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Abstract

With high penetration of converter interfaced renewable energy and distributed
generation, and increased use of HVDC interconnections, the characteristics of power
systems is undergoing significantly changes. Interaction between grid-connected
converters and networks is likely to increase, which may lead to stability and resonance
problems, and in particular, when the grid is “weak” as the relatively high system
impedance. Therefore, that is important adequate method is developed for assessing

system stability.

This thesis presents the small signal impedance modelling of grid-connected 2-level
voltage source converters (VSC) and modular multilevel converter (MMC) for system
stability assessment. In the case of 2-level VSC connected to weak grid system, the
VSC impedance is mapped into the positive-negative (pn) sequence-frame for ease of
analysis, and the stability problem associated with the coupling admittance is studied.
It is found that traditional outer-loop controllers (e.g., active/reactive power and AC
voltage controllers) create high coupling admittance that has negative impact on
system stability. Improved outer-loop controllers are proposed and to improve the
system stability which add compensation terms into the d and g-axis at the potential
resonance frequency range. Small signal analysis and time domain simulation confirm

the effectiveness of the proposed method.

Large number of MMC based HVDC systems for interconnection or offshore wind
farm integration are already in operation and many more will be installed in the coming
years. MMC has multiple internal harmonics, which causes complex internal dynamics
and multifrequency response. To accurately model the multiple frequency response and
include all internal harmonics dynamics with MMC, the harmonic state-space (HSS)

modeling approach is adopted. A detailed procedure for deriving the small-signal



model of single-phase MMC system using HSS modelling approach is presented first.
To address the issues related to single-phase MMC modelling including the existence
of zero-sequence current and the use of controllers in abc frame, which are not in
accordance with practical 3-phase system, impedance modelling and validation of the
three-phase MMC based on HSS are conducted. In order to simplify the analysis on
the coupling characteristics between different frequencies in MMCs, the proposed
model is developed in pn frame, where the zero-sequence current in three-phase three-
wire system is modelled in a simple way. A simplified 2 by 2 admittance matrix in pn
frame is extracted from the MMC small-signal model for ease of system stability
analysis. Different outer-loop controllers, operating points and working mode are
adopted and compared in the analysis to illustrate the effects system stability. It is
found that for AC grid with single MMC, high PLL bandwidth leads to a less stable
system. Compared with inverter mode, MMC in rectifier mode is more likely to induce

system instability.

Using the developed impedance model, the multi-infeed interaction factor (MIIF)
measure is adopted to analyze the interactions for multi-infeed converter systems.
Detailed studied are carried out for an AC network with two MMCs considering
different MIIIF. Analytical studies and time-domain simulation results show that
system with high MIIF where strong couplings between the two MMCs exist may lead

to instability.
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Chapter 1 Introduction

1.1 HVDC power transmission technologies

Renewable energy sources have experienced fast growth in recent years. In
European Union (EU), the renewable energy share has reached around 20% in 2020
and is likely to increase to 32% in 2030 [1]. Generally, renewable power generation
is located far away from the main load centers and thus transmission technology
plays an important role under such scenario. High voltage direct current (HVDC) is
now considered as the most attractive solution for power transmission over long

distance [2][3].

Figure 1.1 shows the basic scheme of a HVDC link for power exchange between
two AC systems, where power transmission from AC system 1 to AC system 2 is taking
as an example. The AC system 1 is connected to the HVDC rectifier through a
transformer and the AC power is converted to DC power. Through the HVDC cables
or overhead lines, the DC power is then transmitted to the inverter, where is the DC

power is converted back to AC power.

DC
AC DC

DC AC

Rectifer Inverter

Figure 1.1 Basic scheme of an HVDC link

Depending on the converter technology used, HVDC system can be clarified as

Line-commutated converter (LCC) based and voltage source converter (VSC) based



HVDC systems.

1.1.1 LCC based HVDC system

LCC is based on thyristors, which can only be controlled to switch on, whilst its
switch off has to rely on the line voltage of the AC system to which the converter is
connected in order to effect the commutation from one switching device to its neighbor
[4]. Therefore, it is called line-commutated converter. LCC based HVDC systems have
been used for power transmission for many decades due to its low operational losses,
high power transmission capability, reliability and robustness [4][5]. Figure 1.2 shows
the structure of a 12-pulse LCC bridge, where two 6-pulse converter bridges are
connected in series at the DC side while the AC sides are connected through a star-
star-delta transformer. With this structure, the 5™ and 7" harmonic currents at the input
AC side can be effectively eliminated. The main drawbacks of the LCC-HVDC system
include the need of external voltage source for commutation, requiring large passive

filters and the complexity during power reversal.

Figure 1.2 12-pulse bridge LCC



1.1.2 VSC based HVDC system

With the switching device insulated-gate bipolar transistor (IGBT), both turn-on
and turn-off timing can be controlled, giving a second degree of freedom. As a result,
IGBTs can be used to make self-commutated converters which are closer to a large
inverter in operation. In such converters, the polarity of DC voltage is usually fixed
and the DC voltage, being smoothed by a large capacitance, can be considered constant.
For this reason, an HVDC converter using IGBTs is usually referred to as a voltage-
source converter. VSC based HVDC system now attracts lots of attention due to its
higher controllability. Comparing with LCC-HVDC, VSC-HVDC provides many
advantages, such as no need of external voltage source, flexible power flow reversal
and AC voltage support capability [7-10]. Early VSC-HVDC uses two-level converter,
as shown in Figure 1.3. Fully controlled semiconductors, such as Insulated Gate
Bipolar Transistors (IGBT) [6], are connected in parallel with freewheeling diodes at
each arm [2]. The main drawbacks of two-level VSC include: (1) high switching losses
caused by high switching frequency; (2) substantial filters for harmonic limitation ;

and (3) unwanted electromagnetic interference caused by high dv/dt during switching

[11].

Figure 1.3 Two-level VSC


https://en.wikipedia.org/wiki/IGBT_transistor
https://en.wikipedia.org/wiki/Inverter

To address the issues with the two-level converter, modular multilevel converter
(MMC) has been developed and is now regarded as a promising and competitive
structure for VSC-HVDC. As shown in Figure 1.4 (a), it consists of 6 arms, each
contains a large number of series-connected submodules. The submodule
configuration used for MMC:s i.e., the half-bridge submodule (HBSM) is shown in
Figure 1.4 (b).

Compared with two-level VSCs, MMC has many attractive advantages, such as
low power losses, modular design, and low harmonic distortion in the output AC
voltage [12]-[15]. This technology is increasingly applied for large-scale offshore wind

farms connection [16].

| O
A
|SM1| |SM1| |SM1| H
™M M) M) St
GM]  [BM]  [BM] T
' Sz
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/?\
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M) M) [EM] |
ian ibn icn I
@)

Figure 1.4 MMC and two sub-module topologies.

1.2 Stability issues of HVDC power transmission system

Increased penetration of renewable energy resources and the use of HVDC

connections have significant impacts on power system behaviour. These power

4



generation units and transmission links are generally connected to the main grid
through power electronics based converters. Although such converters offer fast
control capability, the system inertial and damping are unavoidably decreased, which
pose challenges on power system stable operation [17]. Recently, such stability issues
caused by the interaction between the VSC-based HVDC and the power grid have
drawn lots of attention [18]-[20]. Stability problems and studies have been reported in
several LCC-HVDC transmission systems [21]. A 451Hz resonance led to shut down
of several North Sea offshore wind farms when connected with MMC-based HVDC
[22], and 1270Hz resonance was reported in Luxi back-to-back-HVDC project in
China [23]. These resonance phenomena raise concern about the integration of
renewable energy resources [24]. Efficient methods to identify the key causes of
harmonic resonances and to mitigate such instability are crucial for future renewable

energy development.

1.3 Small signal stability analysis

System . |—l Model - > Small-signal

Stabili
model - v

\ 4

Figure 1.5 Procedure for system stability analysis

Figure 1.5 shows a typical procedure for system stability analysis. Based on the
real system, an analytical system model is developed first. The model is then linearized
to obtain the small-signal model and stability analysis is carried out to find the key

courses of instability.

Modelling techniques are necessary prerequisite for analyzing the stability
problem [25]. Power electronic circuits are time-variant and exhibit nonlinearity, and
the time-variance is associated with the switching operation while the nonlinearity

results from the dependence of power electronic switching instants on system



conditions [26]. The modelling techniques for power electronic converters can be
broadly classified as time-domain and frequency-domain techniques [27]. The terms
of time-domain and frequency-domain are referred to the signals being represented as

a function of time and frequency, respectively [28].

The overview of existing techniques for modelling power electronic circuits, and
identifying merits and disadvantages are presented in [25][29]. In general, time-
domain modelling naturally accommodates nonlinear circuit behaviours, and relies on
various mathematical methods to solve differential equations in time-domain [30]. So
it may suffer from numerical oscillation and long time to reach the steady state.
Although time-domain modelling methods are well established, they do not provide
explicit information about the harmonic and inter-harmonic interactions around power

electronic circuits [31].

On the other hand, frequency-domain modelling provides fast steady-state
solutions, and explicitly represents the frequency coupling nature of power electronic
circuits [32]. However, it cannot be used to capture the dynamics of a system. To
capture the coupling frequency characteristics, models developed in the frequency-
domain or its subset, the harmonic domain, are either iterative or linearized around an
operating point [33]. The HSS i.e., Harmonic State-Space is an extension to the
conventional frequency-domain in the sense that it preserves the explicit description
of the frequency coupling nature of power electronic circuits, but more importantly, it

extends the description of different frequencies coupling to the transient state [34][35].

1.4 Stability analysis method

For grid-converter interconnected system, eigenvalue-based analysis and
impedance-based analysis are considered as the two main methods for stability
analysis. They both have the advantages of less computation requirement and the

ability to analyze the impact of controller dynamic and grid configuration on the

6



interconnected system stability [36].

1.4.1 Eigenvalue-based analysis

Eigenvalue-based analysis method was widely used to analyze the stability of grid
connected wind farms [37] and HVDC transmission systems [38][39]. This method is
generally based on one specific operating point and judges the system’s global stability
according to the damping of eigenvalues. However, when it is used to analyze the
stability issues caused by the interaction between converters or between converter and

grid, there are two main disadvantages:

e It requires a detailed analytical state-space model of the entire system, thereby
highly depending on accurate parameters of the system. In many cases, it is very
difficult to obtain the configuration and parameters of the grid network, and

thus, eigenvalue-based analysis can lead to significant errors in this condition.

e To identify sustained harmonic oscillations in VSC systems, eigenvalue-based
analysis requires discretizing the systems, leading to high computational

requirement[36].

1.4.2  Impedance-based analysis

Impedance-based stability analysis method was introduced to evaluate interaction
between a DC-DC converter based power supply and its source with an EMI filter in
[40]. For the impedance-base method, the system can be partitioned into the source
and the load subsystem and the small-signal stability of the system can be evaluated
by applying Nyquist criteria to the source-load impedance ratio [41]. Recently, the
impedance-based analysis method has been widely applied in stability analysis of grid-
connected inverter at the interfacing point connecting to the grid [42][43]. The
objective of the frequency-domain modeling is to linearize the converter dynamic

model and find a Laplace transfer function type relationship between the selected input



and output variables and further derive the source-load impedance.

Figure 1.6 (a) and (b) show the small-signal representations using equivalent
voltage and current source systems, respectively. For the voltage source system
representation shown in Figure 1.6 (a), the source subsystem is modelled by its
Thevenin equivalent circuit consisting of an ideal voltage source V. in series with an
output impedance Z., while the load subsystem is modelled by a current source I, in
parallel with an impedance Z,. A shown, the current between the source subsystem and

load subsystem is obtained as:

Ve(8) +Z4(9)14(5)

(8= Z,(5)+Z, () (1)
Equation (1.1) can be rewritten as:
_| W (5) 1
') _[zg SR (s)}_n Z.9)/Z,(9) (12)

For system stability analysis, it can be assumed that the source voltage is stable
when unloaded and the load current is stable without the voltage source. In this case,
Ve(s), Ie(s) and 1/Z4(s) are stable, such that stability of the current /(s) depends on the

stability of the second term on the right-hand side of (1.2), i.e.:

1

=576 1Z,()

(1.3)

Obviously, (1.3) resembles the close-loop transfer function of a negative
feedback control system where the forward gain is unity and the feedback gain is
Z:(8)/Zo(s). Thus, the system open loop gain is Z.(s)/Zg(s) and the system is stable if

and only if Z.(s)/Zy(s) satisfies the Nyquist stability criterion i.e., the Nyquist curve



does not encircle the point (-1,0).

For the current-source system representation shown in Figure 1.6 (b), a Norton
equivalent circuit in the form of a current source /. in parallel with an output impedance
Z., 1s adopted to represent the source. The load is represented by a voltage source V,
in series with an impedance Z,. The current between the source subsystem and load

subsystem is derived as:

V. (s 1
I(s){lc(s)— g“} (14
2.6) 1+ 2.9)/2,9
> Ve + Vv
Zc | + l/Zg
+
«©  val W@
+ ly
Z;
_ | -
Thevenin equivalent circuit Block diagram representation
representation
(d) Equivalent voltage source system
- 1 IC + |
L+ g, Z,
@O = v O
+ V,
1/Z,
_ v .
Norton equivalent circuit Block-Diagram Representation

representation

(b) Equivalent current source system

Figure 1.6 Small-signal representation of the system



Following similar assumptions, the open loop gain is Z(s)/Z.(s) which can be

used for assessing the system stability.

Note that the open loop gain of the voltage source system is different from the
one of the current source system [41]. Since grid-connected converters are typically
controlled using current loop, the system is better to be represented by the current

source system as shown in Figure 1.6 (b), when impedance-based method is adopted.

Compared with eigenvalue-based analysis method, the grid side network can be
deemed as a black box, i.e., detailed knowledge of the parameters and properties of the
system is not required as long as measurements can be obtained at its terminals when
impedance-based analysis is carried out. However, a weakness of the impedance
method is the limited observability of certain states given its dependence on the
definition of local source-load subsystems, which makes it necessary to investigate the
stability at different interfacing points[44]-[47]. Moreover, when the source impedance

and load impedance have Right Half-Plane Zeros, impedance-based analysis is invalid.

1.5 Definition of reference frame and frame transformation

Depending on the studies required, different reference frames can be used.
Usually, the rotating synchronous dq frame or stationary of3 frame are the preferred
frames for control designs, whereas the three-phase abc frame is the natural three-
phase frame. Figure 1.7 shows the spatial relationships among the abc frame, af frame,
and the dq frame. In addition, the pn frame (i.e. positive and negative sequence-frame)
and fb frame (i.e. called modified sequence frame in [48]) may also be considered, and
the relationships between the multiple reference frames are summarized in Figure 1.8
[49][50]. Based on the transformations between different frames, the impedance of
converters can be calculated in a specific frame to reduce the complexity of impedance
modelling. Moreover, the calculated impedance can be transformed into another frame

for specific analysis requirements. In the following section, the transformations of a

10



variable from abc frame to dq frame, abc frame to pn frame, and dq frame to pn frame

are presented.

C¥

Figure 1.7 Definition of the stationary o B frame, rotating dq frame and three-phase abc

frame

abe R(t) B(t)

L dq —]

Figure 1.8 Transformation between different frames

15.1 abc frame to dq frame

Three-phase variables in abc frame can be transformed into the rotating dq

11



reference frame by the standard technique for the modeling of AC machines and
converters [51]. Balanced three-phase quantities without harmonics can be assumed as
constant DC values in a synchronously rotating reference frame. Hence, impedance

modeling of three-phase VSC in the dq frame is relatively straightforward.

According to the definition of dq frame shown in Figure 1.7, the Park

transformation T(t) in Figure 1.8 can be expressed as:

2r 2r
5 CoS myt cos(a)ot—?) cos(wot+?)

T=2 (1.5)

—sinat  —sin(a,t —2{) —sin(a,t + 2?”)

In addition, the transformation from abc frame to dq frame can be obtained by the

Clark transformation C and the rotating transformation R(t), as:

T(®) =R@®)C (1.6)
2|t _%_%
c=% 1.7
30_3 B (1.7)
2 2
B cos(aw,t)  sin(ayt)
mo‘me%o mq%&} (1.8)

1.5.2 abc frame to pn frame

The method of symmetrical components was developed for investigation into the
operation of an induction motor under unbalanced conditions and it has been
extensively used in fault analysis [49][52]. Any unbalanced three-phase system can be
expressed as the sum of a set of three balanced components, specifically, positive-

sequence, negative-sequence, and zero-sequence as defined in Figure 1.9. The

12



subscript p denotes for positive-sequence components, a sum of three phasors equal in
magnitude but 2w/3 apart in phase with a phase sequence of a-b-c as illustrated in
Figure 1.9 (a). Similarly, the subscript n denotes for negative-sequence components, a
sum of three phasors equal in magnitude but 27t/3 apart in phase with a phase sequence
of a-c-b as illustrated in Figure 1.9 (b). The subscript z denotes for zero-sequence, a

sum of three phasors equal in both magnitude and phase angle as illustrated in Figure
1.9 (c).

I' I‘ ) . . .
)i /K Ia(Z) Ib(Z)IC(Z)
I. I' . I-

c(p) b(p) Ib(n) c(n)
(a) Positive-sequence (b) Negative-sequence (c) Zero-sequence
Figure 1.9 Symmetrical components of three-phase phasors

According to the definition of pn frame, the transformation matrix P from abc

frame to pn frame can be expressed as

N

1 o «a
P=|1l &® « (1'9)
1 1 1

where o = 23 and o = &*"3e4/3

1.5.3 dqg frame to pn frame

In [53], the transformation matrix A from dq frame to fb frame in Figure 1.8 is

expressed as

13



11 )
A_ZL _J (1.10)

The frequency shift transformation matrix B(t) from fb frame to pn frame is

derived in [49] as

B(t):[ejwot 0 } (1.11)

O e—j(uot

Thus, according to Figure 1.8 and considering (1.10) and (1.11), the

transformation matrix from dq frame to pn frame is obtained as

AVp (t) _ N (t)
LVH (t)} = B(t)ALVq (t)} (1.12)

where Avg(f) and Avy(¢) are the components in dq frame, and Av,(f) and Av,(¢) are the

corresponding components in pn frame.

1.6 Impedance modelling of grid-connected converter

For impedance-based stability analysis, an accurate impedance modelling of
converters is required. Although two-level VSCs and MMCs share some similar
characteristics, the complicated internal dynamics and the extra controllers of MMCs
may make the conventional modelling method for VSC not applicable for MMC. In
view of the distinguished features of the VSC and MMC, to explicitly assess the state-
of-the-art of the two converters associated stability problems, the modeling methods

of the two types of converters are illustrated separately in the following section.

1.6.1 Impedance modelling of a two-level VSC

According to the frame adopted in the modelling, the converter impedance can

14



be represented in the synchronous dq frame, the pn frame and the modified sequence

frame, i.e. the fb frame in Figure 1.8.

1.6.1.1 Impedance modelling in dq frame

Under a three-phase balanced AC system, no DC component exits in the
stationary frame. By transforming the stationary frame to synchronous dq frame, the
grid-connected VSC system becomes two coupled DC systems with time invariant
property, which indicates the system can be conducted with direct linearization in dq
frame to derive the small-signal impedance. References [54][55] have derived the
small-signal impedance of grid-connected converter with current control, PLL and
power control. The effects of the VSC controllers such as the inner-loop current control,
direct-voltage loop and PLL on the converter admittance are investigated in [54], and
the following controllers design recommendations are provided to ensure the system

stability:

e Use a PI controller with low integral gain or a direct P controller for the

current loop.

e Seclect low bandwidths for the direct-voltage controller and PLL. Both

bandwidths must be lower than one tenth of the current-loop bandwidth.

e Select low bandwidth of the voltage feedforward filter in current loop for
normal mode of operation, but equal to the current-loop bandwidth or larger

for short term transient-mode operation.

Reference [46] [47][55] focus on the impact of the PLL bandwidth and the power
output of the converter on system stability based on the impedance model in dq frame.
It concludes that higher PLL bandwidth will produce wider frequency range of
negative resistance of Z,; (¢—q channel impedance) and higher power output of the
converter results in a lower negative resistance of Zy,. The negative resistance reduces

system stability when the converter is working as a current source under weak grid.
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For grid-connected VSC system, its impedance matrix in dq frame is actually 2x2
matrix with non-diagonal elements [54][55]. The off-diagonal terms in impedance
matrix are nonzero, which indicates the system based on the impedance method is
multiple input and multiple output (MIMO). Thus, generalized Nyquist criteria (GNC)
for MIMO 1is required for the stability analysis. Moreover, because both grid
impedance and VSC output impedance have off-diagonal elements, it cannot explain
how the impedance characteristics of the grid and VSCs affect the oscillation

frequencies [48].

1.6.1.2 Impedance modelling in pn frame

For the sequence impedance model in the pn frame, the grid-connected VSC
inherently varies with time. Linearizing the time-varying system along a steady
periodic trajectory yields a linear time periodic (LTP) system. To transform LTP
systems into frequency-domain, the harmonic linearization method is introduced to
obtain sequence impedances [56]-[60]. The model can be simplified as a diagonal
transfer matrix and has two single-input single-output (SISO) transfer functions in the
positive-sequence and negative-sequence. The system stability can be assessed by

positive-sequence impedance and negative-sequence impedance individually.

Compared with the model in dq frame, the model in pn frame is beneficial for the
stability analysis of multiple VSC systems since the overall system model is
established in a common frame instead of multiple dq frames for multiple VSCs [58].
The stability can be analyzed directly through the impedance in pn frame, which is
simpler and more straightforward than the method adopted in dq frame, i.e., GNC for
MIMO. However, in [56][57], the SISO model is developed by ignoring the coupling
components. Nevertheless, this kind of model ignores the small coupling term of
converter pn sequence impedances, which may result in inaccurate stability estimation

of power converters [61]. For example, a positive-sequence voltage perturbation
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injected may lead to significant negative-sequence current perturbation. Hence,
adopting diagonal impedance matrix to conduct stability analysis will be inaccurate

theoretically.

The systematic methodology to derive the converter admittance in the pn frame
is proposed in [62][63]. The admittance in the dq frame is derived firstly and is then
transformed to the pn frame by applying the transformation matrices. The impact of
the coupling between the positive- and the negative-sequence components of the
converter admittance caused by negative-sequence compensator and the active power
regulator on stability is assessed, whilst the impact of the negative-sequence

compensator on the system stability is also studied.

1.6.1.3 Impedance modelling in modified sequence frame

To consider the frequency-coupling dynamics, a modified form of the sequence-
domain impedance matrix is presented and the stability assessment are obtained in the
modified sequence-domain based on GNC [48][64]. However, the modified sequence-
domain model may yield a void sequence component without physical meaning.
Reference [48] identifies the couplings between the mirror frequencies caused by PLL
in grid-connected converters and proves that neglecting the admittance couplings can
result in a wrong estimation of the system stability. In [65], a unified impedance model
of VSC with PLL dynamic is derived based on complex space vectors. In addition, the
mathematical relationship between the models in the dq frame and aff frame is revealed.
The frequency couplings effect on the stability of the grid-connected VSC 1is also
studied. It is shown that the stability assessment not considering the coupling
impedance in sequence domain created by the asymmetric controls in dq frame such

as PLL, DC and power control, is not accurate.
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1.6.2 Modelling for MMC

Due to the inherently complex behaviour of MMCs such as internal circulating
current and submodule (SM) capacitor voltage ripple, the interactions between the
MMC output impedance and grid impedance may lead to harmonic resonance and even
instability [66]. Meanwhile, the complex internal dynamics of MMC makes modelling
for stability analysis a challenging task [67][68]. In previous studies, several simplified

equivalent models have been proposed to analyze the critical features of MMC [69].

1.6.2.1 Equivalent time-domain MMC models

The schematic diagram of an MMC was shown in Figure 1.4. In the early studies,
simplified MMC model which does not contain the arm inductors and treated the SMs
as switchable DC sources is considered [70]-[73]. The arm voltage is equivalent to a
controlled and continuous voltage source consisted of many series-connected sub

voltage sources as shown in Figure 1.10.

Figure 1.10 Early MMC equivalent circuit
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Figure 1.11 Equivalent circuit with arm inductors

MMC model with arm inductors to limit the arm current was late developed in
[74]-[79], as shown in Figure 1.11. The arm voltage is still regarded as a controlled
voltage source [80], which is only valid when the SM capacitors are large enough so
the SM voltages are constant. Moreover, the number of SM is assumed to be large

enough so the arm voltage can be regarded as continuous.

Although the above two equivalent models are simple and straightforward for
MMC study, they have many drawbacks and limitations. Firstly, all the SMs in one
arm are treated as a single unit, so the behaviour of each individual SM is lost [69].
Secondly, the dynamic of the coupling between the voltage of the SM capacitor and
the arm current is ignored. Finally, the internal behaviour of the MMC such as

circulating current is lost.
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Figure 1.12 Equivalent circuit with nonlinear arm capacitors

The MMC model shown in Figure 1.12 is developed in [81]-[83]. The difference
between this model and the previous models is that the arm voltage is equivalent to the
voltage of a nonlinear capacitor with time variant sinusoidal capacitance. The capacitor
voltage is still assumed a controlled voltage source. With this modeling approach the
converter can be controlled by calculating the total capacitor energy in each arm in
order to regulate the capacitor voltage, and the total energy of the upper and lower arm
can be regulated to control the power delivery to the load. The difference between the
upper and lower arm energies is then used to balance their respective voltages. With

this model, the ripple voltage of the capacitor can be determined [84].

Since the SMs in an arm connected in series, the current flowing through each
SM is the same. If each SM in one arm has the same duty ratio, the MMC can be

represented as an averaged model [85]-[87], as shown in Figure 1.13.
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Figure 1.13 Equivalent circuit of averaged model

Compared to the previously described equivalent MMC models, the advantage of
the averaged model is that the circulating current and the information of individual
capacitors can be fully captured by this model. The limitation of this model is that the
information of the individually SMs cannot be differentiated, as all of them are
assumed to be identical. Another shortcoming is that the arm voltage is considered as
continuous, which implies that the harmonics created by SM switching cannot be
considered in the model. However, this is the common shortcoming of the four

equivalent MMC models [69].

1.6.2.2 Impedance modelling of MMC

Since the impedance-based analysis is widely applied in grid-connected converter
systems, various studies have been carried out to calculate the MMC impedance-based

on the MMC averaged model shown in Figure 1.13.

In [88], an analytical sequence impedance model of a three-phase MMC is
derived with the internal MMC dynamics, following the same approach used for two-

level VSCs. However, the 2" harmonic in the arm current and PLL are not considered
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in the model. In [89], the AC side input admittances of the MMC under various control
strategies are derived, though the circulating current controller is not included.
Reference [90] focuses on the impact of different current control schemes on the shape
of MMC admittance, considering the 2™ internal harmonic current. However, a large
resistive load is added at the AC side to provide increased passive damping, so that
high-order harmonics are not presented in the system and thus no need to be considered
[90]. However, in real systems, such strong passive damping does not exist and

harmonic or inter-harmonic resonances are a major concern and must be modelled.

The HSS method proposed to analyze linear time-periodic (LTP) system [91],
models not only the steady-state harmonics in LTP systems, but also the dynamics of
the harmonics during transients. Consequently, HSS method has been widely used to
model power networks and converters, e.g., static synchronous compensators [92],
LCC converters [91], transmission lines [93], and two-level VSCs [94]. Recently, HSS
method has been used to model MMC impedance considering the impact of the
internal harmonics [95]-[97]. Since the Fourier coefficients matrices in the HSS model
are diagonal-constant matrices (Toeplitz matrices) [95], the MMC small-signal model
based on HSS can be easily extended to any harmonic order. Hence, the dynamics of

high-order harmonics in MMC can be fully considered.

However, various problems and limitations still exist in the proposed HSS-based
MMC small-signal modelling methods [95]-[97]. In [95], a single-phase MMC model
is developed and the impedance that reflects the voltage and current at the same
frequency is derived but the couplings at different frequencies generated by the internal
harmonics of MMC, are not taken into account. Impedance models of three-phase four-
wire MMC systems, in which both the MMC DC mid-point and the AC neutral point
are grounded providing a circulation path for the zero-sequence current, are derived in
[96][97]. However, in reality, MMC systems are likely to be configured as an

equivalent three-phase three-wire system without the low impedance path for the zero-
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sequence current. To describe the MMC zero-sequence current on the MMC AC side
in three-phase three-wire systems, zero-sequence voltage compensation is proposed to
add into the single-phase model in [96] and the single-phase impedance is obtained for
three-phase system stability assessment. The MMC controllers in the models also
adopt the proportional resonant (PR) controller in the abc frame, implying that the
controls for phase a, b, and ¢ are totally independent and identical. However, for MMC
controller implemented in aff frame or dq frame, the single-phase modelling method

is inadequate and is thus unsuitable for three-phase MMC system.

In the latest study on MMC impedance modelling, reference [98] provides a
comprehensive three-phase HSS model of MMC. Similar to [96], the DC mid-point
voltage is compensated using the AC neutral point voltage to eliminate the zero-
sequence current. However, when developing the small-signal model, the expression
of the neutral point voltage involves the steady-state value and the perturbation
variables of three-phase voltages as well as the control signal of the arms, which lead
to an extra complex calculation in the HSS model. In [98], the complex vector
representation of the controllers in dq frame obtained based on the transfer function,
has to be transformed to the off frame before being integrated into the MMC model to
obtain the impedance in sequence frame, thus leading to complicated transformation

and calculation.

In addition, the MMC impedance obtained in [98] is a 10 by 10 matrix. In order
to simplify the process of stability assessment, a single input and single output (SISO)
equivalent impedance of the MMC is derived by considering the grid side impedance.
However, if the grid structure is more complex, e.g., there are other converters
connected to the grid in close proximity, the grid impedance seen by the MMC will
also become complicated. Thus it is difficult to simplify the 10 by 10 matrix of MMC
impedance to a SISO equivalent. Therefore, a MMC impedance independent of the

grid side impedance and in simple form is more beneficial for system stability
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assessment with multiple converters. MMC represented by 2 by 2 impedance matrix
in modified sequence-domain [99] is developed in [100][101]. However, in the
modified sequence-domain the frequencies of the coupling admittance cannot be
represented. Moreover, unlike the impedance in the sequence domain, the MMC
impedance in the modified sequence domain cannot be measured directly in time-
domain due to the existence of frequency shift between the modified sequence domain
and sequence domain. In [102], a MMC 2 by 2 impedance matrix is derived to capture
the characteristics of frequency coupling in sequence frame. However, the work
focuses on the coupling between the AC system and DC system of the MMC and the

dynamic of the PLL in AC side is not considered.

1.7 Current status and application of HVDC in UK and world-wide

Considering the increased network interconnections and connection of large
offshore wind farms (e.g. in Europe) using HVDC links, many power networks have
seen significant numbers of HVDC converters connected in close proximity. For
example, as outlined in [103] and schematically shown in Figure 1.14, the GB network
will have more than 20 HVDC connection by 2027, with a total transmission capacity
of over 16 GW. Some studies have been carried out considering the interaction
between LCC and VSC inverter stations and the parameters of the controllers are
investigated based on the small-signal model [104][105]. In [106], the admittance-
based stability assessment are adopted to studied the control interactions between two
VSCs in frequency-domain. In [107], two MMCs connected to an AC grid system is
studied based on MMC small-signal model. However, the model does not take into
account the internal harmonics of MMC and thus the results are not representative.
Therefore, further work to investigate the interaction between MMCs located in close

proximity are required.
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Figure 1.14 Outlook of HVDC connection in the GB power grid [103]

1.8 Motivation and aims of the work

1.8.1 Research motivation and objective

As discussed in Section 1.6.1, when asymmetric controller in dq frame [50] is
adopted in two-level grid-connected VSC, the converter will generate coupling at
different frequencies between positive- and negative-sequence components in pn frame.
Reference [48][65] only conclude that ignoring this coupling may result in a wrong
estimation of the system stability. The effect of the coupling impedance on system
stability has not been investigated in detail. However, with the increase of grid-
connected converters, e.g. wind farms and PV generation, the strength of grid becomes
weaker and system stability becomes a serious problem [108]. The coupling

impedance may have significant impact on system stability under weak grid.

According to the literature review on MMC impedance modelling, the main

drawbacks of the existing MMC models are:

e The singe-phase model [95][96] cannot be used to describe three-phase MMC

system since the model cannot deal with the zero-sequence current and cannot
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model the controller adopted in three-phase MMC.

e The existing method adopted to deal with the zero-sequence current involves
too many variables in three-phase model [98], which lead to an extra complex
calculation in the model. Moreover, the model adopted has complicated
transformation since the transfer function of the controller in dq frame is
transformed to aff frame and then further to pn frame by introducing the

conjugate transfer function matrix.

e  The calculated admittance matrix of MMC in pn frame has too high dimensions
e.g., 10 by 10 matrix in [98], which brings great difficulty to system stability

assessment.

Thus, it is necessary to develop an accurate and simplified impedance model of

the MMC.

Considering the increased network interconnections and connection of large
offshore wind farms (e.g. in Europe) using HVDC links, many power networks will
see significant numbers of HVDC converters connected in close proximity. Therefore,
further work to investigate the interaction between MMCs located in close proximity

are required.

The main aims of this thesis are:

e to investigate the impedance couplings caused by the control in dq frame
and improve the system stability based on the impedance model of grid-

connected VSC in pn frame under weak grid;

e to develop an accurate and effective impedance mode of the MMC that is

suitable for the practical application;

e to study the impact of different controller setting and control parameters on

MMC system stability;
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e to investigate the interaction of converters in close proximity.

1.8.2  Thesis contributions

The main contributions of this thesis can be summarized as:

e The stability problems associated with the coupling admittance in pn frame
created by the PLL and outer-loop controller are studied based on the small-
signal admittance of the VSC connected to a weak AC grid. An improved outer-
loop controller is proposed to reduce the coupling admittance and improve

system stability.

e A comprehensive impedance model of three-phase MMC is developed based
on HSS theory. In the model proposed, the zero-sequence current is directly
forced to zero to form a 3-phase 3-wire system. The model considers the impact
of the internal harmonic on the impedance and also incorporates the effect of
the controllers. The coupling between the positive-and negative-sequence

brought by dq frame controller is also included in the model.

e With the impedance model, the impact of PLL bandwidth, the outer-loop
controller, different operating point and different operating modes on the small-
signal impedance and the stability of the MMC connected to the ac grid is fully

investigated.

e Interaction of converters in close proximity is studied using the developed
MMC models and system stability assessment in case of multiple MMCs in a
network are carried out by introducing the multi-infeed interaction factor

(MIIF).

1.9 Thesis outline

The work is composed of additional five Chapters, whose contents are outlined

as follows.
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Chapter 2 describes the procedure of deriving VSC admittance in pn sequence
frame. Based on this, the stability problems associated with the coupling admittance
created by the PLL and outer-loop controller of two-level VSCs are studied. An
improved outer-loop controller that reduces the coupling admittance is proposed to

improve the system stability.

Chapter 3 begins with a brief description of the HSS method and then presents a
detailed procedure for deriving the small-signal model of single-phasor MMC system
using HSS modelling approach. The small-signal HSS models of the MMC are
developed, and the small-signal impedance of the MMC is obtained. The time-domain

simulation results are provided to validate the developed MMC impedance models.

Chapter 4 describes the impedance modelling and validation of the three-phase
MMC converter based on HSS. To realize the zero-sequence current control and
capture the multi-frequency response of MMC in a 3-phase 3-wire system, the model
of the three-phase MMC is developed in the pn frame. A complete model of a three-
phase MMC with the description of various controllers are established by using the
HSS method. The coupling between the positive and negative-sequence brought by the
asymmetric dq controller are analyzed in the model. The small-signal impedances
obtained from the developed analytical model are validated using time-domain models

under various different scenarios in MATLAB/Simulink.

Chapter 5 carries out the stability assessment to show how the HSS-based MMC
impedance model can be used in practical system analysis. Two specific scenarios, i.e.,
a single MMC connected to a weak grid and two MMCs connected to AC grids, are
studied for the stability assessment. Based on the impedance-based analysis, the effect
of different controllers, operating points and control modes on MMC impedance and
system stability are investigated. Interaction of converters and stability of system with

multiple converters in close proximity are studied using the developed models

28



considering multi-infeed interaction factors (MIIF). Time-domain simulations are

carried out in MATLAB/Simulink to validate the theoretical analysis.

Chapter 6 concludes the thesis by summarising the major findings of this research

and suggests for future work.
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Chapter 2 Small-signal impedance model of the VSC

connected to a weak grid system

In this chapter, the small-signal model of a grid connected VSC system is
presented. The admittance of the VSC system in dq frame is derived and is used to
carry out system stability assessment by applying the impedance-based method [41].
Since the admittance terms in dq frame are coupled, which increases difficulties of
analyzing the system, in [48], the admittance in dq frame is mapped into the pn frame
to simplify the stability analysis. However, in some cases the coupling admittance of
VSC in pn frame can still impact on the system stability assessment. Based on the
converter admittance in pn frame, the stability problems associated with the coupling
admittance created by the PLL and outer-loop controller are studied separately. To
overcome the disadvantage of the traditional outer-loop controller, an improved outer-
loop controller that can reduce the coupling admittance is proposed to improve the
system stability. VSC connected to a weak power grid system is modelled in

MATLAB-SIMULINK® environment to validate the theoretical study.

2.1 Model of grid connected VSC system

The studied VSC system connected to AC grid is shown in Figure 2.1. As shown
in Figure 2.1, the system consists of a VSC, an RLC-type (Ry Ly C) filter used to
attenuate PWM harmonics generated by the converter, and an AC grid represented by
aRL (R¢L,) Thevenin equivalent circuit. The capacitor voltage vase and inverter current
iabe are measured and used for the VSC controller. Ignoring the voltage variation at the
DC side, the DC link capacitor is replaced by an ideal DC voltage source. The electrical
parameters of the studied system are listed in Table 2.1. Note that this studied system

is modelled based on per unit system. The grid inductance L, is equal to 0.5 p.u.
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(SCR=2) indicating a weak AC grid.
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Figure 2.1 The configuration of a grid connected VSC system

Table 2.1 System and controller parameters of the grid-connected VSC system

AC nominal frequency fy 50 Hz
Coupling inductance Ly 0.15p.u.
Coupling Resistance Ry 0.01 p.u.

Filter Capacitance C 0.1 p.u.
Grid inductance Lg 0.5 p.u. (SCR=2)
Grid Resistance R, 0.01 p.u.
Rated active power 2 MW.
VSC nominal voltage 690 V
Current-loop proportional gain K, 0.36
Current-loop integral gain K; 67.8584
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A conventional dq frame based current control is implemented for the converter.

For the converter circuit, the VSC current-loop dynamics in dq frame are expressed as

Reig + Ls ?:I_I: =Veond —Va + @ Llq (2.1
i dig .
Relg + Ly E = Veong — Vg — @ L¢lg (2.2)

where wo is fundamental angular velocity of the grid. With proportional-integral (PI)

regulators, the current control loop is illustrated in Figure 2.1.

The PLL in the controller is used to estimate the angle of the AC grid. The input
of the PLL loop is the measured capacitor voltage vase, and the output is the estimated
angle 6 which is used to transform the signals between abc and dq frames. As shown
in Figure 2.2, a PI controller is used to control the g-axis voltage v, to 0 in the steady

state so that the d-axis voltage is aligned to the phasor of the grid voltage.

Va Ved
—>

abc

+ +
Ve—> dq Veq m g
04 0 @o

Figure 2.2 Block diagram of the PLL loop

The outer controller consists of two loops, the active power regulator, and the
voltage regulator. The active power regulator controls the active power generated by
converter, and the output of the regulator is the d-axis reference current ig.r as shown
in Figure 2.1. The relationship between d-axis reference current is.r and the reference

of active power Prrbased on per unit system can be expressed as
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H Pref
. =— 2.3
dref Vv ( )

cd

The AC voltage regulator provides the g-axis reference current iy of the current-

loop and the magnitude of the measured AC voltage can be calculated by:

YENVE (2.4)

In the study, a PI regulator is considered for a zero tracking error under steady

state conditions as shown in Figure 2.1.

2.2 VSC Small-signal impedance calculation

Generally, nonlinear systems are converted to linear systems so that classic
control theory can be applied for stability analysis and controller design in the
frequency-domain [50]. To linearize the studied system shown in Figure 2.1, the small
signal theory is introduced. Based on the small-signal model, the small-signal

impedance of the VSC including its controller can be derived.

2.2.1  Admittance in dg frame

Based on (2.1) and (2.2), the small-signal model of the system shown in Figure

2.1 can be derived as:

vV, Y L.s+R —a,L I
AVeond | | AVd _| -t f ot A.d 2.5)
AVong AV, w,L; Lis+R; || al,
where Aveond, AVeong, Ava, Avy, Aig and Aiy, are the disturbance variables of the converter

voltage, capacitor voltage and converter current in the grid dq frame, respectively. wo

is the fundamental angular velocity of the grid voltage.
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When PLL is adopted to synchronize the converter to the grid, there exists two
rotating frames. One frame is the actual system (grid) dq frame and the other is the dq
frame of the controller defined by the PLL. During steady state, the control dq frame
is aligned to the system dq frame, and the steady state voltage and current values are
the same in the two frames. Vu, Vy, 14, 14, Veona and Veong are defined as the steady state
values of the capacitor voltage, converter current and converter voltage in system dq

frame, respectively.

During small-signal perturbations, the control dq frame is not aligned with the
system dq frame anymore and an angle difference Af between the two frames appears.
With the linearization of the PLL model presented in Figure 2.2, the relationship
between the angle difference A8 and ¢ axis perturbation voltage Av, is obtained and

shown in Figure 2.3 [41].

AV,
i PI

\

Figure 2.3 Relationship between A6 and Av,

From Figure 2.3, the transfer function of PLL based on small-signal model can

thus be expressed as:

20=G,, (5)aV, (2.6)

pll

Kpplls+ KipII (27)

G, (s)=
o (8) $* +V, K S +V, Ky

where Gpi(s) is the closed-loop transfer function of PLL, and K,,; and Kjy; are the

proportional and integral gains, respectively.
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It can be observed that if there exists voltage perturbation in the terminal voltage
of the VSC, there will be angle deviation A# extracted from PLL, which will further
affect the frame transformation. During steady state, the relationship between voltage
Vea and Veq in the control frame determined by PLL and Vy and ¥ in the system frame
can be expressed as:

{VMHCO'S(O) sin(oq{vd} (2.8)
Vv —sin(0) cos(0) ||V,

cq

The voltage perturbations Avg and Av, passing through PLL results in:

{vcdnvacos(ow) sin(oue)}{vmvd} 2.9)

Vi taVy, —sin(0+a6) cos(0+a6) Vq+AVq

Subtracting the steady-state component (2.8) from (2.9) yields the voltage

perturbation in PLL frame as:

|:AVCd } _ {Avd +At9\/q +A¢9Aqu| (2 10)

Ach /_\.Vq -AWd -AH/_\.Vd

Ignoring the second order terms A@Avq and a60aVy, (2.10) can be rewritten as:

AVy _ IND +Al9\/q .11
/_\.ch AVq-AWd
Substituting (2.6) into (2.11) yields:
Vg |_| aVy+atN, _ 1 V,Gu(s) | avy 2.12)
AV aV,-atV, 0 1-V,G,(s) | av,

The current perturbation in PLL frame can also be expressed in the similar form
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as:

Aic aly+all, {0 1,G,i (S) :||:Avd}+|:aid} 2.13)
alg Al -Al9| 0 —|de" (s) AV, aly
where /; and [, are the d-axis and g-axis currents, respectively.

The small signal output voltage references by the current controller in system dq

frame can be obtained as:

AVcond — AVcondc _Agvconqc _ O coanpII (S) + AVcondc (2 14)
AVconq conqc +AWcondc O condeII (S) AVconqc
where Veond, Veong, AVeonde and Aveonac are the steady state and disturbance voltages of

the current-loop output in the control frame, respectively.

. . aVy ) Aicd aVy . Aid
Defining matrices: aV, = , alg=| . , aAV= , al=| |,
AV al AV al

cq cq q q

AVeone = Ve > AV, = Ve ) A= 1 q P”(S) R B= 0 IquII(S) 5
AVconqc AVconq 1- Vde"(S) 0 _|de” (S)

[0 VoG (9) ,and Z, = LSRR ok equations (2.5), (2.12)
0 condeII() f a)OLf LfS+Rf ’ o . ’

(2.13) and (2.14) can be rewritten as

(@)

AV, —aV=2Z Al (2.15)
aV, =Aav (2.16)

al, =BaV+al (2.17)
AV = Eav—av , (2.18)
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When the VSC is controlled by the current loop directly, the current controller

matrix is C and D is the decoupling term of the current controller, i.e.:

co K+ Kils 0 519
B 0 K, +Kqls (2.19)
p-| 0 "k 2.20
|loL, O (2.20)

where K,; and K;; are the proportional and integral gains of the current-loop PI
controller, respectively. F is the matrix representing the time delay (74ey) due to digital

control and PWM [41], and is given as

1/(+0.5T,,,S 0
F:{ ( delay ) (221)

0 1/ (1+0.5T,,,S)

Thus, the small perturbation voltage of the converter in the controller dq frame is

derived as
AV =F(=Cal, +Dai, +aV,) (2.22)

According to (2.15)-(2.22), the small-signal admittance of VSC in system dq
frame is obtained as
si  E-FCB+FDB+FA-I

Y, =-2= (2.23)
RY FD-Z, -FC

Y, is the transfer function matrix from disturbance voltage [Avs, Av,]" to

response current [Aig, Aig]", and the form is shown as
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Yiscaa (8)  Viscag (S)} (2.24)

Y (8) = {szch () Yoy (5)

When igerand iger are determined by the outer-loop controllers as described in
Section 2.1, linearizing (2.3) and (2.4) yields the small-signal model of the outer-loop

active power and AC voltage controllers as:

A?dref _ 1 0 ~Pe IV 0 |} aVy (2.25)
Al 0 Kup +K, /s V, Vq AV,
where K., and K,; are the proportional and integral coefficients of the AC voltage PI

controller, respectively. Pris the power reference value.

_ _ 1 0 AV
Defining matrices X = and Z= , the small-
0 K,+K,/s V, A

signal admittance of the VSC with PLL and the outer-loop controllers can be calculated
as:
asi E-FCB+FDB+FA+FCXZA-I

Y, =-2 (2.26)
AV FD-Z,-FC

The schematic diagram for the calculation of the VSC admittance is shown in
Figure 2.4. The small-signal converter admittance Y.s is defined as the transfer
function from the small-perturbation voltage Av to the response current Ai. The
mathematical expression of Y. is derived above. It is noted that for the calculation of
the VSC admittance the current direction is positive when the current Ai flows into

VSC.
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controller

Figure 2.4 The schematic diagram for the calculation of the VSC admittance

When the VSC transmits 1 p.u. active power and 0.2 p.u. reactive power to the
AC grid, and the current loop and PLL are adopted in the VSC controller, the calculated

small-signal admittances of the the VSC using (2.23) are shown in Figure 2.5.
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Figure 2.5 Calculated VSC admittance Yvsc in dq frame

2.2.2  Admittance in pn frame

The transformation matrices between different frames have been introduced in
Section 1.5. Based on the application of the transformation matrices, the VSC small-
signal admittances can be mapped from dq frame into pn frame. The pn frame has been
chosen to study the system stability since in this frame the coupling caused by

synchronous rotating does not exist, which simplifies the impedance analysis.

The pn frame small-signal admittance terms are related to the elements of the

matrix Yy in (2.24) as

1 . . . . . .
Y, (S) =7 (szcdd (S - on) +szcqq (S - Ja)o) + Jszch (S - on) - Jszcdq (S - on)) (227)

vscpp 2
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1 . . . . . .
szcpn (S) = E (szcdd (S + JC()O) _szcqq (S + on) + Jszcdq (S + Ja)o) + Jszch (S + Ja)o )) (228)

1 . . . . . .
szcnp (S) = E (szcdd (S - on) _szcqq (S - Ja)o) - Jszcdq (S - on) - Jszch (S - on)) (229)
1 . . . . . .
szcnn (S) = E (szcdd (S + Ja)o) +szcqq (S + Ja)o) + Jszcdq (S + Ja)o) - Jszch (S + Ja)o )) (230)

The small-signal VSC admittance in pn frame can be expressed as [62]

0 Tl 29,
An(s_zja)o) AVn(s_zjwo)

% _ vscpp (S) vscpn (S)
SN Y (5—2j@,) Y (S—2j,)

vscnp vscnn

(2.31)

where Y.scpn(s) is the small-signal admittance of the converter in pn frame. Yysepp(s),

Yiseon(8), Yosenp(s) and Yysenn(s) are the four elements of the matrix Ysepn.

It is noted that there is no cross coupling between the input Av,, Av, and the output
Aip,, Ai, under the same frequency f,. However, couplings still exist among different
frequencies. As indicated in (2.31), the positive-sequence disturbance voltage Av, at
Jp not only generates the positive-sequence current Aij at f, through Yysepp(s) but also
the negative-sequence current Ai, at f,-2fp through Yisnp(s-2jwo). Similarly, the
negative-sequence disturbance voltage Av, at f, will cause both the negative-sequence
current Ai, at f, through Yysenn(s-2jwo) and the positive-sequence current Ai, at f,+2fy

through Yysepn(s).

When the VSC controller in dq frame is symmetric, there are Yyscasr=Yvseqq and
Yiscag=-Yvseqa. Consequently, Yisepn and Yisenp in (2.28) and (2.29) equal to 0. Under
this condition, the small-signal positive and negative components of the converter are
decoupled. Thus, the positive-sequence voltage Av, only generates the positive-

sequence current Ai, at f, and the negative-sequence voltage Av, only generates
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negative-sequence current Ai, at f,. However, the symmetry of the controller in dq
frame is usually affected by PLL and the outer-loop control adopted in the system [109].
Therefore, the cross-coupling terms Yysepn and Yysenp may have significant impact on

stability assessment, which will be studied in Section 2.6.

2.3 Admittance measuring method in time-domain

A time-domain simulation model of a grid connected VSC is established in
MATLAB/Simulink to verify the small-signal admittance of VSC in pn frame. In order
to extract the admittance in the time-domain simulation, a series of small-perturbation
voltages (Avpa, Avps, Avpe) at different frequencies are injected to the system at the
point of common coupling (PCC) as shown in Figure 2.6. By measuring the response
voltages (Ava, Avp, Av.) and currents (Aiq, Aip, Aic) on the VSC side, the admittance of

the converter in time-domain can be derived.

Zs Aly AV
T e E— D—T—1+)—
_| :Mb PCC AvpbS C Vb .
V“_T_ | —— — AV"°@—|:|—@V—C

AVaAV RS
L e JTTe
controller

Figure 2.6 Simulation model with perturbation voltages injection

In order to derive the 2 by 2 matrix Yspy in the time-domain simulation model,
positive-sequence and negative-sequence voltages are injected into the system,

separately.

For the positive-sequence voltage injection, the voltage is defined as:
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aV,, =aV, cos(w,t)
AV, =aV, CoS(@,t —27/3) (2.32)
aV, =aV, CoS(w,t + 27 /3)

where Av, is the amplitude of the small-signal perturbation voltage, and w,=2mf, is the

frequency of the perturbation voltage.

The response voltage Av,, Avp, and Ave on the VSC side consists of positive-

sequence voltage at frequency w, and negative-sequence voltage at frequency wp,-2wo.

The positive component at frequency wp is described as  aV; ; Za6,

”n (a)p) , where aV,

and A6

l1p are the amplitude and phase of the positive voltage, respectively. The

negative-sequence component at frequency wp-2wo is  described as

aVy, Za8,, (0, —2¢,) , where aV;, and a6, are the amplitude and phase of the
negative voltage, respectively, and (@, —2w@,) denotes the frequency of the negative-

sequence voltage. In the time-domain simulation, aV;,, a8,,, aV;,, and a0, can

vip >
be obtained by FFT analysis on the voltage aV,. Similarly, the positive-sequence and

negative-sequence current responses  al,, Za6)

(@) and 4l Za8, (@, —2@,) can

be derived by FFT analysis of the current al, .

According to (2.31), the response voltage and current at VSC terminal have the

relationship shown as:

|: AilpLAgilp (a)p ) :| _ |: szcpp (a)p) szcpn (wp) :||: AleZAevlp (wp ) i|

Aifln ZAgiln (a)p - 2600) szcnp (wp - 2a)o) szcnn (C()p - 2(00) aVy, ZAev:ln (wp - Zwo)

o) (2.33)
_ Ale aby, a)p
= Yoo () Lvmzw (e, - 20)0)}

vin

For the negative-sequence voltage injection, the perturbation voltage Avpa, Avps,
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and Av,. are defined as:

aV,, =aV, Co8[(@, —2m,)t]
aV,, =aV, Cos[(@, —2a, )t +27 /3] (2.34)
aV,, =aV, cos[(@w, —2a,)t — 27/ 3]

where Av, is the amplitude of the small-signal perturbation voltage. The frequency of

the negative-sequence perturbation voltage is wp-2wo.

Similar to the positive-sequence voltage injection, the negative-sequence voltage

injection generates not only negative-sequence voltage aV,,Za6,,,(®, —2w,) and
current response  al,, Za8,, (0, —2m,) at frequency w,-2wo, but also positive-

sequence voltage aV,,Zaf,,,(®,) and current response al,,Zaf,,

(w,) at
frequency w,. The amplitude and phase of the response voltage and current at VSC

terminal can be obtained by FFT analysis and have the relationship shown as:

AiszAé’iz P (a)p) _ szcpp (a)p) szcpn (a)p) AV, pZL\ﬂvz p (a)p)
aly, £80,,, (0, —2,) (0, =2@,) Yo (@, —2) || aV,, £486,,, (0, —2)

szcnp scnn v2n

(2.35)

AV, ZA@V (a))
= vscPN(a)p)|: ° e :|

AVZnZAHVZn (a)p - 2(00)

Combining (2.33) with (2.35) derives the VSC admittance Yysernv(wp) at
frequency w, as:

Yoo (@)= aiyyZa8,,(@,) alyyZa8,,(,) Vv, 280, (@,) aVy, Lol (@) T (2.36)
NPT Al Z80,, (@, —20,)  aly Z80,, (0, = 2,) || AV £88,, (0, —2,) AV, Z86,, (@, —200,) )

vin

It is noteworthy that when w),, is less than 2w, the frequency (w,-2wo) of injected
negative-sequence voltage Avpe, Avps, and Avye is less than zero. However, in time-
domain simulation, the voltage cannot have negative frequency. To solve this problem,

the voltage expression in (2.34) is rewritten as
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aV,, =aV, cos[(@, —2ay)t] =aV, cos[(2e, — w,)t]
aVy, =aV, Co8[(@, —2w,)t + 27/ 3] =av, cos[(2a, — w, )t =27 1 3] (2.37)
aV,, =aV, CoS[(@, — 2@, )t — 27 1 3] =aV, coS[(2wy, — @, )t +27 1 3]

According to (2.34), the negative frequency injected voltage is converted to the
positive frequency injected voltage, which can be implemented in time-domain
simulation. However, the sequence of the injected voltage is also changed in (2.37),

i.e., the negative-sequence voltage becomes positive-sequence voltage.

In the same way, when w, is less than 2w, the negative-sequence response
voltage and current at frequency (wp-2wo) become positive-sequence voltage and
current at frequency (2wo-wp) in time-domain simulation. Moreover, with the same

mathematical operation in (2.37), the phases of the response voltage and current

-0

v2n»

a0,., a0, and a0, to —af

change from a6, ) in »

vin »

—Aam and —a0

i2n»

that is, the phase becomes inverse.

Thus, when @), is less than 2wo the VSC admittance Y.s.rv(@)) at frequency w,

shown in (2.36) is modified as

aiy 28y, (@,) 2y, 286, (,) vy, L0, (@,) aVyZaby, (@) T (2.38)
alyZ—aby, (wp —2a,)  alypL a8, (a)p —2a,) || aVipL a0y, (wp —2m,) VoL —aby, (wp —2m,)) ’

szcPN (wp) = |:

Figure 2.7 shows the flowchart of VSC small-signal admittance measurement in

time-domain model.
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Figure 2.7 Flowchart of VSC small-signal admittance measurement in time-domain model
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The time-domain simulation carries out a frequency sweep test where repeated

measurements are taken with w), increasing from 2z rad/s to 20007 rad/s in the study.

2.4 Validation of analytical admittance

In the VSC-grid connected system, the VSC transmits 1 p.u. active power and 0.2
p.u. reactive power into the grid. Moreover, the VSC is controlled by the current loop
and PLL. Figure 2.8 compares the analytical admittances and measured admittances
of the VSC in time-domain, where the pink lines denote the analytical admittances and
the blue dots are the admittances measured in time-domain. It can be seen that the
analytical admittances match well with the measured ones, indicating the correctness

of the analytical methods.
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Figure 2.8 Converter admittance terms

2.5 Generalized Nyquist criterion for impedance-based stability analysis
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Figure 2.9 Small-signal equivalent circuit of the system studied

Figure 2.9 shows the small-signal equivalent circuit of the grid connected VSC

system [41]. The converter is modelled in terms of Thevenin equivalent circuit using
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the derived admittance Y., and the grid is described by its Norton equivalent circuit
with the equivalent impedance Z,. Based on the equivalent circuit, the inverter output

current is:

L6)Z8) V()

O 29+2,0 20+2,0 23
Equation (2.39) can be rearranged as
1=[LOONO o7 .40
c g

Assuming that the open-loop transfer function Y.(s)Z,(s) has no right half -plane
poles (open-loop unstable processes in power electronics and systems are rare [109]),
the grid-connected VSC system will be stable if Y.(s)Z,(s) satisfies the generalized

Nyquist criterion (GNC) i.e., it does not encircle (-1,0) for s=w), -c0<w,<+o0.

For multivariable systems, stability-margin definitions were proposed in [110]
and [111], which are complicated and time-consuming due to the introduction of
complex numerical algorithms. Simpler definitions of gain margin and phase margin

are thus adopted according to [109].
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Figure 2.10 Definition of gain margin 4,, and phase margin ¢,

The gain margin 4,, is defined as the reciprocal of the distance between (0, 0) and
the intersection closest to (—1,0) of the Nyquist curve with the real axis, as
schematically shown in Figure 2.10. The phase margin ¢, is defined as the angle
between the negative real axis and the intersection closest to (—1,0) of the Nyquist

curve with the unit circle.

In the studied system, the open-loop transfer function matrix ¥YisernZepy in pn

frame is investigated for the stability analysis based on GNC.

2.6 Stability assessment of grid connected VSC system

Stability assessment of grid connected VSC system illustrated in Figure 2.1 is
carried out here. The effect of coupling admittance resulting from PLL dynamic and
outer-loop controller on system stability is analyzed. Based on the stability assessment
results, an improved outer-loop controller is also proposed in this section to reduce the

coupling admittance and improve system stability.
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2.6.1 Coupling admittance created by PLL

For this study, the controller for the converter consists of the current loop and
PLL but without the outer-loop control. The system and controller parameters are list
in Table 2.1. Figure 2.11 (a) shows the Nyquist plots for 40Hz PLL bandwidth. A; and
A> are the eigenvalues of YcpvZgepy considering the effect of VSC coupling
admittances, while Aip and Az, are the eigenvalues in the case of ignoring coupling
admittances. At the frequencies range higher than 99Hz, the differences between A,
and A, are smaller, indicating that the coupling admittance generated by PLL is small
and thus has negligible impact on stability margin. Increasing the PLL bandwidth to
60Hz, the Nyquist curve shown in Figure 2.11(b) implies that the system becomes
unstable and the coupling admittance generated by PLL will not impact on stability
analysis. It can be concluded that the coupling admittance created by PLL has

negligible impact on system stability even though the PLL has high control bandwidth.

— A
— A |
Ay
- AZn i
o e (-1,0)

(8 PLL bandwidth of 40Hz (b) PLL bandwidth of 60Hz

Figure 2.11 Nyquist plot for different PLL bandwidth

Figure 2.12 shows the simulation results in time-domain when the PLL bandwidth
is changed from 40 Hz to 60Hz at 7.0s. As can be seen, the system is stable for 40 Hz
PLL bandwidth and but becomes unstable when PLL bandwidth is increased to 60 Hz.

The simulation results match the analytical results in Figure 2.11, which verifies the
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effectiveness and accuracy of the stability analysis method based on small-signal

impedance.

2.6.2
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Figure 2.12 Simulation results in time-domain

Coupling admittance created by outer-loop

The coupling admittances caused by the outer-loop controllers can also affect the

system stability. The outer-loop controllers provide references for the current loop as

shown in Figure 2.1. The PLL bandwidth is set to 40Hz in this study. The VSC

coupling admittances terms Yysepn(s) and Yysenp(s-2jwo) for two different AC voltage PI

control parameters (in per unit terms) are compared in Figure 2.13. It can be seen that

coupling admittances increase with the increase of the AC voltage control bandwidth

(higher gains). The corresponding Nyquist plots for the two cases are shown in Figure
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2.14 (a) and (b), respectively. In both Figure 2.14 (a) and (b), A1 and A, are the
eigenvalues considering the effect of VSC coupling admittances, while A1p and Az, are
the eigenvalues when the coupling admittances are ignored. It can be seen in Figure
2.14 (a) that for the system with lower AC voltage control bandwidth, the system is
considered to be stable regardless whether the coupling admittances are included in
the analysis or not. However, for the system with higher AC voltage control bandwidth
in Figure 2.14 (b), the system is considered to be stable if the coupling admittances are
not included in the analysis, whilst the actual system is unstable when the full VSC
admittances are considered. Thus it can be concluded that the coupling admittances
can adversely affect the system stability, and its omitting in stability assessment could

lead to wrong conclusion.
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Figure 2.13 Coupling admittance with different controllers
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(a) With AC voltage PI controller gain: 0.5+10/s (b) With AC voltage PI controller gain: 1.2+10/s

Figure 2.14 Nyquist plot for different AC voltage controllers

2.6.3 Improvement of the outer-loop controller

When the model has the transfer function matrix G(s) as presented in (2.41) and
the components of G(s) have the relationships of Guu(s)=Gyq(s) and Gay(s)=-Gqa(s), it

is defined as symmetric model in dq frame, as proposed in [109].

(2.41)

. :[Gw 5) Gy (s)}

qu (S) qu (S)

Obviously, the small-signal model of the outer-loop controller described in (2.25)
is an asymmetric model in dq frame. The asymmetric will lead to the frequency
coupling effect in pn frame [48], which can also be found according to (2.28) and
(2.29). As the analysis result in Section 2.6.2, i.e., the coupling created by outer-loop
control has negative impact on system stability, reducing the asymmetry between d-
axis and g-axis in the frequency band where resonance may occur can improve system

stability.
To decrease the coupling admittance generated by the outer-loop controller of the
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VSC, an improved outer-loop controller is proposed as shown in Figure 2.15. Through
lower-pass and high-pass filters, the compensation terms k;Aveq and k2Ave, are added
to the d-axis and g-axis, respectively, so as to mitigate the coupling. The time constants
of the low-pass filter T1 and high-pass filter T> are adjusted to ensure that the potential
resonance frequencies of the system are in the pass band of the filters. In this study,
the potential resonance frequencies of the system are in the range from 50Hz to 200Hz
in abc frame [112]. Therefore, T1 and T» are set to 0.001s and 0.01s, respectively, to
make the pass band of the filter from 66Hz to 209Hz in abc frame. The frequency range
from 50Hz to 66Hz is not included to ensure that the control bandwidth of the outer-
loop controller will not be affected by the compensation. In the pass band of the filters,
the small-signal model of the outer-loop controller with the proposed compensation

can be GXpI’CSSGd as
A?dref _ —Pres /Vd2 + kl 0 || aVy (2.42)
AIqref Vd (Kup + Kui /S) kz Ach

The gain ki ranges from 0 to 1 and k is set to (-Py/ V4 +ki) to make diagonal

elements equal, 1.e., Gau(s)=Gyqy(s) in (2.41).

Pref/Vcd
AV
+ cd T.5
Ved - T,5+1
Vet
L Y0
- T8 » ks
Tos+l 1 Tis+l
Veq Ach 2 L

+

PI —» >
Vret Vi |qref + i
cq

Figure 2.15 Improved outer-loop controller
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Figure 2.16 Coupling admittance with outer-loop controller

When £1=0.5 and k>=-0.5, the coupling admittances under traditional outer-loop
controller and improved outer-loop controller are compared in Figure 2.16. It can be
seen that, from 70Hz to 200Hz, both coupling admittance terms are reduced with
improved outer-loop controller, which is beneficial to the system stability. However,

the improved outer-loop controller increases the coupling admittance Yyspn(s) near the
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fundamental frequency, which could have negative impact on the stability. Hence, the
parameters of the improved outer-loop controller should be redesigned according to

different cases.

Figure 2.17 shows the Nyquist plot of the system with improved outer-loop
controller and AC PI voltage controller parameters of 1.2+10/s. Comparing Figure
2.17 and Figure 2.14(b) with the original AC voltage controller, A; in the two plots has
changed significant whereas Aip, (without considering the coupling admittances)
remains largely unchanged. In addition, A; in Figure 2.17 is closer to Aip, indicating
that the improved control reduces the coupling admittance to some degree. Meanwhile,
A1 does not encircle the point (-1, 0), so the system becomes stable and the system
stability is improved. Simulation results in time-domain shown in Figure 2.18 verify
the effectiveness of the proposed outer-loop controller. Before t=3.2s, the system
adopts the improved outer-loop controller and is stable. However, the system becomes
unstable when the outer-loop controller is shifted to the traditional design by setting

the value of k1 and k> to 0 after t=3.2s.

Figure 2.17 Nyquist plot for improved outer-loop controller
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Figure 2.18 Simulation results in time-domain

2.7 Summary

This chapter presents a methodology to calculate the small-signal admittance of
grid connected VSC in the pn frame. The admittance in pn frame is obtained by
applying the transformation equations between dq frame and pn frame. The method
for measuring the VSC small-signal admittance in pn frame is also described in great
detail. Based on the analysis of the obtained admittances, the influences of the pn
coupling admittances generated by PLL and outer-loop controllers on system stability

are investigated. The results indicate that:
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The VSC small-signal admittances from the analytical model accord well with the

measured ones in the corresponding time-domain models.

Under a weak grid, when the VSC is controlled by the current loop directly, the
VSC coupling admittances in pn frame generated by PLL have negligible impact

on system stability and thus can be ignored in system stability analysis.

Traditional outer-loop controllers lead to an asymmetric model in dq frame and

thus create high coupling admittance that has negative impact on system stability.

Through lower-pass and high-pass filters, the improved outer-loop controller adds
compensation terms into d axis and q axis at the potential resonance frequency
range (66Hz-209Hz in the studied case) to reduce the asymmetry of the outer-loop
controller in dq frame. Hence, the coupling admittance in pn frame caused by

traditional outer-loop controller is reduced and the stability of system is enhanced.
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Chapter 3 HSS modelling of single-phase MMC system

MMC technology is increasingly applied for high voltage and high power
applications such as in HVDC systems for renewable energy integration, for its
advantages of modularity, scalability, and high efficiency. However, the complex
internal dynamics and its multifrequency response feature of MMC complicate its
modeling and control. Analysis of complex dynamics and harmonic coupling of MMC

is essential to identify potential system instability and to stable operation.

In this chapter, HSS modeling approach is introduced first due to its capability of
accurate modelling of multiple frequency responses. It is then applied to characterize
the multi-harmonic coupling behaviour of single-phase MMC to establish its small-
signal impedance model covering all internal harmonics within the MMC. Different
control schemes for the MMC, such as open-loop control, ac voltage control, and
circulating current control, have also been incorporated in the model, which further
reveals the impact of the MMC internal dynamics and control dynamics on the MMC
impedance. Time-domain EMT simulation results are provided to validate the
analytical MMC impedance models. Finally, the limitations and drawbacks of the

single-phase MMC model are analyzed.

3.1 HSS modelling method

The harmonic balance method was proposed in 1886 and aimed to obtain the
steady-state solution to nonlinear system [91]. This method transforms a Fourier series
expansion of an input signal into a set of complex exponentials at harmonic
frequencies. Given that both of the series expansions of the input signal and the system
transfer function form an orthonormal basis, the resulting output is also an orthonormal

set of complex exponentials. The mapping from a harmonic of the input signal through
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a particular harmonic of the transfer function is unique to a single harmonic of the
output signal, and therefore, every element of the output vector is linearly independent
of each other. The basic idea of HSS is to derive a linear time-invariant (LTI)
representation of the linear time-periodic (LTP) system in time domain, and thus the
linear control theory can be used for stability analysis and controller design. The HSS
modelling method is able to represent multiple frequency responses in each variable

and build multidimensional harmonic transfer function based models.

A typical power system with connected power electronic converters is a LTP
system in small-signal modelling due to the switching of converters derived from
sinusoidal voltage waveforms is periodic. The LTP system in time-domain can be

described by a set of first order linear state-space equations as
x(t) = At)x(t) + Bt)u(t) 3.1)
y(t) = C[O)x(t) + D)u(t) (3.2)

Equation (3.1) is the state equation, in which x(7) is the state variables, u(t) is the
inputs, A(?) is the state matrix, and B(¢) is the input matrix. Equation (3.2) is the output
equation, in which y(?) is the outputs, C(¢) 1s the output matrix, and D(z) is the direct
transmission matrix. A(z), B(¢), C(¢), and D(¢) are all variant matrices. To be more
precise they are time periodic matrices, i.e., A(t+7)=A(f) and the same to B(?), C(?),

and D(7), where T is the fundamental period.

If the state matrix, and the input and output signals vary, they cannot be solved
by the general state-space equation. Hence, the model needs to be linearized according
to the time-varying trajectories. Based on this, all the time-domain signals x(#) can be

expressed using the Fourier series, as [113]
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x(t)=3 X enat (3.3)

where 7 is the harmonic order and wo is the fundamental frequency of the signal. X, is

the Fourier coefficient at the n™ harmonic and is calculated as
X =2 [T x(t)e "t 3.4
n" ? J.to (G-4)

Additionally, in order to include dynamic performance in the time and frequency-
domain, the Exponentially Modulated Periodic (EMP) signal is introduced to represent

the signals in an LTP system as
X)) = > Xe'et (3.5)

where s is a complex number. The component ¢ modulates each harmonic represented
in the complex Fourier series, allowing the harmonics to vary with time, and hence

describing the dynamics of harmonics under transient conditions.

The differential expression for x(¢) in (3.5) is give as

x(t) = i (ina, +s)X e (3.6)

n=—o0

Based on (3.3), the matrices A(), B(¢), C(¢) and D(?) can be expanded in Fourier

series as
Alt)= D A" (3.7)

Similarly for B(#), C(f) and D(¢), the complex Fourier series can then be
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substituted into the state equation in (3.1), and the Fourier form of the state dynamic

equation can be described as

s

(jna)o +S)Xnejnwol+st _ Z Anejn%t Z Xmejma)OHSl i Z Bnejnwot Z Umejm,,,ot+st
n=-0 Mm=—o0 n=—0

m=—oo

Z Anxmej(n+m)a)ot+st + Z BnUmej(n+m)a;0t+st (38)
n,m=—w0 n,m=—%
Z An,mxmejn%teﬁ + Z Bn,mUmejntheSt

n,m=—o0 n,m=—o0

where m denotes the set of harmonic frequencies of the state variable to represent

frequency cross-coupling.

According to the harmonic balance theory, every harmonic at steady-state in a
system is linearly independent. As a result, every harmonic of the gradient of the
steady-state solution must also be linearly independent. For the nth harmonic, the

steady-state solution can be rewritten as

X, = i A X —jna,X_ + i B, .U, (3.9)

m=—0 Mm=—o0

Similarly, the output equation in (3.2) can be rewritten as
Y, =Y C onXp+ D, DU, (3.10)

Equations (3.9) and (3.10) form the state-space equations, which can represent
the dynamics of an LTP system in time-domain. To fully utilize the standard LTI
techniques to analyze the LTP system, the LTP system should be transformed to an
equivalent LTI system. Thus, the LTP system in the frequency-domain can be
represented as a set of stead-state harmonics which are not functions of time, and

consequently, the LTP system becomes a LTI system in frequency-domain.
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The process of multiplying each single harmonic of the state variables x(7) or the
input u(?¢) by the complex Fourier series of A(?), B(¢), C(¢), or D(¢) is cumbersome, e.g.,

the component > Ae" > X e in (3.8). The Toeplitz matrix is thus

introduced to simplify the process which is given as:

.. a, a, a,
F{an}z ea, a, a,; - (3.11)

a'+2 a+1 a'+0

A(?), B(?), C(), and D(¢) are constructed in the form of a Toeplitz matrix filled
with appropriate Fourier coefficients, whereas x(¢) and u(¢) are decomposed into
column vectors with their Fourier coefficients. Because any LTP system exhibits a
frequency coupling property, the introduction of Toeplitz matrices allows the input
frequency to be shifted to the set of appropriate output frequencies, so as to fully

describe the frequency coupling nature of LTP systems.

If a set of first-order differential equations for each state variable harmonic is
expressed by Toeplitz matrices, the —jnwo component in (3.8) should be expanded and
denoted by an appropriate matrix form. Thus, a diagonal matrix defined below is

adopted to realize the expansion.

D{a,}= a, (3.12)

Thus, the formal expression of the HSS framework in the frequency-domain can

be defined as
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{sx = (A-Q)X+BU (3.13)

Y =CX+DU

where A, B, C, and D denote the Fourier coefficients of A(t), B(t), C(t) and D(t)
established in the form of Toeplitz matrices, respectively. The variables of X, Y, U, A,

B and Q are expressed as:

T

X=Xy Xy Koo Xy o, % | Y:[Y-h"“'Y-llYO’Yl"“’Yh]T; U:[u_h,...’u_l,UO,Ul,...,Uh]T

A, A, - A,
A L
: A, A
A=| A, A A A LA,
A A .
oo A
i A, A A
'B, B, B, |
B, . .
: B, B,
B=| B, B, B, B, . B,
B, B, .
. . By
L Bh Bl BO _
[~ jha, - 1 )
Q= 0-1
| jha, -1 |

The elements X;, Yi, Un, As, and By, are the corresponding h-th Fourier

coefficients of X(t), Y(t), U(t), A(t) and B(t), respectively. Note that A and B are the
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Toeplitz matrices in order to perform the frequency-domain convolution operation to
obtain a clearer and more compact notation. Q is a diagonal matrix that represents the
frequency information, I is an identity matrix having the same size with the number of

state variables, and /4 is the harmonic order.

The general form of HSS in (3.13) illustrates the convolution of each harmonic
of'the state variable, and it equivalents to the first-order differential equation describing
an LTI system. Therefore, a LTI representation of the LTP system can be achieved by

HSS and the HSS model can also be easily extended to any number of harmonics.

The s operator is a complex phasor varying with time. During transient conditions,
it describes the variation of each harmonic frequency with respect to time, and it
vanishes as the harmonics reach steady state, i.e. no further variation in the harmonics.
However, sX does not represent the gradient of the state variable’s time-domain

waveform, it rather strictly represents the variation of the harmonics over time.

A harmonic vector used to represent a signal in the HSS is filled with complex
Fourier coefficients, and it comprises of both positive and negative frequency
components, but they must be complex conjugate pairs for the signal to be real. Thus,
the DC component in the harmonic vector should be a scalar, but for a uniform
representation in this modelling, it is treated as a complex number with zero imaginary

component.

3.2 HSS based impedance model of single-phase MMC

The structure of a 3-phase 4-wire MMC system is shown in Figure 3.1(a). Each
phase of MMC consists of the upper and lower arms, which are in series with the DC
power supply. Each arm has N sub-module (SM) in series with an arm reactor having
equivalent resistance of R, and inductance L. Providing the AC and DC sides are

grounded, the three-phase MMC system can be considered as three independent single-
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phase systems with 120° phase angle difference. Hence, the 3-phase 4-wire MMC

system can be simplified and expressed with the single-phase system.
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(b) Equivalent average model of single-phase MMC

Figure 3.1 Structure and equivalent circuit for 3-phase 4-wire MMC system
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Considering the SM capacitor voltages are balanced and due to high number of
SMs in each arm, the high frequency switching harmonics can be neglected. Thus each
arm can be considered as a controllable voltage source and the equivalent average
model of the single-phase MMC is shown in Figure 3.1(b). As shown in Figure 3.1(b),

Cn 1s the equivalent capacitor in each arm and is given as C,=Csn/N. i, and i; are the
current for the upper and lower arms, whereas chu and V§ are the voltage of the

equivalent upper and low arm capacitor Cy, respectively. n, and »; are the modulation
ratios for the upper and lower arms, respectively. Vg is the DC voltage and Z; is the
load impedance on the AC side. I, and v, are the voltage and current of the MMC AC
terminal, and Av, is the perturbation voltage on the AC side. /. is the internal common

mode current given as

bt (3.14)

‘ 2
The AC-side current i; can be obtained as

iy =1, -1, (3.15)
The terminal voltage v on the AC side is

Vy =2,i, (3.16)

According to Kirchhoff’s voltage law, the following relationship can be obtained

di . v
vV, +L —Y4+Rj +v, =-—% 3.17
g m dt m'u u 2 ( )
di . Vv,
v, —I_md—t'—leI -V, :—7" (3.18)
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where v, and v; are the voltage for the upper and lower arms, which can be calculated

using the capacitor voltage and the modulation ratio as

Vv, =nV> (3.19)

v, =nv; (3.20)

Substituting (3.19) and (3.20) into (3.17) and (3.18) yields

di ) Vv
V. +L —Y4+Rj +nv: =-—% 3.21
g Lm dt m'u uVeu 2 ( )
v~ LW R ne = —\% (3.22)

Subtracting (3.22) from (3.21) and combining (3.14) yields

di,  R,. n - n - 1

—S=——"t, ——V v+ V. (3.23)
dt L, 2L, 2L, 2L,
Adding (3.22) to (3.21) and combining (3.15) yields
di
g _ ns oMo Ry+2Z (3.24)

dt meu Ecl_ I-m g

According to the relationship between the capacitor voltage of the upper and
lower arms and the arm current, there are
dv>

W=ni 3.25
m it u'u ( )
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z
N _pj (3.26)

Co
dt

According to (3.12) and (3.15), (3.25), and (3.26) can be expressed as

av: n,. n, .
W:C_IC-FZC Ig (3.27)

m

av> n . n .
d—;I:C—Ilc—flg (328)

m

Take the circulating current i., the capacitor voltage chu and V§ of the upper

and lower arms, and the current i, on the AC side as the state variables, as
: x x ; i
x®) =[i.) Vi) Vi) i®] (329)
and take the DC-side voltage as the input variable, as
u(t) =[Vy] (3.30)

The state-space equation of MMC can be derived using (3.23), (3.24), (3.27),
and (3.28) as

% _ AQ)X(1) +BH)u() (331)
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R o ]
L. 2L, 2L,
n_U 0 O nu
A(t) = Cn 2Co (3.32)
nooy 0 o '
C, 2C,
0 n,n o R +2Z
L m I-m Lm n
l T
Bt)=|— 0 0 O 333
o2 00 s

where n, and n; are the modulation ratios for the upper and lower arms, which are
determined by the MMC controller and can be expressed, when considering the DC,

fundamental and 2"¢ harmonic output, as [95]

{nu =0.5-n, cos(ayt +6;) —n, Cos(2e,t +6,) (3.34)

n, =0.5+n, cos(aw,t +6,) —n, cos(2mt + 6,)

where n; and 6; are the magnitude and phase angle of the modulation ratio at
fundamental frequency wo and are generated by the MMC AC current control. n, and
0> are at double-frequency and are determined by circulating current suppression

controller (CCSC) [98].

3.21 HSS based MMC steady-state model

According to (3.34), during stable operation of MMC, the modulation ratio 7,
and n; contain the DC component, the fundamental frequency component and the
double frequency component. For the state-variable in (3.29), the AC side current i,

of MMC comprises multiple odd harmonics. The circulating current i. mainly contains

even number harmonics. The capacitor voltage V‘i and ch| of the upper and lower
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arms also include various harmonics including fundamental and double frequency
components [114]. To consider the interaction of the harmonics, transforming the state-
space equation in time-domain in (3.31) into the frequency-domain and establish the

HSS based MMC model in the form of (3.13) as
sX, =(A,-Q)X,+BU, (3.35)

where X is the state variable matrix at different harmonic frequencies and is expressed

as

T

X :[X_h,---,X_l,XO,Xl,---,Xh] (3.36)

where the subscript /# denotes the harmonic order. For example, the element

X, = [ich Van Van g | in the matrix X; indicates that the state variable contains

the 4™ harmonic. Similarly, X, = [Ico Voo Vio Igo} is the DC component in the

state variable.

The input matrix Us at different harmonic frequency is given as

S

U,=[U,, U, U, Uy U T (3.37)

Since the load is connected on the AC side without power supply and the DC-side

has a stable DC voltage, the matrix elements in (3.37) can be expressed as U, =[V, ]

and U, =U_ =--=U, =U, =[0].

As and Bs are the Toeplitz matrices and can be denoted as
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_AO A-l Ah ]
AL
PO A, AL L
A=A, . A A, A, . A, (3.38)
LA A, L
A,
L Ah Al AO_
_BO B-l Bh ]
B, . .
: .. B, B, . .
B.=|B, . B, B, B, . B, (3.39)
. . B, B, . i
T -
L Bh Bl BO_

where the elements in the matrices are attached in the appendix A

Assuming sX=0 in (3.35) for the system in steady state, the steady-state state
variables of MMC at different harmonic frequencies under the input DC voltage V.

can be expressed as
X, =—(A,—Q)"B.U, (3.40)
3.2.2  HSS based MMC small-signal model

The response of MMC can be considered as the superposition of various
harmonics at the fundamental frequency wo. The steady-state model of MMC is
derived using HSS in Section 3.2.1, which includes —4, ..., -1, 0, 1, ..., & order
harmonics. MMC steady-state response has periodical and time-variant features,
whereas the stability analysis is conducted on the premise of time-invariant model. In

this section, the linearized small-signal model of MMC using HSS is derived.

73



Linearizing (3.23), (3.24), (3.27) and (3.28) yields

H z z
WA Ropj Mo e N Va g Vo gy
I T TR T R T T
: 21, + 1
98V Ny yj o 2t e
dt C, ° 2C, ;
o N - (3.41)
2 _ B A - A+ S An,
&t C, ° 2C, 2C,
dAi > - 2AV
L TV YL D S CY WY
dt L, L, T T L,

where A denotes small-signal perturbation. N, and N, are the steady-state upper and

lower arm modulation rations. I, I, V. and V] are

the steady-state internal

circulating current, the AC-side terminal current, and capacitor voltage for the upper

and lower arms. The steady-state components include -4,

harmonics.

ey, 1,0, 1, ..., h order

Equation (3.41) can be written in matrix form and the small-signal state equation

of MMC can be expressed as

AX(t) = A, (AX() + B ,Au(t)

where the small-signal state variables are
AX(t) =[ Ai(t) AVEL(t) AV (D)
The perturbation input Au(t) is

Au(t)=[An, An A, ]

u
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A, 1) | (3.43)

(3.44)



where An,and An, are the perturbation for the upper and lower modulation ratios,
respectively, Av, is the perturbation voltage injected into the AC terminal of the

MMC.

The coefficient matrices can be written as

R NN 0
L 2L, 2L,
Ny 0 N,
A, )= “n 2Co (3.45)
i Ny 0 _ N '
C, 2C_
o M N R+2Z
L Lm Lm Lm a
I _ Vcﬁ _ Vcl2 0 |
2L, 2L,
21, +1
g 0 0
B (t)= = (3.46)
P 21 -1 '
0 c_ ¢
2C,
Vo Voo 2
L I‘m I-m I‘m |

3.2.3  Small-signal model of MMC with controllers

A. Circulating current suppression controller (CCSC)

As the dominant component in the circulating current is the 2" order harmonic,
CCSC for three-phase MMC can be designed using either PI controller in dq frame
(rotating at double frequency) or PR controller in abc frame, and both designs can

effectively suppress the second harmonic circulating current in the MMC arms. Here
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the PR controller in abc stationary frame is adopted. For three-phase PR controller in
the abc frame, each phase control is identical and independent. Therefore, a single-

phase controller can be adopted in the analysis, as shown in Figure 3.2

lcref +

Ker s
2 2
SH+4s+4wy

PR controller

Figure 3.2 Diagram of the circulating current control with PR controller

The common mode current i. as depicted in (3.14) mainly contains the DC
component and the second harmonic circulating current. As shown in Figure 3.2, the
DC current component is removed by adding the steady-state DC current reference
icrei=P/3/Vae, where P denotes the output active power of MMC. K., and K. are the
proportional and resonant coefficients of the PR controller, respectively, and the
resonant frequency is 2wo. The output of the CCSC is the modulation ratio #; at double

frequency in (3.34).

According to the small-signal model of the circulating current controller, the
perturbation of the modulation ratio Anz and the circulating current Ai. can be

expressed as

An, =G (t)Ai, (3.47)

where G..(?) is the gain of the controller and the transfer function in frequency-domain

is
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2K
G,=——"~ ZZK”S - (3.48)
V,, V,(s"+4s+4w;)

B. MMC AC current controller

As single-phase MMC model is considered here, the MMC AC-side current
controller also employs the PR controller in abc frame. The single-phase control

diagram is shown in Figure 3.3.

Kir S
S44s+

PR controller
Figure 3.3 Diagram of the fundamental current control with PR controller

In Figure 3.3, igrris the current reference for the MMC AC side output, and the
resonant frequency of the PR controller is the fundamental frequency wo. K and K-
are the proportional and resonant coefficients of the PR controller, respectively. The

output »; is the fundamental frequency component in (3.34).

According to the small-signal model of the AC-side current controller, the
perturbation of the fundamental frequency modulation ratio An; and the AC current

Aig can be expressed as

An, =G, ()Ai, (3.49)
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where Gi(¢) is the gain of the AC current controller and the transfer function in

frequency-domain is

G __2Kip _ 2KirS
oV, V(S +4s+af)

(3.50)

Moreover, when the controller has the voltage feed forward, the terminal voltage
perturbation Aveof MMC can also affect the perturbation of the fundamental frequency

modulation ratio An; as
An, =G, (t)Av, (3.51)

where G,(?) is the gain from the perturbation voltage to the AC controller output.

The total fundamental frequency perturbation An; is the sum of the components
in (3.49) and (3.51), and the double-frequency perturbation An of the modulation
ratio can be determined by (3.47). According to (3.34), the perturbation for the upper

and lower arms can thus be expressed as

(3.52)

An, = =G, (1)Ai, -G, (1)Av, — G, (t)Al,
AN, = G, (H)Ai, +G, () Av, — G (t)Ai,

Substituting the modulation ratio perturbation (3.52) into the small-signal model

(3.44) derives the small-signal state equations of MMC with controllers, shown as the

matrix form in (3.42), where Au(t), Ap(?) and By(¢) are rewritten as

Au(t) =] Av, ] (3.53)
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G (OVa+Va) Ry, N, N (G, (DZ, +G OV, -V,)
2L, L 2L, 2L, 2L,

N, +G,, (1)1, +0-5|gm) m m N, —(G,OZ, +GO)I. +1,)

Cn 2C,
N, +G,, (t)(I, —0.51,) N+ (G, (0Z, +G 1), -1,) (3.54)
C 2C,
M NN R#+27) N (G,()Z, +G, (V. +V])
Ly Ly Ly L L

L m m

A, )=

G,()Z, (Ve — V)
2L,

-G, (1)Z, (21, +1,)
2C,

G,(1)Z. (21, -1,) (3.55)
2C

2,607,023 +Vd)

B,(t) =

Transforming the above small-signal state equation into frequency-domain and

establishing the model with HSS yield

SAX; = (A, —Q)AX; +B AU, (3.56)
where the state variable matrix AX can be expressed as

AX, =[AX e AX 3 A AX e, X, | (3.57)

p-1? ’ p+h

where  AX_ =[Aicp7h AV, AV, Aigpfh] , the subscript p denotes the

cup-h
perturbation component injected at frequency wp, and the subscript p-4 denotes the

AVZ

clp+h

AV*

response at wp-hwo. Similarly, AX = [Ai supsh

cpsh Al .p ] represents

the response at w,+hwo.
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The small-signal perturbation input matrix AU, is expressed as

e AU

S

AU, =[ AU AU, AU, AU, T (3.58)

p p-1’

The perturbation voltage Av, injected at w, is written as AU :[Avp] , and

AU, , =AU, ,=0 (h>1). The frequency matrix Q is
[~ jhay

Q= jO0w,l (3.59)

jhal |
where I is a 4 by 4 identify matrix.

Equation (3.52) can be expressed in frequency-domain as

{Anu (S) = _Gi (S)A|g (S) - Gv (S)AVg (S) - Gcc (S)AIC (S) (360)

AN (5) = G, (S)Aiy (8) + G, (S)AV, (5) ~ Gy (8)A, (5)

Note that in (3.60), s=jwp. This equation indicates that the modulation ratio
generated by the controller at the perturbation frequency w,. While for the perturbation

variable at wp+hwo, the controller transfer function can be expressed as

{Anu (s+ Jhayy) = =G, (s + jhay, )Ai, (s + jha,) -G, (s + jheg,)Av, (s + jheg)) -G, (s + jha, ) Al (s + jhegy) (3.61)

An, (s + jhe) = Gi(s+ jhay)Ai, (s + Jheg,) + G, (s + jhay)Av, (s + jha,) =G (s + jhay)Ai (s + jha,)

Hence, for different order harmonics, the transfer function for different controller
should conduct corresponding frequency shift and the coefficient matrix A,s can be

written as
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[Ag(s—jhay) A(s—j(h-De,) Ayls)
A (s— jhay) - (3.62)
Ao(s_ jwo) A-1(S) .

A= A, (s— jhay) A (s—jo)) Ays) AL+ jay) A, (s+ jhay)
- AS)  Ag(s+ jay) :
A, (s+ jhay)
A(s) A(s+j(h-Day)  Ag(s+ jhay) |

Due to the transfer function of the controller at different harmonic frequency, the
matrix Aps will not be the Toeplitz matrix, and every element matrix will also be
different. Appendix A lists the expression of the middle row matrix A.i(s), A-1(s), Ao(s),
Ai(s), Au(s) of Ay and other elements in A, can be derived through the frequency shift

of these matrices.

Similarly, matrix Bys can be derived as

[Bo(s— jhewy) B.(s—j(h-D)e,) B.(s)
B,(s— jhay,) R .
Bo(s—jm,) B.(s) . (363)

Bps: Bh(S— jhwo) Bl(s_ ja)o) Bo(s) B-1(5+ ja)o) B, (s+ jhwo)
. - Bi(s) Bo(s+jay)

B, (s+ jhay,)

Bh(s) Bl(s+ j(h_l)wo) Bo(s+ jhwo)

where the element matrices B_x(s), B-1(s), Bo(s), Bi(s), and Bx(s) are given in Appendix
A.

3.24  Small-signal impedance of MMC

If a perturbation voltage Av, is injected into the AC terminal of MMC at w, as
shown in Figure 3.1 (b), the AC terminal will generate the voltage Av, and the current
Aig at wp. The positive current direction is defined as flowing out of MMC. Thus, the
ratio of the small-signal response voltage and current denotes the small-signal

impedance of MMC seen from the AC terminal as
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AV
Ly = -9 (3.64)
Al

9

When the perturbation voltage Av, is injected, due to the existence of Z;, the

terminal voltage perturbation Avg of the MMC is described as
Avy =Av, +Z Ai, (3.65)

According to (3.64) and (3.65), the small-signal impedance Zmmc of MMC can

be written as

AV
Z e =—A—."—ZL (3.66)

lg

In the subsection 3.2.3, the HSS based small-signal model of MMC is described
by (3.56), where Av, is the input voltage, and the AC-side current perturbation Ai, is
one of the state variables. Through solving the state equation (3.56), the relationship
between the input variable Av, and the state variable Ai, can be obtained. The solution

of (3.56) can be expressed as

AX, =(s1-A, +Q)-B AU, =H, AU, (3.67)

hss

where I is the identity matrix, and Hy,, reflects the relationship between the input and
state variables. Extracting the input variable Av, and the state variable Ai; and then

combining with (3.66) yield the small-signal impedance of MMC.

3.3 Verification of small-signal impedance of MMC

To validate the small-signal model of MMC, a time-domain EMT simulation
model in the form of Figure 3.1 is established in Matlab/Simulink. The load impedance

1S Z1=R;+jwoL=90+j0.06Q2 and the related parameters of the MMC are listed in
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Table 3.1.

Table 3.1 Main electrical parameters of the MMC

Parameters Value
MMC rated apparent power (Sn) 1044 MVA
MMC rated active power (P) +1000 MW
MMC rated reactive power(Q) +300 MVar
MMC nominal DC Voltage (Vc) 640 kV(+320 kV)
MMC rated AC output voltage (L-L) (V) 360 kV
Arm resistance (Rm) 0.08 Q
Arm inductance (L) 0.042 H
Cell capacitance (Crm) 31.4 uF
Nominal Frequency (fo) 50 Hz

To derive the small-signal impedance of the MMC in time-domain, frequency
sweeping method is used. The voltage perturbation Av, at w, is injected into the AC
side of MMC with the magnitude of 1kV. The voltage v and the current i, measured at
the AC-side terminal of the MMC are handled by FFT to extract the small-signal
voltage Avgand current Aig at @p. Using (3.64), the small-signal impedance of MMC
in time-domain can be obtained at w,. @, can then be set to different frequencies and

the corresponding MMC impedances cross a wide frequency range can be obtained.

3.3.1 Open loop MMC impedance model validation

In the open-loop model, i.e. no AC current controller or CCSC, the magnitude
and phase of the given modulation ratio at fundamental frequency are fixed at n,;=0.45

and 61=0.01, whilst 7,=0 and 6>=0 for double frequency. In addition, the modulation
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ratio perturbation An, and An; for upper and lower arms in (3.52) are 0. With the HSS
based MMC model established, the impedance can be calculated as shown in Figure
3.4 by considering the harmonic order 2 with 0, 1, 2, 3 and 4 in the model. In addition,

the small-signal impedance of MMC measured in time-domain is also compared in

Figure 3.4.
Impedance [(2]
0
Ke)
S,
0]
ko)
2
510°
@ = Small-signal model - h=0
= | |=—Small-signal model - h=1 |
1 Small-signal model - h=2 2
10" |=Smal-signal model - h=3 10
—Small-signal model - h=4 Phase
100 — ® matlab-time-domain
>
0]
=
o O0r -
(%]
)
£
o
-100 ‘
10" Frequency [Hz] 102

Figure 3.4 The impedance plot of HSS model and time-domain simulation model

It can be observed that the harmonic order considered in the HSS model of the
MMC has a great impact on the accuracy of the analytical impedance model. Since
significant steady-state harmonic components exist in the MMC arm current and
capacitor voltage, the higher the harmonic order is considered in the HSS model, the
more accurate the analytical impedance model is. In the impedance magnitudes shown
in Figure 3.4, the solid red line which represents the magnitude of the HSS impedance
model with #=4 overlap with that of the time-domain simulation model which is shown
as blue dots in the figure. In the impedance phases shown in Figure 3.4, close match
between those two models can also be observed. Based on those observations, it can
be indicated that the analytical model with #=4 matches well with the measured results

in the time-domain simulation.
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3.3.2  Impedance model validation of the MMC with CCSC

In this part, the analytical model of the MMC system with CCSC is validated
against the Matlab/Simulink time-domain model. The CCSC adopts the control design
shown in Figure 3.2. The harmonic order % of the analytical model is selected as 2. As
shown in Figure 3.5, the analytical impedance has a good agreement with the measured
results in the simulation, which validates the analytical MMC impedance model.
Moreover, it is worth noting that the high order harmonic components are well
suppressed by CCSC so the analytical model with 4=2 is sufficient, i.e. with h=3 and

4 the calculated impedances are largely identical to those shown in Figure 3.5.

Impedance [2]

N

o
N
T

Magnitude [abs]

;Small-signal model - h=2
* Matlab time-domain ‘ ‘ ‘ |

N
o
o

200,

Phase [deg]

-200" :
10" Frequency [Hz] 10?

Figure 3.5 Analytical and simulation measured impedances of the MMC with CCSC

3.3.3 Impedance model validation of the MMC with full control

With the CCSC and the AC current controller included, Figure 3.6 compares the
measured and calculated small-signal impedance of the MMC using the developed
HSS analytical model with #=2. It can be observed that the two impedances match
well, which verifies that the small-signal model established can produce accurate the

small-signal MMC impedance with the controllers.
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Figure 3.6 Analytical and simulation measured impedances of the MMC with full control

3.4 Problems existing in the single-phase MMC model

If the system uses the 3-phase 4-wire configuration, the three-phase MMC system
can be analysed using single-phase systems. However, practical MMC systems
normally do not have solid grounding on the DC mid-point employ and thus effectively
resemble a 3-phase 3-wire connection. For the 3-phase 4-wire system, common AC
and DC grounding allows common mode current to flow, e.g. third harmonic current.
While for the 3-phase 3-wire system, there is no common mode current flowing
through the AC and DC sides. The existence of the third harmonic in the 4-wire system
can significantly affect the impedance of MMC, as will be discussed in detail in the
next Chapter. Therefore, the single-phase modelling method for MMC proposed in this

chapter cannot represent the true MMC impendence in real systems.

The MMC model established chooses the voltage on the AC-side ground point as
reference. In order to obtain the operating point of the MMC terminal voltage, the load
impedance Z; needs to be included in the small-signal model of MMC. In the case of
complex AC grid configuration, the mathematical expression of Z; is difficult to obtain

and thus this complicates the small-signal modelling of MMC. Nevertheless, if the
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MMC terminal voltage is chosen as the reference point, the small-signal model

developed will not depend on the impedance on the AC side.

When the MMC adopts the PR control in abc frame, the transfer function of the

control for phase a, b and c is independent and identical. Take the AC-side current loop

for example

An, G(s) O 0 ||AI
Ang =] 0  G(s) 0 | A,
An,, 0 0 G(s) ]| Al

ga

(3.68)

It can be seen that the modulation ratio Ani, for phase a is only associated with
phase a current Aig,. Thus the transfer function for three-phase controller can be
simplified into single-phase ones. Note that in Section 3.2, both the CCSC and the AC-
side current control adopt the PR control in abc frame. If other controls are employed,

for example, the PR control in aff frame, the transfer function is given as

An, | |G(s) 0 | Aig, 360
An, { 0 G(s)} Aig, (3.69)

Transforming into the abc frame yields

n, 1 —= —= ||Aig
“l 2] 1 J3|[G(s) O 2 2 °
M1=372 2| 0 6 NN
An (s) 0 —3 ——3 Al
1c _1 _ﬁ 2 gc
L2 2. . E (3.70)
G(s) —-=G(s) —=G(s)
2 2 Al
2| 1 1 A
= —|-=G(s G(s —=G(s) || Al
3l 72 (s) (s) 5 (s) A_gb
Lo -low 6E | °
L 2 2 i
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For (3.58), it can be seen that phase a modulation ratio Ani, is not only associated
with phase a current Aig, but also phase b and ¢ current Aig, and Aig.. Therefore, the
modulation ratio An; for any phase cannot be represented by only its own phase current
perturbation. In this situation, the controller transfer function cannot be acquired
accurately. Thus, the impedance obtained from the single-phase modelling method is

only valid and suitable for the MMC using PR control in abc frame.

The small-signal impedance of MMC derived reflects the relationship of the
terminal voltage Av, and the resulting current Aig at the same frequency. However, as
documented in literatures and from the time-domain simulation model, perturbation at
one frequency can generate multiple frequency responses. Figure3.7 shows the
measured FFT results for the terminal voltage v, and current i, from the time-domain

model where the perturbation voltage Av, at 40Hz is injected.

200 1 27
150 15

&4 5]
2 00 1

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Frequency (Hz) Frequency (Hz)

(@) ve (b) ig

Figure3.7 FFT analysis result for the terminal voltage and current with perturbation injection

According to the FFT results, it is obvious that the perturbation voltage at 40Hz
not only causes the current response at 40Hz but also the voltage and current at 60Hz.
In fact, different frequency coupling exists in the input and the response is generated
by the internal harmonics of MMC, which is an important feature of MMC. However,

the impedance modelling method for MMC in this chapter only reflects the AC
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terminal voltage and current at the same frequency without considering different
frequency coupling characteristics, which may lead to inaccurate stability analysis if

such impedance models are used.

3.5 Summary

The HSS modeling approach is adopted for developing three-phase MMC
impedance based on the single-phase equivalent circuit. The developed small-signal
MMC impedance models includes all the internal harmonics within the MMC under
various control strategies. The results show that the HSS modeling method can
effectively explore both steady-state frequency coupling and dynamic harmonic
interactions in power electronics based systems. Close matches have been observed
between the impedances calculated from the developed analytical model and measured
ones using frequency sweeping method from the time-domain EMT models. However,
the study has also found that the single-phase modelling approach, which considers
the system as an equivalent 3-phase 4-wire system, is not entirely effective for
modelling practical MMC systems due to the absence of common AC and DC
grounding point in practical installations. The controller adopted for the single-phase
model cannot represent the actual control applied at the three-phase system. In addition,
the MMC impedance only accounts for the voltage and current at the same frequency
without considering different frequency coupling characteristics. Chapter 4 will further

modelling method for addressing such problems.
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Chapter 4 Harmonic state-space modelling of three-

phase MMC

This chapter focuses on developing an accurate small signal impedance model of
the three-phase MMC using the HSS method based on the developed single-phase
MMC model in Chapter 3. The MMC model established represents a practical 3-phase
3-wire MMC system. The detailed modelling procedure is described using the HSS
theory. To accommodate multiple harmonics in the linearization process, a matrix
formulation is introduced and used to model both the converter power stage and its
control including the PLL, the circulating current suppression control, AC current
control and outer-loop power and AC voltage control. It further reveals the impact of
the MMC internal dynamics and control dynamics on the MMC impedance. The
derived impedance models are then verified by comparing the frequency responses of
the developed analytical model with the impedances measured from a nonlinear time-

domain simulation model in MATLAB/Simulink.

4.1 Linearizing the model of MMC in abc frame

The structure of a three-phase MMC is shown in Figure 4.1(a). Take phase a for
example, V, and Z; represent the AC grid voltage and AC impedance used to determine
the steady-state operating point, respectively. The upper and lower arms are connected
in series to form one phase-leg with the upper and lower arm current being i, and i,
the voltage v.« and vi, , and modulation control signal 7., and nj,. Each arm includes
N sub-modules (SMs) with the capacitance of Cs», and an arm reactor with inductance
Ly, and resistance R,. The average-value modelling method is used [87], in which it is
assumed that the capacitor voltages in the SMs are balanced and the high-order

switching harmonics of arms are negligible.
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(b) Averaged equivalent circuit of a three-phase MMC

Figure 4.1 Structure and equivalent circuit of a three-phase MMC

The equivalent circuit of the MMC average model is depicted in Figure 4.1(b). A

lumped equivalent capacitor C,, is used to represent the capacitors of all SMs in one

arm and equals to Csm/N. cha and Vcla denote the sum of the capacitor voltages of
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SMs in the upper and lower arms, respectively, and v, and iy, are the respective voltage
and current on the MMC AC side. Ve is the DC side voltage and is assumed to be
constant. Since the system is in a 3-phase 3-wire connection, the voltage of the DC

neutral point is v,.

For ease of analysis, the three-phase quantities are defined in 3 by 1 matrices as
. D D . . .
Vaabe, Ygabes V giane » Velane » Yuabes Yuabes Viabe, Vabe, leabe, Vacand vy, whereas Nuase and Nuape

are 3 by 3 diagonal matrices.

For a three-phase MMC, the relationship between the arm voltage and the

equivalent capacitor voltage of the SMs can be expressed as

- >
{Vuabc =Nyane * Veuave (4 1)
Viabe =Miabe * Velave

The internal dynamics between equivalent capacitor voltage of SMs and the arm

current are depicted as

z
. dvcuabc =n -
m dt “uabc ~ "uabc

dv .
clabc —
Cn- _nlabc : IIa\bc

"ot

4.2)

Both the arm voltage v,,. and capacitor voltage Vébc contain multiple harmonics

under steady-state. It indicates that MMC has multi-frequency response due to its

significant steady-state harmonic components in the arm voltage and capacitor voltage.

The common mode current which circulates inside the MMC arms without

appearing on the AC terminal is denoted as
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lape H
cabe= uabc2 labc (43)

The current on the AC side can be calculated as

(4.4)

Igabc =lyane Niabe

According to the Kirchhoff’s law, the voltage on the AC terminal of MMC and

the current and voltage of the arm have the following relationship

V
uabc _ _dc
gabc+Lm + R uabc + Vuabc - 2 +Vn
4.5)
vV — —dl'ab°—R -V, =——%4y
gabc Lm ’ dt m " abc labc — 2 n

Combining (4.1), (4.2), (4.3), (4.4) with (4.5) derives the state-space equation

of MMC as
dicabc — R m _ Nyane |, _ Nyabe VZ + Vdc
dt L cabc 2|—m cuabc 2|—m clabc 2Lm
dlgabc - R —m r-]uabc VZ + Njape VZ _iv + 2Vn
- gabc cuabc clabc gabc
d L, L, L, L, L, 46
dvcuabc - nuabc H 4 —uabe nuabc H
dt Cm cabc 2C gabc
chIabc - nIabc H nIabc H
dt Cm cabc 2C gabc

Introducing the small perturbation analysis to linearize (4.6) yields the small-

signal state-space model of three-phase MMC in abc frame as
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H z z
d Algane = I:zm N _ Nuabc AVZ _ Nlabc AVZ _ chabc AN _ Vclabc AN
dt L cabc 2 L cuabc 2 I-m clabc 2 L uabc 2 L labc
m m m m
dai R N N \Vo > 2
gabc __ Tm Al __ Vuahc AVZ 4 —labe AVZ __Vcuahc AN 4 _ clabe AN —Z v +-2AV
dt gabc L cuabc L clabc L uabc L labc L pabc L n
Lm m m m m m m (4 7)
5 .
dAchabc — Nuabc | + Nuabc | + Icabc n + Igabc n
dt - C cabc 2C Alganc I Allyane 2C Alljapne
m m m m
)
dAVcIabc = Nlabc i _ Nlabc Al + Icabc AN _ Igabc AN
b b lab lab
dt Cm cabc 2Cm gabc Cm abc 2Cm abc

where variables in capital form denote the values at the steady-state operation point

and variables with A denote the corresponding small perturbations. Av,asc is the injected

small perturbation voltage at the MMC AC terminal.

4.2 Transforming the small-signal model of MMC in abc frame to pn frame

The pn frame has been chosen to study the system stability since it enables any
number of harmonics to be effectively tracked for three-phase system [25]. The matrix
P is adopted to realize the frame transformation from abc coordinate to the pn frame

whereas P™is the inverse matrix, as

1 &7 o'
p=|1 &7 o7
1 1 1

(4.8)

Apply the transformation for the current, voltage and modulation signals, as

1k o0 =p1l..i . > _pl . > _pl (=
P ‘Al 5 AIgabc_l:) AIgPNO’ Achabc_l:) ‘AVpNo 5 Avclabc_P “AVieno

al cabc

—_p-l . _p-1 . —p1,
AN =P AN oo AN =P AN gy, AVpabc_P AaVoeng -

Thus, (4.7) can be rewritten in the pn coordinate frame as

94



dAicPNO - Rm I:)Nuabcp-l >} PNIathr1 >} PVC%ath-l Pvc%abcp-1

dt _'qucPNo - 2L, AVipno ~ 2L, AVelpno _TAnuPNO _TAnlpwo
dai Ry~ .  PN.P* PN, P PV, P* PVE, P? 2
ﬂ:'7mczA|gPN0_ — EJPNO e EPNO_ e, wnot clabe ANy =74V ey

dt L, L, L, L, L, " 49
daVieno - PNygeP* o PN P* o o Pl P* Pl P (4.9)

CUPNO — uabc AlcPNO + uabc C Al PNO+ cabc AN PNO + gabc AN PNO

dt C, 2c, ¢ c, 2c,
davio, _ PN P" . PN,.P* . . Pl,.P" C,Pl,P*

d;IPNO = cI‘;\bc INP 2lél::rc CzAlgPN0+ cca:bc ANy — m 2Cga\l:rc ANpno

m m m m

Due to the three-phase three-wire system, no zero-sequence current circulation
path exists at MMC AC side [96]. Note that in (4.7), Av, is a zero-sequence
compensation voltage and is inserted into the AC side to eliminate the zero-sequence
grid current in abc frame [98]. However, to simplify the analysis, a matrix C, is
introduced here in the analytical model in pn frame to force the zero-sequence grid

current zero and thus Av, can be ignored in (4.9), as

100
C,=|0 1 0 (4.10)
000

The small-signal model of the three-phase MMC around an operation trajectory

in pn frame, characterized by Aicenvo, Algpvo, AV, and av> can be derived in

cuPNO cIPNO ?

matrix form as

AXpyo TAGaXpyo +Mangy, +Bav g, (4.11)

where
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Ru 0
Lm
0 -&-CZ
L,
PN,,.P™ PNuabCP’l'C
C, 2C.. ’
PN,,..P™ _PNIabCP’l_C
L Cm 2Cm ’
PVeP
2L,
PVZ, P
M= L,
(2Pl P + Pl P ™)
2C..
i 0

(2PI

_ I:)Nuabcl:r1 _ I:)Nlabcl:)il_
2L 2L
_ l:)Nuabcl:r1 I:)Nlabcl:r1
L, L,
0 0
0 0
_ F)\/c%abcl:r1
2L
I:)\/c%abcl:)_1
L,
0
cach)_1 - Pl gabcP_l)
2C, |

B:[O '2|/|-m 0 O]T’AnPNOZ[AnuPNO AanNo]T

-
— i i Z z
AXPNO_I:AICPNO algeno AVepno AVCIPNo:I :

current. Thus Anpno can be expressed as
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In (4.11), As is the coefficient matrix, determined by Lm, Rm, Cn and the steady-
state variables Njus and Nuase of the modulation ratio. B is the coefficient matrix of the
input variables and is only related with the arm inductor L. In order to derive the state
equation of the system, the relationship among the modulation ratio Anpyo, the state

variable Axpno and the input variable Av,pno should be identified in pn frame.

When the MMC controller is considered, the variation Anpxo of the modulation
ratio depends on the control variables of the controller. The control variables of the

MMC generally include the AC current and voltage as well as the internal circulating




AnuPNO__GiPNO ‘algeng _GVPNO “aVgpno _GccPNO ‘alpyg
AnIPNOZGiPNO Al T GvPNO ‘aVeno _GCCPNO “alepng

(4.12)

where Gipnvo, Gypnvo and Geepno are the gain matrices of the relevant controllers.

Rewriting (4.12) in matrix form yields the relationship among the modulation

ratio Anppo, the state variable Axpno, and the voltage Avgpno as

0 0l av>

Alpng
Ao |_| =Geapno “Gieno 0 0| 2lgeno + -G pno
- G G ‘aVeno
ANy, T ePNO iPNO

(4.13)
CcuPN 0 GVPNO
V§PNO
Equation (4.13) can be depicted in simple forms as
ANpy =G, aXpyo +Gp “aVgeno (4.14)

where G . = _GccPNO _GiPNO 00 and G. = _GVPNO
A _GccPNO GiPNO 00 ° GvPNO .

Substituting (4.14) into (4.11) derives the small-signal state-space equation of
the three-phase MMC in pn frame as

Xy Z(A, +MG ) aXpro + (B+MGy )aV o

(4.15)
4.3 MMC modelling using HSS method

All the state variables in (4.15) are periodic signals in the steady state, and the
MMC is deemed essentially a time periodic system. Based on the HSS modelling

method, the time-domain state-space equation (4.15) of the MMC is transformed to
the small-signal HSS model expressed as
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SaXppng =(A; + MG, —Q)-aXpyg +(M-Gg +B)-aV oy (4.16)

According to the general equation of HSS, Fourier expansion of (4.16) can be

written as

SAXPNO :(F[As]+F[M] ‘HG, - Q) 'AXPNO + (F[B]+F[M] ‘HG, ) 'AVpPNo (4.17)

where T'TA.], T[B] and T[M] are Toeplitz matrices, which are related with the

MMC parameters Lm, Rm, Cm and the harmonic components at the steady-state
operation point of the MMC. HGy is the control transfer matrix associated with the

harmonic state variables, and HGg is the one with the harmonic input variables. Their

specific expressions are decided by the controller. aXpy, and aV, are the

harmonic state variable matrices and the input matrix in harmonic frequency,

respectively. These matrices I'TA.], T[B], T[M], HG4, HGs, aX;y,, and aVg,

are given as in the Appendix B.

4.4 Small-signal modelling of MMC control

To establish a complete small-signal model of MMC, its control needs to be
included in the modelling. As shown in the state-space equation (4.17), HG4 and HG3
are the transfer function matrices determined by the controller in pn frame. Therefore,
to derive the small-signal impedance of MMC, the transfer function of specific
controllers should be achieved in corresponding frame and then the frame

transformation should be carried out to obtain the transfer function in pn frame.

4.4.1 Circulating current suppression controller (CCSC)

The circulating current flows within the arms and transfers charge between the

SM capacitors, which plays a very important role in MMC internal dynamics.
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Therefore, the circulating current control has significant impacts on the converter
impedance response. The implementation of a PR controller in the circulating current
suppression control is depicted in Figure 4.2. In general, since the circulating current
contains a series of even-harmonic components, in which the second-order harmonic
currents are the dominant components in the circulating current, the objective is to
suppress the dominant second order harmonic circulating currents by setting the
references to zero and 2wo to be twice of the fundamental frequency. The circulating
current signal is obtained by filtering out the DC component from the common mode
current in (4.3) using high pass filters (HPF), as shown in Figure 4.2. Since this
controller acts on the common-mode component of the modulation functions of the
upper and lower arms in each phase leg, its output is added with the same sign to the

modulation functions of the upper and lower arms.

PR controller

Figure 4.2 Diagram of circulating current suppression controller

The transfer function of the PR controller can be expressed as [115]

K
G (s) =K, + I 4.18
o (8) = Ky 2 + 20,5 + 40} 4.18)

where Kyp and K- are the proportional and resonant coefficients of the PR controller,

respectively. . 1s the cutoff frequency and wo is the fundamental frequency.

The transfer function of HPF is
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SZ

Gpe (S) =
wor (9) S“+2lw s+’

(4.19)

where w, is the un-damped natural frequency and ( is the damping factor [116].

Thus, the double frequency output modulation signal by the CCSC and the

circulating current have the following relationship

al,, Aica
aly (=G e (9)] aly, (4.20)
NP Aicc

where Geeanc(s) 1s the circulating current transfer function matrix in abe frame, and is

given as
B Gypr (S)Gpr (5) 0 0
G ceanc (S) = v 0 Gypr (S)Gpr (S) 0 (4.21)
* 0 0 Grpr (5)Gen (5)

The corresponding CCSC transfer function in pn frame Gecpno(s), as part of HG4

in (4.17), can be derived as

GccPNO (S):P -G (S) ' P_l (422)

ccabc

4.4.2 Current control at MMC AC terminal

The current control loop has fast response and the capability of limiting the
current when system faults occur. The block diagram of an inner current loop including

the PLL is presented in Figure 4.3.
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Figure 4.3 The block diagram of an inner current loop

As shown, veare and igqse are the actual network voltage and current at the MMC
AC terminal, respectively. The PLL extracts the voltage phase angle through three-
phase voltage va to be used for abe to dq frame transformation of voltage and current.
L is the equivalent input AC inductance and equals to half of the inductance of the arm
reactor L,. The output of the current control loop is the fundamental frequency
modulation ratio n;.c. When the voltage perturbation occurs, the dynamics of the PLL

can be described as [41]
A(9:Gp” AV, (4.23)
where Gy is the transfer function of the PLL and is expressed as

Kpplls+ KipII (424)

G, (s)=
o (°) 7 +V, K s +V, Ky,

where K,y; and Kjy; are the proportional and integral coefficients of the PLL PI

controller, respectively.

It can be observed that if there exists voltage perturbation in the terminal voltage
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of MMC, there will be angle deviation A8 extracted from PLL, and consequently, A0

will further affect the frame transformation.

During steady state, the relationship between voltage V4 and V, in the control

frame determined by PLL and V; and ¥ in the system frame can be written as:

V¢ | [ cos(0) sin(0) [V, (4.25)
Ve || =sin(0) cos(0) ||V, '

q

The voltage perturbations Avg and Av, passing through PLL result in

{VJ TR } { cos(0+6)  sin(0+a6) }{Vd Vs } (4.26)

Vi+aVy | | -sin(0+a0) cos(0+4a0) ||V, tay,

Subtracting the steady-state component (4.25) from (4.26) yields the voltage

perturbation in PLL frame as

l:AVg :| _ |:AVd +A9\/q +A9Avq:| (4 27)

AV; AVq 'Awd -AﬂAVd

Ignoring the second order terms A@AVq and AHAVd , (4.27) can be rewritten as

AVE _ AV, +A9\/q (428)
AVE AVq -AWd

q

Substituting (4.23) into (4.28) yields
Avy _ Avy + AV, _ 1 VG, Av, (4.29)
Av, Av, — AN, 0 1-V,G, || Ay,

The current perturbation in PLL frame can also be expressed in the similar form
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as

Aig _ Aid+A9Iq _ 0 1,G, || Avy N A?d (4.30)
Aig Ai, —AO1, 0 —1,G, || Av, Ai,

where /; and [, are the d-axis and g-axis currents, respectively.

The voltage reference value in system dq frame can be obtained as

AVcond AVcond chf)nq — AVcond + 0 Vcoan AVd ( 4.3 1)
Avconq A conq + A H\/c(t:)nd AVconq O Vcond G q

where Veona and Veong are the output d-axis and g-axis voltage of the current control

loop, respectively.

To derive a simplified matrix form, we can define the following matrices:

[T VG s_[0 1Cu | ~_[Gm O] j_[0 -aL
0 1-V,G,, | ’ 0 -1,G, |’ 0 Gy |~ w, L o |’

m

0 VG

cond

0 VeoneCui
and E - |: cong :|

The inner current controller for small-signal perturbation can be depicted using

the blocks shown in Figure 4.4.
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i A0 l AB
AVd AVdc Ald Aidc

AD —] —> —] —>
AVg—s Gy Avg @29 Ay A |@30)]  ajg
—] — —] —>

+ + Avd AVcondc AVcond Anld
4>?—> Gt - > V/2
0 — —

Aidc a)oLAidc (431)
Av® An
+ + 9 AV € Av, 1q
4>?—> Gl 1‘% cong > conq @_»
0 — +
Aiqc a)oLAiqC

Figure 4.4 Block diagram of an inner current controller for small-signal perturbation

According to Figure 4.4, the perturbation relationship between the modulation

ratio and voltage and current can be written as

ANy, I\%(D—C)Aidq +\/£(DB+E+A—CB)Aqu (4.32)

dc dc

Thus, in dq frame, the transfer functions between the perturbations of the

modulation ratio and the current and voltage can be expressed respectively as

G =V£(D—C) (4.33)

dc

G :Vi(DB+ E+A-CB) (4.34)

dc

The controller transfer functions in dq frame can generally be expressed as

(4.35)

Gidq (s) = |:Gidd (s) Gidq (S)}

G (8)  Gigg(5)
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(4.36)

Gqu (S) _ |:Gvdd (S) Gvdq (S)}

qud (S) quq (S)

Since Giyy and Gy, are matrices in dq frame, they need be transformed into pn

frame using (4.37).

1 . . . . .
Gipp () = E[Gidd (s—jay) +quq (s—jap)— JGidq (s—Jjay) +qud (s- Ja)o)]

1 : . . . .
Gipn (8) = E[Gidd (S+ Jy) =Gigq (S + Jar) + [Gigq (S + j0y) + Gy (5 + on)]

199

) (4.37)
Gine () =§[Gidd (5= jy) = Gigg (= j@y) — [Gig (S — J,) ~Gigg (5 @) |

1 : . . . .
G (8) = 5[ s (5+ ) + Gy 5+ J2) + [Gigg 5+ J) ~ Gy (5+ )|

199

After transformation, the controller transfer functions in pn frame are depicted as

ang(S)] [Gep(s) Gpy(s) Of 2ip(s)
any (5) =] Gp(S) Gy () 0| 2iy(s) (4.38)
an,y(s) | 0 0 0| aly(S)

ang () | _GVPP (s) Gn(s) Off ave(s)
Al () |= Gp () G (s) O aVy (s) (4.39)
an,y(s) | 0 0 aVy(s)

o

The coupling relation generated by the controller at different frequency in pn

frame has been studied in Chapter 2, and specifically:

e Gipp(s) in the current transfer function G;pno(s) indicates that the positive-sequence
current Aiy(s) at frequency f, produces the positive-sequence control signal A n;p(s)
at the same frequency f;

e Givp(s) indicates that the positive-sequence current Aiy(s) generates the negative-

sequence Anin(s-2jwo) at frequency f,-2wo;
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e Gipn(s) indicates that the negative-sequence current Ain(s) at frequency f, generates
the positive-sequence Anip(s+2jwo) at frequency f,+2wo;
e GiynM(s) indicates that the negative-sequence current Ain(s) at frequency f, produces

the negative-sequence control signal An;n(s) at the same frequency.

As describe above, the input Aiy(s) generates two control signals An;p(s) and
Anin(s-2jwo). These two signals are represented by the same symbol an;p(s) in (4.38)
by ignoring the frequency shift. However, when the transfer function of controller is
introduced into the HSS model, the relationship between each input and output needs
to be expressed clearly and accurately. Therefore, the control signals An;ip(s) and Anin(s-
2jwo) created by Ai,(s) need to be separated. The same procedure is carried out for

Anin(s) and Anip(s+2jwo) created by ain(s). For accurate expression, (4.38) is rewritten

as:
_AniPNO(S_ j2a)0)_ _GNPiPNO(S)_
ANy (S— jay) 0
AniPNo(S) = GiPNO(S) [AiiPNO(S)] (4.40)
ANy (S+ jay) 0
_AniPNO(S+ jza)o)_ _GPNiPNO(S)_
Go(s) 0 O 0 00
where GiPNO(S): 0 GiNN(S) 0 5 GNPiPNO(S): GiPNO(S) 00 )
0 0 0 0 00
0 GiPNO(S) 0 Anip(s) Aip(s)
GPN\,(s)=|0 0 0] , alg(S)=lany(s)| , alpyo(S) =] aly(S)
0 0 0 Ay (s) aly(9)
ang (St jo,) ahg (st j2am,)
ANy (ST jay) =] aMy (St jay) |, aNipyo(St j20) =| any (St J2a9,) |.
ahg (st jay) ahy (st j2a,)

Combining Gecpno(s) derived in Section 4.4.1 with Gipno(s) yields the transfer
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function Ga(s) for the modulation ratio of the upper and lower arms in (4.16) as

_AicPNO(S)_

AnuPNO(S) _ AigPNO(S)

|:AnIPN0(S):|_GA(S) AViPNO(S) (441)
aV3,(9))

where G (s)= —Gepno(S) —Gipno(s) 0 0 .
§ _GccPNO(S) GiPNo(S) 0 0

The modulation ratio of the upper and lower arms brought by the coupling shown

in (4.40) can be expressed as

_AicPNO(S)_
{AnUPN(’(S_PwO)}GNPA(S) o) (4.42)
ANpyo (S — j2a) N (s)

AVZ”:‘NO (S)

_AicPNO(S)_
AnuPNO(S+j2a)o) =GPN,, (s) AigPNo(s) 4.43)
ANpyo (S + J2a) A AViPNo (s) '

AVZ|:F‘NO (S)

where

GNP, (5) = 0 —GNPpy(s) 0 0] o () = 0 —GPNg,(s) 0 0
A 0 GNP.,(s) 0 0 A 0 GPNg,(s) 0 0f

Considering other harmonic inputs, matrix HG in the Appendix is modified as
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GA(s— j2a,) 0 GNP, (s) 0 0
0 GA(5— jy) 0  GNP,(s+jo,) 0
HG,=|--- GPN,(s— j2a,) 0 G,A(s) 0 GNP, (s+j2@,) -
0 GPN, (s— j,) 0 GA(s+ ja,) 0
0 0 GPN, (s) 0 GA(s+ j2am,)
L ' : : : (4.48)

The matrix HGp can also be derived following the above procedure.

GB(s—.ijo) 0 GNF.’B(S) 0 0
0 Gg(s—jay,) 0 GNP, (s+ jay,) 0
HG,=|--- GPN,(s— j2m,) 0 G, (s) 0 GNP, (s+ j2w,) -
0 GPN, (s— ja,) 0 Gy(s+ jay) 0
0 0 GPN,(s) 0 Gy (s+ j2m,)
. : : : : : (4.49)
where
-G S [—GNP —-GPN
GB(S)=|: vPNO( ):|,GNPB(S)= vPNO(S)j|,GPNB(S)=|: vPNO(S):|
GVPNO(S) L GNPVPNO(S) GPNVPNO(S)
Gu(s) O 0] 0 00
GVPNO(S): 0 GVNN (S) 0 > GNPVPNO(S): GVPNO(S) 00 5
0 0 0] 0 00

0 GpyolS) O
0
0

GPNVPNO(S) =0
0

443

Outer-loop controller

The outer-loop controller is designed to set the current reference idrer and iqrer for

the inner-loop current controller. Two outer-loop control schemes, i.e., PV control with
active power and AC voltage control, and PQ control with active and reactive power

control, are shown in Figure 4.5.
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Figure 4.5 Outer-loop: PV and PQ control

When the outer-loop adopts the PV control , ¥ is the terminal voltage magnitiude

of MMC expressed as

VN (4.44)

Linearizing (4.44) yields

V,Avg +V,Av,

AV = = (4.45)
\ /Vd +V,
The g-axis current perturbation can be depicted as
_ VyAvg +V, Avg
AIqref =GpeGipy (4.46)

6 ;dZ +Vq2

where G_pr is the transfer funtion of the low pass filter in the AC voltage measurement

and G,pr denotes the transfer funtion for the voltage -loop PI controller, as

1

Gpr =——,
P sT 41

Gy =Ky + KS (4.47)

where 7'is the time constant of the low pass filter [116], K., and K,; are the proportional

and integral coefficients of the AC voltage control loop.
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For the active power control, the current reference can be obtained as

2P
lyer = oo (4.48)
3v,
After lineariation, there is
Ay = 2P AV 4.49
dref —_W d ( : )

d

Rewriting (4.46) and (4.49) in the matrix form yields
Aidref 1 O _2 Pref /3\/d2 O AVS
. = BRVE) BRVE) ¢ (4.50)
Alges 0 GGy ]|V, 1V, Vg Vo [V +Vy |2V

Defining X = {

0 GG Va Vq

2P /3V} 0O
! 0 } and £= l: o ‘ } , and according to the

current inner-loop control in Section 4.4.2, there is

2
Gidq :\/_(D_C)
"c 4.51)

G =£(DB+E+A-CB+CXZA)
vdq V

dc

When the outer-loop adopts the PQ control, the g-axis current reference derived

from the reactive power is

H 2Qref
Lo = 4.52
qgref 3V§ ( )

After linearizing (4.52), there is
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2
Ai,., =— Qe AVE (4.53)

ref
q 3\/d2

Combining (4.53) with the active power linearization in (4.49) yields

Ay | | =2P I13V¢ 0 || Av
Ay | |-2Q, /3V2 0 A (454
Iqref Qref d ch
Define Y =| 2 /¥ 01 e transfer function of contrller under P
efine Y = ) Qref /3de 0 and the transfer function of controller under PQ

control can be expressed as

2
Gidq :V_(D_C)

" (4.55)

G. =2 (DB+E+A-CB+CYA)
vdg V

de

After obtaining Gisy and Gyqq, the same procedure in Section 4.4.2 can be applied

to determine HGa and HGs.

4.5 Small-signal admittance of MMC in pn frame

The solution of (4.17) can be calculated as

AXPNo:(Sl _F[As] —I'IM]-HG AT Q)_l : (F[B]+F[|V|]- HG, ) 'AVPPNO

" (4.56)

hss 'AVpPN 0

where the matrix Hpss reflects the relationship between the input variable AV ,pnvo and

state variables AXpno.

The admittance matrix of MMC is calculated as
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i
Voo =— 2 (4.57)

AV gen

In pn frame, the current perturbation matrix Aigpy at the MMC AC terminal is part
of the state variable matrix AXpno, Whereas Avppy is part of the input matrix AV,pno.
Consequently, the small-signal admaittance matrix Ymmc can be extracted from the

matrix Hpss.

As for the MMC, the Ath harmonics in the upper and lower arms of any phase
have the same magnitude and phase (called a common mode (CM) harmonic) if 4 is
an even number, and the same magnitude but 180° phase difference (called a
differential-mode (DM) harmonic) if 4 is an odd number [117]. Thus, the CM
components circulate in the arms while the DM components ouput to the MMC AC
terminals. If a positive-sequence perturbation Av,ue at @, is injected into the MMC

AC terminal, the upper and lower arm equivalent capacitors Cy, will have positive-

2

>
Sancand av

gae At wp, respectively. Because the upper

sequence response voltage aV

>

>
cabe and av

and lower arms are symmetraical, the perturbation voltage aV Slabe

arc

DM components, i.e., the same magnitude but 180° phase difference. Taking the

z

cuabc

and av:

positive-sequence capactior voltage perturbations aV Sabe

for the upper

and lower arms as an example, they can be expressed as

am, cos(w,t +a6,)
mabe = —AVame =| aM, COS(@ t +a6, — 27 /3) (4.58)

Achabc clabc
am, cos(w,t+a0, +27/3)

where am. and Af. are the magnitude and phase angle of the perturbation voltage,

respectively.
The steady-state values of the modulation ratio for the upper and lower arms are
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Nuabe and Nyape, including only the DC, fundamental and double-frequency components.

Considering the DC components of Nuwe and Nise, both avi, N and

uabc0

AVE N

SancNjaneo  are positive-sequence variables with the same frequency @, but opposite

labc

sign, resulting in positive-sequence voltage at w, generated at the MMC terminal.

Consequently, positve-sequence current at w, is generated at the MMC AC terminal.

Consider that the fundamental frequency component of the upper and lower arm

z

modulation ratio are DM components, i.e., Nuabc1=-Niave1. Thus, N aVe .

equals

»)
clabc »

N pe1 2V and the two appear as MMC internal CM components. Thus, no current

labc

or voltage response at the MMC AC terminal will be observed.

For the double-frequency component Nuasc2 and Niare2, they are CM components

and identical, as

N

uabc2 — N
N, cos(2a,t + 6,)
= N, cos(2ant + 6, + 271 3)

labc2

(4.59)

N, cos(2at + 6, —27 1 3)

2

cuabc al’ld Nuach IS

The product of the perturbation arm capacitor voltage aV

z
cuabc

z
clabc
cos[(w, +2a,)t+ (a6, +06,)]+cos[(@, —2a, )t+(26,.-6,)]
am.N P P (4.60)
=—2t2 cos[(w, +2a,)t+ (a6, +6,)]+cos[(@, —2,)t+ (a8, —6,)+27 /3]

cos[(@, +2a, )t+ (a0, +6,)]+cos[(w, —2w, )t + (a8, —60,) 27 /3]

NuabczAV :_NlabczAV

According to (4.60), the interaction between the two yields the zero-sequence
voltage at w,+2wo with opposite direction for the upper and lower arms. For a three-
wire system with no zero-sequence current path, such zero-sequence voltage only

exists in the internal MMC, and thus, there is no zero-sequence current or voltage at
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wpt2mo on the MMC AC terminal. However, the generated negative-sequence
voltages at w,-2wo for the upper and lower arms are DM component, and hence, will

appear at the MMC AC terminal together with the corresponding current.

Generally, the interaction of CM and DM results in DM components which
appear on the AC terminal side. Consequently, for non-even order harmonics, the
interaction will not generate AC response. Similarly to 4=2, with 4=4, there exists only
wptdmo at the MMC terminal but can be neglected due to its very small magnitude.
Whereas for #>4, the hth harmonics in the MMC are all very small and the response

at wp+hwo can be ignored.

Therefore, based on the above observation, the specific form of the small-signal
admittance Ymmc at the MMC terminal can be simplified as a 2 by 2 matrix expressed

as

Aige (s) [ Yee(s) Yoy () AV 55 (8) 461
Nigy (8= J202,) - Yp (5= J200,) Yy (s—j2a,) || AV (S— J2a%) '

where Ypp(s), Yrn(s), Yar(s-j2wo), and Yan(s-j2wo) are the four elements extracting

from the matrix Hnss. When s=jw),, the followings can be observed from (4.63):

e Ypp(s) denotes the relationship between the positive-sequence voltage perturbation
Avpp(s) at wp and the positive-sequence current response Aigp(s) at wp;

o Ynp(s-j2wo) denotes that the positive-sequence voltage Av,p(s) at frequency w,
leads to negative-sequence current Aign(s-j2wo) at wp-2wo;

e  Ywn(s-j2wo) denotes the relationship between the negative-sequence voltage
perturbation Av,n(s-j2wo) at wp-2@o and negative-sequence current response Aign(s-

J2wo) at wp-2wo;

Ypn(s) denotes that the voltage perturbation Av,n(s-j2wo) at frequency wp-2mo leads

to the positive-sequence current Aigp(s) at frequency w,.
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4.6 Small-signal admittance validation and analysis

In order to validate the HSS model developed in this work, a comparison between
the impedance plots from the HSS model and the time-domain model has been carried
out. The time-domain model is implemented in MATLAB/Simulink, and the HSS
model as described in this section is implemented using an m.file in MATLAB. To
ensure the small-signal admittance of MMC can be measured under various operating
modes, a strong and stable external AC system is used. Thus, the grid-side resistance
and inductance are set to R;=1.02Q and L;=0.0324H, and the corresponding SCR is
12. The ac-side small-signal impedance of the MMC is measured by injecting a series
of small perturbations Avya, Avps, Avpe With peak value of 3kV at the ac-side of the MMC
at different frequencies, as shown in Figure 4.6. The ac-side current responses Aigq, Aigp,
Alge under each specific frequency is measured and the impedance under this frequency
is calculated by applying (4.61). The main electrical parameters of the MMC system

are listed in Table 4.1.

Y mmc
Iy —_— Sy ] i
& N -
Ua Avy, Al
Qoo e e
Ub/\ 2L Ao ) Alge
M A "
c |AVga H 7y
A Vgo Nanc
A:VQC
£ Controller

Figure 4.6 The ac-side small-signal impedance of the MMC
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Table 4.1 Main electrical parameters of the MMC system

Parameters Value

Rated active and reactive power (P, Q) 1000 MW, £300 M Var
Nominal DC Voltage (Vc) +320 kV

Rated AC voltage (L-L) (V) 360 kV

Arm resistance and inductance (Rm Lm) 0.08 Q,0.042 H

Cell capacitance (Crn) 31.4 uF

Nominal Frequency (fo) 50 Hz

Transformer rated apparent power (St) 1265 MVA
Transformer voltage ratio (kt) 400/360 kV
Transformer leakage reactance Xt* 0.18 p.u.

4.6.1  Admittance validation for open-loop control

Initial tests in the time-domain model with the MMC under open-loop control is
carried out. The three-phase modulation ratio for the upper arm under open-loop

control is assigned as:

1ua=0.5-0.46[cos(wot+0.07)]+0.01[cos(2mot+0.07)],

1=0.5-0.46[cos(wot+0.07)-2pi/3]+0.01[cos(2ewot+0.07)+2pi/3],

1uc=0.5-0.46[cos(wot +0.07)+2pi/31+0.01[cos(2eot+0.07)-2pi/3],

where the modulation ratio at fundamental frequency is the positive-sequence
component, and the one at double frequency is the negative-sequence component.
Voltage perturbations of 40Hz positive and negative-sequence are injected at the MMC

AC terminal, separately. FFT analysis is conducted on the phase ‘a’ current and voltage
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and selected spectra are shown in Figure 4.7 in which the S0Hz fundamental frequency

components have been omitted for clarity.

3 FFT Analysis Result 300 FFT Analysis Result
—~ 208 —~2000"
< 2
E -
100 = 1000
0 50 100 150 200 250 300 0 50 100 150 00 250 300
Frequency (Hz) Frequency (H%)
(@) With 40Hz positive-sequence voltage injection
FFT Analysis Result FFT Analysis Result
60 ! : ; 300 ; ; " ;
4o _.2000"
< 2
& g
20- > 1000¢
o ‘ ‘ | = | ‘ o ‘ ‘
0 50 100 150 200 250 300 o 50 100 150 00 250 300
Frequency (Hz) Frequency (H%)

(b) With 40Hz negative-sequence voltage injection

Figure 4.7 FFT results with voltage perturbation

Table 4.2 Phase angles of the 3-phase voltage and current with 40Hz positive- and negative-

sequence voltage injections (degree)

Positive sequence 40Hz Negative sequence 40Hz
40Hz 60Hz 240Hz 40Hz 140Hz 160Hz
Avg, 85.3 -63.5 71.9 93.6 80.7 241.1
Avg -34.7 176.5 191.9 213.6 -393 1.1
Avge 205.3 56.5 -48.1 -26.4 200.7 121.1
Aigq 150.4 105.9 214.9 64.5 236.9 34.4
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Aigp 30.4 -14.1 -25.1 184.5 116.9 154.4

Al -89.6 2259 94.9 -55.5 -3.1 -85.6

Figure 4.7 (a) shows that under 40Hz positive-sequence voltage perturbation,
there are multiple frequency responses in the voltage and current at 40Hz, 60Hz and

240Hz.

Table 4.2 shows the phase angles for the voltage and current responses. It can be

observed that:

e The voltage and current responses are positive-sequence at 40Hz and 60Hz, and

negative-sequence at 240Hz.

e The resulted positive-sequence response at 60Hz can also be considered as
negative-sequence at -60Hz, as -60Hz negative-sequence indicates 60Hz positive-

sequence in time-domain [118].

e Thus, it can be concluded that the injected positive-sequence voltage perturbation
at wp leads to a positive-sequence response at @, and negative-sequence responses
at wp-2wo and wpt4wo, though the negative-sequence response at w,+4wo is very

small.

For 40Hz negative-sequence voltage perturbation, Figure 4.7 (b) shows the
voltage and current responses at 40Hz, 140Hz and 160Hz, in which the response at

160Hz is negligible.

Table 4.2 shows the corresponding voltage and current the phase angles. It can be

observed that:

e The response is negative-sequence at 40Hz, positive-sequence at 140Hz, and

negative-sequence at 160Hz.
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e According to the analysis in Section 4.5, the negative-sequence input at w, causes
the negative-sequence at w, (40Hz) and positive-sequence response at w,+2wo
(140Hz) and wp-4wo (-160HZ).

e Positive-sequence -160Hz is deemed negative-sequence at 160Hz in time-domain.

The above simulation results verify the theoretical analysis in Section 4.5, and the
small-signal model of MMC in pn frame is properly captured by the four admittance

elements in (4.61).

Figure 4.8 compares the admittance elements Ypp(s), Yrn(s), Ynr(s-2jwo), and
Ynn(s-2jwo) in matrix Ymmc derived from the HSS model with different harmonic
orders considered, and those obtained from the time-domain model. The MMC exports
1000 MW / 0 MVar to the AC grid and the AC terminal voltage is 1 p.u.. Comparing
the different admittace curves, it is found that higher harmonic order considered in the
analytical HSS model leads to more accurate model, and for =4 the analytical
admittances match well with those of the time-domain simulation models. It also
implies that the internal harmonics of MMC has a significant impact on the AC side

small-signal admittance, and need to be considered in the modelling.

In order to ensure the accuracy of the analytical model, % is set to 4 in the

following analysis.
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Figure 4.8 Validation of the admittance for the open loop control
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4.6.2 Admittance validation with CCSC

In this case, the CCSC is imposed on the open loop control to analyze its influence.
The DC and fundamental modulation ratio are assigned directly, and their magnitude
and the phase are the same to those in Section 4.6.1. For the 2™ order harmonic
modulation ratio, it is from the CCSC. Figure 4.9 compares the MMC admittances
calculated from the HSS analytical model and measured from the time-domain model.
As can be seen, the calculated and measured MMC admittances with the added CCSC

match well.

Comparing the admittances in Figure 4.8 and Figure 4.9, it is seen that the
resonant points are significantly reduced after adding the CCSC, which suppresses the
internal 2™ harmonic current. Meanwhile, the 2" harmonic voltage in the arm
capacitors is also reduced. Consequently, the response at other frequencies resulting
from the 2" harmonic is considerably weaken and the resonant points of MMC
impedance reduced. In addition, it can be observed that the CCSC reduces the
magnitude of Yyp and Ypy around 50 Hz. This can be explained by considering that a
perturbation at w, results in the generation of CM component at w,+wo in the internal
MMC. If wp is close to 50 Hz, the CM response is around 100 Hz, which is suppressed
by the CCSC. Hence, the response at wp,+wo is low, and when it interacts with the
steady-state component, the current responses at w,+2wo and wp-2wo at the AC
terminal of MMC are thus further reduced and so as the admittance magnitude.
Similarly, the CCSC reduces the positve-sequence admittance Ypp and the negative-
sequence admittance Yyy at 0 Hz and 100 Hz, respectively, when compared to open

loop MMC admittance shown in Figure 4.8.
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Figure 4.9 Admittance of MMC with CCSC
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4.6.3  Admittance with the AC current loop

Assume the MMC operates in inverter mode and transfers active power from DC
to AC. The active current assigned to the current loop is ize~=2268 A (corresponding
to 1 p.u. active power) and the reactive power current ig.~=0 A. The calculated and

measured small-signal admittances of the MMC are compared in Figure 4.10.

It is shown in Figure 4.10 (a) and (b) that the phasor of Ypp and Yan at 50 - 130
Hz is larger than 90°, indicating the existence of negative resistance effect and negative
damping to the system. Thus, the system tends to be unstable in this frequency range.
For frequencies above 130 Hz, the phases of the two admittances approach to 0,
indicating strong positive damping. The existence of Ypy and Yyp with non-negligible
magnitude indicates strong coupling between the positive- and negative-sequence
components and therefore, for accurate stability analysis, they must be included and

more details will be given in Chapter 5.

Assume the MMC operates in rectifier mode and transmit power from AC to the
DC. The references for the current loop are ize=-2268 A and ize=0 A, respectively.
The small-signal admittance of the MMC is shown in Figure 4.11. Comparing Figure
4.11 and Figure 4.10, it can be found that the magnitude of the correspondence
admittances for inverter and rectifier operation are identical but the phasor is almost
opposite. In Figure 4.11, the phases of Ypp and Yyny above 130 Hz range from 90° to

270° implying negative resistance effect and potentially leading to unstable system.
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Figure 4.11 Admittance when the MMC operates in rectifier mode.
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For both inverter and rectifier operation, the small-signal MMC model using the
HSS method can accurately calculate the impedance of the MMC. Considering the
positive- and negative-sequence impedance, the system is more likely to become
unstable at lower frequency in inverter mode whereas at higher frequency in rectifier

mode.

4.6.4  Admittance with the outer-loop

When the MMC operates in inverter mode and outputs 1GW active power, the
small-signal admittances of the MMC with the PV and PQ outer-loop are compared in

Figure 4.12.

It can be seen in Figure 4.12 that the admittance measured in the time-domain
accords well with that derived from the HSS based MMC analytical model. In the case
of PQ outer-loop control, the magnitude of Ypp and Yaw at 50 -100 Hz is smaller than
those in PV control, which contributes to improved system stability. Moreover, the
phase of Ypp with PQ control is closer to zero than that with PV control indicating
better damping. Under both controls, the phase of Yrp and Yyy among 90-270° implies
the negative resistance effect and tends to oscillate. In this scenario, the PQ control is
better that PV control. While the frequency is above 100 Hz, the admittance with the

two controls is almost the same.

When the MMC operates in rectifier mode and absorbs 1 GW active power, the
small-signal admittances of MMC with the PV and PQ outer-loop are compared in

Figure 4.13.
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Considering Ypp and Yaw for frequencies above 130 Hz the phases are in the range
from 90° to 270°, again indicating negative damping and potential instability.

Furthermore, the admittances under the two controls are almost the same in this

frequency range and thus result in similar stability margin.

4.7 Summary

This chapter has described the impedance modelling and validation of the MMC
in 3-phase 3-wire system based on HSS. The detailed mathematical expressions of
HSS modelling for MMC have been derived considering the integration of circulating
current control, the inner-loop AC current control, and the outer-loop power and AC
voltage control. The coupling between the positive- and negative-sequence
components are considered and analyzed in the model. The small-signal impedances
obtained from the developed analytical model have been validated using
measurements  from time-domain models under various scenarios in

MATLAB/Simulink. It has shown that:

e Various validations show that the admittance measured in the time-domain accords
well with that derived from HSS based MMC. The proposed modular modelling
concept allows modifications of control systems to be easily implemented into the

small signal model without the need to recalculate the various state matrix.

e For open loop MMC system, it is important that higher order harmonics (e.g. /=4)
are considered in order to accurately model the impedance behaviour of the MMC.
This is due to the fact that for open loop MMC system, there exist strong couplings
among the harmonics and high harmonic order is thus required to accurately

represent the system dynamics in the small signal model.

e Once the circulating current controller and AC current controller are included, due

to the largely eliminated circulating current, the harmonic interaction of MMC is
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reduced.

After adding the CCSC, the response at other frequency resulting from the 2th
harmonics is considerably weakened and the number of resonant points of MMC

impedance is significantly reduced.

With the AC current control, the small-signal model of HSS based MMC can
accurately calculate the impedance of the MMC. From observing the positive- and
negative-sequence impedances, inverter mode tends to have reduced stability at

lower frequency range than rectifier mode, and vice versa at higher frequency range.

The admittance under the two outer-loop controls (PV and PQ) is almost the same

at high frequency and thus the similar control effect.
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Chapter 5 Stability assessment of grid connected MMC

system

The HSS-based small-signal impedance model of MMC derived in Chapter 4 is
applied in this chapter for stability assessment of AC network connected with MMC-
HVDC transmission systems. The stability is assessed by examining the locus
described by the ratio of the source and load impedances in the complex plane via the
Nyquist stability criterion. Stability of single MMC connected to an AC grid is carried
out first. The AC cable has significant impact on the grid impedance, which will result
in a weak grid, therefore the impedance of AC cable is considered in MMC connected
to the grid system. The impact of PLL bandwidth, the outer-loop controller, and
different operating points on the stability of the grid connected MMC is also studied.
The impact of multiple converters in close electrical proximity on system stability is
then investigated considering cases with different multi-infeed impact factors (MIIF).
System stability of two MMCs with different MIIF is assessed with different outer-
loop controls using Nyquist criterion, and the results validated using time-domain

simulations in MATLAB/Simulink.

5.1 Single MMC connected to an AC grid

5.1.1 System configuration

Figure 5.1 shows the simplified configuration of the grid connected MMC system.
In the analysis, the influence of the DC voltage on the MMC AC side is not considered
and the DC voltage is maintained at a constant value-640kV. The AC grid is modelled
equivalently with a voltage source V; and the grid-side resistor R, and inductor L,. The

cable is represented by an equivalent n-type model and the equivalent RLC parameters
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are obtained by considering the frequency response of the frequency dependent cables
model that has been discussed in [119]. For a 60km AC cable, the parameters for the
simplified PI section are Reapie=1.8792Q, Lcarie=0.0228H and Ceapie=6.75uF. The
specific parameters have been listed in Table 4.1 in Chapter 4. The transformer is
represented by the inductor L. The equivalent inductor value of the transformer seen

from the secondary side can be calculated as

v, 2

* 2
L =XeVa)” g o571 (5.1)
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Figure 5.1 The simplified circuit for MMC based grid

5.1.2 Equivalent AC network model

Figure 5.2 Small-signal impedance representation of MMC-grid

The small-signal impedance equivalent circuit of the MMC-grid system is

depicted as Figure 5.2. As can be seen, the MMC side is equivalent using Norton circuit,
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in which the MMC is represented by the current source /. in parallel with MMC small-
signal admittance Ymmc calculated in Chapter 4. The AC network adopts the Thevenin

equivalent circuit with a voltage source Ve, in series with the impedance Z.,.

The grid impedance Zy(s) in the frequency-domain can be denoted as
Zo(s)=RqtsLg and the impedance of the transformer referring to the converter side in
frequency-domain is X{s)=sL.. The capacitor and the inductor in the equivalent circuit
of the AC cable in the frequency-domain can be expressed as X.(s)=2/(sCcapic) and
Xeavie(8)=sLcapie. Thus, the equivalent AC network impedance seen from the

transformer secondary side can be obtained as
1
Zeg (S) = E[(Zg (S) ” xc(s) + Rcable + Xcable (S)) ” Xc(s)] + xt (S) (52)

where £; is the transformer ratio.

With s=jwo, the grid short circuit ratio (SCR) is derived as

: RV, .
SCR P I:Zg (S) + Rcable + Xcable (S):I (5 )

Therefore, the whole system stability can be assessed by the product of the AC-
side equivalent impedance Zeg(s) and the MMC admittance Ymmc(s), which has been

discussed in detail in Section 2.5.

5.1.3  Stability assessment

Stability of the MMC grid system shown in Figure 5.1 is carried out using the
developed small signal impedances considering the impact of the control strategy and
different operating point. To validate the analytical results, a time-domain simulation

model of the same system is carried out in Matlab/simulink. The AC cable length
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considered is 60km. The block-diagram of the MMC control structure is illustrated in
Figure 5.3, which has been discussed in detail in Section 4.4, and the related control
parameters can be found in Table 5.1. As shown, the MMC AC current is controlled
by the current controller in dq frame in Figure 5.3 (a), and the PLL provides the phase
angle for transformation between abc and dq frames. The current references can be
assigned directly or by the outer-loop controller in Figure 5.3 (b), depending on the
specific cases considered. The circulating current suppression controller is presented
in Figure 5.3 (c). Noted that the output of circulating current suppression controller is

negative sequence.
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Figure 5.3 MMC control structure

Table 5.1 Controller parameters for current controller

Parameters

Value

Current loop proportional gain Kjp

15.8 Q

Current loop integral gain Kj;

2980 Q/s

PLL proportional gain Ky

0.0013 rad/(sV)

PLL integral gain Ko 0.1209 rad/(s*V)
PR controller proportional gain K, 63.3 Q
PR controller integral gain K 11200 Q/s
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5.1.3.1 Impact of different PLL bandwidth on system stability

(a) MMC operates as an inverter

In this case, the outer-loop control is not considered and the grid SCR is 2.27
(indicating a weak grid) calculated according to (5.3). The d-axis current reference for
the current controller is set to 2268A (1.0 p.u.), which refers to 1GW output power of

MMC to the grid while the g-axis current reference is -40A to maintain the terminal

voltage of MMC at 360k V.
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Figure 5.4 Admittances under different PLL bandwidths

Using the model developed in Chapter 4, the small-signal admittances under
different PLL bandwidths can be obtained as shown in Figure 5.4. The black line, red
line and blue line denote the MMC admittances with 20Hz, 40Hz, and 60Hz PLL
bandwidths, respectively. As can be seen, lower bandwidth generally leads to smaller
magnitude of the admittance, which is beneficial for the system stability as the
equivalent impedance in parallel with the current source has large magnitude [41]. In
addition, in terms of the phase of the positive-sequence admittance Y(s), lower PLL
bandwidth makes the phase approach to 0, which indicates improved damping for the
MMC system and thus is beneficial to the stability improvement. From the point of the
small-signal impedance of MMC, it can be concluded that the lower PLL control

bandwidth leads to a more stable system.
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Figure 5.5 Nyquist plots with different PLL bandwidth

Figure 5.5 presents the Nyquist plots for the eigenvalues of Ze,Ymmc under
different PLL bandwidths of 20Hz, 40Hz, and 60Hz, respectively. As can been, all the
plots do not encircle the point (—1, 0), which indicates that the interconnected system
is stable under the 3 different PLL bandwidths. However, system stability is decreased
by increasing the bandwidth as Nyquist plots get closer to the point (—1, 0). With 60Hz
bandwidth, both the magnitude and phase margins are relatively lower and stability is
weaker than with 20Hz bandwidth. In practical system, many aspects need be
considered when selecting control parameters, e.g., small signal system stability,
system response during large transients. For example, converters with lower PLL
bandwidth are less able to limit/control the AC current during external AC system fault
potentially resulting in overcurrent, when compared to converters with higher PLL

bandwidth.

In order to validate the above theoretical analysis in frequency-domain, the time-
domain simulation results for the same condition are shown in Figure 5.6. At 4s, a
small perturbation is induced on the d-axis current reference, i.e., idrer 1S stepped up
from 2268A to 2288 A. With 20Hz bandwidth, the responses of 14 and V4 have smaller
overshoots than those with 40Hz bandwidth, whereas with 60Hz bandwidth, the

current and voltage contain significant oscillations although the system remains stable.
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Figure 5.6 Simulation results under different PLL bandwidth

(b) MMC operates as rectifier

The AC grid SCR is set to 3.0 by reducing R, and L, to ensure the system stable.
The d-axis current reference for the active power is iaref=-2268A, i.e., -1p.u., indicating
that the MMC absorbs 1GW active power from the AC grid. Meanwhile, the g-axis
current reference for the reactive power sets to igrer=-291A to maintain the MMC

terminal voltage at 360k V.

The MMC admittances under different PLL bandwidths are shown in Figure 5.7,
where the black, red and blue curves denote admittances under 20Hz, 30Hz and 40Hz
PLL bandwidths, respectively. The positive-sequence admittance Y,p and the negative-

sequence admittance Ynn in the range of frequency above 150Hz with the phase

139



between -90°~-180° imply negative resistor effect and thus leading to potential
instability [120]. In addition, the increase of the PLL bandwidth leads to the magnitude
increase of the positive-sequence admittance Ypp, which has negative effect on system
stability. In the meantime, the phase is further away from 90° and the negative damping
becomes more severe, which deteriorates system stability. Therefore, in terms of MMC

admittance, the increase of PLL bandwidth will weaken system stability.
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Figure 5.8 Nyquist plots with different PLL bandwidth

The Nyquist plot of corresponding eigenvalues is presented in Figure 5.8. It can
be seen that PLL bandwidths of 20Hz and 30Hz result in no encirclement of (-1,0) and
thus indicating stable systems. With the 20Hz PLL bandwidth, a larger stability margin
can be achieved than the 30Hz case. In the case of 40Hz, the plot encircling (-1,0)

implies an unstable system.

To verify the frequency-domain analysis results, time-domain simulations are
conducted. In the simulation results compared in Figure 5.9 with PLL bandwidths of
20Hz to 30Hz, the d-axis current reference idref steps up from -2268A to -2288A at 5s.
As can be seen, although the current responses are similar for the two bandwidths when
the perturbation is imposed, the difference of the voltage responses is significant.
When the PLL bandwidth is 20Hz, the system can be stabilized quicker than with 30Hz
bandwidth.
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Figure 5.9 Simulation results under 20Hz and 30 Hz PLL bandwidth

Further studies when the PLL bandwidth increases from 30Hz to 40Hz at 5s are
carried out and the response results are shown in Figure 5.10. As seen in Figure 5.10
(a) and (b), the system is stable before 5s. However, when the bandwidth changes to
40Hz, the system begins to oscillate. Figure 5.10 (c) shows that the three-phase voltage
waveform during 6.0s-6.2s contains significant 7th harmonic, as indicated in the FFT
analysis in Figure 5.10 (d). The time-domain simulation results show that the system
becomes unstable as the bandwidth increases from 30Hz to 40Hz, which is in

accordance with the frequency-domain analysis.
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It can be concluded that for both inverter and rectifier modes, when the MMC is
connected to a relatively weak grid, reducing the PLL bandwidth improves system
stability. Comparing MMC in inverter and rectifier modes, the system tends to be less
stable in rectifier mode due to the negative resistance effect (negative damping) in the

MMC admittance, than in inverter mode.

5.1.3.2 Impact of different outer-loop controller on system stability

The effect of different outer-loop controllers on the stability of the MMC system
is investigated. The system operating point keeps unchanged as previous studies and
the PLL bandwidth is set to 60Hz. Different outer-loop controllers shown in Figure 5.3

are applied to the MMC controller.

When using outer active power and AC voltage control, the references for d-axis

and g-axis current components are given as

2P,

i _ ref
dref —
3v,

54
iqref = kvp (V ~ Vet ) + kvi j (V — Vit )dt ( )

where v=,/v,>+v,* is the three-phase AC voltage amplitude at the MMC terminal

and 1s passed through a LPF and before sending to the outer-loop control. The voltage

reference is v, =~/2 x360kV /+/3 =293.9kV , k,,=0.005 A/V and k,=0.5A/(s-V).

When using outer active power and reactive power control, the current references

are assigned as

2P

ref

3v,
2Qu (5.5)

1 =
qref
v,

Idref
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(a) MMC in inverter mode

With grid SCR of 2.27, active power reference Prer=IGW, and reactive power
Qrer=-13.2MVar, which keeps the three-phase voltage constant at 360kV, the small-
signal positive-sequence admittance of the MMC under the outer-loop PV and PQ
control are shown in Figure 5.11. Only the positive-sequence admittance is presented

here as the others has similar trend. However, the Nyquist curves presented use the full

admittances.
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Figure 5.11 Small-signal admittance Yp, of MMC with PV and PQ control

In Figure 5.11, the admittances under PV and PQ control mainly distinct in 20-
70Hz frequency range. The implementation of the voltage control means the voltage
variation during a S0Hz current perturbation to the MMC is minimized resulting in the
maximum admittance around 50Hz. Note that both the admittances under PV and PQ
control have negative resistance between 5S0Hz and 70Hz shown in Figure 5.11, which
indicate potential resonance in this frequency range. In comparison with the PV control,
the magnitude of the MMC admittance with PQ control around 50Hz is much smaller.
The phase of the positive-sequence admittance Ypp is also smaller around 50~70Hz

under PQ control than PV control, indicating larger damping and thus larger stability
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Figure 5.12 Nyquist plots with PV and PQ outer-loop control

Figure 5.12 compares the Nyquist plots for system eigenvalue loci with the two
outer-loop controls. All four curves do not encircle the point (-1, 0) and thus both are
stable. Moreover, with the two controls, the intersections of the Nyquist plots and the
unit circle are almost identical, indicating similar phase margins. As the intersection
with the x-axis being far away from (-1, 0) means a large magnitude margin, it can be
observed that PQ control has larger magnitude margin and thus better stability than PV

control.

The time-domain simulations are conducted to confirm the frequency-domain
analysis results. At 4s, a small perturbation is injected to the active power reference
and the simulation results are shown in Figure 5.13. Comparing the two outer-loop
controllers, it can be observed that the system is stabilized quicker with smaller
overshoot in the case of PQ control. This indicates that the system is more stable with
PQ control than PV control, which matches well with the frequency-domain analysis.
The oscillation frequency of the voltage and the current in dq frame is about 10 Hz,

1.e., 60Hz in abc frame. It is in accordance with the frequency range in Figure 5.11 that
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the MMC admittance exists obvious distinction.
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Figure 5.13 Simulation results under two outer-loop controllers

In addition, without the outer-loop voltage control, the oscillation frequency for
the voltage and current response in Figure 5.6 was about 125Hz with 60Hz PLL
bandwidth. When the outer-loop is added the oscillation frequency becomes 60Hz.
Observe the positive-sequence admittance Yyp in the case with only the current control
and 60Hz PLL bandwidth shown in Figure 5.4 (a), the phase above 90° in 50-128Hz
frequency range indicates negative resistance effect and the oscillation frequency lies
in this range. As the outer-loop is added, the phase in 70-128Hz has reduced to be less
than 90°, which implies the negative resistance decrease and the system becomes more
stable in this frequency range. However, in the range 50~70Hz, the phase is still above

90° and the oscillation is likely to occur in this frequency range.
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(b) MMC in the rectifier mode

When the grid SCR is 3.0, the terminal voltage is kept at 360kV and the PLL
bandwidth is 60Hz. The grid absorbs 0.5GW active power from the grid. The same
outer-loop in case (a) is adopted, and the small-signal admittance of the MMC is shown

in Figure 5.14.
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Figure 5.14 Admittance Y, with different outer-loop in the rectifier mode

Above 200Hz, the admittance is almost identical under PV and PQ outer-loop
controls. The phase of Ypp is larger than 90°, indicating negative resistance effect. This
is similar to the case with only the current controller shown in Figure 5.14. Figure 5.15
shows the Nyquist plots and it can be seen that with only the current loop, the system
is stable. However, the added outer-loop will lead to unstable system with similar

effects from the PV and PQ controls.
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Figure 5.15 The Nyquist plot with different control loop in the rectifier mode

The time-domain simulation result is presented in Figure 5.16 which show that
the active power response when the MMC ramps down power from 0 to -0.5GW.
Without the outer-loop, the system is stable, whereas with either PV or PQ outer-loop
controller, the system becomes unstable at -0.5GW with the oscillation frequency

around 380Hz.
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Figure 5.16 The active power when the MMC absorbs 0.5GW active power

The above analysis indicates that in inverter mode, the outer-loop is beneficial for

the stability of the system and the system oscillation frequency is low. Moreover, PQ
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control is superior to PV control for the system stability. However, in rectifier mode,
the addition of the outer-loop deteriorates the system stability and the system tends to
oscillate in relatively high frequency range. Moreover, the effects of PV and PQ

controls on system stability are similar.

5.1.3.3 Impact of different SCR on system stability

In this section, the impact of the AC grid strength on the stability of the MMC
system when it is in inverter operation is investigated. With the same operating
conditions as previous inverter operation cases, the grid impedance Z; is varied whilst
keeping the cable length at 60km. The SCR of the two cases considered here are 3.57
and 1.87, respectively. Since the active power and AC voltage of the MMC are kept
unchanged, the active current ig remains constant, whilst different SCR affects MMC
reactive current ig, i.e., the reactive power operating point. The g-axis currents are
61.5A and -67.5A for SCR=3.57 and SCR=1.87, respectively. The small-signal
admittance of MMC are compared in Figure 5.17 with SCR=3.57 and SCR=1.87,
where the small difference is purely caused by the different reactive power/current

operating point.
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Figure 5.17 Small-signal admittance Y, with different SCR
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The impedances Ze, on the AC side (including the 60 km AC cable) are presented
in Figure 5.18 and there is obvious difference between the two SCR. As the SCR

decreases, the resonant point of the impedance will move toward lower frequency.
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Figure 5.18 Impedance Z¢y(s) on the AC side

Figure 5.19 demonstrates the Nyquist plots of the eigenvalues of Z¢; Y Mmc under
different SCR. In the case of SCR=1.87, the dashed lines encircle the point (-1, 0),
which indicate that the interconnected system is unstable. In the case of strong AC grid

with SCR=3.57, the solid lines do not encircle (-1, 0), indicating stable operation.
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Figure 5.19 Nyquist plots with different SCR
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The corresponding time-domain simulation results are shown in Figure 5.20. It
is observed that the system is stable when SCR=3.57 and oscillation occurs for
SCR=1.87. The time-domain analysis is consistent with the frequency-domain analysis

based on small-signal impedance.
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Figure 5.20 Simulation results of d-axis current I4 for different SCR values.

5.1.3.4 Impact of different active power with PV outer-loop controller on
system stability

Tests on the impact of different active power output on system stability are carried
out. The AC grid SCR is 1.87 and the MMC is in inverter mode. The MMC admittances
are compared in Figure 5.21 for active power of IGW and 0.5GW, respectively. As can

be seen, when the active power is reduced by half, the MMC admittance magnitude
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also decreases, implies better system stability. The Nyquist plots in Figure 5.22 also
confirms that the system is unstable with 1GW output active power while the system

becomes stable with 0.5GW active power.
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Figure 5.21 Small-signal admittance Y/, for different active power of 0.5GW and 1GW
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Figure 5.22 Nyquist plots with different active power

For the time-domain simulation shown in Figure 5.23, the active power output of
the MMC is ramped up from 0.5GW to 1GW at 3s. As can be seen, the system becomes

oscillatory after the active power increase, which is in good agreement with the
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analytical results in Figure 5.22.

x108 P (W)
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Figure 5.23 Simulation results with active power increased from 0.5GW to 1IGW

Further studies with the change of active power direction, i.e., between inverter
and rectifier operation, have been carried out. With AC grid SCR of 4.0, two cases of
MMC operating at inverter (P=0.5GW) and rectifier (P=-0.5GW) modes are
investigated and the corresponding Nyquist plots are depicted in Figure 5.24. As can
be seen, MMC operating at inverter mode results in better stability compared with that
in rectifier mode. The time-domain simulation results are compared in Figure 5.25 in
which a small perturbation is added at 4.5s. The system can be stabilized quicker in
the case of inverter operation than rectifier operation, in which the voltage undergoes
considerable oscillation at about 300Hz. This conclusion is in line with previous

assessments.
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Figure 5.25 The d-axis voltage response in the case of MMC outputting and absorbing

power

5.2 Network with two MMCs

5.2.1 System configuration

Considering increased network interconnections and connection of large offshore

wind farms (e.g. in Europe) using HVDC links, many power networks in Europe will
see significant numbers of HVDC converters connected in close proximity. For
example, as outlined in [103] and schematically shown in Figure 5.26, the GB network

will have more than 20 HVDC connection by 2027, with a total transmission capacity
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of over 16GW. When multiple converters are considered for studying converter
interaction, shown in RED area in Figure 5.26 as an example, the network admittance
seen at each of the converter connection points will need to be considered together
with the electrical coupling between the converters. In order to perform an analytical
study on system stability and interaction, a simplified network structure is required. In
this thesis, the so-called multi-infeed interaction factor (MIIF) between the converters
[121], proposed by CIGRE WG B4 is used to quantify the simplified system structures.
Converter AC busses electrically far apart will have low MIIF, while MIIF is high

when the AC busses are very close and the interaction is strong between the converters.

Figure 5.26 Example of multiple converters in close proximity

. ) MMC2 P2
2 Zgy 1 Ziin - )
- LYY\ T g g g W=
\ AP
Equivalent \\ SCR,
AC grid cpo P1
// <---- Xn G—_
Vi SYYY YN _|
[

S1 ) SCRi  MMC1

Figure 5.27 Equivalent circuit configuration for analytical studies
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5.2.1.1 Equivalent AC network

Considering the case with two MMCs, each of the MMC can be equivalent to
connection with an AC source through a certain impedance to emulate the network
condition at the MMC connection point, and the two AC sources are interconnected
(within the same AC network). Thus, a simplified network configuration as shown in
Figure 5.27 can be developed. Ziine1 and Ziine2 in Figure 5.27 are considered as the
impedances of two 60km cables connecting the MMCs to the existing network.
Applying the MIIF concept, the followings are considered when setting the network

parameters:

e MMC, infeed is considered as an existing HVDC link, and thus Zg is pre-

determined.

e  When there exists strong electrical coupling between MMC; and MMC>, i.e. the
two converters are in close proximity (or high MIIF), X: is set to a low value while
Zg 1s set to a high value, so that MMC; can be deemed close to AC system Si

while being further away from S».

e  When there only exists weak electrical coupling between MMC; and MMC;, (i.e.
low MIIF), X: is set to a high value while Z,; is set to a low value, so that MMC;

can be deemed close to the AC system S; and far away from S;.

5.2.1.2 Equivalent SCR and MIIF

The equivalent impedance on the AC side of MMCI1 seen from PCC1 is shown
in Figure 5.28. The equivalent impedance for MMC; can be calculated as

Zsern =Ly + X2y +2Z Thus, the SCR can be obtained as SCR1=Zw/Zscr1

linel *
where Zy=V,2/Sn. Similarly, the equivalent impedance on the AC side of MMC»
connected at PCC2 and the SCR for MMC2 can be calculated as

ZSCRZ = (Zgl + Xc) || Zg2 +Z and SCRy=Z,/Zscro.

linel
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Figure 5.28 Equivalent impedance on the AC side of MMC1

The general formula for calculating MIIF., is expressed as [121]

MIIF, , = AV,/AV, (5.6)

where AV, is the observed voltage change at bus e when a small voltage change AV, is

induced at bus 7.

To represent cases where the two MMCs have strong or weak coupling, the
system parameters considered in this thesis are shown in Table 5.2. The corresponding

SCR and MIIF are presented in Table 5.3.

Table 5.2 The system parameter in the case of weak coupling and strong coupling

Parameters | Weak coupling | Strong coupling
Ly 0.0587H 0.0587H
Lo 0.0587H 0.0587H
Cablel length 60 km 60 km
Cable2 length 60 km 60 km
R 4.08Q 4.08Q
| 0.1296H 0.1296H
Re 4.08Q 10.2°Q
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0.1296H

0.324H

0.3H

0.01H

Table 5.3 SCR and MIIF in the case of weak coupling and strong coupling

5.2.2

Weak coupling | Strong coupling
SCR1 2.59 2.74
SCR2 2.59 2.64
MIIF, 0.26 0.78
MIIF,,; 0.26 0.81

AC network impedance calculation for stability analysis

To assess the stability of the grid system with two MMCs, if MMCI is the

converter under consideration, the small-signal impedance Zmmc2(s)=1/Ymmca(s) of

MMC?2 should be included when calculating the equivalent grid impedance. According

to Figure 5.27 and considering the voltages for sources Si and S; are the same, the two

power sources can be equivalent to one power source as shown in Figure 5.29 (a) and

then the three impedance Z(s), Zg2(s), and X¢(s) form a delta connection. Furthermore,

the delta connection can be transformed to Y connection as shown in Figure 5.29 (b).

Zlmez(s)

.

Zgz(s)

X(s)

Z (s)]

rrm

g1

Ziinea(S)

(@)

The power source

equivalent circuit

Figure 5.29 Small-signal impedance equivalent circuit
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Therefore, the impedance denoted in Figure 5.29 (b) can be depicted as

20K

£ 2 9+ 2,0+ X0 e
ZOX()

£ 92,0+ X e
 2,902,0

2= 7 42,9+ X9 69

As a result, the equivalent impedance Ze1(s) can be derived using Zei(s), Ze2(s)

and Z3(s) as

Zegl(s) = [Ze3 (S) ” (Zez (S) + ZIine2 (S) + Xt2 (S) + ZMMCZ (S)] + Zel (S) + ZIinel (S) + th(s) (5 10)

Thus, the system stability can be assessed based on Nyquist curve for eigenvalue
loci of Zeg1(s)Y Mmci(8).
5.2.3  Stability analysis

5.2.3.1 PQ outer-loop control for both MMCs

MMC; and MMC: adopt the control shown in Figure 5.3 and the outer-loop
employ PQ control with Preri=IGW and Prep;=1GW. The reactive power of MMC can
be regulated to maintain the terminal voltage of MMC at 360kV and the same control

parameters are adopted as listed in Table 5.1.
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Figure 5.30 Nyquist plots in the case of low MIIF and high MIIF using PQ outer-loop

control

To assess the system stability in terms of MMCI, under different MIIF, the
Nyquist plots for eigenvalue loci of Zeg1 Ymmcr are shown in Figure 5.30. For both high
and low MIIF values, they do not cause encirclement of the point (-1, 0) and thus both
systems can always remain stable. In the case of low MIIF value, the interaction of the
two MMCs are weak and the Nyquist plots imply that the system has high phase
margin and magnitude margin, and the stability is strong. In contrast, in the case of
high MIIF value, the system stability is weak with low phase margin and magnitude

margin.

The corresponding time-domain simulation results are given in Figure 5.31 with
a perturbation injected into the active power reference of MMC1 at 12s. As seen in
Figure 5.31 (a), the d-axis current of MMC1 with low MIIF has small overshoot and
can reach stable quickly. However, under the high MIIF, the system is prone to
oscillation as shown in Figure 5.31 (b). The time-domain simulation results accord

well with the Nyquist analysis.
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Figure 5.31 The d-axis current of MMC1 with different MIIF from the Simulink model

Despite of the grid strength with SCR1=2.59 is weak, in the case of low
MIIF»,1=0.26, the system still has favorable stability. However, when the coupling of

the two MMCs is strong with MIIF,;=0.81, the system stability is weak.

5.2.3.2 PQ outer-loop for MMC1 and PV outer-loop for MMC2

The effect of different outer-loop control on the stability of the interconnection
system is investigated, with MMC1 adopting PQ control and MMC2 PV control.
Under different MIIF, the frequency analysis is depicted in Figure 5.32. As seen, the
system can maintain sufficient stability with low MIIF. Whereas with high MIIF, the
system becomes unstable. The time-domain simulation results shown in Figure 5.33
also validate the analytical results. The results indicate that the use of PV control at
MMC2, the stability of the system is reduced when compared to PQ control. Therefore,

it is important the impact of outer-loop on system stability is fully considered.
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Figure 5.32 Nyquist plot with different MIIF using PQ and PV control
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Figure 5.33 The d-axis current of MMC1 with different MIIF
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5.2.3.3 MMCL1 in rectifier mode and MMC2 in inverter mode

With MMCI1 importing active power from the grid (rectifier) and MMC2
exporting active power to the grid (inverter), system stability analysis is conducted
with different MIIF. Both MMCs adopt PV outer-loop control and MMC2 exports
fixed IGW active power. With a low MIIF, Figure 5.34 compares the Nyquist plots for
MMCI1 importing 0.24GW and 0.26GW active power. As seen, with MMC1 importing
0.24GW from the AC grid, the plot does not encircle (-1,0) and thus the system is
stable. However, when MMC1 importing power increases to 0.26GW, the Nyquist plot

shows an unstable system.

=2, P1=-0.26
A, P1=-0.26

®(-1,0)

— A, P1=-0.24

A, P1=-0.24

0.5

-0.5

0.5

Figure 5.34 Nyquist plot when MMC1 absorbs different power with low MIIF

The time-domain simulation results shown in Figure 5.35 indicate the same
conclusion. At seen, after the imported active power by MMCI increases from

0.24GW to 0.26GW at 2.5s, the system gradually becomes unstable.
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Figure 5.35 Simulation results when MMC1 absorbs different power with low MIIF

Previous results when both MMCs operated in inverter mode showed that the
system oscillated at lower-frequency of around 10-20Hz. However, in this case, the
system oscillates at high frequency, caused by the negative damping at high frequency

in MMC1’s admittance in rectifier mode.

With high MIIF, the Nyquist plot is presented in Figure 5.36. In this case, MMCI1
imports 0.73GW active power from AC and the system is proven to be stable whereas
the case with 0.75GW imported power indicates an unstable system. Again, time-
domain simulation results shown in Figure 5.37 validate the conclusion derived from

Nyquist plot.
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Figure 5.37 Simulation results when MMC1 absorbs different power with high MIIF

5.3 Summary

This chapter has carried out stability assessment of AC network connected with

MMC-HVDC transmission systems by using Nyquist stability criterion. The impacts
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of AC cable length, MMC PLL bandwidth, outer-loop controller, and operating points
on system stability have been studied. System stability of multiple converters in close
electrical proximity has also been investigated. All cases are validated using time-

domain simulation. It is found that:

1 For AC grid with single MMC, high PLL bandwidth leads to less stable system.
Consequently, when the grid is weak and encounters stability problem, the
reduction of the PLL bandwidth is beneficial to the system stability and may be

considered.

2 In inverter mode, MMC has better stability with PQ outer-loop control than with
PV control, whereas in the rectifier mode, both outer-loop controls have similar
effect on stability. Compared with only current-loop control, the addition of the
outer-loop control deteriorates system stability when MMC works in rectifier

mode.

3 Compared with inverter mode, MMC in rectifier mode is more likely to induce
system instability. Moreover, the resonance frequency usually locates in high

frequency, .e.g., above 150Hz for the case studied.

4 High MMC active power results in increased MMC admittance magnitude and
consequently, reduced system stability. This applied to both rectifier and inverter

operation.

5 Interaction of converters in close proximity can be studied using the impedance
model and the multi-infeed interaction factor (MIIF). Stability analysis and
simulation results show that system with high MIIF where strong couplings

between the two MMCs exist may lead to unstable system.
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Chapter 6 Conclusions and future work

6.1 General conclusions

This thesis has developed accurate small-signal frequency-domain models of
grid-connected converters for stability analysis, including the two-level VSC, single-
phase and three-phase MMC. The developed models have then been applied for

stability assessments.

For the grid connected two-level VSC, the derivation of its small-signal
admittance in pn frame is presented. Based on the analytical admittance, influences of
the coupling admittance that generated by the PLL and outer-loop controllers on
system stability are investigated. The results indicate that under a weak grid the
traditional outer-loop active power and AC voltage controller creates coupling
admittance that has negative impact on system stability. To reduce the coupling
admittance and improve system stability, an improved outer-loop controller is
proposed which adds compensation terms into the d- and g-axis current in the form of
kiAveqa and k2Ave, at the potential resonance frequency range through lower-pass and
high-pass filters. Simulation results in time-domain verify the correctness of small-

signal admittance in frequency-domain and the effectiveness of the proposed controller.

The small-signal impedance model of the single-phase MMC is established based
on the HSS modelling method, which is capable of covering all internal harmonics
within the MMC. Different MMC control schemes, such as the AC current control and
circulating current control, have also been incorporated in the model. The impact of
the MMC internal dynamics and control dynamics on MMC impedance is investigated.
The simulation results are provided to validate the proposed MMC impedance models.

It is found that for open loop MMC system, it is important that higher order harmonics
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(e.g. h=4) are considered in the HSS model for accurate MMC impedance model.
However, whereas once the circulating current controller and AC current controller are
included, the MMC harmonic interaction is reduced and HSS model with h=2

generally provide adequate results.

As the modelling method for single-phase MMC cannot represent the true
behaviour of three-phase MMC systems, especially the zero-sequence current system
and control system implementation, an accurate model of the grid-connected three-
phase MMC in sequence frame using the HSS modelling method is developed.
Detailed procedures of the modelling is described including the transformation from
abc frame into pn frame and various controls that have been incorporated in its small-
signal model. The coupling between the positive- and negative-sequence components
brought by the external control loops and PLL are analyzed in the model. The small-
signal impedances obtained from the developed analytical model have been validated
using time-domain models under different scenarios. It is found that the HSS model
presents a promising tool to achieve efficient system control design and analysis,
particularly where harmonic coupling may be an issue. Moreover, different control
loops, e.g., PLL, AC voltage control, power control etc., can be easily incorporated
into the impedance model. The modelling method proposed allows modifications on
control system to be easily implemented into the small signal models without the need

to recalculate the various state matrix.

This developed analytical MMC model is used for assessing system stability
considering both single MMC case and multiple MMCs operating in close vicinity.
For single MMC connected to a weak grid, system stability is reduced with high PLL
bandwidth and operating at high active power. When the MMC operating as an inverter,
PQ outer-loop control leads to better system stability than PV control. However, for
rectifier operation, PV outer-loop control is superior to PQ control in terms of stability.

With the impedance model, interaction of converters in close proximity is studied
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considering different multi-infeed interaction factor (MIIF). Considering the case with
two MMCs, a simplified AC network configuration is developed which can be easily
configured to cater for different MIIFs and network strengths. Stability analysis and
simulation results show that system with high MIIF where strong couplings between

the two MMCs exist may lead to system instability.

6.2 Future work

The proposed three-phase MMC impedance does not consider the DC bus
dynamics as the DC side is assumed an ideal voltage source. However, the perturbation
voltage at the MMC AC terminal will cause voltage fluctuation at the DC terminal,
which in turn will affect the modulation signal on the MMC arm and the AC terminal
current. This means there is strong interaction between the MMC AC and DC terminals
and implies the DC side perturbation will affect the AC side impedance of the MMC.
Therefore, it is necessary to consider the DC side dynamics for developing a more
accurate impedance model of the complete MMC-HVDC system. Moreover, the
small-signal impedance of MMC with different control structures such as negative-
sequence controller will need to be studied for a full understanding of the MMC

impedance characteristics and further optimize system control to improve stability.

Significant numbers of LCC-HVDC systems currently exist in power networks
and in some cases, additional VSC based power generation plants and interconnections
are being built in close proximity. Therefore, the interaction between the existing LCC-
HVDC systems and VSC converters needs to be studied. For LCC-HVDC systems,
due to the existence of significant 11" and 13 harmonic current in the LCC converter,
there potentially can have significant harmonic interactions at relatively high
frequency, i.e. around 600Hz for 50Hz AC system. Thus, the small-signal impedance
model of LCC converter using the HSS method needs to be developed, and stability

assessment considering both grid-connected LCC and VSC systems conducted.
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The future work can be concluded as:

Develop the more accurate small-signal impedance model of the MMC-HVDC

system in which the dynamics of DC side is considered.

Negative-sequence controller of MMC-HVDC system in dq frame will be
modelled for the MMC impedance model. Further, the impact caused by negative-

sequence controller on system stability will be studied.

Develop the small-signal impedance model of the LCC-HVDC system based on
HSS method. The significant 11th and 13th harmonic will be included in the model.

When different type of converters such as two-level VSC, MMC and LCC are
connected in close proximity. The interactions between them will be analyzed

based on the developed impedance models.
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Appendix A Matrix elements for MMC single-phase

HSS equation
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where A.y...A2, A1, Ao, A1, A>... Ay are the elements of the matrix As in (3.38).
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where B.j...Bo, ...By are the elements of the matrix Bs in (3.39).

Appendix B Matrices for MMC three-phase HSS

equation
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where these matrices are defined for the equation (4.6).
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In the case of h=0, that is, the dc component is considered, the dc related matrix

AS in the matrix F[AS] can be expressed as
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where N, and Ny, are the dc component matrices of the steady-state modulation

ratio of the upper and lower arms .

For each phase, both the dc components for the upper and lower arms are 0.5 and

there exits
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In the matrix I'[M], the dc component related elements can be written in the

matrix form as
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_ Pvcigbc P_l _ Pvc%a%cp_l
2L 2L
_ Pvcigbc P_l Pvc?a%c P_l
M°= L, L
(ZF)Igabcl:r1 + Plgabcpil) 0
2Cm (Zplgabcp_l - Plgabcp_l)
I 0 2C, |

0 0 . :
where VX% and V22 denote the dc component matrices of the equivalent

vz 0 0
capacitor of the upper and lower arms and are expressed as chugbc = 0 V(fbo 0
0o 0 VvZ
Vi 0 0
andV> = 0 V2° 0 |[; |2abc 1s the matrix composed by dc component of the
0 0 VX°
Iga 0 O
three-phase circulating current. Igabc= 0 Igb 0 | denotes the dc component of
0 O IgC

the steady-state ac current of the MMC. Due to the ac current without the dc

component, |gabc is a 3 by 3 matrix with zero element.

In the matrix I'[B], the matrix B® associated with the dc component can be

written as

0

B

The perturbation components for the state variables and the input are expressed
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as AXPNO(S) and AVPNO(S). The transfer function matrices for the corresponding

controller are denoted as G A (3) and G B (5) )

In the case ofh#0, in the matrix F[As], the matrix A;‘rh composed by +ha, order

harmonic associated elements are expressed as

| 0 0 _ PNi:bcpil _ PNIJ;ECP&_
2L, 2L,
0 o _PNALPY PNLPY
th_ L., L,
AS - PNih P—l PNih P—l
uabc uabc 'Cz 0 0
C, 2C,
PN P" PN P c, o 0
. C, 2C, ]

+h +h . .
where Nzabc and NgbC are the matrices composed by h order harmonic of the steady-

state modulation ratio in abc frame and can be expressed as

[\ £h nt 6 i
Mnua; O 0
“nth
M +h ei 16
+h _ nub
Nuabc_ 0 2 0 ’
+h *joih
O O Mnube "
2
[\ g £h £ joEn ]
Mnlag I 0 O
nth
M ihein,ﬂb
RN L
th ot j6in
O 0 Mnube
2
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B th p-1 th p-17]
0 0 _ PNUabCP _ PNIabcP
2L, 2L,
+h -1 +h p-1
0 0 _ PNuabcP PNIabcP
Aih = Lm Lm
s th p-1 th p-1
PNg,CP PNZUEbCP c, 0 0
m m
PN P PN P
L m m J
[ pgth oxj0iR 1 [ ngthatiQit i
M nua; 0 0 M nla; I 0 0
ioth ioth
M th eiJQnub M iheiJme
G LS 0
2 2
+h o+ jQ:h +h o+ jQak
0 0 M nube " 0 0 M nube
2 2
_ Pvcigbc P71 _ Pvc%a%cFrl _ Pvczu:bc P71 - |:>Vcillg)(:|371
2L, 2L, 2L, 2L,
_ P\/c%e(x’bcl:r1 PVcEz?chr1 - PVc%ch P71 F)\/czuz:bcl:r1
M°= L, L, M"= L, L,
(Zl:)lgabcp_:l + Plgahcp_l) 0 (Zl:)l';abcp_:l + Plgabcp_l) 0
2Cm (2P|53b0P71 —Pl gabcpil) 2Cm (2P I gabc P™—PI rgljabcpil)
i 0 2C, I 0 2C,
M \?cuaeijQ\?cua 0 0 M vtc:aeriofcﬁa 0 0
) 2
20 — < vocu
chabc - 0 M\?cub g% 0 £ o* Qi
i Tih — 0 '\/Ivcube 0
0 + JQueuc cuabc
0 0 MO e*] 2 N
0 0 M\:Lc:cei]%uc
L 2 |

Taking h=1 for example,

cual

fundamental frequency.

M 1 ej(a’OtJrQ\}cua) + M 1 e_j(wu'HQ\}cua)

vcua

21_ppl 1 _ Tveua
cha =M veua COS(G)Ot + chua) -
1 oiQa 1 o Qe
— M vcuae eiwot + M vcuae e—Ja)ot

2
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1 .
YV »c denotes the operational three-phase voltage at
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