single mode cavity which can be described by either using a
lumped element circuit �i.e., LCR-circuit� approximation, or
a coupled-waves method. Such structures are compatible
with a broad variety of active media, including relativistic
electron beams and plasmas. It is expected that the external
source will initially generate incoherent radiation at the noise
level. However, the surface fields, defined by the periodic
lattice and excited by the noise radiation are resonantly
coupled with a near cut-off volume wave resulting in mode
and frequency selection, energy storage inside the cavity and
stimulation of the coherent emission from the active me-
dium. We demonstrate that such a maser based on grating
radiation8–12 is capable of producing coherent high-power
�megawatt� output radiation in the high-GHz �low-THz� fre-
quency range, which is very attractive for a number of
applications.9 We show the possibility of scaling the device
to the THz frequency range using the relation which links the
cavity parameters, output radiation frequency and electron
beam energy. The results of the study of the cavity based on
a 2D periodic lattice12–14 are discussed and we suggest that
its implementation will improve the operation of the Cheren-
kov maser.

Let us consider a surface wave �SW� cavity defined by a
2D periodic lattice �Fig. 1�a�� created on the inner surface of
a cylindrical waveguide. The lattice can be described as12–14

r=r0+r1 cos k̄zz cos m̄�, where r0 is the mean radius of the

waveguide, k̄z=2� /dz, dz is the structure’s longitudinal pe-
riod and m̄ is the number of the structure’s azimuthal varia-
tions. The cavity excitation and wave coupling on the corru-
gation takes place in the following stages: in the first stage
the excitation of periodic surface currents around a single-
cell cavity occurs due to the incident electromagnetic �EM�
field �Fig. 1�a��. In the second stage only the inductively
coupled surface currents collectively interact with EM waves
ensuring excitation of coherent localized SWs. Figure 1�a�
demonstrates the excitation of surface currents In,x
�x-projection of the In, first figure�, In,z �z-projection of the In
second figure� on the periodic lattice. The contour plots dem-
onstrate the current distributions and polarity on the cavity
Cj surface, while the arrows indicate the direction of current
flow. The figures were obtained using the three-dimensional
�3D� EM code Computer Simulation Technology �CST� Mi-
crowave Studio. The surface current flows �Fig. 1�a�� ensure
the coupling between the cavities Cj �inductive coupling�
and the localized SWs inside an individual cavity cell allow-
ing coherent and collective interaction between the cavities
similar to that observed in Refs. 5 and 6. In the third stage
the energy stored in the resonantly coupled �via surface cur-

a�Author to whom correspondence should be addressed. Electronic mail:
ivan.konoplev@strath.ac.uk. Tel.: �44�0�-141-548-5818. FAX: �44-141-
552-2891.
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FIG. 1. �Color online� �a� Excitation of surface currents Ij �j=1,2 , . . .� on
the periodic lattice surface which ensure the coupling between cavity cells
Cj observed using the 3D code CST Microwave Studio. The figures are
contour plots which demonstrate surface current flow projections on the x
and z axes. �b� 2D contour plot of the Ez field component associated with the
“volume” field of the cavity eigenmode having six radial variations and
excited by a TEM wave pulse of the coaxial waveguide �the figure observed
using 3D code MAGIC�.
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rents� surface and volume fields �Figs. 1�a� and 1�b�� is ra-
diated from the cavity due to diffraction. In the previous
models considered5,6 the SWs coupled to the propagating
wave result in direct scattering, i.e., energy loss into radia-
tion. We suggest coupling the SWs to a near cut-off wave
ensuring the energy storage in the cavity, while the parasitic
modes will be scattered into propagating waves, which radi-
ate from the large volume cavity. The cavity eigenmode �su-
perposition of localized surface and near cut-off waves� stays
in the cavity, thereby increasing its intensity and thus energy
exchange between the EM fields and the active media result-
ing in stimulated radiation being observed.

To describe the transverse structure of the surface local-
ized wave, the field inside a single local cell of the periodic
structure can be represented as a superposition of E and H
surface modes of the cylindrical waveguide. Taking into ac-
count the periodicity of the structure along the z coordinate
the Fourier field decomposition can be applied

�Ez

Hz
� = Jm̄�k�r�� sin m̄�

cos m̄�
� �

n=−�

� �En�z�
Hn�z�

�eink̄zze−i�t, �1�

where Ez and Hz are the longitudinal field components, n is
the harmonic number, k� is the transverse wave number
which can be imaginary, Jm�x� is the Bessel function of order
m, En and Hn are the amplitudes of the harmonics.

The resonant coupling between the surface and volume

wave takes place if the Bragg resonance conditions k̄� =k�s

−k�v are satisfied, where k̄� is the lattice reciprocal vector and
k�s,v are the eigenvectors of the surface �subscript s� and vol-
ume �subscript v� waves. Considering these conditions one
finds that an azimuthally symmetric volume wave with zero
azimuthal variation and zero longitudinal wave vector �kzv

	0� will be excited if m= m̄ and kzs= k̄z where kzs is the wave
number of the cavity surface field first harmonic. This means
that the volume field defined by Ez=E0J0�k�vr� have l radial
variations such that k�v=�l

v /r0, where �l
v is the l-th root of

the Bessel function and k�s=k�v.
For the specific model used �r0=10 mm, r1=0.5 mm,

and m̄=16�, the volume wave has the structure of a TM0,6
mode of the cylindrical waveguide, while the SW is associ-
ated with the EH16,1 wave. The structure’s parameters were
chosen to operate at around 90 GHz and to model the field
evolution inside the cavity the 3D software package MAGIC

was used. The cavity was excited via a coaxial coupler �Fig.
1�b�� using a frequency chirped pulse of 7 ns duration, hav-
ing a flat spectrum from 80 to 100 GHz �Fig. 2�a�� and
formed by the fundamental TEM wave of a coaxial wave-
guide. After a transition time of 3.5 ns, which allows non-
resonant components to be radiated from the cavity, the field
structure inside the cavity was analyzed. The frequency spec-
trum observed consisted of two spikes associated with the
cavity eigenmodes as shown in Fig. 2�a�. The two modes’
separation was approximately 10 GHz, which is large
enough to avoid any mode competition. Using the observed
data the Q-factors of these modes were found to be around
2500. The contour plots of the Ez �Figs. 1�b� and 2�b�� and Bz
�Fig. 2�c�� field components are shown. It is easy to see the
16 azimuthal variations of the SWs associated with the
EH16,1 mode and the six radial variations associated with the
TM0,6 wave.

The numerical modeling �Fig. 3� of the maser based on a

SW cavity was carried out using the 3D PiC code MAGIC. To
observe the lasing, the cavity has been driven by a relativistic
�300 kV�, high current �1.6 kA� electron beam of annular
geometry15 �mean radius-8.6 mm, radial thickness-1 mm�.
The electrons propagating in the vicinity of the lattice be-
haved as a set of oscillating dipoles having a frequency
	eff=2�vz /dz �vz is the axial velocity of the electrons, dz is
the corrugation period�. These dipoles excite an EH mode
inside each single cavity cell of the lattice, resulting in a
surface field having an azimuthal variation number equal to
the number of lattice azimuthal variations �Smith–Purcell or
grating radiation�.8–12 To observe a resonant interaction be-
tween the electron beam and the EM fields the synchronism
condition �−kzvz=n	eff has to be met, where � is the angu-
lar frequency of the EM wave. Taking into account that
kz
0 and n=1 the relations between the operating wave-
length 
, the lattice parameter dz and the electron beam ac-
celerating voltage Ue can be derived: Ue�kV�
511�kV�
� ��
2 / �
2−dz

2�−1�. A detuning of the period dz from the
optimum value defined by the relation above resulted in a
reduction in the maser efficiency and no interaction was ob-
served outside the region of effective wave coupling i.e., if dz
was strongly detuned from the resonance condition. This ex-
pression shows the possibility of tuning the device to operate
at high frequencies. For instance if the desired operating fre-
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FIG. 2. �Color online� �a� The spectra of the 7 ns input pulse �thin line� and
longitudinal electric field �solid line� measured on the cavity’s axis in the
time frame �10–30 ns� having length 4.8 cm. The spikes are the cavity
eigenmodes having radial indices l=6 and l=7. The contour plots of the
longitudinal �b� electric �Ez� and �c� magnetic �Bz� components of the field
inside the cavity observed using the 3D code MAGIC.
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quency is 0.395 THz �
�0.76 mm�, the electron beam has
an accelerating voltage of �51 kV and current of 40 A, then
the structure parameters are as follows: diameter 10 mm,
length �14.4 mm, period dz�0.32 mm, number of azi-
muthal variations is 40. We note that the maser considered in
this paper differs from devices studied in Refs. 3 and 8–12.
Thus the beams8,9 propagate through volume structures lim-
iting the output power and the device lifetime, while in the
model described here the beam propagates above the surface
lattice allowing high-power output radiation to be produced.
Also the structure’s topology and beam’s parameters are dif-
ferent. We note that the interaction region of the maser con-
sidered has some similarities with the gyrotron cavity,16

while the maser interaction is driven by the Cherenkov in-
stability.

At the beginning of the interaction the SWs �EH16,1� are
excited and couple with the TM0,6 wave. The superposition
of both fields forms the cavity eigenmode and ensures effec-
tive energy accumulation. The lasing takes place due to dif-
fraction of the TM0,6 wave while the EH16,1 wave interacts
with electrons and synchronizes the energy extraction from
the different parts of the beam. Figure 3�a� shows the elec-
tron beam trajectory inside the interaction region indicating a
dependence of the wave-beam coupling on the distance be-
tween the beam and the structure �see the inset�. An interac-
tion between the electron beam and the Ez component of the
EM field manifests itself in the formation of the electron
density wave which as expected increases along the interac-
tion region. In Fig. 3�b� the spectrum of the output radiation
is shown and a single mode operation at a single frequency
of 97 GHz is demonstrated. The dependence of the output
power on the guide magnetic field strength was also studied
and the variation in the efficiency versus guide magnetic
field is presented in Fig. 3�c�. To observe an efficiency of
30% the guide field should be �6 T, at a moderate strength
of 2 T an efficiency of 15% was achieved.

The implementation of an oversized �in comparison with
the operating wavelength� SW cavity based on a 2D surface
lattice allows effective mode selection to be achieved along
the longitudinal and the transverse indices resulting in a
single mode, single frequency, and steady state operation of a
high-power Cherenkov maser. The numerical simulations
have shown that the resonant coupling of localized surface
and volume waves allows the problems associated with
mode and frequency purity common for such devices to be
overcome. Mode selection and control along the radial and
azimuthal indices has been achieved ensuring stable high-
power maser operation. The application of a 2D periodic
lattice allows oversized structures to be used to define the
interaction region of masers operating in the high-GHz and
THz frequency range, making manufacturing of such a struc-
ture, as well as beam transportation feasible and overcoming
some of the challenges listed in Ref. 17. We also suggest that
cylindrical lattices can form the interaction region of oscilla-
tors based on different active media.

The authors thank the EPSRC �Grant No. EP/
E058868/1� for research support and the UK Faraday Part-
nership in High Power rf for providing the MAGIC code.
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The results of theoretical and experimental studies of a high-Q cavity based on a cylindrical,
periodic lattice are presented. The coupling of localized surface and volume electromagnetic fields
results in cavity mode selection over radial, azimuthal, and longitudinal indices and formation of a
high-Q cavity eigenmode. Numerical analyses of the field evolution inside the cavity were carried
out. Application of these two-dimensional periodic structures in the development of high-power
terahertz masers is proposed. © 2010 American Institute of Physics. �doi:10.1063/1.3428776�

Understanding the properties of electromagnetic fields
within periodic structures that are oversized in comparison
with the radiation wavelength is an important and challeng-
ing problem for modern science and such studies have al-
ready resulted in the development of breakthrough ideas.1–8

For example in 2003 a concept of a surface plasmon ampli-
fier was introduced and is an ongoing area of research.7–11

Let us note that in the works7–10 nanoshells and nanowires
were used to form the interaction region, with localized
fields tightly coupled to the surface of the particles. In our
work we consider the “inverted model” of the structures
studied in Refs. 7–10, i.e., surface fields inside the structure
are investigated and are coupled to the corrugated inner sur-
face of the cylindrical metal waveguide. The structure stud-
ied was made from an oversized �in comparison with an
operating wavelength �� cylindrical, copper waveguide with
a two-dimensional �2D� corrugation of the inner wall. The
corrugation supports localized surface fields mitigating the
field bonding to the metal surface of the waveguide. The
structure is a high-Q cavity in which excitation takes place in
three stages. In the first stage the excitation of surface cur-
rents around an elementary cell of the periodic surface by the
incident electromagnetic field occurs. Then the inductively
coupled surface currents are interacting collectively ensuring
excitation of a coherent surface field �decaying toward the
center of the structure�. In the third stage the energy stored in
the surface fields is coupled into the propagating waves,
which ensures mode selectivity due to scattering and diffrac-
tion allowing a high-Q cavity to be observed. In this paper
the coupling between localized surface �having imaginary
transverse wavenumber� and volume �having real transverse
wavenumber� fields on the surface of the cylindrical 2D pe-
riodic lattice12–15 is studied and the results observed are dis-
cussed. The coupling of the localized surface fields to a near
cut-off wave is demonstrated and excitation of a high-Q cav-
ity eigenmode due to such a coupling is investigated. We
suggest that implementation of such a cavity will improve
the efficiency and stability of masers operating in the tera-
hertz �THz� frequency range. The limitations of such struc-
tures and ways to overcome these limits are discussed.

The surface wave cavity �Fig. 1� can be formed
for instance from a cylindrical copper waveguide by
machining small periodic perturbations on the inside of the

wall ��r��� such that: r=r0+�r cos k̄zz cos m̄�. Here, r0 is

the mean radius of the unperturbed waveguide, k̄z=2� /dz is
the longitudinal wave number of the structure, and m̄ is the
number of azimuthal variations around the structure. The
structure was constructed using electrochemical copper
deposition on an aluminum mandrel which was dissolved
later in alkaline solution. Let us note that a large diameter
structure such that r0�dz and r0�� is studied in the experi-
ment allowing a “square wave,” chessboard structure to be
used in the numerical model as an approximation12–15 of the
lattice shown in Fig. 1. The field of the cavity eigenmode
outside the periodic corrugation �i.e., r�r0−�r� can be rep-
resented as a superposition of surface and volume �subscripts
“s” and “v”� partial fields the transverse structures of which
coincide with the transverse structures of the eigenmodes of
the unperturbed cylindrical waveguide.12–15 The surface
fields have imaginary transverse wavenumbers while the vol-
ume, near cut-off, fields have zero longitudinal and real
transverse wavenumbers. The transverse structure of the sur-
face fields can be described as a superposition of E and H

a�Author to whom correspondence should be addressed. Electronic mail:
ivan.konoplev@strath.ac.uk. Tel.: 	44�0�-141-548-5818. FAX: 	44-141-
552-2891.
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FIG. 1. �Color online� Photograph of the experimental setup and cylindrical
2D periodic structure �inset� which forms the cavity having diameter
80 mm, corrugation depth 1 mm, 28 azimuthal variations and longitudinal
period of 8 mm.
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surface modes and taking into account the periodicity of the
structure the Fourier field decomposition can be applied:

� Ez

Hz
� = Ims

�k�sr�� sin ms


cos ms

� �

n=−�

� �En�z�
Hn�z�

�eink̄zz �1�

where Ez, Hz are the longitudinal field components, n is the
harmonic number, k�s is the transverse wave number, Im�x�
is the modified Bessel function of order m indicating field
decay along x, and En�z� and Hn�z� are the slowly varying
amplitudes of the field harmonics. The surface and volume
field coupling takes place on the surface of the lattice allow-
ing the approximate analysis of the cavity behavior, without
the need for detailed analysis of the surface field inside the
corrugation, which has a more complex structure and its
study is outside the scope of this paper. The surface wave is
coupled to the near cut-off TM0l volume wave described by

Ez=J0�k�vr��n=−�
� En

v�z�eink̄zz where l is the number of radial
variations, k�v is the transverse wavenumber, and Jm�x� is
the Bessel function of order m. The resonant coupling be-
tween partial fields takes place if the Bragg resonance con-

dition k̄� =k�s−k�v is satisfied, where k̄� is the lattice reciprocal
vector, and k�s,v are the surface “s” and volume “v” wave
vectors. As a result one notes that a volume wave with zero
azimuthal variation and zero longitudinal wave vector �kzv

	0, near cut-off wave� will be excited, if kzs= k̄z �first har-
monic� and the number of the surface field azimuthal varia-
tions is ms= m̄. The volume field will have l radial variations
such that k�v=�l

v /r0 where �l
v is the lth root of the Bessel

function of zero order and the frequency of the cavity eigen-
modes 
r having the highest Q-factor �kzv	0� can be
estimated as 
r=ck�v. Taking into account that

k�s= i
�
 /c�2−kzs
2 and k̄z�
 /c one notes that the first har-

monic of the surface wave is decaying spatially from the
periodic surface as Im̄�k�sr0� demonstrating one of the
conventional2 surface structure’s limitations to creating a
large aperture �k�sr0�1� Cherenkov maser which is driven
by an electron beam. The field decay results in a weak cou-
pling between the field and the electron beam if 2k�sr0�1
is not satisfied. To overcome this limit, relativistic electron

beams are used in conventional devices2 leading to k̄z
→
 /c and thus k�sr0→0. In the structure investigated the
coupling of the surface fields and near cut-off propagating
wave allows electromagnetic energy accumulation16 thus re-
laxing the condition on the beam-lattice proximity. To illus-
trate this one may introduce an effective surface at a radius,
re, on which the impedances of the partial waves are matched
and re can be defined by the equation:

k�s�Im̄�k�sre�/Im̄� �k�sre�� = k�v�J0�k�vre�/J0��k�vre�� , �2�

where Im̄� �x� and J0��x� are the derivatives �� /�x� of the Bessel
functions. The re defines the beam radius at which it is still
interacting with the surface field harmonic. Assuming that
re /r0�1 and applying a Taylor expansion to Eq. �2� the con-
dition under which the electron beam having a relativistic
Lorentz factor ��1.41, propagating above the lattice can
interact with the surface wave takes the form: k�sr0� m̄,
instead of 2k�sr0�1 for conventional structures.

The finite-difference time-domain �FDTD� three-
dimensional �3D� code MAGIC has been used to calculate the
fields in the cavity. In Fig. 2�a� the structures of the Ez and Bz

field components associated with the cavity eigenmode hav-
ing ten radial variations and located at the frequency
f28,10,1��37.5 GHz� are shown. One notes that only the Ez

component exists in both the surface and volume partial field
while the Bz component vanishes toward the center. The
spectrum of the cavity eigenmodes excited by a broadband
pulse �29–44 GHz� launched in a transverse-electromagnetic
�TEM� wave from a coaxial coupler shown in Fig. 1 and
calculated using the code MAGIC, is shown in Fig. 2�b�. The
cavity mode frequencies fm,l,j �m, l, and j are the highest
variation numbers of volume and surface partial fields along
the 
, r, and z coordinates, respectively� are observed at the
frequencies, f28,8,1��30 GHz�, f28,9,1��33.8 GHz�, f28,10,1

��37.5 GHz�, and f28,11,1��41.2 GHz�, indicating that in-
creasing the operating frequency results in an increase in the
eigenmode radial wavenumber.

To study the 2D surface wave cavity experimentally a set
up similar to one used for studying coaxial structures14 has
been constructed. A photograph of the set up with an insert
showing the structure studied is presented in Fig. 1. The
periodic structure �inset to Fig. 1� made of copper has the
following parameters: r0=40 mm, lattice length 48 mm, m̄
=28, dz=8 mm, and �r=0.5 mm. The experiments were
carried out using a vector network analyzer �Fig. 1� with a
receiving horn antenna positioned at �1.2 m distance from
the radiating structure. The results observed are shown in
Fig. 3. First the receiving detector was positioned centrally
�in front of the structure� in the far-field zone and a fre-
quency scan �36–38.5 GHz� was conducted. In Fig. 3�a� the
result observed �bold line� is shown in comparison to the
same scan performed for a smooth cylindrical waveguide
�thin line� of equal length and radius but having no corruga-
tions on the inner surface. The deep minimum in the trans-
mission spectrum is associated with the resonant scattering
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of the incident wave into surface waves and a near cut-off
mode, i.e., excitation of the cavity eigenmode. The results
presented resemble those demonstrated in the work of Sey-
mour et al.17 and Zayats et al.,18 where a similar feature in
the reflection versus incident angle was reported when sur-
face waves were excited on the metal-dielectric interface. In
the case studied in this paper due to a fixed value of the
transverse wavenumber �for a specific mode� the frequency
variation is similar to the variation in the wave incident angle
and the transmission is synonymous with the reflection from
the metal-dielectric interface. The excitation of the cavity
eigenmode has been also confirmed by analyzing the radia-
tion mode pattern. To conduct the mode pattern scan the horn
used in the previous experiments was substituted with a
waveguide pick-up probe �to improve the angular reso-
lution�. The results of the experimental measurements are
shown in Fig. 3�b� �thick line� and compared with the scan
when the lattice is substituted with a smooth cylindrical
waveguide �thin line�. The thin line shows that the radiation
from the smooth waveguide consists mainly of low order
modes �most of the energy is inside a small solid angle� with
a small presence of high order modes. The cavity radiation
mode patterns indicate the strong presence of the near cut-
off, high-order mode manifesting itself as periodic variations
�periodicity �6°� of the field intensity for observation angles
above 45° and much smaller radiation intensity at observa-
tion angles below 45°.

In this letter the inverted model of the interaction regions
considered in earlier work7–10 has been studied. The applica-
tion of the 2D cylindrical lattice allows mode selection along
the radial and azimuthal coordinates, as well as energy stor-
age in the combined fields of the volume and surface waves.
This allows an interaction region to be formed having a
transverse dimension �aperture� much larger than the operat-

ing wavelength. We have shown numerically, using the 3D
code MAGIC, that the resonant coupling between surface
waves and near cut-off waves takes place on the periodic
structure surface. The full 3D model was used to allow ex-
citation and evolution of the azimuthally symmetric and non-
symmetric fields to be simulated. The cavity excitation and
the mode structure were analyzed. Experimental studies of
the structure have been conducted and the measurements
agree well with the numerical simulations. The radiation
mode pattern has been studied and incident wave resonant
scattering on the periodic lattice has been demonstrated. A
cavity of this nature is compatible with a broad variety of
active media, including relativistic electron beams19 and
plasmas and can be used to ensure the stable operation of
high-power terahertz masers. The results obtained provide a
strong basis for the concept and design of a high power ma-
ser operating in the THz and infrared frequency ranges using
a 2D periodic lattice.

One of the authors, L. Fisher, thanks the EPSRC for
supporting her PhD studentship. The UK Faraday Partner-
ship in High Power rf provided the MAGIC license.
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High-Current Electron Beams for
High-Power Free-Electron Masers Based

on Two-Dimensional Periodic Lattices
Ivan V. Konoplev, Philip MacInnes, Adrian W. Cross, Lorna Fisher, Alan D. R. Phelps,

Wenlong He, Kevin Ronald, Colin G. Whyte, and Craig W. Robertson

Abstract—High-power gigawatt-level radiation can be gener-
ated by the interaction of an electromagnetic wave and an annular
electron beam with a transverse dimension much larger than
the operating wavelength. The use of such a large-circumference
annular beam allows the generation of high beam currents while
also maintaining low space charge and RF power densities inside
the interaction region. This circumvents the problems associated
with potential depression in the beam channel and RF breakdown
inside the oscillator. In this paper, we present the studies of
high-current magnetically confined annular electron beams and
discuss their production and transportation through a coaxial
beam channel which formed the interaction region of a free-
electron maser (FEM). The results from numerical simulations,
using the software packages KARAT and MAGIC, are compared
with the experimental measurements. The operation of a FEM,
driven by a high-current annular electron beam, is presented, and
the tunability of the maser, inside a frequency range defined by an
input 2-D Bragg mirror, is demonstrated.

Index Terms—Distributed feedback laser, free-electron maser
(FEM), high-current electron beam, surface periodic lattice.

I. INTRODUCTION

I T IS WELL known that different devices (such as high-
power masers operating in the frequency range from 30 to

300 GHz, masers operating in the terahertz frequency range,
and conventional high-Q cavities of linear accelerators) are
affected by the common problems of breakdown, associated
with the high electromagnetic (EM) field power density, over-
heating, and electron beam disruption [1]. To overcome these
problems, the application of 1-D and two-dimensional (2-D)
periodic lattices, either to form an entire high-Q cavity or
simply a part of the interaction region, has been considered
as a possible solution [2]–[7] for masers and accelerators,
although one should note that the solution of these issues for
one group of devices may, in turn, lead to breakthroughs in the
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design in other groups. As a result, interest in devices based
on periodic lattices and operating in the frequency range from
30 to 300 GHz has significantly increased in recent years [2]–
[9]. The use of 2-D periodic structures in which 2-D distributed
feedback can be realized was proposed [6], [7] for application in
gigawatt-power-level free-electron masers (FEMs), operating at
millimeter wavelengths, to circumvent the problems associated
with the high EM power densities present in the interaction
regions. This is achieved by ensuring spatiotemporal coherence
of the output radiation across a large-size electron beam [6],
[7], [11]–[13], where such a beam propagates inside a cavity
which has a large transverse dimension with respect to the
wavelength of operation. The formation and transportation of
a large-size electron beam are an interesting and challenging
problem in its own right [14]–[20], due to the necessity of
addressing simultaneously the scientific and technological chal-
lenges associated with high-energy electron beam production,
confinement, and transportation. Let us note that the original
and groundbreaking theoretical research [21]–[24] conducted
by Prof. N. S. Ginzburg’s group at the IAP of the Russian
Academy of Sciences laid the basis for theoretical and exper-
imental studies of the application of such Bragg structures in
high-power FEMs operating at millimeter wavelength.

In this paper, we discuss an electron beam accelerating sys-
tem which was used to generate high-current (1.5 kA, 3.5 kA)
magnetically confined thin annular electron beams with a cir-
cumference of ∼220 mm and a wall thickness of ∼2 mm. We
present the design of an electron beam guiding system which
allowed for beam formation and transportation through a 2-m
coaxial beam channel, with inner and outer radii of 30 and
40 mm, respectively. The surrounding facilities required to pro-
duce such a beam are discussed, and their design is presented,
namely, for the high-pulse-power generator, high-current accel-
erator (HCA), and FEM. The results of the experimental studies
of the FEM are discussed with experimental data compared
to numerical simulation. It will be shown that, as the electron
beam current increased, without adjustment of the FEM cavity
parameters, the transition time was reduced as anticipated,
although a decrease in FEM efficiency and alteration to the
output microwave pulse shape was noted. We demonstrate that a
frequency shift in the output radiation spectrum can be achieved
by tuning the amplitude of the magnetic field of the undulator.

In Section II, the designs of the pulse power supply, including
the Marx generator (MG), the pulse-forming transmission line,

0093-3813/$26.00 © 2010 IEEE
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Fig. 1. (a) Schematic diagram of the FEM experimental setup showing
(I) MG PPS, (II) deionized-water-filled transmission line, (III) oil tank hosting
the spark gap and the HCA, and (IV) cross section of the FEM and guide
solenoid. (b) Double-fold transmission line.

and the high-current spark gap, are presented. The depen-
dence of the voltage pulse amplitude on the system parameters
of the pulse power supply and components is reported. In
Section III, the design of the HCA is shown, and results of
the HCA experimental studies are presented. The data observed
are compared with numerical simulations conducted using the
particle-in-cell (PiC) code KARAT. Section IV is dedicated
to the numerical modeling of FEMs based on 2-D distributed
feedback. These models were designed and studied using the
3-D PiC code MAGIC. Using the numerical model developed,
the particle dynamics are analyzed, and the electron beam evo-
lution inside the interaction region is discussed. The field dis-
tribution inside different parts of the interaction region is also
studied and compared with the analytical models developed in
[6], [7], [12], and [25]. The FEM operating regimes observed in
the simulations are discussed, and it is shown that, by varying
the cavity and beam parameters, it is possible to observe single-
mode, as well as multimode, oscillations. The design of the
FEM cavities to realize single-mode steady-state operation and
high efficiency is discussed. In Section V, experimental data,
observed from studies of FEMs driven by 1.5- and 3.5-kA
electron beams, are presented. A shift in the FEM operating
frequency with variation of undulator parameters is shown. We
demonstrate that increasing the electron beam current, while
keeping the cavity parameters constant, results in a decrease in
the FEM efficiency and a deterioration of the output pulse shape
[25]. The frequency of the output radiation was also analyzed,
first using cutoff filters and then more accurately using a
heterodyne frequency diagnostic. Measurements of the output
signal spectrum are shown and discussed. In the last section,
conclusions are presented, and future work and development of
the experiment are discussed.

Fig. 2. (a) Schematic diagram and (b) photograph of the high-pressure spark
gap. The arrow indicates the gas line. (c) Dependence of the self-breaking
voltage on the nitrogen gas pressure inside the gap.

II. DESIGN OF THE HIGH-VOLTAGE

PULSE POWER GENERATOR

A high-voltage (up to 1 MV) pulse (250 ns) power generator
has been designed and constructed to drive an HCA used in
the Strathclyde FEM experiments. In Fig. 1(a), a schematic
diagram of the FEM experimental setup is shown. The exper-
iment was located in an L-shaped laboratory, determining the
location and configuration of the pulsed power supply (PPS)
and the FEM experiment. The PPS is based on a 1.5-MV
MG which is located inside an insulator oil-filled tank (I). It
is connected via a transmission line (II) and a high-pressure
spark gap to a plasma flare emission electron gun (III). The
oil tank used to host the MG has the following dimensions:
1.2 m × 1.6 m × 1.8 m (l × w × h). The MG is elevated above
the tank floor by 150 mm using corrugated nylon supports.
The oil used to insulate the MG had a breakdown strength of
∼120 kV/cm, which is sufficient to prevent air and surface
breakdown during charging/discharging of the MG. The MG
consisted of 15 “General Atomic” capacitors with individual
capacitances of ∼0.3 μF. The capacitors are charged in par-
allel (up to 100 kV each) and discharged in series using an
externally triggered spark gap, multiplying the output voltage
by a factor of 15. The transmission line, connected to the MG,
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Fig. 3. Traces of the (a) transmission line output voltage pulse for the set of different pressures inside the spark gap for the same MG charging voltage.
(b) Voltage pulses from the (dashed line) transmission line and the spark gap. The arrow indicates the time when self-breakdown of the pressurized spark gap takes
place.

has a “folded” configuration. It is a triple-conductor coaxial
line [Fig. 1(b)] with the intermediate conductor charged to
the operating voltage and the inner and outer conductors at
the ground potential. This setup effectively doubles the length
of the standard transmission line, resulting in a factor of two
reduction in the length required for a long-pulse (∼250 ns)
operation. The length of each conductor of the transmission
line was 2 m with an outer conductor diameter of 70 cm and a
ratio of 2 : 1 between successive conductor diameters. The line
was filled with deionized (∼14 MΩ/cm) water with a charac-
teristic impedance of 4.7 Ω and a total capacitance of 25 nF.
The conductors are well aligned and supported to minimize
variation in the voltage pulse amplitude with time, e.g., through
parasitic reflections. The intermediate electrode of the trans-
mission line can be charged up to 1 MV through a 50-μH
inductor which is located ∼40 cm above the MG field-relieving
electrode. The transmission line was switched into the load via a
high-pressure (12–14 bar) nitrogen-filled spark gap [Fig. 2(a)].
To match the impedances of the transmission line and the HCA,
6 × 100 Ω copper sulfate matching resistors were used [see
photograph shown in Fig. 2(b)]. In Fig. 2(a) and (b), a technical
drawing and a photograph of the spark gap, connected to the
transmission line and matching resistors, are shown. On the
technical drawing of the spark gap, the arrowed line indicates
the gas pipe used to pressurize the switch. The performance of
the spark gap was studied, and a graph showing the dependence

of the gap breakdown voltage on the applied gas pressure is
shown in Fig. 2(c). The spark gap was used to rectify the
transmission line output voltage pulse, producing a flattop pulse
of up to 250-ns duration at the input of the load. In Fig. 3,
typical traces of the voltage pulses from the transmission line
and voltage pulse after the spark gap are shown. The voltage
pulses observed at the end of the transmission line have the
conventional shape of the pulses formed by the charging and
discharging LRC circuit with an ∼1.5-μs time constant. The
set of diagrams [Fig. 3(a)] demonstrates the dependence of
the output voltages on the pressure inside the spark gap. By
changing the spark gap pressure, one effectively changes the
impedance of the circuit, thus changing the LRC circuit time
constant. In the cases shown, the pressure inside the spark gap
was varied from 12 to 14 bar, while the MG charging voltage
was kept constant (50 kV). In this experiment, the amplitude
variation of the output pulse due to the pressure difference
was around 10%, with maximum amplitude and optimum pulse
shape achieved at the highest pressure. In Fig. 3(b), the time
correlation between the input and output pulses from the spark
gap is shown with the dashed line associated with the trans-
mission line output pulse, and the solid line shows the output
pulse from the spark gap. Further increase of the pressure inside
the switch resulted in termination of the high-voltage pulse
as the operating voltage was not enough to allow the gap to
breakdown. For instance, increasing the pressure in the switch
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Fig. 4. (a) HCA cross sections showing (1) the aluminum cathode support
with electron-emitting graphite ring, (2) the high-voltage insulator between the
anode and cathode plates, (3) the anode–cathode gap, (4) the anode insert to
increase SCL electron beam current, and (5) the coaxial electron beam channel.
(b) Numerical model of the diode used in the PiC KARAT to optimize the
HCA design and (c) the dependence of the extracted one into the coaxial
channel electron beam current versus the diode current observed for a range
of anode–cathode radial distances ranode ∈ [60 mm; 140 mm].

beyond 14 bar, for the given voltage (∼500 kV), results in
failure of the switch to close, as insufficient electrical stress is
applied across the spark-gap electrodes. Independent (active)
triggering of this circuit is a potential improvement for the PPS,
although, with proper calibration, passive triggering has shown
exceptional reproducibility between experimental runs.

III. DESIGN AND OPERATION OF HCA

The flattop voltage pulse from the spark gap is applied to
the cathode–anode gap of the HCA, producing an annular
electron beam. The HCA has a cylindrical diode configuration
[Fig. 4(a)] with a variable cathode–anode axial separation [20].
One notes that, while the FEM interaction region is formed
by a coaxial drift tube, it is the cylindrical geometry of the
HCA which defines the maximum electron beam current,
governed by the relativistic Child–Langmuir law for cylindrical
waveguide [16]–[20]

I = I0

(
γ

2/3
0 − 1

)3/2

/ (1 − f + 2 ln(R/b)) (1)

where I0 = mc3/e, γ0 is the relativistic mass factor, R is the
anode radius, b is the outer radius of the beam, and f is a func-
tion that is dependent only on the beam inner and outer radii
which tends to one if the beam thickness is small in comparison
with the beam outer radius and zero for a solid beam.

In the experiments conducted, the electron beam current was
varied from 1.5 to 3.5 kA. This was achieved by adjusting the
radial distance [see (1)] between the anode and the cathode
[Fig. 4(a)], via variation of the anode radius. In Fig. 4(a),
the drawings of the HCA designs to produce 1.5- and 3.5-kA
electron beams are shown. Taking into account the geometrical
parameters of the system, such as the outer radius of the
emitting surface at 36 mm, the beam wall thickness of 2 mm,
and the accelerating voltage of 450 kV, the anode radii required
to produce 1.5- and 3.5-kA electron beams were calculated to
be 150 and 60 mm, respectively.

The goal of the HCA design was to minimize spread in
the electron beam velocity and energy and to ensure beam
propagation through the interaction region. For this purpose,
the 2.5-D PiC code KARAT was used. The final geometry
of the cathode has been optimized to reduce electron beam
velocity spread to below 7%. An r−z cross section of the
2.5-D model of the simulated HCA and the electron beam
trajectory is shown in Fig. 4(b), while in Fig. 4(c), the results
of the simulations of the HCA having the different anode radii
are demonstrated. The diode currents in Fig. 4(c) correspond
to the maximum available beam currents set in the KARAT
code, with the steady-state regions, for each anode radius, taken
as synonymous with the space-charge-limited (SCL) emission
current. It was observed that the analytical first estimations of
the electron beam currents (1) matched well with those given in
the steady-state regions in Fig. 4(c); however, an overestimate
results when the available diode current is set too low (for
example, within 20% of the expected SCL value). To ensure
electron beam propagation through the beam channel, with
minimum losses, the HCA was immersed in a uniform magnetic
field [13], [20]. During the numerical studies, it was found that,
to meet this criterion, the magnetic field must be above some
critical value (in our case, 0.4 T), i.e., at B > 0.4 T, the beam
trajectory is well confined, and no beam loss is observed at
the anode aperture. As a result, a single-layer, pulsed, guide
solenoid having the following parameters was designed: length
of 2.5 m, diameter of 0.33 m, and maximum guide field ampli-
tude of 1 T.

To obtain the required amplitude of the magnetic field for
the FEM experiment (up to 0.8 T), a solenoid pulsed power
system, consisting of ten 250-μF capacitors connected in par-
allel, was used. The capacitors were charged and discharged
at voltages of up to 18 kV to provide a current through the
solenoid of up to 3 kA. The capacitors were connected to
the power supply via current-limiting charging resistors and
high-voltage diodes, while the solenoid itself was connected
to the capacitors via a single ignitron switch, and matching
resistors were used to slightly overdamp the LRC circuit. The
resistors used, as well as the high-voltage diode, ensure the
absence of current feedback into the dc power supply during
the capacitors’ discharge. The duration of the magnetic field
pulse [1 ms, Fig. 5(a)] significantly exceeds the electron beam
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Fig. 5. (a) Time evolution of the drive current to the guide solenoid. (b) Dependence of the amplitude of the guide solenoid magnetic field on the longitudinal
coordinate.

current pulse duration (∼200 ns), simplifying the design of
the FEM triggering units and minimizing the magnetic field
exclusion. In Fig. 5(b), the guide field profile is shown indi-
cating that the perturbations of the guide field observed do not
exceed 5% of the unperturbed value. In accordance with the
simulations and measurements that have been conducted, the
perturbations observed did not significantly affect the quality
of the electron beam and, therefore, the operation of the high-
power FEM.

To study the electron beam current, a Rogowski coil was
used. The dielectric core (Perspex) Rogowski coil had the
following parameters: inner and outer radii of 50 and 80 mm,
respectively, thickness of 20 mm, and number of copper wire
turns of 200. The results of the beam current measurements
are shown in Fig. 6. The visible oscillations on the top of the
current pulse [thin line in Fig. 6(a)] were associated with the
noise signal produced by the PPS. The possibility of current os-
cillations due to the transverse beam instabilities [14], [15] was
also considered; however, the numerical simulations indicate
that such type of instabilities would require significantly higher
current densities in order to develop. It is important to note that,
in spite of the high currents, the electron beam current densi-
ties (current per unit area) are rather low (∼300 A/cm2 and
∼1 kA/cm2 for the 1.5- and 3.5-kA electron beams, respec-
tively). To filter out the noise signal, the following technique
was used. First, the signal from the Rogowski coil was mea-

sured without the electron beam [dashed line in Fig. 6(a)],
which was achieved by switching off the guide magnetic field.
Then, the signal with the electron beam passing through the
interaction region was measured (thin line), and from this
signal, the noise signal (dashed line) was subtracted [Fig. 6(a),
bold line]. In Fig. 6(b) and (c), the results of the electron beam
current measurements as compared with the typical trace of the
voltage pulse are shown for the case of a 1.5- and a 3.5-kA elec-
tron beam, respectively. The correlations between the typical
voltage pulse and the electron beam currents are rather clear. In
both cases, slow electrons extracted from the plasma cloud and
accelerated by the voltage pulse tail were observed.

IV. NUMERICAL MODELING OF FEM BASED ON

TWO-DIMENSIONAL DISTRIBUTED FEEDBACK

Analytical studies of a FEM based on 2-D distributed feed-
back have been recently conducted, and the results observed
can be found in the following works: [6], [7], [13], and [21]–
[32]. In this section, we will discuss the numerical model,
developed by using the 3-D PiC code MAGIC. Let us note that
the coaxial FEM considered in this paper is based on a two-
mirror cavity formed by a 2-D periodic lattice [4], [12], [29] (an
input 2-D Bragg mirror) and a 1-D periodic lattice (an output
1-D Bragg mirror), i.e., a 2-D–1-D Bragg cavity [22], [27],
[30]–[32]. The mirrors were obtained by introducing shallow
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Fig. 6. Results of the electron beam current measurements: (a) Trace of
the (bold line) electron beam current after the noise reduction procedure via
extraction of the (dashed line) noise signal from the (thin line) measured signal;
(b) trace of the (bold line) 1.5-kA electron beam current produced when the
spark gap pressure was 13 bar and trace of a (thin line) typical voltage pulse;
(c) trace of the (bold line) 3.5-kA electron beam current when the spark gap
pressure was 14 bar and trace of the (thin line) typical voltage pulse.

“square-wave” corrugations on the surface of the inner con-
ductor [12], [29]

r = rin + a2sign
(
cos(k̄z2z)

)
sign (cos(m̄ϕ)) (2a)

in the case of the 2-D Bragg mirror and

r = rin + a1sign
(
cos(k̄z1z)

)
(2b)

in the case of the 1-D Bragg mirror [2], [3], [33]–[35]. Here,
sign(x) is a step function that is equal to 1 if x > 0 and
−1 if x < 0, rin is the radius of the inner conductor, a1,2

are the amplitude of the 1-D and 2-D periodic perturbations,
k̄z1,2 = 2π/dz1,2, dz1,2 are the axial periodicities of the per-
turbations, and m̄ is the number of azimuthal variations of the
2-D Bragg mirror. A 3-D schematic of the interaction region,
with the electron beam propagating between the inner and outer
conductors, is shown in Fig. 7(a). In this figure, l1,2,3 are the
lengths of the input mirror, the intermediate section, and the
output mirror, respectively. The insert in Fig. 7(a) shows the 3-D
particle motion inside the input mirror in the combined fields
of the guide solenoid and the undulator. Taking into account

Fig. 7. (a) Schematic of the FEM interaction region showing the 2-D Bragg
input (l1) and 1-D Bragg output (l3) mirrors separated by a regular coaxial line
(l2) and an electron beam propagating between inner and outer conductors.
The insert shows the electron beam observed from the 3-D numerical model
developed using the 3-D PiC code MAGIC, showing the electron beam propa-
gating in the region of the input mirror in the combined fields of the undulator
and the guide solenoid. (b) Evolution of the transverse momenta inside the
interaction region, i.e., the particle momentum evolution in (Pr; Pϕ) phase
space. (c) Radial momentum evolution along the interaction region.

the results of previous analytical studies [11]–[13], [21]–[31],
which demonstrated that, in the frequency region of inter-
est, only coupling between the TEM and TE24,1 waves takes
place, the symmetry of the model allows one to consider in
the simulations only a single section ϕ ∈ [−π/m̄;π/m̄] (where
ϕ is the azimuthal coordinate) of the interaction region, with
periodic boundary conditions applied at ϕ = −π/m̄ and ϕ =
π/m̄. This allows the computational run time to be reduced to
an acceptable level (15 days) at a computational speed of up
to 10 ns/day. A time interval of 150 ns has to be simulated in
order to see the evolution of FEM operation from the transient
stage to the steady-state regime of oscillations. Let us note that,
during the numerical studies, it was observed that the change
of the number of azimuthal periods used in the simulations (in
one simulation up to eight periods, i.e., ϕ ∈ [−8π/m̄; 8π/m̄]
were used) did not affect the mode purity or the output mode
structure. This allows us to assume that the numerical modeling
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produced evidence of mode selection inside the 3-D structure
based on the surface (2-D) periodic lattice along the longitudi-
nal and azimuthal indexes supporting independently the results
predicted by the 2-D analytical theory [6], [7], [11], [12], [25]–
[28]. We note that the numerical modeling took into account
the full 3-D geometry of the system (i.e., radial dimension
included), as well as the complex geometry of the lattice, which
consisted of a superposition of two “square” waves [12]. This
strongly supports the results of analytical studies which were
based on the set of self-consistent 2-D coupled wave equations,
observed using the slow-envelop variation approximation under
the assumption of four-wave coupling on the ideal periodic
corrugation [6], [7], [11], [12], [21]–[28].

To avoid numerical instabilities, the dimensions of the in-
dividual mesh cells were varied inside the interaction region.
However, the degree of mesh cell variation along the chosen
coordinate was relatively small with the ratio between maxi-
mum and minimum mesh cell dimensions not exceeding two.
The smallest mesh cell dimensions (∂z; ∂r; ∂ϕ), along the
coordinates (z, r, ϕ), were chosen to accommodate the smallest
features of the periodic lattice and had the following dimen-
sions: ∂z = dz2/10; ∂r = a2/2; ∂ϕ = 2π/12m̄. The electron
beam trajectories in the particle phase space (Pr;Pϕ), where
Pr and Pϕ are the radial and azimuthal electron momenta,
respectively, are shown in Fig. 7(b). In Fig. 7(c), the dependence
of the radial momentum on the longitudinal coordinate z is
shown. These plots show three different regions of electron
beam trajectories: first, the spiral trajectories of electrons inside
part of the interaction region, where the undulator field is adi-
abatically increased; second, the uniform circular trajectories,
when the interaction between the electron beam and the EM
field is weak and it does not affect the beam motion; and third,
the trajectories when strong interaction between the electrons
and the field takes place, resulting in electron beam bunching.
Let us note that the 2-D results demonstrated were observed
from 3-D simulation of electron beam propagation inside the
interaction region.

In the model developed, it was assumed that the electron
beam enters the interaction region from the left “port” having
an accelerating voltage of 450 kV, a radius of 3.5 cm, and a
wall thickness of 2 mm. To “launch” the electron beam, the
“BEAM” command defined in the PiC code MAGIC was used.
The electron beam was confined by a guide magnetic field of
0.63 T and propagated in the combined fields of the undulator
and the guide solenoid. The periodic magnetic field used to
pump the electron beam transverse velocity was created by a
large-radius (45 mm) undulator consisting of 60 single coils
each of length 20 mm (30 periods of 40-mm length). The un-
dulator field required was estimated analytically to be ∼0.06 T,
which agreed well with the optimized undulator field strength
(0.063 T) of the numerical simulations.

The parameters of the two-mirror cavities were optimized
to observe a single-mode steady-state FEM operation. It was
found that, for a 1.5-kA electron beam, the cavity parameters
should be l1 = 140 mm, l2 = 400 mm, and l3 = 70 mm, while
in the case of the 3.5-kA electron beam, the distance between
the input and output mirrors should be reduced to l2 = 200 mm.
The particle dynamics and trajectories were also analyzed

during the numerical modeling, with the observed results shown
in Figs. 7 and 8. The results presented are observed for the case
when the FEM is driven by a 1.5-kA electron beam, and single-
mode steady-state operation was achieved. Fig. 8(a) shows the
particle energy evolution, with inserts to the figure showing a
closer detail of the particles entering and exiting the interaction
region. First, quasi-monoenergetic electron particles enter into
the interaction region; then, after passing through it (second
insert), the particles become trapped in potential “buckets” with
most of the particles having their mean energy reduced from
450 to ∼400 keV. In Fig. 8(b), the longitudinal spatial bunching
of the particles is also shown. The figures show that a uniform
beam enters the interaction region, while at the exit, i.e., after
the interaction with the EM field, a strongly bunched electron
beam emerges.

The distributions of the EM field components Er and Bz ,
associated with the partial waves (TEM and TE24,1) coupled in-
side the 2-D periodic lattice and participating in the beam–wave
interaction, are shown in Fig. 9. The field structures are also
observed for the steady-state part of the FEM operation. As pre-
dicted by the theory developed in previous works [6], [7], [11]–
[13], [21]–[28], the coupling between the near-cutoff TE24,1

wave [Bz field component, Fig. 9(a)] and a propagating TEM
wave [Er field component, Fig. 9(b)] takes place inside the 2-D
Bragg mirror. Indeed, as shown in Fig. 9(a), the Bz component
exists only inside the 2-D periodic structure, and its longitudinal
wavenumber is very small ∼1/l1. Let us also note that the field
inside the 2-D mirror synchronizes radiation of the electron
beam and influences the output signal spectral characteristic.
In Fig. 10, the spectra of the Er field component, of the output
radiation associated with the TEM operating mode, are shown
for driving currents of 1.5 (1) and 3.5 kA (2 and 3). The
rest of the field components were also observed in the output
radiation, but in the operating frequency range, their amplitude
is negligible (at least 20 dB lower). The satellites observed in
spectrum 1 in Fig. 10 correspond to the spectral components
associated with the number of the longitudinal variation of
the near-cutoff partial wave TE24,1. It was found that the
variation of the mirror length affected the distance between the
satellite modes and also resulted in detuning of the operating
frequency inside the 2-D mirror band gap. An increase of the
electron beam current up to 3.5 kA without changing the cavity
parameters resulted in the appearance of a high noise signal
(spectrum 2 in Fig. 10). However, single-mode operation was
observed for this increased beam current when the length of the
intermediate section (smooth waveguide) between the mirrors
was decreased from 400 to 200 mm (Fig. 10).

V. EXPERIMENTAL STUDIES OF FEM BASED ON

TWO-DIMENSIONAL DISTRIBUTED FEEDBACK

In the previous experiments conducted with the coaxial FEM
based on 2-D distributed feedback, a two-mirror high-Q cavity
was formed by 2-D Bragg structures [13], [36]. The high Q
factor of the cavity restricted the efficiency to 6% while, due
to features specific to the 2-D structures as detailed in [12],
[23]–[27], and [37], the power losses inside the output mirror
were high. To overcome these problems, the use of a coaxial
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Fig. 8. (a) Dependence of the electron beam macroparticles’ energy on the position inside the interaction region. The inserts show the zoom ins of the
aforementioned graph at the (left insert) entrance and the (right insert) exit from the interaction space. (b) Illustration of the electron beam evolution, i.e., (first
figure) a uniform beam entering into the interaction region and (second figure) a strongly bunched electron beam near the exit.

1-D Bragg structure as an output reflector was suggested [23],
[24], [27]. A two-mirror cavity was formed using 2-D–1-D
periodic structures as input and output mirrors, respectively,
separated by a length of regular coaxial waveguide. The closed
feedback loop inside such a cavity was observed via EM wave
reflection from the input (2-D) and output (1-D) mirrors, which
can only be achieved if the band gaps of the input and output
mirrors are overlapping not only in terms of frequency but
also in terms of wavenumbers [12], [13]. The operation of the
FEM, demonstrated in this paper, is an experimental proof of
the broad concept that the 2-D distributed feedback formed
inside a part of the interaction space (for instance, inside the
input mirror) is sufficient to synchronize the radiation from
different parts of the electron beam. The 2-D and 1-D periodic
structures used in the experiment to define the two-mirror cavity
are designed and constructed to ensure that the overlap between
the mirrors’ band gaps takes place only for the fundamental
TEM mode of the cavity. The periodic structures have the
following parameters: The 2-D lattice (input mirror) has an
axial periodicity of 8 mm and shows 24 periodic variations
across the azimuth, with a corrugation amplitude of 0.8 mm;

the 1-D lattice (output mirror) has an axial periodicity of 4 mm
and a corrugation amplitude of 0.4 mm.

To ensure the start-up of FEM oscillations, the cavity used
in the experiment had a longer interaction region as compared
with that designed using numerical methods. The experimental
cavity was formed by input (2-D) and output (1-D) mirrors of
lengths l1 = 112 mm and l3 = 100 mm, respectively, with the
length of the smooth coaxial waveguide between them set at
l2 = 600 mm. Such alterations to the cavity were carried out as
a consequence of the fact that the numerical model developed
did not take into consideration some technical solutions real-
ized in the experiment, such as the inner conductor supports,
increased EM field losses due to surface roughness of the
machined components, etc., which ultimately result in a drop of
the driving current, a decrease of the cavity Q factor, and, thus,
an increase of the transition time. The electron beam current
pulse duration is ∼200 ns, and therefore, it was important to
ensure that the transition time did not exceed 100 ns. The
requirement for the minimum transition time also means that
the minimum electron beam current required to drive the FEM
should be above 1 kA. This led to the alterations made, to
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Fig. 9. Contour plots and graphs showing the dependences of the amplitude
of the (a) longitudinal magnetic field and the (b) radial electric field associated
with the TE24,1 and TEM partial waves, the superposition of which defines the
fundamental eigenmode of the cavity.

Fig. 10. Spectra of the FEM output radiation associated with the Er field
component and observed from the numerical studies of the FEM having
a2 = 0.4 mm, a1 = 0.2 mm, and the following: (Curve (1), solid line) l1 =
140 mm, l2 = 400 mm, and l3 = 70 mm and driven by a 1.5-kA electron
beam; (curve (2), dotted line) l1 = 140 mm, l2 = 400 mm, and l3 = 70 mm
and driven by a 3.5-kA electron beam; and (curve (3), thin line) l1 = 140 mm,
l2 = 200 mm, l3 = 70 mm and driven by a 3.5-kA electron beam.

the cavity design based on numerical simulations. However,
it is our intention to study a FEM based on a cavity having
parameters close to optimum values in future experiments.

The two-mirror cavity was located inside the uniform part of
the large-diameter azimuthally symmetric 30-period undulator
with a single period of length 40 mm (ku = 2π/du, du =

Fig. 11. (a) Measured microwave output pulse and electron beam voltage
observed during experimental studies of the FEM when driven by a 1.5-kA
electron beam. (b) Comparison of the microwave output pulses’ shapes ob-
served from the FEM when driven by 1.5- and 3.5-kA electron beams.

40 mm). To minimize parasitic cyclotron oscillations, the un-
dulator field was slowly up tapered over the initial six periods,
ensuring an adiabatic entrance of the electron beam inside the
interaction space. During the experiments, the amplitude of the
undulator was varied from 0 to 0.07 T, while the amplitude
of the guide magnetic field was tuned between 0.5 and 0.7 T.
In Fig. 11(a), the time correlation between the traces of the elec-
tron beam accelerating voltage and microwave output pulse,
obtained using a driving current of 1.5 kA, is shown. The tran-
sition period takes place during the first ∼100 ns [Fig. 11(a)],
which indirectly confirms the estimation of the cavity Q factor
and the electron beam current. A comparison of the microwave
output pulses observed from the FEM driven by 1.5- and 3.5-kA
electron beams is shown in Fig. 11(b). The increase of the
current to 3.5 kA resulted in a decrease of the transition time
[Fig. 11(b)]; however, the pulse shape and the FEM efficiency
were strongly affected. It was estimated that the efficiency
dropped from ∼10% in the case of the FEM driven by a 1.5-kA
electron beam to ∼5% when the FEM was driven by a 3.5-kA
electron beam.

The frequency of the output radiation was measured using
both the following: cutoff filters [Fig. 12(a)] and a heterodyne
technique [Fig. 12(b) and (c)]. Using a set of cutoff filters,
it was established that the 2-D Bragg FEM operated within
the 33- to 40-GHz frequency region [Fig. 12(a)]. To study the
output spectrum in more detail, the frequency of the output ra-
diation was measured using a heterodyne frequency diagnostic.
For this purpose, the microwave radiation from the FEM was
mixed in a dc-biased Farran Technology waveguide balanced
mixer (BMC-28B). The comparison between the traces of the
mixed signal and the FEM output microwave signal is shown
in Fig. 12(b). Calibration of the mixer was confirmed in the
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Fig. 12. Results of the study of the output pulse spectra using (a) 35.9- and
38.9-GHz cutoff filters. (b) Traces of the microwave output pulse and mix of the
microwave pulse and signal from the LO. (c) Spectra of the microwave pulse
shown above sampled in different time intervals, as shown in (b).

frequency range 26.5–40 GHz in cold microwave measure-
ments, using a 40-GHz HP synthesized sweeper acting as the
local oscillator (LO) and an Anritsu pulsed sweeper acting
as the FEM source to be measured. The Anritsu sweeper
could produce 100-ns-duration millimeter-wave pulses in the
frequency range 0.01–50 GHz. In the FEM experiments, the
Anritsu swept source was replaced with the output signal from
the FEM. The resultant intermediate frequency was captured
using a 12-GHz Tektronix TDS6124C real-time digital storage
oscilloscope and analyzed using a conventional FFT algorithm.
Knowing the frequency of the LO and ensuring that the signal
to be measured was located within a frequency of ±6 GHz
(digitizing bandwidth of the oscilloscope) from the LO, mea-
surement of the resultant intermediate frequency enabled the
output frequency of the FEM to be determined. In Fig. 12(c),
the spectra observed from the mixed signal [see Fig. 12(b)]
are presented. The dashed lines in Fig. 12(b) indicate the time
intervals which were analyzed to observe the spectra shown in
Fig. 12(c).

Oscillations in two frequency regions around 36.7 and
37.3 GHz were observed (Fig. 13). In Fig. 13, the dependence

of the microwave output pulse, the mixed signal, and the spectra
of the output signal are shown (note here that the dc bias on
the mixed signal has been removed, with no detrimental effect
shown on the resulting spectral content). It was found that,
in the vicinity of the resonance values of the undulator field,
suppression of the low-frequency parasitic mode located around
36.7 GHz occurred and that the excitation of the main operating
mode at 37.3 GHz of the FEM was observed. The tunability
of the operating mode when the FEM was driven by a 3.5-kA
electron beam was also studied. The microwave radiation and
spectra measured at two different undulator fields are shown
in Fig. 14. Analyzing the spectrum of the output radiation, it
was found that, for a high amplitude of the undulator field, the
operating mode was excited at a frequency of 37.3 GHz, and for
a slightly lower field amplitude, the operating frequency was up
shifted to 37.4 GHz [Fig. 14(b)].

The output radiation pattern measured was similar to that
observed in [13] and [36] and confirmed the excitation of the
fundamental mode. In the case of a 1.5-kA driving electron
beam, the output power measured at the detector was integrated
over the radiation pattern, resulting in a FEM output power of
65 MW, which corresponded to ∼10% efficiency. For a micro-
wave pulse duration of 150 ns, the energy stored inside the pulse
was calculated to be ∼10 J. To demonstrate the output pulse
power intensity, a neon bulb panel was placed ∼0.2 m from the
output window. The excitation of the neon bulb panel by the
output radiation pulse is visible in Fig. 15(b), and its pattern
corresponds well with the mode pattern [Fig. 15(a)] measured
by scanning a millimeter-wave detector horizontally in front of
the output window. Let us note that the relative uncertainty of
the FEM output power measured did not exceed ∼10%.

VI. CONCLUSION

In this paper, the FEM experiments conducted at the Univer-
sity of Strathclyde were discussed, and the results achieved at
each step were reported. The experimental setup, including the
designs of the pulse power supply and the HCA, was presented,
and the results of experimental studies of the PPS and HCA
and measurements conducted were discussed. We demonstrated
the results of the numerical modeling and experimental studies
of the HCA used to power a FEM based on 2-D distributed
feedback.

It was shown that the application of 2-D distributed feedback
in a part of the interaction region is sufficient to synchronize the
radiation of an oversized electron beam. In the experiments con-
ducted, a mode pattern associated with a radiating TEM wave
from the coaxial output horn was measured, and it was demon-
strated that the microwave peak power from the FEM was large
enough to excite a neon bulb panel at the output. The effect
of increasing the electron beam current (from 1.5 to 3.5 kA)
without adjustment of the cavity parameters on the performance
of the FEM was studied. It was demonstrated that such an
increase in beam current resulted in a decrease of the transition
time and a deterioration in the output microwave pulse shape
and in the FEM efficiency. The excitation of parasitic modes
was also observed when the FEM was driven by a 3.5-kA
electron beam. Numerical simulations indicate that, to improve
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Fig. 13. Results of the experimental study of the microwave output pulse from the FEM driven by a 3.5-kA electron beam when the amplitude of the undulator
field was equal to 0.04 T.

Fig. 14. (a) Measured microwave pulses from the FEM driven by a 3.5-kA
electron beam when the undulator field was 0.038 and 0.04 T. (b) Spectra of the
output pulses shown above.

the FEM operation when driven by a high-current (3.5 kA) elec-
tron beam, the length of the cavity (between mirrors) should be
reduced from 600 (used in the experiments) to 200 mm.

Fig. 15. (a) Mode pattern of the output signal from the coaxial horn (bold
line) measured in the experiment and (dashed line) predicted by the 3-D code
MAGIC. (b) Excitation of the neon bulb panel by the output microwave pulse.

Using the results of the theoretical studies and data from
measurements, a new two-mirror cavity has been designed and
constructed having the parameters close to the one used in nu-
merical simulations. Application of this cavity should result in
an increase in efficiency and FEM operation stability; however,
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it is anticipated that the transition time may be increased. The
detailed spectral analysis of the output radiation from the FEM
driven by a 1.5-kA electron beam will be the next goal of the
future experiments.
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Excitation of surface field cavity and coherence of electromagnetic field
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The excitation of a surface field cavity based on a large area two-dimensional cylindrical lattice and
surface field scattering within the cavity are investigated. It is shown that the interaction between
surface and volume fields via distributed scatterers becomes coherent and the cavity excitation takes
place only when it is irradiated with a near cut-off transverse-magnetic polarized field. The
coherence of the radiation observed from the surface field scattering is investigated. © 2010
American Institute of Physics. �doi:10.1063/1.3529953�

The evolution of electromagnetic �EM� fields inside and
on the surface of structures based on periodic lattices is an
important problem.1–15 The lattice provides an interface
where nonlinear and nonstationary phenomena, associated
with an interaction between active media and EM fields take
place.1,3–7 The understanding of the EM field evolution in-
side and on the surface of a periodic lattice will result in the
realization of many concepts and ideas such as surface plas-
mon amplifiers,1 signal transformations,2 particle
acceleration,6 and cloaking devices.8 It will lead to the real-
ization of compact, oscillators operating in the high-
gigahertz, terahertz,3–5 and x-ray7 frequency ranges. Already
nanoparticles and nanowires have been suggested to form the
interaction regions, with localized surface fields tightly
coupled to the surface, allowing an interaction with the sur-
rounding active media.1,9 The size of the particles �less than
the operating wavelength �� ensures individual emitters/
scatterers are synchronized, resulting in a coherent emission.
Here we consider an “inverted model,” i.e., a hollow copper
cylinder with circumference much larger than � and the scat-
terers arranged in a two-dimensional �2D� periodic lattice on
the cylinder’s inner wall �2D corrugation of the metal cylin-
der inner surface4,10,11�. The coupling of the surface field
�SF� to the structure’s wall is mitigated by this 2D periodic
lattice9,12,13 which supports localized SFs bounded to and
decaying from the lattice toward the cavity center and pro-
vides coupling between the localized surface and volume
EM fields. The single element of the corrugation has dimen-
sions less than � and plays the role of a scatterer. The cou-
pling between surface and volume fields takes place inside
the frequency range defined by the Bragg resonance
conditions2,9–15 and we show that within the cylindrical lat-
tice it depends on the incident wave polarization and modal
structure. We demonstrate that the eigenmode excitation
takes place if the incident wave is a near cut-off transverse-
magnetic �TM� wave, which ensures the synchronization of
radiation from an individual scatterer. It is shown that only in
this case the SF coherent scattering from a large area �in
comparison with �2� 2D lattice can be observed. It is also

shown that if coupling between the SFs and the set of propa-
gating waveguide modes takes place on the lattice, either
partially coherent or incoherent radiation is observed.

The structure studied in this letter was made by electro-
forming a copper tube2 with a 2D corrugation of the inner
wall �Fig. 1�a��. This produces an open, SF cavity. The 2D
periodic corrugation on the surface of the cylindrical wave-

guide is defined as: r=r0+�r cos k̄zz cos m̄�.3,4,11,14 Here,
�r is the corrugation amplitude ��r���, r0 is the waveguide

mean radius �r0�dz, r0���, k̄z=2� /dz, dz�� is the lattice
longitudinal period, and m̄ is the lattice azimuthal number.
The photograph �Fig. 1�a�� and schematic �Fig. 1�b�� of the
experiments are shown. The forward transmission depen-
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FIG. 1. �Color online� �a� Photographs of experimental setups constructed to
study the cylindrical 2D periodic structure �diameter 80 mm, corrugation
depth 1 mm, 28 azimuthal variations, longitudinal period 8 mm, and length
48 mm� and based on coaxial �top inset� and cylindrical �bottom inset�
signal launches. The insets are schematics of the setups with arrows illus-
trating the waves’ propagations. The smooth section of length L=5 cm
separating the lattice from the launcher is a cut-off wave filter. �b� Schematic
of the experiment to study the radiation mode patterns from the SF and
SCW cavities.
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dence of the electromagnetic �EM� radiation on the fre-
quency �Fig. 1�a�� and the frequency dependence of the out-
put power for the set of receiving antenna angles �Fig. 1�b��
have been studied. The results observed are calibrated and
compared against the data obtained from the measurements
of a smooth cylindrical waveguide �SCW� cavity of similar
dimensions. To excite the cavity eigenmode, the structure4

was irradiated via a conical horn using the EM wave-beams
formed by the TE1,1, TM0,1, and 
TM0,n modes �Fig. 1�a�� of
cylindrical waveguide �the subscripts indicate the numbers of
modes’ azimuthal and radial variations, respectively�. To ob-
serve the modes a transmission line operating in the
frequency-band �33–40 GHz� was constructed.11 The smooth
waveguide, of length 5 cm, �top inset to Fig. 1�a��, was lo-
cated between the coaxial launcher and the SF cavity in or-
der to filter the cut-off TM0,10 mode, as illustrated in the top
inset to Fig. 1�a�. The pick-up horn to receive the transmitted
signals was located �1.2 m away from the structure being
studied. In the first set of experiments, a frequency sweep
from 35 to 40 GHz was conducted and the spectral analysis
of the transmitted signals was performed. The SF cavity was
irradiated with the signal formed by the TE1,1 and TM0,1
modes of circular waveguide having k��kz �bottom inset,
Fig. 1�a��. The results calibrated against the data from the
SCW cavity measurements are shown in Fig. 2�a�. If the
signal is formed by a TE1,1 �s-polarized� wave, the coupling
between the surface and volume fields �a scattering of the
incident wave� was not observed and the transmission was
not affected �dotted lines�. This indicates that the SF is
not excited, which agrees well with previous
observations.9,12,13,15 If however, the cavity is radiated with
the TM0,1 �p-polarized� wave �Fig. 2�a�, solid line� a trans-
mission gap in the frequency region between 37.5 and 38
GHz �as expected from the Bragg condition� is present. The
gap observed in this frequency band is relatively small

��−5 dB� and has an irregular shape. This is indicative of
weak coupling between the SF and the propagating wave
�k��kz�. The single scatterers which form the lattice are not
synchronized as the propagating wave freely radiates from
the structure, leading to an incoherent scattering of the EM
fields on the lattice and the “weak response” observed. Then
the cylindrical launcher was substituted with the coaxial
transmission line so only the transverse-electromagnetic
wave can be excited.11 The line was terminated before the
periodic structure resulting in excitation of the set of TM0,n
waves of the cylindrical waveguide where n� �1,10� and n
=10 corresponds to the cut-off number of the radial varia-
tions. The intermediate section of the smooth waveguide �top
inset Fig. 1�a�, L=5 cm� filters out the cut-off wave �n
=10� resulting in SF cavity excitation only by the propagat-
ing waves, i.e., �n=1

9 TM0,n. The gap observed �Fig. 2�b�, dot-
ted line� has approximately the same amplitude and band-
width as before ��−5 dB, �0.5 GHz� but a more regular
shape. This indicates, as in the previous case, that incoherent
scattering takes place �small amplitude, wide gap� and a
high-Q eigenmode is not formed inside the cavity. The pres-
ence of a number of propagating waves having different
modal structures ensures a more regular �smoother� shape of
the gap. Removing the regular waveguide section allows ex-
citation of the SF cavity with the full set of waves including
the cut-off wave TM0,10. In this case a strong and narrow gap
���15 dB, 80 MHz� in the transmitted signal spectrum was
observed �Fig. 2�b�, solid line� indicating the excitation of
the cavity and coherent scattering of the EM fields on the
corrugation. To study the coherence of the scattered field, the
angular ��� dependence of the power of the output radiation
was investigated �Fig. 1�b�� using small area �better then 1°
angular resolution� horn antenna. The results are presented in
Fig. 3�a� showing the output radiation patterns for �
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FIG. 2. �Color online� �a� The dependence of the transmission through the
SF cavity on the frequency, if the input wave-beam is formed by TE1,1

�dotted line� and TM0,1 �solid line� modes of cylindrical waveguide. �b� The
dependence of the transmission through the SF cavity on the frequency if
the input wave-beam is formed by the set of propagating TM0,n �excluding
the cut-off wave� waves �dotted line� and by the set of all TM0,n �including
the cut-off wave� �solid line� waves of the cylindrical waveguide.
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FIG. 3. �Color online� �a� The diagram illustrating the output radiation
patterns vs receiving antenna angular position observed from SF �graph 1�
and SCW �graph 2� cavities for the set of frequencies �36, 37.64, and 37.7
GHz�. �b� Dependence of the signal transmission through the SF cavity
observed for the set of angular positions of the receiving antenna.
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� �0° –90°� �graph 1 corresponds to the SF cavity, graph 2
corresponds to the SCW cavity�. The measurements were
conducted for the following frequencies: 36 GHz �far from
the gap center�, 37.64 GHz, and 37.7 GHz �in the vicinity of
the gap center�. Comparing the results one notes that the
radiation patterns are the same at 36 GHz, however, tuning
the signal frequency toward the gap center the amplitude of
the central lobe �� �0° –20°� �SF cavity� is decreased, while
it is constant over the whole frequency range in the case of
the SCW cavity. Let us look at the regions of graph 1 asso-
ciated with the angles �� �20° ;40°� and �� �50° ;90°�
where increase �up to 15 dB� in the field amplitude has been
observed at the frequencies 37.64 and 37.7 GHz. The region
�� �20° ;40°� �small scattering angle� is associated with the
incoherent scattering of the EM fields �i.e., coupling between
SFs and propagating waves on the lattice�, while the region
�� �50° ;90°� �large scattering angle� is associated with cav-
ity excitation and coherent scattering of the EM fields �cou-
pling of the SF and near cut-off wave�. The amplitude in-
crease is also observed in the region �� �60° ;90°� of graph
2 and is due to input signal coupling to the near cut-off wave
of the cylindrical waveguide. Comparing the graphs one
notes that the radiation lobe at �� �60° ;90°� �graph 2� is
smooth �single source radiation, no interference patterns� as
the lobe in the region �� �20° ;40°� �graph 1� �incoherent
scattering, no interference observed�, while the radiation pat-
terns at �� �50° ;90°� �graph 1� have a fine periodic ��6°�
structure with the contrast �difference between peaks and
trough� increasing as the signal frequency is tuned from
37.64 to the 37.7 GHz. The fine structures and variation of
the contrast �graph 1� resemble diffraction patterns and illus-
trate the behavior of coherent radiation �strong contrast� and
partially coherent radiation �weak contrast� scattering and in-
terference. Taking into account that the SF is bound to the
lattice, the set of oscillators �individual scatterers� can be
approximated by a narrow annular ring, allowing the period-
icity of the fine structures observed to be estimated by using
the “obscured Airy disc” model.16 Assuming that the diam-
eters of the aperture and obscuring disk are close to
each other, the minima locations are at ��48° ,
54° , 60° , 66° , 72° , 79° , 86°� which agrees well with
the experimental data. In Fig. 3�b� the frequency dependen-
cies of signal transmissions through the SF cavity �not cali-
brated against SCW cavity� for the set of receiving antenna
angles �� �3° ,57° –65°� are shown. The large signal
��10 dB above the noise level� in the frequency region
�37.65–37.85 GHz� has been observed at the angles of the
receiving antenna �� �57° –65°�, illustrating the coupling
between near cut-off waves and the SF. The minima in the
signal transmission traces are due to the destructive interfer-
ence of the waves originating from the different scatterers.
The results �Fig. 3�b�� show the excitation of the cavity
eigenmode at the center of the pass band minimum �~37.7
GHz�, while the frequency interval, in which the deviations
of the pass band minimum were observed , defines the eigen-
mode Q-factor ��700�.

In this letter we considered a cylindrical SF cavity based
on discrete scatterers arranged in a 2D lattice on the cylin-
drical waveguide wall. The SF, supported by the lattice, is
bound to the metal waveguide and coupled to the near cut-off
mode of the waveguide. We demonstrated the experimental
setup required to excite such a structure and the results of the

experimental studies. It is shown that the coherence of the
fields scattering on the lattice and the cavity excitation de-
pend on the incident wave polarization, frequency, and
modal structure. It has been demonstrated that the excitation
of the SF cavity’s eigenmode and coherent scattering take
place only if the input is a TM polarized, near cut-off wave.
We have shown that the coupling of the SFs to the near
cut-off wave of the waveguide led to synchronization of the
SFs and “switching” the system into a “coherent state” asso-
ciated with the cavity high-Q-eigenmode excitation. It has
been shown that the SFs can also be excited by propagating
waves, however, the radiation observed due to such scatter-
ing was either partially coherent or incoherent. The diffrac-
tion patterns have been measured and analyzed. The SF cav-
ity Q-factor has been estimated and result agrees with
numerical predictions. It is worthwhile noting that a SF cav-
ity studied can be compatible with a broad variety of active
media, including electron beams and plasmas.2–7,10,11 The to-
pology of the structure allows it to be applied as a vessel for
vacuum, gas, plasmas, and to form a high-Q cavity.4,14 The
structures have a notable resemblance to the nanoparticles
doped fibers, light wells, and graphene nanotubes.
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The analysis of electrodynamic properties of two-dimensional �2D� Bragg resonators of coaxial
geometry realizing 2D distributed feedback was carried out using a quasioptical approach of
coupled-wave theory and three-dimensional �3D� simulations. It is shown that the high selectivity of
a 2D Bragg resonator over the azimuthal index originates from the topological difference in the
dispersion diagrams of the normal symmetrical and nonsymmetrical waves near the Bragg
resonance frequency in a double-periodic corrugated unbounded waveguide. For a symmetrical
mode near the Bragg frequency it was found that the group velocity tends to zero as well as its first
derivative. This peculiarity of the dispersion characteristic provides the conditions for the formation
of an eigenmode with a Q-factor essentially exceeding the Q-factors of other modes. The results of
the theoretical analysis coincide well with results of 3D simulations using the CST code
“MICROWAVE STUDIO” and confirm the high azimuthal selectivity of the system. © 2009 American
Institute of Physics. �DOI: 10.1063/1.3143019�

I. INTRODUCTION

The use of two-dimensional �2D� distributed feedback
has been proposed1,2 as a method of producing spatially co-
herent radiation from either sheet or annular high-current
relativistic electron beams with the transverse size greatly
exceeding the wavelength. The 2D distributed feedback can
be realized in planar and coaxial 2D Bragg cavities with a
double-periodic corrugation of the walls. On this corrugation
mutual scattering of the electromagnetic energy fluxes propa-
gating in the forward, backward, and transverse directions
�relative to the direction of the electron beam propagation�
takes place. These transverse waves can act to synchronize
radiation from different parts of a large size electron beam.
Experimental studies of free electron masers �FEMs� exploit-
ing this novel feedback mechanism have demonstrated effec-
tive transverse �azimuthal� mode selection both in planar3

and coaxial4,5 schemes.
In support of the FEM experiments detailed studies of

the mechanism of mode selection in 2D Bragg resonators is
required. The present paper is devoted to the analysis of the
electrodynamic properties of 2D Bragg cavities of coaxial
geometry with the diffraction effects taken into account. In
Sec. II the basic model and equations describing the scatter-
ing of the four partial electromagnetic waves propagating in
the longitudinal and azimuthal directions are presented. In
Sec. III dispersion properties of the normal waves propagat-
ing in an unbound double-periodic corrugated waveguide of
coaxial geometry are studied. It is shown that the symmetri-
cal and nonsymmetrical normal waves demonstrated totally
different behavior near the Bragg resonance frequency. This
results in a high selectivity of the coaxial 2D Bragg resona-

tors over the azimuthal mode indices. Such resonators, which
are formed from double-periodic coaxial waveguide sections
of finite length are considered in Sec. IV. The results of this
theoretical analysis are corroborated by three-dimensional
�3D� modeling, which was performed using the code CST
“MICROWAVE STUDIO” and is described in Sec. V.

II. MODEL AND BASIC EQUATIONS

A coaxial 2D Bragg structure �Fig. 1� consists of two
conductors of radii rin and rout having a small depth corruga-
tion which is a superposition of two helical corrugations with
opposite rotations:

a =
a1

2
cos�h̄zz�cos�M̄�� =

a1

4
�cos�h̄zz − M̄�� + cos�h̄zz

+ M̄��� , �1�

where a1 is the corrugation depth, h̄z=2� /dz, dz is the period

of the corrugation along the z-coordinate, M̄ is the number of
variations along the corrugation over the azimuthal coordi-
nate, z and � are the longitudinal and azimuthal coordinates,
respectively. We assume small curvature of the resonator sur-
face, i.e., that the waveguide mean radius r0= �rin+rout� /2
greatly exceeds the distance between the conductors a0

=rout−rin and the radiation wavelength �:

r0 � a0, r0 � � . �2�

In this approximation the dispersion equation for the eigen-
waves of a coaxial waveguide can be reduced to the form6,7

which is similar to the case of a planar waveguide:a�Electronic mail: peskov@appl.sci-nnov.ru.
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�2

c2 � hz
2 + hx

2 + �p
2, �3�

where hz is the longitudinal wavenumber, hx=M /r0 is the
transverse �azimuthal� wavenumber, �p� p� /a0 is the radial
wavenumber, M and p are the azimuthal and the radial mode
index, respectively. Thus, we can adopt the planar model and
introduce the transverse coordinate x=r0� over the azimuth
of the system.

Under assumption �2� together with the assumption of a

shallow corrugation: h̄x,za1�1, we present the electromag-
netic field inside the structure in the form of four partial
wave beams propagating in the �z and �x directions:

E� = Re��A+E� 1
0e−ih1z + A−E� 1

0eih1z + B+E� 2
0e−ih2x

+ B−E� 2
0eih2x�ei�t� , �4�

where A��x ,z�, B��x ,z� are slow functions of the longitudi-
nal and transverse �azimuthal� coordinates and the functions
E� 1,2

0 �r� describe radial distributions of the waves and coin-
cide with one of the modes of a coaxial waveguide. The four
partial waves with the wavenumbers h1,2 undergo coupling
on the double-periodic structure �1� if the Bragg resonance
conditions are satisfied �see. Fig. 1�b��:

h1 � h̄z, h2 � h̄x, �5�

where h̄x=M̄ /r0. Under condition 2� /dz=M̄ /r0 we have h̄x

= h̄z= h̄ and according to Eq. �5� all the four partial waves
possess the same wavenumber h1=h2=h and have the same
number of field variations over the radius. For simplicity we
consider coupling of the lowest waves having zero variation
of the field over the radius p=0. This corresponds to longi-
tudinally propagating partial wave-beam �A�� consisting of a
number of TEM,0-type modes of a coaxial waveguide with
low azimuthal indices �M =0,1 ,2 , . . .� including the funda-

mental TEM-mode �M =0� and transversely propagating
wave beams �B�� consisting of TEM,0-modes �whispering

gallery modes� with high azimuthal indices �M �M̄ �1�. It
is important to note that the radial structure of the TEM,0-type
modes is also close to a TEM-type wave when conditions �2�
are fulfilled. As a manifestation of this fact the dispersion
equation of the partial waves reduces to form �3�.

The process of the partial waves scattering on corruga-
tion �1� may be described by the set of coupled-wave equa-
tions �compare with Refs. 2 and 8�:

�
�A�

�z
+ i	A� + i
�B+ + B−� = 0, �6a�

i

2h̄

�2B�

�z2 �
�B�

�x
+ i	B� + i
�A+ + A−� = 0, �6b�

where 	= ��− �̄� /c is the frequency mismatch from the

Bragg resonance �̄= h̄c and 
 is the wave coupling coeffi-
cient, which for the considered case of coupling between
TEM and TEM,0-modes when both conductors are corrugated
equals


 =
a1h̄

8a0
. �7�

Note that for azimuthally propagating waves B� we have the
parabolic type Eq. �6b� which includes diffraction effects
�these transverse waves would be locked inside the resonator
if the diffraction is neglected�. At the same time for longitu-
dinally propagating waves A� diffraction effects are not so
important and have no significant influence on the properties
of the system.

Due to the coaxial geometry of the cavity the wave-
beam amplitudes should satisfy the cyclic boundary condi-
tions:

B��x + lx,z� = B��x,z�, A��x + lx,z� = A��x,z� , �8�

where lx=2�r0 is the resonator perimeter. Conditions �8� al-
low a solution of Eq. �6� to be presented in a Fourier series:

A��x,z� = �
m=−�

�

A�
m�z�e2�imx/lx, B��x,z�

= �
m=−�

�

B�
m�z�e2�imx/lx. �9�

Each Fourier term in Eq. �9� with its own index m may be
considered as a normal wave. Substituting Eq. �9� in Eq. �6�
for the normal wave amplitude we get

�
dA�

m

dz
+ i	A�

m + i
�B+
m + B−

m� = 0, �10a�

1

2h̄

d2B�
m

dz2 + �	 �
2�m

lx
�B�

m + 
�A+
m + A−

m� = 0. �10b�

Note that in correspondence with relations �3� and �4� for the
transversely propagating partial waves B� the index m must

be considered in addition to the azimuthal index M̄ �it is

(b)

(a)
inr

outr
zl

FIG. 1. �Color online� �a� Schematic diagram of FEM with coaxial 2D
Bragg resonator and annular electron beam moving in the +z direction. �b�
Diagram illustrating the scattering of partial waves on the 2D Bragg grating
�h�1 and h�2 are the wave vectors of the partial waves A� and B�, respectively,

and H̄� �= h̄xx�
0� h̄zz�

0 are the grating vectors�.
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assumed m�M̄�. Thus, to clarify the nomenclature of the
normal waves of a corrugated coaxial waveguide, the normal
wave with index m=0, which is called a symmetrical wave,
consists of both the longitudinal partial waves A�, which
only possess an azimuthally symmetrical structure, and
transversely propagating partial waves B� with high azi-

muthal index M̄. In the general case, the normal wave with
index m is a set of four coupled partial waves A� and B�,
which are characterized by azimuthal indices m and M

=M̄ �m, respectively.

III. DISPERSION PROPERTIES OF THE NORMAL
WAVES IN DOUBLE-PERIODIC CORRUGATED
COAXIAL WAVEGUIDES

Let us consider normal waves propagating in an un-
bounded coaxial waveguide having a double-periodic corru-
gation of the walls �1�. Looking for solution of Eq. �10� in
the form A�

m =a�
mei�z, B�

m =b�
mei�z we get the dispersion equa-

tion for the normal waves

�2h̄	 − 2h̄
2�m

lx
− �2��2h̄	 + 2h̄

2�m

lx
− �2��	2 − �2�

= 8
2h̄	�2h̄	 − �2� . �11�

Obviously dispersion Eq. �11� describes coupling of the
four partial waves given by Eq. �4�. At 
=0 this equation
reduces to four separate equations: two equations describing
both longitudinally propagating waves A�

	 = � � �12a�

and two equations describing dispersion of the transversely
propagating waves B�

2h̄	 = � 2h̄
2�m

lx
+ �2. �12b�

For 
�0 the dispersion diagrams for normal waves with
m=0 and m= �1 are shown in Fig. 2. From comparison with
the asymptotes given by Eq. �12� and shown on the same
diagrams by thin lines one can conclude that the branches
“1” and “2” originate from the partial waves A� while the
branches “3” and “4” originated from the quasi-cut-off par-
tial waves B�. In general, the main difference in the dia-
grams presented as compared to traditional one-dimensional
�1D� Bragg structures is the existence of a dispersion curve
near the Bragg frequency �� �̄ �i.e., 	�0�. This peculiarity
is obviously related with the participation in the scattering
process of the quasi-cut-off partial waves B�.

Even more important is the fact that the dispersion dia-
grams have totally different behavior in the case of azimuth-
ally symmetric �m=0� and nonsymmetric normal waves.
When m=0 for the quasi-cut-off partial waves B� the con-
vergence of the unperturbed dispersion curves �12b� takes
place and in this case the coupling of waves at 
�0 result in
a dispersion equation in the form

�2h̄	 − �2��	2 − �2� = 8
2h̄	 . �13�

It follows from Eq. �13� that near the Bragg frequency in-
stead of the traditional parabolic dependence of frequency on

the wave number �which is realized, in particular, near the
Bragg reflection zone in the case of the traditional resonators
with a 1D corrugation9–12� we get the fourth order
dependence13

�4 � 8
2h̄	 . �14�

Thus, near the Bragg frequency �i.e., 	→0� not only does
the group velocity of the normal wave tend to zero but its
first derivative as well. This peculiarity of the dispersion
characteristic of the normal wave m=0 near the Bragg fre-
quency provides the conditions for the formation of an eigen-
mode with a Q-factor essentially exceeding the Q-factors of
other modes. Indeed the dispersion diagrams for other nor-
mal waves with m�0 have topologically different behavior
�compare Figs. 2�a� and 2�b�� near 	�0 as well as the tra-
ditional square dependence of the frequency on the wave
number at the extremes of the dispersion curves.

Let us consider now the geometrical-optical approach,
which was used in previous works �see, for example, Refs. 2
and 14� for the analysis of the FEM based on coaxial 2D
Bragg resonators. In the frame of Eq. �10� it corresponds to a

limit h̄→�. In this case it is possible in Eq. �10� to neglect
the term 	d2B�

m /dz2, which is responsible for the diffraction
of the waves B�. As a result, the dispersion Eq. �11� can be
reduced to

-6 -3 0 3 6

���

-3

0

3

��
�

1

2

3(4)
�)

b)

FIG. 2. Dispersion diagrams of the normal waves in the coaxial 2D Bragg

structure unbounded in the longitudinal direction when h̄ /
=35: �a� sym-
metrical waves m=0 and �b� nonsymmetrical waves m= �1 �these waves
are classified by the azimuthal structure of the longitudinally propagating
partial waves�. Thin lines correspond to the dispersion curve of the partial
waves, dashed lines show dispersion diagrams of the normal waves obtained
using the geometrical-optical approach. Positions of a few symmetrical
modes with the lowest longitudinal indices n are shown in �a� by circles,
position of the nonsymmetrical mode having the maximum-Q in the family
is shown in �b� by the asterisk.
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�	 −
2�m

lx
��	 +

2�m

lx
��	2 − �2� = 4
2	2. �15�

Dispersion diagrams corresponding to Eq. �15� are shown in
Fig. 2 by dashed lines. It is seen that in the region of small
wavenumbers �

 these dispersion diagrams approximate
well with the dispersions obtained using the full Eq. �11�.
The most important fact even when the geometrical-optical
approach is used is that the dispersion curves demonstrate
totally different behavior for the case of symmetrical �m
=0� and nonsymmetrical �m�0� waves, which finally results
in high selectivity of the system over the azimuthal index. At
the same time, the dispersion curves 

3�� and 

4�� in the
case m=0 are transformed into a straight line: 	�0. In fact,
in the geometrical-optical approach the azimuthally symmet-
ric modes are degenerate over the longitudinal index n. All
these modes for any indices n have the same frequency
which coincides with the Bragg resonance frequency �̄ �	
�0� and the same Q-factor which tends to infinity. So in this
approximation these modes have no diffraction losses. How-
ever, as it was shown in Ref. 13, this degeneration can be
removed when diffraction is taken into account and the dis-
persion curve transforms to the form given by Eq. �14�. Nev-
ertheless the use of the geometrical-optical approach in non-
linear theory is justified by the fact that the interaction with
the electron beam resolves this mode degeneration �see, in
particular, Refs. 2 and 14�. The Q-factor of these modes
would be finite when Ohmic losses are taken into consider-
ation.

IV. MODE SELECTION IN 2D BRAGG RESONATORS
OF COAXIAL GEOMETRY

To find eigenmodes of the 2D Bragg cavity having a
double-periodic corrugation of finite length lz in the longitu-
dinal direction we should apply boundary conditions at the
cavity ends at z=0 and z= lz. We assume here an ideally
matched system which could provide in the definite fre-
quency band zero reflections for all partial waves from the
ends of the corrugations. Thus, in the assumption that the
partial waves do not reflect from the ends of the corrugated
surface and EM fluxes from outside of the resonator are ab-
sent, the boundary conditions for Eq. �10� for the longitudi-
nally propagating waves take the form

A+�x,z = 0� = 0, A−�x,z = lz� = 0. �16�

From Eq. �10b� for the transverse propagating wave
fluxes B�

m outside the resonator z�0 and z� lz, where the
corrugation is absent 
=0, we get

d2B�
m

dz2 + 2h̄�	 �
2�m

lx
�B�

m = 0. �17�

General solution of Eq. �17� is

B�
m = C1

�ei�z + C2
�e−i�z, �18�

where �=
2h̄�	�2�m / lx�, C1,2
� are the arbitrary constants.

At z�0 only the radiated wave propagating away from the
resonator edge should be presented. Thus, in Eq. �18� we
should put C2

��0 and get B�
m =C1

�ei�z. From the continuity

of the fields B�
m and their derivatives dB�

m /dz at z=0 �which
follows from the continuity of the electrical field and mag-
netic field at the resonator edge correspondingly� we get the
following boundary conditions:

��dB�
m

dz
− i
2h̄�	 �

2�m

lx
�B�

m��
z=0

= 0. �19a�

In the same way, at z= lz we have

��dB�
m

dz
+ i
2h̄�	 �

2�m

lx
�B�

m��
z=lz

= 0. �19b�

Eigenfrequencies and Q-factors for the resonator modes
are given by

�m,n = �̄ + c Re�	m,n� , �20a�

Qm,n �
�̄

2c Im�	m,n�
, �20b�

where 	m,n is the complex frequency mismatch from the
Bragg resonance for the mode with the indices �m ; n�, n
=1,2 ,3 , . . . is the longitudinal index of the modes. In the
case of the azimuthally symmetric modes m=0 near the
Bragg frequency, where we have the dispersion Eq. �14�, the
analytical solution for the complex eigenfrequencies can be
presented in the form �see Ref. 8 for details�

	0,n =
�4n4

8h̄
2lz
4

+ i
�4n4

4h̄
3lz
5

. �21�

It follows from relations �20� and �21� that the highest
Q-factor �lowest diffraction losses� is realized for the mode
with one longitudinal variation n=1. The analytical solutions
�21� coincide well with the results of numerical simulation of
the full characteristic equation, which can be written based
on dispersion Eq. �11� and boundary conditions �16� and
�19�. In Fig. 3 the real and imaginary parts of 	 are shown for
longitudinal modes n=1 as a function of 
lz and demonstrate
good agreement with the results of numerical simulation of
this characteristic equation for 
lz�3.

The longitudinal profile of the partial waves for the fun-
damental eigenmode �m=0;n=1� for 
lx=
lz=5 is shown in
Fig. 4�a�. With the increase of the longitudinal mode indices
the diffraction losses increase as 	n4. Note, that in the case
of a traditional 1D Bragg resonator in the form of a single
corrugated section having the same coaxial geometry and
coupling coefficient, for the diffraction losses we get9,12

Im�	n� �
�2n2


2lz
3 . �22�

Thus, we can conclude that fundamental modes in a 2D
Bragg resonator have much higher Q-factors as compared to
a 1D Bragg resonator. Moreover, a 2D Bragg resonator has
more efficient selectivity even over the longitudinal indices
as compared to a traditional 1D Bragg cavity of the same
geometry.

Note, that together with the symmetrical modes posi-
tioned near 	�0 there are high-Q azimuthally symmetrical
modes with frequencies located near 	� �2
 �see Fig.
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4�b��, i.e., near the extremes of the dispersion curves for the
normal waves. Evidently, at these extremes the group veloc-
ity tends to zero as well. However the difference with the
dispersion curve “3” �“4”� passing through the exact Bragg
frequency is that the second derivation for branches “1” and
“2” is not zero and this results in significantly lower
Q-factors as compared to the modes located at 	�0.

For nonsymmetrical waves m�0 the complex eigenfre-
quencies were found by numerical solution of the character-

istic equations. The profiles of the partial waves for the
high-Q nonsymmetrical m=1 eigenmode are shown in Fig.
5. According to the simulations for the nonsymmetrical
modes the maximum-Q factor is realized when the mode
eigenfrequency is positioned near the minimums on the dis-
persion curves 3 and 4 �position of one such mode is shown
in Fig. 2�b� by the asterisk�, i.e., occurs near the point where
the group velocity tends to zero. However similar to the case
of the symmetrical modes with the eigenfrequencies located
near 	� �2
 we have a nonzero second derivative here as
well. As a result, all these modes also have significantly
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FIG. 3. Comparison of analytical �solid line� and numerical �dashed line�
solutions of the characteristic equation for diffraction loss Im�	0,1� for the

fundamental symmetrical mode �m=0; n=1�: h̄ /
=60, 
lx=2.5.
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lower Q-factors as compared to the fundamental symmetrical
mode.

Thus, by considering all of the above, 2D Bragg resona-
tors possess high selectivity when the perimeter is of the
same order as the length of resonator lx� lz and both greatly
exceed the radiation wavelength lx,z��. For the resonator
geometry 
lx=
lz=5 the spectrum of the eigenmodes pre-
sented in Fig. 6 shows that the diffraction losses for the
fundamental mode are about an order of magnitude lower
than the lowest losses of higher order modes. Note also, that
the high-Q nonsymmetrical modes possess a large number of
longitudinal variations of the field as well as a relatively low
amplitude of the longitudinally propagating partial waves in
comparison with the transversely propagating waves
A+

max /B+
max�1 �compare Figs. 4 and 5�. Therefore, some ad-

ditional mechanisms of so-called electronic selection exist
for these modes when interacting with the electron beam �we
have assumed that in the FEM the electrons only interact
with the forward propagating partial wave A+ �Refs. 2, 5, and
14��. The electronic selection should lead to the additional
discrimination of the excitation of the nonsymmetrical
modes due to two factors—first, the fast longitudinal varia-
tion of field amplitude results in violating the synchronism
condition, and second the low amplitude of the partial oper-
ating wave results in small coupling with the beam.

With the increase in the resonator perimeter lx for fixed
coupling parameter 
 and length lz the selective properties of
the resonator deteriorates. Obviously, with increasing perim-
eter lx the dispersion curves 3 and 4 for the nonsymmetrical
waves �m�0� become more and more flat and in the limit
lx→� �see Eq. �11�� tends to the dispersion curve of the
symmetrical wave, which does not depend on the perimeter.
Nevertheless this implies that restrictions on the system pe-
rimeter are not severe. In Fig. 7�a� for the nonsymmetrical
mode �m�=1 with the maximum-Q factor the dependence of
the diffraction losses on the resonator perimeter is shown

together with the losses of the fundamental symmetrical
mode, which is shown by the dotted line. It is seen that for
the given cavity length 
lz=5 the losses of the nonsymmetri-
cal mode approaches the losses of the fundamental sym-
metrical mode only when the system perimeter exceeds 
lx

�70. Note that the irregularities in the dependence of the
losses on the perimeter shown in Fig. 7 are caused by the
change in number of the longitudinal variations n of the non-
symmetrical mode, which possesses the highest-Q factor. For
example, when 
lx=5 the highest Q-factor in the family of
nonsymmetrical modes with m=1 is realized at the mode
with n=6 �see Fig. 5�.

It is important to note, that if the resonator length lz

increases, then the Q-factor of the fundamental symmetrical
mode in accordance with Eq. �20b�, Eq. �21� will grow as lz

5

and, therefore, the selective properties of the resonator can
be maintained even for larger perimeters lx. This is confirmed
by Fig. 7�b� where the dependence of the minimum diffrac-
tion losses for the nonsymmetrical modes m=1 on the reso-
nator perimeter is shown for 
lz=10. Doubling the length of
the resonator will result in a significant increase in the pe-
rimeter of up to 
lx
300 �compare Figs. 7�a� and 7�b��
while still permitting high selectivity.
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FIG. 6. The eigenmode spectrum: diffraction losses Im�	m,n� of the modes
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As can be seen from the dispersion Eq. �11� increase in
the azimuthal index of the modes m is equivalent to a de-
crease in the effective perimeter as lx

eff= lx /m. Thus, follow-
ing from Fig. 7 an increase in the azimuthal index in general
does not lead to an increase in the Q-factor of the nonsym-
metrical modes. Note also, that due to the dependence of the
Q-factors of the modes on the dimensionless scale parameter

lx,z, there is an additional potential ability to maintain se-
lectivity when increasing the perimeter lx by simultaneously
decreasing the coupling coefficient 
 �for example, by de-
creasing the corrugation depth� while still keeping the nor-
malized parameter 
lx constant. Obviously, the resonator
length lz should be increased proportionally to the perimeter.

Let us compare the results obtained using the above qua-
sioptical approach with the geometrical-optical approach.
The longitudinal profiles of the partial waves for the sym-
metrical eigenmodes �m=0;n=1� with frequencies located
near 	�0 and 	�−2
 which are plotted inside the resonator
using the geometrical-optical approach are represented in
Fig. 4 by the dots. It can be seen, that except for the zone
near the boundary of the corrugation both the quasioptical
and geometrical-optical approaches give similar wave pro-
files for the partial waves. Therefore, the partial wave ampli-
tudes found in the frame of the geometrical-optics approach
can be used to correctly calculate the energy extraction when
modeling the interaction with the electron beam.

It should be noted that if one takes into account Ohmic
losses the realistic situation arises where for the fundamental
mode the diffraction Q-factor given by Eq. �20b�, Eq. �21�
strongly exceeds its Ohmic Q-factor. At the same time for all
other modes the Ohmic Q-factor is higher than the diffrac-
tion Q-factor and, thus, their Q-factors are still governed by
the diffraction losses. Under such conditions in the frame of
the geometric-optical approach2,14 we can consider that the
Q-factor of the fundamental symmetric mode is defined ex-
clusively by the Ohmic losses while other modes possess
diffraction losses. This assumption was used in self-
consistent theory of FEMs with a 2D Bragg resonator.2,13,14

Note that the parameters of the resonator taken here for
the modeling are close to the parameters of an experiment
studying a coaxial FEM with 2D distributed feedback based
on a high-current accelerator at the University of
Strathclyde.4,5 In these experiments the cavity with diameters
of the inner and outer conductors of 3 and 4 cm, respectively
�lx�25 cm� was made to ensure transportation of a large-
size annular electron beam through the system.15 The 2D

Bragg structures were designed to operate around 37.5 GHz
via coupling of TEM and TE24,1—type waveguide modes
with the wave coupling coefficient 
	0.2 cm−1. The theo-
retical analysis presented in this paper demonstrates the abil-
ity of the 2D Bragg resonator of lz	 lx to provide high azi-
muthal mode selection that coincides well with the results of
the experiments.4,5

V. 3D SIMULATIONS OF THE COAXIAL 2D BRAGG
CAVITY

To prove the theoretical analysis described above addi-
tional studies of coaxial 2D Bragg resonators has been con-
ducted using the 3D electrodynamic code CST “MICROWAVE

STUDIO.”16 Temporal evolution of the rf-field and formation
of a fundamental symmetrical mode inside the 2D Bragg
cavity were investigated. The most important questions,
which should be clarified from the 3D simulations with re-
spect to the models described in Sec. IV, is the existence of
the high-Q eigenmodes in the vicinity of the Bragg reso-
nance frequency as well as demonstration of azimuthal mode
selection.

The cavity parameters were chosen to be close to the
parameters of the Strathclyde 2D Bragg FEM experiment.4,5

Similar to the Bragg resonator designed for the experiment,
the 2D corrugation was only considered to be on the inner
conductor. The perimeter was taken to be lx=20 cm
�	25��, length lz=11.8 cm �	15�� and the gap a0

=0.2 cm �0.25��, i.e., parameters satisfy conditions �2�.
Note that the gap between the conductors was decreased in
the simulations �as compared to the experimental realization
described Sec. IV� to reduce the running time while still
keeping in this frequency band all the radial and azimuthal
modes required for 3D analysis. Thus, the difference in the
gap should not affect the goal of the paper to demonstrate the
ability of the 2D Bragg resonator to provide high azimuthal
mode selection. The corrugation profile was in the form of
the so-called chessboard pattern which approximates well to
the “ideal” sinusoidal 2D corrugation �1� but is much more
simple to manufacture in practice �and to depict in numerical
simulations�. Thus, it is used in the experimental studies of
the FEM with this novel feedback mechanism. The corruga-
tion depth was 0.32 mm which was equivalent to a sinusoidal
corrugation depth of a1�0.5 mm. The corrugation was
made with 24 variations along the azimuthal coordinate and
had a longitudinal period of 0.83 cm. Following the Bragg
resonance conditions �5� and the exact dispersion relation for
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FIG. 8. Dispersion diagrams of the
partial waves in a coaxial waveguide,
which undergo coupling on the 2D
Bragg corrugation �r0=3.5 cm, dz

=0.8 cm, M̄ =24�. The zone of effec-
tive 2D Bragg scattering is marked
and shown in the large scale. Corre-
sponding dispersion diagrams of the
normal waves in this zone are pre-
sented in Fig. 2.
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waves of a coaxial waveguide �Fig. 8�, this corrugation
should provide, at a frequency near 36.3 GHz, mutual scat-
tering of the four partial waves: two longitudinally propagat-
ing TEM-type waves �A�� and two azimuthally propagating
�B�� near cutoff TE24,0-type waves. These waves form the
fundamental symmetrical normal wave �following the classi-
fication considered in the previous sections�. Note also that
several other longitudinally propagating partial waves with
m�0 and the corresponding azimuthally propagating modes
which undergo coupling on the same grating are also pre-
sented in Fig. 8. The coupling coefficient for mutual scatter-
ing of all these waves was calculated to be 
�0.13 cm−1.

To find eigenmodes the simulations were carried out by
excitation of the resonator by launching a short �in compari-
son with observation time� external rf-pulse from the edge at
z=0 which was composed from eigenwaves of regular co-
axial waveguide. The duration of the rf-pulse was taken to be
�t�0.15 ns and provided a frequency sweep in the region
of �f �7 GHz around the carrier frequency of 36 GHz.
Temporal evolution of the rf-field inside the resonator was
analyzed. After a few passes of the wave over the structure
the eigenmodes are formed and the positions of these modes
can be found from the maxima in the rf-field spectrum.

To demonstrate selectivity of the resonator over the azi-
muthal index the incident rf-pulse contains a set of three
eigenwaves of a coaxial waveguide with equal amplitudes
and azimuthal indices m=0 and m= �1. Temporal evolution
of the rf-field at the point z=0 is shown in Fig. 9�a�. It is
seen, that at the transient stage t
7 ns the modes with dif-
ferent azimuthal indices are presented in the rf-spectrum
�Fig. 9�b��. From comparison with the theoretical analysis
given above we can conclude that the fundamental azimuth-
ally symmetrical mode m=0 is positioned at the Bragg fre-
quency of 36.3 GHz and the spectral maxima at the frequen-
cies of 34.8 and 37.8 GHz correspond to the modes having

azimuthal indices M =M̄ �1 respectively �Fig. 8�. The
Q-factor of the azimuthally symmetrical mode exceeds the
Q-factors of all other modes and, thus, at the final stage the
fundamental mode m=0 is the only mode present in the
spectrum �Fig. 9�c��. Correspondingly, at the final stage the
azimuthal and longitudinal field structure is close to the
structure of the azimuthally symmetrical mode, which was
found in the frame of analytical consideration �see Figs. 10
and Figs. 11�a� and 11�b��. The ratio between the amplitudes

of the partial waves A� and B� also coincides well with the
coupled-wave model. Good agreement between the longitu-
dinal mode structure found in the 3D simulation and an ana-
lytical solution exploiting radiation boundary conditions
�16�, Eq. �17� proves the adequacy of the model consisting of
a resonator with matched edges. Let us note, that the resona-
tor was excited also by a dipole positioned inside the cavity
which radiated for a short time. In this case at the initial
stage simultaneous excitation of the modes with different
azimuthal indices m=0,1 ,2 , . . . took place. However, at the
final stage only the fundamental �azimuthally symmetric�
mode survived.

To define the ratio between the Q-factors of modes with
different azimuthal indices, symmetrical m=0 and nonsym-
metrical modes m=1 were excited in the resonator sepa-
rately. Due to radiation losses, after the incident wave was
switched off, the eigenmodes were dissipated exponentially
F	F0e−�t/2Q with the decay time depending on the Q-factor.
Thus, the Q-factor of eigenmodes may be evaluated from the
simple expression

Qm,n = �fm,n�m,n
dec , �23�

where �m,n
dec is the decay time required for an e-fold decrease

in field amplitude.
Simulations demonstrated that for the resonator of length

lz=11.8 cm�15� and perimeter lx=20 cm�25� the
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Q-factor of the fundamental azimuthally symmetrical mode
exceeds the Q-factor of the nonsymmetrical modes �m�=1 by
about three times �see Fig. 12�b��. The analysis carried out in
the frame of the coupled-wave method shows that the selec-
tivity of the 2D Bragg resonator is enhanced by increasing its
length. The Q-factors versus the resonator length for the fun-
damental symmetrical as well as for the nonsymmetrical
modes m=1, which were found in the 3D simulations, are
presented in Fig. 13. For the fundamental symmetrical mode
these dependences are in good agreement with the numerical
solution of the Eqs. �10�, �16�, and �19�, which is represented
by the dotted line. The level of the Ohmic losses is also
shown by the gray line for the resonator made from copper.
It is seen, that in the realistic situation the diffraction
Q-factor of the fundamental symmetrical mode is substan-
tially higher than its Q-factor associated with Ohmic losses.
Thus, for the fundamental mode the Q-factor can be taken as
approximately equal to the Ohmic Q-factor. In contrast, for
all other modes the diffraction losses play a principal role
and define their Q-factors. Thus direct numerical simulations
justify assumptions that have been used in the modeling of
the nonlinear dynamics of the coaxial FEM with 2D distrib-
uted feedback presented in previous works.5,13,14

Note in conclusion 3D simulations of the dependence of
the Q-factors of the fundamental and other modes on the
resonator perimeter were not studied in detail in contrast to
the coupled-wave model. However in a few variants, the
resonator perimeter was increased up to lx=30 cm�40�

with the number of the azimuthal corrugation variations M̄
=36 for the same length lz=11.8 cm. In this case the
Q-factor of the fundamental azimuthally symmetrical mode
exceeds the Q-factor of the other modes not less than twice.
Note also that simulations have demonstrated that for a pe-
rimeter lx=20 cm the resonator keeps its selectivity when
the gap between the conductors is increased up to 4 mm.

VI. CONCLUSION

The analysis of electrodynamic properties of 2D Bragg
resonators of coaxial geometry realizing 2D distributed feed-
back was carried out in the frame of a quasi-optical approach
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of coupled-wave theory as well as by carrying out 3D simu-
lations. Both approaches demonstrate the high selectivity of
coaxial 2D Bragg resonators over the azimuthal indices. It is
shown that the high selectivity of 2D Bragg resonators can
be explained by the different behavior of the normal sym-
metrical and nonsymmetrical waves near the Bragg reso-
nance in a double corrugated unbound waveguide. As in the
case of 2D Bragg structures of planar geometry17 existence
of such modes without any defects of periodicity strongly
distinguish 2D Bragg structures from traditional 1D
structures.9–12
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