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Abstract 

With high penetration of converter interfaced renewable energy and distributed 

generation, and increased use of HVDC interconnections, the characteristics of power 

systems is undergoing significantly changes. Interaction between grid-connected 

converters and networks is likely to increase, which may lead to stability and resonance 

problems, and in particular, when the grid is “weak” as the relatively high system 

impedance. Therefore, that is important adequate method is developed for assessing 

system stability. 

This thesis presents the small signal impedance modelling of grid-connected 2-level 

voltage source converters (VSC) and modular multilevel converter (MMC) for system 

stability assessment. In the case of 2-level VSC connected to weak grid system, the 

VSC impedance is mapped into the positive-negative (pn) sequence-frame for ease of 

analysis, and the stability problem associated with the coupling admittance is studied. 

It is found that traditional outer-loop controllers (e.g., active/reactive power and AC 

voltage controllers) create high coupling admittance that has negative impact on 

system stability. Improved outer-loop controllers are proposed and to improve the 

system stability which add compensation terms into the d and q-axis at the potential 

resonance frequency range. Small signal analysis and time domain simulation confirm 

the effectiveness of the proposed method. 

Large number of MMC based HVDC systems for interconnection or offshore wind 

farm integration are already in operation and many more will be installed in the coming 

years. MMC has multiple internal harmonics, which causes complex internal dynamics 

and multifrequency response. To accurately model the multiple frequency response and 

include all internal harmonics dynamics with MMC, the harmonic state-space (HSS) 

modeling approach is adopted. A detailed procedure for deriving the small-signal 
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model of single-phase MMC system using HSS modelling approach is presented first. 

To address the issues related to single-phase MMC modelling including the existence 

of zero-sequence current and the use of controllers in abc frame, which are not in 

accordance with practical 3-phase system, impedance modelling and validation of the 

three-phase MMC based on HSS are conducted. In order to simplify the analysis on 

the coupling characteristics between different frequencies in MMCs, the proposed 

model is developed in pn frame, where the zero-sequence current in three-phase three-

wire system is modelled in a simple way. A simplified 2 by 2 admittance matrix in pn 

frame is extracted from the MMC small-signal model for ease of system stability 

analysis. Different outer-loop controllers, operating points and working mode are 

adopted and compared in the analysis to illustrate the effects system stability. It is 

found that for AC grid with single MMC, high PLL bandwidth leads to a less stable 

system. Compared with inverter mode, MMC in rectifier mode is more likely to induce 

system instability.  

Using the developed impedance model, the multi-infeed interaction factor (MIIF) 

measure is adopted to analyze the interactions for multi-infeed converter systems. 

Detailed studied are carried out for an AC network with two MMCs considering 

different MIIIF. Analytical studies and time-domain simulation results show that 

system with high MIIF where strong couplings between the two MMCs exist may lead 

to instability. 
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 Introduction 

 

 HVDC power transmission technologies 

Renewable energy sources have experienced fast growth in recent years. In 

European Union (EU), the renewable energy share has reached around 20% in 2020 

and is likely to increase to 32% in 2030 [1]. Generally, renewable power generation 

is located far away from the main load centers and thus transmission technology 

plays an important role under such scenario. High voltage direct current (HVDC) is 

now considered as the most attractive solution for power transmission over long 

distance [2][3]. 

Figure 1.1 shows the basic scheme of a HVDC link for power exchange between 

two AC systems, where power transmission from AC system 1 to AC system 2 is taking 

as an example. The AC system 1 is connected to the HVDC rectifier through a 

transformer and the AC power is converted to DC power. Through the HVDC cables 

or overhead lines, the DC power is then transmitted to the inverter, where is the DC 

power is converted back to AC power.  

AC

DC

DC

AC

AC 

system 1

AC 

system 2

DC

Rectifer Inverter
P  

Figure 1.1 Basic scheme of an HVDC link 

Depending on the converter technology used, HVDC system can be clarified as 

Line-commutated converter (LCC) based and voltage source converter (VSC) based 
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HVDC systems. 

1.1.1 LCC based HVDC system 

LCC is based on thyristors, which can only be controlled to switch on, whilst its 

switch off has to rely on the line voltage of the AC system to which the converter is 

connected in order to effect the commutation from one switching device to its neighbor 

[4]. Therefore, it is called line-commutated converter. LCC based HVDC systems have 

been used for power transmission for many decades due to its low operational losses, 

high power transmission capability, reliability and robustness [4][5]. Figure 1.2 shows 

the structure of a 12-pulse LCC bridge, where two 6-pulse converter bridges are 

connected in series at the DC side while the AC sides are connected through a star-

star-delta transformer. With this structure, the 5th and 7th harmonic currents at the input 

AC side can be effectively eliminated. The main drawbacks of the LCC-HVDC system 

include the need of external voltage source for commutation, requiring large passive 

filters and the complexity during power reversal. 

 

Figure 1.2 12-pulse bridge LCC 
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1.1.2 VSC based HVDC system  

With the switching device insulated-gate bipolar transistor (IGBT), both turn-on 

and turn-off timing can be controlled, giving a second degree of freedom. As a result, 

IGBTs can be used to make self-commutated converters which are closer to a large 

inverter in operation. In such converters, the polarity of DC voltage is usually fixed 

and the DC voltage, being smoothed by a large capacitance, can be considered constant. 

For this reason, an HVDC converter using IGBTs is usually referred to as a voltage-

source converter. VSC based HVDC system now attracts lots of attention due to its 

higher controllability. Comparing with LCC-HVDC, VSC-HVDC provides many 

advantages, such as no need of external voltage source, flexible power flow reversal 

and AC voltage support capability [7-10]. Early VSC-HVDC uses two-level converter, 

as shown in Figure 1.3. Fully controlled semiconductors, such as Insulated Gate 

Bipolar Transistors (IGBT) [6], are connected in parallel with freewheeling diodes at 

each arm [2]. The main drawbacks of two-level VSC include: (1) high switching losses 

caused by high switching frequency; (2) substantial filters for harmonic limitation ; 

and (3) unwanted electromagnetic interference caused by high dv/dt during switching 

[11].  

 

Figure 1.3 Two-level VSC 

https://en.wikipedia.org/wiki/IGBT_transistor
https://en.wikipedia.org/wiki/Inverter
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To address the issues with the two-level converter, modular multilevel converter 

(MMC) has been developed and is now regarded as a promising and competitive 

structure for VSC-HVDC. As shown in Figure 1.4 (a), it consists of 6 arms, each 

contains a large number of series-connected submodules. The submodule 

configuration used for MMCs i.e., the half-bridge submodule (HBSM) is shown in 

Figure 1.4 (b). 

Compared with two-level VSCs, MMC has many attractive advantages, such as 

low power losses, modular design, and low harmonic distortion in the output AC 

voltage [12]-[15]. This technology is increasingly applied for large-scale offshore wind 

farms connection [16]. 

1SM

2SM

SMn

1SM

2SM

SMn

1SM

2SM

SMn

1SM

2SM

SMn

1SM

2SM

SMn

1SM

2SM

SMn

icnibnian

(a)

(b)

S1

S2

 

Figure 1.4 MMC and two sub-module topologies. 

 Stability issues of HVDC power transmission system  

Increased penetration of renewable energy resources and the use of HVDC 

connections have significant impacts on power system behaviour. These power 
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generation units and transmission links are generally connected to the main grid 

through power electronics based converters. Although such converters offer fast 

control capability, the system inertial and damping are unavoidably decreased, which 

pose challenges on power system stable operation [17]. Recently, such stability issues 

caused by the interaction between the VSC-based HVDC and the power grid have 

drawn lots of attention [18]-[20]. Stability problems and studies have been reported in 

several LCC-HVDC transmission systems [21]. A 451Hz resonance led to shut down 

of several North Sea offshore wind farms when connected with MMC-based HVDC 

[22], and 1270Hz resonance was reported in Luxi back-to-back-HVDC project in 

China [23]. These resonance phenomena raise concern about the integration of 

renewable energy resources [24]. Efficient methods to identify the key causes of 

harmonic resonances and to mitigate such instability are crucial for future renewable 

energy development. 

 Small signal stability analysis  

 

Figure 1.5 Procedure for system stability analysis 

Figure 1.5 shows a typical procedure for system stability analysis. Based on the 

real system, an analytical system model is developed first. The model is then linearized 

to obtain the small-signal model and stability analysis is carried out to find the key 

courses of instability.  

Modelling techniques are necessary prerequisite for analyzing the stability 

problem [25]. Power electronic circuits are time-variant and exhibit nonlinearity, and 

the time-variance is associated with the switching operation while the nonlinearity 

results from the dependence of power electronic switching instants on system 
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conditions [26]. The modelling techniques for power electronic converters can be 

broadly classified as time-domain and frequency-domain techniques [27]. The terms 

of time-domain and frequency-domain are referred to the signals being represented as 

a function of time and frequency, respectively [28]. 

The overview of existing techniques for modelling power electronic circuits, and 

identifying merits and disadvantages are presented in [25][29]. In general, time-

domain modelling naturally accommodates nonlinear circuit behaviours, and relies on 

various mathematical methods to solve differential equations in time-domain [30]. So 

it may suffer from numerical oscillation and long time to reach the steady state. 

Although time-domain modelling methods are well established, they do not provide 

explicit information about the harmonic and inter-harmonic interactions around power 

electronic circuits [31]. 

On the other hand, frequency-domain modelling provides fast steady-state 

solutions, and explicitly represents the frequency coupling nature of power electronic 

circuits [32]. However, it cannot be used to capture the dynamics of a system. To 

capture the coupling frequency characteristics, models developed in the frequency-

domain or its subset, the harmonic domain, are either iterative or linearized around an 

operating point [33]. The HSS i.e., Harmonic State-Space is an extension to the 

conventional frequency-domain in the sense that it preserves the explicit description 

of the frequency coupling nature of power electronic circuits, but more importantly, it 

extends the description of different frequencies coupling to the transient state [34][35]. 

 Stability analysis method 

For grid-converter interconnected system, eigenvalue-based analysis and 

impedance-based analysis are considered as the two main methods for stability 

analysis. They both have the advantages of less computation requirement and the 

ability to analyze the impact of controller dynamic and grid configuration on the 
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interconnected system stability [36]. 

1.4.1 Eigenvalue-based analysis 

Eigenvalue-based analysis method was widely used to analyze the stability of grid 

connected wind farms [37] and HVDC transmission systems [38][39]. This method is 

generally based on one specific operating point and judges the system’s global stability 

according to the damping of eigenvalues. However, when it is used to analyze the 

stability issues caused by the interaction between converters or between converter and 

grid, there are two main disadvantages: 

⚫ It requires a detailed analytical state-space model of the entire system, thereby 

highly depending on accurate parameters of the system. In many cases, it is very 

difficult to obtain the configuration and parameters of the grid network, and 

thus, eigenvalue-based analysis can lead to significant errors in this condition. 

⚫ To identify sustained harmonic oscillations in VSC systems, eigenvalue-based 

analysis requires discretizing the systems, leading to high computational 

requirement[36]. 

1.4.2 Impedance-based analysis 

Impedance-based stability analysis method was introduced to evaluate interaction 

between a DC-DC converter based power supply and its source with an EMI filter in 

[40]. For the impedance-base method, the system can be partitioned into the source 

and the load subsystem and the small-signal stability of the system can be evaluated 

by applying Nyquist criteria to the source-load impedance ratio [41]. Recently, the 

impedance-based analysis method has been widely applied in stability analysis of grid-

connected inverter at the interfacing point connecting to the grid [42][43]. The 

objective of the frequency-domain modeling is to linearize the converter dynamic 

model and find a Laplace transfer function type relationship between the selected input 



 

8 

 

and output variables and further derive the source-load impedance.  

Figure 1.6 (a) and (b) show the small-signal representations using equivalent 

voltage and current source systems, respectively. For the voltage source system 

representation shown in Figure 1.6 (a), the source subsystem is modelled by its 

Thevenin equivalent circuit consisting of an ideal voltage source Vc in series with an 

output impedance Zc, while the load subsystem is modelled by a current source Ig in 

parallel with an impedance Zg. A shown, the current between the source subsystem and 

load subsystem is obtained as: 

 
( ) ( ) ( )

( )
( ) ( )

c g g

c g

V s Z s I s
I s

Z s Z s

+
=

+
  (1.1) 

Equation (1.1) can be rewritten as: 

 
( ) 1

( ) ( )
( ) 1 ( ) ( )

c
g

g c g

V s
I s I s

Z s Z s Z s

 
= + 

+  
  (1.2) 

For system stability analysis, it can be assumed that the source voltage is stable 

when unloaded and the load current is stable without the voltage source. In this case, 

Vc(s), Ig(s) and 1/Zg(s) are stable, such that stability of the current I(s) depends on the 

stability of the second term on the right-hand side of (1.2), i.e.: 

 
1

( )
1 ( ) ( )c g

H s
Z s Z s

=
+

  (1.3) 

Obviously, (1.3) resembles the close-loop transfer function of a negative 

feedback control system where the forward gain is unity and the feedback gain is 

Zc(s)/Zg(s). Thus, the system open loop gain is Zc(s)/Zg(s) and the system is stable if 

and only if Zc(s)/Zg(s) satisfies the Nyquist stability criterion i.e., the Nyquist curve 
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does not encircle the point (-1,0). 

For the current-source system representation shown in Figure 1.6 (b), a Norton 

equivalent circuit in the form of a current source Ic in parallel with an output impedance 

Zc, is adopted to represent the source. The load is represented by a voltage source Vg 

in series with an impedance Zg. The current between the source subsystem and load 

subsystem is derived as: 

 
( ) 1

( ) ( )
( ) 1 ( ) ( )

g

c

c c g

V s
I s I s

Z s Z s Z s

 
= − 

+ 
  (1.4) 

ZgVc

IZc

Ig

+

−

Thevenin equivalent circuit 

representation

+

−

V

  

Ig+

+I

V

1/Zg

Zc

+

−

Vc

Block diagram representation

 

(a) Equivalent voltage source system  

+

−
Vg

Zg

Ic

I

Zc

+

−

V

Norton equivalent circuit 

representation  

Vg
+

+V

I

Zg

1/Zc

+

−

Ic

Block-Diagram Representation
 

(b) Equivalent current source system 

Figure 1.6 Small-signal representation of the system 
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Following similar assumptions, the open loop gain is Zg(s)/Zc(s) which can be 

used for assessing the system stability. 

Note that the open loop gain of the voltage source system is different from the 

one of the current source system [41]. Since grid-connected converters are typically 

controlled using current loop, the system is better to be represented by the current 

source system as shown in Figure 1.6 (b), when impedance-based method is adopted. 

Compared with eigenvalue-based analysis method, the grid side network can be 

deemed as a black box, i.e., detailed knowledge of the parameters and properties of the 

system is not required as long as measurements can be obtained at its terminals when 

impedance-based analysis is carried out. However, a weakness of the impedance 

method is the limited observability of certain states given its dependence on the 

definition of local source-load subsystems, which makes it necessary to investigate the 

stability at different interfacing points[44]-[47]. Moreover, when the source impedance 

and load impedance have Right Half-Plane Zeros, impedance-based analysis is invalid. 

 Definition of reference frame and frame transformation  

Depending on the studies required, different reference frames can be used. 

Usually, the rotating synchronous dq frame or stationary αβ frame are the preferred 

frames for control designs, whereas the three-phase abc frame is the natural three-

phase frame. Figure 1.7 shows the spatial relationships among the abc frame, αβ frame, 

and the dq frame. In addition, the pn frame (i.e. positive and negative sequence-frame) 

and fb frame (i.e. called modified sequence frame in [48]) may also be considered, and 

the relationships between the multiple reference frames are summarized in Figure 1.8 

[49][50]. Based on the transformations between different frames, the impedance of 

converters can be calculated in a specific frame to reduce the complexity of impedance 

modelling. Moreover, the calculated impedance can be transformed into another frame 

for specific analysis requirements. In the following section, the transformations of a 
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variable from abc frame to dq frame, abc frame to pn frame, and dq frame to pn frame 

are presented.  

 

φ 

β

α

q

d

ω0t 
a

b

c

V

 

Figure 1.7 Definition of the stationary αβ frame, rotating dq frame and three-phase abc 

frame 

abc

dq

αβ pn

fb

C

P

R(t)

T(t)

A

A

B(t)

 

Figure 1.8 Transformation between different frames 

1.5.1 abc frame to dq frame  

Three-phase variables in abc frame can be transformed into the rotating dq 



 

12 

 

reference frame by the standard technique for the modeling of AC machines and 

converters [51]. Balanced three-phase quantities without harmonics can be assumed as 

constant DC values in a synchronously rotating reference frame. Hence, impedance 

modeling of three-phase VSC in the dq frame is relatively straightforward.  

According to the definition of dq frame shown in Figure 1.7, the Park 

transformation T(t) in Figure 1.8 can be expressed as: 

 
0 0 0

0 0 0

2 2
cos cos( ) cos( )

2 3 3
=

2 23
sin sin( ) sin( )

3 3

t t t

t t t

 
  

 
  

 
− + 

 
 − − − − +
  

T(t)  (1.5) 

In addition, the transformation from abc frame to dq frame can be obtained by the 

Clark transformation C and the rotating transformation R(t), as: 

 =T(t) R(t)C  (1.6) 

 

1 1
1

2 2 2

3 3 3
0

2 2

 
− − 

 =
 

−  

C   (1.7) 

 
0 0

0 0

cos( ) sin( )

sin( ) cos( )

t t

t t

 

 

 
=  

− 
R(t)   (1.8) 

1.5.2 abc frame to pn frame 

The method of symmetrical components was developed for investigation into the 

operation of an induction motor under unbalanced conditions and it has been 

extensively used in fault analysis [49][52]. Any unbalanced three-phase system can be 

expressed as the sum of a set of three balanced components, specifically, positive-

sequence, negative-sequence, and zero-sequence as defined in Figure 1.9. The 
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subscript p denotes for positive-sequence components, a sum of three phasors equal in 

magnitude but 2π/3 apart in phase with a phase sequence of a-b-c as illustrated in 

Figure 1.9 (a). Similarly, the subscript n denotes for negative-sequence components, a 

sum of three phasors equal in magnitude but 2π/3 apart in phase with a phase sequence 

of a-c-b as illustrated in Figure 1.9 (b). The subscript z denotes for zero-sequence, a 

sum of three phasors equal in both magnitude and phase angle as illustrated in Figure 

1.9 (c). 

 

 

( )a pI  

( )b pI  
( )c pI  

 

 

( )a nI  

( )c nI  
( )b nI  

 

 

( )a zI  ( )b zI  ( )c zI  

 

(a) Positive-sequence         (b) Negative-sequence        (c) Zero-sequence 

Figure 1.9 Symmetrical components of three-phase phasors 

According to the definition of pn frame, the transformation matrix P from abc 

frame to pn frame can be expressed as 

 

2

2

1

= 1

1 1 1

 

 

 
 
 
 
 

P   (1.9) 

where α = ej2π/3 and α2 = ej4π/3 . 

1.5.3 dq frame to pn frame 

In [53], the transformation matrix A from dq frame to fb frame in Figure 1.8 is 

expressed as 
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11

12

j

j

 
=  

− 
A                       (1.10) 

The frequency shift transformation matrix B(t) from fb frame to pn frame is 

derived in [49] as 

 
0

0

0

0

j t

j t

e

e



−

 
=  
 

B(t)  (1.11) 

Thus, according to Figure 1.8 and considering (1.10) and (1.11), the 

transformation matrix from dq frame to pn frame is obtained as 

( )( )

( )( )

dp

qn

v tv t

v tv t

  
=   

   
B(t)A           (1.12) 

where Δvd(t) and Δvq(t) are the components in dq frame, and Δvp(t) and Δvn(t) are the 

corresponding components in pn frame. 

 Impedance modelling of grid-connected converter 

For impedance-based stability analysis, an accurate impedance modelling of 

converters is required. Although two-level VSCs and MMCs share some similar 

characteristics, the complicated internal dynamics and the extra controllers of MMCs 

may make the conventional modelling method for VSC not applicable for MMC. In 

view of the distinguished features of the VSC and MMC, to explicitly assess the state-

of-the-art of the two converters associated stability problems, the modeling methods 

of the two types of converters are illustrated separately in the following section. 

1.6.1 Impedance modelling of a two-level VSC  

According to the frame adopted in the modelling, the converter impedance can 
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be represented in the synchronous dq frame, the pn frame and the modified sequence 

frame, i.e. the fb frame in Figure 1.8. 

1.6.1.1 Impedance modelling in dq frame 

Under a three-phase balanced AC system, no DC component exits in the 

stationary frame. By transforming the stationary frame to synchronous dq frame, the 

grid-connected VSC system becomes two coupled DC systems with time invariant 

property, which indicates the system can be conducted with direct linearization in dq 

frame to derive the small-signal impedance. References [54][55] have derived the 

small-signal impedance of grid-connected converter with current control, PLL and 

power control. The effects of the VSC controllers such as the inner-loop current control, 

direct-voltage loop and PLL on the converter admittance are investigated in [54], and 

the following controllers design recommendations are provided to ensure the system 

stability: 

• Use a PI controller with low integral gain or a direct P controller for the 

current loop. 

• Select low bandwidths for the direct-voltage controller and PLL. Both 

bandwidths must be lower than one tenth of the current-loop bandwidth. 

• Select low bandwidth of the voltage feedforward filter in current loop for 

normal mode of operation, but equal to the current-loop bandwidth or larger 

for short term transient-mode operation. 

Reference [46] [47][55] focus on the impact of the PLL bandwidth and the power 

output of the converter on system stability based on the impedance model in dq frame. 

It concludes that higher PLL bandwidth will produce wider frequency range of 

negative resistance of Zqq (q–q channel impedance) and higher power output of the 

converter results in a lower negative resistance of Zqq. The negative resistance reduces 

system stability when the converter is working as a current source under weak grid. 
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For grid-connected VSC system, its impedance matrix in dq frame is actually 2×2 

matrix with non-diagonal elements [54][55]. The off-diagonal terms in impedance 

matrix are nonzero, which indicates the system based on the impedance method is 

multiple input and multiple output (MIMO). Thus, generalized Nyquist criteria (GNC) 

for MIMO is required for the stability analysis. Moreover, because both grid 

impedance and VSC output impedance have off-diagonal elements, it cannot explain 

how the impedance characteristics of the grid and VSCs affect the oscillation 

frequencies [48]. 

1.6.1.2 Impedance modelling in pn frame 

For the sequence impedance model in the pn frame, the grid-connected VSC 

inherently varies with time. Linearizing the time-varying system along a steady 

periodic trajectory yields a linear time periodic (LTP) system. To transform LTP 

systems into frequency-domain, the harmonic linearization method is introduced to 

obtain sequence impedances [56]-[60]. The model can be simplified as a diagonal 

transfer matrix and has two single-input single-output (SISO) transfer functions in the 

positive-sequence and negative-sequence. The system stability can be assessed by 

positive-sequence impedance and negative-sequence impedance individually.  

Compared with the model in dq frame, the model in pn frame is beneficial for the 

stability analysis of multiple VSC systems since the overall system model is 

established in a common frame instead of multiple dq frames for multiple VSCs [58]. 

The stability can be analyzed directly through the impedance in pn frame, which is 

simpler and more straightforward than the method adopted in dq frame, i.e., GNC for 

MIMO. However, in [56][57], the SISO model is developed by ignoring the coupling 

components. Nevertheless, this kind of model ignores the small coupling term of 

converter pn sequence impedances, which may result in inaccurate stability estimation 

of power converters [61]. For example, a positive-sequence voltage perturbation 
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injected may lead to significant negative-sequence current perturbation. Hence, 

adopting diagonal impedance matrix to conduct stability analysis will be inaccurate 

theoretically. 

The systematic methodology to derive the converter admittance in the pn frame 

is proposed in [62][63]. The admittance in the dq frame is derived firstly and is then 

transformed to the pn frame by applying the transformation matrices. The impact of 

the coupling between the positive- and the negative-sequence components of the 

converter admittance caused by negative-sequence compensator and the active power 

regulator on stability is assessed, whilst the impact of the negative-sequence 

compensator on the system stability is also studied. 

1.6.1.3 Impedance modelling in modified sequence frame 

To consider the frequency-coupling dynamics, a modified form of the sequence-

domain impedance matrix is presented and the stability assessment are obtained in the 

modified sequence-domain based on GNC [48][64]. However, the modified sequence-

domain model may yield a void sequence component without physical meaning. 

Reference [48] identifies the couplings between the mirror frequencies caused by PLL 

in grid-connected converters and proves that neglecting the admittance couplings can 

result in a wrong estimation of the system stability. In [65], a unified impedance model 

of VSC with PLL dynamic is derived based on complex space vectors. In addition, the 

mathematical relationship between the models in the dq frame and αβ frame is revealed. 

The frequency couplings effect on the stability of the grid-connected VSC is also 

studied. It is shown that the stability assessment not considering the coupling 

impedance in sequence domain created by the asymmetric controls in dq frame such 

as PLL, DC and power control, is not accurate.  
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1.6.2 Modelling for MMC 

Due to the inherently complex behaviour of MMCs such as internal circulating 

current and submodule (SM) capacitor voltage ripple, the interactions between the 

MMC output impedance and grid impedance may lead to harmonic resonance and even 

instability [66]. Meanwhile, the complex internal dynamics of MMC makes modelling 

for stability analysis a challenging task [67][68]. In previous studies, several simplified 

equivalent models have been proposed to analyze the critical features of MMC [69]. 

 Equivalent time-domain MMC models 

The schematic diagram of an MMC was shown in Figure 1.4. In the early studies, 

simplified MMC model which does not contain the arm inductors and treated the SMs 

as switchable DC sources is considered [70]-[73]. The arm voltage is equivalent to a 

controlled and continuous voltage source consisted of many series-connected sub 

voltage sources as shown in Figure 1.10. 

+ + +

- - -

+ + +

- - -

 

Figure 1.10 Early MMC equivalent circuit 
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+ + +

- - -

+ + +

- - -

 

Figure 1.11 Equivalent circuit with arm inductors 

MMC model with arm inductors to limit the arm current was late developed in 

[74]-[79], as shown in Figure 1.11. The arm voltage is still regarded as a controlled 

voltage source [80], which is only valid when the SM capacitors are large enough so 

the SM voltages are constant. Moreover, the number of SM is assumed to be large 

enough so the arm voltage can be regarded as continuous.  

Although the above two equivalent models are simple and straightforward for 

MMC study, they have many drawbacks and limitations. Firstly, all the SMs in one 

arm are treated as a single unit, so the behaviour of each individual SM is lost [69]. 

Secondly, the dynamic of the coupling between the voltage of the SM capacitor and 

the arm current is ignored. Finally, the internal behaviour of the MMC such as 

circulating current is lost. 
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+ + +

- - -

+ + +

- - -

 

Figure 1.12 Equivalent circuit with nonlinear arm capacitors 

The MMC model shown in Figure 1.12 is developed in [81]-[83]. The difference 

between this model and the previous models is that the arm voltage is equivalent to the 

voltage of a nonlinear capacitor with time variant sinusoidal capacitance. The capacitor 

voltage is still assumed a controlled voltage source. With this modeling approach the 

converter can be controlled by calculating the total capacitor energy in each arm in 

order to regulate the capacitor voltage, and the total energy of the upper and lower arm 

can be regulated to control the power delivery to the load. The difference between the 

upper and lower arm energies is then used to balance their respective voltages. With 

this model, the ripple voltage of the capacitor can be determined [84]. 

Since the SMs in an arm connected in series, the current flowing through each 

SM is the same. If each SM in one arm has the same duty ratio, the MMC can be 

represented as an averaged model [85]-[87], as shown in Figure 1.13. 
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+
-

+
-

 

Figure 1.13 Equivalent circuit of averaged model 

Compared to the previously described equivalent MMC models, the advantage of 

the averaged model is that the circulating current and the information of individual 

capacitors can be fully captured by this model. The limitation of this model is that the 

information of the individually SMs cannot be differentiated, as all of them are 

assumed to be identical. Another shortcoming is that the arm voltage is considered as 

continuous, which implies that the harmonics created by SM switching cannot be 

considered in the model. However, this is the common shortcoming of the four 

equivalent MMC models [69]. 

 Impedance modelling of MMC 

Since the impedance-based analysis is widely applied in grid-connected converter 

systems, various studies have been carried out to calculate the MMC impedance-based 

on the MMC averaged model shown in Figure 1.13. 

In [88], an analytical sequence impedance model of a three-phase MMC is 

derived with the internal MMC dynamics, following the same approach used for two-

level VSCs. However, the 2nd harmonic in the arm current and PLL are not considered 
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in the model. In [89], the AC side input admittances of the MMC under various control 

strategies are derived, though the circulating current controller is not included. 

Reference [90] focuses on the impact of different current control schemes on the shape 

of MMC admittance, considering the 2nd internal harmonic current. However, a large 

resistive load is added at the AC side to provide increased passive damping, so that 

high-order harmonics are not presented in the system and thus no need to be considered 

[90]. However, in real systems, such strong passive damping does not exist and 

harmonic or inter-harmonic resonances are a major concern and must be modelled.  

The HSS method proposed to analyze linear time-periodic (LTP) system [91], 

models not only the steady-state harmonics in LTP systems, but also the dynamics of 

the harmonics during transients. Consequently, HSS method has been widely used to 

model power networks and converters, e.g., static synchronous compensators [92], 

LCC converters [91], transmission lines [93], and two-level VSCs [94]. Recently, HSS 

method has been used to model MMC impedance considering the impact of the 

internal harmonics [95]-[97]. Since the Fourier coefficients matrices in the HSS model 

are diagonal-constant matrices (Toeplitz matrices) [95], the MMC small-signal model 

based on HSS can be easily extended to any harmonic order. Hence, the dynamics of 

high-order harmonics in MMC can be fully considered. 

However, various problems and limitations still exist in the proposed HSS-based 

MMC small-signal modelling methods [95]-[97]. In [95], a single-phase MMC model 

is developed and the impedance that reflects the voltage and current at the same 

frequency is derived but the couplings at different frequencies generated by the internal 

harmonics of MMC, are not taken into account. Impedance models of three-phase four-

wire MMC systems, in which both the MMC DC mid-point and the AC neutral point 

are grounded providing a circulation path for the zero-sequence current, are derived in 

[96][97]. However, in reality, MMC systems are likely to be configured as an 

equivalent three-phase three-wire system without the low impedance path for the zero-
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sequence current. To describe the MMC zero-sequence current on the MMC AC side 

in three-phase three-wire systems, zero-sequence voltage compensation is proposed to 

add into the single-phase model in [96] and the single-phase impedance is obtained for 

three-phase system stability assessment. The MMC controllers in the models also 

adopt the proportional resonant (PR) controller in the abc frame, implying that the 

controls for phase a, b, and c are totally independent and identical. However, for MMC 

controller implemented in αβ frame or dq frame, the single-phase modelling method 

is inadequate and is thus unsuitable for three-phase MMC system.  

In the latest study on MMC impedance modelling, reference [98] provides a 

comprehensive three-phase HSS model of MMC. Similar to [96], the DC mid-point 

voltage is compensated using the AC neutral point voltage to eliminate the zero-

sequence current. However, when developing the small-signal model, the expression 

of the neutral point voltage involves the steady-state value and the perturbation 

variables of three-phase voltages as well as the control signal of the arms, which lead 

to an extra complex calculation in the HSS model. In [98], the complex vector 

representation of the controllers in dq frame obtained based on the transfer function, 

has to be transformed to the αβ frame before being integrated into the MMC model to 

obtain the impedance in sequence frame, thus leading to complicated transformation 

and calculation. 

In addition, the MMC impedance obtained in [98] is a 10 by 10 matrix. In order 

to simplify the process of stability assessment, a single input and single output (SISO) 

equivalent impedance of the MMC is derived by considering the grid side impedance. 

However, if the grid structure is more complex, e.g., there are other converters 

connected to the grid in close proximity, the grid impedance seen by the MMC will 

also become complicated. Thus it is difficult to simplify the 10 by 10 matrix of MMC 

impedance to a SISO equivalent. Therefore, a MMC impedance independent of the 

grid side impedance and in simple form is more beneficial for system stability 
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assessment with multiple converters. MMC represented by 2 by 2 impedance matrix 

in modified sequence-domain [99] is developed in [100][101]. However, in the 

modified sequence-domain the frequencies of the coupling admittance cannot be 

represented. Moreover, unlike the impedance in the sequence domain, the MMC 

impedance in the modified sequence domain cannot be measured directly in time-

domain due to the existence of frequency shift between the modified sequence domain 

and sequence domain. In [102], a MMC 2 by 2 impedance matrix is derived to capture 

the characteristics of frequency coupling in sequence frame. However, the work 

focuses on the coupling between the AC system and DC system of the MMC and the 

dynamic of the PLL in AC side is not considered. 

 Current status and application of HVDC in UK and world-wide 

Considering the increased network interconnections and connection of large 

offshore wind farms (e.g. in Europe) using HVDC links, many power networks have 

seen significant numbers of HVDC converters connected in close proximity. For 

example, as outlined in [103] and schematically shown in Figure 1.14, the GB network 

will have more than 20 HVDC connection by 2027, with a total transmission capacity 

of over 16 GW. Some studies have been carried out considering the interaction 

between LCC and VSC inverter stations and the parameters of the controllers are 

investigated based on the small-signal model [104][105]. In [106], the admittance-

based stability assessment are adopted to studied the control interactions between two 

VSCs in frequency-domain. In [107], two MMCs connected to an AC grid system is 

studied based on MMC small-signal model. However, the model does not take into 

account the internal harmonics of MMC and thus the results are not representative. 

Therefore, further work to investigate the interaction between MMCs located in close 

proximity are required. 
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Figure 1.14 Outlook of HVDC connection in the GB power grid [103] 

 Motivation and aims of the work 

1.8.1 Research motivation and objective 

As discussed in Section 1.6.1, when asymmetric controller in dq frame [50] is 

adopted in two-level grid-connected VSC, the converter will generate coupling at 

different frequencies between positive- and negative-sequence components in pn frame. 

Reference [48][65] only conclude that ignoring this coupling may result in a wrong 

estimation of the system stability. The effect of the coupling impedance on system 

stability has not been investigated in detail. However, with the increase of grid-

connected converters, e.g. wind farms and PV generation, the strength of grid becomes 

weaker and system stability becomes a serious problem [108]. The coupling 

impedance may have significant impact on system stability under weak grid.  

According to the literature review on MMC impedance modelling, the main 

drawbacks of the existing MMC models are: 

• The singe-phase model [95][96] cannot be used to describe three-phase MMC 

system since the model cannot deal with the zero-sequence current and cannot 
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model the controller adopted in three-phase MMC. 

• The existing method adopted to deal with the zero-sequence current involves 

too many variables in three-phase model [98], which lead to an extra complex 

calculation in the model. Moreover, the model adopted has complicated 

transformation since the transfer function of the controller in dq frame is 

transformed to αβ frame and then further to pn frame by introducing the 

conjugate transfer function matrix. 

• The calculated admittance matrix of MMC in pn frame has too high dimensions 

e.g., 10 by 10 matrix in [98], which brings great difficulty to system stability 

assessment. 

Thus, it is necessary to develop an accurate and simplified impedance model of 

the MMC. 

Considering the increased network interconnections and connection of large 

offshore wind farms (e.g. in Europe) using HVDC links, many power networks will 

see significant numbers of HVDC converters connected in close proximity. Therefore, 

further work to investigate the interaction between MMCs located in close proximity 

are required. 

The main aims of this thesis are: 

• to investigate the impedance couplings caused by the control in dq frame 

and improve the system stability based on the impedance model of grid-

connected VSC in pn frame under weak grid; 

• to develop an accurate and effective impedance mode of the MMC that is 

suitable for the practical application; 

• to study the impact of different controller setting and control parameters on 

MMC system stability; 
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• to investigate the interaction of converters in close proximity. 

1.8.2 Thesis contributions 

The main contributions of this thesis can be summarized as: 

• The stability problems associated with the coupling admittance in pn frame 

created by the PLL and outer-loop controller are studied based on the small-

signal admittance of the VSC connected to a weak AC grid. An improved outer-

loop controller is proposed to reduce the coupling admittance and improve 

system stability. 

• A comprehensive impedance model of three-phase MMC is developed based 

on HSS theory. In the model proposed, the zero-sequence current is directly 

forced to zero to form a 3-phase 3-wire system. The model considers the impact 

of the internal harmonic on the impedance and also incorporates the effect of 

the controllers. The coupling between the positive-and negative-sequence 

brought by dq frame controller is also included in the model. 

• With the impedance model, the impact of PLL bandwidth, the outer-loop 

controller, different operating point and different operating modes on the small-

signal impedance and the stability of the MMC connected to the ac grid is fully 

investigated. 

• Interaction of converters in close proximity is studied using the developed 

MMC models and system stability assessment in case of multiple MMCs in a 

network are carried out by introducing the multi-infeed interaction factor 

(MIIF). 

 Thesis outline 

The work is composed of additional five Chapters, whose contents are outlined 

as follows. 
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Chapter 2 describes the procedure of deriving VSC admittance in pn sequence 

frame. Based on this, the stability problems associated with the coupling admittance 

created by the PLL and outer-loop controller of two-level VSCs are studied. An 

improved outer-loop controller that reduces the coupling admittance is proposed to 

improve the system stability. 

Chapter 3 begins with a brief description of the HSS method and then presents a 

detailed procedure for deriving the small-signal model of single-phasor MMC system 

using HSS modelling approach. The small-signal HSS models of the MMC are 

developed, and the small-signal impedance of the MMC is obtained. The time-domain 

simulation results are provided to validate the developed MMC impedance models. 

Chapter 4 describes the impedance modelling and validation of the three-phase 

MMC converter based on HSS. To realize the zero-sequence current control and 

capture the multi-frequency response of MMC in a 3-phase 3-wire system, the model 

of the three-phase MMC is developed in the pn frame. A complete model of a three-

phase MMC with the description of various controllers are established by using the 

HSS method. The coupling between the positive and negative-sequence brought by the 

asymmetric dq controller are analyzed in the model. The small-signal impedances 

obtained from the developed analytical model are validated using time-domain models 

under various different scenarios in MATLAB/Simulink. 

Chapter 5 carries out the stability assessment to show how the HSS-based MMC 

impedance model can be used in practical system analysis. Two specific scenarios, i.e., 

a single MMC connected to a weak grid and two MMCs connected to AC grids, are 

studied for the stability assessment. Based on the impedance-based analysis, the effect 

of different controllers, operating points and control modes on MMC impedance and 

system stability are investigated. Interaction of converters and stability of system with 

multiple converters in close proximity are studied using the developed models 
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considering multi-infeed interaction factors (MIIF). Time-domain simulations are 

carried out in MATLAB/Simulink to validate the theoretical analysis. 

Chapter 6 concludes the thesis by summarising the major findings of this research 

and suggests for future work. 
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 Small-signal impedance model of the VSC 

connected to a weak grid system 

 

In this chapter, the small-signal model of a grid connected VSC system is 

presented. The admittance of the VSC system in dq frame is derived and is used to 

carry out system stability assessment by applying the impedance-based method [41]. 

Since the admittance terms in dq frame are coupled, which increases difficulties of 

analyzing the system, in [48], the admittance in dq frame is mapped into the pn frame 

to simplify the stability analysis. However, in some cases the coupling admittance of 

VSC in pn frame can still impact on the system stability assessment. Based on the 

converter admittance in pn frame, the stability problems associated with the coupling 

admittance created by the PLL and outer-loop controller are studied separately. To 

overcome the disadvantage of the traditional outer-loop controller, an improved outer-

loop controller that can reduce the coupling admittance is proposed to improve the 

system stability. VSC connected to a weak power grid system is modelled in 

MATLAB-SIMULINK® environment to validate the theoretical study. 

 Model of grid connected VSC system  

The studied VSC system connected to AC grid is shown in Figure 2.1. As shown 

in Figure 2.1, the system consists of a VSC, an RLC-type (Rf Lf C) filter used to 

attenuate PWM harmonics generated by the converter, and an AC grid represented by 

a RL (RgLg) Thevenin equivalent circuit. The capacitor voltage vabc and inverter current 

iabc are measured and used for the VSC controller. Ignoring the voltage variation at the 

DC side, the DC link capacitor is replaced by an ideal DC voltage source. The electrical 

parameters of the studied system are listed in Table 2.1. Note that this studied system 

is modelled based on per unit system. The grid inductance Lg is equal to 0.5 p.u. 
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(SCR=2) indicating a weak AC grid.  
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Figure 2.1 The configuration of a grid connected VSC system 

 

Table 2.1 System and controller parameters of the grid-connected VSC system 

AC nominal frequency f0 50 Hz 

Coupling inductance Lf 0.15 p.u. 

Coupling Resistance Rf 0.01 p.u. 

Filter Capacitance C 0.1 p.u. 

Grid inductance Lg 0.5 p.u. (SCR=2) 

Grid Resistance Rg 0.01 p.u. 

Rated active power 2 MW. 

VSC nominal voltage  690 V 

Current-loop proportional gain Kp 0.36 

Current-loop integral gain Ki 67.8584 
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A conventional dq frame based current control is implemented for the converter. 

For the converter circuit, the VSC current-loop dynamics in dq frame are expressed as 

 0
d

f d f cond d f q

di
R i L v v L i

dt
+ = − +   (2.1) 

 0
q

f q f conq q f d

di
R i L v v L i

dt
+ = − −   (2.2) 

where ω0 is fundamental angular velocity of the grid. With proportional-integral (PI) 

regulators, the current control loop is illustrated in Figure 2.1. 

The PLL in the controller is used to estimate the angle of the AC grid. The input 

of the PLL loop is the measured capacitor voltage vabc, and the output is the estimated 

angle θ which is used to transform the signals between abc and dq frames. As shown 

in Figure 2.2, a PI controller is used to control the q-axis voltage vcq to 0 in the steady 

state so that the d-axis voltage is aligned to the phasor of the grid voltage. 

abc

dq

vcd

vcq

va

vb

vc

+

-
PI

+

+
1/s

θ 

0 ω0 θ 
 

Figure 2.2 Block diagram of the PLL loop 

The outer controller consists of two loops, the active power regulator, and the 

voltage regulator. The active power regulator controls the active power generated by 

converter, and the output of the regulator is the d-axis reference current idref as shown 

in Figure 2.1. The relationship between d-axis reference current idref and the reference 

of active power Pref based on per unit system can be expressed as 
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ref

dref

cd

P
i

v
=   (2.3) 

The AC voltage regulator provides the q-axis reference current iqref of the current-

loop and the magnitude of the measured AC voltage can be calculated by: 

 2 2

cd cqv v v= +  (2.4) 

In the study, a PI regulator is considered for a zero tracking error under steady 

state conditions as shown in Figure 2.1. 

 VSC Small-signal impedance calculation  

Generally, nonlinear systems are converted to linear systems so that classic 

control theory can be applied for stability analysis and controller design in the 

frequency-domain [50]. To linearize the studied system shown in Figure 2.1, the small 

signal theory is introduced. Based on the small-signal model, the small-signal 

impedance of the VSC including its controller can be derived. 

2.2.1 Admittance in dq frame 

Based on (2.1) and (2.2), the small-signal model of the system shown in Figure 

2.1 can be derived as: 

 
0

0

cond d f f f d

conq q f f f q

v v L s R L i

v v L L s R i





+ −       
− =       

+       
 (2.5)  

where Δvcond, Δvconq, Δvd, Δvq, Δid and Δiq are the disturbance variables of the converter 

voltage, capacitor voltage and converter current in the grid dq frame, respectively. ω0 

is the fundamental angular velocity of the grid voltage. 
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When PLL is adopted to synchronize the converter to the grid, there exists two 

rotating frames. One frame is the actual system (grid) dq frame and the other is the dq 

frame of the controller defined by the PLL. During steady state, the control dq frame 

is aligned to the system dq frame, and the steady state voltage and current values are 

the same in the two frames. Vd, Vq, Id, Iq, Vcond and Vconq are defined as the steady state 

values of the capacitor voltage, converter current and converter voltage in system dq 

frame, respectively. 

During small-signal perturbations, the control dq frame is not aligned with the 

system dq frame anymore and an angle difference Δθ between the two frames appears. 

With the linearization of the PLL model presented in Figure 2.2, the relationship 

between the angle difference Δθ and q axis perturbation voltage Δvq is obtained and 

shown in Figure 2.3 [41]. 

+

−

PI
s
1

Vd

Δvq Δθ  

 

Figure 2.3 Relationship between Δθ and Δvq 

From Figure 2.3, the transfer function of PLL based on small-signal model can 

thus be expressed as: 

= ( )pll qG s v                                 (2.6) 

2
( )

ppll ipll

pll

d ppll d ipll

K s K
G s

s V K s V K

+
=

+ +
                    (2.7) 

where Gpll(s) is the closed-loop transfer function of PLL, and Kppll and Kipll are the 

proportional and integral gains, respectively. 
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It can be observed that if there exists voltage perturbation in the terminal voltage 

of the VSC, there will be angle deviation Δθ extracted from PLL, which will further 

affect the frame transformation. During steady state, the relationship between voltage 

Vcd and Vcq
 in the control frame determined by PLL and Vd and Vq in the system frame 

can be expressed as: 

cos(0) sin(0)
=

sin(0) cos(0)

dcd

qcq

VV

VV

    
    

−      

                         (2.8) 

The voltage perturbations Δvd and Δvq passing through PLL results in: 

++ cos(0+ ) sin(0+ )
=

++ sin(0+ ) cos(0+ )

d dcd cd

q qcq cq

V vV v

V vV v

 

 

    
    

−      

             (2.9) 

Subtracting the steady-state component (2.8) from (2.9) yields the voltage 

perturbation in PLL frame as: 

+ +
=

- -

cd d q q

cq q d d

v v V v

v v V v

 

 

   
   
      

                     (2.10) 

Ignoring the second order terms qv  and dv , (2.10) can be rewritten as:  

+
=

-

cd d q

cq q d

v v V

v v V





   
   
      

                          (2.11) 

Substituting (2.6) into (2.11) yields: 

=
1 (

-

)

0 1 (

+

)

q pll d

d pll q

cd d q

cq q d

v v V

v v V

V G s v

V G s v






   
=   

   

   

 
 −    

             (2.12) 

The current perturbation in PLL frame can also be expressed in the similar form 
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as:  

0

+ )
=

(-

0 (

)

q pll d d

d pll

cd d q

cq q qq d
v

i i I

i

I G s v i

I I G s ii





     
+     

 

−



  



  
=   

     
            (2.13) 

where Id and Iq are the d-axis and q-axis currents, respectively. 

The small signal output voltage references by the current controller in system dq 

frame can be obtained as:  

0 ( )

0 (
=

)

cond cond

c

c conqc

conq c

conq pll d condc

ond pll conqc o q conqc ndc

Vv G s v v

V G s v v

v V

v v V





−     
+     

+  

   −
=   

         
       (2.14) 

where Vcond, Vconq, ∆vcondc and ∆vcondc are the steady state and disturbance voltages of 

the current-loop output in the control frame, respectively. 

Defining matrices: 
cd

c

cq

v

v

 
=  
 

v  , 
cd

c

cq

i

i

 
=  
 

i  , 
d

q

v

v

 
=  
 

v  , 
d

q

i

i

 
=  
 

i  , 

condc

conc

conqc

v

v

 
=  
 

v  , 
cond

con

conq

v

v

 
=  
 

v  , 
1 ( )

0 1 ( )

q pll

d pll

V G s

V G s

 
=  

− 
A  , 

0 ( )

0 ( )

q pll

d pll

I G s

I G s

 
=  

− 
B  , 

0 ( )

0 ( )

conq pll

cond pll

V G s

V G s

− 
=  
 

E  , and 
0

0

f f f

f

f f f

L s R L

L L s R





+ − 
=  

+ 
Z  , equations (2.5), (2.12), 

(2.13) and (2.14) can be rewritten as 

 con f− =v v Z i  (2.15) 

 
c =v A v  (2.16) 

 
c = +i B v i  (2.17) 

 
conc con= −v E v v  (2.18) 
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When the VSC is controlled by the current loop directly, the current controller 

matrix is C and D is the decoupling term of the current controller, i.e.: 

 
0

/0

/pi

pi

ii

ii

K

K

K s

K s

 
=  


+

+ 
C   (2.19) 

 
0

0

0

0

f

f

L

L





− 
=  
 

D   (2.20) 

where Kpi and Kii are the proportional and integral gains of the current-loop PI 

controller, respectively. F is the matrix representing the time delay (Tdelay) due to digital 

control and PWM [41], and is given as 

 
1/ (1 0.5 ) 0

0 1/ (1 0.5 )

delay

delay

T s

T s

+ 
=  

+ 
F   (2.21) 

Thus, the small perturbation voltage of the converter in the controller dq frame is 

derived as 

 ( )conc c c c= − + +v F C i D i v  (2.22) 

According to (2.15)-(2.22), the small-signal admittance of VSC in system dq 

frame is obtained as 

vsc

f

−
= − =

i E - FCB + FDB + FA I
Y

v FD- Z - FC
            (2.23) 

Yvsc is the transfer function matrix from disturbance voltage [Δvd, Δvq]
T to 

response current [Δid, Δiq]
T, and the form is shown as 
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( ) ( )

( )
( ) ( )

vscdd vscdq

vsc

vscqd vscqq

Y s Y s
s

Y s Y s

 
=  
 

Y   (2.24) 

When idref and iqref are determined by the outer-loop controllers as described in 

Section 2.1, linearizing (2.3) and (2.4) yields the small-signal model of the outer-loop 

active power and AC voltage controllers as: 

 

21 0 / 0

0 /

dref cdref d

qref up ui cqd q

i vP V

i K K s vV V

 −     
=       

+        
 (2.25) 

where Kup and Kui are the proportional and integral coefficients of the AC voltage PI 

controller, respectively. Pref is the power reference value. 

Defining matrices
1 0

0 /up uiK K s

 
=  

+ 
X   and 

2/ 0ref d

d q

P V

V V

 −
=  
  

Z  , the small-

signal admittance of the VSC with PLL and the outer-loop controllers can be calculated 

as:  

vsc

f

− −
= − =

i E FCB + FDB + FA + FCXZA I
Y

v FD- Z - FC
             (2.26) 

The schematic diagram for the calculation of the VSC admittance is shown in 

Figure 2.4. The small-signal converter admittance Yvsc is defined as the transfer 

function from the small-perturbation voltage Δv to the response current Δi. The 

mathematical expression of Yvsc is derived above. It is noted that for the calculation of 

the VSC admittance the current direction is positive when the current Δi flows into 

VSC. 
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-Δi
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Zf Zg

 

Figure 2.4 The schematic diagram for the calculation of the VSC admittance 

When the VSC transmits 1 p.u. active power and 0.2 p.u. reactive power to the 

AC grid, and the current loop and PLL are adopted in the VSC controller, the calculated 

small-signal admittances of the the VSC using (2.23) are shown in Figure 2.5. 

 

(a) Ydd(s) 

 

(b) Ydq(s) 
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(c) Yqd(s) 

 
(d) Yqq(s) 

Figure 2.5 Calculated VSC admittance Yvsc in dq frame 

2.2.2 Admittance in pn frame 

The transformation matrices between different frames have been introduced in 

Section 1.5. Based on the application of the transformation matrices, the VSC small-

signal admittances can be mapped from dq frame into pn frame. The pn frame has been 

chosen to study the system stability since in this frame the coupling caused by 

synchronous rotating does not exist, which simplifies the impedance analysis. 

The pn frame small-signal admittance terms are related to the elements of the 

matrix Yvsc in (2.24) as 

0 0 0 0

1
( ) ( ( ) ( ) ( ) ( ))

2
vscpp vscdd vscqq vscqd vscdqY s Y s j Y s j jY s j jY s j   = − + − + − − −        (2.27) 
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0 0 0 0

1
( ) ( ( ) ( ) ( ) ( ))

2
vscpn vscdd vscqq vscdq vscqdY s Y s j Y s j jY s j jY s j   = + − + + + + +        (2.28) 

0 0 0 0

1
( ) ( ( ) ( ) ( ) ( ))

2
vscnp vscdd vscqq vscdq vscqdY s Y s j Y s j jY s j jY s j   = − − − − − − −       (2.29) 

0 0 0 0

1
( ) ( ( ) ( ) ( ) ( ))

2
vscnn vscdd vscqq vscdq vscqdY s Y s j Y s j jY s j jY s j   = + + + + + − +    (2.30) 

The small-signal VSC admittance in pn frame can be expressed as [62] 

0 0

0 0

( ) ( )
( )

( 2 ) ( 2 )

( ) ( )

( 2 ) ( 2 )

Y

Y

p p

vscPN

n n

vscpp vscpn

vscPN

vscnp vscnn

i s v s
s

i s j v s j

Y s Y s

Y s j Y s j

 

 

   
=   

− −   

 
=  

− − 

           (2.31) 

where YvscPN(s) is the small-signal admittance of the converter in pn frame. Yvscpp(s), 

Yvscpn(s), Yvscnp(s) and Yvscnn(s) are the four elements of the matrix YvscPN.  

It is noted that there is no cross coupling between the input Δvp, Δvn and the output 

Δip, Δin under the same frequency fp. However, couplings still exist among different 

frequencies. As indicated in (2.31), the positive-sequence disturbance voltage Δvp at 

fp not only generates the positive-sequence current Δip at fp through Yvscpp(s) but also 

the negative-sequence current Δin at fp-2f0 through Yvscnp(s-2jω0). Similarly, the 

negative-sequence disturbance voltage Δvn at fp will cause both the negative-sequence 

current Δin at fp through Yvscnn(s-2jω0) and the positive-sequence current Δip at fp+2f0 

through Yvscpn(s). 

When the VSC controller in dq frame is symmetric, there are Yvscdd=Yvscqq and 

Yvscdq=-Yvscqd. Consequently, Yvscpn and Yvscnp in (2.28) and (2.29) equal to 0. Under 

this condition, the small-signal positive and negative components of the converter are 

decoupled. Thus, the positive-sequence voltage Δvp only generates the positive-

sequence current Δip at fp and the negative-sequence voltage Δvp only generates 
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negative-sequence current Δip at fp. However, the symmetry of the controller in dq 

frame is usually affected by PLL and the outer-loop control adopted in the system [109]. 

Therefore, the cross-coupling terms Yvscpn and Yvscnp may have significant impact on 

stability assessment, which will be studied in Section 2.6. 

 Admittance measuring method in time-domain 

A time-domain simulation model of a grid connected VSC is established in 

MATLAB/Simulink to verify the small-signal admittance of VSC in pn frame. In order 

to extract the admittance in the time-domain simulation, a series of small-perturbation 

voltages (Δvpa, Δvpb, Δvpc) at different frequencies are injected to the system at the 

point of common coupling (PCC) as shown in Figure 2.6. By measuring the response 

voltages (Δva, Δvb, Δvc) and currents (Δia, Δib, Δic) on the VSC side, the admittance of 

the converter in time-domain can be derived.  

Vdc

controller

Δia
Zf Zg Va

Vb

Vc

C

Δib

Δic

Δva
Δvb

Δvc

Δvpa

Δvpb

Δvpc

PCC

 

Figure 2.6 Simulation model with perturbation voltages injection 

In order to derive the 2 by 2 matrix YvscPN in the time-domain simulation model, 

positive-sequence and negative-sequence voltages are injected into the system, 

separately. 

For the positive-sequence voltage injection, the voltage is defined as: 
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cos( )

cos( 2 / 3)

cos( 2 / 3)

pa p p

pb p p

pc p p

v v t

v v t

v v t



 

 

=

= −

= +

  (2.32) 

where Δvp is the amplitude of the small-signal perturbation voltage, and ωp=2πfp is the 

frequency of the perturbation voltage. 

The response voltage Δva, Δvb, and Δvc on the VSC side consists of positive-

sequence voltage at frequency ωp and negative-sequence voltage at frequency ωp-2ω0. 

The positive component at frequency ωp is described as 1 1 ( )p v p pv   , where 1pv

and 1v p   are the amplitude and phase of the positive voltage, respectively. The 

negative-sequence component at frequency ωp-2ω0 is described as 

1 1 0( 2 )n v n pv    −  , where 1nv  and 1v n   are the amplitude and phase of the 

negative voltage, respectively, and 0( 2 )p −  denotes the frequency of the negative-

sequence voltage. In the time-domain simulation, 1pv , 1v p , 1nv , and 1v n  can 

be obtained by FFT analysis on the voltage av . Similarly, the positive-sequence and 

negative-sequence current responses 1 1 ( )p i p pi    and 1 1 0( 2 )n i n pi    −  can 

be derived by FFT analysis of the current ai . 

According to (2.31), the response voltage and current at VSC terminal have the 

relationship shown as: 

1 1 1 1

1 1 0 0 0 1 1 0

1 1

1 1 0

( ) ( ) ( ) ( )

( 2 ) ( 2 ) ( 2 ) ( 2 )

( )
( )

( 2 )

p i p p vscpp p vscpn p p v p p

n i n p vscnp p vscnn p n v n p

p v p p

vscPN p

n v n p

i Y Y v

i Y Y v

v

v

     

         

 


  

      
=     

 − − −  −     

 
=  

 − 
Y

 (2.33) 

For the negative-sequence voltage injection, the perturbation voltage Δvpa, Δvpb, 
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and Δvpc are defined as: 

 

0

0

0

cos[( 2 ) ]

cos[( 2 ) 2 / 3]

cos[( 2 ) 2 / 3]

pa n p

pb n p

pc n p

v v t

v v t

v v t

 

  
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= −

= − +

= − −

  (2.34) 

where Δvn is the amplitude of the small-signal perturbation voltage. The frequency of 

the negative-sequence perturbation voltage is ωp-2ω0. 

Similar to the positive-sequence voltage injection, the negative-sequence voltage 

injection generates not only negative-sequence voltage 2 2 0( 2 )n v n pv    −   and 

current response 2 2 0( 2 )n i n pi    −   at frequency ωp-2ω0, but also positive-

sequence voltage 2 2 ( )p v p pv     and current response 2 2 ( )p i p pi     at 

frequency ωp. The amplitude and phase of the response voltage and current at VSC 

terminal can be obtained by FFT analysis and have the relationship shown as: 
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  (2.35) 

Combining (2.33) with (2.35) derives the VSC admittance YvscPN(ωp) at 

frequency ωp as: 

1

1 1 2 2 1 1 2 2

1 1 0 2 2 0 1 1 0 2 2 0

( ) ( ) ( ) ( )
( )

( 2 ) ( 2 ) ( 2 ) ( 2 )
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n i n p n i n p n v n p n v n p

i i v v

i i v v

       


           

−
      

=    
 −  −  −  −   

Y  (2.36) 

It is noteworthy that when ωp is less than 2ω0, the frequency (ωp-2ω0) of injected 

negative-sequence voltage Δvpa, Δvpb, and Δvpc is less than zero. However, in time-

domain simulation, the voltage cannot have negative frequency. To solve this problem, 

the voltage expression in (2.34) is rewritten as 
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     (2.37) 

According to (2.34), the negative frequency injected voltage is converted to the 

positive frequency injected voltage, which can be implemented in time-domain 

simulation. However, the sequence of the injected voltage is also changed in (2.37), 

i.e., the negative-sequence voltage becomes positive-sequence voltage.  

In the same way, when ωp is less than 2ω0, the negative-sequence response 

voltage and current at frequency (ωp-2ω0) become positive-sequence voltage and 

current at frequency (2ω0-ωp) in time-domain simulation. Moreover, with the same 

mathematical operation in (2.37), the phases of the response voltage and current 

change from 1v n , 2v n , 1i n  and 2i n  to 1v n− , 2v n− , 1i n−  and 2i n− , 

that is, the phase becomes inverse.  

Thus, when ωp is less than 2ω0 the VSC admittance YvscPN(ωp) at frequency ωp 

shown in (2.36) is modified as 

1
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
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Y (2.38) 

Figure 2.7 shows the flowchart of VSC small-signal admittance measurement in 

time-domain model. 
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(b) ωp>2ω0 

Figure 2.7 Flowchart of VSC small-signal admittance measurement in time-domain model 
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The time-domain simulation carries out a frequency sweep test where repeated 

measurements are taken with ωp increasing from 2π rad/s to 2000π rad/s in the study. 

 Validation of analytical admittance 

In the VSC-grid connected system, the VSC transmits 1 p.u. active power and 0.2 

p.u. reactive power into the grid. Moreover, the VSC is controlled by the current loop 

and PLL. Figure 2.8 compares the analytical admittances and measured admittances 

of the VSC in time-domain, where the pink lines denote the analytical admittances and 

the blue dots are the admittances measured in time-domain. It can be seen that the 

analytical admittances match well with the measured ones, indicating the correctness 

of the analytical methods. 

 

(a) Yvscpp(s) 

 

(b) Yvscpn(s) 
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(c) Yvscnp(s-j2ω0) 

 

(d) Yvscnn(s-j2ω0) 

Figure 2.8 Converter admittance terms 

 

 Generalized Nyquist criterion for impedance-based stability analysis 

+
− Vg

Zg

Yc

Ic

Converter GridI

 

Figure 2.9 Small-signal equivalent circuit of the system studied 

Figure 2.9 shows the small-signal equivalent circuit of the grid connected VSC 

system [41]. The converter is modelled in terms of Thevenin equivalent circuit using 
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the derived admittance Yc, and the grid is described by its Norton equivalent circuit 

with the equivalent impedance Zg. Based on the equivalent circuit, the inverter output 

current is: 

 
( )( ) ( )

( )
( ) ( ) ( ) ( )

gc c

c g c g

V sI s Z s
I s

Z s Z s Z s Z s
= −

+ +
  (2.39) 

Equation (2.39) can be rearranged as 

 
1

( ) ( ) ( ) ( )
1 ( ) ( )

c c g

c g

I s I s Y s V s
Y s Z s

 = −  +
  (2.40) 

Assuming that the open-loop transfer function Yc(s)Zg(s) has no right half -plane 

poles (open-loop unstable processes in power electronics and systems are rare [109]), 

the grid-connected VSC system will be stable if Yc(s)Zg(s) satisfies the generalized 

Nyquist criterion (GNC) i.e., it does not encircle (-1,0) for s=ωp, -∞<ωp<+∞. 

For multivariable systems, stability-margin definitions were proposed in [110] 

and [111], which are complicated and time-consuming due to the introduction of 

complex numerical algorithms. Simpler definitions of gain margin and phase margin 

are thus adopted according to [109]. 
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Figure 2.10 Definition of gain margin Am and phase margin φm 

The gain margin Am is defined as the reciprocal of the distance between (0, 0) and 

the intersection closest to (−1,0) of the Nyquist curve with the real axis, as 

schematically shown in Figure 2.10. The phase margin φm is defined as the angle 

between the negative real axis and the intersection closest to (−1,0) of the Nyquist 

curve with the unit circle.  

In the studied system, the open-loop transfer function matrix YvscPNZgPN in pn 

frame is investigated for the stability analysis based on GNC. 

 Stability assessment of grid connected VSC system  

Stability assessment of grid connected VSC system illustrated in Figure 2.1 is 

carried out here. The effect of coupling admittance resulting from PLL dynamic and 

outer-loop controller on system stability is analyzed. Based on the stability assessment 

results, an improved outer-loop controller is also proposed in this section to reduce the 

coupling admittance and improve system stability. 
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2.6.1 Coupling admittance created by PLL 

For this study, the controller for the converter consists of the current loop and 

PLL but without the outer-loop control. The system and controller parameters are list 

in Table 2.1. Figure 2.11 (a) shows the Nyquist plots for 40Hz PLL bandwidth. 𝞴1 and 

𝞴2 are the eigenvalues of YvscPNZgPN considering the effect of VSC coupling 

admittances, while 𝞴1p and 𝞴2n are the eigenvalues in the case of ignoring coupling 

admittances. At the frequencies range higher than 99Hz, the differences between 𝞴1 

and 𝞴1p are smaller, indicating that the coupling admittance generated by PLL is small 

and thus has negligible impact on stability margin. Increasing the PLL bandwidth to 

60Hz, the Nyquist curve shown in Figure 2.11(b) implies that the system becomes 

unstable and the coupling admittance generated by PLL will not impact on stability 

analysis. It can be concluded that the coupling admittance created by PLL has 

negligible impact on system stability even though the PLL has high control bandwidth.  
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(a) PLL bandwidth of 40Hz                   (b)  PLL bandwidth of 60Hz 

Figure 2.11 Nyquist plot for different PLL bandwidth 

Figure 2.12 shows the simulation results in time-domain when the PLL bandwidth 

is changed from 40 Hz to 60Hz at 7.0s. As can be seen, the system is stable for 40 Hz 

PLL bandwidth and but becomes unstable when PLL bandwidth is increased to 60 Hz. 

The simulation results match the analytical results in Figure 2.11, which verifies the 
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effectiveness and accuracy of the stability analysis method based on small-signal 

impedance.  

PLL 40Hz PLL 60Hz

 

(a) Id and Iq (p.u.) 

PLL 40Hz PLL 60Hz

 

(b) Vd (p.u.) 

Figure 2.12 Simulation results in time-domain 

2.6.2 Coupling admittance created by outer-loop 

The coupling admittances caused by the outer-loop controllers can also affect the 

system stability. The outer-loop controllers provide references for the current loop as 

shown in Figure 2.1. The PLL bandwidth is set to 40Hz in this study. The VSC 

coupling admittances terms Yvscpn(s) and Yvscnp(s-2jω0) for two different AC voltage PI 

control parameters (in per unit terms) are compared in Figure 2.13. It can be seen that 

coupling admittances increase with the increase of the AC voltage control bandwidth 

(higher gains). The corresponding Nyquist plots for the two cases are shown in Figure 
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2.14 (a) and (b), respectively. In both Figure 2.14 (a) and (b), 𝞴1 and 𝞴2 are the 

eigenvalues considering the effect of VSC coupling admittances, while 𝞴1p and 𝞴2n are 

the eigenvalues when the coupling admittances are ignored. It can be seen in Figure 

2.14 (a) that for the system with lower AC voltage control bandwidth, the system is 

considered to be stable regardless whether the coupling admittances are included in 

the analysis or not. However, for the system with higher AC voltage control bandwidth 

in Figure 2.14 (b), the system is considered to be stable if the coupling admittances are 

not included in the analysis, whilst the actual system is unstable when the full VSC 

admittances are considered. Thus it can be concluded that the coupling admittances 

can adversely affect the system stability, and its omitting in stability assessment could 

lead to wrong conclusion. 
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(b) Yvscnp(s-2jω0) 

Figure 2.13 Coupling admittance with different controllers 
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(a) With AC voltage PI controller gain: 0.5+10/s  (b) With AC voltage PI controller gain: 1.2+10/s 

Figure 2.14 Nyquist plot for different AC voltage controllers 

2.6.3 Improvement of the outer-loop controller 

When the model has the transfer function matrix G(s) as presented in (2.41) and 

the components of G(s) have the relationships of Gdd(s)=Gqq(s) and Gdq(s)=-Gqd(s), it 

is defined as symmetric model in dq frame, as proposed in [109]. 

 
( ) ( )

( )
( ) ( )

dd dq

qd qq

G s G s
s

G s G s

 
=  
 

G   (2.41) 

Obviously, the small-signal model of the outer-loop controller described in (2.25) 

is an asymmetric model in dq frame. The asymmetric will lead to the frequency 

coupling effect in pn frame [48], which can also be found according to (2.28) and 

(2.29). As the analysis result in Section 2.6.2, i.e., the coupling created by outer-loop 

control has negative impact on system stability, reducing the asymmetry between d-

axis and q-axis in the frequency band where resonance may occur can improve system 

stability.  

To decrease the coupling admittance generated by the outer-loop controller of the 
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VSC, an improved outer-loop controller is proposed as shown in Figure 2.15. Through 

lower-pass and high-pass filters, the compensation terms k1Δvcd and k2Δvcq are added 

to the d-axis and q-axis, respectively, so as to mitigate the coupling. The time constants 

of the low-pass filter T1 and high-pass filter T2 are adjusted to ensure that the potential 

resonance frequencies of the system are in the pass band of the filters. In this study, 

the potential resonance frequencies of the system are in the range from 50Hz to 200Hz 

in abc frame [112]. Therefore, T1 and T2 are set to 0.001s and 0.01s, respectively, to 

make the pass band of the filter from 66Hz to 209Hz in abc frame. The frequency range 

from 50Hz to 66Hz is not included to ensure that the control bandwidth of the outer-

loop controller will not be affected by the compensation. In the pass band of the filters, 

the small-signal model of the outer-loop controller with the proposed compensation 

can be expressed as 

 

2
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2

/ 0

( / )

dref cdref d

qref cqd up ui

i vP V k

i vV K K s k

 − +   
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  (2.42) 

The gain k1 ranges from 0 to 1 and k2 is set to (-Pref/Vd
2+k1) to make diagonal 

elements equal, i.e., Gdd(s)=Gqq(s) in (2.41). 
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Figure 2.15 Improved outer-loop controller 
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(b) Yvscnp(s-2jω0) 

Figure 2.16 Coupling admittance with outer-loop controller 

When k1=0.5 and k2=-0.5, the coupling admittances under traditional outer-loop 

controller and improved outer-loop controller are compared in Figure 2.16. It can be 

seen that, from 70Hz to 200Hz, both coupling admittance terms are reduced with 

improved outer-loop controller, which is beneficial to the system stability. However, 

the improved outer-loop controller increases the coupling admittance Yvscpn(s) near the 
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fundamental frequency, which could have negative impact on the stability. Hence, the 

parameters of the improved outer-loop controller should be redesigned according to 

different cases. 

Figure 2.17 shows the Nyquist plot of the system with improved outer-loop 

controller and AC PI voltage controller parameters of 1.2+10/s. Comparing Figure 

2.17 and Figure 2.14(b) with the original AC voltage controller, 𝞴1 in the two plots has 

changed significant whereas 𝞴1p (without considering the coupling admittances) 

remains largely unchanged. In addition, 𝞴1 in Figure 2.17 is closer to 𝞴1p, indicating 

that the improved control reduces the coupling admittance to some degree. Meanwhile, 

𝞴1 does not encircle the point (-1, 0), so the system becomes stable and the system 

stability is improved. Simulation results in time-domain shown in Figure 2.18 verify 

the effectiveness of the proposed outer-loop controller. Before t=3.2s, the system 

adopts the improved outer-loop controller and is stable. However, the system becomes 

unstable when the outer-loop controller is shifted to the traditional design by setting 

the value of k1 and k2 to 0 after t=3.2s.  
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Figure 2.17 Nyquist plot for improved outer-loop controller 
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(a) Id and Iq 
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(b) Vd 

Figure 2.18 Simulation results in time-domain 

 Summary 

This chapter presents a methodology to calculate the small-signal admittance of 

grid connected VSC in the pn frame. The admittance in pn frame is obtained by 

applying the transformation equations between dq frame and pn frame. The method 

for measuring the VSC small-signal admittance in pn frame is also described in great 

detail. Based on the analysis of the obtained admittances, the influences of the pn 

coupling admittances generated by PLL and outer-loop controllers on system stability 

are investigated. The results indicate that: 
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• The VSC small-signal admittances from the analytical model accord well with the 

measured ones in the corresponding time-domain models. 

• Under a weak grid, when the VSC is controlled by the current loop directly, the 

VSC coupling admittances in pn frame generated by PLL have negligible impact 

on system stability and thus can be ignored in system stability analysis. 

• Traditional outer-loop controllers lead to an asymmetric model in dq frame and 

thus create high coupling admittance that has negative impact on system stability. 

• Through lower-pass and high-pass filters, the improved outer-loop controller adds 

compensation terms into d axis and q axis at the potential resonance frequency 

range (66Hz-209Hz in the studied case) to reduce the asymmetry of the outer-loop 

controller in dq frame. Hence, the coupling admittance in pn frame caused by 

traditional outer-loop controller is reduced and the stability of system is enhanced. 
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 HSS modelling of single-phase MMC system 

 

MMC technology is increasingly applied for high voltage and high power 

applications such as in HVDC systems for renewable energy integration, for its 

advantages of modularity, scalability, and high efficiency. However, the complex 

internal dynamics and its multifrequency response feature of MMC complicate its 

modeling and control. Analysis of complex dynamics and harmonic coupling of MMC 

is essential to identify potential system instability and to stable operation.  

In this chapter, HSS modeling approach is introduced first due to its capability of 

accurate modelling of multiple frequency responses. It is then applied to characterize 

the multi-harmonic coupling behaviour of single-phase MMC to establish its small-

signal impedance model covering all internal harmonics within the MMC. Different 

control schemes for the MMC, such as open-loop control, ac voltage control, and 

circulating current control, have also been incorporated in the model, which further 

reveals the impact of the MMC internal dynamics and control dynamics on the MMC 

impedance. Time-domain EMT simulation results are provided to validate the 

analytical MMC impedance models. Finally, the limitations and drawbacks of the 

single-phase MMC model are analyzed.  

 HSS modelling method  

The harmonic balance method was proposed in 1886 and aimed to obtain the 

steady-state solution to nonlinear system [91]. This method transforms a Fourier series 

expansion of an input signal into a set of complex exponentials at harmonic 

frequencies. Given that both of the series expansions of the input signal and the system 

transfer function form an orthonormal basis, the resulting output is also an orthonormal 

set of complex exponentials. The mapping from a harmonic of the input signal through 
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a particular harmonic of the transfer function is unique to a single harmonic of the 

output signal, and therefore, every element of the output vector is linearly independent 

of each other. The basic idea of HSS is to derive a linear time-invariant (LTI) 

representation of the linear time-periodic (LTP) system in time domain, and thus the 

linear control theory can be used for stability analysis and controller design. The HSS 

modelling method is able to represent multiple frequency responses in each variable 

and build multidimensional harmonic transfer function based models.  

A typical power system with connected power electronic converters is a LTP 

system in small-signal modelling due to the switching of converters derived from 

sinusoidal voltage waveforms is periodic. The LTP system in time-domain can be 

described by a set of first order linear state-space equations as 

 ( ) ( ) ( ) ( ) ( )t t t t t= +x A x B u   (3.1) 

 ( ) ( ) ( ) ( ) ( )t t t t t= +y C x D u   (3.2) 

Equation (3.1) is the state equation, in which x(t) is the state variables, u(t) is the 

inputs, A(t) is the state matrix, and B(t) is the input matrix. Equation (3.2) is the output 

equation, in which y(t) is the outputs, C(t) is the output matrix, and D(t) is the direct 

transmission matrix. A(t), B(t), C(t), and D(t) are all variant matrices. To be more 

precise they are time periodic matrices, i.e., A(t+T)=A(t) and the same to B(t), C(t), 

and D(t), where T is the fundamental period. 

If the state matrix, and the input and output signals vary, they cannot be solved 

by the general state-space equation. Hence, the model needs to be linearized according 

to the time-varying trajectories. Based on this, all the time-domain signals x(t) can be 

expressed using the Fourier series, as [113] 
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 0( ) jn t

n

n

t e 


=−

= x X                            (3.3) 

where n is the harmonic order and ω0 is the fundamental frequency of the signal. Xn is 

the Fourier coefficient at the nth harmonic and is calculated as 

      
0

0

0

1
= ( )

t T
jn t

n
t

t e dt
T


+

−

X x                          (3.4) 

Additionally, in order to include dynamic performance in the time and frequency-

domain, the Exponentially Modulated Periodic (EMP) signal is introduced to represent 

the signals in an LTP system as  

 0( ) jn t st

n

n

t e e


=−

= x X  (3.5) 

where s is a complex number. The component est modulates each harmonic represented 

in the complex Fourier series, allowing the harmonics to vary with time, and hence 

describing the dynamics of harmonics under transient conditions. 

The differential expression for x(t) in (3.5) is give as 

 0

0( ) ( ) jn st

n

n

t jn s e 


+

=−

= +x X   (3.6) 

Based on (3.3), the matrices A(t), B(t), C(t) and D(t) can be expanded in Fourier 

series as 

 0( ) jn t

n

n

t e 


=−

= A A   (3.7) 

Similarly for B(t), C(t) and D(t), the complex Fourier series can then be 
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substituted into the state equation in (3.1), and the Fourier form of the state dynamic 

equation can be described as 

( ) 0 0 0 0 0

0 0

0 0

0

( ) ( )

, ,

, ,

jn t st jn t jm t st jn t jm t st

n n m n m

n n m n m

j n m t st j n m t st

n m n m

n m n m

jn t jn tst st

n m m n m m

n m n m

jn s e e e e e

e e

e e e e

    

 

 


    

+ + +

=− =− =− =− =−

 
+ + + +

=− =−

 

− −

=− =−

+ = +

= +

= +

    

 

 

X A X B U

A X B U

A X B U

(3.8) 

where m denotes the set of harmonic frequencies of the state variable to represent 

frequency cross-coupling. 

According to the harmonic balance theory, every harmonic at steady-state in a 

system is linearly independent. As a result, every harmonic of the gradient of the 

steady-state solution must also be linearly independent. For the nth harmonic, the 

steady-state solution can be rewritten as  

0n n m m n n m m

m m

s jn
 

− −

=− =−

= − + X A X X B U                 (3.9) 

Similarly, the output equation in (3.2) can be rewritten as  

n n m m n m m

m m

 

− −

=− =−

= + Y C X D U                       (3.10) 

Equations (3.9) and (3.10) form the state-space equations, which can represent 

the dynamics of an LTP system in time-domain. To fully utilize the standard LTI 

techniques to analyze the LTP system, the LTP system should be transformed to an 

equivalent LTI system. Thus, the LTP system in the frequency-domain can be 

represented as a set of stead-state harmonics which are not functions of time, and 

consequently, the LTP system becomes a LTI system in frequency-domain. 
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The process of multiplying each single harmonic of the state variables x(t) or the 

input u(t) by the complex Fourier series of A(t), B(t), C(t), or D(t) is cumbersome, e.g., 

the component 0 0jn t jm t st

n m

n m

e e
 

 
+

=− =−

 A X   in (3.8). The Toeplitz matrix is thus 

introduced to simplify the process which is given as: 

  
0 1 2

1 0 1

2 1 0

n

a a a

a a a a

a a a

+ − −

+ + −

+ + +

 
 
 
  =
 
 
  

  (3.11) 

A(t), B(t), C(t), and D(t) are constructed in the form of a Toeplitz matrix filled 

with appropriate Fourier coefficients, whereas x(t) and u(t) are decomposed into 

column vectors with their Fourier coefficients. Because any LTP system exhibits a 

frequency coupling property, the introduction of Toeplitz matrices allows the input 

frequency to be shifted to the set of appropriate output frequencies, so as to fully 

describe the frequency coupling nature of LTP systems.  

If a set of first-order differential equations for each state variable harmonic is 

expressed by Toeplitz matrices, the –jnω0 component in (3.8) should be expanded and 

denoted by an appropriate matrix form. Thus, a diagonal matrix defined below is 

adopted to realize the expansion. 

  
1

0

1

n

a

D a a

a

−

+

+

 
 
 
 =
 
 
  

  (3.12) 

Thus, the formal expression of the HSS framework in the frequency-domain can 

be defined as 
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( - )s = +


= +

X A Q X BU

Y CX DU
                      (3.13) 

where A, B, C, and D denote the Fourier coefficients of A(t), B(t), C(t) and D(t) 

established in the form of Toeplitz matrices, respectively. The variables of X, Y, U, A, 

B and Q are expressed as: 

 - -1 0 1= , , , , , ,
T

h hX X X X X X ;  - -1 0 1= , , , , , ,
T

h hY Y Y Y Y Y ;  - -1 0 1= , , , , , ,
T

h hU U U U U U   

0 -1 -h

1

0 -1
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1 0
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1 0

= h

hA A A
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 
 
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B B B
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B B

B B B B B B

B B

B

 

0

0

= 0

jh

jh





−  
 
 
 
 
 
  

I

Q I

I

 

The elements Xh, Yh, Uh, Ah, and Bh are the corresponding ℎ -th Fourier 

coefficients of X(t), Y(t), U(t), A(t) and B(t), respectively. Note that A and B are the 
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Toeplitz matrices in order to perform the frequency-domain convolution operation to 

obtain a clearer and more compact notation. Q is a diagonal matrix that represents the 

frequency information, I is an identity matrix having the same size with the number of 

state variables, and h is the harmonic order. 

The general form of HSS in (3.13) illustrates the convolution of each harmonic 

of the state variable, and it equivalents to the first-order differential equation describing 

an LTI system. Therefore, a LTI representation of the LTP system can be achieved by 

HSS and the HSS model can also be easily extended to any number of harmonics. 

The s operator is a complex phasor varying with time. During transient conditions, 

it describes the variation of each harmonic frequency with respect to time, and it 

vanishes as the harmonics reach steady state, i.e. no further variation in the harmonics. 

However, sX does not represent the gradient of the state variable’s time-domain 

waveform, it rather strictly represents the variation of the harmonics over time. 

A harmonic vector used to represent a signal in the HSS is filled with complex 

Fourier coefficients, and it comprises of both positive and negative frequency 

components, but they must be complex conjugate pairs for the signal to be real. Thus, 

the DC component in the harmonic vector should be a scalar, but for a uniform 

representation in this modelling, it is treated as a complex number with zero imaginary 

component. 

 HSS based impedance model of single-phase MMC  

The structure of a 3-phase 4-wire MMC system is shown in Figure 3.1(a). Each 

phase of MMC consists of the upper and lower arms, which are in series with the DC 

power supply. Each arm has N sub-module (SM) in series with an arm reactor having 

equivalent resistance of Rm and inductance Lm. Providing the AC and DC sides are 

grounded, the three-phase MMC system can be considered as three independent single-
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phase systems with 120° phase angle difference. Hence, the 3-phase 4-wire MMC 

system can be simplified and expressed with the single-phase system.  
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(a) Structure of a 3-phase 4-wire MMC 
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(b) Equivalent average model of single-phase MMC 

Figure 3.1 Structure and equivalent circuit for 3-phase 4-wire MMC system 
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Considering the SM capacitor voltages are balanced and due to high number of 

SMs in each arm, the high frequency switching harmonics can be neglected. Thus each 

arm can be considered as a controllable voltage source and the equivalent average 

model of the single-phase MMC is shown in Figure 3.1(b). As shown in Figure 3.1(b), 

Cm is the equivalent capacitor in each arm and is given as Cm=Csm/N. iu and il are the 

current for the upper and lower arms, whereas cuv
  and clv

  are the voltage of the 

equivalent upper and low arm capacitor Cm, respectively. nu and nl are the modulation 

ratios for the upper and lower arms, respectively. Vdc is the DC voltage and ZL is the 

load impedance on the AC side. Ig and vg are the voltage and current of the MMC AC 

terminal, and Δvp is the perturbation voltage on the AC side. Ic is the internal common 

mode current given as 

 
2

u l
c

i i
i

+
=   (3.14) 

The AC-side current ig can be obtained as 

 g u li i i= −   (3.15) 

The terminal voltage vg on the AC side is  

 g L gv Z i=   (3.16) 

According to Kirchhoff’s voltage law, the following relationship can be obtained 

 
2

u dc
g m m u u

di V
v L R i v

dt
+ + + =   (3.17) 

 
2

l dc
g m m l l

di V
v L R i v

dt
− − − = −   (3.18) 
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where vn and vl are the voltage for the upper and lower arms, which can be calculated 

using the capacitor voltage and the modulation ratio as  

 u u cuv n v=   (3.19) 

 l l clv n v=   (3.20) 

Substituting (3.19) and (3.20) into (3.17) and (3.18) yields  

 
2

u dc
g m m u u cu

di V
v L R i n v

dt

+ + + =   (3.21) 

 
2

l dc
g m m l l cl

di V
v L R i n v

dt

− − − = −   (3.22) 

Subtracting (3.22) from (3.21) and combining (3.14) yields 

 
1

2 2 2

c m u l
c cu cl dc

m m m m

di R n n
i v v V

dt L L L L

 = − − − +   (3.23) 

Adding (3.22) to (3.21) and combining (3.15) yields 

 
2g u l m L

cu cl g

m m m

di n n R Z
v v i

dt L L L

  +
= − + −   (3.24) 

According to the relationship between the capacitor voltage of the upper and 

lower arms and the arm current, there are 

 cu
m u u

dv
C n i

dt



=   (3.25) 
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 cl
m l l

dv
C n i

dt



=   (3.26) 

According to (3.12) and (3.15), (3.25), and (3.26) can be expressed as 

 
2

cu u u
c g

m m

dv n n
i i

dt C C



= +   (3.27) 

 
2

cl l l
c g

m m

dv n n
i i

dt C C



= −   (3.28) 

Take the circulating current ic, the capacitor voltage cuv
 and clv

 of the upper 

and lower arms, and the current ig on the AC side as the state variables, as 

 ( ) ( ) ( ) ( ) ( )
T

c cu cl gt i t v t v t i t  =  x   (3.29) 

and take the DC-side voltage as the input variable, as 

  ( ) dct V=u   (3.30) 

The state-space equation of MMC can be derived using (3.23)，(3.24), (3.27), 

and (3.28) as 

 
( )

( ) ( ) ( ) ( )
d t

t t t t
dt

= +
x

A x B u   (3.31) 
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m m
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n n
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 
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 
 
 
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 

− 
 
 +
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 

A   (3.32) 

 
1

( ) 0 0 0
2

T

m

t
L

 
=  
 

B   (3.33) 

where nu and nl are the modulation ratios for the upper and lower arms, which are 

determined by the MMC controller and can be expressed, when considering the DC, 

fundamental and 2nd harmonic output, as [95] 

 
1 0 1 2 0 2

1 0 1 2 0 2

0.5 cos( ) cos(2 )

0.5 cos( ) cos(2 )

u

l

n n t n t

n n t n t

   

   

= − + − +


= + + − +
 (3.34) 

where n1 and θ1 are the magnitude and phase angle of the modulation ratio at 

fundamental frequency ω0 and are generated by the MMC AC current control. n2 and 

θ2 are at double-frequency and are determined by circulating current suppression 

controller (CCSC) [98].  

3.2.1 HSS based MMC steady-state model 

According to (3.34), during stable operation of MMC, the modulation ratio nu 

and nl contain the DC component, the fundamental frequency component and the 

double frequency component. For the state-variable in (3.29), the AC side current ig 

of MMC comprises multiple odd harmonics. The circulating current ic mainly contains 

even number harmonics. The capacitor voltage cuv
 and clv

 of the upper and lower 
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arms also include various harmonics including fundamental and double frequency 

components [114]. To consider the interaction of the harmonics, transforming the state-

space equation in time-domain in (3.31) into the frequency-domain and establish the 

HSS based MMC model in the form of (3.13) as 

 ( )s s s s ss = − +X A Q X B U  (3.35) 

where Xs is the state variable matrix at different harmonic frequencies and is expressed 

as  

  - -1 0 1= , , , , , ,
T

s h hX X X X X X   (3.36) 

where the subscript h denotes the harmonic order. For example, the element 

h ch cuh clh ghi v v i  =  X  in the matrix Xs indicates that the state variable contains 

the hth harmonic. Similarly, 0 0 0 0 0

T

c cu cl gi v v i  =  X is the DC component in the 

state variable. 

The input matrix Us at different harmonic frequency is given as 

  - -1 0 1= , , , , , ,
T

s h hU U U U U U  (3.37) 

Since the load is connected on the AC side without power supply and the DC-side 

has a stable DC voltage, the matrix elements in (3.37) can be expressed as 0 [ ]dcV=U  

and  1 1 0h h− −= = = = =U U U U . 

As and Bs are the Toeplitz matrices and can be denoted as 
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 
 
 
 

B B B

B

B B

B B B B B B

B B

B

B B B

  (3.39) 

where the elements in the matrices are attached in the appendix A 

Assuming sXs=0 in (3.35) for the system in steady state, the steady-state state 

variables of MMC at different harmonic frequencies under the input DC voltage Vdc 

can be expressed as 

 1( )s s s s

−= − −X A Q B U  (3.40) 

3.2.2 HSS based MMC small-signal model 

The response of MMC can be considered as the superposition of various 

harmonics at the fundamental frequency ω0. The steady-state model of MMC is 

derived using HSS in Section 3.2.1, which includes –h, …, -1, 0, 1, …, h order 

harmonics. MMC steady-state response has periodical and time-variant features, 

whereas the stability analysis is conducted on the premise of time-invariant model. In 

this section, the linearized small-signal model of MMC using HSS is derived. 
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Linearizing (3.23), (3.24), (3.27) and (3.28) yields 

2 2 2 2
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2 2
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
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









   (3.41) 

where Δ denotes small-signal perturbation. Nu and Nl are the steady-state upper and 

lower arm modulation rations. Ic, Ig, cuV    and 
clV    are the steady-state internal 

circulating current, the AC-side terminal current, and capacitor voltage for the upper 

and lower arms. The steady-state components include -h, …, -1, 0, 1, …, h order 

harmonics. 

Equation (3.41) can be written in matrix form and the small-signal state equation 

of MMC can be expressed as 

 ( ) ( ) ( ) ( )p pt t t t
•

 =  + x A x B u  (3.42) 

where the small-signal state variables are 

 ( ) ( ) ( ) ( ) ( )
T

c cu cl gt i t v t v t i t   =     x  (3.43) 

The perturbation input ( )tu is  

 ( ) u l pt n n v  =    u   (3.44) 
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where un and ln  are the perturbation for the upper and lower modulation ratios, 

respectively, pv   is the perturbation voltage injected into the AC terminal of the 

MMC.  

The coefficient matrices can be written as 
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2 2

0 0
2
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B  (3.46) 

3.2.3 Small-signal model of MMC with controllers 

A. Circulating current suppression controller (CCSC) 

As the dominant component in the circulating current is the 2nd order harmonic, 

CCSC for three-phase MMC can be designed using either PI controller in dq frame 

(rotating at double frequency) or PR controller in abc frame, and both designs can 

effectively suppress the second harmonic circulating current in the MMC arms. Here 



 

76 

 

the PR controller in abc stationary frame is adopted. For three-phase PR controller in 

the abc frame, each phase control is identical and independent. Therefore, a single-

phase controller can be adopted in the analysis, as shown in Figure 3.2 
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Figure 3.2 Diagram of the circulating current control with PR controller 

The common mode current ic as depicted in (3.14) mainly contains the DC 

component and the second harmonic circulating current. As shown in Figure 3.2, the 

DC current component is removed by adding the steady-state DC current reference 

icref=P/3/Vdc, where P denotes the output active power of MMC. Kcp and Kcr are the 

proportional and resonant coefficients of the PR controller, respectively, and the 

resonant frequency is 2ω0. The output of the CCSC is the modulation ratio n2 at double 

frequency in (3.34).  

According to the small-signal model of the circulating current controller, the 

perturbation of the modulation ratio Δn2 and the circulating current Δic can be 

expressed as 

 2 ( )cc cn G t i =   (3.47) 

where Gcc(t) is the gain of the controller and the transfer function in frequency-domain 

is  
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2 2

0

2 2

( 4 4 )

cp cr
cc

dc dc

K K s
G

V V s s 
= − −

+ +
  (3.48) 

B. MMC AC current controller 

As single-phase MMC model is considered here, the MMC AC-side current 

controller also employs the PR controller in abc frame. The single-phase control 

diagram is shown in Figure 3.3. 
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Figure 3.3 Diagram of the fundamental current control with PR controller 

In Figure 3.3, igref is the current reference for the MMC AC side output, and the 

resonant frequency of the PR controller is the fundamental frequency ω0. Kip and Kir 

are the proportional and resonant coefficients of the PR controller, respectively. The 

output n1 is the fundamental frequency component in (3.34). 

According to the small-signal model of the AC-side current controller, the 

perturbation of the fundamental frequency modulation ratio Δn1 and the AC current 

Δig can be expressed as 

 1 ( )i gn G t i =    (3.49) 
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where Gi(t) is the gain of the AC current controller and the transfer function in 

frequency-domain is 

 
2 2

0

2 2

( 4 )

ip ir
i

dc dc

K K s
G

V V s s 
= − −

+ +
  (3.50) 

Moreover, when the controller has the voltage feed forward, the terminal voltage 

perturbation Δvg of MMC can also affect the perturbation of the fundamental frequency 

modulation ratio Δn1 as  

 1 ( )v gn G t v =    (3.51) 

where Gv(t) is the gain from the perturbation voltage to the AC controller output. 

The total fundamental frequency perturbation Δn1 is the sum of the components 

in (3.49) and (3.51), and the double-frequency perturbation Δn2 of the modulation 

ratio can be determined by (3.47). According to (3.34), the perturbation for the upper 

and lower arms can thus be expressed as 

 
( ) ( ) ( )

( ) ( ) ( )

u i g v g cc c

l i g v g cc c

n G t i G t v G t i

n G t i G t v G t i

 = −  −  − 

 =  +  − 

  (3.52) 

Substituting the modulation ratio perturbation (3.52) into the small-signal model 

(3.44) derives the small-signal state equations of MMC with controllers, shown as the 

matrix form in (3.42), where ( )tu , Ap(t) and Bp(t) are rewritten as 

 ( ) pt v  =  u   (3.53) 
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 
 

+ 
− + 
 

B  (3.55) 

Transforming the above small-signal state equation into frequency-domain and 

establishing the model with HSS yield 

 ( )s ps s ps ss = −  + X A Q X B U   (3.56) 

where the state variable matrix sX  can be expressed as 

 1 1, , , , , ,
T

s p h p p p p h− − − +
  =      X X X X X X  (3.57) 

where p h cp h cup h clp h gp hi v v i 

− − − − −
  =     X  , the subscript p denotes the 

perturbation component injected at frequency ωp, and the subscript p-h denotes the 

response at ωp-hω0. Similarly, p h cp h cup h clp h gp hi v v i 

+ + + + +
  =     X  represents 

the response at ωp+hω0.  
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The small-signal perturbation input matrix sU  is expressed as 

 1 1, , , , , ,
T

s p h p p p p h− − − +
  =      U U U U U U   (3.58) 

The perturbation voltage Δvp injected at ωp is written as 
p pv  =  U  , and 

0 ( 1)p h p h h− + =  = U U . The frequency matrix Q is  

 

0

0

0

0

jh

j

jh







− 
 
 
 =
 
 
  

I

Q I

I

  (3.59) 

where I is a 4 by 4 identify matrix.  

Equation (3.52) can be expressed in frequency-domain as 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

u i g v g cc c

l i g v g cc c

n s G s i s G s v s G s i s

n s G s i s G s v s G s i s

 = −  −  − 

 =  +  − 

 (3.60) 

Note that in (3.60), s=jωp. This equation indicates that the modulation ratio 

generated by the controller at the perturbation frequency ωp. While for the perturbation 

variable at ωp+hω0, the controller transfer function can be expressed as 

0 0 0 0 0 0 0

0 0 0 0 0 0 0

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

u i g v g cc c

l i g v g cc c

n s jh G s jh i s jh G s jh v s jh G s jh i s jh

n s jh G s jh i s jh G s jh v s jh G s jh i s jh

      

      

 + = − +  + − +  + − +  +

 + = +  + + +  + − +  +

  (3.61) 

Hence, for different order harmonics, the transfer function for different controller 

should conduct corresponding frequency shift and the coefficient matrix Aps can be 

written as 
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  (3.62) 

Due to the transfer function of the controller at different harmonic frequency, the 

matrix Aps will not be the Toeplitz matrix, and every element matrix will also be 

different. Appendix A lists the expression of the middle row matrix A-h(s), A-1(s), A0(s), 

A1(s), Ah(s) of Aps and other elements in Aps can be derived through the frequency shift 

of these matrices.  

Similarly, matrix Bps can be derived as  

0 0 -1 0 -h

1 0

0 0 -1

0 1 0 0 -1 0 -h 0

1 0 0

-1 0

1 0 0 0

( ) ( ( 1) ) ( )

( )
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= ( ) ( ) ( ) ( ) ( )

( ) ( )

( )

( ) ( ( 1) ) ( )

ps h

h

s jh s j h s

s jh

s j s

s jh s j s s j s jh

s s j

s jh

s s j h s jh

 





   





 

− − − 
 

−
 
 −
 

− − + + 
 +
 

+ 
 + − + 

B B B

B

B B

B B B B B B

B B

B

B B B 

(3.63) 

where the element matrices B-h(s), B-1(s), B0(s), B1(s), and Bh(s) are given in Appendix 

A. 

3.2.4 Small-signal impedance of MMC 

If a perturbation voltage Δvp is injected into the AC terminal of MMC at ωp as 

shown in Figure 3.1 (b), the AC terminal will generate the voltage Δvg and the current 

Δig at ωp. The positive current direction is defined as flowing out of MMC. Thus, the 

ratio of the small-signal response voltage and current denotes the small-signal 

impedance of MMC seen from the AC terminal as 
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g

MMC

g

v
Z

i


= −


  (3.64) 

When the perturbation voltage Δvp is injected, due to the existence of ZL, the 

terminal voltage perturbation Δvg of the MMC is described as 

 g p L gv v Z i =  +    (3.65) 

According to (3.64) and (3.65), the small-signal impedance ZMMC of MMC can 

be written as 

 
p

MMC L

g

v
Z Z

i


= − −


  (3.66) 

In the subsection 3.2.3, the HSS based small-signal model of MMC is described 

by (3.56), where Δvp is the input voltage, and the AC-side current perturbation Δig is 

one of the state variables. Through solving the state equation (3.56), the relationship 

between the input variable Δvp and the state variable Δig can be obtained. The solution 

of (3.56) can be expressed as 

 ( )s ps ps s hss ss = − +   = X I A Q B U H U  (3.67) 

where I is the identity matrix, and Hhss reflects the relationship between the input and 

state variables. Extracting the input variable Δvp and the state variable Δig and then 

combining with (3.66) yield the small-signal impedance of MMC. 

 Verification of small-signal impedance of MMC 

To validate the small-signal model of MMC, a time-domain EMT simulation 

model in the form of Figure 3.1 is established in Matlab/Simulink. The load impedance 

is ZL=RL+jω0LL=90+j0.06Ω and the related parameters of the MMC are listed in 



 

83 

 

 

Table 3.1. 

Table 3.1 Main electrical parameters of the MMC 

Parameters Value 

MMC rated apparent power (Sn) 1044 MVA 

MMC rated active power (P) ±1000 MW 

MMC rated reactive power(Q) ±300 MVar 

MMC nominal DC Voltage (Vdc) 640 kV(±320 kV) 

MMC rated AC output voltage (L-L) (Vnl) 360 kV 

Arm resistance (Rm) 0.08 Ω 

Arm inductance (Lm) 0.042 H 

Cell capacitance (Cm) 31.4 µF 

Nominal Frequency (f0) 50 Hz 

To derive the small-signal impedance of the MMC in time-domain, frequency 

sweeping method is used. The voltage perturbation Δvp at ωp is injected into the AC 

side of MMC with the magnitude of 1kV. The voltage vg and the current ig measured at 

the AC-side terminal of the MMC are handled by FFT to extract the small-signal 

voltage Δvg and current Δig at ωp. Using (3.64), the small-signal impedance of MMC 

in time-domain can be obtained at ωp. ωp can then be set to different frequencies and 

the corresponding MMC impedances cross a wide frequency range can be obtained. 

3.3.1 Open loop MMC impedance model validation 

In the open-loop model, i.e. no AC current controller or CCSC, the magnitude 

and phase of the given modulation ratio at fundamental frequency are fixed at n1=0.45 

and θ1=0.01, whilst n2=0 and θ2=0 for double frequency. In addition, the modulation 
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ratio perturbation Δnu and Δnl for upper and lower arms in (3.52) are 0. With the HSS 

based MMC model established, the impedance can be calculated as shown in Figure 

3.4 by considering the harmonic order h with 0, 1, 2, 3 and 4 in the model. In addition, 

the small-signal impedance of MMC measured in time-domain is also compared in 

Figure 3.4. 

 

Figure 3.4 The impedance plot of HSS model and time-domain simulation model 

It can be observed that the harmonic order considered in the HSS model of the 

MMC has a great impact on the accuracy of the analytical impedance model. Since 

significant steady-state harmonic components exist in the MMC arm current and 

capacitor voltage, the higher the harmonic order is considered in the HSS model, the 

more accurate the analytical impedance model is. In the impedance magnitudes shown 

in Figure 3.4, the solid red line which represents the magnitude of the HSS impedance 

model with h=4 overlap with that of the time-domain simulation model which is shown 

as blue dots in the figure. In the impedance phases shown in Figure 3.4, close match 

between those two models can also be observed. Based on those observations, it can 

be indicated that the analytical model with h=4 matches well with the measured results 

in the time-domain simulation.  
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3.3.2 Impedance model validation of the MMC with CCSC  

In this part, the analytical model of the MMC system with CCSC is validated 

against the Matlab/Simulink time-domain model. The CCSC adopts the control design 

shown in Figure 3.2. The harmonic order h of the analytical model is selected as 2. As 

shown in Figure 3.5, the analytical impedance has a good agreement with the measured 

results in the simulation, which validates the analytical MMC impedance model. 

Moreover, it is worth noting that the high order harmonic components are well 

suppressed by CCSC so the analytical model with h=2 is sufficient, i.e. with h=3 and 

4 the calculated impedances are largely identical to those shown in Figure 3.5. 

 

Figure 3.5 Analytical and simulation measured impedances of the MMC with CCSC 

3.3.3 Impedance model validation of the MMC with full control 

With the CCSC and the AC current controller included, Figure 3.6 compares the 

measured and calculated small-signal impedance of the MMC using the developed 

HSS analytical model with h=2. It can be observed that the two impedances match 

well, which verifies that the small-signal model established can produce accurate the 

small-signal MMC impedance with the controllers.  
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Figure 3.6 Analytical and simulation measured impedances of the MMC with full control 

 Problems existing in the single-phase MMC model 

If the system uses the 3-phase 4-wire configuration, the three-phase MMC system 

can be analysed using single-phase systems. However, practical MMC systems 

normally do not have solid grounding on the DC mid-point employ and thus effectively 

resemble a 3-phase 3-wire connection. For the 3-phase 4-wire system, common AC 

and DC grounding allows common mode current to flow, e.g. third harmonic current. 

While for the 3-phase 3-wire system, there is no common mode current flowing 

through the AC and DC sides. The existence of the third harmonic in the 4-wire system 

can significantly affect the impedance of MMC, as will be discussed in detail in the 

next Chapter. Therefore, the single-phase modelling method for MMC proposed in this 

chapter cannot represent the true MMC impendence in real systems. 

The MMC model established chooses the voltage on the AC-side ground point as 

reference. In order to obtain the operating point of the MMC terminal voltage, the load 

impedance ZL needs to be included in the small-signal model of MMC. In the case of 

complex AC grid configuration, the mathematical expression of ZL is difficult to obtain 

and thus this complicates the small-signal modelling of MMC. Nevertheless, if the 
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MMC terminal voltage is chosen as the reference point, the small-signal model 

developed will not depend on the impedance on the AC side.  

When the MMC adopts the PR control in abc frame, the transfer function of the 

control for phase a, b and c is independent and identical. Take the AC-side current loop 

for example 

 

1

1

1

( ) 0 0

0 ( ) 0

0 0 ( )

a ga

b gb

c gc

n G s i

n G s i

n G s i
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          

  (3.68) 

It can be seen that the modulation ratio Δn1a for phase a is only associated with 

phase a current Δiga. Thus the transfer function for three-phase controller can be 

simplified into single-phase ones. Note that in Section 3.2, both the CCSC and the AC-

side current control adopt the PR control in abc frame. If other controls are employed, 

for example, the PR control in αβ frame, the transfer function is given as  
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  (3.69) 

Transforming into the abc frame yields 
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For (3.58), it can be seen that phase a modulation ratio Δn1a is not only associated 

with phase a current Δiga but also phase b and c current Δigb and Δigc. Therefore, the 

modulation ratio Δn1 for any phase cannot be represented by only its own phase current 

perturbation. In this situation, the controller transfer function cannot be acquired 

accurately. Thus, the impedance obtained from the single-phase modelling method is 

only valid and suitable for the MMC using PR control in abc frame. 

The small-signal impedance of MMC derived reflects the relationship of the 

terminal voltage Δvg and the resulting current Δig at the same frequency. However, as 

documented in literatures and from the time-domain simulation model, perturbation at 

one frequency can generate multiple frequency responses. Figure3.7 shows the 

measured FFT results for the terminal voltage vg and current ig from the time-domain 

model where the perturbation voltage Δvp at 40Hz is injected. 

 

  

(a) vg (b) ig 

Figure3.7 FFT analysis result for the terminal voltage and current with perturbation injection 

According to the FFT results, it is obvious that the perturbation voltage at 40Hz 

not only causes the current response at 40Hz but also the voltage and current at 60Hz. 

In fact, different frequency coupling exists in the input and the response is generated 

by the internal harmonics of MMC, which is an important feature of MMC. However, 

the impedance modelling method for MMC in this chapter only reflects the AC 
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terminal voltage and current at the same frequency without considering different 

frequency coupling characteristics, which may lead to inaccurate stability analysis if 

such impedance models are used.  

 Summary 

The HSS modeling approach is adopted for developing three-phase MMC 

impedance based on the single-phase equivalent circuit. The developed small-signal 

MMC impedance models includes all the internal harmonics within the MMC under 

various control strategies. The results show that the HSS modeling method can 

effectively explore both steady-state frequency coupling and dynamic harmonic 

interactions in power electronics based systems. Close matches have been observed 

between the impedances calculated from the developed analytical model and measured 

ones using frequency sweeping method from the time-domain EMT models. However, 

the study has also found that the single-phase modelling approach, which considers 

the system as an equivalent 3-phase 4-wire system, is not entirely effective for 

modelling practical MMC systems due to the absence of common AC and DC 

grounding point in practical installations. The controller adopted for the single-phase 

model cannot represent the actual control applied at the three-phase system. In addition, 

the MMC impedance only accounts for the voltage and current at the same frequency 

without considering different frequency coupling characteristics. Chapter 4 will further 

modelling method for addressing such problems. 
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 Harmonic state-space modelling of three-

phase MMC 

 

This chapter focuses on developing an accurate small signal impedance model of 

the three-phase MMC using the HSS method based on the developed single-phase 

MMC model in Chapter 3. The MMC model established represents a practical 3-phase 

3-wire MMC system. The detailed modelling procedure is described using the HSS 

theory. To accommodate multiple harmonics in the linearization process, a matrix 

formulation is introduced and used to model both the converter power stage and its 

control including the PLL, the circulating current suppression control, AC current 

control and outer-loop power and AC voltage control. It further reveals the impact of 

the MMC internal dynamics and control dynamics on the MMC impedance. The 

derived impedance models are then verified by comparing the frequency responses of 

the developed analytical model with the impedances measured from a nonlinear time-

domain simulation model in MATLAB/Simulink. 

 Linearizing the model of MMC in abc frame 

The structure of a three-phase MMC is shown in Figure 4.1(a). Take phase a for 

example, Va and ZL represent the AC grid voltage and AC impedance used to determine 

the steady-state operating point, respectively. The upper and lower arms are connected 

in series to form one phase-leg with the upper and lower arm current being iua and ila, 

the voltage vua and vla , and modulation control signal nua and nla. Each arm includes 

N sub-modules (SMs) with the capacitance of Csm, and an arm reactor with inductance 

Lm and resistance Rm. The average-value modelling method is used [87], in which it is 

assumed that the capacitor voltages in the SMs are balanced and the high-order 

switching harmonics of arms are negligible.  
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(a) Structure of a three-phase MMC 
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(b) Averaged equivalent circuit of a three-phase MMC 

Figure 4.1 Structure and equivalent circuit of a three-phase MMC 

The equivalent circuit of the MMC average model is depicted in Figure 4.1(b). A 

lumped equivalent capacitor Cm is used to represent the capacitors of all SMs in one 

arm and equals to Csm/N. cuav
 and clav

 denote the sum of the capacitor voltages of 
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SMs in the upper and lower arms, respectively, and vga and iga are the respective voltage 

and current on the MMC AC side. Vdc is the DC side voltage and is assumed to be 

constant. Since the system is in a 3-phase 3-wire connection, the voltage of the DC 

neutral point is vn.  

For ease of analysis, the three-phase quantities are defined in 3 by 1 matrices as 

vgabc, igabc, cuabc

v , clabc

v , vuabc, iuabc, vlabc, ilabc, icabc, Vdc and vn, whereas nuabc and nuabc 

are 3 by 3 diagonal matrices. 

For a three-phase MMC, the relationship between the arm voltage and the 

equivalent capacitor voltage of the SMs can be expressed as 

=

=

uabc uabc cuabc

labc labc clabc





 




v n v

v n v
                           (4.1) 

The internal dynamics between equivalent capacitor voltage of SMs and the arm 

current are depicted as   

=

=

cuabc
m uabc uabc

clabc
m labc labc

d
C

dt

d
C

dt






 


  


v
n i

v
n i

                      (4.2) 

Both the arm voltage abcv  and capacitor voltage cabc

v contain multiple harmonics 

under steady-state. It indicates that MMC has multi-frequency response due to its 

significant steady-state harmonic components in the arm voltage and capacitor voltage.  

The common mode current which circulates inside the MMC arms without 

appearing on the AC terminal is denoted as 
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+
=

2

uabc labc
cabc

i i
i                        (4.3) 

The current on the AC side can be calculated as 

= -gabc uabc labci i i                           (4.4) 

According to the Kirchhoff’s law, the voltage on the AC terminal of MMC and 

the current and voltage of the arm have the following relationship 

+
2

2

uabc dc
gabc m m uabc uabc n

labc dc
gabc m m labc labc n

d
L R

dt

d
L R

dt


 +  + = +


 −  −  − = − +


i V
v i v v

i V
v i v v

             (4.5) 

Combining (4.1), (4.2), (4.3), (4.4) with (4.5) derives the state-space equation 

of MMC as 

 

=-
2 2 2

22
=-

=
2

=
2

cabc m uabc labc dc
cabc cuabc clabc

m m m m

gabc m uabc labc n
gabc cuabc clabc gabc

m m m m m

cuabc uabc uabc
cabc gabc

m m

clabc labc labc
cabc gabc

m m

d R

dt L L L L

d R

dt L L L L L

d

dt C C

d

dt C C

 

 






− − +



− + − +



+

−

i n n V
i v v

i n n v
i v v v

v n n
i i

v n n
i i












  (4.6) 

Introducing the small perturbation analysis to linearize (4.6) yields the small-

signal state-space model of three-phase MMC in abc frame as 
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=-
2 2 2 2

2 2
=- +

cabc m uabc labc cuabc clabc
cabc cuabc clabc uabc labc

m m m m m

gabc m uabc labc cuabc clabc
gabc cuabc clabc uabc labc pabc n

m m m m m m m

cuabc

d R

dt L L L L L

d R

dt L L L L L L L

d

 
 

 
 



− − − −

− + − − +

i N N V V
i v v n n

i N N V V
i v v n n v v

v
= +

2 2

= +
2 2

gabcuabc uabc cabc
cabc gabc uabc uabc

m m m m

gabcclabc labc labc cabc
cabc gabc labc labc

m m m m

dt C C C C

d

dt C C C C










 + +




− −


IN N I
i i n n

Iv N N I
i i n n

(4.7) 

where variables in capital form denote the values at the steady-state operation point 

and variables with Δ denote the corresponding small perturbations. Δvpabc is the injected 

small perturbation voltage at the MMC AC terminal. 

 Transforming the small-signal model of MMC in abc frame to pn frame 

The pn frame has been chosen to study the system stability since it enables any 

number of harmonics to be effectively tracked for three-phase system [25]. The matrix 

P is adopted to realize the frame transformation from abc coordinate to the pn frame 

whereas -1P is the inverse matrix, as 

 

2 4
3 3

4 2
3 3

1

= 1

1 1 1

j j

j j

e e

e e

 

 

 
 
 
 
 
  

P  (4.8) 

Apply the transformation for the current, voltage and modulation signals, as 

-1

0=cabc cPNi P i ; 
-1

0=gabc gPNi P i ; -1

0=cuabc cuPN

 v P v ; -1

0=clabc clPN

 v P v  

-1

0=uabc uPNn P n ; -1

0=labc lPNn P n ; 
-1

0=pabc pPNv P v . 

Thus, (4.7) can be rewritten in the pn coordinate frame as  



 

95 

 

-1 -1 -1 -1

0
0 0 0 0 0

-1 -1 -1 -1
0

0 0 0 0

=-
2 2 2 2

=- +

cPN m uabc labc cuabc clabc
cPN cuPN clPN uPN lPN

m m m m m

gPN m uabc labc cuabc clabc
z gPN cuPN clPN uPN

m m m m

d R

dt L L L L L

d R

dt L L L L

 
 

 
 

− − − −

− + −

i PN P PN P PV P PV P
i v v n n

i PN P PN P PV P PV P
C i v v n 0 0

-1-1 -1 -1

0
0 0 0 0

1 -1-1 -1 -1

0
0 0 0 0

2

= +
2 2

= +
2 2

lPN pPN

m m

gabccuPN uabc uabc cabc
cPN z gPN uPN uPN

m m m m

m gabcclPN labc labc cabc
cPN z gPN lPN lPN

m m m m

L L

d

dt C C C C

d

dt C C C C



−





−



+ +

− −

n v

PI Pv PN P PN P PI P
i C i n n

C PI Pv PN P PN P PI P
i C i n n












(4.9) 

Due to the three-phase three-wire system, no zero-sequence current circulation 

path exists at MMC AC side [96]. Note that in (4.7), Δvn is a zero-sequence 

compensation voltage and is inserted into the AC side to eliminate the zero-sequence 

grid current in abc frame [98]. However, to simplify the analysis, a matrix Cz is 

introduced here in the analytical model in pn frame to force the zero-sequence grid 

current zero and thus Δvn can be ignored in (4.9), as 

 
1 0 0
0 1 0
0 0 0

z

 
=  
  

C   (4.10) 

The small-signal model of the three-phase MMC around an operation trajectory 

in pn frame, characterized by ΔicPN0, ΔigPN0, 0cuPN

v  and
0clPN

v  , can be derived in 

matrix form as 

0 0 0 0=
PN s PN PN pPN+ +x A x M n B v                 (4.11) 

where 
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1 1

1 1

1 1

1 1

- - -
2 2

- -

=

2

-
2

m uabc labc

m m m

m uabc labc
z

m m m

s

uabc uabc
z

m m

labc labc
z

m m

R

L L L

R

L L L

C C

C C

− −

− −

− −

− −

 
 
 
 

 
 
 
 
 
 
 
  

PN P PN P
I 0

PN P PN P
0 C

A
PN P PN P

C 0 0

PN P PN P
C 0 0

 

1 1

1 1

1 1

1 1

- -
2 2

-
=

(2 )

(2 )2

2

cuabc clabc

m m

cuabc cuabc

m m

cabc gabc

cabc gabcm

m

L L

L L

C

C

 −  −

 −  −

− −

− −

 
 
 
 
 
 
 +
 
 −
 
 

PV P PV P

PV P PV P

M

0PI P PI P

PI P PI P

0

  

   0 0 0= -2 ,  =
T T

m PN uPN lPNLB 0 I 0 0 n n n   

0 0 0 0 0

T

PN cPN gPN cuPN clPN

  =  x i i v v . 

In (4.11), As is the coefficient matrix, determined by Lm, Rm, Cm and the steady-

state variables Nlabc and Nuabc of the modulation ratio. B is the coefficient matrix of the 

input variables and is only related with the arm inductor Lm. In order to derive the state 

equation of the system, the relationship among the modulation ratio ΔnPN0, the state 

variable ΔxPN0 and the input variable ΔvpPN0 should be identified in pn frame.  

When the MMC controller is considered, the variation ΔnPN0 of the modulation 

ratio depends on the control variables of the controller. The control variables of the 

MMC generally include the AC current and voltage as well as the internal circulating 

current. Thus ΔnPN0 can be expressed as  
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0 0 0 0 0 0 0

0 0 0 0 0 0 0

=-

=

uPN iPN gPN vPN gPN ccPN cPN

lPN iPN gPN vPN gPN ccPN cPN

 −  − 


 +  − 

n G i G v G i

n G i G v G i
          (4.12) 

where GiPN0, GvPN0 and GccPN0 are the gain matrices of the relevant controllers. 

Rewriting (4.12) in matrix form yields the relationship among the modulation 

ratio ΔnPN0, the state variable ΔxPN0, and the voltage ΔvgPN0 as 

0

0

0

00 0 0 0

0

0 0 0 0

- 0 0 -
= +

0 0
cuPN

clPN

cPN

gPNuPN ccPN iPN vPN

gPN

lPN ccPN iPN vPN





 
 

−             −     
 
  

i

in G G G
v

vn G G G

v

      (4.13) 

Equation (4.13) can be depicted in simple forms as  

0 0 0=PN A PN B gPN + n G x G v                      (4.14) 

where 
0 0

0 0

ccPN iPN

A

ccPN iPN

− − 
=  

− 

G G 0 0
G

G G 0 0
 and 

0

0

vPN

B

vPN

− 
=  
 

G
G

G
. 

Substituting (4.14) into (4.11) derives the small-signal state-space equation of 

the three-phase MMC in pn frame as 

0 0 0=( ) ( )
PN s PN pPN+ + +A Bx A MG x B MG v             (4.15) 

 MMC modelling using HSS method 

All the state variables in (4.15) are periodic signals in the steady state, and the 

MMC is deemed essentially a time periodic system. Based on the HSS modelling 

method, the time-domain state-space equation (4.15) of the MMC is transformed to 

the small-signal HSS model expressed as 
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=( ) ( )s ps +  −  +  + PN0 A PN0 B PN0x A M G Q x M G B v         (4.16) 

According to the general equation of HSS, Fourier expansion of (4.16) can be 

written as 

( )0 0 0=( [ ]+ [ ] ) [ ]+ [ ]PN s A PN B pPNs    −  +    X A M HG Q X B M HG V   (4.17) 

where [ ]s A  , [ ] B   and [ ] M   are Toeplitz matrices, which are related with the 

MMC parameters Lm, Rm, Cm and the harmonic components at the steady-state 

operation point of the MMC. HGA is the control transfer matrix associated with the 

harmonic state variables, and HGB is the one with the harmonic input variables. Their 

specific expressions are decided by the controller. 0PNX  and 0pPNV   are the 

harmonic state variable matrices and the input matrix in harmonic frequency, 

respectively. These matrices [ ]s A , [ ] B , [ ] M , HGA, HGB, 0PNX , and 0gPNV  

are given as in the Appendix B. 

 Small-signal modelling of MMC control 

To establish a complete small-signal model of MMC, its control needs to be 

included in the modelling. As shown in the state-space equation (4.17), HGA and HGB 

are the transfer function matrices determined by the controller in pn frame. Therefore, 

to derive the small-signal impedance of MMC, the transfer function of specific 

controllers should be achieved in corresponding frame and then the frame 

transformation should be carried out to obtain the transfer function in pn frame. 

4.4.1 Circulating current suppression controller (CCSC) 

The circulating current flows within the arms and transfers charge between the 

SM capacitors, which plays a very important role in MMC internal dynamics. 
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Therefore, the circulating current control has significant impacts on the converter 

impedance response. The implementation of a PR controller in the circulating current 

suppression control is depicted in Figure 4.2. In general, since the circulating current 

contains a series of even-harmonic components, in which the second-order harmonic 

currents are the dominant components in the circulating current, the objective is to 

suppress the dominant second order harmonic circulating currents by setting the 

references to zero and 2ω0 to be twice of the fundamental frequency. The circulating 

current signal is obtained by filtering out the DC component from the common mode 

current in (4.3) using high pass filters (HPF), as shown in Figure 4.2. Since this 

controller acts on the common-mode component of the modulation functions of the 

upper and lower arms in each phase leg, its output is added with the same sign to the 

modulation functions of the upper and lower arms. 

s2+2ωcs +4ω0
2

+
_

HPF

Krp

PR controller

+

+

Krr s

++
0

2/Vdc

n2abc

icabc

 

Figure 4.2 Diagram of circulating current suppression controller  

The transfer function of the PR controller can be expressed as [115] 

2 2

0

( )
2 4

rr
PR rp

c

K
G s K

s s 
= +

+ +
                         (4.18) 

where Krp and Krr are the proportional and resonant coefficients of the PR controller, 

respectively. ωc is the cutoff frequency and ω0 is the fundamental frequency. 

The transfer function of HPF is 
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2

2 2
( )

2
HPF

n n

s
G s

s s 
=

+ +
  (4.19) 

where ωn is the un-damped natural frequency and ζ is the damping factor [116]. 

Thus, the double frequency output modulation signal by the CCSC and the 

circulating current have the following relationship 

 

2

2

2

( )

a ca

b ccabc cb

c cc

n i

n s i

n i

   
   =
   
      

G  (4.20) 

where Gccabc(s) is the circulating current transfer function matrix in abc frame, and is 

given as 

        

( ) ( ) 0 0
2

( ) 0 ( ) ( ) 0

0 0 ( ) ( )

HPF PR

ccabc HPF PR

dc

HPF PR

G s G s

s G s G s
V

G s G s

 
−  

=
 
  

G  (4.21) 

The corresponding CCSC transfer function in pn frame GccPN0(s), as part of HGA 

in (4.17), can be derived as  

 -1

0( )= ( )ccPN ccabcs s G P G P  (4.22) 

4.4.2 Current control at MMC AC terminal  

The current control loop has fast response and the capability of limiting the 

current when system faults occur. The block diagram of an inner current loop including 

the PLL is presented in Figure 4.3.  
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Figure 4.3 The block diagram of an inner current loop 

As shown, vgabc and igabc are the actual network voltage and current at the MMC 

AC terminal, respectively. The PLL extracts the voltage phase angle through three-

phase voltage vabc to be used for abc to dq frame transformation of voltage and current. 

L is the equivalent input AC inductance and equals to half of the inductance of the arm 

reactor Lm. The output of the current control loop is the fundamental frequency 

modulation ratio n1abc. When the voltage perturbation occurs, the dynamics of the PLL 

can be described as [41]  

= pll qG v                           (4.23) 

where Gpll is the transfer function of the PLL and is expressed as 

 
2

( )
ppll ipll

pll

d ppll d ipll

K s K
G s

s V K s V K

+
=

+ +
                    (4.24) 

where Kppll and Kipll are the proportional and integral coefficients of the PLL PI 

controller, respectively. 

It can be observed that if there exists voltage perturbation in the terminal voltage 
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of MMC, there will be angle deviation Δθ extracted from PLL, and consequently, Δθ 

will further affect the frame transformation. 

During steady state, the relationship between voltage Vd
c and Vq

c in the control 

frame determined by PLL and Vd and Vq in the system frame can be written as: 

cos(0) sin(0)
=

sin(0) cos(0)

c
dd

c
qq

VV

VV

    
    

−      

                       (4.25) 

The voltage perturbations Δvd and Δvq passing through PLL result in 

++ cos(0+ ) sin(0+ )
=

++ sin(0+ ) cos(0+ )

c c
d dd d

c c
q qq q

V vV v

V vV v

 

 

    
    

−      

           (4.26) 

Subtracting the steady-state component (4.25) from (4.26) yields the voltage 

perturbation in PLL frame as 

+ +
=

- -

c

d d q q

c

q q d d

v v V v

v v V v

 

 

   
   
      

                     (4.27) 

Ignoring the second order terms qv  and dv , (4.27) can be rewritten as  

+
=

-

c

d d q

c

q q d

v v V

v v V





   
   
      

                       (4.28) 

Substituting (4.23) into (4.28) yields 

1

0 1

c
d q q pll dd

c
q d d pll qq

v V V G vv

v V V G vv





 +        
= =       

 − −         

      (4.29) 

The current perturbation in PLL frame can also be expressed in the similar form 
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as  

0

0

c
d q q pll d dd

c
q d d pll q qq

i I I G v ii

i I I G v ii





 +           
= = +         

 − −            

        (4.30) 

where Id and Iq are the d-axis and q-axis currents, respectively. 

The voltage reference value in system dq frame can be obtained as  

0

0

c c c
cond conq pll dcond conq cond

c c c
conq cond pll qconq cond conq

v V G vv V v

v V G vv V v





 −     −      
= = +        

  +            

      (4.31) 

where Vcond and Vconq are the output d-axis and q-axis voltage of the current control 

loop, respectively. 

To derive a simplified matrix form, we can define the following matrices: 

1

0 1

q pll

d pll

V G
A

V G

 
=  

− 
  ,

0

0

q pll

d pll

I G
B

I G

 
=  

− 
 , 

0

0

iPI

iPI

G
C

G

 
=  
 

 , 0

0

0

0

m

m

L
D

L





− 
=  
 

 , 

and 
0

0

conq pll

cond pll

V G
E

V G

− 
=  
 

. 

The inner current controller for small-signal perturbation can be depicted using 

the blocks shown in Figure 4.4. 
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ω0LΔiq
c 

_
GiPI

Vdc/2
0

0

Δid
c

+

Δiq
c

_

+

Δvd
c

Δvq
c

Δvcond
c

Δvconq
c

ω0LΔid
c 

+

+
+

+

+ _

Δθ

GiPI

(4.31)

Vdc/2

Δvcond

Δvconq

Δn1d

Δn1q

Δvq Gpll

Δθ
(4.29)Δvq

Δvd Δvd
c

Δvq
c (4.30)

Δid
c

Δiq
c

Δid

Δiq

ΔθΔθ

 

Figure 4.4 Block diagram of an inner current controller for small-signal perturbation  

According to Figure 4.4, the perturbation relationship between the modulation 

ratio and voltage and current can be written as 

2 2
( ) ( )dq dq

dc dcV V
= − + + + −dqn D C i DB E A CB v               (4.32) 

Thus, in dq frame, the transfer functions between the perturbations of the 

modulation ratio and the current and voltage can be expressed respectively as 

2
( )idq

dcV
= −G D C                            (4.33) 

2
( )vdq

dcV
= −G DB + E + A CB                       (4.34) 

The controller transfer functions in dq frame can generally be expressed as  

( ) ( )
( )

( ) ( )

idd idq

idq

iqd iqq

G s G s
s

G s G s

 
=  
 

G                          (4.35) 
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( ) ( )

( )
( ) ( )

vdd vdq

vdq

vqd vqq

G s G s
s

G s G s

 
=  
 

G                          (4.36) 

Since Gidq and Gvdq are matrices in dq frame, they need be transformed into pn 

frame using (4.37). 

0 0 0 0

0 0 0 0

0 0 0 0

1
( ) ( ) ( ) ( ) ( )

2

1
( ) ( ) ( ) ( ) ( )

2

1
( ) ( ) ( ) ( ) ( )

2

1
( )

2

iPP idd iqq idq iqd

iPN idd iqq idq iqd

iNP idd iqq idq iqd

iNN idd

G s G s j G s j jG s j G s j

G s G s j G s j jG s j G s j

G s G s j G s j jG s j G s j

G s G

   

   

   

 = − + − − − + − 

 = + − + + + + + 

 = − − − − − − − 

= 0 0 0 0( ) ( ) ( ) ( )iqq idq iqds j G s j jG s j G s j   










  + + + + + − + 

  (4.37) 

After transformation, the controller transfer functions in pn frame are depicted as 

0 0

( ) ( ) ( ) 0 ( )

( ) ( ) ( ) 0 ( )

( ) 0 0 0 ( )

iP iPP iPN P

iN iNP iNN N

i

n s G s G s i s

n s G s G s i s

n s i s

     
     

=
     
          

                  (4.38) 

 

0 0

( ) ( ) ( ) 0 ( )

( ) ( ) ( ) 0 ( )

( ) 0 0 0 ( )

vP vPP vPN P

vN vNP vNN N

v

n s G s G s v s

n s G s G s v s

n s v s

     
     

=
     
          

                 (4.39) 

The coupling relation generated by the controller at different frequency in pn 

frame has been studied in Chapter 2, and specifically: 

• GiPP(s) in the current transfer function GiPN0(s) indicates that the positive-sequence 

current Δip(s) at frequency fp produces the positive-sequence control signal Δ niP(s) 

at the same frequency fp; 

• GiNP(s) indicates that the positive-sequence current Δip(s) generates the negative-

sequence ΔniN(s-2jω0) at frequency fp-2ω0;  
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• GiPN(s) indicates that the negative-sequence current ΔiN(s) at frequency fp generates 

the positive-sequence ΔniP(s+2jω0) at frequency fp+2ω0; 

• GiNN(s) indicates that the negative-sequence current ΔiN(s) at frequency fp produces 

the negative-sequence control signal ΔniN(s) at the same frequency. 

As describe above, the input Δip(s) generates two control signals ΔniP(s) and 

ΔniN(s-2jω0). These two signals are represented by the same symbol ΔniP(s) in (4.38) 

by ignoring the frequency shift. However, when the transfer function of controller is 

introduced into the HSS model, the relationship between each input and output needs 

to be expressed clearly and accurately. Therefore, the control signals ΔniP(s) and ΔniN(s-

2jω0) created by Δip(s) need to be separated. The same procedure is carried out for 

ΔniN(s) and ΔniP(s+2jω0) created by ΔiN(s). For accurate expression, (4.38) is rewritten 

as: 

  

0 0 0

0 0

0 0 0

0 0

0 0 0

( 2 ) ( )

( )

( ) ( ) ( )

( )

( 2 ) ( )

iPN iPN

iPN

iPN iPN iPN

iPN

iPN iPN

s j s

s j

s s s

s j

s j s









−   
   

−
   
   =
   

+   
   +   

n GNP

n 0

n G i

n 0

n GPN

 (4.40) 

where 0

( ) 0 0

( ) 0 ( ) 0

0 0 0

iPP

iPN iNN

G s

s G s

 
 

=
 
  

G  , 0 0

0 0 0

( ) ( ) 0 0

0 0 0

iPN iPNs G s

 
 

=
 
  

GNP  , 

0

0

0 ( ) 0

( ) 0 0 0

0 0 0

iPN

iPN

G s

s

 
 

=
 
  

GPN  , 0

0

( )

( ) ( )

( )

iP

iPN iN

i

n s

s n s

n s

 
 =
 
  

n  , 0

0

( )

( ) ( )

( )

P

iPN N

i s

s i s

i s

 
 =
 
  

i

0

0 0 0

0 0

( )

( ) ( )

( )

iP

iPN iN

i

n s j

s j n s j

n s j



 



 
 

 = 
 
  

n , 

0

0 0 0

0 0

( 2 )

( 2 ) ( 2 )

( 2 )

iP

iPN iN

i

n s j

s j n s j

n s j



 



 
 

 = 
 
  

n . 

Combining GccPN0(s) derived in Section 4.4.1 with GiPN0(s) yields the transfer 
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function GA(s) for the modulation ratio of the upper and lower arms in (4.16) as 

0

0

0

00

0

( )

( )( )
= ( )

( )( )

( )

cuPN

clPN

cPN

gPNuPN

A

lPN

s

ss
s

ss

s





 
 

   
   
 

 
  

i

in
G

vn

v

                   (4.41) 

where 0 0

0 0

( ) ( )
( )

( ) ( )

ccPN iPN

A

ccPN iPN

s s
s

s s

− − 
=  

− 

G G 0 0
G

G G 0 0
. 

The modulation ratio of the upper and lower arms brought by the coupling shown 

in (4.40) can be expressed as 

 
0

0

0

00 0

0 0

( )

( )( 2 )
= ( )

( )( 2 )

( )

cuPN

clPN

cPN

gPNuPN

A

lPN

s

ss j
s

ss j

s








 
 

−   
   − 

 
  

i

in
GNP

vn

v

 (4.42) 

 
0

0

0

00 0

0 0

( )

( )( 2 )
= ( )

( )( 2 )

( )

cuPN

clPN

cPN

gPNuPN

A

lPN

s

ss j
s

ss j

s








 
 

+   
   + 

 
  

i

in
GPN

vn

v

 (4.43) 

where  

0

0

( )
( )

( )

iPN

iPN

s
s

s

− 
=  
 

A

0 GNP 0 0
GNP

0 GNP 0 0
, 0

0

( )
( )

( )

iPN

iPN

s
s

s

− 
=  
 

A

0 GPN 0 0
GPN

0 GPN 0 0
. 

Considering other harmonic inputs, matrix HGA in the Appendix is modified as  
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0

0 0

0 0

0 0

0

( 2 ) ( )

( ) ( )

= ( 2 ) ( ) ( 2 )

0 ( ) ( )

0 ( ) ( 2 )

s j s

s j s j

s j s s j

s j s j

s s j



 

 

 



 
 −
 
 − +
 

− + 
 − +
 

+ 
 
 

A A

A A

A A A A

A A

A A

G 0 GNP 0 0

0 G 0 GNP 0

HG GPN 0 G 0 GNP

GPN 0 G 0

0 GPN 0 G

 (4.48) 

The matrix HGB can also be derived following the above procedure.  

0

0 0

0 0

0 0

0

( 2 ) ( )

( ) ( )

= ( 2 ) ( ) ( 2 )

0 ( ) ( )

0 ( ) ( 2 )

s j s

s j s j

s j s s j

s j s j

s s j



 

 

 



 
 −
 
 − +
 

− + 
 − +
 

+ 
 
 

B B

B B

B B B B

B B

B B

G 0 GNP 0 0

0 G 0 GNP 0

HG GPN 0 G 0 GNP

GPN 0 G 0

0 GPN 0 G

 (4.49) 

where 

0 0 0

0 0 0

( ) ( ) ( )
( ) , ( ) , ( )

( ) ( ) ( )

vPN vPN vPN

B

vPN vPN vPN

s s s
s s s

s s s

− − −     
= = =     
     

B B

G GNP GPN
G GNP GPN

G GNP GPN
 

0

( ) 0 0

( ) 0 ( ) 0

0 0 0

vPP

vPN vNN

G s

s G s

 
 

=
 
  

G  , 0 0

0 0 0

( ) ( ) 0 0

0 0 0

vPN vPNs G s

 
 

=
 
  

GNP  , 

0

0

0 ( ) 0

( ) 0 0 0

0 0 0

vPN

vPN

G s

s

 
 

=
 
  

GPN . 

4.4.3 Outer-loop controller  

The outer-loop controller is designed to set the current reference idref and iqref for 

the inner-loop current controller. Two outer-loop control schemes, i.e., PV control with  

active power and AC voltage control, and PQ control with active and reactive power 

control, are shown in Figure 4.5. 
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Figure 4.5 Outer-loop: PV and PQ control 

When the outer-loop adopts the PV control , V is the terminal voltage magnitiude 

of MMC expressed as 

2 2c c

d qV v v= +                          (4.44) 

Linearizing (4.44) yields  

2 2

c c

d d q q

d q

V v V v
v

V V

 + 
 =

+
                         (4.45) 

The q-axis current perturbation can be depicted as 

2 2

c c

d d q q

qref LPF vPI

d q

V v V v
i G G

V V

 + 
 =

+
                    (4.46) 

where GLPF is the transfer funtion of the low pass filter in the AC voltage measurement 

and GvPI denotes the transfer funtion for the voltage -loop PI controller, as 

 
1

,
1

vi
LPF vPI vp

K
G G K

sT s
= = +

+
  (4.47) 

where T is the time constant of the low pass filter [116], Kvp and Kvi are the proportional 

and integral coefficients of the AC voltage control loop. 
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For the active power control, the current reference can be obtained as 

2

3

ref

dref c

d

P
i

v
=                             (4.48) 

After lineariation, there is 

2

2

3

ref c

dref d

d

P
i v

V
 = −                           (4.49) 

Rewriting (4.46) and (4.49) in the matrix form yields 

2

2 2 2 2

2 / 3 01 0

0 / /

c
ref ddref d

c
qref LPF vPI qd d q q d q

P Vi v

i G G vV V V V V V

 −     
 =     

+ +        

    (4.50) 

Defining 
1 0

0 LPF vPIG G

 
=  
 

X  and 

22 / 3 0ref d

d q

P V

V V

 −
=  
  

Z , and according to the 

current inner-loop control in Section 4.4.2, there is  

 

2
( )

2
( )

idq

dc

vdq

dc

V

V

= −

= +

G D C

G DB + E + A -CB CXZA

  (4.51) 

When the outer-loop adopts the PQ control, the q-axis current reference derived 

from the reactive power is  

 
2

3

ref

qref c

d

Q
i

v
=                          (4.52) 

After linearizing (4.52), there is 
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2

2

3

ref c

qref d

d

Q
i v

V
 = −                       (4.53) 

Combining (4.53) with the active power linearization in (4.49) yields 

2

2

2 / 3 0

2 / 3 0

dref cdref d

qref cqref d

i vP V

i vQ V

  −   
=     

 −     
                    (4.54) 

Define 

2

2

2 / 3 0

2 / 3 0

ref d

ref d

P V

Q V

 −
=  

−  
Y  and the transfer function of controller under PQ 

control can be expressed as 

 

idq

dc

vdq

dc

2
( )

V

2
( )

V

G D C

G DB + E + A -CB CYA

= −

= +

  (4.55) 

After obtaining Gidq and Gvdq, the same procedure in Section 4.4.2 can be applied 

to determine HGA and HGB. 

 Small-signal admittance of MMC in pn frame 

The solution of (4.17) can be calculated as 

( )1

0 0

hss 0

=( [ ] [ ] ) [ ]+ [ ]

=

PN s A B pPN

pPN

s −− −  +     



X I A M HG Q B M HG V

H V
  (4.56) 

where the matrix Hhss reflects the relationship between the input variable ΔVpPN0 and 

state variables ΔXPN0. 

The admittance matrix of MMC is calculated as  
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i
Y

v

gPN

MMC

pPN

=                         (4.57) 

In pn frame, the current perturbation matrix ΔigPN at the MMC AC terminal is part 

of the state variable matrix ΔXPN0, whereas ΔvpPN is part of the input matrix ΔVpPN0. 

Consequently, the small-signal admaittance matrix YMMC can be extracted from the 

matrix Hhss. 

As for the MMC, the hth harmonics in the upper and lower arms of any phase 

have the same magnitude and phase (called a common mode (CM) harmonic) if h is 

an even number, and the same magnitude but 180° phase difference (called a 

differential-mode (DM) harmonic) if h is an odd number [117]. Thus, the CM 

components circulate in the arms while the DM components ouput to the MMC AC 

terminals. If a positive-sequence perturbation Δvpabc at ωp is injected into the MMC 

AC terminal, the upper and lower arm equivalent capacitors Cm will have positive-

sequence response voltage cuabc

v and clabc

v  at ωp, respectively. Because the upper 

and lower arms are symmetraical, the perturbation voltage cuabc

v   and clabc

v   are 

DM components, i.e., the same magnitude but 180° phase difference. Taking the 

positive-sequence capactior voltage perturbations cuabc

v   and clabc

v   for the upper 

and lower arms as an example, they can be expressed as 

               

cos( )

cos( 2 / 3)

cos( 2 / 3)

c p c

cuabc clabc c p c

c p c

m t

m t

m t

 

  

  

 

 +
 

= − = + − 
 + + 

v v   (4.58) 

where Δmc and Δθc are the magnitude and phase angle of the perturbation voltage, 

respectively. 

The steady-state values of the modulation ratio for the upper and lower arms are 
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Nuabc and Nlabc, including only the DC, fundamental and double-frequency components. 

Considering the DC components of Nuabc and Nlabc, both 0cuabc uabc

v N   and 

0clabc labc

v N  are positive-sequence variables with the same frequency ωp but opposite 

sign, resulting in positive-sequence voltage at ωp generated at the MMC terminal. 

Consequently, positve-sequence current at ωp is generated at the MMC AC terminal. 

Consider that the fundamental frequency component of the upper and lower arm 

modulation ratio are DM components, i.e., Nuabc1=-Nlabc1. Thus, 1uabc cuabc

N v equals

1labc clabc

N v , and the two appear as MMC internal CM components. Thus, no current 

or voltage response at the MMC AC terminal will be observed. 

For the double-frequency component Nuabc2 and Nlabc2, they are CM components 

and identical, as 

2 2

2 0 2

2 0 2

2 0 2

cos(2 )

cos(2 2 / 3)

cos(2 2 / 3)

uabc labc

N t

N t

N t

 

  

  

=

+ 
 

= + +
 
 + − 

N N

 (4.59) 

The product of the perturbation arm capacitor voltage cuabc

v  and Nuabc2 is 

2 2

0 2 0 2

2
0 2 0 2

0 2 0 2

cos[( 2 ) ( )] cos[( 2 ) ( )]

cos[( 2 ) ( )] cos[( 2 ) ( ) 2 /3]
2

cos[( 2 ) ( )] cos[( 2 ) ( ) 2 /3]

N v N vuabc cuabc labc clabc

p c p c

c
p c p c

p c p c

t t
m N

t t

t t

       

        

        

 =−

 + + + + − + −
 

= + + + + − + − + 
 + + + + − + − − 

    (4.60) 

According to (4.60), the interaction between the two yields the zero-sequence 

voltage at ωp+2ω0 with opposite direction for the upper and lower arms. For a three-

wire system with no zero-sequence current path, such zero-sequence voltage only 

exists in the internal MMC, and thus, there is no zero-sequence current or voltage at 
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ωp+2ω0 on the MMC AC terminal. However, the generated negative-sequence 

voltages at ωp-2ω0 for the upper and lower arms are DM component, and hence, will 

appear at the MMC AC terminal together with the corresponding current.  

Generally, the interaction of CM and DM results in DM components which 

appear on the AC terminal side. Consequently, for non-even order harmonics, the 

interaction will not generate AC response. Similarly to h=2, with h=4, there exists only 

ωp+4ω0 at the MMC terminal but can be neglected due to its very small magnitude. 

Whereas for h>4, the hth harmonics in the MMC are all very small and the response 

at ωp±hω0 can be ignored.  

Therefore, based on the above observation, the specific form of the small-signal 

admittance YMMC at the MMC terminal can be simplified as a 2 by 2 matrix expressed 

as 

0 00 0

( )

( 2 ) 22

)(

2

( )) (

( )( ) ( )

gP pPPP PN

gN pNNP NN

i s v

i s

s

j v

Y

s js

Y s s

j s jY Y  

    
=   

−  
 −− −   

     (4.61) 

where YPP(s), YPN(s), YNP(s-j2ω0), and YNN(s-j2ω0) are the four elements extracting 

from the matrix Hhss. When s=jωp, the followings can be observed from (4.63): 

• YPP(s) denotes the relationship between the positive-sequence voltage perturbation 

ΔvpP(s) at ωp and the positive-sequence current response ΔigP(s) at ωp;  

• YNP(s-j2ω0) denotes that the positive-sequence voltage ΔvpP(s) at frequency ωp 

leads to negative-sequence current ΔigN(s-j2ω0) at ωp-2ω0; 

• YNN(s-j2ω0) denotes the relationship between the negative-sequence voltage 

perturbation ΔvpN(s-j2ω0) at ωp-2ω0 and negative-sequence current response ΔigN(s-

j2ω0) at ωp-2ω0; 

• YPN(s) denotes that the voltage perturbation ΔvpN(s-j2ω0) at frequency ωp-2ω0 leads 

to the positive-sequence current ΔigP(s) at frequency ωp.  
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 Small-signal admittance validation and analysis 

In order to validate the HSS model developed in this work, a comparison between 

the impedance plots from the HSS model and the time-domain model has been carried 

out. The time-domain model is implemented in MATLAB/Simulink, and the HSS 

model as described in this section is implemented using an m.file in MATLAB. To 

ensure the small-signal admittance of MMC can be measured under various operating 

modes, a strong and stable external AC system is used. Thus, the grid-side resistance 

and inductance are set to RL=1.02Ω and LL=0.0324H, and the corresponding SCR is 

12. The ac-side small-signal impedance of the MMC is measured by injecting a series 

of small perturbations Δvpa, Δvpb, Δvpc with peak value of 3kV at the ac-side of the MMC 

at different frequencies, as shown in Figure 4.6. The ac-side current responses Δiga, Δigb, 

Δigc under each specific frequency is measured and the impedance under this frequency 

is calculated by applying (4.61). The main electrical parameters of the MMC system 

are listed in Table 4.1. 
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Figure 4.6 The ac-side small-signal impedance of the MMC 
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Table 4.1 Main electrical parameters of the MMC system 

Parameters Value 

Rated active and reactive power (P, Q) 1000 MW, ±300 MVar 

Nominal DC Voltage (Vdc) ±320 kV 

Rated AC voltage (L-L) (Vnl) 360 kV 

Arm resistance and inductance (Rm Lm) 0.08 Ω, 0.042 H 

Cell capacitance (Cm) 31.4 µF 

Nominal Frequency (f0) 50 Hz 

Transformer rated apparent power (St) 1265 MVA 

Transformer voltage ratio (kt) 400/360 kV 

Transformer leakage reactance Xt* 0.18 p.u. 

 

4.6.1 Admittance validation for open-loop control 

Initial tests in the time-domain model with the MMC under open-loop control is 

carried out. The three-phase modulation ratio for the upper arm under open-loop 

control is assigned as:  

nua=0.5-0.46[cos(ω0t+0.07)]+0.01[cos(2ω0t+0.07)], 

nub=0.5-0.46[cos(ω0t+0.07)-2pi/3]+0.01[cos(2ω0t+0.07)+2pi/3], 

nuc=0.5-0.46[cos(ω0t+0.07)+2pi/3]+0.01[cos(2ω0t+0.07)-2pi/3], 

where the modulation ratio at fundamental frequency is the positive-sequence 

component, and the one at double frequency is the negative-sequence component. 

Voltage perturbations of 40Hz positive and negative-sequence are injected at the MMC 

AC terminal, separately. FFT analysis is conducted on the phase ‘a’ current and voltage 
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and selected spectra are shown in Figure 4.7 in which the 50Hz fundamental frequency 

components have been omitted for clarity.  

 

(a) With 40Hz positive-sequence voltage injection 

 

(b) With 40Hz negative-sequence voltage injection 

Figure 4.7 FFT results with voltage perturbation 

Table 4.2 Phase angles of the 3-phase voltage and current with 40Hz positive- and negative- 

sequence voltage injections (degree） 

 Positive sequence 40Hz Negative sequence 40Hz 

40Hz 60Hz 240Hz 40Hz 140Hz 160Hz 

Δvga 85.3 -63.5 71.9 93.6 80.7 241.1 

Δvgb -34.7 176.5 191.9 213.6 -39.3 1.1 

Δvgc 205.3 56.5 -48.1 -26.4 200.7 121.1 

Δiga 150.4 105.9 214.9 64.5 236.9 34.4 
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Δigb 30.4 -14.1 -25.1 184.5 116.9 154.4 

Δigc -89.6 225.9 94.9 -55.5 -3.1 -85.6 

Figure 4.7 (a) shows that under 40Hz positive-sequence voltage perturbation, 

there are multiple frequency responses in the voltage and current at 40Hz, 60Hz and 

240Hz.  

Table 4.2 shows the phase angles for the voltage and current responses. It can be 

observed that: 

• The voltage and current responses are positive-sequence at 40Hz and 60Hz, and 

negative-sequence at 240Hz.  

• The resulted positive-sequence response at 60Hz can also be considered as 

negative-sequence at -60Hz, as -60Hz negative-sequence indicates 60Hz positive-

sequence in time-domain [118]. 

• Thus, it can be concluded that the injected positive-sequence voltage perturbation 

at ωp leads to a positive-sequence response at ωp and negative-sequence responses 

at ωp-2ω0 and ωp+4ω0, though the negative-sequence response at ωp+4ω0 is very 

small.  

For 40Hz negative-sequence voltage perturbation, Figure 4.7 (b) shows the 

voltage and current responses at 40Hz, 140Hz and 160Hz, in which the response at 

160Hz is negligible.  

Table 4.2 shows the corresponding voltage and current the phase angles. It can be 

observed that: 

• The response is negative-sequence at 40Hz, positive-sequence at 140Hz, and 

negative-sequence at 160Hz. 
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• According to the analysis in Section 4.5, the negative-sequence input at ωp causes 

the negative-sequence at ωp (40Hz) and positive-sequence response at ωp+2ω0 

(140Hz) and ωp-4ω0 (-160Hz).  

• Positive-sequence -160Hz is deemed negative-sequence at 160Hz in time-domain.  

The above simulation results verify the theoretical analysis in Section 4.5, and the 

small-signal model of MMC in pn frame is properly captured by the four admittance 

elements in (4.61). 

Figure 4.8 compares the admittance elements YPP(s), YPN(s), YNP(s-2jω0), and 

YNN(s-2jω0) in matrix YMMC derived from the HSS model with different harmonic 

orders considered, and those obtained from the time-domain model. The MMC exports 

1000 MW / 0 MVar to the AC grid and the AC terminal voltage is 1 p.u.. Comparing 

the different admittace curves, it is found that higher harmonic order considered in the 

analytical HSS model leads to more accurate model, and for h=4 the analytical 

admittances match well with those of the time-domain simulation models. It also 

implies that the internal harmonics of MMC has a significant impact on the AC side 

small-signal admittance, and need to be considered in the modelling.  

In order to ensure the accuracy of the analytical model, h is set to 4 in the 

following analysis. 
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(a) YPP (s) 

 
(b) YPN (s) 

 

(c) YNP(s-j2ω0) 

 

(d) YNN(s-j2ω0) 

Figure 4.8 Validation of the admittance for the open loop control 
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4.6.2 Admittance validation with CCSC 

In this case, the CCSC is imposed on the open loop control to analyze its influence. 

The DC and fundamental modulation ratio are assigned directly, and their magnitude 

and the phase are the same to those in Section 4.6.1. For the 2nd order harmonic 

modulation ratio, it is from the CCSC. Figure 4.9 compares the MMC admittances 

calculated from the HSS analytical model and measured from the time-domain model. 

As can be seen, the calculated and measured MMC admittances with the added CCSC 

match well.  

Comparing the admittances in Figure 4.8 and Figure 4.9, it is seen that the 

resonant points are significantly reduced after adding the CCSC, which suppresses the 

internal 2nd harmonic current. Meanwhile, the 2nd harmonic voltage in the arm 

capacitors is also reduced. Consequently, the response at other frequencies resulting 

from the 2nd harmonic is considerably weaken and the resonant points of MMC 

impedance reduced. In addition, it can be observed that the CCSC reduces the 

magnitude of YNP and YPN around 50 Hz. This can be explained by considering that a 

perturbation at ωp results in the generation of CM component at ωp+ω0 in the internal 

MMC. If ωp is close to 50 Hz, the CM response is around 100 Hz, which is suppressed 

by the CCSC. Hence, the response at ωp+ω0 is low, and when it interacts with the 

steady-state component, the current responses at ωp+2ω0 and ωp-2ω0 at the AC 

terminal of MMC are thus further reduced and so as the admittance magnitude. 

Similarly, the CCSC reduces the positve-sequence admittance YPP and the negative-

sequence admittance YNN at 0 Hz and 100 Hz, respectively, when compared to open 

loop MMC admittance shown in Figure 4.8. 
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(a) YPP (s) 

 

(b) YPN (s) 

 

(c) YNP(s-j2ω0) 

 

(d) YNN(s-j2ω0) 

Figure 4.9 Admittance of MMC with CCSC 
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4.6.3 Admittance with the AC current loop 

Assume the MMC operates in inverter mode and transfers active power from DC 

to AC. The active current assigned to the current loop is idref=2268 A (corresponding 

to 1 p.u. active power) and the reactive power current iqref=0 A. The calculated and 

measured small-signal admittances of the MMC are compared in Figure 4.10. 

It is shown in Figure 4.10 (a) and (b) that the phasor of YPP and YNN at 50 - 130 

Hz is larger than 90°, indicating the existence of negative resistance effect and negative 

damping to the system. Thus, the system tends to be unstable in this frequency range. 

For frequencies above 130 Hz, the phases of the two admittances approach to 0, 

indicating strong positive damping. The existence of YPN and YNP with non-negligible 

magnitude indicates strong coupling between the positive- and negative-sequence 

components and therefore, for accurate stability analysis, they must be included and 

more details will be given in Chapter 5. 

Assume the MMC operates in rectifier mode and transmit power from AC to the 

DC. The references for the current loop are idref=-2268 A and iqref=0 A, respectively. 

The small-signal admittance of the MMC is shown in Figure 4.11. Comparing Figure 

4.11 and Figure 4.10, it can be found that the magnitude of the correspondence 

admittances for inverter and rectifier operation are identical but the phasor is almost 

opposite. In Figure 4.11, the phases of YPP and YNN above 130 Hz range from 90° to 

270° implying negative resistance effect and potentially leading to unstable system. 
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(a) YPP (s) 

 
(b) YPN (s) 

 

(c) YNP(s-j2ω0) 

 

(d) YNN(s-j2ω0) 

Figure 4.10 Admittance when the MMC operates in inverter mode. 
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(a) YPP (s) 

 

(b) YPN (s) 

 
(c) YNP(s-j2ω0) 

 

(d) YNN(s-j2ω0) 

Figure 4.11 Admittance when the MMC operates in rectifier mode. 
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For both inverter and rectifier operation, the small-signal MMC model using the 

HSS method can accurately calculate the impedance of the MMC. Considering the 

positive- and negative-sequence impedance, the system is more likely to become 

unstable at lower frequency in inverter mode whereas at higher frequency in rectifier 

mode.  

4.6.4 Admittance with the outer-loop 

When the MMC operates in inverter mode and outputs 1GW active power, the 

small-signal admittances of the MMC with the PV and PQ outer-loop are compared in 

Figure 4.12. 

It can be seen in Figure 4.12 that the admittance measured in the time-domain 

accords well with that derived from the HSS based MMC analytical model. In the case 

of PQ outer-loop control, the magnitude of YPP and YNN at 50 -100 Hz is smaller than 

those in PV control, which contributes to improved system stability. Moreover, the 

phase of YPP with PQ control is closer to zero than that with PV control indicating 

better damping. Under both controls, the phase of YPP and YNN among 90-270° implies 

the negative resistance effect and tends to oscillate. In this scenario, the PQ control is 

better that PV control. While the frequency is above 100 Hz, the admittance with the 

two controls is almost the same. 

When the MMC operates in rectifier mode and absorbs 1 GW active power, the 

small-signal admittances of MMC with the PV and PQ outer-loop are compared in 

Figure 4.13. 
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(a) YPP (s) 

 

(b) YPN (s) 

 

(c) YNP(s-j2ω0) 

 
(d) YNN(s-j2ω0) 

Figure 4.12 Admittance when MMC outputs 1GW active power 
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(a) YPP (s) 

 

(b) YPN (s) 

 

(c) YNP(s-j2ω0) 

 
(d) YNN(s-j2ω0) 

Figure 4.13 Admittance when MMC absorbs 1GW active power 
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Considering YPP and YNN for frequencies above 130 Hz the phases are in the range 

from 90 °  to 270 ° , again indicating negative damping and potential instability. 

Furthermore, the admittances under the two controls are almost the same in this 

frequency range and thus result in similar stability margin. 

 Summary 

This chapter has described the impedance modelling and validation of the MMC 

in 3-phase 3-wire system based on HSS. The detailed mathematical expressions of 

HSS modelling for MMC have been derived considering the integration of circulating 

current control, the inner-loop AC current control, and the outer-loop power and AC 

voltage control. The coupling between the positive- and negative-sequence 

components are considered and analyzed in the model. The small-signal impedances 

obtained from the developed analytical model have been validated using 

measurements from time-domain models under various scenarios in 

MATLAB/Simulink. It has shown that: 

• Various validations show that the admittance measured in the time-domain accords 

well with that derived from HSS based MMC. The proposed modular modelling 

concept allows modifications of control systems to be easily implemented into the 

small signal model without the need to recalculate the various state matrix. 

• For open loop MMC system, it is important that higher order harmonics (e.g. h=4) 

are considered in order to accurately model the impedance behaviour of the MMC. 

This is due to the fact that for open loop MMC system, there exist strong couplings 

among the harmonics and high harmonic order is thus required to accurately 

represent the system dynamics in the small signal model. 

• Once the circulating current controller and AC current controller are included, due 

to the largely eliminated circulating current, the harmonic interaction of MMC is 
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reduced. 

• After adding the CCSC, the response at other frequency resulting from the 2th 

harmonics is considerably weakened and the number of resonant points of MMC 

impedance is significantly reduced. 

• With the AC current control, the small-signal model of HSS based MMC can 

accurately calculate the impedance of the MMC. From observing the positive- and 

negative-sequence impedances, inverter mode tends to have reduced stability at 

lower frequency range than rectifier mode, and vice versa at higher frequency range. 

• The admittance under the two outer-loop controls (PV and PQ) is almost the same 

at high frequency and thus the similar control effect. 
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 Stability assessment of grid connected MMC 

system  

 

The HSS-based small-signal impedance model of MMC derived in Chapter 4 is 

applied in this chapter for stability assessment of AC network connected with MMC-

HVDC transmission systems. The stability is assessed by examining the locus 

described by the ratio of the source and load impedances in the complex plane via the 

Nyquist stability criterion. Stability of single MMC connected to an AC grid is carried 

out first. The AC cable has significant impact on the grid impedance, which will result 

in a weak grid, therefore the impedance of AC cable is considered in MMC connected 

to the grid system. The impact of PLL bandwidth, the outer-loop controller, and 

different operating points on the stability of the grid connected MMC is also studied. 

The impact of multiple converters in close electrical proximity on system stability is 

then investigated considering cases with different multi-infeed impact factors (MIIF). 

System stability of two MMCs with different MIIF is assessed with different outer-

loop controls using Nyquist criterion, and the results validated using time-domain 

simulations in MATLAB/Simulink.  

 Single MMC connected to an AC grid  

5.1.1 System configuration 

Figure 5.1 shows the simplified configuration of the grid connected MMC system. 

In the analysis, the influence of the DC voltage on the MMC AC side is not considered 

and the DC voltage is maintained at a constant value-640kV. The AC grid is modelled 

equivalently with a voltage source Vg and the grid-side resistor Rg and inductor Lg. The 

cable is represented by an equivalent π-type model and the equivalent RLC parameters 
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are obtained by considering the frequency response of the frequency dependent cables 

model that has been discussed in [119]. For a 60km AC cable, the parameters for the 

simplified PI section are Rcable=1.8792Ω, Lcable=0.0228H and Ccable=6.75μF. The 

specific parameters have been listed in Table 4.1 in Chapter 4. The transformer is 

represented by the inductor Lt. The equivalent inductor value of the transformer seen 

from the secondary side can be calculated as 
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Figure 5.1 The simplified circuit for MMC based grid 

5.1.2 Equivalent AC network model 

YMMC

Zeg

Veg

Ic

 

Figure 5.2 Small-signal impedance representation of MMC-grid 

The small-signal impedance equivalent circuit of the MMC-grid system is 

depicted as Figure 5.2. As can be seen, the MMC side is equivalent using Norton circuit, 
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in which the MMC is represented by the current source Ic in parallel with MMC small-

signal admittance YMMC calculated in Chapter 4. The AC network adopts the Thevenin 

equivalent circuit with a voltage source Veg in series with the impedance Zeg. 

The grid impedance Zg(s) in the frequency-domain can be denoted as 

Zg(s)=Rg+sLg and the impedance of the transformer referring to the converter side in 

frequency-domain is Xt(s)=sLt. The capacitor and the inductor in the equivalent circuit 

of the AC cable in the frequency-domain can be expressed as Xc(s)=2/(sCcable) and 

Xcable(s)=sLcable. Thus, the equivalent AC network impedance seen from the 

transformer secondary side can be obtained as 

2

1
( ) ( ( ) ( ) ( )) ( ) ( )eg g c cable cable c t

t

Z s Z s X s R X s X s X s
k

 = + + +          (5.2) 

where kt is the transformer ratio. 

With s=jω0, the grid short circuit ratio (SCR) is derived as 

2 2

( ) ( )

t nl

g cable cable

k V
SCR

P Z s R X s
=

 + + 

              (5.3) 

Therefore, the whole system stability can be assessed by the product of the AC-

side equivalent impedance Zeg(s) and the MMC admittance YMMC(s), which has been 

discussed in detail in Section 2.5. 

5.1.3 Stability assessment 

Stability of the MMC grid system shown in Figure 5.1 is carried out using the 

developed small signal impedances considering the impact of the control strategy and 

different operating point. To validate the analytical results, a time-domain simulation 

model of the same system is carried out in Matlab/simulink. The AC cable length 
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considered is 60km. The block-diagram of the MMC control structure is illustrated in 

Figure 5.3, which has been discussed in detail in Section 4.4, and the related control 

parameters can be found in Table 5.1. As shown, the MMC AC current is controlled 

by the current controller in dq frame in Figure 5.3 (a), and the PLL provides the phase 

angle for transformation between abc and dq frames. The current references can be 

assigned directly or by the outer-loop controller in Figure 5.3 (b), depending on the 

specific cases considered. The circulating current suppression controller is presented 

in Figure 5.3 (c). Noted that the output of circulating current suppression controller is 

negative sequence. 
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(a) Control block for the current loop 
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(b) Outer-loop: PV and PQ control 
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(c) Internal circulating current control 

Figure 5.3 MMC control structure  

Table 5.1 Controller parameters for current controller 

Parameters Value 

Current loop proportional gain Kip 15.8 Ω 

Current loop integral gain Kii 2980 Ω/s 

PLL proportional gain Kpllp 0.0013 rad/(sV) 

PLL integral gain Kplli 0.1209 rad/(s2V) 

PR controller proportional gain Krp 63.3 Ω 

PR controller integral gain Krr 11200 Ω/s 
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5.1.3.1 Impact of different PLL bandwidth on system stability 

(a) MMC operates as an inverter 

In this case, the outer-loop control is not considered and the grid SCR is 2.27 

(indicating a weak grid) calculated according to (5.3). The d-axis current reference for 

the current controller is set to 2268A (1.0 p.u.), which refers to 1GW output power of 

MMC to the grid while the q-axis current reference is -40A to maintain the terminal 

voltage of MMC at 360kV.  

10
1

10
2

0

2

4

6

M
a
g

n
it
u
d
e

 [a
b
s
]

10
-3 Admittance [S]

10
1

10
2

Frequency [Hz]

-180

-90

0

90

180

P
h
a
s
e

 [d
e
g

]

Phase

PLL bandwidth 20Hz

PLL bandwidth 40Hz

PLL bandwidth 60Hz

128Hz

 

(a) Ypp(s) 

 

(b) Ypn(s) 



 

137 

 

 

(c) Ynp(s-2jω0) 

 

(d) Ynn(s-2jω0) 

Figure 5.4 Admittances under different PLL bandwidths 

Using the model developed in Chapter 4, the small-signal admittances under 

different PLL bandwidths can be obtained as shown in Figure 5.4. The black line, red 

line and blue line denote the MMC admittances with 20Hz, 40Hz, and 60Hz PLL 

bandwidths, respectively. As can be seen, lower bandwidth generally leads to smaller 

magnitude of the admittance, which is beneficial for the system stability as the 

equivalent impedance in parallel with the current source has large magnitude [41]. In 

addition, in terms of the phase of the positive-sequence admittance Ypp(s), lower PLL 

bandwidth makes the phase approach to 0, which indicates improved damping for the 

MMC system and thus is beneficial to the stability improvement. From the point of the 

small-signal impedance of MMC, it can be concluded that the lower PLL control 

bandwidth leads to a more stable system.  
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Figure 5.5 Nyquist plots with different PLL bandwidth 

Figure 5.5 presents the Nyquist plots for the eigenvalues of ZegYMMC under 

different PLL bandwidths of 20Hz, 40Hz, and 60Hz, respectively. As can been, all the 

plots do not encircle the point (−1, 0), which indicates that the interconnected system 

is stable under the 3 different PLL bandwidths. However, system stability is decreased 

by increasing the bandwidth as Nyquist plots get closer to the point (−1, 0). With 60Hz 

bandwidth, both the magnitude and phase margins are relatively lower and stability is 

weaker than with 20Hz bandwidth. In practical system, many aspects need be 

considered when selecting control parameters, e.g., small signal system stability, 

system response during large transients. For example, converters with lower PLL 

bandwidth are less able to limit/control the AC current during external AC system fault 

potentially resulting in overcurrent, when compared to converters with higher PLL 

bandwidth.  

In order to validate the above theoretical analysis in frequency-domain, the time-

domain simulation results for the same condition are shown in Figure 5.6. At 4s, a 

small perturbation is induced on the d-axis current reference, i.e., idref is stepped up 

from 2268A to 2288A. With 20Hz bandwidth, the responses of Id and Vd have smaller 

overshoots than those with 40Hz bandwidth, whereas with 60Hz bandwidth, the 

current and voltage contain significant oscillations although the system remains stable. 
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(a) d-axis current Id 

 

(b) d-axis voltage Vd 

Figure 5.6 Simulation results under different PLL bandwidth 

(b) MMC operates as rectifier 

The AC grid SCR is set to 3.0 by reducing Rg and Lg to ensure the system stable. 

The d-axis current reference for the active power is idref=-2268A, i.e., -1p.u., indicating 

that the MMC absorbs 1GW active power from the AC grid. Meanwhile, the q-axis 

current reference for the reactive power sets to iqref=-291A to maintain the MMC 

terminal voltage at 360kV.  

The MMC admittances under different PLL bandwidths are shown in Figure 5.7, 

where the black, red and blue curves denote admittances under 20Hz, 30Hz and 40Hz 

PLL bandwidths, respectively. The positive-sequence admittance Ypp and the negative-

sequence admittance Ynn in the range of frequency above 150Hz with the phase 
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between -90⁰~-180⁰ imply negative resistor effect and thus leading to potential 

instability [120]. In addition, the increase of the PLL bandwidth leads to the magnitude 

increase of the positive-sequence admittance Ypp, which has negative effect on system 

stability. In the meantime, the phase is further away from 90⁰ and the negative damping 

becomes more severe, which deteriorates system stability. Therefore, in terms of MMC 

admittance, the increase of PLL bandwidth will weaken system stability. 
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Having negative 

resistor

 
(a) Ypp(s) 

 

(b) Ypn(s) 

 

(c) Ynp(s-2jω0) 

Having negative 

resistor

 

(d) Ynn(s-2jω0) 

Figure 5.7 Admittance under different PLL bandwidth  
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Figure 5.8 Nyquist plots with different PLL bandwidth 

The Nyquist plot of corresponding eigenvalues is presented in Figure 5.8. It can 

be seen that PLL bandwidths of 20Hz and 30Hz result in no encirclement of (-1,0) and 

thus indicating stable systems. With the 20Hz PLL bandwidth, a larger stability margin 

can be achieved than the 30Hz case. In the case of 40Hz, the plot encircling (-1,0) 

implies an unstable system.  

To verify the frequency-domain analysis results, time-domain simulations are 

conducted. In the simulation results compared in Figure 5.9 with PLL bandwidths of 

20Hz to 30Hz, the d-axis current reference idref steps up from -2268A to -2288A at 5s. 

As can be seen, although the current responses are similar for the two bandwidths when 

the perturbation is imposed, the difference of the voltage responses is significant. 

When the PLL bandwidth is 20Hz, the system can be stabilized quicker than with 30Hz 

bandwidth.  
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(a) d-axis current Id 

 

(b) d-axis voltage Vd 

Figure 5.9 Simulation results under 20Hz and 30 Hz PLL bandwidth 

Further studies when the PLL bandwidth increases from 30Hz to 40Hz at 5s are 

carried out and the response results are shown in Figure 5.10. As seen in Figure 5.10 

(a) and (b), the system is stable before 5s. However, when the bandwidth changes to 

40Hz, the system begins to oscillate. Figure 5.10 (c) shows that the three-phase voltage 

waveform during 6.0s-6.2s contains significant 7th harmonic, as indicated in the FFT 

analysis in Figure 5.10 (d). The time-domain simulation results show that the system 

becomes unstable as the bandwidth increases from 30Hz to 40Hz, which is in 

accordance with the frequency-domain analysis. 
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(a) d-axis current Id 

 

(b) d-axis voltage Vd 

 

(c) Three-phase voltage during 6-6.2s 

 

(d) FFT analysis for a-phase voltage 

Figure 5.10 PLL bandwidth increases from 30Hz to 40Hz 
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It can be concluded that for both inverter and rectifier modes, when the MMC is 

connected to a relatively weak grid, reducing the PLL bandwidth improves system 

stability. Comparing MMC in inverter and rectifier modes, the system tends to be less 

stable in rectifier mode due to the negative resistance effect (negative damping) in the 

MMC admittance, than in inverter mode.  

5.1.3.2 Impact of different outer-loop controller on system stability 

The effect of different outer-loop controllers on the stability of the MMC system 

is investigated. The system operating point keeps unchanged as previous studies and 

the PLL bandwidth is set to 60Hz. Different outer-loop controllers shown in Figure 5.3 

are applied to the MMC controller. 

When using outer active power and AC voltage control, the references for d-axis 

and q-axis current components are given as  
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where 2 2

d qv v v= +  is the three-phase AC voltage amplitude at the MMC terminal 

and is passed through a LPF and before sending to the outer-loop control. The voltage 

reference is 2 360 3 293.9refv kV kV=  = , kvp=0.005 A/V and kvi=0.5A/(s·V).  

When using outer active power and reactive power control, the current references 

are assigned as  
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(a) MMC in inverter mode 

With grid SCR of 2.27, active power reference Pref=1GW, and reactive power 

Qref=-13.2MVar, which keeps the  three-phase voltage constant at 360kV, the small-

signal positive-sequence admittance of the MMC under the outer-loop PV and PQ 

control are shown in Figure 5.11. Only the positive-sequence admittance is presented 

here as the others has similar trend. However, the Nyquist curves presented use the full 

admittances. 

Negative 

resistance effect

 

Figure 5.11 Small-signal admittance Ypp of MMC with PV and PQ control 

In Figure 5.11, the admittances under PV and PQ control mainly distinct in 20-

70Hz frequency range. The implementation of the voltage control means the voltage 

variation during a 50Hz current perturbation to the MMC is minimized resulting in the 

maximum admittance around 50Hz. Note that both the admittances under PV and PQ 

control have negative resistance between 50Hz and 70Hz shown in Figure 5.11, which 

indicate potential resonance in this frequency range. In comparison with the PV control, 

the magnitude of the MMC admittance with PQ control around 50Hz is much smaller. 

The phase of the positive-sequence admittance Ypp is also smaller around 50~70Hz 

under PQ control than PV control, indicating larger damping and thus larger stability 
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Figure 5.12 Nyquist plots with PV and PQ outer-loop control 

Figure 5.12 compares the Nyquist plots for system eigenvalue loci with the two 

outer-loop controls. All four curves do not encircle the point (-1, 0) and thus both are 

stable. Moreover, with the two controls, the intersections of the Nyquist plots and the 

unit circle are almost identical, indicating similar phase margins. As the intersection 

with the x-axis being far away from (-1, 0) means a large magnitude margin, it can be 

observed that PQ control has larger magnitude margin and thus better stability than PV 

control. 

The time-domain simulations are conducted to confirm the frequency-domain 

analysis results. At 4s, a small perturbation is injected to the active power reference 

and the simulation results are shown in Figure 5.13. Comparing the two outer-loop 

controllers, it can be observed that the system is stabilized quicker with smaller 

overshoot in the case of PQ control. This indicates that the system is more stable with 

PQ control than PV control, which matches well with the frequency-domain analysis. 

The oscillation frequency of the voltage and the current in dq frame is about 10 Hz, 

i.e., 60Hz in abc frame. It is in accordance with the frequency range in Figure 5.11 that 
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the MMC admittance exists obvious distinction. 

 

(a) d-axis current Id 

 

(b) d-axis voltage Vd 

Figure 5.13 Simulation results under two outer-loop controllers 

In addition, without the outer-loop voltage control, the oscillation frequency for 

the voltage and current response in Figure 5.6 was about 125Hz with 60Hz PLL 

bandwidth. When the outer-loop is added the oscillation frequency becomes 60Hz. 

Observe the positive-sequence admittance Ypp in the case with only the current control 

and 60Hz PLL bandwidth shown in Figure 5.4 (a), the phase above 90⁰ in 50-128Hz 

frequency range indicates negative resistance effect and the oscillation frequency lies 

in this range. As the outer-loop is added, the phase in 70-128Hz has reduced to be less 

than 90⁰, which implies the negative resistance decrease and the system becomes more 

stable in this frequency range. However, in the range 50~70Hz, the phase is still above 

90⁰ and the oscillation is likely to occur in this frequency range.  
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(b) MMC in the rectifier mode 

When the grid SCR is 3.0, the terminal voltage is kept at 360kV and the PLL 

bandwidth is 60Hz. The grid absorbs 0.5GW active power from the grid. The same 

outer-loop in case (a) is adopted, and the small-signal admittance of the MMC is shown 

in Figure 5.14.  

negative 

resistance effect

 

Figure 5.14 Admittance Ypp with different outer-loop in the rectifier mode 

Above 200Hz, the admittance is almost identical under PV and PQ outer-loop 

controls. The phase of Ypp is larger than 90⁰, indicating negative resistance effect. This 

is similar to the case with only the current controller shown in Figure 5.14. Figure 5.15 

shows the Nyquist plots and it can be seen that with only the current loop, the system 

is stable. However, the added outer-loop will lead to unstable system with similar 

effects from the PV and PQ controls.  
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Figure 5.15  The Nyquist plot with different control loop in the rectifier mode 

The time-domain simulation result is presented in Figure 5.16 which show that 

the active power response when the MMC ramps down power from 0 to -0.5GW. 

Without the outer-loop, the system is stable, whereas with either PV or PQ outer-loop 

controller, the system becomes unstable at -0.5GW with the oscillation frequency 

around 380Hz. 

 

Figure 5.16 The active power when the MMC absorbs 0.5GW active power 

The above analysis indicates that in inverter mode, the outer-loop is beneficial for 

the stability of the system and the system oscillation frequency is low. Moreover, PQ 
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control is superior to PV control for the system stability. However, in rectifier mode, 

the addition of the outer-loop deteriorates the system stability and the system tends to 

oscillate in relatively high frequency range. Moreover, the effects of PV and PQ 

controls on system stability are similar. 

5.1.3.3 Impact of different SCR on system stability 

In this section, the impact of the AC grid strength on the stability of the MMC 

system when it is in inverter operation is investigated. With the same operating 

conditions as previous inverter operation cases, the grid impedance Zg is varied whilst 

keeping the cable length at 60km. The SCR of the two cases considered here are 3.57 

and 1.87, respectively. Since the active power and AC voltage of the MMC are kept 

unchanged, the active current id remains constant, whilst different SCR affects MMC 

reactive current iq, i.e., the reactive power operating point. The q-axis currents are 

61.5A and -67.5A for SCR=3.57 and SCR=1.87, respectively. The small-signal 

admittance of MMC are compared in Figure 5.17 with SCR=3.57 and SCR=1.87, 

where the small difference is purely caused by the different reactive power/current 

operating point.  

 

Figure 5.17 Small-signal admittance Ypp with different SCR 
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The impedances Zeg on the AC side (including the 60 km AC cable) are presented 

in Figure 5.18 and there is obvious difference between the two SCR. As the SCR 

decreases, the resonant point of the impedance will move toward lower frequency.  

 

Figure 5.18 Impedance Zeg(s) on the AC side 

Figure 5.19 demonstrates the Nyquist plots of the eigenvalues of ZegYMMC under 

different SCR. In the case of SCR=1.87, the dashed lines encircle the point (-1, 0), 

which indicate that the interconnected system is unstable. In the case of strong AC grid 

with SCR=3.57, the solid lines do not encircle (-1, 0), indicating stable operation.  
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Figure 5.19 Nyquist plots with different SCR 
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The corresponding time-domain simulation results are shown in Figure 5.20. It 

is observed that the system is stable when SCR=3.57 and oscillation occurs for 

SCR=1.87. The time-domain analysis is consistent with the frequency-domain analysis 

based on small-signal impedance. 

 

(a) SCR=3.57 

 

(b) SCR=1.87 

Figure 5.20 Simulation results of d-axis current Id for different SCR values. 

5.1.3.4 Impact of different active power with PV outer-loop controller on 

system stability 

Tests on the impact of different active power output on system stability are carried 

out. The AC grid SCR is 1.87 and the MMC is in inverter mode. The MMC admittances 

are compared in Figure 5.21 for active power of 1GW and 0.5GW, respectively. As can 

be seen, when the active power is reduced by half, the MMC admittance magnitude 
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also decreases, implies better system stability. The Nyquist plots in Figure 5.22 also 

confirms that the system is unstable with 1GW output active power while the system 

becomes stable with 0.5GW active power. 

 

Figure 5.21 Small-signal admittance Ypp for different active power of 0.5GW and 1GW 
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(a) P=0.5GW                   (b)  P=1GW 

Figure 5.22 Nyquist plots with different active power 

For the time-domain simulation shown in Figure 5.23, the active power output of 

the MMC is ramped up from 0.5GW to 1GW at 3s. As can be seen, the system becomes 

oscillatory after the active power increase, which is in good agreement with the 
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analytical results in Figure 5.22. 

 

Figure 5.23 Simulation results with active power increased from 0.5GW to 1GW  

Further studies with the change of active power direction, i.e., between inverter 

and rectifier operation, have been carried out. With AC grid SCR of 4.0, two cases of 

MMC operating at inverter (P=0.5GW) and rectifier (P=-0.5GW) modes are 

investigated and the corresponding Nyquist plots are depicted in Figure 5.24. As can 

be seen, MMC operating at inverter mode results in better stability compared with that 

in rectifier mode. The time-domain simulation results are compared in Figure 5.25 in 

which a small perturbation is added at 4.5s. The system can be stabilized quicker in 

the case of inverter operation than rectifier operation, in which the voltage undergoes 

considerable oscillation at about 300Hz. This conclusion is in line with previous 

assessments. 
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Figure 5.24 Nyquist plot in the case of MMC outputting and absorbing power 

 

Figure 5.25 The d-axis voltage response in the case of MMC outputting and absorbing 

power 

 Network with two MMCs  

5.2.1 System configuration  

Considering increased network interconnections and connection of large offshore 

wind farms (e.g. in Europe) using HVDC links, many power networks in Europe will 

see significant numbers of HVDC converters connected in close proximity. For 

example, as outlined in [103] and schematically shown in Figure 5.26, the GB network 

will have more than 20 HVDC connection by 2027, with a total transmission capacity 
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of over 16GW. When multiple converters are considered for studying converter 

interaction, shown in RED area in Figure 5.26 as an example, the network admittance 

seen at each of the converter connection points will need to be considered together 

with the electrical coupling between the converters. In order to perform an analytical 

study on system stability and interaction, a simplified network structure is required. In 

this thesis, the so-called multi-infeed interaction factor (MIIF) between the converters 

[121], proposed by CIGRE WG B4 is used to quantify the simplified system structures. 

Converter AC busses electrically far apart will have low MIIF, while MIIF is high 

when the AC busses are very close and the interaction is strong between the converters. 

 

Figure 5.26 Example of multiple converters in close proximity 
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Figure 5.27 Equivalent circuit configuration for analytical studies 
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5.2.1.1 Equivalent AC network 

Considering the case with two MMCs, each of the MMC can be equivalent to 

connection with an AC source through a certain impedance to emulate the network 

condition at the MMC connection point, and the two AC sources are interconnected 

(within the same AC network). Thus, a simplified network configuration as shown in 

Figure 5.27 can be developed. Zline1 and Zline2 in Figure 5.27 are considered as the 

impedances of two 60km cables connecting the MMCs to the existing network. 

Applying the MIIF concept, the followings are considered when setting the network 

parameters: 

• MMC1 infeed is considered as an existing HVDC link, and thus Zg1 is pre-

determined. 

• When there exists strong electrical coupling between MMC1 and MMC2, i.e. the 

two converters are in close proximity (or high MIIF), Xc is set to a low value while 

Zg2 is set to a high value, so that MMC2 can be deemed close to AC system S1 

while being further away from S2. 

• When there only exists weak electrical coupling between MMC1 and MMC2 (i.e. 

low MIIF), Xc is set to a high value while Zg2 is set to a low value, so that MMC2 

can be deemed close to the AC system S2 and far away from S1. 

5.2.1.2 Equivalent SCR and MIIF 

The equivalent impedance on the AC side of MMC1 seen from PCC1 is shown 

in Figure 5.28. The equivalent impedance for MMC1 can be calculated as

1 2 1 1( )SCR g c g lineZ Z X Z Z= + +  . Thus, the SCR can be obtained as SCR1=Zn/ZSCR1 

where Zn=Vn
2/Sn. Similarly, the equivalent impedance on the AC side of MMC2 

connected at PCC2 and the SCR for MMC2 can be calculated as 

2 1 2 1( )SCR g c g lineZ Z X Z Z= + +  and SCR2=Zn/ZSCR2. 
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MMC1
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Zg 1

Zg 2
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Xt1Zline1

ZSCR1

PCC1

SCR1  

Figure 5.28 Equivalent impedance on the AC side of MMC1 

The general formula for calculating MIIFe,n is expressed as [121] 

 ,e n e nMIIF V V=     (5.6) 

where ΔVe is the observed voltage change at bus e when a small voltage change ΔVn is 

induced at bus n. 

To represent cases where the two MMCs have strong or weak coupling, the 

system parameters considered in this thesis are shown in Table 5.2. The corresponding 

SCR and MIIF are presented in Table 5.3. 

Table 5.2 The system parameter in the case of weak coupling and strong coupling 

Parameters Weak coupling Strong coupling 

Lt1 0.0587H 0.0587H 

Lt2 0.0587H 0.0587H 

Cable1 length 60 km 60 km 

Cable2 length 60 km 60 km 

Rg1 4.08Ώ 4.08Ώ 

Lg1 0.1296H 0.1296H 

Rg2 4.08Ώ 10.2 Ώ 
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Lg2 0.1296H 0.324H 

Lc 0.3H 0.01H 

Table 5.3 SCR and MIIF in the case of weak coupling and strong coupling 

 Weak coupling Strong coupling 

SCR1 2.59 2.74 

SCR2 2.59 2.64 

MIIF1,2 0.26 0.78 

MIIF2,1 0.26 0.81 

 

5.2.2 AC network impedance calculation for stability analysis  

To assess the stability of the grid system with two MMCs, if MMC1 is the 

converter under consideration, the small-signal impedance ZMMC2(s)=1/YMMC2(s) of 

MMC2 should be included when calculating the equivalent grid impedance. According 

to Figure 5.27 and considering the voltages for sources S1 and S2 are the same, the two 

power sources can be equivalent to one power source as shown in Figure 5.29 (a) and 

then the three impedance Zg1(s), Zg2(s), and Xc(s) form a delta connection. Furthermore, 

the delta connection can be transformed to Y connection as shown in Figure 5.29 (b).  

Zline2(s)
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Zline1(s)

Zg2(s)

ZMMC2(s)

Xt2(s)

Xt1(s)

YMMC1(s)  

Zline2(s)
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ZMMC2(s)

Xt2(s)

Xt1(s)

YMMC1(s)

Ze2(s)

Ze1(s)

Ze3(s)

Zeg1(s)

 

(a) The power source 

equivalent circuit 

(b) The delta – Y connection 

transformation 

Figure 5.29 Small-signal impedance equivalent circuit 
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Therefore, the impedance denoted in Figure 5.29 (b) can be depicted as  
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Z s Z s
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As a result, the equivalent impedance Zeg1(s) can be derived using Ze1(s), Ze2(s) 

and Ze3(s) as 

1 3 2 2 2 2 1 1 1( ) [ ( ) ( ( ) ( ) ( ) ( )] ( ) ( ) ( )eg e e line t MMC e line tZ s Z s Z s Z s X s Z s Z s Z s X s= + + + + + +  (5.10) 

Thus, the system stability can be assessed based on Nyquist curve for eigenvalue 

loci of Zeg1(s)YMMc1(s). 

5.2.3 Stability analysis  

5.2.3.1 PQ outer-loop control for both MMCs 

MMC1 and MMC2 adopt the control shown in Figure 5.3 and the outer-loop 

employ PQ control with Pref1=1GW and Pref2=1GW. The reactive power of MMC can 

be regulated to maintain the terminal voltage of MMC at 360kV and the same control 

parameters are adopted as listed in Table 5.1. 
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(a) Low MIIF                           (b) High MIIF 

Figure 5.30 Nyquist plots in the case of low MIIF and high MIIF using PQ outer-loop 

control 

To assess the system stability in terms of MMC1, under different MIIF, the 

Nyquist plots for eigenvalue loci of Zeg1YMMC1 are shown in Figure 5.30. For both high 

and low MIIF values, they do not cause encirclement of the point (-1, 0) and thus both 

systems can always remain stable. In the case of low MIIF value, the interaction of the 

two MMCs are weak and the Nyquist plots imply that the system has high phase 

margin and magnitude margin, and the stability is strong. In contrast, in the case of 

high MIIF value, the system stability is weak with low phase margin and magnitude 

margin. 

The corresponding time-domain simulation results are given in Figure 5.31 with 

a perturbation injected into the active power reference of MMC1 at 12s. As seen in 

Figure 5.31 (a), the d-axis current of MMC1 with low MIIF has small overshoot and 

can reach stable quickly. However, under the high MIIF, the system is prone to 

oscillation as shown in Figure 5.31 (b). The time-domain simulation results accord 

well with the Nyquist analysis.  
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(a) Low MIIF 

 

(b) High MIIF 

Figure 5.31 The d-axis current of MMC1 with different MIIF from the Simulink model 

Despite of the grid strength with SCR1=2.59 is weak, in the case of low 

MIIF2,1=0.26, the system still has favorable stability. However, when the coupling of 

the two MMCs is strong with MIIF2,1=0.81, the system stability is weak. 

5.2.3.2 PQ outer-loop for MMC1 and PV outer-loop for MMC2  

The effect of different outer-loop control on the stability of the interconnection 

system is investigated, with MMC1 adopting PQ control and MMC2 PV control. 

Under different MIIF, the frequency analysis is depicted in Figure 5.32. As seen, the 

system can maintain sufficient stability with low MIIF. Whereas with high MIIF, the 

system becomes unstable. The time-domain simulation results shown in Figure 5.33 

also validate the analytical results. The results indicate that the use of PV control at 

MMC2, the stability of the system is reduced when compared to PQ control. Therefore, 

it is important the impact of outer-loop on system stability is fully considered.  
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(a) Low MIIF                              (b) High MIIF 

Figure 5.32 Nyquist plot with different MIIF using PQ and PV control  

 

(a) d-axis current with low MIIF 

  

(b) d-axis current with high MIIF 

Figure 5.33 The d-axis current of MMC1 with different MIIF  
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5.2.3.3 MMC1 in rectifier mode and MMC2 in inverter mode 

With MMC1 importing active power from the grid (rectifier) and MMC2 

exporting active power to the grid (inverter), system stability analysis is conducted 

with different MIIF. Both MMCs adopt PV outer-loop control and MMC2 exports 

fixed 1GW active power. With a low MIIF, Figure 5.34 compares the Nyquist plots for 

MMC1 importing 0.24GW and 0.26GW active power. As seen, with MMC1 importing 

0.24GW from the AC grid, the plot does not encircle (-1,0) and thus the system is 

stable. However, when MMC1 importing power increases to 0.26GW, the Nyquist plot 

shows an unstable system. 
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 1 P1=-0.24
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Figure 5.34 Nyquist plot when MMC1 absorbs different power with low MIIF 

The time-domain simulation results shown in Figure 5.35 indicate the same 

conclusion. At seen, after the imported active power by MMC1 increases from 

0.24GW to 0.26GW at 2.5s, the system gradually becomes unstable. 
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(a) Active power  

 

(b) d-axis voltage 

Figure 5.35 Simulation results when MMC1 absorbs different power with low MIIF 

Previous results when both MMCs operated in inverter mode showed that the 

system oscillated at lower-frequency of around 10-20Hz. However, in this case, the 

system oscillates at high frequency, caused by the negative damping at high frequency 

in MMC1’s admittance in rectifier mode. 

With high MIIF, the Nyquist plot is presented in Figure 5.36. In this case, MMC1 

imports 0.73GW active power from AC and the system is proven to be stable whereas 

the case with 0.75GW imported power indicates an unstable system. Again, time-

domain simulation results shown in Figure 5.37 validate the conclusion derived from 

Nyquist plot. 
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Figure 5.36 Nyquist plot when MMC1 absorbs different power with low MIIF 

 

(a) Active power 

 

(b) d-axis voltage 

Figure 5.37 Simulation results when MMC1 absorbs different power with high MIIF 

 Summary 

This chapter has carried out stability assessment of AC network connected with 

MMC-HVDC transmission systems by using Nyquist stability criterion. The impacts 



 

168 

 

of AC cable length, MMC PLL bandwidth, outer-loop controller, and operating points 

on system stability have been studied. System stability of multiple converters in close 

electrical proximity has also been investigated. All cases are validated using time-

domain simulation. It is found that: 

1 For AC grid with single MMC, high PLL bandwidth leads to less stable system. 

Consequently, when the grid is weak and encounters stability problem, the 

reduction of the PLL bandwidth is beneficial to the system stability and may be 

considered.  

2 In inverter mode, MMC has better stability with PQ outer-loop control than with 

PV control, whereas in the rectifier mode, both outer-loop controls have similar 

effect on stability. Compared with only current-loop control, the addition of the 

outer-loop control deteriorates system stability when MMC works in rectifier 

mode.  

3 Compared with inverter mode, MMC in rectifier mode is more likely to induce 

system instability. Moreover, the resonance frequency usually locates in high 

frequency, .e.g., above 150Hz for the case studied. 

4 High MMC active power results in increased MMC admittance magnitude and 

consequently, reduced system stability. This applied to both rectifier and inverter 

operation. 

5 Interaction of converters in close proximity can be studied using the impedance 

model and the multi-infeed interaction factor (MIIF). Stability analysis and 

simulation results show that system with high MIIF where strong couplings 

between the two MMCs exist may lead to unstable system.  
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 Conclusions and future work 

 

 General conclusions 

This thesis has developed accurate small-signal frequency-domain models of 

grid-connected converters for stability analysis, including the two-level VSC, single-

phase and three-phase MMC. The developed models have then been applied for 

stability assessments.  

For the grid connected two-level VSC, the derivation of its small-signal 

admittance in pn frame is presented. Based on the analytical admittance, influences of 

the coupling admittance that generated by the PLL and outer-loop controllers on 

system stability are investigated. The results indicate that under a weak grid the 

traditional outer-loop active power and AC voltage controller creates coupling 

admittance that has negative impact on system stability. To reduce the coupling 

admittance and improve system stability, an improved outer-loop controller is 

proposed which adds compensation terms into the d- and q-axis current in the form of 

k1Δvcd and k2Δvcq at the potential resonance frequency range through lower-pass and 

high-pass filters. Simulation results in time-domain verify the correctness of small-

signal admittance in frequency-domain and the effectiveness of the proposed controller. 

The small-signal impedance model of the single-phase MMC is established based 

on the HSS modelling method, which is capable of covering all internal harmonics 

within the MMC. Different MMC control schemes, such as the AC current control and 

circulating current control, have also been incorporated in the model. The impact of 

the MMC internal dynamics and control dynamics on MMC impedance is investigated. 

The simulation results are provided to validate the proposed MMC impedance models. 

It is found that for open loop MMC system, it is important that higher order harmonics 
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(e.g. h=4) are considered in the HSS model for accurate MMC impedance model. 

However, whereas once the circulating current controller and AC current controller are 

included, the MMC harmonic interaction is reduced and HSS model with h=2 

generally provide adequate results.  

As the modelling method for single-phase MMC cannot represent the true 

behaviour of three-phase MMC systems, especially the zero-sequence current system 

and control system implementation, an accurate model of the grid-connected three-

phase MMC in sequence frame using the HSS modelling method is developed. 

Detailed procedures of the modelling is described including the transformation from 

abc frame into pn frame and various controls that have been incorporated in its small-

signal model. The coupling between the positive- and negative-sequence components 

brought by the external control loops and PLL are analyzed in the model. The small-

signal impedances obtained from the developed analytical model have been validated 

using time-domain models under different scenarios. It is found that the HSS model 

presents a promising tool to achieve efficient system control design and analysis, 

particularly where harmonic coupling may be an issue. Moreover, different control 

loops, e.g., PLL, AC voltage control, power control etc., can be easily incorporated 

into the impedance model. The modelling method proposed allows modifications on 

control system to be easily implemented into the small signal models without the need 

to recalculate the various state matrix. 

This developed analytical MMC model is used for assessing system stability 

considering both single MMC case and multiple MMCs operating in close vicinity. 

For single MMC connected to a weak grid, system stability is reduced with high PLL 

bandwidth and operating at high active power. When the MMC operating as an inverter, 

PQ outer-loop control leads to better system stability than PV control. However, for 

rectifier operation, PV outer-loop control is superior to PQ control in terms of stability. 

With the impedance model, interaction of converters in close proximity is studied 
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considering different multi-infeed interaction factor (MIIF). Considering the case with 

two MMCs, a simplified AC network configuration is developed which can be easily 

configured to cater for different MIIFs and network strengths. Stability analysis and 

simulation results show that system with high MIIF where strong couplings between 

the two MMCs exist may lead to system instability. 

 Future work 

The proposed three-phase MMC impedance does not consider the DC bus 

dynamics as the DC side is assumed an ideal voltage source. However, the perturbation 

voltage at the MMC AC terminal will cause voltage fluctuation at the DC terminal, 

which in turn will affect the modulation signal on the MMC arm and the AC terminal 

current. This means there is strong interaction between the MMC AC and DC terminals 

and implies the DC side perturbation will affect the AC side impedance of the MMC. 

Therefore, it is necessary to consider the DC side dynamics for developing a more 

accurate impedance model of the complete MMC-HVDC system. Moreover, the 

small-signal impedance of MMC with different control structures such as negative-

sequence controller will need to be studied for a full understanding of the MMC 

impedance characteristics and further optimize system control to improve stability. 

Significant numbers of LCC-HVDC systems currently exist in power networks 

and in some cases, additional VSC based power generation plants and interconnections 

are being built in close proximity. Therefore, the interaction between the existing LCC-

HVDC systems and VSC converters needs to be studied. For LCC-HVDC systems, 

due to the existence of significant 11th and 13th harmonic current in the LCC converter, 

there potentially can have significant harmonic interactions at relatively high 

frequency, i.e. around 600Hz for 50Hz AC system. Thus, the small-signal impedance 

model of LCC converter using the HSS method needs to be developed, and stability 

assessment considering both grid-connected LCC and VSC systems conducted.  
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The future work can be concluded as: 

• Develop the more accurate small-signal impedance model of the MMC-HVDC 

system in which the dynamics of DC side is considered. 

• Negative-sequence controller of MMC-HVDC system in dq frame will be 

modelled for the MMC impedance model. Further, the impact caused by negative-

sequence controller on system stability will be studied. 

• Develop the small-signal impedance model of the LCC-HVDC system based on 

HSS method. The significant 11th and 13th harmonic will be included in the model. 

• When different type of converters such as two-level VSC, MMC and LCC are 

connected in close proximity. The interactions between them will be analyzed 

based on the developed impedance models.  

  



 

173 

 

References 

[1] European Commission, “The Revised Renewable Energy Directive,” https://eur-

lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018L2001&from=EN, 

2020. 

[2] J. Dorn, H. Gambach and D. Retzmann, “HVDC transmission technology for 

sustainable power supply,” International Multi-Conference on Systems, Signals & 

Devices, Chemnitz, 2012, pp. 1-6. 

[3] F. M. Khan, A. Abbasi, M. A. Khan and M. I. Khan, “General overview of using 

High Voltage Direct Current (HVDC) transmission in Pakistan for maximum 

efficiency and performance,” 2015 Power Generation System and Renewable 

Energy Technologies (PGSRET), Islamabad, 2015, pp. 1-5. 

[4] O. E. Oni, I. E. Davidson and K. N. I. Mbangula, “A review of LCC-HVDC and 

VSC-HVDC technologies and applications,” 2016 IEEE 16th International 

Conference on Environment and Electrical Engineering (EEEIC), Florence, 2016, 

pp. 1-7. 

[5] Chunyi Guo, Yi Zhang, A. Gole and Chengyong Zhao, “Analysis of dual-infeed 

HVDC with LCC-HVDC and VSC-HVDC,” 2013 IEEE Power & Energy Society 

General Meeting, Vancouver, BC, 2013, pp. 1-1. 

[6] L. Xu, L. Yao, and C. Sasse, “Grid Integration of Large DFIG-Based Wind Farms 

Using VSC Transmission,” IEEE Transactions on Power Systems, vol. 22, pp. 

976-984, 2007. 

[7] J.-H. Ying, H. Duchen, M. Karlsson, L. Ronstrom, and B. Abrahamsson, “HVDC 

with voltage source converters - a powerful standby black start facility,” in 2008 

IEEE/PES Transmission and Distribution Conference and Exposition, 2008, pp. 

1-9. 

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018L2001&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018L2001&from=EN


 

174 

 

[8] K. Friedrich, “Modern HVDC PLUS application of VSC in Modular Multilevel 

Converter topology,” in 2010 IEEE International Symposium on Industrial 

Electronics, 2010, pp. 3807-3810. 

[9] L. Jian, Y. Jianguo, W. Di, W. Chuanxin, Y. Shenchun, and L. Ji, “Application 

research on VSC-HVDC in urban power network,” in 2011 IEEE Power 

Engineering and Automation Conference, 2011, pp. 115-119. 

[10] P. Hurtuk, R. Radvan, and M. Frivaldský, “Investigation of possibilities to 

increasing efficiency of full bridge converter designed for low output voltage and 

high output current applications,” in 2012 ELEKTRO, 2012, pp. 129-132. 

[11] R. Zeng, “Design, analysis and operation of hybrid modular multilevel converters 

for HVDC applications,” University of Strathclyde, 2015. 

[12] A. Lesnicar and R. Marquardt, “An innovative modular multilevel converter 

topology suitable for a wide power range,” in 2003 IEEE Bologna Power Tech 

Conference Proceedings, 2003, p. 6 pp. Vol.3. 

[13] S. Allebrod, R. Hamerski, and R. Marquardt, “New transformer less scalable 

Modular Multilevel Converters for HVDC-transmission,” in 2008 IEEE Power 

Electronics Specialists Conference, 2008, pp. 174-179. 

[14] R. Marquardt, “Modular Multilevel Converter topologies with DC-Short circuit 

current limitation,” in 8th International Conference on Power Electronics - ECCE 

Asia, 2011, pp. 1425-1431. 

[15] R. Marquardt, “Modular Multilevel Converter: An universal concept for HVDC-

Networks and extended DC-Bus-applications,” in The 2010 International Power 

Electronics Conference - ECCE ASIA -, 2010, pp. 502-507 

[16] H. Liu, K. Ma, Z. Qin, P. C. Loh and F. Blaabjerg, “Lifetime Estimation of MMC 

for Offshore Wind Power HVDC Application,” in IEEE Journal of Emerging and 

Selected Topics in Power Electronics, vol. 4, no. 2, pp. 504-511, June 2016. 



 

175 

 

[17] A. Rodríguez-Cabero, J. Roldán-Pérez, M. Prodanovic, J. A. Suul and S. D’Arco, 

“Coupling of AC Grids via VSC-HVDC Interconnections for Oscillation 

Damping Based on Differential and Common Power Control,” in IEEE 

Transactions on Power Electronics, vol. 35, no. 6, pp. 6548-6558, June 2020. 

[18] H. C. Liu and J. Sun, “Voltage stability and control of offshore windfarms with 

AC collection and HVDC transmission,” IEEE Journal of Emerging and Selected 

Topics in Power Electronics, vol. 2, no. 4, pp.1181–1189, Dec. 2014. 

[19] C. Zou, H. Rao, S. Xu, Y. Li., “Analysis of Resonance Between a VSC-HVDC 

Converter and the AC Grid,” in IEEE Transactions on Power Electronics, vol. 33, 

no. 12, pp. 10157-10168, Dec. 2018. 

[20] J. L. Agorreta, M. Borrega, J. López, and L. Marroyo, “Modeling and control of 

n-paralleled grid-connected inverters with LCL filter coupled due to grid 

impedance in PV plants,” in IEEE Transactions on Power Electronics,vol.26, no. 

3, pp. 770–785, Mar. 2011. 

[21] C. Guo, C. Zhao, R. Iravani, H. Ding and X. Wang, “Impact of phase-locked loop 

on small-signal dynamics of the line commutated converter-based high-voltage 

direct-current station,” in IET Generation, Transmission & Distribution, vol. 11, 

no. 5, pp. 1311-1318. 

[22] A. M. C. Buchhagen, M. Greve, and J. Jung, “Harmonic stability-practical 

experience of a TSO,” in Proc. Wind Integr. Workshop, Nov.2016, pp.1–6. 

[23] Y. Zhang, C. Hong, L. Tu, T. Zhou and J. Yang, “Research on High-frequency 

Resonance Mechanism and Active Harmonic Suppression Strategy of Power 

Systems with Power Electronics,” 2018 International Conference on Power 

System Technology (POWERCON), Guangzhou, 2018, pp. 2350-2356. 

[24] W. Ren and E. Larsen, “A refined frequency scan approach to sub-synchronous 

control interaction (SSCI) study of wind farms,” IEEE Trans. Power Syst., vol. 31, 

no. 5, pp. 3904-3912, Sep. 2016. 



 

176 

 

[25] J. Sun, “Small-signal methods for AC distributed power systems—A review,” 

IEEE Trans. Power Electron., vol. 24, no. 11, pp. 2545–2554, Nov. 2009. 

[26] G. Pinares and M. Bongiorno, “Modeling and analysis of VSC-based HVDC 

systems for dc network stability studies,” IEEE Trans. Power Del., vol. 31, no. 2, 

pp. 848-856, April 2016. 

[27] D. Maksimovic, A. M. Stankovic, V. J. Thottuvelil, and G. C. Verghese, “Modeling 

and simulation of power electronic converters,” Proc. IEEE, vol. 89, no. 6, 2001, 

pp. 898-912. 

[28] V. J. Thottuvelil, D. Chin, and G. C. Verghese, “Hierarchical approaches to 

modeling high-power factor ac-dc converters,” IEEE Trans. Power Electron., vol. 

6, no. 2, pp. 179-187, April 1991. 

[29] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd Ed. 

New York, NY, USA: Kluwer Academic, 2001. 

[30] F. Milano, Power System Modelling and Scripting. London, U.K.: Springer-

Verlag, 2010. 

[31] J.J.Chavez,A.Ramirez,V.Dinavahi,R.Iravani,J.Martinez,J.Jatskevitch, and G. 

Chang, “Interfacing techniques for time-domain and frequency-

domainsimulationmethods,”IEEETrans.PowerDel.,vol.25, no. 3, pp. 1796–1807, 

Jul. 2010. 

[32] D. N. Zmood, D. G. Holmes, and G. H. Bode, “Frequency-domain analysis of 

three-phase linear current regulators,” IEEE Trans. Ind. Appl., vol. 37, no. 2, pp. 

601–610, Mar./Apr. 2001. 

[33] A. Ramirez, A. Semlyen, and R. Iravani, “Harmonic domain characterization of 

the resonant interaction between generator and transmission line,” IEEE Trans. 

Power Del., vol. 20, no. 2, pt. 2, pp. 1753–1762, Apr. 2005. 



 

177 

 

[34] J. R. C. Orillaza and A. R. Wood, “Harmonic State-Space Model of a Controlled 

TCR,” IEEE Transactions on Power Delivery, vol. 28, pp. 197-205, 2013. 

[35] G. Love and A. Wood, “Harmonic state space model of power electronics,” 

presented at the 13th IEEE Conf. Harmonics Power Qual., Wollongong, Australia, 

2008. 

[36] M. Amin, and M. Molinas, “Small-signal stability assessment of power electronics 

based power systems: a discussion of impedance- and eigenvalue-based methods,” 

IEEE Trans. Ind. Appl., vol. 53, no. 5, pp. 5014–5030, Sept. 2017. 

[37] Y. Mishra, S. Mishra, F. Li, Z. Y. Dong and R. C. Bansal, “Small-Signal Stability 

Analysis of a DFIG-Based Wind Power System Under Different Modes of 

Operation,” in IEEE Transactions on Energy Conversion, vol. 24, no. 4, pp. 972-

982, Dec. 2009. 

[38] G. O. Kalcon, G. P. Adam, O. Anaya-Lara, S. Lo, and K. Uhlen, “Small-signal 

stability analysis of multi-terminal VSC-based DC transmission systems,” IEEE 

Trans. Power Syst., vol. 27, no. 4, pp. 1818–1830, Nov. 2012. 

[39] G. Pinares and M. Bongiorno, “Modeling and analysis of VSC-based HVDC 

systems for DC network stability studies,” IEEE Trans. Power Del., vol. 31, no. 2, 

pp. 848–856, Apr. 2016. 

[40] R. D. Middlebrook, “Input filter considerations in design and application of 

switching regulators,” in Proc. IEEE Ind. Appl. Soc. Annu. Meeting, 1976, pp. 

366-382. 

[41] J. Sun, “Impedance-based stability criterion for grid-connected inverters,” IEEE 

Trans. Power Electron., vol. 26, no. 11, pp. 3075–3078, Nov. 2011 

[42] B. Wen, D. Boroyevich, R. Burgos, P. Mattavelli, and Z. Shen, “Small-signal 

stability analysis of three-phase AC systems in the presence of constant power 

loads based on measured d-q, frame impedances,” IEEE Trans. Power Electron., 



 

178 

 

vol. 30, no. 10, pp. 5952–5963, Oct. 2015. 

[43] D. Dong, B. Wen, D. Boroyevich, P. Mattavelli, and Y. Xue, “Analysis of phase-

locked loop low-frequency stability in three-phase grid-connected power 

converters considering impedance interactions,” IEEE Trans. Ind. Electron., vol. 

62, no. 1, pp. 310–321, Jan. 2015. 

[44] L. Harnefors, A. G. Yepes, A. Vidal, and J. Doval-Gandoy, “Passivity-based 

controller design of grid-connected VSCs for prevention electrical resonance 

instability,” IEEE Trans. Ind. Electron., vol. 62, no. 2, pp. 702–710, Feb. 2015. 

[45] X. Wang, F. Blaabjerg, and W. Wu, “Modeling and analysis of harmonic stability 

in ac power-electronics-based power system,” IEEE Trans. Power Electron., vol. 

29, no. 12, pp. 6421–6432, Dec. 2014. 

[46] B. Wen, D. Dong, D. Boroyevich, R. Burgos, P. Mattavelli, and Z. Shen, 

“Impedance-based analysis of grid-synchronization stability for three phase 

paralleled converters,” IEEE Trans. Power Electron., vol. 31, no. 1, pp. 26–38, Jan. 

2015. 

[47] B. Wen, D. Boroyevich, R. Burgos, P. Mattavelli, and Z. Shen, “Influence of 

phase-locked loop on dq frame impedance of three-phase voltage-source 

converters and the impact on system stability,” presented at the CPES Power 

Electronics Conf., Blacksburg, VA, USA, Apr. 6–8, 2013. 

[48] A. Rygg, M. Molinas, C. Zhang and X. Cai, “A Modified Sequence-Domain 

Impedance Definition and Its Equivalence to the dq-Domain Impedance 

Definition for the Stability Analysis of AC Power Electronic Systems,” in IEEE 

Journal of Emerging and Selected Topics in Power Electronics, vol. 4, no. 4, pp. 

1383-1396, Dec. 2016. 

[49] G. C. Paap, “Symmetrical components in the time domain and their application to 

power network calculations,” in IEEE Transactions on Power Systems, vol. 15, 

no. 2, pp. 522-528, May 2000. 



 

179 

 

[50] G. Amico, “Wind farm high frequency electrical resonances: impedance-based 

stability analysis and mitigation techniques,” Ph.D. dissertation, Dept. Electrical 

and Electronic Engineering, University of Strathclyde, Glasgow, UK, 2019. 

[51] S. Shah, and L. Parsa, “Impedance modeling of three-phase voltage source 

converters in dq, sequence, and phasor domains,” IEEE Energy Convers., vol. 32, 

no.3, pp. 1139–1150, Sept. 2017. 

[52] W. V. Lyon, Applications of the method of symmetrical components. McGraw-

Hill book company, inc., 1937. 

[53] S. Shah, “Small and large signal impedance modeling for stability analysis of grid-

connected voltage source converters,” Department of Electrical Engineering，

Rensselaer Polytechnic Institute，Troy, New York，2018. 

[54] L. Harnefors, M. Bongiorno, and S. Lundberg, “Input-admittance calculation and 

shaping for controlled voltage-source converters,” IEEE Trans. Ind. Electron., vol. 

54, no. 6, pp. 3323–3334, Dec. 2007. 

[55] B. Wen, D. Boroyevich, R. Burgos, P. Mattavelli, and Z. Shen, “Analysis of D-Q 

small-signal impedance of grid-tied inverters,” IEEE Trans. Power Electron., vol. 

31, no. 1, pp. 675–687, Jan. 2016. 

[56] M. Cespedes and J. Sun, “Impedance modeling and analysis of grid-connected 

voltage-source converters,” IEEE Trans. Power Electron., vol. 29, no. 3, pp. 1254–

1261, Mar. 2014. 

[57] M. Cespedes and J. Sun, “Modeling and mitigation of harmonic resonance 

between wind turbines and the grid,” 2011 IEEE Energy Conversion Congress and 

Exposition, Phoenix, AZ, 2011, pp. 2109-2116. 

[58] M. Cespedes and J. Sun, “Renewable Energy Systems Instability Involving Grid-

Parallel Inverters,” 2009 Twenty-Fourth Annual IEEE Applied Power Electronics 

Conference and Exposition, Washington, DC, 2009. 



 

180 

 

[59] H. Nian , L. Chen, Y. Xu, H. Huang, and J. Ma, “Sequences domain impedance 

modeling of three-phase grid-connected converter using harmonic transfer 

matrices,” IEEE Energy Convers., vol. 33, no. 2, pp. 627–638, Jun. 2018. 

[60] I Vieto, and J. Sun, “Sequence impedance modelling and converter-grid resonance 

analysis considering DC bus dynamics and mirrored harmonics,” 2018 IEEE 19th 

Workshop on Control and Modeling for Power Electronics. 

[61] M. K. Bakhshizadeh et al., “Couplings in phase domain impedance modeling of 

grid-connected converters,” IEEE Trans. Power Electron, vol. 31, no. 10, pp. 

6792–6796, Oct. 2016. 

[62] G. Amico, A. Egea-Àlvarez, P. Brogan and S. Zhang, “Small-Signal Converter 

Admittance in the pn-Frame: Systematic Derivation and Analysis of the Cross-

Coupling Terms,” in IEEE Transactions on Energy Conversion, vol. 34, no. 4, pp. 

1829-1838, Dec. 2019. 

[63] G. Amico, A. Egea-`lvarez, L. Xu and P. Brogan, “Stability margin definition for 

a converter-grid system based on diagonal dominance property in the sequence-

frame,” 2019 21st European Conference on Power Electronics and Applications 

(EPE '19 ECCE Europe), Genova, Italy, 2019, pp. P.1-P.10. 

[64] S. Shah and L. Parsa, “Sequence domain transfer matrix model of three-phase 

voltage source converters,” in Proc. IEEE Power Energy Soc. General Meet., 2016, 

pp. 1–5. 

[65] X. Wang, L. Harnefors, and F. Blaabjerg, “Unified impedance model of grid-

connected voltage-source converters,” IEEE Trans. Power Electron., vol. 33, no.  

[66] H. Saad, J. Peralta, S. Dennetiere, and J. Mahseredjian,”Dynamic averaged and 

simplified models for MMC-based HVDC transmission systems,” IEEE Trans. 

Power Del., vol. 28, no. 3, pp. 1723–1730, Jul. 2013. 

[67] A. Jamshidifar, and D. Jovcic, “Small-signal dynamic dq model of modular 



 

181 

 

multilevel converter for system studies,” IEEE Trans. Power Del., vol. 31, no. 1, 

pp. 1991–1999, Feb. 2016. 

[68] Y. Li, G. Tang, J. Ge, Z. He, H. Pang, J. Yang, and Y. Wu, “Modeling and damping 

control of modular multilevel converter based dc grid,” IEEE Trans. Power Syst., 

vol. 31, no. 1, pp. 723–735, Jan. 2018. 

[69] J. Wang, R. Burgos and D. Boroyevich, “A survey on the modular multilevel 

converters — Modeling, modulation and controls,” 2013 IEEE Energy 

Conversion Congress and Exposition, Denver, CO, 2013, pp. 3984-3991. 

[70] A. Lesnicar and R. Marquardt, “An innovative modular multilevel converter 

topology suitable for a wide power range,” 2003 IEEE Bologna Power Tech 

Conference Proceedings, Bologna, Italy, 2003, pp. 6 pp. Vol.3. 

[71] M. Glinka, “Prototype of multiphase modular-multilevel-converter with 2 MW 

power rating and 17-level-output-voltage,” 2004 IEEE 35th Annual Power 

Electronics Specialists Conference (IEEE Cat. No.04CH37551), Aachen, 

Germany, 2004, pp. 2572-2576 Vol.4.  

[72] M. Glinka and R. Marquardt, “A new AC/AC multilevel converter family,” in 

IEEE Transactions on Industrial Electronics, vol. 52, no. 3, pp. 662-669, June 

2005. 

[73] S. Allebrod, R. Hamerski and R. Marquardt, “New transformer less scalable 

Modular Multilevel Converters for HVDC-transmission,” 2008 IEEE Power 

Electronics Specialists Conference, Rhodes, 2008, pp. 174-179. 

[74] H. M. Pirouz, M. T. Bina and K. Kanzi, “A New Approach to the Modulation and 

DC-Link Balancing Strategy of Modular Multilevel AC/AC Converters,” 2005 

International Conference on Power Electronics and Drives Systems, Kuala 

Lumpur, 2005, pp. 1503-1507. 

[75] G. Ding, G. Tang, Z. He and M. Ding, “New technologies of voltage source 



 

182 

 

converter (VSC) for HVDC transmission system based on VSC,” 2008 IEEE 

Power and Energy Society General Meeting - Conversion and Delivery of 

Electrical Energy in the 21st Century, Pittsburgh, PA, 2008, pp. 1-8. 

[76] K. Friedrich, “Modern HVDC PLUS application of VSC in Modular Multilevel 

Converter topology,” 2010 IEEE International Symposium on Industrial 

Electronics, Bari, 2010, pp. 3807-3810. 

[77] Q. Tu, Z. Xu and J. Zhang, “Circulating current suppressing controller in modular 

multilevel converter,” IECON 2010 - 36th Annual Conference on IEEE Industrial 

Electronics Society, Glendale, AZ, 2010, pp. 3198-3202. 

[78] C. D. Barker and N. M. Kirby, “Reactive power loading of components within a 

modular multi-level HVDC VSC converter,” 2011 IEEE Electrical Power and 

Energy Conference, Winnipeg, MB, 2011, pp. 86-90. 

[79] M. A. Pérez and J. Rodríguez, “Generalized modeling and simulation of a modular 

multilevel converter,” 2011 IEEE International Symposium on Industrial 

Electronics, Gdansk, 2011, pp. 1863-1868. 

[80] M. Hiller, D. Krug, R. Sommer and S. Rohner, “A new highly modular medium 

voltage converter topology for industrial drive applications,” 2009 13th European 

Conference on Power Electronics and Applications, Barcelona, 2009, pp. 1-10. 

[81] A. Antonopoulos, L. Angquist and H. Nee, “On dynamics and voltage control of 

the Modular Multilevel Converter,” 2009 13th European Conference on Power 

Electronics and Applications, Barcelona, 2009, pp. 1-10. 

[82] L. Angquist, A. Antonopoulos, D. Siemaszko, K. Ilves, M. Vasiladiotis and H. Nee, 

“Open-Loop Control of Modular Multilevel Converters Using Estimation of 

Stored Energy,” in IEEE Transactions on Industry Applications, vol. 47, no. 6, pp. 

2516-2524, Nov.-Dec. 2011. 

[83] L. Harnefors, S. Norrga, A. Antonopoulos and H. Nee, “Dynamic modeling of 



 

183 

 

modular multilevel converters,” Proceedings of the 2011 14th European 

Conference on Power Electronics and Applications, Birmingham, 2011, pp. 1-10. 

[84] M. Hagiwara, K. Nishimura and H. Akagi, “A Medium-Voltage Motor Drive With 

a Modular Multilevel PWM Inverter,” in IEEE Transactions on Power Electronics, 

vol. 25, no. 7, pp. 1786-1799, July 2010. 

[85] J. Reed, G. Venkataramanan and F. Martínez, “Complex phasor modeling and 

control of modular multilevel inverters,” 2011 IEEE Energy Conversion Congress 

and Exposition, Phoenix, AZ, 2011, pp. 4013-4020. 

[86] D. C. Ludois, J. K. Reed and G. Venkataramanan, “Hierarchical Control of Bridge-

of-Bridge Multilevel Power Converters,” in IEEE Transactions on Industrial 

Electronics, vol. 57, no. 8, pp. 2679-2690, Aug. 2010. 

[87] D. C. Ludois and G. Venkataramanan, “Modular multilevel converter as a low 

inductance machine drive,” 2012 IEEE Power and Energy Conference at Illinois, 

Champaign, IL, 2012, pp. 1-4. 

[88] J. Lyu, X. Cai, and M. Molinas, “Frequency domain stability analysis of MMC-

based HVDC for wind farm integration,” IEEE J. Emerg. Sel.Topics Power 

Electron., vol. 4, no. 1, pp. 141–151, Mar. 2016. 

[89] M. Beza, M. Bongiorno, and G. Stamatiou, “Analytical derivation of the ac-side 

input admittance of a modular multilevel converter with open- and closed-loop 

control strategies,” IEEE Trans. Power Del., vol. 33, no. 1, pp. 248–256, Feb. 2018. 

[90] L. Bessegato, K. Ilves, L. Harnefors, and S. Norrga, “Effects of control on the ac-

side admittance of a modular multilevel converter”, IEEE Trans. Power Electron., 

vol. 34, no. 8, pp. 7206–7220, Aug. 2019. 

[91] S. Hwang, “Harmonic state-space modelling of an hvdc converter with closed-

loop control,” Department of Electrical and Computer Engineering，University 

of Canterbury, Christchurch, New Zealand，2013. 



 

184 

 

[92] J. J. Rico, M. Madrigal and E. Acha, “Dynamic harmonic evolution using the 

extended harmonic domain,” IEEE Trans. Power Del., vol. 18, no. 2, pp. 587-594, 

April 2003. 

[93] J. J. Chavez and A. Ramirez, “Dynamic Harmonic Domain Modelling of 

Transients in Three-Phase Transmission Lines,” IEEE Trans. Power Del., vol. 23, 

no. 4, pp. 2294-2301, Oct. 2008. 

[94] J. B. Kwon, X. Wang, F. Blaabjerg, C. L. Bak, A. R. Wood and N. R. Watson, 

“Harmonic instability analysis of a single-phase grid-connected converter using a 

harmonic state-space modelling method,” IEEE Trans. Ind. Appl., vol. 52, no. 5, 

pp. 4188-4200, Sept.-Oct. 2016. 

[95] J. Lyu, X. Zhang, X. Cai, and M. Molinas, “Harmonic state-space based small-

signal impedance modelling of modular multilevel converter with consideration 

of internal harmonic dynamics,” IEEE Trans. Power Electron., vol. 34, no. 3, pp. 

2134–2148, Mar. 2019. 

[96] Z. Xu, B. Li, S. Wang, S. Zhang and D. Xu, “Generalised Single-Phase Harmonic 

State Space Modelling of the Modular Multilevel Converter With Zero-Sequence 

Voltage Compensation,” IEEE Trans. Ind. Electron., vol. 66, no. 8, pp. 6416-6426, 

Aug. 2019. 

[97] H. Wu, X. Wang and Ł. Kocewiak, “Impedance-Based Stability Analysis of 

Voltage-Controlled MMCs Feeding Linear AC Systems,” IEEE J. Emerg. Sel. 

Topics Power Electron., early access, 2019. 

[98] H. Wu and X. Wang, “Dynamic Impact of Zero-Sequence Circulating Current on 

Modular Multilevel Converters: Complex-Valued AC Impedance Modelling and 

Analysis,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 8, no. 2, pp. 1947-

1963, June 2020. 

[99] A. Rygg, M. Molinas, C. Zhang and X. Cai, “A Modified Sequence-Domain 

Impedance Definition and Its Equivalence to the dq-Domain Impedance 



 

185 

 

Definition for the Stability Analysis of AC Power Electronic Systems,” IEEE J. 

Emerg. Sel. Topics Power Electron., vol. 4, no. 4, pp. 1383-1396, Dec. 2016. 

[100] H. Zong, J. Lyu, C. Zhang, X. Cai, M. Molinas and F. Rao, “MIMO impedance 

based stability analysis of DFIG-based wind farm with MMC-HVDC in modified 

sequence domain,” in Proc. 8th Int. Conf. Renew. Power Gener. (RPG), Shanghai, 

China, 2019, pp. 1-7. 

[101] H. Zong, C. Zhang, J. Lyu, X. Cai, M. Molinas and F. Rao, “Generalized MIMO 

Sequence Impedance Modeling and Stability Analysis of MMC-HVDC With 

Wind Farm Considering Frequency Couplings,” IEEE Access, vol. 8, pp. 55602-

55618, 2020. 

[102] K. Ji, G. Tang, H. Pang and J. Yang, “Impedance Modeling and Analysis of MMC-

HVDC for Offshore Wind Farm Integration,” IEEE Trans. Power Del., vol. 35, no. 

3, pp. 1488-1501, June 2020. 

[103]  “GB National Electricity System Seven Year Statement”, National Grid, 2011 

[104] C. Guo, W. Liu, J. Zhao and C. Zhao, “Impact of control system on small-signal 

stability of hybrid multi-infeed HVDC system,” in IET Generation, Transmission 

& Distribution, vol. 12, no. 19, pp. 4233-4239, 30 10 2018. 

[105] G., Chunyi, W. Liu, C. Zhao, and X. Ni. "Small-signal dynamics and control 

parameters optimization of hybrid multi-infeed HVDC system." International 

Journal of Electrical Power & Energy Systems, 2018, pp.409-418. 

[106] A. Bayo-Salas, J. Beerten, J. Rimez and D. Van Hertem, “Analysis of control 

interactions in multi-infeed VSC HVDC connections,” in IET Generation, 

Transmission & Distribution, vol. 10, no. 6, pp. 1336-1344, 21 4 2016. 

[107] G. Grdenić, M. Delimar and J. Beerten, “Comparative Analysis on Small-Signal 

Stability of Multi-Infeed VSC HVDC System With Different Reactive Power 

Control Strategies,” in IEEE Access, vol. 7, pp. 151724-151732, 2019. 



 

186 

 

[108] A. Egea-Alvarez, C. Barker, F. Hassan and O. Gomis-Bellmunt, “Capability 

curves of a VSC-HVDC connected to a weak AC grid considering stability and 

power limits,” 11th IET International Conference on AC and DC Power 

Transmission, Birmingham, 2015, pp. 1-5. 

[109] L. Harnefors, “Modeling of Three-Phase Dynamic Systems Using Complex 

Transfer Functions and Transfer Matrices,” IEEE Trans. Ind. Electron., vol. 54, 

no. 4, pp. 2239-2248, Aug. 2007. 

[110] J. R. Bar-on and E. A. Jonckheere, “Phase margins for multivariable control 

systems,” Int. J. Control, vol. 52, no. 2, pp. 485–498, 1990. 

[111] J. R. Bar-on and E. A. Jonckheere, “Multivariable gain margin,” Int. J. Control, 

vol. 54, no. 2, pp. 337–365, 1991. 

[112] E. Ebrahimzadeh, F. Blaabjerg, X. Wang and C. L. Bak, “Modeling and 

identification of harmonic instability problems in wind farms,” 2016 IEEE Energy 

Conversion Congress and Exposition (ECCE), Milwaukee, WI, 2016, pp. 1-6. 

[113] V. Salis, A. Costabeber, S. M. Cox, P. Zanchetta and A. Formentini, “Stability 

Boundary Analysis in Single-Phase Grid-Connected Inverters With PLL by LTP 

Theory,” in IEEE Transactions on Power Electronics, vol. 33, no. 5, pp. 4023-

4036, May 2018. 

[114] R. Li, L. Xu and D. Guo, “Accelerated switching function model of hybrid MMCs 

for HVDC system simulation,” IET Power Electron., vol. 10, no. 15, pp. 2199-

2207, 15 12 2017. 

[115] D. N. Zmood and D. G. Holmes, “Stationary frame current regulation of PWM 

inverters with zero steady-state error,” IEEE Trans. Power Electron., vol. 18, no. 

3, pp. 814-822, May. 2003. 

[116] O. Katsuhiko and Y. Yang, Modern Control Engineering, 5ed. Upper Saddle River, 

NJ: Prentice hall, 2010. 



 

187 

 

[117] J. Sun and H. Liu, “Sequence Impedance Modelling of Modular Multilevel 

Converters,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 5, no. 4, pp. 1427-

1443, Dec. 2017. 

[118] M. Cespedes and J. Sun, “Impedance Modelling and Analysis of Grid-Connected 

Voltage-Source Converters,” IEEE Trans. Power Electron., vol. 29, no. 3, pp. 

1254-1261, March. 2014. 

[119] The National HVDC Centre and the University of Strathclyde, “Stability 

Assessment and Mitigation of Converter Interactions – Phase 2” 

[120] M. Cespedes, L. Xing and J. Sun, “Constant-power load system stabilisation by 

passive damping,” IEEE Trans. Power Electron., vol. 26, no. 7, pp. 1832-1836, 

July 2011. 

[121] B. Davies et al., Systems with multiple dc infeed, CIGRE Working Group B4.41, 

Paris, France, pp. 12–14, Dec. 2008.  



 

188 

 

Appendix A Matrix elements for MMC single-phase 

HSS equation 
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where B-h…B0, …Bh are the elements of the matrix Bs in (3.39). 

Appendix B Matrices for MMC three-phase HSS 
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where these matrices are defined for the equation (4.6). 
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






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I
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I
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PN
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s
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
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



− 
 
 
 −
 
 
 +
 
 
 − 

Δx

Δx

ΔX Δx

Δx
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0 0

0 0

0 0

0 0

0 0

( )

( )

= ( )

( )

( )

PN

PN

PN PN

PN

PN

s jh

s j

s

s j

s jh









− 
 
 
 −
 
 
 +
 
 
 − 

Δv

Δv

ΔU Δv

Δv

Δv

 

where the above matrices are defined for equation (4.17). 
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In the case of h=0, that is, the dc component is considered, the dc related matrix

0

sA in the matrix [ ]s A  can be expressed as 

0 1 0 1

0 1 0 1

0

0 1 0 1

0 1 0 1

- - -
2 2

- -

=

2

-
2

m uabc labc

m m m

m uabc labc
z

m m m

s

uabc uabc
z

m m

labc labc
z

m m

− −

− −

− −

− −

 
 
 
 

 
 
 
 
 
 
 
  

R PN P PN P
0

L L L

R PN P PN P
0 C

L L L
A

PN P PN P
C 0 0

C C

PN P PN P
C 0 0

C C

  

where 
0

uabcN  and 
0

labcN  are the dc component matrices of the steady-state modulation 

ratio of the upper and lower arms . 

For each phase, both the dc components for the upper and lower arms are 0.5 and 

there exits 

0

1
0 0

2

1
= 0 0

2

1
0 0

2

uabc

 
 
 
 
 
 
 
  

N ;  
0

1
0 0

2

1
= 0 0

2

1
0 0

2

labc

 
 
 
 
 
 
 
  

N  

In the matrix [ ] M  , the dc component related elements can be written in the 

matrix form as  
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0 1 0 1

0 1 0 1

0

0 1 0 1

0 1 0 1

- -
2 2

-
=

(2 )

(2 )2

2

cuabc clabc

m m

cuabc clabc

m m

cabc gabc

cabc gabcm

m

 −  −

 −  −

− −

− −

 
 
 
 
 
 
 +
 
 −
 
 

PV P PV P

L L

PV P PV P

L LM

0PI P PI P

PI P PI PC

C0

 

where 
0

cuabc

V   and 
0

clabc

V   denote the dc component matrices of the equivalent 

capacitor of the upper and lower arms and are expressed as 

0

0 0

0

0 0

= 0 0

0 0

cua

cuabc cub

cuc

V

V

V



 



 
 
 
 
 

V  

and

0

0

0

0 0

= 0 0

0 0

cla

clabc clb

clc

V

V

V



 



 
 
 
 
 

V ; 
0

cabcI  is the matrix composed by dc component of the 

three-phase circulating current. 

0

0 0

0

0 0

= 0 0

0 0

ga

gabc gb

gc

I

I

I

 
 
 
 
 

I  denotes the dc component of 

the steady-state ac current of the MMC. Due to the ac current without the dc 

component, 
0

gabcI is a 3 by 3 matrix with zero element. 

In the matrix [ ] B  , the matrix 0B   associated with the dc component can be 

written as 

0

2

=

 
 
 −
 
 
 
  

m

0

LB

0

0

 

The perturbation components for the state variables and the input are expressed 
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as 0 ( )PN sΔx   and 0 ( )PN sΔv  . The transfer function matrices for the corresponding 

controller are denoted as ( )sAG  and ( )sBG .  

In the case of 0h  , in the matrix [ ]s A , the matrix 
h

s

A  composed by 
0h order 

harmonic associated elements are expressed as 

1 1

1 1

1 1

1 1

- -
2 2

-

=

2

-
2

h h

uabc labc

m m

h h

uabc labc

m mh

s h h
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z

m m

h h
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z

m m
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 
 
 
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 
 
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 
 
 
  

PN P PN P
0 0

L L

PN P PN P
0 0

L L
A

PN P PN P
C 0 0

C C

PN P PN P
C 0 0

C C

 

where 
h

uabc

N  and 
h

labc

N  are the matrices composed by h order harmonic of the steady-

state modulation ratio in abc frame and can be expressed as  

0 0
2

= 0 0
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0 0
2

h
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h
nub

h
nub
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nua
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h nub
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h
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h
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




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 
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Taking 1h =  for example, 
1

cuabc

V denotes the operational three-phase voltage at 

fundamental frequency.  
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