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Abstract 
 

The missions at sea require automation due to human accessibility and labour 

constraints. Accordingly, the requirement for a USV is highlighted for surveillance, 

environment investigation, and so on. The fully automated USV requires the reliable 

detection system in accordance with the prerequisite to safe collision avoidance. For 

this, USVs are equipped with a number of equipment, but these units are expensive 

and demand extra loading capacity. Therefore, it is necessary to simplify such 

equipment, and at the same time, essential data for safe collision avoidance should be 

acquired without loss. 

The equipment simplification potentially can be achieved by using a vision sensor. 

The vision sensor that has been used in the conventional USV only tracks the marine 

object. For safe collision avoidance, the type of object detected and the distance to the 

object are also required. This additional information requires direct observation from 

human or other equipment support. If the vision sensor can be used to estimate the 

distance and the object type, the equipment for USV can be simplified. 

The purpose of this research is the development of vision-based object detection 

algorithm that recognises a marine object and estimates the position and distance to 

the object for USV. Faster R-CNN, a state-of-the-art image processing technique that 

imitates human visual perception, is used to recognise and localise object on a captured 

frame from a vision sensor. In order to obtain the distance to the recognised object, 

stereo vision based depth estimation technique is used. Therefore, a stereo camera was 

used in this research. By combining these two techniques, real-time marine object 

detection algorithm was implemented and the performance of this algorithm is verified 

by model ship detection test in towing tank. The test results showed that this algorithm 

is potentially applicable to real USV. 

Key words: USV, vision-based object detection, Faster R-CNN, depth estimation 
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1 Introduction 
 

Autonomous systems are becoming an essential part of our life, reducing human labour 

and human error. The automatic system has found its way into the various control 

systems such as processes in factories, switching on telephone networks, heat treating, 

etc. Over time, the automatic system technology has been advanced and the concept 

of the fully automatic system, called automation, has been arising. This system is 

usually accomplished in combination with complex systems, such as modern factories, 

airplanes, and ships.  

Accordingly, there is rapid growth in unmanned vehicle development such as 

unmanned ground and aerial vehicle for supporting transportation, surveillance 

environment investigation and so on. In the marine industry, there has been an effort 

on development of USV. It operates on the sea surface without crew and is becoming 

popular due to its reduced cost compared to for example research and oceanographic 

ships, and being more efficient than weather buoys. They are commonly designed to 

accomplish their mission from the commands transmitted remotely without humans’ 

instant control or programmed to perform regularised actions repeatedly. This helps to 

avoid marine accidents mostly caused by human error (Campbell et al., 2012).  

As vessels are automated, the significance of obtaining and processing the data 

surrounding the operating vehicles for safe navigation has increased. The collision 

avoidance through proper path planning ensures also prevention from a crash accident. 

Accordingly, it requires decent sensor system that detects accurately and processes the 

obtained data to applicable information that can be used for pertinent action. 

In order to collect such data, the majority of USV is equipped with various sensors 

such as sonar sensor, AIS, LiDAR, Radar and vision sensor for detecting obstacles or 

other vessels. However, most of this equipment has disadvantages as they are 

expensive or difficult to install on a small ship due to their massive weight. This 

necessitates the simplification of the equipment and the reduction of their number. In 

this regard, the use of a vision sensor is powerful for USV where near obstacles are 

closely related to collision risk, in place of other expensive and heavy detection 
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equipment. Furthermore, it can enhance detection by supporting existing detection 

system in large vessels. 

Due to use of the vision sensor, it is required to process an image to recognise objects. 

In order for a USV to recognise an object without human intervention, it is important 

to possess object recognition ability comparable to that of a human being. For this 

purpose, this research uses the CNN which specialises in image processing more than 

other machine learning techniques. The CNN is a state-of-art technique of computer 

algorithms, mimicking animal’s visual perception and learning abilities. Intelligent 

animals and humans obtain the ability of object recognition by learning the images and 

their corresponding names by experience over a long period of time. As the CNN 

works similarly, it requires a large number of images, many computational iterations, 

high computational power and time. Recently, due to the remarkable developments in 

data science, it is not difficult to collect a large number of datasets. Moreover, 

improvement of computer capacity reduced computation time significantly. 

However, the brevity of research on the unmanned ship, there were no efforts or studies 

on the application of this method to the marine industry. Most vision-based detection 

systems in this area are set through the intuitive visual features observed by users 

(Gladstone et al., 2016, Shin et al., 2017, Sinisterra et al., 2014, Wang et al., 2011a, 

Wang et al., 2011b, Wang and Wei, 2013, Woo and Kim, 2016b, Woo and Kim, 2016a). 

Although it can be called automation, there is still a human error because it is 

eventually set by a human. The CNN can mitigate this problem by extracting the 

features on its own reducing human intervention. In this context, this research was 

motivated to apply the vision sensor, one of the economical and lightweight equipment 

for automatic navigation. 

The aim of this research is to implement an algorithm to recognise other objects or 

ships using a stereo camera for autonomous navigation of USV. Faster R-CNN 

developed for real-time classification and localisation based on CNN is used, and 

depth estimation method is used to estimate the distance to detected objects. As a 

preliminary process, the CNN and RPN in the Faster R-CNN are fine-tuned. When the 

algorithm starts to run, a left frame passes through the whole network of the Faster R-

CNN, and it classifies and localises the observed objects. After this, from the left and 
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right vision, the 3D point cloud is created all over the pixels. By matching the local 

information and the 3D point cloud obtained from the Faster R-CNN and depth 

estimation, it estimates the distance to the objects. This process is repeated in real-time.  
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2 Aim and Objectives 
 

The aim of this research is to contribute to enhancing vision-based detection system 

for USV. To achieve this, the following objectives are set: 

1) To overview trend of an unmanned ship, existing object detection system and 

distance estimation techniques, and their application to review their limitations and to 

identify where to be improved. 

2) To develop an object detection algorithm for automatic navigation for USVs. 

3) To demonstrate the effectiveness of the proposed algorithm. 

4)  To provide recommendations for future research. 
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3 Literature Review 
 

3.1 Remarks 
 

In this section, it outlines three topics: unmanned ship, object detection system and 

distance estimation technique. The section of the unmanned ship indicates the general 

trend of unmanned ship briefly. The section of object detection system and distance 

estimation technique discusses their current technologies and applications in 

unmanned ships including other fields. 

 

 

3.2 Unmanned Ship 
 

There are many types of platforms for an unmanned ship such as USV, ASV, ASC, 

autonomous ship, etc. Although they are called in a different name, their ultimate 

purposes are similar as searching mines, surveying the ship’s bottom with ROV and 

detect suspicious divers; investigating the sea bottom; tracking target boat and so on 

(Bertram, 2008), without human control. 

There have been many projects of unmanned ships for their development and 

application. The projects include, for example, the DELIM ASC for investigation of 

hydrothermal extent and the patterns of community diversity (Pascoal et al., 2000); sea 

surface autonomous catamaran, named SEAMO, for collection of data and samples on 

sea-air boundary (Caccia et al., 2005); ROAZ II ASV for search and rescue mission 

(Martins et al., 2007b) and for docking system interlocking with AUV (Martins et al., 

2007a); MESSIN for measuring tasks in shallow water (Majohr et al., 2000); the 

autonomous catamaran, named Charlie for investigation of sea surface (Bibuli et al., 

2008); the Springer for environmental and hydrographic surveys (Naeem et al., 2006); 

the non-crew commercial vessels, carried out by Rolls-Royce (Levander, 2017) etc. 
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In most of such projects, unmanned ships receive only mission commands without 

manual control of its instant movement (Naeem and Irwin, 2010). In order to satisfy 

it, the unmanned ships are required to be fully automated. However, they always face 

complex marine environment such as unexpected obstacles, harsh weather condition, 

and sensor signal disturbance during navigation. It attracts a lot of attention on how to 

process the measured  or observed data reliably in order to manage the unmanned ship. 

 

 

3.3 Object Detection 
 

Unmanned ship needs data of surrounding environment, especially neighbouring 

obstacles, as the first step of collision avoidance. In order to collect such data, 

unmanned ships are equipped with various types of sensors such as LiDAR, Radar, 

LRF, sonar, etc. These sensors collect the dataand then the data is transformed into 

information that is useful to determine the unmanned ships’ behaviour by certain data 

process technique. This serial process is called object detection. In order to obtain 

high-quality information from those processes, it is worth to discuss which sensors 

should be installed, which technique should be applied, which type of data is required, 

etc. The trend of them is reviewed in this chapter. 

 

 

3.3.1 Non Vision-based Detection System 
 

Presently, advanced navigational aids support navigation of ships by dedicating vessel 

positioning, wireless communication and the exploration of the environment (Olsson 

and Jansson, 2006). These aid systems assist the navigation as it localises neighbouring 

ships by plotting corresponding location on a map with GPS, LORAN, ECDIS etc. It 

includes telecommunication systems that transmit navigational mutual information by 

bidirectional transmission technique such as GMDSS and AIS. They communicate 

with the VTS or other ships directly (Ruiz and Granja, 2009). 
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However, it is not preferred to equip communication system to small vessels, which 

are commonly designed for unmanned ships due to loading capacity and cost 

efficiency. Therefore, most of the unmanned ships are equipped a with self-detection 

system such as Radar, LiDAR, a sonar sensor, etc. 

For example, the Navico BR24 FMCW radar system was applied for target tracking 

algorithm while scanning 360 degrees (Schuster et al., 2014). A sonar sensor was 

applied to obstacle detection system for USV, detecting reefs or shallow banks in water 

(Heidarsson and Sukhatme, 2011a). A 2-D laser sensor was equipped with ASC and 

its detection system was tested in harbour (Bandyophadyay et al., 2010). 

However, without vision sensor, there is a limit to detection of short-distance objects, 

which is largely associated with collision risk than long-distance objects. For example, 

typical radar measuring range is 0.3-5km (Ruiz and Granja, 2009), and the Furuno 

marine radar sensor detects from 22 meters (Onunka and Bright, 2010).  

In order to overcome it, some researchers developed fusion sensory detection system 

such as combined system of stereo vision sensor, radar and AIS (Larson et al., 2007); 

Omnidirectional camera composed by INS and six cameras (Wolf et al., 2010); GPS 

and LiDAR (Leedekerken et al., 2010); Radar and vision sensor (Hermann et al., 2015); 

Radar, camera and GPS (Almeida et al., 2009); Sonar sensor and overhead image 

(Heidarsson and Sukhatme, 2011b);  

However, these fusion sensor systems typically require high cost. If the vision sensor 

does not only track targets but also provide additional data of surrounding environment, 

the fusion sensor systems are able to be simplified alongside robust collision avoidance.  

 

 

3.3.2 Vision-based Detection System 
 

As the first step of the object detection system, it is required to determine a region 

where there is a possibility of an object to be present. For this, most of the detection 

systems borrow edge extraction method, which figures out object outline or boundary 
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line between different coloured regions. Especially, the Canny edge detector (Canny, 

1986) is used widely with several additional processes.  

In the field of unmanned aerial vehicles, a method of extracting the horizon between 

the sky and the ground is often used in image processing to estimate their attitude. 

(Bao et al., 2005, Todorovic, 2002, Todorovic and Nechyba, 2004, Todorovic et al., 

2003, McGee et al., 2005, Ettinger et al., 2003, Cornall and Egan, 2005, Cornall and 

Egan, 2004).  

Similarly, in the unmanned ship sector, there has been a study of estimating the 

distance from an observed object by extracting a sky-sea line on a single image. Woo 

et al (2016) developed obstacle detection system for USV using the method of 

horizontal line extraction and feature extraction. RANSAC algorithm and SIFT are 

applied respectively. Furthermore, collision risk was estimated from motion 

information and DCPA and TCPA by using fuzzy estimator (Woo and Kim, 2016b). 

Wang et al (2011b) developed real-time obstacle detection system based on horizontal 

line extraction using RANSAC as well. Saliency detection and Harris corner extraction 

were used for feature extraction and tracking of objects (Wang et al., 2011b). Sergiy 

Fefilatyev (2008) developed automated ship detection system using horizontal line 

extraction to define the region to be processed in an image, edge extraction to 

determine the region to estimate objects presence, and connected components 

algorithm to label objects (Fefilatyev, 2008). 

As other detection techniques, segmentation on the image has been studied with 

applicability in a diverse field (Khan and Shah, 2001, Nguyen and Wu, 2013). Pedro 

Santana et al (2012) developed a water detection image processing model for aquatic 

robots that stays on the water. In this research, water region is segmented by measuring 

optical flow’s entropy across the frames of video (Santana et al., 2012). Daniel Socek 

et al (2005) developed a hybrid colour-based foreground object detection system for 

automated marine surveillance using colour segmentation technique with Bayesian 

decision framework (Socek et al., 2005).  

The methods of those researches elicit the location of detected objects. However, the 

horizontal line cannot be extracted accurately in foggy weather, inland waterway, and 

raging waters due to an unclear sea-sky joined line. It leads to an error in estimating 
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the object region on the image Furthermore, only using edge extraction method cannot 

draw out the type of obstacle which has the potentiality of useful information for path 

planning.  

 

 

3.3.3 Object Classification and Localisation 
 

In order to surmount the weakness of the conventional vision-based detection, we 

introduced Faster R-CNN (Ren et al., 2015), which is a type of machine learning 

classifying and localising objects in an image.  

The Faster R-CNN is largely divided into CNN (Krizhevsky et al., 2012) and RPN 

parts. The CNN and the RPN are responsible for the classification of images and 

localisation of objects, respectively. Previously developed CNN only performed 

classification. In order to add the function of localisation, R-CNN (Girshick et al., 2014) 

was developed. However, it took a long time in computing during training and 

detecting, thus Fast R-CNN (Girshick, 2015) was developed to reduce the computation 

time. Nonetheless, it still took a long time to compute so that it was impossible to apply 

it to the real-time detection mission. To improve this, Faster R-CNN was developed 

and it dramatically decreased the computing time, making it applicable to real-time 

detection. 

The Faster R-CNN has a great potential and is still being developed for performance 

enhancement in various fields such as face recognition (Sun et al., 2017, Ranjan et al., 

2017, Zhu et al., 2017, Qin et al., 2016, Jiang and Learned-Miller, 2017), visual 

relations (Zhang et al., 2017), action detection (Peng and Schmid, 2016), person search 

(Xiao et al., 2017), text detection (Zhong et al., 2016), tumour detection (Akselrod-

Ballin et al., 2016), traffic sign detection (Zhu et al., 2016), 3D pose estimation 

(Poirson et al., 2016), etc. 

In order to improve the performance of classification and localisation, research on the 

development of network architecture is also actively carried out (Howard et al., 2017, 
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Shrivastava and Gupta, 2016, Lin et al., 2016, Zhang et al., 2016, Kong et al., 2016, 

Redmon and Farhadi, 2016, Huang et al., 2016, Kang et al., 2017, Tolias et al., 2015). 

With the classification and localisation ability of the Faster R-CNN, it is possible to 

derive the type and location of objects that are intimately related to the risk of collision.  

 

 

3.4 Estimation of Distance to Objects 
 

The distance to an object is the most relevant variable to the collision risk. The Faster 

R-CNN provides the location on the image but does not calculate the distance to 

objects. Therefore, in order to find the distance to objects in an image, depth estimation 

technique is used in this research.  

 

 

3.4.1 Monocular Vision-Based Depth Estimation 
 

The research of depth estimation on a single image has been studied and applied in 

various fields. The robot developed by Lee et al (2016) can calculate the shortest 

distance between the robot and an obstacle with a monocular camera (Lee et al., 2016). 

It extracts the closest horizontal border line of an object by using probability density 

function that separates the regions according to its colour and texture. Ranftl et al 

(2016) introduced a method of dense depth estimation from a monocular vision of a 

dynamic scene. They proposed a novel motion segmentation algorithm and 

reconstructed moving objects in company with encompassing environment (Ranftl et 

al., 2016). Z. Said et al (2012) indicated the reliability of monocular vision-based depth 

estimation method performed by Wahab et al (2011) and Jan and lqbal (2009) (Wahab 

et al., 2011, Jan and Iqbal, 2009). It estimates the distance to a round-shaped object 

with primary knowledge of object size and the geometrical relation between camera 

and object (Said et al., 2012). Haris et al (2011) introduced a distance estimation 
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technique, called MoZAK, for robotic arm movement (Haris et al., 2011). It guides 

that movement from statistical analysis with the degree of complexity of image edges, 

which is extracted by the Canny filter (Canny, 1986). Saxena et al (2006) proposed a 

depth estimation method from a single monocular image using supervised learning 

approach. They adopted three types of visual information for this approach, namely 

texture variations, texture gradients, and haze. They also applied two types of features, 

namely absolute depth features and relative features. They separated the single image 

into small patches and estimate a depth value for each corresponding path (Saxena et 

al., 2006). Liu et al (2016) performed depth estimation from single monocular image 

combining CNN and Conditional Random Filed. They carried out network learning 

process introducing unary and pairwise potential functions (Liu et al., 2016). 

However, the depth estimation on single image requires a lot of hand-crafted 

assumption that causes detection errors in a different environment.  

 

 

3.4.2 Stereo Vision-Based Depth Estimation 
 

One way to overcome the disadvantages of single vision-based depth estimation is to 

use two fields of vision imitating the animal’s eyes. Since stereo vision-based depth 

estimation is highly accurate, it is often used to calculate the distance from its location 

on an unmanned ship to obstacles. Sinisterra et al (2014) proposed a target tracking 

system with stereo vision using Extended Kalman Filter. It facilitates targeting object 

and estimating depth by comparing across frames (Sinisterra et al., 2014). Terry 

Huntsberger at el (2011) analysed Hammerhead vision system, which detects a 

geometric threat, for a stereo vision-based autonomous navigation system in maritime 

environments, especially for high-speed USV (Huntsberger et al., 2011). Wang et al 

(2011a, 2012) developed real-time obstacle detection system with a stereo vision based 

on Saliency detection and Harris corner extraction (Wang et al., 2011a, Wang et al., 

2012).  
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In this research, one of the conventional depth estimation method, Semi-Global Block 

Matching (Hirschmüller, 2007), is used for the disparity. 

 

 

3.5 Summary 
 

Most of the USV are  equipped with self-detection system such as Radar, LiDAR, a 

sonar sensor, etc. Those sensors are useful for recognising other ships or obstacles over 

long distances, but the factor that closely related to USV crashes are near obstacles. 

To remedy this, some USV equips fusion sensor system, but it also has a limit due to 

load capacity and it requires a high cost. It causes to streamline the equipment as the 

use of a vision sensor that detects relatively short distances. In order to acquire high-

quality information equivalent to other sensors, Faster R-CNN that classify and 

localise detected objects on frame image is introduced. The distance to the detected 

object is also important information. For this, depth estimation technique using stereo 

camera is introduced. 
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4 Methodology 
 

4.1 Remarks 
 

This section describes the methodology of this research. Basically, Faster R-CNN and 

depth estimation techniques are used, and the detection algorithm is implemented by 

integrating the two techniques. This section describes only the flow of the overall 

method and the modified part from existing algorithms borrowed. A description of the 

Faster R-CNN was given in the Appendix. 

 

 

4.2 Algorithm Architecture 
 

The project is composed of two stages as shown in figure 4.1. The first stage is 

localisation and classification performed by Faster R-CNN. In this stage, the process 

is carried out with only left frame acquired from left view. It provides the information 

of object type and the location on the frame. The second stage is depth estimation. It 

utilises both side frames and figures out the depth, which represents the distance to an 

every pixel point. This process furnishes the information of distance to object 

mobilising object local data obtained from the Faster R-CNN. 
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Figure 4.1 Project Architecture 

 

 

4.3 Faster R-CNN 
 

Although there is a default configuration in Faster R-CNN that gives the best 

performance in VOC2017 (Everingham et al., 2007), some configurations are 

modified to be suitable to recognise the ship as it has not been utilised in the marine 

industry.  
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4.3.1 CNN model 
 

There are many CNN models that have been released such as ALexNet (Krizhevsky 

et al., 2012), ZF Net (Zeiler and Fergus, 2013), VGG Net (Simonyan and Zisserman, 

2014), GoogLeNet (Szegedy et al., 2015), Microsoft ResNet (He et al., 2016), etc. As 

such these networks are becoming deeper, they showed higher accuracy in 

classification. However, although they are improved, they also require higher GPU 

memory capacity as it processes more massive data. It restricted the options for using 

the best network among them. Due to this reason, we selected ZF Net that does not 

cause out of the memory of GPU that used in this research. 

ZF Net is the network that won the ILSVRC 20131 . This model reached an 11.2% 

error rate and was fine-tuned more than the AlexNet architecture, which won the 

ILSVRC 2012. It is alike to AlexNet, but with a few slight alterations, it has improved 

performance. ZF net uses 7 × 7 filters instead of 11 × 11 filters used in AlexNet, and 

the stride is also reduced. This allows the first convolutional layer to maintain a lot of 

initial pixel information. ReLU is used for the activation function, the cross-entropy 

loss is used for error function, and batch stochastic gradient descent is used for training 

(Deshpande, 2016a). Its architecture is shown in figure 4.2. 

 

 

Figure 4.2 ZF net architecture (Deshpande, 2016a). 

 

 

                                                           
1 http://www.image-net.org/challenges/LSVRC/2013/results.php#cls 



16 
 

4.3.2 Anchor 
 

In the Faster R-CNN process, the input image is scaled such that their shorter side 

becomes 600 pixels while the long side does not exceed 1000 pixels before it is fed 

into a network. Therefore, the 640 × 480 pixels image captured by the stereo camera 

is scaled to 800 × 600 pixel. The anchors propose regions on this scaled image with 

its size of 1282 pixels, 2562 pixels, 5122 pixels and its ratios of 1:2, 1:1 and 2:1 as 

shown in figure 4.3 and 4.4 (Ren et al., 2015).  

 

Figure 4.3 Scaled image and applied anchors. 

 

Figure 4.4 Default anchors. 
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In this process, there is a critical drawback to detect a small object. For example, if it 

detects a side of a small ship that is 3 𝑚 long and 50 𝑚 away, the ship occupies around 

30 × 6 pixels on the captured image, and it is scaled to 37 × 7 pixels. At the moment 

the smallest anchor slides over the object region, as shown in figure 4.5, the IoU is 

only 0.016, which is much smaller than default IoU threshold 0.7 to be considered as 

positive. With this default anchor, the ground-truth box smaller than 902 pixels cannot 

be labelled as positive. 

 

Figure 4.5 The overlap between 1282 anchor and small object. 

Therefore, the anchor size and ratio are recommended to be set to at least 162 pixels 

and 5:1, as shown in figure 4.6, respectively, to maximise the IoU.  

 

Figure 4.6 Size comparison between 162anchors with the ratio of 5:1. 

Accordingly, we modified the anchor configuration from the default of it, to fit to 

detect a ship-shaped object in distance.  

A 2 𝑚-long small ship occupies 350 × 70 pixels at a distance of 4 𝑚, and  30 × 6 

pixels at a distance of 50 𝑚, on the captured image from the stereo camera. These sizes 

are scaled to 438 × 88 pixels and 37 × 7 pixels, respectively. Correspondingly, the 

optimal range of anchor size is from 162 pixel to 1962 pixel with the ratio of 5:1. 

Because changing the size and ratio of anchor from its default reduces its mAP (Ren 

et al., 2015), we followed the anchor size and IoU threshold from Faster R-CNN for 
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small logo detection (Eggert et al., 2017), to minimise the loss of mAP, and also 

modified the setting to drop small boxes as changing minimum box size from 162 to 

22 to enable to detect small area. The anchor configuration is shown in table 4.1. 

Table 4.1 Default and modified anchor configurations. 

 Default Modified 

Anchor size 

(pixels) 
1282, 2562, 5122 

82, 162, 322, 442, 

 642, 902, 1282, 2562 

Anchor ratio 2:1, 1:1, 1:2 4:1, 5:1, 6:1 

IoU threshold 0.7 0.5 

Minimum box size 

(pixels) 
162 22 

 

 

 

4.3.3 Dataset 
 

The powerful advantage of CNN is that it can classify objects by generalising same 

labelled objects into one category, although they have various appearances. It can be 

proved clearly if the experiment is carried out on real sea observing various real ships. 

However, in this research, the actual sea area test was replaced with an experiment that 

detects the model ship in the towing tank because there are many practical limitations 

such as preparing and measuring real distance. Therefore, the dataset consists of only 

one class of model ship. 

A notable point in this section is the size of an object in an image used for training. As 

the modified anchor sizes are smaller than the default anchor sizes, proposals that are 

assigned as positive during training are required to be considered carefully. For 

example, assume that there is a 600 × 400 pixels object in an 800 × 600 pixels image 

and the anchor size is 162 pixels. When the anchor slides over the ground-truth box, it 

labels everywhere as positive and catches all the feature of the object minutely, rather 

than its overall outline as shown in figure 4.7. However, when observing a distant 

object, the overall outline is a criterion that recognises objects more than detailed 
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features due to the fixed resolution of the camera. It causes difficulty in recognising 

distant object. 

 

 

Figure 4.7 Anchors labelled positive and negative on a large object and small object. 

Therefore, in order to detect small objects, anchors must capture the outline of the 

object as a feature. This means that the scaled object size of the dataset image should 

be similar to the scaled size of the object to be detected. 

As the model ship is observed between the distances from 4m to 50m during the 

experiment, the ground-truth box of model ship occupies pixels from 37 × 7 pixels to 

438 × 88 pixels, in 800 × 600 pixels scaled image. Accordingly, ground-truth box 

size in image datasets to be prepared are recommended to occupy pixels from  37 × 7 

pixels to 438 × 88 pixels, where the area ratios of scaled images to the ground-truth 

boxes are 1: (5.40 × 10−4) and 1: (8.03 × 10−2), respectively. For example, if there 

is a 1500 × 1000 pixels image in a dataset, the ground-truth box area is required to 
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occupy the pixels from (1500 × 1000) × (5.40 × 10−4)  to (1500 × 1000) ×

(8.03 × 10−2),  e.g., from 810  pixels to 120450  pixels as shown in figure 4.8. 

Additionally, as the aspect ratio of the ground-truth box in dataset image closes to the 

anchor ratio, there is a high probability that anchors sliding over the object labelled as 

positive. 

 

Figure 4.8 Example of recommended ground-truth box in dataset image. 

The image dataset of the model ship to be used for the training was prepared by taking 

a picture of it. If the size of the object on the taken images is large, a margin is added 

to the edge of the images to satisfy above conditions. The number of dataset images is 

around 1000, referring to the PASCAL VOC 2007 dataset (Everingham et al., 2007). 

 

 

4.4 Depth Estimation 
 

The distance to object is important information for collision risk assessment. This 

section describes the process to calculate the distance to object. Unlike the case where 

only the left frame is used in Faster R-CNN, both frames are used in depth estimation 

and it calculates the distance to object based on the location of the object obtained from 

the Faster R-CNN. 



21 
 

The workflow of depth estimation is shown in figure 4.9 (Bradski and Kaehler, 2008, 

Dalal and Triggs, 2005). Left frame and Right frame are acquired from a stereo camera 

in real-time. Both frames are rectified and transform into the grey scale from RGB, 

and by using those, the disparity is calculated (Hirschmüller, 2007, Hirschmuller, 

2005). This disparity is used to calculate the distance to each pixel point on the 

captured scene along with the stereo camera calibration parameters. 

 

Figure 4.9 Workflow of depth estimation. 

 

 

4.4.1 Stereo Camera Calibration 
 

The stereo camera was calibrated with 20 × 20 checkerboard image with 14.4𝑚𝑚 

size of checkerboard square. 20 images were selected for the calibration not to exceed 

0.15 of mean error in pixels. This images and mean error in pixels are shown in figure 

4.10 and 4.11. The extrinsic parameters during the calibration are visualised in figure 

4.12. The extrinsic parameters represent the coordinate system transformations from 

3D world coordinates to 3D camera coordinates, which defines the camera’s centre 

position and the camera’s heading in world coordinates.  
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Figure 4.10 Pictures of checkerboard for stereo camera calibration. 

 

Figure 4.11 Mean error in pixels during calibration. 

 



24 
 

 

Figure 4.12 Extrinsic parameters visualisation. 

 

 

4.4.2 Distance to Object 
 

The Faster R-CNN represents the position of the object as a final output giving 

bounding boxes accompanying the values of left bottom point and right top point. 

From these values, we extracted the centre point of the bounding box as following 

equation 4.1. 

 (𝑥𝑐, 𝑦𝑐) = (
𝑥1 + 𝑥2

2
,
𝑦1 + 𝑦2

2
) (4.1) 

where (𝑥𝑐, 𝑦𝑐) is the centre point of bounding box, (𝑥1, 𝑦1) and (𝑥2, 𝑦2) are the left 

bottom point and right top point of bounding box respectively. By matching this value 

to 3D point cloud map, the hypothetical distance to object, 𝑧𝑜 , is calculated. This 

process is shown in figure 4.13.  
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Figure 4.13 Workflow of distance estimation. 
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5 Detection Test 
 

5.1 Remarks 
 

Tests were carried out to investigate the effectiveness of the proposed detection 

algorithm. To evaluate the performance of the network according to the training 

condition, we divided the dataset and proposal configuration into four cases and 

trained the networks separately. The detection tests were carried out in towing tank 

observing a model ship floating on water through stereo camera hung on the carriage. 

By moving the carriage back and forth, the relative position of the model ship was 

changed and then the object recognition and the distance estimation results were 

evaluated. 

 

 

5.2 Stereo Camera 
 

The specification of the stereo camera used in this research is described in figure 5.1 

and table 5.1. In this research, resolution and frame were set to 640 × 480 MJPEG 

and 30fps respectively due to memory limitation during computation. 

 
 

 

Figure 5.1 Stereo camera. 
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Table 5.1 Specification of the stereo camera. 

Model name KYT-U100-960R1ND 

Sensor Aptina AR0130 

Focus Manual 

Synchronization Yes 

Resolution & frame 
640 × 480 MJPEG 30fps, YUY2 15fps 

1280 × 960 MJPEG 30fps, YUY2 5fps 

Compression format MJPEG \ YUY2 

Interface USB2.0 

Lens Parameter Non Distortion Lens, FOV 96°(D), 80°(H), 60°(V) 

Voltage DC5V 

UVC (USB Video Class) Support 

OTG Support 

Auto exposure AEC Support 

Auto white balance AEB Support 

Adjustable parameters 
Brightness/Contrast/Colour 

saturation/Definition/Gamma/WB 

Dimension 74mm x 27mm 

Operating Temperature -20°C to 70°C 

Support OS Windows, Linux, MAC, Android 

 

 

5.3 Computer Capacity 
 

The computer environment in which the computation is performed is indicated in table 

5.2. 
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Table 5.2 Computer environment. 

CPU Mainboard 

Specification Cores Threads Model Chipset Southbridge 

Intel Core i7 6700 

CPU @ 3.40GHz 
4 8 W650DC Intel Skylake Intel H170 

 

Memory Graphics Card MATLAB 

Type Size GPU Memory type Memory size Version 

DDR 4 8 GBytes 
NVIDIA GeForce 

GTX 960M 
GDDR5 4096 MB R2016b 

 

 

5.4 Detection Test Environment 
 

The detection test was carried out by observing the model ship in a towing tank. The 

geometry is shown in figure 5.2. Since the LRF outputs the voltage according to the 

distance to the board, we measured the voltage and actual distance at three points and 

calibrated it. 

 

Figure 5.2 Towing tank geometry during detection test. 

As shown in table 5.3 and figure 5.3, the voltage of the LRF and the distance to the 

board was calibrated. 
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Table 5.3 The corresponding values between LRF voltage output and real distance to 

the board. 

LRF voltage output (V) Real distance between LRF and board (m) 

7.1902 53.8 

5.4024 40.45 

3.1187 23.23 

 

 

Figure 5.3 Regression line and equation between LRF voltage and real distance to 

board. 

The regression equation is as following equation 5.1, 

 𝑦 = 7.51𝑥 − 0.17 (5.1) 

where 𝑥 is voltage output from the LRF and 𝑦 is a real distance between LRF and 

board. The distance between the stereo camera and the model ship was calculated by 

taking the geometry of the towing tank into consideration as following equation 5.2. 

 𝑦∗ = 7.51𝑥 + 8.73 (5.2) 
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where 𝑦∗ is the distance between stereo camera and model ship, and 𝑥 is the voltage 

output from the LRF. 

The length of the model ship used in the experiment is shown in figure 5.4 and was 

around 2 𝑚, and only the side was observed during the detection test. 

 

Figure 5.4 The model ship used in detection test. 

 

 

5.5 Dataset 
 

In order to observe the performance of the algorithm proposed in this research, the 

detection tests were carried out by changing dataset image, which has a large effect on 

the CNN performance. As the dataset, images of the model ship used in this detection 

experiment and of the other model ships have prepared as shown in figure 5.5. 
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(a) 

 
 

 

 

 
 

  

(b) 

Figure 5.5 Image samples in the dataset. (a) Image of model ship used in the detection 

system. (b) Image of the model ship not used in detection test. 

 

 

5.6 Network Configuration 
 

The detection test was carried out in the following cases to observe the performance 

of the algorithm according to the dataset type and proposal configuration as described 

in table 5.4. 
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Table 5.4 Dataset type and proposal configuration of networks for detection test. 

 Dataset type 

Network case Same model ship Different model ship Total amount 

Case 1 930 104 1034 

Case 2 930 104 1034 

Case 3 0 303 303 

Case 4 241 0 241 

 

 Proposal configuration 

 Anchor size Anchor ratio IoU threshold 

Case 1 1282, 2562, 5122 1:2, 1:1, 2:1 0.7 

Case 2 
42, 82, 162, 322, 442, 

642, 902, 1282, 2562 
1:4, 1:5, 1:6 0.5 

Case 3 
42, 82, 162, 322, 442, 

642, 902, 1282, 2562 
1:4, 1:5, 1:6 0.5 

Case 4 
42, 82, 162, 322, 442, 

642, 902, 1282, 2562 
1:4, 1:5, 1:6 0.5 

 

The network for case 1 is set to default proposal configuration and trained with the 

same model ship dataset image that will be observed in the test. This is for taking a see 

how powerful the existing CNN is with default configuration and for comparison with 

other modified networks. In case 2, the dataset is same to case 1 but the proposal 

configuration is changed. This configuration is modified for the purpose of small 

object detection. In case 3, the proposal configuration is same to case 2 but the dataset 

is composed of other model ship that is different from what will be observed. This is 

to see how much the network recognises when it is trained with a limited dataset. Case 

4 is to see the effect of the amount of dataset. It has a relatively small amount of dataset. 

In order to calculate mAP, the dataset consists of the 70% of train images and the 30% 

test images. 
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5.7 Test Result 
 

5.7.1 Network training result 
 

The results of training each network are shown in table 5.5. The mAP is a factor that 

evaluates the quality of dataset and is an index of how much the test set relates to the 

train set. The higher the mAP is, the higher the associativity is between images of the 

datasets. Since the mAP of the ZF net trained with the PASCAL VOC 2007 dataset is 

59.9% (Ren et al., 2015), the dataset used in this research is judged to be collected 

appropriately. 

Table 5.5 Training and detection results of networks for each case. 

Network case Train-Time (hour) mAP (%) 

Case 1 18.57 66.04 

Case 2 19.75 72.58 

Case 3 18.27 79.87 

Case 4 18.83 63.27 

 

 

5.7.2 Detection Test Result 
 

In the first detection test, the detection algorithm ran while the carriage with the stereo 

camera approaches to the model ship. It was carried out for each network in four cases. 

The initial distance between the stereo camera and the model ship is 47.86 𝑚, and the 

speed of the carriage is  0.1 𝑚/𝑠. It starts moving after 10 𝑠𝑒𝑐 from the start of the 

camera recording. The results of detection test are shown in figure 5.6-9. In all cases, 

the mean computing time per frame was 0.33 𝑠𝑒𝑐 so that it is considered that there is 

no problem in real-time detection.  
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Figure 5.6 The result of detection and distance estimation result of network case 1. 

 

Figure 5.7 The result of detection and distance estimation result of network case 2. 
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Figure 5.8 The result of detection and distance estimation result of network case 3. 

 

Figure 5.9 The result of detection and distance estimation result of network case 4. 

However, it was not able to estimate the distance more than 31.3 𝑚. The reason is due 

to the depth estimation technique, which is built on disparity images. Since the 

disparity images are drawn based on the texture of the image, wrong disparities can be 



36 
 

included due to low texture, low pixel, etc. (Hirschmüller, 2007). As the distance 

increases then the pixel containing visual information reduces, inaccurate disparities 

are generated and the accuracy of the distance estimation decreases. The example of 

disparity images at the distance of 47 𝑚 and 3 𝑚 is shown in figure 5.10. The plateau 

between 300 and 400 𝑠𝑒𝑐 in the cases 1, 2, and 4 (figure 5.6, 5.7, and 5.9) is also 

explained for the same reason. 

  

(a) 

  

(b) 

Figure 5.10 Disparity image. (a) Original frame and disparity image at the distance of 

3 𝑚. (b) Original frame and disparity image at the distance of 47 𝑚. 

Except for the detection farther than 31.3 𝑚, cases 1, 2, and 4 generally estimated 

distances close to the actual distance. However, in case 3, only the distance within 5 𝑚 

was estimated appropriately, and in case 4, excessive wrong detection occurred.  
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The percentages of the well-detected frame, calculated as in equation 5.3, and mean 

distance errors excluding the distance of more than 31.3 𝑚 are shown in table 5.6. 

Case 2, the network trained with the same model ship image dataset with the proposed 

proposal configuration, showed the highest detection performance. On the other hand, 

a network trained with a small amount of different model ship image dataset scarcely 

detected the model ship. The mean distance error was the smallest in the default 

network, case 1. 

 
𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑒𝑙𝑙 − 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑓𝑟𝑎𝑚𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑟𝑎𝑚𝑒𝑠
× 100 (%) (5.3) 

Table 5.6 Detection test results according to network case2. 

Network 

case 
Total #  

Well-

detected 

# 

Wrong-

detected 

# 

No-

detected 

# 

Percentage of 

well-detected 

frame (%) 

Mean of 

distance 

error (m) 

Case 1 1392 832 0 560 59.77 2.36 

Case 2 1350 927 51 372 68.67 2.90 

Case 3 1376 38 135 1203 2.76 11.34 

Case 4 1318 812 438 68 61.61 3.67 

 

1) Result comparison between case 1 and case 2; focusing on proposal 

configuration 

In cases 1 and 2, the dataset image is the same as the model ship used in detection test, 

and the number of those was large enough. The difference between the two cases was 

the proposal configuration, where case 2 has more anchor sizes than case 1 and the 

anchor ratio is closer to the size of the model ship used in this test. The IoU threshold 

of case 2 was also set to a smaller than case 1. 

The percentage of well-detected frame in case 1 and case 2 was 59.77% and 65.85%, 

respectively. This shows that the modified proposal configuration improved the 

recognition success rate by 6.08% from the default. The greatest improvement was to 

detect at a distance more than 25 𝑚 as shown in figure 5.11-13. For example, At the 

                                                           
2 In this paper, ‘#’ refers the number of frames. 
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time of 231 𝑠𝑒𝑐, network case 1 was not able to  recognise the model ship, whereas 

network case 2 recognised it. 

 

 

Figure 5.11 Comparison of well-detected distance range between case 1 and case 2. It 

shows the improvement of detection at the distance more than 25 𝑚 as marked in 

circles. 
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Figure 5.12 Visualisation of distance estimation and object recognition at the time of 

231 𝑠𝑒𝑐 in case 1. Nothing detected. 

 

Figure 5.13 Visualisation of distance estimation and object recognition at the time of 

231 𝑠𝑒𝑐  in case 1. The numbers above the bounding box indicate the estimated 

distance, and the text below indicates the classification result and corresponding 

matching probability. 
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However, there was the wrong-detected frame in case 2 as shown in figure 5.14-16. At 

the time of 277 𝑠𝑒𝑐, network case 1 recognised model ship properly, but network case 

2 showed wrong recognition result. The percentage of the wrong-detected frame in 

case 2 was 3.78% higher than case 1. This is why the mean distance error of case 2 is 

higher than case 1. Nevertheless, as the no-object-detected frame reduced from 40.23% 

to 27.56%, so that overall model ship recognition success rate increased. 

 

Figure 5.14 Wrong detection in case 2 compared to case 1. The parts where wrong 

recognition are marked as circles 
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Figure 5.15 Visualisation of distance estimation and object recognition at the time of 

277 sec in case 1. The numbers above the bounding box indicate the estimated distance, 

and the text below indicates the classification result and corresponding matching 

probability. 

 

Figure 5.16 Visualisation of distance estimation and object recognition at the time of 

277 sec in case 2. The numbers above the bounding box indicate the estimated distance, 

and the text below indicates the classification result and corresponding matching 

probability. 
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2) Result comparison between case 2 and case 3; focusing on dataset quality 

Cases 2 and 3 have the same proposal configuration but the dataset image was different. 

The dataset images in case 2 have mainly consisted of the images of the same model 

ship that has been used in the detection test. On the other hand, the dataset image in 

case 3 is composed of images of completely different model ships that have not been 

used in the detection test. The purpose of arranging the dataset was to test the CNN’s 

strength that it can recognise certain objects even if it has not been trained with the 

same image. However, there was a limit to collect enough amount of images of 

different model ships, so that only 303 images were contained in the dataset in case 3. 

As shown in figure 5.8, network case 3 did not detect the model ship at the distance 

more than 6 m, and it misrecognised or did not recognised at all in 97.24% of the 

frames as described in table 7. This implies that the quality of the dataset has the 

greatest effect on the performance of the detection algorithm, especially CNN, and its 

effect is extremely critical. 

 

3) Result comparison between case 2 and case 4; focusing on dataset quantity 

Case 2 and case 4 have same proposal configuration and they both were trained with 

images of the model ship that has been used in the detection test. The difference 

between them is a number of dataset images, 1034 images for case 2 and 241 images 

for case 4. The purpose of this comparison is to see the influence of the dataset quantity. 

As indicated in table 5.6, network case 4 made a result that a percentage of the well-

detected frame is 61.61%, which is 7.6% lower than case 2. From this, it is considered 

that the amount of dataset affects the CNN. The larger the amount of dataset, it is 

expected that the better performance of the detection algorithm. 
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5.8 Summary 
 

Overall, the proposed algorithm was impossible to estimate over a certain distance due 

to disparity-based calculation in terms of distance estimation. On the object detection 

side, detection noise was occurred due to false recognition, but changing the proposal 

configuration showed a slight improvement in performance compared to the default. 

Due to the characteristics of CNN, the performance of the proposed algorithm was 

more dominantly influenced by the quality of dataset than the proposal configuration 

and quantity of dataset. 

6 Discussion 
 

The aim of this research was to develop a vision-based detection algorithm for USV. 

For this, the Faster R-CNN is used to recognise and localise objects on frames, and the 

depth estimation with a stereo camera is used to estimate the distance to detected 

objects. In order to evaluate the proposed algorithm and to examine the factors that 

affect the performance of the algorithm, several case studies were carried out with 

model ship detection test. 

First of all, the average computation time per frame was 0.33 𝑠𝑒𝑐, revealing that it is 

practical for real-time detection. When CNN is trained with high quality and quantity 

of dataset, it detected the model ship with a probability of almost 70% and the average 

distance error was within 3 𝑚. Unlike conventional vision-based detection system, the 

proposed algorithm clarifies the type of object through classification so that it derives 

additional factors that contribute to the collision risk. It thus seems that it is possible 

to support the automation of the USV with low cost by simplifying existing expensive 

equipment. 

However, the proposed detection algorithm required a high quality and a large amount 

of dataset for high performance. In particular, the quality of the dataset has had the 

greatest impact on the performance. This is due to the nature of artificial intelligence 

that draws erroneous results when it learns with incorrect information. This is why it 

needs a large amount of dataset to cover this enough. Another limitation observed in 
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this test is that it was impossible to estimate the distance over 30 𝑚. Since the depth 

estimation computes the disparity based on the texture difference between the left and 

right frames of the stereo camera, if the texture or resolution is low, the distance 

estimation is limited. This limitation in this test was because the frame was taken at a 

resolution of 640 × 480. 

The most important point for the real application of this algorithm is a large amount 

of high-quality image dataset of marine obstacles. Due to advances in data science, it 

is expected that organisations providing image databases increases then it will be able 

to collect these vast amounts of datasets effortlessly in the future. We plan to train the 

CNN by collecting image datasets of various objects that may exist in actual sea, not 

model ship, and to make a more powerful detection algorithm by using a high-

resolution stereo camera. In addition, since the ultimate goal of the USV detection 

system is collision avoidance, we plan to devise a method to calculate the collision risk 

using the information of the type of object, direction to object, and distance to object, 

which are derived from the proposed algorithm. 
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7 Conclusion 
 

As automation in various fields receives the spotlight, it is identified that USV in the 

marine field has also been attracting much attention and has been actively researched. 

For its complete automation, a secure autopilot is needed, so we have looked at how 

the USV acquire information about its surrounding that may have the risk of collision. 

It was necessary to simplify the equipment in terms of economic and light weight of 

the USV, so we have studied how to handle the information with the equipment. We 

have confirmed that this can be achieved by using the Faster R-CNN and depth 

estimation with a stereo camera. This has proven the feasibility of developing an 

algorithm that simultaneously calculates the type, position, and distance of detected 

objects differentiated from existing vision-based detection system. 

We implemented an object detection algorithm combining Faster R-CNN and depth 

estimation with a stereo camera. The dataset for Faster R-CNN has been collected as 

the images of model ship used in detection test and other model ships. The Faster R-

CNN has trained with that dataset for its fine-tuning. In this process, we have felt the 

need for object recognition that occupies a small area on the frame, so that we 

accordingly modified the existing default configuration of Faster R-CNN and resized 

the images in the dataset.  

In order to examine the efficiency of the proposed algorithm and its influencing factors, 

Faster R-CNN has been trained in four cases by varying the quality, quantity of dataset, 

and proposal configuration. Test results have shown that the quality of the dataset has 

the greatest effect on the performance of the algorithm. In this research, the Faster R-

CNN has shown almost 70% recognition ability if such dataset condition is satisfied.  

The distance estimation using depth estimation in this test cannot estimate the distance 

over 30 𝑚 . This happens because the depth estimation technique computes the 

disparity based on the texture of the frame. As the distance to the model ship increases, 

the number of pixels containing the visual information of the area decreases. On the 

other hand, when estimating the distance within 30 𝑚, the average distance error has 

been only within 3 𝑚. Therefore, if the resolution of the camera is high, then the depth 

estimation technique seems to be well worth applying. 
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Finally, the average computation time per frame has been 0.33 𝑠𝑒𝑐 when computing 

with the above two techniques combined. Therefore, it has been confirmed that there 

is a possibility of real application if high quality and quantity dataset can be collected 

and a high-resolution stereo camera is used. 
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8 Future work 
 

8.1 Improvement of recognition and distance 

estimation 
 

The proposed algorithm is a combination of Faster R-CNN and depth estimation. 

Notably, Faster R-CNN is a state-of-the-art image processing technique that imitates 

animal neuron structures and is constantly being studied to improve its performance 

and speed. However, it is not simple for users to intuitively optimise its structure and 

other configurations due to the hidden layer of neural network, which is called the 

black box, and the processing of a large amount of data with enormously deep layers. 

Research on the structure development of CNN is carried out by experimenting with 

various changes of network structure and examining the results. Furthermore, such 

research requires a lot of high-performance GPU due to the characteristic of CNN that 

process large amounts of data. Therefore, there is a limitation in developing the 

structure of CNN or optimising other configurations personally.  

However, the CNN structures released so far has no problems in practical use if the 

quality and quantity of the dataset are high enough. Some institutions have provided 

image databases for CNN, and the amount of these is steadily growing. Using these 

databases, CNN can be fine-tuned to recognise more accurately and more diversely. 

Therefore, we will focus on collecting these datasets rather than optimising 

configurations that have a relatively small impact on CNN. 

In this detection test, it was not able to estimate the distance more than 30 𝑚. As 

described in chapter 7, this is mainly due to the resolution of the stereo camera. 

Therefore, we will test with a higher resolution stereo camera in the future. Moreover, 

it will help improve the classification of CNN by contributing to catch features by 

including more pixels in the same region.  
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8.2 Path planning for obstacle avoidance 
 

The main reason for acquiring information from the proposed detection system is to 

support USV to avoid a collision. The information about the type of detected object 

and the distance to object obtained by the proposed algorithm can be used in various 

ways to create a safe path of an unmanned ship as an indicator to calculate the collision 

risk. 

My future research is path planning for USV with the method of machine learning 

based on the index of collision risk, extending proposed detection system. Since the 

proposed algorithm obtains the information by the vision sensor, there is a lack of 

information diversity than a system equipped with a relatively large number of sensors. 

Therefore, in order to constitute a reliable collision avoidance system, the obtained 

information is required to be processed advisedly. One idea to solve this problem is to 

use Q-learning (Watkins and Dayan, 1992), which is a model-free reinforcement 

learning technique. This is a method to find an optimal solution based on fitness. We 

plan to implement a path planning algorithm by creating a fitness function considering 

the type, position, distance information of the object, obtained by the proposed 

algorithm, and COLREGs. 
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Appendix 
 

A Faster R-CNN 
 

In recent years, due to the improvement of data science and computer performance, 

deep learning that requires a large number of datasets is attracting attention. Deep 

learning is a field of machine learning, and it enables to perform a task by learning a 

large number of datasets. The architecture of this has been applied to various fields 

such as computer vision, speech recognition, natural language processing, and 

machine translation, by replacing what human experts are performing. Among them, 

CNN is a specialised architecture for image processing, which classifies objects on the 

screen. However, in order to utilise it practically, it was necessary to not only classify 

but also localise the object on the screen. This led to the emergence of R-CNN, which 

was able to identify object location as well. However, this had also a limitation in 

applying to real-time object detection due to excessive computing time. As a result, 

Faster R-CNN has emerged as an algorithm for real-time object detection that 

dramatically shortens computing time. This chapter describes the ANN, CNN, R-CNN, 

Fast R-CNN and RPN that make up the Faster R-CNN. 

 

 

A.1 ANN 
 

ANN is a computing system that mimics the neuron structure of the animal brains. 

Unlike other systems that are artificially programmed to perform a task, ANNs are 

programmed themselves by learning various examples of the task. This has the 

advantage of being able to program much easier than conventional programming if it 

is difficult to create rules by hand. 

An ANN consists of a collection of units called artificial neurons, which are 

interconnected. They transmit signals to other neurons, and then the neurons that 

receive the signal transmit the processed signal to another neuron. Neurons have their 

own unique state, usually represented by real numbers, and they have their own weight 
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formed by the learning process. These weights serve to reinforce or weaken the signal. 

Neurons are normally arranged in layers, and depending on the type of layer, the 

methods of transforming the input signal are different. The signals are passed in 

succession from the first layer to the last layer in one direction as shown in figure A.1. 

 

Figure 8.2.1 ANN structure (Glosser.ca, 2013a). 

The important elements of ANN are neurons, weights, propagation functions and 

learning rules. A neuron represented by 𝑗 that receives input 𝑝𝑗(𝑡) from upper neuron 

contains several components. This neuron has activation 𝑎𝑗(𝑡)  according to the 

discrete time parameter. It also has a fixed threshold value 𝜃𝑗 if it is not changed by 

the learning function. An activation function 𝑓 computes a new activation for time 𝑡 +

1 from 𝑎𝑗(𝑡), 𝜃𝑗  and input 𝑝𝑗(𝑡) with the relation as following equation A.1. 

 𝑎𝑗(𝑡 + 1) = 𝑓(𝑎𝑗(𝑡), 𝑝𝑗(𝑡), 𝜃𝑗) (A.1) 

An output function 𝑓𝑜𝑢𝑡 computes the output from the activation as follows: 

 𝑜𝑗(𝑡) = 𝑓𝑜𝑢𝑡 (𝑎𝑗(𝑡)) (A.2) 

At neuron connection, the output of the upper neuron 𝑖 is passed to the input of the 

lower neuron 𝑗, and each of connection is allocated a weight 𝜔𝑖𝑗. The propagation 
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function computes the input 𝑝𝑗(𝑡) to be passed to the neuron 𝑗, from the output 𝑜𝑗(𝑡) 

of the upper neuron, and it is normally expressed as follows: 

 𝑝𝑗(𝑡) = ∑ 𝑜𝑖(𝑡)𝜔𝑖𝑗

𝑖

 (A.3) 

The learning rule is a rule for producing the output of a network in preferred form, 

usually by modifying weights and thresholds. 

Neural network models can be represented by a simple mathematical model defined 

as 𝑓: 𝑋 → 𝑌 . Mathematically, the network function 𝑓(𝑥)  is defined from other 

functions 𝑔𝑖(𝑥), and these 𝑔𝑖(𝑥) functions are also defined from other functions, as 

visualised in figure A.2. This is expressed in the form of a nonlinear weighted sum as 

𝑓(𝑥) = 𝐾(∑ 𝜔𝑖𝑔𝑖(𝑥)𝑖 ), where 𝐾 is a predefined function called activation function 

such as hyperbolic tangent or sigmoid function. This activation function serves to 

smooth the change in the input value. 

 

Figure 8.2.2 ANN dependency (Glosser.ca, 2013b). 

In such a neural network, given a class of function 𝐹, learning refers to the use of 

observations to find 𝑓∗ ∈ 𝐹  that solves given task in terms of optimisation. This 

involves defining the cost function 𝐶: 𝐹 → ℝ for the optimal solution 𝑓∗, and the cost 

function depends on the task. Another learning feature of the neural network is 

backpropagation. Backpropagation is a technique to calculate the gradient of the loss 

function using the weights in ANN. Backpropagation weight updates are performed 

through a stochastic gradient descent as follows: 

 𝜔𝑖𝑗(𝑡 + 1) = 𝜔𝑖𝑗(𝑡) + 𝜂
𝜕𝐶

𝜕𝜔𝑖𝑗
+ 𝜉(𝑡) (A.3) 
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where 𝜂 is the learning rate, 𝐶 is the cost function and 𝜉(𝑡) is a stochastic term. The 

cost function depends on the learning type and the activation function. 

 

 

A.2 CNN 
 

CNN is a specialised network for image classification based on the basic concepts of 

ANN and derives a class of image as output from an input image. The pioneering 

model of CNN was published in 2012 by Alex Krzheevsky, Ilya Sutskever, and 

Geoffrey Hinton, as the name of AlexNet (Krizhevsky et al., 2012). They designed a 

“large, deep convolutional neural network” and then won the 2012 ILSVRC 

(ImageNet Large-Scale Visual Recognition Challenge) (Russakovsky et al., 2014) by 

using that. ILSVRC is an annual worldwide competition of computer vision, to see 

which computer vision model is the best for classification, localisation, detection, etc. 

Through the AlexNet, a top 5 test error rate for classification was reduced down to 

16.4%, which was astonishingly less than the best (Sánchez and Perronnin, 2011) in 

the previous competition, 2011 ILSVRC, which was 25.8%. (Russakovsky et al., 2014) 

CNN captured a biological idea from visual cortex that receives visual information in 

the brain. In the experiment conducted by Hubel and Wiesel in 1962 (Hubel and 

Wiesel, 1962), some individual neuronal cells only reacted to the appearance of edges 

in the scene, which means they respond particular visual component.  

For humans, when they classify an object, the input is the scene that they look at, and 

the output is their judgment what the object is. Humans classify objects with 

identifiable features such as two legs of a human, four wheels of a car, etc. They 

instantly label objects from the input based on the generalised visual pattern they 

learned, despite different image environment. This ability of object recognition is 

typically formed by learning from what they look at around them as growing up 

naturally. On the other hands, the computer  accepts an image as an array of pixel 

intensity. The array is represented as 𝑤𝑖𝑑𝑡ℎ × ℎ𝑒𝑖𝑔ℎ𝑡 × 𝑑𝑒𝑝𝑡ℎ, and each number is 

represented from 0 to 255 which illustrates the pixel intensity at each point, as shown 

in figure A.3. Width and height depend on the pixel the image has, and depth is 
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generally 3, each of them demonstrates the intensity of red, green and blue respectively. 

In a computer, the concept of classification is outputting probability of the class of the 

image via the series of convolutional layers, where low-level features such as edges 

and curves are extracted first and then more abstract features are derived. 

  

(a) (b) 

Figure 8.2.3 Visual perception (Deshpande, 2016b). (a) What human see. (b) What 

computers see. 

 

 

A.2.1 CNN Architecture 
 

The convolutional neural network is characterised by spatial processing of data, unlike 

regular neural network. A regular neural network receives a single vector input, 

processes it, and sends it to the next layer, a series of hidden layers. All neurons in the 

hidden layer are fully connected to all neurons in the previous layer, and each neuron 

in one layer is absolutely independent of each other as shown in figure A.4. 
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Figure 8.2.4 Typical neural network (Szymkowiak, 2017). 

On the other hand, in a convolutional neural network, data is arranged in 3 dimensions 

with width, height, and depth, where depth represents the third dimension of the 

volume as shown in figure A.5. For example, an image with 32 × 32 pixel with three 

colours is represented by a volume of 32 × 32 × 3. The neurons in the layer are not 

fully connected but are connected only to a small area of the previous layer. Besides, 

by continuing to reduce width and height during the forward pass, the final result is 

output as a single vector of 1 × 1 × 𝑛 representing the class score, where the 𝑛 is a 

final depth that is different for network structure. 

 

Figure 8.2.5 Regular 3-layer neural network (Karpathy, 2015). 

The structure of CNN is formed by stacks of different layers that convert the input 

volume to the output volume visualised in figure A.6. These CNN layers generally 

include a convolutional layer, a polling layer, a ReLU layer, a fully connected layer, 

and a loss layer. 
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(a) 

 

(b) 

Figure 8.2.6 Convolutional neural network architecture. (a) Visualisation of activation 

and volume’s slices (Karpathy, 2015). (b) Visualisation of activation and volume’s 

slices of LeNet (Deshpande, 2016b). 

 

 

A.2.2 Convolutional Layer 
 

The convolutional layer is a fundamental building block of CNN and the first layer of 

CNN is always the convolutional layer. This layer has a parameter called filter, which 

is learnable and has a small receptive field. This filter has its own unique weight and 

generates a 2-dimensional activation map of the filter by calculating the dot product 

between filter and input by convolving the entire volume of the input volume during 
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the forward pass. During convolving, a filter with a larger weight creates an activation 

map with a larger value of the receptive field. As a result, these filters only activate for 

a particular feature in the space of the input volume. This convolving process is 

repeated for the number of filters, and each activation map generated in this process is 

stacked in the direction of the depth dimension. These activation maps, stacked by all 

filters, form the output volume of the convolutional layer.  

The computing process in this convolutional layer is distinguished from other common 

neuron connection structures, that is, local connectivity. When processing high-

dimensional input volume such as an image, connecting all the upper and lower 

neurons is inefficient because the spatial structure of the data is not taken into 

consideration. The convolutional layer has overcome the inefficiency of existing 

regular neuron connection by connecting each neuron only to the local region of the 

input volume as shown in figure A.7. The spatial extent of this connectivity is 

expressed as the receptive field of the neuron. 

 

(a) 

 

(b) 
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(c) 

Figure 8.2.7 Local connectivity. (a) Existing ANN that does not consider local 

connectivity (Karpathy, 2015). (b) CNN considered local connectivity (Karpathy, 

2015). (c) CNN considered local connectivity (Deshpande, 2016b). 

Another feature of the convolutional layer is how to arrange the data spatially. The 

convolutional layer controls the size of output volume with three parameters: depth, 

stride, and zero-padding. 

The depth is the size of the output volume in the third dimension and corresponds to 

the number of user-defined filters. It controls the number of neurons in a layer that is 

connected to the same region of the input volume. The stride defines how many pixels 

the filter moves at a time during convolving and adjusts the spatial dimension of the 

output volume in the width and height directions. The zero-padding adds a value of 0 

outside the boundary of the input volume, which also controls the width and height of 

the output volume. The spatial size of the output volume is calculated as a function of 

the input volume size 𝑊, the kernel field size 𝐾, stride 𝑆, and zero padding size 𝑃. The 

formula for calculating the number of neurons for a given volume is 

 (𝑊 − 𝐾 + 2𝑃) 𝑆 + 1⁄  (A.4) 

If the number calculated by this formula is not an integer, the stride is erroneously set 

and the neuron cannot be tiled to fit the input volume. 

http://endic.naver.com/enkrEntry.nhn?entryId=b48c58534c5944448ecbd1810b04b8ce&query=erroneously
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Another feature of the convolutional layer is that it shares parameters. This reduces the 

number of free parameters that are generated excessively. The parameter sharing is 

based on a reasonable assumption that if a particular patch feature is useful for 

computing at a specific spatial location, then this patch feature is also useful in other 

locations. That is, each filter has the same weight and bias. Therefore, since all neurons 

in a filter share the same parameters, each filter computes by convolving its weight to 

the input volume during the forward pass. As a result of this convolution, activation 

maps are generated, and these maps, which are created with different filters, are 

stacked all together to depth dimension to create output volume. 

 

 

A.2.3 Pooling Layer 
 

The basic concept of the pooling is that the precise location of the features is not 

important, and only the approximate relative positions need to be matched. The polling 

layer reduces the spatial size of the input volume and reduces the parameters and 

computation of the network. Most commonly, max pooling is used, which samples the 

maximum value at each divided part of the single depth slice of the input volume as 

shown in figure A.8. 

 

Figure 8.2.8 Example of max pool with a 2 × 2 filter and a stride of 2 (Deshpande, 

2016b). 

Pooling is applied independently to all depth slices in the input volume. The most 

common form is a polling layer with a filter size of 2 × 2 and stride of 2, which 
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abandon 75% of the activation. Due to the elimination of data that may be used, there 

is a tendency to use smaller filters (Graham, 2014) or not to use the pooling layer itself 

(Springenberg et al., 2014). However, pooling is an important component in the Fast 

R-CNN architecture, which is part of the main algorithm of this study. 

 

 

A.2.4 ReLU Layer 
 

ReLU stands for Rectified Linear Units, where the non-saturating function 𝑓(𝑥) =

𝑚𝑎𝑥(0, 𝑥), as shown in figure A.9, is applied. It enhances the nonlinearity of the 

decision function and the whole network without involving the receptive field of the 

convolutional layer. Other activation functions include hyperbolic tangent and sigmoid 

function, but ReLU is preferred because of the low penalty of training speed and 

accuracy. 

 

Figure 8.2.9 Rectifier and softplus functions (Stowell, 2015). 
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A.2.5 Fully Connected Layer 
 

Once the input volume passes through several convolutional and max pooling layers, 

the final high-level features are created. These higher-level features are fed into a fully 

connected layer where inferences are made. All neurons in this layer are connected 

with all activations of the previous layer, and these activations are calculated on the 

same principle as normal ANN. 

 

 

A.2.6 Loss Layer 
 

The loss layer is the final layer of the CNN architecture, which stipulates how to 

penalise the deviation between the predicted and actual labels. The loss function 

applied to this layer is appropriately selected according to the task. These loss 

functions include the sigmoid cross-entropy loss used to predict independent 

probabilities in [0, 1] , the Euclidean loss used to regress to the real-value label 

(−∞, ∞), and softmax loss used to predict a single class among classes. In this paper, 

Fast R-CNN uses softmax loss and its function is given as follows: 

 𝜎(𝒛)𝑗 =
𝑒

𝑧𝑗

∑ 𝑒𝑧𝑘𝐾
𝑘−1

 for 𝑗 = 1, 2, … , 𝐾. (A.4) 

 

where 𝒛  is a K-dimensional vector of arbitrary real values, and 𝜎(𝒛)  is a K-

dimensional vector of real values. 

 

 

A.2.7 Training of CNN 
 

A training process follows the idea of how humans learn to classify objects. For 

humans, when they were born, they cannot distinguish objects at all due to the inability 

of feature cognition and previous visual knowledge. As they grow up, by learning the 
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corresponding labelled image, they obtain the ability of classification by observing the 

features of objects such as colour, edge, the shape of a curve, etc. Likewise, before the 

training of network, it doesn’t output the correct probability of corresponding class 

due to randomly initialised filters, which support feature cognition. Through a training 

process, the filters are optimised to catch appropriate features using given input images 

and corresponding label. This process for CNN is called backpropagation. 

Backpropagation consists of four parts, the forward pass, the loss function, the 

backward pass and the weight update. During the forward pass, the array of numbers 

of input image passes through the entire network. It doesn’t output acceptable 

probability of class at first due to randomised filter.  

 

 

A.2.8 Loss Function in Training 
 

Generally, a loss function is defined as following MSE. 

 𝐸𝑡𝑜𝑡𝑎𝑙 = ∑
1

2
(𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑜𝑢𝑡𝑝𝑢𝑡)2 (A.5) 

In order to achieve the correct classification result with an equal label corresponding 

to given image, the weights are required to be modified when it outputs unexpected 

classification result. The loss value from the loss function is utilised to modify the 

weights.  

 

 

A.2.9 Backward Pass in Training 
 

During a backward pass, the contribution from weight to loss is calculated as 𝑑𝐿 𝑑𝑊⁄ , 

where L is loss and W is weight. It determines how much the weight will be updated. 

Afterwards, weights are updated based on the contribution of each weight, 𝑑𝐿 𝑑𝑊⁄ , as 

the following equation. 
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 𝑤 = 𝑤𝑖 − 𝜂
𝑑𝐿

𝑑𝑊
 (A.5) 

where 𝑤 is weight, 𝑤𝑖 is initial weight, and 𝜂 is learning rate. The learning rate, 𝜂, is 

a manual parameter that determines the convergence speed of weight. If it is high, the 

weights are changed rapidly, but the final optimised weight is not accurate. These 

processes constitute one iteration of training, and it is repeated by the number that 

programmer sets. 

 

From this basic CNN structure, several groups developed advanced structures such as 

AlexNet (Krizhevsky et al., 2012), ZF net (Zeiler and Fergus, 2013), VGG Net 

(Simonyan and Zisserman, 2014), GoogleNet (Szegedy et al., 2015) and ResNet (He 

et al., 2016), in order to improve classification performance. The performance of these 

structures was evaluated by Simonyan et al.(Simonyan and Zisserman, 2014) 

 

 

A.3 R-CNN 
 

R-CNN (Girshick et al., 2014) was first introduced in 2013, by Ross Girshick, Jeff, 

Trevor Darrell and Jitendra Malik. It does not only classify but also localise the objects 

in an image with a bounding box. The R-CNN consists of three modules: independent 

region proposals, large convolutional neural network, and a set of class-specific linear 

SVMs. In the region proposals module, it extracts candidate sets that the detector can 

detect. In the convolutional neural network module, a feature vector with a fixed-

length is extracted through the forward pass of the input volume. In the linear SVMs 

module, it finally classifies the image. In region proposal process, Selective Search 

(Wang et al., 2013, Uijlings et al., 2013) is used to extract the region that contains the 

object with high probability. It generates 2000 independent region proposals from an 

image and extracts the feature vector from proposals using CNN. In classification 

process, it classifies each region proposed from Selective Search with linear SVM. The 

feature vector is applied bounding box regressor to reap precise coordinates as well. 
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Non-maximum suppression is applied to restrain the worthless bounding boxes that 

overlap the region of IoU in order to display one bounding box for one object. The R-

CNN workflow is shown in figure A.10. 

 

(a) 

 

(b) 

Figure 8.2.10 R-CNN workflow (Deshpande, 2016a). 

 

 

A.4 Fast R-CNN 
 

The R-CNN (Girshick et al., 2014) has succeeded in locating objects on the screen, 

but it had a major drawback (Girshick, 2015). First, training is performed in a multi-

stage pipeline. The R-CNN first fine-tunes the convolutional network for objects 
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proposals. The SVMs then is fitted to the features of this convolutional network. These 

SVMs function as object detectors, and the final step is to learn bounding-box 

regressor. Second, training takes a long time and requires a lot of storage space. For 

each object proposal in each image, the feature is extracted and recorded on a disk. For 

deep networks such as VGG16, training for 5000 images takes about 2.5 days on a 

GPU and requires hundreds of gigabytes of storage. Third, object detection is slow. 

Detection with VGG16 takes 47 seconds per image based on GPU.  

In order to alleviate the speed problem, SPPnets (He et al., 2014) was proposed that 

share a portion of the computation. The SPPnet does not extract the convolutional 

feature map for the object proposals, but preferentially extracts the convolutional 

feature map for the entire input image, and then classifies the object proposals from 

this feature map. Higher-level features are extracted from this feature map into a fixed 

feature map with the size of 6 × 6 through max pooling. These pooled feature maps 

are constructed as in spatial pyramid pooling (Lazebnik et al., 2006). The SPPnet 

reduced test time of R-CNN by 10 to 100 times and training time by 3 times, but 

training was still multi-stage pipeline and learning of preceding layer of spatial 

pyramid pooling was impossible. Due to the fixation of this first convolutional layer, 

recognition accuracy has been limited, so Ross Girshick has developed Fast R-CNN 

that improves both accuracy and speed to solve these problems of R-CNN and SPPnet.  

 

Figure 8.2.11 Fast R-CNN workflow (Girshick, 2015). 

The architecture of Fast R-CNN is shown in figure A.11. In training of the Fast R-

CNN, like the SPPnet, it first extracts the convolutional feature map for the entire 

image. Afterwards, In RoI pooling layer, it extracts the fixed-length feature vector 

from RoI projected on the convolutional feature map. The extracted vectors then fed 
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into a series of fully connected layers, and enter to softmax and bounding-box 

regressor, respectively. The softmax estimates the probability of each object class 

including the background class, and the bounding-box regressor extracts four real 

numbers that optimise the bounding-box for the class. 

 

 

A.4.1 RoI Pooling Layer 
 

In the RoI pooling layer, it transforms the projected RoI into a fixed-size small feature 

map of size (𝐻 × 𝑊) by max pooling, where the 𝐻 and 𝑊 are the height and width of 

pooled feature map respectively. It produces the output by dividing this RoI window 

with sub-window of size  (ℎ/𝐻 × 𝑤/𝑊) and calculating each corresponding sub-

windows, where the ℎ and 𝑤 are the height and width of projected RoI (He et al., 2014). 

 

 

A.4.2 Fine-tuning 
 

The shortcoming of SPPnet and R-CNN is that back-propagation is extremely 

inefficient because each RoI comes from a different image, which means it processes 

vast amounts of data during training.  In the Fast R-CNN, it increases efficiency by 

sharing features, where SGD mini batches are sampled hierarchically. It samples N 

images and then samples R/n RoIs from each image, from which RoIs of the same 

image share memory in forwarding and backwarding passes. In addition, instead of 

training softmax classifier, SVMs, and regressors in three divided stages, Faster R-

CNN performs simplified training with only one stage to optimise softmax classifier 

and bounding-box regressors mutually (Deshpande, 2016a). 

 

 

A.5 Faster R-CNN 
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The experiment result of Fast R-CNN disregarded the time spent on region proposal, 

so it was still unsatisfactory to apply to real-time object detection. The main factor of 

this problem was region proposal that is overburdened in computation. Shaoqing Ren, 

Kaiming He, Ross Girshik and Jian Sun solved it by inserting an RPN instead of 

Selective Search after the last convolutional layer (Ren et al., 2015) as shown in figure 

A.12. The Faster R-CNN reduced running time by sharing the convolutional 

computations in contrast with Fast R-CNN that conduct region proposal separately 

(Deshpande, 2016a).  

 

Figure 8.2.12 Faster R-CNN workflow (Deshpande, 2016a). 

 

 

A.5.1 RPN 
 

In the first step of the RPN, the images are fed into a network and a set of convolutional 

feature maps output. Thereafter, a sliding window is prepared to spatially explore these 

feature maps. Each sliding window has 9 anchors that have 3 different aspect ratio and 

scales as shown in figure A.13. Then a sliding window slides over these feature maps. 
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Figure 8.2.13 Generated anchors for one sliding window (Mirjalili, 2017). 

During this, the sliding widow computes the value, 𝑝∗, which refers how much these 

anchors overlap with the ground-truth bounding box as follow. 

 𝑝∗ = {
1 𝑖𝑓 𝐼𝑜𝑈 > 0.7

−1 𝑖𝑓 𝐼𝑜𝑈 < 0.3

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (A.6) 

IoU is the overlapped region between anchor and ground-truth box and defined as 

follows.  

 𝐼𝑜𝑈 =
(𝐴𝑛𝑐ℎ𝑜𝑟) ∩ (𝐺𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ 𝑏𝑜𝑥)

(𝐴𝑛𝑐ℎ𝑜𝑟) ∪ (𝐺𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ 𝑏𝑜𝑥
 (A.7) 

After this, spatial features extracted by sliding window from feature maps go through 

the network that performs classification and regression. The regressor outputs a 

predicted bounding box, and the classifier computes the probability for each box if it 

includes the object or not as shown in figure A.14 (Mirjalili, 2017).  
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Figure 8.2.14 RPN workflow (Mirjalili, 2017). 


