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ABSTRACT 

This thesis investigates the dynamic behaviour of 

reinforced concrete beams as they are loaded to failure. 

Four beams have been investigated. Two types of crack 

paLtern and two types or reinforcement pattern were the 

main variable parameters. Partially bonded reinforcement 

as artificially created (by greasing the bars) and 

positioned at the center third span in two of the four 

beams investigated. The remaining two beams had 

conventional bonded reinforcement. Flexural and diagonal 

splitting patterns were created by loading mechanisms 

individually applied on two beams of each type of 

reinforcement. Stage by stage application of static 

loadings was used. Steady state vibration tests were 

, applied at prior to loadings the beams and at several 

load stages as gradually increasing defects occurred. 

There are four parts to this investigation and these are 

presented in this thesis. 

The first part investigates the accuracy of several 

techniques dealing with signal parameters from a digital 

response spectrum in the signal processing. A logic 

geometry was developed and was applied on the line 

spectra of the response spectrum. Numerical evaluation 

found that the error induced in the proposed technique 

decreased exponentially with increasing numbers of 

cycles. A maximum of 0.17% errors may exist when 
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examining 100 cy-cles of the frequency or, interest. A 

regression analysis was used to achieve further accuracy 

of the results. 

The second part investigates the jump phenomenon of 

mechartical exciters and the sharp drop phenomenort of 

magnetic exciters. Both of which may confuse the analysis 

of structural dynamic behaviour. By accounting for the 

stiffness of the magnetic field of the magnetic exciter 

in a mathemaLlcal model, the jump phenomena was shown to 

be due to the effect of the reflected force in the 

excited structure. Practical equations were also proposed 

to relate absolute to relative parameters. 

The third part of the thesis concerns the algorithms 

required in filter processing and includes the 

development of a computer solution. Two algorithms were 

developed to obtain coefficients of a polynomial equation 

which was set up from elementary equaLlonk; and from a 

rational function respectively. The algorithms were 

simple and easy to program. 

The last part of the thesis discusses the detection 

of flexural and diagonal splitting defects and tion-linear 

behaviour of the beams during the vibration tests. Static 

and dynamic comparisons are also discussed. 

Based on the characteristics of the polar diagrams it was 

found that several possible types of non-linear damping 

were demonstrated in the experiments. The typical 

viscous and non-linear higher polynomial damping existed 
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mostly in the models although the crack pattern and 

intensity of cracks contributed to changes in the type of 

damping. In addition -the beam models in almost all 

conditions showed non-linear soft spring behaviour. 

Diagonal splitting crack patterns can be idenuried from 

a small decrease of resonant frequency and from the sharp 

drop of resonant amplitude. The presence of single deep 

cracks greatly reduced the stiffness. The experiments 

show that a sharp decrease of resonant frequency 

indicates that a large amount of residual strain exists. 

It is concluded that defects of the reinforced 

concrete beams can be identified from the changes of the 

dynamic parameters using the proper digital signal 

analyses. The jump phenomenon is shown to be due to the 

effect of the reflected force on the moving exciter mass 

rather- than due to the presence of the non-linear soft 

spring s3rstem. 
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NOMENCLATURE 

a= coerricient of amplitude 

ao = a. =bI= coefficients of the Fourier series 

ak= roots of polynomial equation 

A= relative dynamic amplitude coefficient 

An = spectra level associated with frequency fn 

At. = attenuation of pass band frequency. 

Ac= angular stop band 

As= angular pass band 

= total area of steel section 

= absolute dynamic amplitude coefficient 

A(w) = coefficient of the w 
th 

regression analysis 

b= amplitude coefficient 

= breadth of beam section 

B= absolute dynamic amplitude coefficient 

B= Polynomial equation in Laplace form 

B(w) = coefricient of -the w 
th 

regression analysis. 

c= viscous damping coefficient 

c 
Ir 

= critical damping coefficient 

C= coefficient of analog to digital transformation 

cc = total force of concrete in compression 

C1 = C2 = Cn -= coefficients 

CF = corrective factor 

[C] = mairix of damping coefficienis 

d= damping ratio = c/e 91 

= clear dep-th of' beam section 
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dB = decibels = 20log: 
LO(Ratio) 

(e] = matrix of eigenvectors 

[e) T= transpose matrix of eigenveciors 

= E modulus elasticity of concrete 0 
= E modulus elasticity of steel S 

f= analog frequency in Hertz. 

fr = predicted frequency 

= f compressive stength of concrete (N/mm 2 
-OU 

fn = frequency with amplitude denoted by An 

= f allowable stress of steel (N/mm 2 
s 

= f yield stress of steel (N/mm: 2 
V 

F= static force 

FO = static force from -the magnetic f ield 

F(t) = F sin Wt = time dependence force of excitation 

CF(t)]= matrix of time dependence force of excitation 

h= hysteretic damping coefficient 

= total height of beam section 

h(t) = time dependence function 

h(T) = time dependence function 

H(f) = transformed function of h(t) 

H(S) = transformed function in Laplace form 

HW = transformed function in z-form 

i= coefficient of integration 

i(t) = time dependence function 

I(r. ) = transformed function of i(t) 

I0 = initial inertia 

Ik= inertia of region-k 
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i= r/-l = imaginary root 

j(t) = time dependence function 

i= number of divisions 

JM = transformed function of j(t) 

k= sLiffness of system 

= coefficient of integration (integer value) 

k(t) = time dependence function 

KM = transforined function of k(t) 

K = stiffness of systela 

(K) = stiffness matrix 

1 = coefficient of integration 

L = total amount of data executed 

span (m) 

M, mass of system 

m M/m ratio of mass 

M = mass of system 

[M) = mass matrix 

n order of polynomial equation 

Es/E 
0= modulus equivalence 

N normal force 

= number of coefficients of polynomial equation 

p= angular natural frequency 

Pk =k th 
angular natural frequency 

pl, =p2 /P 1= ratio of angular frequencies 

q= distributed load (kN/m) 

QSOIr = self weight load (kN/m) 

r= W/p = frequency ratio 
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= B/A = amplitudes ratio of exeited beam/structure 

to moving excitation mass 

rU= Wp 
U= 

frequency ratio 

r. = (1 + 0.75 aA2) 

R -ý; (P F) = Coulomb friction force 

sgn(k)= vector in phase with velocity 

s= bilinear transformation coefficient 

t= time 

At = time interval = time increment 

T= execuiable time 

TS= total force of steel in terision 

To = 11f = period of signal 

T(max)= Kinetic energy 

u= coefficient of integration 

v= shear stress (kN/mm 2 

v= shear force (kN) 

V(max)= Strain energy 

x X(t) = time dependence function 

first derivative of x to time velocity 

second derivative of x to time acceleration 

X relative dynamic displacement of the moving 

exciter mass to the excited beaudstructure. 

absolute dynamic displacement of the excited 2 

beam/structure 

X3 = absolute displacement of the moving exciter inass 

X(t) = time dependence function 

X(f) = transformed function of x(t) 

xv 



YM = time dependence function 

Y(f) = transformed function of y( L) 

(Z] = displacement matrix 

a= measured relative phase angle of the moving 

exciter mass to the excited beam/structure. 

= coefficient in filter design 

J3 = 4p -a= different phase angle between the true 

and measured relative phase angles. 

= coefficient in filter design 

Af = frequency resolution 

At = time interval 

#V = stiffness parameter 

V(x) = general shape function in x-axis 

X = 2nf/F = digital frequency range 

Ps = micro strain (10- 6 
strain) 

V(x) = shape function in x-axis 

P = coefficient of friction 

T= time 

(P = true relative phase angle of the moving exciter 

mass and the excited beam/structure. 

= angular frequency of excitation 
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1. INTRODUCTION 

This thesis concerns the evaluation of the 

structural condition of reinforced concrete beam elements 

by monitoring their dynamic response to forced 

excitation. 

1.1. Gerteral. 

Any structure may be thought of as being composed of 

many constituent elements. Each element way be 

considered 'alive' in that it has specific sensitivities. 

Reactions to stimulus may be various and include static 

deflection, thermal reaction and sensitivity to 

vibration. In this latter case the maximum responses are 

known as indications to the natural frequencies of the 

structure. If different maximum responses may be 

sustained they provide many modes of vibration. The 

modes of vibration may be thought of as being dependent 

on a number of idealised lumped masses and the axes of 

vibration of those lumped masses. The number of 

independent mass times axis situations defines the degree 

of f reedom of the system. When one of the natural 

frequencies is intentionally excited the elements 

respond. The amplitude response of the individual 

element depends on its mass. stiffness and damping. 

Loading or damage causes changes in the response of 

individual elements and therefore the structure as a 

2 



whole. The changes of response may be due to the changes 

of one or more of the dynamic parameters, i. e. natural 

frequencies, damping, amplitudes and stiffness. 

Structural defects may be caused by the failure to design 

against environmental hazards such as that caused by 

heavy traffic disturbance, water waves or from heavy 

machinery involved in or close to the structure. 

Alterations to the structure or its use may also cause 

defects. In addition earthquake loads or impact from 

bomb blasts on or near the structure will affect the 

reliability and integrity of the structure. This study 

covers the specific defect of flexural and diagonal 

splitting cracks on simply supported reinforced concrete 

beams and investigates the characteristics of its dynamic 

parameters. The evaluation of the dynamic parameters 

includes signal processing and the evaluation techniques 

used for this are developed in the study. 

1.2. Review of Vibration Studies. 

Several researchers have studied the effect of 

damage on the dynamic response of simply supported 

reinforced concrete beams. 

Tourk [1] studied tile effect of the presence and 

propagation of cracks in the concrete on the 

characteristics of the dynamic response. In his 

experiment on nine reinforced concrete beams having 

nominal dimensions of 1300mm x 50mm x 75mm he attached 
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strong sieel frames at the ends of the reinforced 

concrete beams perpendicular to the beam axis and applied 

static load by pulling on a steel bar connecting the 

frame's tips. The eccentric load created an almost even 

moment over the length of the beam. A magnetic vibrator 

was positioned at the centre of the span. under the 

concrete beam. and was anchored to the floor. A loading 

ring was used to measure the induced load and was 

attached between the vibrator head and the bottom of the 

beam. The eccentric load was not removed while tile 

steady state vibration test was being carried out. The 

static moment as well as the the exeltation force. which 

was 5 Newtons, was maintained constant over the vibration 

test during which scanning for natural frequency between 

50 to 200 Hz took place. Tourk (11 found that the 

natural frequencies exporieratially decreased as the static 

moment increased. In addition the damping ratios 

increased wi th the increasing static momen ts. The 

natural frequencies found from the experiments did not 

agree well with analytical resulLs. This error was 

reported to be due to the incorrect idealisation of the 

analytical model or the fact that existing micro cracks 

might have changed the natural frequencies. Furthermore, 

it was noted that the amplitudes of excitation caused 

variation in the natural frequencies. The higher the 

amplitudes of excitation the lower the natural 

frequencies found. 
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Sim [2] improved the analytical techniques used by 

Tourk (1) by remodelling the cracks in the finite element 

model. The linear program was modified to accept the 

existing cracks by zeroing the element stiffness around 

the cracks. A step by step or iterative analysis was 

applied in the program and this corresponded to the 

propagation of the cracks. The model consisted of many 

layers and the stiffness was updated as each concrete 

layer cracked. Sim found from these numerical results 

that the natural frequencies decreased as the cracks 

increased. The finite element program produced static 

load-deflection results which were also in good agreement 

with those obtained experimentally. 

Hashim [3) improved the loading scales applied in 

the eccentric bar as used by Tourk [1). Hashim applied 

an excitation force of 50 Newton over the frequency range 

of 50 to 200 Hz in the steady state vibration. test and 

examined successfully eight singly and doubly reinforced 

concrete beams. He commented that the static loading 

device affected the damping. Moreover he also found that 

the natural frequencies decreased as the beam approached 

its failure moment. 

Tan (41 examined three types of beam. i. e. under 

balanced and over reinforced concrete beams. The methods 

of creating cracks and the analytical comparisons were 

the same as those used by Sim (2]. However, instead of 

applying steady state vibration tests as used by Tourk 
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(11, Hashim [3] and Sim [2) Tan carried out impact 

tests. The damping ratio from the impact test was 

included in the computational analysis. The 

computational result of the later technique was in good 

agreement with the experiment. 

Several research studies on the dynamic 

characteristics of structures composed of materials other 

than concrete have also been carried out. 

Research on steel beam elements was carried out by 

Christides and Barr [5]. Solid cross section steel beams 

were examined in this study. Artificially created 

symmetrical cracks were introduced and successive steady 

state excitation experiments were carried out. A 

parameter was evaluated from the experimental tests and 

included in the proposed equation of motion. This 

allowed the equation to take account of the effect of 

stress about the cracks. The equation was a satisfactory 

fit to the experimental results. Furthermore, It was 

also reported that the natural frequency was not 

sensitive to the presence of the crack unless the crack 

was very extensive. A parabolic curve showing the 

relationships between the ratio of the natural frequency 

and the ratio of crack depth for various numbers of 

artificial cracks was produced. The cracks were 

intentionally made quite wide to avoid nonlinear 

characteristics -that could occur due to the opening and 

closing of the more narrow cracks. 
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Hassan (61 studied the characteristics of a lattice 

tower under vibration tests. Two types of test were 

dealt with, i. e. steady state vibration tests and 

'pull-sudden release' tests. From the 'Pull-sudden 

release' tests Hassan found a relationship between 

amplitudes of excitation and damping. She stated that 

the damping characteristics were dependent on the 

amplitude of excitation. At a certain higher range of 

amplitude of excitation the increase in amplitudes of 

excitation increased -the damping ratio. The structure 

relating to this observation was viscously damped. On 

the other range the increase of amplitudes of excitation 

decreased the damping ratio. She illustrated this 

characteristic as an asymptotic curve in a cartesian 

axis. The structure relating to this later observation 

was dry damped. Furthermore the two ranges met at a 

point where the half power band width method most 

accurately predicted the damping ratio. 

Ibanez [7] reviewed several analytical techniques 

to improve structural dynamic models in the study of the 

safety and reliability of pressure vessels and piping 

systems in nuclear power plants. He included 

experimental data to improve the dynamic model of the 

structure under test. The model could then be used for 

simulation. Numerous practical examples were described 

and were shown to be of value. It was commented that the 

dynamic characteristics of the structure changed with 
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greater amplitudes of excitation. Many other 

experimental aspects were also discussed in the paper. 

The work discussed above was carried out without 

much consideration of -the non-linearities of the 

structure or the material. Several standard references 

dealing with vibration of structures in this elastic 

range are also available such as in (8,9.10,31.12.131. 

Several papers are now reviewed which include the study 

of non-linear siructures and material response. 

White [14,151 conducted experimental and theoretical 

work on the non-linearities arising from large 

deflections. A steel plate was hinge-supported at its 

four edges so as to maintain the possibility of the 

membrane effect. The non-linear hard spring behaviour 

became the main topic of the study. White (14.151 found 

a solution to the determination of resonance of a 

structure having non-linear hard spring behaviour. The 

maximum rate of arc spacing criterion derived from a 

cubic equation on the polar diagram (a diagram 

representing the real and imaginary part of the response) 

was proposed to identify resonance. Steady state 

excitations were applied at a steady frequency increment. 

Details of this phenomena will be covered in chapter-2. 

Furthermore White in [141 as well as in [161 studied the 

effects of the non-linearity on the dynamic parameters 

from the impulse response of a structure using a Fourier 

transform of the proposed perturbation method. It was 
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reported that although the time history of the 

perturbation method was not accurate tile predicted 

natural frequencies were in agreer 

from a Fourier transform program. 

Hartog [45] in his study of 

combination of Coulomb and Viscous 

variety of possible damping 

behaviour. He stated at least 

nent with those derived 

a system damped by a 

friction described the 

types on structural 

four types met most 

frequently, i. e. the viscous damping where the damping 

force is proportional to the velocity, the Coulomb 

damping where the force - is independent of the velocity, 

the air resistance damping where the force is 

proportional to the square or higher order of the 

velocity and the internal hysteresis/ hysteretic damping 

where the force is -independent of the velocity and 

depends only on the amplitude of motion. He presented an 

exact solution of a single degre6 of freedom system. witlý 

the mixed damping just mentioned. The iýqrease of 

Coulomb friction decreased amplitude response,..:.. 

Yeh [461 developed the work of Hartog [451. An 

exact solution for a two degree. of f r-eedom system with 

one Coulomb and two viscous dampers was established. The 

solution had a range of accuracy when applied only to 

motions that did not c-Ome to rest. 

Tomlinson et al. [171 referring to the work of Hartog 

(451. "and Yeh [461 further investigated. in detail the 

dynamic characteristics of a structure with lightly 
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viscous damping and coulomb friction damping using the 

harmonic balance method. a method of equating 

coefficients of the lower terms of a trigonometric 

equation. Tomlinson reported that the presence of 

coulomb damping no longer allowed the response to conform 

to a locus of a circle of the polar diagram in the 

resonant region. The distorted pattern in the polar 

diagram was evaluated on the basis of the in-phase and 

quadrature power dissipated when exciting the normal 

mode. This effect was also studied by Tomlinson in [181 

which the distorted pattern was proved to be due to the 

presence of non-linear coulomb damping and not to be due 

to limitations imposed by the approximate method. 

Rades [19) referred to the work of Tomlinson [17,181 

in dealing with the parameter identification of a 

structure with coulomb friction and hysteretic damping. 

Rades developed a technique to evaluate the coefficient 

of the non-linearity by using several polar diagrams. 

Rades claimed that the way the isochrones. i. e. lines 

connecting the points of constant frequency from 

different curves, bent into a concave shape as shown in 

the family of polar diagrams can identify the presence of 

coulomb damping especially when the distorted curves were 

not obviously apparent. Furthermore, Rades in [201 

revealed the validity of the isochrones to identify the 

presence of quadratic damping, a damping which is 

associated with the turbulent flow of a fluid through an 
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orifice. Rades claimed that this type of damping cause 

the isochrozies to bend into a convex shape and the curves 

therefore distorted like a flattened ball. Another 

result was achieved when Rades [21] examined the effects 

of non-linear stiffness in a resonance test. He examined 

the cubic stiffness term in the governing equation using 

the harmonic balance method. He demonstrated the effect 

of a jump phenomena in the polar diagram and used the 

isochrones to identify a type of stiffness non-linearity. 

Rades carried out experiments using rubber or 

polyurethane materials for vibration isolation purposes. 

Since non-linear stiffness can not be identified by a 

single polar diagram Rades strongly recommended that only 

families of polar diagrams and their isochrones be used 

for identification of non-linear stiffness. Further 

discussions are available in chapter-2. 

Many standard references discuss the mathematics of 

zion-linear structures as seen in [22,231. These will not 

be discussed here. 

A recent application of the vibration tests using 

mechanical vibrators to relieve residual stress was 

discussed by Claxton (47,48). He (47] commented that his 

technique was a complementary technique to the existing 

thermal treatment technique. One or more resonant 

frequencies were induced on -the structure under tests at 

certain levels of amplitude where the yield point of the 

material was exceeded. About 2000 cycles at every 
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resonance were applied Wi thin 10 Illiflutes frequency 

scanning which was described as the wass and stiffness 

dependence. He (47,481 elaimed that his technique was 

successful and many problems were dealt with using the 

technique. 

1.3. Review of Signal Processing. 

Apart frow the non-linear response problems signal 

processing obviously plays a significant role in 

determining correct dynamic Parameters. This subject 

includes the problems of digitizing data. Fourier 

trans f orma tion and filter design. These subjects are 

available in many standard references such as in 

[10,24,25.26,27.28,291. Only reference to specific parts 

of the standard references, related papers and reports 

will be discussed below. 

To enable analog signals to be analysed digitally 

using a proposed Fast Fourier Tra nsfo rm program a 

digitising machine or digitiser is demanded. The 

accuracy of the digitiser input data to the sof tware 

controlling the digitiser plays an important role. The 

accurac, v of the digitiser can be defined in the 

specification of the digitiser 
. The higher the 'bits' 

the better the results. A twelve 'bits' digitiser can 

represent a unit analog output in 2 12 integer numbers. 

The accuracy of the digital numbers may be achieved at 

plus or minus 1 digit. Further more the output is also 
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dependent oil the input scaling factor. Errors due to 

improper factor selection, known as round off error. may 

decrease the accuracy of the digital output. Further 

discussion of this matter may be found in [251. 

Parameters of a signal may be more simply analysed 

in the frequency domain rather than in the time domain. 

Since digital data is involved ill the analysis a 

classical method, the Discrete Fourier Transform as seen 

ill reference [251. may be used for small amounts of data. 

To avoid repeated executions occurring in the DFT method 

all algorithm derived on the basis of the prime number of 

2. known as the Fast Fourier Transform (FFT), was 

originally proposed by Cooley and Tukey [30). This 

algorithm saves considerable executable time over the DFT 

method. Algorithms on the basis of prime numbers of 

other than two have also been available (24,271. The 

latest algorithm is able to execute any amount of data 

(namely the self sorted Radix Mixed FFT). This algorithm 

is more flexible in practice especially if a lot of data 

is executed as has been used in weather forecasting by 

Temperton [31.32,331. Moreover the radix mixed algorithm 

can be adopted in any computer memory and analysis can be 

carried out. without disposing out any amount of data. 

Further discussions of the Fourier transformation are 

found ill chapter-2. 

The FFT method was adopted by Hassan (61 in the 

research to analyse the dynamic parameters from steady 
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state vibration tests. Hassan introduced an empirical 

formula to deal with the resonant frequency of the 

response. The accuracy of the results using the formula 

depended on the frequency resolution. Further 

discussions in this matter are found in chapter-4. 

Signal processing inevitably involves filter 

designs. To gain executable time in ort line process two 

complementary cascade Fast Fourier Transformers proposed 

by O'leary [341 may be simultaneously used to transrorm 

two dependent data blocks. The two sets of transformed 

non-recursive filter functions can be stored i 11 the 

computer memory. Continuous filtering may then be 

performed by cascading the transformed pairs and the sets 

of the filter spectrum. Word rates in excess of 3MHz are 

possible with available hardware. O'leary [341 applied 

this design in the radar communications areas. 

Kormylo at al. [351 proposed a two-pass recursive 

digital filter to avoid the phase-lag imposed in the 

filtering process. The initial and reverse tilne 

transients were evaluated and an overlapped scheme was 

proposed. 

Czarnach [361 introduced an overlap-save algorithm 

in terms of matriculation to identify the time transients 

involved in the filtering: process of non-causal recursive 

systems. Systematic errors were detected in the process 

using cascade connections. 

Chan et al. (3"11 proposed filter coefficients derived 
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from a finite impulse response (FIR) using the Wiener-Lee 

decomposition technique. An analog transfer function was 

decomposed into the Wiener-Lee decomposed form. 

Coefficients were evaluated using the integral 

transformation proposed. The recursive filter was 

achieved by truncating the non-recursive filter using a 

window function after applying a bilinear transformation. 

The technique avoided overflow which is likely to happen 

in the non-recursive filters. The time transients are 

detectable from the filter function words. Further band 

stop attenuation may be increased by applying window 

function on the impulse filter response. The advantage 

of this recursive filter over the other recursive filters 

was that the band pass/band stop specifications may be 

changed as easily as the non-recursive filter. 

Following Chan's proposal Kwong [38) simplified the 

computation of the Wiener-Lee decomposition method. He 

proposed an expansion of the transformed filter function 

into a Laurent series. Inverse transformation may then 

be carried using standard z-transformations. 

Chan et al. (391 again introduced a non causal filter 

using the Wiener-Lee transformation technique. He 

managed to deal with the phase-lag which normally 

occurred in any convolution process. In comparison with 

the two-pass non causal recursive filter proposed bv 

Kormylo et al. [351 this technique occupied a small amount 

of computer memory because of the short transient word. 
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therefore. it required a small group delay. 

The technique proposed by Chan (37,391 and Kwong 

[381 is employed in the Program and a long division 

algorithm is developed in the process. Further 

discussion of the filtering technique is found in 

chapter-2 and chapter-6. 

1.4. Summary of Existing Research and Formulation of 

the Problem. 

The dynamic parameters of reinforced concrete beams 

under vibration tests have been studied by several 

authors (1.2,3,41. Most experiments were under constant 

external load whilst the vibration tests were carried 

out. This enabled the cracks to open during the 

vibration tests. As the amplitudes of excitation were 

not excessive the effects of non-linearity due to opening 

and closing of the cracks were not apparent. The 

decreasing natural frequencies observed with the increase 

in the amplitudes of excitation were possibly due to the 

soft spring behaviour of the structures. The increase in 

cracking, due to an increase in the flexural moment. 

reduced the natural frequencies. This has been accepted 

in all previous research. The curve relating natural 

frequency to crack depth proposed by Christide et al. 

(5) is different from the similar curve relating natural 

frequency to the flexural moment proposed by Tourk (1]. 

The steel material having artificial wide open cracks 
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produced an inverse exponential curve (convex shape 

upward) and the presence of cracks were found to be not 

sensitive to the natural frequencies. An exponential 

curve was reported by Tourk (1) in the natural frequency 

applied moment relationships of the reinforced 

concrete beams. 

Theoretical equations of motion developed for the 

homogeneous material proposed by Christide et al. (5) 

may not be directly applied to reinforced concrete 

structures due to the complexities of the structure. 

Reinforcement obviously contributes to the behaviour of 

the beam as it cracks under load. This is especially 

noted during dynamic experiments if the external load was 

removed as reported by this author in [40]. Mathematical 

studies have shown that it is still not possible to 

predict closely the dynamic behaviour of reinforced 

concrete beams. The finite element method employed by 

previous researchers predicted results far from the 

experimental values despite improvements by Sim (2) on 

the element mesh making it resemble more the experimental 

model. Numerical studies and the experimental studies 

have consumed almost equal amounts of researchers' time. 

It was. therefore, decided that this research should 

concentrate on experimental work and in particular the 

effects of different crack patterns and their 

identification from the study of the dynamic parameters. 

Several suggestions are made to achieve more accurate 
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dynamic parameters. 

It was reported that the natural frequencies resulting 

from the polar diagram overestimated natural frequencies 

from the response spectrum (15). This was Possibly due 

to the fact that the measured phase did not represent the 

relative phase of the exciter to the structure under 

test. A study on this phenomena has been carried out and 

formulae for correction purposes are presented. 

There are two possible non-linear stiffness problems 

imposed by the reinforced concrete beams under tests. 

Under considerably low amplitudes of excitation the beams 

exhibit quasi-softening behaviour. If the beams are 

excited excessively they may exhibit rectification 

phenomenon. Correct experimental procedures and settings 

play an important role in accurate analysis of the 

results. Furthermore non-linear damping may also be 

exhibited in the experiment. Under relatively high 

amplitudes of excitation the concrete beams may 

demonstrate viscous damping. In contrast under 

considerably low amplitudes of excitation dry friction 'or 

Coulomb friction or non-proportional damping may exist. 

The empirical equation proposed by Hassan (6] to deal 

with the peak frequency response numerically depended on 

the frequency resolution. Since only peak frequencies 

were of interest the additional zero data values to suit 

the base-2 algorithm or the application of the window 

function may be acceptable. As vibration tests include 
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many aspects where response spectra should be proper and 

any signal in the frequency domain can be Performed in 

the time domain with the radix-2 FFT, the window function 

and the additional zero data values should not be 

employed. An alternative solution using a proposed logic 

geometry applied on the spectra level is proposed. 

Errors induced in the results are analyzed via the radix 

mixed FFT which is capable of accepting any amount of 

data. From the response spectra an equation for 

correction bas been derived. 

1.5. Scope and Layout of the Thesis. 

The general objective of the study was to monitor 

defects of reinforced concrete beams by means of 

vibration -tests. Appropriate methods and improvements on 

existing experimental procedures and analyses are 

examined to produce more accurate values of the dynamic 

parameters. 

Basic linear and non-linear equations of motion are 

described briefly in chapter-2. General transformation 

of the Fourier series into Fourier integral and its 

associated physical charac teri s tics are then described. 

The signal processing involved in obtaining dynamic 

parameters and the preseritation of the response are also 

discussed in this chapter. 

The experimental setup and procedures are discussed 

in chapter-3. Typical specimens. positions of the 
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vibration pick-ups and their considerations are 

described. Comments and confirmations on the 

experimental procedure and results are described at the 

end of the chapter. 

To improve the dynamic parameters corrective 

coefficients based on a proposed geometry are described 

in chapter-4. Comparisons are made with the available 

techniques and comments on the applications of tile 

proposed technique are also included. 

Relationships between the exciter and the excited 

structure and their affects on the response spectrum are 

evaluated in chapter-5. Corrections to the results are 

proposed. 

The general output quality of any vibration tests 

depends on the amount of data analysed. A large amount 

of data is processed using a computer program. Two 

algorithms are established to enable the long division 

theory and the setting up of polynomial equations to be 

applied in the developed computer program. These 

discussions are obtained in chapter-6. 

Results and analyses of the vibration tests are 

separately discussed in chapter-7 due to the dependency 

of several evaluations made in chapter-4 to chapter-6. 

Discussions of the results are outlined in chapter-8 

following the conclusions and suggestions for further 

research given in chapter-9. 
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CHAPTER -2 



2. CHARACTERISTICS OF VIBRATING STRUCTURES. 

2.1. General. 

Applications of the theory of vibration in 

monitoring defects in structures, are developed in this 

chapter. A brief discussion of the linear behaviour and 

a rather deeper discussion of the non-linear behaviour of 

structures are described. Several possible mathematical 

solutions may be constructed which depend on the types of 

excitation applied to the system. This chapter will only 

emphasise the solutions of the equation of motion of 

steady state excitation problems. 

Most researchers present graphs showing dynamic 

parameters in terms of frequency response. Response 

form, namely polar diagram or polar plot, may also be 

produced by decomposing the amplitudes into their real 

and imaginary parts and plotting them in the form of an 

Argand diagram. This technique has several advantages 

over frequency response techniques. especially when 

non-linearity exists. The technique will be described 

further in this chapter. 

Signal processing involving Fourier transformations and 

filter designs will also be discussed. Parameters of a 

signal, i. e. amplitude, frequency and phase angle rely 

on the accuraey of the signal processing employed. On 

the basis of this knowledge those parameters can be used 

for analysis. 
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2.2. Equation of Motion of Linear Vibratory Systems. 

A basic equation of motion of a single degree 

vibratory sistem can be expressed as follows. 

mR + c; k + kx = F(t) ........ 
(2.1) 

The particular solution to equation (2.1) for a steady 

state excitation is 

xa sin Wt +b cos (it 
P 

By substituting the particular solution and its 

derivatives in eq. (2.1) and equating the coefficients of 

the lower order of the trigonometric. equation, the 

amplitude response of the system may be established. 

Further details of this substitution is available in 

Appendix [A-1]. The response spectra and the associated 

stiffness diagrams are shown in fig. (2.1). 

A continuous structure can be idealised as a system 

having a series of lumped masses. springs and dampers. 

This idealisation simplifies the complicated dynamic 

parameters which usually occur in real structures. 

Decoupling the equations of motion enables the dynamic 

parameters of the system to be analysed independently. 

The general equation for multi degree vibratorv. svsteuis 

can be written as follows : 

[e] T (MI(e) (21 + [e] T [CI[e) [t) + 

[e] T [KI(e] [z) = [e] T [F(t)] (2.2) 

A complete derivation of equations (2.2) can also be 

found in Appendix (A-2). 
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2.3. Equation of Motion of Non-linear Vibratory Systems. 

The equation of motion described in (2.1) subject to 

a steady state force of excitation includes two 

parameters, c and k which cause the system to behave in a 

non-linear way. If there is non-linear stiffness the 

equation becomes 

mR + c; k + k(x±7x 3 F(t) 
...... 

(2.3) 

Equation (2.3) suggests that if tile stiffness parameter,; ' 

is zero then equation (2-3) is exactly -the same as 

equation (2.1). 

The solution to equation (2.3) can be approximated for 

small non-linearities by employing a method of harmonic 

balance as described in references (11,22,231. By 

applying a particular solution. x =A Cos (4)t+f). and an 

excitation force F(t)= F0 Cos Wt into equation (2. -3) and' 

omitting the higher harmonics the relationship between 

the relative amplitude and frequency is obtainable. The 

technique is fully described in Appendix (A-2) and (A-3) 

and is partly shown below. 

F20. 
(r) 2r2- 2d 20 4d 2(r2-d2 (2.4) 

2dr kA 

tan 
r2 -r2 

(2.5) 

C 

If a resonant frequency of the structure tends to 

increase as the applied force increases such that the 

frequency ratio. ci/p, at resonance. is greater than one 

then the system is referred to as a 'hard spring' system. 

Mathematically this charaeteristic is achieved by 
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stiffne!;; s adjusting positive The higher the 

parameter, r the larger the non-linearity as seen in 

fig. (2.2). The line connecting the resonance points of 

different force of excitation is referred to as the 

'skeleton'. Equation (2.4) is a polynomial equation 

where at a certain frequency of excitation, w/p it 

provides three different values of amplitude. A. At this 

stage the system is within the unstable condition where 

in practice this produces a 'Jump phenomerion'. The 

stability boundary can mathematically be derived as seen 

in Appendix (A-4) or reference [22). 

On the other hand if the resonant frequency of the 

structure tends to decrease as tile applied force 

increases the system is referred to as a 'soft spring' 

system where a negative stiffness parameter,, - is 

mathematically appropriate. This can be seen in 

fig. (2.3). 

White (14,151 in the study of the effects of 

non-linearity due to large deflections in resonance 

testing revealed the existence of the 'jump phenomenon' 

due to the significant effect of the membrane forces. 

Non-linear damping in the frequency domain has similar 

effects to the 'soft spring' behaviour [22.23). Coulomb 

friction damping occurs in some structures where the 

normal force perpendicular to the friction plane plays a 

significant role. The equation of non-linear damping was 

studied by Tomlinson [171 and Rades [19). Tonil inson 
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described in [171 that the existence and positiou of 

Coulomb friction in a system could be identified. though 

it could not be identified directly when the system had 

many Coulomb devices. The combined effect of hysteretic 

and Coulomb friction was studied in [23). The equation 

was presented in the form 

MR +h+R sgn(; k) + kx = F(t) ....... 
(2.6) 

G) 

where :R sgn(; k) is the Coulomb damping where the sign is 

dependant on the relative velocity (; k) with which 

the friction force. R ar (P N) is associated. 

On the basis of equation (2.3) and (2.6) equations for 

multi degree vibratory systems can be built up in terms 

of matrices as described in Appendix (A-1). A similar 

equation based on equation (2.6) was developed by 

Tomlinson [171 to enable hysteretic and friction damping 

to work on a multi degree vibratory system. 

2.4. Polar Diagram. 

By decomposing absolute amplitudes into their real 

and imaginary parts associated with cosines and siries 

respectively and plotting them on a form of - Argand 

diagram results in a polar diagram. The tangetit. V is 

associated with the phase angle of the excitation force 

to the response signal. The technique has several 

advantages over the frequency response diagram in terms 

of its capability to improve improper amplitudes arising 

from difficulties in the instrumentation. 
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White [151 studied the rate of change of phase angles of 

a single degree vibratory system as shown in fig. (2.4). 

He derived an equation proposing the maximum frequency 

spacing criterion in the polar diagram to identify the 

natural frequency. The technique was further extended by 

Rades [19,21]. 

Rades [211 studied in more detail the effect of 

non-linearity in polar diagrams. He suggested a method 

of identifying non-linearity using a series of 

experiments having different forces of excitation. 

Looking at the lines connecting the same frequencies 

(isochrories) the types of non-linearity can be identified 

as shown in fig. (2.5) and fig. (2.6). Furthermore he also 

derived a stability boundary equation in the polar 

diagram. He noted that the 'jump phenomenon' starts at a 

certain phase angle where the tangent of the isochrone 

coincides with the tangent of the polar diagram. The 

stability boundary equation is represented as a 

hyperbolic equation with the center axis at 135 degree of 

phase angle. The complete derivation of the equations 

are obtainable in Appendix (A-5). Rades (191 identified 

the non-linear damping as a distorted shape of the polar 

plots as shown in fig. (2.7). Tomlinson [171 commented 

that the techniques proposed by White [15) did not hold 

true for a system having Coulomb friction damping. He 

provided a set of equations to deal with such a 

phenomenon as shown in fig. (2.8). 
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2.5. Signal Processing. 

As amplitudes, frequencies and phases are measured 

in vibration testing the analysis of the results must 

include signal processing. A brief introduction to the 

Fourier series theory and a more detailed description of 

the Fourier Transformation are given below. 

2.5.1. Fourier Series. 

The Fourier theory states that any periodic signal 

can be decomposed into a series of components of 

sinusoidal form and of different frequency. The 

formulation of the statement as described by Ramirez [25) 

is 

Y+ (a Cos Ix +b Sin lx) 
....... 

(2.7) 
2a 

0 1ý1 
11 

The equation must be periodic with time and for all time 

(i. e time must begin at minus infinity and continue to 

plus infinity). For practical purposes the observable 

time can be selected in such away that it does not reduce 

very much the quality of the results. Furthermore, the 

conditions for the existence of a Fourier series are 

referred to as the Dirichlet conditions (251 which are 

associated with the finite numbers existing in the 

function, the existence of maximum and minimum values and 

that the function is integrable in any period. 

Equation (2.7) can be modified to relate amplitudes. 

frequencies and phases as follows. 

JWX 
a+a Cos 14) t+b, sin 14) t ... 

(2.8) 
0100 
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where: 4) = 27rf a X(t) dt 
00T 

a= _ý_, 

T 
X(t) Cos 1-W t/dt 

T00 
T 

b x(t) sin 10 t/dt 
T00 

T executable time 

As long as a Periodic waveform can be mathematically 

described that meets the Dirichlet conditions. equation 

(2.8) can be used. 

2.5.2. Fourier Integral. 

Whilst the Fourier series can deal with a periodic 

waveform, the Fourier iiitegral can deal with non-periodic 

waveforms. Thus. it can include periodic waveforms where 

the period is allowed to approach infinity. 

Based on the mathematical identities 

e -jlw 0 cos loot -i sin loot and 

8 
j1W 0 cos loot +i sin 10 0t 

f or 6) 
0=2 

7rf 
0 and j= -/-I gives 

j2 7TC 
0 

f. -j2 7rC IL 

Cos 27rlf t=e-- ----+ 
e 

0j 
27rr 1, -j 7Tr L 

Sin 27rlf t=ee 
0 2j 

and substituting these into equation (2.8) gives 

X(t) 
x CD 

CIej2 
7rl f01, 

dt 
....... 

(2.9) 

Ia -CD 

By analogy with equation (2.8) CI can be evaluated for n 

-CD to n +cc using 

1 
T/2 

-j2nl r0L 
cl 

Tf x(t) e dt 

T/2 

In knowing that each harmonic is separated by Af = 1/T 

and manipulating the above equations the 
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amplitude-frequency relationship can be described as 
1x 

X(t) = lim + X(lf) ej2 
771 ft Af or 

A r4o 

IM 

cc 
X(t) = 

fm X(f) ej2 
7rr t. df ........ (2.10) 

The coefficient X(f) of equation (2.10) is equal to 
M 

X(f) x(t) e- 
j2nrL dt ........ (2.11) 

Equa tion (2.10) and (2.11) respectively represent the 

Inverse Fourier Transform (IFT) and the Direct Fourier 

Transform (DFT). Again. for practical purposes the 

observable time is lintited to -T to +T. 

2.5.3. Physical Characteristics of Fourier Integral. 

As a result of limiting the observable time as 

mentioned in (2.5.2) the Fourier integral has some 

physical characteristics which affect the performance of 

the frequency domain spectrum. 

a. Initial Condition. T: 

The frequency domain resolution, Af. is inversely 

proportional to the period, T. Therefore. the longer 

the period the higher the frequency resolution 

(approaching a continuous spectrum). 

The Fourier integral is defined over frequencies and 

time from minus infinity to plus infinity. 

consequently, it involves negative as well as positive 

frequencies. In addition to this the amplitudes in 

the positive as well as in the negative frequency 

domain. especially for real signals, are equally 
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divided. 

Phase angles in the positive frequency domain are 

duplicated in the negative frequency domain, except 

that the images are inverted. 

If the Fourier integral is represented in terms of 

complex numbers. Re(f) +i Im(f), the amplitude can be 

determined as the absolute values. The inverse tangent 

of the Imaginary to the Real parts represents the 

phase angle. 

b. Even and Odd Functions. 

Mathematically even functions are shown as f (t) 

f (-t) and are associated with a cosine waveform. In 

terms of polar plots the even function is associated 

with real values. On the other hand odd functions are 

associated with a sine waveform or imaginary values in 

the polar form. The odd functions are mathematically 

represented as f(t) = -f(-t). 

C. Time Shifting. 

It has been described in (2.5.3. b) that time shifting 

changes the status of an odd function to an even 

function or vice versa. Thus. this does affect both 

the real and imaginary values on which the phase angle 

relies. 

2.5.4. Windowed Waveform. 

For the purpose of practical analysis signals can 

be treated as periodic or zion-periodie wave fo rms 
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depending on the assumption made when treating the 

signals (i. e using the Fourier series or Fourier 

integral). If a square or a rectangular truncation ( 

window ) is applied the transformation of the rectangular 

function in the frequency domain is represented by- 

X(f) = 2T 
sin 27TrT 0+ jo ..... (2.12) 

02 7rrT 0 

The equation contains a major lobe with decaying side 

lobes. Other windows have been developed to achieve a 

maximum major lobe and minimum side lobes as referred to 

in_[10,25.271. 

In general the concept of treating windowed signals is 

equal to multiplying the original signal by a function in 

the time domain or convoluting their frequency domain 

transforms. This process can be expressed mathematically 

as. 
OD 

y(t) 
f h(T) x(t-T) dr ....... 

(2.13) 
TM - CO 

Further discussions concern windowed waveforms and 

convolution are obtainable in chapter (2.5.7) and 

Appendix (D-1). 

2.5.5. Digital Fourier Analysis 

Fourier - integrals have become more useful after 

the invention of the digital converter which converts 

analog data into integer numbers. The accuracy of the 

digital data relies oil the 'bit' of the digital 

converter. 

a. Discrete Fourier Transform 
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Equation (2.11) may be slightly modified to accept 

digital data which is kept in arrays. The equation is 

known as the Digital Fourier Transform and is shown 

below. 

X(k. Af)= At _j 2nklArAf, 
...... 

(2.14) 
JýX(lAt) 

e 

Consequently inverse transformation can also be performed 

by 

, 

ýVkAf) 
ej X(l. At)= Af 

...... 
(2.15) 

Including At=1 and Af=l/(L At), for L= amount of data 

executed, into both equations (2.14) and (2.15) give 

XW = X(1) e-j27rkl/L ....... 
(2.16) 

L-1 
J271kl/L 

XM =LI X(k) e ....... 
(2.17) 

Some programming-languages do not accept complex numbers 

this can be overcome by substituting e cos P sin 

9 into equation (2.16) and (2.17). This method requires 

considerable time when the amount of data to be analysed 

is large. 

b. Fast Fourier Transform. 

An attempt to reduce the number of multiplications and 

additions in the DFT process was made by Cooley-Tukey 

(301. This is referred to as the Fast Fourier Transform 

(FFT) [251 or Radix-2 FFT [241 or FFT Base-2. This 

technique has great savings in computation if the amount 

of data has a prime number of two. Later studies were 

carried out by Temperton [31.32.33) and these are based 

on prime numbers other than two. The executable time 
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increases if the amount of data can not be decomposed 

into prime numbers of 2,3 or 5. The technique is 

referred to as the self sorted radix-mixed FFT. 

2.5.6. Physical Characteristics of the DFT 

There are several considerations that must be 

taken into account when digitising signals. 

a. Frequency range of interest. 

The frequency range is set by the sampling rate. The 

lower the sampling rate the wider the frequency range. 

The maximum frequency is referred to as the Nyquist 

frequency [25] which can be obtained by inverting the 

doubled sampling rate. 

b. Frequency resolution. 

When two or more frequencies occur in the signal it 

requires a certain resolution in order to distinguish 

the frequencies themselves within the frequency 

domain. The relationship between frequency resolution 

and the number of cycles required defines the minimum 

recording time as follows. 

Number of cycles 
2x Frequency Range of Interest 

Frequency Resolution 

c. Amount of data. 

The amount of data will be automatically established 

af ter determining the Nyquis t frequency and the 

frequency resolution. 

Amount of data z2x Number uf cycles. 
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d. Harmonic frequency. 

If a signal is not purely sinusoidal transformation 

will result in harmonics which are integer 

multiplication of the fundamental frequency. 

e. Round-off and Jitter. 

As a result of losing horizontal time stability an 

analog to digital converter or a digitiser can cause a 

'jitter'. In addition, a low bit digitiser or very 

low signal can cause round-off error. These errors 

are usually apparent as noise. They may contribute a 

significant error in determining phase angles. 

f. Periodicity. 

When an integer number of cycles of a signal is 

acquired the peak of the transformed window (main 

lobe) meets one of the line spectrum of the periodic 

signal, therefore. the amplitude will be a maximum. 

In contrast if there is not an integer number of 

cycles the amplitude will vary from about 70% to 100% 

of the maximum amplitude. Therefore, non-integer 

numbers of cycles of the signal produce leakage. This 

is due to the fact that the line spectra do not 

coincide with the zeros of the window's side lobes as 

normally occurs when an integer number of cycles is 

sampled. Further discussion is given in chapter-4. 

To overcome such a leakage other types of window are 

described in references [24.251. 
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g. Aliasing. 

The Nyquist condition requires that two sets of data 

to be acquired per cycle of frequency of interest. If 

less than two sets of data per cycle are sampled the 

signal in the frequency domain will move back to a 

lower frequency. If an unexpected signal appears in 

the range of frequency, it may belong to a higher than 

maximum frequency range. 

Actual freq. = Nyquist + (Nyquist-Unexpected freq. ) 

h. Frequency. Amplitude and Phase. 

To achieve proper frequencies and amplitudes of 

interest using frequency domain spectra several 

methods have been suggested in references [6,10). It 

was referred to by Harris (101 that frequencies and 

amplitudes can be obtained from a graph showing 

relationships between attenuation (dB) of the maximum 

to the highest adjacent line spectra and the 

coefficient of the improvement as seen on fig. (2.9). 

This technique employs the Hanning Window. 

Hassan [6) used an empirical formula relating the 

relationships between the two adjacent line spectra 

about the peak amplitude and the frequency of interest 

as seen on fig. (2.10). 

i. Effects of applying a window. 

All windows have major lobe heights, side lobes and 

band widths resulting from the mathematical 

transformation. Rectangular windows have high side 
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lobes , -thus . these side lobes create leakage 

especially when a non-periodic signal is transformed. 

The leakage obstructs -the existence of some 

frequencies having very low amplitudes. Further 

discussions are obtainable in chapter-4. 

2.5.7. Filters. 

Some signals have very low amplitudes and it is 

likely that noise interferes in such a way that it masks 

the signals. The noise may be from the structural 

supports, the environment. the electronic circuitry or 

from the friction between the components of the structure 

itself. 

Filters attempt to separate the signal from the noise. 

There are many types of filters available. The choice 

depends on the frequency bands of interest. Low pass. 

high pass and band pass - band stop filters are the 

common classif ications. There are many types of filter 

function available. In general the functions can be 

classified into the Finite Impulse Response (FIR) and the 

Infinite Impulse Response (TIR). 

Referring to equation (2.13) convolution in the discrete 

time can be expressed as follows. 
k- CO 

YM =X x(k) h(l-k) 
k- - CO 

Assuming the system is linear-time invariant it can also 

be expressed in terms of 
law 

YM =iI 
-CD 

x(I-i) h(i) 
....... 

(2.18) 
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where h(v) must be causal /physical 1. v realizable and be 

inf inite. 

The advantage of the use of FFT lies in the reduction of 

the executable time. The transformation of a filter 

function is usually in terms of the rational transfer 

function. H(z). The IIR-Butterworth filter will be 

discussed because it is simple to understand and is 

flexible to adjust in -the pass, transition and stop bands 

as referred to by Peled (281. Appendix (D-1) provides 

further discussions for the following filters. 

a. Low pass filter. 

Derived from an analog filter Laplace transform of the 

filter function as described in reference [251 the 

transfer function of the IIR-Butterworth filter gives 

H(s) 
B (S) ...... 

(2.19) 

where B 
n(s) 

is a polynomial of degree n with roots at 

ake 
j(O. f)n+0. S+k)7r/n 

....... 
(2.20) 

where varies from 0 to n-1 

Noting the prescribed attenuation. AL in dB, in the stop 

band whilst the attenuation in the pass band is 

maintained to be less than 3 dB the required minimum 

degree n of the polynomial function, f(n) can be 

established using the equation 

n=0.5 
LogC10 

Af-/10 
1) 

...... 
(2.21) 

L*gCQ 

where : 

Tan(A /2) / Tan(A /2) 
sc 
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As and A are respectively the pass band and the 

stop band frequencies. 

By substituting the appropriate value of ti into equation 

(2.20) the polynomial equation, B, (s) is established. 

The transfer function, H(z) can be obtained by including 

s=C 
(Z-1) for C= cot(A /2) 
Cz+1) c 

into equation (2.19). 

b. High pass filter. 

By inverting the low pass analog to digital 

transformation curve. this provides a meatis of inverting 

the pass band and the stop band of the previous low pass 

filter. 

c. Band pass and band stop filter. 

The procedure is slightly different from the low pass 

and high pass filters. Both sets of the pass band and 

stop band frequencies must be given. As a resul t of 

these two transition bands the equivalent polynomial 

equations of degree n are obtainable by considering the 

maximum value of 0 for both transition bands. 
s 

The FIR-Butterworth filter as referred to by Chan et. al. 

[37. ] has several advantages over the IIR-Butterworth 

filter. The filter is more appropriate where the 

executable time required is short. The main difference 

from the IIR-Butterworth is that the filter coefficients 

are reduced after decomposing the rational function of 
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the IIR-Butterworth, H(z) using the Wiener-Lee 

decomposition method. 

The technique enables the filter coefficients to be 

reduced considerably. Details of both filter types can 

be obtained in Appendix (D-1). 

2.5.8. Physical Characteristics of Filter Function. 

a. Phase. 

It is understandable from the mathematical point of 

view that most convolutions delay the phase angle. The 

phase angle becomes important when considering the time 

history of a signal. Two pass digital filter techniques 

can be used to restore the phasing to the original 

position as suggested by Kormylo et al. (351. Chan et. al 

(391 proposed a non-causal filtering which allows users 

to calculate the phase delay if necessary. In addition 

Chan et al. in (371 proposed using FIR-Butterworth filter 

when a short phase delay is required. 

b. Amplitude. 

The IIR-Butterworth filter results in increasing gains 

in amplitude beyond the pass band frequency. The pass 

band frequency can be set to a certain value. In this 

case the pass band frequency is set at -3dB while the 

stop band attenuation is dependent on request. With the 

FIR-Butterworth filter the pass band attenuation varies 

with the number of coefficients requested, although it is 

detectable. 
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c. Transient Signal. 

The transfer function is always periodic, from 0 to 7t, 

but the signal captured is arbitrary, therefore. in most 

cases. the filtering process results in transient signals 

or words. The length of the transient words depends on 

the transition band width. The narrower the transition 

band width the longer the length of the transient words 

(26,441. Czarnach [361 investigated the length of the 

transient words of IIR filters and eliminated them 

through an algorithm he proposed. Chan et. al. [391 

commented on the work of Czarnach (361 that the method 

required a lot of data and a large group delay when a two 

cascade connection was carried out. He proposed a 

non-causal filter which comprises a recursive filter. H(z) 

and a stable non-recursive filter to approximate the 

transfer function. H(z- I ). The technique allows small 

group delay and small memory requirements. The phase 

angle is determinable from the equation he proposed. 

Moreover. Chan et. al. [361 proposed a new FIR filter using 

the Wiener-Lee decomposition method. This method has 

advantages in that its transition band is easily adjusted 

and that the length of transient words is determinable by 

its transfer function length. 

Furthermore. he commented that the method avoids overflow 

which usually occurs with the IIR filters especially with 

the IIR-Butterworth. When a small number of filter 

coefficients are employed this reduces the gain factors 
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in the passband and in the stop band due to the 

non-periodicity of the filter coefficients. The auto 

search Humming window was proposed to increase the gain 

factor (attenuation) in the stop band. 

An algorithm of the bilinear transformation based on 

matrices was presented by Power (42] and was improved by 

Davies [43). On the basis of the long division theorem 

Kamen (441 presented a Program but the logic of the 

program was not obvious. The author ran the program but 

it was not successful. A proposed algorithm will be 

described in chapter-6. 

2.6. Concluding Remarks. 

The non-linear stiffness parameter, 2' is dependent oil 

the amplitude of excitation. F(t). This results in 

differ ent resonant frequencies for different amplitudes 

of excitation. From the frequency response point of view 

the natural frequencies can not be justified from a 

single response unless the amplitude of excitation is 

small. At this stage the natural frequencies are 

approximately equal to the resonant frequencies. 

Polar diagrams allow more accurate determination of the 

resonant frequencies. The correction is carried out by 

approximating the relative phase angle at resonance. The 

use of Mixed Radix FFT allows any amount of data to be 

analysed without any data subtraction or addition which 

can decrease the frequency resolution and increase 
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leakage respectively. Furthermore, characteristics 

imposed on any signal processing should be recognised 

since they affect mainly amplitudes and phase angles. 
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CHAPTER -3 



3. EXPERIMENTAL STUDIES. 

3.1. General. 

This chapter will describe the experimental work 

carried out on four simply supported reinforced concreLe 

beams. Included in the experiments were the 

investigation of the jump phertomerion which was found when 

reexamining the data as reported by the author in (401 

and the non-linear behaviour in relation to the detection 

of the flexural and diagonal splitting crack patterns for 

beams with fully bonded and partially bonded 

reinforcement. In addition calibrations of the 

instrumentation will also be described. The use of a 

mechanical exciter as well as a magnetic exciter in 

relation to the jump phenomenon will also be discussed in 

this chapter. Due to the limit of the frequency range of 

the mechanical exciter the experiment mainly used the 

magnetic exciter. 

In general there are three main dynamic tests as implied 

in references [6.7.261 : 

a. Steady state vibration tests employ a steady state 

input signal, which is normally a sinusoidal. induced 

by an exciter and is used in references 

[1.3.4.5.20.21.22.361. 

b. Transient tests, including impact and 'pull-sudden 

release' or step-relaxation and snap back. are used if 

only certain low natural frequencies are of concern 

so 



[5.7.19.201. 

C. Further tests. involving random vibration (pure, 

pseudo and periodic). may be applied whell either tests 

a) and b) are not pot; sible. These tests involve 

statistics and long recordings. 

The tests carried out in this study used the steady state 

vibration technique. A typical lay out of the experiments 

is shown in fig. (3.1). 

3.2. Models. 

3.2.1. Types and General Properties. 

Two types of simple concrete beam were 

investigated in the experiments; the fully bonded and 

partially bonded beams. Each type (2 samples) were 

tested and each sample had a specific crack pattern, i. e. 

flexural or diagonal splitting crack patterns. The 

mechanical exciter has a range of frequency up to 5OHz 

whilst the magnetic exciter has a range up to 1OkHz. 

Based on the specifications of the mechanical exciter and 

the material properties the dynamic properties of the 

fully and partially bonded beams were calculated. By 

arranging the beam's dimensions the natural frequencies 

can be approximated by the Rayleigh method (8). All 

beams were of the same overall dimensions being nominally 

100mm wide, 150mm deep and 3050mm, long. The first 

natural frequencies of the fully and partially bonded 

beams based on this specification were calculated as 
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26.09Hz and 24.74Hz respectively. 

The concrete strengths were designed to comply with 

2 BS8110 having nominal cube strengths of 30 N/mm Two 

plain mild steel bars of 12mm nominal diameter were used 

as the reinforcement. The beams were simply supported 

without any significant shear reinforcement to enable 

simple experiments to be carried out and to avoid 

interference resulting from other parameters such as from 

support systems. Three 4mm diameter links having 

triangular shape were used to keep the reinforcement in 

position when casting. The typical reinforcement is 

shown in fig. (3.2) and the procedure for the design 

calculation is available in Appendix (B-1) to (B-3). 

3.2.2. Strain Gauging. 

Two sets of two gauges were positioned at the mid 

span and at the quarter span to measure strains in 

tension and compression at both sections. Two gauges 

were attached to one of the two mild steel reinforcement 

bars. A single 4 mm diameter mild steel bar was 

positioned in the compression area to accommodate the 

other two gauges. The gauges were attached to the 

reinforcement parallel to the axis of the beam. The 

process was summarised as follows : 

1. Consecutive dry and wet abradings with 200-grit emery 

cloth and 400-grit silicon carbide paper respectively 

were applied to the surface of the steel bars. 
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2. 'M-Prep Conditioner A' was applied repeatedly and was 

then scrubbed with a cleanex medical wipe until the 

surface was clean. 

3. 'M-Prep Neutraliser 5' was applied and was carefully 

dried with a cotton bud. ' 

4. The 2mm long foil strain gauge with a gauge factor 

2.13 and 119.8 Ohm resistance of SHOWA products was 

attached on a cellophane tape for ease of handling and 

was positioned on the surface prepared in (1) to (3). 

5. Lifting up one of the cellophane tape ends and applied 

'M-Bond 200 catalyst' on the steel surface for quick 

hardening. Two drops of M-Bond 200 adhesive were 

applied at the edge of the strain gauge position such 

that when the cellophane was folded down this adhesive 

flowed in contact with the strain gauge. 

G. Immediately applying firm thumb pressure for one 

minute to let the adhesive work properly. 

7. Wiring the gauge by soldering the terminal was done 

carefully after removing the cellophane tape. To 

insulate the active gauge from the terminals a piece 

of 5mm paper tape was stuck across the gauge length 

separating the active gauge from the terminal area. 

B. To protect the gauge from damage while casting -the 

concrete 'M-Coat D Air Drying Acrylic' was coated on 

the gauge and an ordinary mastic for insulation was 

also applied around the steel bar over the gauge area. 
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3.2.3. Mix Design and Manufacture. 

In general the minimum material properties should 

comply with -the BS-8110 for normal concrete. All beams 

were designed to have nominal concrete cube stress, fcu 

22 
of 3ON/mm , the yield steel stress. f. of 312N/mm and a 

slump of 10-30mm. From those specifications the 

equivalent area of steel to concrete. m is found to be 

7.69 for elastic design/check calculations. 

The beam was cast using a steel mould. Slump and VB 

tests were carried out before casting to ascertain the in 

situ quality of the concrete mix to the design mix. A 

concrete vibrator was applied to achieve sufficient 

compaction. Two concrete cubes. two concrete cylinders 

and one concrete beam specimen were tested after 28 days. 

The beams as well as the specimens were cured under the 

natural laboratory environment. 

The procedure for calculation of the mix design and the 

ultimate moment and shear of the fully and partially 

bonded beams are available in Appendix (B-1), Appendix 

(B-2) and (B-3) respectively. 

3.2.4. Support System. 

To relaie the relationships between the static and 

dynamic behaviour of concrete structures with defects, a 

simply-supported system with self aligning and roller 

bearings as seen in fig. (3.3) was used in this work. 

Thus, twisting resistance was negligible. This support 
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system reduced the complex behaviour resulting from 

parameters other than those directly under investigation. 

Two pieces of solid steel shaft having 2 inches diameter 

were positioned at about the neutral axis of the beam at 

both ends to fit the support bearings. One set of the 

bearings was bolted down on a massive steel column to 

create a hinge. The other set of bearings was bolted 

down on a horizontally movable platform to create a 

rolling support. The movable platform was designed to 

resist uplifting movements. Two strips of hardened steel 

rollers enabled the platform to move horizontally upon 

another fixed steel platform. The massive'steel columns 

supporting the fixed steel platform as well as the hinge 

were anchored down on the floor of the laboratory. 

3.2.5. Static Loading. 

To create flexural and diagonal splitting crack 

patterns where the sensitivity of the dynamic parameters 

to those types of crack pattern were investigated two 

types of loading points were applied. The first type 

positioned the loading points at the third of the span 

and the second type was at 200mm inward from the 

supports. Four loading stages were applied to beam-1 to 

beam-3 and six loading stages to beam-4. More accurate 

load readings were carried out by averaging the output of 

two load cells employed. Each load cell was positioned 

in between the hydraulic jack and the laboratory floor. 
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Strains were also measured through strain gauges. The 

very small change of resistance resulting in a small 

change of potensial can not be measured directly. 

Amplifiers were required to increase the strain gauges 

output. The typical static loading arrangements are 

shown in fig. (3.4). 

3.2.6. Dynamic Loading. 

Vibration tests were carried out on the intact 

beam and successively after the static loading stages 

over the beam models. Steady state vibration tests were 

applied mostly using the magnetic exciter with the 

exception for the jump phenomenon investigation which 

occurred on the mechaitical exciter. The magnetic exciter 

as well as the mechanical exciter were positioned at 

similar points on the span. The moving out of balance 

mass of the mechanical exciter produces axial tension and 

compression on the beam and also produces variable extra 

moments due to the eccentric axis of the shaft to the 

beam. These parameters are assumed to be small and will 

not be considered. The force of the magnetic exciter was 

presumed to be perpendicular to the beam axis. 

3.3. Instrumentation. 

The main instrumentation used in the experiment 

consisted of an exciter with a signal generator and 

amplifier, several vibration pick-ups, two tape recorders 
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and several additional monitoring devices. Static 

loading devices were employed to create crack patterns 

which mainly consisted of a loading machine. hydraulic 

jacks, load cells. strain gauge amplifiers and loading 

frames (harnesses). The typical wiring arrangement of the 

experiment and the loading set up are portrayed in 

fig. (3.5). 

3.3.1. Exciters and Signal Generators. 

The mechanical exciter used by author in reference 

(401 was also used in the experiments to investigate the 

jump phenomenon. Rotating frequencies were induced via a 

speed controller. The three phase AC exciter possessed a 

frequency limit at 50 Hz and a low torque at lower 

frequencies. The force of excitation is proportional to 

the squared frequency. the mass and the radius of 

gyration. A maximum centrifugal load of 250 lbs may be 

achieved with this 14.5kg mechanical exciter. A similar 

set up was also considered when using the magnetic 

exciter driven by an integral amplifier. The Derritron 

magnetic exciter type VP-2 had a maximum 1ON output and 

lkg weight. This was positioned on the beam 250mm from 

the mid span position. The maximum range of frequency 

was above 1 kHz. 

3.3.2. Dynamic Transducers. 

Several B&K piezoelectric accelerometers were 
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employed in the experiments. The charge sensitivities of 

the B&K accelerometers type 4332 and 4366 (3 pieces, 

around 30 gr each) were 73.2,49.1,53.5,51.0 pc/g at 

50Hz respectively whilst the other B&K accelerometers 

type 4338 (2 pieces, around 60gr each) were 97.8 and 

100.7 pc/g at 5OHz. The resonant frequency of the lower 

weight accelerometers was above 1OkHz whilst for the 

other it was about 5kHz. The linear operation range of 

the accelerometers were from about 15Hz to 1OkHz. The 

velocity probe (Schenck type T77) has a sensitivity of 

75mV/mm/sec at 80Hz. -Below 15Hz the output was low and 

unreliable although 20 to 200OHz range of operation was 

recommended by the manufacturer. As the output was not 

linear within the operation range a calibration was 

required. The LVDT type DCT 2000A were also employed in 

the experiment. This device had a sensitivity of 

6.52mV/V/mm. To obtain reasonable results when working in 

very low displacements a sufficient DC input was 

necessary (maximum of * 15V may be fed). The maximum 

frequency range of 20OHz was normally applied to such 

displacement meters. Inevitably the phase delay was not 

reported in the certificate therefore. a calibration was 

required for this. 

The number of monitoring locations depended on several 

considerations such as the availability of transducers. 

the capacity of the signal recorders and the data 

acquisition card. Seven locations were dealt with : 
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Accelerometer no. 3 was positioned on -the moving exciter 

mass of the magnetic exciter measuring absolute 

accelerations and another (no. 1) was positioned adjacent 

to the exciter to measure the absolute accelerations of 

the beam. From these transducers the relative 

relationship between them can be obtained and will be 

discussed in chapter-5. Accelerometer no. 6 was 

positioned at the mid span to measure amplitudes of the 

beam at the first natural frequency. The velocity probe 

and accelerometer no. 5 were respectively intended to 

monitor the second and the third natural frequencies and 

were positioned at the fourth and the sixth locations of 

the span. Finally, another two accelerometers (no. 2 and 

no. 4) were used to monitor the behaviour of the beams 

ends. 

The accelerometers were connected to the charge 

amplifiers. to enable adequate signal output to be 

recorded. The charge amplifiers have several optional 

unit output/modes (displacement, velocity and 

acceleration). Improper selections of the low pass filter 

settings available on the charge amplifiers may cause 

changes in the signal properties and these effects are 

discussed in chapter-2 or Appendix (D-1). The output 

relationships of the displacement, velocity and 

acceleration are given in Appendix (B-4. A). Unlike 

accelerometers the velocity probe is designed on the 

basis of the Eddy current method. The output is designed 
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in such away that it does not require amplifiers. The 

output (mV) relating to the velocity (mm/sec) is supplied 

by the manufacturer and graphically shown in Appendix 

(B-4. B). 

3.3.3. Tape Recorder and Data Acquisition Card. 

Racal magnetic tape recorders provide several 

advantages over the use of direct acquisition. Slow down 

replays can be carried out which allow flexibility and 

the ability to achieve a certain amount of data per 

cycle. Seven selectable speeds from 2.38 cm/sec to 152.4 

cm/sec were available. 

To allow the signals to be analysed digitally a data 

acquisition card type PCL-812PG was installed on an Atari 

Personal Computer PCC-1415 286/30. The data acquisition 

card has a maximum speed of reading of 33.33 micro 

seconds. The 12 bits machine provides a digital data 

range of -2048 -to +2048 with an accuracy of ±1 digit. 

Capturing higher frequencies requiring a large amount of 

data. The number of cycles may not be achieved using 

direct acquisition but the tape recorder can be replayed 

at a slower speed than at recording. 

3.3.4. Static Loading Devices. 

The hydraulic loading machine (Riehle) was able to 

provide hydraulic pressure up to 10000psi. Pressure to 

load conversion was calculated by multiplying the area of 
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the 20 tons capacity hydraulic jacks which were 

Positioned beneath the laboratory floor in the basement. 

A force of more than 35kN at each loading position was 

required to create diagonal splitting cracks. The load 

cells with +10V DC input provided a maximum load of 25 

tons. These were used for accurate load readings. The 

loading machine was linked to the hydraulic jacks pulling 

the harnesses down and leaving the load cells compressed. 

To provide diagonal splitting cracks a simply supported 

hollow steel section was put over the concrete beam in 

such away that the loads from the hydraulic jacks were 

transferred to positions close to the supports. As well 

as measuring strains via the output of the strain gauges 

attached the hysteretic deflections at -the mid span were 

also recorded using a dial gauge. 

3.4. Calibrations. 

The results of 'the experiment rely on the 

instrumentation employed. Almost all devices used in the 

experiment were checked and were related to each other. 

Several calibration -tests were carried out prior to the 

vibration tests and are described in this sub chapter. 

3.4.1. Accelerometers. 

Response of the accelerometers was examined by 

linking up a specific accelerometer to a specific charge 

amplifier and putting the accelerometers on a larger 
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magnetic exciter table (Derritron VP-3) which was freely 

put on the floor. Frequency excitations over the range 

of frequency (20Hz to 40OHz) were carried out and an 

established signal analyser program was used to analyse 

the signal parameters. 

The phase angles between accelerometer no. 3 and no. 1 were 

especially monitored in this calibration (these were 

Positioned on the moving exciter mass and the adjacent to 

it) as the polar diagrams rely on these measurements. 

The comparison of these accelerometers output are shown 

in fig. (3.6) and fig. (3.7). The accelerometers were 

reliably accepted since the comparison of the amplitudes 

and phases over the range of the frequency of interest 

were almost constant. 

3.4.2. Velocity Probe. 

The velocity probe and an accelerometer were put 

on a Derritron magnetic exciter. VP-3 and stage by stage 

frequency excitation and the amplitude readings were 

successively carried out. The signals from both pick-ups 

were recorded, digiiised and were analysed using a 

program set up for this experiment as described in 

chapter-6. Output of the velocity probe (mV) was 

compared to the output of the accelerometer. 

Characteristics of the velocity probe depend on the 

frequency of exci tat ion. To ascertain their 

relationships and to enable the velocity probe to be used 
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for direct computer calculations a set of several curve 

fitting equations are provided as follows 

a. For frequency 6-13.7Hz 

C= 52.143-18.151 f+2.391 f^2 - 0.06532 f^3 

b. For frequency 13.7-23.8Hz 

C= -615.321 + 104.3 f 4.9139 V2 + 0.07492 V3 

c. For frequency 23.8-7OHz 

C= 178.29 - 6.021 f+0.1309 f-2 - 1.252E-03 f^3 + 

4.38E-06 f^4 

d. For frequency 70-200OHz 

C= 70.0 + 4.3008 (2000 f)/1930 

where :f= frequency of interest (Hz) 

C= converting factor (mV/mm/sec) 

The fitted curve is seen in fig. (3.8). 

3.4.3. Signal Recorders. 

Input-output as well as the speed of the Racal 

recorders were also examined by inputting known signals 

from an alkaline battery and also from a signal sweep 

generator and analysing the amplitude and phase using the 

signal analyser program. The speed and amplitude of the 

racal recorders indicated their reliability. Less than 

1% difference in speed and less than 3% difference in 

amplitude from the known input signal were achieved. 

3.4-4. Digitiser. 

A similar calibration to the racal recorders was 
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also carried out to the PCL-812PQ card installed on the 

Atari Personal Cpmputer type PCC 1415 before using it in 

the main experiment. The amplitude and frequency of a 

known signal, using a digital VLF meter and oscilloscope, 

were fed into the input channel of the PCL-812PQ card. 

The analysis was carried out using -the signal analyser 

program. It was of interest to note that an attempt to 

input a reading rate* or interval time less beyond its 

capability (33.33, us) and also an attempt to read an open 

input circuit resulted in arbitrary digital signals. 

Within the published range of frequency the PCL-812PQ 

showed its conformity. To avoid round-off error which 

may occur in any digitiser is necessary to rescale the 

analog input in such a way that it is still less than but 

close enough to the maximum input of -the digitiser. 

3.4.5. Magnetic Exciter. 

Before applying the magnetic exciter the force 

characteristics were investigated. A force transducer 

(B&K type 8200) was screwed down on a thick steel plate 

which was firmly anchored on the laboratory floor. upon 

this force transducer the magnetic exciter was mounted. 

An accelerometer and a weight were also mounted on the 

moving exciter mass giving a total mass of 0.12853 grams. 

To avoid the additional effect of resonance of the body 

of the exciter on reading the data of the force 

transducer only a low amplitude and a certain range of 
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frequency of excitation were applied. Comparisons of the 

results are shown in fig. (3.9. A) and the lay out of the 

experiment is portrayed in fig. (3.9. B). 

3.5. - Test Procedures. 

This sub-chapter discusses the test procedures of 

the experiments investigating -the jump phenomenon, the 

absolute to relative relationship, the non-linear 

behaviour and the effect of the flexural and diagonal 

splitting crack patterns and defects on the dynamic 

parameters. 

3.5.1. Jump Phenomenon. 

It was reported by author in reference (401 that 

the response of the steady state tests using tho 

mechanical exciter was jagged about the resonance due to 

a sudden change of the dynamic properties. Further study 

of this phenomenon was carried out in this research by 

setting up two exciters, i. e. the mechanical exciter and 

the magnetic exciter. mounted on similar concrete beams 

at about the same position and exciting the beams over 

their resonance frequencies. These two experiments were 

important since the jump phenomenon always occurred 

around resonance. 

The out of balance mass of the mechanical exciter 

Produces force proportional to its squared frequency as 

reported by the author in (401. Therefore, increasing 

65 



the frequency of excitation by a speed controller results 

in higher force of excitation. A linear change of force 

of excitation can be carried out by adjusting the out of 

balance mass which comprise two sets of solid half circle 

steel attached at both ends of the exciter shaft as seen 

in fig. (3.10). Two different series of force of 

excitation were applied on the beam over the first mode 

which was about 25Hz. Forward and reverse frequency 

excitations were also carried out to examine the 

behaviour of -the jump phenomenon. 

When applying the higher force of excitation ( the angle 

between -the -two half circle steel plate, a at 30 degree) 

it was found in the forward excitations that at about the 

resonant frequencies the speed of the out of balance mass 

did not proportionally Increase with the increase of the 

speed controller. At a certain stage a slight change on 

the speed controller resulted In a sudden change of speed 

of the out of balance mass which was referred to as the 

Jump phenomenon. The frequency at which the Jump utarted 

in forward excitations were different from the reverse 

excitations. This jump phenomenon decreased with the 

force of excitation (the angle between the two half 

circle steel plate at 15 degree). The second experiment 

indicated that the effect of the excited beam on the 

moving out of balance mass was uigniricant. 
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3.5.2. Absolute to Relative Relationship. 

A further study using the magnetic exciter was 

carried out. The magnetic exciter (Derritron VP-2) was 

positioned on the beam at similar distance from the 

centre of the beam as the mechanical exciter. To 

increase the force of excitation 80 grams of mass and 

29.93 grams of an accelerometer mass were added to the 

18.6 grams of the built up moving mass. The force of 

excitation can be obtained by multiplying the total 

moving exciter mass which was 128.53 grams by its 

relative acceleration as described In later sub chapter. 

The experimental set up is shown in fig. (3.11). A 

relative measuring device. the LVDT, was mounted to 

measure the relative displacement of the moving exciter 

mass to the body of the device. The frequency of 

excitation was controled by turning the analog knob 

available on the integral amplifier. A low frequency 

digital indicator was employed to monitor the manually 

adjusted frequency increments. A decrease of voltage and 

an increase in ampere of the amplifier controlling the 

magnetic exciter about the beam resonance was Indicated 

for both forward and reverse experiments. 

3.5.3. Non-linear Properties. 

The experiment investigated the non-linear 

behaviour of the beam before and af ter Inducing cracks. 

This experiment was conducted within the experiments of 
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beam-2. partially bonded. flexural crack pattern. The 

procedure was similar to that relating absolute to 

relative parameters as discussed in (3.5.2) with the 

exception that this experiment was carried out on two 

condition, i. e. before and after inducing cracks. Three 

different sets of force of excitation were applied on 

each condition. 

3.5.4. Flexural and Diagonal Splitting Defects. 

There were several similar test procedures for the 

experiments applied to each fully and partially bonded 

beam and are described as follows : 

Before lifting the beam from the casting mould the 

strains were always recorded. It was found that the 

strain differences due to each beam deflecting under its 

self weight were about 20-30ps which was considered 

negligible. The strains were also recorded once the beam 

had been set in position on its bearings and was ready to 

test. 

Four loading stages were applied on beam-1 to beam-3 and 

six loading stages were applied on beam-4. Load 

increments of 0.47kN and 1.18kN were needed to create 

flexural and diagonal splitting crack patterns 

respectively. At each increment the strains, deflection 

and the load were recorded. Similar mid span tensile 

strains for both fully and partiallv bonded beams were 

kept in each stage of loading. This criterion was used 
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to highlight the possibility -that the load-strain curve 

of the partially bonded beam would be different from the 

fully bonded beam. 

Steady state excitations were carried out over three 

natural frequencies. Input-output signals were recorded 

on two 4-channel Racal recorders where the first channel 

of each recorder was assigned to be the common channel. 

Finer frequency increments were applied around the 

resonant f requency. Frequency increments of less than 

O. 1Hz were difficult to achieve for higher 

frequencies, i. e. above 5OHz, -therefore. frequency 

increments of 0.2 io 0.5Hz were applied about the second 

resonance and 0.5 to 1.0 Hz were applied about the third 

resonance. 

3.5.4.1. Beams Containing Flexural Crack Patterns. 

Two types of sample were examined and will be 

described as follows. 

a. Fully Bonded Beam. 

Before applying external loading points a vibration 

test over -the three natural frequencies was conducted. 

Following the first vibration test the first static 

loading at the third span was applied. Visible cracks at 

about the mid span were created at 1.74kN. The strain in 

the tensile reinforcement at the mid span was 381.7ps. 

The load was further increased until it reached 2.18kN 

where the strain in the tensile reinforcement at the mid 
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span was 591.5/ls. This meant that the strain had 

theoretically reached 37.9% of the yield strain. The 

number of cracks were 5 spread over the third span and 

the maximum visible crack depth was 35-40mm. 

After releasing the static loading the second 

vibration test was carried out in a similar way to the 

first vibration test. Following the second vibration the 

second static loading was applied. The static loading 

was terminated at 4.2lkN when the strain in the tensile 

reinforcement at the mid span was 1219/is. This, 

theoretically, approached 78.1% of the yield strain. 

There were 10 cracks 60-70 mm deep spread over the midle 

third of the span. 

The third vibration test was again similar to the 

previous vibration tests. Further static loading was 

applied until the yield strain in the tensile 

reinforcement was approached. Wider cracks were 

concentrated in the middle third of span and finer cracks 

spread over the rest of -the span. The maximum static 

load at this stage was of 5.26kN and the strain in the 

tensile reinforcement at -the mid span was 1512/is. 

Theoretically it had approached 96.9% of the yield 

strain. A total of 11 cracks had developed with average 

depth of 70-80mm and spread over the beam's length. 

The fourth vibration test measured the dynamic 

characteristics of the beam at close to rlexural failure. 

This last static loading stage aimed to find the maximum 
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load and the typical crack pattern at failure. This load 

was assumed to occur when large increments were recorded 

on the dial gauge positioned at the mid span. The 

maximum load was about 7.78kN and the strain in the 

tensile reinforcement approached 1930, us. This meant that 

the yield strain had been exceeded by 23% that specified 

by the supplier (312 N/mm 2 

b. Partially Bonded Beam. 

The range of the frequency excitations was from about 

20 Hz to 28OHz. Three modes of vibration were excited 

within this range. Following the first vibration test 

with no load on the beam static loading at the same 

positions as with the fully bonded beam was applied. The 

load created a crack at 0.76kN resulting in a sudden 

change of strain in the tensile reinforcement at the mid 

span from 163ps to 533/is. The static loading was 

increased -to 1.76kN where the strain in -the -tensile 

reinforcement at the aiid span approached 806.8Ps (51.7% 

yield strain). No further significant additional cracks 

appeared although the single crack opened significantly. 

This 110mm deep crack was situated at about the mid span. 

The second vibration test was then applied. A 

significant difference on -the first and the third natural 

frequencies were indicated at this test. Slightly 

unstable signals known as beating signals were recorded 

and were presumed due to the presence of bond within the 
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debonded reinforcement after cracking. A further static 

loading stage resulted in no further significant cracks. 

After approaching 2.75kN. which gave 1057Ps in the 

tensi le reinforcement at the mid span the load was 

removed. 

The third vibration test was carried out within the 

similar range of frequency of the previous vibration 

tests. Strains of 1391Ps (89.16% yield strain) of the 

tensile reinforcement at the mid span were achieved at 

3.77kN. No further new cracks were developed but the 

depth of the single crack increased slightly. 

The last vibration test of this series produced a 

similar set of excitations to the previous tests. 

Following the vibration test -the last loading stage was 

applied until the beam failed. Prior to the yield 

failure five additional cracks developed in the middle 

third of the mid span. The load was terminated when the 

yield strain in the tensile reinforcement at the mid span 

approached 2343ps. This meant that it exceeded the 

specified yield strain by 50%. 

3.5.4.2. Beams Containing Diagonal Splitting Crack 

Patterns. 

Two types of sample were examined and will be 

described as follows. 

a. Fully Bonded Beam. 

The experiment was initiated by applying a vibration 
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test on ihe beam. The frequency excitaiions were carried 

out over -the three vibration modes which were of the same 

range as the previous tests. The diagonal splitting 

crack patterns was created by applying two external point 

loads near to the supports. 

Strains ' of 406. Us (26% yield strain) in the tensile 

reinforcement at the mid span were achieved at 9.27kk and 

were sufficient to develop flexural cracks at mid span. 

Eight cracks of 35-50mm deep were created within the two 

point load positions. 

The second vibration test was applied after releasing 

the static loading rig. The steady state frequency 

excitations were applied over the three vibration modes. 

Further static loading created a total number of 21 

cracks, 50-60mm, deep, spread over almost the whole beam 

length. A maximum static load of 15.84kN was applied in 

this stage producing strains of 876ps (56% yield) in the 

tensile reinforcement at the mid span. At this stage 

diagonal splitting cracks were still not visible. 

The third static loading stage was aimed to create 

apparent diagonal splitting crack patterns. This was 

achieved at 18.47kN or at a strain of 1028/js (65.89% of 

the tensile reinforcement capacity) at the mid span. 

Again, the fourth vibration test was conducted over 

the three vibration modes. Further static loading 

created diagonal splitting cracks at the roller support 

at 22.35kN or at 1272ps (81.5% yield strain) in the 
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tensile reinforcement at the mid span before the beam 

failed of diagonal splitting at 35.34kN. The last 

recorded strarins of -the tensile reinforcement at -the mid 

span were 1947/is. This strain was 24.8% higher than that 

specified by the supplier. 

b. Partially Bonded Beam. 

The frequency excitations were carried out over the 

three vibration anodes to represent the initial conditions 

of the dynamic parameters. The range of the frequency 

excitation was from 0 to 28OHz. Sudden change of strains 

and displacement were found due to cracks suddenly 

occurring in this type of beam. The single wide crack 

120 man deep at the mid span occurred at 4.49kN or at 

661.2Ps (42.3% yield strain) in the tensile reinforcement 

at the mid span. 

The second vibration test was conducted after 

releasing -the static loading rig. Unstable amplitude 

readings of the signal were recorded. The second static 

loading stage followed and the second vibration test was 

then conducted. The maximum load at this stage was 

7. OlkN or at 917ps (58.7% yield strain). No significant 

additional cracks were produced at this loading stage. 

It was expected that at this loading stage initial 

diagonal splitting cracks had started. 

The third vibration test was aimed to evaluate the 

effects of the initial diagonal splitting crack patterns 
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on the characteristics of the dynamic parameter. 

Following this vibration test the third static loading 

stage was carried out and aimed to create visible 

diagonal splitting cracks at a similar strain as in the 

fully bonded beam under a similar loading pattern. This 

aim was not successful. no visible diagonal splitting 

cracks propagated. 

The fourth loading stage again attempted to create 

diagonal splitting crack pat-terns by increasing the load 

to 21.484kN which was 1.71kN higher than that the fully 

-bonded beam with similar loading pattern but there was 

. still no indication of the visible diagonal splitting 

cracks. The load was released and checks were carried 

out throughout the apparatus and loading frame positions. 

No indications of misreading or mechanical fault were 

f ound. 

The fifth loading stage was then applied. At this 

stage the diagonal splitting cracks were apparent at 

25.418kN or at 200OPs (128.2% yield strain) in the 

tensile reinforcement at the mid span. 

The fifth vibration test was aimed -to evaluate the 

effect of the visible diagonal splitting cracks on the 

characteristics of the dynamic parameter. 

Further load was applied until the beam failed of 

diagonal splitting mode. This was achieved at 30.455kN or 

at 2316ps in the tensile reinforcement at the mid span. 

This strain was 48.4% higher than specified. 

75 



3.6. Test Result and Comment. 

3.6.1. Jump Phenomenon. 

Normalised frequency responses to the square of 

the frequency excitation in the hysteretic experiment 

(using the mechanical exciter) for different sets of 

force of excitation are shoWn in fig. (3.12). This 

experiment indicates that the unstable region causing the 

jump phenomenon depends on-; the force of excitation. The 

higher the force of excitation the larger the unstable 

region. This phenomenon is similar to non-linear hard 

spring behaviour demonstrated by White and Rades (15,211. 

The non-linear behaviour demonstrated by White and Rades 

(15.211 was found from the membrane effect of a steel 

plate with simply supported hinges at its four edges and 

rubber or polyurethane pads for vibration isolation 

purposes. The simple support system applied in the 

concrete reinforced beam experiment should not allow the 

non-linear hard-spring behaviour as demonstrated by White 

(151 to occur. Thus, the unstable condition must have 

been due to something else. The non-linear behaviour may 

arise from the opening and closing of cracks or bonding 

and debonding of the steel reinforcement. 

The normalised response of a concrete beam subject to 

four sets of the same force of excitations is shown in 

fig. (3.13) and demonstrates non-linear soft spring 

behaviour. The higher amplitude at lower frequency 

response shows that the concrete beam is predominantlY 
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controlled by the stiffness rather than by the damping. 

Typical viscous damping exists in this response. Since 

the peak amplitude and resonant frequency are of 

importance the jump phenomenon is further investigated in 

chapter-5. 

3.6.2. Absolute to Relative Relationship. 

This experiment using a magnetic exciter confirms 

that the jump phenomenon was not due to the non-linear 

hard-spring behaviour. The response spectrum of the 

concrete beam subjected to a lower force of excitation 

(20-30 -times lower) as shown in fig. (3.14) indicates that 

the jump phenomenon does not 'apparently exist. In 

contrast the amplitude of the moving exciter mass (both 

absolute and relative as shown by accelerometer on the 

moving exciter mass and the LVDT respectively) sharply 

decreases as the frequencies of excitation approaches the 

resonance. This phenomenon does not conform with the 

calibration as shown in fig. (3.9). Fig. (3.14) also 

confirms the presence of the absolute and relative 

amplitudes which are of interest when discussing 

normalised force of excitation. The reflected force of the 

excited beam is supposed to affect the amplitude of the 

moving exciter mass. A further phenomenon is also 

indicated that the relative amplitudes of the LVDT are 

lower than the absolute amplitudes of the accelerometer 

before approaching resonance and reversed after 
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resonance. The relative phase difference measured from 

the LVDT to the excited beam and from the accelerometer 

to the excited beam is shown in fig. (3.15) and confirms 

the phenomenon mentioned above. Further discussions 

about these observations are found in chapter-5. 

3.6.3. Non-linear Behaviour. 

This experiment was carried out on the second 

beam, partially bonded, before applying flexural cracks. 

The three sets of force of excitation gave rise to 

different relative force of excitation as shown in 

fig - (3 . 17) (a further discussion of the relative force 

will be given in chapter-5). This indicates the presence 

of non-linear soft spring behaviour. To establish better 

relationships between the dynamic parameters before and 

after the beam had cracked a similar experiment was 

repeated on the same beam as it approached failure and 

the results are shown in fig. (3.18) and (3.19). 

Different resonant frequencies and amplitudes may be seen 

in the graphs. These figures confirm the effect of the 

reflected force from the excited beam on the moving 

exciter mass and the presence of the non-linear soft 

spring behaviour. Normalised responses of fig. (3.17) and 

(3.19) as shown in fig. (3.20) and (3.21) show an 

interesting phenomenon. Before the beam was artificially 

cracked the normalised responses of the three sets of 

force of excitation resulted in almost similar peak 
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amplitudes. This reveals that the beam possessed a very 

low non-linearity as shown in fig. (3.20). The same beam. 

possessing a large number of cracks. fig. (3.21) indicates 

that the increase in the force of excitation decreases 

the peak amplitudes at lower natural frequencies. This 

phenomenon confirms the finding of the research carried 

out by Hassan (6) from her analysis of the 'pull back - 

sudden release' experiments. Frictional damping 

predominantly controlled the response of the beam. 

Further discussions on this is obtained in chapter-7. 

Polar diagrams were shown by Rades [19,20,211, Tomlinson 

(17,181 and White (15,161 to possess unique properties 

which could define the existence of non-linearitles. The 

polar diagram of fig. (3.12) as shown in fig. (3.22) 

represents a non-linear hard spring behaviour. This 

unlikely and confusing result is further discussed in 

chapter-5. The isochrones of polar diagram in fig. (3.23) 

which related to fig. (3.20) indicates clearly the 

non-linear soft spring behaviour. This should be viewed 

in comparison with the spectral representations in 

fig. (3.17). This also applies to the comparison between 

fig. (3.24) and fig. (3.19). As proposed by White (14,151 

the resonant frequencies can be found at the maximum rate 

of change of curvature if constant intervals of frequency 

of excitation can be applied. 
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3.6.4. Result from Applying Flexural and Diagonal 

Splitting Crack Patterns. 

Four specimens have been examined consisting of 

two fully bonded reinforced concrete beams (FB) and of 

two partially bonded reinforced concrete beams (PB). Two 

types of loading have been applied to the both types of 

beam. i. e. loading type-1 (1,1) to create flexural crack 

patterns and loading type-2 (L2) to create diagonal 

splitting crack patterns. Static loading increments for 

loading type-1 and loading type-2 were 0.47kN and 1.18kN 

respectively. A summary of the material properties 

measured is given in table (3-1) and the more detailed 

static properties are given in the following 

sub-chapters. 

The dynamic properties of all beams required to be 

normalised and the normallsation procedure is discussed 

in chapter-5. The response of the beams subject to 

dynamic excitations will be discussed in chaptev-7. 

3.6.4.1. Beams Containing Flexural Crack Patterns. 

a. Fully bonded beams (FB/Ll). 

From table (3.1) it can be seen that the slump test of 

this beam shows -the concrete ntix to be rather stiff. 

This was corrected by carrying out thorough compaction 

using a conerete mix vibrator. This also improved the 

result of the compressive stress of the cubes, modulus 

elasticity and the tensile stress of the concrete beam. 
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The other test results were close to their design values. 

During the static loading of the beam early fine eracks 

started soon after the first loading stage had been 

reached and simultaneousl. v spread over the midle third of 

the span. The load-displacement as well as the 

load-strain graphs detected these propagating cracks as a 

decreasing slope of the related curves as seen in 

fig. (3.25. A and 3.25. B). Within the first loading stage 

the tensile strain distribution was affected by the bond. 

The increase in cracks implying a decrease of boxid 

between the tensile reinforcement and the concrete and is 

shown as the decrease of slope of the load-displacement, 

or load-strain curve. Fig. (3.25. C) did not respond very 

much to the propagating cracks as the load was positioned 

at the quarter span positions. Residual strains are 

indicated at all positions of the gauge as seen in 

fig. (3.25) as the non-zero initial conditions of the 

displacement as well as the strain af ter reversing the 

load. 

The residual strains decreased with the increase of load. 

This may indicate a small loss of bond surrounding the 

reinforcement bars. This implies that the residual 

strains in -the load de f orma t ion do no t relate 

significantly to the number of cracks as shown at the 

third stage where twelve additional cracks were induced 

without a significant change of the shift. Almost linear 

relationships are found at the third and the fourth 
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loading stages as shown in the three curves in 

rig. (3.25). 

At the load at which yield occurred in the tensile 

reinforcement close to one of the harnesses it was noted 

that the strains were not evenly spread along the length 
I 

of the reinforcement, -thus the 'folded back' strain curve 

in fig. (3.25. B) was expected to occur at a strain gauge 

close to the failure point. The load-displacement curve 

of fig. (3.25. A) would have shown an increase in 

displacement at -the yielding load however it was decided 

to remove the dial gauge before this deformation had been 

reached (due to the shortage of the movement of the arm). 

The load-displacemeni diagram therefore does not 

represent properly -this last stage of loading. The 

maximum load, strain and displacement of each stage of 

the static loading and the yield crack patterns are 

highlighted in table (3.2) and fig. (3.26) respectively. 

b. Partially bonded beams (PB/Ll). 

Tests of specimen materials show that most results are 

slightly higher than prediction with the exception of the 

Young's Modulus of elasticity. The in situ slump was 

slightly over the requirement. This was probably due to 

an excessive water-cement ratio. 

A sudden single crack within the first loading stage 

resulted in a residual strain and displacement as 

portrayed in fig. (3.27. A) and (3.27. B). Since 
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rig. (3.27. C) is a response of the gauges within the fully 

bonded region this sudden change of crack was not 

recorded as residual straIns. 

Two further loading stages did not apparently increase 

the number of cracks. Only a slight change in depth of 

crack was indicated for the single wide open crack at the 

second and the third loading stages. Fig. (3.27. B) and 

(3.27. C) imply that the beam behaved elastically in the 

unbonded area and only a small loss of bond in the bonded 

areas. In comparison with the fully bonded beam under 

the same loading pattern where a more visible number of 

cracks were developed this beam possessed a lower dry 

friction but higher stiffness in certain area. The 

dynamic characteristics of this beam will be discussed in 

chapter-7. 

The last loading stage gave rise to several additional 

cracks within the centre third of the span. At failure 

the compressive strain at the mid span position above the 

single wide crack was excessive and as a result of this 

the concrete crushed. 

A 'folded back' strain curve as well as the elongated 

load- displacement curve at the yielding load are 

demonstrated in fig. (3.27. A) and (3.27. B). The 

load-displacement curve is typical of an under reinforced 

beam failing due to flexural moment. Further detailed 

maximum load, strain and displacement and the flexural 

crack patterns are presented in table (3.3) and 
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fig. (3.28) respectively. 

3.6.4.2. Beams Containing Diagonal Splitting Crack 

Patterns. 

a. Fully bonded beams (FB/L2). 

Although the slump test of this beam complied with the 

specification it was found that the Young's Modulus of 

elasticity was far from the BS8110 calculated value. 

This was probably due to inadequate compaction. Oiher 

results for this beam were close to the design values. 

A slightly uneven strain distribution was indicated by 

the gauges positioned near to the loading point as seen 

in fig. (3.29. C). More significant residual strains are 

found in fig. (3.29) under first and second loading stages 

which were respectively 26% and 45% of the maximum load. 

The cyclic loading shapes of the first and second loading 

stages are different from the third cyclic loading stage. 

Eight and twenty one flexural crack were developed in 

this beam within the first and second loading stages 

respectively. The more the number of cracks the more 

non-linear damping friction and the lower the stiffness 

expected. In contrast the damping and the stiffness 

control the amplitude of vibration acted in opposite 

ways. These phenomena are discussed in chapter-7. The 

third loading stage was expected to develop diagonal 

splitting cracks. An audible sound 'tick' was heard just 

before the diagonal splitting cracks were visible at the 
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hinge. The diagonal splitting crack occurred at the 

supporting shaft close to the loading poilit at 56% of the 

maximum load. The different cyclic loading shape at this 

stage is shown as a less signif icant shif t and is due to 

a change of load distribution. This is also shown as a 

small increase of the crack depths. This change of load 

distribution may also change the dynamic characteristics 

of -the beam as will be discussed in chapter-7. 

A loud sound was heard at failure of diagonal splitting 

as the cage surrounding the beam end was cut off. 

The load-displacemeni and load-strain relationships are 

almost straight at the last loading stage. This complies 

with the design calculation where it was predicted that 

the beam should fail in diagonal splitting whilst the 

main reinforcement should be and was within the elastic 

range. Detailed maximum load- strain and load- 

displacement values at each stage and the failure crack 

patterns are shown in table (3.4) and fig. (3.30) 

respectively. 

b. Partiall. v bonded beam (PB/L2) 

Test results of the slunip, Young's Modulus and the 

cube stress complied with the design values as described 

in Appendix (B-1). 

Within the first loading stage a crack suddenly occurred 

at the unbonded area. This crack occurred at about 10% 

of the maximum load and its effect is apparent from the 
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graphs shown in fig. (3.31. A) and (3.31. B) as residual 

strains. No further new cracks and onlv small changes of 

depth of the single crack is indicated by the flatter 

shapes of the cyclic curve at the second and third 

loading stages in comparison with the shapes of the fully 

bonded beam under -the same loading pattern in fig. (3.29). 

This effect is more clearly shown in fig. (3.3l. B) where 

the gauge was positioned at the unbonded area. From the 

type and the number of cracks the dynamic characteristics 

of this beam may be easily distinguished from the fully 

bonded beam under the same loading pattern. This will be 

covered in chapter-7. The fourth loading stage does not 

show obvious change in the load distribution. A residual 

strain is just apparent in fig. (3.31. A) and (3.3l. C). 

This indicates that the diagonal splitting propagation is 

followed by flexural cracks. Six flexural cracks were 

visible at about 56% of the maximum load* prior to the 

diagonal splitting crack propagation at roller. At this 

stage the diagonal splitting cracks were not clearly 

initiated by the 'tick' sound as reported in the fully 

bonded beam under the same loading pattern. The last 

loading stage developed another diagonal splitting cracks 

at the hinge before the beaut collapsed. Table (3.5) 

summarises the maximum load-defleetion and load-strain 

whilst fig. (3.32) shows collapse patterns of the beam. 
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3.7. Concluding Remarks. 

3.7.1. Design, Experimental Procedure and Calibration 

The simply supported reinforced concrete beam 

models enable the investigation of the effect of bond, 

number of cracks, crack depth and the typical flexural 

and diagonal splitting crack patterns on the static 

characteristics of the beam. The dynamic charaeteristics 

of these beams will be discussed in chapter-7 and should 

confirm these investigations. 

The normal concrete mix and the mild tensile steel in the 

design of beams should and did give rise to under 

reinforced concrete beams. 

To provide perfect beam specimens without ends twisting 

was complex. The self aligning bearings helped to reduce 

this difficulty. The rods anchoring the supports onto 

the laboratory floor possessed their own natural 

frequencies, and these did not significantly affect the 

dynamic tests. 

The number of vibration pick-ups used was adequate as 

only -the first few modes of vibration were investigated. 

The constant connections between the vibration pick-ups 

and the charge amplifiers ensured constant results in the 

tests. Simple calibrations used in this experiment also 

helped to ascertain the output quality of the vibration 

Pick-ups. ' The accuracy of other instrumentation used 

which may have affected the quantity and qualitir of the 

signal was provedý 
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The maximum load in each loading stage was different from 

one beam to another due to different capacity of the 

beams. Strains at the mid span of the beams were used as 

indications of the maximum loading at each stage. 

3.7.2. Jump Phenomenon. 

Three experiments have been carried out which 

affect the quality of the responses of the beams. The 

first experiment using the mechanical exciter shows a 

non-linear hard spring behaviour. 

3.7.3. Absolute to Relative Relationship 

The second experiment using a magnetic exciter 

shows the effect of the reflected force from the excited 

beam on -the moving exciter mass. This effect was 

demonstrated as a sharp drop in the amplitude of the 

moving exciter mass when approaching resonance. 

3.7.4. Non-linear Properties. 

The third experiment displays the non-linear soft 

spring behaviour of the beams. The greater number of 

cracks produced the higher non-linearity. The first two 

experiments will be further discussed in chapter-5 and 

the third experiment in chapter-7. 

3.7.5. Detection of Defects. 

Four samples of reinforced concrete beam have been 
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tested and the general characteristics have been 

reviewed. 

The number of cracks created in the fully bonded beam 

(FB/L1) were more than those created in the partially 

bonded beam (PB/Ll). No further cracks were propagated 

and only a small increase of depth of the single open 

crack in the partially bonded beam (PB/L1) occurred 

before the last loading stage was applied. The residual 

strains and displacement were more visible in the fully 

bonded beam (FB/LJ) than in the part'ially bonded beam 

(PB/Ll). The 'folded back' curves showed that the 

typical under reinforced concrete beam behaviour was 

displayed on both samples. 

The second two samples possessed diagonal splitting crack 

patterns. The first of the two samples was fully bonded 

and the second was partially bonded. The fully bonded 

beam (FB/L2) displayed larger residual strains than that 

of -the partially bonded beam (PB/L2). An almost zero 

shift was apparent from the partially bonded beam (PB/L2) 

at the mid span. The change of the load distribution is 

recognised as the flattened cyclic load-strain or 

load-displacement curve and the lower residual strains. 

The dynamic characteristics of these beams depend on the 

solution of the jump phenomenon therefore, these results 

will be discussed in chapter-7. 
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FIG. 3.1. TYPICAL LAY OUT OF EXPERIMENTS. 
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FIG. 3.2. TYPICAL DETAILS OF REINFORCEMENT. 
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B. BEAM AT FAILURE. 

FIG. 3.26. FLEXURAL CRACK PATTERNS BEFORE AND AT FAILURE 
OF BEAM-i (FB/Li), FULLY BONDED. 
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A. BEAM BEFORE FAILURE. 

B. BEAM AT FAILURE 

FIG. 3.28. FLEXURAL CRACK PATTERNS BEFORE AND AT FAILURE 
OF BEAM-2 (PBAI), PARTIALLY BONDED 
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A. BEAM JUST BEFORE FAILURE 

B. BEAN AT FAILURE 

FIG. 3.30. DIAGONAL SPLITTING CRACK PATTERNS JUST BEFORE AND 
AT FAILURE OF BEAM-3 (FB/L2), FULLY BONDED (AT HINGE). 
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A. BEAM FAILURE AT ROLLER. 

B. BEAM FAILURE AT HINGE. 

FIG. 3.32. DIAGONAL SPLITTING CRACK PATTERNS AT FAILURE OF 
BEAM-4 (PB/L2). PARTIALLY BONDED (AT ROLLER AND HINGE). 
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Table. 3.1. Material Properties. 

------------------------------------------------------ 
(11 [21 (31 (4) [5) (61 (71 

BEAM-1(R) 39.16 23.26 4.65 6/12 312 FB/L1 
BEAM-2(U) 49.02 17.56 5.11 25/5 312 PB/L1 
BEAM-3(S) 44.92 15.51 4.66 10/7 312 FB/L2 
BEAM-4(V) 46.91 24.38 4.18 21/5 312 PB/L2 

[13=experimetital codes. 
(21=compressive strength of concrete cubes, f 

cu 
( Nlmtu 2) 

[31=modulus elasticity of concrete cylinder, E 
C2 

W/mm 2) 

[4)=tensile strength of concrete beam, f I 
(N/mm 

[51=sýump/VB test (win/see) 
[61=tensile strength of steel reiriforcemeriL, fs (N/mm 2) 

FB =fully bonded reinforcement beam 
PB =Partially bonded reinforcement beam 
Ll =flexural crack patterns 
L2 =diagonal splitting crack patterns 

Table. 3.2. Load - Strain - Displacement of BEAM-FB/L1 
--------------------------------------------------------- 
Load Maximum 

__MaxImum_Strain_(Ps)_ 
Displ. 

-Vis. 
Crack 

Stage Load [1) [2) (3) [41 n"sp* Depth Num- 

-------- 
(kN) 

---------------------------- 
(inin)--- (inin) 

--ber_ 
1 2.181 592 273 -316 -214 4.68+) 40 5 

2 4.210 1220 716 -703 -537 12.57 65 6 

3 5.264 1513 920 -823 -621 15.28 75 18 

4 7.632 1931 1411 -1295 -920 *)21.52 X) P. ) 

=flexural crack initiated within this stage 

=displacement before removing dial gauge. 
X) =failure crack patterns (see associated photographs) 
[11=tensile strain at mid span 
[23=tensile strain at quarter span 
[31=compressive strain at mid span 
[41=coinpressive strain at quarter- span 
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Table. 3.3. Load - Strain - Displacement of BEAM-PB/L1 
--------------------------------------------------------- 
Load Maximum 

__Maximum_Strain_(Ps)_ 
Displ. 

__Vis. 
Crack 

Stage Load (1) [21 (31 [4) in'sp, Depth Num- 
(kN) (Rim) (mnt)___ber_ 

1 1.764 807 297 -544 -533 6.19+) 120 1 

2 2.756 1058 485 -618 -631 9.40 125 1 

3 3.777 1391 708 -762 -762 13.10 130 1 

4 7.808 2224 1598 -1319 -1197 38.94 

+) =sudden flexural crack pronounced 
X) =failure crack patterns (see associated photographs) 

Table. 3.4. Load - Strain - Displacement of BEAM-FB/L2. 
--------------------------------------------------------- 
Load Maximum 

--Maximum-Strain-(Ps)- 
Displ. 

--Vis. 
Crack 

Stage Load Ill (21 [3) (4) M*sp* Depth Num- 
(kN) (mm) (mm)--bar_ 

1 9.271 406 425 -304 -265 5.72+) 50 8 

2 15.841 876 810 -447 -390 11.30 57 21 

3 19.773 1113 1051 -584 -516 14.88*) 57 23 

4 35.347 1947 1854 -961 -871 27.63 ; 1) ;. 1) 

+) =flexural crack initiated within this stage 

=diagonal splitting crack pronounced 

=failure crack patterns (see associated photographs) 

NOTES TO ALL TABLES : 
[11=tensile strain at mid span 
[21=tensile strain at quarter span 
[31=compressive strain at mid span 
[4]=compressive strain at quarter span 
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Table. 3.5. Load - Strain - Displacement of BEAM-PB/L2. 

Load Maximum 
__Maximum_Strain_(Ps)_ 

Displ. 
_Vis. 

Crack 
Stage Load [1) [2) (31 [41 m*sp' Depth Num- 

-------- 
(kN) 

---------------------------- 
(min) 

--- 
6nni)--ber_ 

1 4.496 661 79 -124 -105 3.55+) 120 1 
2 7.011 917 196 -207 -206 5.56 120 1 
3 10.796 1190 390 -303 -298 8.78 120 1 

4 21.484 1948 990 -693 -537 17.42 121 1 
5 25.418 2000 1220 . 885 -624 19.32*) 125 6 
6 30.455 2316 1479 -1086 -745 24.64**> %% 

+) =flexural crack initiated within this stage (3.19kN) 

*) =diagonal splitting crack at roller (25.418kN) 

**)=diagonal splitting crack at hinge (26.85OkN) 

; -I) =failure crack patterns (see associated photographs) 
(11=tensile strain at mid span 
[21=tensile strain at quarter span 
[31=compressive strain at mid span 
[41=compressive strain at quartev span 
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CHAPTER - 



4. DETERMINATION OF SIGNAL PARAMETERS. 

4.1. General. 

Signal parameters comprising the natural frequency. 

peak amplitude or resonance amplitude and the damping. 

can be obtained from the frequency response or the polar 

diagram. Frequenciet; and amplitudes obtained from the 

Fast Fourier Transform construct a frequency response 

whilst, amplitudes and phases coni; truet polar diagram. 

The discrete data resulting from the digitising process 

may be truncated arbitrarily. This arbitrary digital 

truncation create problems in the determination of the 

signal parameters using the FFT analysis. These problems 

and their solution in digital signal processing are 

considered in this chapter. 

Corrective coefficients based on linear approximations 

are developed and are applicable 'to the rectangular 

window and the Hanning window functions. These 

coefficients are then applied in the analysis of the 

experimental results. 

4.2. Mathematical Basis. 

As the signal is truncated arbitrarily within a 

certain interval of time the Fourier transform which is 

valid only for infinite interval of time will induce 

errors. Instead of errors due to digital processing 

termed 'round off errors' errors due to the non periodic 
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signal also occur-. 

it has been discussed in chapter-2 that the 

transformation of the digitised signal data is accepted 

as the convolution of the infinite signal and the window 

function. The most simple window f uric ti on is the 

rectangular window. The transform of the rectangular 

window function is given as follows. 

H(f) =jA e-j27rrt' dt ..... (4.1) 

H(f) =AT cos (27rf 0 dt - jAf 
T 

sin. (27rf t) dt 
f 

-T -T 

By omitting the second add ititegrand gives 
sin(27rTf 

H(f) = 2AT 2nTf ...... (4.2) 

where :A= amplitude of the impulse 

T= time starts from -T to +T 

f= frequency resolution 

The transformed function, H(f) is a diminishing sinusoidal 

function with respect to the frequency as seen in figure 

(4.1-A. 1). The largest amplitude and the diminishing 

amplitudes are respectively referred to as the main lobe 

and the side lobes in many references. The transformed 

function of an even signal. x(t) and an odd signal, y(t) 

are respectively given below. 

W 
X(r) =fa cos(2"rfot) e- 

j2 7rr f, 
dt 

+j2 ? rr It 
= (a/2) 

f [e J27rfol' 
+ e-J27""I e dt 

= (a/2) 5(f-fo) + (a/2) 5(f+fo) 
.... 

(4.3) 

cc 
Y(f) =a sizi(2nfot) e- 

j2 7rr 1, 
dt 

cc 

= (a/2) fIe+j2 77iro f. 
-e2 

7rf 0 IL I a- 
j2nfL 

dt 
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= i(a/2) b(f+fo) - i(a/2) -5(f-fo) .... (4.4) 

where : 

8(f-fo) and 5(f+fo) are unit terms. 

The multiplication of the rectangular window, h(t) and the 

periodic signal. x(t) is accepted as a convolution of the 

transformed function. H(f) and the continuous signal, X(f) 

as seen in fig. (4.1-A. 4). Digital processing may be 

represented as sets of a unit impulse with constant 

interval of time. The transform of the unit impulse with 

time equals to minimum time. To/4 results line spectra at 

the maximum range of frequency. 4/To as seen in 

fig. (4.1-A. 3). - Furthermore the transform of the unit 

impulse with time equals the total time. To and results in 

line spectra at every 1/To as seen in fig. (4.1-A. 5). 

Multiplications of figures (A. 1) with (A. 2) and (A. 3) of 

fig. (4.1) in the time domain. this process is equal to 

convolving those figures in the frequency domain and 

represents an infinite digitising process. The f inite 

digitising process is achieved by convolving the impulse 

of the total time. shown in fig. (4.1-A. 5) and the later 

result in the time domain, or by multiplying its 

transform with the later result in the frequency domain. 

The finite digitising process is shown in fig. (4.1-A. 4). 

From the later figure it is shown that the maximum 

amplitude of the main lobe coincides with one of the line 

spectra and the other line spectra coincide with the zero 

points of the superimposing side lobes. This process. 
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theoretically. does not induce very much error if the 

number of cycles are adequate. 

If a non periodic signal is truncated the digitising 

process is the same as the periodic signal. The result 

will be different due to non-co incidences of the main 

lobe as well as the side lobes with the line spectra. 

The transform of the rectangular window seen it, rigure 

B. 1 of fig. (4.1) results a slightly compressed 

diminishing sinusoidal function because of 1/(T*4At) 

whilst the transform of the infinite signal remains the 

same. I/To as seen in fig. (4.1-B. 2). Figures (4.1-B. 3) 

also remains the same as the time interval is not 

changed. -therefore, the maximum ranges of frequency 

remain the same. Due to different total t1me, (T*-FAt) the 

transform is slightly compressed. 1/(T*4At). Figures 

(4.1-B. 4) show that the maximum amplitude of the main 

lobe does not coincide with one of the line spectra and 

most line spectra are affected by the side lobes. 

Those figures suggest that the actual maximum, main lobe 

and the actual frequency of the signal may oii1y be 

approximated by considering the amplitudes and 

frequencies surrounding the main lobe. Some other window 

functions such as Humming and Hanning window functions 

attempt to reduce effect of the side lobes on the main 

lobe, in such away that the line spectra surrounding the 

frequency of interest are not very much distorted. Most 

attempts suggest to taper the abrupt edges in such that 
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the head and the tail of -the signal fall off smoothly to 

zero. The most popular use of such a window is the 

Hanning window function. The Hanning window function 

produces considerably lower side lobes. The signal 

parameters are obtained by considering the maximum and 

the second highest amplitude. The corrections to the 

amplitude and frequency due to the non-periodicity of the 

signal are Performed graphically in fig. (2.9). 

4.3. Corrective Coefficients. 

To approximate rrequencies linear coefficients based 

on the symmetric angular concept of the line spectra 

within the main lobe are developed. The transformed 

digitised data via the radix mixed FFT mostly results in 

a maximum line spectrum with two lower line spectra 

surrounded, if not two of equal amplitudes. The maximum 

and two surrounding amplitudes are considered in the 

method. 

The frequency of interest is assumed to be within the 

maximum and the nearest high amplitude. The 

approximation is carried out by intersecting two lines 

forming equal angles. The first line passes through the 

minimum and the maximum of the three amplitudes 

considered. This line creates angles with respect to 

horizon and vertical. The second line is drawn through 

the medium amplitude at the angle to the vertical to form 

a mirror image of the first line, so that they form equal 
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angles as seen in fig. (4.2). If a pure sinusoidal signal 

is truncated arbitrarily and is digitised three possible 

conditions are shown in fig. (4.2). Instead of errors due 

to aliases, -those are folded signals due to improper 

amount of data per cycle and are beyond the scope this 

discussion. this technique induces errors due to the 

effects of superimposing of the side lobes which are more 

predominant as the frequency resolution is low. The 

percentage errors are detected numerically as a 

logarithmic decrement of Periodic signals where analysis 

via the radix mixed FFT is carried out. Fig. (4.3) shows 

the relationship between the errors induced and the 

number of cycles. Acceptable results are dependent on 

the frequency sensitivities of the experiment. Maximum 

errors of 0.17% are achieved if 100 cycles of the 

frequency of interest are considered in this direct 

technique. The longer the number of cycles the better 

the resolution and the lower the percentage error 

induced. Figure (4.4) shows that the percentage errors 

relate to the non-integer number of cycles. Thus. those 

errors are manageable and can be reduced by using 

corrective coefficients associated with the non-integer 

number of cycles. Coefficients. Cl and C2 are derived 

geometrically from fig. (4.2). 

Condition-1 : 

a= 2(A2-Al) b= W-Ai) 

c= a-b = 2(A2-A1)-(A3-A1) = 2A2-Al-A3 
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d= a-(c/2) = 2(A2-Al)-((2A2-Al-A3)/2) 

= (2A2-3Al4A3)/2 

Cl= d/a = (2A2-3Al+A3)/[4(A2-Al)) 

2A2-3AI+A3 
..... 

(4.5) 
4(A2-Al) 

Condition-2 

e= 2(A2-A3) -, f= (Al-A3) 

g= e-f = 2(A2-A3)-(Al-A3) = 2A2-A3-Al 

h= e-(g/2) = 2(A2-A3)-[(2A2-A3-Al)/2) 

= (2A2-3A3+Al)/2 

C2= 1-h/e = 1-[(2A2-3A3+Al)/4(A2-A3)] 
2A2-A3-Al 

..... 
(4.6) 

4 (A2 -A3 
Condition-3 : 

This condition can be included into one of the two 

previous conditions. It depends on the technique 

defining the highest amplitude in the program. 

After determining the geometric condition of the three 

frequencies appropriate the equation (4.5) or (4.6) is 

applied and the approximate frequency can be obtained 

using the formulae given below. 

fr= fl + 2Af Cn .... 
(4.7) 

where : 2Af= I f3 - fl 

Cn = C1 relates to condition-1 or 

C2'relates to condition-2 

The direct technique mentioned above may be improved in 

situations where analysing many numbers of cycle is not 

possible. This technique involves regression analysis 

and FFT analysis to evaluate errors induced in the direct 
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technique. 

Characteristics of the coefficients over any numbers of 

cycle are shown in fig. (4.4). Consistent paths are 

proved at number of cycles---greaier than 10. Thus. it 

can be expected -that the output of the Fourier transform 

analysis of these periodic errors shown in fig. (4.5) 

consist of a series of signals having consistent 

frequencies but varying amplitudes with different number 

of cycles as shown in fig. (4.6). By examining the 

responses in this figure where leakage is not visible 

throughout several harmonics this figure suggests that 

phase differences do not exist significantly therefore, 

these will simplify the proposed governing equation. 

Fig. (4.6) suggests that the error can be represented as a 

series of sinusoidal functions. Coefficients of the 

sinusoidal functions vary with the number of cycles. A 

power regression analysis can be applied to relate 

maximum errors of the series of the sinusoidal functions. 

On the other hand the errors also depend on the degree of 

the non-periodicity. This can be identified from the 

value of C1 or C2. The value of C1 varies from 0.50 to 

0.75 and the value of C2 varies from 0.25 to 0.50. 

Assuming -that the percentage errors are symmetric to the 

horizontal and vertical axes a general term relating the 

degree of non-periodicity and the error may be 

represented as an absolute value of (0.5-Cl) or (0.5-C2). 

This value is included in the determining amplitude of 
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every sinusoidal function considered. The getteral term 

of the improving coefficient is given below. 
no W 

CF =111 A(n) S B(n) 
sin (2nnT) .... (4.8) 

where : 

S is the number of cycles at frequency of interest 

A(n) and B(n) are amplitude and power regression 

factors. 

T is the coefficient of non-periodicity and may be 

obtained from equation below 

P -1.6263E-18 - 2.2337E-03*T + 3.8492E-01*T^2 

49.5283E-01*T^3 + 5.7285E-01*T-4 

P C1 - 0.5 for condition-1 

P C2 - 0.5 for condition-2 

Acceptable improvements are obtained by considering 

several harmonics. Four harmonics result in the 

following four sets of coefficienis 

A(l) = 0.162345 B(1) = -0.986026 

A(2) = 0.024498 B(2) = -1.019394 

AW = 0.007502 B(3) = -0.943649 

AM = 0.003198 BM = -1.028459 

Transformation of an odd func. tion. a sin(27-rf in the 

frequency domain results in amplitude down to a//2. 

Corrections due to non-periodicity of the signal can be 

carried out numerically, and a fitting curve may be 

produced by means of a polynomial regression analysis. 

Fig. (4.7) relates the degree of non-periodicity and the 

factor required to improve the maximum amplitude found 
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from the Fourier transform anal. vsis. 

4.4. Validity of the Proposed Method. 

Knowing that the Hanning window function reduces 

side lobes, the application of the direct technique using 

coefficients, CI and C2 to the Hanning response can result 

frequencies in an accuracy similar to the Hanning window 

technique. Applying the proposed technique to the 

Hanning response no longer requires the graphical 

conversion as seen in fig. (2.9). 

The empirical formula proposed by Hassan (51 provides 

good accuracy if adequate numbers of cycle are analysed. 

The formula requires attention especially in the region 

where the signal is periodic. This is due to the 

numerical instability. The two amplitudes considered may 

be ignored in comparison to the maximum amplitude, but if 

division is made the result can be far from the actual 

frequency of interest. Figures (4.8) and (4.9) indicates 

the characteristics of the formula. 

The proposed direct technique relies on the number of 

cycles and the periodicity. For high frequencies of 

interest the technique saves time though it requires a 

reliable high speed digitiser. Since frequency domain is 

of interest the amount of data per cycle is not critical 

but it must comply with the Nyquist frequency requiring 

at least two data sets per cycle to avoid aliases. In 

fact the range of frequency of interest determines the 

127 



amount of data required. 

The indirect technique reduces the inherent error when 

using the direct technique. The percentage error can be 

indicated from the values of C1 or C2 and the approximate 

number of cycles. Based on this data corrective 

factor, CF can be employed and evaluation to the frequency 

found in the direct technique can be carried out. The 

complementary amplitude at the frequency of interest can 

be estimated using a fitting curve producing corrective 

factors as shown in fig. (4.7). 

In addition a simulation shown in fig. (4-10) demonstrates 

the efficiency of the direct technique and the indirect 

technique and the direct technique on the Hanning window 

function. 

4.5 Concluding Remarks. 

Though the numerical method proved that the proposed 

corrective coefficients may be applicable for any signal 

data to provide accurate regression curves relating the 

number of cycles to the errors induced requires elaborate 

work. Therefore. the application of equation (4.5) to a 

signal having more than 40 cycles at the frequency of 

interest is recommended. 
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5. EXCITER - STRUCTURE RELATIONSHIPS. 

5.1. General. 

The experiments identified peculiar characteristics 

of two types of exciter. the magnetic and the mechanical 

exciters, over the resonance frequency. Since the 

characteristics in question affect the response it is 

necessary to investigate these characteristics. The 

phenomena are of interest since the maximum or resonance 

amplitude and the resonance frequency of the structure 

play an important role. 

The phenomena were found when the exciters were anchored 

down onto the simply supported reinforced concrete beams. 

The response of the beam excited by the mechanical 

exciter displays a jump phenomenon and the response of 

the moving exciter mass of the magnetic exciter shows a 

sharp decrease in the amplitude about the resonance. 

Mathematical models have been developed which demonstrate 

a good correlation with the characteristics of the 

experimental results. 

5.2. Mathematical Models. 

The peculiar characteristics identif ied in the 

experimexits may be clearly explainable from the 

mathematical point of view. Simple mathematical models 

normally require several assumptions such as the mass. 

the stiffness. the damping. the boundary condition and 
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the forcing function. The better the assumptions to the 

real model the better the results of the mathematical 

model. If the assumed equation of motion and the 

boundary conditions are appropriately chosen the simple 

mathematical models will demonstrate the characteristics 

of the system in question. 

5.2.1. Absolute and Relative Parameters. 

Accelerometers and velocity probes measure 

absolute amplitudes. This implies that they are a means 

of measuring amplitudes and phases with respect to an 

'indefinite' reference. The relative relationships of 

two accelerometers measuring absolute amplitudes and 

phases. within the same 'indefinite' time, reference and 

system. may be used to overcome this problem. 

Each magnetic exciter was anchored down onto the beam 

under tests whilst, the vibration tests were conducted. 

To measure relative amplitudes and phases of the moving 

exciter mass (inside the exciter. exciting the beam) to 

the beam under tests two accelerometers were employed. 

One accelerometer was mounted on the moving exciter mass 

and the other accelerometer was Positioned on the beam 

close to 
. 

the exciter. Both accelerometers measured 

absolute amplitudes and phases. The problem was to 

relate them and to obtain the relative amplitudes of the 

moving exciter mass to the beam for the purpose of 

obtaining the actual excitation force. 
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Assuming tha, t the exei ter has a constant arid high 

magnetic field the problem is to determine the relative 

phases and amplitudes of the moving exeiter mass to the 

beam. The relationships are graphically portrayed in 

rig. (5.1 ). The relative displacement of the moving 

exciter mass to the beam is assumed as 

x1=A sin Wt ...... 
(5.1) 

and the corresponding displacement response of -the 
beam 

x2=B sin(wt-9) ...... 
(5.2) 

The accelerometers monitored absolute displacements, 

thus. -the amplitude and phase angle relationships between 

the moving exciter mass and the excited beam were 

required to be investigated. The absolute displacement 

of the accelerometer positioned on the moving exciter 

mass is assumed as follows. 

X3=XI+X2=1 sin ((it-/3) 
..... 

(5.3) 

The relationships amongst the amplitude coefficients, A B 

and X which will be referred to as amplitudes for the 

purpose of generality, and the phase angles iD and 0 are 

portrayed graphically in fig. (5.1). Subs ti tu t ! fig 

trigonometric rules for x and x into equation (5.3) 
12 

also yield 

x3=A sin fit +B sin (wt-, P) ..... (5.4) 

Equating coefficients of equation (5.3) and (5.4) gives 

A+B cos PX cos 13 
....... 

(5.5) 

B sin V1 sin fl 
....... 

(5.6) 

To relate the phase angle eq. (5.6) is divided bv eq. (5.5) 
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to give 

13 = tan- 
B sin jP 

...... (5.7) (A +B cosVP 
Further. subs ti tuting eq. (5. G) in to eq. (5.5) rela tes the 

amplitudes of the moving exciter mass and the beam as 

A (sin (9-13)] ...... (5.8) 
sin V 

Introducing relative phase angle of the absolute 

displacement of the moving exciter mass to the absolute 

displacement of the excited beam. a = jD-13 into equatioti 

(5.8). where the value of a is obtainable f rom 

experiments, yields 

A sin a 
....... (5.9) 

sin io 
Again, substi tuting a 'P - 13 into eq. (5.6) arid 

rearranging the trigonometric identities gives 

V= tan- sin a 
...... (5.10) 

cos a -7-B)] 

Equation (5.9) shows that the magnitudes of A arid X 

depends on the ratio of sin a/sin 1P. Since the value of 

a is always lower than the value of V. unless a=9 for 

all V and a= jD for 9=0.7r. 27r .... etc. . there will be a 

ratio of one within the value of iP =0 to 7r. Thus, the 

amplitude, A meets the amplitude. 1 within the range of jD = 

0t0 7r. This can be obtained by substituting A=I into 

equation (5.9) to give sit, 9= sit, a. This exists only 

if : a. -9 = 0.7c. 29.3n .... etc 

b. 9a n12 and PS9 since tp z: a 

In other word sin j5ý = sin a is possible only if jD > n/2 

and a< 7r/2. At this specific point of meeLing cos ep 

-cos a. Including this identitv into equation (5.10) 
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gives 

_sin 
ai sit, a; B= 21 cu s 

cus aX cus a-B 

5.2.2. Effect of Reflected Force on Excitation Force. 

The effect of the reflected force on the 

excitation force results in the jump phenomena appeared 

in -the mechanical exciter response and in a peculiar drop 

appeared in the magnetic exciter response, as seen in 

chapter-3 fig. (3.7) and (3-8). To explain this a two 

degree of freedom system is considered. The moving 

exciter mass of the exciter is assumed to possess a lump 

mass, m and a stiffness from the magnetic field, k whilst 

the excited beam possesses a lump mass, M, stiffness. K and 

damping, c. The moving exciter mass is subjected to a 

force Fosin G)t from the electro magnetic field. These 

relationships are graphically shown in fig. (5.2). 

The equation of motion of the moving exciter mass can be 

expressed as 

F. sin Qt =mM, + k x, - kx2 (5.12) 

The particular solution to equation (5.12) may be 

repr esented as a combination of the force motion. A sin 4)t 

and the reflected motion. C sin (Ot-9) wh ich has a phase 

lag relative to the moving exciter mass but is in phase 

with the excited beam. This combined motion can be 

expressed as 

x1=A sin Wt +B sin (Qt-, P) =1 sin (G)t-13) (5.13) 

Amplitude coerricietits A. B and 1 will be referred to as 

140 



amplitudes for the purpose of generality. The equation of 

motion of the excited beam is 

0=MX2+Rx2+k2+c ;k 
2- 

k x, 

The particular solution to eq. (5.14) is 

x2=B sin (wt-49) .... 
(5.15) 

Including the derivatives Of equations (5.13) into 

equation (5.12) vield 

F sitt Qt =- iu Q21 sin (Wt-B) +k1 sin (wt-a) - 

kB sin (f. )t-(P) 

(k -m tj 2)1 
sin (cit-B) -kB sin (cit-9) 

.. (5.16) 

and also equation (5-15) into (5.14) 3rield 

0= -M 4) 2B 
sin (&. )t-ip)+K B sin (cJt-iP) 

4k B sin (4)t-v)+c WB cos (wt-io)-k I sin (4)t-13) 

(k +K-M 4) 
2)B 

sin (4)t-'P)+c 4) B cOs (wt-P) 

-k 1 sin (4)t-13) .... 
(5.17) 

Applying a trigonometric identity sin (Qt-a) = sin Ot 

cos 13 - cos (it sin 13 into equation (5.16) and equating 

coefficients give 

F (k - m. 4) )1 cos 8-kB cos 

0 (k -m 4) 2)X 
sin 13 -kB sizi 

Similar proeedures are applied to equation (5.17) to give 

0 (k +K-Mw2)B cos rP +cWB sin rP 

- cos 13 ..... (5.20) 

(k +X-Mw2)B sin iD -c 4) B cos 9 

-1 sin 13 

Multiplying sin ýp and cot; IP ilito equations (5.20) and 
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(5-21) respectively and summing those two equations gives 

0=c 4) B(sin 2 
'P+COS 

2 
iP)-k 1(sin P cos 13-sin 13 cos P) 

sin (9-8) 

Introducing relative phase angle a= (P-a ;c= 2d 2M 

mp giLves 

2d Mp2 4) B 

A s_- 

mp sin 

Furthermore introducing m. = M/m :r1= W/pi ; Pr =p2 /pl 

and Cl = 2d mrpr rl gives 

I= Cl B/ sin a ..... 
(5.22) 

The amplitude. B of equation (5.22) can be obtained by 

substituting 1 Cos 8 of equation (5.18) into (5.20). 

0= (k +K-M 4) 
2B 

cos V+cwB sin iP 

kF+k 
B- cus V 

(k - mw 
2) 

0= (k - mw 
2) (k +K-M 02) B cos V+ (k - mG) 

B sin 9- kF -k2B cos f 
2 

Multiplying this later equation by (1/k ) gives 
F/k 

B2 

+ cost kkk PI 

22 Introducing KMp k= uipl. wr= M/m. p= p. /pl, r 2 

W/P and c 2d Mp give 1 F/k 
B 

(1+m (p2-r 2 ))(1-r2)eosP +2dm Pr (1-t- )si1IP -cosip 

Substituting C1 2dm pr. C2=1+m (p2-r 2 )and C3=(J-t- 2 
11rr 
F/k 

B ..... 
(5.23) 

C2 C3 I )cos(P + C1 C3 sin(P 

The phase angle., P of equation (5.23) can be obtained by 

substituting 1 sin #13 of equation (5.19) into equation 
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(5.21) 

0 (k + K -M IJ )B sin Pc (i B cos ip 

k kB sin 0 
(k - mw ) 

0 (k mw 
2 (k +K-M 4) sin 9- (k mw 

2 

c co s 4P -k2 sin V 

c 4) (k mca 
tan f 2 2 (k )(k +K-Mw k 

Dividing the n um 
2 

erator and the denominator by k g. L ve 

c (W/ k) (1- mG) 
2 /k) 

tan 2 2 (1 -M fj /k) -1 /k)(1 + (K/k) - mw 2 2dmrprl. 
l(l - ri) 

(1-r2)((l+m (p2-r 2 
1r21 

and from which ip can be expressed as 

V= tan- 1 r 
, 

Cl C3 
--d ..... 

(5.24) 
L c2 C3 - 

To evaluate the relative phase angle. a of equation (5.22) 

equation (5.18) and (5.19) are multiplied by cos V atid 

sin f respectively. 

cos (P = (k -m 4) )I cos 4 cos P-kB cos (P 

sin a sin P-kB sin 
29 

By summing up the later equations and introducing the 

trigonometric rules those equations give 

F cos V= (k -mQ)1 cos (P-3) -kB 

Dividing by k the later equation gives 
(F/k) cos V4B 

(1-r cos a 

Equating (5.25) and (5.22) and introducing coefficients 

Cl. and C3 gives 

((F/k)cos -(P -f B)/C3 cus a= Cl B/ sin a 
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where : 

tan- 
Cl Cý B (5.26) 

(F/k)co sý+ B] 

5.3. Validity of the Proposed Method. 

Based on the calibration experiments described in 

chapter (3.4) and established for those purposes the 

relative amplitudes are determined using equation (5.7) 

and (5.10). The relative amplitudes resulting from 

equation (5.7) rely on the ratio of the sin a/ sin ýP. 

The calculated relative phase angles, V are dependent on 

the measured amplitudes.! and B and the phase angle, a. 

These dependencies do not seem very critical since signal 

processing is carried out carefully as described in (2.5) 

and chapter-4. 

The measured relative displacements of the LVDT to the 

excited beam over the range of frequencies of the first 

mode shown in fig. (5.3) are parallel to the calculated 

relative amplitudes. A slight difference is possibly due 

to different calibration factor. The absolute 

displacements before resonance overestimate the relative 

displacements. In contrast this phenomena is reversed 

after resonance. The turning point represents a 

condition where the relative displacemeni, A is equal to 

the absolute displacementX. If the turning point is 

obtainable from the experiment then the relative phases 

can be determined from eq. (5.11) and eq. (5.10) 

respec tively. 
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Further differences in the phase angles. as portrayed in 

fig. (5.4) for the same experiment. become significant 

about resonance. Those differences are obviously 

dependent on the amplitudes of the moving exciter mass 

and the excited beam. 

A theoretical simulation of eq. (5.7) and eq. (5.10) over 

tile range of excitations, i. e. 0 to 7f . is shown 

graphically in fig. (5.5) and fig. (5-6). Figure (5.5) 

indicates the sensitivity of the ratio of the relative to 

the absolute amplitudes. A/I over the phase of 

excitation,, P (0 to 77). The higher the ratio of the 

absolute beam displacement to the relative amplitude of 

the moving exciter mass. r = (B/A) then the higher the 

ratio, A/1. This implies a means of obtaining the more 

significant differences between the absolute, X and the 

relative amplitude of -the moving exciter mass. A. All 

curves in fig. (5.5) pass a value of A/I =1 but the 

intersection points of the curves moves towards the 

higher phase of excitation. iP as the increase of the value 

of r. Fig. (5.6) relates the relative phase of 

excitation. V and the relative phase angle, 13 = ep-a. Th e 

value of 13 becomes significant as the ratio, r is large. 

In addition the maximum relative phase angles. 0 also move 

towards the higher phase of excitation. f. 

Appl. ving equations (5.22) to (5.26) for m. = 843,75, p 

14 and d= 10% with exponentially decreasing force as 

shown in fig. (5.7) results in the graph of fig. (5-8) and 
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(5.9). Fig. (5.8) demonstrate the characteristics of the 

amplitude response of the beam. B and the absolute 

amplitude response of the moving exciter mass. l. A 

significant drop occurs at about resonance as expected. 

The reflected force opposes the excitation force in such 

a way that it reduces the amplitudes of the excitation. 

Fig. (5.9) also reveals the characteristics of the 

relative phase angle., 9 and the relative phase angle,,, 3 

over the range of resonance. These later two figures are 

similar to the experimental results shown in fig. (3-8-A) 

and (3.8-B). This simulation does not show tile 

experimental results to great accuracy due to the 

simplifications used in the model but the method cati 

approximately describe the behaviour of any exciter 

including the mechanical exciter used. The AC-mechanical 

exciter has almost constant torque about the resonant 

frequencies. Due to the reflected force of the excited 

beam the out of balance mass movement was opposed. This 

was apparent as a decreasing speed/rotation of the out of 

balance mass. The reflected force reduces the force of 

excitation at resonance but it is not possible to achieve 

dynamic equilibrium as the force of excitation increases 

proportionally to the square of the frequency of 

excitation. This creates an unstable condition. Thus. 

increasing the frequency, by increasing input power, will 

only pass by unstable region so producing the jump 

Phenomenon reported in chapter (3.4). The sensitivity of 
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the reflected force depends on the mass ratio, m., 

frequency ratio, p., and damping of the beain, d. 

5.4. Proposed Corrections. 

As output of vibration tests required to be 

normallsed the problem of relating amplitudes and phases 

of the moving exciter mass to the excited structure will 

involve. Equations (5.9) and (5.10) can be employed for 

correcting experimental results. Thus. this involves the 

measurement of phases in presenting the frequency 

response. For practical purposes revisions of amplitude 

and phase are carried out only at the frequencies of 

interest. 

In knowing the relative acceleration and the mass of the 

moving exciter mass the applied force is obtained by 

multiplying these later values. This applied force is 

used to normallse the whole output. 

In modeling the beam the idealised force may not be ideal 

since it is affected by the reflected force of the 

excited beam. This reflected force can be applied in the 

model as a force moving in phase with the beam where the 

exciter is positioned. 

S. S. Concluding Remarks. 

The absolute-relative relationships of the amplitude 

and phase have been demonstrated. These relationships 

reveal an important role in the determination of the 
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resonance as well as the peak amplitude since relative 

analysis is of interest. Experimentally this requires 

two vibration pick-ups to obtain the relationships. 

The force relationships of the exciter and the beam have 

also been demonstrated using the simple two degrees of 

freedom system. The existence of the jump phenomenon 

using the mechanical exciter as well as the reduction of 

the amplitude of the moving exciter mass using the 

magnetic vibrator has been demonstrated theoretically and 

experimentally. This phenomenon is of importance when 

dealing with experiments as well as mathematical models. 
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CHAPTER -6 



6. PROGRAMMING AND THE ALGORITHMS. 

6.1. General. 

Two computer progranis have been developed. The 

put -pose of one is to analyse the da ta f rom the 

experiments and the purpose of the other is to present 

the data as graphical output. The first program is 

linked to the radix mixed FFT routines installed in the 

VAX triain frarue and includes the development of the 

corrective coefficients on the determining frequencies 

and amplitudes discussed in chapter-4 and the FIR filter 

based an the IIR-Butterworth filter function discussed in 

chapter-2 and Appendix (D-1). Two algorithms are used to 

provide coefficients resulting from the long division 

process and coefficients resulLing from a billnear 

substitution into the polynomial function. These are 

installed in the program to complete the filter prograin 

routine. The fortran-77 progrant runs on the VAX main 

frame. The second progratu is linked to the 

LINIRAS-UNIRASPAK routines installed in the VAX to enable 

superimposed responses resulLing rrom' the first prograin 

to be plotted onto a single 4A-paper. 

6.2. Programming. 

6.2.1. First Program. 

The input data for this program starts with a row 

containing a filexiame to describe the test. The second 
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row has the number of data points and the time interval 

between- readings. These two values represent frequency 

resolution and tile frequency range as men t ioned in 

chapter-2. Most digiiisers provide a facility to scale 

the analog itiput up or down to achieve a maximum accurae. v 

in the digital output. The selection of the scaling or 

gain factors is of important in avoiding round off error 

as mentioned in chapters-2 and 3. These, gain factors or 

scaling factors are included when running the digitiser 

program (which is a modification of the program example 

included in the package). After rearrangement of the 

output of the modified program example these gain factors 

are given in -the third row or the data format as seen in 

table (6.1). The digitised data with the associated 

channel numbers is positioned on the fourth row and 

subsequent rows. 

This first program is set up interactively in such a way 

that users can input other gain and converting factors 

associated with the amplifiers or signal conditioners, 

the accelerometers and the charge amplifiers used. These 

charge amplifiers have several controllers relating to 

the sensitivity or the accelerometers. converting factors 

(m/sec 2 /unit output, or m/sec/unit output. or mm/unit 

output) and the gain factors (mV/ unit output). These 

later two factors are interactively included when running 

the program. If transducers do not require amplifiers 

unit input shall be included on the program. 
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Further interactive aspects to include the range of the 

rrequency or interest which allows the selection or the 

maximum amplitude within a range. Otherwise inputting a 

zero frequency and any high rrequency are acceptable. 

If the time domain is of interest and the data is 

required to be riltered. further interactive 111put is 

included. Two main filter functions are installed in the 

program. i. e. low pass / high pass and band pass / band 

stop filters. Appropriate input should be given 

following the selection of the filter type such as the 

pass band (Hz), stop band (Hz), the ininimum attenuation 

in the stop band (dB) and the number of coefficients 

considered. A quick report is displayed on the screen 

confirming the attenuations in -the pass band and stop 

band frequencies according to the number of coefficients 

just included. 

Output of the program is stored in several data files for 

further processing. The names of the data file are listed 

below. 

1. ORIGINAL. DAT ( data before filter processing 

2. FILTERED. DAT (data after filter processing ) 

3. SPECTRUM. DAT ( spectrum after filter processing 

4. DBGAIN. DAT ( impulse filter response in the frequency 

domain ) 

5. IMPULSE. DAT (impulse filter response in the time 

domain 

Output formats are shown in in table (6.2) to table 
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(6.6) and the listing program is given in Appendix (C-1). 

6.2.1. Second Program. 

This program is also designed interactively. The 

data format required is exactly the same as the output of 

the first program stored in SPECTRUM. DAT as seen in table 

(6.4). Several rows at the end of the data represent the 

peak amplitude and the associated frequencies in selected 

ranges included in the first program. 

Several interactive input statements are required when 

running this program and this enables several X-Y axes 

(groups) to be created and positioned at certain levels. 

Each axis can accommodate several graphs. The GSURF 

routine within the UNIRAS-UNIRASPAK package is capable of 

creating superimposed graphs which can indicate the 

plotting order of the graphs. Results of this program 

are shown in chapter-7. 

6.3. Algorithm for Determining Polynomial Coefficients. 

The de termina Lion of Polynomial coefficients arises 

when dealing with the bilinear transformation 

substitution on a -Polynomial equaLiort oil tile linear 

discrete time system. Power (42] solved the problem in 

terms of ordinar. v matt-ices and matt-ices with symmetric 

properties, namely the Q-matrix, which were reported to 

considerably reduce tile execution time in comparison with 

the classical algebraic method, i. e. substituting the 
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bi 1 inear equaLion Sz+ ! Zito the polynomial z- 

equation. s of degree n. Davis (43] commenied, on the 

technique proposed by Power- [42). that this technique was 

not the only alternative. Davis also commented that the 

technique required a matrix rouLine which was riot fully 

described although he admitted that Power's proposal 

required a short execution time. Davis [431 proposed a 

simple substitution technique, namely synthetic addition. 

to solve tile problent. This involved seal ing. 

reciprocating and shifting of the magnitudes in such a 

way that no multiplication were required. 

A slightly different problem from that described by Power 

(421 and Davis [431 will be examined in this chapter-. 

Power (421 and Davis (431 started from a known polynomial 

equation such as 

as n+ bs"- 1+ 
cs n-2 . ..... etc. (6.1) 

into which the bilinear transformation 

s-z+ (6.2) 
z 

was then substituted and the coefficients of the new 

polynomial in Z-rorm were determined. 

The author starts frow known roots of the polynomial 

equation (6.1) which are established frow the equation 

(2.20) as listed below. 

ak=e 
JCO. Sn+0.5+k)7f/n 

... (6.3) 

Roots of equation (6.3) are substituted into a transfer 

function. H(s) described in chapter (2.5-7) comprising a 

set of element equations in the denominator 
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H(s) -- 
1 

... 
(6.4) (s - a, ) (s -a (s -a3 )(s-. -- 

Substituting the bilinear transf ornia Lion (6.2) 111tc 

equation (6.4) gives 

H(Z) =1 ((l-a 
I 

)z - (1+ti 
1 

))((l-a 
2 

)z - (1+a 
2M... 

(az - b)(cz 
1- 

d)(oz - fT(gz - ... (6.5) 

Equation (6-5) shows that the bilinear transformation is 

a simple multiplication process of elewen ta ry 1 inear 

equations. The problem is to find the coefficients of 

the polynomial equation itself. The number of elementary 

equations represent the order of the polynomial 

equation. n. The number of coefficients of the polynomial 

equation are then equal to (n+l). 

Introducing :a= AM& = BQ) 

c= A(2), d = B(2) 

e= A(3), f = B(3) ..... etc. 

into the denominator of equation (6.5), the 

multiplication process is carried out in several stages 

depending on the number of elementary equations 

subs ti tuted. 

E. g :y (2x + 3)(4x - 2)(6x - 8) 

(8x 2+ 8x - 6)(6x - 8) 

(48x 3- 16x - 100x + 48) 

For many elementary equations this process may be easily 

understood from the diagram shown in rig. (6-1). The 

algorithm works as follows. 

1. Let coerficients or the first elemeritary equation. A(l) 

be above the second elementary equation. A(2). 
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2. Three blocks of coefficient resulting from this 

multiplication are expected. 

3. The first block is obtained by multiplying the first 

coerricierits or those two elementar. y equations, A(l) 

and A(2). 

4. The second block is obtained by cross niultiplicationb; 

of coerricients or those elementary e-quations, B(l)A(2) 

and B(2)A(1) and then sum them up. 

5. The third block is obtained by mulLiplying the last 

coefficients of those elementary equations. B(1)B(2). 

6. Further substituLloris are made bv repositioning the 

later coefficients (three blocks) as the first 

elementary equation and substituting the next equation 

as the second elementary equation. The process (1) to 

(5) is repeated with the excepLion that the process 

(4) is repeated for other intermediate coefficients 

after sliding the second eletueritary coefficients 

towards to the right. 

A program in fortran-77 language was written for this 

pu rpose as fol lows. 

C DETERMINI NG COEFFICIENTS OF POLYNOMIALS 

PRINT *. ' Order or Polynomial 
READ *. N 
DO 10 J 1. N 
READ *, A(J), B(J) 

10 CONTINUE 
X(1.1) A(l) 
X(1,2) B(1) 
DO 20 K 2, N 
X(K. 1) X(K-1.1)*A(K) 
X(K. K+1)= X(R-l. K)*B(K) 
DO 15 M= 2, K 
X(K. M) = A(K)*X(K-l, M)+B(K)*X(K-1. M-1) 

15 CONTINUE 
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20 CONTINUE 
END 

Notes : 
X(K. 1) first coefficient of step K 
X(K. K+1)= last caefficient. of stop X 
X(K. M) = intermediate coefficients of step K 

6.4. Long Division Algorithm. 

To achieve an inverse transform of the transfer 

function. H(z) described in equation (6.5) a simple form 

is required for digital computational reasons. Given a 

general term of the raLional function as follows 

H(z) _- 
B(O)z3 + B(1)z2 + B(2)z + B(3) 

''etc' (6.6) 

A(O)z 
3+ A(1)z 2+ A(2)z + A(3) .. etc. 

An alterative solution to tile determination of the 

coefficients of the polynomial equation (6.6) is by 

appl, ving a classical long division technique. This 

technique is an ordinary division. The name implied by 

this -technique requires an algorithm to be processed by 

the computer program. Such a computer program was set up 

by Kamen in reference (44) but the author was not 

successful in running this program. This may be due to 

the mistyped program listing. An attempt to investigate 

the problem was not made due to the algorithm being 

unavailable. 

Therefore, an algorithm is developed in this chapter on 

the basis or the long division technique. The technique 

restricts the order of the polynomial equation of the 

numerator- to not greater than the order of the polynomial 

equation of the denominator. 

The simplest tratisformation rule in the Z-plane as 
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described irl many references such as in [441 is carried 

out by equating coefficients of two identical functions. 

The resulLing polynomial equation (6.6) is given in (6.7) 

below 

H(z) z0+9z1+Z Z- 
2+ 15 z3+ (6.7) 

H(z) = x(OT)z 
0 

+x(lT)z- 
1 

+x(2T)z- 
2 

+x(3T)z- 
3+ (6.8) 

where :T= interval time 

From equation (6.7) and (6.8) the digital filter 

functiozi. x with respect to Lime MT) can be established. 

This time domain digital filter function is convergent at 

a large number or T. 

E. g : H(z) 2z 2+ 3z +5 
3z 3+ 5z 2+z+3 

denominator- numerator results 
32-11 -2 44 -3 3z +5z +z43 2z2+ 3z + 51 z+ 57 z 

2 10 31+ TT z Ot 
2z + 5-Z ++ 2z- 3 

1+ 13 
- 2Z- 33 

1++ 
Z-1+ '1 

-2 
399z 

44 17 1-2 
99z1+Tz-2 

44 +220 z+ 44 z 
9 27 27 

...... etc. 

For higher orders of polynomial equation the division 

process is explained in the algorithai shown in rig. (6.2). 

The algorithm works as follows. 

1. The first coefficient of the resulting equation is 

obtained by dividing coefficients of the same and 

highest order of the numerator arid the detiontinator, 

B(O)/A(O). 
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2. The coerricients of the intermediate orders or tile 

resulting equation are obtained by cross 

mu I Liplica tions or the coef ricients of the 

intermediate orders in question and the coefficients 

of the highest orders and then subtract them up. 

3. Process (2) is repeated as needed for to obtain 

acceptably accurate result. Further discussion on 

this can be obtained in Appendix D-1. 

A simple program can be seL up using the algorithm. 

C DETERMINING COEFFICIENTS OF RATIONAL FUNCTIONS. 

PRINT *. ' HIGHEST ORDER POLYNOMIAL 
READ *. N 
PRINT *. ' NUMBER OF COEFFICIENTS EXPECTED 
READ *. J 
PRINT *. ' COEFFS. OF NUMERATOR AND DENOMINATOR 
DO 10 1= O. N 
READ B(I). A(I) 
V(O, I) = B(I) 
S(I) = A(I)/A(O) 

10 CONTINUE 
DO 20 K= 1, J 
DO 30 1= 0, N-l 
V(K, N) = 0.0 
V(K, I) = S(O)*V(K-1, I+l) - S(I+1)*V(K-1.0) 

30 CONTINUE 
V(K-1.0) V(K-1.0)/A(O) 

20 CONTINUE 
END 

Notes : 

V(K-1,0)= coeff icients of the new polynomial equation, 
for K = 1.2,3.4 

..... etc. 
S(I) scaling factor. 

6.5. Comparisons of Computing Time. 

The first algorithm discussed in chapter (6.3) 

requires mulLipli, caLions and addiLions. III comparison 

with the available techniques quoted by Davis (431 the 

Lechnique proposed is much simpler as shown in tile 
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program written above. The ordinary matrix technique 

proposed by power (421 required situi lar number of 

multiplications but the number of additions is twice that 

required by the proposed technique. The 'total 

multiplications and additions proposed are similar to the 

Q-matrix with symmetric properties. The synthetic 

division technique proposed by Davis (431 is still 

superior in comparison with the proposed technique and 

the Ordinary matrix proposed by Power (423. These 

comparisons are shown in the table (6.7). 

The number of multiplication arid addition of the proposed 

technique are respectively given 

Number of multiplication =N 
2- N-2 

Number of addition = (N 2- 3N + 2)/2 

where :N= number of coefficients of a polynomial 

equation of order ii (N = ti + 1). 

The proposed technique has an advantage over the 

available techniques in that the roots or the polynomial 

are already determined from equation (6.3) therefore. the 

bilinear transformation is easily carried out within the 

elementary equations. As the polynomial equation can be 

established from the elementary equations the 

coefficients in question are automatically obtainable. 

This process is dirferent from those mentioned by Power 

and Davis (42,43) where the polynomial equation was 

already established arid the bilinear substitution was 

carried out within the established polynomial. This 
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implies that the proposed technique has a specif-ic use 

when the routs of the polynomial are already established; 

such as in the case of the IIR-Butterworth filter 

funcLion. 

The second algorithm described in chapter (6.4) requires 

multiplications. subtraction and division. Instead of 

the dependency on the order of the polynomial. n. this 

algorithm also depends on tile flumbe r cuerrieierits 

requested, J which converge for J=M. Those arithmetic 

processes can be presented in the rurmula 

Number of divisions =j 

Number of multiplications = 2J(N-1) 

Number of subtractions = J(N-1) 

The aim of producing a series in filter processing is 

that truncation can be applied to reduce transience and 

transformations can also be cart-led out in a more simple 

way. The effect of the truncation of the resulting 

series applied to the rilter processing in the time 

domain. i. e. by applving inadequate number to J. will 

reduce dB gain in the stop band and increase dB gain in 

the pass band. Physically this reduces amplitudes of the 

signal passed and may still allow a cortain percentage 

amplitude of the signal stopped to be embedded in the 

signal passed. 
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6.6. Concluding Remarks. 

Instead of using Fast Fourier Convolution routines 

installed in the VAX computer main rrame. the program 

requires two algorithms developed in this chapter. The 

comparison with othet- alxot-ithms has been deinunsLvated. 

The benefit of -the proposed algorithm is on its simple 

programming and that it mav be used for ati. v problems 

concerned with determining the coefficients of a 

polynomial equaLion although this will be efficient if 

the roots of the polynomial equation in question are 

gi veil. 
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r----) 
let elementary equation 

f (z) - (A (1) z+9 (1) ) (A (2) z+B (2) ) (A (3) Z+B (3) ) ....... .... n 
2nd elementary equation 

N-3 (n-2) 

A (1) B(I) (1) (2) (3) 

A (1) A (2) B (1) A (2) +B (2) A (1) 8 (1) B (2) 
3 

2 A, 
D (1) 0(2) D(3) 

A (2) B (2) 
istBLOCK 2ndBLOCK 3rdBLOCK 

N-4 (n-3) 
NO D (2) D(3) (1) (2) (3) (4) 

,X 2 
3/ 

14 
Y 

A (3) SM 

A (3) B (3) 
N-5 (n-4) 

0 (1) A (3) 0 (2) A (3) +D (1) 9 (3) 
t 

11 
k 

11 
E U) E (2) 

0 (2) 8 (3) +0 (3) A (3) D (3) B (3) 

E (3) E (4) 

E (1) E (2) E (3) E (4) (1) (2) (3) 

*4 Vt EMAW E(2)A(4)+E(1)9(4) E(2)B(4)+E(3)A(4) 

2 
3/ A 51 11 

A, XA4 NTF (1) F (2) F (3) 

A (4) 9 (4ý (4) 9(4) 
E (3) 9( 4) +E (4) A (4) E (4) B (4) 

A (4) B (4) 

N-6 (n-5) F (4) F (5) 

F (1) F (2) F (3) F (4) F (5) U) (2) 
A %ý . 

4f 1ý I% 
, 

4f F (1) A (5) F (1) B (5) +F (2) A (5) 
% L 

A 
2 

%3/ A \5/ 11 11 
A, XA4 6 X s(l) G (2) 

/ / % 
A (5) B frll (5) 1-: 0 B (5) 

;0 k (3) (4) 

A (5) B (5) A (5) B (5) C (2) 8 (5) +F (3) A (5) 

1 

C (3) B (5) +F (4) A (5) 

1 

G (3) 
11 

G (4) 

(5) (6) 

etc. (4) B (5) +F (5) A (5) 
j 

F (5) B (5) 
IL 

G(5) G (6) 
f or n-5 
f (Z) _ G(j)Z5 + 6(2)Z4 + G(3)z3+ 6(4)z2+ G(5)Zl+ G(6)ZO 

FIG. 6. 1. ALGORITHM FOR DETERMINING COEFFICIENTS OF POLYNOMIAL 
EQUATION FROM ELEMENTARY EQUATIONS. 
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B (l+0) zý+ 8 (l+1) zk-1 +B (l+2) zk-2+ B (l+3) zk-3 B (n) zo 
H (Z) 

A jo) zn+A(, ) n-1 +A (2) n-2+ A (3) Z n-3 +.. -A (n) z0 

B(O) B (1) B (2) B (3) 

AqNý11ý1( 'Ile "--V 

A (0) A (1) A (2) A (3) 

131(o) B, (1) BI (2) 0 

A (0) A (1) A (2) A (3) 

132(0) B2 (1) 132(2) 0 

A (0) A (2) A (3) 

etc. 

Notes : 
........ DIVISION 

MULTIPLICATION 

f or k K, n 
1= n-k 

(i) 
B (0) B (1) A (0) -A (1) B (0) B (2) A (0) -A (2) B (0) 

A (0) A (0) A (0) 
11 11 

s, (0) al(1) 
(4) 

8 (3) A (0) -A (3) B (0) 

11 

B l(2) 

... ... etc. 

(1) (2) (3) 

B, (0) BI. (i)A(0)-A(i)Bi(0) Bi(2)A(0)-A(2)Bi(0) 

A (0) A (0) 1A (0) 
11 11 

B2(O) Be (1) 
(4) 

0A (0) -A (3) B1 (0) 

A (0) 1 
11 

B2(2) 

etc. 

(1) (2) (3) 

B2(O) B2(1)Äto)-A(1)B2(O) B2(2)Ä(0)-A(2)82(O) 

A (0) A (0) 1LA (0) 
11 11 

B3 (0) B3 (1) 

0A (0) -A (3) B2 (0) 

A (0) 1 
11 

B3 (2) 

B (0) 
zo+ 

ti 
-(0) Z-1 + 

t2 
-(0) Z-2 + 

A (0) A (0) A (0) 

FIG. 6.2. ALGORITHM FOR DETERMINING COEFFICIENTS OF POLYNOMIAL 
EGUATION FROM RATIONAL FUNCTION. 
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Table 6.1. Data Input 

TEST (file nalue) 
400(number of data) 1.56 

1.25 2.50 1.25 
1194 -315 -91 

757 -649 -38 
-178 -116 49 

(CII-1) (ch-2) (ch-3) 

Onterval time in msec) 
0.675 (gain factor) 

-149 
-1000 (integer data) 
-1210 

Table 6.2.0riginal. Digital Signal 

O. OOOOE+00 1.4915 Gain facturs and converting 
2.03OOE-03 1.2293 factors are applied in this 
4.06OOE-03 0.6271 data 
6.09OOE-03 0.0862 

(time in sec) (amplitude) 

Table. 6.3. Filtered Data 

0. OOOOE+00 0.1142 
2.0300E-03 0.4191 
4.0600E-03 0.6827 
6.0900E-03 0.8796 

( t1,7je 111 sec) (anzpl 1 tude) 

Table. 6.4. Spectrum Data. 

TEST (file name) 
400 (number of data) 2 (number of peak amplitudes) 
1 0.0000 0.0000 0.0000 
2. 1.2315 0.0069 -0.0072 
3. 2.4630 0.0069 -0.0145 
4. 3.6945 0.0071 -0.0291 

400. 325.3458 0.0034 0.00233 
1. 25.0023 1.0034 

associated number of 2. 75.4988 0.5000 
peak amplitudes 

(frequency) (amplitude) (phase angle) 
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Table. 6.5. dB Gain Data. 

1 0.0000 0.0000 0.0993 -0.01440 
2. 0.0157 1.2315 0.9886 -0.00990 
3. 0.0314 2.4630 1.0001 0.00087 
4. 0.0471 3.6945 1.003.2 0.01117 

(angular (aria I Og (gain factor) (ga in 
frequency) frequency) factor-dB) 

Tablo-. 6.6. Iinpulse Data. 

1 5.6774E-06 
2 7.6007E-05 
3 4.9461E-04 
4 2.0979E-03 
5 6.5649E-03 

(amplitude) 

Tab le 6.7. Comparison of the Results of 
Several Techniques 

(B) (C) 
N Q-Matrix Synthet ic Division 

Mult. Add. Mui-t. Add. Mult. --X-ja-- 

5 25 (9) 20 0 30 18 6 
10 100 (40) 90 0 110 88 36 
15 225(104) 210 0 240 208 91 
50 2500(1200) 2450 0 2550 2448 1176 

Notes : 
n= order of 
A= proposed 
B= proposed 
C= proposed 
( )= using sy 

polynomial equation 
b, y Power [421 
by Davis (431 
b, v Author 

mmetry properties 
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CHAPTER -7 



7. TEST RESULTS AND ANALYSIS OF VIBRATION TESTS. 

7.1. General. 

This chapter will discuss responses to the vibration 

tests described in chapter-3. The relative force of the 

moving exciter mass to the beam discussed in chapter-5 

will be included i 11 tile analyses of the normalised 

response of the beams. The frequencies. amplitudes and 

percentage damping of the non-l[near sof t spring system 

are force dependent (6,13,15,16.211. This dependency for 

the first mode of the concrete beam models will be 

described in this Chapter and a linear frequency 

approximation will be applied on the basis of the 

experimental data described in chapter-3. Polar diagrams 

wi th ellipse or arc CuI*VOS fiL ted and isoehrones 

emphasising the non-linear behaviour will be described. 

The false selection of the peak amplitudes which may 

result from the experiment will also be dealt with. 

Several diagrams relaLing conditions of the beam to the 

dynamic parameters are presented where the flexural and 

diagonal splitLing crack patterns can be identified. 

Four to f ive responses of each vibration inode 

representing f our to r ive condi tions of the beam 

subjected to successively increasing flexural or diagonal 

s pl itt. ing crack pat-terns will be analysod. Three 

vibration modes at each beam at six positions will be 

displayed in frequency responses. The charactorisLict; of 
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the Polar diagrams for uie rit-st. second and the third 

modes will be analysed respectively f rom the 

accelerometers at mid span. a quarter span and at a sixth 

span. Forces of excitation for the related responses are 

shown in appendix-E and the summary uf those rorces. the 

dynamic and static properties are presented in table 

(7.1) to table (7.3). 

7.2. Effect of Non-linear Soft Spring Behaviour. 

The three sets of force of excitation at two extreme 

conditions. i. e. intact and severe damaged beams. 

deseribed in chapter-3 displayed the nuti-linear stiffness 

and non-linear damping. The non-linear stiffness was 

apparently greater at the severe damaged beam whilst the 

non-linear damping relied on the specific crack patterns. 

These non-lineari ties ean be idenLified from the force- 

amplitude and force- frequency graphs. If the orgin of 

the graphs are not produced interpretatLons of the aun- 

linearities may not be carried out simply. 

Fig. (7.1) displays several possibilities which may occur 

in the experiments. Fig. (7.1. a) represents a linear 

spring with viscous or hysteretLe damping systems where 

resonant amplitudes are linearly proportional to the 

forces of exci ta tion. This system demonstrates the 

independence of -the resonant frequency on the force of 

excitation. The related normalised graph displays a 

linear vertical line. 
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Fig. (7.1. b) represents the behaviour of systems with 

non-linear soft spring and viscous or hysteretic damping. 

This is clearly recog-ttised in the iturmalised graph as an 

inclined line towards the right. The decrease of the 

resonant frequency will further confirm the existence of 

this rion-linear soft spring behaviour. The -third graph 

shown in fig. (7.1. c) displays the behaviour of systows 

with linear stiffness and non-linear damping. These 

later systems can be recognised itt the normalised graph 

as line inclined towards the left. This graph can also 

represenL the behaviour- of hard spring systems. Thus, 

the recognition of frequency changes will confirm the 

behaviour of the system. A mixture of those figures 

possibly occurs in the real structure such as illustrated 

by the typical experiment results in fig. (7.2), (7.3) and 

(7.4). 

Three sets of force of excitation resulted in three 

resonant frequencies with three peak amplitudes. Those 

parameters will be analysed in this chapter. The 

non-normalised graph in fig. (7.2) indicates that with the 

same force of excitation the beam with severe cracks, 

shown by the broken line. resulted in a lower peak 

amplitude compared with the intact beam, shown by the 

full line. The mixed non-linearity is not as clearly 

indicated in the normalised graph shown in fig. (7.3). 

The related normalised curves display similar patterns. 

The inclining broken line towairlds the left is recognised 
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as increasing noti-litioar damping. 

This also happened on the intact beam as shown by the 

full line. The slightly, inclitied lines towards the left 

confirms the low degree of non-linear damping as well as 

non-linear soft spring behaviout-. Those hypotheses are 

further confirmed by the changes in the resonant 

frequencies as shown in fig. (7.4). As the force of 

excitation is increased the resonant frequency decreased. 

Parabolic fitted eurves may be applied for the purpose of 

practical interpolations. Furthermore checks can be 

carried out from an examination of the polar diagrams 

shown in fig. (7.5) and (7.6). 

Characteristics of the equipment have been described in 

chapter-3. The phase characteristic of the 

accelerometers measuring phase angles indicated that a 

shift in the phase angle was influenced by the amplitude 

characteristics. A small shirt was executed by the 

proposed formulae described in chapter-4 at about 25Hz 

and about 10 degree shift was obtaitted at 100 Hz. 

Therefore, true phase angles are expected at the first 

modes and slightly rotated counter clock wise polar 

diagrams are expected at the second modes. Almost 

circular polar diagrams with maximum arc spacings showing 

the resonant frequencies (151 confirm the existence of 

the viscous damping and the small non-linear sort spring 

behaviour respectively of the intact beam. A more 

distorted circle is found for the severely damaged beam 
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especially at the higher force of exei tatioll. Thus .a 

mix-Lure of the non-linear soft spring with non-linear 

damping is possibly possessed by this beatit. 

7.3. Proposed Linear Correction. 

From the experimental data showri in f ig. (7.2) to 

(7.4) typical parabolic fitted curves can be established. 

Knowing the parabolic curves mav- be fitted relating force 

and the resonant frequencies at two conditions. i. e. on 

the intact and damaged beams. t lie intermediate 

frequencies at different forces of excitation may be 

interpolated linearly using a formula as shown 1n 

appendix (E-5. A) . The resonant frequencies are stiffness 

dependatt t. Since the noti-linear sof t spring behaviour is 

exhibited in this experiment the higher force of 

excitation results in the lower stiffness due to the 

opening cracks. The resonant amplitudes which are 

normally indicated by the peak amplitudes are stiffness 

and damping dependant. The non-linear damping and 

non-linear stiffness affecting the resonant amplitudes as 

shown in fig. (7.3) possibly follow a typical parabolic 

curve too. The typical Parabolic curve can be 

established from the experimental data for the two 

conditions of beam. Linear amplitude interpolations can 

then be applied for different forces of excitation using 

a formula as shown in appendix (E-5. B). The dependency 

of the peak amplitudes on the two parameters implies that 
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at higher forces of excitation the fitted curves based on 

three sets of force of excitaLion may- be no longer valid 

due to the predominant effect of the non-linear soft 

spring behaviour which itiereases tile lean of tile cul-ves 

towards the right. These linear approximations are 

applied on the vesulLs of all fit-st modes only as shown 

in fig. (7.7) to (7.10). Slightly improvements on the 

resonant amplitudes and frequencies revealed t ha t tile 

different forces of excitation had little effects on the 

resonant frequencies and amplitudes. 

7.4. Beams Containing Flexural Cracks. 

7.4.1. Fully bonded beam (FB/Ll). 

Normallsed responses for the first mode of the 

beam subjected to the four sets or similar force of 

excitation as shown in appendix (E. 1.1) are displayed in 

fig. (7.11). The forces of exeitaLiort are determined by 

multiplying the relative accelerations and the mass of 

the moving exciter mass wiliell was set to 128.53 grams. 

These accelerations were controlled manually from the 

integral amplifier. The output of the amplifier could 

not be constantly managed as shown in appendix (E-1.2) 

and (E-1.3). However, the results of the tiormalised 

responses will be not greatly affected. 

The response shown in fig. (7.11) bv the intaut beam and 

the almost perfect circle of polar diagram in 

fig. (7.14. A) indicate tha t the beam at this stage 
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possessed viscous damping with little non-linear soft 

spring behaviour. After applying the first loading stage 

the resonant frequency decreased sharply followed by a 

decrease in the resonant amplitude. The induced crack 

apparently increased the damping, so reducing the 

amplitude at resonance as shown in tile second response. 

The slightly elliptically distorted polar diagram in 

fig. (7.14. B) which is theoreLically associated wi th 

higher polynomial damping phenomena (451 confirms the 

existence of tile increased damping. Fu r the rmo ra tile 

second loading stage resulted in a slight change of the 

resonant frequency as well as in tile resonant amplitude. 

The more distorted polar diagram in fig. (7.14. C) 

indicates that higher damping controlled the amplitude at 

resonance. The third loading stage produced more wide 

open cracks. This apparently reduced non-linear damping 

which is indicated by the last response and the 

associated polar diagram as an increase in the resonant 

amplitude and the almost circular polar diagram. Details 

of those parameters are suminarised in table (7.1). 

Response spectra on the second mode of the beam are 

displayed in fig. (7.12). A different trend from tile 

first mode vibration test is displayed by these 

responses. The imposed flexural cracks resulted in 

higher resonant amplitudes. This apparently indicated 

small increase !n damping and the presence of the lower 

stiffness is predominant. Furthermore checks can be made 

179 



on the associated polar diagrams shown in fig. (7.15). 

The polar diagrams rather shif t in origin position. 

These were due to the different phase characteristics of 

the accelerometers measuring phase angles as described in 

chapter-3. Since a constant shift was involved within 

the range of frequency investigated this would not arfect 

the interpretation of the polar diagrams. Almost 

circular polar diagrams were possessed by this beam at 

the second mode especially for the intact beam and after 

the third loading stage. This implied that almost 

viscous damping with possibly low non-linear soft spring 

behaviours existed over all the loading stages. Sets of 

force of excitation and the detail values are shown in 

appendix (E-1.2) and table (7.2). 

The third response spectra of the four sets of force of 

exeitaLion shown in appendix (E-1.3) are displayed in 

fig. (7.13). Higher damping is indicated from the spectra 

by way of a flatterer response. Several pseudo responses 

(14] surrounding the main response increase the 

complexity or the system and analysis. The opening and 

closing of cracks is the Possibility greatest causing 

this phenomenon. The related polar diagrams of the 

response spectra displayed in fig. (7.16) show irregular 

patterns and distorted circles which are difficult to 

analyse. 
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7.4.2. Partially bonded beata (PB/Ll). 

A slightly higher resonant frequency on the intact 

beam-2 (PB/L1) than the fully- bonded beam (FB/Ll) was due 

to the higher material properties of the beam as recorded 

in the concrete cube tests. A maximum equivalent static 

load of 10ON may theoretically be applied at mid span 

without creating cracks. But due to the unknown damping 

ratio of the beam, this load could crack whilst vibration 

tests took place. It was decided to reduce the force of 

excitation as shown in appendix (E-2.1). 

An almost circle polar diagram was shown at this stage 

implying the existence of viscous or hysteretic damping. 

The first loading stage produced a sudden crack at about 

the mid span. The single, wide open crack resulted in a 

lower resonatit frequency with lower resonant amplitude as 

shown in fig. (7.17). The presence of the crack activated 

the bond between the reinforcement and the concrete which 

increased the damping. Furthermore loading stages 

resulted in a further decrease of the natural frequency 

as well as the amplitude. This increasing damping was 

indicated in the greater distortion of the circles after 

the second and third loading stages as shown in 

fig. (7.20). The third loading stage produced a peculiar 

response spectra. The increase of resonant frequency 

with the increase of load should not exist unless a great 

change of geometry properties have occurred. An internal 

change of properties such as the activated bond and 
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interlocking between the reirtfureemeriL and the concrete 

had probably increased the stiffness. The wide open 

crack and the associated viscous damping were 

predominant. As a result the amplitude at resonance was 

higher than that af ter the second loading stage. From 

the polar diagrams shown in fig. (7.20) the presence of 

viseous damping with the non-linear sort SPI-Ing 

behaviours were just apparent after applying the first 

and the third loading stages. 

The responses of the second mode are shown in fig. (7.18). 

An almost sinjilar amplitude pattern to beam-1 (fully 

bonded. FB/L1) after applying the first loading stage 

indicated that non-linear damping existed and controlled 

the amplitude. This non-linear damping is confirmed by 

the associated polar diagrams shown in fig. (7.21). The 

non-linear damping shown as distorted polar diagrams 

after the first and second loading stages was from the 

places where the bond was activated and deactivated 

simultaneously. The tensile strain of the partially 

bonded beam in the unbonded region was entirely governed 

by the steel reinforcement. In the fully bonded region 

the tensile strain was partly governed by the steel 

reinforcement. At the places where fully and partially 

bond meet there is a discontinuity of bond stress as well 

as flexural stress. This di scon L inu i ty disappears 

exponentially with -the distance (5]. The increase of 

tensile strain decrease the steel area/perimeter which 
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may increase loss of bond. The sinusoidal force employed 

can result in the activate and deaeLivate bund. 

Furthermore this second loading stage exhibited 

decreasing amplitude with inereasing damping. The third 

loading stage may have released the remaining bond such 

that the simultaneous bonding and debonding process was 

deactivated. As a result the viscous damping with 

slightly non-linear soft spring behaviour was 

predominant. At this stage the decrease in stiffness was 

indicated clearly front the inerease in amplitude at 

resonance. The complementary polar diagrams in 

fig. (7.2l. D) corif irtned this phenomena. The typical 

pseudo resonances were indicated in the polar diagrams on 

the intact beam and on the second loading stage as small 

circles within the main circles. This was possibly due 

to the presence of opening and closing cracks or from the 

activated and deactivated bond of the reinforcement that 

changed the stiffness as well as damping with respect to 

time. 

The presence of -LI. 

the higher modes. 

pseudo resonances 

fig. (7.19) confirm 

result the polar 

e pseudo resonance is more obvious at 

The flattened responses with several 

indicated in the third responses in 

the complexiLy of the system. As a 

diagrams shown in fig. (7.22) are 

difficult to analyse. 
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7.5. Beaus Containing Diagonal Splitting Cracks. 

7.5.1. Fully Bonded beam (FB/L2). 

The lower compressive strength of the materials of 

this beam resulted in a lower first resonant frequency. 

This missing point can be interpolated from the polar 

diagram as the type of the damping is recognised. A 

sharp drop in the resonant frequency after applying tile 

first loading stage was followed by a decrease in the 

resonant amplitude. Again. the increasing damping can be 

identified from the distorted polar diagram. Furthermore 

the loading stage aimed to develop diagonal splitting 

cracks. Just before the diagonal splitting cracks became 

visible a vibration test was conducted. The third 

response indicated clearly a drastic change of the 

dynamic parameters. A sharp drop in resonant amplitude 

with little change of resonant frequency despite a 

similar force of excitation (as shown in appendix E-3.1) 

clearly distinguished this response from other responses. 

The vibration test at this early stage of diagonal 

cracking activated Coulomb friction damping (22.231. The 

slight change in the crack depth and growth of flexural 

cracks indicated small change in the beam stiffness and 

resulted in only slightly lower resonant frequency. The 

associated polar diagram in fig. (7.26) showed a circle 

slightly shift in y-origin creating a 'pear shape'. This 

very slight change of polar shape was possibly due to the 

small Coulomb friction damping force which is associated 
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with -tile diagonal force. N times rricLional fdetor. P. A 

further the loading stage created visible shear cracks 

and resulted in a higher resonant amplitude with a 

classical lower resonant frequency. The visible cracks 

deactivated the Coulomb friction damping in such a way 

that tile viscous damping took tile main part in 

controlling the resortant amplitude. 

The typical increasing resonant amplitudes with 

decreasing resonant frequencies at the second mode were 

also exhibited by this beam within tile flexural mode 

pattern. The associated polar diagrams in fig. (7.27) 

confirmed the presence of viscous damping with slightly 

non-linear soft spring behaviour. An equipment error 

resulting in a phase shift was also indicated in this 

second mode. The sharp drop of -the resonant amplitude 

with the slight decrease of the resonatit frequency was 

also performed in polar diagram after applying the second 

loading stage. The slightly distorted polar diagram is 

possibly due to the presence of the early non-linear 

damping as well as the Coulomb damping. The 'pear shape' 

can be detected but is not as clearly shown as in the 

first mode. A higher resonant amplitude at the last 

response than that at the second and the third clearly 

explains the relief of the beam from the Coulomb damping. 

Summary of these dynamic and static properties are 

obtained in table (7.2). 

Responses of the third mode suggest that the higher 
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applied loads required to create diagonal splitting 

cracks have changed the supports condiLion in such a way 

that the amplitude responses of the supports became much 

highe r. Two possible reasons for this which are either 

generated from the support systems oil the shaft 

conneeLing the concrete beam to the support sYstems. III 

general the flatter responses with the pseudo resonances 

in the third mode indicate the complexity the system. 

The associated polar diagrams which are also slightly 

rotated coun to r clock wise in fig. (7.28) were in 

accordance with the phase characteristics of the 

accelerometers used. The last polar diagram indicated 

the return of the viscous damping with small non linear 

stiffness. 

7.5.2. Partially bonded beam (PB/L2). 

Five of six loading stages carefully applied on 

this beam as reported in chapter-3 will be analysed. The 

higher first resonant frequency of this intact beam was 

apparently proportional to the material properties of the 

beam. The resulting five responses from five loading 

stages in the first mode as shown in fig. (7.29) indicated 

that the large change of resonant frequency only occurred 

after applying the first loading stage. This was due to 

the single erack opened widely. The straight response 

approaching resonance is confirmed from the associated 

polar diagrams in fig. (7.32) as a missing point during 
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the experimental test. The lower number of cracks 

compared to beam-2 (PB/Ll) only slightly activated 

non- 1 inear damping. Tile s1 igh t ly- reduced resonan t 

amplitudes after applying the second and third loading 

stages indicated the presence of viscous datuping. As the 

damping and stiffness play an important role in defining 

resonan t amplitudes their types and proportion will 

affect the response performance. The increasing load was 

riot apparently distributed proportionally over tile beam 

length as indicated by the lower increase in the number 

of cracks with tile increase of loading stages. Thus, the 

non-linear soft spring behaviour was predominant over the 

expected Coulomb frietion damping. As a resul t the 

Coulomb damping was no apparent as shown as in the 

decrease of amplitude before the cracks were visible. 

However, the non-increasing amplitude at the fourth 

response was possibly due to the presence of tile 

non-linear damping. The change of the load distribution 

to produce diagonal SpliLLIrig cracks is shown as slight 

decrease of the resonant frequency. The associated polar 

diagrams indicate the presence of viscous damping with a 

non-linear soft spring behaviour. 

The second mode responses in fig. (7.30) do riot clearly 

indicate the typical increasing resonant amplitudes with 

the increase in the loading stages due to the presence of 

significant pseudo- resonance especially after applying 

the fourth loading stage. This pseudo- resonance it; inore 
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clearly visible in tile po 1 at- diagrams shown 1n 

fig. (7.33). Almost all Polar diagrams possessed similar 

non-linear damping although tile in tens iti es wore 

different. A clear pseudo resonance possibly indicated 

the greater bonding and debotiding activity. 

In general the responses of -the third mode indicated 

increasing resonant amplitudes at each increase of 

loading stage. A slightly drop in amplitude after the 

third loading stage may indicate the presence of early 

shear cracks. The associated polar diagrams shown in 

fig. (7.34) are circles which are rotated counter clock 

wise and shift in Y-origin. This shift in y-origin 

indicates the presence of Coulomb friction damping and 

the circles indicate viscous damping. The rotated polar 

diagrams are due to the phase charae teris tics of the 

measuring accelerometers. Slight pseudo resonances 

appear in all polar diagrams showing the complexity of 

the system. 

7.6. Discussion. 

7.6.1. Non-linearity. 

The use of the polar diagram technique has 

demonstrated the t5rpically higher polynomial damping of 

these beams (451. In the case of beams described in this 

experiment the higher polynomial damping can be 

associated with the opening and closing of existing 

cracks and the bonding and debonding activity of the 
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reinforcement in the Partially bonded beams where the 

damping force is transferred gradually and follows an 

exponential curve. This typical damping pattern which 

is elliptical on the polar diagrams was shown in almost 

all the experimental beams. Furthermore this experiment 

has also demonstrated the existence of Coulomb damping or 

dry friction damping (17.18.19) such as shown in the beam 

with diagonal splitting crack patterns. Low contribution 

from appearance of Coulomb damping in this case was 

possibly due to the small area of shear plane which 

defines the friction faetor, P, The Partially bonded 

beam-4 (PB/L2) did not clearly show Coulomb friction 

damping due to the geometric change of the partially 

bonded beam which attracted more flexural cracks during 

post loading stages. General characteristics of the 

polar diagram with several possible non-lineari ties are 

summarised in table (7.4). 

The force of excitation can not be evenly applied over 

the resonance frequencies. The resulting resonant 

frequency and amplitude will not be achieved at the same 

force of excitation. Linear approximations using fitting 

curves may be used as the alternatives from which the 

approximated dynamic parameters can be obtained. 

Although many possible polynomial equations can fit the 

data. the characteristics of the structure need to be 

considered. This implies that the fitted curve should 

not be extrapolated unless the behaviour of the structure 
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starting from the intact and progressing to a failure 

under vibration tests has been completely understood. 

Excessive forces of excitation may attract -the presence 

of senji hard and sof t spring behaviout- giving rise to 

rectification phenomena (231. This emphasises the point 

that a fitted curves should not be extrapolated. 

7.6.2. First Mode. 

A graph relating strains and resonant frequencies 

is shown in fig. (7.35). The fully bonded beam with 

flexural crack patterns (FB/L1) exhibited a higher 

stiffness before yielding compared with the fully bonded 

beam which exhibited a diagonal splitting crack pattern 

(FB/L2). This can be deduced from the fact that more 

cracks existed in the diagonal splitting cracked beam 

(FB/L2). thus lower stiffness can be expected. More over 

in comparison with the partially bonded beams having the 

similar crack patterns (PB/Ll) this beam (FB/L1) 

possessed much greater stiffness. The presence of early 

shear cracks was indicated by a very slight change or 

resonant frequency as observed in fig. (7.35). This was 

possibly due to the chartge in the load distribution in 

such a way that it only slightly changed the stiffness. 

The partially bonded beam wi th the flexural crack 

patterns (PB/L1) showed a unique difference. In 

comparison with the beam-4 (PB/L2) this beam possessed a 

lower stiffness before yielding. This further confirms 
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that the beams with diagonal splitting crack patterns 

produced lower reductions in stiffness with the increase 

of strains compared to the beams with flexural crack 

pa L terris . 

Fig. ( 7.36) relates strains to amplitudes. The decrease 

of amplitude with the increase in strain or beam-1 

(FB/L1) was due to the presence of higher damping. Thus, 

beam-2 (PB/L1) possessed higher damping than beam-1. 

This can be explained from the fact that more friction 

occurred in the Partially bonded beam. The fully bonded 

beam-3 with a diagonal splitting crack pattern (FB/L2) 

showed a significant change in the load distribution that 

caused a change in amplitude characteristics such as the 

sharp drop as observed in fig. (7.36). As the resonatit 

amplitudes are controlled by damping instead of stiffness 

an observation throughout the frequency - strain graph 

will be beneficial. Furthermore beam-4 (PB/L2) well 

defined that the load distribution affected the stiffness 

as shown by the higher amplitudes of this beam than 

beam-2 (PB/Ll). 

7.6.3. Second Mode. 

The effect of increasing flexural cracks in the 

full. v bonded beam (FB/Ll) is significant in relatiuti to 

the fully bonded beam with the diagonal splitting cracks 

as shown in fig. (7.37) although the differences are not 

as sharp as in with the first mode. The different 
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pattern shown by beam-4 (PB/L2) in fig. (7.39) confirmed 

that stiffness wtis more sensitive to crack depth rather 

than the number of cracks. The increase of loading stage 

ort beam-4 did not Produce significant additional cracks. 

The increase of load was apparently concentrated in the 

increasing depth of the single crack. The non evezil. v 

distributed load over -the beam length was indicated as 

the lowev decrease of the resonant frequencies with 

increasing loading stages. 

Fig. (7.40) relates resonant amplitudes to strains. 111 

this second mode the beam-1 (FB/Ll) raised its resonant 

amplitude with increasing strains. This implies that the 

ends of the beam at ends possessed a lower percentage of 

cracks or a higher stiffness in comparison with the beam 

as whole. In other words the cracks are most pronounced 

at mid spatt. The Partially bonded beam with flexural 

cracks (PB/Ll) displayed a similar pattern to beam-1 

(FB/L1) especially at the post loading stage which there 

was a dramatic increase. A clear and significant drop of 

resonant amplitude of beam-3 (FB/L2) distinguished this 

beam from the fully bonded beam-1 (FB/Ll). The generally 

higher resonant amplitudes in comparison with the beam-1 

(FB/Ll) indicate that the beam was much stiffer. The non 

evenly distributed load was indicated by the beams with 

diagonal splitting crack patterns (FB/L2) and (PB/L2) in 

that their resonant amplitudes were higher- than the beams 

with flexural crack patterns. 
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7.6.4. Third Modes. 

Pseudo resonances occurring at about 90 degree out 

of phase cofif uses tile de termina t ion of tile dynam ic 

parameters. The resonant frequency and the 

peak-amplitude with respect to s train as shown in 

fig. (7.39) and (7.40) do not clearly indicate results 

simi lar to the previous modes. Fig. (7.39) genorally 

indicates that the percentage decrease of the resonant 

rrequeney with the increase of stt*aiti does riot va r. v 

greatly for all beam types. Fig. (7.40) also indicates 

that at highet- modes the resonant amplitudes tend to 

increase with the increasing strain. 

7.7. Concluding Remarks. 

The partially bonded and the fully bonded beams 

possessed tion-1 inear sof t spring s Lif f ness wi th varying 

damping types. The higher Polynomial damping such as 

elliptic/ quadratic form can be ritted favourably. Since 

the force of excitation can not be applied constantly 

over the modes of interest the interpolation using 

polynomial curves can be applied with a reservation that 

extrapolation should not be carried out and the sets or 

force of excitation do not vary greatly. The partially 

bonded beam has also demonstrated that stiffness is more 

sensitive to crack depth rather than the number of 

cracks. 

For beams possessing similar properties, their typical 
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defects can be identified from the percentage drop of 

resonant frequency with respect to strain. In dddition a 

typical curve can be determined if the typical load 

applied on the beam was identified such as in the case of 

loads producing diagonal splitting crack patterns. The 

effect of loss of bund significanLly decreases the 

percentage resonant frequency thus this type of beam 

defect is easily detected. Tile phenomena of the greater 

the number of defects the higher the damping and this can 

be a practical tool to idenLify the severity of damage to 

beams by comparing the decrease in the percentage 

resonant amplitudes. Beams with diagonal splitting 

cracks have showed the change of load distribution which 

resulted in a lower percentage decrease of the resonant 

frequencies. From the polar diagram point of view types 

of damping rely on the phase angle characteristics of the 

measuring equipment. If the phase characteristics are 

well understood the analyses can give proper results. 
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TABLE 7.1. DYNAMIC PARAMETERS OF BEAMS. FIRST MODE. 

Beam Resotian L Peak Load & Force Loading 
Code Frequency Amplitude Sti-ain of Exci Stages 

(Hz) (Jim) *) W tation 
---- ------- 

Beatu- 1 
---------- 

24.524 
---------- 

57.811 
-------- 

--- 
------- 

1.340 
--- -- 

FB/L1 24.. 499 59.387. --- 1.500 

23.214 48.744 28.57 1.567 Load-I 
23.228 48.45o 30.60 1.500 
22.504 48.156 55.16 1.331 Load-2 
22.463 4.8.906 63.17 1.500 
22.314 50.100 68 97 1.369 Load-3 
22.281 50.805 

-- 
78.35 

-------- 
1.500 

------- -------- ------- 
Beam-2 

---------- 
25.571 

-------- 
43.540 --- 0.619 

PB/L1 25.4-d 5 44.390 --- 1.500 

22.490 31.026 22.60 1.521 Load-1 
22.495 31.099 36.28 1.500 
21.649 25.752 35.29 1.850 Load-2 
2 ell .7 4w5 26. -41 47.57 1.500 
21.934 31. 

ý63 
48.37 1.593 Load-3 

21.958 31.913 

--- 
62.54 

-------- 
1.500 

------- -------- ------- 
Beam-3 

---------- 
24.840 

------- 
51.598 1.139 

FB/L2 24.790 54.367 --- 1.500 

22.885 47.277 26.30 1.309 Load-I 
22.842 18.036 29.85 1. Soo 
22.762 35.894 44.94 1.538 Load-2 
22.770 35.944 45.00 1-500 
22. 

ii3 
42.062 56.09 1.408 Load-3 

22.089 & 42.166 57.16 
- 

1.500 
------- -------- ------- 

Beam-4 
-------- - 

25.161 
---------- 

45.661 
------- 

--- 1.348 
PB/L2 2r>. 142 46.119 --- 1.500 

22.782 37.403 14.76 1.615 Load-1 
22.808 37.438 28.54 1.500 
22.464 39.518 23.02 1.742 Load-2 
22.491 39.450 39.60 1-500 
22.274 39.891 35.45 1.769 Load-3 
22.340 39.592 51.38 1.500 
22.246 39.487 83.46 1.787 Load-4 
22.317 39.191 86.35 1.500 

Notes cube stre ngth of be am-1,2,3,4 are 2 respectively 
39.16,49 . 02.44.92 and 46.91N/mm 

small num bers : par ameters norniali sed to force 
of excitation (1.5 00 N) 

at mid span 
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TABLE 7.2. DYNAMIC PARAMETERS OF BEAMS, SECOND MODE. 

------- ---------- ---- 
Beam Resonant Peak Load & Force Notes 
Code Frequency Amplitude Strain of Exci 

(Hz) (lint) *) (%) taLioti 
------- 
Beam-1 

---------- 
97.838 

---------- 
1.293 

-------- 
--- 

-------- 
0.667 

-------- 

FB/L1 --- 
94.070 1.365 28.57 0.795 Load-I 

30.60 
91.432 1.445 55.16 0.711 Load-2 

63.17 
90.647 1.525 68 97 0.750 Load-3 

78.35 
-- ------- ------- 

Beam-2 
---------- 

100.235 
---------- 

0.899 
-------- ------ 

0.528 
PB/Ll --- 

96.979 0.879 22.60 0.475 Load-l 
36.28 

94.294 0.679 35.29 0.534 Load-2 
47.57 

93.545 1.355 48.37 0.580 Load-3 
62.54 

--- ------- 
Beam-3 

---------- 
97.430 

---------- 
0.710 

-------- 
--- 

-------- 
0.632 

---- 

FB/L2 --- 
92.955 1.170 26.30 0.720 Load-1 

29.85 
92.077 0.681 44.94 0.665 Load-2 

45.00 
89.569 1.325 56.09 0.604 Load-3 

57.16 
--- ------- ------- 

Beam-4 
---------- 

99.141 
---------- 

0.272 
-------- ----- 

0.725 
PB/L2 --- 

98.238 0.274 14.76 0.673 Load-1 
28.54 

96.753 0.310 23.02 0.738 Load-2 
39.60 

95.738 0.717 35.45 0.804 Load-3 
51.38 

89.371 0.441 83.46 0.904 Load-4 
86.35 

Notes cube stre ngth of be ani-1.2.3 .4 are 2r espectively 
39.16.49 . 02,44.92 and 46. 91N/mni 
*) at qua rter span 
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TABLE 7.3. DYNAM IC PARAMET ERS OF B EAMS, TH IRD MODE. 

------- 
Beam 

I ---------- 
ResonanL 

I ---------- 
Peak 

I ------- 
Load & 

-------- 
Force 

--------- 
Notes 

Code Frequency Amplitude Strain of Exci 
(Hz) (Pm) *) (%) tation 

------- 
Beam-1 

----------- 
215.891 

----------- 
0.105 

--------- --------- 
0.632 

--------- 

FB/L1 --- 
204.426 0.139 28.57 0.729 Load-1 

30.60 
201.676 0.131 55.16 0.651 Load-2 

63.17 
192.264 0.145 68 97 0.679 Load-3 

- - 
78.35 

------- 
Beam-2 

---------- 
208.706 

------ -- 
0.097 

-------- 
--- 

-------- 
0.443 

-------- 

PB/L1 --- 
204.943 0.052 22.60 0.336 Load-1 

36.28 
188.867 0.081 35.29 0.527 Load-2 

47.57 
184.979 0.082 48.37 0.587 Load-3 

- - 
62.54 

- ------ 
Beam-3 

---------- 
204.064 

------ -- 
0.121 

------ 
--- 

-------- 
0.612 

------- 

FB/L2 --- 

1 

197.110 0.097 26.30 0.481 Load-1 
29.85 

195.010 0.104 44.94 0.599 Load-2 
45.00 

186.521 0.219 56.09 0.555 Load-3 
57.16 

------- 
Beam-4 

---------- 
205.190 

---------- 
0.102 

-------- -------- 
0.654 

------- 

PB/L2 --- 
193.772 0.154 14.76 0.925 Load-1 

28.54 
191.798 0.167 23.02 0.769 Load-2 

39.60 
189.607 0.151 35.45 0.747 Load-3 

51.38 
186.829 0.184 83.46 0.830 Load-4 

86.35 

Notes cube stre ngth of be am-1,2,3 .4 are 2r espectively 
39.16.49 . 02.44.92 and 46. 91N/mni 
*) at six th span 
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CHAPTER - 



8. DISCUSSIONS. 

8.1. General. 

Reinforced concrete beam elements have been 

investigated to achieve a better understanding of tile 

dynamic behaviour of reinforced concrete structures 

subjected to vibration tests. Tile contribution of these 

experiments to the analysis of defects in the reinforced 

structures will be discussed in this chapter. 

An improved method in the determination of signal 

parameters provides a practical tool in, the analysis or 

structures pO'ssessing medium to higher resonant 

frequencies where achieving a large number of cycles is 

not a problem. The improved method based on the 

characteristics of convolution has advantages and litilits 

of application which will be covered in this chapter. 

The experiments introduce several phenomena. The jump 

phenomenon may lead to confusion in understanding of the 

tion-linear behaviour of the models unless the source of 

the phenomena is well understood. The practical meaning 

and a mathematical solution have already been discussed. 

The application of the mathematical solution and its 

merits will be discussed further in this chapter. 

Two algorithms have been developed and introduced into 

the program to allow filter processing to be carried out 

in the analysis. The use of the algorithms in the 

program will be discussed. 

230 



The step by step loading stages used to create flexural 

and diagonal splitting crack pattern has shown that earlv 

diagonal splitLing cracks can be identified from 

vibration tests. Furthermore typical loading and typical 

damage can also be identified. 

8.2. Jump Phenomena. 

It has been reported by White (151 in the study of 

the effect or non-linearity, due to large deflections that 

the structure may be responding in some unspecified 

manner whilst the true cause may, not be apparent as a 

result of the experimental procedure or method of 

analy-sis. This implies that amy problems found during 

any experiments should be well understood and the 

solution to the problems shou ld be determined. The jump 

observed whilst using the mec hanical exciter and a sharp 

drop of amplitude when using the magnetic vibrator were 

phenomena which occurred in the experiments. From the 

associated polar diagram the jump phenomena can occur on 

beam systems with hinge or clamped supports where 

excessive force of excitation wag in such that stimulated 

membrane effects (151. The support system used in the 

experiments was hinge and roller. This did not comply 

with the condition required by such a jump phenomenon. 

The investigation using the magnetic vibrator resulted in 

a sharp drop of the amplitude of the moving exciter mass. 

This confirms that the jump phenomena does not relate to 
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the non-linearity but does relate to the reflected force 

from the excited structure. The simple two degree of 

freedom system which was developed provided evidence that 

the magnetic field of the exciter ctin be assumed to 

possess a stiffness, which together with the moving 

exciter mass constitutes an additional system to tile 

dynamic degree of freedom system. From this Point of 

view the erfeet or tile reflected force of the structure 

under test on the moving exciter mass can be 

mathematically modeled. 

The simplification of a two degree of freedom system 

implies that. although it does not exactly model t lie 

experiment, the effect of the force of the structure is 

significant. The squared frequency dependetiL force of 

excitation of the mechanical exciter resulted in lower 

increases of frequency of excitation when approaching 

resonance. At this stage the vector force of the 

excitation opposes the reflected force of the excited 

structure. The only way to increase the speed was to 

increase the input power. Such a situation implied in a 

paper on the vibration stress relief though the paper did 

not mention the jump phenomenon [47.481. The jump 

phenomenon was started at the point where the reflected 

force, notably amplitude dependent, is no longer 

predominant. The magnetic exciter showed a decrease of 

amplitude since the force is proportional to tile second 

derivative of the displacement. The reflected force of 
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the excited structure depends on the dynamic 

characteristics of the structure such as the damping 

ratio, mass and the stiffness. An illustration has also 

been given in chapter-5 that the ratio or the relative to 

absolute amplitudes becomes significant with decreasing 

s Lif f ness in the excited beam/structure. As this 

relationship involves force rather than amplitude, this 

also depends on the quantity of the moving exciter mass 

and of the excited structure. This phenomenon should be 

considered seriously in some applications such as in the 

design of structural foundation for machinery and the 

vibra tory stress relieve [47,481 where mechanical 

exciters are employed and the force of excitation is 

s igni f leant. 

The true relative phase angles are also considered. The 

illustration shows tha t the measured phase angle 

increasingly lags behind the -true phase angle as the 

excitation approaches resonance. This phase 

characteristic is dependent on the damping. A 

significant phase difference may be obtained at more 

flexible structures. This implies that phase measuring 

equipment, such as phase meters or resolved component 

indicators. which simply compare two signals, namely 

reference and measured, can not measure the true phase 

angle since the true phase angles only exist 

theoretically at certain conditions where the amplitude 

of the excited structure. B equals zero. The result of 
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applying phase angle measurements from such equipment on 

the polar diagram will cause the polar diagram to be 

rotated counter clock wise as the measured phase angle is 

always lags behind as was indicated in the experimenL 

carried out by White [151. 

The proposed practical equation relating the true and the 

measured phase angles discussed in chapter-5 is amplitude 

and phase dependent. Thus lax-go dirforences in 

characteristics possessed by the accelerometers measuring 

phase angle may lead to erroneous results. About 2 to 4% 

amplitude difference and less than 0.187 radiant phase 

angle difference were found within the range of frequency 

investigated. As an illustration. the experiment beam-1 

(FB/L1) at first mode measured 1.7255 m/sec 
2 

at 

accelerometer no. 1 positioned at adjacent to the exciter. 

10.060 m/sec 
2 

at accelerometer no. 3 positioned on the 

moving exciter mass and 1.70257 radian measured phase 

angle. Using the proposed equation the true relative 

phase angle is found as 1.8673 radian. If the inherent 

error is considered, i. e. taking amplitude of 

accelerometer no. 1 0.96 * 10.060 = 9.6428 and the 

measured phase angle is corrected before calculation as 

1.70257-0.187 radians, the resulting relative true phase 

angle is 1.6940. Thus neglect of this inherent error 

resulted in an overestimate of about 0.1,733 radians. 

From this point of view the polar digrams actually should 

be rotated about 9.2 degrees counter clock wise. 
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8.3. Signal Analysis. 

The proposed corrective technique to achieve more 

reliable results for the frequency from tile line spectra 

levels is based on the convolution process of at 

rectangular window f unc Li 011. The transform of tile 

rectangular window in the frequency domain forms u 

diminishing sinusoidal wave with a main lobe and side 

lobes. The convolution of the rectangular window and the 

non-periodic signal provide a distorted main lobe. Mally 

attempts have been carried out to reduce this distorted 

main lobe such as by applying other window types (25,26). 

The main background of the other window types was a 

multiplication of the signal with a known periodic signal 

in such a way that the resulting signal is periodic. The 

digital frequency in question is then normally predicted 

from the behaviour of the maximum and its adjacent 

spectra levels such as shown in reference [10]. The 

proposed technique was developed from the technique shown 

in reference [6) where a rectangular window function is 

considered. The proposed direct technique applies a 

logic geometry on the spectra level of interest. The 

numerical simulations show that the error imposed in the 

geometry decreases as the number of cycles increases. A 

direct acquisition to achieve a certain number of cycles 

for a certain possibly, maximum percentage error was some 

-time lengthy especially for structures having low 

resonant frequency (loss than 1Hz) with many points of 
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inves tiga ti on. In addiLion a small number of cycles may 

also be found on structures with heavy damping when 

impact or 'pull-sudden release' ' techniques are applied. 

For such later structures the indirect technique may be 

applied to it-educe error. 

8.4. Programming and the Algorithms. 

The program was established mainly for analyses of 

the data of the experiments. Several inputs relate to 

various pieces of equipment used in the experiment. 

.. 
However modifications can be made to suit other equipment 

settings. Since the amount of data is not critical the 

use of ordinary radix-2 FFT may replace the radix mixed 

FFT which is available in the NAG routines. 

The proposed algorithms installed in the program are 

adequate to examine the experimental data. The number of 

the order of the polynomial equation depends on the 

frequenczy or in teres t and tile at tenua t ! on factors 

required. As an illustration, to allow signals passes 

through a low pass filter with -3dB at pass band (2511z) 

and -30dB at stop band (4011z) or (40-25)Hz transition 

band the order of the polynomial equatiori is 8. If tile 

same transition band (1511z) and attenuation factors (-3dB 

and -30dB) are applied at 20OHz pass band and 21511z stop 

band the order of the polynomial is 120. The associated 

time required using the VAXA is still less than a second. 
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8.5. Non-linearity. 

Several aspects of non-linear behaviour were shown 

by t lie reinforced conere to beani models. These 

characteristics can be examined using polar diagrams 

obtained from the equation of motion of single dogree or 

freedom systems as proposed by Magnus (111, White 

(14.151. Rados [20.211 and Tomlinson eL al. [17,18). 

Magnus and White (11.151 proposed an equation for systems 

possessing viscous damping with non-line-ur stiffness. 

Simulations of this equation in polar diagrams for 

different damping ratios but the linear stiffness 

parameters indicate that the increase of damping results 

in the rotated coun to I. clock wise polar diagram. 

Furthermore for a given positive stiffness Parameter 

(hard spring systems) but the same damping ratio indicate 

that the polar diagram distorts elliptically and rotate 

insignificantly, clock wise as has also been demonstrated 

by White [151 in his experiment. 

Rados [21) provided an equation for the single degree of 

freedom system possessing hysteretic damping with 

non-linear stiffness. The polar diagrams of such a 

system are always circular and centered at the imaginary 

axis for different stiffness Parameters. The increase of 

resonant frequency with increasing force of excitation in 

the hard spring sy-stems results in a rotaLion counter 

clock wise of positions of frequency on the polar diagram 

and analogous for soft spring systems. If the same 
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frequeneies on the different polar diagrams are connected 

these form lines referred to as 'isochrones' (211 

indicating the tYPe Of tile SPt*irlg SYsteflis- The Jump 

phenomenon in this case starts at points where the 

isochrone becomes tangent to the polar diagram. 

Furthermore Rades (201 provided an equation for the 

single degree of freedom system for quadrativ damping 

with linear stiffness. The resulting Polar diagram of 

this system tends to elongate in the direetion of the 

real axis as the increase of non-linear damping. The 

higher tile quadratic damping tile more distor tion the 

polar diagram. Simulations of the equation imply that 

the normalised rosonart t amplitudes decrease as tile 

increase of force of excitation. 

Tomlinson et. al. [17.181 studied tile effect of Coulomb 

damping on the polar diagram of lightly damped (viscous) 

systems. He presented an equation for the single degree 

of freedom system for combined viscous damping and 

Coulomb friction with linear stiffness. The resulting 

polar diagram is a 'pear shape'. The slightly elongated 

elliptical shape in the imaginary axis is due to tile 

slightly viscous damping and the shift in y-origin 

position is due to the Coulomb friction. 

Hasan [61 reported that damping is amplitude dependent. 

It was reported that a lattice tower with a U-form 

possessed three types of damping. Under high amplitude 

of excitation the structure was viscously damped. The 
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increase of amplitude of excitation ill this region 

increased the damping. In contrast under low amplitude 

of excitation the structure was dry damped, where a 

decrease of amplitude of excitation increased the 

damp i rig. 

Such non-linearities of damping are not easily understood 

from the associated response spectra. In contrast the 

hysteretic amplitude responses or amplitude response 

historios with respecL to load will be easily recognised 

from the response spectra. Thus, referring to both types 

of response is apparently esselltial in determining the 

precise dynamic parameters. 

On the basis of the 'possible non-1 inear i Lies mentioned 

above the reinforced concrete beams investigated 

obviously possessed non-linear sort spring behaviour with 

several forms of non-linear and linear viscous damping. 

The combined viscous damping and non-linear sof t spring 

behaviour or the combined slightly non-linear higher 

order polynomial damping such as the quadratic dampitIg 

and non-linear soft spring behaviour existed on the 

intact beams. Early flexural cracks increased damping. 

Several parts of beams with flexural crack pat-tern 

remained with viscous damping at the third end span. The 

increase of damping is always indicated by the rotation 

counter clock wise of the polar diagrams. In the other 

parts where non-linear higher polynomial damping was 

present the increase of damping is indicated by distorted 
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polar diagrams instead. Post flexural loading stages 

produced large wide open cracks reducing fricLional area 

from where the opening and closing mechanism of hair line 

cracks existed which apparetiLly created the higher order 

polynomial damping force. As a result viscous damping 

was more obvious as indicated by the almost eircular 

polar diagrams. 

The beam models with diagonal splitting crack patterns 

behaved differently just before the cracks were visIble. 

The intact beams had viscous damping with non-linear soft 

spring behaviour. The increase of loading created early 

flexural cracks which stimulated the effect of non-linear 

higher order polynomial damping as shown by the distorted 

polar diagrams. Furthermore increase in loading created 

a change of load distribution. The energy concentrated 

in creating diagonal splitting cracks as shown by the 

lower increase in flexural cracks. The vibration tests 

showed that the distorted polar diagram slightly shift in 

y-origin positions. The force of excitation was partly 

opposed by the Coulomb friction in the shear crack 

regions. As a result a drastic drop of amplitude 

occurred at resonance. The change of loading 

distribution was also detected from the vibration test as 

a small decrease in resonant frequency. The loading 

stage which created visible diagonal splitting cracks 

partly disabled the presence of Coulomb friction damping. 
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8.6. Detection of Flexural and Diagonal Splitting 

Defects. 

8.6.1. Fully bonded beam. 

The reinforced concrete beams are composed of at 

least two different materials. i. e. the concrete and the 

steel. with different characteristics. At an early stage 

concrete can resist tensile stress. A maximum 

contribution of the concrete to the EI value on which the 

stiffness depends is achieved at this stage. The 

following loading stage resulted in a large shift in 

strain as shown in the load-strain graphs in chapter-3. 

The large shift in strain indicated a significant 

decrease in the stiffness. This was Identified from the 

vibration tests as a significant decrease of resonant 

frequencies. 

The flexural defects can be identified physically from 

the cracks which are concentrated at the third center 

span of the beam whilsi the diagonal splitting cracks 

were more spread slightly over the beam length. The 

flexural defects were identified from the first mode as a 

lower decrease of percentage resonant frequency with 

respect to strain than the beam with diagonal splitting 

defects. The resonant amplitude evaluations required the 

associated polar diagrams. The significant drop of 

resonant amplitude coupled with the slight decrease of 

resonant frequency and a small shift in the origin 

position of the imaginal-Y axis of the polar diagram 
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indicated the presence of early shear eracks. This 

indication also existed in the second mode. 

The typical decreasing exponeritial curves presetited in 

this research are very different from those presented by 

Christide et al. [51. This is because ChrisLide et al [5] 

used solid square steel bars as the models with 

artificially large cracks. This clearly ensured that the 

system possessed viscous damping with a linear stiffness. 

The stiffness of the steel beam related to the number of 

the artificially created cracks and the depth of the 

cracks. Once the cracks were introduced these remainod 

open while vibration took place. As the linear stiffness 

is concerned the resonant frequency is independent of the 

force of excitation. This condition may not exist in the 

concrete beams even under an excessive force of 

excitation due to non-linear soft spring behaviour 

although a report on this has not- been found. 

Results of the work carried out by Tourk (1] was in 

agreement with this research. It was reported that the 

resonant frequencies exponentially decreased with the 

increase in the static bending moments. 

8.6.2. Partially bonded beam. 

The theoretical calculation and the exporimentu 

have revealed that the effect of unbonded part on the 

resonant frequencies of the beam before cracking were not 

significant. The resonant frequencies of this intact 
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beam was similar to that of the fully bonded beam. The 

defects were not easily identified from the relative 

performance of the beam with a single crack. The 

non-proportional load-strain distribution over the bedul 

length in the partially bonded action may change the 

geometry of the beam in such a way that it became stirfor 

than the beam with flexural defects. This was shown as a 

lower decrease resonatit frequency of the beam in either 

the first mode or the second mode. The significant drop 

in resonant amplitude identified as the presence of early 

shear cracks did not exist in this type of beam. This 

was possibly due to the non-proportionally load- strain 

distribution. Evaluation of the resonant amplitude with 

the associated polar diagrams revealed that more friotion 

damping existed in the beam with flexural defects as 

shown by the higher decrease in amplitude. Unusual 

results like the increase in resonant frequency at the 

last vibration test of beam-2 (PB/L1) with fluxural 

defects was questionable. 

8.7. Practical Monitoring. 

Several different sets of excitation applied on the 

concrete beam can indicate the type of non-linearity frow 

where diagrams of force of excitation with respect to the 

dynamic parameters can be established. Changes of 

stiffness can be monitored from the curve relating the 

force of excitation to the resonant frequency. S11100 
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resonant frequency relates to stiffness and mass, 

evaluations of stiffness from the resonant frequency 

should consider the changes in the existing mass, if any. 

Changes in the type of damping and the quantity of 

damping can be monitured from the diagram of force of 

excitation with respect to resonant amplitude. The 

diagrams of the normalised resonarit amplitude and the 

resonant frequency confirmed by the polar diagrams allow 

predictions of the structure at different forces of 

excitation. 

Parabolic curve fitting or any other higher polynomial 

curves may be used to relate the force of excitation to 

the resonant frequency and the force of excitation to the 

normalised resonant amplitude from where the relative 

evaluations of the dynamic parameters may be carried out. 
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9. CONCLUSIONS AND SUGGESTIONS. 

9.1. Conclusions. 

1. Four beams with two types of cracks pattern and two 

types of reinforcement have been invesLigated. Static 

and steady state vibration tests were applied stage by 

stage. 

2. Vibration equipment used in the experiment has been 

calibrated and proved acceptable for the use ill tile 

experiments. 

3. The jump phenomena are proved to be due not only to 

the non-linear sLif-friess but also tile reflected rorce 

of the excited structure. 

4. A pracLical equation relating absolute amplitudes to 

relative amplitudes and defining true relative phase 

angles have been developed. Evaluations of tile 

accuracy of the equation has been discussed along with 

their dependence oil the amplitude and phase qualitv or 

the measuring transducers. 

5. A proposed direct improvement technique an tile 

determination of signal parameters has been developed. 

Applica'tions of lower number of cycles may reduce the 

accuracy of the technique. In addition the indirect 

technique may be applied for a better accuracy. 

6. A program to analyse signals has been provided in 

which two proposed algorithms are included. Tile 

program can be used for the analysis of digital 
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signals from vibration tests. 

7. Several possible LYpes or nott-Unear damping havii boott 

demonstrated in the experiment. The typical viscous 

and tion-linear It i gho v polyrioulial dam P1 rig exisLod 

mostly in the models although the typical crack 

paLtern and iriLerisitLos contributed to the type of 

damping. 

8. The beam models showed non-linear soft spring 

behav iour. Tvpieal v[seous ov higher order polytiomial 

damping with lower non-linear stiffness is possessed 

by the intact beams. 

9. Diagonal splitting crack patterns can be identified 

from small deerease or Percentage r"4onutit rrequeney' 

and from the sharp drop of resonant amplitude an the 

firsL and second mode. 

1O. The experiments showed that a sharp decrease of 

resotiartL f requenQy- indleaLed a large allioull t of 

residual strain exists. 

U. The concrete material eutitributed siguiricatiLlv to the 

stiffness. The presence of single deep cracks reduced 

the stiffness cotisLd"rubly-. 

9.2. Suggestions for Future Research. 

1. BeLter results may- be obtained from boLter vibraLion 

equipment which allow precise frequency increments of 

less than 0.05 liz to be soL up. 
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2. Pot-table exelters having self adjusted force of 

excitation allows various sets of force of excitation 

to be applied on the model without atiy jump phetiometia 

with which non-linear behaviours may be investigated 

at higher levels of forea of excitation. 

3. Characteristics of damping from opening and closing of 

cracks in concrete structures at vav! able levels of 

force of excitation may indicate the depth of the 

cracks. 

4. Characteristics of damping from bonding and debonding 

reinforcement which notably depend on tile typical 

surface and perimeter of the reinforcement should be 

invesLigated separately from (3). 

5. Early detections of various shear cracks can be 

further developed from experiments usitig beams with 

higher depth to span ratio. 

6. The effect of reflected force should be considered in 

practical vibration test such as in vibratory stress 

relief tests and in most vibration experiments. 

7. Further tests should be carried out to provide 

evidence or the behaviour of reinforced concrete beams 

subjected to increasing force of excitation levels. 

Beams that show clear fleicural-shear type behaviour 

under static loading should also be studied. 
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APPENDICES 



APPENDIX A-1 : Equation of Motion of Linear Systems. 

l. Single Dogreo Vibratory, Systeng. 

When a displacement, x. is given to the systetu the 

equation of nioLion of tile undamped vibrator. v s. ystetu 

gives. 

ni, 'x kx =0- 1) 

The equation of a damped vibratory system gives : 

m5Z + c; ý + kx = 0. (A. 2) 

Applying a steady vibratory force on the structures can 

also be cart-led out as art altertiaLive. The equaLlon of 

a forced damped vibration system can be expressed below. 

mX + c. ý + kx = F(t) (A. 3) 

2. Multi Degree Vibratory Systems. 

A cuntinuuus structure can be idealised as a system 

having a -series; of lumped masses, springs and dampers. 

This idealisaLion simplirieý; tile complicated dynantie 

parameters which usually occur in real structures. 

Decoupling the equaLion of moLion of each mass ullit 

enable the dynamic parameters of the system to be 

unalysed indepetidenLly. The general equation of undamped 

multi degree vibratory systems are described the matrix 

below. 

(MION) + [KI(x) =0 (A. 4) 
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Where : 
DI 

1000 

[Mi 
m200 

(A. 5 
---------- ---- 
0001 

nJ 
i 

k- k. k- Ik 
11 12 131 n I 

k- k k- I k. 
(KI 21 22 23 2n 2 (A. 6) 

k- kk 
ýI 

k. 
ill n2 ný Ilili 

XnJ 

The sLir rnos s ma tr1Y. cati be ana 1 ys ed us ing stiff ties sor 

flexibility methods. 

SubsLituting x= X Cos (Pt + a) and iLs derivatives into 

equatiolis (A. 5) and (A. 6) gives 

((K] - p2(M])(2) =0 (A. 7) 

When stiffness. M. and rnass, (Ml. are given the eigen 

frequencies. p. as well as the eigen vectors, X, can be 

determined from equation (A. 7). 

By applying the correct boundary conditions to the 

equation of moLion. given below 

(XI = (9](COS(pt + a)) (A. 8) 

and by carrying out some iteration the amplitudes of the 

idealised lumped masses can be obtained. 

When dealing with many lumped masses the iteration method 

requires a considerable alnouti t of labourous work. 

Decoupling the simultanuous differential equations is an 

alternative solution. 

Putting (R) = (E] and substituting this in equation (A-7) 

for two cases i and J and after including the scalar 
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quail ti ty 

CE, IT(M1(Ei10t, 

(11 fe 
il 

T Imlle, l for fe, l (EI/ (L 
il 

(A. 9) 

whore fel is a UtLiL eigetl faCtOt'. tho propet-Lies uf eigen 

factor are as follows. 

Fo ri A' i 

TT (K1[0 1 

For 

TT [p 2 

Again, puLLirig [z] (Cos(pt + a) and e in to 

equation (A. 8) gives 

(x] = (el(z] (A. 12) 

Back subsLituLion into equaLion (A. 4) und mulLiplving bv 

fel T 
gives 

[e] T (MI(e] (t] + (e] T (KIFel (z] =0 (A. 13) 

Referring to equation (A. 11) to relate local amplitudes 

to overall amplitudes gives 

lel [MI[ellel- 1= [11[el- 1 
ot* 

[el- 1= fel T IM] 

Subs ti tuL ! rig equaLion [A. 14] and applying boundary 

conditions into equation (A. 12) gives 

(z) = (01- 1 1XI 

(z] = (el T IMI(XI 

Equatiotl (A. 15) provides local amplitudes of the lumped 

mass. Using equation (A. 13) the overall amplitudes can be 

def ined. 

If an external Force, F(t) , is applied to the system the 
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equation of motion gives 

(e] T (M](e] [""I + (e] T (KI(e] (z] = (e] T CFMI (A. 16) 

Again, applying equation (A. 9) and (A. 13) into equation 

(A. 16) the amplitudes of independent lumped masses cart be 

obtained. 
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APPENDIX A-2 : Steady State Variable Forcing Function. 

The Variable Foreing FuncLiort (Fo = MR (i is applied on 

a single degree or vibratory systems. 

mX' + kx +x= Fo sin (it (1) 

ApIlying the particular solution xA sin (4)t-, P) into 
P 

equation (1) and equa L ing the harmonics yields a 

displacement equation of the vibrating system, x. 
Fo 15 

x= --ý --- (2) 

where is the dynamic magnification factor and 

equal to (17r 2)2+ (2dr)2 

X MR W2 
[(l-r2)2+ (2dr)2]- 

0.5 
; assuming MR/k =1 unit 

14 
(1-r2)2+4)-4(2dr) r= W/p W- 

- 0.5 
= 

[(J- 4 
p- 

4 (p, -4) 
2)2 

+&)- 
4 

p- 
2 (4d2w 2)I 

1W 
-4p-4 (p4 -2 P2 W, 2. 

+ 6)4 )+4d 2P-24)-2 

[(J- 
-t 

- 24)- 2P -2 +p -4 +4d2p-2 (A) -2] (3) 

The peak amplitude catt be obtained by applying 52/56) =0 

to equation (3). 

-0.5 
I(J-4 

- 2(0- 2P -2 +p -4 -+ 4d 2 
p- 

2 (0- 2 

1 
44)- 6+ 4p-2&, )-3 8d 2 

p- 
2 (0- 31 0 

-40- 
2+ 4p- 2- 8d2 p- 

20 

(4)/P)-2 = (1 - 2d 2 ); ((J/P) (4) 

(1 2d 

tan- 
2 d(j/p 

TI 
1- (Q/P) 

(5) 
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The peak ainplitude always occul-s at w/p >1 Unless d= 

or in other words the resonance occurs at G)/p <I at; sefati 

in the table below. 

d 1. (J/p 11 JD 

--------- ---- --------- -: ---------- 

0.05 1.0025 1 92.85 

0.15 1 1.0233 1 98.73 

0.20 1.0425 1 101.75 

0.50 1.4142 : 125.26 
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APPENDIX A-3 : Harmonic Linearisation. 

Assuming the equation of moLion of a single degree 

vibratory system is given below. 

mK+e; k +k(x+ 2' x3)= Fo Cos Wt 

5Z + (chii); ý +(k/m)( x+vx Fohn Cos (Ot 
23 

5Z +2n+p(x+x Fo pA Cos WL 

The particular solution is : 

x a Cos Wt +b Sift Qt 
p 

1A - aw Sift G)t + b(i Cos 4)t 
p 

x - aw 
2 Cos Wt - b(i 2 Sift Ot 

p 
(K )3= a3 Cos 3 

wt +b3 Sift 3 
(0 t+ 3 ab 

2 
Sill (it 

2 
Co.. (. )t 

p 

+3abS in (Wit Cos 2Qt (2) 

Knowing : Sift (it =-1-13 Sift Wt + Sift 3(it 

Cos (it =-! -f3 Cos Wt 4 + Cos 3(Jt 

Sift wt = (I - Cos wt 

Cos 4)t = (I - Sill (i t 

By ommitting higher hartnotiles, Sin 3(Jt and Cos 3(JL and 

substituting the later trigonometric rules into equation 

(2) give 

x Sab 2 Cos Wt +3a2b Sin (it + 

3- (a 3_ 3ab 2 )Cos Qt + -2-(b 
3 

-3ba2) Sin cit (3) 
44 

Substituting equation (3) into equation (1) leads to 

-aQ 
2 Cos 4) t- b(J 2 Sin wt + 2n (-aG) Sin wt + bw Cos wt) + 

p2 (a Coswt +b SlztG)t) +7 P2 (3a 2b Sin Qt + 3ab 2 Cos Wt + 

_3_ (a 3_ 3ab 2) Cos wt 4 -2-(b 
3- 3ba 2) Sit, (jt i4 

(Fo/k)p 2 
Cos Qt 
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Equating coefficients 

22 
-aW Cos (it + 2xibw Cos (it +pa Coswt + 3f" p db Cos (it 

32 
+-4-TP (a -3ab ) Cus(Jt = (Fo/k) p Cos- wt 

3- 2(d 3- 
3ab 

22 
-a(. ) + 2tibG) + pýa + 3T p ab + Tp (Fo/k) p 

p2 a( 1+-3 (b 2 
+a 

2)_((J/P)2 
+ 2tibW = (Fo/k)p 2 

(4) 

- bw 
2 

Sill (it - 2naG) Slit Wt + bp 2 Sinwt + 3, vpa 
2b2 

Sill (it 

+- 
3 

-7p 
2 (b 3- 

3ba 
2) Sill (it =0 4 

-bG) 
2 

2naW + bp 
2+ 

37" p2a 
2b+ 

_1_2. p2 (b 3_ 
3ba2 0 4 

b P2 + b2 +a2 (j 
2)- 2naw 0 (5) 

Knowing A2=a2+b2; (4)/p) r ri= dp ;A Sill 1P b 

A Cos (P a and substituting into (4) and (5) give 

a1+A 
2) 

_ (r )2 + 2drb = (Fo/k) (6) 

b1+ (7) A2) - (r 2dra =0 

Multiplyitig equation (6) arid (7) by Cos V and Sin 9 

respectively give 

acos 01+ 
3_ 

A2 )-(r) 2+ 
2dr bCos Fo/kCos 4 

3 bSiti P1+ -Z- A2)-(t-)2 2dr aSin IP 0 

------------------------------------------------------- - 

322 1+-1-7A2-r )((a2/A) + (b /A)) (Fo/k) Cos ip 

1+3A2 )A Fo/k ) Cos io (8) 
4 

Multiplying equation (6) and (7) by Sin I and - Cos 0 

respeetively give 

a Sin P (1 ++ v( A2 )_( J. )2 )42drb Sin io = (Fo/k) Sin 

-bCos 9 (1 +' -. 
3- 

v( A2)-(t-)2)-+2dr aCos IP =0 

------------------------------------------------------ - 
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2dr I (b 2 /A) + (a 2 /A) )= Fu/k Sin io 

2drA = Fo/k Sin (9) 

Including equation (8) and (9) in the trigonometric 

equation Cos 2p+ Sin I 

(Ak/Fo)2( 1+ -1-7 A2 r2)2 + (Ak/Fo)2 (2dr) 2=1 

Denoting 1+-! -; v A21.2 
0 

r2 r2 - 2d 2t 
[(ý2ý)2 

- 4d2 (r 2- d2 (10) 
1,2 ak. a 

(-Gn Sill ip / Cos ip 

2 dr 2dr 

(1+-2-2' A2)- r2 r2-r2 

tan 
l 2dr 

ra-r 

An other approximation : 

X+ 2n ;k+p2(x+rx3 Fo p2A Cos(wt+V) 

Particular solution x=A Cos (it 

-AW Sin (it 

X=- AQ 
2 Cos Wt 

- A&)2 Cos Wt + 211(-AG) Sin WO -f Ap 2 Cos Qt + 71P 2 (A Cos 

wt) 3= Fo p2 /k Cos(wt+iP) 

where Cos (4)t4v) = Cos (it Cos V- Sin v Sin (it 

Cos 3 Wt = ! 
-(Cos Wt +3 Cos G)t 4 

Equating coefficients gives 

22323 f-AW 4Ap 4 7'p AI Cos wt-2nAcj Sin Wt = Fo pA 

[CoSWt Cosip Sillip Si flQ tI 

Ap2[l 437 A2- r2 Fo p2A Cos iP (a) 
4 

-2nAQ = Fo p2 /k Sin (b) 
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Including equation (a) and (b) in the tri gonome tric 

equation Cos 29+ Sill 2=1 
give 

11 +3A )A CM QA Cos V 
It 

2drA = CM Q /k Sin 0 (d) 

Sin 2+ Cos 2p1r21+ 
-3- 2-' A2) 

(r 22)22m 4d 2 

aIk2A2p i--] 

2 
(6) 2)2_2r2p2(Q2)+r44- 

6) 
2p411: m 

__4 
d=0 

p aaLk2A2p2 

2 2- 222c MP4 22]44 (w ) (6) ) 2r p+- 4d p+rp=0 
[ak2A2a 

2 
=p 

2. 
r2+ 

cm [-P-ý] 2_ 
2d 

21 
p2 

[3 
r4 + 4d 

2(d2 
-2r 

2 
12[akaa 

+ 2, rM 
2j_Ey[_L3_ý]2 

+ r2 -d2 kka 

r2+ 
cm 2_ 

2d 
2 

ak 
0.5 422 2) 22 3r + 4d (d -2 t. + 2CM +r -d aakka 

11 
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APPENDIX A-4 : Rogponge of Stability Boundary 
(Mathieu Equation). 

Substituting an approximate equation ;x=A Cos wt 

into the equation of ujoLion gives 

23 
X+ 2n X+px+ CE pý (xI=0 

where ; ý=9' ; X=t" 

+ 2ti V +p 
2 [A Cos Wt + 9)+ap 2 (A Coscit +0 

Knowing : 

(1) 

(2) 

(A Cos(it + t) 
3=A3 Cos 

3 
4)t+ g3+ 3A 

2t 
Cos 

2 
Wt+ Ut 

2 
Cos Wt 

333 
and ommitting higher harmonics such as :A Cos wt 

Ut2 Cos wt. the later equation give 

(A CosQt + t) 3= 
3A 

29 Cos 2 
wt 

Substituting 3A 2t Cos 2 
Ot A2t (1+Cos 20t) ill equation 

(2) give 

t"+ 2n 9' +p29+1a p2 A 2g (1 + Cos 2(it) =0 (3) 
2 

If the particular solution is expressed as tp=u Cos Wt + 

v Sin (it the derivatives are described below. 

=u Cos Wt +v Sill G)t 

= -u6) Sill G)t + VG) Cos Wt 

= _U(J2 COSWt - YG) 
2S1 

rI(J t 

Back substitutions into equation (3) give 

- UQ 
2 CO S(j t- V(J 

2 Siti(jt+ 2n (-uc. ) Sin Wt + v(J Cos wt) 
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lu Cos Wt +v Sin 6)t)+ 
2 

ap2A2(l + Cos 2f. )L)(u Cos wt 

v Sin (it) =0 (4) 

Rearranging the last part of equation (4) 

(1+ Cos 24)t)(u Cos (Jt+ v Sin Wt) =u Cos Wt +v Sin (it + 

u Cos 20t Cos wt+ v Sin G)t Cos 2wt =u Cos wt+ v Sin Wt + 

u Cos 3(it + 9Cos Ot +1 Sixt 34)t - 
2ýSiti (it i222 

and back substitution give 

-uw 
2 Cosot-vo 2 Siawt+ 2ri (-u(j Sin wt + vw Cos 40t) + 

p2 (u Cos wt +v Sit, (it) +ýa p2 A2 (u Cos Wt +v Sin Ot 
2 

+ ýA Cos Nit + 9Cos (it + !ý Sin Nit - 
ýýSlti (it 0 (5) 

2222 

Again. ommitting higher harmonic orders such as Cos 3wt 

and Sin 3(4t and equating the lower harmonics it gives 

- U&) 
2 Cosr. )t + 2tivw Cob; G)t +p2 Cos (it +3 ap 2A2 fu Cos (it 2 

u Cos cit) =0 2 

-uw 2nvw +p2 +( 
1 

ap2 A2)(I u) 22 

up 
2 1+! a A2 - (W/p)2 + 2tivo 0 

- VQ 
2 

Siticit - 2nucJ Sin Wt +p2 Sixt cit + 
laP2 A2(V S, tj (jt_ 2 

v Sin (it) =0 
2-23 

VQ 2nuG) +p+ZaAv0 

vp 
2(1+a A2- (w/. p)2 2nuo =0 

Subs ti tu ting ti = dp ;u2+v2=A2 

and (7) give 

uf 1+a A2 - r2 + 2drv 

1+ Z' a A2 -r2 2dru 

(6) 

(7) 

; W/P =r into 

(8) 

(9) 
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Rearranging equations (8) and (9) give 

(1 +3a A3 -r2)2+ (2dr) 2-(2a 
A2 )2 =0 

223 2- 2 12 

&21 

r=1+j aA 2d (2aA2 -4d2 jj+ 2aA2 
-d 1.2 421 

whi ch represeri ts the equa ti on of -.. tab i 11 ty f uric t1 on. 
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APPENDIX A-5 : Isochrones and Stability Equations. 

mR + ck + k(x +Tx3)= Fo Sin Wt 
22 

2dp ;k+p x(l x Fo/ui Sirt (it 

Including g= 2dw/p = 2dr gives 

+ 2dr(p 
21W, 5ý + p2x(l +x2 Fohn Sin G)t 

+g (P21W) ;k+ P2X( I+ X2 ) Fohn Sin Wt 

Assuming xp=a Sirt wt +b Cos Wt 

x= aw Cos (it b(i Sin Wt 
p 

= -aG) 
2 Sin (it b(i 

2 Cos 4)t 
p 

2 zr 0.75A 

Substituting into equation (1) yields 

5Z +g (p2/(J) *22 X+p x(l + 0.75 7' A Fo/m Sin (it 

Denoting (1 + 0.75 TA2t. 2 
a 

+ /4)) ,22 
g (P2 X+p1, x= Fo/m Sin Wt 

a 

(P". 2- Q2 )a - gP2 b) Sin (it +[ (p 21.2- 6) 
2 )b + gP2 a] Cos Wt 

aa 

Fo/m Sinwt 

Equating coorricients 

22 Hp2t. 
a 

)b - gp2a] =0 

a -(r 
2_ 

r2 )b/g 
a 

Fo/m Hp 2r 2_ 
w2 )a - gp 

2b 
a 

Fo/(mp 2 Hr 2_W2 )a - gb 
a 

Whon r= (J/P; m= k/p 
2 

b :: 
-g--Fo/k --- 

(r 2r2)24g2 

t. 
2 )Fo/k 

a -LI ---------- (r 2-1.2 )2+2 

a 

Hr 2- 
w2 )b - gal 

a 

(2) 

(3) 

Instead of x=a Sin Wt +b Cos wt this catt be in terlus 
p 
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of xp=A Sin (Wt-P) 
. 

Applying trigonametry rules and 

equatitig cuefficietitts lead to aA Cos P 

-A Sin V 

2b2A2A Fo 

kI (r2 -r2)2+g2 

2 Fo 
a 

A 
k21.2 -r2 )2+ g2 

(4) 

a 
2222 (rI. )+g F2 0-- 
a k2A2 

r2r2r+ (r +g F2 0 
aa 2 

kA 

r2 =r 
2 

Fo 
2 

12a 
2 

9 
(5) 

A22 
Substituting equat ion (4) into equations (2) a nd (3) 

aA2 k( L-2-r 
2 

b A2gk (6) 
---- a -------- 

Fo Fo 

ýP tan- (b/al 

--g- 9 tall- tall-1 
g (7) 

2 2 
_r (t. 

2 2 
(r r a a 

SubstituLing a2+ b2 A2 in to equation (6) rept-oserits 

the polar equation with axes. a and b. 

a2+b2=_: 
Fo_b_ 
gk 

Eliminating A in equation (6) the isochrones 9ýqqation may 

be established as follows. 

A -_b_Fo_ 
92 k 
Ak 0-2 -r a Fu a 

a Z-ý(I + 0.75 7 A2- r2) 
9 

a= Z-ý(140.75T(a2 + b2) - x-2) 
9 

a= -ý-(r2-1-0.757(a2+0)l 9 

At a 2: 0 then equation (7) becomes 

(8) 
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0= _b_ (r 2- 1-0.757(b2)) ;b 
2- 0.5 

(9) 
910.752-' 1 

Back subt; titution into equation (7) gives 

ga = 
J(r 0.5 

(r 1-0.75.,,, (a +r 0.757' 

ga = -0.757' a 
21(r2- ) 

67iU--- 

a= Zff - 
0.757' 0. r: p 

(10) 
0.15. vl (r 

2- 1 

Substituting equation (9) and (10) into equation of 

rectangular hyperbola -, ab =k yields the eqyjýt_tioxi of 

stabiliLy function. 

k=9. = 
iff 

--- I ab = 
4g 

- (11) 
0.75. v 37 3, v 

The hyperbola relaLloriships give A2 2k 

A= 
4-8g 

peak 

peak 
(12) 

Back substitution into equation of hyperbola (11) gives 

the peak frequency as follows. 

2 4g 
ab at peak ab; a 

92 
37' 

0.75; ' 
-4g ---- i-I -------- - 

(-0.757) r 
2- 3. V 

r1+gQ 
peak P 

j- 
1+g (13) 
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APPENDIX B-1 : Mix Design Procedure 

--------------------------------------------------------- 
Item 1 Reference 1 Values 

--------------------------------------------------------- 
Stage-1 
1.1. Characteristics 

of strength 

1.2. Standard dev. 
1.3. Margin 
1.4. Tat-get mean 

strength 
1.5. Cement type 
1.6. Type of aggr. 

a. Coarse 
b. Fine 

1.7. Free waLer/ce- 
ment ratio 

1.8. Max. free water 

Specified Cojjjpressive: 30N/mm2 at 
: 28 days, Proportion 
! defect i ve 5 per cent 

Fig. 3 18 N/mm 
Cl : (k=1.64) x8 =13 Nhum 
C2 30 + 13 =43 N/mm 

speeiriod 1OPC 

luncrushed 
luncrushed 

Table 2, ', 0.47 
Fig. 4 I )use lower value 
Spoeifiod : 0.65 

--------------------- 
S tag_e- 2 

-- 
11 

---------- ------------------------ 
Is 

2.1. Slump or V-B I Specified ', Slump 10-30 mm 
2.2. Max. aggr. size 1 Specified 1= 20 mm - 2.3. 
--- 

Free water cont .1 Table 3 3 
41 =170 kg/m 

------------------ 
Stage-3 

-- 
11 

---------- ------------------------ 
11 

3.1. Cement content I C3 3 1170 / 0.44 =386 kg/m 
3.2. Max. cement : Specified 1 ---------------------- 
3.3. Miti. cemenL 1 Specified 1275 kg m3 -use if > 3.1 
3.4. Modified free It 

W/c ratio i ---------------------- 
--------------------- 
, 5t 

- 
age-4 

-- ----------- ----------------------- 

4.1. Relative dens! - 
ty of aggr(SSD) 1 3 12.6 t/m A assumed) 

4.2. Concrete dens. 1 Fig 5 2400 kg/tu 
4.3. Total aggregate 1 11 

content II C4 3 12400-386-170=1844kg/m 

---- 
, 5tag 

------------------ 
e-5 

-- 
11 

---------- ----------------------- 
11 

5.1. Grad of fine agg! BS882 Izone-2 
5.2. Proportion of Fig. 6 129 to 37 say 35% 

fine aggr. 
5.3. Fine aggr. cont. C5 3 1844 x 0.35= 645kg/m 
5.4. Coarse aggr. dont! C5 1 1844 - 645 =1235kg/m 

Cement(kg) Water(kg) Fine aggr. (kg) Coarse aggr. (kg) 

Per m3: 386 170 645 1199 - 
--------------------------------------------------------- 
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APPENDIX B-2 : Design of Fully Bonded Beam Models 

1. Uncracked Condition. 

AssumpLiorts : 

11 = 150 nim. d= 125 mm. b= 100 moi. f= 30 N/mm 
2 

CU 

f 312 N/min f 
fli exural 

=1 N/nim L= 3000 min 

Specific graviLy- = 24 kN/ui 3, 
see figure (B-1). 

a. Maximum Steel Area. 

To provide under reinforced concrete beam mod. ej_ý; the 

neutral axes. x about the top compression fibre must be 

greater than or equal to the half depth, d. Based on this 

specification the maximum steel area for the individual 

beam model may- be deLermined. See figure (B-2). 

C 0.9 X 100 (0.45 30) = 0.9 (125/2) 100 (0.45 30) 

= 75937.5 N 

T=0.87 fA=0.87 312 A= 271.44 As 
22 

CC = Ta ---> As = 279.75 mni , adopt 2Y. 12 = 226.19 nip 

b. Cracking Moment. 

To allow maximum unbalanced force on the beam model the 

maximum deflection before eracking has to be considered. 

The maximum deflection can be approximated, firstly, 

by de te rm ini rig the maximum ID0111ell t before cracking. 

Secondly, by recalculating the equivalent distributed 

load. From this point of view. the equivalent maximutu 

deflection may be obtainable. 

1-11ý 
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Assumptions :E 200 10 It N/mia 2, E= 26 10" N/mm2 

m E4 /E = 7.69. L= 3000 mm. see fig. (B-3) 

Total moment about top compression fibre is equal to 

zero. 

0.5 100 150 2+ (7.69-1) 226.19 125 = 1(7.69 -I) 226.19 

+ 100 1501 X ---- >X= 79,58 mm 

I 
0= 

100 150 3 /12 + 100 150 (79.58-75) 4 (7.69-1) '226.19 

(125-79.58)2 = 31561364.79 min 
4. 

m 
31561364.79 

= 694878.13 Nnim. 
(125 - 79.58) 

eu1 VU nQeq=8M CA, -3 c. ki ra 
L2 0.617669 N/mm 

= 0.6176_69 kN/m 

Qs-&ir = 0.1 0.150 24 = 0.36 kN/m. 

Thus. an extra load can be provided. 

c. Maximum Derioution Before Cracking. 

5QL50.617699 3000 
def = -- 0 

384 Ec Io 384 26 10 3 31561364.79 

= 0.79391 inm 

d. Natural Frequeney Before Cracking. 

An approximate equation derived from Rayleigh's (81 

method is shown below. 

p n) L4) 

where :i represents the i-th frequelicy 

q is the mab; s per meter of length 

62t 4ý E10=0.820595 10 Nm ,L 
81 m 

q 0.36 kN/m = 360 0.102 kg/m = 36.72 kg/m 
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EI (1., r) 2 820595 

mL 36.72 81 

Pl = 163.93 t-ad/sec f p1 /27r = 26.09 Hz. 

p2 = 655.72 t-ad/seu f2 = 104.36 Hz.. 

P. 1 = 1475.41 rad/sec f3 = 234.81 Hz. 

e. Maximum Equivalent Point Load. 

LmI m 0.4695P 0.5+0.1565P 0.6875 
at! J- spon E I EI 

00 0 00 
0.013P 0.66740.456P 0.4166 

E0 io 

= 0.5621 P / (820595) 6.8499 P 10 

= 6.8499 P 10 -4 
Itint 

Introducing d 
max before C rac lCl n-a 

= 0.7939.1 inin into 

d give maximutu P= 1159.00 N or approximately midspan 

equal to P= 118.24 kg at position shown in fig. (B-4). 

2. Cracked Condition. 

Assumptions 
22 

fCU= 30 N/mm .fy= 312 N/mm . See fig. (B. 2). 

C= (0.45 30) 100 (0.9 X) = 1215 XN 

T 226.19 0.87 312 = 61397.01 N 

C=T ---- >X= 50.532 mm < 0.5d = 62.5 mm Ga- 

a. UlLimite Moment. 

To get approximate maximum point loadu when the static 

loading experiments are carried out. the ultimate 

moment has to be examined. 

Mu, 
L= 1215 50.53 (125 - 0.9 50.53/2) = 6278237.41 Niatu 
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= 6.278237 kNm 

If the loading points are Positioned at the third span the 

3rield load can be approximated as follows. 

M 
Ulf, = Pmax L/3 + Qs%-If L2 /8 --> Pm%lx= 6.27'237 - 0.405 

P=5.8732 kN 
max - -- 

b. Natural frequency. 

To predict the approximate the lowest natural 

frequeney after eracking within the elasLic ratige the 

theory of elasticity for stress- strain relationships 

are applied irt the calculation (see fig. B-5). 

T= 226.19 7.69 f 1739.4 f 

C=0.5 100 Xf=0.5 100 X2f /(125 - X) 
CCa- 

C..: = Ts--> X2+ 34.788 X- 4348.5 =0 

X= 50.80 m1u. 

10= 100 50.80 3 /3 + 7.69 226.19 (125 - 50.80)2 

= 13946400 mm 
4 

EIO= 26 10 3 13946400 = 3.626064 10 11 Nmm 2 

0.3626064 10 6 Nm 2 

P1 n) 
2 EIO____ J__362606'. 4 

<i L'4 36.72 81 

Pi 108.885 rad/see ; fl= 17.32 Hz. 

P2 435.487 rad/see ;f2= 69.31 Hz. 

P3 979.925 rad/see ; f3= 155.96 Hz. 

c. Shear cracks. 

To create shear crack patterns on the beam model the 

loading points are repositioned closer to the supports in 

such a way that the ultimate moment is not exceeded when 
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shear cracks occur. Shear cracks occur at shear stress 

(Y) exceeds 1.25v, . where v. is the design shear- stross 

and is obtainable ft-ow BS-8110 as cited in the table 

(B-1). 

V/(b d) --> V=vbd=1.29 100 125 

= 16125 N= 16.125 kN 

V=0.5 Q 
Svir 

L+P; P= 16.125 -0.54 = 15.585 kN. 

The positions are obtainable by equating maximum moment 

due to the shear load and due to the f lexural load. 

Max. moment due to shear load, is as follows. 

m =(P +Q L/21L/2 - (Qr 
max self elf 

L/2)L/4 - PM/2) 

=(15.585 4 0.54)1.5 - (0.54)0.75 - 15.585(l. 5 z) 

= 24.1875 - 0.405 - 23.3775 + 15.585z = 0.405+15.585z 

Mulf. = '. 27'2 kNm 

Equating M 
UIL 

=M 
max 

6.2782 = 0.405 + 15.585 z; z=0.3768 

The external point loads may be provided at positions 

less than 0.3768 m from supports as seen in rig. (B-6). 
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APPENDIX B-3 : Design of Partially Bonded Beam Model 

Uncracked CondiLion 

Assumptions : 
2 

b 100 nim, h 160 nim, L= 3000 tutu. f= 30 N/jum . y 
d 125 mm r.;, 

u= 
312 N/mmý diameter of holes wi thin 

unbonded region is approximately 14 tutu, see fig. (B-7). 

b. Cracking MometiL. 

The maximum moment before cracking i! i obtained by 

excluding area of tile tensile reinforcement itl the 

unbonded region as seen in fig. (B-8). Balanced moment 

about tile top compression fibre at tile mid spati 

determines the neutral axis. X as follows. 

0.5 100 150 2- 2(7 14 2 /4) 125 

(100 150 - 2(n 142/4)) X ---- >X= 73.95 mm 

10= 100 150 3 /12 1 100 150 (75 - 73.95) 2- 307.87 

(125 - 73.95)2 = 27339196 mm 
2 

f= max 
yM= 

(1) 27339196 /(125 - 73.95) 
ri I max 

= 535537 Nmm = Q. 5P5537 kNq. 
_ 

c. Maximum DefleeLion Before Cracking. 

The maximum deflection before cracking may be 

approximately determined by introducing QequvaienL Lu 

the flexural cracking moment as follows. 

M 
cracking 

=Q 
eq 

L2 /8 -> Q*q =80.567037/9 = 0.47603 kN/Ln 

QS01f = 0.36 kN/m < Qeq --> an extra load may be provided 
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The equaLlon of the derleetion is derixted by integrating 

the general equation for moment as follows (see fig. B-9). 

12 = 27339196 mm 
4.11 

= 31561364 mm 
4 

--- > Ell= 1.15 EI2 

Equa-tion for region-1 (bondrad) 

52y -(q LX /2) + (q X2/2) 

5x 2 1.15 EI 
2 

5y -(q L X*/4) + (q X3/6) 
A 

sx 

LX /12) + (q X4/24) 
AXA 

1 1.15 EI 
211 

Introducing the boundary cundiLlotis : 

At X Om yl 0. therefore, A0 

-0.20833 q 
At Xl= lm A, 

5y -0.58333 q 

5 EI +A 

-0.50724 
+A (2) 

EI2 

Equation fur regioti-2 (utibotided) 
2 

y2 -lq L (l+X 
2 

)/2) + {(q (l+X 
2) 

2 /2) 

5x 2 EI 
2 

sy -q L (X +X2/2)/2 q (X +X 12 +(x3/3»/2 222222 
EI 8x 22 

A3 

L (X 2 /2 +X3/6 )/2 (X2/2 +X3/3+(X4 /120/2 

y2 EI 
2+ 

EI 
2 

A3x2+ A4. 
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Introducing the boundary conditions : 

At X2= Om ---- >y2A4 (3) 

S2 

A (4) 
8A 
5y, 0.9375 q 0.39583 q 

At X 0.5m --ý= 0- -- +--+A 
Sx El 2 

El 

A3=0.541G7 q/ EI 
2 

(5) 

SUbstitutilIK eq. (4) and eq. (5) into eq. (2) Kives 

-0.50724 q 
EI 

2+A13 

Al = (0.54167 + 0.507243) ci / EI 
2=1.04891 q/EI 2 

(6) 

Substitutitig eq. (3) und eq. (6) into eq. (1) gi%Ies 

-0.181145 q 
+A EI 

214 

A4 =(-O. 181145 + 1.04891 )q/ EI 0.86775 q/EI2 (7) 

Substituting equation (5). (6) and (7) into the goneral 

equation of region-1 and region-2 give respectively 

fo-r re-Kiort-I : 

-(q L X3 /12) 4 (q X4 /24) 1.04891 X 

.v=I----. ---- 
I---- 

+- --- -- -- --1 1 1.15 EI 
2 

EI 
2 

for region-2 

-q L (X 2 /2 +X3 /6)/2) q (X3/24X3/3+X4/12)1/2 

2 EI 
24E 

12 

0.54167 qX20.86775 q 
EI 

2 
EI 

2 

where :y: deflection at respective regions. in m. 

X, : distance from support within region-1, in m. 

x2 : distance from the third span within 

region-2. in m. 
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Subutituting Q,,, jw 0.4760 kN/m* EI 
2= 

710.819 kN/m 2 
and X2= 

0.5 m Into equation for region-2 the approximate maximum 

deflection before cracking is obtainable. 

-0.21875q + 
0.085937 q 9.. 270.8-q 

+ 
0. 

-8- 
6775q 

EI 
2 

EI2 EI 
2 

EI 
2 

= 1.00573 q/ EI 
2=6.7353 

10- 4m=0.67353 
mm 

d. Natural Frequency. 

By adopting Rayleigh's method (81 the natural frequency 

for the partiallir bonded beam model mav be examined. 

Two equationu of shape function may be derived from the 

equationg of deflection below. 

For reg ,., -ýon 
fl. 32LX3+X4) 

24 EI 
1 

(8) 

For regioti-2 

q (L 3X-2LX3+X4) 
(X) 

2= 24 EI 
(9) 

2 

Assuming Z5qL and Z5q 
L4 

1 -5-8- i -C, 2 5-6-4- E1 

z2Z1(11/1 

and substituting 111to eq. (8) and (9) give 

3.2 Z1 (L 3X-2L X3 + X4) 
VW=- 

IL43 
3.2 ZWX-2LX+X 

VW2=--12L4 

The general shape function is determined as follows. 

3.2 (L 3X-2L X3 + X4) 
V(x) 

1,2 =L4 (10) 
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The strairt energ. v equation is 
L 

V(Max) = 0.5 Z mix) V(x) S., t 
0.33L 

(2) 0.5 ic Z, 10 
m(x) ;; (x) 

1 
Sx + 

0. SOL 
(2) 0.5 gZ3L ut(x) 4; (x) Sx 

The kinetic otiorg. v equation is 
0.33L 

2 T(max) = (2) Z (P2/2) fo 
ui(x) f;; (x) 

115+ 
0. SOL 

I (2) Z: (p"/2) m(K) fv(x) IZ 5K (12) 
fo. 

33L 2 

SusLitutitig equation (10) ilito (11) arid (12) arid equating 

equation (11) and (12) xive 
ZA+BA+B 

p2. 
zi C+DzC+D 

0.33L 
where A 

jo 
M(X) P(x)l 6A 

O. SOL 
B 

0.33L tu(x) V(A) 
2 

5x 

fO. 
33L 

;; (X) C0 M(X) [ 

O. GOL 

1 
fo. 

33L 

Introducing L= 3m. 11 = 31561364 mm q 360 N/m. 12 

27339196 mm 
4. II /1 

2=1.15 g=9.8 tu/Sec 
2. El 

1 

820595 Nm 2. Z 4.62697 10- 4. the circular rrequeney can 1 

be obtained at; follows. 

vfx)l = (3.2/L 
4) (L 3 

X-2LX 
3 

+X 
4) 

(10.24/L a) (L 6x 2- 4L 4x4 
+2L 

3x5 
+4L 

2x 6- 4LX 7 
+X 

a) 

0.33L 
A= (3-2/L 4) 

m(x) L (L 3 (X 2 /2) - 2L(X 4 /4) + (X5/5)1 ]0 

3.2 m(x) 0.0493 L=0.15777 m(x) L 
0.50L 

B= (3.68/L 4) 
m(x)[ 

W (X2 /2) - 2L(Xt/4) 4 (X5 /5) 1 30.33L 

= 3.68 m(x) (0.1000 - 0.0493) L=0.18657 ci(x) L 
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Cz (10.24/L 8) 
mix) [ C(X'213) 

- (4/5)L4 X5 + fl/3) L3 X6 
0.33L 

+ (4/7) L2X-. - fl/2) LXZ+ (1/9) X9 10 

10.24 mix) (9.457028 10- L=0.09684 zu(x) L 
8 D 13.54 /L )m (x) (X2 /3) -(4 /5) C Xl> +( 1/3) La X6 

+ (4/7) L2X 1/2) LXa + (l/9) X9 

(13.54) w(x) ( 0.024603 - 9.457028 10- 3L 

0.2050 m(x) L 

PA= - 
9.8 ( 0.15777 m(x) L+0.18657 in(x) L 

4.62697 10 0.09684 mix) L+0.2050 nj(x) L 

24162.40 rad Isou p= 155.442 rad/see 

f= P/272- = 24.74 Hz. 
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FIG. B-6. SHEAR LOAD POSITIONS 

I 
T" 19 Values of v.. des" concrete show sim 

IM A. 
I 

IE L 

1 12% ISO 
I 

17S 
1 

200 1 ns 
I 

no 1300 
2-400 

II 

I N, mm; Nmm' N/mm' I N, rnm' N/mm" N/mm3 N/inrn'i N/mm' 1 
IQ 0.15 0.45 0.43 0.40 ; 0.39 0.38 0.36 1 0.34 

0.25 0.53 0.51 049 0.47 0.46 0.45 
1 

, 
'0.43 
' 

0.40 
1 0.67 ! 0.64 ,o 62 0.60 10.58 1 0.56 0.50 O. S4 

. 50 0. 
CL 7S . 1 0.77 0.73 0.71 i 0.68 0.66 0.65 . 0.62 

1 
0.57 

1.00 1 0.84 0.81 0.78 10.75 10.73 . 0.71 0.68 1 0.63 
I. So 10,97 0.92 0,89 086 , 083 10.81 

' , 0.78 1 0.72 
2.00 , 1.06 1.02 0. " 

1o 
" 0. 92 0.89 

1 
0.86 0* so 

1.16 1.12 1 1.08 1 IDS i 1.02 
1 1 
0.98 0.91 

korEl Ali** 
NOTE 2 T%e okm wo tole ubit are dowed ko- tole *. Pmsuon: 

100'a" 
0.0 

400 
7 vvww tw be Uke" as up" t1w 1. 

Fm ckwacvw. M. C covm w ifts orem"W ~ 2S ft, lokm m tobw 3A awy 
-401-01-od bw tf,. 7Sl"3, Tho. WW of f,. f1muid not be take" ft romw tton 40. 

TABLE. 8-I. DESIGN OF SHEAR STRESS 
(CITED FROM BS-8110) 
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APPENDIX B-4 : STANDARD RESPONSE OF B&K ACCELEROMETERS 
AND SCHENCK VELOCITY PROBE T-77. 

c 
C 

6 

x 
I I III I II 

4C 

Op 

10 With mwx. gain &I nF +w 
capacitive source 

01 

0 
E 1 

0.1 Hz I HZ 10 IOU 160 HZ Ik WZ- 0 100 k Hz 20 0 

Froquarcy 
JUMP 

A). CHARACTERISTICS OF ACCELEROMETER 
(CITED FROM B&K MANUALS) 

mv 
MM/$ 

120 
100 
80 
60 
50 
40 

30 
25 
20 

Is 
12 
10 
a 

6 
2aa IV 10 WU JU 4U bU 

300 600 900 1500 3000 
Curve RL Sensitivity 

01 ZI MOhm 75 mVImmls 
02 27kOhM 68 mVImmls 
(2) 6.8 kOhm 53 mV / mmis 

I uu 150 200 300 500 1000 2000 Hz 
6000 12000 30000 60000 120000 1 /min 

B). CHARACTERISTICS OF VELOCITY PROBE TYPE T-77 
(CITED FROM VIBROSCHENCK MANUAL) 
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APPENDIX D-1 : Design of Filter. 

1. Basic Concept. 

A successive process of multiplication and addition of 

two or more furicLions is mathemaLically referred as a 

convolution (see fig. D-1). Filter processing is a 

convoluLion process of an unknown signal and a given 

signal with respect to time in the time domain form. Both 

the unknown arid given signals cati also be trazisrot-tued in 

the frequency domain by a transformation process such as 

the Fourier Transformation. This transformation provides 

amplitude with respect to frequency instead of amplitude 

to time. The later form or ! it the frequency domain form 

filter processing is easily described as a multiplication 

of the demanded signal by otte and the itondemanded signal 

bv zero. Thus. a rectangular response having amplitudes 

of one In a certairt rarige of frequency is the Ideal 

filter response. The inverse transform of the rectangular 

response In the time domain form produces a diminishing 

sinusoidal signal with infinite time, namely an impulse 

filter response (see fig. D-2). Practically the Impulse 

filter response is truncated. The truncation of this 

impulse filter response results in ripples in the pass 

band frequencies. The sharper the decay the shorter time 

to convolve or the shorter the delay and the better the 

filter. These characteristics in the frequency domain can 

be achieved by tapering the sharp edges or the Ideal 
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f il ter response . 
From this point of view there have been 

many equations available to provide such a smoothed 

response. Such equaLions normally reduce seleeLivitv or 

the filter in the transiLion frequency band (see 

rig. D-3). The steeper tile slope ill the t raxis it ion 

frequency band the more selective the filter but the 

longer tile impulse response to dimittish in tile Li me 

domain. In addition the ripples, namely Gibbs phenomena, 

ill tile pass band and the side lobes ill the stop band 

frequencies affect amplitude quality of the filtered 

signal (see rig. D-4). In addition to considering the type 

of impulse used the gain factors in the pass band as well 

as in the stop band frequencies are of importance. The 

lesser the effects of the ripples and the side lobes the 

better tile filter. These inherent characteris tics 

represent the quality of the filter and are given as gain 

factors (dB gain) . 
On the basis of the number of 

coefficients of the impulse response filter designs can 

be classified into Finite Impulse Response (FIR) and 

Infinite Impulse Response (IIR). The equations 

representing the smoothed fil ter response in the 

frequency domain are normally in term of a rational 

function of polynomials. From the types of equation used 

the filter designs can be classified into the 

Nort-reeursive Filter and the Recursive Filter which are 

respectively associated with the FIR and IIR. Furthermore 

the impulse filter signal call filter out the higher 
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frequencies or tile lower rvequencies or leave a cortain 

frequency band and filter out the rest of the frequency 

band. These filters are referred as lower pass, high 

pass, and band pass - band stop respectively (see 

fig. D-2). 

It is obvious that certain types of impulse filter 

response are applicable for certain work. III tile 

following descriptions the IIR-Butterworth filter will be 

discussed. 

2. Mathematical Basis. 

A convolution of two functions can be expressed 

mathematically as follows. 
k- =X 

Y(n) =X x(k) h(n-k) (1) 
k= -X 

Assuming the system is linear-iime invariant the later 

equation ean be expressed as follows. 
00 

Y(n) 
X 

h(n) x(k-n) (2) 
km-. X 

where h(m) must be causal/physically realizable and be 

ifif in! to. 

The general convolution of a digital signal is then given 

below. 
k 

Y(n) C; x(ti-k) + 
rd 

v(ti-k) (3) 

k k-1 

If dk0 equation (3) equals to equation (1) 

representing the non-recursive filter type. 

The transform of the convolved function y(n) catt be 

derived by assuming equation (3) as follows. 
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yZx+ay 

Y(z) XN) +ay 
n-1 

Z- 

Y(z) X(z) +a z- 
1 (Y(z) 

Assume Y(-l)= 0 

Y(Z) = X(z) +a z- 
1 Y(Z) 

X(Z) = (Y(z) -a Z- 
I Y(z)) 

Y(Z) = X(z)/(l -a z* 

Y(Z) z X(Z) (4) 
(z - a) 

Applying xe 
(j(Jf, )n 

and using Z-transform rule 

b J1 = z/(z-b) ror b=e Jot 
, X(Z) = z/(z-e 

jcjt ). 

Substituting the later X(z) into ect. (4) give 
2 

Y(z)= zj 
6) 

(5) 
(z-a)(z-o 

Solution to eq. (5) can be obtained by using partial 

fraction expansion as fOllOws. 

Y(Z) 
- 

cl 
+ 

C2 
+ 

C3 

zz (z-a) (z-e JwL) 

C, Y Lv-) 
z=0 

z 

IZ-0 

C2 -Yýz) (z-a) z(z-a) 
z 

izaa 

(z-a)(z-8 
J6)f, 

lZma 

a 

j 4G) L z(z-e 
j Gm 

C3 
Y(Z) (Z-0 

j wt, z 
jwt ZWO 

j Gn (Z-a) (Z-e 

IZ=43 

0 

(0 j 

Y(z)= - 
az +- ze 

(z-a) (a-e j (8 j (JL 
-a) ( Z-e 

j 4)f, 

Inverse of equation (6) gives 

an+ej JWL) n 
n (a-e j 4w t. 

) (a j-a) 
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an+10jj Wt, n 
__ + -_ (7) -j wt j (. )(, 
a) (0 a) 

The first part of equation (7) represents the transient 

arid the seeond part represents the steady state signal. 

Relationships between coefficients of fil-Ler. a and phase 

angle, (j for non-periodic truncation can be examined from 

the Z-plane in fig. (D-5). 

d Sý +S 

s cus Wt -a s2 = sin G)t 

d2 (1 +a 2_ 2a cos Wt) 

Transfer function, IHI= 1/d 

IHI = 1/(l +a 2_ 2a. cos 
1/2 

= Wt (at - tan- (8) 
j (it cus Wt a 

IHI e j wt. (0 - a) 

= OPP M+a 2_ 2a cos wt)- 1/2 (9) 

Equatiotis (8) and (9) prove that the phase angle and the 

amplitude depend on the f roqueficy. w and the filter 

coeffieierits. a. 

If X(f) and HM are the transforms of the signal. x(t) 

and h(t) the process can also be provided as 8 

multiplication of the individual transform as follows. 

Y(r) = x(r) - H(r) 

Inverse transform of Y(f) is not necessary equal to 

convolution or x(t) and Y(t) unless the. y are periodic. 
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T"es of Filter. 

a. Low-pass Filter. 

IIR-Butterworth type will be discussed further because 

it is simple to understand arid is flexible to adjust in 

the pass. transition and stop bands [28.37). 

Derived from an analog filter Laplace transform of the 

fIlLer function as described in reference (281 gives 

H(s) 
B (S) (10) 

where B (s) is a polynomial. of degree n with roots at n 

ej(0. 
S r. + 0. S4 k- 5 M, ro ( 11 ) 

Relationships between analog and digital filtev as seen 

in fig. (D-6) show that 

j QT j A. 
z=e, thus (JT 

Including Q= 2nf and T= 1/F, , where Fs is a sampling 

frequency (2 x Nyquist freq. ) and substituting ill to 

equation (2.36) gives 

X or f=XF /2n. 2nf /F 

Re l at ionships be tween the analog and dig! tal Ou t-of r 

frequencies can be described as follows. 

2ir f /F 

( Z-- 1) s=C( 
Z+ 1) --- 

An analog cut-off 

formula below. 

and A= 2n r /F (13) 

for c= Cot(A /2) (14) 

frequency ratio can be set using a 

0= tan(A /2) / tan(A 
c 

/2) (15) 

Noting the prescribed attenuation (At ill dB) ill the stop 

band and in the passband the required l1linimum degree of 

the polynomial function (n) can be established using the 
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equation below. 

t, = 0.5 c 10 
A L/ 10 

i) 

The transfer function H(z) is established by substituting 

the appropriate ri into equation (10) and s into equation 

(11). 

High pass filter. 

The procedure is similar to the low pass (see fig. D-7) 

filter with exception that 

C Tan (A /2) s=C 
(z 

- 
+1) 

arid C CZ-1) 

Tan(A /2) Tan(A /2) 
Cs 

c. Band pass and band stop filter. 

The procedure is slightly different from the low pass 

arid high pass filters. The analog to digital 

relationships are shown in fig. (D-8). Two pass band and 

stop band frequencies must be given. As a result of these 

two transition bands the equivalent equations are 

expressed below. 

z41 a- 
z 

a Cot[(A"+ A )/21 
c 

0 =a(j13-CosA")/SiriA" 
sss 

0 =a(O-CosA" )/Sirik' 
Sss 

Application. 

Sin (A + A") 
--. -R - Sin A+ Sin A" 

cc 

select maximum value 

Most recursive filters such as the IIR-Butterworth 

filter possos floxibility in jusLifying the gain facturs 
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in the pass and stop frequency bands. Inevitably the 

IIR-Butterworth results in a large aniount of transients 

(35,361 and to eliminate tile phase delay a twu-pass 

filter processing is required (341. To cope the problem a 

non-recursive filter based On tile recursive 

IIR-Butterworth was established (37,39]. The procedures 

are as follows. 

1. Determine the analog pass band and stop band 

frequencies (A 
C 

and A. ) using equation (13). 

2. The slope of tile transition band. 0 is determinable 

from equation (15). 

3. Equation (16) leads to the degree of the Polynomial 

equation required, ri 

4. The roots of the polynomial equation is determinable 

from equatioti (11). 

5. The complete analog transfer function, H(s) i 

obtainable in equation (10) by setting the polynomial 

equation of degree-n in the denominator as 

te. 

6. The Z-transfer function is determinable by 

substituting equation (14) into equation (10). 

This* recursive transfer function may be applied 

directly to the program. To reduce executable titue and 

transients in the time domain the Wiener-Lee 

decomposition me thod (381 can be applied. The 

technique enables the inverse transform process of the 

z-form to be carried out in a simple way. 
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7. Fo I. this specific II R- Butter wo thri1ter the long 

division method may also be used as the algorithm is 

available (see ehapter-7). 

9. The resulting series of -the z-form can be truncated 

for the purpose or err ie iencv. The arbi trari l. y 

truncation may result in a non-periodic impulse 

response. This non-periodic impulse response reduces 

the gain factor in the stop band frequencies. To 

improve the later problem a shif t Hatuming window ma. y 

be applied (371. 

IO. The fast convolution process is then carried out. The 

length of the transients is obtainable from the number 

of coefficients given when truncation is made. 

Similar procedures can be carried out for the high-pass 

and band pass/stop filters. 
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SHIFT PRODUCT 

Fý I 
FIG. D-I. CONVOLUTION PROCESS 

FREQUENCY FREQUENCY 

A). LOW-PASS FILTER 8). Hjgl+-PASS FILTER. 

FREQUENCY 

D). BAND-STOP FILTER. 

FIG. 0-2. IDEAL FILTER. 

x (t) 

FOLDED FUNCTION 

CONVOLUTION 

FREQUENCY 

C). BAND-PASS FILTER 
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W 0.0 

.j 

-1.6 

1.5 

FREGUENCY DOMAIN 
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A 
1. 

I- 

z 

X , 0.0 
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I. - 
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NUMBER OF COEFFICIENT3 FREQUENCY (HZ) 

B). IMPULSE FILTER RESPONSE. LCW-PASS. 40-60 HZ TRANSITION BAND. 
GAIN FACTOR 30 dB. 60 COEFFICIENTS. 

4.0" 1.2 

TRANSIENT 

9L 9L 

200 

200 

0 

TIME (3EC) rREQUENCY (HZ) 

C). FILTERED SIGNAL. 25HZ. TRANSIENTS-60 WORDS. 20.3 CYCLES. 400 DATA 

FIG. D-3. FILTER PROCESSING IN TIME DOMAIN AND IN FREGUENCY 
DOMAIN USING LOW PASS FIR-BUTTERWORTH TECHNIGUE. 
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0. 

= NICTAMBULAN VINDOV 
1 

NAMINO VINWV 

1 

LU 0.0 

-0.2 

TIME (SEC) 

A). IMPULSE FILTER RESPONSE IN TIME DOMAIN 

0 FREQUENCY (14Z) 
ai- 

-100 

200 

AWTAKIMM VINOW 
KWINS VINDW 

I 

\1h 

'I, ' 
� 

II 

B). IMPULSE FILTER RESPONSE IN FREGUENCY DOMAIN 

FIG. D-4. EFFECT OF APPLYING HAMMING WINDOW FUNCTION 
ON IMPULSE RESPONSE AND GAIN FACTOR 

Si 

j- a -+, t 

FIG. D-5. FILTER PROCESSING IN THE Z-PLANE 
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C2 
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FIG. D-7. ANALOG LOW PASS TO DIGITAL HIGH PASS TRANSFORMATION 
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APPENDIX 1E. i. 1 SETS OF FORCE OF EXCITATION FOR BEAM-1, 
FULLY BONDED. FLEXURAL CRACK PATTERNS, 

FIRST MODE. 

30- 

21 2ý 
FREQUENCY CHZ) 

A. BEFORE APPLYING FIRST LOAOING STAGE. 

�V 
�S 
N 

I 
4 

21 2E 
FREQUENCY (HZ) 

C. AFTER APPLYING SECONO LOAOING STAGE. 

30- 

21 
FREQUENCY CHZ) 

B. AFTER APPLYING FIRST LOADING STAGE. 

28 

30- 

21 28 
FREQUENCY C HZ 

D. AFTER APPLYING THIRD LOADING STAGE. 

NOTES 

ABSOLUTE ACCELERATION (M/SEC2). 

------ RELATIVE ACCELERATION (M/SECý 

FORCE MOVING EXCITER MASS RELATIVE ACCELERATION 

m 

0.12853 kg. 

0 
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APPENDIX - E. i. 2 : SETS OF FORCE Or" EXCITATION FOR BEAM-1. 
FULLY BONDED. FLEXURAL CRACK PATTERNS. 
SECOND MODE. 

10 

2 21 
so 110 80 Ila 

FREQUENCY (HZ) 

A. BEFORE APPLYING FIRST LOADING STAGE. 

10 

80 
FREQUENCY (HZ) 

C. AFTER APPLYING SECOND LOADING STAGE. 

FREGMENCY (HZ) 

B. AFTER APPLYING FIRST LOADING STAGE. 

2ý 
80 

FREQUENCY CHZ) 

D. AFTER APPLYING THIRD LOADING STAGE. 

NOTES 

ABSOLUTE ACCELERATION (M/SEC2). 

------ RELATIVE ACCELERATION (M/SECý 

FORCE MOVING EXCITER MASS * RELATIVE ACCELERATION 

a 

0.12853 kg. 

110 
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APPENDIX - E. 1.3 : SETS OF FORCE OF EXCITATION FOR BEAM-1, 
FULLY BONDED, FLEXURAL CRACK PATTERNS, 
THIRD MODE. 

10 10 

180 
FREQUENCY (HZ) 

A. BEFORE APPLYING FIRST LOAOING STAGE. 

HI 
ISO 

180 
FREQUENCY CHZ) 

240 

B. AFTER APPLYING FIRST LOAOING STAGE. 

10 

2 
240 180 240 

FREGLENCY (HZ) 

D. AFTER APPLYING THIRD LOADING STAGE. 

FREQUENCY CHZ) 

C. AFTER APPLYING SECOND LOADING STAGE. 

NOTES 

ABSOLUTE ACCELERATION (M/SEC2). 

------ RELATIVE ACCELERATION (M/SEC 

FORCE MOVING EXCITER MASS RELATIVE ACCELERATION 

In : 0.12853 kg. 
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APPENDIX - E. 2. i : SETS OF FORCE OF EXCITATION FOR BEAM-2. 
PARTIALLY BONDED. FLEXURAL CRACK PATTERNS, 
FIRST MODE. 

30 

4 

30 

'21 28 
FREQUENCY CHZ) 

A. BEFORE APPLYING FIRST LOADING STAGE. 

30 

4- 
21 28 

F QMNCY C HZ) 

C. AFTER APPLYING SECOND LOADING STAGE. 

411 
21 28 

FREQUENCY CHZ) 

B. AFTER APPLYING FIRST LOADING STAGE. 

30- 

4 
20 

FREQUENCY (HZ) 

D. AFTER APPLYING THIRD LOADING STAGE. 

NOTES 

ABSOLUTE ACCELERATION (M/SEC2). 

------ RELATIVE ACCELERATION (M/SECý 

FORCE MOVING EXCITER MASS * RELATIVE ACCELERATION 

a 

Iý10.12853 
kg. 
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APPENDIX - E. 2.2 : SETS OF FORCE OF EXCITATION FOR BEAM-2. 
PARTIALLY BONDED, FLEXURAL CRACK PATTERNS, 
SECOND MODE. 

10 

I 
IV 

80 110 80 110 
FREQUENCY (HZ) FREQUENCY (HZ) 

A. BEFORE APPLYING FIRST LOADING STAGE. B. AFTER APPLYING FIRST LOADING STAGE. 

10 

2 

10 

2 
80 110 so 110 

FREQUENCY CHZ) FREQUENCY (HZ) 

C. AFTEA APPLYING SECOND LOADING STAGE. D. AFTEA APPLYING THIRD LOADING STAGE. 

NOTES 

ABSOLUTE ACCELERATION (M/SEC2). 

------ RELATIVE ACCELERATION (M/S0 

FORCE MOVING EXCITER MASS RELATIVE ACCELERATION 

0.12853 kg. 
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APPENDIX - E. 2.3 : SETS OF FORCE OF EXCITATION FOR BEAM-2, 
PARTIALLY BONDED, FLEXURAL CRACK PATTERNS, 

THIRD MODE. 

10 10 

I 

2 
ISO 240 

FREQUENCY CHZ) 

A. BEFORE APPLYING FIRST LOADING STAGE. 

10 

21 
ISO 2ýO 

FREGLENCY CHZ) 

C. AFTER APPLYING SECOND LOADING STAGE. 

N 

%01 

21 
ISO 240 

FREQUENCY (HZ) 

B. AFTER APPLYING FIRST LOAOING STAGE. 

2 
ISO 240 

FREQUENCY CHZ) 

D. AFTER APPLYING THIRD LOADING STAGE. 

NOTES 

ABSOLUTE ACCELERATION (M/SEC2). 

RELATIVE ACCELERATION (M/SECý 

FORCE MOVING EXCITER MASS RELATIVE ACCELERATION 

0.12853 kg. 
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-3. APPENDIX - E. 3.1 SETS OF FORCE OF EXCITATION. FOR BEAM 
FULLY BONDED. DIAGONAL SPLITTING CRACK 
PATTERNS. FIRST MODE. 

FREQUENCY CHZ) FREQUENCY (HZ) 

A. BEFORE APPLYING FIRST LOADING STAGE. B-AFTER APPLYING FIRST LOADING STAGE. 

30 

21 28 21 28 
4 

%0 

ou 

4 
21 28 21 213 

F iQUE? 4CY (HZ) FREQUENCY (HZ) 

C-AFTER APPLYING SECOND LOADING STAGE. D-AFTER APPLYING THIRD LOADING STAGE. 

NOTES 

ABSOLUTE ACCELERATION (M/SEC2). 

------ RELATIVE ACCELERATION (K/SECý 

FORCE MOVING EXCITER MASS RELATIVE ACCELERATION 

0.12853 kg. 
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APPENDIX - E. 3.2 : SETS OF FORCE OF EXCITATION FOR BEAM-3. 
FULLY BONDED, DIAGONAL SPLITTING CRACK 
PATTERNS, SECOND MODE. 

10 10 

21 
180 240 

FREQUENCY CHZ) 

A. BEFORE APPLYING FIRST LOAOING STAGE. 

10 

" 1 
2 
iso 240 

FREQUENCY CHZ) 

C. AFTER APPLYING SECONO LGAOING STAGE. 

2 %01 

21i 
180 240 

FREQUENCY (HZ) 

B. AFTER APPLYING FIRST LOADING STAGE. 

10 

214 
180 240 

FREQUENCY (HZ) 

D. AFTER APPLYING THIRD LOADING STAGE. 

NOTES 

ABSOLUTE ACCELERATION (M/SEC2). 

RELATIVE ACCELERATION (M/SEC ý 

FORCE MOVING EXCITER MASS RELATIVE ACCELERATION 

0.12853 kg. 
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APPENDIX - E. 3.3 SETS OF FORCE OF EXCITATION FOR BEAM-3, 
FULLY BONDED, DIAGONAL, SPLITTING CRACK 
PATTERNS, THIRD MODE. 

10 

"1 
2 

10 

so 110 so 
FREQUENCY (14Z) 

A. BEFORE APPLYING FIRST LOADING STAGE. 

FREQUENCY (HZ) 

B. AFTER APPLYING FIRST LOADING STAGE. 

-- 

lv 

: 

2 

�U 

2 
80 110 81 

FREQUENCY CHZ) 

C. AFTER APPLYING SECOND LOADING STAGE. 

NOTES 

ABSOLUTE ACCELERATION (M/SEC2). 

------- RELATIVE ACCELERATION (M/SECý 

FORCE MOVING EXCITER 14ASS RELATIVE ACCELERATIOt 

0.12853 kg. 
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110 
FREQUENCY CHZ) 

D. AFTER APPLYING THIRD LOADING STAGE. 



APPENDIX - E. 4.1 : SETS OF FORCE OF EXCITATION FOR BEAM-4, 
PARTIALLY BONDED. DIAGONAL SPLITTING CRACK 
PATTERNS. FIRST MODE. 

3V 13U 

21 
FREQUENCY (HZ) 

28 21 
FREQUENCY (HZ) 

213 

A. BEFORE APPLYING FIRST LOADING STAGE. B. AFTER APPLYING FIRST LOADING STAGE. 

4 

. DU 

21 28 21 28 
FREQUENCY CHZ) FMUENCY (HZ) 

C. AFTER APPLYING SECOND LOADING STAGE. D-AFTER APPLYING THIRD LOADING STAGE. 

Ou 
NOTES : 

-: ABSOLUTE ACCELERATION (M/SEC2). 

------ -* RELATIVE ACCELERATION (MAEO 

FORCE : MOVING EXCITER MASS (a) * 

RELATIVE ACCELERATION (a). 

0: 0.12853 kq. 

21 28 
'NCY CHZ) FREGME 

E. AFTER APPLYING FOURTH LOADING STAGE. 
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APPENDIX E. 4.2 SETS OF FORCE OF EXCITATION FOR BEAM-4, 
PARTIALLY BONDED, DIAGONAL SPLITTING CRACK 
PATTERNS. SECOND MODE. 

Iu ju 

80 110 80 110 
FREQUENCY (HZ) FREQUENCY CHZ) 

A. BEFORE APPLYING FIRST LOADING STAGE. B. AFTER APPLYING FIRST LOADING STAGE. 

-: 
- 

- 

- 

-: - 

�U 

2 
80 110 so 110 

FREQUENCY CHZ) r MENCY CHZ) 

C. AFTER APPLYING SECOND LOADING STAGE. D. AFTER APPLYING THIRD LOADING STAGE. 

NOTES 
10- 

ABSOLUTE ACCELERATION (M/SEC2). 

------ RELATIVE ACCELERATION (M/SEC4 

FORCE MOVING EXCITER MASS 

RELATIVE ACCELERATION (a). 

a: 0.12853 kq. 

80 lio 
FREGLENCY (HZ) 

E. AFTER APPLYING FOURTH LOADING STAGE. 
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APPENDIX - E. 4.3 : SETS OF FORCE OF EXCITATION FOR BEAM-4. 
PARTIALLY BONDED, DIAGONAL SPLITTING CRACK 
PATTERNS. THIRD MODE. 

21- 
ISO 

10 

2 

to 

2 
240 ISO 

FREQUENCY (HZ) 

A. BEFORE APPLYING FIRST LOADING STAGE. 

ISO 240 
FREQUENCY (HZ) 

C. AFTER APPLYING SECOND LOADING STAGE. 

2 
180 240 

240 
PREQUENCY CHZ) 

B. AFTER APPLYING FIRST LOAOING STAGE, 

2+- 
180 240 

FREQUENCY (14Z) 

OXTER APPLYING THIRD LOADING STAGE. 

NOTES 

AMUTE ACCELERATION (M/SEC2). 

------ RELATIVE ACCELERATION WSECý 

FORCE MOVING EXCITER KASS (a) N 

RELATIVE ACCELERATION (a). 

0: 0.121953 kg. 

FREQUENCY CHZ) 

E. AFTER APPLYING FOURTH LOADING STAGE. 
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APPENDIX E-5 : CURVE FITTING 

N............. 
.. 

Fi 

xzV 

x@ : Z@ 

........ %........... 0- y. 
:: F' :: 

FL F F2 

FREGUENCY 00 

NOTES : 

0 FH-HIGHER FREQUENCY 

o FL-LOWEA FREQUENCY 
0 FM-INTERMEOIATE FREQUENCY 
oI-2- FITTED CURVES 
03- INTERPOLATED CURVE 

0N- GIVEN FORCE 

0 We NORMALISED FORCE IN QUESTION 

0F- GIVEN FREQUENCY 
o Fl- FREQUENCY IN QUESTION 

A- 
x OR xY OR Y, 

AA 
F1 OR FL F OR FM F2 OR FH 

ZN 
(F2-F) * (X-Y) 

(F2-FI) 
yVm 

"-FM) * W-Yl 
+ yo F'- FM - Z' -F+ (Z-Z') 

(FH-FL) 

A. CURVES CORRECTING RESONANT FREGUENCIES. 

N 

N ...... 

NORMALISED 
AMPLITUDE (A/F) 

AI: W A2: : AH AM : AL 

'A 
x 

-A -Y 
Lvý 

ýF--r 

A- 
x OR x 

Y OR Y, a OR a, 
AT 

Ai OR AL A OR AN A2 OR AH 

NOTES : 

0 AH-HI%lER AMPLITUDE 
0 AL-LOWEA AMPLITUDE 
0 AM-INTERMEDIATE AMPLITUDE 
oia2- FITTED CURVES 
03- INTERPOLATED CURVE 

oNa GIVEN FORCE 

o N'- NORMALISM FORCE IN QUESTION 

0A- GIVEN AMPLITUDE 
0 A*- AMPLITUDE IN QUESTION 

W-A) 0 CX-Y) 
+x 

(A2-A 1) 

(AH-AM) * (X'-Y*) 
+ xf 

W+-AL) 

AN - 0' -A+ ("') 

B. CURVES CORRECTING RESONANT AMPLITUDES. 
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