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Abstract

Examples of bio-inspired technology can be found almost everywhere in society: robots with specific

capabilities, materials with unique physical and chemical properties, aerodynamic systems, and

architectonic structures are a few examples of taking profit of evolution-driven processes to solve

common engineering problems. One field of research taking advantage of bio-inspiration is that

of acoustical engineering, aiming to find solutions to problems arising from the miniaturisation of

microphones and loudspeakers. Studying the auditory organs of insects to seek inspiration for new design

structures is one of the best ways to solve such an important problem. Another discipline of science

that has experienced a research boom is that of materials science, as development of new materials has

attracted the attention of researchers. In addition, three-dimensional (3D) printers have contributed to

further development in materials science making the production process more efficient.

The aim of this research is to bring these fields of science together to develop novel bioinspired,

polymer-based sensors presenting functional specific acoustic properties after 3D-printing. While the

study of complex biological hearing systems provides inspiration to develop sensors featuring specific

properties, the use of polymer-based materials allows the customization of the manufacturing process, as

the produced parts adapt to the desired needs.

In this thesis one such insect auditory system that has been thoroughly studied is that of the

desert locust Schistocerca gregaria as it presents a simple structure that allows for acoustic frequency

selectivity and displays nonlinear acoustic phenomena. Prior to the development of a bio-inspired system,

a mathematical description of the mechanical response of such a structure is presented. Furthermore, the

physical behaviours measured on the locust tympanal membrane have been studied using finite element

analysis. The 3D-printed functional sensors have been used to determine the degree of accuracy between

experimental and theoretical results.
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Chapter 1

Introduction

The process of evolution through natural selection permits biological systems to display simple yet

efficient adaptations to perform elaborate functions and address complex challenges. Observation and

understanding of such adaptations provide huge inspiration that can be applied to solve modern human

problems. This approach, known as bio-inspiration, is a rapidly growing field of research and has

become a very common tool during recent years within a wide range of applications such as medicine,

chemistry, robotics [1–4], and more. Taking inspiration from natural systems has already allowed

scientists to develop aerodynamic systems, robots with specific capabilities, and materials that display

unique properties [3, 5, 6]. One such approach of the application of biomimicry can be found in the

study of acoustic systems inspiring the design of novel artificial acoustic sensors. The ability to hear is

a fundamental tool for biological organisms to sense and interact with their environment as it displays

great sensitivity, compatibility with environmental conditions, sophistication and complexity of the

response, some features that cannot be currently matched by engineered sensors or transducers. All these

characteristics assist biological organisms to detect prey, predators and conspecifics. Similarly sound

production can be used for communication and vision purposes (i.e. use of ultrasound by nocturnal

bats). As sound carries a very low level of energy, biological sound sensors must inherently be very

sensitive, reaching the point to be able to detect sub-nanometre sound particle displacement. Insects

are thought to be the first animals to have evolved the ability to detect sounds [7], and it is currently

believed that hearing has evolved at least nineteen times independently within this class [8]. Several

hundred million years of evolution, combined with the phenomenal diversification resulting from all

these independent but convergent evolutionary adaptations mean that, today, the diversity of functions

and modalities involved in sound detection in insects is unparalleled in the animal world. Contingent
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on the species, insects present different ways of detecting and processing sound, and of all this variety

to detect acoustic energy, tympanal ears are the most akin in structure and organization to traditional

microphones; in a typical insect tympanal organ, the tympanum stretches over a fluid-filled cavity onto

which specialised mechanoreceptors (sensory cells, scolopidia) attach. The tympanum is set in motion by

incoming sounds, in an analogous way as a traditional microphone does, and its mechanical behaviour is

then transduced into an electrical signal that is interpreted by the central nervous system [9]. One of the

many insects displaying some form of tympanal hearing are locusts, which have long been the subject of

studies related to biomechanics, physiology, and ecology of insect hearing [10]. Even though presenting

a simple structure, the locust tympanum membrane has been reported to present acoustic frequency

selectivity, to exhibit traveling waves (TW) across the membrane, and display nonlinear mechanical

behaviours in the form of distortion product otoacoustic emissions (DPOAEs) [11], which are natural

manifestations of intermodulation occurring within the system.

The presence of complex phenomena in a simple miniaturised system like the locust tympanum

membrane (TM) provides a unique opportunity to develop bio-inspired resonators, sensors, and

actuators taking advantage of them, which can be exploited in the acoustic field to develop, for instance,

acoustic aid devices. The best way to develop these sensors is through three-dimensional (3D) printing

technology, as it permits rapid manufacturing and presents a high degree of personalization of the

desired part.

Even though it was developed 30 years ago, 3D-printing technology has arisen as one of the main fields

of research and development in the scope of science during the last decade due to its implementation in

several research fields such as space engineering, development of micro- and nano-devices and sensors,

biomedicine and many more [12–15]. What started as a tool to simply develop specific prototypes in

a quicker way has now become a worldwide industry, impacting the world from several perspectives,

as it encompasses from the development of the smallest biorobots one could think of, up to the

manufacturing of large modules to build houses [16]. The development of micro-devices requires small

and complex structures that can be built rapidly and at low cost yet, typically, the most common

polymer-based microelectromechanical systems (MEMS) approaches are slow and time consuming.

3D-printing techniques, whether they use solid-, liquid-, or powder-based approaches, permit the rapid

production of complex and accurate geometries from computer-aided design (CAD) files, with polymers
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CHAPTER 1. INTRODUCTION

being the materials that play the most prominent roles amongst commercial 3D-printable materials. One

of the main disadvantages of these materials when using them for rapid prototyping purposes is that the

functionality of the resulting parts solely relies on their mechanical and geometric properties. However,

providing new functionalities to these materials becomes relatively easy when embedding specific

ceramics and/or metals within the polymeric matrix. Liquid-based approaches using light-responsive

polymers facilitate the development of functional 3D-printable composites as they enable a quick and

simple suspension of nanostructures within the photo-curable polymeric matrix, which solidifies after

exposure to ultraviolet (UV) light.

One of the main reasons why 3D printing technology has become such an important tool in science is

due to the boom in materials’ science research: development of specific materials with very interesting

physical properties such as graphene, super hydrophobic materials, or conductive inks [17–19] has

produced a direct effect in the development of additive manufacturing technology in order to customize

and optimize the production processes in terms of time- and cost- efficiency. Notwithstanding, as one

could think that additive manufacturing techniques can only be applied in very specific fields within

science, this technology has also been applied in diverse disciplines such as architecture [20], art [21], or

food industry [22], making the impact of 3D printers more and more present in our daily lives.

The objective of this thesis is to 3D-print bio-inspired polymer-based functional sensors, resonators,

and actuators. To do so, it is necessary to deeply understand the underlying biophysical acoustic

phenomena, develop mathematical models explaining them, understand the principles and limitations

of stereolithography (STL) 3D-printing, and understand the physics behind polymer-based composite

materials. When all these fields have been properly understood, it is possible to combine them to develop

the final product.

Chapter 1 presents a description of the basic characteristics of sound, as well as it presents the

hearing systems that have been relevant for this work. Chapter 2 gives an insight and thorough

discussion about 3D-printing, including their different types and materials. This chapter focuses on

polymers and also discusses the most common methods to develop polymers that can be 3D-printed

using the stereolithography technique, as this is the 3D-printing method used in this thesis. Chapter

3 discusses the importance and relevance of the mechanical properties of materials, as well as it
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1.1. BASIC PRINCIPLES OF SOUND

presents nanoindentation, the technique used to evaluate the mechanical properties of the developed

materials. This chapter also focuses some attention on how to determine the mechanical properties of

composite materials. This chapter is important for the thesis the mechanical properties of materials

have a direct influence on the design of the final sensors. Chapter 4 presents the basic principles of

magnetism and piezoelectricity, as these will become fundamental to understand when 3D-printing

functional polymer-based materials to be implemented in the developed sensors. Chapter 5 introduces

the experimental techniques used in the thesis, including 3D laser Doppler vibrometry, finite element

simulation, vibrating sample magnetometer, and scanning electron microscopy. Chapter 6 presents all

the experimental results obtained during the course of the thesis as well as its discussion, relating it to

the theory introduced in the previous chapters. Finally, Chapter 7 presents the conclusions of the work

as well as it presents the future work to be done and how to move forward with the development of

functional 3D-printable polymer-based bioinspired sensors.

1.1 Basic principles of sound

Sound arises from the coupling of small vibrations of the particles of a medium, which are displaced

from their equilibrium position and collide with each other. As an example, the beat of the wings of a

hummingbird produces sound due to the oscillation of the air particles generated by the flapping of the

wings.

Sound is an acoustic wave, but there are other types of waves in nature, such as electromagnetic,

seismic, or phononic waves. Irrespective of their origin, all of them can be classified as longitudinal or

transverse. The former are those in which both the displacement of the propagation of the medium

and the wave are in the same direction, producing compressions and rarefactions of the particles of the

medium, and consequently generating a local increase and decrease of pressure (see Fig.1.1). On the

other hand, transverse waves are those in which the displacement of the propagation medium is in the

perpendicular direction to the displacement direction of the wave.

Waves present several characteristic parameters such as wavelength, and frequency. Wavelength, λ, is

the length of one cycle and it is measured in length units, and frequency, f , is the number of cycles that

the particles of the medium complete in one second (e.g. if the antenna of a mosquito moves back and

forth 100 times in one second, it’s frequency is of 100 Hz). The inverse of frequency is called period, T ,
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CHAPTER 1. INTRODUCTION

Fig. 1.1. Sketch of the propagation of an acoustic longitudinal wave. When the particles of the medium compress,

an increase of pressure takes place, whereas when the particles of the medium are rarefacted, a decrease of pressure

occurs. Pressure attenuates as a function of 1/r, where r is the distance from the sound source. Image obtained

from [23]

and it indicates the amount of time needed to complete a full cycle. These two quantities are related to

each other through the speed of sound, c, as shown in Eq.(1.1).

c = fλ = λ/T (1.1)

The speed of sound is an intrinsic property of the medium in which the waves travel and takes the value

of 343 m/s in air. Speed of sound shows a slight dependence with pressure, making valid the assumption

that it remains roughly constant at different heights. In an ideal gas, the speed of sound depends on

its temperature, humidity, and composition [24–26], and it can be predicted using the Newton-Laplace

equation, Eq.(1.2).

c =
√
B/ρ (1.2)

where B is the bulk modulus, and ρ is the density of the propagation medium. As it might have been

noted by the reader, bulk modulus is not an intrinsic property of fluids, but it can be estimated by

multiplying the pressure by a dimensionless adiabatic1 index. Hence, Eq.(1.2) becomes:

c =
√

(∂p/∂ρ)s (1.3)

where the sub-index s denotes the derivative of the pressure (p) with respect to the density of the

medium in isentropic conditions (i.e. at constant entropy).

1An adiabatic process is that in which there is no interchange of heat nor matter between the system and its surroundings,

and energy is uniquely transmitted as work.
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1.1. BASIC PRINCIPLES OF SOUND

Nevertheless, waves do not always travel and sometimes can be enclosed within structures such

as tubes, strings, or pipes. Thus, it is possible to discern between standing and traveling waves. The first

ones are those that occur within an enclosed fluid-filled space, like those generated in organ pipes and in

wind music instruments, whereas the second type of waves are those are unbounded by the propagation

medium. The displacement of a traveling wave with amplitude of motion A is described by a simple

function of space and time, as shown in Eq.(1.4).

y(x, t) = A sin

[
2π(x− ct)

λ

]
(1.4)

It is possible to study Eq.(1.4) in further detail in order to obtain some characteristic parameters of the

wave. If Eq.(1.4) is expanded using Eq.(1.1):

y(x, t) = A sin

[
2πx

λ
− 2πct

λ

]
= A sin

[
2πx

λ
− 2πt

T

]
(1.5)

where 2π/T = 2πf is the angular frequency, and its denoted by ω. Its analogous expression in space

is the wave number, k = 2π/λ, which becomes the wave vector, ~k, in multidimensional systems. Thus,

Eq.(1.5) can be re-written, in one dimension, as:

y(x, t) = A sin[kx− ωt+ φ] (1.6)

where a phase φ has been introduced and it is determined by the initial conditions of the system. Eq.(1.6)

is a solution of the wave equation, which describes the propagation of waves in space, and is given by

Eq.(1.7).

∂2u

∂t2
= v2∇2u (1.7)

where v is the phase velocity (v = ω/k), which determines the rate of propagation of the phase of

the wave in space, and u is a scalar function containing the displacement information of the system

(u = u(x1, x2, ...xn; t)). Thus, from all these definitions, it can be understood that traveling waves are

those which transmit energy from one position of space to another irrespectively of the media in which

they propagate. Following this definition, therefore, it is possible to understand standing waves as two

traveling waves moving in opposite directions in which, when superimposed, there is no energy flow in

any direction [27].

As sound is a mechanical wave consisting of several compressions and rarefactions of the medium

in which it travels, it transmits both kinetic energy (due to the movement of the particles of the media),
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and potential energy (because of the change of pressure in the media). As the wave propagates, its

energy is transmitted at the wave velocity at the same time that a part of it is dissipated due to thermal

energy. The energy carried by a sound wave is inherently low and it can be calculated using Eq.(1.8).

Es =

∫

S

[∫ ∆t

Is(~r, t)dt

]
dS (1.8)

where S is the surface through which the wave travels, ∆t is the time interval, and Is(~r, t) is the acoustic

intensity, which is a function of space (~r) and time (t).

Apart from the classical understanding of a wave, the quantum theory has its own sound waves,

called phonons, which are generated in solid lattices of atoms as a consequence of their vibrations.

Whereas sound waves in fluids only have a longitudinal component, in solids they have both longitudinal

and transverse components due to the arrangement of the atoms of the solid medium, giving rise to very

interesting physical phenomena that are further out of the scope of this thesis.

1.2 Interaction of sound waves with solid structures

Sound waves have the ability to interact with each other when coexisting in a same medium, producing

the phenomenon of interference. This interference can be either constructive, when the amplitudes of

the waves add, or destructive, when the two interfering waves are out of phase and their corresponding

amplitudes subtract. These interference patterns are mathematically described, respectively, by the

conditions shown in Eq.(1.9) and only apply to coherent2 and monochromatic3 waves.

∆l = mλ , ∆l =

(
m+

1

2

)
λ (1.9)

where ∆l is the path difference between the two waves, and m is an integer.

Apart from interacting with each other, sound waves can also interact with solid structures, producing

several physical phenomena such as reflection, refraction, and diffraction among others, with these three

the most relevant ones. The material properties of the solid material as well as the incidence angle of the

sound wave will determine the type of interaction occurring between the wave and the solid structure.

2The emitted waves are identical, keeping a constant phase different.
3The waves have the same wavelength.
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1.2. INTERACTION OF SOUND WAVES WITH SOLID STRUCTURES

1.2.1 Reflection

Reflection of waves (schematically shown in Fig. 1.2) happens when a wave traveling through a medium

encounters a surface of a different medium and it is bounced back to the first medium. The main

characteristic of reflection is that the angle of the incident wave is the same as the angle of the reflected

wave in flat surfaces. It must be noted that as audible sound has a frequency range from around 20 Hz

to 17 kHz, there is a broad band of associated wavelengths to these sound waves, and all of them will be

reflected in a different way when interacting with the same surface.

This process is not the only one that takes place when a wave hits a surface, as the reflected

wave can interfere with the incoming wave creating constructive or destructive interference patterns,

which can lead to the creation of standing waves, that create a local increase of pressure near the surface

where the waves have been reflected off. It is important to mention that when sound waves in air

encounter a hard surface, there is no change of their phase because the hard surface has a much larger

acoustic impedance4 than that of air. When a sound wave transmitting through a solid encounters an

air boundary, the reflected wave will present a phase shift with respect to the incoming wave due to the

transmission of the wave from a high acoustic-impedance medium to a low-acoustic impedance one.

Fig. 1.2. Sketch of the phenomenon of reflection on a flat surface when an incident wave hits a hard or a soft

boundary. The angle ϕ represents the incidence angle of the incoming wave, which is the same as the reflection

angle. It must be noted that the acoustic wave will not be totally reflected as transmission will also take place.

When sound waves are reflected by concave surfaces instead of flat surfaces the local sound level

increases. This is because when the reflected sound wave is concentrated in a narrow area, the sound

reflection can be strong enough to be audible as sound amplification. Furthermore, concave surfaces can

also generate multiple reflections. Depending on the position of the source reception of sound will be

4Acoustic impedance represents the opposition of a system to acoustic flow.
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different; at the centre all reflections will be heard, whereas away from the centre the reflections will

move away and then back again [28, 29]. The enhancement of reflected sound by concave surfaces can

present some advantages for specific applications in small spaces, whereas in larger spaces they will lead

to late reflections that will be heard as echo or reverberation. All these sound phenomena arising from

the interaction of sound with curved surfaces are the centre of study in architecture and music fields to

optimize the acoustics of auditoriums, theatres and other rooms.

1.2.2 Refraction

Refraction is the change of direction of a wave when it is transmitted from one medium with refractive

index n1 to another medium with a different refractive index n2 (see Fig. 1.3a). An illustrative example

of refraction of light waves can be seen in Fig. 1.3b and extrapolated to other types of wave. Refraction

can be easily understood from conservation of energy and momentum, as the phase velocity of the

waves changes when the transmission medium changes. The change of direction of a refracted wave is

Fig. 1.3. (a) Sketch of refraction when a wave is transmitted from one medium with associated refraction index

n1 to a different medium with different refraction index n2. ϕ1 is the incidence angle of the wave with the vertical,

and ϕ2 is the refraction angle of the wave when transmitted to the second medium, and (b) shows an example of

light refraction where it can be clearly seen how the diagonal lines change their direction after being refracted by

a water-filled glass.

mathematically described using Snell’s law, as shown in Eq.(1.10).

sin(ϕ1)

sin(ϕ2)
=
v1

v2
=
λ1

λ2
=
n2

n1
(1.10)

where ϕ1, and ϕ2 are the incident and transmitted angles of the wave, v1 and v2 are their corresponding

phase velocities, λ1 and λ2 are the wavelengths of the incident and transmitted waves, respectively, and

n1 and n2 are the refractive indices of the propagation and transmission media. Some observations must
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be done from Eq.(1.10); when a wave travels from media in which n1 > n2, it is possible to find a situation

in which Eq.(1.10) becomes:

sin(ϕ2) = sin(ϕ1)
n1

n2
> 1 (1.11)

which is not a real solution. Thus, in these situations the wave is completely reflected to the first medium,

a phenomenon known as total internal reflection. It is possible, thus, to determine which is the maximum

angle of incidence of the wave that will produce refraction, called critical angle, ϕc, and given by Eq.(1.12).

ϕc = arcsin

(
n2

n1

)
(1.12)

However, sound waves do not usually encounter abrupt changes in medium properties but their wave

speed shows a smooth dependence on temperature [30, 31]. Thus, in sound waves refraction is not only

created by the change of medium itself but it can also be generated by changes of temperature in the

medium of propagation. As an example, the local increase of temperature of air (which therefore leads to

a decrease of its density) near the ground will make sound waves bend due to an increase of their velocity

of propagation in such regions.

1.2.3 Diffraction

Diffraction is the phenomenon that makes a wave spread when it encounters an obstacle of small size

compared with its wavelength. One of the main characteristics of diffraction is that it is more pronounced

for larger wavelengths, leading to weaker diffraction of waves of lower wavelength. In loudspeakers, for

instance, as the bass frequencies have longer wavelength compared to the size of the loudspeaker, the

emitted sound will spread out more than traveling straight ahead. Thus, diffraction is responsible for

hearing low frequencies around obstacles better than high frequencies in the same location. Nevertheless,

this becomes a notable problem for communication of some mammals. For instance, for mating and

migrating purposes, elephants must emit waves of very low frequency that can travel long distances

without interacting with the surrounding vegetation and other obstacles in order to enable synchronized

movements between them even when they cannot see each other. If the emitted frequency was higher,

it would interact with all the obstacles between the animals leading to a decrease of the intensity of

the emitted signal and, therefore, being a real problem for their communication [32]. A similar effect

happens with ultrasound waves in flying locusts, producing the distortion of the acoustic field [33].

Scientists have started developing several metamaterials in order to beat the acoustic diffraction
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limit5 [34, 35] and reduce the effect of this undesired phenomenon when it comes to acoustic engineering

applications in a smart way.

1.2.4 The Doppler effect

The Doppler effect is a phenomenon observed in both sound and light waves, as well as it takes place

in both classical and relativistic physical phenomena. It consists in the perceived change (or shift) of

the frequency of a wave emitted by a source that moves with respect to a receiver. Considering the

one dimensional case in the classical limit, the frequency shift generated by the Doppler effect can be

determined using Eq.(1.13).

fr =

(
c+ vr
c+ vs

)
fs =

(
1 +

∆v

c

)
fs (1.13)

where fr is the received frequency, fs is the source (emitted) frequency, c is the wave speed in the

transmission medium, and vr and vs are the receptor and emitter velocities, respectively.

Thus, it is easy to see that the received frequency increases when the emitter and the receptor

approach (∆v > 0), and it decreases when the emitter and the receptor move away from each other, as

shown in Fig. 1.4. A clarifying example of this phenomenon is the sound emitted by the siren of an

ambulance.

Fig. 1.4. Schematic representation of the motion (left to right) of an object (solid black circle) with a velocity

v, and emitting at a frequency fs. An observer located at the right-hand side of the emitter will receive a higher

frequency than fs and a lower wavelength, as it can be checked using Eq.(1.1). On the other hand, a receiver

located at the left-hand side of the emitter, will receive a lower frequency than fs. This increment and decrease

of frequency is represented by the circular lines getting closer and further away, respectively.

5The acoustic diffraction limit is the uncontrollable bending of waves (either sound, light, or any other type) when trying

to focus them in spaces smaller than one wavelength.
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1.3 Attenuation of sound

As described earlier in Section 1.1, sound has two components associated with the propagation of the

wave: particle velocity, which leads to a compression and rarefaction of the particles of the medium,

and pressure. Both of these components attenuate with distance when traveling in a medium, which can

be easily explained using spherical coordinates (see Fig. 1.5). In spherical coordinates, the Cartesian

components x, y, and z can be expressed as shown in Eq.(1.14).

Fig. 1.5. Sketch of the spherical coordinates system, where θ is defined as the azimuth angle in the xy-plane

(0≤ θ ≤ 2π), ϕ is defined as the polar (or zenith) angle in the positive z-axis (0≤ ϕ ≤ π), and r is the radius of

the sphere. The boldface quantities represent the vectors of the spherical-coordinate system.





x = r sinϕ cos θ

y = r sinϕ sin θ

z = cosϕ

(1.14)

Thus, the wave equation in spherical coordinates can be rewritten as:

∂2u

∂t2
= v2 ∂

2u

∂r2
+

2

r

∂u

∂r
+

1

r2 sinϕ

∂

∂ϕ
(sin(ϕ))

∂u

∂ϕ
+

1

r2 sin2(ϕ)

∂2u

∂θ
(1.15)

Where it must be noted that v = c. The solution to Eq.(1.15) is given by:

u(r, t) = −
(

1

r
+ ik

)
A

r
eik(ct−r) (1.16)

where A is the amplitude given by the initial conditions of the system. The pressure of a spherical wave

is given by Eq.(1.17) [36].

p(r, t) = − ikcAρ
r

eik(ct−r) (1.17)

where ρ is the density of the medium where the wave propagates. As λ = 2π/k, it is possible to express

both Eq.(1.16) and Eq.(1.17) as a function of wavelength, which permits studying both the near field
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(when r << λ) and the far field (when r & λ) regimes. Thus, in the near field regime the velocity of

the wave has a dependence of u ∝ 1/r2, and and the pressure goes as p ∝ 1/r. On the other hand, in

the far field regime, both the particle velocity and the pressure of the wave attenuate as 1/r. Hence, as

both components attenuate at the same rate in the far field approximation, they are a good tool for long

distance acoustic communication.

From pressure, p, it is possible to define the sound pressure level, which is expressed in decibels

(SPL dB), and is the ratio between sound pressure and a reference pressure, p0, which usually refers

to the threshold level for human hearing and it takes a value of 20 µPa. SPL dB is defined using a

logarithmic scale, shown in Eq.(1.18) [37].

SPL = 10 log10

(
p

p0

)2

= 20 log10

(
p

p0

)
(1.18)

It must be noted from Eq.(1.18) that at p0 the SPL dB is, by definition, 0 dB, which corresponds to

the human hearing threshold. This same threshold becomes 60 dB underwater due to the use of a

different sound pressure reference value (10 µPa). These different reference pressures must be considered

when trying to compare SPLs in different propagation media, as a same applied pressure will result in a

different SPL value.

Being able to detect such SPL values, their changes, and discern between different frequencies,

altogether with its corresponding processing through the central nervous system is what allows

communication all over the animal world.

1.4 Hearing systems in biology

Detecting, processing, and locating sound is a fundamental tool for biological organisms to sense and

interact with the environment. Such a complex process is not uniquely achieved by hearing systems of

specific species but for a large diversity of them. Insects are not an exception and they have been found

to use several mechanisms to detect, process, and interpret sound in different manners depending on

the species [11, 38–41]. Insects are thought to be the first animals to develop sound perceiving organs,

evolving in three major behavioural contexts in 400 million years [7]. The insects’ auditory organs are

known to be of ciliary origin [42], are found in different anatomical locations depending on the species

[43], and their nature depend on which component of sound they can detect; if they detect sound
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pressure, they are of tympanal nature, whereas if they detect particle velocity are of flagellar nature [43].

Auditory organs with tympana have evolved, at least, 18 times independently [7]. Irrespective of their

location and shape, all tympanal ears are composed by eardrums of thinned cuticle which vibrate in

response of airborne sounds. The tympanum is typically backed by a tracheal space, even though there

are several species in which the tympanum is backed by a fluid instead [44]. Furthermore, a sensory

organ able to transduce the mechanical motion of the tympanum generated by the incoming sound into

an electrical signal that can be interpreted by the central nervous system is also needed. The sensory

cells that perform this transduction are called scolopidia, are of different types, and in some insects only

a few of them are needed to execute this function, whereas in other species more than 2000 of these

sensory cells are needed. Scolopidia are generally located at specific positions of the tympanum, as

certain sound-transmitting structures help frequency analysis.

Recent studies have shown that some insects like katydids process sound in a similar manner as

mammals do, showing a convergent evolution of the hearing systems between insects and mammals

[39, 40]. This convergent evolution shows that a complex way of detecting and processing sound energy

is possible in the micro-scale and, therefore, it could open the doors to the improvement in the design

and performance of novel acoustic micro-sensors, actuators, systems, and devices.

1.4.1 Distortion product otoacoustic emissions

It is well known that all acoustic phenomena necessarily become nonlinear at high intensities. When the

human ear is stimulated by two different input sounds of different frequency (f1 and f2, being f1 < f2)

at the same time at high intensity, the difference frequency f2 − f1 is additionally heard [45, 46]. This

third frequency is generated in the ear, but it is also known that a difference frequency can be produced

in a nonlinear medium (such as air) during the propagation of a sound wave [47]. Even more, if the

circumstances permit it, it is possible to generate a series of frequencies as a linear combination of both

f1 and f2, such as fmn = mf1 ± nf2, where m and n are integers. These frequencies are distortion

product otoacoustic emissions (DPOAE), or intermodulation (see Fig. 1.6), and are present in a large

variety of biological and engineered systems. The presence of DPOAEs can be used to determine the

sensitivity and functioning of human hearing, as it has been observed that people with damaged hearing

organs show a lower production of DPOAEs [48]. Even though it has been thought for a long time that

DPOAEs are one of the characteristics of active hearing, it is believed that systems with a high degree
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of nonlinearity can also generate them in a passive way [49].

Fig. 1.6. Graphical representation of ideal intermodulation. The abscissa shows the frequency in kHz and the

ordinate represents the amplitude of the motion in arbitrary units. In this example the input frequencies are

f1 = 10 kHz and f2 = 12 kHz, to which corresponds the major value of amplitude (in theory they should have

the same amplitude, but when working with biological systems one needs to be slightly larger than the other for

reasons discussed later in this Chapter). The peaks corresponding to fm,n frequencies have a decreasing value in

amplitude as their order increase. Image obtained from [50].
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Nonlinear effects in oscillators (either mechanical, chemical, electrical, or biological) can be determined

by studying the relationship between two of the oscillator’s properties, for instance, determining the

amplitude of motion of the oscillator as a function of frequency. Depending on the parameters of the

system, such as its degree of nonlinearity and its damping mechanisms, the differential equation(s) that

describes its motion will be different.

When studying these kinds of systems, it is possible to discern between two cases: (i) damped

and (ii) undamped oscillations. If there is no damping, there exists an oscillation that is either in phase

with the exciting force or 90 degrees out of phase with it. If, on the other hand, damping is present in

the studied system, an out of phase response oscillation (with respect to the exciting force) is expected

[51]. As mentioned earlier in this section, it is possible to obtain the frequency of the oscillation as a

function of the amplitude of motion, as shown in Eq.(1.19).

ω = ω(F,A) (1.19)

where F is the exciting force acting on the system and A is the amplitude of motion. Eq.(1.19) shows

that the frequency of the system depends on both the exciting force and the amplitude of oscillation,

such as (see Appendix A for further detail):

ω2 = 1 +
3εA2

4
± F

A
(1.20)

where ε is a mathematical parameter that controls the degree of damping of the system. The response

from Eq.(1.20) is plotted in Fig. 1.7.
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Fig. 1.7. Comparison of a linear and a Duffing system. Whereas the linear system presents one unique value of

amplitude at each frequency, a Duffing oscillator can present up to three values of amplitude at given frequencies.

The dotted part of the graph represents the continuity of the function, but it does not plot real values. When

the curve bends to the right, the system behaves like a hardening spring, whereas when it bends to the left, it

behaves like a softening spring. Image obtained from [52].

This dependence of frequency with both A and F is the result of the Duffing equation, which is a

second order differential equation that describes certain damped oscillators driven by a cubic potential.

This makes Duffing oscillators behave linearly near to the equilibrium position but present a nonlinear

behaviour away from it. Fig. 1.7 shows what is called the skeleton curve. The portion of the response

curve in the left-hand side of the skeleton curve corresponds to forced oscillations in phase with the

exciting force, whereas the portion in the right-hand side of the skeleton curve corresponds to forced

oscillation out of phase with the exciting force [51]. When the curve bends to the right as shown in Fig.

1.7, the system behaves as a hardening spring, whereas when it bends to the left, the system behaves like

a softening spring [51].

1.4.2 The Duffing oscillator

Nonlinear systems, even when not influenced by any random forces or conditions of the environment

and with very few degrees of freedom present random behaviour and lead to deterministic chaos. Such

processes have been long subject of discussion among scientists [53], who have succeeded to develop

several models to accurately describe them [54, 55]. Non-linear systems arise from many different sources

such as frictional forces, acceleration in non-inertial systems, or anharmonic potentials amongst many
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other. Small variations of the physical laws influencing the system yield to extremely complicated sets

of equations to solve, making the use of computers necessary to solve them numerically. For instance,

Lorenz was able to develop a set of differential equations to model thermal convection, a phenomenon

that describes the dynamics of gases and fluids in the transition from laminar flow to turbulence [56].

One of the most used methods is to linearise physical laws in order to simplify their analysis and

facilitate the solving process of systems ruled by non-linear equations [57]. Usually, the first term of a

Taylor series is discussed, neglecting terms of higher order, and the simplified system is discussed rather

than the original one. If higher order terms are considered, it will be more complex to solve. As an

example, consider the electric polarization of a material, which is proportional to the applied electric

field. Nevertheless, for strong fields the electric susceptibility is itself a function of the external field,

leading to a non-linear dependency of polarization that must be taken into consideration.

The Duffing oscillator is one of the prototype systems of nonlinear dynamics, first introduced to

study anharmonic oscillations by Georg Duffing and, later on, chaotic nonlinear dynamic systems.

The Duffing equation has been used to describe and model a large variety of physical systems such

as nonlinear electronic circuits [58], ionization waves in plasma [59], or superconductive parametric

amplifiers [60].

The Duffing equation is a second-order non-linear differential equation (see Eq.(1.21)) with a

restoring force given by F = −x− εx3. When ε > 0 the system is driven by a hardening spring, whereas

when ε < 0 the system is then driven by a softening spring. One of the main characteristics of a Duffing

oscillator is that it is a perturbation of a single harmonic oscillator by introducing a nonlinear spring,

leading to a non-periodic motion (i.e. the position versus time plot does not follow an exact repetition).

d2x

dt2
+ 2εk

dx

dt
+ x+ εx3 = εF0 cos(ωt+ δ) (1.21)

It must be noted that the Duffing equation uniquely differs from the forced/damped harmonic oscillator

equations by a nonlinear term proportional to x3, which dramatically changes the dynamics of the system.
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1.4.3 Hearing systems: the locust tympanum membrane

An acoustic organ highly relevant for this thesis is that of the locust, as its simple shape and morphology

are able to generate relevant physical phenomena at a small-size scale such as acoustic frequency

discrimination and nonlinear effects like DPOAEs, as well as sound localization [11, 61]. These features

are a source of inspiration to develop engineered systems, devices, sensors, and actuators able to solve

specific problems.

As previously mentioned in this Section, the tympanal membrane, TM, is a thin cuticle membrane

stretched over a fluid-filled chamber that allows certain animals to detect the pressure component of

sound [9]. Changes in sound pressure generate a proportional force onto the TM, which consequently

deflects. If such a pressure remained constant, the deflection of the TM would also be constant, but

as these variations of pressure are oscillatory, they therefore produce an oscillatory motion of the TM.

The mechanical motion of the TM is converted into an electrical signal through the scolopidia (or

mechanoreceptors) attached to strategic points of the membrane, which are stretched and compressed.

These mechanoreceptors can be classified in four different categories [62, 63]:

• Pacinian corpuscles: pressure sensors connected to a sensory neuron that can be isolated due to

their large size.

• Meissner corpuscles: adapt quickly to a stimulus and are activated when the stimulus is removed.

• Merkel cells: unlike Pacinian and Meissner corpuscles they do not adapt quickly to a given stimulus,

but they generate nerve impulses as long as the stimulus is present.

• Muscle spindles: stretch receptors within the muscle constituted by a sensory nerve and spindle

fibres.

The morphology of the locust’s TM shows variations depending on the species [64, 65]; it has been

described to present a pear-shape [66] of around 2.5×2.5 mm in size at its widest in desert locusts

(Schistocerca gregaria), whereas it consists of a thin oval disk of around 1.5×1 mm in migratory locusts

(Locusta migratoria) [67]. Regarding its thickness Pumphrey et al. reported a thickness of 0.5 µm in

the most posterior part and 11 µm at the most anterior one [67], whereas Gray measured a thickness

between 2 µm and 3 µm [66]. Stephen and Bennet-Clark were able to measure a minimum thickness of

0.6 µm at the higher area of the thin membrane region (see Fig. 1.8), and a maximum value of 20 µm
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at the bottom of the thick membrane region [41]. Hence a main conclusion can be made from all these

studies; the locust’s TM can be divided into two main regions: (i) the thin membrane, and (ii) the thick

membrane, which are two connected different areas of cuticle, and being the thick membrane located

ventro-anteriorly from the thin membrane (as shown in Fig. 1.8).

Fig. 1.8. Scanning electron microscopy (SEM) image of the locust TM (right ear). The different regions of

the TM can be observed in different shades of grey and outlined by dashed lines. Low and high frequencies are

detected more efficiently in the thick and thin regions, respectively. The folded body (FB) is attached to the

thick membrane and it is outlined with a continuous ellipse in the most anterior region of the TM. The area

surrounding the pyriform vesicle (PV), is also highlighted with a continuous line on the thin membrane. Image

kindly provided by Prof. James Windmill from his study on the presence of traveling waves in migratory locusts

[11] and edited by Roger Domingo-Roca.

It must be noted that the locust TM does not consist of a single layer of cuticle but it is something

more complex as it is composed by three different layers named endocuticle, mesocuticle, and exocuticle,

going from the innermost layer to the outermost one. Stephen and Bennet-Clark studied the locusts’

TM in depth and reported that the mesocuticle is impregnated with lipids or proteins, making this part

of cuticle stiffer due to smaller interstitial spaces, as well as they described the exocuticle as brittle and

stiff [41].

Different regions of cuticle are visible on the membrane where the mechanosensory cells are attached.

Michelsen studied these different regions and their attachment points [68], reporting a region of thicker
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sclerotized6 cuticle called the folded body (FB), which attaches to the thicker membrane, where a fold

is present (as it can be seen in Fig. 1.8, followed by a thinning of the membrane. Another sclerotized

cuticle region on the locust TM is the elevated process, which is a hollow, tubular-shaped invagination

that ventrally merges with the FB. The third sclerotized cuticle region described by Michelsen is

the styliform body, which Gray reported to have a concave and flat shape [66] that widens in one of

its ends to stay connected to the elevated process. Its dimensions were estimated by Stephen and

Bennet-Clark, who reported an egg-shape of around 300×200 µm [41]. The pyriform vesicle, PV, is

the last of the sclerotized cuticle attachment points described by Michelsen on the locust TM, being

the smallest one of all the described structures and basically consisting of a thickening of the eardrum

cuticle connected to the elevated process. All these four attachment structures merge together into

the Müller’s organ, described by Michelsen as an irregular spheroid with dimensions of approximately

400×200 µm [68] that contains between 60 and 120 scolopidia that allow the locust TM to detect

tiny mechanical deflections of the sub-nanometre order [11]. These four bodies have attached to them

different scolopidial groups, each of them able to detect different frequencies and named by Gray as

groups a, b, c, and d [66]. In Michelsen’s work The physiology of the locust’s ear (I-III), the a, c, and

d groups are described to be oriented in three perpendicular planes, whereas the b group is described

to be placed in the same plane as the a group, comprising approximately half of the total receptor cells [68].

Early neurophysiological studies of the locust TM showed no evidence of frequency discrimination:

Pumphrey and Rawdon-Smith showed that at 3 kHz the whole system seems to display maximum

sensitivity, recording a threshold of 20 dB SPL above that of the human hearing, but with a lack of

synchronization between the neural response and frequency of the stimulus, leading to the conclusion that

frequency discrimination was not possible in the locust hearing system [67]. Later studies from Horridge,

Popov, and Michelsen revealed that the different sensory cells responded to different frequencies: the

a group was observed to show an average characteristic frequency of around 3.7 kHz, and some of

them revealed a second peak at 8 kHz, whereas others were observed to appear between 6 kHz and 7

kHz. The cells of the b group revealed characteristic frequency peaks at both 3.4 kHz and 8 kHz, and

a smaller peak at 5 kHz, whereas the cells from the c group were observed to show high sensitivity at

6Sclerotised is a biological term to indicate stiffened or hardened state by cross-linking to other molecules. Sclerotised

and unsclerotised cuticles are present in nature, such as the fangs in spiders (sclerotized state) or the honeybee larvae

unsclerotised cuticle.
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lower frequencies, i.e. at 1.5 kHz, and in the range of 2 kHz to 3 kHz. Finally, the d group showed a

better sensitivity at high frequencies, in the range between 10 kHz and 14 kHz, as well as revealing a

second maximum at 19 kHz [69–71] when playing pure tone stimuli at sound pressure levels between 96

and 112 dB SPL. Some years later, Jacobs et al. studied again the sensitivity of the different sensory

cells on the locust TM [64] testing the animals with frequencies ranging from 100 Hz up to 40 kHz at

intensities between 25 and 90 dB SPL, and using different tone pulses (either 100 ms or 20 ms with a

repetition rate of 3.3 Hz). Under these conditions, Jacob et al. found that the highest sensitivity of the

hearing threshold of several animals was at 2 kHz and 5 kHz, with a threshold between 37 and 40 dB SPL.

Studies from Michelsen and Stephen and Bennet-Clark also kept the focus on determining the

mass of the different organs and regions of the locust TM. Michelsen performed a fine surgery technique

to remove the TM of the abdomen of the locust, and after measuring 13 different samples he worked out a

measured average mass of 3.0±1.0 µg. Furthermore, Michelsen was able to reveal that when the Müller’s

organ is swollen the total mass of the TM increases up to 50 µg. Finally, Michelsen determined that the

mass of the thin part of the membrane has a weight of 7.7±1.7 µg [68]. On the other hand, Stephen and

Bennet-Clark studied the mass of the different regions of the membrane more in depth, reporting a total

measured mass of 10.1 µg for the thin region, 10.7 µg for the thick region (resulting in 20.9 µg for the

totality of the membrane), and a measured mass of between 8.5 µg and 12.5 µg for the Müller’s organ [41].

Once the authors had measured the mass of the TM they used it in order to determine the theoretical

fundamental resonant frequencies of the acoustic organ using Eq.(1.22). To do so, both Michelsen and

Stephen and Bennet-Clark assumed that the thin membrane could vibrate in an independent way than

the rest of the membrane [41, 68]:

f =
0.383

a

√
T

σ
(1.22)

where a is the radius (assuming a uniform circular body in vacuum), T is the tension per unit length,

and σ is the mass per unit area. The tension per unit length can be expressed as shown in Eq.(1.23) [68].

T ≈ 1

8πcm
(1.23)

where cm is the compliance of the membrane. These studies yielded to a fundamental mode of 3.4 kHz

for the thin membrane, and symmetric circular modes at frequencies of 8.1 kHz, 12.9 kHz, and 17.9

kHz. These frequencies were studied by Michelsen at different SPL values (between 96 dB SPL and 112
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dB SPL) under laser holography to see the vibration of the locust TM under pure tone stimuli [68],

measuring amplitudes of up the micrometre scale due to the high applied SPL values.

More accurate and realistic studies of the locust TM response were performed by Windmill et al.

years later applying a stimulus of 60 dB SPL and measuring the mechanical deflection of the membrane

using laser Doppler vibrometry [11], a much more reliable technique than the ones used by Michelsen

and Stephen and Bennet-Clark in their studies, capable to detect sub-micron (down to picometers)

motion. In the study ran by Windmill et al., the full locust TM was scanned when playing a wideband

signal with the animal placed in a position to ensure the far-field regime of the sound source for the

relevant frequency range (3-30 kHz) [11]. These measurements revealed coherence between amplitude

and phase data of the mechanical response of the membrane for every scanned point, ensuring data

reliability. The authors found increasing amplitude of vibration in the PV as a function of frequency, as

well as frequencies of interest at 3.3 kHz, 6.1 kHz, 12.21 kHz, and 22.76 kHz, where traveling waves were

observed rather than standing wave patterns, traveling towards the thick part of the membrane. These

phenomena were studied at different incidence angles, establishing a relationship between the angle of

incidence of the sound field with the propagation path of the traveling wave. The authors also measured

the tympanal mechanical deflection of dead desert locusts and compared the frequency response to

that observed in living animals, and no difference was observed when comparing the two groups across

multiple different frequencies. This lead to the conclusion that the traveling waves, TW, present on the

locust TM are not generated by any complicated physiological process. Such results lead Windmill et.

al to study TWs on the locust TM in deeper detail [72]. They found that TWs generated by different

sound stimuli on the locust TM exhibit specific vibrational patterns on the membrane, leading to energy

transduction to specific sites of the membrane, and concluding that the locust TM does not behave like

a conventional drum skin as it starts oscillating at one unique location to then generate a wave that

travels to another position of the TM, an analogous behaviour to that of the basilar membrane of the

human’s cochlea [72].

Another relevant feature of the locust hearing organ is its ability to detect where sound comes

from. An important parameter to understand directional hearing in the locust is how its body interferes

with the sound field as the relationship between its size and the sound wavelength determines the

amount of scattering leading to pressure variation at the ear, becoming significant at 5 and 15 kHz. At
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these frequencies, the maximum difference in sound pressure range from 6 to 8 dB. Sound over-pressure

at the right and left ears of the locust finds its maximum at rotations of 30 degrees and 330 degrees

of the azimuthal angle, respectively, whereas the maximum under-pressure occurs at 180 degrees for

both ears [73]. Attenuation of sound in the locust hearing system revealed a dependence on the amount

of tissue between the ears, being inversely proportional to it for frequencies from 3.5 kHz to about 12 kHz.

Even though it is well known that nonlinear effects are present in almost all biological and physical

systems, Möckel et al. investigated the presence of DPOAEs on the locusts TM as they are thought to

act as an indicator of the presence of nonlinear effects. The aim of their work was to set the constraints

of DPOAEs generation on the migratory locusts TM [74]. To do so, the researchers removed the d cells

group, which are the most sensitive to sound frequencies above 12 kHz, and stimulated the tympanal

organ with two pure tones (f1 < f2), being f1 10 dB SPL above f2. This set up was chosen as it had been

shown in previous studies to lead to the highest DPOAE levels, creating a dominant peak at 2f1−f2 [75].

This 2f1− f2 frequency was found to be maximal at the so-called optimum ratio f2/f1, which appears to

be between 1.1 and 1.4 [75]. Thus, to measure DPOAEs on the locust TM, Möckel et al. measured the

response of the membrane over a wide frequency range (5-30 kHz), with f2/f1 ratios between 1.04 and

1.08, with stimuli levels of 60/50 dB SPL, and they found, like Kössl et al. did, that the most prominent

emission in the locust ear corresponds to the 2f1 − f2 frequency, finding other emissions at 2f2 − f1 and

3f1−f2. In mammalian hearing systems these emissions have already been demonstrated to be driven by

active processes involving the outer hair cells of the basilar membrane of the cochlea [76]. These active

processes seem to improve signal detection by increasing the gain of the system when stimulated at

quiet yet ecologically-relevant signals. In locusts, however, it appears that hypoxic animals still display

nonlinear acoustic responses and still emit those distortions, albeit at a lower amplitude than control

groups. This observation suggests that DPOAEs are produced by a combination of both passive and

active mechanisms within the locust ear. More specifically, the heterogeneous structure of the TM could

be coupled to an active stimulation by the scolopidia in a fashion analogous to the action of cochlear

outer hair cells on the basilar membrane in mammals. Scolopidia are suspected to be the source of those

emissions in insects, as they are known to be the site of mechano-electrical transduction, and hypoxia is

likely to transiently disable those receptors, resulting in the observed decrease in DPOAEs amplitude

under those conditions. However, there is yet no clear understanding of the specific interactions between

the scolopidia and the TM that could lead to the latter being driven by the former. Indeed, the

24



CHAPTER 1. INTRODUCTION

mechanisms underlying the transduction of the mechanical motion of the membrane into an electrical

signal by those receptors are not fully understood, and it can be reasonably expected that the opposite

interaction involves the same components within the receptor. Further research regarding the relationship

between the locust’s TM morphology and structure with sound energy localization and frequency analysis

revealed the presence of lipid-filled cavities within specific regions of the membrane, as shown in Fig. 1.9.

Fig. 1.9. SEM image of the cavities present within the locust TM. The black arrow indicates an artefact formed

by the redeposition of liquid during focused ion beam milling. This image suggests that these cavities are present

around the pyriform vesicle (PV) of the locust tympanum membrane (TM), helping the propagation of mechanical

waves generated by acoustic stimulation toward relevant scholopidial attachment points. Image obtained from

[77].

These are thought to be involved in frequency discrimination processes as well as playing an

important role in the damping mechanisms that take place across the locust TM [77]. Indeed, damping

of flexural waves in liquid-solid interface systems increases with frequency [78, 79] in frequency-dependent

damping systems.

Complementarily, these lipid-filled chambers may also affect the surface velocity of the flexural

waves generated by the incoming sound waves, as Gubaidullin et al. showed that surface velocity of

flexural waves slightly decreases with frequency [79].

Understanding the acoustic dynamics of any hearing system provides relevant information about

how such a system collects and processes acoustic energy, and can unveil the evolutionary function of

such adaptations. Chapter 1 presents the basic concepts of sound as well as it thoroughly discusses
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the sound mechanics, morphology and structure of the locust TM. This is important for this work as

the locust TM presents a very simple structure with, mainly, two well-differentiated regions that detect

different frequencies, allowing for acoustic frequency selectivity in a very simple yet efficient manner.

This structure can be exploited to develop 3D-printed structures, resonators, actuators, and sensors

that allow for acoustic frequency selection in the microscale and that could be used, for instance, as

hearing aids devices. On top of this, if the 3D-printed sensors present the nonlinear effects observed on

the locust TM, this work could also give some insight of how these nonlinear effects, mainly DPOAEs,

are generated.
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3D Printing

Additive manufacturing technology, developed at the Massachusetts Institute of Technology (MIT), has

been recently used in a wide range of fields: in science it has been applied to areas such as medicine,

biology, and materials science, among many others. But further to its scientific applicability, additive

manufacturing techniques have relevance in other diverse disciplines such as art, fashion, and food

industry [1, 2, 80–90].

This increase in the use of additive manufacturing, also known as 3D printing, during recent

years has allowed improving some key characteristics of the resulting 3D-printed part such as building

efficiency, 3D-printing resolution, and functionality of the 3D-printed parts [91]. Furthermore, the need

for 3D-printing different parts of different sizes to use in a wide range of applications has permitted

the development of different 3D-printing techniques that use different physical methods to build the

3D-printed part [92]. Even though each of these techniques present a long list of pros and cons, all of

them have a common denominator: the personalization of the desired 3D-printed part, which allows

the full customization not only in terms of geometry and structure of the desired 3D-printed part, but

also in terms of optimization of the 3D-printing parameters in order to keep a good balance between

3D-printing time and resolution. On the other hand, 3D-printing techniques share some disadvantages

that need to be improved to enhance the applicability of this technology, such as copyright issues, size

and materials limitations, and production of non-environmentally-friendly waste.

The different 3D-printing approaches can be liquid-based, solid-based, and powder-based [93].

The first category includes stereolithography (STL) [93]. The second category encompasses techniques

27



like fused deposition modelling (FDM), laminated object manufacturing (LOM), Multi-Jet modelling

system (MJM), plastic sheet lamination (PSL), and paper lamination technology (PLT) among many

others [93]. Lastly, the most commonly used powder-based rapid prototyping (RP) systems include

selective laser sintering (SLS), laser engineered net shaping (LENS), and electron beam melting (EBM)

[93]. One of the major problems of 3D-printing techniques is that not all of them can be used at a same

spatial resolution nor can use the same materials, with the liquid-based approaches being more efficient

to 3D-print different types of polymers, and the solid-based approaches more reliable when 3D-printing

electronic circuits, for example [94, 95]. Furthermore, liquid-based approaches yield better surface

resolution than solid-, and powder-based RP approaches [93]. However, the residual stress arising from

the phase transformation of the material (from liquid to solid) tends to cause curling during the building

process [96]. Table 2.1 presents a brief summary of the different 3D-printing types, their resolution, and

the materials they use.

3D-printing approach Resolution (layer thickness) Materials

STL 10 µm Photocurable resins

FDM 100 µm Plastics

LOM 112 µm Paper

MJM 16 µm Photocurable resins

PSL 100 µm Plastic sheets

PLT 100 µm Paper

SLS 60 µm Plastics

LENS 400 µm Metal components

EBM 50 µm Metal components

Table 2.1. Summary of the different 3D-printing approaches, their resolution and size limitations, and the

materials they use. Data obtained from [93–96]

In this thesis 3D-printing has been used as a tool to develop parts and sensors in the microscale

in a time-efficient manner. Furthermore, 3D-printing allows the user to a degree of personalization in

terms of built geometries and materials that other manufacturing techniques do not permit. In the

course of this research an ASIGA PicoPlus Pro27 3D-printer (ASIGA, Anaheim Hills, California, USA)
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has been used to build and develop all the parts and devices. This uses a liquid-based approach to build

the desired parts by means of STL. In this Chapter some of the key characteristics and parameters for

STL 3D-printing are discussed as well as the basics of the polymerization process.

2.1 Polymers: types and main characteristics

Polymers, commonly known as plastics, are organic compounds consisting of long chains assembled by

smaller repeated molecule units (monomers), which are formed by the process of polymerization [97].

Polymers are present in our daily lives and are used for wrapping and packing, for textile purposes, to

develop parts of automobiles, and for electronic applications among many others [97].

Polymers can be split in two different types: synthetic (which are derived from petroleum oil)

and natural polymers, and can be classified in different ways depending on the arrangement of their

chains (homopolymers and copolymers), depending on their mode of polymerization (addition polymers

and condensation polymers), or as a function of their physical response to heating (thermoplasttics and

thermosets) [97].

2.1.1 Natural polymers

Natural polymers are those which are present in, or created by, living organisms, including polymers

from renewable sources that can be polymerized to create bio-plastics. Natural polymers compose most

of the structures of living things, with the most famous one being deoxyribonucleic acid (DNA), and can

be of three different types: (i) polynucleotides, which are chains of nucleotides, (ii) polyamides, which

are chains of proteins, and (iii) polysaccharides, which are chains of sugars [98].

Among the different types of natural polymers, cellulose is the most abundant carbohydrate in

the world (a 40% of all the organic matter is cellulose [98]), it is the main constituent of plants, and

it is also present in algae, bacteria, fungi, and animals. Chitin is a polysaccharide similar to cellulose

(it replaces the OH group on the C-2 carbon of each glucose units with an –NHCOCH3 group), and it

is the second most abundant polysaccharide in the world, playing a key role in the cell walls of fungi

and in the exoskeletons of spiders, insects, and crustaceans [98]. Another relevant natural polymer is

collagen, which has found several applications in tissue engineering and repair [99] as well as for medical
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implants [100] due to its ability to polymerize in three-dimensional fibrous matrices. Other relevant

natural polymers are starch, casein, fibrogen, lipids, silks or natural rubber amongst many others [98].

Natural polymers can form natural reinforced fibres, which can be subdivided depending on their

origins (if they come from plants, animals or minerals) [98]. All plant fibres are composed of cellulose

(leaves, seed, fruit, wood and cereal among others) whereas all animal fibres consist of proteins (hair,

silk and wool) [98].

2.1.2 Synthetic polymers

Synthetic polymers are man-made macromolecules that consist of repeating monomers, and have become

increasingly popular due to the fact that there are several ways of producing and modify chemical

structures in an economic and unlimited way to produce materials with specific properties [101, 102].

Nevertheless, this unlimited use of petroleum resources opens the debate, one more time, of the impact

of plastics in the environment, empowering the use and development of eco-friendly technologies to

develop the same (or very similar) materials with the same characteristics [103].

Synthetic polymers are usually hard to break and cheap to make and shape [104]. One of the

most common synthetic polymers is polyethylene (made of ethane monomers), which can be used to

make very large objects like tubes, and it can also be used to build smaller objects such as bottles to

pack liquids (which are actually not made of polyethylene but from a very similar synthetic polymer

called polyethylene terephtalate, PTE, or PETE) or toys [104].

Other synthetic polymers developed so far are nylon, which has the tendency to become hydrophilic,

polyvinyl chloride, which is one of the most produced synthetic polymers in the world and it is used

for construction purposes and cable insulation, low-density polyethylene, which are the most common

synthetic polymers and are widely used in households, and polypropylene, which is used in a wide range

of applications such as packing, labelling, textiles, reusable containers, laboratory equipment, and many

more [? ].
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2.2 Classification of polymers

As previously mentioned in this Chapter, synthetic polymers can be comprised in several classifications,

depending on several parameters such as the structure of their chains, their mode of polymerization, and

their physical response to temperature.

2.2.1 Classification based on their chain structure

Polymers can be grouped based upon the chemical structure of their backbones. Homopolymers are

those polymers in which a single monomer unit is polymerized into a macromolecule [105]. On the other

hand, copolymers are those in which the macromolecule is formed from two or more monomers [105]. It

is possible to develop copolymers in a way in which the monomers are randomly distributed, providing a

degree of personalization to the developer in terms of mechanical properties.

Polymers can be linear (composed of chainlike molecules which can be viscous liquids or solids

with varying degrees of crystallinity, and can dissolve in certain liquids and melt upon heating), or

cross-linked (networks of molecular structure that do not dissolve in solvents and do not melt upon

heating, and can be formed by addition or condensation, as discussed later in this section) [106].

2.2.2 Mode of polymerization

Polymers can also be classified depending on their mechanism of polymerization, being addition and

condensation the most common ones.

• Addition polymers are created through free electrons present in double bonds, which are used to

bond two monomer molecules together [105]. Thus, double bonds become single bonds such that

no atoms are lost. The most important addition process is called chain-growth, which is discussed

in further detail later in this Chapter. Polymers that form through this process are low- and

high-density polyethylene, PVC, polypropylene, and polystyrene.

• Condensation polymers usually occur with the generation of a byproduct such as water [105].

Polymers created through this process are commonly known as step-growth polymers (as discussed

in further detail later in this Chapter). In contrast to addition polymers, which are created by

carbon-carbon bond creation, condensation polymers grow by carbon-heteroatom bond formation

(C-O, C-N, for instance). These polymers could be thought to be alternating copolymers, but the
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repeating monomer unit is usually defined as a combined moiety.

Condensation polymers usually require a source of energy to form, growing slower and resulting in lower

molecular weights than addition polymers [107]. Another big difference between these two processes is

that in condensation polymers the terminal functional ends of the chain remain active, allowing groups

of shorter chains combine into longer chains in the late stage of the polymerization process. If these

functional groups are polar, the chain-chain interaction is enhanced, especially if they involve hydrogen

bonding, furthermore, contributing to crystallinity of the polymer.

The materials used in this thesis are condensation polymers.

2.2.3 Physical properties

Depending on the thermal response of the polymers, they can be classified as:

• Thermoplastics: are linked by intermolecular interactions or van der Waals forces and can form

linear or branched structures [105]. These polymers soften when they are heated and become

rigid when cooled down [105]. Furthermore, depending on the degree of the intermolecular

interaction between the chains, thermoplastics can present amorphous (which are disordered chains)

or crystalline (the chains acquire an ordered structure) structures, with co-existing phases in specific

materials [108]. Whereas the amorphous structure of the polymer is directly related to its elastic

properties, the crystalline structure is responsible for the resistance of the polymer to stress [108].

Thus, the concentration of polymers with amorphous or crystalline structure will determine the

mechanical properties of the thermoplastic.

• Thermosetting: are made by polymers joined together by chemical bonds and acquire a highly

cross-linked structure [108]. These plastics soften when heated, harden permanently, and decompose

when reheated [105]. The high degree of cross-linking of thermoset materials provides a low degree

of elasticity [108]. The main characteristic of these materials is the gel point, which is an abrupt

change in viscosity where gelation is reflected as a loss of fluidity (i.e. when they move from viscous

liquid state to solid state). When the gel point has been overcome, the material stops flowing and

it cannot be moulded anymore (a key aspect for stereolithography 3D-printing purposes).

Elastomers can also be added in this section, which are polymers that are joined by chemical bonds

reaching a low degree of cross-linking in their structure [105]. The main characteristic property of these
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materials is that when stress is applied to them, the length and size of the chains increase, and as soon

as stress is removed they come back to their initial length. Elastomers present a high degree of flexibility

and elasticity before they break[108]. Depending on the strength and density of the chemical bonds

that keep the chains of the polymer together, elastomers can present very similar mechanical properties

to those observed in thermosets and thermoplastics. Thus, they can be sub-classified as (i) thermoset

elastomers which are elastomers that do not melt when heated, and (ii) thermoplastic elastomers wihch

are elastomers that melt when heated.

2.3 Development of 3D-printable materials

An important part of the research conducted during this thesis consisted of the development of new

3D-printable composite functional materials to be used in liquid-based approaches for STL, as the number

of commercially available resins for STL purposes is very low. Furthermore, the few commercially available

materials for 3D-printing using the STL technique are polymeric materials (plastics) that when 3D-printed

do not present any kind of functionality apart from the one provided by its own structure, and geometry

of the 3D-printed part. Some of their characteristics are shown in Table 2.3 [109].
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Company Materials Applications/Projects

ASIGA [114] Plastics Jewellery, dental, and microscale applications.

Stratasys [115] Thermoplastics Biocompatibility, and dental.

ProtoLabs [116] Plastics and metals Large scale 3D-printing.

Handsmith [117] N/A 3D-printing bionic hands.

Saphium [118] Compostable plastics Environmentally-friendly 3D-printing.

Markforged [119] Metals Carbon fibre printing.

Cartesian Co [120] Metals 3D-print electronic systems.

Biobots [121] Tissue and cartilage 3D-printing organs.

Made in Space [122] N/A 3D-printing in International Space Station (ISS).

ApisCor [123] N/A 3D-printing houses.

Natural Machines [124] N/A 3D-print food.

Table 2.2. Companies using different 3D-printable materials in very contrasting projects, both in the micro-

and macorscale.

The majority of the polymers developed to use in STL machines are based on low-molecular weight

multi-functional monomers that form networks through polymerisation (see Section 2.2) and cross-linking

when adding a photo-initiator. Molecular weight, as well as its distribution, play a key role in the

mechanical and thermo-physical properties of a polymer; those with a small number of repeated oligomers

will be soft (or even liquid) and present low strength values, whereas those with higher numbers of

repeated oligomers and a higher molecular weight will be solid and present larger hardness values. This

increase in the mechanical and visco-elastic properties with molecular weight reaches a maximum value

at a specific molecular weight, independently of the length of the polymeric chain, and following an

asymptotic approach. The first resins developed for STL 3D-printing were rigid, glassy, and brittle [110],

but in the last decades several polymers that cover a wide range of mechanical properties have been

developed [111–113], and are constantly improving to make this range wider, as well as making them

useful not only for prototypes or mechanical applications, but also for functional parts. Table 2.2 shows

different companies using several 3D-printable materials that can be used in very contrasting fields, both

in the micro- and macroscale.
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In order to move this project forward, it was necessary to develop new functional composite 3D-printable

materials that would work when using the STL RP approach. The first step was to develop several

non-functional materials as a proof of concept that the possibility of 3D-printing new polymer-based

non-commercial materials using an ASIGA PicoPlus27 is real when properly adjusting the 3D-printing

parameters and settings of the 3D printer.

2.3.1 The polymerization process

Polymerization is the chemical process through which several monomers can be combined to form

a polymer or a polymeric compound, consisting of the repetitive bonding of small molecules [106].

Monomers are single small molecules, such as hydrocarbons or amino acids (see Fig. 2.1) [106]. These

monomer molecules, which can be alike or different compounds, combine in high numbers to form longer

chains with strong physical properties, such as elasticity, high tensile strength or the ability to form fibres,

for example.

Fig. 2.1. The left hand side image shows the basic structure of a hydrocarbon (ethane, C2H6), whereas the right

hand side image shows the basic structure of an amino acid, where three main parts can be distinguished: the

amino group (in blue), the carboxyl group (in red), and the radical (side chain, in light grey).

In nature, polymerization is a very common process in several fields; for instance, enzymes carry out

polymerization to form proteins, carbohydrates, and nucleic acid [106]. On the other hand, when

developing specific polymer-based materials, polymerization of monomers is a chemical reaction that needs

to be performed under highly controlled conditions, as some polymerization processes are exothermic and

if performed under the wrong or inadequate conditions could led to explosions or fires. The polymerization

process does not follow a unique path, but it can be performed in several ways, leading to a polymer

classification according to the way in which the propagation of their chains occur.

1. Step growth polymerization: step growth polymers are formed by stepwise reaction between
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bi-functional (or multi-functional) groups of monomers. As a result, and after a repeated number

of steps, a high-molecular-weight polymer is formed. Due to the nature of the polymerization

mechanism, the reaction has to proceed for a long time in order to achieve high-molecular-weight

polymers. In the step growth polymerization process, branched polymers can be produced if

monomers have more than two reactive sites (as shown in Fig. 2.1). The most relevant step

growth process is condensation.

(a) Condensation polymerization: this type of polymerization often occurs with loss of a small

byproduct, such as water, and generally combines two different components in an alternating

structure. Condensation polymers tend to form in a slow way, often requiring heat, and

being lower in molecular weight [125]. In this type of polymerization, the terminal functional

groups remain active such that shorter chains can combine in late stages of the polymerization

process. Another important feature is the presence of polar functional groups on the chains,

which enhance the chain-chain attractions, providing a higher degree of crystallinity and tensile

strength to the resulting polymer, especially when involving hydrogen atoms. Examples of

condensation polymerization are polyesters, polyamides, proteins, and polysaccharides [125].

2. Chain growth polymerization: chain growth polymers are formed by addition of monomers to

a growing chain. This polymerisation process consists of three main steps: initiation, propagation,

and termination. The initiation process can be split into two steps: the formation of a chain carrier

(R∗) from a suitable initiator, which can be either an ion or a free radical (leading to cationic/anionic

polymerization and free-radical polymerization processes), and the reaction of a radical with the

first monomer molecule, which is called the activated polymer. The activated monomer can rapidly

react with other monomer units, so while the reaction progresses the active centre propagates down

the polymer chain. During this process, several thousands of additions may occur in a very small

timeframe [125]. The termination stage is reached when two free radicals combine to form a single

polymer molecule which cannot react with more monomer units [125]. Termination can happen

in two ways: by combination of two radicals or by disproportionation, which usually involves the

transfer of a hydrogen atom.

(a) Addition polymerization: in this case, monomers need an initiator to start a chain reaction

to form polymers without forming byproducts. It consists of three main parts: initiation,

propagation, and termination. The initiation step starts when a peroxide molecule (H2O2)
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breaks up into two reactive free radicals, where the required energy to start the process can

be provided by light or heat [125]. The initiation stage has another step, consisting of the

attachment of the free radical of the initiator to a monomer molecule, creating a new free

radical called the activated monomer. When the monomer has been activated, the propagation

step starts taking place, and is the most time consuming step of the whole process. This step

consists of the attachment of the activated monomer to the double bond of another monomer

molecule. This action is repeated over and over again leading to long polymer chains (notice

that the polymer only grows at the reactive end, the one with unpaired electrons). When two

free radicals combine to form a stable bond, the polymer cannot grow anymore, leading to the

termination of the polymerization process [125].

Because of the nature of the polymerization process, chain-growth polymers are less readily formed

photochemically, where the use of an initiator is unnecessary [125]. However, high molecular-weight

polymers are difficult to obtain and are often produced from functionality1, leading to higher

intermolecular forces in engineered polymers than in commodity polymers, making them useful for

applications that require high mechanical strength. While the synthetic origin of a polymer is important

from the point of view in which the polymer is processed, it is also a major factor in determining the

properties of the materials, as processing techniques such as extrusion or spinning provide additional

mechanical strength to the polymer through promoting backbone crystallization and alignment [125].

Fig. 2.2 illustrates the difference between step growth and chain growth processes: whereas in

chain-growth polymerization processes the average molecular weight is achieved at low concentration

values, for step-growth polymerization processes a higher concentration is required to achieve the same

average molecular weight.

1The functionality of a monomer is the number of bonds that a monomer’s repeating unit forms in a polymer with

other monomers. Different functinoality, denoted as f , leads to the formation of different types of polymer such as linear

or cross-linked
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Fig. 2.2. Average molecular weight of chain-growth and step-growth processes as a function of monomer

concentration. This graph shows how the average molecular weight of chain-growth and step-growth polymers

changes with monomer concentration. This image also shows that whereas step-growth polymers will slowly

increase their average molecular weight, the opposite will be observed in chain-growth polymers. Graph obtained

from the Polymer database, [125].

2.3.2 Cross-linking

An important property of polymers is their ability to form cross-links between neighbouring chains (see

Fig. 2.3). Cross-linking has as a main consequence the restriction of translational mobility of the chains

of the polymer, which provides stability in all three dimensions [126]. These polymers, furthermore,

cannot melt or dissolve, which becomes a key property in the development of 3D parts since it ensures

that the final material can be separated from the monomer or prepolymer. The presence of reactive

units in the chain of a polymer allows the formation of post-polymerization2 cross-links, as it is the case

in many stereolithographic techniques.

The density of cross-links will have a high impact on the properties of the cross-linked polymer; whereas

low density of cross-links will provide rubber elasticity to the polymer (allowing reversible deformation),

on the other hand, a high density of cross-links will yield to hard resinous materials [126].

Even though there are several ways to produce 3D polymeric materials, cross-linking (also known

as photochemical polymerization) is one of the most common processes as the use of optical techniques,

2Ideally forming systems that have side groups that present different reactivity to the polymerisable units in the monomers

prior to polymerization.
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Fig. 2.3. Schematic representation of cross-linking in a polymer. The dashed lines between solid black circles

(reactive ends) represent the short-length cross-linking chains whereas solid lines represent polymeric chains. This

representation gives an idea of why a higher density of cross-links provides a higher degree of three-dimensional

stability.

such as lasers, allow a high level of both spatial control and resolution.

2.3.3 Photopolymerization

Generally the polymerization process needs an energy input to start the chain reaction, the most common

energy sources being heat or light. When the required energy to start the initiation step is obtained from

light, the process is called photopolymerization. The photopolymerization process demands low electrical

power input as well as a low operation temperature, and it is a process during which no volatile organic

compounds are released [127].

Photopolymerization processes involve a polymerizable radical or cationic matrix and a photoinitiating

system. Free radical photopolymerization (FRP) and cationic photopolymerization are the most relevant

photopolymerization processes, with the first being the most common one. A photoinitiating system

(PS) contains at least a photoinitiator (PI) and/or photosensitizer, which absorbs light and needs to be

selected to absorb the irradiation wavelength [128]. Upon excitation the PI becomes excited (PI∗) and

generates a radical, R∗. When a PS is used and excited, the excitation has to move from PS∗ to PI by

energy (Eq.2.2), or electron transfer (Eq.2.3): the same R∗ is formed or new ion radicals are created,

respectively [127].

PI → PI∗(hν)→ radicalsR∗ (2.1)
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PS → PS∗(hν)→ PI∗ → R∗ (2.2)

PS → PS∗(hν)→ PS∗+ + PS∗− → radicals (2.3)

R∗ + radical monomer → polymer (2.4)

In cationic photopolymerization, onium salts (Ph2I) are used as PI [128]. Their photosensitized

decomposition occurs according to energy (Eq.2.6) or electron transfer (Eq.2.7), similarly than in FRP

processes.

PI(Ph2I)(hν)→ PI∗ → H+ (2.5)

PS → PS∗(hν)→ PI∗ → H+ (2.6)

PS → PS∗(hν)→ PS∗+ + PI∗−(Ph2I
+) (2.7)

H+(or PS∗+) + cationic monomer → polymer (2.8)

Table 2.4 shows the consequences of the factors induced by photopolymerization processes.

Free-Radical Systems

Although photopolymerization can be induced in a number of ways, the most commonly used systems

involve the mediation of free radicals, which can be generated via homolysis of weak bonds under

incidence of light.

Free-radical systems (FRS) are used to make polymers from small molecules containing carbon-carbon

double bonds (vinyl monomers) [129]. The process starts when the initiator splits, separating the pair

of electrons of the bond and leaving the initial molecule divided into two parts, each one containing an

unpaired electron. These molecules are called free radicals. These unpaired electrons have the ability

to swap themselves with pairs of electrons arising from carbon-carbon double bonds, forming a new

chemical bond between the initiator fragment and one of the double bond carbons of the monomer

molecule. Because this electron associates itself with a non-bonded carbon atom, the starting point is

reached again generating a new radical that will repeat the full process, forming new radicals over and

over again (propagation step). When a reaction can self-perpetuate, it is called a chain reaction. The

termination step can happen, mainly, in two ways due to the instability of the radicals.
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Factor Consequence

Switch from mono to diacrylate

Rate of polymerization increases and material becomes

cross-linked; flexibility decreases; hardness increases,

improved solvent resistance.

Switch from di- to tri-acrylate

Rate of polymerization increases and material becomes

cross-linked; flexibility decreases; hardness increases

improved solvent resistance more unreacted alkene groups.

Use of styrene rather than acrylate Lower cure speed

Changing the linking groups in a diacrylate

Aliphatic polyurethane give soft flexible materials;

aromatic polyesters and polyethers produce hard scratch

resistant coatings.

Use of mono-acrylate containing 2 oxygen atoms in a

heterocyclic structure
Greatly enhanced activity of speed of cure.

Pigmented system
Polymerization is less efficient as less light available to

interior of sample. Specialist initiator required.

Change of excitation wavelength to shorter UV
Resolution improves, problems into penetration depth into

the sample.

Use of siloxane system
Lower glass transition temperature, and more flexible final

product.

Cationic system

Oxygen less important; reaction may continue in dark.

In general cationic polymerization is slower than radical

process (particularly for epoxy systems). Moisture

interferes with cationic systems – not with radicals.

Shrinkage less of a problem for cationic systems.

Table 2.4. Factors influencing the behaviour of photopolymer systems. Table obtained from Stereolithography.

Materials, Processes and Applications [109].
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1. Coupling: when two different growing chain ends find each other, as the two unpaired electrons join

to form a pair and, therefore, a new chemical bond joining the two chains.

2. Disproportionation: when two growing chain ends come close together, one of the unpaired electrons

(corresponding to one of the chain ends) tries to find a free electron elsewhere from the other chain

end, finding it in the carbon-hydrogen bond of the carbon atom next to the other carbon radical.

At this point, the free electron takes both the hydrogen atom and one of the electrons, leaving

the first chain with no unpaired electrons, and the end carbon sharing eight electrons with other

carbon and hydrogen atoms. Therefore, the two carbon radicals can join their unpaired electrons

to form a chemical bond between the two carbon atoms. Because the two atoms already shared a

pair of electrons, the second shared pair creates a double bond at the end of the polymer chain.

Sometimes, the unpaired electron at the end of a growing chain will pair itself with an electron

from a carbon-hydrogen bond along the backbone of another polymer chain, leaving an unpaired

electron that cannot form another double bond as previously described, but it can start a reaction

with another monomer molecule as the initiator did at the start of the reaction. This process starts

a new chain growing in the middle of the first chain, giving as a result a branched polymer [129].

The FRS polymerization process is shown in Fig. 2.4.

Cationic systems

In chain-growth processes, photoinitiation is also very common and cationic systems are somehow

complimentary of free-radical systems. Furthermore, they offer the potential of post-polymerization

cross-linking. There are two ways in which the chemical reaction can start [131].

1. The cation species may themselves initiate polymerization.

2. The cation species may generate Broönsted acids which then react with the monomer.

A main difference between free-radical and cationic systems is that the latter can proceed in the presence

of oxygen and polymerization can take place in the absence of light once ionic species have been

produced, which is in high contrast with free-radical systems as the reaction would stop in a fraction of

a second after the removal of the light source.

Cationic polymerization allows the development of polymers by adding monomer chains together,

as described in the previous section for free-radical systems. The main difference with free-radical
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Fig. 2.4. Sketch of the different steps of the free radical polymerization process. In the initiation step, a source

of energy breaks a carbon-carbon bond and two reactive units with a free electron are created. During the

propagation step, this free electron reacts with the electrons of carbon-carbon double bonds, generating a new

bond between the initial fragment and the monomer. Termination process happens when two free electrons are

paired together. Image redrawn from [130].

systems is that the initiator is a cation to which a pair of electrons is attracted (coming from a

carbon-carbon double bond, which will form a single bond with the initiator). Thus, one of the double

bonds will carry a positive charge due to the loss of electrons, which will react with a second monomer

in the same way, and this process will carry on.

Sometimes, nevertheless, this process is slightly more complicated depending on the initiator.

Usually, the initiators are aluminium chloride (AlCl3) or similar compounds, which follow the octet rule.

This means that the Al atom in AlCl3 shares electron pairs with only three other atoms, leaving it with

only six electrons, and a full empty orbital. These electrons are obtained from the oxygen atom of water

molecules present in the system, forming an AlCl3/H2O complex. Due to oxygen’s high electronegativity,

the hydrogen atoms in the complex are left with a slight positive charge, allowing them to capture a

pair of electrons present in the double bond of a monomer molecule. Therefore, the monomer molecule

is able to swipe the hydrogen and it becomes itself a cation. Thus, after the initiation step, a new cation

is formed, called carboaction (because the positive charge of the cation is placed on the carbon atom),

which is very unstable due to the presence of six electrons in the valence shell. The two missing electrons

are obtained from another monomer molecule, creating another carbocation, which reacts with another
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monomer molecule and so on.

When all the electrons have rearranged themselves (due to the presence of hydrogen atoms in

the monomer groups, which will break away very easily attracted by the pair of electrons of the

carbon-carbon double bond in the polymer molecule), the polymer chain becomes neutral and can no

longer react and grow. Notwithstanding, the new cation can start a new chain growth process in the

same way as the initiator did. At times, the unshared pairs of electrons from the chlorine atom of the

initiator will react with the cationic carbon atom and will join the polymer forming a double bond.

Therefore, the polymer will not be able to chemically react again and the termination step is reached [131].

In FRP, the selection of near UV/visible photosensitive systems for industrial applications is quite easy,

whereas in cationic photopolymerization, as the PIs mainly absorb in the UV regime, the search and

design of suitable PS compounds as energy or electron donors for visible light-induced polymerizations

are necessary, but this appears as a rather complex task for the photocuring of coatings in industrial lines.

Free radical promoted cationic polymerization (a reaction produced from a radical source which is

oxidized to form a cation) is one of the most interesting and promising ways for cationic polymerization

under exposure at wavelengths λ > 350 nm (and up to 700 nm) due to its versatility, but the occurrence

of efficient reactions is not so trivial, and the oxygen quenching of the radicals is detrimental [127].

2.3.4 The stereolithography process

STL is one of the most adaptable 3D-printing approaches as it gives the user a high degree of versatility

when designing structures, as well as the scale at which those can be built. STL is an additive

manufacturing process that permits the fabrication of a part from CAD files [109] or user-developed

masks. There are several ways to develop these CAD files: (i) using computer drawing tools and software

like SolidWorks, PTC Creo, or AutoCAD among many others, (ii) importing an object obtained from

scanning techniques such as magnetic resonance imaging or tomography techniques, and (iii) using

mathematical equations that describe specific surfaces and geometries.

The CAD file determines the size, morphology, structure, and topography of the desired 3D-printable

part to be built. The first step when it comes to STL 3D-printing is to import the designed CAD file
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into a software provided by the 3D-printer’s company, which allows to virtually place and orient the

part in the accurate way in which it will be 3D-printed. To do so, the CAD file needs to be saved using

the .stl format in which the part has been divided into small tetrahedrons (at a resolution chosen by

the designer) that when summed up form the surface of the designed 3D structure. Before 3D-printing,

it is necessary to add supports that will make the sample attach to the holder or building platform.

The structure, geometry, and density of supports can be controlled in the software, as well as other

parameters like the self-support angle, the side-feature size, the material strength, the support spacing,

the torsion tolerance, the contact width, over-shooting, maximum width, and their aspect ratio.

After the part has been virtually placed, the software slices the part into different layers, whose

thickness is determined by the software (in the case of an ASIGA PicoPlus27 3D printer, it is possible

to choose thicknesses of 10, 25, 50, 75, 100, 125, and 150 microns). This slice thickness remains constant

during the full 3D-printing process.

The process of manufacturing 3D objects using the STL approach is based on the solidification

of a liquid resin by spatially controlling the photo-polymerization process. Once the building block has

lowered down and is in contact with the liquid, the pattern of the part is projected onto it and is cured

under UV light, which allows the photo-polymerization process to happen and it hardens the first layer

of polymer. When the first layer has been solidified, the building block moves away and the second layer

is projected onto it, repeating the previous process until the entire part is built. The full cycle is shown

in Fig. 2.5.
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Fig. 2.5. Full cycle to build one layer when using the STL approach of ASIGA. Firstly, the building block

approaches to the building tray where liquid polymer is placed. Once the building block makes contact with the

building tray membrane, the first layer of the part is projected onto it (yellow triangle), and the slider removes

the excess of polymer. When the slider has completed its trajectory, ultraviolet light (purple triangle) is applied

onto the first layer such that the liquid polymer solidifies. Finally, the building block is removed from the building

tray and the full process is repeated projecting all the layers composing the sample.

Parameters to adjust in liquid-based RP approaches

When 3D-printing an object several parameters must be adjusted, such as the building orientation

(which can affect the mechanical properties of the object [132]), the layer thickness, and the working

temperature (which becomes extremely relevant when 3D-printing waxes that are solid below a certain

temperature), among others. All of these properties can affect the resolution of the 3D-printed part.

Another important factor to consider when 3D-printing a part is the stairstepping effect, which

can be easily understood when looking at Fig. 2.6 [133].

The stairstepping effect becomes more apparent when 3D-printing parts with curved surfaces using

liquid-based techniques, and in some cases it may be impossible to eliminate, but it is possible to reduce

it by orienting the part in a certain way. Even though a proper orientation of the part will reduce
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Fig. 2.6. Sketch of the stairstepping effect appearing when 3D-printing a part using the STL method. In this

representation it can be seen how the layer thickness influences the stairstepping effect; the thinner the layer is,

less pronounced this effect will be.

the stairstepping effect and 3D-print it with a better resolution, it will increase the 3D-printing time,

which sometimes is counterproductive. Therefore, it is important to keep a good balance between

surface resolution and 3D-printing time to make the whole process more effective, as the best surface

resolution will lead to 3D-printing times longer 24 hours, and quick 3D-printed parts will lead to bad

surface resolution. Ultimately, though, surface quality of the 3D-printed part is more important than

3D-printing time.

Supports

When building a part using a liquid-based approach, support structures are necessary in order to make

sure that the 3D-printed part attaches to the building block. These supports provide the means to

detach the part from the platform on which it has been built. Additionally, overhanging features need

support structures to prevent them from sagging during the building process. Therefore, the addition of

supports is one of the most important features when deciding how to orient a part, as its size directly

affects the build time. The amount of support structures is also important; if the supports are too large,

the part will need a time-consuming post-processing step in order to remove all the supports by hand

without damaging the surface of the part. Currently the post-processing step is not automated, meaning

that the number of used supports should be minimised when possible. Furthermore, the fact that the

supports need to be removed by hand, affects the quality of the 3D-printed part. For processes employing

external support structures, (such as STL processes), the material consumed includes two parts: (i)

the amount of material used to build the supports themselves, and (ii) the amount of material used to

build the structure. The software can calculate an estimation of the amount of supports needed in a
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specific part depending on the area that needs supports in order to properly attach it to the building block.

Supports can be added when 3D-printing any type of object, and irrespective of weather the part

of interest is solid or it has a hollow region (see Fig. 2.7).

Fig. 2.7. Sketch of placement of the supports when 3D-printing solid and hollow parts. The solid part only

needs to be supported by external supports, whereas the hollow part, apart from the external supports, also needs

internal supports to avoid the part to collapse.

There are two key points to be noted here. First of all, ASIGA’s Composer software allows the user to

define the strength of the support structures, a parameter that is very useful when 3D-printing large

parts. If the part is too big, using standard supports might not be useful, as the part may fail on the

building block due to its own weight. Increasing the strength of the supports might help to overcome this

issue since stronger supports are built using slightly longer burn-in exposure times. Secondly, it is also

important to take care of the use and placement of internal supports. If the user is only interested in the

surface of the 3D-printed part and the inside region is not relevant for the final purpose, then internal

supports will be placed and kept within the part, as they will keep the structure stable. Nevertheless,

if the user is interested in 3D-printing hollow relevant parts, it is important to find a way to remove

the internal supports without damaging the structure. In some cases, though, simply by orienting the

part in a specific way internal supports will not be needed as the structure of the part itself will act as a

support. In other cases, generally when 3D-printing complex structures, the use of internal supports is

unavoidable.

General orientation characteristics

Ideally a 3D-printed part should not only accomplish the resolution and quality requirements, but it

also should be built at the lowest cost and time. Hence, the selection of optimal orientation is actually

a multi-criterion optimisation problem. The selection of the building direction affects the volume of
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building inaccuracy, as well as leading to variation in the quality of the built part. The manufacturing

time of an RP part consists, mainly, of three components; (i) pre-processing time, which encompasses

the CAD file development and the virtual placement of the part onto the building block in the correct

orientation, as well as adding the supports, (ii) fabrication time, which is the time that it takes for the

3D printer to build the part irrespective of the approach used, and (iii) post-processing time, which

depends on the geometry of the 3D-printed part as well as the approach used. When using a solid-based

RP approach, the post-processing step mainly consists on the removal of the supports (if used), whereas

this step is more time-consuming if the liquid-based RP approach has been used, as it implies the

removal of the excess of polymer, the removal of the supports, and its posterior exposure to UV light in

order to finalise the polymerization process. Furthermore, when 3D-printing specific functional materials

such as piezoelectric materials and irrespective of the used approach, the post-processing step includes

the poling process of the 3D-printed sample. Generally, the pre-processing step is the quickest one when

compared to the other two steps. The major concern of building cost when considering part orientation

in RP processes is the material cost. Generally, the building cost is chosen as the main optimisation

objective [134].

There are several general orientation characteristics that are considered to affect the part [133].

1. The height of the object is directly related to the build time, so its orientation in the build direction

becomes fundamental.

2. When external supports are needed, it is necessary to consider:

(a) The volume of material used to build the supports, which wastes both material and build time.

(b) The contact area of the supports with the object, as reducing it implies a decrease of the build

time.

3. Reduce the stairstepping effect by orienting the object properly.

One of the most important sources of inaccuracy when 3D-printing a part is the stairstepping effect which

affects the vertical surfaces less than the horizontal faces. To maximize the surface accuracy, the surface

may be oriented as near to vertical as possible.
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2.3.5 Importance of nanoparticle size

Nanocomposites show various profits apart of low-cost, high accessibility, and easy fabrication, such

as high levels of electromechanical, magnetic, and optical properties as well as the tuning of their

mechanical properties [135–137]. To develop polymer-ceramic composite materials, ceramic (nano-,

and/or micro-) particles are suspended in the resin to be, afterwards, photo-polymerised during the STL

process. Nevertheless, this process is more difficult than 3D-printing photo-polymers as the viscosity

of the resin drastically increases, meaning that high weight fractions of the ceramic (nano-) powder

are difficult to embed into the polymer chain, as it leads to poor 3D-printing resolution. Moreover,

when using ceramic nanoparticles within a polymer, it is important to take into account the size of the

nanoparticles, as using large sizes will result in poor 3D-printing resolution due to light scattering, as

discussed later in this Chapter. At the same time, the nanoparticle’s size must be as uniform as possible

and smaller than the thickness of the 3D-printed layers; whereas the former will provide better output

signals that will improve the sensors’ response and facilitate the post-processing process, the latter will

provide better 3D-printing resolution. Nanoparticle size (dNP ) is an important characteristic to consider

when developing polymer-ceramic functional composites because of the scattering processes arising from

solid-light interactions.

• dNP > λ: The light coming from the source will scatter and reflection can occur.

• dNP << λ: Rayleigh scattering can appear, which is proportional to the sixth power of the

nanoparticle’s diameter. It also depends on the wavelength of the light (∝ λ−4), leading to stronger

scattering at lower wavelengths.

• Mie scattering: is a common type of scattering when using spherical particles of any size. This

type of scattering is not highly dependent on the light wavelength, but it is sensitive to particle

size (∝ d2
NP ), coinciding with the Rayleigh scattering regime when the size of the particles is much

smaller than the wavelength of the light.

• Tyndall scattering: it is similar to Mie scattering but it is not restricted to the spherical shape of

the particles. It commonly appears in colloidal mixtures and suspensions.

Apart from the scattering processes, the nanoparticle’s size is also important when considering the

output signal of the functional material, as they influence the resulting mechanical properties of the

resulting composite [138]. Thus, if the nanoparticle’s size is too small, the nanoparticle’s volume
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fraction that the user will be able to embed within the polymer will be higher, but the final functional

output could be too low or, eventually, zero, making the resulting part not very useful for practical

applications. Hence, the addition of UV blockers within the polymer-ceramic mixture is important in

order to avoid the scattered UV-light rays initiating an undesired photo-polymerisation process. In

order to avoid all this complex optimization process, some authors have simply fabricated their samples

by making a big composite structure by STL and burning the excess of polymer out by pyrolysis [136, 139].

When added within a polymer, NPs can be easily aggregated and agglomerated during the production

process. This agglomeration, which is created by the attracting van der Waals forces between NPs

and can be easily broken by mechanical forces, prevents the improvement of specific properties of the

nanocomposites. Even though it might appear to be a tricky parameter to control, several studies have

shown different ways to solve this problem, such as the use of surfactants, particle coating, application

of a compatibilizer, or charging the filler surface to separate them via electrostatic repulsion [140, 141].

Optimization of building parameters has also been shown to lead to a more uniform distribution of the

NPs within the polymer, reducing the aggregates [142].

Chapter 2 provides wide and thorough insight of 3D-printing technology. This is provided because

3D-printing has become one of the key areas for the development of this work, as all the developed

sensors and resonators have been built using this approach. Understanding the polymerization process

and the types of polymers (with contrasting properties) that can be developed in a simple manner is

important for this thesis as it provides the basic information to develop user-custom materials that

allow the fabrication of bioinspired parts. STL 3D-printing has been chosen given its advantages over

other types of additive manufacturing techniques, being the most important feature its ability to build

user-costume parts in the microscale in a time-efficient manner. Using the knowledge provided in

Chapter 1 it has been possible to 3D-print bioinspired sensors with specific capabilities such as acoustic

frequency selectivity (see Chapter 6).
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Mechanical Properties

The mechanical behaviour of a material describes how this will respond to specific forces. This behaviour

is a highly relevant parameter to take into consideration when developing new materials, as they

will determine the mechanical response of the sample when interacting with several fields and forces.

Key mechanical properties to consider when designing and developing new materials are stiffness,

strength, hardness, ductility, toughness, and elastic modulus, even though other mechanical properties

can also be studied. The mechanical properties of materials are not constant and often depend on some

environmental parameters such as temperature [143], loading rate [144], and other conditions that often

lead to local variability in the values obtained when measuring them, as described later in this chapter.

Seemingly identical tests over identical samples of an identical material can produce slightly different

results. Therefore, multiple tests are commonly conducted to determine mechanical properties and the

reported values can be an averaged value or a range of values that show variability.

The tests used in this thesis to determine the mechanical properties of the developed materials

are nanoindentation and tensile testing. These two tests are equally valid but they are used to measure

different mechanical properties of the material: whereas, on one hand, nanoindentation provides a good

estimation of both the elastic modulus and hardness of the material, it cannot determine in an accurate

way its tensile strength or the Poisson’s ratio. On the other hand, tensile testing provides a good

approximation of the yield strength value as well as its ultimate yield strength, which both depend on

the deformation suffered by the material.

In this thesis, nanoindentation tests have been performed on several polymer-based 3D-printable
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materials in order to determine both the hardness and elastic moduli of the as-synthesized materials

by applying the method of Oliver and Pharr [145], as this technique provides more accurate values

than tensile testing and it allows the user to find a unique value of the aforementioned mechanical

properties (by averaging) and to determine local variability of such mechanical properties depending

on non-homogeneous phenomena taking place on the material, such as non-uniform distribution of

nanoparticles within a matrix (when testing composite materials), or the presence of dislocations and

grain size effects (when working with non-composite materials) [145].

3.1 Mechanical characterization of materials

3.1.1 Concepts of strain and stress

When applying load forces to samples of different dimensions, the deformation suffered by them is not

comparable unless a normalization process is followed. The strength of uniaxially1 loaded samples is

related to its cross-sectional area. Therefore, depending on the performed mechanical test the relevant

area will be that perpendicular to the force (in tension and compression tests), or that perpendicular to

the axis of rotation (in shear or torsion tests). Thus, the stress experienced by a sample of area A when

a force F is applied onto it is described by Eq.(3.1).

σ = F/A (3.1)

Furthermore, when applying a force onto a specific sample, it suffers a change of its dimensions called

deformation elongation, ∆L, as a result of tensile or compressive stress. Thus, to enable comparison

between samples of different length, elongation also needs to be normalized with respect to the original

length of the sample, L. This is called strain and it is expressed by Eq.(3.2).

ε = L/∆L (3.2)

When applying torsional or shear stresses to the sample, the deformation is given by the angle of torsion,

ϑ, and the shear strain, γ, is given by:

γ = tan(ϑ) (3.3)

These two quantities, strain and stress, play a key role in the mechanical response of materials as their

relationship will determine how the materials behave mechanically. Depending on this relationship,

materials can experience elastic, and plastic deformations:

1Loading occurs in one unique direction. Metals are usually tested under uniaxial stress.
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• Elastic deformation: when the material returns to its initial dimensions after the applied stress is

removed. In elastic deformation, the mechanical deflection is reversible and is not permanent. It

works for small stress values except in the case of rubbers, for which it also applies at high stress

values.

• Anelasticity: these materials behave like elastic materials in which the stress-strain curve is not

directly reversible. In these materials, it takes some time before the strain returns to zero, an effect

that can be significant in polymers.

• Plastic deformation: when the material does not return to its initial dimensions after the applied

stress is removed. In plastic deformation, the mechanical deflection is irreversible and permanent.

Therefore, if the deformation of a material is elastic, the stress and strain are related through a linear

relationship called Hooke’s law, shown in Eq.(3.4).

σ = Eε (3.4)

where E is the Young’s modulus (or modulus of elasticity) and it is determined by the initial slope of the

stress-strain curve. Otherwise, when the stress-strain relationship is not linear, E is given by the local

slope of the curve:

E =
dσ

dε
(3.5)

Elastic modulus is a measure of the stiffness of the material, which decreases with temperature in oxide

compounds [146]. It is important to distinguish stiffness, which is a measure of the load needed to

induce permanent deformation in the material, from strength, which refers to the material’s resistance to

failure (either if it is by fracture or excessive deformation). As elastic moduli are related with the first

derivative of the force with respect to the intermolecular distance (or the second derivative with respect

to the interatomic potential), ceramics present larger values of E due to the strength of the ionic bonds,

whereas in polymers the values of E are lower due to the weakness of their covalent bonds. An example

of these values can be observed in Table 3.1. As the interatomic distances depend on the orientation of

the crystals, it must be noted that E is anisotropic for single crystals, whereas it is isotropic for randomly

oriented policrystals.
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Ceramics E [GPa] Polymers E [GPa]

Sapphire (Al2O3) 470 Epoxy, resin, glass filled 20

Cermet (TiC-TiN); Silicon carbide (SiC) 440 Phenol formaldehyde, mica filled 17-35

Alumina (Al2O3) 360 Urea formaldehyde, cellulose filled 7-10

Aluminum nitride (AlN) 320 Melamine formaldehyde, fabric filled 7

Silicon nitride (Si3N4) 300 PVC; Polystyrene 3.4

Mullite (3Al2O3-2SiO2) 210 Acrylic (metacrylate) 3

Zirconia (ZrO2) 200 Nylon 2.4

Yttria (Y2O3) 160 Cellulose nitrate; Cellulose acetate 1.4

Forsterite (2MgO-SiO2) 150 Polypropylene 1.3

Cordierite (2MgO-2Al2O3-5SiO2) 140 Polyethylene 0.7

Steatite (MgO-SiO2) 120 PTFE 0.3

Table 3.1. Elastic moduli (E) of ceramics (left-hand-side column), and polymers (right-hand-side column)

showing a difference of several orders of magnitude between them due to the strength of the ionic bonds. Values

obtained from KYOCERA, Fine Ceramics (Advanced Ceramics) [147] and The Engineering Toolbox, Polymers -

Physical Properties [148].

3.1.2 Elastic properties of materials

When materials experience tension they shrink laterally, whereas when they are subject to compression,

they bulge. The ratio between the lateral and axial strains, ν, is commonly known as the Poisson’s ratio.

ν = −εlateral/εaxial (3.6)

where the minus sign in Eq.(3.6) accounts for the change between the lateral and longitudinal strains.

When a material is uniquely subjected to a stress in the x direction, σx, it will experience strain

in that same direction given by Eq.(3.4), εx = σx/E. Otherwise, when stress is applied in the y direction,

σy, it will induce an x-direction strain given by the definition of Poisson’s ratio εx = −νεy = ν(σy/E).

When the material is subjected to both σx and σy at the same time, the effects can be superimposed as

the governing equations follow a linear relationship:

εx =
σx
E
− νσy

E
=

1

E
(σx − νσy) (3.7)

εy =
σy
E
− νσx

E
=

1

E
(σy − νσx) (3.8)
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When no stress components act in the z direction, the material is called to be in a state of plane stress,

a phenomenon that commonly occurs in thin sheets loaded within their own plane. The z components of

the stress vanish at the surface because there are no forces acting externally in that direction to balance

them. However, a state of plane stress is not a plane strain as the sheet will experience a strain in the z

direction equal to the Poisson’s strain contributed by the x and y stresses.

ε = − ν
E

(σx + σy) (3.9)

Therefore, Poisson’s ratio can be related to the compressibility of the material, K, also called bulk

modulus, which is by definition the ratio of pressure, p, divided by a unit relative decrease in volume ∆V

[149].

K =
−p

∆V/V
(3.10)

In Eq.(3.10), the minus sign indicates that a compressive pressure produces a negative volume change. It

can be shown that for isotropic materials (i.e. σz = 0) the bulk modulus is related to the elastic modulus

and the Poisson’s ratio through Eq.(3.11).

K =
−p

∆V/V
=
σν
εν

=
σx + σy + σz

3(εx + εy + εz)
=

E

3(1− 2ν)
(3.11)

As ν approaches 0.5, Eq.(3.11) becomes unbounded. Thus, ν cannot be larger than 0.5 since that would

mean an increase of volume when applying a positive pressure onto the sample.

Not all deformations are elongational or compressive; the concept of strain also needs to account

for shearing effects, schematically shown in Fig. 3.1. Shearing effects take into consideration the

deformation that the material experiences when a transversal load is applied onto it, leading to a

variation of the right angles of the sample.

When shearing stresses are applied, the horizontal ‘lines’ tend to slide relative to each other changing

the right angles shown as solid lines in Fig. 3.1. This term is called direct shear. Shear stress is denoted

by τ to differentiate it from elongation/compressive stress, σ, and it is expressed analogously to Eq.(3.1).

τ = F/A (3.12)

The practical difference between extensional and transverse stresses is that whereas the first one pulls the

parallel planes within the material apart promoting crack formation and growth, the second one results

in planes sliding along each other, leading to yield and plastic slip. Furthermore, any shearing that causes

tangential sliding of these horizontal planes is accompanied by an equal tendency to slide vertical planes
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Fig. 3.1. Sketch of shearing deformation of a material when a load is applied transversely to the specimen, as

indicated by the big arrow on top. Here it can be seen how the different layers of the material are displaced when

shearing is applied.

(i.e., τxy = τyx). As it happens when applying extensional stresses, shear strain occurs when shearing

stresses (τxy) are applied, which is denoted by γxy (see Fig. 3.2).

Fig. 3.2. Sketch of shear strain generated on a sample of initial length L. The total shear displacement at a

shear angle γ is denoted by δ.

where the change in the vertical angle, γ, is given by:

δ

L
= tan(γ) (3.13)

At sufficiently small loads, it has been experimentally shown that shear stress follows a linear relationship

with shear strain, as it happens in extensional stress. This analogous Hooke’s law for shear stress is shown

in Eq.(3.14) and relates τxy and γxy through the shear modulus, G.

τxy = Gγxy (3.14)
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When studying isotropic materials, the Poisson effect does not appear in shear and, therefore, shear

strain is not influenced by the presence of normal stresses. Similarly, the application of shearing stresses

has no influence on normal strains.

For plane stress situations (without shearing stress components in the z direction), the constitutive

equations can be written as: 



εx = (σx − νσy)/E

εy = (σy − νσx)/E

εz = τxy/G

(3.15)

Similarly as in Eq.(3.10), a relationship between the shear and elastic moduli can be obtained:

G =
E

2(1 + ν)
(3.16)

When the applied stress onto the sample is too large, the corresponding strain does not behave

proportionally to the stress. The point at which this change of behaviour happens is called the yield

point (which is characterized by the yield stress and its corresponding yield strain), further of which

the material starts a permanent deformation entering the so-called plastic regime. Beyond this point,

therefore, Hooke’s law is not valid anymore. When the material enters the plastic regime and stress is

removed, the material presents a permanent strain. If a stress is then reapplied to the material, it will

first respond elastically until it reaches a new yield point higher than the original one, a phenomenon

known as elastic recovery during plastic deformation (see Fig. 3.3).

The physical explanation to plastic deformation is the motion and propagation of dislocations, causing

the breaking and the reforming of the bonds within the material. As stress continues in the plastic

regime, the stress-strain curve passes through a maximum value, the tensile strength σTS , and it breaks

at the so-called fracture point. When designing materials for structural applications, the yield stress is

usually a more important parameter to consider than tensile strength.

The stress-strain curves are also useful to determine the resilience of the material, which is the

amount of elastic energy stored per unit volume and can be found under the elastic region of the

stress-strain curve. Analogously, it is possible to define the toughness of a material, which is its ability

to absorb energy up to fracture. In this case, this amount of energy per unit volume is represented by

the total area under the strain-stress curve, including its resilience.
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Fig. 3.3. Sketch of a stress-strain curve illustrating the phenomenon of elastic recovery during plastic deformation,

where the two loading processes and the unloading process are shown. This figure also shows the two yield points,

denoted by σy0 and σyi , and highlighting the elastic strain recovery using a dashed vertical line.

Another interesting mechanical property of a material is its ductility, which corresponds to its

ability to deform before fracture and it can be expressed either as a percentage of maximum elongation

(εmax), or as a percentage of maximum area reduction, which are measured after fracture and are

expressed by Eq.(3.17) and Eq.(3.18).

%EL = εmax ∗ 100 (3.17)

%AR = (A0 −At)/A0 (3.18)

Finally, the hardness of a material can be defined as its resistance to plastic deformation. Hardness has

been historically measured using empirical scales depending on the ability of the material to scratch,

being diamond the hardest material and talc the softest one. Standard tests are used to determine

hardness values (see Section 3.3: The method of Oliver and Pharr) in order to allow a numerical

normalised comparison between them.

As previously mentioned in this Chapter, the mechanical properties of a same material do not

reproduce exactly due to variations in test equipment, procedure, and specimen fabrication among

many other parameters that will be thoroughly discussed in later sections of this Chapter. Even when
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all these parameters are perfectly controlled, variations in the mechanical properties occur due to

non-homogeneous composition and structure of the material [150].

3.2 Nanoindentation

Indentation testing is a simple method that essentially consists of probing the material of interest with

an indenter tip which mechanical properties (mainly Young’s modulus and Poisson’s ratio) are known.

Nanoindentation is an indentation test in which the length scale of the penetration is measured in

nanometres due to the small forces involved, of the order of the mN. Apart from the displacement scale

involved, the distinguishing feature of most nanoindentation tests is the indirect measurement of the

contact area (area of contact between the indenter and the specimen), unlike in tensile testing. The

contact area, A, is determined from the depth of penetration of the indenter into the specimen instead

of the direct measure of the indenter residual impression left in the specimen surface upon the removal

of load [151].

Nanoindentation technique allows the determination of some mechanical properties such as hardness,

elastic modulus, strain-hardening exponent, fracture toughness, and viscoelastic properties. The test

procedure involves a loading sequence followed by an unloading stage where both the applied load, P ,

and the penetration depth, h, are recorded during the entire test (see Fig. 3.4).

The loading part usually consists of an initial elastic contact followed by plastic flow, or yield, within

the specimen at higher loads. During unloading, if yield has occurred, the load-displacement (P − h)

curve data follows a different path than the loading stage. At zero applied loads, a residual impression

is left on the specimen’s surface. For viscoelastic materials, the indentation test is accompanied by a

creep curve, which is obtained by holding the load constant (usually at maximum load), and monitoring

the change in depth with time [151]. The global shape of the P − h curves differs from one material to

another and these variations reflect, usually, different mechanical properties [152].

Furthermore, P − h curves are not only useful to determine the mechanical properties of materials as

their shape can provide important information of events happening in the material during the test.

An example is shown in Fig. 3.5, which shows local perturbations and discontinuities (called pop in

events) measured in load-controlled experiments. These pop-in events are often observed on metals or
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Fig. 3.4. Load-displacement (P−h) curve obtained in a nanoindentation assay. Three parts can be differentiated:

the loading stage (where the load is applied and the corresponding penetration depth is recorded in small

increments of P ), the holding segment (where P is kept constant for a certain time, leading to a uniform

penetration depth), and the unloading stage (where P is removed and the corresponding penetration depth

is recorded).

metallic thin films, ceramics, metallic glasses, semiconductors, and hard brittle thin films deposited on

soft elastoplastic substrates [151, 152], and they can be explained depending on the indented specimen

and the experimental conditions (time, temperature, indenter’s geometry, strain rate,. . . ), indicating:

dislocations nucleation, rupture of hard brittle films onto elastoplastic substrates, strain transfer across

grain boundaries (in metals), crack formation, and phase transformations [151–153].

These measured perturbations are characteristic of energy-absorbing or energy-releasing events occurring

beneath the indenter tip [151]. The example shown in Fig. 3.5 denotes strong dislocation activity during

a shallow indentation. Additional effects like shear localization into the so-called shear bonds (in bulk

metallic glasses) or phase transformations can also be detected as sudden events by load-displacement

curves.

Nanoindentation hardness tests are generally performed with either spherical or pyramidal indenters.

Nevertheless, such tests can be performed using different tip geometries, as shown in Fig. 3.6.

Different tip geometries can give slightly different values of the measured mechanical properties as they

depend on their projected area onto the surface of the material, as it will be seen in next section.
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Fig. 3.5. Typical pop-in events in a nanoindentation load-displacement curve. Pop-in events are indicated with

arrows during the loading stage, which appear due to dislocations nucleation, rupture of thin films, strain transfer

across grain boundaries, crack formation, or phase transformations.

Fig. 3.6. Sketch of the different tip geometries that can be used to perform nanoindentation tests.
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Therefore, it is not possible to directly compare the results obtained in nanoindentation tests when using

different tips. In this project all the measurements have been performed using a Berkovich tip, which is

a three-sided pyramidal-shaped tip that presents some advantages over other tips, such as a well-defined

sharp geometry, promoting plastic deformation into the surface, and allowing a good measure of both E

and H.

In the classical indentation load-control mode, some parameters must be adjusted before starting

the nanoindentation measurements:

• Loading rate: the loading rate, dP/dt, determines the depth rate, dh/dt, and consequently the

strain rate, dh/(hdt). This parameter influences the response of rate-sensitive materials, such as

plastics or polymers.

• Loading time: this parameter is important because the behaviour of the tested material can be

time-dependent (e.g. in plastics, concrete or wood) due to the effect of thermal drift. Thermal drift

is a common observation in temperature sensitive electronics and is typically in the range of 0.1-1

nm/s. It can be estimated and subtracted from the measurement to gain the true penetration. The

correction of the thermal drift is given by Eq.(3.19), where Td is the thermal drift in nm/s, and t

stands for the loading time.

hcorrected = hmeasured − Tdt (3.19)

• Initial penetration is an unavoidable part of the depth that is lost before contact is detected. It

can be neglected if the contact force is set small or estimated using extrapolation to the zero force

level.

Other parameters to adjust before starting nanoindentation tests are the surface roughness (if surface

roughness is too large compared with the penetration depth, the contact equations become invalid),

the layer thickness (must be ten times larger than the penetration depth exerted by the indenter,

otherwise the substrate influences the measurement and evaluation of the materials constants [154]),

and the material creep (which can influence the evaluation of elastic properties). All these effects can be

minimized using long dwell periods.

Once the tests have been carried out, some corrections must be applied due to artefacts associated with

the load-unload procedure. Others arise from environmental changes during the test and the non-ideal
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shape of the indenter. In addition, there are a number of material-related issues that also affect the

validity of the results. The most important ones are the indentation size effect, piling-up, and sinking-in

[151].

• Thermal drift: there are two types of drift behaviour that can be detected in nanoindentation

experiments; the first one is creep within the material as a result of plastic flow, and the second

one (which is indistinguishable from specimen creep) is a change of the instrument due to thermal

expansion or contraction of the machine [151].

• Instrument compliance: the instrument’s frame deflects as a reaction of the force applied to the

sample. Therefore, correction due to the compliance of the frame is needed as shown in Eq.(3.20).

hcorrected = hmeasured − hf = hmeasured − CfP (3.20)

where hf is the frame deflection, P stands for the applied force, and Cf is the frame compliance.

The compliance of the loading instrument is defined as the deflection of the instrument divided by

the load [151].

• Indenter shape functions: the indenter tip cannot be prepared in a perfect geometrical shape.

Therefore, corrections due to the real shape, especially at shallow contact depths are necessary.

These corrections become of prime importance at small penetration depths.

The data obtained using the nanoindentation technique can be treated with the method of Oliver and

Pharr in order to determine the mechanical properties of the studied material.

3.3 The Oliver-Pharr method

W. C. Oliver and G. M. Pharr developed a method to determine the mechanical properties (hardness

and elastic modulus) of a material from indentation load-displacement data obtained during one cycle of

loading and unloading [145]. For modelling purposes, Oliver and Pharr supposed that the deformation

during the loading process contained both elastic and plastic contributions as the permanent hardness

impression forms. During unloading, the authors assumed that only the elastic displacements were

recovered. For this reason, the method does not apply to materials in which plasticity reverses during

unloading [155].

There are three important quantities that must be determined from P − h curves in order to

65



3.3. THE OLIVER-PHARR METHOD

calculate the mechanical properties of the specimen: the maximum load (Pmax), the maximum

penetration depth (hmax), and the elastic unloading stiffness (S = dP/dh), defined as the slope of the

upper portion of the unloading curve during the initial steps of the unloading (as shown in Fig. 3.4). The

accuracy of H and E measurements inherently depends on how well these parameters can be measured

experimentally. Another important quantity is the final penetration depth (hf ), which is defined as the

permanent depth of penetration after the indenter is fully unloaded.

The exact procedure to measure H and E is based on the unloading process, which is assumed

to be purely elastic, and the behaviour of the Berkovich indenter, which is modelled by a conical

indenter. Fig. 3.7 shows a schematic illustration of the indenter and specimen surface at full load and

unload.

Fig. 3.7. Schematic representation of the indenter at specimen surface at full load and unload and the parameters

characterising the contact geometry.

Assuming that pile-up is negligible, the elastic models show that the amount of sink-in (hs) is given by:

hs = ε
Pmax
S

(3.21)

where ε is a constant that depends on the geometry of the indenter, and takes a value of 0.75 for a

Berkovich tip. The depth along which contact is made between the indenter and the specimen is:

hc = h− hs = h− εPmax
S

(3.22)

In a first approximation, the projected contact area, A, can be taken to be equal to the one for a perfect

indenter. For instance, for a Berkovich indenter, the relationship between A and the contact depth hc is
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given by [156]:

A = F (hc) = 24.56h2
c (3.23)

Once the projected contact area has been determined, H can be calculated from:

H = Pmax/A (3.24)

Whereas H can be easily determined by knowing Pmax and A, obtaining E requires some previous

calculations, including the reduced elastic modulus, Er, which can be easily evaluated from its relationship

with A and S:

S = β
2√
π
Er
√
A (3.25)

β is the so-called King’s factor, a dimensionless correction factor that depends on the geometry of the

indenter and takes the value of 1.034 for a Berkovich tip. In the original method for measuring H and

Er, β was taken as unity. Traditionally β has been used to account for deviations in stiffness caused by

the lack of axial symmetry for pyramidal indenters. However, it has been shown that in some cases β

can significantly deviate from unity [155].

Er which is also known as effective elastic modulus, is defined as:

1

Er
=

1− ν2
m

Em
+

1− ν2
i

Ei
(3.26)

where E is the elastic modulus, and ν is the Poisson’s ratio, and the sub-index i refers to the indenter

(which is made of diamond, Ei = 1140 GPa, and νi = 0.07), and the sub-index m refers to the material.

The reduced elastic modulus takes into consideration the fact that elastic displacements occur both in

the indenter and the sample.

As it can be observed from Eq.(3.24), and Eq.(3.25), determining the contact area of the indenter over

the sample is of prime importance in order to achieve a good approximation of both H and E.

3.4 Composite materials

The term composite usually refers to a matrix of material reinforced with fibres, nanoparticles, nanorods

or any other type of filler. As it can be seen from Table 3.2, the fibres used in modern composites have

strengths and stiffnesses far above those traditional bulk materials.

The materials shown in Table 3.2 are usually used as fibres, and are typically embedded within a matrix
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Material E [GPa] σh [GPa] εh [GPa] ρ [Mg/m3] E/ρ [MJ/kg] σh/ρ [MJ/kg]

E-glass 72.4 2.4 2.6 2.54 28.5 0.95

S-glass 85.5 4.5 2.0 2.49 34.3 1.8

Aramid 124 3.6 2.3 1.45 86 2.5

Boron 400 3.5 1.0 2.45 163 1.43

HS graphite 253 4.5 1.1 1.80 140 2.5

HM graphite 520 2.4 0.6 1.85 281 1.3

Table 3.2. Mechanical properties of some composite reinforcing fibres. Table obtained from Encyclopaedia of

Polymer Science and Engineering [157].

material which has the function to transfer loads to the fibres, as well as to protect them from abrasion

and environmental attack. Even though several metals and glasses can be used as matrices (which are

expensive and largely restricted to R&D laboratories), polymers are much more commonly used, being

thermoplastic polymers increasingly popular materials [157].

3.4.1 Stiffness

When embedding nanoparticles and/or nanorods within a matrix, they tend to be randomly oriented,

whereas fibres are easier to orient in specific directions; for instance, arranging them to be oriented in the

direction expected to have the highest stress. Such a material is said to be anisotropic, and controlling it

is important for specific applications. Therefore, at a microscopic level the properties of these composites

are determined by the distribution and orientation of the filler, as well as by the mechanical properties

of both the matrix and the filler. Considering a material of unit dimensions containing a volume fraction

Vf of fibres oriented in a single direction, the matrix volume fraction is Vm = 1 − Vf . Thus, if a stress

σ1 is applied in the fibre direction, both the matrix and fibre phases act in parallel to support such load

and, therefore, the strains in each phase must be the same, a phenomenon known as isostrain, being:

εf = εm = ε1 (3.27)

In order to balance the total load on the material, the forces in each phase must add:

σ1 = σfVf + σmV m = Ef ε1Vf + EmεmVm (3.28)
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The stiffness in the fibre direction is found when dividing by the strain:

Ec =
σ1

ε1
= VfEf + VmEm (3.29)

Eq.(3.29) is known as the rule of mixtures and it predicts the composite elastic modulus in terms of the

moduli of the constituent phases and their corresponding volume fractions [158].

If the stress is applied in the direction transverse to the fibres, the stresses in both the fibres

and the matrix are equal (in the ideal case, which is known as isostress), and the deflections add to give

the overall transverse deflection. In this case it can be shown that:

1

Ec
=
Vf
Ef

+
Vm
Em

(3.30)

It must be noted that in this case, the stiffness of the composite increases much slower than the previous

case as volume fraction of the filler is increased [158].

The properties of composite materials must represent an average value of the properties of their

individual components, which is a sensitive function of the microstructural geometry [159]. In more

complex composites, nevertheless, Eq.(3.29) represents an upper limit of the composite modulus, while

Eq.(3.30) is the lower bound. Most practical cases will be somewhere in between these two values, which

has attracted the attention of researchers to develop mathematical models to explain such behaviours.

Perhaps the most popular model is an empirical one known as the Halpin-Tsai equation [160].

E =
Em [Ef + ξ (VfEf + VmEm)]

VfEm + VmEf + ξEm
(3.31)

Here, ξ is an adjustable parameter that results in series coupling for ξ = 0, and parallel averaging for

very large values of ξ, recovering Eq.(3.29) and Eq.(3.30) respectively in such extreme cases.

3.4.2 Strength

The rule of mixtures also applies to determine the strength of composite materials in a similar way as

the one used for stiffness. Considering a unidirectionally reinforced composite strained up to the point

at which the fibres begin to break, εfb, the transmitted stress is given by the product of stiffnesses.

σb = εfbE1 = Vfσfb + (1− Vf )σm (3.32)

The stress suffered by the matrix is σm = εfbEm. However, Eq.(3.32) is not a realistic expression for

low filler concentrations since the breaking strain of the matrix is usually greater than that of the fibres.
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A couple of considerations must be taken into account at this point: (i) if the matrix had no filler

within it, it would fail at stresses given by σmb = Emεmb, and (ii) if the filler was considered to carry

no load, the strength of the composite would fall off with filler concentration according to σc = (1−Vf )σmb.

Since the breaking strength measured in composite materials is greater than the two previous

expressions, there exists a range of filler fraction that weakens the composite by the addition of filler.

3.5 Theoretical modelling of mechanical properties

The nature of the tensile response of a polymer depends on its chemical structure, its molecular weight

and distribution, the conditions of its preparation, and the extension of cross-linking or branching [161].

The mechanical behaviour of filled-polymer systems has attracted the attention of many investigators

due to their importance for engineering applications [162]. Researchers have tried to model such

mechanical properties from a mathematical point of view and, as a result, a variety of mathematical

models have been developed to predict not only the modulus of composite materials but also other

mechanical properties like tensile strength as a function of the filler’s volume fraction.

Obviously, the mechanical properties of filled composites are affected by a large number of parameters

such as particle size and shape of the filler, filler orientation, adhesion between the matrix and the

filler, filler fraction, or exposure time to UV light when using photo-sensitive polymers among others [108].

Tensile modulus seems to be one of the easiest mechanical properties to predict as it is a bulk

parameter that strongly depends on the geometry of the sample, filler concentration, and particle

size distribution. Therefore, several theories have been developed to estimate the tensile modulus of

composite materials in terms of different parameters, and those developed by Einstein [108], Kerener

[163], and Sato and Furukawa [164] are the most relevant ones. Whereas Kerener’s equation presents an

upper bound of the modulus, both Einstein’s and Sato and Furukawa’s equations introduce an adhesion

parameter between the filler and the polymer.
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3.5.1 Kerener equation

Kerener’s equation can be used to determine the elastic modulus of composite materials.

Ec = Em =

(
1 +

Vf15(1− ν)

Vm(8− 10ν)

)
(3.33)

where Vm is the matrix volume fraction and ν is its Poisson’s ratio. For expansible polymers incorporating

rigid spherical particles featuring adhesion, Kerener’s equation can be used to estimate the elastic

modulus.

3.5.2 Einstein equation

Einstein developed two different equations to determine the elastic modulus of composite materials. In

the first model, the adhesion between matrix and filler was considered, whereas in the second model a

fixed adhesion parameter was included.

Ec = Em (1 + Vf ) (3.34)

Ec = Em (1 + 2.5Vf ) (3.35)

where Ec and Em are the Young’s modulus of the composite and the matrix respectively, Vf is the filler

volume percentage, and the factor 2.5 in Eq.(3.35) accounts for adhesion between filler and polymer.

3.5.3 Sato and Furukawa model

Sato and Furukawa developed an expression to determine the elastic modulus of a composite material in

which a filler is embedded within a matrix. Unlike Einstein’s equation, Sato and Furukawa assumed that

the adhesion between the matrix and the filler, which they denoted as j, is not constant and it depends

on several parameters.

Ec = Em



(

1 +
V

2/3
f

2− 2V
1/3
f

)
(1− ψj)−

V
2/3
f ψj(

1− V 1/3
f

)
Vf


 (3.36)

ψ =
Vf
3

(
1 + V

1/3
f − V 2/3

f

1− V 1/3
f + V

2/3
f

)
(3.37)

In this model, j is constrained between 1 and 0, being 1 poor adhesion between the filler and

the matrix, and 0 perfect adhesion between them. Some experiments have revealed that the results

given by this model are placed in between Kerener and Sato and Furukawa relations with perfect adhesion.

All these predictions assume that the matrix and the filler have, only, an appreciable degree of
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interaction in which the polymer matrix is stiffened by the particulate filler. In most conventionally

filled polymer systems the modulus increases linearly with the filler volume fraction. The increase of

modulus is mainly governed by the particle size of the filler [165].

This Chapter discusses the different mechanical properties that must be considered when developing

new 3D-printable materials. These mechanical properties are important for the resulting developed

parts as they will directly influence the response of the 3D-printed sensors, altogether with their shape,

geometry, and dimensions. Developing 3D-printable materials with contrasting mechanical properties

provides an extra degree of flexibility in the manufacturing process. Furthermore, this Chapter provides

several mathematical models that predict the resulting mechanical properties of composite materials.

These models have been really helpful during this thesis as a way to confirm the experimental results.
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Chapter 4

Basic Concepts of Piezoelectricity

and Magnetism

4.1 Piezoelectricity

4.1.1 Introduction

Piezoelectric materials are materials with the ability to convert mechanical energy into electrical energy

and vice versa. Piezoelectric materials find applications in many fields of science such as energy

harvesters or power generators [166], but the amount of energy they produce is still low and must be

optimized. The piezoelectric effect was discovered in 1880 by the Curie brothers when they found that

when applying a mechanical stress into specific materials, those generated a voltage proportional to the

applied stress. Piezoelectric materials can be either natural (quartz being the the most common natural

piezoelectric material) or man-made [167]. The latter are usually ceramics and are more efficient than

natural piezoelectrics. On the other hand, processes to develop man-made piezoelectric materials are

usually complex due to complicated crystalline structures [167].

The nature of piezoelectric materials is closely related to the significant quantity of electric dipoles

present in them [167]. These dipoles can be induced in several ways, such as ions present on a crystal

lattice with asymmetric charge surroundings (such as in barium titanate, BaTiO3, as shown in Fig.

4.1a), or by certain molecular groups with specific electrical properties.
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Fig. 4.1. (a) Shows a sketch of the crystallographic structure of BaTiO3, where the Ba2+, O2−, and Ti4+ ions are

highlighted. Image obtained from [167]. (b) Shows a sketch of three different ways of polarization. The top-left,

top-right, and bottom sketches correspond to electronic, ionic, and orientational, respectively.

It must be noted that dipoles are vectors and thus they have a value and direction according to the

distribution of surrounding charges. Generally, dipoles tend to have the same direction when next to

each other, and altogether they form Weiss domains, which are usually randomly oriented but can be

aligned through the poling process, in which a strong electric field is applied across the material. Hence,

when a dielectric is placed in an electric field, the electric charges in its molecules redistribute themselves

microscopically, resulting in a macroscopic polarization. This microscopic redistribution of the electric

charges can take place in several ways such as electronic, ionic, and orientational, as illustrated in Fig.

4.1b. Nevertheless, it must be noted that not all piezoelectric materials can be poled depending on the

nature of the dipole (if it is induced by ion or molecular groups). Consequently, the larger the applied

mechanical stress, the larger the change in polarization and higher values of output voltage are obtained.

Independently of the polarization method, the material is induced a macroscopic polarization vector per

unit volume given by:

~P = lim
∆v→0

∑
∆v

~Pmicro

∆v
(4.1)

The change in ~P appears as a variation of surface charge density upon the crystal faces. It has been

shown that in certain materials polarization can be induced through mechanical loads, a phenomenon

known as direct piezoelectric effect and that can be induced at specific angles depending on the degree

of anisotropy of the material. Thus, when the applied load is reversed so is the induced polarization.

Furthermore, when a voltage is applied to the material presenting this characteristic, it suffers a

mechanical deflection, a phenomenon known as converse piezoelectric effect. Both the direct and
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converse piezoelectric effects generate work on the piezoelectric material.

Piezoelectric behaviour in materials can be observed below a certain temperature known as Curie

temperature, TC . Above TC , the crystalline structure will present a simple cubic symmetry and,

therefore, no dipoles will be generated. On the other hand, below TC the crystal will present either a

tetragonal or a rhombohedral symmetry, generating as a consequence the presence of dipole moments.

As previously mentioned, when the dipoles are aligned in (roughly) the same direction the material

presents a value of polarization, whereas if they are randomly oriented the material results with negligible

polarization. When this happens the material needs to be exposed to strong ~E in order to re-orient

the domains in the same direction as the applied electric field and result, therefore, with a permanent

polarization. This permanent polarization is the remanent polarization after the electric field has been

removed, which appears as a consequence of the hysteric behaviour of the material and it is stronger

in the direction of the field. Such a transformation must be done below the Curie temperature so that

dipoles can be created.

The output voltage produced by piezoelectric materials can be used to develop sensors and actuators by

connecting the material to a circuit. For most applications involving piezoelectric materials, the goal is

to convert the maximum amount of mechanical energy into electrical energy, providing as much current

as possible. In fact, resonant circuits are an ideal tool to optimize the measured signal.

4.1.2 Mathematical description

The equations governing piezoelectric materials involve entities that cannot be experimentally measured.

As previously mentioned in this Chapter, a piezoelectric device creates an internal electric field when a

mechanical stress is applied in it (and vice versa). Thus, depending on the material, an electrical field in a

specific direction will lead to a mechanical deflection in any direction, which is mathematically explained

using tensors. It is possible, though, to simplify the equations and calculations by considering materials

in which the electric field is created in one unique direction (generally considered to be either parallel

or perpendicular to the applied stress). Equations of piezoelectricity are given by (when assuming no

variation with temperature and low frequencies):

~D = d1
~T + εT ~E (4.2)

~S = sE ~T + d2
~E (4.3)
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where ~D is the electric displacement, d1 and d2 are piezoelectric charge coefficients (for the direct and

converse piezoelectric effect, respectively), ~T stands for mechanical stress, εT is the permittivity at

constant stress, ~E is the applied electric field, ~S is the mechanical strain, and sE is the mechanical

compliance. The tensors sE , d, and εT are given in matrix form as:




sE11 sE12 sE13 sE14 sE15 sE16

sE21 sE22 sE23 sE24 sE25 sE26

sE31 sE32 sE33 sE34 sE35 sE36

sE41 sE42 sE43 sE44 sE45 sE46

sE51 sE52 sE53 sE54 sE55 sE56

sE61 sE62 sE63 sE64 sE65 sE66




,




d11 d12 d13

d21 d22 d23

d31 d32 d33

d41 d42 d43

d51 d52 d53

d61 d62 d63




,




εT11 εT12 εT13

εT21 εT22 εT23

εT31 εT32 εT33




(4.4)

In many cases, the sE , d, and ε tensors can be simplified and some of the terms become zero due to the

symmetry of the lattice. Equations (4.2) and (4.3) stablish a relationship between the mechanical and

electric behaviours of the material. Whereas Eq.(4.2) shows that a part of the electrical field applied

to the material is converted into mechanical stress, Eq.(4.3) shows the opposite trend, in which a part

of the mechanical stress applied onto the material is converted into electrical energy. The reader must

note that Eq.(4.2) becomes the equation of the electric displacement field in the absence of mechanical

stress on the sample ( ~D = εT ~E), and Eq.(4.3) becomes the Hooke’s law (~S = sE ~T ) in the absence of an

external electric field ~E.

For most piezoelectric materials d1 = d2 ≡ d, and hence:

~S = sE
(
1− k2

)
~T +

d

εT
~D (4.5)

where k = d/
√
sEεT is the electromechanical coupling coefficient, which gives an indication of how

effectively a piezoelectric material converts electrical energy into mechanical energy or vice versa. When

k = 0, Eq.(4.5) becomes Hooke’s law, meaning that all the energy in the material is mechanical energy.

4.1.3 Piezoelectricity in polymers

Since the idea of MEMS emerged in the 1980s, it has been noticed that piezoelectric materials can add

extra functionality to them, leading to the development of piezoMEMS that present several applications,

such as in automotive industry or smart phones [168]. These systems are mainly based in inorganic

materials (such as lead zirconate titanate, PZT), which present some challenges such as high temperature
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processing for thin films, polar reorientation, toxicity, and mainly the high production cost [168]. All

these inconveniences led scientists to use polymeric materials. Some of the advantages polymeric

materials present with respect to inorganic ceramics are their degree of mechanical flexibility, needed

for some applications and a feature that inorganic materials do not present, and the low production

cost in terms of both materials cost and processing technology [168]. Furthermore, these polymers

used to develop new MEMS sensors can provide extra features to the resulting devices due to their

semiconducting, conducting, and electroactive properties [168].

Electroactive polymers (EAP) are materials that mechanically deform when an electric current is

applied through them, and can be classified as electronic and ionic EAPs according to their operation

principle. Whereas in electronic EAPs the electromechanical transduction is created due to the

electrostatic modification of dipoles, in ionic EAPs such process is generated by the ionic changes of

the material. There are several types of piezoelectric polymers: (i) bulk polymers, consisting of solid

polymer films with a piezoelectric mechanism through their molecular structure and its corresponding

arrangement, (ii) piezoelectric composite polymers, which are structures with integrated piezoelectric

ceramics responsible to generate the piezoelectric effect (these types of piezopolymers take advantage

of both the high mechanical flexibility of the polymers and the high electromechanical coupling of the

ceramics), (iii) voided charged polymers, consisting of polymer films in which gas voids are introduced

and their corresponding surface is electrically charged in a way to form internal dipoles (it is interesting

that the polarization of these dipoles changes with the amount of stress applied on them), and (iv)

piezoparticles suspended into polymer matrices, in which nanoparticles of ceramic piezoelectric material

(such as barium titanate, or PZT) are introduced within a polymeric matrix, which is the responsible

to provide a high degree of mechanical flexibility to the system. Depending on the distribution of the

ceramic materials within the polymeric matrix several types of connectivity can be defined, as shown

in Fig. 4.2, going from 0-0 (in which the ceramic and the polymer are not inter-connected in any way)

to 3-3 (in which both the ceramic material and the polymer are inter-connected in the 3 dimensions of

space) connectivities. Embedding rods or particles in a polymer are the most common arrangements

when using these type of materials for electromechanical devices. Furthermore, several numerical and

analytical models have been developed to determine the properties of the resulting piezocomposites

(which will be discussed in Chapter 6, section 6.2) [169–171], becoming extremely useful when designing

new composite materials and predicting their corresponding material properties (electrical, mechanical,
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and electromechanical). Due to the polymer’s low acoustic impedance, piezocomposites have become the

preferred materials to use in acoustic devices.

(1,3) piezocomposites usually consist of cylindrical pillars embedded in a polymer matrix and are

used for applications in centimetre-scale acoustic sensors [172] and energy harvesting [173], but most of

them present some disadvantages related to the fabrication process and the size of rods, limiting their

degree of applicability. (0-3) piezocomposites, on the other hand, are much easier to prepare as they mix

the inorganic piezoelectric particles with the polymer before the latter is cured. Furthermore, the small

size of the used NPs leads to a better integration of such materials in microscale applications.

Fig. 4.2. Classification of two-phase (ceramic-polymer) composites with respect to connectivity. Two

configurations are shown for connectivities 3-2 and 3-3. This representation shows how piezoelectric structures

embedded within polymeric matrices can be distributed.

In order to sustain the orientation state of the molecular dipoles in piezopolymers a poling process

is needed, which is typically performed by electrode poling or corona poling. The electrode poling is

simpler than the corona poling, in which conductive electrodes are deposited on both sides of the sample
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to apply a high voltage across the polymer [174]. It must be noted, though, that applying such high

electric fields could lead to polymer break down [174]. In order to minimise these effects, the poling

process should be performed either in a vacuum chamber or in an electrically insulating fluid (such as

silicon oil). The degree of alignment of the dipoles with the direction of the applied ~E, and therefore the

piezoelectric coefficient d of the material, depends on a series of parameters: the strength of the applied

field, the application time, the temperature at which the polling process has been performed (and its

uniformity), and the impurities present in the sample. Unlike in electrode polling processes, corona

polling only requires one of the surfaces of the material to be covered with an electrode. A needle made

of conductive material is held on top of the piezoelectric material surface, with its electroded surface

in contact with a hot plate, and a high voltage is applied through it, usually in dry air or in an argon

atmosphere. The gas molecules near the tip are ionized and accelerated towards the electrode. This

same process can be run using several tips in specific arrangements, which altogether with the voltage

applied will control the amount of charge deposited onto the sample. The hot plate is used to provide

a better control of the polling process. The temperature required for both methods has been found to

not go beyond 300 oC in the literature [172, 173, 175, 176]. Apart from direct electroding and corona

poling processes, there are other ways to reorganise the dipoles of a piezoelectric material, such as

electron beam poling [177], in which an electron beam is used to deposit electrons on the surface of the

piezoelectric polymer in a similar manner as the corona poling process, or soft X-ray ionization, which

becomes highly useful for voided charged polymers.

Table 4.1 presents some of the material properties of three different piezocomposites to show how

much variability can be obtained in their design. PMN-0.29PT/epoxy composite and ZnO/SU-8

20% show how piezoelectric nanostructures can be introduced in different epoxies (being the latter

photocurable) to produce contrasting piezoelectric properties. On the other hand, MFC is the leading

low-profile actuator and sensor offering high performance, flexibility, and reliability in cost-competitive

devices.
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Material property PMN-0.29PT/epoxy composite MFC ZnO/SU-8 20%

Density (kg/m3) 500 5440 -

Young’s modulus (GPa) - 30 12.3

Dielectric constant, εr 2000 ∼850 ∼7

d33 (pC/N) 1200 374 5-8

d31 (pC/N) - 170 5

k33 0.85 0.53 0.07-0.12

k31 - 0.34 0.07

Table 4.1. Material properties of piezocomposites. Table obtained from [175]

Several works have studied the piezoelectric response of different inorganic ceramic materials dispersed

in polymer matrices and their corresponding applications [172, 173, 175, 176, 178, 179]. An example

is the use of ZnO NPs (with diameter size < 100 nm) dispersed in SU-8 as energy harvester [176].

Regardless of the low coupling coefficient of ZnO, this piezocomposite has been successfully used

for several applications, as its importance lies in the selection of SU-8 as matrix polymer due to its

photocurable properties [176]. Hence, different weight concentrations of ZnO embedded within SU-8

have been studied, revealing that values higher than a 20 wt% should not be used in order to obtain good

patternability, as under such conditions the curing time increases up to 6 times with respect to pure SU-8

[176]. Park et al. used multi-walled carbon nanotubes (MWCNT) together with BaTiO3 to enhance NP

orientation during the poling process and, therefore, the piezoresponse [178]. Kim et al. focused on the

synthesis of highly piezoelectric NPs to use them in piezocomposites allowing an improvement not only

of the degree of applicability of such materials but also enhancing the piezoelectric coefficients allowing

a more efficient energy transduction, such as the case of lead magnesium-lead titanate (PMN-PT), in

which the ratio of PMN to PT affects both the coupling coefficient and the Curie temperature [179].

BaTiO3 is a widely-studied piezoelectric ceramic material [180, 181], both in its bulk form and

its different nanostructures, being paraelectric (cubic crystallographic structure) above 125 oC, and

ferroelectric (tetragonal crystallographic structure) in the range 8-25 oC [181]. Using BaTiO3 dots, rods,

or nanotubes highly influences its ferroelectric properties due to the imbalance between the Coulomb

interactions (long-range interactions, modified due to a lack of periodicity of the lattice) and the covalent
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interactions (short-range interactions, modified near the surface boundary) caused by atomic off-centre

displacements, reaching d33 values above 400 pC/N [182]. When embedding ceramic piezoelectric

NPs within a polymeric matrix, the piezoelectric domains stay randomly oriented within the polymer

chains after the photo-polymerization process, making the application of an electric field ( ~E) to force

the electric charges to redistribute themselves microscopically necessary, resulting in a macroscopic

polarization of the sample that depends on the degree of anisotropy of the material. If the applied ~E is

not large enough, the electric charges will not receive enough energy to be reoriented in the direction of

the applied field, whereas if it is too high, it leads to electric breakdown of the sample due to an excess of

provided energy. Different ceramic piezoelectric materials, which are transversely isotropic, have distinct

ranges of optimum poling ~E, as its internal energy density must remain positive since it must be minimal

in a state of equilibrium [183]. Nevertheless, when dealing with composites that include piezoelectric

NPs, factors like NP concentration, size, and distribution play an important role [184]. Temperature,

T , is also a key parameter to control during poling processes: for instance, the application of ~E above

TC and a controlled decrease of T would be more efficient as the process is energetically favourable.

Nevertheless, in most cases the melting temperature of the polymer is below TC . Furthermore, before

3D-printing, the optimum NP size must be selected to ensure a proper balance between 3D-printing

resolution and piezoelectric output.

When using these materials for specific sensing applications, there are three main parameters

that must be taken into consideration to select what type of piezocomposite must be used. Two of

these criteria are directly related to the mechanical properties of the piezoocmposite: (i) the minimum

response required for the application, a factor directly related to the coupling coefficient of the material,

which is directly related to both the mechanical and dielectric loss factors as the higher they are the

less energy will be converted, and (ii) the lifetime of the application, as the devices required for specific

applications require operation at high temperatures for long time periods, meaning that the required

piezocomposites must present both a high Curie temperature and be less affected by aging effects [175].

The third criterion is related to the fabrication process of the material, with its degree of integration a

highly relevant parameter to take into consideration. Several piezopolymers have been used to develop

acoustic transducers that operate in different acoustic ranges including audio, ultrasonic, and infrasonic

frequency ranges, with applications in microphones, loudspeakers, and ultrasonic transducers that can be

applied in many different fields such as material fracture, device failure, medical imaging, or automated
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machinery [175]. Developing different types of acoustic sensors further demonstrates that the used

piezopolymers can operate through different principles. For instance, acoustic emission sensors are only

based on the passive detection of the acoustic signal due to the mechanical change of the sensor, whereas

ultrasonic transducers transmit a signal to remeasure it after reflection and detect any changes produced

in the reflected wave [175].

This thesis focuses on the development of (0-3) 3D-printable piezocomposites embedding BaTiO3

NPs within different polymer matrices that present different mechanical behaviours, studying the

influence of different BaTiO3 weight percentages in the piezoelectric properties of the resulting

composites, but this will be thoroughly discussed in Chapter 6, section 6.2.

4.2 Magnetism

4.2.1 Introduction

Magnetism has always been a field of interest for scientific research since its discovery in 1064, attributed

to Zheng Gongliang [185] who discovered that iron could reach a thermoremanent magnetisation state

when heated up. After several centuries of research, it was in the seventeenth and eighteenth centuries

when magnetism became a field of large interest. It was in 1743 when Daniel Bernoulli invented the

horseshoe magnet in which the magnet will not destroy itself in its own demagnetising field, which has

remained as one of the icons of magnetism up to the present day.

In 1820, Hans-Christian Oersted discovered the relationship between magnetism and electricity

[186] following the work done by other scientists in the prior years. Oersted demonstrated that a current

passing through a wire generates a circular field able to detect a compass needle, which supposed

a revolution in electromagnetic science. Several researchers such as Ampère and Faraday developed

theories to determine the magnetic fields created by currents flowing in different geometries, and

discovered the electromagnetic induction phenomenon, leading to the connection between magnetism

and light described by the magneto-optic Faraday effect. It was all this work which inspired James

Clark Maxwell to develop a unification theory of magnetism, electricity, and light described by his

well-known equations (not discussed in this thesis). One of the main conclusions of Maxwell’s work was
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the relationship between the electric and magnetic constants (ε0 and µ0), given by:

√
ε0µ0 =

1

c
(4.6)

Probably, one of the most astonishing manifestation of magnetism in solids is the spontaneous

magnetisation of ferromagnetic materials. The main characteristic of any ferromagnetic material (either

if it is a pure element or a composite material) is the irreversibility of the magnetisation ~M to an

applied magnetic field ~H. Hard magnetic materials present broad square M(H) loops, whereas soft

magnetic materials present narrow loops. This phenomenon does not mean that some materials are

better or worse than others, but simply means that they have a different range of applicability, as hard

magnetic materials are permanent magnets whereas soft magnetic materials are temporary magnets.

Two characteristic parameters of the material can be obtained from hysteresis loops: the coercive field

(HC) which represents at which given field the magnetisation changes its sign, and the remanent (or

saturation) magnetisation (Mr), which is the maximum value of magnetisation the material will achieve.

Another important parameter of magnetic materials is their Curie temperature, TC , below which the

spontaneous magnetisation is reversible, and above which the spontaneous magnetisation is zero.

It must be noted that the magnetic field described by the Biot-Savart law and the Maxwell’s

equations (even though not presented in this thesis) is denoted by ~B, whereas hysteresis loops use the

magnetic field ~H. This nomenclature is necessary when studying magnetic materials: ~B is the magnetic

field generated by electric currents in conductors, moving charges, and magnetic moments and it is

expressed in Tesla (T). On the other hand, ~H is called the magnetic field strength. The distinction

between ~B and ~H is straight forward in free space:

~B = µ0
~H (4.7)

Hence, Maxwell’s equations can be modified in order to satisfy ~H, but for the Ampère’s law to be satisfied,

it is necessary to redefine the relationship between ~B and ~H such that:

~H = ~B/µ0 − ~M (4.8)

The H-field will not be generated only by conduction currents, but any magnet will produce an H-field

within its own volume and around it. Hence, Eq.(4.8) can be rearranged such that:

~B = µ0( ~H + ~M) (4.9)
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Thus, in free space ~M = 0, Eq.(4.7) is recovered in which case ~B and ~H are qualitatively the same.

Within a magnetic material, though, ~B and ~H are quite different and are oppositely directed. Whereas

~H is a conservative field (i.e. ∇× ~H = 0), ~B is a solenoidal field (i.e. ∇· ~B = 0). Hence, hysteresis loops

are plotted using ~H because it is possible to attribute an ~H value at each point within the material and,

thus, ~B can be calculated from Eq.(4.9).

All materials can be classified in terms of their magnetic behaviour depending on their bulk magnetic

susceptibility (χ). The two most common types of magnetism are paramagnetism and diamagnetism,

which account for most of the elements of the periodic table at room temperature. These elements

are usually referred to as non-magnetic materials, whereas those usually referred to be magnetic are

classified as ferromagnetic materials (Fe, Co, and Ni). The only other type of magnetism observed

in pure elements at room temperature is antiferromagnetism, observed in Cr. Nevertheless, magnetic

materials can also be classified as ferrimagnetic materials even though such behaviour is not observed

in pure elements but it can be found in composite materials such as ferrites. Table 4.2 shows the main

characteristics of each type of magnetic behaviour.

Iron (II,III) oxide, more commonly known as magnetite (Fe3O4), is the most magnetic of all

natural minerals, it crystallises with a cubic inverse spinel structure at room temperature [187], and it

presents ferrimagnetic behaviour in its bulk form with a Curie temperature of 858 K. Magnetite NPs

exhibit very different magnetic properties to those observed in its corresponding bulk state due to finite

size effects, as mentioned in Chapter 4, section 4.2 [188–190]. When cooled down, magnetite undergoes

a crystal structure phase transition to a monoclinic crystal lattice in which its magnetic, electrical, and

thermal properties are modified [191]. This crystal structure phase transition, which takes place around

120 K, is known as Verwey transition and it is dependent on domain-state, grain size, and iron-oxygen

stoichiometry [192]. Magnetite has been found to be present in some animals and bacteria [193, 194], in

human brain tissue [195], where it is thought to play an important role in long-term memory [196], and

in various igneous rocks [187]. In its bulk state it presents a ferromagnetic behaviour, whereas it shows

a superparamagnetic behaviour when working with magnetite NPs below a specific size [188], making it

suitable for applications in chemistry [197], medical diagnosis [198], and storage devices [199], among

many others. Magnetite is used instead of other highly magnetic materials, such as cobalt or nickel,

because both the latter elements are remarkably toxic and present an electronic configuration that easily

84



CHAPTER 4. BASIC CONCEPTS OF PIEZOELECTRICITY AND MAGNETISM

Type Atomic behaviour Susceptibility Representation

Diamagnetism
Atoms present no

magnetic moment.

Small and negative

(−10−5 ≤ χ ≤ −10−6).

Paramagnetism

Atoms present

randomly oriented

magnetic moments.

Small and positive

(10−5 ≤ χ ≤ 10−2).

Ferromagnetism

Atoms present

magnetic moments

aligned in parallel.

Large below TC .

Antiferromagnet

Atoms present

magnetic moments

aligned in

antiparallel.

Small and positive

(10−5 ≤ χ ≤ 10−3).

Ferrimagnetism

Atoms present

magnetic moments

mixed in parallel

and antiparallel.

Large below TC .

Table 4.2. Main characteristics of the different magnetic materials and representation of the alignment of their

magnetic moments.
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yields to oxidation.

One important feature that must be taken into consideration when working with magnetic NPs

is their size as it plays a key role in the final magnetic properties. Working with large NP sizes implies

that there exist several magnetic domains within the particle, making the inversion of magnetization

happen through the movement of the walls of the domains rather than spin rotation, resulting in low

values of coercive field (see Fig. 4.3). When the NP size is reduced they become single domain, and thus

the inversion of magnetization happens via coherent rotation, which has a high energetic cost and leads

to an increase of the coercive field. Otherwise, if the size of the NPs is too small, thermal agitation is

non-negligible and provokes fluctuations and, therefore, Hc decreases again becoming eventually zero

(i.e., transition from ferromagnetic to superparamagnetic, as shown in Fig. 4.3). When embedding

magnetic NPs within a polymeric matrix, their concentration will not only have a direct effect on the

magnetization of saturation, which will increase as a function of the content of magnetic material, but

will also influence the coercive field; if NPs are very close to each other, dipolar magnetic interactions

will occur.

4.2.2 Susceptibility and permeability

The simplest materials are linear, isotropic, and homogeneous (HIL), which in magnetism means that

the susceptibility (or applied field) is small and, therefore, a small magnetisation is induced in the same

direction as the external applied field (H ′).

~M = χ′ ~H ′ (4.10)

where χ′ is a dimensionless scalar called external susceptibility. The magnetisation ~M is related to the

internal field ~H by:

~M = χ ~H (4.11)

where χ is the internal susceptibility that follows from:

1/χ = 1/χ′ −N (4.12)

where N is a demagnetizing factor. As long as χ is small (as it takes values of the order between 10−5

to 10−2 and −10−5 for paramagnets and diamagnets, respectively) the difference between χ and χ′ can

be neglected. Nevertheless, this assumption cannot be made for all materials such as superconductors,

paramagnets close to TC , or ferromagnets. It must be noted that χ diverges as T → TC , but χ′ never
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Fig. 4.3. Sketch of the relationship between coercive field and magnetic NP size, discerning between single-

and multi-domain regimes, as well as the superparamagnetic and the ferromagnetic behaviours. For small very

small nanoparticle (NP) sizes, the coercive field is zero as they are single domain NPs and thermal agitation is

non-negligible and generates fluctuations, providing eventual zero coercive field (superparamagnetic regime). As

NP size increases, they are still single domain but in a regime where thermal agitation is not relevant, and the

coercive field starts increasing within a regime where inversion of magnetization happens via coherent rotation.

As NP size keeps increasing, they become multidomain and the rotation of the magnetic domains takes place

through the movement of the domain walls within the NP, leading to lower coercive fields.

exceeds 1/N [185]. It must be further noted that in single crystals, χ may take different values in

different crystallographic directions, meaning that when studying Eq.(4.11) it becomes a symmetric

second-rank tensor χij with three independent components in the principal-axis Cartesian coordinate

system.

Permeability, µ, can be related to susceptibility as it can be derived from Eq.(4.9), becoming:

~B = µ0( ~H + ~M) = µ0(1 + χ) ~H (4.13)

when considering HIL materials. It must be mentioned thath µ0 stands for the vacuum permeability and

µ is defined as µ = (1 + χ). A relative permeability, µr, is defined as µr = µ/µ0. Hence, Eq.(4.13) can

be rewritten as:

~B = µ0µr ~H = µ ~H (4.14)

Permeability is usually related to soft (ferro)magnetic materials, as µr can take very large values, up to

the order of 104 [200].

87



4.2. MAGNETISM

4.2.3 Diamagnetism

When there is no applied field, the atoms of a diamagnet do not present any magnetic moment, but

as soon as a field ~H is applied, a magnetisation ~M is induced in the opposite direction to that of the

applied field. All materials have a diamagnetic effect which is usually masked by larger paramagnetic or

ferromagnetic terms. The value of susceptibility is independent of temperature. Superconductors exhibit

diamagnetic hysteresis loops below their superconducting transition temperature.

4.2.4 Paramagnetism

Several theories have been developed to study paramgenetic materials [185, 201]. The Langevin model,

which is valid for materials with non-interacting localised electrons, states that each atom presents a

randomly oriented magnetic moment as a result of thermal agitation. When an external magnetic field

is applied, these magnetic moments are slightly aligned with the direction of the applied field, producing

a small magnetisation. Thermal agitation increases with temperature, thus making harder to align the

magnetic moments of the atoms and therefore leading to a decrease of the susceptibility of the material.

This phenomenon is known as the Curie law and it can be expressed as a function of the Curie constant

(C):

χ = C/T (4.15)

Materials which obey this law are those in which the magnetic moments are localised at the atomic

(or ionic) sites and where there is no interaction between neighbouring magnetic moments. This is

the case of some hydrated salts of transition metals, as the metallic ion is surrounded by a number of

non-magnetic ions/atoms that do not permit interaction between magnetic moments.

Actually, the Curie law is a particular case of a more general law called the Weiss-Curie law,

which incorporates the temperature constant θ proposed for ferromagnetic materials and accounts for

the interaction between magnetic moments:

χ =
C

T − θ (4.16)

Thus, it can be easily seen that when θ equals zero, the Curie law is recovered. On the other hand, when

θ is non-zero, this means that there exists a magnetic interaction between the magnetic moments of the

material, which becomes paramagnetic exclusively above a certain transition temperature. When θ is

positive the material is ferromagnetic below the transition temperature, and thus θ = TC . If θ is negative
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the material is antiferromagnetic below the transition temperature, called Néel temperature (TN ), but

in this case, unlike in the previous case, θ is unrelated to TN . The reader must notice that this equation

is only valid when the material is in a paramagnetic state, and it is not further valid for those materials

(metals) in which the electrons contributing to the magnetic moment are not localised.

4.2.5 Ferromagnetism

Ferromagnetism can only take place when the atoms in the lattice are arranged such that their magnetic

moments can interact and align parallel to each other. Weiss explained this effect using the classical

theory by the presence of a molecular field within the ferromagnetic material [202]. This field is sufficient

to magnetise the material to saturation. On the other hand, when using the quantum theory, it is

possible to explain ferromagnetism in terms of an exchange interaction between neighbouring magnetic

moments.

Weiss described the presence of magnetic domains within the material, which are regions where

the atomic magnetic moments are aligned [202]. The movement of these domains determines how the

material responds to magnetic fields and, as a consequence, susceptibility is a function of the applied

field. Therefore, ferromagnetic materials are usually compared in terms of saturation magnetisation,

which corresponds to the magnetisation of the material when all the magnetic domains are aligned,

rather than susceptibility. It must be noted that when ferromagnetic materials are heated up, thermal

agitation plays an important role and the degree of alignment of the atomic magnetic moments decreases

leading to a decrease of the magnetisation of saturation. Eventually, thermal agitation becomes so great

that the material becomes paramagnetic. The temperature of this transition is TC above which the

susceptibility varies according to the Curie-Weiss law [202].

4.2.6 Antiferromagnetism

Antiferromagnetic materials (which is only exhibited by Cr in pure elements) can be explained in an

analogous way as ferromagnetic materials with the exception that the exchange interaction between

neighbouring atoms leads to the antiparallel alignment of the atomic magnetic moments. Hence, the

magnetic field cancels out and the material appears to behave in the same way as a paramagnetic

material. As it happens with ferromagnetic materials, anitferromagnets become paramagnets above a

transition temperature TN .
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4.2.7 Ferrimagnetism

This type of magnetic behaviour can be only observed in composite materials, which present much

more complex crystal structures than pure elements. In these materials, the exchange interactions

lead to parallel alignment of atoms in some of the crystal sites and antiparallel alignment of others.

The material breaks down in magnetic domains just like a ferromagnet does, and the magnetic

behaviour is also very similar, although ferrimagnetic materials usually present lower saturation

magnetisation values. A clear example is barium ferrite, in which the unit cell contains 64 ions of

which the barium and oxygen ones present no magnetic moment, 16 Fe+3 ions have moments aligned in

parallel, and 8 Fe+3 ions are aligned antiparallel giving a net magnetisation parallel to the applied field,

but with a relatively low magnitude as only 1/8 of the ions contribute to the magnetisation of the material.

An in-depth explanation of the theory of paramagnetism, ferromagnetism, and antiferromagnetism is

given in Magnetism and Magnetic Materials [200], to which the reader can refer to in case if interested

in this subject. The full detailed explanation of such theory, including quantum effects and probability

calculus is out of the scope of this thesis.

4.2.8 Superparamagnetism

Apart from the types of magnetism previously described in this section, it is possible to find materials

that present the phenomenon known as superparamagnetism. This happens when a material is composed

by several non-interacting very small magnetic domains dispersed in a non-magnetic medium, usually

when working with NPs, which behave like paramagnetic macrospins. As particle’s size increases, it

adopts magnetic configurations governed by the balance of anisotropy, exchange, and magnetic dipole

interactions. Superparamagnets can be used in several technological applications such as in hard drive

disks or ferrofluids.

The energy of a single-domain magnetic grain with uniaxial anisotropy under an external applied

field is given by the sum of its magnetic anisotropy and Zeeman energies1. In the absence of an external

magnetic field there are two energetically equally favourable directions, which are both parallel to the

easy axis of magnetisation with an energy barrier between them of KV (where K is an anisotropy

1The Zeeman energy is the potential energy corresponding to an external magnetic field. Each magnetic moment has a

given Zeeman energy. The reader can refer to Magnetism and Magnetic Materials [200] for further information.
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parameter, and V is the volume of the magnetic domain). Nevertheless, if temperature is high enough,

thermal energy (kBT , where kB is the Boltzmann constant) can overcome such energetic barrier and,

therefore, the grain’s magnetisation changes direction.

On the other hand, in the presence of an external magnetic field, the energy of a magnetic domain is

lower when magnetisation points along the external magnetic field than when it points towards the

opposite direction.

When using superparamagnetic materials for specific applications, the grain size must be as uniform as

possible in order to optimize the response of the device. There are several ways to determine the size

distribution of a sample: (i) using TEM or SEM equipment, and (ii) determining a macroscopic property

of the sample and then deriving the parameters of size distribution based on physical models, being the

Langevin model the most common one. Magnetisation curves (M(H)) below and above the blocking

temperature2 (TB) are qualitatively different. When T ≥ TB it is possible to determine the grain size

distribution parameters. Under such conditions, the Zeeman energy is much larger than the anisotropy

energy. Assuming then that all domains have magnetic moments of the same size, it is possible to apply

the Langevin theory and replace the Langevin function for a Brillouin function given by:

M = MrL(x) = Mr

[
coth(x)− 1

x

]
(4.17)

In this case, the variable x is given by µH/kBT , leading to:

M

Mr
= coth

(
µH

kBT

)
− kBT

µH
(4.18)

It is also possible to stablish a relationship between µ and the size of the particles by using the relationship

[203]:

µ =
πMrd

3

6
(4.19)

Thus, Eq.(4.18) becomes:

M

Mr
= coth

(
πMrd

3H

6kBT

)
− 6kBT

πMrd3H
(4.20)

As all the other parameters can be obtained from the M−H curve, it is easy to determine the distribution

size of the superparamagnetic particles using Eq.(4.20).

2The blocking temperature is defined as the temperature at which the relaxation time due to thermal agitation equals

the experiment timescale (texp). Thus, the blocking temperature is not uniquely defined for a given material due to its

dependency with texp

91



Chapter 5

Experimental Techniques

5.1 3D Laser Doppler vibrometer

The motion of insect tympana when forced by sound is generally too small to be detected using

conventional optical techniques. Indeed, some previous work studying such structures involved large

stimuli amplitudes such that the oscillations could be optically observed [41]. These stimuli, however,

were generally orders of magnitude louder than sound levels to which acoustic structures would respond

to in their natural environment. Thus, a different approach must be used in order to investigate

these structures at biologically relevant stimuli. Laser Doppler vibrometry (LDV) has become a

powerful technique in recent years to detect sub-nanometre motion in a contactless manner not only in

biological structures [204] but also in engineered systems and sensors [205]. The development of this

instrumentations in three dimensions of space (3D LDV) has enabled scientists to study not only the

motion of structures in the out-of-plane axis but also to examine all the relevant physical phenomena

that take place in-plane, rapidly increasing the knowledge of biological sensing. Moreover, the ability to

detect sub-micron motion has allowed to measure artificial non-linear effects generated as a consequence

of the high intensity of the driving sound field.

All types of LDV (1D, 2D, and 3D) use the same principle to detect motion of the sample of

interest based on the Mach-Zehnder interferometer, which consists of the splitting of the initial laser

beam and recombining it using a second beam splitter, generating a (relative) phase difference between

the two beams that therefore creates an interference pattern at the detector. The LDV exploits this

effect (see Fig. 5.1) by firing a laser into a moving object, giving rise to a non-contact measuring
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technique. The intensity of the laser can be adjusted by the user so the sample (either if biological or

not) does not suffer any damage produced by the focusing of the laser to a small point and allowing an

in-vivo and in-situ measurement of the mechanical response of the sample to an acoustic stimulus.

Fig. 5.1. Sketch of the schematic set up of the used LDV. BSi are beam splitters and λ/4 is a quarter wave

plate. The Bragg cell (BC) is an acousto-optical modulator that creates an additional frequency-shifted beam for

the reference beam, allowing the interferometer to be directional. Scanning mirrors, which are controlled by the

Polytec software, allow for accurate positioning and scanning of the surface to be measured.

To detect sub-micron motion, LDV techniques exploit the Doppler effect (detailed in Section 1.2.4)

inferring a velocity from a Doppler-shifted signal. The laser beam is focused onto the vibrating surface

and scattered back. This backscattered signal is Doppler-shifted (by a frequency fd) as a consequence of

the velocity, v, of motion of the studied sample:

fd = 2
v

λ
(5.1)

The laser beam is first split in a reference and an object beam through a first beam splitter (BS1).

The object beam passes through a quarter-wave plate (λ/4) and it is then focused by a movable lens

onto the scanning mirrors that allow for accurate positioning of the laser spot onto the surface. The

object beam is then backscattered with a Doppler-shift proportional to the surface velocity of the object

and returns through the λ/4 plate to be split again by the second beam splitter (BS2), where it is

transmitted towards the detector. On the other hand, the reference beam is directed to the detector

using a prism and after passing through a Bragg cell, which uses the acousto-optical effect (consisting
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of the modification of the refractive index) to induce a frequency shift in the laser beam as it passes

through the cell. Thus, the reference beam is shifted and directed directed towards the detector by the

third beam splitter (BS3). It must be noted that even though the interference pattern generated by the

reference signal and the Doppler-shifted signal is enough to determine the surface velocity of the moving

object, this is an average value of two combined signals, and it is thus not directional. This is the reason

why the LDV system shifts the reference beam using a Bragg cell.

This phenomenon can be easily understood if considering two signals with frequencies f1 and f2, which

lead to a beat frequency of 1
2 |f1 − f2|. In the LDV f2 = f1 ± fd, and therefore |f1 − (f1 ± fd)| = | ± fd|,

which is independent of the direction of movement of the object. Thus, splitting (adding an extra shift

using the acousto-optical effect) the reference beam into a third frequency f3 leads to a beating frequency

|f3 ± fd|, allowing to determine directionality.

The LDV technique has been long applied to detect sub-micron and sub-nanometre motion of

biological samples such as tympanal membranes of locusts, moths, and cicadas as well as it has been

used to detect the antennae motion of mosquitoes, Drosophila flies, and many other Dipterian flies

[11, 206–209]. Nevertheless, the majority of these experiments have been performed using a 1D LDV,

restricting the types of experiments that can be performed as ultimately all stimuli and motion should

be in one unique direction. Furthermore, measuring in one unique direction implies a careful treatment

of the obtained data, as tilting of the vibrating sample could lead to the measurement of artificial

phenomena or a decrease of the absolute amplitude of motion in the axis of interest.

Scanning complex-shaped surfaces presents a particularly demanding scenario in which the direction of

the measured vibration changes with both the scanning angle relative to the LDV and the measured

surface. These limitations can be overcome by simultaneously measuring all the vibration components

and knowing (or determining) the 3D geometry [210]. To do so, a 3D LDV is needed, in which three

independent interferometers are included, each of them controlled by a central data management system.

These interferometers are arranged on a fixed support and their scanning heads are positioned at 0, 90,

and 270 degrees, respectively. In order to scan a single point, each of the independent heads needs to

be positioned at that exact point (with a permitted source of error). All the experiments conducted in

the course of this thesis were performed using a 3D LDV system with an MSA-100-3D scanning head
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(Polytec, Waldbrom, Germany), which combines an optical microscope and uses one unique laser source

and three detector heads positioned as previously discussed.

5.1.1 Resolution limits and sources of error of the LDV

Resolution is a crucial parameter when storing data using LDV techniques that can be highly affected

by several components. The main three noise sources that affect the resolution of the measured data

are light induced noise (shot noise), thermal noise (Johnson noise, arising from both the detector and

preamplifier), signal processing noise, and signal processing noise. Furthermore, there is an ultimate

limiting factor when using the LDV which is the signal-to-noise ratio of the photo detector output [211].

One of the main advantages of detecting coherent light by means of interferometry is that the

optical amplification of the AC current can be expressed as a function of both the measurement beam

power (Pm) and reference beam power (Pr). However, the sum power Pm + Pr generates both DC

current and shot noise which can be expressed as [211]:

i
2
sh = 2KqB(Pm + Pr) (5.2)

where B is the detector bandwidth, K is the detector sensitivity factor, and q is the electron charge. One

of the most important sources of noise is thermal noise, which can be determined from [211]:

i
2
th =

4kBTB

R
(5.3)

where kB is the Boltzmann’s constant, T stands for the absolute temperature, and R is the detector

load resistance.

In order to obtain the best signal-to-noise ratio, the reference beam power is usually chosen such that the

shot noise power significantly exceeds the thermal noise power under specific conditions, a point generally

achieved when Pr + Pm <1 mV [211]. It can further be demonstrated that phase noise (equivalent

to displacement noise) exhibits white noise characteristics, whereas velocity noise is proportional to

frequency. These relationships explain why velocity noise increases with frequency whereas displacement

noise remains constant over frequency [211]. It is possible to obtain sub-nanometre resolution either

under the condition of sufficiently small resolution bandwidth of the signal acquisition system or running

enough averages.

When using LDV techniques it is necessary to take into consideration the possible sources of
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error apart from the cause and origin of noise. The main factors contributing to uncertainties when using

the LDV are basically due to perturbations in the movement of the object (which arise from external

sources), and the finite accuracy of the laser beam position on the measured object [212], which are

reduced by the manufacturer’s software using a Fourier transform filter and an average function over the

measured data.

5.2 Finite element simulation

Usually any engineering problem or biological phenomenon present in nature can be evaluated and

approached from a mathematical point of view using a set of differential and/or integral equations that

describe the system governed by principles such as Newton’s laws, conservation of mass and energy,

the laws of thermodynamics or Maxwell’s electromagnetic equations amongst many others. Most of

the times, though, when studying three-dimensional systems the equations governing the physical

phenomena cannot be analytically solved and a computational solution is needed. Such solutions become

more and more cumbersome when studying systems of complex arbitrary geometries with varying

thickness, composed by several materials (which can be both isotropic and anisotropic) that encapsulate

several aspects of physics, leading to meaningless solutions. The best approach to solve these complex

systems governed by multiple physics is the numerical method known as finite element analysis (FEA).

FEA has been successfully applied in several fields involving very different physical processes such

as structural mechanics, fluid dynamics, electrostatic problems, thermodynamic systems, or acoustic

interactions among many other fields.

A finite element model (FEM) is a virtual representation developed to study the complex phenomena

taking place on the system of interest. FEMs can be developed either by creating CAD files that emulate

the system or by importing post-processed micro computer tomography (CT) scanned files into the

simulation software. Both methods present pros and cons: when working with simplified user-developed

CAD files emulating the system, association of material properties and boundary conditions of all the

sub-domains will be straight forward, but the simulation results will not be as accurate as they would be

when working with a scan of the real system itself. On the other hand, importing a microCT scanned

part could imply several difficulties when defining the material properties and boundary conditions of all

the sub-domains for the several physics ruling the system, but at the same time the results will be much
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more accurate and realistic after a long computation time. Irrespectively of what method is chosen by

the user, the FEM will be constituted of several domains which can be associated to their corresponding

material (either if it is a solid, liquid or a gas) and its corresponding boundary conditions in accordance

of what physics rule the system. These domains need to be then sub-divided into smaller sub-sections

using meshes of simple geometries (usually tetrahedrons) of finite size. Sometimes it is possible that a

simple 3D reconstruction of the system does not provide accurate results or takes too long to process.

In that case, there exists the possibility to develop a 2D file and apply symmetry conditions in order to

simplify the full process. In these cases, the mesh usually subdivides the domains in small triangles of

finite size.

As the domains are subdivided into a finite number of smaller finite parts, the vertices and edges

of the mesh are in contact with each other, leading to a series of finite nodes to which the degrees of

freedom of the system are assigned. Depending on the physics governing the system, the corresponding

differential equations will encompass these degrees of freedom and will be applied to every single

node of the mesh. By determining the response in each node, as each node is in contact with other

nodes controlling therefore the behaviour of the consecutive element, it is possible to determine an

approximation of the behaviour of the system as a whole resulting from a matrix of differential equations.

These differential equations contain the basic information of each one of the nodes in which the domain

has been meshed, including their corresponding material properties as well as their initial and boundary

conditions, which simplify the model by reducing the number of degrees of freedom present within the

system. Thus, as the number of nodes in a continuum is infinite, it must be noted that even in the most

realistic of simulations, the final result is only an approximation of the real behaviour of the system,

which accuracy directly depends on the mesh resolution.

During the course of this thesis FEA simulations have been used to find solutions to the eigenproblem

formulation, a technique thoroughly used to determine the characteristic values (eigenvalues) of the

system and its corresponding characteristic vectors (eigenvectors) which usually provide the characteristic

(natural) shapes of vibration under the characteristic frequencies. An easy example to illustrate this

phenomenon is to imagine a system of two oscillators coupled in one dimension and which motion is

constrained in that same dimension. Imagine the eigenvalues of the system are ω1 and ω2 and their

corresponding eigenvectors are given by ~ξ1 = A(1, 1) and ~ξ2 = A(1,−1), where A is a normalization
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constant. This means that the first eigenvector, ~ξ1, describes the motion of the oscillators in the same

direction and with the same amplitude when driven by the the first eigenfrequency ω1, whereas the

second eigenvector, ~ξ2, reveals that the two oscillators move with the same amplitude but in opposite

directions when driven by the eigenfrequency ω2.

COMSOL Multiphysics R© (version 5.3, COMSOL, Inc. Burlington, MA, USA) has been extensively

used throughout this research as it permits to model several multiphysics applications. One of the main

advantages of this software is that it provides several modules that allow to combine different study

types through coupled solvers, enhancing its degree of applicability. In this thesis the acoustic module

has been thoroughly used, specifically that in which it is possible to study the interaction of incoming

acoustic fields with solid structures that further present solid-liquid interfaces.

5.2.1 FEM process

Finite element models can be constructed by following a series of steps. Before importing or constructing

the CAD file the type of physics and study to evaluate must be selected, so the corresponding adequate

differential equations can be applied to solve the system. Once these have been selected, it is possible to

add in the study a series of parameters and definitions that COMSOL will store, including geometrical

dimensions, some material properties, or parametrisations of the system, among many others, that allow

rapid and simple computation of the model (see left-hand-side tree under Model Builder in Fig. 5.2).

One important feature of COMSOL is that once these parameters have been saved either as Local or

Global Definitions, there exists the possibility to run several simulations at the same time in which all

these parameters are combined within a user-defined range (solving through parametric sweeps). As all

the initial parameters have been defined, one can start building (or importing) the desired geometry (see

Fig. 5.2).
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Fig. 5.2. Screen shot of the COMSOL interface when the second step (building the geometry) is finished. It can

be seen in the top part of the left-hand-side tree under Model Builder that Global Definitions can be introduced

before building the geometry of the system. COMSOL presents a geometry builder that allows the creation of

different shapes (in this case introducing a cylinder, as it can be seen in the building tree under Model Builder).

The built-in geometry will be partitioned in several domains, each of which can be attributed its own

mechanical properties and boundary conditions. In the case illustrated in Fig. 5.2 one unique domain

is created. When studying fairly simple geometries and systems, the geometry builder provided by

COMSOL was used, whereas when more complex geometries and structures had to be studied, the

3D-CAD software PTC Creo R© was used, which provides several exportable formats compatible with

COMSOL.

The next step is to specify the material properties of the different domains. As previously stated in this

Section, COMSOL permits the user to define several types of materials (either isotropic and anisotropic)

in all the three states of matter and including a plasma simulation study. These materials can be

combined within a same study using COMSOL, allowing for high complexity when designing the system

of interest.

Specification of the materials of the different domains can be user-defined by introducing the

required mechanical properties (in this case only the density, elastic modulus, and Poisson’s ratio of
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the materials are needed) or either COMSOL-defined materials from the Materials Library (including

solid, liquid, and gaseous materials) can be used, which present all the necessary properties to run

the simulation. It must be noted that one unique material can be attributed to a domain and thus, if

more than one material is needed, such domain must be sub-divided into several domains (i.e. when

working with air-filled cavities enclosed within a membrane, such cavities must be added inside the

membrane as a second, third, ..., nth domain, and air must be selected for those specific domains). When

using predefined materials from the COMSOL Materials Library, it is also possible to change specific

parameters in order to fulfil the user’s needs and reproduce the material properties in the most exact way

possible, as some of the pre-defined material properties are given at specific temperatures and pressures

(usually defined under normal conditions, i.e. T = 293 K and P = 1 atm). Nevertheless, changing

these parameters can be sometimes challenging when dealing with anisotropic materials or changing

asymmetric inherent properties of a material (such as specific piezoelectric constants, for instance) as

they imply the modification of all the components of a large matrix of values.

The following step is to apply the boundary conditions of the system. First of all it must be

noted by the reader that every physics presents different boundary conditions, i.e. the Solid Mechanics

physics will allow to pre-load, fix, or roll specific surfaces, edges or points whereas an acoustics physics

will allow to set hard and soft acoustic boundaries and add incident plane, cylindrical, or spherical

pressure fields among others. It must be further noted that in order to provide a specific part of the

domain specific boundary conditions, such domain must be ruled by the corresponding physics (for

instance, it will not be possible to define a surface as the incoming acoustic field if its corresponding

domain is defined under the Solid Mechanics physics). Defining boundary conditions is the simplification

of the problem by reducing the amount of degrees of freedom present in the system. Such boundary

conditions are applied by right-clicking the desired physics under Model Builder in the left-hand-side

tree (Solid Mechanics in this case), select the desired boundary condition (here the edges of the disk are

fixed), and finally select the desired surface, edge, or point of the domain.
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Once all the boundary conditions have been applied to the desired domains, the upcoming step is to

generate the mesh of the system (see Fig. 5.3). As previously stated in this section, the finer the mesh

the more accurate the solution will be but, at the same time, the longer it will take to compute. Therefore,

the mesh must be established in order to obtain a reasonable balance between computation time and

results accuracy. To define the mesh of the system, COMSOL will provide several options in order to

obtain a mesh as accurate as possible. To start with, COMSOL will show different mesh geometries

depending on the dimensionality of the system (for example triangles or quadrilaterals when working in

2D systems, and tetrahedral or hexahedral shapes when working with 3D systems). These shapes can

then be attributed to different sizes defined by the software, but if those do not meet the needs of the user,

there exists the possibility to customize them by introducing new minimum, maximum, and step sizes

of the user-defined mesh. Furthermore, it is possible to attribute different mesh sizes and geometries to

different domains. Moreover, if this customization process does not fulfil the user’s needs, COMSOL gives

the possibility to use complex meshes based on gradients around a point, a line or an edge as well as it

permits the projection of a 2D mesh in a 3D space. Fig. 5.3 shows the application of a Physics-controlled

mesh with an element ’Extra fine’ size (also predefined by COMSOL).

Fig. 5.3. Screen shot of the COMSOL interface after applying the mesh, which can be finely tuned by the user by

selecting different mesh geometries and sizes. A full customization of the mesh is also possible as mesh gradients

can be applied, as well as it is possible to define different mesh sizes for different domains.
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Finally, the study settings must be defined, being the COMSOL default solver the best option as it

provides accurate results after optimisation of the computational resources. As previously discussed, it is

possible to run parametric sweeps in which the solutions are obtained as the combination of several user

predefined parameters.

5.2.2 Eigenproblem simulations

COMSOL provides the adequate interface to determine the characteristic frequencies of solid bodies,

which are responsible of their eigenmodes and corresponding eigenvectors. These characteristic

frequencies depend on the geometry of the studied body and some of its mechanical properties such as

the Young’s modulus, the Poisson’s ratio, and the density of the material.

When determining the eigenfrequencies of a solid body with COMSOL, all the previously described steps

must be followed and, finally, select the number of characteristic frequencies of interest. Furthermore,

there is also the option to look for a certain number of eigenfrequencies around a specific value. When

the simulation is finished, COMSOL provides a visualization of the mechanical behaviour of every mode,

in which it is possible to visualize different physical properties such as mechanical deflection, stress,

velocity, and acceleration of the body among others. Thus, the default solver settings for the output

eigenvectors is for normalisation with respect to the RMS values.

The most important feature when running a modal analysis of a solid body, is that the normalisation

solver settings must be changed from RMS to mass matrix so the modal participation factors (MPF) in

the three dimensions of space can be determined for each mode. Squaring the MPFsi (where i = x, y, z)

for each mode results in the effective modal mass (EMM) of that mode in SI units.

EMMIij = MPF 2
ij (5.4)

where i = 1, 2, ..., n in direction j = x, y, z. The mass of the body is determined by COMSOL using the

following equation:

mb =
ρ

Vb
(5.5)

where mb is the total mass of the studied body, ρ is its density, and Vb is the total volume of the

studied body. If the shape of the body of interest is simple enough it is possible to work out its total

volume analytically, but for complex geometries COMSOL provides a tool that allows to approximately
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determine the total volume of the studied body. Determining these two quantities, EMMij and mb,

accurately determines the effective modal mass fraction (EMMF) as a percentage.

EMMFij =
EMMij

mb
(5.6)

EMMF is an indication of the strength (or significance) of a vibration mode. Thus, modes with relatively

high EMM values can be readily excited by base excitation, whether those presenting low EMM values

they cannot be readily excited in this same manner.

5.2.3 Acoustic-structure interaction

The reader must have noted at this point that the eigenproblem analysis using the Solid Mechanics

module of COMSOL does not provide any type of solution when a solid body interacts with an external

force field. To do so, COMSOL provides several modules that allow the user to determine what the

physical response of a specific body will be when affected by an external field (e.g. electromagnetic, fluid

flow & heat transfer, chemical engineering, and acoustic modules) in which it is possible to define the

object ruled by the physical laws that govern the system by defining specific extra domains in which

the desired force field propagates. During this research the acoustics module has been thoroughly used

as it allows to study the two-way coupling between a structure’s mechanical response and the pressure

wave propagating through the surrounding fluid. COMSOL calculates how the pressure wave propagates

through the defined fluid domain and determines the fluctuations caused by it (using the Helmholtz

equation, see Eq.(5.7)), determining how the propagation of the pressure wave affects the solid body.

− 1

ρf
∇2p− ω2p

ρfc2
= 0 (5.7)

where ρf is the density of the fluid, p is the harmonic acoustic pressure (expressed as p = p0e
iωt), ω

is the angular frequency, and c is the speed of sound. The vibration of the solid body within the fluid

is controlled by the corresponding frequency response analysis provided by the structural mechanics

module (hence an example of multiphysics analysis in COMSOL), and it is generated as a response to

the harmonic load. The FEA solver determines the steady-state solution by using both a force and a

phase that depend on the driving angular frequency (F (ω) and ϕ(ω), respectively). COMSOL’s software

then determines the displacement field in an oscillatory solution consisting of a displacement amplitude

and its corresponding phase.

As previously mentioned in this section, when studying the interaction between a solid body with
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an external force field, several domains in which the different physics have been defined are needed. In

this case, building a sphere of fluid and placing the solid body in the centre ensures the far-field regime.

Thus, apart from any mechanical boundary conditions defined in the solid mechanics module, defining

the boundary conditions and the pressure wave is needed in the fluid domain. The coupling between

the two physics is given by the system in different ways for exterior and interior boundaries. Whereas

in exterior boundaries the coupling is given by the system of equations (5.8), interior boundaries are

coupled by the system of equations (5.9), representing a pressure drop in the solid structure directly

proportional to the acoustic load:




−n ·
(
− 1
ρ (∇p− qd)

)
= −n · utt

FA = pn

(5.8)

where n is the normal surface unit vector, p is the total pressure field, qd is a dipolar source (which is an

optional feature and sometimes taken to be 0), utt stands for the second derivative of displacement over

time (i.e. acceleration), and FA is the load applied onto the solid body.




−n ·
(
− 1
ρ (∇p− qd)

)
1

= n · utt

−n ·
(
− 1
ρ (∇p− qd)

)
2

= −n · utt

FA = (p1 − p2) n

(5.9)

Irrespective of the type of wave used to drive the system (plane, cylindrical or spherical), it is

important to define boundary conditions such that internal reflections are eliminated within the domain.

Furthermore, the incident wave direction can be user-defined by including new parameters. In this

case the angles are defined as θ and ϕ such that spherical coordinates presented in section 1.3 can be

reproduced by building the vectors ~k1 = sin(θ) × cos(ϕ), ~k2 = sin(θ) × sin(ϕ), and ~k3 = cos(θ) when

using plane waves as acoustic stimulation source. The final step before running the simulation is to

select the solver settings and the frequency range by selecting a minimum, maximum, and step value of

frequency that will control the excitation frequency.

5.3 Vibrating sample magnetometer

A vibrating sample magnetometer (VSM) permits an in-depth study of the magnetic properties of

materials, providing a recording of the M − H hysteresis loops as well as an analysis of the magnetic
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moment of the samples (∆M), which characterizes the magnetic interactions in particulate media

[213, 214]. The ∆M plot is defined by Eq.(5.10) [215]. The positive/negative ∆Ms are usually interpreted

in terms of magnetizing/demagnetizing-like interactions between ferromagnetic particles, as described

later in this section.

∆M = mrs − [2mIRM (H)−mDCD(−H)] (5.10)

where mIRM is the magnetic moment of the isothermal remanent magnetization (IRM) process at the

corresponding applied H, mrs is the remanent saturation magnetic moment, and mDCD is the magnetic

moment on the DC demagnetization (DCD) curve for the value −H.

To measure the magnetic properties of materials using a VSM, the sample is introduced in a

constant magnetic field that induces a magnetisation to the sample. As the magnetised sample is

vibrated, it introduces perturbations in the external magnetic field, which can be detected by a set of

coils located around the sample. A basic scheme of the VSM is shown in Fig. 5.4.

Fig. 5.4. Schematic representation of the vibrating sample magnetometer. The sample is placed between the

two pick-up coils that detect the change of magnetic field when the sample is vibrated.
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Fig. 5.5. Hysteresis loops for a ferromagnetic material. (a) Shows the M −H plot, with remanent magnetisation

at H = 0 and intrinsic coercive field denoted by Hci (field at which magnetisation is reversed). Mr is the saturation

magnetisation. (b) Shows the B −H plot, with remanent induction Br at H = 0 and coercive field Hc. Figure

obtained from [216].

The magnetic hysteresis loop

VSM apparatus permit to trace magnetic hysteresis M − H loops, which permit to determine the

characteristic magnetic properties of the studied material such as its coercivity, remanent magnetisation,

if the material is a hard or a soft magnet, and its magnetic behaviour. Notwithstanding, it is also possible

to trace the B −H hysteresis loops, which implicitly provide the same information as the M −H loops,

but generally lead to confusion of some parameters. One clear example of such confusion is the definition

of the coercive field. As mentioned in Chapter 4, Section 4.2, the coercive field is defined as the field

at which the magnetisation M changes its sign. This is referred in some works as the intrinsic coercive

field, as it can be shown in Fig. 5.5, where Hint
c suffers a shift in the loop when recording M −H loops

than when recording B −H loops.
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Notwithstanding, the majority of soft magnetic materials present, albeit not identical, very similar

values of coercive field and intrinsic coercive field. On the other hand, for hard magnetic materials these

values are significantly different and non-equivalent.

One main difference can be observed between Fig. 5.5(a) and Fig. 5.5(b), which is that after

saturation has been reached, the M − H loop becomes a straight line with zero slope, whereas in the

B −H loop the slope of the line represents the magnetic susceptibility. A distinction between isotropic

and anisotropic materials must be done at this point; whereas in the former the magnetisation process

does not depend on the orientation of the sample, it does in the latter, firstly magnetising the easy axis

at low values of H. In both cases once the magnetisation point has been reached, the magnetisation

curves do not follow back the original trace (shown using dashed lines in Fig. 5.5). This phenomenon

happens because of the irreversibility of the domain wall displacements and, therefore, when the external

applied field is removed, the sample will retain some magnetisation due to the magnetic domains aligned

with H. These values of magnetisation at H = 0 are defined as remanent magnetisation/induction. It

is possible to discern between hard and soft magnetic materials using the area they enclose in the loop:

whereas hard magnetic materials present a large hysteresis area, soft magnetic materials present a low

hysteresis area.

IRM and DCD curves

VSM also permit to plot the IRM and DCD curves, as previously mentioned in this Section. Plotting

these curves and following the adequate post-processing it is possible to determine the type of interaction

within the magnetic material, which can be: (i) exchange coupled systems or (ii) dipolar coupled systems.

The IRM remanence curve is measured on a previously demagnetised material, which is then

subjected to a positive applied field at which point the magnetisation is measured. The applied field is

then removed and the remanent magnetisation is measured. The full cycle is then repeated increasing

the applied H until saturation is reached. Hence, as IRM only accounts for remanent moments, the IRM

curve represents the irreversible changes in magnetisation.

The DCD remanence curve is obtained by first saturating the material through a positive field

and then applying a known reverse field at which the measurement is taken. The reverse field is then
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reduced to zero and the remanent magnetisation is measured. The process is then repeated increasing

the reverse field until negative saturation is reached. In both IRM and DCD curves the measurements

taken in the applied field contain contributions from both reversible and irreversible magnetisation

processes, while the remanent measurement contains only the irreversible contribution. Hence, using the

IRM and DCD curves it is possible to quantitatively determine the relative importance of each stage of

the reversal process.

Interaction effects in particulate magnetic materials can be studied by combining the IRM and

DCD curves. One of the approximations providing such information is the Wohlfarth relation (Eq.(5.11))

[217], which was derived from an assembly of non-interacting single-domain particles with uniaxial

anisotropy and with the magnetisation reversal happening by coherent rotation.

Id(H) = 1− 2Ir(H) (5.11)

where Id(H) and Ir(H) are the normalised DCD remanence curve and the normalised IRM curves,

respectively. As Eq.(5.11) was determined from a non-interacting system, it can be concluded that any

deviations in experimental data can be attributed to certain interactions. Researchers have modified the

Wohlfarth model to explicitly account for interactions [214]:

∆I(H) = Id(H)− [1− 2Ir(H)] (5.12)

Hence, the plot of ∆I(H) (usually referred to as ∆M) against H gives a characteristic curve of the

interactions present in the system. Several conclusions can be obtained when the dominant reversal

process is the same for both the IRM and the DCD curves. The first involves the sign of ∆I(H): when

∆I(H) > 0 the interactions present on the system are such that they imply magnetising interactions,

usually associated to exchange interactions. On the other hand, when ∆I(H) < 0 the interactions present

on the system are such that they imply demagnetising interactions, associated to materials like particle

systems and particulate recording media where the coupling is dipolar in nature. Examples of positive

and negative ∆I(H) curves are shown in Fig. 5.6.
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Fig. 5.6. Schematic ∆I(H) curves illustrating different coupling regimes. A sharp positive delta-I peak is

associated with exchange coupled systems, whereas a broad, negative delta-I peak is attributed to dipolar coupled

systems. Image obtained from [214].

5.4 Scanning electron microscopy

The morphological study of the synthesized particulate composites was carried out using SEM, which uses

an electron beam instead of light in order to achieve smaller wavelengths and obtain higher resolution,

providing a higher magnified image of the surface of the material. When an electron beam arrives at the

surface of a sample, some electrons can penetrate into it. The depth of this penetration directly depends

on the atomic number of the constituents of the specimen. The electrons lose their kinetic energy as

they go deeper into the sample. In the zone of penetration, a certain number of interactions between the

electrons of the beam and the atoms of the sample take place and, as a consequence, in this zone different

types of signals can be detected, as shown in Fig. 5.7 [218].
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Fig. 5.7. Types of electrons and radiation generated inside the sample in a SEM when irradiated with an electron

beam. The type of electrons and radiation determine the penetration depth of the electrons within the sample.
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Chapter 6

Experimental results

6.1 Describing the locust’s tympanum membrane:

mathematical models

As described in Chapter 1, subsections 1.4.1 and 1.4.3 the locust tympanum membrane (TM) has been

widely studied in recent years due to the physical phenomena taking place on it, allowing for directional

sound detection and acoustic frequency selection at the micro-scale and assisting the animal in biological

functions such as mating, swarming, or predator/prey localization [219].

Malkin et al. simulated the locust TM as a circular stiff plate of different thicknesses [77]. Malkin et

al. studied where the mechanical waves are generated and where they travel to on the locust TM using

COMSOL Multiphysics, and related the results to the existence of pretension in the locust TM. Their

model provides explanation about generation and propagation of mechanical wave on the locust TM

when stimulated by sound using specific mechanical properties found in the literature [77]. Hence, their

finite analysis method does not provide a prediction of local stiffness variation, a mechanical property

that seems to be key to understand the behaviour of the membrane. The mathematical models developed

in this section do not only fit the obtained experimental data but they also allow determining some of

the mechanical properties of the locust TM.

Generation of DPOAEs and presence of TWs on the TM have only been measured on the axis

perpendicular to the plane described by the membrane, which will be referred to as z-axis (out-of-plane

axis), either because of a technological limitations or the assumption that all the relevant physical
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phenomena that take place on the locust TM uniquely happen in such direction.

Nevertheless, it seems obvious that a wave traveling within the plane that describes the membrane

(xy-plane) with its amplitude of motion confined in the z-axis, a stretching (or pulling) of the membrane

should also be observed, as a consequence, in-plane. This reasoning led some of the researchers in our

group to study the mechanical behaviour of the locust TM in the xy-plane as a response to acoustic

stimulation. To do so, they measured the motion of the locust TM along several transect lines using

the 3D LDV. Each transect contained 13 points, measuring all the physiologically relevant attachment

points of the locust TM (see Fig. 6.1). The direction of the transects was chosen in accordance to the

measurements ran by Windmill et al. [11].

Fig. 6.1. SEM image of the locust TM (as presented in Fig. 1.8) in which the studied transect, composed by

13 points, is shown in yellow. The points were named correspondingly to their proximity to the FB, number 1

being the closest one and 13 the one located further away of it. SEM image obtained by Prof. James Windmill,

published in his work Tympanal travelling waves in migratory locusts [11] and edited by Roger Domingo-Roca.

Transect line representation in accordance to measurements performed by our colleagues.

The results showed that the motion of the measured points presents a coupled behaviour in the

y-direction, leading to the reasoning that the mechanical motion of the significant attachment points

of the locust TM (pyriform vesicle, PV and folded body, FB), as well as the in-between points, can be
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described using the theory of coupled oscillators. The first step of this work is to fully understand the

origin of the biological phenomena originated on the locust TM using the aforementioned measurements.

To do so, several mathematical models based on the coupled oscillator theory were developed.

6.1.1 Mathematical models

The results obtained from the transect experiment performed by our colleagues (Fig. 6.1) showed that the

individual scanned points of the membrane oscillate following the theory of coupled oscillators. Hence, to

obtain a better understanding of their mechanical behaviour, three mathematical models were developed:

(i) an unforced model (i.e. without considering a driving force) where three oscillators with the same

mass are coupled using three springs with the same stiffness, (ii) three coupled oscillators with the same

mass and connected by springs of the same stiffness where a driving force and damping are considered,

and (iii) the addition of a fourth spring in model ii. These have been developed to demonstrate that the

simpler the model is, the less accurate the results are. Furthermore, as the mathematical model includes

more terms and takes more realistic consideration (such as a driving acoustic term and damping), relevant

parameters such as the stiffness of the membrane can be obtained more accurately.

Unforced approximation

In the first mathematical approximation it was considered that the motion of the TM was not forced by

any external force. In order to simplify, and as a starting point, three main points were considered (the

PV, the FB, and an in-between oscillator corresponding to the membrane) with oscillators connected

between them, as shown in Fig. 6.2.

Fig. 6.2. Simplified mechanical representation of the locust’s tympanum membrane. The three masses represent

different experimental points and the fixed point (represented by a vertical line with diagonal smaller lines)

represents the FB.
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These three points, as well as the boundary conditions, were chosen in complete agreement with the

experimental results obtained by our colleagues: the FB, a part of the thick membrane, was chosen as a

fixed point as it was observed that at high frequencies its motion was several orders of magnitude lower

than the rest of the points of the transect. Furthermore, the other three points (oscillators of the model)

were chosen to be the nearest point to the PV (point 13 in Fig. 6.1), the PV itself, and a the middle

point between the FB and the PV. The final consideration was that the oscillators were constrained in

the x-direction and could only move in the y-direction, as the motion in the x-axis was experimentally

observed to be much smaller than in the y-axis.

It was assumed, for simplicity, that all the oscillators have the same mass and that the stiffness

across the membrane is uniform, leading to:




m1 = m2 = m3 ≡ m

k1 = k2 = k3 ≡ k
(6.1)

As shown in Fig. 6.2, y1, y2, and y3 correspond to the displacement of masses m1, m2, and m3,

respectively. Thus, the equations of motion of the system are described by Eq.(6.2).




m1ÿ1 = −k1(y1 − y2)

m2ÿ2 = −k2(y2 − y1)− k2(y2 − y3)

m3ÿ3 = −k3(y3 − y2)

(6.2)

which can be rewritten, for convenience, as:




mÿ1 + k(y1 − y2) = 0

mÿ2 + k(y2 − y1) + k(y2 − y3) = 0

mÿ3 + k(y3 − y2) = 0

(6.3)

where ÿi (i = 1, 2, 3) is the second derivative of displacement with respect to time of the ith oscillator.

The general solution of the system shown in Eq.(6.3) is given by:

T ~̈yi + V~yi = 0 (6.4)

This general solution is obtained when applying the Euler-Lagrange equations in the Lagrangian

mechanics theory1. The boldfaced quantities (T, and V) represent matrices, while the arrowed characters

1Lagrangian mechanics is used to study the motion of discrete particles that have a finite number of degrees of freedom.

The reader can refer to several books to get familiarised with such a theory. Hamiltonian and Lagrangian Mechanics [220],

for example.
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refer to vectors. T and V stand for the matrices of the kinetic and potential energy, respectively, and in

this case are given by:

T =




m 0 0

0 m 0

0 0 m




, V =




k −k 0

−k 2k −k

0 −k k




(6.5)

As T is a diagonal matrix, T1/2 is a diagonal matrix which elements are the square roots of the

characteristic values of T.

T1/2 =




√
m 0 0

0
√
m 0

0 0
√
m




, T−1/2 =




1/
√
m 0 0

0 1/
√
m 0

0 0 1/
√
m




(6.6)

Hence, it is possible to write:

T−1V = T−1/2(T−1/2VT−1/2)T1/2 (6.7)

Where T−1V is written as a product of symmetrical matrices (T−1/2VT−1/2 and T±1/2) that can be

orthogonally diagonalised. The diagonalization of T−1/2VT−1/2 ≡ W must be now considered, where

W is a symmetric and positive matrix. Being U the orthogonal matrix that diagonalizes W:

UWU−1 = WD , U−1 = Uᵀ (6.8)

It is then possible to rewrite:

T−1V = T−1/2UᵀWDUT1/2 (6.9)

Therefore W is given by:

W = T−1/2VT−1/2 =




k/m −k/m 0

−k/m 2k/m −k/m

0 −k/m k/m




(6.10)

Thus. Eq.(6.4) becomes:




ÿ1

ÿ2

ÿ3




+




k/m −k/m 0

−k/m 2k/m −k/m

0 −k/m k/m







y1

y2

y3




=




0

0

0




(6.11)

The solution to Eq.(6.11) will be given by diagonalising W:

det(W− ω2I) = 0 (6.12)
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where I is the identity matrix in a three-dimensional space. Thus:

det(W− ω2I) =

∣∣∣∣∣∣∣∣∣∣∣∣

k/m− ω2 −k/m 0

−k/m 2k/m− ω2 −k/m

0 −k/m k/m− ω2

∣∣∣∣∣∣∣∣∣∣∣∣

= (k −mω2)2(2k −mω2)− 2k2 = 0 (6.13)

From Eq.(6.13) it is possible to obtain the characteristic values (eigenvalues, ωi) of the system described

in Fig. 6.2, which are given by: 



ω1 = 0

ω2 =
√
k/m

ω3 =
√

3k/m

(6.14)

Using the eigenvalues of the system it is possible to determine the characteristic vectors (eigenvectors,

ξi) that describe the motion of the oscillators:

(W− ω21) · ~ξi = ~0 (6.15)

Solving Eq.(6.15):

~ξ1 =
1√
3




1

1

1




; ~ξ2 =
1√
2




1

0

−1




; ~ξ2 =
1√
6




−1

2

−1




(6.16)

As the eigenvectors are already orthogonal it is possible to use them to build the matrix U that

diagonalises W:

U =




1/
√

3 1/
√

3 1/
√

3

1/
√

2 0 −1/
√

2

−1/
√

6 2/
√

6 −1/
√

6




(6.17)

Therefore:

UWUᵀ =




0 0 0

0 k/m 0

0 0 3k/m




(6.18)

Which finally allows to finish the diagonalisation process:

T−1V = T−1/2WT1/2

AT−1VA−1 = WD

A = UT1/2
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A =




√
m/3

√
m/3

√
m/3

√
m/2 0

√
m/2

−
√
m/6

√
2m/3 −

√
m/6




, A−1 =




√
1/3m

√
1/2m −

√
1/6m

√
1/3m 0

√
2/3m

√
1/3m −

√
1/2m −

√
1/6m




(6.19)

Therefore, the equations of motion of each one of the oscillators are determined from the expression:

~̈yi + A−1WDA~y = ~0 (6.20)

And introducing the generalized coordinates ~ηi = A~yi, Eq.(6.20) becomes:

~̈η + WD~η = ~0 (6.21)





~̈η1(t) + ω2
1 = 0

~̈η2(t) + ω2
2 = 0

~̈η3(t) + ω2
3 = 0

(6.22)

The generalised coordinates are a linear combination of the initial coordinates, which are normal modes

of the system (i.e. they present an independent temporal evolution). The harmonic solutions to these

equations are combinations of sinusoidal functions and are given by [221]:

ηi(t) = ηi(0) cos(ωjt) +
η̇i(0)

ωi
sin(ωjt) (6.23)

From Eq.(6.23) it is possible to obtain the equations of motion in generalized coordinates:





η1(t) = η1(0) + η̇1(0)t

η2(t) = η2(0) cos(ω2t) + η̇2(0)
ω2

sin(ω2t)

η3(t) = η3(0) cos(ω3t) + η̇3(0)
ω3

sin(ω3t)

(6.24)

Notice from Eq.(6.23) that the normal modes are expressed as a function of the initial conditions ηi(0)

and η̇i(0), which correspond to the initial position and velocity, respectively, of each oscillator. To obtain

the coupled equations of motion yi(t) as a function of the initial conditions yi(0) and ˙yi(0) it is necessary

to undo the transformation ηi = Ayi.

~y(t) = A−1~η(t)↔ η(0) = A~y(0) , ~̇η(0) = A~̇y(0) (6.25)





y1(t) =
√

1/3mη1(t) +
√

1/2mη2(t)−
√

1/6mη3(t)

y2(t) =
√

1/3mη1(t) +
√

2/3mη3(t)

y3(t) =
√

1/3mη1(t)−
√

1/2mη2(t)−
√

1/6mη3(t)

(6.26)
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where: 



η1(t) =
√

m
3 [y1(t) + y2(t) + y3(t)]

η2(t) =
√

m
2 [y1(t)− y3(t)]

η3(t) =
√

m
6 [−y1(t) + 2y2(t)− y3(t)]

(6.27)

Thus, combining Eq.(6.24), Eq.(6.26), and Eq.(6.27), the final equations of motion of the system can be

obtained.

y1(t) =
1

3
{y1(0) + y2(0) + y3(0) + [ẏ1(0)ẏ2(0) + ẏ3(0)] t}+

+
1

2

{
[y1(0)− y3(0)] cos(ω2t) +

1

ω2

[
ẏ1(0)− ˙y3(0)

]
sin(ω2t)

}
+

− 1

6

{
[−y1(0) + 2y2(0)− y3(0)] cos(ω3t) +

1

ω3
[−ẏ1(0) + 2ẏ2(0)− ẏ3(0)] sin(ω3t)

}
(6.28)

y2(t) =
1

3
{y1(0) + y2(0) + y3(0) + [ẏ1(0)ẏ2(0) + ẏ3(0)] t}+

+
1

3

{
[−y1(0) + 2y2(0)− y3(0)] cos(ω3t) +

1

ω3

[
−ẏ1(0) + 2ẏ2(0)− ˙y3(0)

]
sin(ω3t)

}
(6.29)

y3(t) =
1

3
{y1(0) + y2(0) + y3(0) + [ẏ1(0)ẏ2(0) + ẏ3(0)] t}+

− 1

2

{
[y1(0)− y3(0)] cos(ω2t) +

1

ω2

[
ẏ1(0)− ˙y3(0)

]
sin(ω2t)

}
+

− 1

6

{
[−y1(0) + 2y2(0)− y3(0)] cos(ω3t) +

1

ω3
[−ẏ1(0) + 2ẏ2(0)− ẏ3(0)] sin(ω2t)

}
(6.30)

Therefore, following this model, the mechanical motion on the locust TM described in the y-direction can

be expressed as a linear combination of Eq.(6.28), Eq.(6.29), and Eq.(6.30). The reader must consider

that Eq.(6.28), Eq.(6.29), and Eq.(6.30) are reasonably simplified when introducing the initial conditions

for displacement and velocity given by the experimental results.

y1(0) = ẏ1(0) = ẏ2(0) = ẏ3(0) = 0 (6.31)

Leading to:

y1(t) =
y2(0)

3
[1− cos(ω3t)] + y3(0)

[
1

3
− 1

2
cos(ω2t) +

1

6
cos(ω3t)

]
(6.32)

y2(t) =
y2(0)

3
[1 + 2 cos(ω3t)] +

y3(0)

3
[1− cos(ω3t)] (6.33)

y3(t) =
y2(0)

3
[1− cos(ω3t)] + y3(0)

[
1

3
+

1

2
cos(ω2t) +

1

6
cos(ω3t)

]
(6.34)

Since ω2 =
√
k/m, and ω3 =

√
3k/m, it is possible to express Eq.(6.32), Eq.(6.34), and Eq.(6.32) as:

y1(t) =
y2(0)

3

[
1− cos(

√
3ω2t)

]
+ y3(0)

[
1

3
− 1

2
cos(ω2t) +

1

6
cos(
√

3ω2t)

]
(6.35)

y2(t) =
y2(0)

3

[
1 + 2 cos(

√
3ω2t)

]
+
y3(0)

3

[
1− cos(

√
3ω2t)

]
(6.36)

y3(0) =
y2(0)

3

[
1− cos(

√
3ω2t)

]
+ y3(0)

[
1

3
+

1

2
cos(ω2t) +

1

6
cos(
√

3ω2t)

]
(6.37)
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Forced approximation

The second approximation considers a more realistic case in which the oscillators representing the

membrane are forced by an external force, ~F , the acoustic field. Adding this extra parameter into the

model implies some changes in the solving process, as a damping parameter γ must be also introduced.

Hence, Eq.(6.4) becomes:

T~̈y + 2ΓT~̇y + V~y = ~F (6.38)

where γ = 2ΓT (for simplicity) is the damping acting on the system, and ~F is chosen to be:

~F = F0 cos(ωF t)




1

1

1




(6.39)

where ωF is the frequency of the exciting acoustic field and ~F indicates the amplitude (F0) and direction

of the exciting force. Factorising T and introducing the change of base that diagonalises T−1V, Eq.(6.38)

becomes:

TA−1
[
A~̈y + 2ΓA~̇y + WDA~y

]
= ~F (6.40)

Multiplying by AT−1 and taking ~η = A~y:

~̈η + 2Γ~̇η + WD~η = AT−1 ~F0 cos(ωF t) (6.41)

The solutions to Eq.(6.41) have both a transitory and a stationary component. The stationary solutions

of the normal modes are given by [221].

ηj[s](t) = a
(e)
j cos(ωF t) + a

(i)
j sin(ωF t) (6.42)

The parameters a
(e)
j and a

(i)
j are given by [221]:

a
(e)
j = F0

ω2
j − ω2

F(
ω2
j − ω2

F

)2
+ (2ΓωF )

2
, a

(i)
j = F0

2ΓωF

(ω2
i − ω2

F )
2

+ (2Γω2
F )

2 (6.43)

Thus, the stationary equations of motion of the oscillators in this model are given by:

y[s](t) =

n∑

j,k,l=1

(
A−1

)
(
ω2
j − ω2

F

)
cos(ωF t) + 2ΓωF sin(ωF t)(

ω2
j − ω2

F

)2
(2ΓωF )

2
AT−1 ~F (6.44)

where q[s] is the stationary solution. From Eq.(6.44) it is possible to determine the stationary equations

of motion described by the system:

y
(F )
1 (t) =

F0 cos(ωF t)

m

[(
ω2

1 − ω2
F

)
cos(ωF t) + 2ΓωF sin(ωF t)

(ω2
1 − ω2

F )
2

+ (2ΓωF )
2

]
(6.45)
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y
(F )
2 (t) =

F0 cos(ωF t)

m

[(
ω2

2 − ω2
F

)
cos(ωF t) + 2ΓωF sin(ωF t)

(ω2
2 − ω2

F )
2

+ (2ΓωF )
2

]
(6.46)

y
(F )
3 (t) =

F0 cos(ωF t)

m

[(
ω2

3 − ω2
F

)
cos(ωF t) + 2ΓωF sin(ωF t)

(ω2
3 − ω2

F )
2

+ (2ΓωF )
2

]
(6.47)

The superscript (F ) refers to forced. As in subsection 6.1.1 the mechanical deflection of the membrane

can be expressed as a linear combination of the individual stationary equations of motion of the different

oscillators Eq.(6.45, Eq.(6.46), and Eq.(6.47), using the proportionality constant a′, b′, and c′.

yFf (t) = a′y
(F )
1 (t) + b′y

(F )
2 (t) + c′y

(F )
3 (t) (6.48)

6.1.2 Variations of the model

As it must have been noted by the reader at this point, the two mathematical models presented to

describe the locust TM motion are the most simple ones someone could think of. Such models can be

effectively improved by simply changing some of the parameters that describe the system, such as the

stiffness of the membrane and the mass of the oscillators the most important ones. Nevertheless, using

three different values of k (k1 6= k2 6= k3) and m (m1 6= m2 6= m3) add further difficulties when solving

the system that describes the motion of the TM.

Another obvious modification to the system would be adding more oscillators, therefore adding

extra terms of both kinetic and potential energy into the system, as we are trying to solve in a discrete

way a problem described by a continuous system. By adding more oscillators, therefore, the solution

of the problem will be more accurate. Nevertheless, the more oscillators the more complex it will be

to analytically solve the problem. As an example, adding an extra term of potential energy (spring)

connected into the left-hand side end of oscillator 1 (and assuming uniform values of both mass and

stiffness) the equations of motion that describe the new system are:





mÿ1 + k(2y1 − y2) = 0

mÿ2 + k(−y1 + 2y2 − y3) = 0

mÿ3 + k(2y3 − y2) = 0

(6.49)

Eq.(6.49) therefore implies a change of the characteristic modes of the system and, therefore, the behaviour

of the oscillators determined by the characteristic vectors. Following the same process as in the previous
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cases, it is possible to determine the eigenmodes of the new system, which are given by:





ω1 =
√

(2 +
√

2)k/m

ω2 =
√

2k/m

ω3 =
√

(2−
√

2)k/m

(6.50)

which lead to the equations of motion:

y1(t) =
1

4

[
y1(0)−

√
2y2(0) + y3(0)

]
cos(ω1t)−

1

2
[−y1(0) + y3(0)] cos(ω2t) + (6.51)

+
1

4

[
y1(0) +

√
2y2(0) + y3(0)

]
cos(ω3t)

y2(t) =

[√
2y2(0)− y1(0)− y3(0)

2
√

2

]
cos(ω1t) +

[
y1(0) +

√
2y2(0) + y3(0)

2
√

2

]
cos(ω3t) (6.52)

y2(t) =
1

4

[
y1(0)−

√
2y2(0) + y3(0)

]
cos(ω1t) +

1

2
[−y1(0) + y3(0)] cos(ω2t) + (6.53)

+
1

4

[
y1(0) +

√
2y2(0) + y2(0)

]
cos(ω3t)

If the same considerations are taken into account in the forced model, the resulting equations of motion

are given by:

y
(F )
1 (t) =

F0 cos(ωF t)

4m

(
ω2

1 − ω2
F

)
cos(ωF t) + 2ΓωF sin(ωF t)

(ω2
1 − ω2

F )
2

+ (2ΓωF )
2

+ (6.54)

+
F0 cos(ωF t)

2m

(
ω2

2 − ω2
F

)
cos(ωF t) + 2ΓωF sin(ωF t)

(ω2
2 − ω2

F )
2

+ (2ΓωF )
2

+

+
F0 cos(ωF t)

4m

(
ω2

3 − ω2
F

)
cos(ωF t) + 2ΓωF sin(ωF t)

(ω2
3 − ω2

F )
2

+ (2ΓωF )
2

y
(F )
2 (t) = −F0 cos(ωF t)

2
√

2m

(
ω2

1 − ω2
F

)
cos(ωF t) + 2ΓωF sin(ωF t)

(ω2
1 − ω2

F )
2

+ (2ΓωF )
2

+ (6.55)

+
F0 cos(ωF t)

2
√

2m

(
ω2

3 − ω2
F

)
cos(ωF t) + 2ΓωF sin(ωF t)

(ω2
3 − ω2

F )
2

+ (2ΓωF )
2

y
(F )
3 (t) = −F0 cos(ωF t)

4m

(
ω2

1 − ω2
F

)
cos(ωF t) + 2ΓωF sin(ωF t)

(ω2
1 − ω2

F )
2

+ (2ΓωF )
2

+ (6.56)

− F0 cos(ωF t)

2m

(
ω2

2 − ω2
F

)
cos(ωF t) + 2ΓωF sin(ωF t)

(ω2
2 − ω2

F )
2

+ (2ΓωF )
2

+

+
F0 cos(ωF t)

4m

(
ω2

3 − ω2
F

)
cos(ωF t) + 2ΓωF sin(ωF t)

(ω2
3 − ω2

F )
2

+ (2ΓωF )
2

Further modifications of the model that would lead to a more accurate prediction of the motion of the

locust TM should include a two-dimensional (2D) array of oscillators and springs defining an array of 2D

coupled oscillators (see Fig. 6.3).
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Fig. 6.3. Sketch of a 2D array of coupled oscillators that describe the membrane. The oscillators and the springs

could present, respectively, different values of m and k. As a further consideration, one could also assume that

the oscillators are not only connected to their first neighbours (as denoted by continuous springs), but also to

their second-second order neighbours by springs of the same/different k (as denoted by dashed springs).

6.1.3 Understanding the generation of DPOAEs

DPOAEs are generated by non-linear systems and can be mathematically explained by solving the

Duffing equation, as a single Duffing oscillator can produce intermodulation when simultaneously excited

by two frequencies f1 and f2. The detailed solution to a single Duffing oscillator can be found in several

books [51, 55], but it is also presented it in Appendix A.

A single Duffing oscillator driven by one unique frequency will not display intermodulation, as it

is mathematically and physically impossible by definition. Therefore, as a starting point, the case in

which a specific point of the membrane (i.e. a unique oscillator) was driven by two different frequencies

(f1 6= f2) of different amplitudes (F1 6= F2) at the same time was studied. The simplest case is that in

which the non-linear term is controlled by a dimensionless parameter ε (<1).

mÿ + cẏ + ky + βεy3 = ε [αF1 cos(f1t) + βF2 cos(f2t)] (6.57)

where m, k, c, f1, and f2 are the mass, stiffness, damping coefficient, and external driving frequencies,

respectively, and α and β are mathematical parameters that control the degree of non-linearity of the

system as well as the driving forces (i.e. α and β are either 0 or 1). Thus, it is easy to see that when the

system is not excited by any external force (i.e. α = β = 0 ) the equation of a damped unforced oscillator

122



CHAPTER 6. EXPERIMENTAL RESULTS

is recovered. Considering now an external force acting on that same oscillator (i.e. α = 1, β = 0, and in

the specific case in which ε = 1), the equation of motion of a driven oscillator is then recovered. In this

case it must be noted that ε does not uniquely control the degree of non-linearity of the oscillator but it

also has an impact on the amplitude of motion of the driving force, as it is also present in the right-hand

side of Eq.(6.57). Now, if this single Duffing oscillator is driven by two different frequencies at the same

time (α = β = 1), its equation of motion becomes:

mÿ + cẏ + ky + εy3 = ε [F1 cos(f1t) + F2 cos(f2t)] (6.58)

It must be further noted that ε is weak enough not to cause chaotic motion [222]. The solution to

Eq.(6.58) is given by a linear combination of the cosine of the two driving frequencies [222, 223].

y(t) = C1 cos(f1t+ δ1) + C2 cos(f2t+ δ2) (6.59)

where the constants Ci, i = 1, 2 depend on ωi and a transfer function similar to that present in the

damped oscillator. Therefore, expanding the non-linear term present in Eq.(6.58) it is easy to see that

intermodulation products appear:

y3 ∝ [cos(f1t+ δ1) + cos(f2t+ δ2)]
3 ∝ (6.60)

∝ cos(f1t+ δ1) + cos(f2t+ δ2) + cos(3f1t+ 3δ1) +

+ cos(3f2t+ 3δ2) + cos [(2f1 + f2)t+ 2δ1 + δ2] +

+ cos [(2f2 + f1)t+ 2δ2 + δ1] + cos [(2f1 − f2)t+ 2δ1 − δ2] +

+ cos [(2f2 − f1)t+ 2δ2 − δ1]

As previously stated in this Chapter, in highly non-linear systems the representation of the amplitude

of motion of the oscillator as a function of the excitation frequency can reveal interesting features of

the system, as well as corroborating a specific behaviour. To determine such a relationship, Eq.(6.57)

must be solved using the method of Poincaré-Lindstedt, consisting in the removal of secular terms of the

equation (see in detail in Appendix A).

It has been experimentally shown that the optimum frequency relationship that permits a maximal

generation of DPOAEs in the locust is that in which f1/f2 = 1.1. Hence, using this feature, considering

that F1 ≈ F2 ≡ F , introducing the variable θ ≡ f1t, and recalling f1 ≡ ω, it is easy to see that Eq.(6.58)

becomes:

ω2y′′ + γωy′ +
k

m
y +

εy3

m
=
εF

m
[cos(θ + δ) + cos(1.1θ + δ)] (6.61)

123



6.1. DESCRIBING THE LOCUST’S TYMPANUM MEMBRANE: MATHEMATICAL MODELS

where γ = c/m, y′′ ≡ d2/dθ2, and y′ = d/dθ. Using the perturbation method (considering the terms

proportional up to the first order of ε) and assuming a transformation of the independent variable such

as: 



y(θ) = y0(θ) + εy1(θ)

ω(θ) = ω0 + εω1

(6.62)

with the initial conditions becoming y0(0) = A, y1(0) = y′0(0) = y′1(0) = 0. Solving the system (see

Appendix B):

ω2 =
1

4
+

εF

mγ2

[
1±

√
1 +

2γ2

A
− 3mA2γ2

2F

]
(6.63)

The last mathematical model was developed to try to fully understand the generation of DPOAEs on the

locust TM. In this last model, the mathematical parameter ε is considered not to only control the degree

of non-linearity of the system but also the damping mechanism governing it. In this case, the equation

of motion of the oscillator is given by:

ω2y′′ + εγωy′ +
k

m
y +

βεy3

m
=
εF

m
[α cos(θ + δ) + β cos(1.1θ + δ)] (6.64)

In this case, the solutions when the system is not forced and when it is driven by a single frequency

remain the same as in the previous case. Hence, it is interesting to study this system when driven by two

different frequencies at the same time. The detailed solution is presented in Appendix B.

ω2 =
k

m
+ ε

[
3kA2

4m
±
√
k

m

(
F 2

kmA2
− γ2

)]
(6.65)

Even though this model seems to be enough to explain the generation of DPOAEs on the locust

TM (following from Eq.(6.61)), it must also describe the measured mechanical in-plane motion

which, as it has been previously described, revealed a coupled behaviour. Thus, in order to obtain a

mathematical model accurate enough that permits the detailed study of the locust TM, it is necessary

to introduce coupling into the Duffing equation. Here two Duffing coupled oscillators are presented,

as it is a system that can be analytically solved and provide accurate equations of motion. If more

oscillators are added into the system, the solution becomes very difficult to determine analytically

and numerical methods must be used. Let’s consider two Duffing coupled oscillators as shown in Fig. 6.4.

The equations of motion of the system shown in Fig. 6.4 are given by:





md2y1
dt2 + εdy1dt + εy3

1 + k(y2 − y1)− εF0 cos(ωt+ δ) = 0

md2y2
dt2 + εdy2dt + εy3

2 + k(y2 − y1)

(6.66)
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Fig. 6.4. Sketch of two Duffing coupled oscillators. This model needs to include both a dashpot and a spring

between each oscillator to account for viscous effects.

The solution to this system is given by (see details in Appendix C):

y
(0)
1 (θ) =

1

2

{
y

(0)
1 (0) [1 + cos(λ1θ)] + y

(0)
2 [−1 + cos(λ1θ)]

}
(6.67)

y
(0)
2 (θ) =

1

2

{
y

(0)
1 [1− cos(λ1θ)] + y

(0)
2 [1 + cos(λ1θ)]

}
(6.68)

where y
(0)
i with i = 1, 2 are the initial conditions of the system and λ1 is the first characteristic vector

of the system. Taking y
(0)
1 = A and y

(0)
2 = B it is also possible to obtain the frequency response of the

system. Considering δ = 0:

ω2 = 1 +
ε

32k(A+B)

(
15A3 − 3A2B − 3AB2 + 15B3 − F0

)
(6.69)

and considering the phase of the driving force (i.e. δ 6= 0):

ω2 = 1 +
3ε

16mλ2
1

(
5A2 − 6AB + 5B2

)
± 2εF0

mλ2
1(A+B)

√
1− λ2

1 (A+B)
2

4F 2
0

(6.70)
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6.1.4 Application of the mathematical models

Once the mechanical behaviour of the locust TM was properly understood and mathematically described,

mathematical models were used to fit the obtained experimental data from the transects (Fig. 6.1). It

must be noted, firstly, that the experimental data must be treated before applying the mathematical

models, as it was observed in the 3D LDV that the motion of the locust TM presents both a transitory

and a stationary response (see Fig. 6.5) and the focus remains in the latter one as the former only lasts

for a few miliseconds.

Fig. 6.5. The top-left graph shows the mechanical deflection of the locust TM in the time domain of point 1

(P1) of the studied transects (as shown in Fig. 6.1) when driven at 5 kHz.

As is shown in Fig. 6.1, four points on the locust TM were mainly studied; point 13 (P13)

corresponds to the PV, points 5 and 6 (P5 and P6) are points on the membrane located between the

FB and the PV, a region in which the membrane experiments a thinning of cuticle, and point 1 (P1)

corresponds to the start of the FB. In all the models a fixed region of the membrane corresponding to

the thickest part of the FB was considered, as experimental data revealed that such a region deflects

several orders of magnitude less than the rest of the membrane. Nevertheless, the region of the FB in

contact with the region in which the membrane experiments a thinning was measured to significantly

move. Therefore, according to Fig. 6.2, P13, P5 and P6, and P1 can be described by y1(t), y2(t), and

y3(t) respectively.
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Hence, using the unforced coupled model described in Section 6.1.1 the mechanical deflection

measured on the locust TM under single-tone stimulation (at a driving frequency of 5 kHz and at a

sound pressure level of 70 dB SPL) was fitted and shown in Fig. 6.6. This was done explicitly to show

how this first model cannot be used to describe in an accurate manner the motion of the locust TM as

this is a forced system.

Fig. 6.6. (a)-(d) Show the fitting of the experimental data using the unforced coupled mathematical model

described previously in this Chapter for P1, P5, P6, and P13 respectively. The fitting was done over 4.5 ms, but

here only 4 cycles are shown over 0.875 ms.

The fitting details can be observed in Table 6.1.
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Point Mass [kg] Fitting parameter c R2 k [N/m]

1 3.9·10−9 31334.53 0.5475 3.83

5 3.2·10−10 18098.82 0.9247 0.09828

6 3.2·10−10 18099.37 0.8047 0.1048

13 3.0·10−9 31042 0.2057 2.89

Table 6.1. Fitting details when using the unforced coupled mathematical model.

From the fitting parameters it is possible to obtain an approximation of the local stiffness of the locust

TM, as c = ω2 =
√
k/m. Nevertheless, it must be noted that even though P5 and P6 are well fitted

using the unforced coupled theory, P1 and P13 present a low R2 value (the fitting parameter that

determines the accuracy of the fitting function with the experimental data).

The fitting functions corresponding to the forced model (as described in 6.1.1) are shown in Fig.

6.7 and the fitting parameters are shown in Table 6.2.
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Fig. 6.7. (a)-(d) Show the fitting of the experimental data using the forced coupled mathematical model described

previously in this Chapter for P1, P5, P6, and P13 respectively. The measurements were obtained at 5 kHz. The

fitting was done over 4.5 ms, but here only 4 cycles are shown over 0.875 ms.

Even though this model gives better R2 values it presents two main inconveniences: the most obvious

one is that because ω1 = 0 it is not possible to obtain an estimation of the local stiffness of the PV. The

second inconvenience is that the fitting parameter c is negative in all the studied cases, which gives a

good fitting output but it does not have any physical sense as c has been chosen to be ω2 and ω3 for P5

and P6, and P1 respectively, which cannot be negative. Thus, a variation of the forced mathematical

model must be applied in order to have not only a good fitting of the experimental data but also realistic

parameters that allow to determine the mechanical properties of the system. Therefore, the equations

obtained in the variation presented in Section 6.1.2 (addition of an extra term of potential energy) were

applied to fit the experimental data (see Fig. 6.8 and Table 6.3).
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Point Mass [kg] Fitting parameter c R2 k [N/m]

1 3.9·10−9 -14700.49 0.9050 0.2810

5 3.2·10−10 -15831.68 0.9178 0.0802

6 3.2·10−10 -15898.18 0.8068 0.08088

13 3.0·10−9 N/A 0.8766 N/A

Table 6.2. Fitting details when using the unforced coupled mathematical model.

Fig. 6.8. (a)-(d) Show the fitting of the experimental data using the forced coupled complex mathematical model

described previously in this Chapter for P1, P5, P6, and P13 respectively. The fitting was done over 4.5 ms, but

here only 4 cycles are shown over 0.875 ms.

130



CHAPTER 6. EXPERIMENTAL RESULTS

Point Mass [kg] Fitting par. c Fitting par. e Fitting par. f R2 k [N/m]

1 3.9·10−9 8.1151·108 2.7154·108 -2.6573·108 0.9232 0.7283

5 3.2·10−10 1.0051·109 9.9532·108 N/A 0.9178 0.3189

6 3.2·10−10 4.6116·109 1.5997·109 N/A 0.8068 0.6530

13 3.0·10−9 9.2773·109 -5.5496·109 9.2677·109 0.8763 27.8073

Table 6.3. Fitting details when using the forced complex coupled mathematical model.

It must be noted that adding an extra spring (i.e. an extra term of potential energy) in the mathematical

model has a huge impact when determining the local stiffness of the system. In this case, as the

equations of motion of each oscillator present a dependency in multiple ωi (i = 1, 2, 3), the local stiffness

has been worked out as an average of all the possible real values. In this case c = ω2
1 = (2 +

√
2)k/m,

e = ω2
2 = 2k/m, and f = ω2

3 = (2−
√

2)k/m.

The spring stiffness constants estimated from the mathematical models lead to values of stiffness

of the locust TM from about 0.9104 kPa on the FB and 1.1123 GPa on the PV, whereas in the

in-between points the stiffness of the membrane takes values of 12.76 kPa and 26.12 kPa in regions of the

same dimensions as the PV. These results are in accordance with the experimental results obtained by

Vincent and Wegst [224] in which they determined that stiffness can vary from 1 kPa in highly hydrated

regions of the membrane (i.e. those containing a higher amount of endocuticle) up to 20 GPa in isotropic

regions of the membrane when measuring parallel to the chitin orientation in the tibia flexor (i.e. regions

with ectremely low content of endocuticle). Their study suggested that stiffness hugely depends on the

amount of hydrated cuticle present in the measured area (concentrated in the endocuticle), leading to

softer structures as more endocuticle is present in them. Considering the analysis of the membrane

performed by Stephen & Bennet-Clark [41] in which they observed a higher presence of endocuticle

in the FB, it makes sense that this structure presents lower values of stiffness than the PV, and the

in-between points (which are mainly composed by mesocuticle) are stiffer than the FB but less stiff than

the PV. Furthermore, it has been shown that ageing has a huge impact on the mechanical properties of

the tissues of the locust, as it has been reported that deposition of endocuticle takes place as the locust

gets older, leading to a decrease of stiffness of the structure [224].
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It has been presented in the previous section that a single Duffing oscillator could generate

intermodulation on the locust TM, which uniquely depends on the non-linear term governing the

system. Nevertheless, when applying the Duffing model on the locust TM, it must be coupling several

Duffing oscillators as the experimental data revealed a coupled behaviour. Thus, the production of

DPOAEs was studied by using a coupled Duffing system (see Fig. 6.9). It must be noted that a single

Duffing oscillator does not reproduce the so-called skeleton curve (see Appendix B) when driven by two

different frequencies at the same time, and this is why the parameter ε must be taken into consideration

to control not only the degree of non-linearity of the system but also its damping mechanism (see

Appendices B and C). Again, it must be noted that DPOAEs are generated in all the Duffing systems

described in this thesis in which the oscillator(s) is(are) driven by two frequencies at the same time as

their generation depends on the non-linear term, which is proportional to y3. As the solution to the

system depends on both driving frequencies, it is easy to see that DPOAEs will always appear due to

the expansion of the non-linear term. Thus, it is necessary that the proposed mathematical model also

reproduces the characteristic skeleton curve of a Duffing oscillator, as it has been measured to happen

on the locust TM.

Fig. 6.9 confirm the presence of intermodulation in the locust TM (Fig. 6.9a and b), and its

theoretical prediction (Fig. 6.9c). The experimental data was obtained by one of out colleagues where

frequencies of 10 kHz and 11 kHz were played, measuring single points of the physiologically relevant

regions of the locust TM. The simulations results were obtained solving the relevant equations using

Mathematica.

6.2 Development of 3D-printable materials

When developing photocurable 3D-printing materials there are three main parameters to take into

consideration: (i) the oligomers that compose the polymeric structure, (ii) the species that will start the

photopolymerization process (photoinitiator), and (iii) the UV blocker that will avoid light scattering

and over-curing during the 3D-printing process. For all the photo-curable composite materials developed

during this thesis, the photoinitiator Phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide, commonly

known as Irgacure 819, has been used (which molecular structure and absorption spectrum can be seen

in Fig. 6.10(a) and Fig. 6.10(b), respectively). Irgacure 819 has been selected because it has been shown
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Fig. 6.9. The left-hand-side image shows the response of the locust membrane near the PV in both y− and z−

axes when excited at 1 and 1.1 kHz at the same time. It can be observed that maximum velocity happens at the

driving frequencies. Furthermore, generation of harmonics and distortion product otoacoustic emissions can also

be observed. The right-hand-side graph shows the simulation obtained from the proposed mathematical model

described in this section.

to present good photoinitiation activity when exposed to UV light (as the UV LED wavelength of the

ASIGA PicoPlus 27 3D Printer is of 385 nm and the absorption spectrum maximum of Irgacure 819 is

in the range of 397 nm) as well as it has been reported that it follows a photoinitiation process that does

not require accelerators such as tertiary amines, simplifying the production process [225].

Fig. 6.10. (a) Shows the molecular structure of Irgacure 819 and (b) shows its light absorption spectrum with

the peak highlighted with a black dashed line. Image obtained from [226].

Two main polymeric photoreactive materials were used during the course of this thesis to prove

that materials with sensibly different mechanical properties can be 3D-printed using a same 3D printer
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by simply modifying some of the 3D-printing settings. The 3D-printable developed materials are

poly(ethyolene glycol) diacrylate (PEGDA) and bisphenol-A ethoxylate dimethacrylate (BEMA), which

synthesis process is described later in this Section. These materials were later modified by embedding

functional NPs within the polymeric matrices in order to provide functionality (piezoelectricity and

magnetism) after 3D-printing.

When introducing NPs within the polymeric matrix, apart from a photoinitiator, the presence of

a UV blocker is also necessary when developing photocurable 3D-printable materials in order to avoid

Mie scattering (which takes place when the size of NPs is of the same order of magnitude than the

wavelength of the UV light, dNP ≈ λUV ) and, therefore, ensure a good 3D-printing resolution [227].

Hence, using SUDAN I as a dye is a good choice as it can be easily dissolved within liquid polymer

matrices. SUDAN I’s azobenzene moieties are light-sensitive and are responsible of blocking UV light,

preventing light scattering and therefore improving 3D-printing resolution. Moreover, by accurately

controlling the amount and type of dye, it is possible to finely tune the mechanical properties of the

resulting composite due to the azobenzene2 moieties’ light-responsive properties [111], arising from the

π-electrons in the p-orbitals of the sp2 hybridized nitrogen atoms. Azo moieties can be used in polymer

matrices as both dispersed un-linked molecules and constituting unit polymer chains [228].

6.2.1 Synthesis of 3D-printable materials

Synthesis of 3D-printable BEMA and PEGDA

3D-printable BEMA was developed by mixing BEMA with Irgacure 819 at 1 wt%. The mixture was

left under magnetic stirring for 24 hours to ensure cross-linking of the polymer chains. 0.2 wt% of

SUDAN I was then added with respect to BEMA and the whole mixture was put into a THINKY

AER-250 mechanical mixer, mixing for 3 minutes at 1500 rpm and de-foaming it for 2 minutes at 1200

rpm. Finally, the mixture was indirectly sonicated in a water bath for 5 minutes before 3D-printing. A

control sample was made using a screen-printing technique with layer thickness of 50 µm, using an R&K

control coater, curing every layer under UV light for 1 minute using an Intertronics IUV250 Hand Lamp

(Intertronics, Kidlington, England, UK). The exact same process was followed using PEGDA instead of

BEMA.

2Azobenzene is a molecule with the ability to undergo reversible transformation between two isomers with specific

absorption spectra. Both linear and cyclic isomerization can be obtained from azo moieties.
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Non-3D-printable BEMA and PEGDA, Irgacure 819, and SUDAN I were all purchased from Sigma

Aldrich (Gillingham, England, UK). Furthermore, PlasWhite was also used at the start of the project, a

commercially available 3D-printing polymer provided by ASIGA.

Synthesis of piezoelectric and magnetic 3D-printable particulate composites

To develop the piezoelectric polymer-based particulate composite material, a similar process to that

described in the previous subsection was followed. In this case, a 0.1 wt% of SUDAN I was used with

respect to the polymeric matrix (for both BEMA and PEGDA) as a 0.2 wt% loading was observed to

block the majority of UV photons, resulting in poor 3D-printing resolution or even the complete failure

of 3D-printing process. BaTiO3 NPs (100 nm, 200 nm, and 500 nm) were added into the 3D-printable

polymeric matrix at different wt% reaching a maximum loading of 75 wt%. Even though high wt%

loadings are possible to achieve, this is a parameter that needs to be optimised in order to obtain a

good balance between 3D-printing accuracy and piezoelectric output signal, as discussed later in this

Chapter (see subsection 6.2.4). Before 3D-printing, control samples were built using the same process as

described in the previous section.

The same process was followed to produce the 3D-printable magnetic-particulate composite material.

In this case, Fe3O4 NPs of 50-100 nm size were embedded within the polymeric matrices at different

wt% loadings (25, 50, and 75 wt%) using a THINKY AER-250 mechanical mixer, mixing the composite

for 3 minutes at 1500 rpm, and de-foaming it for 2 minutes at 1200 rpm. After mechanical mixing,

samples of the different magnetic composites were made using the screen printing technique (RK control

coater) at a slice thickness resolution of 50 µm. Every layer was cured under UV light for two minutes

using an Intertronics IUV250 Hand Lamp (Intertronics, Kidlington, England, UK). Furthermore, a

hybrid composite material was also developed using Fe NPs through the screen printing technique.

Notwithstanding, such material could not be 3D-printed due to the special measures that must be taken

when working with Fe NPs, as an exothermic reaction takes place when used under normal conditions

which, if not properly controlled, may lead to combustion. As it happened with the piezoelectric

3D-printable composites, high loadings of magnetic NPs can be achieved, but they tend to aggregate

and form big NP clusters that lead to poor 3D-printing resolution. Hence, this is a parameter that must

be optimised in order to ensure a good balance between magnetic response and 3D-printing resolution,
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as discussed later in this Chapter (see subsection 6.2.5)

BaTiO3 NPs were obtained from US Research Nanomaterials, Inc. (Houston, TX, USA) whereas

Fe3O4 NPs were purchased from Sigma Aldrich (catalogue number 637106).

6.2.2 Morphological study

SEM images of the synthesized samples can be seen in Fig. 6.11 and Fig. 6.12, where several observations

can be done. Firstly, it can be seen that when screen-printing the materials, the thickness of the layers is

not uniform. This is because during the manufacturing process it is difficult to control the exact thickness

of each layer due to the viscosity of the material. The second observation is that there is a clear difference

between layers crosslinking when using the 3D printer or the screen-printer. Whereas the former provides

good crosslinking between layers due to a low UV-light exposition time (Fig. 6.12a,b), the latter does

not provide good adhesion between layers as each one of them is fully cured, leading to non-functional

radicals that cannot start the polymerization process when a new layer of uncured polymer is put onto it

(Fig. 6.11a,b and Fig. 6.12c). It can also be seen that when working with low wt% loadings, NPs present

a more uniform distribution within the polymer (Fig. 6.12a) whereas when working with high weight

fractions NPs tend to agglomerate and create clusters (Fig. 6.11a,b,c and Fig. 6.12c). Furthermore, it

has been observed that NPs do not uniquely agglomerate within the polymer but they also accumulate

onto the surface of the resulting cured material, creating smaller clusters (Fig. 6.11b and Fig. 6.12d).

Nevertheless, the majority of NPs have been observed to remain in-between layers (Fig. 6.11d and Fig.

6.12d).
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Fig. 6.11. SEM images of screen-printed BaTiO3 NPs (33 wt%) embedded within BEMA. (a) Cross-section

of one of the screen-printed magnetic samples in which the layers can be seen, (b) Cross-section of one of the

screen-printed piezoelectric samples at higher magnification, (c) On-top image that shows NP agglomeration on

the surface of the composite, and (d) One of the screen-printed samples when one of the layers has been removed.
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Fig. 6.12. SEM images of the 3D- and screen-printed magnetite NPs (50 wt%) embedded within PEGDA. (a)

Cross-section of one of the 3D-printed magnetic samples in which the 3D-printed layers can be seen, (b) The

edge of one of the 3D-printed samples, (c) Cross section of one of the screen printed samples, and (d) One of the

screen-printed samples when one of the layers has been removed.
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Agglomeration of NPs is a common phenomenon when embedding NPs within polymeric matrices

[138, 229]. This is a major problem as agglomeration and aggregation of NPs prevents obtaining

improved properties of the resulting composite material. These phenomena have been attributed to the

direct mutual attraction between NPs via van der Waals forces or chemical bonds [138]. The strategies

for avoiding aggregation and agglomeration ar emainly attributed to particle coating by by a capping

agent, application of coupling agent or compatibilizer and charging the filler surface to separate them

via electrostatic revulsions [138].

Agglomeration and aggregation effects can be prevented using surfactants [229], and some studies

suggest that viscous media also help its prevention when using polymers with long ethylene oxide (EO)

chains [138, 229], producing a decrease of the existing van der Waals forces between NPs. One of the

advantages of BEMA with respect to other 3D-printable polymeric matrices and other commercial

materials is the presence of long EO chains, which seems to decrease NPs aggregation due to an increase

of viscosity of the fluid.

6.2.3 Mechanical properties

One of the main concerns when developing new composite materials is how the mechanical properties of

each individual material influences the mechanical properties of the resulting composite. The mechanical

properties of interest in this thesis are mainly three: the elastic modulus, the density, and the acoustic

impedance, as all three of them play, in a way or another, an important role in the mechanic-acoustic

response of the material. Whereas the elastic modulus and the density of the composite, altogether

with the geometry of the 3D-printed part, will determine the characteristic frequencies of the sensor, its

acoustic impedance will define how much resistance the material offers to sound propagation. Hence, it

is possible to study the general tendency of these mechanical properties when working with particulate

composite materials by using Eq.(6.71)- (6.74) [230]

Ec = Em
Em + (Ef − Em)V

2/3
f

Em + (Ef − Em)V
2/3
f

(
1− V 1/3

f

) (6.71)

ρc = Vfρf + (1− Vf )ρm (6.72)

v(L) =
√
Ec/ρc (6.73)

Z = ρcv
(L) =

√
Ecρc (6.74)
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where E, Vf , ρ, v(L), and Z are the elastic modulus, the filler’s volume fraction, the density, the

longitudinal velocity, and the acoustic impedance, respectively, and the sub-indices c, m, and f refer

to the composite, matrix, and filler, respectively. It can be seen that Eq.(6.71) is similar to the

Sato-Furukawa relationship, Eq.(3.36) presented in Chapter 3, Section 3.5, with the difference that Sato

and Furukawa introduced a parameter accounting for the degree of adhesion between the filler and the

matrix. Nevertheless, Eq.(6.71) becomes very useful to study the mechanical properties of the composite

material as a function of both Ef and Em. Furthermore, at this point it must be mentioned that filler

fractions will be referred in weight percentages (FWF), but Eq.(3.36) and Eq.(6.71) are a function of

the filler’s volume fraction (FVF). The relationship between FWF and FVF can be obtained using the

densities of the two components of the composite [231]:

FV F =

[
1 +

ρf
ρm

(
1

FWF
− 1

)]−1

(6.75)

As previously mentioned, it is possible to study the tendency by which the mechanical properties of

the resulting composite will be depending on the relationship between Ef and Em, and express it as a

function of Vf . Hence, four main situations must be considered when developing a particulate composite

material: (i) when Ef � Em, (ii) when Ef � Em, (iii) when Ef . Em, and (iv) when Ef & Em.

The tendencies of the different mechanical properties of the resulting particulate composites according

to these previous 4 situations can be easily simulated and plotted, as it can be observed in Fig. 6.13.
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Fig. 6.13. (a), (b), and (c) show, respectively, the simulation results of the mechanical properties (elastic

modulus, Ec, longitudinal velocity, v
(L)
c , and acoustic impedance, Zc) as a function of the filler volume fraction

when working with particulate composite materials. Plots obtained when using Eq.(6.71)-(6.74).

It can be observed from Fig. 6.13 that different tendencies can be found for Ec, v
(L)
c , and Zc depending

on the relationship between Ef and Em. These tendencies were studied to understand which is the

effect of the relative elastic modulus on the property of interest of the resulting composite. The resulting

mechanical properties of particulate composite materials are detailed below:
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• Ec: Studying the elastic modulus of the resulting particulate composite has become one of the

trickiest parameters to analyse, as very different tendencies can be observed when working with the

four different limiting cases. When the elastic modulus of the matrix is much higher than that of

the filler (Fig. 6.13(a), black plot), adding low percentages of filler barely affects Ec (i.e. Ec ≈ Em).

As the volume percentage of filler increases, Ec decays until Ec = Ef when considering a 100%

volume fraction of filler. The opposite tendency can be observed when the elastic modulus of the

filler is higher than that of the matrix. In that case, nevertheless, the increase of Ec takes place at

a much faster rate than in the previous case, presenting an asymptote at 100% volume fraction of

filler.

It is very interesting to look at the cases in which Ef and Em are of the same order of magnitude, as

they present completely opposite linear trends that follow the same tendency as the one previously

explained: Ec decreases when the filler volume % increases when Ef . Em, whereas it increases

when Ef & Em.

• v(L)
c : Longitudinal velocity of particulate composite materials turns out to be much easier to study

than E. In this case, the value of v
(L)
c decreases with filler content except in the case in which

Ef � Em, where the increase is not as prominent as when Ef � Em (unlike in Ec, where even

though the trends were opposite, its increase/decrease was of the same order of magnitude). From

Fig. 6.13(b) it can be seen that when Ef and Em are of the same order of magnitude (and

irrespective of which one is higher), the longitudinal velocity of the particulate composite decreases.

• Zc: The study of acoustic impedance of the resulting particulate composite is analogous to that

of longitudinal velocity. In this case, though, it increases in every case except when Ef � Em. It

can be seen from Fig. 6.13(c) that only when Ef is of different order of magnitude then Em, the

impedance of the composite presents a parabolic decrease with filler fraction. The biggest increase

of impedance takes place when Ef � Em, presenting an asymptote at 100% volume fraction of

filler. When both Em and Ef are of the same order of magnitude, the impedance of the resulting

composite tends to increase in both cases at a different rate.

Hence, having an idea of how the mechanico-acoustic properties of particulate composites change with

respect to filler fraction, is of great help when developing new composite materials, as it opens the

possibility of producing the material starting at the desired filler fraction. In our case, Em � Ef both

when working with barium titanate and magnetite NPs, meaning that Ec and v
(L)
c increase and decrease,
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respectively, with increasing filler fraction. Furthermore, in this range of filler fraction, Zc increases in

the Em � Ef regime, but it must be taken into consideration that from a certain filler fraction this

tendency is reversed.

The mechanical properties of the synthesized materials were measured using the nanoindentation

technique, from which the P − h curves were obtained and can be observed in Fig. 6.14.

Fig. 6.14. (a) and (b) show the load-displacement curves of BEMA and PEGDA, respectively, with Irgacure

819 (1 wt%) and SUDAN I (0.2 wt%), without any NP loading. BEMA presents an elastic behaviour (as the

initial penetration depth is fully recovered) whereas PEGDA shows a plastic mechanical behaviour (as permanent

deformation is induced and the initial penetration depth is not recovered) in which crack formation is promoted

(pop-in event), as shown in the top-left corner graph.
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The main difference that can be observed between BEMA and PEGDA is their mechanical behaviour:

whereas 3D-printable BEMA presents a purely elastic mechanical behaviour (i.e. h recovers its initial

position when the force is removed), 3D-printable PEGDA shows a plastic mechanical behaviour (i.e. the

deformation of the material remains constant after the force is removed). The P − h curves do not only

determine the type of behaviour of the material but they also provide some of their mechanical properties,

as discussed in Chapter 3, Section 3.3. Hence, using Eq.(3.21)-(3.26) it is possible to determine E and H.

Even though an increase of E and H was measured when increasing UV-light exposure time, these were

not significant enough to change the elastic and plastic behaviours of BEMA and PEGDA, respectively.

Table 6.4 shows the measured change of these mechanical properties. Furthermore, as PlasWhite was one

of the first 3D-printable materials used in this project, its mechanical properties and its corresponding

P − h loop (Fig. 6.15) were also investigated.

Fig. 6.15. P-h loop of PlasWhite in which a maximum applied load of 10 mN has been applied. PlasWhite

presents plastic mechanical behaviour as the initial penetration depth is not recovered during nanoindentation.

PEGDA presented a parabolic increase of E with respect to UV light exposure time (R2 = 0.99931).

PEGDA’s hardness dependency with UV exposure time was measured to follow a logarithmic increase

(R2 = 0.9999). On the other hand, both E and H for BEMA were observed to follow a parabolic increase

(R2 = 0.9988 and R2 = 0.9971, respectively). As it can be seen from Fig. 6.15, PlasWhite presents

a plastic mechanical behaviour in the same way as 3D-printable PEGDA does. Nevertheless, and as a

main difference with both 3D-printable BEMA and PEGDA, PlasWhite presents values of both E and

H three orders of magnitude higher. Hence, it is possible to see form Fig. 6.14, Fig. 6.15, and Table 6.4
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Material Exposure time (s) E± s.e. (MPa) H± s.e. (MPa)

BEMA 2 1.4205 ± 0.0087 0.4221 ± 0.0024

BEMA 4 3.070 ± 0.010 0.7471 ± 0.0054

BEMA 6 4.384 ± 0.027 0.926 ± 0.0075

BEMA (fully cured) 13 14.13 ± 0.15 3.94 ± 0.84

PEGDA 2 123.28 ± 1.07 20.74 ± 0.24

PEGDA 4 266.71 ± 2.74 36.75 ± 0.60

PEGDA 6 380.74 ± 4.71 45.55 ± 0.88

PEGDA (fully cured) 13 900.68 ± 32.65 62.79 ± 1.07

PlasWhite N/A 1442.27 ± 48.91 115.76 ± 5.75

Table 6.4. Values of elastic modulus (E) and hardness (H) of both 3D-printable BEMA and 3D-printable

PEGDA obtained from the P − h curves using Eq.(3.21)-(3.26). The reported values of both H and E are an

average of 36 tests performed on each sample.

that three materials with completely different mechanical properties can be 3D-printed using a same 3D

printer. The main advantage of such feature is that depending on the application of the desired sensor, it

is possible to choose the material presenting the most adequate mechanical properties for such purpose.

Mechanical properties of NP enhanced polymers

Once the possibility to 3D-print different polymer-based materials presenting a wide range of mechanical

properties was shown, piezoelectric and magnetic NPs were added within the different matrices to

provide the resulting 3D-printed materials specific functionalities. When trying to embed NPs within

PlasWhite, even though the resulting composites were observed to be functional after screen-printing

(both piezoelectric and magnetic), it was not possible to obtain any good 3D-printing resolution even

when adding UV blockers into the mixture. This is hypothesized to happen because of the presence

of specific oligomers, surfactants, photoinitiators, UV-blockers, and pigments that produce quaternary

amino groups when adding extra components within the ASIGA-manufactured material. Nevertheless,

this is only an assumption as the manufacturer does not provide the fabrication details nor the

components used to develop such material. Hence, PlasWhite was discarded when developing functional

3D-printable particulate composite materials.
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The next step was to determine the mechanical properties of the piezo- and magneto-polymer

composites using the same approach as that followed with the polymeric materials. The mechanical

properties of the piezo- and magneto-polymer composites were studied at different NP loadings, which

are reported in Table 6.5.

It is possible to plot the P − h curves of the composite materials using the nanoindenter, which provides

information about their elasticity/plasticity. Some of the curves can be seen in Fig. 6.16.

Fig. 6.16. (a) and (b) Show the P − h curves of different regions of piezo-BEMA composites, revealing a local

changes of the mechanical behaviour of the sample attributed to NPs agglomeration. This same mechanical

behaviour was measured for most BEMA-based composites, being more apparent at higher weight loadings. (c)

Shows the P − h curve of BaTiO3 NPs embedded within PEGDA. The same mechanical behaviour was observed

in all the PEGDA-based composites.
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BEMA

Exposure time (s) BaTiO3 Fe3O4 Fe E± s.e. (MPa) H± s.e. (MPa)

4 30 - - 3.018 ± 0.035 0.7158 ± 0.0028

4 50 - - 2.964 ± 0.040 0.745 ± 0.011

4 75 - - 5.635 ± 0.052 1.600 ± 0.028

Fully cured 20 - - 21.71 ± 0.62 1.86 ± 0.10

Fully cured 30 - - 36.34 ± 0.74 4.46 ± 0.14

Fully cured 40 - - 30.46 ± 0.96 2.67 ± 0.15

Fully cured 50 - - 18.30 ± 0.62 0.986 ± 0.040

Fully cured 60 - - 38.56 ± 0.75 4.57 ± 0.13

Fully cured 70 - - 22.22 ± 0.24 1.678 ± 0.027

Fully cured - 5 - 25.91 ± 1.96 1.85 ± 0.29

Fully cured - 25 - 35.51 ± 0.73 4.03 ± 0.11

Fully cured - 50 - 46.91 ± 1.15 6.10 ± 0.23

Fully cured - - 25 23.38 ± 1.00 1.83 ± 0.11

Fully cured - - 50 34.43 ± 2.09 3.30 ± 0.29

PEGDA

Exposure time (s) BaTiO3 Fe3O4 Fe E± s.e. (GPa) H± s.e. (MPa)

Fully cured 10 - - 2.039 ± 0.011 205.18 ± 1.69

Fully cured 33 - - 2.324 ± 0.054 225.81 ± 7.36

Fully cured 50 - - 2.253 ± 0.043 229.81 ± 8.07

Fully cured 66 - - 3.063 ± 0.077 286.76 ± 7.04

Fully cured - 25 - 0.362 ± 0.026 10.61 ± 1.42

Fully cured - 50 - 0.936 ± 0.033 124.10 ± 5.49

Table 6.5. Mechanical properties of the BEMA- and PEGDA-based functional composite materials. Exposure

time refers to how long each layer was cured under UV light (in seconds). The sizes of the NPs were 500 nm,

50-100 nm, and 25 nm for BaTiO3, Fe3O4, and Fe, respectively.
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Most of the BEMA-based particulate composite materials presented an elastic behaviour (Fig. 6.16a)

even though a low degree of plasticity was measured at specific regions of the material, associated to NP

agglomerations (Fig. 6.16b), a behaviour more noticeable at higher NP loadings. On the other hand,

and as shown in Fig. 6.14b, all the PEGDA-based particulate composites presented a plastic mechanical

behaviour.

It is possible to predict what the elastic modulus of particulate composite materials will be using

the models described earlier in this section (Eq.(3.36) and Eq.(6.71)). The obtained results are shown in

Table 6.6.
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BEMA

Exposure time (s) BaTiO3 Fe3O4 Fe ESF (MPa) EM2 (MPa)

4 30 - - 3.020 (j = 0.77) 2.26

4 50 - - 2.956 (j = 0.75) 3.24

4 75 - - 5.640 (j = 0.12) 5.31

Fully cured 20 - - 15.68 22.46

Fully cured 30 - - 16.56 25.17

Fully cured 40 - - 17.69 28.30

Fully cured 50 - - 19.23 32.24

Fully cured 60 - - 21.51 37.69

Fully cured 70 - - 25.29 46.21

Fully cured - 5 - 14.64 18.48

Fully cured - 25 - 16.37 24.63

Fully cured - 50 - 19.99 34.13

Fully cured - - 25 15.70 22.55

Fully cured - - 50 18.14 29.51

PEGDA

Exposure time (s) BaTiO3 Fe3O4 Fe ESF (GPa) EM2 (GPa)

Fully cured 10 - - 0.95 1.17

Fully cured 33 - - 1.05 1.52

Fully cured 50 - - 1.19 1.86

Fully cured 66 - - 1.68 2.38

Fully cured - 25 - N/A N/A

Fully cured - 50 - 0.94 (j = 0.97) N/A

Table 6.6. Prediction of the mechanical properties of the BEMA- and PEGDA-based functional composite

materials using the two models described earlier in this section: ESF using Eq.(3.36) and EM2 using Eq.(6.71) j

= 0 unless otherwise stated. The sizes of the NPs were 500 nm, 50-100 nm, and 25 nm for BaTiO3, Fe3O4, and

Fe, respectively.

149



6.2. DEVELOPMENT OF 3D-PRINTABLE MATERIALS

Fig. 6.17 shows the plot of the values reported in Table 6.5 and Table 6.6.

Fig. 6.17. (a)-(d) Show the plots of both the theoretical and experimental elastic moduli of the different

particulate composites for (a) BTO:BEMA composites UV-cured for 4 seconds, (b) BTO:BEMA composites fully

cured, (c) Fe3O4:BEMA fully cured, and (d) BTO:PEGDA, respectively. Constant values of BEMA and PEGDA

are shown in red lines in the four graphs. In (a), the experimental results perfectly match the Sato and Furukawa

model, being the two plots superimposed.

Comparing Table 6.5, Table 6.6, and Fig. 6.17, several conclusions can be drawn. Firstly, it can be

observed that the Sato and Furukawa model predicts perfectly the elastic moduli of particulate composites

at low E values (roughly below 10 MPa) by adjusting the adhesion parameter j. On the other hand,

when working with materials that present higher E values, it has been found that Eq.(6.71) provides a

better approximation of Ec. Nevertheless, when dealing with materials presenting E values of the order

of the GPa, the prediction is not as precise but it still seems to provide a better approach than the Sato

and Furukawa equation. The reason behind this lies in the fact that Eq.(6.71) takes into consideration

both Ef and Em, whereas the Sato and Furukawa model determines Ec only using the elastic modulus

of the matrix and the fraction volume filler. It can be seen from Table 6.6 that when measuring the
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fully-cured composites, the Sato and Furukawa model provides its best approximation when j = 0 (i.e.

when perfect adhesion between NPs and matrix occurs), whereas when studying partially cured samples,

the accuracy of the model depends on the adhesion parameter, which seems to be dependent on NP

loading. The second main observation that can be done from Table 6.5, Table 6.6, and Fig. 6.17 is that

the experimental measurements report some variability (becoming more apparent from Fig. 6.17b and

Fig. 6.17d) associated to non-homogeneous NP distribution. Finally, it must be noted at this point that

the less precise predicted values are those corresponding to plastic materials. This is because the values

of E have been determined using the Oliver-Pharr method, which is perfectly valid for elastic materials

but presenting lower reliability when applied to plastic materials (as it uses the unloading segment of

the P − h curve, as described in Chapter 3, Section 3.3). It must be further noted that both theoretical

models recover the BEMA E value when considering a 0 wt% of filler.

6.2.4 Piezoelectric composite materials

Several piezoelectric composite particulate materials were developed in the course of this thesis using

different NP sizes (200 nm and 500 nm) and concentrations. Furthermore, other parameters like poling

field, poling time, poling temperature, and poling medium must be considered, as well as the rate at

which the poling field is applied.

Hence, it was noted that when a very high voltage was applied directly onto the sample, this led

to electric breakdown. Therefore, controlled electric field ramps had to be applied at a rate of 0.2 kV

per minute until the maximum desired electric field was reached. It was also noted when poling the

piezo-composite materials that irrespectively of their thickness, they would not support voltages higher

than 3 kV and, therefore, this value was used as a limit. Three poling times were firstly used in order

to optimize the polling process: 30 minutes, 1 hour, and 2 hours. Whereas a significant difference of the

piezoelectric coefficient could be observed between the samples poled for 30 minutes and 1 hour, the

piezoelectric coefficient of the samples poled for 2 hours did not present important changes, as reported

in Table 6.7.
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Sample d30
33 d1

33 d2
33

BaTiO3:PEGDA, 20wt% 0.813 2.007 2.107

BaTiO3:PEGDA, 30wt% 1.249 4.163 4.205

BaTiO3:PEGDA, 40wt% 0.660 2.143 2.23

Table 6.7. d33 values of BaTiO3 samples embedded within PEGDA at different loading rates and poled for 30

minutes, 1 hour, and 2 hours, respectively. Used BaTiO3 size was 500 nm.

As previously mentioned, another two parameters that were observed to influence the polling process

were polling time and temperature: whereas these two parameters did not seem to have an impact on

the resulting d33 value of the composite, they facilitated the whole process. Polling the samples within

silicon oil at high temperature (above 100 degrees Celsius) helps avoiding electric break down of the

samples. Ideally, the electric field must be applied to the sample during both the heating up and cooling

down processes in order to ensure that the domains are not re-oriented in a different direction of that of

the applied electric field due to thermal effects.

Obvious differences were observed when using 200 nm and 500 nm size NPs: whereas a clear

abrupt increase of the d33 coefficient was observed when using 500 nm NPs for both PEGDA and BEMA

(Fig. 6.18a and Fig.6.18b respectively), no clear trend was observed when using 200 nm NPs size. It

must be noted, nevertheless, that the blue dashed line shown in Fig. 6.18 is not a fitting function but it

shows the tendency.

It can be noted from Fig. 6.18 that even though slightly different d33 values are measured when

comparing BEMA- and PEGDA-based composites (using a same NP size), the same trend is observed

presenting a peak at a 75 wt%. These variations of the d33 coefficient are associated to non-uniform

distributions of NPs, resulting in changes of the electric domains. The polling process was normalised

after this optimisation process, consisting of the application of a voltage of 3 kV at a rate of 0.2 kV per

minute across the samples for one hour in silicon oil at 120oC.
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Fig. 6.18. (a) and (b) Show the d33 values the 200 nm and 500 nm PEGDA- and BEMA-based piezoelectric

composite materials, respectively. The solid points connected by solid lines represent experimental points, and

the blue dashed lines show the exponential growth trend, which is not the fitting function of the experimental

data.

6.2.5 Magnetic composite materials

8 mm square samples of 0.120±0.010 mm thickness were screen-printed to obtain the M − H curves

and study the magnetic properties of the samples as a function of the NP load. After these properties

were studied, three different samples were 3D-printed: a small square-shaped membrane (5 mm2) with a

thickness of 2.5 mm, and two larger square-shaped membranes (10 mm2) of 2.5 mm and 1 mm thickness

(see Fig. 6.19). The small sample was 3D-printed at a 5 wt% of Fe3O4:BEMA, whereas the two large

samples were 3D-printed at a concentration of 25 wt%. Furthermore, samples containing Fe NPs at

different wt% were also developed using the screen-printing technique, as well as a layered hybrid sample

consisting of alternating layers of Fe3O4(50):Irg.PEGDA and Fe(50):Irg.PEGDA. These samples were

developed using five 100 µm thickness layers.

The M − H hysteresis loops of the magnetic composites containing Fe3O4 and Fe NPs are shown in

Fig. 6.20, and their corresponding Hr and Mr values are reported in Table 6.8. It was observed

that, irrespective of the NPs wt%, the composites containing magnetite presented a soft ferromagnetic

behaviour whereas those containing Fe NPs were superparamagnetic. Furthermore, it was observed that

neither the type of polymeric matrix, nor the photo-initiator used, have any impact on the magnetic

properties of the composites. Therefore, the NPs type, size, and concentration are the only determining

parameters directly influencing Mr. Constant coercive fields were measured when increasing the wt %.
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Fig. 6.19. 3D-printed and screen-printed samples. The big samples lie on a 3D-printed support made

of commercially-available 3D-printable materials. (a) and (b) show the top and front view of the samples,

respectively.

Fig. 6.20. M − H hysteresis loop of (a) Fe3O4 composites at 25 wt% and 50 wt% concentrations, and (b) Fe

composites at 50 wt% and 75 wt%. It can be seen from (a) and (b) that the magnetite-based composites present a

ferromagnetic behaviour, whereas the iron-based composites present superparamagnetic behaviour, respectively.
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Sample m [mg] Mr [emu/g] Hc [Oe] µr

Fe(50):Irg.BEMA 3.3 100 16 2.44

Fe(50):Irg.PEGDA 5.1 124 16 1.60

Fe(50):Tri.BEMA 4.5 87 17 2.00

Fe(75):Irg.PEGDA 3.8 167 15 3.08

Fe3O4(25):Irg.BEMA 4.1 22 107 1.60

Fe3O4(50):Irg.BEMA 3.9 46 105 2.23

Fe3O4(50):Irg.PEGDA 4.3 50 105 2.51

Fe3O4(25):Tri.BEMA 4.0 46 104 2.24

Layered hybrid 5.4 66 74 2.06

Table 6.8. Values of the magnetisation of saturation and the intensity of the coercive field of all the

synthesized samples. The number in parenthesis corresponds to the wt % of magnetic NPs. Irg and Tri stand

for Irgacure 819 and triarylsulfonium hexafluorophosphate salts mixed 50% in propylene carbonate, which are

two different photoinitiators. The layered hybrid consisted of alternate 500 µm layers of Fe(50):Irg.BEMA and

Fe3O4(50):Irg.BEMA.

The hybrid sample was observed to feature the best combination of magnetic properties of each of the

individual composite materials, as it reported a high Mr value and the presence of a non-negligible

coercive field, as shown in Fig. 6.21.

Mr and Hc are not the only magnetic properties possible to determine from the M − H curves.

It is also possible to determine the relative permeability, µr, of the composites doing the analysis of the

plot. The magnetic field, ~B, can be related to both M and H using the following expression:

~B = µ0( ~H + ~M) (6.76)

where µ0 is the permeability of free space and takes the value of 4π ·10−7 H/m. Therefore, it is easy to

determine the value of ~B at each coordinate of the M −H plot by using Eq.(6.76). Plotting the B −H

curve is equivalent to plotting the M −H curve. It is then possible to build the B −H curve and then

determine dB/dH to plot the dB/dH −H curve. An example is shown in Fig. 6.22.
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Fig. 6.21. Hysteresis loop of the hybrid magnetic composite material, composed by several layers of

Fe(50):Irg.BEMA, and Fe3O4(50):Irg.BEMA. The top-left corner graph shows a close-up look at the low-field

regime in which the ferromagnetic behaviour of the sample can be observed.

Fig. 6.22. dB/dH − H plot derived from the M − H curves measured using the VSM. The Hc values are

highlighted. This is the example for Fe3O4(25):Irg.BEMA, but all the dB/dH−H gave the same shape, providing

maximum dB/dH values at Hc.
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Hence, evaluating the dB/dH value at Hc provides a good approximation of the permeability of the

material. Finally, all magnetic permeability values are given as a comparison with µ0, defining µr as:

µr =
µ

µ0
(6.77)

being µ the permeability of the studied material. The obtained µr values are shown in Table 6.8.

As mentioned in Chapter 5, Section 5.3, the VSM can be used to determine the type of interaction

taking place between ferromagnetic NPs embedded within a matrix by plotting the curve of change of

magnetic moment, ∆M , as shown in Fig. 6.23 for the composites containing magnetite. The shape of

the ∆M curves revealed the presence of a dipolar coupled system, in which the interactions attempt to

demagnetize the material (∆M < 0).

Fig. 6.23. Change of magnetic moment of the synthesized magnetic composites, ∆M curves for the Fe3O4

composite at 50 wt % within PEGDA (solid black squares), and for the Fe3O4 composite at 50 wt% within

BEMA (empty squares).
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The type of polymer in which magnetite NPs are embedded does not play any role in the type of

interaction taking place between them, as it can be seen in Fig. 6.23. The size of the NPs was determined

by fitting the M −H loops using Eq.(4.20). An example of one of the fittings is shown in Fig. 6.24.

Fig. 6.24. Fitting of the M − H curve of one of the Fe composites using the Langevin function. The empty

squares show the experimental data and the continuous red line shows the fitting function.

The NP sizes determined using the Langevin function (Eq.(4.20)) are shown in Table 6.9. Two

different values of d were determined in each case; one corresponding to the experimental Mr measured

with the VSM, and another one corresponding to the Mr value obtained from the fitting function (top

and bottom one, respectively, in Table 6.9 in OriginPro R©.
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Sample Mr [emu/g] NP size [nm]

Fe(50):Irg.BEMA
100 4.076

110 3.95

Fe(50):Irg.PEGDA
124 2.23

135 2.17

Fe(50):Tri.BEMA
87 2.14

100 2.047

Fe(75):Irg.PEGDA
167 2.10

180 2.042

Fe3O4(25):Irg.BEMA
23 10.84

24 10.72

Fe3O4(50):Irg.BEMA
46 8.88

48 8.79

Fe3O4(50):Irg.PEGDA
50 8.95

51 8.87

Fe3O4(25):Tri.BEMA
46 8.87

48 8.77

Table 6.9. NPs sizes determined from the M − H plots using Eq.(4.20). Two sizes were determined for each

sample in which the experimental and the fitting Mr values were used.
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It was observed that using the experimental or the fitting Mr value did not present a big difference in

determining the NPs size, yielding to maximum errors of 4.55% when determining d. Nevertheless, the

average magnetite NP size was calculated to be 9.34 nm with a fitting average accuracy of a 99.88% but

the size reported by the manufacturer is of 50-100 nm, showing that Eq.(4.20) does not provide a good

approximation to determine d of ferromagnetic NPs, but it does provide an accurate estimation of those

presenting superparamagnetic behaviour.

Fe3O4:BEMA at 25 wt% was chosen to be 3D-printed as the composite containing a 50 wt % of

magnetite NPs, even though it presented higher Mr values, did not show an accurate 3D-printing

resolution. The 3D-printed samples presented a permanent magnetic field in which the magnetic

domains were randomly distributed (see Fig. 6.25).

Fig. 6.25. (a) Shows a surface plot of the orientation and intensity of the measured magnetic field of the magnetic

domains of the small non-poled 3D-printed sample and (b) shows its 3D representation. The light yellow surface

represents the geometry of the surface.

The magnetic field generated by the samples was measured using a GM07/GM08 Gaussmeter

(Hirst Magnetic Instruments Ltd., Cornwall, United Kingdom). Thus, poling of the samples was needed

to provide them with a good North/South (N/S) distribution of the magnetic domains, which was

achieved by placing the samples in between two NdFeB magnets during 2 hours at 150o C. The magnetic

field generated by the polling magnets is shown in Fig. 6.26.
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Fig. 6.26. (a) Shows a surface plot of the orientation and intensity of the measured magnetic field of the magnetic

domains of the NdFeB and (b) shows its 3D representation. The light yellow surface represents the geometry of

the surface.

It can be seen from Fig. 6.26 that the N/S poles of the polling magnet are well defined over its surface

and the intensity of the magnetic field is symmetric, which contrasts with the intensity and distribution

of the magnetic field generated by a 3D-printed sample before magnetic polling.

The magnetic field generated by the 3D-printed samples after magnetic poling is shown in Fig.

6.27, in which the generated magnetic field has been normalised with the background magnetic field,

which includes components from equipment present in the laboratory (i.e. oscilloscopes, microphones,

and computers) as well as a component arising from the Earth’s magnetic field. The background

magnetic field was measured to be 0.089 mT. It must be noted from the symmetry of the N/S poles

of the 3D-printed samples (Fig. 6.26 and Fig. 6.27) that the direction of the magnetic domains after

poling depends on the relative position with the poling magnets, as they present this characteristic N/S

distribution (Fig. 6.26). Nevertheless, all the samples presented permanent magnetization reaching

maximum values of magnetic field of 1.025 mT. It is possible to optimize the magnetic field of the

3D-printed samples by locating them at specific positions of the NdFeB magnets during the polling

process.

Fig. 6.27 shows that even though the polarity of the 3D-printed magnets is well-defined, the

field intensity is not completely uniform in two of the samples. This is associated with the non-uniform

distribution of the NPs within the polymeric matrix, as well as to aggregation of NPs taking place.
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Avoiding agglomeration of NPs has been shown to diminish using more viscous fluids as polymer

matrices, as well as the use of surfactants, which play a key role in reducing the Van der Waals forces

that cause agglomeration [138, 229]. It must also be taken into consideration that when working with

magnetic NPs, Van der Waals forces are not the only forces involved in the formation of NP clusters,

but also the magnetic forces between them are involved, which might make the process to reach a more

uniform NP distribution more arduous [229].

Even though some of the magnetic properties of the samples still need to be optimized, the possibility to

3D-print permanent magnets presents a revolution in the production process, as the magnetic properties

of these composites can be finely tuned by adjusting specific parameters of the composite materials such

as the type, size, and concentration of the filler, thus enhancing their applicability range by working

with soft permanent ferromagnetic materials or with superparamagnetic composites. Furthermore,

developing them through additive manufacturing implies a huge decrease of the production cost, and

also the 3D-printing process allows for a customization and personalization process to make desired

parts adapted to the users’ needs. Also, the ability to 3D-print a wide variety of magnetic composite

materials (permanent and non-permanent, hard and soft, ferromagnetic and superparamagnetic) by

simply changing the print material reservoir also allows for the combination of different materials in

order to blend their properties (as shown with the hybrid sample) and make them present the most

suitable magnetic characteristics, allowing to fulfil specific and diverse demands.
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The main relevance of this part of the study is the possibility to 3D-print permanent magnets at the

micro-scale at high resolution. Hence, apart of reporting the magnetic properties of the samples, it is

also important to determine the 3D-printing resolution limits when using these magnetic materials. Fig.

6.28 shows a 3D-printed magnetic hollow half-sphere with 1 mm holes. The base of the half-sphere is of

10 mm and the lateral separation between holes is of 0.5 mm. This sample was 3D-printed using 5 wt%

Fe3O4 (50-100 nm) in BEMA.

Fig. 6.28. 3D-printed magnetic hollow half-sphere. The 1mm holes are separated 0.5 mm from each other.

The diameter of the base is 10 mm. The magnetic structure was 3D-printed on a 0.2 mm BEMA base. The

corresponding computer-aided design (CAD) file is shown in the top-left corner.

Two main observations were made when 3D-printing particulate composite materials. The first one is the

impossibility to 3D-print one of these materials (either piezoelectric or magnetic) directly on the metallic

holder (building area) of the 3D printer. Even though the explanation of this feature is unclear to us,

the repulsion forces acting between them could be one of the factors influencing such feature. Thus,

before 3D-printing any particulate composite, a thin layer of polymer needs to be previously 3D-printed

in order to ensure crosslinking. On the other hand, this becomes a positive feature when 3D-printing

hybrid materials. The second observation is that when adding NPs within a polymeric matrix, the

3D-printed part does not present the expected dimensions, meaning that a compensation factor needs
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to be added when developing the CAD file to obtain the desired dimensions. This compensation factor

depended on the material used and had to be determined for each individual print.

The most important feature when developing functional 3D-printable composite materials is to

keep the best possible balance between 3D-printing resolution and output signal. Even though it was

observed that the piezo-composite materials presented highest d33 values at concentrations of 75 wt% for

500 nm NPs, 3D-printing resolution at those concentrations was dramatically low, as sizes smaller than

2 mm were impossible to print. This same phenomenon was observed for the magnetic 3D-printable

composites, being this the justification of choosing specific filler concentrations over others.

6.3 3D-printed parts and sensors

6.3.1 Cochlea-based passive sound amplifiers: mechanical resonators

The first 3D-printed devices were passive mechanical sound amplifiers built using PlasWhite in order to

get familiarised with the 3D printer settings. The dimensions and shapes of these mechanical amplifiers

are shown in Fig. 6.29.

Fig. 6.29. Dimensions in mm of (a) a reference disk, and (b) golden-ratio tube with an interface, highlighted in

red.

In all cases, the membrane was not 3D-printed but a 50 µm thickness Kapton film was glued on

the large hole of the structures. Kapton was chosen for its thickness and mechanical properties, as

they are similar to those 3D-printed with BEMA. As it can be seen from Fig. 6.29b, there is an

interface splitting the complex structure in two different regions. A third resonator was 3D-printed
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Fig. 6.30. Schematic set up to test the acoustic response of the 3D-printed sensor. The loudspeaker sits behind

the sensor at a distance that ensures the far-field regime, and the 3D-LDV head stays on top of the sensor. The

sensor was fixed on the table, and a Bruer & Kjaer 4138 microphone was used as a reference.

without such interface. The acoustic response of all the resonators was assessed using a 3D LDV system

with an MSA-100-3D scanning head (Polytec, Waldbrom, Germany). The acoustic response of the

3D-printed resonators was measured under wideband stimulation from 1 to 26 kHz in the far field

regime, changing the speaker at 17 kHz. The velocity of motion of the membrane and the SPL dB

near it were simultaneously recorded. The SPL dB was recorded using a Bruel & Kjaer 4138 precision

pressure microphone (Naerum, Denmark) and preamplifier (Bruer & Kjaer, 2633), with its diaphragm

parallel to the sound direction to maximize the response and using a calibrated stimulus sound level of

65 dB re 20 µPa (35 mPa), as schematically shown in Fig. 6.30. The results can be seen in Fig. 6.31.
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One of the main advantages of the 3D LDV is the ability to measure the amplitude of motion in all

three dimensions of space, reporting that the relevant oscillations take place on the z-axis and only

noise-level sound is detected in both x- and y-axes. The z-axis displacement of the reference membrane

was determined by averaging three different samples, and it showed resonance peaks at 1.73, 4.043,

5.054, 7.47, 9.23, and 11.78 kHz with high noise levels. When measuring the resonators a much clearer

resonance spectrum was observed. The noise level was observed to decrease in different ways: whereas

the sample without an interface presented a low frequency noise decrease (below 10 kHz), the one with

an interface showed a better noise filtering at higher frequencies (above 10 kHz).

Even though the resonators presented extra resonance peaks due to a change of geometry of the

structure, the main peak at 9.23 kHz was observed to be clearly amplified for the resonator presenting

an interface, whereas it was observed to be shifted to 10.23 kHz for the resonator without interface

and slightly amplified. Both resonators presented a peak at 1.99 kHz, which amplitude of motion was

Fig. 6.31. The black, red, and blue lines show the displacement in the z-axis of the reference disk (plotted as an

average of three different samples), the resonator with interface, and the resonator without interface, respectively.

The top-right corner graph shows a closer look to lower frequencies (below 4 kHz).
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much higher for the resonator without an interface. Furthermore, all the peaks measured after 10 kHz

presented higher amplitudes of motion for the resonator without interface.

The amplification provided by the resonator with an interface is thought to be more efficient due

to the pressure waves created in the second region of the resonator due to the oscillation of the

middle membrane. Furthermore, in that case, the noise level at low frequencies is attributed to their

higher degree of dispersion, whereas high frequencies are more directional, providing an explanation

to why lower frequencies (below 4 kHz) are more amplified in both structures than in the reference sample.

Hence, the possibility to 3D-print polymer-based acoustic resonators able to both passively amplify

sound waves and reduce noise level is possible following from the presented results.

6.3.2 Locust TM-based resonators

As it has been introduced in Chapter 1, Section 1.4.3, the locust TM presents a simple structure

that allows for acoustic frequency selectivity due to smooth changes of the membrane’s thickness. As

previously discussed, discerning different frequencies is not the unique function of the non-uniform

thickness of the membrane, but it also leads to nonlinear effects that can be exploited for purposes

related to signal processing analysis. All the 3D-printed sensors studied in the course of this thesis were

developed using BEMA unless otherwise specified.

First approach

The aim of this section is to develop 3D-printed sensors that exploit this feature in order to avoid

the development of complex cochlea-based systems that require complicated signal processing tools to

perform acoustic frequency selectivity.

The first developed resonator consisted of a rectangular beam presenting two different thickness

regions, as schematically shown in Fig. 6.32. The membrane was 3D-printed using BEMA and fixed

onto a solid PlasWhite (a commercial material developed by ASIGA) structure in a way that its four

edges were fixed and the rest of it could freely vibrate (see Fig. 6.33), reproducing the set up of the
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locust TM in the best possible way.

Fig. 6.32. Sketch of the first 3D-printed locust-inspired resonator. The top and bottom images show, respectively,

the top and side view of the resonator with its corresponding dimensions.

Fig. 6.33. Sketch of the resonator with the support structure. The top and bottom images show, respectively,

the top and side view of the resonator when the supports are added.
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The motion of the resonator was measured using the 3D LDV with an MSA-100-3D scanning head

(Polytec, Waldbrom, Germany). The acoustic response of the 3D-printed sensor was measured under

acoustic wideband stimulation (300 Hz to 17 kHz) using a 4” 40 W loudspeaker (Maplin Electronics

Ltd., Barnsley, England) in the far-field regime by simultaneously recording the velocity of motion of

the sensor and the sound pressure level near it using a Bruel & Kjaer microphone (Naerum, Denmark)

and preamplifier (Bruel & Kjaer, 2633), with its diaphragm parallel to the sound direction to maximise

the response and using a calibrated stimulus sound level of 65 dB re 20 µPa (35 mPa), as schematically

shown in Fig. 6.30. Values of coherence between the vibrometer and microphone signals below 85% were

withdrawn in order to ensure data reliability over the entire extent of the scanned area. Propagation of

TWs was also studied in this resonator using the 3D LDV by drawing a transect line from edge to edge

of the membrane at five different frequencies (single tone analysis). The motion across the membrane

becomes apparent when the response is displayed for every 10o of phase. TWs can be characterised as a

part of the analysis of the vibration of the 3D-printed sensor, as they move in time, making the vibration

change with both position and time, and their velocity and wavelength can be determined using Eq.(6.79)

and Eq.(6.80) [11].

δt = δφ/2πf (6.78)

vTW = δx/δt (6.79)

λTW = 2πδx/δφ (6.80)

where f is the frequency, δφ is the phase difference between the two points, δt is the travel time, and δx

is the distance travelled. vTW and λTW are the velocity and the wavelength of the TW, respectively. To

run these experiments, more than 3000 points were measured, providing an accurate representation of the

membrane’s motion via a contactless process, and allowing the measurement of the average displacement

of the different regions of the sensor at specific frequencies using the fast Fourier transform (FFT) module

of the 3D LDV system, which were normalised with the SPL dB (Table 6.10).
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Frequency (kHz)
Thick region Thin region

z/dB (pm/dB) z/Pa (nm/Pa) z/dB (pm/dB) z/Pa (nm/Pa)

0.60 11.80 53.23 9.62 44.18

0.80 15.16 29.40 9.82 19.04

1.00 5.79 12.34 2.91 5.085

1.90 14.60 13.39 44.53 51.79

2.20 8.35 7.51 39.24 65.081

3.00 11.63 22.19 14.58 30.97

5.00 7.41 6.67 2.80 5.51

8.00 4.52 2.24 6.38 9.27

10.00 2.73 3.80 1.78 7.38

Table 6.10. Values of the average amplitude of motion of the thick and thin regions of the 3D-printed resonator

in the vertical direction (z-axis) under single frequency acoustic stimulation.

When acoustically stimulated by single-frequency inputs, the 3D-printed resonator displayed larger

amplitudes of motion at frequencies below the first resonant frequency on the thick region, whereas the

opposite trend was observed at higher frequencies on the thin region (Table 6.10). Simulation techniques

using COMSOL confirmed the experimental behaviour (Fig. 6.34).

Furthermore, the presence of TWs was observed by 3D LDV analysis and also confirmed by COMSOL

simulation techniques (Fig. 6.35), revealing an increase of the TW’s velocity of propagation (vTW ) with

frequency on the thin membrane at low frequencies, and a decrease of vTW with frequency on the thick

membrane at high frequencies (Table 6.11), giving values close to the material’s speed of sound, which is

determined by Eq.(1.2).
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Fig. 6.34. (a-c) Simulation (left) and experimental (right) mechanical deflection of the 3D-printed resonator at

1 kHz, 2.2 kHz, and 5 kHz respectively.

Frequency (kHz)
Thick region Thin region

vTW (m/s) λTW (mm) vTW (m/s) λTW (mm)

2.2 - - 27.79 11.21

3.0 - - 51.52 17.17

5.0 71.63 14.33 30.48 5.77

8.0 53.92 6.74 - -

9.0 48.29 5.37 - -

Table 6.11. Values of the velocities and wavelengths of the TWs measured onto the 3D-printed sensor.

Fig. 6.35. (a-c) Show the representation of the TWs observed in COMSOL, the locust TM, and the 3D-printed

resonator, respectively. The middle image was kindly provided by Prof. Windmill, from his work Tympanal

travelling waves in migratory locusts [11]. In this image, Windmill et al. plotted the measured gain as a function

of the distance across the locust TM.
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For each frequency, the deflections of the membrane do not stay in the same position, but they travel

across the membrane irrespective of the incidence angle of the sound field, modifying its envelope shape

when varying the driving frequency. These behaviours match those observed on the locust’s TM [11]

(Fig. 6.35b), suggesting that the presence of TWs does not depend of any biological active process, but

it is a phenomenon highly reliant on the geometry and structure of the membrane, a fact attributed

to nonlinearities of the system attributed to a change of local mass and stiffness along the membrane.

When a single-frequency sound stimulus impinges the ear, the local pressure changes periodically with

time and the deformation of the membrane can be described by a nonlinear wave equation [11]. There

is a characteristic place in the membrane where the frequency of the wave is matched by the frequency

of the critical oscillators that describe the system. Far from this resonant point, the wave equation

describes TWs that are linear for small vibration amplitudes. The fall in wave velocity implies an

increase in the amplitude of the wave, leading to an increase of displacement of the wave as it approaches

the resonant point [232]. Nevertheless, the direction of propagation of the TWs has been observed to be

opposite to that measured on the locust TM for frequencies higher than 1 kHz, as confirmed by COMSOL

simulation. The mechanoreceptor attachment points (FB and PV, as introduced in Chapter 1, Section

1.4.3) on the locust TM could explain this difference between the biological and the 3D-printed sensor, as

they contribute a local increase of mass at specific regions of the locust TM. Furthermore, a non-perfect

attachment of the 3D-printed membrane with the support structure might also play an important role

on the direction of propagation of the TWs, as well as contributing to a non-perfect experimental mode

shape (Fig. 6.35). Notwithstanding, a phenomenological match of the acoustic response can be observed

between the 3D-printed sensor and the locust TM.

Second approach

As discussed in Chapter 1, Section 1.4.3, research regarding the relationship between the locust’s TM

morphology and structure with sound energy localization and frequency analysis revealed the presence

of lipid-filled cavities within specific regions of the membrane (Fig. 1.9) [77]. In this second approach

cavities of different shapes and arrangements were added into the resonators developed in the first

approach. As in the previous case, mechanical analyses of these resonators, including measurements of

surface velocity as a function of the incoming frequency, clarify the influence of those cavities on the

response of the membrane. Three different resonators were used, which dimensions are shown in Fig.

6.36a-c and its top-view can be seen in Fig. 6.36d-f.
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Fig. 6.36. Dimensions of the 3D-printed samples including several cavities in different distributions (a) resonator

with one cavity in the thick region, (b) resonator with two square cavities in the thick region, and (c) resonator

with two rectangular cavities in the thick region. The space between the cavities and the wall is 1 mm, and the

space separating the cavities is 0.5 mm. (a) is 9.5 mm in length and 5 mm in wide, (b) are 5 mm side squares,

and (c) are 10.5 mm length and 2.75 mm wide.

The resonators shown in Fig. 6.36 were tested both when they were empty (air-filled), and when

they were filled with a mixture of isopropyl alcohol (IPA) and a blue dye. The dye was added into the

mixture with IPA in order to be able to easily check if the cavities were properly liquid-filled. As in the

previous approach, values of coherence below 85% were withdrawn in order to ensure data reliability

over the entire extent of the scanned area, measuring more than 3000 points using the FFT module of

the 3D LDV system. All the data were also normalised with the SPL dB measured in the vicinity of

the membrane. Scans of the full membrane and of the thick membrane of all resonators were separately

conducted to ensure the reliability of all results.

When analysing the mechanical behaviour of the full membrane, the same tendency as the one

measured in the previous case was found, whereby the thin membrane presented larger amplitudes of

motion at higher frequencies and vice versa. Thus, subsequent analyses focused on the thick region

of the 3D-printed resonators, in which cavities of different shapes and filling (either air or IPA) were

included in order to determine their role in the mechanical behavior of the membrane when acoustically

stimulated. The characteristic frequencies of the thick region of the different resonators are shown in

Table 6.12, as measured with the 3D LDV.

174



CHAPTER 6. EXPERIMENTAL RESULTS

First characteristic frequency [kHz]

Solid
1 Cavity 2 Cavities 2 Cavities Rectangular

Air IPA Air IPA Air IPA

1.38 1.83 1.56 2.42 2.40 2.00 2.32

1.59 2.02 1.94 2.77 2.74 2.71 2.80

1.74 4.87 4.80 5.51 5.06 3.92 3.54

1.99 5.51 5.15 6.95 5.94 4.91 3.86

2.28 8.19 8.30 8.28 8.00 5.24 4.88

Table 6.12. First characteristic frequencies (expressed in kHz) of the thick region of the 3D-printed resonators.

It must be noted from Table 6.12 is that the the characteristic frequencies of the samples with cavities

enclosed within the thick region of the membrane show a shift down in their characteristic frequencies

when they are IPA-filled. This frequency shift could be explained by the presence of small air bubbles

within the cavities, involuntary introduced during the filling process, as it has been previously shown

that even the smallest of bubbles lead to a dramatic decrease in the resonant frequency of a liquid-filled

cavity because of the coupling between the vibration of the bubble with that of the cavity, further

suggesting that the pressure within the cavity depends on the location of the bubble [233].

After performing the eigenfrequency analysis, the mechanical behavior of the 3D-printed resonators was

tested under single-frequency stimuli in order to determine both the average surface velocity (vs) and

displacement (d) of the membrane, as shown in Fig. 6.37.
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It was observed when playing single tone stimuli that the sample with no cavities displayed the lowest

values of both vs and d at all frequencies when compared to the other resonators. The solid sample

displayed maximum peaks of both vs and d at its corresponding characteristic frequencies. The sample

presenting one unique cavity showed values of vs and d of the same order of magnitude up to 2 kHz,

but higher values for both magnitudes from 2 to 5 kHz when the cavity was IPA-filled. At higher

Fig. 6.37. Plots of the average surface displacement and average surface velocity of the 3D-printed resonators

when stimulated under single tone stimuli. (a) and (b) show the plots for all the samples in which the ones

without cavities are highlighted. (c) and (d) show the plots of the resonators presenting one cavity, (e) and (f)

show the plots of the resonators presenting two square cavities, and (g) and (h) show the plots of the resonators

presenting two rectangular cavities.
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frequencies, such a tendency was observed to be inverted, and the air-filled cavity then presented higher

values for both vs and d. The resonator featuring two square cavities showed no noticeable difference

between air- and IPA-filled cavities up to 1 kHz, but presented larger values of both vs and d at higher

frequencies when the cavities were IPA-filled. As in the previous sample, such a tendency was inverted

at frequencies higher than 5 kHz. Finally, the resonator with rectangular cavities presented values

of both vs and d of the same order of magnitude over the entire studied frequency spectrum, with

the exceptions of 1.74 kHz and 4.91 kHz being the strongest characteristic modes of the air-filled resonator.

Single-tone analysis of resonators additionally revealed the presence of TWs, which direction of

propagation over the membrane was observed to present a strong dependency on the number and shape

of the cavities, as well as a dependency over the filling (air or IPA), as shown in Fig. 6.38. This allowed

a more in-depth analysis of the characteristics of the TWs, determining both their vTW and λTW as in

the previous case. The results are reported in Table 6.13.
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Sample vTW (m/s) λTW (m/s) f (m/s)

Solid 53.89 7.70 7.00

1 Cavity Empty 5.76 4.80 1.20

1 Cavity Filled 10.34 4.34 2.38

2 Cavities Empty

LHS Cavity 23.95 5.32 4.50

RHS Cavity 28.94 6.43 4.50

2 Cavities Filled

LHS Cavity 32.38 5.76 5.63

RHS Cavity 24.44 4.34 5.63

2 Cavities Rec. Empty

Top Cavity 18.68 6.23 3.86

Bottom Cavity 19.66 6.55 3.86

2 Cavities Rec. Filled

Top Cavity 48.41 12.56 3.00

Bottom Cavity 45.20 11.73 3.00

Table 6.13. Values of vTW and λTW of the measured TWs onto the 3D-printed samples.

The first comment that must be done on Table 6.13 is the impossibility to compare vTW and λTW

at a same frequency for different resonators, as TWs appear at different frequencies on each sample.

Furthermore, a noticeable increase in vTW with frequency (irrespective of the number, shape, and filling

of the cavities) can be observed in the thick region of the membrane (see Fig. 6.39), as reported in

several biological species [234–238]. Both the velocity and wavelength of the TW measured on the solid

resonator matched the results presented in the previous case. The resonator with one cavity presented

a constant λTW irrespective of its filling, whereas its vTW was doubled up when IPA- filled. The

resonator with two square cavities also presented a roughly constant λTW irrespective of the filling of

the cavities, whereas the velocity of propagation was shown to slightly increase when the cavities were

IPA-filled. Another important feature of this resonator is that the TWs present on the membrane (one

on top of each cavity, as shown in Fig. 6.38) travelled in phase and propagated in the same direction.

Finally, the resonator presenting two rectangular cavities was shown to present a significant increase
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of both vTW and λTW when the cavities were IPA-filled, and, additionally, it was the only of the

resonators measured to present TWs in several directions at the same time: the first observed non-static

oscillation pattern was observed to be two TWs travelling in opposite directions and adding up on top

of each cavity, all of them travelling in phase and in the same direction (see Fig. 6.38f). When this

same resonator was IPA-filled, TWs were observed over each of the cavities, travelling in phase and in

the same direction at 3.86 kHz and travelling in phase and opposite direction at 5 kHz (see Fig. 6.38g-h).

Thus, it can be concluded from Table 6.13 and Fig. 6.38 that the mechanical properties of the

TWs do not only depend on the local material properties of the membrane (or more generally the

propagation media) but also on both their internal and external morphology and structure, leading to

specific TW patterns that drive the mechanical deflection of the membrane generated by acoustic stimuli

to distinct locations.

These observations suggest that the mechanical properties of TWs may vary with number, shape,

distribution, and content of cavities contained within the membrane of resonators. Such findings unveil

possible explanations for the presence of lipid-filled cavities within the locust TM; this peculiar feature

of the insect’s anatomy likely facilitates sound detection by passively increasing TW amplitude and

velocity. This means that acoustic stimuli of lower intensity will still be able to generate TWs of a large

enough amplitude to trigger transduction mechanisms within the relevant cohort of scolopidia, and will

do so more efficiently thanks to their increased velocity.
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Fig. 6.38. 3D LDV top images of the thick membrane of the different 3D-printed resonators when stimulated

by single tone stimuli. Traveling waves and their direction of propagation can be seen for (a) the solid resonator

at 7 kHz, (b) 1 air-filled cavity resonator at 1.2 kHz, (c) 1 IPA-filled cavity resonator at 2.38 kHz, (d) 2 air-filled

square cavities resonator at 4.5 kHz, (e) 2 IPA-filled square cavities resonator at 5.627 kHz, (f) 2 air-filled cavities

resonator at 6 kHz, (g) 2 air-filled rectangular cavities resonator at 3.86 kHz, and (h) 2 IPA-filled rectangular

cavities resonator at 5 kHz.
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Fig. 6.39. Wave velocity of the traveling waves measured in the different BEMA (Irgacure 819 1 wt%, and

SUDAN I 0.2 wt%) resonators at several frequencies

6.3.3 Functional bioinspired systems

Once the response of the 3D-printed locust TM-based resonators has been thoroughly studied, revealing

their matching behaviour, it is possible to add a layer of 3D-printable BaTiO3@BEMA piezocomposite

onto each of the membranes of the resonator described in the first approach. The sensor was 3D-printed

in BEMA (1 wt% Irgacure 819, 0.2 wt% SUDAN I), and the piezoelectric layers were 3D-printed using

BTO(33)@BEMA(1 wt% Irgacure819, 0.2 wt% SUDAN I), as shown in Fig. 6.40. Hence, not only its

mechanical characterization but also its piezoelectric (both direct and converse) response can be studied.

The piezoelectric response of the sensor is shown in Fig. 6.41 and Fig. 6.42.
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Fig. 6.40. Locust tympanal membrane (TM) bio-inspired 3D-printed sensor and its corresponding

computer-aided design (CAD) file. The sensor is divided into two regions: a thick region and a thin region

responding to lower and higher frequencies, respectively. The sensor was 3D-printed in BEMA (1 wt% Irgacure

819, 0.2 wt% SUDAN I), and the piezoelectric layers were 3D-printed using BTO(33)@BEMA(1 wt% Irgacure819,

0.2 wt% SUDAN I).

Fig. 6.41. Average displacement values of the different regions of the 3D-printed bio-inspired piezoelectric sensor

when electrically stimulated within the frequency range of 1 kHz to 17 kHz.
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Fig. 6.42. (a) Shows the acoustic input signal at 15 kHz consisting of a burst of 2 cycles every 100 ms. (b)

Shows the response of the 3D-printed device with its two well-differentiated regions at 1.8 kHz after averaging 128

times. The response is divided between the electromagnetic and the acoustic responses. The same experiment

was performed within the range of 1 kHz to 17 kHz in steps of 1 kHz. (c) Shows the normalized values of the

output voltage of the different regions under acoustic stimulation within the same frequency range, revealing

larger output voltages in the thick region at all the studied frequencies.
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Both the direct and converse piezoelectric responses were studied after poling the device at an electric

field of 2.4 kV/mm. The output voltage was measured when the sensor was excited at single frequencies

within the range of 1 kHz to 17 kHz, recording both the reference (Fig. 6.41a) and the piezoelectric

response (Fig. 6.41b) at all frequencies. Bursts of 2 cycles every 100 ms, at an amplitude of 20

Vpp were used, varying the distance between the loudspeaker and the sensor from 35 cm to 10 cm

in order to properly discern between electromagnetic and acoustic response. An acoustic amplifier

was needed to reach high SPL dB values in order to get an electrical output from the sensor due to

its low piezoelectric coefficient, as presented in Section 6.2.4. Moreover, a charge amplifier (factor

475) was also needed to properly record an electrical signal generated by direct piezoelectric effect of

the 3D-printed device. The voltage difference, ∆V , was normalized against the B & K microphone output.

Even though the sensor seemed to respond to all frequencies within the range of 1 kHz to 17

kHz, it was only possible to clearly discern an electrical output arising from acoustic signals at 1.8 kHz,

2.2 kHz, 9 kHz, and 10 kHz, as shown in Fig. 6.42c. The two regions of the 3D-printed sensor were

poled at an electric field of 2.4 kV/mm, for 1 hour at 120o in silicon oil. To confirm the piezoelectric

behaviour of the 3D-printable piezoelectric material, the converse piezoelectric effect was tested for the

two different regions of the sensor using sinusoidal inputs at different frequencies at amplitude of 10 V,

and the mechanical deflection was measured using the 3D LDV (Fig. 6.41). Mechanical deflection of the

sensor was successfully measured on both the thick and thin regions of the 3D-printed device. Reliable

results were obtained up to 5 kHz, where higher amplitudes of motion were obtained below 3 kHz, and

mechanical deflections of the same order of magnitude were obtained from 3 kHz to 5 kHz. At higher

frequencies, all the values were measured to be at noise level.

Due to the low d33 coefficient of the 3D-printable piezoelectric material, it was not trivial to

obtain a clear piezoelectric signal at all the studied frequencies. Therefore, the same experiments using

the same set up were performed using PVDF films (50 mum thickness, d33 = 30 pC/N) instead of the

piezoelectric 3D-printable material, leading to the same acoustic frequency selection observed on the 3D

LDV under acoustic stimulation, as it can be seen from Fig. 6.43.
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Fig. 6.43. Normalized values of the output voltage of the different regions of the sensor with PVDF films under

acoustic stimulation within the frequency range of 1 kHz to 17 kHz in steps of 1 kHz revealing larger voltage

outputs at lower frequencies in the thick region and vice versa.
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Fig. 6.43 shows the normalized values of the output voltage when the sensor was stimulated

under an acoustic field, leading to frequency selectivity, as the thick membrane shows larger amplitudes

of motion at low frequencies, and the thin membrane shows larger amplitudes of motion at high

frequencies, showing a sub-peak at 7 kHz. As in the previous case, the direct piezoelectric effect of the

PVDF-based resonator can be obtained, as shown in Fig. 6.44.

Fig. 6.44. Plot of the response of the device when two PVDF films are attached onto it, which is divided into the

electromagnetic (dash-line box) and the acoustic response (solid-line box). The same experiment was repeated

for all the sensors in the range of frequencies from 1 kHz to 17 kHz. All the measurements were averaged 128

times.

Comparing figures 6.41 to 6.44 it can be observed that a much clearer response in terms of acoustic

frequency selectivity is obtained in the resonators using PVDF films. This is because the d33 value of

PVDF is ten times larger than that measured for the piezoelectric 3D-printable BaTiO3-based material.

Hence, once the d33 coefficient of the 3D-printable material is improved, a response like the one observed

in the PVDF-based resonator is expected to be measured. Nevertheless, this study shows the possibility

to develop 3D-printable bioinspired functional resonators.
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Chapter 7

Conclusions and Future Work

Several mathematical models have been developed to theoretically explain the motion of the locust

TM. All the presented models are based on the theory of coupled oscillators, which allows not only

to fit the mechanical motion of the membrane but also permits to theoretically predict the stiffness of

the membrane. Several observations have been done in this regard: when the membrane is studied as

an unforced system, the fitting of its motion is not accurate enough, leading to the introduction of a

driving term that simulates the acoustic driving force. The addition of this term dramatically improves

the fitting of the membrane motion. Nevertheless, it was noted that adding a damping term is indeed

necessary in order to replicate in a more realistic manner the motion of the biological system. The

introduction of such a term showed the best of fittings.

As discussed in early chapters of the thesis, the presence of DPOAEs was observed to take place

on the locust TM, a feature that has been shown to be mathematically described using the Duffing

oscillator theory. In order to develop a consistent model, coupling several Duffing oscillators has been

shown in this thesis, providing a mathematical explanation to this nonlinear phenomenon. Furthermore,

this model does not only provide a phenomenological description of the motion of the locust TM, but it

also provides key information about the mechanisms that drive the generation of DPOAEs. Whereas it

is strongly believed that such a phenomenon is driven by active biological processes, in this work it has

been shown that a passive component reliant on the structure of the membrane helps producing them.

It must be noted that, even though these models provide an accurate description of several phenomena

taking place on the locust TM, as more oscillators and springs are introduced into the model a better

fitting will be obtained. This is because of the discrete approximation of a continuum problem.
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The development of several 3D-printable polymers with contrasting properties, not only mechanical but

also further physical properties such as piezoelectricity and magnetism, has been achieved. Although the

morphological study of the developed materials reveals the presence of NP agglomeration and clusters

when adding functional fillers, the resulting composites are functionalised. Nevertheless, this is a factor to

take into consideration to improve the properties of both the piezoelectric and the magnetic composites,

as NP cluster formation is thought to be the main reason for low d33 coefficients, as well as presenting an

issue during the poling process due to local variations of piezoelectric domains. Furthermore, it has been

successfully shown that the mechanical properties of the developed 3D-printable composite materials

follow the Sato & Furukawa model, presenting an increase of its elastic modulus as filler fraction increases.

The piezoelectric coefficient of the developed 3D-printable piezoelectric materials has been thoroughly

studied as a function of several parameters. Firstly, it was observed that 500 nm NP size provided

better output results than 200 nm NP-based composites. This is thought to be due to the generation of

a larger dipole within the 500 nm NPs than the one generated in 200 nm NPs. The optimum output

response is given at a NP concentration of 75 wt% for both PEGDA- and BEMA-based composites after

poling them in silicon oil at 120oC for one hour. Big differences of d33 coefficients were measured when

comparing samples poled for 30 minutes and 1 hour, respectively. When increasing the poling time to 2

hours under the same conditions, no significant differences were measured (up to differences of 4.88%).

Furthermore, it was observed that irrespective of the sample’s thickness and filler fraction, none of the

piezoelectric composites would tolerate voltages higher than 3 kV, probably due to the structure of the

polymer. Although the best d33 coefficient has been measured at 75 wt%, sub-peaks have been observed

to take place at 33 wt% and 40 wt% for PEGDA- and BEMA-based composites, respectively. These

sub-peaks are attributed to the balance between mass and generated output current.

The piezoelectric response of the 3D-printable material was successfully tested by both direct and

converse piezoelectric processes, making it suitable for several applications in a more time-efficient

process. Although further research is required to improve the d33 coefficient of the resulting polymer-based

composite without losing 3D-printing resolution, the results shoed the possibility to 3D-print piezoelectric

composite materials that can be used for biomimetic applications such as acoustic frequency selectivity.
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The possibility to 3D-print magnetic composites materials has also been demonstrated in this

thesis, revealing the possibility to build permanent and non-permanent magnets presenting contrasting

physical properties. Irrespective of the type and size of the filler, the highest and lowest Mr values

were measured at the highest and lowest wt%, respectively, where the non-homogeneous distribution of

NPs within the polymeric matrix play an important role. On the other hand, Hc values were observed

to be independent of NP concentration and distribution, presenting larger values in magnetite-based

composites, therefore suggesting that Hc values rely on NP size. The hybrid material presented a good

combination of the aforementioned properties, even though further investigation needs to be done to

optimise its response. The ∆M analyses revealed the presence of a dipolar coupled system in which the

interactions between magnetic domains tend to demagnetize the material, a phenomenon arising from

anisotropy effects. The relative permeability values were determined to be within the range of 1.60-3.08,

depending on both the filler type and concentration.

The size of the NPs was theoretically determined by fitting the M − H hysteresis loops using a

Langevin function, which confirmed the superparamagnetic behaviour of the Fe-based composites. It

was noted that the calculated size of the Fe3O4-based composites did not match that reported by the

manufacturer, suggesting that the Langevin function provides a good explanation of superparamagnetic

systems, but does not work as well for those materials presenting a different magnetic behaviour.

SEM images suggest agglomeration sizes of a few microns, but this technique did not permit an exact

determination of the NPs size.

The 3D-printed materials were measured to be soft permanent magnets with randomly oriented

magnetic domains, as expected after an STL process under normal conditions. In this study it has been

proved that it is possible to re-arrange the orientation of the magnetic domains by using a simple poling

process using a NdFeB permanent magnet with a well-defined polarity. Under this set up, the magnetic

domains of the 3D-printed samples align with the field lines of the NdFeB magnet. Analogously to

what happens in a piezoelectric poling process, the intensity and duration of the external applied field

has been observed to have no influence in the magnetic properties of the 3D-printed samples, only

re-arranging the direction of their magnetic domains.

Although the magnetic material was not used to develop any bio-inspired sensor, using the STL
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3D-printing approach presents a great opportunity to produce polymer-based magnets with contrasting

physical properties, as they may be of use in a variety of different fields that are in the zenith of

their development, mainly in biotechnology, biomedicine and medical science, for example [80–83].

Furthermore, specific micro- and nano-systems that can be manipulated using external magnetic fields

can also be developed in an easy and personalized way through additive manufacturing processes,

allowing for applications in information storage, computer science, acoustic and non-acoustic pressure

sensors, or the development of transformers amongst many other applications. The main follow-up

objective of this thesis is to combine this material with the piezoelectric one to develop a 3D-printable

acoustic pressure sensor.

A common feature between the piezoelectric and the magnetic 3D-printable composite materials

is the importance of keeping a proper balance between 3D-printing resolution and output signal.

A set of sensors were developed using commercial 3D-printable material to prove the possibility

of passive sound amplification. All of them presented the same membrane diameter and thickness, only

changing the structure where the sound field was focused on. Whereas the reference membrane was

observed to present the lowest amplitude values, the cochlear tubes presented a significant degree of the

membrane motion when the same stimuli were played. The tube without interface presented a main

amplification peak around 10 kHz, whereas that without an interface showed several amplification peaks,

being the most relevant ones around 2 and 18 kHz. This difference in acoustic amplification between

the two resonators is thought to be created by resonance phenomena that take place in the different

regions of the structure. The tube without mechanical interface does not present this phenomenon,

supporting this hypothesis. Furthermore, it was observed that these structures do not only amplify

specific frequencies but they also perform a noise filtering process in a passive manner. Further study

needs to be done in this regard, as it is hypothesised that using liquid fillers inside one of the regions of

the interfaced tube would provide better amplification factors due to the change of the velocity of sound

in liquids, as well as its acoustic impedance.

Once the possibility to perform acoustic processes in a passive manner using 3D-printed resonators by

simply changing their structure and morphology was proved, several resonators bioinspired on the locust

TM were developed, confirming their behaviour using simulation techniques. COMSOL confirmed the
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experimental acoustic behaviour of the new 3D-printed sensor, which reproduces the behaviour observed

on the locust TM, presenting higher amplitudes of motion at low frequencies on the thick region, and

the opposite trend on the thin region, leading to acoustic frequency selection. The piezoelectric response

of the 3D-printable material was successfully tested by both direct and converse piezoelectric processes.

When adding cavities within the thick region of the 3D-printed membrane and studying its response

under both acoustic wideband and single-tone stimulation, a decrease of characteristic frequencies in

IPA-filled cavities was measured, a fact previously reported to happen when bubbles get enclosed within

other liquid-filled cavities, leading to a dependence of the pressure produced by the fluid with bubble

position. All the resonators with cavities (either if gas- or IPA-filled) presented larger values of both

surface velocity and displacement than the control sample, which presented no cavities. The number,

size, shape, and distribution of the cavities within the thick region of the membrane were observed to play

an important role in the presence and direction of propagation of the TWs. Nevertheless, the velocity of

TWs was shown to increase in the thick region of the membrane irrespective of such parameters. These

observations clarify the selective pressures that might have driven the evolution of lipid-filled cavities

in the locust auricular anatomy. Indeed, these features likely render the membrane comparatively more

efficient in capturing low-intensity signals at ecologically-relevant frequencies, and passively augment

the likelihood that those signals will activate scolopidia and trigger acoustic transduction. Furthermore,

beside clarifying the role of known anatomical adaptations of the locust TM, all these observations

could further inspire the development of new acoustic sensors, transducers, and actuators as part of the

development of more efficient tonotopic microphones, bionic ears, and hearing aid devices.

Although this thesis presents an in-depth study of how to develop 3D-printed bioinspired functional

sensors, there are still some areas open to further research to improve the quality of the resulting

products. The main area needing further investigation is that involving the development of 3D-printable

materials. Whereas resolution of the resulting parts does not present a problem, optimisation of the

piezoelectric properties needs to be further studied, as d33 coefficients of around 3 pm/V still require

amplification circuitry in order to obtain clear signals. Furthermore, these d33 values are still far away

from d33 coefficients of other commercial (although they are not 3D-printable) materials such as PVDF,

which presents d33 values up to 30 pm/V [239].

When working with cochlear tubes, the response of the membranes was only studied when the
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acoustic field perpendicularly impinged it, but further research must be done in terms of directionality

of the incoming sound to make sure that the amplification process takes place not only in one incoming

sound direction but in all of them. Furthermore, horn-like structures are thought to provide better

amplification factors, a feature that is also worth studying.

In terms of bioinspired sensors, it has been shown how to 3D-print a resonator able to perform

acoustic frequency selectivity using two different regions. Nevertheless, this structure can be improved

by adding more steps that oscillate at diverse frequencies in an efficient manner. This becomes one of

the main priorities in terms of future work. Linked to this step, studying the effect of cavities within

the membrane in different manners must also be further studied, as they have proved to provide several

advantages in terms of surface displacement amplification and frequency selectivity. Lastly, combining

these features (a structure of variable thickness with cavities embedded in it) becomes a real challenge

in terms of future work.

In summary, this thesis presents, on one hand, the possibility to mathematically describe acoustic

biophysical phenomena taking place on the locust TM and, on the other hand, the possibility to develop

STL 3D-printable functional materials. These two fields can be combined to 3D-print polymer-based

bio-inspired sensors, actuators, and resonators exploiting relevant biological features for technological

applications that could be used, for instance, as hearing aid devices or microphones that could be

potentially implemented in laptops, tablets, or phones. This process, nevertheless, is not a one-way

process but it is actually twofold as development of bio-inspired sensors also provides some insight

about biological phenomena that are not fully understood. Hence, this thesis shows how it is possible to

establish a positive feedback relationship between these two fields, as shown in Fig. 7.1.
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CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Fig. 7.1. Representation of the positive feedback full process. Starting with mathematical models of biological

phenomena combined with functional 3D-printable materials it is possible to develop simple bio-inspired sensors

and compare its response with the predicted by simulation techniques. Once such behaviour has been confirmed, it

is possible to add an extra degree of complexity into the system and 3D-print more realistic samples and measure

them again to compare its behaviour with that of the simplified sample. The observed differences can provide

explanation of why specific biophysical phenomena take place in concrete organs of some animals.
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Appendix A

Solution to the single Duffing

oscillator

As presented in Eq.(1.21), the Duffing equation is given by:

d2x

dt2
+ 2εk

dx

dt
+ x+ εx3 = εF0 cos(ωt+ δ) (A.1)

considering the initial conditions to be given by:

x(0) = A ,
dx

dt
(0) = 0 (A.2)

It is possible to solve the Duffing equation using the perturbation theory introducing the change of

variable θ = ωt. Thus, Eq.(A.1) becomes:

ω2 d
2

dθ2
+ 2εkω

dx

dθ
+ x+ εx3 = εF0 cos(θ + δ) (A.3)

ω2ẍ+ 2εkωẋ+ x+ εx3 = εF0 cos(θ) cos(δ)− εF0 sin(θ) sin(δ) (A.4)

where the terms ẍ ≡ d2x/dθ2, and ẋ ≡ dx/dθ have been introduced for simplicity. Consider that both x

and ω can be expanded in terms of ε such that:





x = x0(θ) + εx1(θ) + ε2x2(θ) + ...

ω = ω0 + εω1 + ε2ω2 + ...

(A.5)

Considering the terms proportional to ε, the initial conditions that define the system become:





x0(0) = A , xi(0) = 0

ẋ0(0) = 0 , ẋi(0) = 0

(A.6)
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for i = 1, 2, 3, .... Combining Eq.(A.4), Eq.(A.5), grouping in terms of ε, and considering an undamped

system (i.e. δ = 0): 



ω2
0 ẍ0 + x0 = 0

ω2
0 ẍ1 + x1 = −2ω0ω1ẍ0 − x3

0 + F0 cos(θ)

(A.7)

The top equation in system A.7 corresponds to the terms proportional to ε0, whereas the bottom equation

of the system correspond to those terms proportional to ε. It must be noted that for more accurate results,

higher order terms can be further considered. Using the initial conditions it is easy to obtain the solution

of the top equation presented in Eq.(A.7).





x0(θ) = A cos(θ)

ω0 = 1

(A.8)

Introducing Eq.(A.8) into the bottom equation of the system of equations (A.7):

ẍ1 + x1 =

(
F0 + 2ω1A−

3A3

4

)
cos(θ)− A3

4
cos(3θ) (A.9)

Getting rid of secular terms1 it is possible to obtain ω1:

F0 + 2ω1A−
3A3

4
= 0

2ω1 =
3A2

4
− F0

A
(A.10)

Combining Eq.(A.10) and Eq.(A.9) it is possible to obtain the analytic solution for x1(θ).

x1(θ) = A1 cos(θ) +B1 sin(θ) +
A3

32
cos(3θ) (A.11)

And the initial conditions presented in Eq.(A.6) require:





A1 = −A3/32

B1 = 0

(A.12)

Thus, Eq.(A.11) finally becomes:

x1(θ) = −A
3

32
cos(θ) +

A3

32
cos(3θ) =

A3

32
[cos(3θ)− cos(θ)] (A.13)

Thus, from the expansions in Eq.(A.5) it is possible to easily find the analytical solutions of both the

motion and the frequency of the oscillator:

x(θ) = A cos(θ) +
A3ε

32
[cos(3θ)− cos(θ)] (A.14)

1Secular terms are long non-periodic variation of the resonant frequency which when equal to 0 lead to non-periodic

responses.
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APPENDIX A. SOLUTION TO THE SINGLE DUFFING OSCILLATOR

ω2 = 1 + ε
3A2

4
− εF0

A
(A.15)

This same system can be solved when considering a shifting phase (δ) generated by the exciting force

that introduces a damping component into the system. Thus, Eq.(A.7) becomes:





ω2
0 ẍ0 + x0 = 0

ω2
0 ẍ1 + x1 = F0 cos(θ) cos(δ)− F0 sin(θ) sin(δ)− x3

0 − 2ω0kẋ0 − 2ω0ω1ẍ0

(A.16)

And following the same process as before, it is possible to obtain the solution for x0(θ) and ω0.

x0(θ) = A cos(θ)ω0 = 1 (A.17)

Therefore, the bottom equation in the system of equations (A.16) becomes:

ẍ1 + x1 =

[
F0 cos(δ) + 2ω1A−

3A3

4

]
cos(θ) + [−F0 sin(δ) + 2kA] sin(θ)− A3

4
cos(3θ) (A.18)

Making secular terms equal to 0 in order to remove long non-periodic solutions:

F0 sin(δ) = 2kA→ sin(δ) =
2kA

F0
(A.19)

F0 cos(θ) + 2ω1A−
3A3

4
= 0 (A.20)

2ω1A =
3A3

4
− F0 cos(θ)→ 2ω1 =

3A2

4
±
√

1− 4k2A2

F 2
0

(A.21)

And following the same procedure as in the previous case it is possible to determine the analytical solution

to x1(θ), which is given by:

x1(θ) =
A3

32
[cos(3θ)− cos(θ)] (A.22)

Thus:

x(θ) = A cos(θ) +
εA

32
[cos(3θ)− cos(θ)] (A.23)

ω2 = 1 +
3εA2

4
± εF0

A

√
1− 4k2A2

F 2
0

(A.24)

When studying the equations of motion of a mechanical system it is possible to plot the phase space

representation, which consists in plotting the set of velocities of the oscillator versus their corresponding

position. When a system describes a periodic movement, the completion of a cycle will make the

oscillator come back to its initial position. Another relevant representation in non-linear systems is

the representation of the amplitude of motion of the oscillator over the frequency (or squared frequency,

ω2). This is because in forced/damped non-linear systems, the output of this latter representation will
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present a bending defining the type of spring that defines it. Lastly, it is possible to study the power

spectrum of the system by working out the discrete Fourier transform (fk):

P (ωk) = fkfk = |fk|2 (A.25)

Thus, as Eq.(A.23) presents a non-linear term and the exciting frequency is proportional to 3ω, a peak

in the power spectrum at such frequency is expected to appear apart from ω (see Fig. A.1a). Now,

if the oscillator is forced by two different frequencies ω1 and ω2 (with ω2 > ω1), the solution of the

system will be proportional to both frequencies, and when expanding the non-linear term (∝ x + εx3),

intermodulation terms will appear (see Fig. A.1b).

Fig. A.1. (a) Shows the power spectrum of a single Duffing oscillator excited by a single frequency ω1. The plot

was obtained by using the parameters ε = 5, A = 1, and ω1 = 10, all of them expressed in arbitrary units (a. u.).

(b) Shows the power spectrum of a single Duffing oscillator excited by two external frequencies at the same time.

The plot was obtained by using the parameters ε = 5, A = 1, ω1 = 10, and ω2 = 11
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Appendix B

Application of the perturbation

method to solve the

double-frequency driven single

Duffing oscillator

This Appendix presents a detailed explanation of how Eq.(6.61) and Eq.(6.64) have been solved. To

solve both equations the Poincaré-Lindstedt method was applied, consisting of getting rid of the secular

terms present in the equations of motion (as briefly described in Appendix A). This method is one of the

several approximations to the so-called perturbation method, which assumes that the final solution is an

expansion in powers of a small control parameter (in our case ε). The first equation to solve using this

approximation is Eq.(6.61):

ω2y′′ + γωy′ +
k

m
y + εy3 =

εF

m
[cos(θ + δ) + cos(1.1θ + δ)] (B.1)

and assuming the expansion in powers of ε:




y(θ) = y0(θ) + εy1(θ)

ω(θ) = ω0 + εω1

(B.2)

The equation of motion becomes:

ω2
0y
′′
0 +γω0y

′
0+

k

m
y0+ε

(
ω2

0y
′′
1 + ω0γy

′
1 +

k

m
y1 + 2ω0ω1y

′′
0 + γω1y

′
0 + y3

0

)
=
εF

m
[cos(θ + δ) + cos(1.1θ + δ)]

(B.3)
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where those terms proportional to ε2 or higher order are not considered. Grouping the terms by order of

ε: 



ω2
0y
′′
0 + γω0y

′
0 + k

my0 = 0

ω2
0y
′′
1 + γω0y

′
1 + k

my1 = F
m [cos(θ + δ) + cos(1.1θ + δ)]− 2ω0ω1y

′′
0 − γω1y

′
0 − y3

0

(B.4)

The solution to the top equation of the system (B.4) is given by:

y0(θ) = Ae−γθ cos(θ) (B.5)

Introducing Eq.(B.5) into the bottom equation of the system (B.5):

ω2
0Ae

−γθ [γ2 cos(θ) + 2γ sin(θ)− cos(θ)
]

+ γω0Ae
−γθ [−γ cos(θ)− sin(θ)] +

k

m
Ae−γθ cos(θ) = (B.6)

= ω2
0Ae

−γθγ2 cos(θ) + 2γω2
0Ae

−γθ sin(θ)− ω2
0Ae

−γθ cos(θ)− γ2ω0Ae
−γθ cos(θ)− γω0Ae

−γθ sin(θ)+

+
k

m
Ae−γθ cos(θ) cos(θ) = cos(θ)

[
ω2

0γ
2Ae−γθ − ω2

0Ae
−γθ − γ2ω0Ae

−γθ +
k

m
Ae−γθ

]
+

+ sin(θ)
[
2γω2

0Ae
−γθ − γω0Ae

−γθ]

As secular terms must be equal to 0, the system is simplified to:





ω2
0γ

2Ae−γθ − ω2
0Ae

−γθ − γ2ω0Ae
−γθ + k

mAe
−γθ = 0

2γω2
0Ae

−γθ − γω0Ae
−γθ = 0

(B.7)

It must be noted that this system has 4 different possible solutions of ω0 and all of them lead to the same

behaviour of the oscillator:

ω
(1)
0 = 0 (B.8)

ω
(2)
0 = 1/2 (B.9)

ω
(3,4)
0 =

mγ2 ±√m
√
−4γ2k + 4k + γ4m

2m(γ2 − 1)
(B.10)

For the solutions ω
(3,4)
0 it must be noted that the system is undamped, ω

(3,4)
0 =

√
k
m , which is the

expected solution for an harmonic oscillator. Considering ω
(1)
0 , ω2

(0) = 0 (as ω2 = ω2
0 + 2εω0ω1), which

does not make physical sense, meaning that terms proportional to ε2 or higher order should be considered.

Now, considering ω
(2)
0 and taking into account that ω = ω0 + εω1 and, therefore, ω2 ∝ ω2

0 + 2εω0ω1 (as

terms proportional to ε2 or higher are not considered) it is easy to find ω
(2)
1 from Eq.(B.4) that ω2 is

given by:

ω(2)2 =
1

4
+

εF

mγ2

[
1±

√
1 +

2γ2

A
− 3mA2γ2

2F

]
(B.11)
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APPENDIX B. APPLICATION OF THE PERTURBATION METHOD TO SOLVE THE
DOUBLE-FREQUENCY DRIVEN SINGLE DUFFING OSCILLATOR

Finally, studying the cases ω
(3,4)
0 following the same solving process:

ω2
0y
′′
1 + γω0y

′
1 +

k

m
y1 =

F

m
cos(θ) cos(δ)− k

m
sin(θ) sin(δ) +

k

m
cos(1.1θ + δ)+ (B.12)

−2ω0ω1Ae
−γθ [γ2 cos(θ) + 2γ sin(θ)− cos(θ)

]
− γω1Ae

−γθ [−γ cos(θ)− sin(θ)] +

−A3e−3γθ

[
3

4
cos(θ) +

1

4
cos(3θ)

]
=

= cos(θ)

[
F

m
cos(δ)− 2ω0ω1γ

2Ae−γθ + 2ω0ω1Ae
−γθ + γ2ω1Ae

−γθ − A3

4
e−3γθ

]
+

+ sin(θ)

[
−F
m

sin(δ)− 4ω0ω1γAe
−γθ + γω1Ae

−γθ
]

+
F

m
cos(1.1θ + δ)− A3

4
e−3γθ cos(3θ)

and making secular terms equal to zero:

sin(δ) =
mγω1Ae

−γθ

F
[1− 4ω0] (B.13)

where it must be noted that the system is undamped, δ = 0, π, ..., which is the expected solution for an

harmonic oscillator. Recalling Z ≡ 1− 4ω0 for simplicity:

cos(δ) ≈ 1− m2γ2ω2
1A

2Z2

2F 2
(B.14)

assuming small time scales because the time of detection/processing sound of the locust is of the order

of the microsecond (i.e. e−γ/θ → 0):

ω
(3,4)
1

[
2ω0A+ γ2A− 2ω0Aγ

2 − ω1
mγ2A2Z2

2F

]
=

3A3

4
− F

m
(B.15)

ω
(3,4)
1 =

F

[
4ω0

(
1− γ2

)
+ 2γ2 ±

√
4 (2ω0γ2 − 2ω0 − γ2)

2 − 2γ2Z2
(

3A3m
F − 4

)]

2Amγ2Z2
(B.16)

ω
(3,4)
1 2 = ω

(3,4)2
0 +

εFω
(3,4)2
0

Amγ2Z2

[
4ω0

(
1− γ2

)
+ 2γ2 ± 4

(
2ω0γ

2 − 2ω0 − γ2
)2 − 2γ2Z2

(
3A3

4
− 4

)]
(B.17)

The representations of ω(3,4)2 and ω(2)2 are shown in Fig. B.1.
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Fig. B.1. (a) and (b) Show the amplitude vs frequency representation of ω(2)2 and ω(3,4)2, respectively. The

parameters used to plot these graphics are ε = 1. F = 10, m = 1, γ1.1, and k = 1, all in arbitrary units.

This same process was used to solve Eq.(6.64), in which ε controls controls both the degree of non-linearity

of the system and the damping.

ω2y′′ + εγωy′ +
k

m
y + εy3 =

εF

m
[cos(θ + δ) + cos(1.1θ + δ)] (B.18)

(ω0 + εω1)
2

(y′′0 + εy′′1 ) + εγ (ω0 + εω1) (y′0 + εy′1) +
k

m
(y0 + εy1) + ε (y0 + εy1)

3
= (B.19)

=
(
ω2

0 + 2εω0ω1 + ε2ω2
1

)
(y′′0 + εy′′1 ) + εγ

(
ω0y

′
0 + εω0y

′
1 + εω1y

′
0 + ε2ω1y

′
1

)
+
k

m
y0 +

kε

m
y1 +

+ε
(
y3

0 + 3y2
0y1ε+ 3y0y

2
1ε

2 + y3
1ε

3
)

=
εF

m
[cos(θ + δ) + cos(1.1θ + δ)]

getting rid of the terms proportional to ε2 and higher:

ω2
0y
′′
0 + ω2

0εy
′′
1 + 2εω0ω1y

′′
0 + εγω0y

′
0 +

k

m
y0 +

εk

m
y1 + εy3

0 =
εF

m
[cos(θ + δ) + cos(1.1θ + δ)] (B.20)

grouping terms of ε:





ω2
0y
′′
0 + k

my0 = 0

ω2
0y
′′
1 + 2ω0ω1y

′′
0 + γω0y

′
0 + k

my1 + y3
0 = F

m [cos(θ + δ) + cos(1.1θ + δ)]

(B.21)

The top equation can be easily solved, and its solution is given by:

y0(θ) = A cos(θ) , ω0 =
√
k/m (B.22)

Introducing y0 and ω0 into the bottom equation of the system of equations (B.21):

ω2
0y
′′
1 +

k

m
y1 =

F

m
cos(θ) cos(δ)− F

m
sin(θ) sin(δ) +

F

m
cos(1.1θ + δ)− 2ω1ω0y

′′
0 − γω0y

′
0 − y3

0 (B.23)
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DOUBLE-FREQUENCY DRIVEN SINGLE DUFFING OSCILLATOR

And the right-hand side of Eq.(B.23) becomes:

F

m
cos(1.1θ + δ)− A3

4
cos(3θ) + cos(θ) + cos(θ)

[
F

m
cos(δ) + 2ω0ω1A−

3A3

4

]
+ (B.24)

+ sin(θ)

[
−F
m

sin(δ) + γω0A

]
= 0

and making secular terms equal to 0 it is easy to find that:

sin(δ) =

√
γk

F
γA (B.25)

and thus:

cos(δ) =

[
1− mkγ2A2

F 2

]1/2

(B.26)

and, therefore:
[
F 2

m2
− k

m
γ2A2

]1/2

+ 2ω0ω1A =
3A3

4

ω1 =
3A2

8

√
k

m
± 1

2

√
F 2

A2km
− γ2 (B.27)

and considering ω2 = ω2
0 + 2εω0ω1:

ω2 =
k

m
+ ε

[
3A2k

4m
±
√
k

m

(
F 2

A2km
− γ2

)]
(B.28)

The representation of the amplitude of motion as a function of squared frequency can be observed in

Fig. B.2. It must be noted that the two cases discussed in this Appendix generate intermodulation

Fig. B.2. Amplitude vs ω2

products, even not explicitly discussed, in a complete analogous way as described in Appendix A, as their

generation depends on the non-linear governing the system as well as a multiple-frequency excitation.
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Appendix C

Solution to a system of coupled

Duffing oscillators

In this Appendix the solution to a system of two coupled Duffing oscillators is presented, as described

in subsection 6.1.3. To do so the perturbation method has also been applied, as done in previous cases

(Appendix B). The system to solve is:





md2y1
dt2 + εdy1dt + εy3

1 + k(y2 − y1)− εF0 cos(ωt+ δ) = 0

md2y2
dt2 + εdy2dt + εy3

2 + k(y2 − y1)

(C.1)

Introducing the change of variable θ = ωt, and the expansions around ε are given by ω = ω0 − εω1,

yi = y
(0)
i + εy

(1)
i (with i = 1, 2). Introducing, for simplicity, ÿi

(j) = d2y
(j)
i /dθ2, ẏi

(j) = dx
(j)
i /dθ (with

j = 0, 1). Thus it is possible to rewrite the equations of the system of equations (C.1) and to group them

in terms proportional to different orders of ε. Thus, two different systems of equations are obtained, one

proportional to ε0 and another one proportional to ε:





mω2
0 ÿ1

(0) + k
(
y

(0)
2 − y(0)

1

)
= 0

mω2
0 ÿ2

(0) + k
(
y

(0)
1 − y(0)

2

)
= 0

(C.2)





mω2
0 ÿ1

(1) − 2mω0ω1ÿ1
(0) + ω0ẏ1

(0) +
(
y

(0)
1

)3

+ k
(
y

(1)
2 − y(1)

1

)
= F0 cos(θ)

mω2
0 ÿ2

(1) − 2mω0ω1ÿ2
(0) + ω0ẏ2

(0) +
(
y

(0)
2

)3

+ k
(
y

(1)
1 − y(1)

2

)
= 0

(C.3)
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APPENDIX C. SOLUTION TO A SYSTEM OF COUPLED DUFFING OSCILLATORS

The system of equations (C.2) can be easily solved using the linear coupled oscillator theory. Doing so,

the equations of motion y
(0)
i (θ) can be found. Normalising ω0 = 1:





ÿ1
(0) + k

m

(
y

(0)
2 − y(0)

1

)
= 0

ÿ2
(0) + k

m

(
y

(0)
1 − y(0)

2

)
= 0

(C.4)

which in matrix form can be expressed as:




ÿ1
(0)

ÿ2
(0)


+



−k/m k/m

k/m −k/m







y
(0)
1

y
(0)
2


 =




0

0


 (C.5)

To obtain the eigenvalues of the system it is necessary to diagonalise the matrix:

W =



−k/m k/m

k/m −k/m


 (C.6)

det
(
W− λ21

)
=

∣∣∣∣∣∣∣∣

−k/m− λ2 k/m

k/m −k/m− λ2

∣∣∣∣∣∣∣∣
= 0 (C.7)

which leads to the eigenvalues:

λ2
1 = −2k/m , λ2

2 = 0 (C.8)

and the corresponding eigenvectors:

~ξ1 = 1/
√

2(−1, 1) , ~ξ2 = 1/
√

2(1, 1) (C.9)

It is possible to build the matrix of eigenvectors U and its corresponding transpose, Uᵀ:

U =



−1/
√

2 1/
√

2

1/
√

2 1/
√

2


 = Uᵀ (C.10)

And thus it is possible to build the diagonal matrix WD =UWUᵀ, and the matrix A≡UT1/2.

WD =



−2k/m 0

0 0


 , A =



−
√
m/2

√
m/2

√
m/2

√
m/2


⇒ A−1 =



−1/
√

2 1/
√

2

1/
√

2 1/
√

2


 (C.11)

Therefore, the system of equations (C.5) can be expressed as:




ÿ1
(0)

ÿ2
(0)


+ A(−1)WDA




y
(0)
1

y
(0)
2


 =




0

0


 (C.12)

and introducing the generalised coordinates ~η(0) = A~y(0):

~̈η
(0)
i + WD ~ηi

(0) = 0 (C.13)
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



η̈1
(0) + λ2

1η
(0)
1 = 0

η̈2
(0) + λ2

2η
(0)
2 = 0

(C.14)

which solutions are given by:





η
(0)
1 (θ) = η

(0)
1 (0) cos(λ1θ) + η̇1

(0)(0)
λ1

sin(λ1θ)

η
(0)
2 (θ) = η

(0)
2 (0) + η̇1

(0)(0)θ

(C.15)

Thus:

y
(0)
i (θ) = A(−1)η̂

(0)
i (θ) =




η
(0)
1 (θ)

η
(0)
2 (θ)


 (C.16)

η̂
(0)
i (θ) = Ay

(0)
i =



−
√
m/2

√
m/2

√
m/2

√
m/2







y
(0)
1 (θ)

y
(0)
2 (θ)


 (C.17)

⇒





y
(0)
1 (θ) = 1/

√
2m
(
−η(0)

1 (θ) + η
(0)
2 (θ)

)

y
(0)
2 (θ) = 1/

√
2m
(
η

(0)
1 (θ) + η

(0)
2 (θ)

) ,





η
(0)
1 (θ) =

√
m/2

(
−y(0)

1 (θ) + y
(0)
2 (θ)

)

η
(0)
2 (θ) =

√
m/2

(
y

(0)
1 (θ) + y

(0)
2 (θ)

) (C.18)

And finally: 



y
(0)
1 (θ) = 1

2

{
y

(0)
1 (0) [1 + cos(λ1θ)] + y

(0)
2 (0) [−1 + cos(λ1θ)]

}

y
(0)
2 (θ) = 1

2

{
y

(0)
1 (0) [1− cos(λ1θ)] + y

(0)
2 (0) [1 + cos(λ1θ)]

} (C.19)

Using y
(0)
i and their respective initial conditions (i.e. y

(0)
1 (0) = A, y

(0)
2 (0) = B, and ẏ1

(0)(0) = ẏ2
(0)(0) =

0) it is possible to find the terms of the solution proportional to ε. Thus, the top and bottom equations

of the system of equations (C.3) become, respectively:

mÿ
(1)
1 +mω1λ

2
1(A+B) cos(λ1θ)−

λ1

2
(A+B) sin(λ1θ) +

1

16

(
5A3 − 3A2B + 3AB2 − 5B3

)
+

+
cos(λ1θ)

32

[
15A3 − 3A2B − 3AB2 + 15B3

]
+

cos(2λ1θ)

16

(
3A3 + 3A2B − 3AB2 − 3B3

)
+

+
cos(3λ1θ)

32

(
A3 + 3A2B + 3AB2 +B3

)
+ k(y

(1)
2 − y(1)

1 )− F0 cos(θ) = 0 (C.20)

mÿ
(1)
2 −mω1λ

2
1(A+B) cos(λ1θ) +

λ1

2
(A+B) sin(λ1θ) +

1

16

(
5A3 + 3A2B + 3AB2 + 5B3

)

+
cos(λ1θ)

32

(
−15A3 − 3A2B + 3AB2 + 15B3

)
+

cos(2λ1θ)

16

(
3A3 − 3A2B − 3AB2 + 3B3

)
+

+
cos(3λ1θ)

32

(
−A3 + 3A2B − 3AB2 +B3

)
+ k(y

(1)
1 − y(1)

2 ) = 0 (C.21)

To set the secular terms equal to 0 it is needed to treat the argument λ1θ as a phase shift in θ, such

that λ1θ = θ + θ(λ1 − 1). Naming ϕ ≡ θ(λ1 − 1) and using the trigonometric relationships cos(θ + ϕ) =

xii



APPENDIX C. SOLUTION TO A SYSTEM OF COUPLED DUFFING OSCILLATORS

cos(θ) cos(ϕ) − sin(θ) sin(ϕ) and sin(θ + ϕ) = sin(θ) cos(ϕ) + cos(θ) sin(ϕ), Eq.(C.20) and Eq.(C.21)

become:

mÿ
(1)
1 +

1

16

(
5A3 − 3A2B + 3AB2 − 5B3

)
+ k(y

(1)
2 − y(1)

1 ) +

+ cos(θ)

{[
mω1λ

2
1(A+B) +

15A3 − 3A2B − 3AB2 + 15B3

32

]
cos(ϕ)− λ1

2
(A+B) sin(ϕ)− F0

}
+

+ sin(θ)

{[
−mω1λ

2
1(A+B)− 15A3 − 3A2B − 3AB2 + 15B3

32

]
sin(ϕ)− λ1

2
(A+B) cos(ϕ)

}
+

+
cos(2λ1θ)

16

(
3A3 + 3A2B − 3AB2 − 3B3

)
+

cos(3λ1θ)

32

(
A3 + 3A2B + 3AB2 +B3

)
= 0 (C.22)

mÿ
(1)
2 +

1

16

(
5A3 + 3A2B + 3AB2 + 5B3

)
+ k(y

(1)
1 − y(1)

2 ) +

+ cos(θ)

{[
−mω1λ

2
1(A+B) +

−15A3 − 3A2B − 3AB2 + 15B3

32

]
cos(ϕ) +

λ1

2
(A+B) sin(ϕ)

}
+

+ sin(θ)

{[
mω1λ

2
1(A+B)− −15A3 − 3A2B − 3AB2 + 15B3

32

]
sin(ϕ) +

λ1

2
(A+B) cos(ϕ)

}
+

+
cos(2λ1θ)

16

(
3A3 − 3A2B − 3AB2 + 3B3

)
+

cos(3λ1θ)

32

(
−A3 + 3A2B − 3AB2 +B3

)
= 0 (C.23)

It must be noted that Eq.(C.22) and Eq.(C.23) are equivalent when studying their secular terms (with

the exception of F0). If ϕ ≈ 0 and seeking for non-trivial solutions of the system (i.e. A 6= B), it is

possible to find ω1:

ω1 =
1

64k(A+B)

(
15A3 − 3A2B − 3AB2 + 15B3 − F0

)
(C.24)

as ω2 = ω0 + εω1:

ω2 = 1 +
ε

32k(A+B)

(
15A3 − 3A2B − 3AB2 + 15B3 − F0

)
(C.25)

Considering the initial driving phase δ, Eq.(C.20) becomes:

mẍ
(1)
1 + k(x

(1)
2 − x

(1)
1 ) +

1

16

(
5A3 − 3A2B + 3AB2 − 5B3

)
+ (C.26)

+ cos(θ)

{[
mω1λ

2
1(A+B) +

15A3 − 3A2B − 3AB2 + 15B3

32

]
cos(ϕ)− λ1

2
(A+B) sin(ϕ)− F0 cos(δ)

}
+

sin(θ)

{[
−mω1λ

2
1(A+B)− 15A3 − 3A2B − 3AB2 + 15B3

32

]
sin(ϕ)− λ1

2
(A+B) cos(ϕ) + F0 sin(δ)

}
+

cos(2λ1θ)

16

(
3A3 + 3A2B − 3AB2 − 3B3

)
+

cos(3λ1θ)

32

(
A3 + 3A2B + 3AB2 +B3

)
= 0

Again, assuming ϕ ≈ 0 and setting the secular terms equal to 0:

F0 sin(δ) =
λ1

2F0
(A+B)→ sin(δ) =

λ1

2F0
(A+B)⇒ cos(δ) =

√
1− λ2

1 (A+B)
2

4F 2
0

(C.27)

⇒ ω1 =
3
(
5A2 − 6AB + 5B2

)

32mλ2
1

+
F0

mλ2
1 (A+B)

√
1− λ2

1 (A+B)
2

4F 2
0

(C.28)

And, therefore, ω2 is given by:

ω2 = 1 +
3ε

16mλ2
1

(
5A2 − 6AB + 5B2

)
± 2εF0

mλ2
1 (A+B)

√
1− λ2

1 (A+B)
2

4F 2
0

(C.29)
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[35] S. A. Cummer, J. Christensen, and A. Alù. Controlling sound with acoustic metamaterials. Nature

Reviews Materials, 1:16001, 2016.

[36] H. F. Olson. Elements of Acoustical Engineering. D. Van Nostrand Company, 1947.

[37] M. J. Crocker. Handbook of acoustics. John Wiley & Sons, 1998.
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