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ABSTRACT

This thesis 1investigales the dynamic behaviour of
reinforced concrete beams as they are loaded to failure.
Four beams have been investigated. Two {ypes of crack
palttern and two types of reinforcement pattern were the
main variable parameilers. Partially bonded reinforcement
as artificially created (by greasing the bars) and
positioned at the center third span in {two of +1he {our
beans investigated. The remaining two beanms had
conveniional bonded reinforcemeni. Flexural and diagonal
splitting patterns were created by loading nmechanisns

individually applied on +two beams of each type of

reinforcement. Stage by stage application of static

loadings was used. Stiteady stiate vibration {ests were

‘applied at prior to loadings the beams and at several
load stages as gradually increasing defecils occurred.

There are four parts to this investigation and these are

presented in this thesis.

The {irst part investiigates t1he accuracy of several

techniques dealing with signal parameters from a digital

response spectitrum in Lhe signal processing. A logic
geometry was developed and was applied on the line
spectra of +t1he response specirum. Numerical evaluation
found that the error induced in the proposed technique

decreased exponeniially with increasing numbers of

cycles. A maximum of 0.17% errors may exist when

1X



exanining 100 cycles of the frequency of interest. A
regression analysis was used 1o achieve further accuracy

of the results.

The second part investigates 1he jump phenomenon of
mechanical exciters and the sharp drop phenomenon of
magnetic exciters. Boith of which may confuse the analysis

of structural dynamic¢c behaviour. By accounting for the

stiffness of 1he magnetlic field of 1he magnetic exciter
in a mathematical model, the jump phenomena was shown to
be due to the effect of 1he reflected f{orce in +tihe
excited structure. Practical equaltions were also proposed
to relate absolute to relative parameters.

The third part of the thesis concerns the élgorithms
required in filier processing and includes ithe
development of a computer solution. Two algorithms were
developed to obtain coeff{icientis of a polynomial equation
which was set up from elementary equations and [rom a
rational function respeciively. The algoriihms were
simple and easy to program.

The lasti part of the 1lhesis discusses the detectiion
of flexural and diagonal splilting defects and non-linear
behaviour of the beams during the vibratlion tests. Stiatic
and dynamic comparisons are also discussed.

Based on the characterisiics of the polar diagrams i1 was
found that several possible types of non-linear damping
were demonsirated 1n +t1he experimentis. The {(ypical

viscous and non-linear higher polynomial damping existed



mostly 1in the models although the <c¢rack pattern and
intensity of cracks contiributed to changes in the tiype of
damping. In addition the beam models in almost all
conditions showed non-linear soft spring behaviour.
Diagonal splitting crack patterns can be identified from
a small decrease of resonant frequency and {from i1he sharp

drop of resonant amplitude. The presence of single deep

cracks greally reduced +the stiffness. The experimenis
show that a sharp decrease of resonant frequency
indicates thai a large amount of residual sirain existis.
It 1s concluded that defects of the reinforced
concrete beams can be identified {rom the changes of the
dynamic parameters using the proper digital signal
analyses. The jump phenomenon is shown to be due 10 the

effect of the reflected force on the moving exciter mass

rather - than due to the presence of ti1he non-linear soft

spring system.

X1
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B/A = anplitudes ratio of excited beam/structure

to moving excitation mass
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1. INTRODUCTION

This thesis concerns the evaluation of the
structural conditiion of reinforced concrete beam elements

by monitoring their dynamic response to forced

excitation.

1.1. General.

Any structliure may be thought of as being composed of

many constituent elements. Each element may Dbe

T

considered 'alive' in that 11 has specific sensitlivitiies.
Reactions to stimulus may be various and include static
deflection, thermal reaciion and sensitivitly ito
vibration. In this latter case the maximum responses are
known as 1indications 1o 1he natiural {requencies of the
structure. If different maximum responses may be
sustained they provide many modes of vibratition. The
modes of vibration may be thought of as being dependent
on a number of idealised lumped masses and 1he axes of
vibration of those lumped masses. The number of
~independent mass limes axis siluatlions defines ilhe degree
of freedom of the systemn. When one of the natural
frequencies 1S intentionally exciled ihe elements
respond. The amplitude response of the 1individual
element depends on 1ls mass, stiffness and damping.

Loading or damage causes changes in the response of

individual elemenis and therefore the siructure as a



whole. The changes of response may be due to the changes
of one or more of the dynamic parameters, L.e. natural
frequencies, damping, amplitudes and siif{ness.
Structural defects may be caused by the failure to design
against environmential hazards such as t1hal caused by
heavy trafflfic disturbance, water waves or from heavy
machinery involved 1n or <close io tihe sirucliure.,
Alterations to the structure or its use may also cause
defects. In addition earthquake loads or impact {rom
bomb blasts on or near the structure will affect the
reliabiliity and integriiy of the stiructure. This study
covers the specific defect of flexural and diagonal
splitting cracks on simply supporied reinforced concrete
beams and investigates the characteristics of its dynamic
parameters. The evaluation of {he dynamic parametiers

includes signal processing and the evaluation techniques

used for this are developed in {t1he stiudy.

1.2. Review of Vibration Studies.

Several researchers have studied the effeci of
damage on fhe dynamic response of simply supported
reinforced concreie beams.

Tourk 1] studied the effect of the presence and
propagatiion of cracks in ihe concrete on ithe
characteristics of the dynamic response. In his
experiment on nine reinforced concrete beams having

nominal dimensions of 1300mm x 50mm x 75mm he attached



strong sieel frames al the ends of +{he reinforced
concrete beamns perpendicular to the beam axis and applied
static load by pulling on a steel bar connecting the
frame's tips. The eccentric load created amn almost evern
moment over the length of {1he beam. A magnetic vibrator
was positioned at the centre of the span, under the
concrete beam, and was anchored 1o the floor. A loading
ring was used to measure the induced load and was

attached between the vibrator head and the bottom of the

beamnm. The eccentric load was not remwoved while the
steady statle vibration test was being carried oul. The
siatic moment as well as the the excitation force, which
was O Newlons, was mainiained constani over the vibration
test during which scanning for natural frequency between
50 to 200 Hz took place. Tourk [1] found that the
natural frequencies exponentially decreased as the static
moment 1increased. In addition the damping ratios
increased with the increasing static- moments. The
natural frequencies found f{rom the experimenis did not
agree well with analytical results. This error was
reported to be due to L1he incorrect idealisation of +the
analytical model or the fact that existing micro cracks
might have changed the natural frequencies. Furtihermore,
it was noted that the anplitudes of excitation caused
variation in the natural {requencies. The higher the
amplitudes of excitation the lower the natural

frequencies f{ound.



Sim [2] improved the analytical techniques used by
Tourk [1] by remodelling the cracks in the finite element
model. The linear program was modified to accept the
existing cracks by zeroing the element stiffness around
the cracks. A step by step or iterative analysis was
applied in 1he program and this corresponded +{o the
propagation of the cracks. The nmnodel consisted of many
layers and the stiffness was updated as each concrete
layer cracked. Sim found from these numerical results
that the natural {requencies decreased as the cracks
increased. The [inite element program produced static
load-deflection resulis which were also i1n good agreement
with those obtained experimentally.

Hashim {3)] improved the loading scales applied in
the eccentric bar as used by Tourk {[1]. Hashim applied
an excitation force of 50 Newton over the {requency range
of 50 to 200 Hz in the steady state vibration. test and
examined successfully eight singly and doubly reinforced
concrete beams. He commented that the static loading
device affected the damping. Moreover he also found that
the natural frequencies decreased as the beam approached
its failure moment.

Tan {4] examined three‘types of beam, i.e. under
balanced and over reinforced concrete beams. The methods
of creating cracks and the analytical comparisons were
the same as those used by Sim [2]. However, instead of

applying steady state vibration tesis as used by Tourk



[1], Hashim [3)] and Sim [2] Tan carried out impact
tests. The damping ratio from the impact test was
included 1n the computational analysis. The
computational result of the later technique was in good
agreement with the experiment.

Several research studies on the dynamic
characteristics of structures composed of materials other
than concrete have also been carried out.

Research on steel beam elements was carried out by

Christides and Barr [5]. Solid cross section steel beanmns
were examined 1in this study. Ariificially created
symmetrical cracks were introduced and successive steady
state excitation experimentis were carried out. A
parameter was evaluated from the experimental tests and

included in the proposed equation of motion. This

allowed the equation to take account of the effect of
stress aboul the cracks. The equation was a satisfactory
fit to the experimental results. Furthermore, It was
also reported that the natural frequency was not
sensitive to the presence of the crack unless the crack
wWas very extensive. A parabolic curve showing the
relationships between the ratio of the natural frequency
and the ratio of crack depth for wvarious numbers of
artificial c¢racks was produced. The cracks were
intentionally made quite wide to avoid nonlinear
characteristics that could occur due to the opening and

closing of the more narrow cracks.



Hassan [6] studied the characteristics of a lattice
tower under vibration tests. Two types of test were
dealt with, 1i.e. sleady state vibration tests and
'pull~-sudden release’ tests. From the ‘'pull-sudden
release’ tests Hassan found a relationship 5etween
amplitudes of excitation and damping. She stated that
the damping characteristics were dependent on the
amplitude of excitation. At a certain higher range of
amplitude of excitation the 1increase in amplitudes of
excitation increased the damping ratio. The structure
relating to this observation was viscously damped. On
the other range the increase of amplitudes of excitation
decreased the damping ratio. She 1illustrated this
characteristic as an asymptotic curve 1in a cartesian
axis. The structure relating to this later observation
was dry damped. Furthermore the two ranges met at a
point where the half power band width method most
accurately predicted the damping ratio.

Ibanez [{7] reviewed several analytical techniques
to improve structural dynamic models in the study of the

safety and reliability of pressure vessels and piping

systems in nuclear power plants. He included

experimental data to 1improve the dynamic model of the

structure under test. The model could then be used for
simulation. Numerous practical examples were described
and were shown to be of value.,. It was commented that the

dynamic characteristics of the structure changed with



grealer amplitudes of excitation. Many other
experimental aspects were also discussed in the paper.
The work discussed above was carried out without
much consideration of the non-1inearities of the
structure or the material. Several standard references
dealing with vibration of structures i1in this elastic

range are also available such as in [8.9.10.11.12.13].

Several papers are now reviewed which include the study

of non-linear structures and matlerial response.

White {14,15)] conducted experimental and theoretical
work on the non-linearities arising from large
deflections. A steel plate was hinge-supported at 1its
four edges so as to maintain the possibility of the
membrane effect. The non-linear hard spring behaviour
became the main topic of the study. White {[14.15] found
a solution to the determination of resonance of a
structure having non-linear hard spring behaviour. The
maximum rate of arc spacing criterion derived from a
cubic equation on the polar diagram (a diagram
representing the real and imaginary part of the response)
was proposed (o 1i1dentify resonance. Steady statle
excitations were applied at a steady frequency increment.
Details of this phenomena will be covered in chapter-2.
Furthermore White in [14) as well as in [16] studied the
effects of the non-linearity on the dynamic parameters
from the impulse response of a structure using a Fourier

transform of the proposed pertiurbatition method. It was



reported that although the time history of the
perturbation method was not accurate the predicted
natural frequencies were in agreement with those derived
from a Fourier transform program.

Hartog [45)] in his study of a system damped by a
combination of Coulomb and Viscous friction described the
variety of possible damping tvpes on structural
behaviour. He stated at least four types met most
frequently, 1.e. the viscous damping where the damping
force 1s proportional to the velocity, the Coulomb
damping where the force is 1i1independent of ti1he velocity,
the air resistance damping where the force is
proportional to the square or higher order of the
velocity and the internal hysteresis/ hysteretic damping
where the force 1s .independent of +the velocity and
depends only on the amplitude of motion. He presented an
exact solution of a single degree of freedom system.wgtﬁ'
the mixed damping jugt mentioned. "The 1hcr§qs;:‘of
Coulomb friction decreased‘agplituée respon;e;;.

Yeh [46] develor:ved the work of . I-I'?‘rt‘og. [45]. An
exact solution for a two de‘gree, of fr"#ee‘;dom system with
one Coulomb and two viscous damper; ;as established. The
solution had a range of accdracy when appltied only to
motions that did not come to rest.

Tomlinson eti al.tl?] referring to the work of Hariog

[45] " and Yeh [46] further investigated. in detail the

dyvynamic characteristics of a stiructure with 1lightly



viscous damping and coulomb f{riction damping using the
harmonic balance me thod, a me thod of equating
coefficients of the lower 1erms of a trigonometric
equation. Tomlinson reported that the presence of
coulomb damping no longer allowed the response to conform
to a locus of a circle of the polar diagram in the
resonant region. The distorted pattern in the polar
diagram was evaluated on the basis of the in-phase and
guadrature power dissipated when exciting the normal
mode. This effect was also studied by Tomlinson in {18]
which the distorted pattern was proved to be due to the
presence of non-linear coulomb damping and not to be due

to limitations imposed by the approximate method.

Rades [19) referred to the work of Tomlinson [17,18]
in dealing with +the parameter identification of a
structure with coulomb friction and hysteretic damping.
Rades developed a technique to evaluate the coefficient
of the non-linearity by using several polar diagrams.
Rades claimed that the way the isochrones. 1i.e. lines
connecting the points of constant frequency from

different curves., bent inio a concave shape as shown 1in

the family of polar diagrams can identify the presence of
coulomb damping especially when 1he distorted curves were
not obviously apparent. Furthermore, Rades in [20]
revealed the validity of the 1sochrones to identify tlhe
presence of quadratic damping, a damping which 1is

associated with the turbulent flow of a fluid through an

10



orifice. Rades claimed that this type of damping cause
the isochrones to bend into a convex shape and the curves
therefore distorted like a flattened ball. Another
result was achieved when Rades [21] examined the effects
of non-linear stiffness in a resonance test. He examined
the cubic stiffness term in the governing equation using
the harmonic balance method. He demonstrated the effect
of a jump phenomena in the polar diagram and used the
isochrones to identify a type of stiffness non-linearity.
Rades carried out experiments using rubber or
polyurethane materials for vibration isolation purposes.
Since non-linear stiffness can not be identified by a

single polar diagram Rades strongly recommended that only

families of polar diagrams and their isochrones be used
for identification of non-linear stiffness. Further
discussions are available in chapter-2.

Many standard references discuss the mathematics of
non-linear structures as seen in [22,23]. These will not
be discussed here.

A recent application of the vibration tests using
mechanical vibrators to relieve residual stress was
discussed by Claxton {47.48)]. He [47] commented that his
technique was a complementary technique to the existing
thermal +treatment technique. One or more resonant
frequencies were induced on the structure under tests at
certain levels of amplitude where the yield point of the

material was exceeded. About 2000 c¢ycles at every

11



resonance were applied within 10 minutes frequency
scanning which was described as the mass and stiif{fness

dependence. He {47.,48)] c¢laimed that his technique was

successful and many problems were deali wiilh using the

technique.

1.3. Review of Signal Processing.

Apart from the non-linear resporise problems signal

processing obviously plays a significant role in

determining cortrect dynamic parameters. This subject
includes the problems of digitizing data. Fourier
transformation and filter design. These subjects are

avallable in many slandard references such as in
[10,24,25,26,27.28,29]. Only reference to specific parts

of the slandard references, related papers and reporis

will be discussed below.

To enable analog signals to be analysed digitally
using a proposed Fast Fourier Transform program a
digitising machine or digitiser 1s demanded. The
accuracy of the digitiser 1input data to the software

controlling the digitiser plays an important role. The

accuracy of the digitiser can be def ined in the

specification of ti1he digitiser . The higher the 'bitis'

the better the results. A twelve 'bits' digitiser can
2

represent a unit analog output in 21 integer numbers.

The accuracy of the digital numbers mayv be achieved at

plus or minus 1 digit. Further nore the output Is also
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dependent on the input scaling factor. Errors due to
improper factor seleclion, known as round off error. may
decrease the accuracy of the digital output. Further
discussion of this matiter may be found in [25].
Parameters of a signal may be more simply analysed
in the frequency domain rather {1han in the 1ime domain.
Since digital data 1is 1nvolved 1in the analysis a
classical method, the Discretle Fourier Transform as seen
in reference [{25], may be used for small amounts of data.
To avoid repeated executitions occurring in lhe DFT method
an algorithm derived on the basis of the prime number of
2., known as the Fast Fourier Transform (FFT). was
originally proposed by Cooley and Tukey [30]. This
algorithm saves considerable execuiable time over the DFT
method. Algorithms on the basis of prime numbers of
other than 1{wo have also been available [24.27]. The
latest algorithm is able to execute any amount of data
(namely the self sorted Radix Mixed FFT). This algorithm
is more flexible 1n practice especially 1f a lot of data
is executed as has been used in weather forecasting by
Temperton [31.32.33]. Moreover the radix mixed algorithm
can be adopted in any computer memory and analysis can be
carried out without disposing out any amount of data.
Further discussions of the Fourier +transformation are

found i1in chapter-2.
The FFT method was adopted by Hassan {6] in +the

research to analyse the dynamic parameters [from steady
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state vibration tests. Hassan introduced an empirical
formula to deal with the resonant {frequency of the
response. The accuracy of the results using the formula
depended on the frequency resolution. Further
discussions in this matter are found in chapter-4.

Signal processing inevitably involves filtler
designs. To gain executable time in on line process two
complementary cascade Fasi Fourier Transformers proposed
by O'leary [34] may be simultaneously used to transforn
two dependent data blochs. The two sets of {ransformed
non-recursive filter functions can be stored in the
computer memnory. Continuous {filtering may then be

performed by cascading the transformed pairs and the sets

of the filter spectirum. Word railes in excess of 3MHz are
possible with available hardware. O'leary [34) applied
this design in the radar communicallons areas.

Kormylo at al. {35)] proposed a two-pass recursive
digital filter to avoid the phase~-lag imposed in the
filtering process. The initial and reverse time

transients were evaluated and an overlapped scheme was

proposed.

Czarnach [36] introduced an overlap-save algorithm
in terms of matriculation to identify the time transients

involved in the filtering process of non-causal recursive

systems. Systematic errors were detected in the process

using cascade connections.

Chan et al.{37] proposed filter coefficients derived
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from a finite impulse response (FIR) using the Wiener-Lee

decomposition technique. An analog transfer function was
decomposed into the Wiener-Lee | decomposed form.
Coefficients were evaluated using the integral
transformation proposed. The recursive filter was

achieved by truncating the non-recursive filter using a
window function after applying a bilinear transformation.
The technique avoided overflow which is likely to happen
in the non-recursive filters. The time transients are
detectable from the filter function words. Further band
stop attenuation may be i1increased by applving window
function on the impulse filter response. The advantarge

of this recursive filter over the other recursive filters

was that the band pass/band stop specifications may be
changed as easily as the non-recursive filter.

Following Chan's proposal Kwong [38] simplified the
computation of the Wiener-Lee decomposition method. He
proposed an expansion of the transformed filter function
into a Laurent series. Inverse transformation may then
be carried using standard z-transformations.

Chan et al.[39)] again introduced a non causal filter

using the Wiener—-lLee transformation technique. He
managed to deal with the phase-lag which normally
occurred in any convolution process. In comparison with
the two-pass non causal recursive filter proposed byv
Kormylo et al.[35] this technique occupied a small amount

of computer memory because of the short transient word.
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therefore. it required a small group delay.

The technique proposed by Chan [37.39)] and Kwong
[38] is emploved in the program and a 1long division
algorithm 1S developed in the process. Further

discussion of the filtering technique 1s found in

chapfer-2 and chapter-56.

1.4. Summary of Existing Research and Formulation of

the Problemn.

The dynamic parameters of reinforced concrete beams
under vibration tests have been studied by several
authors [1.2.3,4]. Most experiments were under constant
external load whilst the vibration tests were carried
out. This enabled +the <c¢cracks to open during the
vibration tests. As the amplitudes of excitation were
not excessive the effects of non-linearity due to opening
and closing of the cracks were not apparent. The
decreasing natural frequencies observed with the increase
in the amplitudes of excitation were possibly due to the
soft spring behaviour of the structures. The increase in
cracking, due to an increase in the flexural moment,
reduced the natural frequencies. This has been accepted
in all previous research. The curve relating natural
frequency to crack depth proposed by Christide et al.
[5] is different from the similar curve relating natural
frequency to the flexural moment proposed by Tourk [1].

The steel material having artificial wide open cracks

16



produced an inverse exponential curve (convex shape

upward) and the presence of cracks were found to be not
sensitive to the natural frequencies. An exponential
curve was reported by Tourk {1] in the natural frequency
- applied moment relationships of the reinforced
concrete beams.

Theoretical equations of motion developed for the
homogeneous material proposed by Christide et al. (5]

may not be directly applied to reinforced concrete

structures due to the complexities of the structure.
Reinforcement obviously contributes to the behaviour of
the beam as it cracks under load. This 1is especially
noted during dynamic experiments if the external load was
removed as reported by this author in [40]. Mathematical
studies have shown that it 1s still not possible to
predict closely the dynamic behaviour of reinforced
concrete beams. The finite element method employed by
previous researchers predicted results far from the
experimental values despite improvements by Sim (2] on
the element mesh making it resemble more the experimental
model. Numerical studies and the experimental studies
have consumed almost equal amnounts of researchers®' time.
It was. therefore, decided that this research should
concentrate on experimental work and in particular the
effects of different crack patterns and their
identification from the study of the dynamic parameters.

Several suggestions are made to achieve more accurate
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dynamic parameters.

It was reported that the natural frequencies resulting
from the polar diagram overestimated natural frequencies
from the response spectrum [15)]. This was possibly due
to the fact that the measured phase did not represent the
relative phase of the exciter to the structure under
test. A study on this phenomena has been carried out and
formulae for correction purposes are presented.

There are two possible non-linear stiffness problens
imposed by the reinforced concrete beams under tests.
Under considerably low amplitudes of excitation the beamns
exhibit quasi-softening behaviour. If the beams are
excited excessively they may exhibit rectification
rhenomenon. Correct experimental procedures and settings

play an important role 1in accurate analysis of the

results. Furthermore non-linear damping may also be
exhibited in the experiment. Under relatively high
amplitudes of excitation the concrete beams may
demonstrate viscous damping. In contrast under

considerably low amplitudes of excitation dry friction or
Coulomb friction or non—-proportional damping may exist.

The empirical equation proposed by Hassan [6] to deal
with the peak frequency response numerically depended on
the frequency resolution. Since only peak frequencies
were of interest the additional zero data values to suit
the base-2 algorithm or the application of the window

function may be acceptable. As vibration tests include
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many aspects where response spectra should be proper and
any signal in the frequency domain can be performed in
the time domain with the radix-2 FFT, the window function
and the additional =zero data values should not be
employvyed. An alternative solution using a proposed logic
geometry applied on the spectra 1level 1is proposed.
Errors induced in the results are analvzed via the radix
mixed FFT which 1s capable of accepting any amount of

data. From the response spectra an equation for

correction has been derived.

1.5. Scope and Layout of the Thesis.

The general objective of the study was to monitor
defects of reinforced concrele beams by means of
vibration tests. Appropriate methods and improvements on
existing experimental procedures and analvses are
examined to produce more accurate values of the dynamic

parameters.

Basic linear and non-linear equations of motion are
described briefly in chapter-2. General transformation
of the Fourier series into Fourier integral and its
assocliated phvsical characteristics are then described.
The signal processing 1nvolved in obtaining dynamic
parameters and the presentation of the response are also
discussed in this chapter.

The experimental setup and procedures are discussed

in chapter-3. Tyvpical specimens, positions of the
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vibration pick-ups and their considerations are
described. Comments and confirmations on the
experimental procedure and results are described at the
end of the chapter.

To improve the dynamic parameters corrective
coefficients based on a proposed geometry are described
in chapter-4. Comparisons are made with the available
techniques and comments on the applications of the
proposed technique are also included.

Relationships between the exciter and i:he exclted
structure and their affects on the response spectirum are
evaluated in chapter-5. Corrections to the results are
proposed.

The general ouiput quality of any vibration tests
depends on the amount of data analysed. A large amount
of data is processed using a compuler program. Two
algorithms are established to enable the long division
theory and the setting up of polynomial equations to be
applied in the developed computer progran. These
discussions are obtained in chapter-6.

Results and analyvses of the wvibration tests are

separately discussed in chapter-7 due to the dependency

of several evaluations made in chapter-4 to chapter-§6.
Discussions of the results are outlined in chapter-8

following the conclusions and suggestions for further

research given in chapter-9.
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CHAPTER - 2



2. CHARACTERISTICS OF VIBRATING STRUCTURES.

2.1. General.

Aprplications of the 1tiheory of vibration in
monitoring defects in structures are developed 1in this
chapter. A brief discussion of i1he linear behaviour and
a rather deeper discussion of the non-linear behaviour of
structures are described. Several possible mathematical
solutions may be constructed which depend on the types of

excitation applied to the system. This chapter will only
emphasise the solutions of the equation of motion of

steady state excitation problems.

Most researchers present graphs showing dynamic

parameters 1in terms of frequency response. Response
form, namely polar diagram or polar plot, may also be
produced by decomposing the ampliiudes inio their real

and imaginary parts and plotting them in the form of an

Argand diagram. This technique has several advantages
over frequency response technigques, especilially when
non-linearity exists. The technique will be described

further in this chapter.

Signal processing involving Fourier transformations and
filter designs will also be discussed. Parameters of a
signal, 1i.e. amplitude, frequency and phase angle rely
on the accuracy of the signal processing employved. On

the basis of this knowledge those parameters can be used

for analysis.
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2.2. Equation of Motion of Linear Vibratory Systems.

A basic equation of motion of a single degree
vibratory system can be expressed as follows.

mX + cX + kx = F(t) e e e (2.1)
The particular solution to equation (2.1) for a steady

state excitation 1is

X, = a sin &t + b cos @t
By subsiituiing ithe particular solution and its
derivatives in eq.(2.1) and equating the coefficients of
the 1lower order of the {rigonometric equation, the
anplitude response of the system may be established.
Further details of this substitution 1s available 1in
Appendix [A-1]. The response spectra and the associated
stiffness diagrams are shown in fig.{(2.1).
A continuous structure can be 1idealised as a system
having a series of lumped masses. springs and dampers.
This idealisation simplifies the complicated dynamic
parameters which usually occur in real structures.
Decoupling the equations of motion enables the dynamic
parameters of the system 1o be analyvysed independently.
The general equation for multi degree vibratory systeuns
can be written as follows

[e] [M1[e) [2] + [el [Clle) [2] +

[e)"[K1le) [2] = [e) [F(t)] (2.2)

A complete derivation of equations (2.2) can also be

found in Appendix (A-2).
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2.3. Equation of Motion of Non-linear Vibratory Systems.
The equation of motion described in (2.1) subject to

a steady state force of excitation includes two

parameters.c and k which cause ithe system io behave in a

non-linear way. If there 1s non~linear stiffness the

equation becomes

m¥ + cx + k(xtzx ) = F(t) ..., (2.3)
Equation (2.3) suggests that if the stiffrness parameter,?
is zero then equation (2.3) is exactly the same as
equation (2.1).
The solution 1o equatltion (2.3) can be approximated for
small non-linearities by employing a method of harmonic

balance as described in references [11.,22.23]. By

applying a particular solution,x = A Cos (@t+¢), and an
excitation force F(t)= F,Cos ®t into equation (2.3) and"
omitting the higher harmonics the relationship between
the relative amplitude and frequency is obtainable. The
technique is fully described in Appendix (A-2) and (A-3)

and i1s partly shown below.
< 0.

F
(p)] , = (r2 - 2d°) ¢ [—2——-—4d2(r2 - d°) ] (2.4)
’ g 2 p a
k A
_q 2dr
R 2.5)
r - r
Q
If a resonant frequency of the structure tends to

increase as the applied force 1increases such that the
frequency ratio.w/p, at resonance. is greater than one
then {he sysiem is referred to as a ‘'hard spring’ svstem.

Mathematically this characteristic 1S achieved by
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adjusting positive 7. The  higher the stiffness
parameter.? the larger the non-linearity as seen 1in
fig.{(2.2). The line connecting the resonance poinis of
different force of excitation 1s referred to as the
'skeleton’. Equation (2.4) is a polynomial equation
where at a certain frequency of excitation,®/p it
provides three different values of amplitude.A. At this

stage the system is within the unstable condition where

in practice this produces a ' jump phenomenon’. The
stability boundary can mathemalically be derived as seen
in Appendix (A-4) or reference {22].

On the other hand if the resonant frequency of the

structure tends to decrease as the applied force

increases the system is referred to as a ‘'soft spring®

system where a negative stiffness parameter, ? 1S

mathematically appropriate. This <can be seen 1in
fig.(2.3).

White [14,15] in the study of the effects of
non-linearity due to large deflections 1in resopnance
testing revealed the existence of the ®'jump phenomenon'
due to the significant effect of the membrane forces.
Non-linear damping in the frequency domain has similar
effects to the 'soft spring' behaviour {22.23]. Coulomb
friction damping occurs 1in some structures where the
nornmnal force perpendicular to the friction plane plays a
significant role. The equation of non-linear damping was

studied by Tomlinson [17) and Rades [19]. Tomlinson
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described in [17] that the existence and position of
Coulomb friction in a system could be identified. though
it could not be identified directly when the system had
many Coulomb devices. The combined effect of hysteretic

and Coulomb friction was studied in [23])]. The equation

was presented in the form

m¥ + —— % + R sen(X) + kx = F(t)  ....... (2.6)

where : R sgn(X) is the Coulomb damping where the sign is

dependant on the relative velocity (X) with which

the friction force,R & (o2 N) is associated.

On the basis of equation (2.3) and (2.68) equations for
multili degree vibratory systems can be built up in terms

of matrices as described in Appendix (A-1). A similar

equation based on equation (2.6) was developed by
Tomlinson [17] to enable hysteretic and friction damping

to work on a multi degree vibratory systen.

2.4. Polar Diagram.

By decomposing absolute amplitudes into their real
and 1imaginary parts associated with cosines and sines
respectively and ploiting them on a form of Argand
diagram results in a polar diagram. The tangent.,¢® 1is
associated with the phase angle of the excitation force
to the response signal. The technique has several
advantages over the frequency response diagram in terms
of its capability 1o i1mprove improper amplitudes arising

from difficulties in the instrumentation.
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White [15] studied the rate of change of phase angles of
a single degree vibratory system as shown in fig.(2.4).
He derived an equation proposing the maximum frequency
spacing criterion in the polar diagram to 1identify the
natural frequency. The technique was further extended by
Rades [19,21].

Rades [21] studied in more detail the effect of
non-linearity in polar diagrams. He suggested a method
of identifying non-linearity using a series of
experiments having different forces of excitation.
Looking at the lines connecting the same frequencies
(isochrones) the types of non-linearity can be identified
as shown in fig.(2.5) and fig.{(2.6). Furthermore he also
derived a stability boundary equation in the polar
diagram. He noted that the ®'jump phenomenon' starts atl a
certain phase angle where the tangent of the isochrone
coincides with the tangent of the polar diagram. The
stability boundary equation 18 represelnted as a
hyperbolic equation with the center axis at 135 degree of
phase angle. The complete derivation of the equations
are obtainable in Appendix (A-5). Rades [{19) identified
the non-linear damping as a distorted shape of the polar
plots as shown in {ig.(2.7). Tomlinson [17] commented
that the techniques proposed by White [15)] did not hold
true for a system having Coulomb friction damping. He
provided a set of equations to deal with such a

phenomenon as shown in fig.(2.8).
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2.5. Signal Processing.

As amplitudes, frequencies and phases are measured
in vibration testing the &analysis of the 1results must
include signal processing. A brief introduction to the
Fourier series theory and a more detailed description of

the Fourier Transformation are given below.

2.9.1. Fourier Series.

The Fourier theory states that any periodic signal
can be decomposed 1into a series of components of
sinusoidal form and of different (frequency. The

formulation of the statement as described by Ramirez [25]

is

] =0

| .
Y = ;;;-+1 1(aICos 1x + b181n 1x) ... (2.7)

The equation must be periodic with time and for all tinme
(i.e time must begin at minus infinity and continue to
plus infinity). For practical purposes the observable
time can be selected in such away that it does not reduce
very much the quality of the results. Furthermore, the
conditions for the existence of a Fourier series are
referred to as the Dirichlet conditions [25] which are
associated with +the finite numbers existing in the
function, the existence of maximum and minimum values and
that the function is integrable in any period.

Equation (2.7) can be modified to relate amplitudes.
frequencies and phases as follows.

1 =20

x(t) = a,_ +1Z;[ a, cos lwot + bls1n 1o

ot | ...(2.8)
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- _T_JO x(t) S1ln loot/dt
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!

T = executable time
As long as a periodic waveform can be mathematically

described that meets the Dirichlet conditions, equation

(2.8) can be used.

2.5.2. Fourier Integral.

Whilst the Fourier series can deal with a periodic
waveform. the Fourier integral can deal with non-periodic
waveforms. Thus, it can include periodic waveforms where

the period is allowed to approach infinity.

Based on the mathematical identities

- 16) L . »
e J O = COS lmot - J s1in lwot and

¢
J1o

e = COS IObt + 3 sin lobt

for @ = Zﬂfo and j = Y-1 gives

O

jz'ﬂ-'fob \ ;J2ﬂ'f’ot
Cos 27lf t = = :

ejznrot ] ;Jzﬂfot
Sin 2ﬂlf0t = 3

and substituting these into equation (2.8) gives
1 =00 JamLe b

x(t) = 2: C, e dt . (2.9)

1=-0

By analogy with equation (2.8) C, can be evaluated for n

L

= -® ton = 4% using

. T2 SELIE
C1 = T J x{(t) e di
-T/ 2

In knowing that each harmonic is separated by 4f = 1/T

and manipulating the above equations the
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amplitude-frequency relationship can be described as

1=
x(t) = lim —,‘T.-zxnf) gJ 2T, . or
Ar-o 1] -
© j2mre
x(t) = J X(f) e df s e (2.10)
- {0

The coefficient X(f) of equation (2.10) is equal to

AV

X(f) = J x(t) e

-

i T c.. (2.11)

Equation (2.10) and (2.11) respectively represent the

Inverse Fourier Transform (IFT) and the Direct Fourier

Transform (DFT). Again, for practical purposes the

observable time is limited to -T to +T.

2.5.3. Physical Characteristics of Fourier Integral.

As a result of limiting the observable time as

mentioned in (2.5.2) +tihe Fourier intiegral has some

physical characteristics which affect the performance of

the frequency domain spectrum.

a.

Initial Condition, T :

The frequency domain resolution,Af.is inversely
proportional to the period,T. Therefore, the longer
the period the higher the frequency resolution
(approaching a continuous spectrum).

The Fourier integralr is defined over frequencies and
time from minus infinity to plus infinity,
consequently, 1t involves negative as well as positive
frequencies. In addition to this the amplitudes in
the positive as well as 1in 1he negative frequency

domain, especially for real signals, are equally
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divided.

Phase angles 1in the positive frequency domain are
duplicated in the negative frequency domain, except
that the images are inverted.

If the Fourier integral is represented in terms of
complex numbers, Re(f) + j Im(f), the amplitude can be

determined as the absolute values.The inverse tangent

of the Imaginary to 1he Real parts representis tLhe

phase angle.
b. Even and 0dd Functions.

Mathematically even functions are shown as f(t) =
f(-t) and are associated with a cosine waveform. In

terms of polar plots 1he even function is associated

with real values. On the other hand odd functions are
associated with a sine waveform or imaginary values in
the polar form. The odd functions are mathematically
represented as f(t) = -f(-t).

c. Time Shifting.

It has been described in (2.5.3.b) that time shiftineg

changes the status of an odd function to an even
function or vice versa. Thus, 1his does affect both

the real and imaginary values on which the phase angle

relies.

2.5.4. Windowed Waveforn.
For the purpose of pracltical analysis signals can

be treated as periodic or non-periodic waveforms
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depending on the assumption made when treating the
signals (i.e using the Fourier series or Fourier
integral). If a square or a rectangular truncation (
window ) is applied the transformation of the rectangular

function in the frequency domain 1s represented by
sin ZWTTO

X{(f) = 2T TRIT, + jo ceeee (2.012)

The equation contains a major lobe witih decaying side
lobes. Other windows have been developed to achieve a
maximum major lobe and minimum side lobes as referred {o
inr[10.25.27].

In general the concept of +{reating windowed signals 1is
equal to multiplying the original signal by a function in
the time domain or convoluting their f{requency domain

transforms. This process can be expressed mathematically

as,
v

y(t) = [ n(=) x(t-7) a7 ceeeen. (2.13)

Ta =0

Further discussions concern windowed waveforms and

convolution are obtainable in chapter (2.5.7) eand

Appendix (D-1).

2.5.5. Digital Fourier Analysis

Fourier .integrals have become more useful after

the invention of the digital converter which converts
analog data into inleger numbers. The accuracy of the

digital data relies on the 'bit’ of the digital

converter.

a. Discrete Fourier Transform
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Equation (2.11) may be slightly modified to accept
digital data which 1s kept in arrays. The equation is

known as the Digital Fourier Transform and 1is shown

below.
L-1

X(k.Af)= At zox(lﬁt) o J3TK1ALAL .. (2.14)
) |

Consequently inverse transformation can also be performed

by
Lot jamklArAt
x(1.At)= Af ZOX(kAf) gl3klALAL (2.15)
]l =

Including A4t=1 and Af=1/(L At), for L = amount of data

executed, into both equations (2.14) and (2.15) give

L -1
X(k) e ZOX(].) e_Jznkl/L e & o s 0 & (2.16)
ls=
g Ot j2mkl/L
x(1) =— Zox(k) e e (2.17)
1-

Some programming—languages do not accept complex numbers
this can be overcome by substituting ei¢ = cos ¥ £ J s1in
¢ into equation (2.16) and (2.17). This method requires

considerable time when the amount of data to be analysed
is large.

b. Fas{ Fourier Transform.

An attempl to reduce the number of multiplications and
additions in the DFT process was made by Cooley-Tukey
[30]. This is referred {to as the Fasti Fourier Transform
(FFT) [25) or Radix-2 FFT [24) or FFT Base-2. This
technique has great savings in computlation if the amount
of data has a prime number of two. Later studies were
carried out by Temperton [31.32.33] and these are based

on prime numbers other than two. The executable time
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increases if the amount of data can not be decomposed
into prime numbers of 2,3 or 5. The technique 1s

referred to as the self sorted radix-mixed FFT.

2.5.6. Physical Characteristics of the DFT
There are several considerations that must be

taken into account when digitising signals.

a. Frequency range of inlerest.
The frequency range is set by the sampling rate. The
lower the sampling rate the wider the frequency range.
The maximum frequency is referred to as the Nyquist
frequency [25] which can be obtained by inverting the
doubled sampling rate.

b. Frequency resolutiion.
When two or more frequencies occur in the signal it
requires a certain resolution in order to distinguish
the frequencies themselves within the frequency
domain. The relationship between frequency resolution
and the number of cycles required defines 1lhe minimum

recording time as follows.

2 x Frequency Range of Interest

Number of cycles =2 .
y Frequency Resolution

c. Amount of data.

The amount of data will be automatically established
after determining the Nyquist frequency and the

frequency resolution.

Amount of data 2 2 x Number of cycles.
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d.

e.

f.

Harmonic frequency.

If a signal is not purely sinusoidal transformation
will result in harmonics which are integer
multiplication of the fundamental frequency.

Round-off and Jitter.

As a8 result of losing horizontal time stabilitiy an

analog to digital converter or a digitiser can cause a

*Jitter'. In addition, a low bit digitiser or very
low signal can cause round-off error. These errors
are usually appareni as noise. They may contribule a

significant error in determining phase angles.
Periodicity.

When an integer number of cycles of a signal is
acquired the peak of the transformed window (main
lobe) meets one of the line spectrum of the periodic
signal, therefore, the amplitude will be a maximum.
In contrast 1if there 1is not an integer number of
cycles the amplitude will vary from about 70% to 100%
of the maximum amplitude. Therefore. non-integer
numbers of cycles of the signal produce leakage. This
is due to 1he fact that 1he line spectra do noti
coincide with the zeros of the window'’s side lobes as
normally occurs when an 1integer number of cycles 1is
sampled. Further discussion 1s given 1in chapter-4.
To overcome such a leakage other tLypes of window are

described in references [24,25].
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Aliasing.

The Nyquist condition requires that two sets of data
to be acquired per cycle of frequency of interest. If
less than two seils of data per cycle are sampled t1he
signal in the frequency domain will move back to a
lower f{requency. If an unexpected signal appears in
the range of frequency, i1t may belong to a higher than
maximum frequency range.

Actual freq. = Nyquist + {Nyquist-Unexpected freq.)
Frequency, Amplitude and Phase.

To achlieve proper frequencies and amplitudes of
interest using {f{requency domain spectra several

methods have been suggested in references [6,10]. It

was referred to by Harris [10] that frequencies and
amplitudes can be obtained from a graph showing
relationships between attenuation (dB) of the maximum
to the highest adjacent line spectra and the
coefficient of the improvement as seen on fig.(2.9).
This technique employs the Hanning Window.

Hassan [6] used an empirical f{ormula relating the
relationships between the two adjacent line spectra

about i1he peak amplitude and the frequency of interest

as seen on fig.(2.10).

Effects of applyving a window.

All windows have major lobe heights, side lobes and
band widths resuliing {from ithe malhematical

transformation. Rectangular windows have high side
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lobes, thus, these side lobes create leakage
especially when a non-periodic signal is trans{ormed.
The leakage obstructs the existence of some
frequencies having very low amplitudes. Further

discussions are obtainable i1n chapter-4.

2.5.7. Filters.

Some signals have very low amplititudes and it 1is
likely that noise interferes in such a way that i1t masks
the signals. The noise may be {from the stiructural
supports, the environment, the electronic circultry or
from the friction between the components of the structure

itself.

Filters attempt to separate the signal f{rom the noise.
There are many types of filters available. The choice
depends on the frequency bands of interest. Low pass,
high pass and band pass - band stop filters are the
common classifications. There are many types of filter
function available. In general the functions can be
classified into the Finite Impulse Response (FIR) and the
Infinite Impulse Response (IIR).

Referring 1o equation (2.13) convolution in the discrete

time can be expressed as follows.
k = 0O

z x(k) h{l-k)

k=~

y(l)
Assuming the system is linear-time invariant it can also

be expressed in terms of
i =%

v(l) = Z x{1-i) h(i) o (2.18)

i~
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where h(v) must be causal/physically realizable and be
infinite.

The advantage of the use of FFT lies in the reduction of
the executable time. The transformation of a filter
function 1is usually in {erms of {he rational transfer
function,H(z). The JIIR-Butterworth [ilter will Dbe
discussed because i1 1s simple 10 understiand and 1is

flexible to adjust in the pass, transition and stop bands

as referred to by Peled [28]. Appendix (D-1) provides

further discussions for the following filters.

a. Low pass filter.

Derived from an analog filter Laplace transform of the

filter function as described in reference [25] the

transfer function of the IIR-Butterworth filter gives

H(s) = B‘ R (2.19)

N
where Bn(s) is a polynomial of degree n with roots at

jCO.Bn+0.B+k>T/n
e

o = ceever. (2.20)

k
where : k¥ varies from 0 to n-1
Noting the prescribed attenuation.At in dB, in the stop
band whilst the attenuation in the pass band is

maintained to be less than 3 dB the required minimum

degree n of the polynomial function,f{n) <can Dbe

established using the equation

t/710
Log(:lOA - 1>

L cQ >
og s

n = 0.5
where :

Q = Tan(A /2) / Tan(A /2)
S c

S
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AS and Ac are respectively the pass band and the

stop band frequencies.

By substituting the appropriate value of n into equation

(2.20) the polynomial equation, Bn(s) is established.

The transfer function,H{(z) can be obtained by including
(z-1)

s = C Toris for C = cot(Ac/2)

into equation (2.19).

b. High pass filter.

By inverting the low pass analog 1o digital
transformation curve, this provides a means of inverting

the pass band and the stop band of {1he previous low pass

filter.

c. Band pass and band stop filtier.

The procedure is slightly different from the low pass
and high pass filters. Both sets of 1he pass band and
stop band frequencies must be given. As a result of
these two transition bands 1he equivalent polynomial
equations of degree n are obtainable by considering the
maximum value of QS for both transition bands.

The FIR-Butterworth filter as referred to by Chan et.al.

[37] has several advantages over the IIR-Butterworth
filter. The filter i1s more appropriate where +the
executable time required 1s short. The main difference
from the IIR-Butterworth is {hat the {iller coefficients

are reduced after decomposing the rational function of
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the IIR-Butterworth H{(z) using the Wiener-Lee

decompositiion method.

The technique enables 1he filter coefficients 1o be

reduced considerably. Details of both filter types can

be obtained in Appendix (D-1).

2.5.8. Physical Characteristics of Filter Function.
a. Phase.

It is understiandable f{rom {1he mathematical point of
view that most convolutions delay the phase angle. The
phase angle becomes importanit when considering the 1ime
history of a signal. Two pass digital filter techniques
can be used to restore tLhe phasing 1o 1{he original
position as suggested by Kormylo et al. [35]. Chan et.al
[339] proposed a non-causal filtering which allows users

to calculate the phase delay if necessary. In addition

Chan et al. in [37] proposed using FIR-Butterworth filter
when a short phase delay 1is required.

b. Amplitude.

The IIR-Butterworth filter resulils in increasing gains
in amplitude beyond the pass band frequency. The pass
band frequency can be set to a certain value. In this
case the pass band frequency 1is set at -3dB while the
stiop band attenuation is dependeni on requesti. With t1he
FIR-Butterworth filter the pass band attenuation varies

with the number of coefficienis requested, alihough 11 1is

detectable.
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¢. Transient Signal.

The transfer function is always periodic, from 0 to ¥,
but the signal captured is arbitrary, therefore, in most
cases., the filtering process resulis in transient signals
or words. The length of the transient words depends on
the transition band width. The narrower the {iransition
band width the longer the length of the transient words
[26,44]. Czarnach [36] investiigaled the 1length of the

transient words of IIR filters and eliminated them
through an algorithm he proposed. Chan et.al. [39]
commented on the work of Czarnach [36] that the method
required a lot of data and a large group delay when a iwo
cascade connection was carried out. He proposed a
non-causal filter which comprises a recursive filter.H(z)
and a stable non-recursive filter to approximate the
-1)

transfer function,H(z . The technique allows small

group delay and small memory requirements. The phase
angle is determinable from the equation he proposed.
Moreover., Chan et.al.[36] proposed a new FIR filter using
the Wiener-Lee decomposition method. This method has
advantages in that its transition band 1s easily adjusted
and that the length of transient words 1s delerminable by
its transfer function length.

Furthermore. he commented that the method avoids overf{low
which usually occurs with the IIR filters especially with
the IIR-Butterworth. When a small number of {iltler

coefficients are employed this reduces the gain factors
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in the passband and 1in the stop band due to the
non-periodicity of 1he filler coefficienis. The auto
search Humming window was proposed to increase the gain

factor (attenuation) in i1he stop band.

An algorithm of the bilinear transformation based on
matrices was presented by Power [42] and was improved by
Davies [43]. On the basis of the long division theorem
Kamen [44] presented a program but 1he 1logic of the
program was not obvious. The author ran the program but

it was not successful. A proposed algoriithm will be

described in chapter-6.

2.6. Concluding Remarks.

The non-linear stiffness parameter,? is dependent on
the amplitude of excitation,F(t). This results in
different resonant frequencies for different amplitudes
of excitation. From the frequency response point of view
the natural frequencies can not be Jjustified from a
single response unless the anmplitude of excitation 1is
small. At this stage the natural frequencies are

approximately equal to the resonant frequencies.

Polar diagrams allow more accurate determination of the
resonant frequencies. The correction 1is carried out by
approximating the relative phase angle at resonance. The
use of Mixed Radix FFT allows any amount of data to be
analysed without any data subtraciion or addition which

can decrease the frequency resolution and increase
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leakage respectively. Furthermore, characteristics
imposed on any signal processing should be recognised

since they affect mainly amplitudes and phase angles.

43



F = Force Ww/p = Frequency Ratio

X = Displacement A = Dynamic Amplitude

W = Frequency of Excitation

D = Natural Frequency

FIG.2.4.FORCE-DISPLACEMENT DIAGHAM AND FREQUENCY RESPONSE OF
LINEAR SPRING SYSTEMS.

SKELETON : STABILITY
f f : BOUNDARY
F |°°°° A
(x + J'Xs)_"" w/p*=1 e
F = Force W/ p = Fprequency Ratio
X = Displacement A = Dynamic Amplitude
y = Nonlinear Stiffness factor N = Frequency of Excitation
p = Natural Frequency

FIG.2.2.FORCE-DISPLACEMENT DIAGRAM AND FREQUENCY RESPONSE
OF HARD SPRING SYSTEMS.
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: N\  SKELETON

F ----- A
(x =y 13) — w/p =1 —
F = Force W/ p =Frequency Ratio
x = Displacement A = Dynamic Amplituds
y = Nonlinear Stiffness Factor i = Frequency of Excitation

P = Natural Frequency

FIG.2.3.FORCE-DISPLACEMENT DIAGRAM AND FREQUENCY RESPONSE
OF SOFT SPRING SYSTEMS.

= A cos¢
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ISOCHRONES I
RESONANCE AT
MAXIMUM RATE OF ARC SPACING
F = Force X = A cosﬁo , neal axis
X = Displacement y=-Asinp , imaginary axis

A = Dynamic Amplitude

¥ = Phase Angle

FIG.2.4.FORCE-DISPLACEMENT AND POLAR DIAGRAMS OF LINEAR
SPRING SYSTEMS AT DIFFERENT FORCES OF EXCITATION
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Jump Phenomena

Isochrones
F = Force X= Acosp , real axis
X = Displacement y = -Asinp . imaginary axis
y = Nonlinear Stiffness Factor A = Dynamic Amplitude

¢ = Phase Angle

FIG.2.5.FORCE-DISPLACEMENT AND POLAR DIAGRAMS OF HARD SPRING
SYSTEMS AT DIFFERENT FORCES OF EXCITATION

—— Acnsf,o

: ” poundary
A

Isochrones
F = Force X = A cos real axis
X = Displacement y = «A sinsa . imaginary axis
y = Nonlinear Stiffness Factor A = Dynamic Amplitude

© =« Phase Angle

FIG.2.6.FORCE-DISPLACEMENT AND POLAR DIAGRAMS OF SOFT SPRING
SYSTEMS AT DIFFERENT FORCES OF EXCITATION
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Acosp  —=

= \w
)

Isochrones

F = Force X = A cos® , real axis
X = Displacement y = -A singa . dmaginary axis

A = Dynamic Amplitude

P = Phase Angle

FIG.2.7.FORCE-DISPLACEMENT AND POLAR DIAGRAMS OF COMBINED
VISCOUS AND QUADRATIC DAMPING SYSTEMS AT DIFFERENT

FORCES OF EXCITATION

F -----
p QU
F = Force X = A cosﬁo , real axis
X = Displacement y = -Asin®p , imaginary axis

A = Dynamic Amplitude

¥ = Phase Angle

FIG.2.8.FORCE-DISPLACEMENT AND POLAR DIAGRAMS OF COMBINED
VISCOUS AND COULOMB DAMPING SYSTEMS AT DIFFERENT

FORCE OF EXCITATION
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Spectrum Level
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Af = Frequency resolution (Hz) : AA= Corrective Amplitude
Afc= Corrective Frequency : A=Al + AA = Predicted Amplitude

fr = f1 + Afc~= Predicted Frequency

FIG.2.9.PICKET FENCE CORRECTION FOR HANNING FUNCTION
(CITED FROM REF.40)
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Al A3

— 2af e —| 221 e

K = A3/ (A1¢A3)
fr=f1 + 2Af % K

FIG.2.40.EMPIRICAL FORMULA PROPOSED BY HASSAN [REF.6]
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3. EXPERIMENTAL STUDIES.

3.1. General.

This chapter will describe 1he experimental work
carried out on four simply supported reinforced concrete
beans. Included in the experimentis were the
investigation of the Jjump phenomenon which was found when
reexamining i1he data as reported by t1he author in [40]
and the non-linear behaviour in relation to the deteclion
of 1the flexural and diagonal splititing crack patterns for
beams with fully bonded and partially bonded
reinforcement. In addition calibrations of the
instrumentation will also be described. The use of a
mechanical exciter as well as a magnetic exciter in
relation to the jump phenomenon will also be discussed in
this chapter. Due to the limit of the frequency range of
the mechanical exciter the experiment mainly used the
magnetic exciter.

In general there are three main dynamic tesis as implied

in references [6.7.26] :

a. Steady state vibration tests employ a steady state
input signal, which is normally a sinusoidal. induced
by an exciter and is used .1n references
(1.3.4,5.20,21,22,36].

b. Transient tests, including impact and 'pull-sudden

release' or step-relaxation and snap back. are used if

only certiain low natural {f{requencies are of concern
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[6.7,.19.20]).

c. Further tests. involving random vibration (pure,
pseudo and periodic). may be applied when either tests
a) and b) are not possible. These 1ests involve
statistics and long recordings.

The tests carried out in this stiudy used the sieady state

vibration technique. A typical lay out of the experiments

is shown in fig.{(3.1).

3.2. Models.

3.2.1. Types and General Propertlies.

Two types of simple concrete beam were
investigated in the experimenis; the fully bonded and
partially bonded beams. Each type (2 samples) were
tested and each sample had a specific crachk patte;n. i.e.
flexural or diagonal splitting c¢rack patterns. The
mechanical exciter has a range of f{requency up to 50Hz
whilst the magnetic exciter has a range up to 10kHz.

Based on the specifications of ihe mechanical exciter and

the material properties the dynamic properties of the

fully and partially bonded beams were calculated. By
arranging the beam's dimensions the natural frequencies
can be approximated by the Rayleigh method [8]. All
beams were of the same overall dimensions being nominally
100mm wide, 150mm deep and 3050mm long. The first
natural frequencies of the fully and partially bonded

beams based on this specification were calculated as
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26.09Hz and 24.74Hz respectively.

The concrete strengths were designed (o comply with

BS8110 having nominal cube strengths of 30 N/mmz. Two

pPlain mild steel bars of 12mm nominal diametier were used
as the reinforcement. The beams were simply supported
without any significant shear reinforcement 1o enable
simple experiments to be carried out and to avoid
interference resulting from other parameters such as from
support systems. . Three 4mm diameter 1links having
triangular shape were used to keep the reinforcement in
position when casting. The typical reinforcement 1is
shown in fig.(3.2) and the procedure for the design

calculation is available in Appendix (B-1) to (B-3).

3.2.2. Strain Gauging.

Two sets of two gauges were positioned at the mid
span and at the quarter span to measure strains 1in
tension and compression at both sections. Two gauges
were attached to one of the two mild steel reinforcement
bars. A single 4 mm diameter mild steel bar was
positioned in the compression area to accommodate the
other +two gauges. The gauges were atiached to the
reinforcement parallel to the axis of the beam. The

process was summarised as follows

1. Consecutive dry and wet abradings with 200-grit emery
cloth and 400-grit silicon carbide paper respectively

were applied to the surface of the steel bars.

S2



2. 'M~Prep Conditioner A' was applied repeatedly and was

then scrubbed with a cleanex medical wipe until the

surface was clean.

3. °'M-Prep Neutraliser 5' was applied and was carefully

dried with a cotton bud.

4. The 2mm long foil strain gauge with a gauge factor

2.13 and 119.8 Ohm resistance of SHOWA products was
attached on a cellophane tape for ease of handling and
was positioned on the surface prepared in (1) to (3).

5. Lifting up one of the cellophane tape ends and applied
'M-Bond 200 catalyst®' on the steel surface for quick

hardening. Two drops of M-Bond 200 adhesive were

applied at the edge of the strailn gaﬁge position such
that when the cellophane was {folded down this adhesive
flowed in contact with the strain gauge.

6. Immediately applying firm thumb pressure for one
minute to let the adhesive work properly.

7. Wiring the gauge by soldering the terminal was done
carefully after removing the cellophane tape. To
insulate the active gauge from the termir_lals a plece
of Smm paper tape was stuck across the gauge length
separating the active gauge from the iterminal area.

8. To protect the gauge from damage while casting the
concrete °'M-Coat D Air Drying Acrylic’' was coated on
the gauge and an ordinary mastic for insulation was

also applied around the steel bar over the gauge area.
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3.2.3. Mix Design and Manufacture.

In general the minimum material properties should
conply with the BS-‘8110 for normal concrete. All beans
were designed to have nominal concrete cube stress,{cu
of 30N/mm2, the yield steel stress.fs of 312N/mm2 and a
slump of 10-30mm. From those specifications the

equivalent area of steel to concrete.m 1s found 1o be

7.69 for elastic design/check calculations.

The beam was cast using a steel mould. Slump and VB
tests were carried out before casting t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>