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Abstract 

 

In this thesis we investigate the technology of Vertical Cavity Surface Emitting 

Lasers (VCSELs) as potential candidates for neuromorphic (brain-like) photonic 

computing hardware elements, towards the future realisation of ultrafast, energy-

efficient and light-enabled information processing platforms. VCSELs are a type of 

semiconductor laser sources that not only exhibit numerous beneficial characteristics, 

such as low power requirements, compactness, low manufacturing costs and high 

modulation speeds, but also offer exciting prospects as photonic emulators of 

biological neurons. Hence, in this thesis we develop and study the behaviour of 

VCSEL-based artificial photonic neurons and reveal their capability to activate sub-

nanosecond neuron-like optical spiking responses (3 orders of magnitude faster than 

state of the art electronic implementations of biological neurons). We further explore 

the control of the non-linear neuron-like dynamics in VCSELs before taking advantage 

of their ultrafast optical spiking signals to produce examples of spike-based photonic 

information processing systems.  

First, we study the neuron-like excitable (spiking) dynamics exhibited by VCSELs 

under external optical injection. Both the activation and inhibition of 100 ps-long (GHz 

rates) spiking responses is demonstrated using both modulated optical injection and 

modulated bias current. These mechanisms are shown to elicit neuron-like optical 

spiking regimes, both controllably and consistently, in VCSELs. The similarities of 

the responses achieved in the analysed VCSEL neurons to neuronal models is then 

investigated, where we reveal further the underlying neuron-like behaviours (such as 

threshold-and-fire, and spiking refractory periods) in these photonic devices.  

Second, we investigate the networking capability of the developed VCSEL neurons. 

By building experimental configurations of coupled VCSELs we demonstrate their 

ability to communicate optical spiking signals. Both the activation and inhibition of 

optical spikes is shown to be propagated in (1-to-1) feedforward architectures, 

revealing the output of an artificial VCSEL neuron is cascadable across layers in a 

network. Further we demonstrate the activation of two downstream VCSEL neurons 
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in a diverging (1-to-2) architecture and create a three layer (1-to-1-to-1) VCSEL 

network inspired by biological cell layers in the retina. The latter is achieved without 

signal manipulation between network layers, with the implementation of all optical 

signals using commercially-sourced VCSELs. 

Finally, we discuss the successful application of VCSEL neurons in functional 

neuromorphic photonic information processing demonstrations. We achieved digital-

to-spike conversion of return-to-zero (RZ) and non return-to-zero (NRZ) signals for 

the interfacing of spiking neuromorphic platforms with traditional digital technologies. 

We also explored the time-division multiplexing (TDM) of VCSEL inputs for the 

creation of a virtual converging (many-to-one) network architecture. Using this 

technique we revealed for the first time (experimentally) the neuronal integrate-and-

fire behaviour of the VCSEL neuron. Exploiting this key neuronal behaviour, we 

implemented a single artificial VCSEL neuron as processing element, and 

demonstrated the coincidence detection of fast (sub-nanosecond) optical inputs with 

the firing of an optical spiking response. Further employing the integrate-and-fire 

capability, we demonstrated both 4-bit binary pattern recognition and image 

processing (edge-feature detection) tasks with a single VCSEL neuron. Moreover, we 

utilised the spike-based edge-feature detection of the VCSEL neuron (alongside a 

software implemented spiking neural network, SNN) to successfully classify digits 

from the MNIST handwritten digit database, achieving a high classification accuracy 

of 96.1%. Successful operation of different information processing tasks was therefore 

achieved with systems based on VCSEL neurons, that utilised both ultrafast (GHz rate) 

optical spiking representations and hardware-friendly (commercially-sourced) 

photonic components. We therefore believe VCSELs, with their exciting characteristic 

and highlighted neuronal behaviours, serve as excellent potential candidates for 

neuromorphic photonic implementations of novel ultrafast and efficient information 

processing systems for brain-inspired computing and light-enabled Artificial 

Intelligence (AI) hardware.  
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Chapter 1  

Introduction 

 

In this Chapter we will preface the reporting of results with the motivation 

behind this research (Chapter  1.1). Specifically, we will shed light on some of the 

reasons behind the desire for novel information processing architectures, including 

the draw backs of tradition processors and the arrival of the Artificial Intelligence 

(AI) revolution. We will then introduce the concept of neuromorphic information 

processing (Chapter  1.2), observe the biological systems that inspire the topic, and 

highlight how neuromorphic computing architectures are achieving information 

processing with electronic and photonic technologies. We will introduce 

semiconductor lasers (Chapter  1.3) and describe their operation, before focusing on 

vertical-cavity surface-emitting lasers (VCSELs) (Chapter 1.4) as the primary 

devices used in this PhD research project. Here, we will discuss the structure, 

properties and advantages of VCSELs. We will then discuss how the technique of 

optical injection (Chapter  1.5) can be used to produce numerous dynamical 

responses, including neuronal behaviours, in VCSELs. Finally, we will introduce the 

topic of VCSELs for neuromorphic computing (Chapter  1.6) and highlight the most 

recent reports on the use of these systems for ultrafast neuronal-like effects and 

information processing. A short outline of the thesis is given in Chapter  1.7.  

 

1.1 Motivation 

For decades digital electronics have powered the thriving advancement of 

information processing in our society. Following the first commercial 

microprocessor in 1971 [1], the precedent for central processing unit (CPU) 

development went as the doubling of transistor count, every two years. This 

observation, known as Moore’s law [2], was used for decades to predict the progress 
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of digital processors with time. This law, however, now seems to be slowing with 

factors such as the breakdown of Dennard scaling [3] (the previous idea that power 

density remained constant when shrinking transistors) impeding the rapid 

development of new microchips. Fundamentally, it is now understood that the scaling 

of transistors in this fashion is limited by the energy consumption, dissipation, and 

joule heating of the components that make up electronic chips [4]. The ensuing 

struggle to maintain the pre-existing power efficiency growth rate (Koomey’s law 

[5]) of the microprocessor has also impacted the overall growth of maximum clock 

speed. For this reason, we are witnessing a plateau in processor frequency and a shift 

to parallel-processing, multi-core designs [6], with the overall environment for 

creating new, fast and power efficient CPUs becoming increasingly challenging.  

Alongside this plateau in the performance enhancement of digital processors, the way 

society uses and accesses data and information has significantly expanded over the 

past decade. The development and mass adoption of smart devices, that interconnect 

and share information (the so-called internet of things, IoT), as well as the big data 

problem (the challenge on how to process massive datasets) is putting extra pressure 

on the traditional digital computer processor. The ever-increasing demand for fast 

and highly efficient processing platforms has pushed digital electronics, and now 

having developed graphical processing units (GPUs) for higher computational 

throughput, electronics has laid the foundations for the AI [7]–[10].  

AI, the ability of a computer to perform tasks that typically require human 

intelligence and discernment, is achieved by teaching computers to learn from data 

or experiences (machine learning) or by building artificial neural networks (ANNs) 

with structured algorithms that allow the computer to make decisions on its own 

(deep learning). Since its development, AI has worked its way into our daily lives, 

and now exists within our homes, hospitals, mobile devices, etc., thanks to its proven 

excellence at performing complex processing tasks (e.g. image processing [11], [12], 

language translation and speech recognition [13], even the strategy game Go [14]). 

The digital processor, based on the so-called Von-Neumann computing architecture, 

is, however, not well suited for deep learning. The Von Neumann bottleneck, the 

requirement to bus data from memory to the CPU, means that traditional digital 

processing architectures lack the parallelism to perform these complex tasks as 
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efficiently as brain-inspired (neuromorphic) ANNs. The AI revolution, big data and 

the plateauing of digital electronics, are all therefore responsible for pushing 

researchers in the direction of a novel processing paradigm, namely neuromorphic 

information processing. 

 

 

Figure 1.2.1 – a) Schematic of a biological neuron. b) Nonlinear model of a neuron, with 

inputs (x1), weights (w1), an adder, a non-linear activation function and an output (y).  

  

1.2 Neuromorphic Information Processing 

A new generation of non-Von Neumann computing architectures, called 

neuromorphic systems are seeing a research surge in an attempt to address the 

challenges posed by the AI revolution and big data. These neuromorphic computing 

architectures aim to decentralize dedicated processing units and create computers 

inspired by the processing systems observed in nature, namely neural networks. One 

of the most well-known and impressive neural networks in nature is that of the 

biological neurons in the brain. In the brain three essential elements are responsible 

for creating the efficient processing system, the neuron, the synapse, and the coding 

scheme. Biological neurons, are nerve cells that are known to communicate within 

the brain’s neural networks using electrical graded action potentials, which appear in 

the form of spiking responses [15], or graded potentials, that appear as slower analog 

signals. The action potentials are typically generated via chemical processes and alter 

the voltage potential across the cell. Action potentials are passed to interconnected 

neurons through what are called synapses, where axon terminals of a neuron meet 
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the dendrites of another, allowing the generated electrical impulse to flow between 

neighbouring neurons (see Fig. 1.2.1 (a)). The action potentials created by neurons 

are a sparse coding scheme, digital in amplitude but analog in time, exhibiting both 

the expressiveness of an analog signal and the robustness of a digital signal [16]. 

Neuromorphic systems draw inspiration from these three elements, to create artificial 

spiking neurons and ANNs for use in information processing.  

 

Figure 1.2.2 – Schematic of different Artificial Neural Network (ANN) architectures. a) A 

Feed-Forward Neural Network and a b) Recurrent Neural Network (RNN). Both 

architectures are comprised of three types of layers (input, hidden and output), each 

connected via weighted synaptic connections. Feed-forward networks pass information to 

the next layer. RNNs can pass information within a layer and backwards towards previous 

layers. 

 

Initially, research into ANNs considered directly mimicking biological neural 

networks, but soon the field was reorientated to mimic the structure of neural 

networks with different neuronal models. ANNs were first proposed in 1943 [17] and 

ever since, a wide diversity of ANN models have been proposed, with and without 

spiking dynamics at the core of their operation [18]. One of the most typical ANN 

models is the so-called feed-forward neural network [19]. In this type of ANN 

structure (see Fig. 1.2.2 (a)), neurons (or nodes) are connected in layers, with neurons 

in one layer sequentially connected to neurons in the next layer. Within the ANN 

each connection has a strength called a weight, which controls how much one neuron 

influences another. The ANN has an input layer, one or more hidden layers, and an 



15 
 

output layer, with the number of neurons in each layer varying with the network 

application. The input layer introduces information into the ANN in the form of 

stimulations that trigger the dynamics of the system. The information is passed 

through the weighted connections in the hidden layer until it reaches the output layer, 

where the output of the system (in response to the incoming information) is encoded 

in the state of the nodes. Nodes within the hidden layers of ANNs do not always 

require to be fully connected, and connection architectures that pool neurons (the fan-

in connection of many neurons to one) can be used to reduce the number of neurons 

in a layer [20]. Further, networks known as Recurrent Neural Networks (RNNs) can 

allow nodes within layers to interact and can even allow connections to be made to 

previous layers [21] (see Fig. 1.2.2 (b)).   

ANNs come in a large variety of configurations, making it possible to implement 

numerous tasks. The highly parallel nature of ANNs spread computation across 

multiple nodes allowing complex problems, such as pattern (e.g. image and speech) 

recognition and decision making to be solved efficiently. However, with a diverse 

range of ANN parameters, such as weights, layer numbers, and node numbers, it can 

be difficult to find an optimal configuration for a specific task. The process of 

optimising an ANN configuration and minimising the error during processing tasks 

is called learning, and learning can be achieved by training the ANN [20]. During 

training the weighted connections within the ANN are configured to maximise the 

performance of the specified task, and training concludes when the observed error 

makes no notable improvement. If training does not provide sufficient performance, 

then the architecture and configuration of the ANN should be altered. The training 

of ANNs is very computationally expensive because the number of synaptic weights, 

which take positive and negative real values, far outnumber the nodes within a 

network. For example, in biological neural networks one cortical neuron can have up 

1000 synaptic connections [22]. Training also often requires multiple cycles (or 

epochs) before the optimal network parameters are found, further intensifying the 

computational requirements. Due to these high computational requirements, although 

ANNs were initially simulated by IBM in 1955 [23], reports diminished until a more 

efficient back-propagation method of training neural networks was demonstrated 

[24].  
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Like biological neurons, nodes within ANNs perform specific functions. 

Fundamentally, the neuronal nodes apply a non-linear transformation, called an 

activation function, to the total summation (or integration) of all the weighted inputs 

coming from synapsed nodes (see Fig. 1.2.1 (b)) [25]. Different nonlinear 

transformations, such as Heaviside and sigmoid functions [26], have been used in 

ANNs but basic threshold-and-fire class models, such as the integrate-and-fire 

neuron model, describe well the behaviour of neurons in a network [27]. These 

neuronal models demonstrate the ability of a neuron to receive and combine inputs 

from multiple up stream neurons. An integrate-and-fire neuronal model will summate 

all weighted inputs that arrive over time and can appear leaky or perfect, meaning 

the integration decays or does not decay over time, respectively [28]. Leaky 

integration specifically, allows the neuronal model to hold short term memory, 

enabling the node to correlate inputs that arrive close in time. The integrated input 

contributions are subsequently subject to the activation function that acts as a 

thresholder, where it may or may not produce a dynamical response at the system’s 

output, depending on the total input of the system. Successful dynamical responses 

then reset the system over a short refractory period, where the node (like cortical 

neurons in the brain) will not fire again.  

The Leaky Integrate-and-Fire (LIF) neuronal model is one of the most typical models 

for spike-based ANNs, typically referred to as Spiking Neural Networks (SNNs). The 

LIF neuronal model can operate with the sparse all-or-nothing spike-based coding 

scheme and in doing so more closely emulates the spike-based networks of real 

biological neurons. SNNs produce and communicate information in a spiking 

representation that can be characterised by the firing rate (rate coding) or the timing 

of individual spikes (temporal coding) [16], [29]. There are benefits to representing 

information in this way, for instance; the sparse coding system only spends energy 

when activating a spike in the network, promising improvements to the power 

efficiency of computations in SNNs [30], [31]; spike information is not lost in 

dispersive networks due to pulse spreading as the information is contained in the 

timing of the spike; spikes can be regenerated by intermediate network nodes helping 

mitigate the accumulation of noise and lossy connections; a reduced number of nodes 

may be required by the network to perform certain tasks compared to other ANN 
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systems [32]–[34]. Spike-based approaches also promise improvements to the power 

efficiency of computations because they exploit the underlying physics of biological, 

analog electronic, and optoelectronic platforms. 

 

Figure 1.2.3 – Examples of electronic neuromorphic chips including the a) Neurogrid chip 

by Standford University (Image reproduced from [35]). b) BrainScaleS chip by University 

of Heidelberg (Image reproduced from [36]). c) The SpiNNaker project by the University of 

Manchester (Image reproduced from [37]). 

 

Reports of electronic approaches to artificial neuromorphic computing systems first 

found interest several decades ago [38]. Since then, electronic technology has 

matured significantly and now there are several impressive electronic-based 

neuromorphic computing platforms in development. Some of the notable spiking 

neural network systems include; Neurogrid by Stanford University [35], [39], 

TrueNorth by IBM, as part of the SyNAPSE program [40], [41], HICANN and 

BrainScaleS systems by the University of Heidelberg [36], [42], Loihi by Intel [43], 

and SpiNNaker by the University of Manchester [37]. These spiking platforms apply 

electronics to realise networks of thousands of neurons and hundreds of thousands of 

synapses (see Fig. 1.2.3), with stackable architectures like SpiNNaker realising even 

larger million-neuron systems, well beyond what is achievable with alternative 

platforms. Typically, these spike-based systems realise neuromorphic operation with 

electronic spiking responses up to MHz speeds. For example, the recent Loihi system  

operates with an impressive 400 ns per timestep (2.5 MHz) [43], and the HICANN 

system utilises spiking refractory periods of 10 µs (0.1 MHz) [42]. Other systems, 
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such SpiNNaker, TrueNorth and Neurogrid operate with biologically realistic 

timescales of kHz (tens of millisecond speeds), making them highly valuable 

platforms for the investigation of how of biological neurons operate [39]. Further, 

neuromorphic electronic systems have implemented different neuronal computing 

principles including analog signalling and learning, and have shown great 

performance and efficiency when completing tasks of computer vision, speech 

processing and decision making. However, like the traditional microprocessor, cross 

talk, dissipation and joule heating place physical limitations on the speed, bandwidth 

and efficiency of the electronic platform [4].  

An alternative to electronic-based implementations is a neuromorphic photonic 

platform. Photonics benefits from a wide range of light-enabled devices that have 

access to high communication bandwidths, low cross talk, high energy efficiency and 

high-speed optical signals. These characteristics align well with the goals of 

neuromorphic processing systems and help to remedy some of the limitations 

imposed on electronic-based platforms. Making a direct comparison between the 

energy efficiency of electronic neuromorphic systems and photonic neuromorphic 

systems is increasingly difficult task. Multiple approaches are taken on both 

platforms, and the platforms themselves are at different development stages. 

However, what can be said is that there is still gains to be made (in terms of energy 

efficiency) in photonics platform. Switching to photonics could provide benefits, 

inaccessible to electronics, such as low loss passive components for low cost 

computing operations. Further, photonic technology has access to optical techniques 

such as Wavelength-Division Multiplexing (WDM), where multiple signals can be 

can carried across the same communication channel using multiple wavelengths, to 

implement large network interconnects that introduce another dimension for 

processing in addition to space and time, also improving efficiency [44]. Further, 

maturing photonic technologies have also developed a growing tool kit of 

components for on-chip Photonic Integrated Circuits (PICs) [45]. For instance, PICs 

can make use of optical waveguides that are able to passively communicate analog 

signals with low latency and low electromagnetic interference. PICs therefore hold 

the potential to improve the footprint of neuromorphic photonic platforms, bringing 

the enhanced performance and efficiency to compact application-driven integrations.  
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A large benefit of utilising a photonic platform for neuromorphic processing is that 

photonics has many underlying physical processes analogous to biological neurons. 

In light-enabled platforms these physical processes can reach very high speeds (GHz-

rates), >6 orders of magnitude faster than the timescales of biological neurons [46], 

and importantly, multiple orders of magnitude faster than the previously discussed 

electronic neuromorphic systems (MHz-rates). Since the early 2000’s [47], reports 

of photonic systems for ultrafast artificial neuronal models and ANNs have slowly 

grown in popularity. In just the past decade however, the field has very rapidly 

expanded to the point where a plethora of photonic devices have been proposed for 

neuromorphic technology. Photonic crystal structures [48], [49], fibre lasers [50], 

[51], semiconductor optical amplifiers [52], [53] and optical modulators [54], [55] 

have all been demonstrated for their capability to create neuromorphic systems with 

varying degrees of inspiration on spiking and non-spiking neurons. Neuromorphic 

systems based on hybrid semiconductor-superconductor platforms have also been 

proposed as a means of scalable ANNs with low power density [56].  

 

Figure 1.2.4 – Neuromorphic nanoscale optoelectronic Resonant Tunnelling Diode (RTD) 

circuit. RTD-laser diodes (LDs) and RTD-photodetectors (PDs) are used to interconnect two 

artificial spiking optoelectronic neurons. RTD-LDs can integrate signals and produce 

electrical excitable responses, subsequently generating optical spiking signals. RTD-PDs 

convert optical spiking signals to electrical inputs to the next artificial neuron. Figure 

reproduced from [57]. 
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Resonant tunnelling diodes (RTDs) are another technology offering great promise 

for neuromorphic photonic computing [57]–[63]. RTDs are devices with embedded 

double barrier quantum wells (DBQW), which are realised with two thin layers of 

semiconductor material of narrow bandgap. When carriers are pumped with the 

energy matching the confinement energy of the double barrier structure, they can 

cross it, creating a current flow through the device. The correct pump energy 

represents a local maximum in the system, with changes in bias resulting in drops of 

current, forming the characteristic N shaped voltage-current relationship [58]. RTDs 

have shown the capability to operate as high frequency oscillators (up to THz rates) 

[58], [59] but also as neuromorphic spiking elements [57], [60]–[63]. RTDs have also 

been paired with semiconductor lasers (SLs) to create high-speed (sub-nanosecond) 

neuromorphic optoelectronic circuits [61], [62] with neuronal feedback connections 

also having been explored [63]. More recently, a nanoscale RTD-laser diode (LD) 

and RTD-photodetector (PD) system was proposed as a fast, spiking solution for 

ANNs (see Fig. 1.2.4) [57]. This theoretical work reports the temporal integration of 

high-speed inputs within an RTD and the subsequent generation of a (sub-

nanosecond) spiking output, like that of a biological neuron, via an interconnected 

laser diode. The optical spiking signal is then collected by a PD and injected into the 

downstream neuron, realising an optoelectronic synaptic connection. In this report 

[57], pattern recognition and image edge detection were achieved with a single RTD-

LD and supervised learning was also utilised to perform a high-speed pattern 

recognition task with a network of 5 RTD-based spiking nodes. These optoelectronic 

RTD circuits are therefore exciting nano-scale neuromorphic candidates, capable of 

neural network operation with fast optical spike-based signals.   

One technology that has contributed substantially to the realisation of photonic 

neuromorphic systems is the semiconductor laser (SL). These devices, which will be 

discussed in more detail in Chapter 1.3, have created numerous reports of 

neuromorphic photonic systems thanks to their non-linear dynamical behaviours. 

Micro-disk lasers [64], micro-pillar lasers [65], micro-ring lasers [66], [67], quantum 

dot lasers [68]–[70], and distributed feedback lasers [71] to name a few, have all 

shown neuromorphic responses. Detailed reviews of the progress of semiconductor 
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lasers in neuromorphic photonics have been recently produced [46], [72]–[74], 

gathering key developments in this field. The neuromorphic applications of the 

vertical cavity-surface emitting laser (VCSEL) are particularly interesting and are 

hence the focus of this thesis. The uses of VCSELs in neuromorphic photonic 

systems will be firstly introduced in this thesis in Chapter 1.5-1.6. 

Beyond SLs, additional research efforts have been made to accelerate information 

processing with photonic ANNs. Photonic neuromorphic accelerators, based on on-

chip integrated micro-ring resonator weight banks [75], [76] and micro-ring 

modulators, have generated significant interest [77], [78]. The photonic ANN 

accelerator, shown in Fig. 1.2.5, weighs multiple wavelengths in parallel, via 4 in-

series micro-ring resonators, before combining them in a balanced PD. The weight 

of each resonator is set via addressable heating controllers and the balanced PD 

enables the generation of positive and negative electrical signals. The PD signal is 

passed to a micro-ring modulator that integrates the contribution of each wavelength 

and regulates the intensity of a CW pump laser according to different configurable 

transfer functions, realising the operation principle of a neuron on-chip. This artificial 

(non-spiking) neuron has shown the possibility to operate with multiple fan-in 

connections and has demonstrated cascadability (the capability to trigger connected 

downstream neurons). This makes this approach suitable for integration into ANNs, 

built with multiple similar neurons, such as a proposed broadcast-and-weight 

architecture [79]. This system has been proposed for numerous computing tasks 

including image classification and model-predictive control, where the high-speed 

and highly-parallel nature of the photonic accelerator can overcome the bottlenecking 

experienced by digital processors [80]. Other neuromorphic photonic accelerators 

have also been reported towards the goal of achieving computer vision and image 

recognition [81]–[83]. These systems which are built using micro-ring resonators 

[81] and Phase Change Material (PCM) cells [82], [83], create photonic ANNs that 

apply the image processing technique convolution alongside machine learning to 

classify input images. The photonic accelerator system based on PCMs reported a 

high classification accuracy of 95.6% on the industry-standard MNIST hand-written 

digit image classification task. The high performance was paired with a very low 

power consumption per calculation, 17 fJ per multiply-and-accumulate (MAC) 
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operation, realising an efficient system that removes the bottleneck in machine 

learning tasks commonly found in applications such as live video processing and 

autonomous driving [83].  

 

Figure 1.2.5 – A silicon photonic neuron. Micro-ring weight banks (WEI) and micro-ring 

modulators (MOD) are used in combination with balanced PDs (BPD) to create a broadcast-

and-weight ANN. Multiple laser diodes (LD) are used as used as pumps sources. Green lines 

represent electrical connections. Figure reproduced from [77]. 

A very powerful neuromorphic processing technique, called reservoir computing 

(RC), has also found application on photonic platforms. RC, a technique directly 

related to RNNs, was first derived in the early 2000s as a means to reduce the costs 

of RNN training [84]–[86]. It was shown that successful performance could be 

achieved in RNNs by limiting the trained weights to those in the output layer [84]. 

In this configuration, nodes within the hidden layers of the network form what is 

called the reservoir. The nodes within the network are non-linear elements and the 

connections within the hidden layer are fixed. Any information that is injected into 

the reservoir is projected into a higher dimension where there is an increased chance 

of making the information linearly separable [84]. This makes reservoirs capable of 

performing tasks such as classification, where information that’s difficult to 

distinguish can be separated by hyper planes in the reservoirs higher dimensional 

space. The concepts of echo state networks and liquid state machines both fall within 

the framework of RC [87], with extreme learning machines operating with a similar 

principle but without recurrent connections [88]. In photonics there have been reports 

of silicon photonic RC systems [89], and systems based on SLs with delayed optical 
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feedback [90], [91]. These systems have demonstrated impressive performance at 

numerous complex processing tasks including pattern recognition and image 

classification, time series prediction, and the post processing of signals received 

during communications [92]. The recent reports of photonic RC systems using 

VCSELs will be discussed in more detail in the upcoming Chapter 1.6. 

Finally, neuromorphic SNNs, specifically software-implemented SNNs, have 

recently found application in a number of image processing tasks. Numerous reports 

detail the impressive performance of the software SNNs when combined with 

different photonic sensors [93]–[95]. The software SNNs have been combined with 

dynamic vision sensor cameras [93], neuromorphic vision sensors [94], and single 

photon avalanche detectors (SPADs) [95], that collect image information directly in 

a spiking representation. The hybrid sensor-software SNN is then used to directly 

perform convolution and pooling with the spiking input signals, to achieve different 

image classification tasks. Software SNNs have also shown lower energy 

requirements per operation than other ANNs. Latency in SNNs is low, due to only 

the active parts of the network requiring computation [96]. Overall, these reports of 

SNNs highlight the great potential of future experimental SNN realisations, which 

utilise the performance, energy efficiency and fast operation speeds of photonic 

technologies for neuromorphic processing systems.  

In summary, neuromorphic computing systems, which take inspiration from 

biological neurons and neural networks, can therefore be implemented to realise 

complex computing tasks. The highly parallel nature of ANNs allows the 

computation to spread across the network removing the bottleneck that occurs in 

traditional digital processors. The field of photonics has additional advantages to 

offer when realising neuromorphic platforms, including high bandwidth, high 

efficiency and ultrafast speeds (multiple orders of magnitude faster the MHz 

timescales of electronic approaches [72]). A photonic platform that has shown great 

promise is that of SLs, which offer underlying nonlinear dynamical responses 

analogous to those found in biological neurons but at ultrafast speeds. In order to 

engineer future photonic ANNs, and unleash the computation power of 

neuromorphic systems, we look to creating artificial neurons with key-enabling 

VCSELs, as it will be discussed in detail in subsequent Chapters of this thesis. 



24 
 

 

1.3 Semiconductor Lasers 

Lasers are a special type of light source that produce intense beams via the 

process of stimulated emission. The term LASER is an acronym of Light 

Amplification by Stimulated Emission of Radiation, and the focused beam of light 

emitted by lasers is characteristic. Laser beams are known for a number of useful 

properties including; directionality, they typically emit light in a single direction; 

coherence, the emitted waveforms have a constant or zero phase difference that does 

not change with time/space; near-monochromaticity, the wavelength of emitted light 

has a small linewidth [97].  

The application of these light-emitting devices has undoubtably shaped the world 

around us, with a near endless list of disciplines benefiting from the technology. In 

industry, lasers are used for cutting, welding and cleaning. In medicine and 

cosmetics, they are used for tattoo removal, eye surgery, dermatological skin 

treatments, and imaging (through techniques such as tomography and microscopy 

[98]). Other applications, such as Light Detection and Ranging (LIDAR) use laser 

beams to scan landscapes, providing information on ranges for navigation, 

contributing massively to recent demonstrations of driverless vehicles [99]. Even in 

information technology they are responsible for optical storage, including the reading 

and writing of DVDs and Blu-rays. One field that has benefited significantly from 

the development of lasers is optical communications. The optical transmission of data 

through optical fibre has increased the speed of data transfer by multiple orders of 

magnitude, while enabling low loss, long distance connections [100]. Lasers are 

therefore utilised in many everyday technologies although it may not initially be 

obvious. One of the most common laser types, semiconductor lasers (SLs), are 

frequently found in optical communications and mobile technology thanks to their 

unique small compact structures, long lifetimes, and high efficiencies [101].  
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Figure 1.3.1 – (a) Schematic of a basic Semiconductor Laser. Electrons and holes from n- 

and p-doped semiconductor materials respectively, recombine to yield light emission. Light 

is confined between two reflective surfaces and extracted through one partially transparent 

mirror. (b) Energy band diagram of a Quantum Well (QW) laser undergoing stimulated 

emission. The QW’s high refractive index difference improves emission efficiency. 

  

SLs built using semiconductor materials, were first experimentally reported in 1962 

[102], [103]. Since then, a large number of devices have been realised with different 

emission wavelengths, optical emission powers, polarisations and internal structures 

[104]. The operation principle of SLs is similar to that of forward-biased p-n 

junctions. Two doped semiconductor materials (one with n-donor and one with p-

acceptor impurities) are sandwiched between two reflecting mirrors (see Fig. 1.3.1 

(a)). Where the p and n-doped materials meet, is known as the active region. In the 

active region each semiconductor material has an associated band structure and band 

gap energy between the conductance and valence band. When a forward bias 

(approximately equal to the band gap energy) is applied to the material, electrons 

reach the conductance band where they can recombine with holes. Electron-hole 

recombination creates the emission of photons with energy approximately equal to 

the band gap energy. This process is called charged carrier radiative recombination 

and is the reason the frequency of laser light is generally dictated by the bandgap of 

the semiconductor material used to fabricate them. With electrons in the conduction 

band, stimulated emission can also occur, whereby an incoming photon of suitable 

energy stimulates the emission of another identical photon. Therefore, in order to 

achieve the lasing condition, the system must be pumped to population inversion, 

where more electrons exist in the conductance band than in the valence band. Here, 

during population inversion, the probability of radiative interactions (due to 
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stimulated emission) is higher than the probability of photon absorption. Therefore, 

the rate of stimulated emission overcomes the rate of optical losses, producing 

amplification and gain in the system (the lasing threshold) [105]. Pumping in SLs is 

typically achieved using an electrical current injection (as in p-n junctions) but can 

in some cases also be achieved by the optical absorption of light. The mirrors of the 

laser form a Fabry-Perot (FP) cavity with the gain section, allowing the light to be 

reflected and amplified repeatably. Light is extracted from the cavity by making one 

(or both) of the mirrors partially transparent. In semiconductor structures, the cavity 

mirrors are not always external and can instead be implemented using structures such 

as Distributed Bragg Reflectors (DBRs), a periodic structure of materials with 

alternating refractive indices that achieve high reflectivity through the interference 

of partial reflections.  

Most modern SLs also feature additional heterostructures within the active region of 

the laser to help improve efficiency. One example is the widely adopted quantum 

well (QW) structure. In these QW SLs the active region consists of one of more layers 

of thin semiconductor material (thickness is smaller than the wavelength of the 

carriers), with a specific band gap. The thin QW layers impose quantum confinement 

on the carriers, restricting their motion within the plane of the film (see Fig 1.3.1 (b)). 

This improves the efficiency of QW structures allowing them to achieve lower 

threshold operation with a selectable frequency [106]. Stacking multiple QW layers 

at the peak of the laser standing wave can make use of resonant period gain to produce 

large amounts of optical gain. Various heterostructures that further confine the 

movement of free carriers in the active region, such as quantum wires and quantum 

dots (QDs), have also been realised [107], [108]. The selection of semiconductor 

material is also important as the gain depends on the α factor of the medium. The α 

factor, known as the linewidth enhancement factor, represents a coupling between 

the phase and gain of the light emitted by the laser. This arises from a carrier density-

dependant refractive index and is responsible for the larger linewidth in SLs 

compared to other laser types. The α factor is therefore a non-linear effect which 

influences the dynamics produced by SLs under modulation and external optical 

injection [109]. 
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Figure 1.4.1 – A structure schematic of a vertical-cavity surface-emitting laser (VCSEL). 

 

1.4 Vertical-Cavity Surface-Emitting Lasers (VCSELs) 

SLs come in a variety of structures, but one in particular represents a growing 

section of SL research and application, the Vertical-Cavity Surface-Emitting Laser 

(VCSEL). VCSELs, known characteristically for their vertical light emission, are a 

design of SLs that have found a range of applications in-part thanks to their compact 

structure [110] and reduced manufacturing costs. VCSELs, are typically grown either 

using molecular-beam epitaxy (MBE) [111] or metal-organic chemical vapour 

deposition (MOCVD), and consist of two DBRs surrounding an active layer (see Fig. 

1.4.1). The top and bottom DBRs (green and yellow layers in Fig. 1.4.1) are normally 

doped p- and n-type to assist in the movement of carriers. Typically, the top DBR 

features fewer alternating pairs to create a highly reflective, yet partially-transparent, 

mirror to maximise light emission vertically from the top surface of the device’s stack 

structure.  The active layer (red) within the cavity features the chosen heterostructure 

(frequently QWs) and the laser cavity is pumped electrically through positive and 

negative electrodes (black layers). The whole stacked structure sits on a substrate 

(grey) which is in contact with a heatsink for temperature measurement and control. 

The whole stacked structure is short and compact, with the cavity length measuring 

approximately one wavelength of the emitted light. The reflectivity of the DBR 

mirrors are therefore required to be very high (>99%) due to the small size of the 
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gain region [112]. The stacked structure is one of the benefits VCSELs have over 

conventional edge-emitting lasers. The vertical structure means both wafer-scale 

manufacturing and testing are possible before packaging, helping increase the yield 

and reduce the price of the laser production. Additionally, thanks to their short 

symmetrical cavities, VCSELs have a circular beam profile and inherently produce 

a single longitudinal mode, making them capable of highly efficient coupling to 

optical fibres and ideal for creating integrated 2D arrays of on-chip integrated laser 

sources. Compared to edge-emitting lasers, VCSELs also have low threshold currents 

and low power consumption [113], making them appealing in modern applications 

where power is restricted (e.g. mobile technology). Finally, unlike edge-emitting 

lasers, the vertical emission and small cavity of VCSELs also requires us to consider 

the spin state of electrons during carrier recombination. When up and down spin 

transitions occur, light with either left-circular or right-circular polarisation is 

created. Due to cavity anisotropies (the ability to exhibit different properties along 

different axis) VCSELs can support emission in two different linear polarisation 

modes. The two polarisation modes exist in the fundamental spatial mode of VCSELs 

and are orthogonal (in polarisation) to one another. Due to birefringence and 

dichroism, the two modes exhibit slightly detuned frequencies and different gain, 

typically producing linearly polarised light along one favoured axis [114]. The 

polarisation properties of VCSELs are therefore unique and are interesting to 

applications that can exploit the switching of the dominant polarisation mode.   

The first demonstration of a VCSEL was made in 1979 [96], with low threshold 

operation reported as early as 1987 [115]. The first room temperature continuous 

wave (CW) operation was achieved in 1989 with GaAs VCSELs [116]. Since then, 

further design improvements have been made to enhance their low-threshold 

performance. Methods such as reducing the lateral dimension of the active layer 

[117] and introducing better carrier confinement have been used to reduce current 

required for lasing. Improved carrier confinement has been realised using a number 

of techniques [118], such as; the use of ring or circular electrodes to limit the current 

flow; proton bombardment to create insulating layers that limit the spread of current; 

and the implementation of transparent insulating layers via oxidised AlAs. Gain 

enhancement, via the improved overlap of the optical field with the gain region, has 
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also been implemented using oxidised AlAs layers. The oxidised layers create optical 

confinement via a lensing effect due to a difference in refractive index.  

The design and production of GaAs VCSELs, mainly operating at 850 nm, is thus 

well established and has been widely adopted for short-range optical communications 

[119]. Long wavelength VCSELs (operating at the 1300 and 1550 nm wavelength 

windows), desirable for long distance single-mode fibre-optic communications, have 

however experienced a slower development. The lack of lattice-matched materials 

that provide high gain and sufficiently high-refractive index contrast for DBRs, have 

provided a design challenge. The first 1300 nm long wavelength VCSEL was 

demonstrated in 1993 [120], and now 1300 & 1550 nm VCSELs are commercially-

available through companies such as RayCan [121], Vertilas GmbH [122], and 

Alight Technologies [123]. The commercially-sourced VCSELs featured in this 

work, are monolithic devices with an active layer of InGaAs QWs and 

InAlGaAs/InAlAs DBRs. These devices were reliability tested for optical 

communications and have long-term sustainability with room temperature lifetimes 

of 2 × 107 hours [121]. These devices are also desirable for optical communication 

because of their high modulation capability. The small compact volume of the 

VCSEL structure enables high modulation speeds to be reached while remaining at 

low bias currents, with a high power conversion efficiency and low power 

consumption. Numerous modulation techniques have been used to reach high data 

transmission speeds with VCSELs (see [124] for a review), but recently an energy-

efficient, directly NRZ-modulated optical link, consisting of a ~30 GHz VCSEL was 

reported to achieve the high data transmission rate 80 Gbit/s [125]. With other 

complex multi-VCSEL modulation schemes reaching 224 Gbit/s [126], and some 

industrial companies adopting VCSELs for 5G datacentres, the technology is at the 

forefront of research into >100 Gbit/s data transmission. The challenge in creating 

VCSELs capable of high-speed modulation lies in improving optical confinement, 

improving the gain of the active layer and reducing heat generation. 
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1.5 Optical Injection in VCSELs  

In SLs the use of optical signals goes beyond the optical pumping of cavities. 

The high gain and non-zero α factor mean changes in carrier density affect the SL’s 

emitted light. The α factor couples light variations within the cavity to its phase, 

hence any light-induced intensity changes influence the carrier inversion and the 

subsequent output field of the laser, creating dynamical effects [127]. This makes 

SLs susceptible to light from different sources such as external lasers and even 

reflections of its own emission (optical feedback). When a SL is subject to optical 

injection, it is placed into a unidirectional scheme where light from a master laser 

(ML) is injected into the device’s cavity, referred to as the slave laser. During optical 

injection the frequency of the injected light is set close to the resonant frequency of 

the slave laser, prompting the injected light to interact with the slave’s lasing 

emission. Optical injection adds an additional degree of freedom, meaning various 

laser dynamics can be observed (see [127], [128] for reviews). A wide range of 

dynamics have been demonstrated theoretically and experimentally in SLs over the 

last decades, including stable and unstable injection locking [129], oscillations [130], 

instabilities and chaos [131], [132], and four wave mixing [133]. 

The technique of optical injection was demonstrated with SLs as early as 1975 [134] 

with subsequent reports [135], [136] demonstrating the technique as a means to 

stabilise single mode operation. Injecting light from one laser into another can 

transfer the frequency characteristics of the master to the slave, synchronising the 

emission wavelength and linewidth. This helps ensure single mode operation in the 

slave laser, reducing intensity noise [137], [138], and laser linewidth [139]. Enhanced 

modulation bandwidth has also been observed through optical injection [140] making 

it a topic of interest to optical communication applications. These improved 

conditions are achieved thanks to optical injection locking. During injection locking 

the frequency of the slave follows the frequency of the master (frequency-locking) 

given two conditions are satisfied; the detuning between the injected frequency and 

slave frequency is sufficiently small; and the injected power is sufficiently high. Due 

to the red shift of the cavity, caused by the α factor and the carrier density dependant 

refractive index, the range in which locking is achieved is typically asymmetrical 
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around the cavity resonance. If the system is operated out-with the required frequency 

and power parameter range, the lasers become unlocked, and non-linear dynamics 

can occur. Both theoretical and experimental SL studies into the effects of injection 

power and frequency detuning have been made using small perturbation analysis 

[141], [142]. In these reports, the dynamics of a slave SL are mapped out by testing 

the stability of each point (in parameter space) to small fluctuations in phase, carrier 

density, and electric field. In these maps, injection locking exists for regions in 

parameter space at or close to stable solutions. However, where no stationary solution 

exists, the laser system can exhibit non-linear behaviours (e.g. oscillations, chaos 

etc.). At the boundaries between injection locking and non-locking regions, there are 

fundamentally bifurcation points, where stable solutions change to unstable 

solutions. Within the region of optical injection both stable and unstable injection 

locking regions exist. In the unstable region, chaotic bifurcations can occur, 

disrupting the injection locking of the laser system, and along the boundary of the 

bifurcation, periodic oscillations can grow to chaotic dynamics [104].  

Optical injection in VCSELs is particularly interesting given the unique attributes 

granted by their design (e.g. compact structure, vertical emission, telecom 

wavelength, etc.). However, performing optical injection in VCSELs does require an 

additional consideration beyond the power and frequency of the injected signal. Due 

to the anisotropies of the cavity, the polarisation of the light injected into the VCSEL 

must be considered. The light polarisation of the external injection can be selected to 

align with either the parallel or orthogonal polarisation modes supported by VCSELs, 

hence realising parallel- or orthogonally-polarised optical injection schemes. 

Additionally, due to the high reflectivity mirrors used to fabricate the VCSEL cavity, 

interference with reflections typically reduces the total detected output power. 

Optical injection in VCSELs was first investigated in 1993 with an orthogonally-

polarised injection configuration [143]. In this report, the orthogonally-polarised 

optical injection matched the polarisation of the subsidiary (non-dominant) mode of 

the VCSEL. It was observed that optically-induced polarisation switching of the 

dominant VCSEL mode readily occurred, with minimum power requirements, when 

the injection frequency matched that of the orthogonally-polarised mode. Following 

the polarisation switch, the originally dominant output mode of the VCSEL was 
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supressed and the new, orthogonal, output mode was injection locked to the master 

laser. This revealed that polarisation of the injected light should coincide with that of 

the subsidiary mode, to achieve polarisation switching most efficiently. The injection 

locking of the orthogonal VCSEL mode was also found to be bistable with injection 

power. The system remained locked to the ML through reducing power levels, 

despite the optically-injected power being lower than the initial injection locking 

requirement. This hysteresis effect, surrounding injection locking and polarisation 

switching, is caused by the presence of two local stable points in parameter space, 

and has been reported in multiple VCSEL systems [144]–[146]. Parallel-polarised 

optical injection has also been investigated in VCSELs, with similar results achieving 

the injection locking and ultrawide hysteresis cycles of 473 GHz [147], [148]. It has 

also been demonstrated that in the case of multimode VCSELs, polarised optical 

injection can be used to select the dominant mode for improved long-distance optical 

communications [149]. The dynamical response of the multimode VCSEL was also 

found to depend strongly on the polarisation of both the injection and the individual 

mode. The polarisation switching effect, and the presence of bistable locking 

regimes, also makes VCSELs particularly interesting in applications involving the 

processing of digital (on-off) optical logic and optical memory [150].  

Optical injection in VCSELs, like in other SLs, has also found application in the 

generation of diverse laser dynamical responses. There have been a large number of 

reports focusing on optical injection in VCSELs, providing small perturbation 

analysis and stability maps [151]–[157]. Specifically, experimental stability maps, 

which detail the dynamics produced by orthogonally-injected VCSELs operating at 

850 nm [151] and 1550 nm [152]–[154], have been reported. Similarly, there have 

been a number of reported laser dynamics produced using parallel injection 

configurations [155]–[157]. In a report by A. Hurtado et al. [152], both orthogonal 

and parallel injection configurations are studied in a 1550 nm VCSEL. Initially, the 

injection frequency was swept around the resonant frequency of the parallel mode 

and dynamics such as period one oscillations, period doubling and chaos, were 

observed for various injection powers. Due to the parallel mode of the VCSEL being 

dominant, the observed results showed strong similarities to the dynamics observed 

in other SLs [127]. However, under orthogonal injection different dynamical regimes 
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appeared in the stability map (see Fig. 1.5.1). Regions of stable injection locking 

(SIL), period 1 oscillations (P1) and irregular/chaotic (CH) dynamics were all 

observed. Each dynamical regime could be observed using a single injection power 

(dotted line) and four different detuning values (black dots). Notably, the region of 

stable injection locking was found to be symmetric around the resonant frequency of 

the VCSEL. This is thought to be caused by the difference in power emitted by the 

two polarisation modes. Initially, the orthogonally polarised mode is suppressed until 

optical injection into the subsidiary VCSEL is performed. The large ratio of injection 

power to subsidiary orthogonally-polarised power, which is much larger than that of 

typical injection into the parallel VCSEL mode, is thought to be responsible for the 

change in behaviour. Polarisation switching (PS) behaviour was obtained across all 

injection locking conditions and for positive detuning values where period 1 

oscillations were occurring (a behaviour also observed in 850 nm VCSELs [151]). 

Injecting into the subsidiary orthogonal VCSEL mode can create periodic dynamics 

due to the beating of the injected signal with the orthogonal VCSEL mode. Here the 

periodic oscillations occur at a frequency equal to the detuning of the injection. 

 

 

Figure 1.5.1 – Experimental stability map of a 1550 nm VCSEL device subject to 

orthogonally-polarised optical injection. The stability map shows the presence of stable 

injection locking (SIL), period 1 oscillations (P1), irregular and chaotic dynamics (CH), and 

polarisation switching (PS). Figure reproduced from [152]. 
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Further, the total output dynamics observed by optically injected VCSELs are often 

the result of the interplay between both linear polarisation modes. A report by P. 

Perez et al. [158], explored the interplay of polarisation modes during the plotting of 

a stability map for an orthogonally-injected 1550 nm VCSEL. Two different bias 

current conditions were studied and the boundaries between distinct dynamical 

behaviours were identified. It was reported that one of the main differences between 

the negative and positive frequency detuning ranges, was the contribution from the 

two polarisation modes supported by the VCSEL. At positive frequency detunings, 

with increasing optical injection power, the orthogonal mode progressively dictated 

the dynamics of the VCSEL’s total output. The orthogonal polarisation would 

provide periodic oscillations (period 1 & period doubling) while the parallel 

polarisation had a flat, weak contribution. At negative frequency detunings, both 

linear polarisation modes contributed to the total output dynamics. In some 

situations, both polarisations contributed oscillations, and in other cases, these would 

produce irregular dynamics. When both contributed to the total output, their 

dynamics were anti-correlated as the modes compete for dominant operation. The 

irregular dynamics observed were non-sinusoidal and pulse-like. These were 

produced near the injection locking boundary and displayed a broad frequency 

spectrum due to the dispersion in inter-pulse time. The inter-pulse time increased and 

broadened further when approaching locking due to the laser emitting more 

consistently at the orthogonal polarisation. VCSELs, subject to optical injection, are 

therefore well suited for the generation of a rich diversity of non-linear dynamical 

behaviours. Among these, VCSELs can access oscillations, irregular pulsating 

dynamics, chaos and injection locking; thus offering a plethora of diverse responses 

useful for numerous applications.  

 

1.6 Neuromorphic computing with VCSELs 

Novel photonic-based information processing platforms have a lot to gain 

from the potential implementation of novel architectures based upon VCSELs. As 
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discussed previously, VCSELs are excellent candidates for optical communication 

and networking, due to their possibility to operate at telecommunication 

wavelengths, their compact array-integrable structure, and efficient coupling to 

optical fibres. Importantly, their high efficiency, low power requirements and high-

speed modulation capability makes them specifically appealing in modern day data 

processing applications where stringent energy and fast speed considerations are 

made. VCSELs have, however, received very important additional research thanks 

to their surprising capability to mimic the responses of biological neurons. 

Specifically, VCSEL-based systems have shown the means to generate non-linear 

responses, directly comparable to biological neurons, including the production of fast 

optical spikes. These optical spikes, similar to the neurons’ electrical action potential, 

have been reported at ultrafast sub-nanosecond rates, multiple orders of magnitudes 

faster than the millisecond time scales of biological neurons [159], [160] and the 

microsecond timescales of recent electronic approaches [72]. Thanks to the initial 

interest in the non-linear dynamics of VCSELs subject to optical injection, a 

research-rich foundation for the generation of these neuromorphic responses exists. 

Therefore, we are now witnessing increasing amount of research into the potential 

realisation of spiking VCSELs for neuromorphic computing functionalities. In 

particular, VCSELs, like biological neurons, can exhibit excitability. A system is said 

to be excitable if a small perturbation, that forces the system away from a quiescent 

state, can result in a large excursion of the system before it returning to its original 

quiescent state.  Excitability, like other types of non-linear dynamics, can be triggered 

in VCSELs when these devices are subject to optical injection and arises in the 

vicinity of bifurcation points in parameter space. Specifically, class 1 excitable pulses 

(spikes) can be generated by saddle-node bifurcations on a limit cycle (SNLC) or 

saddle-node bifurcations on an invariant cycle (SNIC) and is well described in 

numerous reports [18], [161], [162].  

In 2010, A. Hurtado et al. [152] produced an experimental study on the dynamical 

behaviours of 1550 nm VCSELs subject to different types of linearly polarised 

optical injection. In [152], [158] a rich variety of non-linear dynamics were mapped 

in 1550 nm VCSELs across different optical injection powers and frequency 

detunings, including dynamics similar in appearance to excitable (neural-like) spikes. 
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The subsequent report by A. Hurtado et al. [163] then made the link between VCSEL 

dynamics and biological neurons, using linearly polarised modulated optical 

injection to build an artificial photonic spiking VCSEL neuron. In this demonstration, 

optical injection was made into the subsidiary polarisation mode of the VCSEL. An 

intensity modulator was used to generate short pulses that perturbed the system, 

triggering injection locking and polarisation switching. The polarisation-resolved 

output of the VCSEL revealed multiple types of excitable responses (both phasic and 

tonic spiking, see [18] for a review) could be made in response to the optical 

perturbation. The phasic spiking was produced as result of the system transitioning 

across the bifurcation point between the solitary and stable locking state. The phasic 

spikes appeared in both polarisations, at the onset of the perturbation in the 

orthogonal polarisation, and at the end of the perturbation (rebound spike) in the 

parallel polarisation. The oscillatory behaviour, resembling tonic spike firing, was 

produced in the orthogonal polarisation and increased in frequency as the strength of 

the perturbation increased. This was the first implementation of a dynamically-

excited VCSEL neuron producing fast optical spiking at sub-nanosecond rates. This 

same optical injection method was later theorised in [164], to further explore neuron-

like responses in long wavelength VCSELs. The theoretical results found that 

different excitable regimes existed around the injection locking boundary in both 

parallel- and orthogonal injection configurations. The numerical simulations showed 

that single, multiple, and burst excitable responses could be controllably triggered 

using optical perturbations.  

Subsequently, the precise activation of excitable spiking responses in a telecom-

wavelength VCSEL (at 1300 nm) was achieved experimentally in 2015 [160]. As 

theorised, by perturbing the bifurcation point at the injection locking boundary with 

short drops in injection power, the device transitioned through an excitable 

excursion, triggering a fast neuron-like spike. The emitted excitable responses were 

observed in the total output power of the VCSEL and were achieved with both 

parallel and orthogonal injection polarisations (see Fig. 1.6.1 [160]). The excitable 

responses produced were approximately 100 ps-long and highly consistent, yielding 

near identical responses across 100 consecutive perturbations. The precise control of 

the neuron-like excitability was also achieved through the manipulation of the 
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injected perturbation. Increasing the duration of the stimulation produced continuous 

tonic spiking with a controllable number of sub-nanosecond long spikes elicited. 

Similarly, variations in the strength of the stimulation revealed that an activation 

threshold existed within the system, where a response was only fired if the input 

signal (stimulus or perturbation) was sufficiently strong. The gating of excitable 

responses, also observed in biological neurons [15], is an exciting prospect for spike-

based information processing, potentially enabling VCSELs to operate (like neurons) 

as optical threshold-and-fire elements. This report by A. Hurtado et al. [160] 

therefore demonstrated that excitable spikes could be activated with precise control 

in telecom-wavelength VCSELs upon the arrival of user-defined optical 

perturbations, enabling the further investigation of VCSELs as artificial spiking 

photonic neurons. The experimental technique applied in [160], forms the foundation 

for much of the research conducted in this thesis. The activation of ultrafast spiking 

dynamics, via modulated optical injection, is therefore discussed further in Chapter 

3, alongside results collected from our existing VCSEL-based neuromorphic 

photonic systems.  

Excitable pulses have also been observed in short-wavelength VCSELs (at the 980 

nm wavelength window) subject to phase-modulated optical injection. Using a phase 

modulator, M. Turconi et al. [165] introduced 100 ps-long phase jumps of increasing 

amplitude and measured the response of the VCSEL. The report showed that low 

amplitude phase jumps produced no visible response, however like the activation 

threshold observed previously, increasing amplitudes triggered increasingly 

consistent excitable responses. This confirmed that like biological neurons the 

excitability present within VCSELs, here activated via phase modulation, have the 

activation threshold behaviour required for neuromorphic processing. Additionally, 

it was demonstrated in this report that modulation of the driving current of the 

VCSEL could trigger the excitable regime. The electrically-triggered spiking 

responses were found to be less reliable and longer (typically 1 ns in duration) than 

those produced by phase modulation, but nevertheless broadened the scope of 

methods for implementing controlled spiking in VCSEL neurons.  
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Figure 1.6.1 – Time series (left) and temporal maps (right) of a 1300-nm VCSEL neuron 

under (a)-(b) orthogonal and (c)-(d) parallel optical injection. The time series show (a) & (c) 

single and (b) & (d) bursts of excitable responses. The temporal maps reveal the consistency 

of 100 consecutive responses from the VCSEL neuron. The colour of the map is scaled to 

the amplitude of the associated timeseries. represents Figure reproduced from [160]. 

 

 

Figure 1.6.2 – Experimental time series of a 980 nm micropillar laser with an embedded 

saturable absorbing (SA) region subject to modulated optical pumping. Time series show the 

consistency of 100 excitable responses (red) to input pulses (black) of 0.4 (i,ii), 1.0 (iii,iv) 

and 1.78 (v,vi) input strength (scaled to the excitability threshold). The inset shows a 730 ps 

excitable response from the VCSEL-SA taken from series vi. Figure reproduced from [159]. 
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More recently, phase modulated optical injection has been applied in the activation 

of excitable spikes in VCSEL memory systems, using optical feedback connections 

[166]. Further, resonant-and-fire and integrate-and-fire excitability mechanisms were 

released in VCSELs subject to phase modulation [167], towards the further 

mimicking of neuronal behaviour. In Chapter 3 of this thesis, we will also explore 

the possibility of controllable spiking in VCSELs via current modulation. This 

method of achieving neuron-like responses enables VCSELs to receive electrical 

inputs, expanding the potential methods of interconnecting VCSELs-neurons in 

larger neuromorphic systems.  

Short-wavelength (980 nm) optically-pumped micropillar lasers with vertical light 

emission (with a similar structure to that typical of VCSELs) and containing an 

intracavity saturable absorber (SA) section have also been shown to exhibit 

excitability [159], [168]–[175]. From now onwards, we refer to these devices as 

VCSEL-SAs. In a first report by S. Barbay et al. [159], a 980 nm VCSEL-SA, 

optically pumped with 800 nm light, was demonstrated to produce self-pulsating 

dynamics when biased close to its lasing threshold. It was demonstrated that by 

operating the VCSEL-SA around 90% of its lasing threshold, and modulating the 

optical pumping with short pulses, fast 0.73 ns-long excitable pulses could be 

triggered at the VCSEL-SA’s output. Here the system’s cross from sub-threshold 

operation to the lasing state (influenced by the nonlinear effect provided by the SA 

section) represents a bifurcation in which excitability is produced. By altering the 

intensity of the optical pump, the existence of a spike activation threshold was again 

observed (see Fig. 1.6.2 [159]). At a low optical pump intensity, a stable non-lasing 

state was produced, however, further increasing the optical pump saw the consistency 

of the excitable response increase, confirming the neuronal threshold-and-fire 

behaviour in a VCSEL-SA with modulated pump current. Further, additional reports 

on the firing latency [168] and maximum frequency (refractoriness) [169] of the 

neuronal responses in VCSEL-SAs have appeared. Recently VCSEL-SAs have also 

demonstrated the exciting capability to temporally integrate multiple inputs towards 

the firing of excitable pulses (integrate-and-fire) [170], another highly desirable 

behaviour for the realisation of neuromorphic systems. Overall, the excitable 
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neuronal responses produced by VCSEL-SAs have been well described using the 

numerical Yamada model for a laser with a SA [171], [172]. Recently, a numerical 

investigation into the potential networking of evanescently coupled VCSEL-SAs has 

been reported [173]. In this work, a chain of spatially coupled VCSEL-SAs 

demonstrate that excitability can be passed into neighbouring devices, producing 

~200 ps-long excitable responses. By simulating different architectures and 

exploiting the integration of multiple inputs, V. A. Pammi et al. [173] revealed 

networks of VCSEL-SAs can realise neuromorphic spiking logic and spike-pattern 

recognition circuits. Similarly, spiking memory systems created with VCSEL-SAs 

and optical feedback loops have been used to write, store and erase spike trains [174], 

[175], realising the neuronal behaviour of autaptic (self-feedback) neurons [176]. To 

date, these devices only allow operation under optical pumping schemes, and we are 

not aware of any reports of electrically-injected spiking VCSEL-SAs. This feature 

might ultimately limit the use of these micropillar-SA devices in future 

interconnected functional neuromorphic photonic systems. Hence, important 

research efforts remain to demonstrate photonic spiking neurons based upon 

electrically-injected VCSEL-SAs.  

The use of excitability in VCSELs for neuromorphic applications has been 

thoroughly investigated theoretically in literature, via the Yamada [172] and Spin-

flip models (SFM) [114]. Alongside the body of theoretical results presented in the 

previously discussed reports (modulated optical injection [160], [163]–[165] and 

modulated optical pumping [159], [168]–[170]) some groups have focused 

predominantly on the numerical investigation of VCSEL photonic spiking neurons. 

One of the first theoretical reports to describe the potential of VCSELs as artificial 

neurons for ultrafast computing, was made by M. A. Nahmias et at. [177]. This 

theoretical report revealed that by modulating the gain within the cavity of a VCSEL-

SA (either optically or electrically), excitable responses could be generated at sub-

nanosecond (sub-ns) rates. Furthermore, this report demonstrated that VCSEL-SA 

neurons could operate analogously to leaky integrate-and-fire (LIF) neurons. As 

demonstrated in Fig. 1.6.3, multiple inputs, insufficient to trigger the excitable 

response independently, can summate within a short integration period to reach the 

threshold requirement for spike activation. Alongside the theoretical LIF behaviour 



41 
 

of the VCSEL neuron, different networking architectures (such as mutual optical 

coupling and optical feedback arrangements) were also discussed. This report 

highlighted that VCSEL neurons are therefore theoretically capable of the basic spike 

processing model (LIF) which enables artificial neural networks to processing 

information. In Chapter 5 we explore experimentally the temporal integration of 

optical inputs in our VCSEL system and apply the neuronal behaviour to achieve 

initial reports of information processing.  

 

 

Figure 1.6.3 – Numerical simulation of a VCSEL-SA acting as a Leaky Integrate-and-Fire 

(LIF) photonic neuron. Inputs (top/black) are used to modulate the carrier concentration 

(bottom/blue). The output of the VCSEL-SA (middle/red) activates an excitable response 

when multiple inputs occur successively. Figure reproduced from [177] 

 

Further theoretical reports have been made on the excitable behaviour linking 

VCSEL to biological neurons. In 2016 S. Xiang et al. [178] reported numerical 

results based on the SFM that replicated the experimental results of an earlier work 

by A. Hurtado et al. [163]. This report demonstrated that both phasic and tonic spike-

like excitability could be observed from a VCSEL under linearly polarised optical 

injection, validating the earlier experimental findings. S. Xiang et al. later expanded 
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on this work by exploring similar cascadable spiking signals in multiple coupling 

configurations [179]. The use of polarisation mode competition in VCSEL-SAs has 

also been reported as a mechanism for spike inhibition [180]. A significant amount 

of theoretical work has since been produced by this group, and others, on the spike 

processing capabilities of VCSEL neurons. A wide variety of tasks ranging from 

spike-based convolution neural networks for image processing [181], spike 

information encoding [182]–[185], spike pattern recognition [186], [187], 

unsupervised learning via spike-timing dependant plasticity (STDP) [188]–[190], 

sudoku solvers [191], and spiking XOR gate implementations [192] have all been 

reported theoretically.   

 

Figure 1.6.4 – VCSEL neuron-based neuromorphic processing demonstrations. Reports of 

(a) experimental 4-bit pattern recognition [193], and (b) spiking image edge detection [194] 

are expanded upon in this thesis (Chapter 5). (c) Fast spike rate encoding is used to represent 

a RGB image [195]. Three colour channels are encoded into spikes and recombined to 

recreate the source image. Figures reproduced from [193]–[195]. 

 



43 
 

 

Figure 1.6.5 – (a) Schematic of a Time Delay Reservoir (TDR). A non-linear (NL) element 

with a Ƭ-long delay is sampled every θ to create a virtual network of nodes. (b) Performance 

of a VCSEL-based RC during a chaotic timeseries prediction task [205]. Two polarisation 

configurations were tested. Parallel-polarised optical injection and feedback produced the 

lowest normalised mean square error (NMSE) of 0.012. Figure reproduced from [205]. 

 

Only recently experimental reports of spiking VCSELs for neuromorphic processing 

have come to light. A large majority of the experimentally realised neuromorphic 

spiking VCSELs reported in literature [193], [194], [196]–[202], are generated 

through the research described in this thesis. These results, presented in Chapter 3-5 

of this thesis, have produced reports of spiking VCSELs capable of spike 

activation/inhibition [196], [197], spike communication in feedforward networks 

[198], [199], retinal neural circuits [200], integrate-and-fire operation for pattern 

classification [193] (see Fig. 1.6.4 (a)), and convolution for image processing and 

classification [194], [201], [202] (see Fig. 1.6.4 (b)). Similarly, additional works on 

experimental VCSEL neurons by our group at Strathclyde, not directly included in 

this thesis, have demonstrated the ability to perform spike-based rate encoding. Hejda 

et al. [195], [203] demonstrated that experimental VCSEL neurons, like their 

biological counterparts, have a spike latency and inter-spike period dependant on the 

input signal. This has since been used to demonstrate precise spike-timing encoding 

for digital-to-spike conversion (at rates over 1 Gbps) [203] and for the fast rate-

encoding of image colour information for spike-based image processing tasks [195] 

(see Fig. 1.6.4 (c)). Similarly, work from other groups have shown that spiking 

VCSEL neurons can be used to emulate pyramidal neurons for the realisations of 

XOR classification tasks [204]. These reports therefore make up some of the 
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experimental demonstrations of VCSEL neurons mimicking the spiking behaviour 

of biological neurons. 

Beyond spike-based demonstrations of VCSEL neurons, compact, fast and energy 

efficient VCSELs (and the rich variety of non-linear dynamical behaviours they can 

display), have found additional important applications in non-spiking neuromorphic 

processing systems. Specifically, VCSELs have been used to create photonic 

reservoir computing (RC) systems. As discussed previously, reservoir computers are 

a specific type of RNNs which operate with a set of fixed network connections and 

non-linear nodes [206]. To date there have been demonstrations of two types of 

photonic RC systems based upon VCSELs, namely time-delayed reservoirs (TDRs) 

and spatio-temporal reservoirs (STRs). The former make use of a single VCSEL (as 

a non-linear element), optical injection, and an optical delay line, which continuously 

feeds information back into the VCSEL (see Fig. 1.6.5 (a)). A virtual network of 

nodes is then created by interpreting the output of the system at discrete times as the 

output of different nodes. Due to the fixed connections within the virtual neural 

network, the output weights of the system can be trained using known input values, 

allowing the system to be tasked with complex information processing problems, 

such as timeseries prediction and classification. The first VCSEL-based 

demonstration of a TDR with a VCSEL was made by Vatin et al. [207], [208]. These 

numerical [207] and experimental [208] reports showed that not only was reservoir 

computing possible with VCSELs but that because of the interplay of two orthogonal 

polarisations, the performance achieved could be enhanced. Specifically, in [208], it 

was shown that error-rate of a channel equalisation task and a chaos prediction task 

were below the state of the art at the time, due to the ability to use select feedback 

polarisation. In a more recent report by J. Bueno et al. [205], a full comprehensive 

study of how polarisation configurations (parallel or orthogonal) affected the 

performance of prediction (the benchmark Mackey-Glass) and classification (the 

channel equalisation) tasks. This report, which utilised an off-the-shelf commercial 

telecom-wavelength VCSEL, concluded that a parallel configuration provided the 

system with more memory and slightly better performance, helping again realise 

neuromorphic processing with competitive error rates (see Fig. 1.6.5 (b)). STRs 

based upon VCSELs, only very recently demonstrated experimentally, operate 
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similar to TDRs but instead of temporally multiplexing the virtual nodes, the nodes 

are spatially multiplexed across the surface of a Large Area-VCSEL (LA-VCSEL) 

[209]. Information is input into the system via a digital micromirror device (DMD) 

and a multimode fibre that project spatial patterns onto the top facet of the LA-

VCSEL. The nodes of the network are therefore the spatially multiplexed positions 

on the devices surface which interact via carrier diffusion and optical diffraction. A 

near field image of the LA-VCSEL surface is reflected onto a second DMD where it 

is collected by a detector. In this VCSEL-based SDR the output weights are trained 

by altering the output collected by the DMD. A comprehensive analysis on the 

performance of the spatio-temporal reservoir under different consistency and 

dimensionality, as well as various optical injection conditions, was recently 

published by A. Skalli et al. [210]. VCSELs are therefore devices capable of 

producing powerful photonic reservoir computers. These demonstrations highlight 

the potential VCSELs have for high performance, high efficiency and high-speed 

neuromorphic processing functionalities.       

Towards implementing artificial SNNs with VCSELs, we have recently 

demonstrated that VCSELs can act as photonic weighting synaptic elements. These 

results, achieved by myself as main author, have only been very recently reported 

and are therefore not fully discussed in this thesis. However, we deemed important 

to include the results here for completeness, in addition to the main body of results 

on spiking VCSEL neurons for neuromorphic photonic systems that are presented in 

subsequent Chapters of this thesis. Specifically, in this recent work we showed that 

VCSELs operating just below their lasing threshold current, acting therefore as 

vertical cavity semiconductor optical amplifiers (VCSOAs), can indeed operate as 

high-speed photonic weighting synaptic elements. Optical injection in 1550 nm 

VCSOAs was first shown experimentally to provide non-linear gain to injected 

signals [211]. Later a theoretical investigation, as part of a spike-timing dependent 

plasticity study [188], revealed that the gain could be provided to incoming optical 

pulses. However, only recently we demonstrated experimentally a VCSOA acting as 

a photonic weighting synapse [212].  
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Figure 1.6.6 – Optical spectra of the injection (red) and VCSOA (blue) signals for various 

detuning frequencies of (a) -2.81 GHz, (b) -5.62 GHz, and (c) -9.32 GHz (corresponding to 

different VCSOA bias currents). Timeseries of the input pulse (red) and the weighted 

VCSOA output pulse (blue) are shown. The mean output optical pulse peak power is plotted 

against applied bias current for a (d) 1300 nm VCSEL, n = 6. The red vertical lines indicate 

cases (a)-(c). (e) High speed dynamic weighting is achieved by modulating the bias of the 

VCSOA. Figure reproduced from [212].  

 

In this report, we exploited the non-linear gain profile to control the amplification of 

injected pulses via the VCSOA’s bias current. By altering the driving current, the 

resonant frequency of the VCSOA was selected, and hence amplification was seen 

by the optical pulses. This effectively realised a large controllable weighting range. 
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As shown in Fig. 1.6.6, a bit precision of 11.6 was achieved (using in this case a 1300 

nm VCSEL), making this photonic weighting approach comparable to weighting 

schemes based on micro-ring resonators [213] and phase change materials [214]. 

Very high-speed dynamic weighting was also achieved with these photonic synapses 

by modulating the driving current of the device (see Fig. 1.6.6 (e)). This realised a 

system where weights could be changed on the fly and output pulses customised at 

near GHz rates with faster rates expected for future optimised device designs. 

Combinations of VCSEL-based photonic synapses have also been investigated for 

neural network operation [215]. In-series VCSOAs were shown to create a system 

capable of both input encoding and input weighting, and in-parallel VCSOA synapse 

were combined in a photodetector to realise fast multiply and accumulate (MAC) 

operations. These VCSEL-based photonic synapses are therefore suitable for the 

creation of neural networks capable of tasks such as convolution and image 

processing, with added benefit of potential amplification between network layers to 

counteract signal loss. Importantly, the power consumption of these adjustable 

photonic weighting systems is low, with operation achieved using μWs optical 

injection powers and small μAs bias current changes for weight tuneability.  

The research into VCSEL-based optical neurons for computing has therefore 

revealed the potential of this exciting technology. VCSEL neurons have 

demonstrated excitable threshold-and-fire functionality and have theoretically been 

shown to operate as artificial LIF photonic neurons. This creates exciting possibilities 

for VCSEL-based spike-processing systems and SNNs capable of delivering 

complex light-enabled processing functionalities (e.g. image processing, computer 

vision, pattern recognition, etc.) using ultrafast neural-like spikes to operate. Further, 

the computational power of neural networks based upon (non-spiking) VCSELs has 

been realised through photonic RC systems, achieving state of the art performance 

with high speed and low power operation. For this reason, in this thesis we 

investigated VCSELs as high-prospect candidates for photonic neuromorphic 

systems.   
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1.7 Thesis Outline 

In this thesis we provide an investigation of VCSELs as artificial photonic 

spiking neurons for use in future light-enabled neuromorphic information processing 

systems. In Chapter 2 we provide the experimental methods used in this work to 

achieve neuromorphic operation with spiking VCSELs neurons. Specifically, in 

Chapter 2 we introduce the equipment and experimental methods used, provide a 

characterisation of the VCSELs used in this work and introduce the numerical model 

utilised to simulate the neuronal-like responses that can be elicited in VCSELs. In 

Chapter 3 we provide results on the activation of neuronal responses in VCSELs, 

including spike activation, spike inhibition, and input thresholding, via external 

optical injection. In Chapter  4 we provide results on the interconnection of multiple 

VCSEL neurons in different network configurations. Specifically, we investigate the 

communication of dynamics between interconnected devices, devices in a 1-to-2 

converging architecture, and explore a 3 VCSEL implementation of a biological 

retinal neural circuit. Finally, in Chapter 5 we report novel results that implement 

VCSEL neurons for functional information processing demonstrations. Specifically, 

we discuss how we can achieve the temporal integration of inputs with our VCSEL 

neurons and how we utilise this neuronal behaviour for information processing tasks. 

We experimentally realise systems of VCSEL neurons capable of tasks such as 4-bit 

pattern recognition and image processing functionalities (e.g. edge detection and 

classification) at ultrafast rates.    
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Chapter 2  

Experimental Methods for the Investigation of 

Neuromorphic Photonic Systems 

 

Neuromorphic computing systems were introduced in Chapter 1, where we 

discussed the benefits that can be achieved by emulating biological neurons for 

information processing. We introduced some of the platforms, both electronic and 

photonic, that have been used to emulate the computational features of biological 

neurons and highlighted semiconductor lasers as promising devices for photonic 

implementations of neuromorphic processing systems. Specifically, we introduced 

VCSELs as compact, high-speed and efficient devices for application in artificial 

neuronal models for neuromorphic photonic hardware.  In this Chapter we will 

discuss the experimental equipment used during our investigation of VCSELs for 

neuromorphic photonic functionalities (Chapter 2.1). We will provide a 

characterisation of the VCSELs used in this work and will demonstrate the use of 

optical injection to excite a wide range of non-linear dynamics in VCSELs, including 

characteristic high-speed neural-like spiking responses (Chapter 2.2). Finally, we 

numerically investigate the dynamical operation of VCSELs for use in neuromorphic 

photonic implementations (Chapter 2.3).  

 

2.1 Experimental Arrangements for Neuromorphic Photonic 

Implementations with Semiconductor Lasers 

This Chapter describes the off-the-shelf telecom-wavelength fibre-optic 

components and various equipment used for the investigation of semiconductor 

lasers for neuromorphic photonic functionalities.  
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2.1.1 Laser Driving and Controls 

The lasers predominantly used in the experimental work of this thesis are 

VCSELs. Specifically, we used commercially-sourced (RayCan Co., Ltd.) VCSELs 

operating at telecom wavelengths (1310 and 1550 nm). These were packaged (TO-

56/TO-90) devices coupled with single-mode fibre pigtails of either FC/PC (physical 

contact) or FC/APC (angled physical contact) fibre connections. We discuss the 

characteristic of these lasers in Chapter 2.2. These packaged devices are electrically 

driven and temperature controlled using laser diode mounts (Thorlabs LDM21 and 

LDM90). These mounts, in addition to permitting the application of bias currents to 

drive the devices, also contain integrated thermal cooling elements and thermistors 

enabling precise temperature control and stabilisation. The mounts are connected to 

temperature controllers (Thorlabs TED200C), which monitor the temperature of the 

VCSELs and offer temperature control up to a range of 0 to 70 ºC. Bias currents are 

applied to the VCSELs through laser current drivers (Thorlabs LDC205C), providing 

maximum currents up to 100 mA. In this work our VCSELs are typically stabilised 

around room temperature (20 ºC or 293 K). However, temperature values may be 

subject to change when specific wavelength operation is required. The VCSELs of 

this work also have low lasing threshold current requirements, with a typical 

operating current of around 4 mA used during the experiments.  

The LDM90 mounts also permitted the direct modulation of the bias current applied 

to the VCSELs. The mounts have an internal bias-tee that can modulate the laser 

current at up to 500 MHz through a 50 Ω SMA (Sub Miniature version A) connection. 

In combination with an arbitrary waveform generator (AWG) or pulse generator 

(PG), we can electrically modulate the applied bias current to encode information in 

the output power emission of the VCSELs under investigation. The simple schematic 

in Fig. 2.1.1 shows the equipment used to drive and control the VCSELs used during 

this work. 



51 
 

 

Figure 2.1.1 – (a) VCSEL control schematic. A 4-pin TO-56/90 packaged, fibre-pigtailed 

VCSEL is mounted in a LDM90 and controlled using a laser driver (LD) and a temperature 

controller (TC). The VCSEL’s current can be modulated through a bias tee using an arbitrary 

waveform generator (AWG). (b) VCSEL installed in an LDM90 mount (with SMA 

modulation input visible). 

 

2.1.2 Fibre Optic Components  

 The experimental setups used throughout this work are created using off-the-

shelf fibre-optic telecommunication components. These are used to alter and redirect 

the light both produced by and injected into the VCSELs acting as artificial optical 

neurons. The VCSELs operate at the wavelengths of 1300 and 1550 nm, aligned with 

the O- and C- telecommunication bands. This grants us access to a large number of 

commercial fibre-optic telecom components for the simple implementation of a 

multiplicity of experimental systems (as shown in Fig. 2.1.2), including: 

Fibre optic isolators (ISO) - Attenuate light (>40 dB) in a single direction by 

exploiting faraday rotation in combination with a half waveplate and birefringent 

beam displacers. Isolators prevent backward reflections within our system, helping 

protect sensitive equipment and reduce the effect of unwanted feedback. 

Optical couplers and splitters - Combine multiple paths or split a single path of 

light with a specified coupling ratio. Multiple optical fibres are fused and tapered to 

create different varieties including 1x2 port splitters/combiners, 2x2 port couplers 

and larger 1xM tree couplers. Both 3 port splitters and 4 port couplers are used (50:50 
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and 90:10 coupling ratios) to create our VCSEL networks and perform simultaneous 

analysis with multiple pieces of equipment.   

Variable optical attenuators (VOA) - Controllably attenuate (1.5-50 dB) the optical 

power passing through them. A tuning element can variably deviate the beam path, 

altering the coupling efficiency to the output fibre. VOAs are used to control the 

optical injection and feedback power within our system and protect sensitive 

equipment from high optical powers.  

Polarisation controllers (PC) – Controllably tune the polarisation of light within 

the fibre optic system. Stress induced birefringence is used to create fractional 

waveplates (λ/4, λ/2, λ/4) out of loops of single mode fibre. Altering the rotation of 

the fibre loops influences the polarisation of the output light. Here, the polarisation 

of injection and feedback are selected using these components, allowing different 

polarisation configurations to be investigated. Polarisation controllers also help to 

improve coupling efficiency into polarisation dependent components and equipment.  

Optical circulators (CIRC) – Restricts the light flow to a single direction through 

the 3-port component. Light input at Port 1 sees output at Port 2. Light input at Port 

2 sees output at Port 3. Light input at Port 3 sees large attenuation (50 dB). These 

devices operate like an isolator, making use of faraday rotation and birefringence to 

deviate the beam path. However, upon input at Port 2 the output is not neglected but 

collected at output Port 3. Circulators are used to simultaneously inject and collect 

light from the VCSEL devices in our systems.  

The fibre optic cables used in this work to connect the multiplicity of optical 

components used, as well as the VCSELs under investigation, were predominantly 

single-mode fibres (SMF) and are non-polarisation maintaining (non-PM). 
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Figure 2.1.2 – Picture of one of the experimental setups used in this work including multiple 

fibre optic components, such as optical couplers, isolators (ISO) and circulators (CIRC), 

polarisation controllers (PC), variable optical attenuators (VOA) and a LDM21-mounted 

VCSEL. A Mach Zehnder (MZ) intensity modulator is also shown.  

 

2.1.3 Optical Injection and Laser Modulation 

Throughout our work we regularly use a technique called optical injection. 

This technique takes an optical signal and introduces it to an existing laser cavity. 

The injected optical signal can be created by another semiconductor laser source. The 

technique of optical injection was initially implemented to control the frequency and 

stabilise the output of the slave laser subject to injection [129], [137]. The laser 

source creating the injection signal is therefore called the master laser (ML). During 

optical injection an effect called injection locking can occur given the correct 

injection parameters (optical power, frequency & polarisation). During injection 

locking the frequency of the slave laser switches to that of the master and output 

oscillations become damped. However, under different operating conditions, optical 

injection can lead to a wide range of non-linear dynamics in the response of the slave 

laser, including neural-like spiking responses [127], [128], [152], [158]. Optical 

injection is therefore instrumental in this work to the creation of neuron-like 

dynamics in VCSELs for neuromorphic photonic functionalities.   

The experimental setup created to investigate the effects of optical injection in 

VCSELs is shown in Fig. 2.1.3. The optical injection line consists of an external 

tuneable laser (TL), an optical isolator (ISO), a variable optical attenuator (VOA), a 
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Mach Zehnder (MZ) intensity modulator (driven by a power source, PS, and an 

AWG), two polarisation controllers (PCs), a 50/50 coupler, a power meter (PM), and 

an optical circulator (CIRC). These components, some of which are previously 

described, allow us to introduce a unidirectional optical signal into our slave laser 

with control over its optical injection power (via the VOA) and polarisation (using 

the PCs).  

 

Figure 2.1.3 – Setup used to perform the modulated optical injection of a VCSEL.  

 

As shown in Fig. 2.1.3, a number of components are required to create an optical 

injection line, however the most important component is the master laser source. In 

this work we use two master TLs, one at 1300 nm and one at 1550 nm: 

Santec TSL-210V – Tuneable Laser (TL), >10 mW output power, 1260-1360 nm 

wavelength range, < 0.001 nm resolution.  

Santec WSL-110 – Tuneable Laser (TL), 15 dBm output power, 1527-1567 nm 

wavelength range, 100 MHz resolution.  

These widely TL systems offer wavelength tuning ranges of 100 and 40 nm, 

respectively, with fine tuning capabilities and high resolution. This permits to 

accurately select the wavelength at which we inject optical signals into the VCSELs 

under investigation. We operate VCSELs at both the 1300 and 1550 nm wavelength 

windows. Additionally, the TLs have moderately high optical power outputs, 

allowing us to investigate a large range of optical injection powers and overcome any 

power losses in the setup.  
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MZ intensity modulators are used throughout this work to grant us the capability to 

encode injection light with input perturbations (stimuli) or data. MZ modulators are 

based on interferometers with one arm containing Pockels cells. Pockels cells are 

non-linear crystals that exhibit the Pockels effect, whereby their refractive index is 

altered by changing the strength of the electric field across it. The changing refractive 

index creates a phase difference in the arms of the interferometer, hence when they 

are recombined the intensity of the output signal is influenced. In this work we use 

two commercially-sourced Lithium Niobate (LiNbO3) MZ intensity modulators, 

JDS-Uniphase 10 Gb/s integrated amplitude modulator and Thorlabs LN81S-

FC 10 Gb/s intensity modulator. These modulators feature low half-wave voltages 

(voltage required to create a phase change of π) of 6 V and operate in the wavelength 

range of 1525 to 1605 nm. Both feature a DC bias input, an RF electrical input and 

optical fibre connections. The DC bias permits the configuration of the modulator’s 

output intensity. The RF input is then used to introduce the desired input 

perturbations or data. The RF signal is added to the DC bias voltage inside the 

modulator, altering the intensity of the output at up to a rate of 10 Gb/s. In these 

modulators the optical fibre connections are polarisation maintaining, meaning a 

polarisation controller is required to correctly align signals for efficient modulation.  

To create the electrical signals used for modulation we employ a high bandwidth 

AWG: 

Keysight M8190A – 12 bit, 12 GSa/s, Dual Channel, 5 GHz bandwidth AWG. 

This AWG generates customisable electrical signals at a maximum sample rate of 12 

GSa/s. This AWG therefore easily produces short pulses (100 ps width) and can 

incorporate fast bursts of up to 6 pulses within a short 1 ns period. Signals are either 

designed using the AWG software interface or are created in programming software, 

such as MatLab, and uploaded directly to the AWG. The AWG featured two channels 

which could be driven at the same time, enabling us to use two modulators 

simultaneously to create to different modulated optical injection paths. The 

maximum output voltage of the AWG was rated at 1.5 V therefore to incorporate it 

effectively with our modulators, we required the use of a high bandwidth electrical 

amplifier (AMP): 
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Minicircuits ZX60-14012L-S+ – 10 dBm amplification, 300 kHz – 14 GHz 

bandwidth electrical amplifier. The electrical amplifier helps increase the amplitude 

of the electrical signal granting a larger range of intensity modulation. The amplifier 

also inverts the signal; however, this can be compensated by the AWG or the DC 

bias of the modulator.  

The DC bias of the modulator was provided by a variable power supply (PS): 

RS PRO Bench Power Supply IPS 603 – 20 V, 10 A, 200 W output. The PS delivers 

an output from 0 to 20 V, allowing us to sufficiently control the bias point of the 

modulators. Typically, the bias point of our modulator is set near minimum phase 

difference such that we have a high injection power. Using positive voltage RF 

inputs, we push the modulators to larger phase differences and encode the optical 

injection with drops in intensity.  

These components therefore make up the optical injection line used throughout this 

work to introduce signals into the VCSELs. We perform optical injection into both 

1300 and 1550 nm devices, meaning that at times the MZ intensity modulators are 

operated out with their specified wavelength ranges, causing additional optical power 

losses, however, thanks to the high power output of the TL sources, these losses are 

overcome.   

 

2.1.4 Detection and Analysis 

Here we discuss the different equipment used to measure the optical and 

dynamical properties of the VCSELs used in the experiments. 

Average Optical Power 

Average optical power measurements were made with a Thorlabs PM20C fibre optic 

power meter (PM). This instrument uses an InGaAs sensor which converted optical 

power into voltage and provided power measurement based on the user-defined 

wavelength. The device had a wavelength range of 800-1700 nm. The power meter 

provided a power measurement in the range of 1 nW to 20 mW at a sample rate of 

10 Hz. The sample rate of the instrument is slow compared to the near GHz spiking 
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rates used in this work hence this power measurement is considered an average 

measurement. This device was typically connected to the 50/50 coupler in the optical 

injection line to measure the average injection optical power entering the VCSELs.  

Spectral Analysis and Polarisation Setting 

The monitoring and measurement of the wavelength properties of the VCSELs in 

this work was performed using an Anritsu MS9710C optical spectrum analyser 

(OSA). This system had a wavelength range of 600 to 1750 nm, at a resolution of 

0.05 nm and an optical sensitivity of -90 dBm. This system was used to capture the 

optical spectra plotted throughout this work and was directly connected to the output 

of the system via an optical fibre input terminal.  

This system was also regularly used to provide a measurement of injection frequency 

detuning between the TL’s light and the VCSEL(s) under investigation. By 

comparing the peak emission wavelength of the VCSEL to the wavelength peak of 

the injected laser light from the TL, a direct measurement of frequency detuning 

could be made by the instrument. 

The polarisation of optical injection and optical feedback light was routinely selected 

by measuring the optical spectra of the slave VCSEL. Using the OSA, the two 

orthogonal polarisations supported by the VCSELs were clearly observable (see 

spectra in Chapter 2.2). When optically injecting light into one of two linear 

polarisation modes (referred to from now onwards as the parallel and orthogonal 

polarisation modes), variations in the polarisation of the incoming injected light 

would cause a change in their output powers.  

When injecting light into one of the linear polarisation modes of a VCSEL, the output 

power of the slave VCSEL mode could be affected in one of two ways; If variations 

in injection polarisation resulted in an overall higher spectral power, then the slave 

VCSEL mode and the injection light had matching polarisation states; If changes in 

injection polarisation decreased the output spectral power of the slave mode, then the 

slave VCSEL mode and the injection light had perpendicular polarisation states. 

This is caused by the same birefringence and anisotropy effects responsible for the 

splitting of polarisation modes in VCSELs [114]. This method was applied to set the 
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light polarisation used for optical injection and optical feedback experiments. In this 

work, the polarisation of the injected light was typically set to match that of the slave 

VCSEL’s polarisation mode. This condition would help improve the coupling of 

optical injection into the VCSEL cavity and reduce the power requirements for 

dynamical behaviours such as injection locking. 

Temporal Intensity Dynamics in VCSELs 

Measurement of the time-dependent dynamical output of VCSELs was performed 

using two pieces of equipment namely, a high-speed amplified photodetector (PD), 

and a high-bandwidth real time oscilloscope. A Thorlabs PDA8GS PD was used to 

convert the collected optical outputs from the VCSELs into electrical currents. This 

system featured an InGaAs PIN photodiode and a transimpedance amplifier making 

it compatible with low light level signals. The PD had a bandwidth of 9.5 GHz and a 

wavelength range of 750-1650 nm, making it compatible with the VCSELs’ 

operating wavelengths whilst also allowing the measurement of their fast optical 

output signals. The electrical signals generated by the PD were connected via SMA 

cables to a high-speed real-time oscilloscope for analysis. The results presented in 

this work were collected using one of two real-time oscilloscopes available for use 

in our laboratory (Agilent or Rohde & Schwarz).  

Agilent Infiniium DSO81304B – 40 GSa/s sample rate with 13 GHz bandwidth. 

Rohde & Schwarz RTP – 40 GSa/s sample rate with 16 GHz bandwidth. An 

additional memory upgrade for the capture of longer timeseries was used.  

The Agilent Infiniium oscilloscope was used to capture most of the early work 

presented in this thesis. This oscilloscope features a large sample rate; however, the 

internal memory of the oscilloscope was limited, restricting the length of the 

timeseries the device could capture. The R&S RTP oscilloscope was a more recent 

acquisition and has therefore been used to capture the latest results presented in this 

work. This device featured a higher bandwidth and a significantly larger memory, 

allowing for the capture of longer timeseries across multiple channels. Once captured 

by the oscilloscope the timeseries were saved into (.bin) files and were analysed using 

bespoke MatLab scripts. Experimental results were plotted as a function of intensity 
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I (arbitrary units) versus time t (ns), to show the fast nature of the dynamical 

responses of the system. This presentation of captured waveforms is the standard 

format for figures throughout this work.  

 

 

Figure 2.1.4 – Images of the PD and oscilloscope used to measure temporal dynamics and 

an example of a time series measurements. (a) Example timeseries plots a noisy pulsating 

signal and (b) the corresponding temporal map. The timeseries plots the output of the system 

measured by the oscilloscope. The temporal map is configured to plot 1.2 ns segments of 

timeseries (a) as colourmaps. The colour of the map is scaled to the amplitude of the 

associated timeseries. Yellow colour indicates intensity (power) maxima and dark blue 

indicates intensity (power) minima. Cycle number 1 therefore corresponds to the first 1.2 ns 

shown in (a). A total of 8 cycles appear in the temporal map, providing information on the 

full recorded signal, beyond the scope of the results shown in the timeseries.  

 

Alongside the plotting of timeseries, 2D temporal maps are also used throughout this 

work. Temporal maps allow us to observe the evolution of the dynamical response 

across timescales much wider than those possible in typical timeseries plots. These 

temporal maps reveal the evolution, arising patterns and consistency of the measured 

dynamical responses via a 2D representation using colour mapping [216]. In these 

temporal maps, the intensity of the systems’ response is represented with colour, 

where yellow and dark blue pixels indicate maximum and minimum values of 

intensity respectively. The attached colour bar represents the linear relationship 

between the temporal map and the power measurement made at the photodetector. 
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Time on the y-axis plots segments of timeseries within a repeating period or cycle, 

dictated by a selected time folding parameter (usually referred by τ). The cycle or 

fold number is then plotted on the x-axis with one pixel width representing a single 

cycle. An example of a timeseries and its corresponding temporal map is plotted in 

Fig. 2.1.4.  

The folding parameter is often selected to match the frequency of the response as 

shown in Fig. 2.1.4. This forms a yellow line indicating the same behaviour is 

occurring in each segment and that the system response is frequent. The timing of 

responses can also be more easily seen in this representation. The line formed by 

temporal maps may drift if repeated over a large number of cycles. This effect is 

caused by the folding parameter being an integer value, meaning that the frequency 

of the responses may not be perfectly matched, and excess/insufficient samples may 

be included in each repeating cycle. 

 

2.2 VCSEL Characterisation and Dynamics 

Here we present a description of the characterisation measurements 

performed on the VCSELs used in this work and provide exemplar measurements 

from a number of the devices used during experiments. Alongside the 

characterisation measurements, we provide some examples of non-linear laser 

dynamical responses produced by VCSELs under external optical injection.  

We experimentally use multiple batches of VCSELs, commercially-sourced from 

RayCan Co., Ltd. These VCSELs are TO-56/TO-90 packaged, fibre pigtailed laser 

diodes. These monolithic devices feature an InGaAs QW active layer and 

InAlGaAs/InAlAs DBRs. Single transverse-mode devices were selected for use 

throughout this work with light emission at typical O- (1300 nm) and C-Band (1550 

nm) telecom wavelengths. A report on similar RayCan VCSEL devices showcased 

that the commercial devices were highly reliable for room temperature optical 

communications operation [121]. 
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2.2.1 Characterisation Measurements 

In this work, we aim to investigate VCSELs as key-enabling photonic 

platforms for neuromorphic photonic functionalities. However, prior to performing 

experiments with these VCSELs it is required to characterise some basic laser 

parameters.  

The first laser parameter we measure is the VCSELs’ threshold current. This marks 

the onset of lasing operation, where stimulated emission dominates over spontaneous 

emission and the losses within the cavity are overcome [105]. Upon exceeding the 

lasing threshold current, the light within the cavity experiences gain and the optical 

output power of the laser (a VCSEL in our case) grows substantially. To make a 

measurement of the threshold current we read the output power of the fibre-pigtailed 

VCSELs while increasing the applied bias current. In Fig. 2.2.1 we show the lasing 

threshold current characterisation for two different VCSELs, one with emission at 

1300 nm and the other at 1550 nm. Both experiments were performed with the 

VCSELs’ temperature stabilised at 293 K. The light-current (LI) curves of each 

device plot the emitted optical output power of the VCSEL versus the applied 

electrical bias current. We can see in both Fig. 2.2.1 (a) & (b) that after exceeding 

2.96 mA (1300 nm VCSEL, left plot) and 1.20 mA (1550 nm VCSEL, right plot) of 

current, respectively, the output powers of the VCSELs grow in a linear fashion. In 

these devices the linear region of the curve indicates steady-state lasing, 

corresponding to a continuous wave (CW) laser output. The threshold current, as well 

as the maximum optical output power of VCSELs, may vary from one device to 

another, as seen in Fig. 2.2.1. In Fig. 2.2.2 we characterise a different 1300 nm 

VCSEL also used during this PhD project. For this case, we plot the measured LI 

curves for laser operation at three different set laser temperatures, namely 290.5 K, 

293 K and 295.5 K.  
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Figure 2.2.1 – Light-Current (LI) curves for a 1300 (a) and a 1550 nm (b) VCSEL measured 

at 293 K. The threshold currents were equal to 2.96 (a) and 1.20 mA (b), respectively.  

 

Output power measurements were taken around the threshold current of the VCSEL 

for bias currents up to 1 mA at each temperature. The results show that as the 

temperature of the laser is increased, the laser threshold increases from 0.80 mA to 

0.819 mA and 0.83 mA respectively. In this case a temperature change of 5 K results 

in 0.03 mA rise in laser threshold current for this particular device. Increasing the 

initially low temperature of the laser cavity generates more intrinsic losses within the 

cavity. As the threshold of the laser occurs when losses are overcome, an increase of 

losses results in a higher lasing threshold.    

Another parameter that can be measured from the LI curve is the slope efficiency of 

a laser. This helps provide an understanding of the losses within the laser cavity and 

highlights how well a laser is converting input power (electrical pumping) to output 

power (light emission). In electrically driven lasers this is given in Watts/Amp. The 

output of a laser is typically linear after threshold, therefore, by measuring the slope 

of a linear fit we can determine the slope efficiency of the VCSEL. Measuring the 

slope of the lines in Fig. 2.2.2, we find an average slope efficiency of 96.06 ± 0.94 

μW/mA. This value allows us to estimate the output optical power for a specific 

applied bias current and would permit us to compare the efficiency of this device to 

other VCSELs used for experimentation. Similarly, significant changes to the slope 

efficiency of a laser over time could indicate ageing issues and potential degradation. 

Typically, the slope efficiency of a laser decreases at higher input power values (bias 
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currents) due to increasing losses due to non-radiative processes that convert input 

energy to heat. This is responsible for the reduction in slope seen in Fig. 2.2.1 (a) & 

(b).   

 

Figure 2.2.2 – Light-Current (LI) curves for a 1300 nm VCSEL at three operating 

temperatures (blue) 290.5, (red) 293 and (black) 295.5 K. A linear fit of each LI curve was 

made. Increasing the temperature of the VCSEL produces a higher lasing threshold. 

 

Another typically performed characterisation measurement is that of the VCSELs 

lasing spectra. Captured using the optical spectrum analyser (OSA), the lasing 

spectrum provides a measurement of a laser’s output wavelength/frequency as well 

as specific spectral features (e.g. single/multi-mode emission, linewidth, etc.). The 

optical spectra of the 1300 and 1550 nm VCSELs investigated in Fig. 2.2.1 are also 

provided below in Fig. 2.2.3. Six spectra were taken for each device at increasing 

increments of 1 mA. The spectra show the two single mode VCSELs operating at 

293 K. In Fig. 2.2.3 (a) the 1300 nm device displays two peaks in wavelength at all 

pump currents. These two peaks correspond to the two orthogonal polarisations of 

the fundamental transverse (spatial) mode of the device. A characteristic of VCSELs 
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is that two linear (and orthogonal) polarisation modes arise due to the design and 

vertical emission of the laser. Cavity anisotropies (birefringence and dichroism) 

influence opposite spin transitions differently, separating wavelengths, while 

exposing each to varying levels of gain, finally creating two orthogonal linear 

polarisation modes [114]. Throughout this work we will refer to these modes as the 

parallel (λy) and orthogonal (λx) polarisation modes. In most of the VCSELs used in 

our experiments, as is the case in Fig. 2.2.3 (a) we find that the parallel (λy) 

polarisation is dominant above threshold as it experiences higher gain. However, as 

shown in Fig. 2.2.3 (b) this is not always the case, as the orthogonal (λx) polarisation 

can also be dominant at all pump currents. All the VCSELs selected in this work 

favoured a single linear polarisation mode above threshold (side mode suppression 

ratios of 28 and 33 dBm at 3.0 mA for the cases in Fig. 2.2.3). Polarisation switching, 

where the dominant polarisation mode changes with applied bias current, was also 

observed in some of the VCSELs utilised. In both cases the 1300 and 1550 nm 

devices demonstrate the characteristic red-shift with increasing bias current. The 

latter leads to small increases in temperature that effect the refractive index of the 

medium altering the output wavelength of the laser. Using this effect, the wavelength 

of the VCSELs could be tuned (in the order of a few nm) by controlling the device’s 

operating temperature.  

  

Figure 2.2.3 – Optical spectra of (a) a 1300 and (b) a 1550 nm VCSEL. The spectra were 

taken at 293 K with 1 mA bias current increments. Both plots (a) & (b) correspond to the 

devices in Fig. 2.2.1.  
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The separation between the two linear and orthogonally polarisation modes 

supported by the VCSELs can also be measured from their spectra. Mode separations 

of approx. 43 GHz and 31 GHz were measured in the 1300 nm and 1550 nm cases 

respectively. The separation between polarisation modes can change across different 

devices with values ranging from 25 to 50 GHz.  

 

2.2.2 Nonlinear Dynamics in VCSELs subject to Optical 

Injection 

As previously discussed in Chapters 1.5 & 2.1.3, we utilise optical injection 

to produce different non-linear laser dynamics in VCSELs. Specifically, we focus on 

achieving neuron-like excitable spiking responses at ultrafast rates for neuromorphic 

photonic processing functionalities. However, a wide range of additional nonlinear 

dynamical responses can be triggered in VCSELs under external optical injection. In 

this Chapter, whilst we do not provide an in-depth study into the dynamical behaviour 

of VCSELs, we highlight some of the non-linear behaviours that can be observed 

when polarised optical injection is performed.  

Optical injection, initially seen as a tool to stabilise the light emission of a laser, is 

known to create a rich variety of non-linear dynamics in SLs. These include 

responses such as periodic oscillations [130], chaos [131], [132] and excitability 

[152], [158], that can be specifically targeted by controlling the operation conditions 

of the ML (e.g. optical power, light polarisation, frequency/wavelength). Control 

over the optical injection conditions is therefore key to the production of the 

nonlinear dynamics in VCSELs that will be used in this work to demonstrate 

neuromorphic processing functionalities.  

When performing optical injection, external light is input into the slave laser through 

one of its partially reflecting cavity mirrors. The increased number of photons within 

the cavity alters the refractive index, creating a red shift in cavity wavelength. When 

light from a ML with a frequency close to that of the slave laser is injected, the gain 

profile of the latter is altered such that its emission peak shifts to the frequency of the 
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master. The two lasers can become injection locked and the frequency of the slave 

laser will oscillate at that of the master. The output power of the laser is stabilised, 

and the spectral linewidth can be enhanced during stable injection locking operation 

[137]–[139]. Injection locking is achieved at a specific range of frequency detuning 

between the ML and slave laser, and typically the higher the injection optical power 

the larger the detuning range over which injection locking can be achieved. Due to 

the red shift of the cavity the locking range is typically asymmetrical around the 

cavity resonance. At the boundaries of injection locking bifurcations form in 

parameter space that give rise to a variety of non-linear dynamical behaviours in the 

output of the slave laser. By targeting the injection parameters surrounding these 

bifurcations we can explore the regions of non-linear dynamical responses available 

to the VCSELs used during this project.  

In the single (transverse) mode VCSELs used in this work, two linear (orthogonally 

polarised) modes are supported. Figs. 2.2.4 (a) & (b) show how external optical 

injection can affect the spectral response of the slave VCSEL. In this experiment, a 

1300 nm VCSEL with dominant emission in its parallel-polarised mode (Fig. 2.2.4 

(a)) receives optical injection near its (heavily suppressed) orthogonal polarisation 

mode (red arrow). For the case investigated in Fig. 2.2.4 the optical injection was 

made with an optical input power of 127 μW at a frequency detuning of -5.64 GHz 

(between the ML’s peak and the resonance frequency of the subsidiary (λx) 

orthogonally-polarised mode). The optically injected light was polarisation matched 

to that of the VCSEL’s orthogonal (λx) mode, hence referred to as orthogonally-

polarised optical injection. The optical spectrum in Fig. 2.2.4 (b) shows that under 

these conditions, polarisation switching occurs in the VCSEL. Here the dominant 

polarisation mode of the VCSEL changes from parallel (λy) to orthogonal (λx), and 

the output power of the λy mode is attenuated (but not completely suppressed). The 

VCSEL is now yielding emission in both polarisations and the spectral properties of 

the VCSEL have undergone change. To fully understand the influence of the optical 

injection we must however also consider the temporal dynamics at the output of the 

VCSEL. 
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Figure 2.2.4 – (a)-(b) Effect of optical injection on the spectral response of a 1300 nm 

VCSEL. Wavelength spectra were taken (a) before and (b) during orthogonally-polarised 

optical injection. The optical injection occurred Δf = -5.64 GHz from λx (red arrow) with an 

injection power of 127 μW. (c)-(g) Temporal dynamics of a 1300 nm VCSEL subject to 

orthogonally-polarised optical injection with increasing levels of injection power: (c) no 

injection, (d) 20.9 μW, (e) 40.1 μW (f) 53.5 μW and (g) 59.8 μW. 

 

In a second experiment, the temporal laser dynamics at the output of a similar 1300 

nm VCSEL, subject to orthogonally-polarised optical injection, were observed (see 

Fig 2.2.4 (c)-(g)). Here, the slave VCSEL was subject to increasing levels of injection 

power at a fixed frequency detuning of Δf = -3.62 GHz. The orthogonally-polarised 

optical injection was increased until a switch of the dominant (polarisation) mode 

occurred and injection locking was achieved. Figs 2.2.4 (c)-(g) reveal the temporal 

measurements made at the output of the VCSEL. Initially, under no optical injection 

(Fig. 2.2.4 (c)) the slave laser outputs a steady state response with emission in its 

main parallel polarised mode. The output of the laser was stable with a low intensity 

noise, commonly associated with quantum noise, noisy pump sources and small 

thermal fluctuations. When the injection power was increased to 20.9 μW (Fig. 2.2.4 
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(d)) the VCSEL produced a periodic oscillation. Periodic signals (period 1, period 2 

and multiperiodic signals) are the result of bifurcation points in the form of limit 

cycles or in some cases the beating of the injected signal with the slave laser. 

Increasing the optical power to 40.1 μW produced a lower frequency periodic signal 

(Fig. 2.2.4 (e)), before an increase to 53.5 μW produced continuous spiking responses 

(Fig. 2.2.4 (f)). The spiking responses featured drops in intensity, followed by sharp 

rises, and finally a return to a stable level. Finally, increasing injection power to 59.8 

μW (Fig. 2.2.4 (g)) injection locked the system, producing a stable steady state 

output, as well as polarisation switching as now the VCSEL’s emission was in the 

orthogonal polarisation mode. The injection of light into the cavity increased the 

output power of the slave laser, giving the injection locked signal a higher output 

intensity that the steady state signal under no injection. Optical bistability, associated 

with this injection locking response, was also observed with the VCSEL unlocking 

the ML’s injection at a power lower than the initial requirement. This effect was 

observed during the injection locking of multiple tested VCSELs and occurred more 

prominently at higher bias currents.  

Under these optical injection parameters this 1300 nm VCSEL produced periodic 

oscillations, spiking and injection locking. However, under alternative injection 

parameters, it was possible to achieve regimes of period doubling and chaos. 

Importantly, the regimes of non-linear behaviour produced by the VCSEL were 

accessed by varying the injection power. The same effect, however, was observed 

when altering frequency detuning. Therefore, in order to identify regimes of non-

linear dynamics we experimentally explored variations of both injection power and 

frequency detuning. This way we could identify key spiking regimes that could 

potentially be utilised to produce neuron-like optical responses in VCSELs. More 

specifically, to begin a search for spiking dynamics in a VCSEL device the bias 

current was set to ~2 times the threshold current value. Injection would then made 

into the subsidiary mode of the VCSEL with a low frequency detuning of -2 GHz. 

The injection power would then be scanned until polarisation switching and locking 

was achieved. If no spiking responses were observed the frequency detuning would 

be increased incrementally (with further power scans) until -10 GHz. Again, if no 

neuron-like responses were observed, injection would be switched to the alternative 
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polarisation mode of the VCSEL. The same procedure would then be repeated in 

search of spiking responses. Finally, if both polarisation modes failed to trigger 

neuron-like spikes, an alternative higher bias current was tested and the procedure 

was repeated. The mapping of non-linear dynamics was not performed in full, rather 

only regimes and devices of interest were recorded.    

It is also noted that optical injection could be made into the VCSEL’s main parallel 

polarisation (λy) mode with a parallel-polarised optical injection configuration. That 

scheme could also be applied to trigger an injection locking behaviour as well as a 

wide range of nonlinear dynamics. 

 

2.3 Spin-Flip Model (SFM) for VCSEL analysis 

In this work we use a modified version of the so-called spin-flip model (SFM) 

to theoretically simulate the dynamical behaviour of VCSELs. The main focus is to 

analyse theoretically the neural-like dynamical regimes that can be triggered in 

VCSELs and their potential for neuromorphic photonic processing functionalities. 

The SFM, firstly proposed by San Miguel et al. [114], provides an accurate 

description of the nonlinear behaviours that can arise in the two orthogonally-

polarised modes supported by a VCSEL.  

VCSELs have a cavity whose thickness is much smaller than the typical dimensions 

of edge-emitting semiconductor lasers, and VCSELs specifically have circular (or 

elliptical) apertures with vertical light emission from the substrate’s surface. As a 

result of their particular design, to investigate the emission properties of VCSELs 

numerically we are required to consider electron spin states, specifically the 

difference between up and down spin transitions in the valence and conductance 

bands. In the lowest momentum state of the conductance band there are total angular 

momentum values of Jz = ± 1/2. In the valence band there are both heavy-hole states 

and light hole states that correspond to angular momentum values of Jz = ± 3/2 and 

Jz = ± 1/2 respectively. In bulk quantum well devices the higher energy heavy hole 

band produces transitions with ΔJz = ±1 and lower energy light hole states can be 
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neglected. The VCSEL model therefore has two transitions from the conductance 

band to the heavy hole band that produce right-circularly polarized (Jz = −1/2 → Jz = 

−3/2) and left-circularly polarised (Jz = +1/2 → Jz = +3/2) light. With two opposite 

spins, the model considers both the carrier population inversion between each spin 

as well as the total carrier inversion between conductance and valance bands. The 

model also considers the mixing of populations with opposite spins in the decay rate 

𝛾𝑠 for spin-flip relaxation processes (spin flip rate). The SFM for the analysis of 

VCSEL emission also includes cavity anisotropies that give rise to birefringence and 

circular dichroism. Birefringence causes frequency splitting of the polarised light due 

to differing refractive indices experienced while travelling through the medium. This 

produces two linear orthogonally-polarised modes in the fundamental spatial mode 

of VCSELs (as seen in the spectra shown in Fig. 2.2.1). The dichroism effect then 

also subjects the two light polarisations to different absorption and gain ratios. This 

is responsible for the creation of a dominant linear polarisation mode and allows the 

model to predict VCSEL behaviours like polarisation switching, where the dominant 

polarisation mode of the device can change under different operating conditions.  

In this work we use a modified version of the SFM that includes additional terms that 

accounts for the external injection of an optical signal. These are based on 

modification made in [217]. The modified rate equations are shown below in Eq. 

2.3.1-2.3.3:  

                                         (Eq. 2.3.1) 

                                         (Eq. 2.3.2) 
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                        (Eq. 2.3.3) 

Here, we again name the two linear orthogonally polarised modes in the VCSEL as 

the orthogonal and parallel modes. These modes are represented by the subscript x 

(orthogonally-polarised) and y (parallel-polarised) respectively. The field amplitudes 

of the subsidiary and solitary modes are represented by 𝐸𝑥 and 𝐸𝑦. 𝑁 is the total 

carrier inversion between conduction and valence bands and 𝑛 is the carrier inversion 

difference between spins of opposite polarity. 𝛾𝑎 is the linear dichroism rate, 𝛾𝑝 is 

the birefringence rate, 𝛾𝑁 is the decay rate of the carrier inversion and 𝛾𝑠 is the spin-

flip rate. 𝑘 and 𝑘𝑖𝑛𝑗 are the field and injected field decay rates, 𝛼 is the linewidth 

enhancement rate and 𝜇 is the normalised pump current (𝜇=1 represents the VCSEL’s 

threshold pump level). 𝐸𝑖𝑛𝑗 represents the optically injected signal and is 

dimensionless variable that controls the injection strength. The angular frequency 

detuning between the externally injected signal and the VCSEL’s resonance is 

defined as ∆𝜔𝑥 = 𝜔𝑖𝑛𝑗 − 𝜔0, where the central frequency 𝜔0 = (𝜔𝑥 + 𝜔𝑦)/2 lies 

between the frequencies of the subsidiary 𝜔𝑥 = 𝜔0 + 𝛼𝛾𝑎 − 𝛾𝑝 and the solitary mode 

𝜔𝑦 = 𝜔0 + 𝛾𝑝 − 𝛼𝛾𝑎. ∆𝑓𝑥 = 𝑓𝑖𝑛𝑗 − 𝑓𝑥 is the frequency detuning between the injected 

field and the subsidiary mode, hence ∆𝜔𝑥 = 2𝜋∆𝑓𝑥 + 𝛼𝛾𝑎 − 𝛾𝑝. The spontaneous 

emission noise terms 𝐹𝑥 and 𝐹𝑦 are calculated according to Eq. 2.3.4-2.3.5. 

                                        (Eq. 2.3.4) 

                                        (Eq. 2.3.5) 

where 𝛽𝑠𝑝 represents the spontaneous emission strength and 𝜉1,2 represent two 

independent Gaussian white noise terms of zero mean and a unit variance.  
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The model and its equations were reproduced using programming language MatLab, 

where they were solved using the fourth order Runge-Kutta method. A consistent set 

of parameters were used to model the VCSELs used in this project work across a 

number of theoretical experiments: 𝛾𝑎 = 2n𝑠
−1, 𝛾𝑝 = 128n𝑠

−1, 𝛾𝑁 = 0.5n𝑠
−1, 

𝛾𝑠 = 110n𝑠
−1, 𝛼 = 2, 𝐸𝑖𝑛𝑗 = 0.12, 𝑘 = 185n𝑠

−1, 𝑘𝑖𝑛𝑗 = 125n𝑠
−1 and 𝛽𝑠𝑝 =

10−5. 

Using this modified SFM we were able to recreate the behaviours observed 

experimentally in our photonic VCSEL neurons. This allows us to validate the 

experimental findings and confirm the neuromorphic dynamical responses and spike 

processing functionalities achieved with the VCSELs used in this work. 
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Chapter 3  

Controllable Neuromorphic Spiking Dynamics in 

VCSELs 

 

In Chapter 1 we introduced neuromorphic systems and highlighted the 

benefits of using photonic technologies for their implementation. We also discussed 

the potentials of SLs for neuromorphic photonic functionalities and introduced the 

devices we focused on in this work, VCSELs. In Chapter 2 we detailed the 

experimental arrangements used throughout this work. We also discussed how the 

injection of external optical signals influences the laser dynamics in VCSELs and 

revealed how we measure and present results. In this Chapter, we demonstrate how 

to controllably produce neuromorphic spiking dynamics in VCSELs via the external 

optical injection of modulated signals. Specifically, we investigate the controllable 

activation (Chapter 3.1) and inhibition (Chapter 3.2) of fast optical spiking dynamics 

via pathways such as pulsed optical injection and bias current modulation. We also 

investigate the thresholding of VCSEL neurons, plotting the activation function of 

spiking responses, and discuss the refractory period of the spiking dynamics (Chapter 

3.3) in the investigated VCSEL-based artificial optical neurons. 

In this chapter we will discuss experimental results that have produced 

journal publications. The following articles therefore relate to the forthcoming 

discussion:  

[193] J. Robertson, M. Hejda, J. Bueno, and A. Hurtado, “Ultrafast optical integration and pattern 

classification for neuromorphic photonics based on spiking VCSEL neurons,” Sci. Rep., vol. 10, no. 1, p. 

6098, Dec. 2020, doi: 10.1038/s41598-020-62945-5. 

[196] J. Robertson, E. Wade, and A. Hurtado, “Electrically Controlled Neuron-Like Spiking Regimes in 

Vertical-Cavity Surface-Emitting Lasers at Ultrafast Rates,” IEEE J. Sel. Top. Quantum Electron., vol. 

25, no. 6, 2019, doi: 10.1109/JSTQE.2019.2899040. 

[197] J. Robertson, T. Deng, J. Javaloyes, and A. Hurtado, “Controlled inhibition of spiking dynamics in 

VCSELs for neuromorphic photonics: Theory and experiments,” Opt. Lett., vol. 42, no. 8, pp. 1560–

1563, 2017, doi: 10.1364/OL.42.001560. 
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[200] J. Robertson, E. Wade, Y. Kopp, J. Bueno, and A. Hurtado, “Towards Neuromorphic Photonic Networks 

of Ultrafast Spiking Laser Neurons,” IEEE J. Sel. Top. Quantum Electron., 2019, doi: 

10.1109/JSTQE.2019.2931215. 

3.1 Spike Activation 

The activation of spiking action potentials is a characteristic feature of 

biological neurons and is the means by which neurons communicate information 

within cortical neural networks. The spiking dynamics observed by biological 

neurons have a typical duration of 3-5 ms and are governed by the release of ions 

upon neuron stimulation [218]. When a neuron is subject to a depolarising 

stimulation (the reduction of negative charge in the cell) sodium and potassium ion 

channels open, creating an immediate influx of sodium ions that reinforce the 

membrane depolarisation. During the continued depolarisation of the neuron, the 

membrane potential switches from negative to positive, reaching a peak potential 

value where sodium ion channels close. The delayed release of potassium ions then 

rapidly counteracts the depolarisation, repolarising (increasing negative charge) the 

membrane potential towards the resting potential. The rapid repolarisation results in 

an undershoot of the rest potential before the neuron finally hyperpolarises and 

recovers (see Fig. 3.1.1) [218], [219]. 

 

Figure 3.1.1 – Diagram of a neuron’s action potential. When a strong stimulus, exceeding 

the neuron’s threshold (dotted line) arrives, ion channels open and the neuron depolarises. 

The membrane potential reaches a maximum and repolarisation begins. The membrane 

potential undershoots the rest potential and hyperpolarises. The action potential is complete 

when the membrane potential resets to its rest value. Figure reproduced from [219].  
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This mechanism creates the characteristic electric action potentials observed in 

biological neurons. However, not every input stimulus will activate the neuron. 

Neurons have a characteristic membrane threshold potential which sets a requirement 

on the strength of input stimuli such that only super-threshold inputs trigger spiking 

responses. Therefore, the contribution of multiple inputs, integrated by the neuron, 

must surpass the difference between the rest and threshold potentials to activate a 

spike. The action potential response of neurons is an all-or-nothing signal which 

indicates the firing condition of the neuron was met by the inputs of the system. 

Neurons are known, however, to store information in the precise timing of spiking 

responses and have been observed operating with analog input signals for additional 

processing capability [220]–[224]. 

In this Chapter we aim to produce neuronal spiking behaviour using the dynamical 

responses obtained in VCSELs. Specifically, we capitalise on the excitable dynamics 

that can be obtained in VCSELs under suitable operating conditions. Excitable 

dynamics can be accessed in different ways, two possible mechanisms are neural 

excitability with short perturbations, or the transition from rest to a periodic spiking 

activity. In each of these mechanisms we exploit what are known as bifurcation 

points in dynamical systems. Bifurcation points represent the boundary between two 

qualitatively similar behaviours in parameter space. A specific bifurcation known as 

a saddle-node on a limit cycle (SNLC) or saddle node on an invariant circle (SNIC) 

can be responsible for the creation of class 1 excitable spikes [161]. In the case of a 

SNLC, a repeller-node (an unstable fixed point in phase space where the solution of 

the system is real and positive) and an attractor-node (stable fixed point with a real 

and negative solution) exist at an arbitrary small distance from each other on a limit 

cycle in phase space. These two fixed point solutions represent the threshold 

(saddle/repeller, θ+) point and the rest point (attractor, θ-) of the system, respectively 

(see Fig. 3.1.2). The system produces excitability when the rest solution is perturbed 

(neural excitability) or moved (transition of behaviour) such that the two fixed points 

combine and annihilate. Annihilation causes the solution to undergo a large 2π phase 

excursion as it is sent through the limit cycle of the system, after which the solution 

returns to the initial rest point. The stimuli must be sufficient such that the attractor 
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solution meets the repeller (threshold) and annihilates, otherwise the system will 

decay back to its rest point. Given the 2π excursion occurs fast enough, the SNLC 

bifurcation will produce spiking action potentials [72], [161], [162]. The further from 

the threshold the system is successfully perturbed, the shorter the orbit of the 

excursion and the faster the spiking rate [72]. If the parameters of the system are 

altered such that the fixed solutions continuously annihilate, then repetitive 

continuous spiking can be produced by the dynamical system. The spiking dynamics 

produced by SNLC bifurcations are ideal for modelling biological neurons as they 

contain the desired threshold and fire mechanism but also allow for the integration 

of input stimuli.  

 

 

Figure 3.1.2 – Mechanism for Class 1 neural excitability. A SNLC bifurcation (X) is mapped 

onto a 1-dimensional invariant cycle. The system has two stable solutions, the rest (θ-) and 

threshold (θ+) states. Any sub-threshold perturbation will fail to make the stable points 

annihilate, causing the system to return to its rest state. Super-threshold perturbations send 

the system through a larger trajectory where from 0 to π a spike is excited, and from π to 0 

(2π total) the system is returned to its rest state. Figure reproduced from [72]. 

 

The bifurcation point we investigate for neuronal-like excitability in VCSELs is that 

of the optical injection locking boundary. As discussed previously in Chapter 2.2.2, 

under optical injection several dynamical behaviours exist, and during optical 

injection locking, the system crosses the locking boundary to a stable dynamical state 

[151]–[157]. In this first demonstration of the achievement of controllable excitable 

spikes in VCSELs, we utilise the amplitude modulation of optical injection to perturb 
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the system (around the locking boundary) with short drops in injection power. The 

detailed schematic shown in Fig. 3.1.3 reveals the experimental arrangement used for 

the investigation of controllable spiking responses in VCSELs under modulated 

optical injection. This experimental setup features consistently throughout our work 

and is most commonly used when controlling the activation and inhibition of fast 

optical spiking dynamics in VCSEL neurons. 

This experimental arrangement takes customisable inputs (from a 12 GSa/s arbitrary 

waveform generator - AWG) and encodes them in the intensity of an external 

tuneable laser (TL). To achieve this, the pulsed electrical outputs from an AWG are 

amplified (10 dB) and passed into a 10 GHz Mach Zehnder (MZ) optical intensity 

modulator. The modulator converts the electrical pulses into variations of optical 

intensity according to the selected modulation curve. The light from the tuneable 

laser passes through an optical isolator (ISO), preventing unwanted feedback from 

reaching the source, and the light continues through a variable optical attenuator 

(VOA), controlling the total optical injection power. Before the injection light enters 

the MZ modulator the light polarisation is altered to optimise it and thus reduce 

power losses in the system. Following the encoding of optical pulses, the polarisation 

of the injection is again tuned to match the target polarisation mode of the VCSEL. 

Using a 50:50 beam splitter the optical power incident of the VCSEL is measured by 

a fibre-optic power meter (PM). An optical circulator is used to simultaneously direct 

the injection into the VCSEL and collect its output. Using an optical spectrum 

analyser (OSA) the wavelength of the device can be analysed. By converting the 

optical signal to an electrical signal (via a 9.5 GHz amplified photodetector - PD) a 

fast 16 GHz real-time oscilloscope can provide the temporal analysis of the VCSEL 

output. In this arrangement the off-the-shelf VCSELs are temperature stabilised to 

avoid wavelength drift. This setup allows us to inject customisable pulse trains into 

the VCSEL and capture the subsequent temporal response of the laser in real time.  
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Figure 3.1.3 – Experimental setup for the controllable activation and inhibition of spiking 

dynamics in a VCSEL neuron. Light from a tuneable laser source is encoded with optical 

pulses before injection into the VCSEL neuron. The latter’s output is collected by a 

photodetector and analysed using a real-time oscilloscope. Experimental components 

include: TL – tuneable master laser, ISO – optical isolator, VOA – variable optical attenuator, 

PC - polarisation controller, MZ – Mach Zehnder intensity modulator, PS – power supply, 

AWG - arbitrary waveform generator, AMP – electrical amplifier, PM – power meter, OSA 

– optical spectrum analyser, PD - photodetector, OSC – oscilloscope. 

 

 

Figure 3.1.4 – Controllable activation of a single optical spike. A 0.64 ns-long pulse is 

encoded in the optical intensity of the VCSEL’s optical injection (a). The incoming optical 

pulse breaks the injection locking condition by briefly reducing injection power, forcing the 

system to enter a regime of fast excitable spiking dynamics (b). Plotting 200 consecutive 

optical pulses, the temporal map (c) reveals a consistent and repeatable spiking response 

from the VCSEL neuron. Experimental parameters: I = 2.2 mA, T = 300 K, external 

orthogonal (XP) mode injection with ∆f = -10.3 GHz and Pinj= 270 μW. Figure reproduced 

from [200]. 
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To perform the controllable activation of neuromorphic optical spiking dynamics in 

VCSELs we inject pulses (stimuli) into the device. In the simplest case (shown in 

Fig. 3.1.4 (a)), the input injected into the VCSEL neuron is a negative pulse, with a 

high intensity baseline and a short low intensity drop. Initially, the input provides a 

high level of optical injection power such that optical injection locking is achieved 

between the slave VCSEL and the master TL. Optically injection locking the VCSEL 

shifts its laser cavity resonance to that of the master laser and stabilises the temporal 

dynamics at the device’s output (as seen initially in Fig. 3.1.4 (b)). However, when 

the negative drop, which has a lower optical injection power than the initial baseline 

level, enters the VCSEL neuron, the operation point of the laser system in parameter 

space is altered. Given a sufficiently lower optical injection power than before, the 

system is forced out of the stable injection locking state and thrown to the other side 

of the bifurcation point. As VCSELs are capable of displaying excitability, a strong 

perturbation, and the resulting change of system parameters (frequency detuning, 

injection power and bias current), can trigger spiking responses at the device’s output 

(as shown in Fig. 3.1.4 (b)). Following the activation of a spiking event and the 

removal of the negative input, the system quickly recovers to a stable output as the 

high injection power restores the initial optical injection locking condition. 

Exploiting this injection locking-unlocking transition creates a controllable 

mechanism for the achievement of fast spiking responses with good signal-to-noise 

ratio. Further, here the spiking dynamics produced by the VCSEL have widths of 

approximately 100 ps (full width half maximum - FWHM) and trigger at nanosecond 

inter-spike intervals. This makes these spiking dynamics 3 orders of magnitude faster 

than spiking observed in recent electronic neuromorphic systems (µs-timescales). 

The power requirement for neuronal spike activation in VCSEL is also relatively low, 

with only a driving current of a few mA’s and μW levels of optical injection power 

necessary.   

By testing the response of the VCSEL to 200 consecutive input pulses and plotting 

the results in a temporal map (Fig. 3.1.4 (c)), we can observe the consistency of the 

triggered optical spikes. The plotted temporal map shows the evolution of time on 

the y-axis, the intensity of the measured signal in the colour map and each 
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consecutive result on the x-axis. In the colour map blue pixels indicate the low 

intensity drops and yellow pixels indicate the high intensity peaks. The temporal map 

forms a line of yellow pixels indicating the response from each consecutive input is 

the same. This means the system is highly consistent and that the VCSEL reliably 

triggers a spiking response upon the injection of a short negative pulse.  

Short input pulses (<1 ns-long) can therefore consistently perturb the laser system 

and trigger a single spiking response from the VCSEL, so next we investigated the 

effect of extending the input pulse duration (td). Again, we first optically injection 

locked the slave VCSEL to the tuneable master laser’s light, and then injected 

negative optical pulses of increasing temporal duration td = 2.06, 2.91 and 4.52 ns as 

shown in Fig. 3.1.5, to trigger different spiking responses in the device.  

Fig. 3.1.5 (a) shows the 2.06 ns long input pulse (red) injected into the VCSEL neuron 

and the spiking response from the system (blue). With an initial optical injection 

power of 237 µW the system produces a stable output, where the VCSEL is injection 

locked to the tuneable master laser light. When the negative pulse enters the VCSEL 

we see that a single spiking dynamic is activated. Upon increasing the duration of the 

optical input pulse, td = 2.91 ns (Fig, 3.1.5 (b)) and 4.52 ns (Fig, 3.1.5 (c)), we find 

that an increasing number of spiking events are activated. Here the change of 

injection parameters (optical pulse duration) forces the system out of the injection 

locked state for an extended period, resulting in the continuous activation of the 

bifurcation point. This therefore results in the constant activation of spiking 

dynamics. Upon testing the response to multiple consecutive inputs, we again found 

that the number of activated spiking dynamics was highly consistent. The number of 

spike activations produced by the system can therefore be controlled using the 

duration of negative input pulses. Modulated optical injection therefore grants a 

simple and effective method of triggering fast (sub-ns) optical spiking responses with 

a controllable number of spike events.  
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Figure 3.1.5 – Controllable activation of tonic spiking responses in a VCSEL under 

modulated optical injection inputs. Optical pulses of increasing temporal duration, 2.06 ns 

(a), 2.91 ns (b) and 4.52 ns (c) were injected into the VCSEL neuron (red), and its temporal 

response was recorded (blue). Experimental parameters:  I = 3.6 mA, T = 298 K, external 

orthogonal (XP) mode injection with ∆f = -5.65 GHz and Pinj= 237 μW. Figure reproduced 

from [200]. 

 

Figure 3.1.6 – Experimental setup for electrically-controlled optical spike activation in a 

VCSEL neuron. An external optical signal is used to injection-lock the VCSEL neuron 

before the device’s bias current is modulated via a bias tee. The radio frequency (RF) 

component of an AWG electrical pulse is combined with DC voltage to create a controllable 

bias modulation. For every 50 mV of RF electrical pulse the VCSEL bias was increased by 

1 mA.  Experimental components are the same as in Figs. 3.1.3-3.1.5. 
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The controllable nature of the spiking dynamics produced by the VCSEL is exciting 

for the potential implementation of a VCSEL-based neuromorphic photonic system. 

The results of Fig. 3.1.5 show directly the achievement of tonic spiking behaviour 

analogous to that observed in biological neurons. Tonic spiking is the continuous 

activation of spiking responses in neurons upon extended temporal stimulation [18]. 

The activation of continuous spiking responses (of consistent amplitude) is also an 

indicator that the spiking behaviour produced the system is class 1 excitability. Class 

1 excitability is the product of a SNLC bifurcation, further reinforcing the 

appropriateness of this mechanism for emulating the different functionalities 

observed in biological neurons. This promising result indicates that modulated 

optical injection, in tandem with off-the-shelf VCSELs operating at key telecom 

wavelengths (1310 and 1550 nm), may hold great prospects for future processing 

systems based on the ultrafast emulation of neurons. 

In our investigation into optical spiking VCSEL neurons and the controllable 

activation of spiking dynamics we explored options other than the modulation of 

optical injection. We created an experimental system (shown in Fig. 3.1.6) that 

introduced electrical pulses in the bias current of the VCSEL, subject to constant 

optical injection. We used a bias tee to summate components from an RF and a DC 

input, producing a time-varying bias current in which we could apply fast electrical 

input pulses to the VCSEL.  

A continuous light signal from a tuneable master laser was sent into the VCSEL, 

initially injection locking it to the external injection. This was achieved using an 

injection power of 252 µW and a frequency detuning of ∆f = -5.65 GHz from the 

Orthogonal (XP) mode of the device. The DC bias of the VCSEL was set to 6.0 mA 

before positive RF pulses, (shown in Fig. 3.1.5 (a)) modulated the bias current 

applied to the device. The bias tee produced a change of 1 mA per 50 mV of RF 

signal amplitude. The RF input was set as a square-wave pulse with a duration of 

1.07 ns and an amplitude of 186 mV which temporally increased the VCSEL bias 

current by 3.72 mA. The recorded temporal output of the VCSEL is plotted in Figs. 

3.1.5 (b) & (c). 
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Figure 3.1.7 – Electrically activated optical spikes in a VCSEL neuron. An electrical pulse 

of duration 1.07 ns and amplitude 186 mV was fed into the bias tee connected to the device 

(a). The electrical pulse is converted into a 3.72 mA bias modulation, breaking the injection 

locking conditions, and placing the VCSEL in a regime of spiking dynamics (b). The 

temporal map of the measured VCSEL response indicates that 1 spike is consistently 

activated by all 200 incoming electrical pulses (c). Experimental conditions: I = 6.0 mA, T 

= 293 K, external orthogonal (XP) mode injection with ∆f = -5.65 GHz and Pinj= 252 μW. 

Results previously published in [196]. 

 

Initially the VCSEL produces a stable output as the system is optically injection 

locked to the master laser. When the rising edge of the RF input enters the bias tee 

(at 3 ns in Figs. 3.1.7 (a)-(c)) we see that the output signal of the VCSEL increases. 

This is caused by the jump in VCSEL bias current which in turn produces more 

output power and a larger measurement on the photodetector. During the 1.07 ns-

long pulse we see that the VCSEL triggers a fast optical spike. The injection locking 

condition is again broken during exposure to this input pulse. When the bias current 

in increased the resonant wavelength of the VCSEL is altered, increasing the peak 

wavelength of the XP and YP modes of the device. However, because the injection 

wavelength is stable, the frequency detuning ∆f is temporally increased and the 

conditions for injection locking altered. The electrical perturbation therefore forces 

the bifurcation point in the system to trigger spiking responses. The consistency of 

the activated spike is plotted in the temporal map of Fig. 3.1.7 (c), which shows the 

arrival of 200 consecutive RF input pulses. The results show that a single spiking 

dynamic is consistently activated within the 1.07 ns pulse, and that a second spike is 
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intermittently triggered towards the end of the RF input. This indicated that the pulse 

duration may be too short for consistent 2 spike activation so extended pulse 

durations of 1.34 ns, 1.9 ns and 2.35 ns were tested (see Figs. 3.1.8 (a)-(c)). 

 

Figure 3.1.8 – Tonic spike activation with electrical bias modulation. Pulses of increasing 

duration, 1.34 ns (a), 1.90 ns (b) and 2.35 ns (c) (in red) modulate the bias current of the 

VCSEL neuron. The bias modulation interrupts the injection locking behaviour producing 

trains of 2, 3 and 4 pulses at the output of the VCSEL (in blue). Experimental parameters are 

identical to those in Fig. 3.1.7. Results previously published in [196]. 

 

The extended RF input pulses successfully produced 2, 3 and 4 optical spike 

activations, with fast (100 ps-long) durations and sub-nanosecond inter-spike 

intervals. The number of optical spikes activated remained consistent across all 200 

consecutive RF input pulses. As seen in the temporal map of Fig. 3.1.7 (c) a slow 

variation in the activation time of the spike can be observed. This variation is present 

within the entire temporal map, with the shade of blue fluctuating across all 200 

cycles. This indicates that during this measurement the output power of the VCSEL 

was fluctuating hence the experimental parameters, (the temperature or applied bias 

current) were not completely stable. The fluctuation of bias or temperature would 
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alter the position of the system around the bifurcation point, hence the spike 

activation time (and the activation of a second spike) varies across the 200 cycles. 

Given improvements to experimental stability we would expect the dampening of 

fluctuations in spike activation time. The results shown here for electrically-triggered 

spiking dynamics have been reported in [196]. 

Overall, this method of electrically-controlled optical spike activation can also 

reproduce the tonic spiking behaviour of biological neurons, activating spiking 

continuously for the whole duration of an input stimulus. This method of spike 

activation has exciting opportunities to enable the network interconnectivity of 

VCSEL neurons through electrical connections, granting additional freedom to the 

operation wavelength of coupled devices.   

 

3.2 Spike Inhibition 

The controlled activation of excitatory spiking dynamics is key to the 

functionality of neuromorphic systems. However, the ability to controllably inhibit 

and suppress spiking responses is also crucial to the smooth operation of biological 

neural networks. In biological neurons, inhibition is used to stop or slow the firing of 

excitatory neurons, keeping the data traffic within the network under control and 

allowing the network to function efficiently [225]. Similarly, inhibitory responses are 

also important in learning rules based on spike-timing dependant plasticity (STDP) 

[53], [226] and for effective input integration. In this demonstration we again show 

that both optical and electrical modulation can be used to inhibit a spiking VCSEL 

neuron for a controllable duration of time. 

To realise inhibition in our photonic VCSEL neurons via optical modulation, we 

again utilise the experimental setup shown in Fig. 3.1.3. As in the activation of 

spiking dynamics (Chapter 3.1), we use modulated optical injection to induce 

transitions from parameters that produced continuous spiking responses to 

parameters that produced injection locking. Unlike the previous demonstrations we 

achieve inhibition by initially positioning our system in a regime of continuous 
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spiking dynamics. For this a low injection power of 33.56 µW and a frequency 

detuning of ∆f = -2.83 GHz from the XP mode of the VCSEL were used. Under these 

experimental conditions the VCSEL produced continuous spiking dynamics with 

sub-nanosecond inter-spike intervals. Positive input pulses were then introduced into 

the optical injection, causing the optical injection power to increase for a configurable 

temporal duration. A 4.33 ns input optical pulse and the corresponding output of the 

VCSEL neuron are shown in Fig. 3.2.1 (a)-(c). 

 

 

Figure 3.2.1 – Spike inhibition in a VCSEL neuron via optical modulation. A positive optical 

pulse of duration 4.33 ns was encoded into the optical signal injected into the VCSEL neuron 

(a), producing an inhibition window in the spiking output (b). The temporal map of the 

VCSEL neuron’s response reveals optical spikes are consistently inhibited for the temporal 

duration of each of the 200 consecutive optical pulses injected into the system (c). 

Experimental conditions: I = 3.0 mA, T = 293 K, external orthogonal (XP) mode injection 

with ∆f = -2.83 GHz and Pinj= 33.56 μW. Results previously published in [197]. 

 

The VCSEL neuron’s output shows the continuous firing of optical spikes until the 

rising edge of the input pulse enters the device. The incoming pulse increases the 

optical input power such that the VCSEL becomes optically injection locked, altering 

the resonant wavelength, and suppressing the optical spiking responses. The window 

of inhibition is achieved for the entire duration of the input pulse. The response of 

the VCSEL neuron is plotted for 200 consecutive inputs in Fig. 3.2.1 (c). Here the 

temporal map shows clearly that spiking dynamics are consistently suppressed during 
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the inhibition window and that the unlocking transition consistently recovers the 

optical spiking.  

 

Figure 3.2.2 – Controlled spike inhibition is obtained with a VCSEL neuron. Positive optical 

input pulses of increasing duration of 1.89 (a), 3.30 (b) 5.30 (c) and 6.70 ns (d) were used. 

Positive optical pulsed inputs injection-lock the VCSEL neuron, suppressing the production 

of continuous spike trains. Experimental parameters are the same as those used in Fig. 3.2.1. 

Results previously published in [197]. 

 

To further test the controllability of the spike inhibition response of the VCSEL 

neuron, we injected optical pulses of various temporal durations (1.89, 3.30, 5.30 and 

6.70 ns) into the spiking VCSEL neuron (Figs. 3.2.2 (a)-(d)). The temporal outputs 

measured in Figs. 3.2.2 (a)-(c) show that as the duration of the optical input pulse is 

increased, the length of the inhibition window is also increased, thus giving a simple 

mechanism for controllable optical spiking inhibition. The configurable length of the 

spiking inhibition window revealed no detrimental effect on the consistency of the 

suppression as spiking dynamics were effectively removed in multiple consecutive 

inputs.  
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Figure 3.2.3 – Experimental setup for electrically-controlled spike inhibition. An external 

electrical signal is used to modulate the bias of a master VCSEL (VCSEL-1). VCSEL-1’s 

signal is injected into the slave VCSEL neuron (VCSEL-2), producing continuous spiking 

dynamics. When the electrical input pulse arrives at VCSEL-1, the output power is increased, 

injection locking VCSEL-2 and suppressing spiking dynamics. Experimental components 

are as previously described. 

 

 

Figure 3.2.4 – Spike inhibition via electrically-controlled bias modulation in a VCSEL 

neuron. A positive pulse of 2.66 ns (a) modulates the bias current of the master VCSEL. The 

modulated optical signal is injected into the slave VCSEL neuron producing continuous 

spike trains. When positive pulses enter the slave VCSEL neuron the spiking responses are 

inhibited as the device enters the injection locking regime (b). A temporal map, measured 

across 200 consecutive input pulses, shows the consistency of the spike inhibition response 

(c). Experimental conditions: Imaster (Islave) = 4.16 mA (4.06 mA), Tmaster (Tslave) = 293 K (294 

K), external orthogonal (XP) mode injection with ∆f= -2.83 GHz and Pinj= 42 μW. Results 

previously published in [200]. 

 

The results show the consistent triggering of a large spike at the removal of the 

inhibition. This rebound spike, is produced when the parameters of the system are 

close to the locking/unlocking boundary of the VCSEL neuron. The constant 
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injection parameters of the system are important to the spike firing rate observed at 

the output of the VCSEL. The closer the parameters are to the bifurcation point (here 

the locking/unlocking boundary) the slower the spiking rate [197]. Here the injection 

parameters initially position the system far from the locking boundary, hence the 

continuous spiking responses from the VCSEL are fast. The rebound spike is the 

result of the system firing close to the bifurcation point as the input pulse is removed, 

hence appearing as a slower, larger spike. These result are consistent with the 

experimental and theoretical results we previously reported in [197].  

We have therefore demonstrated that optical modulation can be used to exploit a 

bifurcation in our VCSEL neuron to achieve spike inhibition like that observed in 

biological neurons. Additionally, we can also demonstrate a pathway to controllable 

inhibition via the injection of electrically-modulated signals into a VCSEL neuron. 

The experimental setup used to realise electrically-controlled spike inhibition with a 

VCSEL neuron is shown in Fig. 3.2.3. 

Electrical signals are introduced to a master VCSEL (VCSEL-1) via the RF port of 

an electrical bias tee. The electrical input modulates the bias current of the master 

VCSEL producing a higher VCSEL output power during the positive input pulse. 

VCSEL-1 is then injected into a slave VCSEL neuron (VCSEL-2) using an optical 

attenuator and polarisation controller to configure the injection power and 

polarisation. The injection of VCSEL-1 is made into the orthogonal mode of VCSEL-

2 with a frequency detuning of ∆f = -2.83 GHz and an injection power of 42 µW. 

Under these conditions VCSEL-2 produces a continuously spiking output. The 

electrical input used to modulate VCSEL-1 is shown in Fig. 3.2.4 (a) and the resultant 

VCSEL-2 output is plotted in Figs. 3.2.4 (b) & (c).  

Electrical pulses of 2.66 ns temporal length were used to modulate the light output 

of the master VCSEL (VCSEL-1) with pulse amplitudes of 160 mV producing a 

temporary bias current increase of 3.2 mA (Fig. 3.2.4 (a)) in VCSEL-1. As shown in 

Fig. 3.2.4 (b) in the absence of an input pulse, VCSEL-2 produced fast continuous 

spiking dynamics. Upon the injection of an input pulse from VCSEL-1 into VCSEL-

2, the system remained quiescent and did not trigger a fast spiking response. Here the 

increased injection power, associated with the increased electrical bias across 
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VCSEL-1, injection-locked VCSEL-2 to the signal from VCSEL-1, pulling the 

system out of the excitable spiking regime. The temporal map of 200 consecutive 

inputs (plotted in Fig. 3.2.4 (c)) shows that the mechanism for spiking inhibition is 

consistent and that for the duration of the input pulse a window of stable, non-spiking 

dynamics is produced. After the removal of the input pulse, the system recovers and 

returns to the original spiking regime in a highly consistent way as can be seen clearly 

in Fig. 3.2.4 (c). 

 

Figure 3.2.5 – Electrically-controlled spike inhibition with extended duration in a VCSEL 

neuron. Time series from the electrically modulated master VCSEL (top plots, in black) and 

the subsequent inhibition of spiking responses obtained from the VCSEL neuron (bottom 

plots, in blue). Electrical pulse duration was increased from 4.29 ns (a) to 5.35 ns (b) and 

6.61 ns (c). Experimental conditions are identical to those used in Fig. 3.2.4. Results 

previously published in [200]. 

 

The controllability of the electrically triggered spiking inhibition behaviour was also 

tested for various input pulse durations. Electrical pulse durations of 4.29, 5.35 and 

6.61 ns were all used to modulate the bias of VCSEL-1. The electrical inputs and the 

subsequent output of VCSEL-2 is plotted in Fig. 3.2.5. The VCSEL-2 outputs 

measured in Fig. 3.2.5 (a)-(c) show that as the input pulse duration is increased, the 
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duration of the spiking inhibition window is also increased. The length of positive 

electrical inputs can therefore be used to control the number of spiking events 

inhibited at the output of VCSEL-2. As in the case of Fig. 3.2.4, the inhibition of 

spiking dynamics was consistent across all consecutive inputs and was not influenced 

by the duration of the inhibition window. Electrical bias modulation can therefore be 

used to controllably inhibit fast sub-nanosecond neuromorphic spiking dynamics in 

VCSELs operating at key telecom wavelengths.  

Overall, we have demonstrated that spike inhibition is possible with off-the-shelf 

VCSELs, acting as artificial optical spiking neurons. This is achieved both via the 

injection of optically- or electrically-modulated signals into a VCSEL neuron. These 

techniques allow us to silence the tonic firing of neuromorphic spiking dynamics in 

VCSEL neurons. Photonic VCSEL neuron systems therefore have the capability to 

apply inhibition alongside excitable spiking dynamics to emulate the functionality of 

biological neurons.   

 

3.3 Neuromorphic Properties of Spiking Dynamics 

We have shown in Chapters 3.1 & 3.2, that neuron-like spiking dynamics can 

be controllably activated and inhibited in VCSEL neurons via both optical and 

electrical modulation. However, equally crucial to the functionality of the neuron is 

its ability to integrate incoming stimuli (inputs) and threshold input contributions (in 

the soma of the cell). Without the ability to threshold input contributions the neuron 

would fire for all inputs and not be capable of its decision-making functionality, 

meaning thresholding is key to neural processing and neuromorphic devices [32]. 

Thresholding enforces a requirement on the activation of the neuron, making it such 

that the inputs must have sufficient energy/potential before the neuron will trigger 

the firing of spiking responses [218], [219]. In this Chapter we investigate further the 

neuromorphic spiking dynamics of VCSEL neurons, specifically, the existence of an 

activation threshold and the inter-spike interval of the spikes triggered in our devices.  
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We previously demonstrated that 100 ps-long spiking responses could be 

controllably obtained from a VCSEL neuron subject to modulated optical injection. 

Using the same experimental setup (Fig. 3.1.3) we now investigate the effect of 

varying the input perturbation’s (negative pulses) amplitude (strength) on the spiking 

responses of the system. By varying the strength of the injected inputs, we can 

determine the existence of a neuronal activation threshold for spike firing in VCSEL 

neurons. In this experiment the VCSEL neuron was injection locked with an optical 

signal of 164.8 μW from the tuneable master laser. This was injected into the 

orthogonal (XP) polarisation mode of the VCSEL with a frequency detuning of Δf = 

-6.71 GHz. The input used to test the system for a spike activation threshold, was 

made up of 7 negative pulses of increasing amplitude. The input amplitudes were 

configured to 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0 times the maximum range of the 

AWG in our experimental setup. Once encoded into the optical injection, the largest 

amplitude input (1.0 times the max range) produced a power drop of 59.8 μW. The 

input pulses were generated with 100 ps temporal widths and 2 ns time separations 

between them. The input-encoded optical injection and the response of the VCSEL 

neuron are shown in Figs. 3.3.1 (a) & (b) respectively.  

When the first input pulse, corresponding to a small power drop of 24 μW (0.4 x 

59.8), entered the VCSEL neuron, the system failed to trigger a neuron-like spiking 

response. Further increasing the input amplitude to 0.5 and 0.6 x 59.8 μW, similarly 

failed to activate a response from the VCSEL neuron. However, when an input 

amplitude of 41.9 μW (0.7 x 59.8) entered the VCSEL neuron, the system responded 

as previously observed, activating a fast spiking response (Fig. 3.3.1 (b)). When the 

input amplitude was increased further to 0.8, 0.9 and 1.0 x 59.8 μW, the system 

continued to activate neuronal spiking responses. Plotting the results of 653 

consecutive input sequences in a temporal map (Fig. 3.3.2 (a)), we gain additional 

information about the activation of spiking dynamics in the VCSEL neuron. The 

temporal map reveals that the consistency of the spiking response decreases with the 

strength of the input. The efficiency curve plotted in Fig. 3.3.2 (b) better illustrates 

the spike activation efficiency against input strength.  
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Figure 3.3.1 – Spike activation in the VCSEL neuron with varying input perturbation 

amplitudes (strength). Time series showing the externally injected optical signal with 7 (100 

ps) pulses of increasing intensity (a), and the corresponding VCSEL neuron response (b). 

Input pulses correspond to drop amplitudes of 0.4-1.0 x 59.8 μW. The red dotted line 

represents the system’s spike activation threshold. Experimental conditions: I = 5.0 mA, T = 

293 K, external orthogonal (XP) mode injection with ∆f = -6.71 GHz and Pinj= 164.8 μW. 

Figure reproduce from [193]. 

 

 

Figure 3.3.2 – Temporal map and spike efficiency curve for optical spike activation. The 

temporal map plots the response of the VCSEL neuron to 653 consecutive input sequences 

(a). The activation efficiency of spiking responses is plotted for the increasing values of input 

strength (b). The results plotted in (a) and (b) correspond to the time series of Fig. 3.3.1. 

Experimental conditions are identical to those used in Fig. 3.3.1. Figure reproduced from 

[193]. 

 



94 
 

We see that for the strongest input pulse the spike efficiency is 100%, meaning every 

input activated a spiking response. This is expected as the strongest pulse reduces the 

injection power most significantly, effectively perturbing the system, annihilating the 

bifurcation solutions, and sending the system through the limit cycle generating a 

spike. The spike efficiency drops to 41% when the 0.7 strength input pulses enter the 

VCSEL neuron. Reducing the input amplitude produces smaller injection power 

drops, resulting in less consistent activation of the system, until smaller power drops 

(0.4-0.6 in this demonstration) fail to successfully cross the locking boundary. In our 

system, this mechanism creates a non-linear activation threshold like those in 

biological neurons. A sufficient input pulse amplitude and hence injection power 

drop are required to break down the injection locking condition and achieve the 

activation of neuromorphic spikes.    

To further confirm the existence of a spike activation threshold in VCSEL neurons, 

we also analysed the effect of input perturbation amplitude for the case of electrically 

triggered spiking responses. Using the experimental setup shown in Fig. 3.1.4, we 

injected positive electrical inputs of increasing amplitude into the bias current of the 

VCSEL neuron. Each electrical input was used to modulate the bias of the device 

with amplitudes of 59.1, 91.1, 122.9, 166.3 and 206.3 mV producing 1.18, 1.82, 2.46, 

3.33 and 4.13 mA changes in bias respectively (Figs. 3.3.3 (a)-(e)). Input pulses were 

configured to have 0.65 ns long pulse widths and optical injection locking was 

achieved with an external optical signal. The blue plots of Figs. 3.3.3 (a)-(e) show 

the VCSEL neuron’s response to each electrical input. These results are adapted from 

our publication on electrically trigger spiking dynamics in VCSELs [196]. 
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Figure 3.3.3 – Electrically triggered spike activation with varying input amplitude (strength). 

Time series showing the electrical signals used to modulate the VCSEL bias (top - in black), 

and the corresponding VCSEL neuron response (bottom - in blue). Electrical input 

amplitudes of 59.1 (a), 91.1 (b), 122.9 (c), 166.3 (d) and 206.3 mV (e) were injected into the 

bias tee. Experimental conditions: I = 6.0 mA, T = 293 K, external orthogonal (XP) mode 

injection with ∆f = -5.65 GHz and Pinj= 210 μW. Results previously published in [196]. 

 

In Fig. 3.3.3 we observe spiking responses from all input amplitudes greater than 

91.1 mV, with only the smallest amplitude pulse (51.1 mV) failing to activate the 

device. As in our previous electrical activation demonstration, the increase in VCSEL 

bias creates a step in observed output intensity. A temporal map created using 40 

measurements of each input pulse and the corresponding spike efficiency (for 200 

consecutive measurements of each input) are also plotted in Figs. 3.3.4 (a) & (b). In 

the temporal maps we can see that the spike efficiency for the two smallest inputs is 

low (0 and 12.2%). However, when the electrical pulse amplitude is increased to 
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122.9, 166.3 and 206.3 mV the spike efficiency increases to 90.8, 100 and 100% 

respectively. This non-linear rise in spike efficiency again indicates the presence of 

an activation threshold in our VCSEL neuron. In a similar mechanism to that of the 

optical modulation technique, here increasing the bias alters the frequency detuning 

between optical injection and the resonant mode of the laser. When input pulse 

amplitudes are insufficient the system remains comfortably locked to the external 

optical signal. Only when a large enough bias modulation is produced by electrical 

inputs do spiking responses appear consistently. 

 

Figure 3.3.4 – Temporal map and spike efficiency curve for electrically-controlled spike 

activation in a VCSEL neuron. The temporal map combines 40 consecutive responses to 

each of the 5 input pulses shown previously in Fig. 3.3.3. In total the temporal map (a) and 

the corresponding spike efficiency curve (b) sample a total of 200 consecutive input 

sequences. The spike efficiency curve reveals a non-linear spike activation threshold. 

Experimental conditions are identical to those used in Fig. 3.3.3. Results reported in [196]. 

 

From the results of Figs. 3.3.1-3.3.4 we can therefore deduce that our VCSEL neuron 

has a non-linear activation threshold like that of a biological neuron. While doing so 

we have also identified the two key experimental parameters that govern the 

thresholding behaviour, injection power (Pinj) and frequency detuning (Δf). The 

mechanism for activating spiking dynamics in our photonic VCSEL neuron is the 

perturbation of the system around a bifurcation present at the injection locking 

boundary. Therefore, the threshold for spike activation is dependent on the position 

of the system in dynamical space. If the system is positioned closer to the 

locking/unlocking boundary, then the amplitude (strength) of the inputs required to 
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trigger spikes are lower than those when positioned further from the 

locking/unlocking boundary. We can therefore reposition our system (using injection 

power and frequency detuning) to select the desired spike activation threshold. We 

also note here the existence of a threshold with regards to the spiking inhibition 

mechanism discussed in Chapter 3.2, and have shown in a previous report that 

sufficient input pulse strength is required to efficiently lock and inhibit spiking 

responses [197]. 

The time series plots of Figs. 3.3.3 (c)-(e) and the temporal map of Fig. 3.3.4 (a) 

indicate that the strength of the input perturbation (stimulus) may also have an effect 

on the latency of the spiking response by the VCSEL neuron. In these cases, we 

observe lower latency in the activation of spikes when the amplitude of the input 

perturbation is high and a larger latency when low. The latency of the spike therefore 

contains information of the input perturbation (stimulus) that was used to activate the 

spike event in the VCSEL neuron. This storing of information in the latency of spikes 

has been observed in biological neurons. For example, in the neurons of the visual 

cortex the latency of spikes was shown to be shorter when processing higher contrast 

ratios [223] and when handling auditory signals, neurons have been shown to store 

the directionality of sound in spike latency [224]. The input-dependant spike latency 

is therefore another neuronal behaviour exhibited by VCSEL neurons allowing the 

storage of additional input information in the spiking outputs.  

In biological neurons the maximum spike firing rate for two consecutive input stimuli 

is governed by what is called the refractory period. Specifically, the absolute 

refractory period is the time after a first stimulation (yielding a spiking event) that a 

second action potential cannot be fired by a second stimulation, irrespective of the 

latter’s input strength. Following the absolute refractory period, the potential of the 

neuron begins to recover, returning to its rest potential after a given time. That time 

between the absolute refractory period and the neuron’s full recovery is called the 

relative refractory period, whereby the neuron can be forced to elicit an action 

potential given a stronger than normal stimulation [218], [219]. By investigating the 

refractory period within our VCSEL neuron we can therefore determine the 

minimum inter-spike interval possible with consecutive input perturbations in our 

system. Absolute and relative refractory periods have been observed in diverse laser-
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based neuromorphic models and highlight the fast operation speed of different 

photonic platforms [169], [177], [227].  

We have investigated the refractory period for the VCSEL neurons of this work. 

Using modulated optical injection and the experimental arrangement reported in Fig. 

3.1.3, we generated pairs of input pulses (perturbations) with increasing temporal 

separation for their injection into a VCSEL neuron. The input pulses (perturbations) 

were configured to have super-threshold strength and pulse widths of 0.3 ns. External 

optical injection was made into the VCSEL’s Orthogonal (XP) mode with a detuning 

of Δf = -6.35 GHz and an injection power of Pinj = 185 μW. The response of the 

VCSEL neuron to incoming input pulse pairs is plotted in Fig. 3.3.5.  

The time series for the case of input pairs with 0.66, 1.03 and 1.21 ns separation are 

shown in Figs 3.3.5 (a)-(c). In this experiment the input separation was measured 

from the rising edge of the initial pulse to the rising edge of the second pulse. In the 

case of the 0.66 ns-separated input perturbations, we find that a single spiking 

response is triggered by the VCSEL neuron, resulting in a zero second-spike firing 

efficiency, as shown in the curve of Fig. 3.3.5 (d). This indicates that for this case the 

system is not capable of firing a second response and that this input separation falls 

within the absolute refractory period of the VCSEL neuron. The input pulse here 

attempts to perturb the system before the recovery of sufficient carriers in the device, 

resulting in no response from the system. Growing the input separation to 0.93 ns 

results in an increase in the firing efficiency of a second spike by the VCSEL neuron. 

This indicates that the system in now capable of activating a spiking response, 

however, the response in not consistent as a second spike is only triggered for 39.7% 

of the 232 consecutive measurements. Looking at the efficiency curve in Fig. 3.3.5 

(d), we can conclude that the tested VCSEL neuron had an absolute refractory period 

of 0.84 ns. The spiking response for the input pair separated by 1.02 ns is plotted in 

Fig. 3.3.5 (b), showing that indeed two spiking responses are fired by the VCSEL 

neuron. The spike efficiency curve reveals that the triggering of the second spike is 

consistent across all 232 consecutive inputs. However, the second response from the 

VCSEL neuron does not produce a complete spiking orbit, with the shape differing 

from that of the initial response. The opening drop of intensity, clearly visible in the 

initial response, and the overall spike amplitude are not consistent with the spike 
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triggered earlier in the sequence. This indicates that the excursion used to produce 

the intensity spike was altered because the system did not fully recover before the 

arrival of the second input. Despite activating a consistent response, this means the 

1.02 ns input pair fall within the relative refractory period of the VCSEL neuron. It 

is not until pulse separations of 1.14 ns or higher are used that the relative refractory 

period is overcome, and consecutive spiking responses are produced by the VCSEL 

neuron in response to two consecutive input perturbations. An example of consistent 

consecutive spikes for a 1.21 ns input pair is given Fig. 3.3.5 (c).  

 

 

Figure 3.3.5 – Refractory period analysis of a VCSEL neuron under external optical 

injection. Pairs of input pulses of increasing temporal separation are injected into the VCSEL 

neuron (top, in red) and its spiking response is measured (bottom, in blue). Time series show 

the VCSEL neuron response for input pulse pair separations of 0.66 (a), 1.02 (b) and 1.21 ns 

(c). The second spike firing efficiency versus perturbations temporal separation is plotted for 

232 consecutive measurements (d). Experimental conditions: I = 5.0 mA, T = 293 K, external 

orthogonal (XP) mode injection with ∆f = -6.35 GHz and Pinj = 185 μW.  

 

Overall, the absolute refractory period of the measured VCSEL neuron was found to 

be 0.84 ns, and the relative refractory period was found to be 1.14 ns. This means 
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that our VCSEL neuron can operate reliably with inter-spike intervals above 1.14 ns 

but can be made to operate at sub-nanosecond rates under the injection of strong input 

perturbations. Whilst in Fig. 3.3.5 a specific VCSEL neuron was tested, we also 

observed similar refractory periods for multiple other VCSEL devices, with the 

VCSEL neuron in [203], reporting a refractory period of 1.08 ns. The presence of 

both absolute and relative refractory periods is therefore another key feature shared 

by our VCSEL neurons and biological ones. The inter-spike interval observed in this 

work indicates that VCSEL devices are suitable for GHz operation which could 

realise spike-based processing in neuromorphic systems at rates multiple orders of 

magnitude faster than electronic implementations of neurons. The carrier dynamics 

of the presented VCSELs are believed to be responsible for the minimum 1 ns inter-

spike interval. There are reports in literature of VCSEL devices producing pulse 

trains at 10 GHz rates (with pulse widths of 11.5 ps) using gain switching [228], and 

it has been shown that relaxation oscillations in gain switched VCSELs can reach 71 

GHz [229], due to the high concentration of carriers in the active region. These results 

offer promise for the realisation of further inter-spike interval enhancement in 

VCSELs (bringing it below the 1 ns frontier) with additional design, optimisation 

and fabrication stages.  

In conclusion, the results in this chapter have demonstrated that VCSEL neurons are 

capable of delivering controllable and reproducible spiking dynamics, analogous to 

those observed in biological neurons, but at ultrafast speed rates. Exploiting a 

bifurcation point around the injection locking/unlocking boundary in the VCSELs 

investigated we can perturb our system with input signals (stimuli); hence achieving 

(neural-like) excitability behaviour that triggers class 1 excitable spiking dynamics 

at very high speeds. We demonstrated that fast perturbations (down to sub-ns 

durations) introduced through the use optical and electrical modulation can stimulate 

a VCSEL neuron making it produce fast spiking responses with ~ 100 ps pulse widths 

and nanosecond rates. We revealed the number of spiking responses can also be 

controlled by the duration of the injected pulse, corresponding to the behaviour of 

tonic spiking in biological neurons. Similarly, the inhibition of spiking dynamics 

with optically and electrically modulated signals was demonstrated experimentally. 

Exploiting injection locking, we also showed continuous spiking neurons could be 
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silenced for a controllable duration, hence realising the same functionality of 

inhibitory biological neurons. Exploring further the neuronal properties of our 

artificial photonic spiking VCSEL neurons we showed that the excitability (and 

inhibitory) mechanisms were governed by input thresholds.  Like biological neurons, 

our photonic VCSEL neurons require a specific input strength before the 

activation/inhibition of spikes can be achieved. We demonstrated this was true for 

both optical and electrical excitation and discussed that the threshold can be 

controlled by varying the position of the system in parameter space. The investigation 

into input thresholding for spike activation subsequently led to results that showed 

VCSEL neurons can encode information of the input in the precise timing of spikes. 

We demonstrated that with increasingly strong inputs the activation delay of spiking 

dynamics was reduced. This feature corresponds to a rate encoding functionality 

observed in biological neurons, promoting our VCSEL neurons from devices that can 

receive only binary inputs to those that can operate with analog signals. Finally, we 

measured the refractory period of our VCSEL neuron (the minimum inter-spike 

interval) when subject to two consecutive stimuli. The absolute refractory period was 

found to be 0.84 ns and the relative refractory period was found to be 1.14 ns, 

enabling our VCSEL neuron to operate at GHz rates provided strong input pulses are 

used. This imposes a theoretical limit on the speed of our VCSEL neurons in the 

same way that is observed in other spiking systems, but at speeds 3 orders of 

magnitude faster than some electronic approaches [72]. VCSEL neurons therefore 

possess multiple controllable and accessible neuromorphic functionalities in-line 

with those observed in biological neurons, making them excellent candidates for 

artificial photonic spiking neurons for future light-enabled neuromorphic processing 

platforms for ultrafast brain-inspired computing and AI functionalities. 
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Chapter 4  

Towards the Implementation of Networks of Artificial 

Photonic Neurons 

 

In Chapter 1 we discussed the reasoning behind the increasing demand for 

neuromorphic systems and have discussed the laser dynamics within VCSELs 

devices that allow us to achieve spiking signals. In Chapter 3 we demonstrated how 

we can experimentally implement VCSEL neurons and how we controllably activate 

and inhibit fast spiking responses. Here in Chapter 4, we investigate the capability of 

photonic spiking VCSEL neurons to communicate in network architectures. 

Applying the controllable neuromorphic functionalities achieved so far, we study the 

propagation of spiking signals between interconnected VCSEL neurons. Specifically, 

we investigate the propagation of controllable spike (activation and inhibition) 

signals in feedforward configurations where the output of one device is fed to the 

input of another (Chapter 4.1). We also investigate the propagation of spiking signals 

in a diverging architecture where 1 VCSEL neuron feeds 2 downstream VCSEL 

neurons in a 1-into-2 network arrangement (Chapter 4.2). Finally, we demonstrate a 

photonic experimental incorporation of a biological retinal neural circuit that 

communicates via both spiking and non-spiking signals in a 3-VCSEL feedforward 

interconnected arrangement (Chapter 4.3).  

In this chapter we will discuss experimental results that have produced 

journal publications. The following articles therefore relate to the forthcoming 

discussion:  

[198] T. Deng, J. Robertson, and A. Hurtado, “Controlled Propagation of Spiking Dynamics in Vertical-Cavity 

Surface-Emitting Lasers: Towards Neuromorphic Photonic Networks,” IEEE J. Sel. Top. Quantum 

Electron., vol. 23, no. 6, 2017, doi: 10.1109/JSTQE.2017.2685140. 

[199] T. Deng et al., “Stable Propagation of Inhibited Spiking Dynamics in Vertical-Cavity Surface-Emitting 

Lasers for Neuromorphic Photonic Networks,” IEEE Access, vol. 6, 2018, doi: 

10.1109/ACCESS.2018.2878940. 
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[200] J. Robertson, E. Wade, Y. Kopp, J. Bueno, and A. Hurtado, “Towards Neuromorphic Photonic 

Networks of Ultrafast Spiking Laser Neurons,” IEEE J. Sel. Top. Quantum Electron., 2019, doi: 

10.1109/JSTQE.2019.2931215. 

 

4.1 Feedforward (1-to-1) 

In this Chapter, we describe the first and simplest implementation of multiple 

networked artificial photonic VCSEL neurons, the feedforward configuration. In this 

network implementation we investigate the propagation of optical neuromorphic 

signals, spiking and inhibitory, from the output of a primary VCSEL neuron, into a 

secondary one (1-to-1). Integral to the function of biological neural networks, 

cascadability, the process of passing excitable spiking potentials from one neuron to 

another in sequence, is achieved through synaptic connections. Inter-neuron 

connections are made by the axon terminals to that of the dendritic tree of 

neighbouring neurons, or in some cases to that of its own dendritic tree (autapse/self-

feedback) [176]. Biological neurons in the brain have thousands of connections to 

neighbouring neurons, creating vast interconnected networks with massive 

parallelism. This massive interconnectivity and parallelism is in-part responsible for 

the high processing performance of neural networks compared to traditional Von 

Neumann computing architectures [230]. Hence, without interconnectivity and the 

cascadability of neuronal signals, neural networks, and their impressive processing 

capabilities, breakdown.  

In the simplest case, a network of multiple nodes can be realised using two individual 

neurons. In this configuration, information or inputs can flow from the first neuron 

to the second in what we call a feedforward arrangement. In a network of two 

excitatory neurons, the system can be deemed cascadable if the output of the first 

neuron provides a sufficiently strong (super-threshold) input, capable of successfully 

activating the second networked neuron. In this 1-to-1 feedforward arrangement, 

only one input is incident on the second neuron, hence if the input is not strong, then 

the second neuron sees no influence from the first and cascadability is not achieved. 

If cascadability in a 1-to-1 feedforward architecture is achieved then the system can 
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incorporate additional neuron layers downstream, with the confidence that any 

postsynaptic neuron can feel the influence of the presynaptic input given appropriate 

weighting. In more complex fan-in architectures, multiple inputs can integrate 

together towards the activation of a single neuron. This reduces the reliance of a 

single input to meet the requirement for network cascadability as many can contribute 

to the activation and continued propagation of information in the network.  

The requirement for cascadability in networks such as the simple feedforward system 

can be extended directly to the development of artificial neural networks, where the 

successful inter-neuron transmission of inputs and information is key. There have 

been investigations into the network coupling of different photonic devices including 

semiconductor ring lasers [66], micro-ring lasers [231], micro-disk lasers [232], and 

micro-pillar lasers [173]. However, VCSELs have provided some truly encouraging 

results regarding the cascadability and networking of multiple devices [179], [233]. 

It was shown that using similar (commercially-sourced) VCSELs to the ones used in 

our reports, with analogous wavelength, lasing threshold and polarisation mode 

separation, the conditions for cascadability were met when using polarised optical 

injection to perform all-optical-inversion functionality [233]. It was determined that 

the polarisation switching in VCSELs, the physical effect used to realise the 

inversion operation, was cascadable when performed at high bias where the devices’ 

output power exceeded the input power required for switching. This result draws a 

number of parallels to the work we present here in Chapter 4, from the devices used 

in each system to the optical injection-induced polarisation switching mechanism, 

giving us confidence that cascadability is possible in our VCSEL-based approach to 

photonic neuronal models. Similarly, recent numerical investigations into coupled 

VCSEL topologies (see [179] for instance) have found that a number of coupling 

topologies, with various polarisation mode coupling configurations, enabled the 

communication of phasic spiking dynamics between VCSELs. The cascadable 

spiking signals were achieved for different coupling strengths, injection stimuli and 

frequency detuning conditions, indicating a promisingly flexible parameter space for 

achievable spike-based network communication with VCSEL-based photonic 

neuronal models. For this reason, we investigate the propagation of the controllable 

neuronal signals (spiking and inhibitory) in VCSEL neurons when connected in a 1-
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to-1 feedforward network. The experimental setup used to implement the 

feedforward network is shown in Fig. 4.1.1. The results plotted in the following 

Chapter are adapted from our reports in literature [198]–[200]. 

The experimental setup is an extension of that used in Chapter 3 to controllably 

activate neuronal spiking in VCSEL neurons. Amplitude-modulated optical injection 

is incorporated as before using an external Tuneable Laser (TL) source and a Mach-

Zehnder (MZ) optical modulator. The power of the modulated optical injection is 

controlled using Variable Optical Attenuators (VOAs) and the polarisation of the 

incident light signals are controlled using Polarisation Controllers (PCs) upon entry 

to the MZ and a 50:50 coupler. An optical circulator is used to inject the externally 

modulated signal into the first VCSEL neuron (VCSEL-1). The optical circulator 

collects the output of VCSEL-1 before passing it through to the second device 

(VCSEL-2). The polarisation and the optical power of the propagated light was again 

controlled using a PC and a VOA.  The outputs of VCSEL-1 and VCSEL-2 were 

captured via the analysis lines using a real-time oscilloscope. 

 

 

Figure 4.1.1 – Experimental setup for feedforward (1-to-1) propagation of spiking signals in 

a network of two serial VCSEL neurons. VCSEL-1 is subject to polarised optical injection 

(red path) from a TL. VCSEL-1’s output is reinjected into VCSEL-2. Experimental 

components as described previously; TL – tuneable master laser, ISO – optical isolator, VOA 

– variable optical attenuator, PC- polarisation controller, MZ – Mach Zehnder intensity 

modulator, PM – power meter, OSC – oscilloscope.  
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Two commercially-sourced fibre-coupled 1300 nm VCSELs were used in this 

experiment. Both devices, VCSEL-1 and VCSEL-2 exhibited Parallel (YP) 

polarisation mode dominant emission and were selected for their similar emission 

wavelengths and threshold currents. Both VCSEL-1 and 2 were operated at I = 1.5 

mA (~2.5 times the threshold current). The temperature of each device was set in 

order to better match their emission wavelengths and create a frequency detuning of 

∆f = -3.55 GHz between the two VCSELs. The polarisation of the external TL 

injection was set to match that of VCSEL-1’s Orthogonal (XP) mode with a 

frequency detuning of ∆f = -3.55 GHz. The propagated (transmitted) light from 

VCSEL-1 had its polarisation set to match that of VCSEL-2’s subsidiary Orthogonal 

(XP) mode. Both devices had demonstrated excitable regimes of dynamics under the 

optical injection of orthogonally (XP-orientated) polarised light. 

The controlled activation of excitable spiking dynamics, as described in Chapter 3, 

was performed in VCSEL-1 before the injection of VCSEL-1’s output was made 

directly into VCSEL-2. Figure 4.1.2 shows the measured VCSEL responses when a 

single input pulse of duration td = 0.61 ns, is injected into VCSEL-1. Fig. 4.1.2 (a) 

plots the optical injection incident on the first VCSEL neuron (VCSEL-1). Initially, 

the high optical input power, Pinj = 102 μW, successfully injection locks the 

Orthogonal polarisation mode of VCSEL-1 to the external light signal from the TL. 

This results in the production of a stable output during the first ~5 ns of VCSEL-1’s 

output (Fig. 4.1.2 (b)). When the short (td = 0.61 ns) input enters the first VCSEL at 

~ 7 ns, the system responds by activating a single ~100 ps-long excitable spiking 

response. This response, analogous to those observed in biological neurons, is the 

result of the injection locking/unlocking transition, as discussed previously (Chapter 

3). After the removal of the input pulse the system returns to a stable output as the 

higher optical power injection locks VCSEL-1 once again.  
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Figure 4.1.2 – Spike propagation in a feedforward (1-to-1) network of VCSEL neurons. Time 

series show the encoded optical injection (a negative pulse, td = 0.61 ns) incident on the first 

VCSEL (VCSEL-1) (a) and the measured spiking response (b). The spiking response, upon 

the injection of (b), is measured at the output of the second VCSEL neuron (VCSEL-2) (c). 

Temporal maps (d)-(f) show the consistency of responses for the results in (a)-(c). Optical 

inputs are cycled 180 times consecutively. Yellow lines indicate the consistent activation of 

spikes. Parameters of VCSEL-1 (VCSEL-2): I = 1.5 mA (1.35 mA), T = 298 K (292K), 

external orthogonal (XP) mode injection into VCSEL-1 with ∆f = -3.55 GHz and Pinj= 102 

μW, VCSEL-1 and VCSEL-2 were separated by ∆fV1-V2 = -3.55 GHz with PV1-V2= 56.2 μW. 

Results previously published in [200]. 

 

The output of VCSEL-1 is then injected into the second VCSEL neuron (VCSEL-2) 

that responds according to Fig. 4.1.2 (c). The constant injection level propagating 

from VCSEL-1, measured to have an average power of PV1-V2 = 56.2 μW, enters 

VCSEL-2 and successfully injection locks the Orthogonal (XP) polarisation mode. 

This generates the stable output initially observed from VCSEL-2. The arrival of the 

spike generated by VCSEL-1, in response to the external input, now produces a 

locking/unlocking transition in VCSEL-2, activating an excitable optical spiking 

response. The activation of a spike in VCSEL-2 indicates the successful transmission 

of information in the network formed by the two VCSEL neurons. A time delay of ~ 

62 ns was measured between the spiking output of VCSEL-1 and VCSEL-2. This 

delay, created by the additional optical path traversed during signal propagation 

corresponds to the length of optical fibre used in the experiment. Controlling the 
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length of optical fibre alters the arrival time of inputs incident on VCSEL-2, a feature 

desirable in more complex network configurations. Figure 4.1.2 and following 

feedforward results have been adjusted to display results from each VCSEL on the 

same timescale. Temporal maps, indicating the consistency of excitable responses to 

180 consecutive inputs are shown in Figs. 4.1.2 (d)-(f). The formation of straight 

lines in these maps indicate that the same response is triggered from each of the 180 

cycles measured. In Figs. 4.1.2 (e) & (f) straight lines can be observed. This 

demonstrates the response from VCSEL-1 to the external input is consistent and that 

the propagation of spiking from VCSEL-1 to VCSEL-2 is also consistent. The 

feedforward network of VCSEL neurons is therefore capable of cascading an 

excitable response via direct optical injection of the previous layer’s output. 

 

  

Figure 4.1.3 – Spike propagation in a feedforward (1-to-1) configuration of VCSEL neurons 

with extended input perturbation temporal duration (td). Time series show the encoded 

optical injection (a negative pulse, td = 2.74 ns) incident on the first VCSEL (VCSEL-1) (a), 

the measured spiking responses of VCSEL-1 (b), and the second VCSEL neuron (VCSEL-

2) (c). Temporal maps (d)-(f) show the consistency of responses corresponding to results (a)-

(c). Experimental parameters are identical to those used previously in Fig. 4.1.2. Results 

published in [200]. 

 

To further investigate the system, we tested the propagation of excitable signals 

generated by external inputs with increasing pulse duration (td). The response of 
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VCSEL-1 and VCSEL-2 to an external pulse of duration td = 2.74 ns is shown in Fig. 

4.1.3, with the results of a larger parameter study shown in Fig. 4.1.4. 

 

 

Figure 4.1.4 – Multi-spike propagation in a feedforward (1-to-1) network of VCSEL neurons 

with varying perturbation times (td). Temporal maps merging 20 cycles of 9 input durations 

(td) from 0.57 to 6.53 ns, show the consistency of responses from VCSEL-1 (a) and VCSEL-

2 (b). Deviations of the colour from the blue background indicate a change in amplitude. 

Yellow/green pixels represent the peak amplitude of a spiking response. Parameters of 

VCSEL-1 (VCSEL-2): I = 1.5 mA (1.5 mA), T = 300 K (292K), external orthogonal (XP) 

mode injection into VCSEL-1 with ∆f = -3.89 GHz and Pinj= 89.71 μW, VCSEL-1 and 

VCSEL-2 were separated by ∆f = -3.89 GHz with Pinj= 34.19 μW. 

 

As anticipated, upon the injection of a larger duration input perturbation (Fig. 4.1.3 

(a)), VCSEL-1 (Fig. 4.1.3 (b)) shows the activation of a train of excitable spiking 

dynamics. For the input pulse used, this train is formed of 3 fast ~100 ps spikes. 

When injected into VCSEL-2 the system responds by triggering a similar train of 3 

spikes (Fig. 4.1.3 (c)). The temporal maps (Fig. 4.1.3 (d)-(f)) indicate that the multi-

spiking response from VCSEL-1 and the propagation to VCSEL-2 are highly 
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consistent over 180 cycles. In Fig. 4.1.4 the temporal maps of nine increasing pulse 

widths, td = 0.57 to 6.53 ns, are combined showing 20 cycles in each segment. The 

measured responses of VCSEL-1 (Fig. 4.1.4 (a)) show an increasing number of spike 

activations as the pulse width grows, with the largest train activating 7 spikes in total. 

The temporal maps reveal that the activated trains consistently contain the same 

number of spikes. Figure 4.1.4 (b) reveals the response of VCSEL-2 to the 

transmitted spiking signals. The responses of VCSEL-2 reveal overall that the multi-

spike patterns are propagated successfully, with the same number of spikes being 

produced at the output of the system as measured at VCSEL-1. The consistency of 

the spike trains in VCSEL-2 is very high, with only a small number of unexpected 

activations appearing at short input durations. Similarly, the activation delay of 

spikes in the 6.05 ns case seems to be larger than that of VCSEL-1. These 

discrepancies indicate that the excitable regimes in each device may follow slightly 

different timescales but are still consistent enough to produce the same number of 

spiking responses. In any case, the system demonstrates that two networked VCSEL 

neurons can successfully transmit various excitable spiking signals from one device 

to another.  

We have also investigated theoretically this 1-to-1 feedforward network of VCSEL 

neurons, to validate our experimental findings on the propagation of excitable spiking 

signals in this configuration [198]. The theoretical model, based on the Spin Flip 

Model (SFM) of a VCSEL subject to optical injection, was used to generate the 

theoretical output of VCSEL-1 before it was passed again into the model to predict 

the output of VCSEL-2. The theoretical results are reported in detail in [195]. These 

show excellent agreement with the experimental measurements. The theoretical 

results show that by increasing the input pulse duration, the network can propagate 

diverse patterns of multiple sub-ns optical spikes between VCSEL neurons. For 

instance, for a modelled input pulse duration of 6.8 ns seven excitable spikes are 

generated and propagated, as in the experiments shown in Fig. 4.1.4.  
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Figure 4.1.5 – Inhibition spike propagation in a feedforward (1-to-1) network of VCSEL 

neurons. Time series show the encoded optical injection (a positive pulse, td = 2.0 ns) incident 

on VCSEL-1 (a) and the spike-inhibiting response at its output (b). The second response, 

upon the injection of (b), is measured at the output of VCSEL-2 (c). Temporal maps (d) & 

(e) show the consistency of responses corresponding to results (b) & (c). Optical inputs are 

cycled 140 times consecutively. The colour of the map is scaled to the amplitude of the 

associated timeseries. Stable blue windows of invariant behaviour indicate the consistent 

suppression of spiking dynamics. Experimental parameters of VCSEL-1 (VCSEL-2): I = 1.5 

mA (1.5 mA), T = 300 K (292K), external orthogonal (XP) mode injection into VCSEL-1 

with ∆f = -3.68 GHz and Pinj= 28.56 μW, VCSEL-1 and VCSEL-2 were separated by ∆fV1-

V2 = -2.79 GHz with PV1-V2= 60.11 μW. Figure reproduced from [234].  

 

Excitable neuronal signals are only one of many types of signals propagated in 

networks of biological neurons. As well as producing excitable spiking signals, 

biological neurons are capable of firing spike-inhibitory signals [18], [161]. We 

therefore investigated the propagation of spike inhibiting signals in our neuromorphic 

1-to-1 feedforward network of VCSEL neurons. As demonstrated previously in 

Chapter 3, we can produce spike inhibition using the same experimental arrangement 

as that used to controllably activate excitable dynamics. For this reason, we can use 

the experimental arrangement shown in Fig. 4.1.1, to propagate spike inhibitory 

signals between two VCSEL neurons. The same two VCSELs were used to 

demonstrate spike inhibition propagation. The principal distinction between the cases 

of spike activation and inhibition is the shape and power level of the external optical 

input signal used. The shape of the injected input pulse is the inverse of the activation 

case (positive pulses are now used), allowing the external injection to increase input 
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power for a short duration. By positioning the system in a continuous spiking regime 

with an injection power lower than that required for optical injection locking, the 

input pulse can trigger an unlocking/locking transition, creating a stable window of 

suppressed spiking dynamics. When the pulse is removed the continuous spiking is 

resumed. This is demonstrated in Fig. 4.1.5 where spiking inhibition is achieved 

experimentally in VCSEL-1. The results shown in Figs. 4.1.5 & 4.1.6 are adapted 

from our published report [199]. 

The amplitude modulated optical injection incident on VCSEL-1 is shown in Fig. 

4.1.5 (a). The positive input pulse has a duration of td = 2.0 ns and an injection power 

of 28.56 μW. Initially, as shown in Fig. 4.1.5 (b), the low injection level positions 

the system in a state of continuous spiking. Upon the injection of the positive pulse, 

the external optical injection locks the orthogonal polarisation mode of VCSEL-1, 

producing a stable window of spike inhibition. When the input pulse is removed, 

VCSEL-1 triggers once again continuous spiking responses. The output of VCSEL-

1 is injected directly into the second VCSEL neuron (VCSEL-2). The response at the 

output of VCSEL-2 is shown in Figure 4.1.5 (c). Here the system is operating in a 

continuous spiking regime, induced by the injection of VCSEL-1. When the 

inhibition window enters VCSEL-2, the increased output power of VCSEL-1 

(induced by the injection of the optical pulse) is sufficient to injection lock the 

orthogonal polarisation mode of VCSEL-2, suppressing the continuous tonic spiking 

output. The propagation of a spike inhibiting signal is therefore demonstrated in the 

feedforward system. Temporal maps in Fig. 4.1.5 (d) & (e) show the consistency of 

the VCSEL responses, where the window of inhibition is represented by a constant 

blue gap in spiking. The maps indicate very high consistency, over 160 repetitions of 

the input pulse. Similar to the propagation of excitable spikes, we can use increasing 

pulse width (td) inputs to investigate how the propagation of inhibition changes. The 

time series and temporal maps in Fig. 4.1.6 show the results of the parameter study 

where pulse duration was increased from 0 to 5.8 ns.  
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Figure 4.1.6 – Inhibition propagation in a feedforward (1-to-1) configuration of VCSEL 

neurons with varying input temporal duration (td). Time series show the output of VCSEL-1 

(top) and VCSEL-2 (bottom) for inhibition inputs with durations td = 2.5 ns (a) and 5.8 ns 

(b). Temporal maps combining 20 cycles of 7 various input durations (td) from 0 to 5.8 ns, 

show the consistency of spike suppression at the output of VCSEL-1 (c) and VCSEL-2 (d). 

Experimental Parameters are identical to those of Fig. 4.1.5. The colour of the map is scaled 

to the amplitude of the associated timeseries. Figure reproduced from [234]. 

 

The time series for the cases of input pulse widths of 2.5 ns and 5.8 ns are plotted in 

Fig. 4.1.6 (a) & (b), respectively. These plots demonstrate the number of spikes 

suppressed by the input pulse increases as the input pulse (perturbation) grows. The 

propagation of the spike inhibitory signal is effectively passed from VCSEL-1 to 

VCSEL-2 with the latter suppressing the same number of spikes at its output. The 

temporal maps in Fig. 4.1.6 (c) & (d) combine seven pulse widths, each showing 20 

cycles of inputs. These maps as expected also indicate that the effective window of 

spike suppression increases with input pulse width. Both the input pulse and 

transmitted signal are highly consistent with little to no unexpected responses. 

Similar to the case of excitatory spiking propagation, the inter-spike interval of the 

continuous spiking dynamics may indicate slightly different dynamical timescale in 

the two VCSEL neurons. However, overall the simple system demonstrates that 

inhibitory signals can transmitted in a feedforward network of VCSEL neurons. 
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Theoretical simulations have also been produced and are reported in [199]. The 

theoretical results showed excellent agreement with the experimental mechanism of 

spike inhibition and predicted, as found experimentally, the increasing suppression 

window with increasing input pulse duration. Additionally, the simulation 

demonstrated that the propagation of the spike-inhibiting signals could be performed 

with highly consistent VCSEL neuron responses.  

VCSEL neurons have demonstrated their ability for network connectivity, initially in 

a 1-to-1 feedforward architecture formed of two nodes. They have shown the 

capability to communicate both controllable excitable and inhibitory spiking signals 

at speeds much faster than biological neural networks. These results indicate the 

output of VCSEL neurons are directly cascadable to other VCSEL neurons without 

the requirement for further signal amplification or modulation. This makes VCSEL 

neurons more desirable for investigation into larger, more complex network 

configurations as modulation may only be required at the input layer of the network. 

The application of these devices in functional circuits will require further 

investigation, however, these initial results offer great potential for brain-inspired 

photonic neural networks that combine both excitatory and inhibitory functionalities 

towards novel neuromorphic computing.     

 

4.2 Diverging Architecture 

In this Chapter we build upon the demonstration of the 1-to-1 feedforward 

network investigated in Chapter 4.1, and advance towards fan-out networks. A fan-

out network, referred to here as a diverging architecture, is a network where the 

number of postsynaptic neurons in the secondary layer is more than that of the 

presynaptic neurons in the initial layer. This fan-out architecture can exist over a 

number of layers, allowing a single neuron activation to cascade to many. In biology, 

a good example of a fan-out (diverging) neural network is that of motor neurons in 

muscles [15]. Upon the activation of a single neuron, thousands of downstream 

connections can be activated making the muscle contract. Diverging neurons 
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however, do not necessitate the existence of a purely divergent network architecture. 

In fact, the divergence of a single neuron within a larger network of many neurons 

can be a measure of how many downstream synaptic connections are made. The 

higher divergence of an individual neuron in a network layer the more connectivity, 

and the higher the flow of information to the next layer. This means that within 

almost any network architecture, diverging connections are always made in the case 

of one individual neuron to many. Without diverging connections, neurons would not 

be able to create synapses to multiple neurons or share information effectively with 

others in large networks, making complex tasks such as classification impossible.  

As expected, the existence of diverging connections in artificial neural networks, that 

target biological inspired systems for their impressive processing capabilities, is also 

key. Therefore, building upon the experimental implementation of a (1-to-1) 

feedforward VCSEL neuron system, we investigated the possibility of divergence 

with this photonic-based platform. The experimental setup used in the 1-to-1 

demonstration was expanded to include an additional downstream VCSEL neuron 

(VCSEL-3), as shown in Fig. 4.2.1.   

In this experimental system the output of one VCSEL neuron (VCSEL-1) is split and 

cascaded into two VCSEL neurons (VCSEL-2 and VCSEL-3) in a 1-to-2 fan-out 

network. As demonstrated previously throughout our work, light from an external 

tuneable laser is intensity modulated using a MZ modulator to create a time varying 

optical injection. This optically-modulated signal is injected into VCSEL-1 by means 

of fibre-optic components that allow for control of injection polarisation, optical 

power and frequency detuning. The external optical signal is set to injection lock 

VCSEL-1 and activate controllably spikes (see Chapter 3). The output of VCSEL-1 

is collected and split into two paths using a 50:50 optical coupler. Each branch of the 

coupler is injected to an individual downstream VCSEL neuron via further optical 

polarisation and power controls. The outputs of VCSEL-2 and VCSEL-3 were 

captured using 9 GHz photodetectors and analysed with a 13 GHz oscilloscope. The 

three VCSEL neurons were chosen such that their peak emission wavelengths had 

similar values and each displayed Parallel (YP) mode dominant free-running 

operation. The emission wavelengths of the devices were fully matched by adjusting 

the temperature and bias current of each device individually. Polarisation-matched 
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optical injection was made into the Orthogonal (XP) mode of VCSEL-1, inducing a 

polarisation switch during injection locking. The bias current of VCSEL-1 was set to 

2.2 mA and under optical injection provided an output power (after splitting) of PV1-

V2 = 84 μW and PV1-V3 = 82.7 μW, for the injection of each downstream VCSEL 

respectively. The fed-forward signals were used to injection lock the orthogonal (XP) 

modes of VCSEL-2 and VCSEL-3, with XP mode-matched polarisation to maximise 

the signal coupling into each device. 

 

Figure 4.2.1 – Experimental setup for feedforward (1-to-2) spike propagation in a diverging 

network of VCSEL neurons. VCSEL-1 is subject to polarised optical injection (red path) 

from a tuneable laser. The output of VCSEL-1 is split using a 50:50 coupler with each path 

(depicted both with blue lines) subsequently injected VCSEL-2 or VCSEL-3. Experimental 

components as described previously; TL – tuneable master laser, ISO – optical isolator, VOA 

– variable optical attenuator, PC- polarisation controller, MZ – Mach Zehnder intensity 

modulator, PM – power meter, OSC – oscilloscope. 

 

To test the activation and propagation of fast optical spikes in this fan-out VCSEL 

neuron network, pulses (perturbations) of varying temporal durations (td) were 

injected into VCSEL-1. The response of VCSEL-1 to a negative optical pulse of td = 

0.61 ns is shown in Fig. 4.2.2 (a). Upon the injection of the optical pulse at ~6.0 ns, 

VCSEL-1 responds by eliciting a fast optical spike. The time series of Fig. 4.2.2 (a) 

was captured right at the output of VCSEL-1. The spiking signal from VCSEL-1 was 

then split into 2 via the optical coupler and injected into both downstream VCSEL 

neurons. The responses of VCSEL-2 and 3 are shown in Figs. 4.2.2 (b) & (c). In the 

output of both VCSELs we observe the activation of a single optical spike at ~6 ns. 

As before in the (1-to-1) feedforward network, a delay of ~62 ns exists between the 
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activation of spiking in VCSEL-1 and the activation in the downstream VCSELs. 

This delay has been compensated for during the plotting of figures to improve 

readability. The presence of spiking dynamics in each networked VCSEL indicates 

that the spiking from VCSEL-1, even after splitting, holds enough influence to cross 

the activation threshold of the devices and trigger a locking/unlocking transition. 

 

 

Figure 4.2.2 – Single spike propagation in a feedforward (1-to-2) diverging VCSEL neuron 

network. Time series show the response of the first VCSEL neuron (VCSEL-1) (a) upon the 

injection of an optical input pulse (td = 0.61 ns). The subsequent responses of VCSEL-2 (b) 

and VCSEL-3 (c) are captured upon the injection of the signal seen in (a). Experimental 

parameters, VCSEL-1: I = 2.2 mA, T = 301 K, external orthogonal (XP) mode injection into 

VCSEL-1 with ∆f = -10.27 GHz and Pinj= 270 μW. VCSEL-2: I = 1.76 mA, T = 287 K and 

PV1-V2= 84 μW. VCSEL-3: I = 1.0 mA, T = 296 K and PV1-V3= 82.7 μW.  

 

The spiking dynamics of the downstream VCSEL neurons do however, appear 

different to that of VCSEL-1. In Figs. 4.2.2 (b) & (c) the spikes are less defined and 

produce less distinctive drops. These differences are caused by the varying operation 

conditions of devices. Both VCSEL-2 and VCSEL-3 are driven with bias currents 

lower than that of VCSEL-1. The bias currents were specifically selected to best 

match emission wavelengths as previously stated, but they were also selected to allow 

for easy locking to the propagated VCSEL-1 signal. For this reason, the dynamical 

regimes accessed by each device are different, producing differing phase excursions 

and hence spike shapes. Additionally, due to the reduced bias currents, VCSEL-2 and 
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VCSEL-3 produce less output optical power than that observed from VCSEL-1. This 

reduces the signal detected by the photodetectors and decreases the overall amplitude 

of the recorded spikes. These result in time series that have features less 

distinguishable from noise level. The downstream VCSELs (VCSEL-2 and 3) 

indicate that a single optical spike can be cascaded through the network successfully. 

The temporal duration of the initial pulse was increased to next test the propagation 

of tonic or burst spiking in the diverging architecture. The results for four different 

pulse durations were recorded demonstrating that larger trains of pulses can also be 

communicated in a diverging architecture. The pulse duration was increased through 

0.64 ns, 1.29 ns, 1.58 ns and 2.51 ns, producing pulse trains of one, two, three and 

four spikes respectively.  

 

 

Figure 4.2.3 – Temporal maps showing multi-spike propagation in a feedforward (1-to-2) 

diverging configuration with varying input duration (td). Temporal maps, that combine 40 

cycles of 4 various input durations (td), show the consistency of spiking dynamics measured 
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at the output of VCSEL-1 (a), VCSEL-2 (b) and VCSEL-3 (c). The temporal maps display 

data from the previously plotted Figures (Figs. 4.2.2 and 4.2.3).  

 

In Fig. 4.2.3 the temporal maps of this 4-input pulse duration study are shown. Each 

map shows the response of VCSEL-1 (Fig. 4.2.3 (a)), VCSEL-2 (Fig. 4.2.3 (b)) and 

VCSEL-3 (Fig. 4.2.3 (c)) when subject to the four input pulse durations configured. 

A total of 40 consecutive cycles are shown for each input pulse, however the original 

temporal maps indicate consistency across the entire measurement length (196 

cycles). The temporal maps for the response of each device shows a high consistency 

in the number of spikes activated and demonstrate that for every spike elicited in 

VCSEL-1, we successfully trigger one in VCSEL-2 and 3. We see excellent 

correlation between the plots of Figs. 4.2.3 (b) & (c) with even small features, such 

as short delays in spike activation, mirrored in the response of both devices. These 

small changes, that likely originate from the spike timings of the VCSEL-1 signal, 

indicate that both downstream VCSELs are receiving near-identical inputs from the 

first layer of the network. This means that a single input can be spilt and transmitted 

successfully in our photonic network without the loss of the important spike-timing 

information, a feature key to the operation of biological networks. Overall the 

temporal maps of the three VCSEL neurons show that the neuromorphic responses 

to both input pulses and input spikes are reliable and repeatable over a high number 

of cycles. 

The VCSEL neuron demonstration provided here showcases the successful 

propagation of neuromorphic dynamics in a diverging (1-to-2) network architecture. 

The propagation of both single excitable spikes and trains of excitable spikes was 

performed with high levels of consistency across a number of experimental 

repetitions. The results demonstrated a single presynaptic VCSEL neuron can drive 

two postsynaptic VCSEL neurons using simple benchtop fibre optic components, 

while preserving key neuronal spike timing information. Diverging connections can 

be found within most networks and are directly responsible for the connectivity of a 

network. This demonstration further inspires the application of these VCSEL-based 

neuromorphic elements in more complex network architectures.  
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4.3 Retinal Neuronal Circuitry Emulation with Artificial 

Optical Neurons 

In this Chapter we continue to advance our exploration of networked systems 

of VCSEL neurons with the experimental demonstration of a basic real-life 

biological neuron circuit in the human retina, a first step towards biological inspired 

photonic spike processing systems. In this first demonstration, we capitalise on the 

optical activation and propagation of fast neural-like signals in interconnected 

VCSEL neurons. Similar to the (1-to-1) feedforward network of Chapter 4.1, we 

emulate now a more complex three node (1-to-1-to-1) feedforward neural circuit 

found in the retina. This seemingly random application of our photonic system is in 

fact logical as there is an extensive scientific understanding of the neuronal circuits 

within the retina [235]–[237], and a number of electronic emulations of retinal 

circuitry have been reported in literature [238]–[242].  

In the retina, light energy is converted into spiking potentials and the conversion is 

made by three principal neuronal layers. These are made up of different types of cells 

including photoreceptors, Bipolar Cells (BCs) and Retinal Ganglion Cells (RGCs) 

[15]. The photoreceptors are the cells in the initial neuronal layer that absorb light 

and generate the initial electrical or chemical signals. There are different types of 

photoreceptors, namely rods and cones, which react to different light conditions. 

Rods are responsible for highly sensitive vision at night and cones are responsible 

for daylight and colour vision. Rods and cones synapse with the BCs in the second 

cell layer of the retina. BCs, which are non-spiking neurons, yield graded potentials 

of varying intensities in response to photoreceptor signals produced by changing 

external lighting conditions. A single BC can receive input from hundreds of 

photoreceptors and multiple BCs converge on a single retinal ganglion cell. RGCs 

are the second neuron in the retinal circuit and form the final neuronal layer in our 

network. The RGC is the largest neuron in the retina and fires spiking signals in 
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response to inputs from BCs. The spiking RGC outputs are passed to the brain, via 

the optic nerve, for further image processing.  

Different types of BCs and RGCs have been reported, two of which are known as 

ON- and OFF-type cells [235]–[237]. The ON- and OFF-neuronal circuits produce 

spiking signals via two different mechanisms. In light stimulus, photoreceptors are 

hyperpolarised, reducing glutamate, and in turn excite ON-type BCs and RGCs, 

creating circuits that elicit spiking signals. However, in light stimulus, OFF-type BCs 

are instead inhibited by reducing glutamate, reducing the excitatory responses of the 

RGC. In the dark, the opposite mechanisms are triggered, with increasing glutamate 

exciting the firing of the OFF-RGCs and inhibiting ON-type RGCs. These 

mechanisms are demonstrated in Figs. 4.3.1 (a) & (b). The ON- and OFF-type circuits 

produce activated and inhibited spiking signals as shown at the output of the retinal 

circuits. In the retinal neural networks, a large number of such neuronal circuits exist 

in parallel, allowing the network to converge and pre-process incoming visual 

information before passing it to the visual cortex of the brain. 

With our photonic network will look to create a three layer system inspired by an 

ON-type circuit, subject to both increasing and decreasing light stimulus, using 

VCSEL neurons connected in series (see Fig. 4.3.1 (c)) [200]. In our photonic retinal-

inspired circuits, two VCSEL neurons are used to produce the responses of the BC- 

(BC-VCSEL) and RCG-inspired (RGC-VCSEL) neurons. The BC-VCSEL is 

operated such that it reproduces the graded potentials of a BC neuron and RGC-

VCSEL is operated such that it reproduces the spiking response of a RGC neuron. 

VCSEL devices can produce a rich variety of dynamics including neuromorphic 

spiking signals as demonstrates previously in Chapter 2, but they also have capability 

to produce non-spiking responses. For instance, when subject to polarised optical 

injection, polarisation switching can occur, creating square switches in the output 

intensity of polarisation-resolved signals [217], [243]. Similarly, optical injection can 

be used to influence the total output power of a VCSEL. This creates an avenue to 

injection-controlled output modulation, where fluctuations in injection power can 

create small changes in VCSEL output intensity. Using this technique, it is possible 

to create BC graded potentials with a VCSEL neuron, delivering the ultrafast 
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emulation of both spiking and non-spiking neurons with the same artificial photonic 

neuron. 

 

Figure 4.3.1 – Schematics of the retinal neural circuits emulated with interconnected VCSEL 

neurons. The circuits are formed by two types of neurons connected in series: Bipolar Cells 

(BC), connected to photoreceptors in the eye, and Retinal Ganglion Cells (RGC) receiving 

inputs from BCs. These neurons are of two different types, ON and OFF. The signal 

conversion performed by photoreceptors, BCs and RGCs, in both the ON and OFF circuits, 

are shown for increasing light stimulus (a) and decreasing light stimulus (b). The 

interconnected feedforward VCSEL network used to create an ON-inspired circuit shown (c) 

for both increasing and decreasing light stimuli. The ON-inspired circuits are made up of an 

M-VCSEL: Master VCSEL (VCSEL-1) showing a photoreceptor response, a BC-VCSEL: 
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Bipolar Cell VCSEL (VCSEL-2), and an RGC-VCSEL: Retinal Ganglion Cell VCSEL 

(VCSEL-3). Results taken from [200]. 

 

 

Figure 4.3.2 – Experimental setup for the ON-type-inspired retinal circuit with networked 

VCSEL neurons arranged in a feedforward (1-to-1-to-1) configuration. The output of 

VCSEL-1 (M-VCSEL) is optically encoded with input pulses (similar to those of 

photoreceptor cells) and subsequently injected into the second VCSEL neuron (VCSEL-2, 

BC-VCSEL). This creates a graded potential at the output of VCSEL-2 which is then injected 

into VCSEL-3 (RGC-VCSEL). Experimental components as described previously; ISO – 

optical isolator, VOA – variable optical attenuator, PC- polarisation controller, MZ – Mach 

Zehnder intensity modulator, PM – power meter, OSC – oscilloscope. 

 

The experimental setup used to implement the three VCSEL (1-to-1-to-1) 

feedforward retinal-inspired neural circuit is shown in Fig. 4.3.2. Three VCSELs of 

similar peak wavelength (1536.5 nm) and orthogonal XP-mode dominant operation 

were selected for the network nodes. Light from a master VCSEL (M-

VCSEL/VCSEL-1) was passed through an optical intensity modulator (MZ) and 

encoded with input pulses of opposite signs according to the response of the 

photoreceptor cells in increased and decreased light stimuli. In ON-type circuits with 

increasing stimuli, photoreceptor outputs take the form of short (hyperpolarising) 

power drops. In ON-type circuits with decreasing stimuli, photoreceptor outputs take 

the form of short (depolarising) power raises. As in previous studies, the temporal 

durations (td) and input strengths were controlled during the experiments. This 

arrangement allowed M-VCSEL to emulate the response of photoreceptors in the 

ON-type-inspired circuits. Optical polarisation controllers and variable optical 
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attenuators were used to control the polarisation and injection power produced by M-

VCSEL. The encoded output of the M-VCSEL was optically injected into the second 

VCSEL (BC-VCSEL/VCSEL-2) via an optical circulator where the light from M-

VCSEL was used to injection lock BC-VCSEL. The output of BC-VCSEL was again 

collected by the optical circulator and injected into the third VCSEL (RGC-

VCSEL/VCSEL-3), via a polarisation controller and a variable optical attenuator. 

Depending on the retinal-inspired neural circuit (increasing or decreasing light 

stimuli ), the RGC-VCSEL was (was not) injection locked to BC-VCSEL, producing 

both excitable (and inhibited) spiking signals. The output of each VCSEL was 

analysed using a fast (13 GHz) real-time oscilloscope, allowing the analysis of the 

propagated signals in each layer of the network. The wavelength, and hence the 

injection frequency detuning of each VCSEL neuron in the network was set using 

the bias current and operating temperature.   

In the first experiment we investigated the ON-type-inspired retinal neural circuit 

with the three cascaded VCSEL neurons. Figure 4.3.3 plots the time series captured 

at the output of (i) M-VCSEL, (ii) BC-VCSEL and (iii) RGC-VCSEL. The duration 

of the input pulse encoded in M-VCSEL’s signal was increased with td equal to (a) 

0.85 ns, (b) 2.79 ns and (c) 4.90 ns, across three experimental runs. This was used to 

test the non-spiking and spiking responses of the BC- and RGC-VCSELs to 

increasing stimuli lengths. In Fig. 4.3.3 (a)(i), the M-VCSEL signal with a 0.85 ns-

long power drop input is shown. This signal was injected into BC-VCSEL with an 

injection power of PBC-M = 70.35 μW at a frequency detuning of ∆fBC-M = -2.3 GHz, 

locking BC-VCSEL’s output and producing the time series shown in Fig. 4.3.3 

(a)(ii). The BC-VCSEL output shows an initially stable intensity, indicating the 

successful injection locking of the device. At ~ 15 ns the input pulse enters BC-

VCSEL, however, the system remains injection locked, producing a stable output 

with an overall lower output level. The injection conditions here were selected such 

that the input pulse did not cross the activation threshold of the BC-VCSEL, instead 

creating a small non-spiking graded potential at the output. This non-spiking signal 

was then propagated into the RGC-VCSEL producing the time series shown in Fig 

4.3.3 (a) (iii).  
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Figure 4.3.3 – ON-type-inspired retinal circuit with three connected VCSEL neurons, when 

subject to increasing light stimuli. Input pulses of various length (a) td = 0.85 (b) 2.79 and 

(c) 4.9 ns were optical encoded into the light of the M-VCSEL (VCSEL-1) (i). Upon injection 

of this input signal into the BC-VCSEL (VCSEL-2) a graded potential is generated (ii). The 

response of the RGC-VCSEL (VCSEL-3) to the graded potential is plotted in (iii). 

Experimental parameters, VCSEL-1: I = 4.64 mA, T = 298 K, PBC-M = 70.35 μW and ∆fBC-M 

= -2.3 GHz. VCSEL-2: I = 4.38 mA, T = 290 K, PRGC-BC = 28.8 μW and ∆fRGC-BC = -2.53 

GHz. VCSEL-3: I = 3.7 mA, T = 300 K. Figure reproduced from [200]. 
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Figure 4.3.4 – Temporal maps showing the consistency of the RCG-VCSEL response in the 

ON-type-inspired circuit (with increasing light stimuli) when M-VCSEL inputs are varied 

from (a) td = 0.85 ns (b) td = 2.79 ns and (c) td = 4.9 ns. The temporal maps combine 60 cycles 

of each various input duration. The temporal maps display data from the previously plotted 

Figure. 4.3.3. Figure reproduced from [200]. 

 

Here, an injection power of PRGC-BC = 28.8 μW and a frequency detuning of ∆fRGC-BC 

= -2.53 GHz was used to lock the RGC-VCSEL to the BC-VCSEL. The plotted time 

series shows again an initially stable output, consistent with injection locking. 

However, at ~15 ns, upon the injection of the small graded potential, the RGC-

VCSEL elicits a single sub-nanosecond spike. After the 0.85 ns input, the system 

returns to injection locking producing again a stable output. The RGC-VCSEL 

therefore converts the non-spiking input from the BC-VCSEL into a spiking signal. 

The results for the increasing input durations can be seen in Figs. 4.3.3 (b) & (c).  
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Figure 4.3.5 – ON-type-inspired retinal circuit with three connected VCSEL neurons, when 

subject to decreasing light stimuli. Input pulses of various length (a) td = 3.60 (b) 5.18 and 

(c) 6.22 ns were optical encoded into the light of the M-VCSEL (VCSEL-1) (i). Upon 

injection of this input signal into the BC-VCSEL (VCSEL-2) a graded potential in generated 

(ii). The response of the RGC-VCSEL (VCSEL-3) to the graded potential in plotted in (iii). 

Experimental parameters, VCSEL-1: I = 4.61 mA, T = 298 K, PBC-M = 57.5 μW and ∆fBC-M 

= -4.81 GHz. VCSEL-2: I = 4.30 mA, T = 290 K, PRGC-BC = 8.8 μW and ∆fRGC-BC = -4.81 

GHz. VCSEL-3: I = 3.72 mA, T = 300 K. Figure reproduced from [200]. 
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In both cases the BC-VCSEL responds with a small negative graded potential for the 

entire duration of the input pulse. These graded potentials in turn trigger an increasing 

number of spiking responses from the RGC-VCSEL with the total number of yielded 

spikes increasing from two to three. The time series shown in Fig. 4.3.3 have been 

aligned to improve figure readability. The response of the RGC-VCSEL to the 

increasing input duration is shown further in the temporal maps of Fig. 4.3.4. Three 

temporal maps are combined, each showing 60 consecutive cycles for the input 

pulses of td = (a) 0.85 ns, (b) 2.79 ns and (c) 4.9 ns. The 60 cycle segments were 

taken from temporal maps originally showing 196 consecutive cycles (the entire 

length of the captured measurement). Each of the maps show excellent consistency 

across the entire measurement with the same spiking pattern (1-, 2- or 3-spikes) being 

produced at the output.  

In the second experimental demonstration of the three VCSEL (1-to-1-to-1) 

feedforward network, an ON-type-inspired retinal circuit with decreasing light 

stimulus was created. Similar to the previous experiment, the time series captured at 

the output of each VCSEL is plotted for increasing input durations (td) of (Fig 4.3.5 

(a)) 3.60 ns, (Fig.4.3.5 (b)) 5.18 ns and (Fig. 4.3.5 (c)) 6.22 ns. Each plot shows the 

time series of the (i) M-VCSEL, (ii) BC-VCSEL and (iii) RGC-VCSEL.  

The (i) time traces in Figs. 4.3.5 (a)-(c) show the three input pulses encoded in the 

intensity of M-VCSEL’s output. These signals were then injected into the BC-

VCSEL with an injection power of PBC-M = 57.5 μW at a frequency detuning of ∆fBC-

M = -4.81 GHz from the dominant Orthogonal (XP) mode. The injection conditions 

were again selected to injection lock BC-VCSEL to M-VCSEL. The resulting BC-

VCSEL outputs, shown in (ii) of Fig. 4.3.5 (a)-(c), initially have a steady output 

consistent with injection locking. At ~11 ns the input pulse is injected into BC-

VCSEL, and a positive graded potential is generated with injection locking remaining 

intact. Here the input pulse in M-VCSEL’s injection is positive pushing the system 

further from the activation threshold, increasing the injection power and hence the 

output power of BC-VCSEL. The graded potential produced in BC-VCSEL is then 

injected into RGC-VCSEL with an input power and frequency detuning of PRGC-BC = 
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8.8 μW and ∆fRGC-BC = -4.81 GHz. Injection was made such that upon the incidence 

of a photoreceptor signal (M-VCSEL), spiking dynamics produced an inhibited RGC 

response. This was achieved by positioning the system below the injection locking 

level in a regime of continuous spiking, where the positive graded potentials could 

be used to injection lock RGC-VCSEL. RGCs do not operate as continuously firing 

neurons, however, for demonstrative purposes the ON-type inspired circuit has the 

RCG-VCSEL spiking constantly to better demonstrate the inhibition. The output of 

the RGC-VCSEL is shown in the (iii) plots of Fig. 4.3.5 (a)-(c). Here, we see the 

system is in a continuous (tonic) spiking regime until the arrival of the graded 

potential (at ~11 ns). The graded potential then successfully injection locks the 

system, inhibiting the spiking with a stable output. In each of the cases presented the 

system locks for the entire duration of the graded potential before returning to tonic 

spike firing. The 3-VCSEL system is therefore capable of creating an ON-type-

inspired retinal neural circuit using fast cascaded non-spiking and tonic (sub-

nanosecond) spiking signals. The consistency of each result is presented in the 

temporal maps of Fig. 4.3.6. As in Fig. 4.3.4, segments of 60 cycles are taken from 

consistency plots of 196 cycles and combined into a single figure, showing the results 

for input durations of (a) 3.60 ns, (b) 5.18 ns and (c) 6.22 ns. The maps again show 

high consistency regarding the inhibition of spiking with almost complete 

suppression for the entire duration of the input pulses.  

The three VCSEL networks therefore successfully demonstrate ON-type-inspired 

retinal neural circuits. We note here that in both cases the BC-VCSEL produced the 

opposite response to that of true BCs in the ON-type circuit. While this is the case, 

the VCSEL network was able to operate with the photoreceptor responses producing 

the desired RGC response for the ON-type circuit. Considering the differing 

mechanisms underlying laser dynamics and biological cells, we claim only the 

successful demonstration of a ON-type inspired circuit. In both experimental 

demonstrations of the ON-type circuits the system showcased the controllability and 

reproducibility of the spiking and non-spiking signals accessible to VCSEL neurons. 

These BC/RGC signals were produced at fast sub-nanosecond/nanosecond 

timescales making them over 6 orders of magnitude faster than their biological 

counterparts. Furthermore, these demonstrations showcase the capability of 
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networked VCSEL neurons to propagate and communicate different spiking/non-

spiking signals in a feedforward architecture. Interestingly, we show here non-

spiking signals being generated and propagated within the VCSEL network but also 

demonstrate their use to directly influence and activate spiking signals in the final 

layer without additional signal manipulation. The three VCSEL neurons used in this 

study were selected from a batch of commercially-sourced VCSELs. For this reason, 

additional wavelength tuning had to be conducted, resulting in the devices having 

differing operating parameters. Despite this the system showed the three layers of 

VCSEL neurons were capable of cascading signals in feedforward architecture with 

only polarisation, attenuation and frequency detuning control. The ease of 

experimental implementation could therefore be improved by using optimised 

VCSEL designs, grown for the purpose of network connectivity.  

 

 

Figure 4.3.6 – Temporal maps showing the consistency of the RCG-VCSEL response in the 

ON-type circuit (subject to decreasing light stimuli) when M-VCSEL inputs are varied from 

(a) td = 3.60 ns (b) td = 5.18 ns and (c) td = 6.22 ns. The temporal maps combine 60 cycles of 

each various input duration. The temporal maps display data from the previously plotted 

Figure. 4.3.5. Figure reproduced from [200]. 

 

In this experiment, no external tuneable laser (TL) source was used. The decision to 

utilise a VCSEL in the input layer was made to test the possibility of an all-VCSEL 

network. This has a number of advantages, for example; VCSELs are relatively 

inexpensive compared to more costly TL units, VCSELs have significantly smaller 
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footprint than TLs helping reduce the size of the experimental system as a whole, 

VCSEL devices produce a smaller range of output power with a higher wall plug 

efficiency compared to TL units, etc. However, the use of VCSELs brings its own 

set of challenges. Devices with the appropriate output power, threshold current, peak 

wavelength and dominant polarisation mode need to be utilised. Additionally, we 

found the inherent optical power loss, caused by the experimental intensity 

modulators, posed a more significant issue with VCSELs than the TL unit due to the 

decreased power availability. Despite these drawbacks, the implementation of an all-

VCSEL neuromorphic spiking network marks an important milestone for the 

development of our brain-inspired photonic systems, showing progression to a more 

VCSEL-dependent execution.  

Overall, the experimental demonstrations of retinal neural circuits in ON-type-

inspired configurations were achieved using 3 cascaded VCSEL neurons in a (1-to-

1-to-1) feedforward architecture. This highlights the suitability of VCSELs as 

neuromorphic devices capable of real-life biological neuron emulation. Additionally, 

this demonstration has revealed that an all-VCSEL system can sustain the required 

power levels for cascadability in feedforward architectures, increasing VCSEL 

neuron prospects as reliable devices for potential implementations of network 

functionality in the future.  

In conclusion, the results in this chapter have investigated experimentally the 

application of VCSEL neurons in interconnected network architectures. Specifically, 

we have shown the communication of optical spike activations/inhibitions in a (1-to-

1) feedforward configuration, revealing the capability of one VCSEL neuron to pass 

information to another one in a subsequent network layer. Next, we demonstrated the 

propagation of optical spiking signals in a diverging (1-to-2) feedforward 

configuration. Here, with the successful activation of both downstream devices, we 

revealed that a single VCSEL neuron can feed information into multiple downstream 

network nodes, facilitating in the future the additional neural connections required 

for complex configurations and network processing capability. Finally, we 

demonstrated the emulation of a real biological retinal neural circuit using 3 

interconnected VCSELs. In this demonstration, both non-spiking and spiking signals 

were used to successfully reproduce the signals two of ON-type-inspired circuits of 
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BCs and RGCs in a (1-to-1-to-1) feedforward network. This demonstration revealed 

that non-spiking signals can also be propagated between VCSELs and that they can 

be used to activate neuronal spiking further downstream in the network. Additionally, 

we have shown an all-VCSEL approach to network implementation, revealing that 

network cascadability can still be achieved with a VCSEL realised input layer. Such 

all-VCSEL networks have the potential to be created without the expense and 

footprint of larger tuneable laser sources, increasing the prospect and appeal of 

VCSEL neurons as networked devices for future neuromorphic systems. These 

promising results highlight that VCSELs have the capability to operate in 

interconnected architectures as networks of neuron-emulating devices, capable of 

generating and communicating spike activating, spike inhibiting and non-spiking 

signals at sub-nanosecond speeds. We have seen that in simple network 

configurations these devices can cascade signals without additional signal 

manipulation and that VCSELs can inject information into the network, simplifying 

the hardware requirements for a basic neuromorphic network implementation. The 

experimental investigation of fan-in configurations remains of significant interest to 

neuromorphic networks of VCSELs as it will contribute to the realisation of 

functional decision-making circuits where multiple neuron inputs arrive on a single 

VCSEL neuron. This will be realised experimentally using time-division 

multiplexing techniques in Chapter 5 to demonstrate and use further the 

neuromorphic properties of VCSEL-based photonic neuronal models.  
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Chapter 5  

Functional Neuro-inspired Photonic Circuits and 

Demonstrations 

 

In Chapter 1 we introduced the concept of neuromorphic information 

processing and have since described methods of achieving neural-like spiking with 

VCSELs in Chapter 3. In Chapter 4 we described how it is possible to combine 

artificial photonic VCSEL neurons in order to implement network configurations 

capable of spike propagation. We also demonstrated the photonic emulation of basic 

neuronal circuits within the retina using interconnected VCSEL neurons. In this 

Chapter (Chapter 5) we will draw upon each of the functionalities realised within our 

VCSEL neuron and apply them to achieve neuro-inspired photonic circuits capable 

of functional processing demonstrations. We will discuss utilising our VCSEL 

neuron for the generation of fast optical spiking signals via Digital-to-Spike (DTS) 

format conversion (Chapter 5.1). We will demonstrate the creation of photonic 

spiking memories through the use of single and mutually-coupled VCSEL neurons 

in feedback configurations (Chapter 5.2). We will also exploit the temporal 

integration of fast input perturbations to realise photonic AND/OR spiking logic 

operations (Chapter 5.3) and perform a supervised pattern recognition task (Chapter 

5.4). Finally, we will apply VCSEL neurons to the field of image processing where 

multiple techniques are used to implement image convolution with our photonic 

VCSEL neurons to achieve image edge detection and (in tandem with software-

implemented SNNs) image classification (Chapter 5.5).       

In this chapter we will discuss experimental results that have produced 

journal publications. The following articles therefore relate to the forthcoming 

discussion:  

[193] J. Robertson, M. Hejda, J. Bueno, and A. Hurtado, “Ultrafast optical integration and pattern 

classification for neuromorphic photonics based on spiking VCSEL neurons,” Sci. Rep., vol. 10, no. 1, p. 

6098, Dec. 2020, doi: 10.1038/s41598-020-62945-5. 
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[194] J. Robertson, Y. Zhang, M. Hejda, J. Bueno, S. Xiang, and A. Hurtado, “Image edge detection with a 

photonic spiking VCSEL-neuron,” Opt. Express, vol. 28, no. 25, pp. 37526–37537, Dec. 2020, doi: 

10.1364/OE.408747. 

[200] J. Robertson, E. Wade, Y. Kopp, J. Bueno, and A. Hurtado, “Towards Neuromorphic Photonic Networks 

of Ultrafast Spiking Laser Neurons,” IEEE J. Sel. Top. Quantum Electron., 2019, doi: 

10.1109/JSTQE.2019.2931215. 

[201] Y. Zhang, J. Robertson, S. Xiang, M. Hejda, J. Bueno, and A. Hurtado, “All-optical neuromorphic 

binary convolution with a spiking VCSEL neuron for image gradient magnitudes,” Photon. Res., vol. 9, 

no. 5, pp. B201–B209, 2021, doi: 10.1364/PRJ.412141. 

[202] J. Robertson et al., “Ultrafast neuromorphic photonic image processing with a VCSEL neuron,” Sci. 

Rep., vol. 12, no. 1, p. 4874, Dec. 2022, doi: 10.1038/s41598-022-08703-1. 

 

 

5.1 Digital-to-Spike Format Conversion 

In this first demonstration of a functional neuro-inspired photonic circuit we 

introduce Digital-to-Spike (DTS) format conversion. Neuromorphic photonic 

systems, as described in Chapter 1, make use of pulses of light (spikes) that are digital 

in amplitude but analog in the temporal domain. Biological neural networks are 

known to encode information in the precise timing of these spikes when 

communicating between neurons in the network [221], [222]. However, traditional 

computer processors and telecom networks mostly operate with digital binary format 

signals. Hence, it is key for future neuromorphic photonic processing systems to 

implement DTS format conversion to successfully interface with digital computing 

and telecommunication platforms.  

A commonly used information encoding format in digital systems is Non-Return-to-

Zero (NRZ). This features two signal levels, one for each bit value (1 & 0), but 

requires clock synchronisation as sequential bits can maintain a constant signal level. 

The clocking requirement of NRZ clashes with the asynchronistic format of spiking 

signals; hence conversion is required for the information to pass into neuromorphic 

systems. Another commonly used binary encoding format is Return-to-Zero (RZ). 

This features signal pulses (RZ unipolar), or both signal pulses and drops (RZ 
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bipolar), that return to zero between each bit. This removes the requirement of a 

clocking signal and helps to avoid bit slips. The removed requirement of clocking 

and its on-off keying (pulse-like) nature means that RZ unipolar signals share a 

commonality with spiking signals where information is carried in the activation of a 

pulse or spike. In essence the conversion of NRZ to RZ unipolar should therefore 

provide the required format change to operate with neuromorphic systems given RZ 

unipolar encoding can be achieved at the appropriate bit rate. 

The conversion of binary data from NRZ to RZ format has been proposed and 

realised in literature using photonic systems that exploit the behaviour of 

semiconductor optical amplifiers (SOAs) to produce trains of pulses [244], [245]. 

Photonic DTS conversion, where spike activations, as opposed to square pulses, are 

triggered via an excitability mechanism has been recently reported. A graphene 

excitable laser (GEL) has demonstrated the conversion of binary NRZ signals into 

spike trains [246]. When perturbed electrically the GEL, containing a gain and 

saturable absorber section, converted NRZ input signals to spike trains at a modelled 

bit rate of 10 Gb/s and an experimental bit rate of 40 Kb/s. The subsequent spiking 

signal required no clock synchronisation making it an appropriate format for 

neuromorphic systems that operate using optical spiking signals.  

We utilise excitability in VCSEL neurons to perform DTS format conversion, where 

each triggered spike represents the presence of a bit with value ‘1’. To demonstrate 

the DTS conversion capability of VCSEL neurons we perform optical injection with 

an external signal, intensity modulated by digital binary patterns. Using the setup 

described in Chapter 2 (Fig. 2.1.3) we generate electrical NRZ, bipolar RZ and 

unipolar RZ signals. Incoming 8-bit NRZ and RZ binary signals, representative of 

ASCII characters that form the word ‘IPC19’ (acronym of the IEEE International 

Photonics Conf. 2019, where these results were presented), were generated at 1 ns/bit 

(1 Gb/s) for NRZ and 2 ns/bit (0.5 Gb/s) for RZ, and optically-injected into the 

VCSEL neuron. Experimental results demonstrating DTS format conversion with the 

VCSEL neuron are shown in Fig. 5.1.1.  
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Figure 5.1.1 – DTS conversion with a photonic VCSEL neuron. (a) NRZ-, (c) Bipolar RZ-, 

(e) Unipolar RZ-encoded optical injection and (b,d,f) the spiking VCSEL neuron response. 

Experimentally obtained using the optical injection setup (Fig. 2.1.3). Experimental 

parameters: I = 5.0 mA, T = 293 K, Orthogonal (XP) mode injection, (a-b) ∆f = -8.47 GHz, 

Pinj= 252 μW, (c-d), ∆f = -4.61 GHz, Pinj= 230.6 μW, (e-f) ∆f = -6.35 GHz, Pinj = 243.5 μW. 

 

Fig. 5.1.1 (a) shows the 48 ns long NRZ binary input corresponding to the five 8-bit 

ASCII characters and an 8-bit buffer. When in a 0-bit state the NRZ input injection 

locks the system producing a stable output as shown in Fig. 5.1.1 (b). However, when 

in a 1-bit state the injection locking is disrupted and the VCSEL neuron falls into the 

excitable spiking regime. When consecutive 1-bits enter the VCSEL neuron at bit 

numbers 22, 26 and 34, the device remains out with injection locking and fires tonic 

(continuous) spikes. The encoding rate of 1 Gb/s was selected such that the number 

of 1-bit triggers matched the number of spikes activated. This was achieved by 
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matching the bit length to that of the refractory period of the VCSEL neuron (approx. 

1 ns). In the VCSEL neuron response we successfully activate all required responses. 

The VCSEL neuron utilised in this work can therefore achieve the DTS conversion 

of NRZ signals at approximately 1 Gb/s, however this upper limit is dependent on 

the system’s refractory period.  

In Fig. 5.1.1 (c)-(d) we demonstrate the DTS conversion of a bipolar RZ binary 

signal. This binary signal has three states and resets to the middle state at the end of 

every input bit. We inject a signal encoded at 2 ns per bit (0.5 Gb/s) and set the ‘0’ 

and reset states at powers above the injection locking condition. Therefore, we expect 

only the 1-bit state to cross the activation threshold of the VCSEL neuron and trigger 

spiking responses. As demonstrated in Fig. 5.1.1 (d), we successfully achieve the 

activation of spiking dynamics for each 1-bit. After the successful triggering of a 

spike the injection locking condition is restored during the RZ reset. This means 

spikes triggered by 1-bit inputs are more consistent in amplitude and spike timing 

than tonic activations in the NRZ case. Additionally, here at half the encoding rate 

(0.5 Gb/s), we reliably achieve activations as we allow 2 ns between bits, a much 

longer time that the refractory time of the VCSEL neuron. In Fig. 5.1.1 (e)-(f) we 

demonstrate the similar case of a unipolar RZ binary signal. This signal has 2 states 

and resets to the 0-bit state at the end of each bit. This signal was generated again at 

0.5 Gb/s, with the 0-bit state set above the injection locking threshold and the 1-bit 

state in the excitable spiking regime. These results show again the successful 

activation of spike events for every input 1-bit. Similar to the previous results, the 

RZ nature of the input helps to increase the consistency of the response amplitude 

and timing, and the 0.5 Gb/s encoding rate is handled reliably by the VCSEL neuron. 

In the case of RZ binary signals the upper encoding limit is dictated by the refractory 

period of the excitable dynamics, however DTS conversion can be achieved at slower 

rates due to the non-requirement of clocking. 

Comparing Fig. 5.1.1 (e)-(f) we can see that both the unipolar RZ and the VCSEL 

neuron’s spike-conversion are equivalent as pulses are simply replaced by excitable 

spiking dynamics. Despite this similarity, the secondary conversion of the signal 

from the electrical domain to the optical domain is also occurring within our DTS 

conversion system. This system therefore demonstrates that the conversion of 
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different electrical digital binary formats into optical spiking signals can be achieved, 

in the devices tested, at up to 1 Gb/s (25 times faster than the experimental GEL 

demonstration [246]). The maximum spike conversion rate is ultimately dictated by 

the refractory period of the accessed dynamics and hence could be improved in other 

VCSELs through specialised device design and fabrication stages. Overall the 

implementation of DTS conversion systems like this is required to bridge the gap 

between photonic neuromorphic systems attempting to integrate with conventional 

digital devices. This system in particular allows an off-the-shelf VCSEL to perform 

that function while offering a platform wavelength-compatible with communication 

networks as well as other neuromorphic systems of VCSEL neurons.  

 

 

5.2 Spiking Photonic Memory  

In this Chapter we introduce a discussion of photonic spiking memory in 

VCSEL neurons through the use of optical feedback connections in functional neuro-

inspired architectures. We explore two system architectures that demonstrate both 

self-feedback connections in a single VCSEL neuron and mutual coupling 

connections in a 2 VCSEL neuron system.  

In biological neural networks, natural autaptic (self-feedback) neuron connections, 

which were once thought to be uncommon, are now understood to be commonly 

widespread. These self-feedback connections have been found to occur in many parts 

of the brain (cerebellum [247], neocortex [248], hippocampus [176], etc.) yet, their 

function in the nervous system is still not fully understood. Research into autaptic 

neuron connections has shown that they can provide self-control in neurons, helping 

the neuron maintain persistent activity [249] and increase spike-timing precision 

[250]. Similarly, in groups of neurons it was found that autapses can create the 

synchronisation of action potentials [251], a role important for the processing 

function of the brain, as well as trigger inhibitory and excitatory postsynaptic currents 

that effect the activation of subsequent potentials [176], [252]. The role of autaptic 
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connections in biological neurons is therefore thought to be similar to that of self-

feedback systems observed in other fields, where they are used to stabilise signals, 

regulate behaviour [253] or create memory in a system allowing past events to 

influence the present [254].  

In general, self-feedback connections are implemented when the output of a system 

is redirected back into the system. In photonics, as lasers are susceptible to optical 

pumping and optical injection, they are too susceptible to feedback of their own 

generated light. The reinjection or feedback of light in semiconductor lasers has 

shown in some cases to lead to the reduction of laser linewidth, when low power 

phase-matched optical feedback is introduced [255], [256]. When introducing high 

levels of feedback, external cavity modes are created that inject oscillations into the 

system increasing the linewidth of the laser while producing rich intensity dynamics, 

such as chaos and low frequency fluctuations, at the output [257], [258]. For this 

reason, interest in semiconductor laser feedback architectures has led to their 

application in numerous research fields including frequency stabilisation [259], 

secure communication [260] and random bit generation [261]. Similarly, the high 

dimensionality produced by semiconductor laser feedback systems makes them 

extremely useful for information processing systems, such as time delay reservoir 

computers. The latter use delayed feedback cycles to produce multiple 

interconnected virtual nodes in an artificial neural network [206]. Similar to 

biological autapses, the feedback delay in these systems is crucial for creating 

additional memory, helping reservoir computers perform different complex learning 

tasks [262]. Self-feedback architectures with different neuromorphic photonic 

systems have also been recently investigated to explore autaptic neuron-inspired 

functionalities [174], [175], [189], [263]. Semiconductor micropillar lasers with 

saturable absorbers have reported the storage of pulse trains and long-term pulse 

interactions in memory using feedback loops [174], [175]. Optical self-feedback 

loops have also been suggested in theory to implement unsupervised learning via 

spike timing dependent plasticity (STDP), with vertical-cavity semiconductor optical 

amplifiers (VCSOAs) in photonic spiking neural networks [189]. In this technique, 

the spiking output of a networked VCSEL is fed back and combined with its own 

input signal to derive the appropriate input weighting by consideration of precise 
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spike timing. Feedback connections in general however, are not required to be 

implemented by single delay lines or loops but can in fact be implemented by 

networks of multiple devices. Examples include demonstrations of mutually coupled 

excitable devices, where excitable dynamics can become self-sustained in the 

memory of the system [264] and reservoir computing systems with 2 mutually delay-

coupled semiconductor devices [265]. In this Chapter we report on both feedback 

architectures to investigate and compare the memory functionality of our VCSEL 

neurons.  

 

 

Figure 5.2.1 – Setup to study a self-feedback photonic VCSEL neuron. A VCSEL is subject 

to both polarised optical injection (red path) and feedback (blue path) via a fibre-optic 

feedback loop. TL – tuneable master laser, ISO – optical isolator, VOA – variable optical 

attenuator, PC- polarisation controller, MZ – Mach Zehnder modulator, PM – power meter, 

OSC – oscilloscope.  

 

The first of the cases studied, namely optical self-feedback in a VCSEL neuron, is 

implemented by splitting the output of a VCSEL neuron and recombining it into the 

optical injection line. The complete experimental arrangement is shown in Fig. 5.2.1. 

Light from a tuneable master laser is encoded with intensity modulations from a MZ-

modulator before being split 50:50 by a 4-port fibre optical coupler (Coupler 1). One 

output port of Coupler 1 is used for the analysis of injection and the second is passed 

to the VCSEL neuron via an optical circulator. The final output of the optical 

circulator is again split using a second coupler (Coupler 2) to create a feedback line 

and a VCSEL-output analysis port. The optical feedback line, which includes both a 
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variable optical attenuator and a polarisation controller, is connected to the input port 

of Coupler 1, for its reinjection into the VCSEL neuron. Using the analysis ports of 

Couplers 1 and 2 the injection signal and the VCSEL neuron output can be collected 

and analysed with a real-time oscilloscope. The polarisation controller and optical 

attenuator present in the feedback line allow for the control of key feedback 

parameters, namely the feedback light polarisation and optical power.  

Using the experimental arrangement shown in Fig. 5.2.1 we injected a modulated 

optical signal into a VCSEL neuron subject to optical self-feedback. The feedback 

delay time (τ) was 142.1 ns. The feedback polarisation was set to match that of the 

optical injection (orthogonal XP polarised). An optical injection power of 29 μW was 

used at a frequency detuning of -2.53 GHz  (injection locking the VCSEL neuron to 

the external signal), along with 10.4 μW (35.9%) of optical feedback. Spike-

activating perturbations (input pulses) of 0.6 ns duration were injected into the 

system at a repetition rate of 1.5 MHz. The output of the VCSEL is plotted in Fig. 

5.2.2. 

 

Figure 5.2.2 – 15 cycles of spike encoded memory in a self-feedback VCSEL neuron. Input 

perturbations are used to write spike events in τ-long (142.1 ns) memory cycles. Memory 

cycles 1-5 (a) and 6-10 (b) are part of a single continous measurement. Controlled spike 

ativations are highlighted in green at 100 ns and 766 ns.  Experimental parameters: I = 5.3 

mA, T = 293K, Orthogonal (XP) mode injection, ∆f = -2.53 GHz, Orthogonal (XP) polarised 

feedback. Figure reproduced from [200]. 
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Each plot provided in Fig. 5.2.2 (a)-(b), shows the VCSEL neuron output for five 

consequtive memory cycles of 142.1 ns duration. In the first τ-long memory cycle of 

each plot, we highlight in green, the activations of new spike events caused by the 

injection of external perturbations. In Fig. 5.2.2 (a) we see that the externally 

triggered 1-spike sequence stored in the first memory cycle is fed back through the 

feedback delay line, where after 142.1 ns, it is regenerated in the form of a second 

identical sequence. In the same fashion the 1-spike sequence is stored and 

regenerated in a total of 5 memory cycles indicating that externally-generated 

perturbations can successfully write spikes within the memory of the VCSEL neuron. 

In Fig. 5.2.2 (b) the second external perturbation arrives at 766 ns writing an 

additional spike in the memory cycle. As before this 2-spike sequence is sucessfully 

stored and regenerated in memory cycles 6-10. The writing of additional spikes is 

therefore possible without the disruption of prevously stored dynamics.  

Fast sub-nanosecond spiking responses can therefore be written into the memory of 

a VCSEL neuron using this controllable technique. The fundamental capacity of the 

memory cycles will be ultimately limited by the refractory period of the VCSEL 

neuron. The maximum potential spike capacity of memory cycles in this system is 

therefore given simply by Eq. 5.2.1. 

𝑁𝑐𝑎𝑝 = 
1

𝑇𝑟𝑒𝑓𝑟
∗ 𝜏                           (Eq. 5.2.1) 

Where Ncap is the maximum spike capacity in a memory cycle created by a system 

with a set feedback delay τ and a spiking refractory period Trefr. In the VCSEL neuron 

we have limited control over the refractory period of our devices, therefore, in order 

to control the capacity of memory we need to vary the length of the delay τ. With 

spike capacity proportional to delay, should we require more memory capacity, we 

could look at increasing the length of the memory cycles (τ).  

When encoding the memory cycles if a spike is written within Trefr of one already 

stored in memory then we can experience the re-writing of the spike. If an external 

perturbation arrives within Trefr but before the stored spike, the stored spike is erased 

and the newly activated spike is stored in memory. However, if the external 

perturbation arrives after the stored spike, the external perturbation will fail to 
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activate a new spike as the system has not recovered from the previous excitation. 

Further investigation into the full capability of the system to write, re-write and erase 

spiking within memory would be of interest for memory functionality in VCSEL 

neurons. However, further testing is not provided in this work due to experimental 

limitations at the time of reporting (previously no access to an AWG). Work 

performed by other groups exploring self-feedback architectures in micropillar lasers 

[174], [175] and VCSELs [263] have shown promising results regarding the erasing 

of memories using external perturbations to influence carrier dynamics, suppressing 

individual pulses within the feedback memory. A similar method in our experimental 

arrangement would grant us the ability to fully control the spike memory within our 

VCSEL-based neuromorphic system.  

Overall this single VCSEL neuron with a self-feedback connection demonstrates the 

ability to controllably write and store mulitple spikes in repeating memory cycles. In 

this work these memory cycles have demonstrated to exist for up to 7 μs. However, 

we believe with improvements to experimental stability and noise performance, 

longer durations could be achieved [175]. With increased stability, additional testing 

could be completed to investigate and identify pulse interactions within memory over 

large cycles numbers [174]. The storage capacity of the system is determined by the 

length of the delay line and the refractory period of the activated dynamics.  

In the second feedback architecture studied in this thesis we utilise two 

mutually-coupled VCSEL neurons to create a networked feedback loop. In this 

system architecture the output of each VCSEL neuron is injected into the other, as 

shown in Fig. 5.2.3. No external tuneable source is used for optical injection in this 

experimental arrangement and no optical modulation is performed. Light from each 

VCSEL is passed through an optical circulator to a coupler where 50% of the signal 

is taken for analysis and 50% is transmitted to a polarisation controller and optical 

attenuator for injection into the neighbouring device. The VCSEL neurons used in 

the experiment were selected such that they had consistent characteristics. In 

particular, they each demonstrated orthgonal (XP) mode dominant free-running 

operation, similar operating wavelengths and dynamical regimes under external 

optical injection. The bias current and operating temperature of the devices were 
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adjusted to create a frequency detuning of ∆f = -2.03 GHz between the devices and 

the injection polarisation was set to orthogonally-polarised light to improve the 

coupling between the dominant polarisation modes of the two VCSELs.  

 

Figure 5.2.3 – Experimental arrangement for mutually-coupled VCSEL neurons. Each 

VCSEL neuron is subject to polarised optical injection from the neighbouring device. Fibre 

optical components create a coupling delay of 108.5 ns for a total feedback delay of τ = 217 

ns. VOA – variable optical attenuator, PC- polarisation controller, OSC – oscilloscope.  

 

Each branch of the optical feedback loop contributes a measured coupling delay of 

108.5 ns to the signals between the two neighbouring VCSEL neurons. This coupling 

delay is equivalent to half the feedback time (τ = 217 ns) experienced by each device. 

The system was brought into injection locking with VCSEL-1 (I = 6.05 mA, T = 294 

K) producing an output power of 111.7 μW and VCSEL-2 (I = 6.17 mA, T = 291 K) 

producing an output power of 72.3 μW. Though initially injection locked to each 

other, the experimental parameters were selected to be close to the unlocking 

boundary of the devices such that noise could trigger random transitions, producing 

internally triggered spiking patterns. This mechanism granted us the ability to elicit 

random spike sequences within the feedback loop without the use of external 

modulated optical injection. Once generated, the noise-induced spike sequence is 

then stored in the mutually coupled devices as shown in Fig. 5.2.4.  

The elicited noise-induced 11-spike sequence is shown first in the output of VCSEL-

1 (Fig. 5.2.4 (a), red). The random 11-spike sequence has a distinct gap between the 

first and second spike allowing for easy identification in the measured time series. 

After the coupling delay of 108.5 ns the 11-spike sequence enters VCSEL-2, 
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producing the successful regeneration shown in Fig. 5.2.4 (b). The reduction in 

spiking amplitude from VCSEL-1 to VCSEL-2 can be attributed to the reduction in 

device output power as well as varying optical component efficiencies. After a 

second coupling delay of 108.5 ns the spiking sequence is re-injected into VCSEL-

1, where again we see the successful regeneration of the spiking signal. The spiking 

signal is stored within the τ-long memory cycle and remains written in the memory 

of each device for the entire duration of the captured time series (60 memory cycles/ 

13 μs). The length of the memory cycle, as in the previous experiment, is dictated by 

the feedback delay τ. Hence we highlight that the noise-induced spike sequence 

shown in Fig. 5.2.4, can be replaced by any sequence of spikes. up to the maximum 

capacity Ncap, as calculated in Eq. 5.2.1.  

 

 

Figure 5.2.4 – 3 cycles of a noise-induced 11-spike sequence in mutually-coupled VCSEL 

neurons. The noise-induced spiking sequences appear in τ-long (217 ns) memory cycles with 

a coupling delay of τ/2 (108.5 ns) between devices. The time traces of VCSEL-1 (a, red), 

and VCSEL-2 (b, blue) were recorded using Coupler 1 & 2 repectively. Experimental 

parameters VCSEL-1 (VCSEL-2): I = 6.05 (6.17) mA, T = 294 (291) K, XP mode injection, 

∆f = -2.53 GHz. Figure reproduced from [200]. 

 

Overall both VCSEL neuron feedback architectures generate great promise for 

neuromorphic spiking photonic memory systems. We have demonstrated that single 

VCSEL neurons, subject to self-feedback, can write excitable spikes into memory 

through the use of optical modulation, creating sequences of fast spiking patterns that 
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regenerate in τ-long cycles. This architecture opens a pathway to neuron-like, 

regenerative spiking memory using only a single VCSEL neuron and a delayed 

feedback line. In the second experimental study, two VCSEL neurons in a mutual-

coupling configuration demonstrated the formation of self stablising τ-long 

memories. This performance indicates that this feedback architecture would be well 

suited to implementing the storage of spikes for applications in in-memory 

processing systems.  

Finally, the VCSEL neuron architectures studied in this work make a good case for 

application in neuromorphic information procesing systems where memory requires 

creation as each approach can be formed with simple hardware friendly components. 

The components used in both experimental arrangements are commercial avaliable 

and telecom-compatible allowing an affordable pathway to neuromorphic systems 

that demonstrate memory functionality at GHz rates.  

 

5.3 Photonic Spiking Logic Operations 

We discuss now the application of spiking VCSEL neurons for decision 

making logic operations and reveal their key input integration behaviour. We 

consider a single approach that enables both AND and OR logic operation with 

mulitple input signals coincident on a single VCSEL neuron.  

Biological neurons operating in neural networks are subject to multiple inputs from 

neighbouring neurons via their dendrtic tree forming synapses. Each synaptic 

connection made from one neuron to another has an associated weight which controls 

the strength of the connection. Once weighted inputs enter the neuron, their 

contribution is summated and temporally integrated in the soma (cell body). The 

integrated inputs contribute to the build-up of a membrane potential within the 

neuron that is governed by what is known as an activation function. Neuron firing is 

only achieved when the threshold membrane potential is exceeded by the integrated 

inputs [15], [219]. In VCSEL neurons, as shown in Chapter 3.3, analogous 

thresholding and spike activation functionality is achieved. Similarly, in Chapter 4.1 
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we demonstrated the communication of spikes in neighbouring neurons. However 

until now, only single inputs were incident on a VCSEL neuron. In order to 

sucessfully emulate biological neurons, we need our system to incorporate the 

contribution of multiple inputs to the firing of a single VCSEL neuron. The leaky 

integrate-and-fire (LIF) neuronal model describes this behaviour [27], [28], [266].  

The LIF neuronal model can be described using a simple neuron surrounded by a cell 

membrane, and a set of equations for theory of electricity, as shown in Fig. 5.3.1(a). 

The momentary value of the membrane potential, 𝑉, in the absence of any external 

injection current, 𝐼, has a potential equal to its rest value, 𝑉𝑟𝑒𝑠𝑡. When an external 

current pulse, 𝐼(𝑡), is introduced to the neuron the additional electric charge, 𝑞, is 

passed to the cell membrane, which functions as a capacitor with capacity 𝐶. The cell 

membrane however, is not a perfect insulator, leading to the leaking of charge 

characterised by a leak resistence, 𝑅. The LIF model therefore represents the entire 

neuron as a capacitor and a resistor in parallel, driven by a current. The law of current 

conservation can be used to split the driving current into a resistive current, 𝐼𝑅 , and a 

capacitive current, 𝐼𝐶, as shown below in Eq. 5.3.1.  

                                                     𝐼(𝑡) =  𝐼𝑅 + 𝐼𝐶                                    (Eq. 5.3.1) 

The resisitve current, 𝐼𝑅, is calculated using Ohm’s law where the voltage across the 

resistor is given by 𝑉𝑅 =  𝑉 − 𝑉𝑟𝑒𝑠𝑡. The capacitive current, 𝐼𝐶, is calculated from 

the definition of capacity, 𝑞 = 𝑉𝐶, with 𝐼𝐶 =
𝑑𝑞

𝑑𝑡
, giving Eq. 5.3.2. 

                                              𝐼(𝑡) =  
𝑉(𝑡)− 𝑉𝑟𝑒𝑠𝑡

𝑅
+ 𝐶
𝑑𝑉

𝑑𝑡
                           (Eq. 5.3.2) 

Multiplying through by 𝑅 and using 𝑅𝐶 = 𝜏𝑚 to introduce the membrane time 

constant, 𝜏𝑚, we arrive at Eq 5.3.3, the equation of a leaky integratory. 

                                      𝜏𝑚
𝑑𝑉

𝑑𝑡
= −[𝑉(𝑡) − 𝑉𝑟𝑒𝑠𝑡] + 𝑅𝐼(𝑡)                  (Eq. 5.3.3) 

We are able to observe the solution to this equation and the leaky nature of the 

integrator when we assume the membrane potential takes an initial value of 

𝑉(𝑡0) = 𝑉𝑟𝑒𝑠𝑡 + ∆𝑉 at 𝑡 = 0. We then remove the current input at 𝑡 > 0, making 



148 
 

𝐼(𝑡) = 0. In the absence of the current input, for 𝑡 > 𝑡0, the membrane potential 

decays according to Eq 5.3.4. 

                                           [𝑉(𝑡) − 𝑉𝑟𝑒𝑠𝑡] = ∆𝑉𝑒
(−
𝑡−𝑡0
𝜏𝑚
)
                       (Eq. 5.3.4)  

The solution decribes an exponential membrane potential decay according to the 

membrane time constant 𝜏𝑚. The solution to the differential equation can be 

validated by performing the derivative of each side of Eq. 5.3.4 when 𝑡 > 𝑡0. 

Physically, this solution means that when we remove inputs, the membrane potential 

will always approach the rest potential. The system is therefore inherently leaky, 

however, because the decay of the membrane potential is not instantaneous, multiple 

inputs are able to influence the overall membrane potential given they occur within 

a short temporal window.  

 

Figure 5.3.1. – Electrical circuit description of a neuron in a passive cell membrane (a). 

Idealistic depiction of the LIF neuronal model (b). Inputs injected into the artificial neuronal 

model (In) are integrated (Int.), with a time constant decay, towards a threshold potential (red 

dotted line). When the threshold is exceeded, the system fires a spike (Out) and the potential 

reaches the reset value (dark red) before returning to its resting potential (light blue). 

 

This temporal window, here referred to as the integration window, allows multiple 

inputs occuring in a quick succession to summate towards the triggering of a single 

neuron activation. Inputs arriving within the temporal window arrive before the 

membrane potential depletes to its rest value, enhancing their contribution towards 



149 
 

the threhsold potential 𝑉𝑡ℎ𝑟𝑒𝑠ℎ. These effects together build the LIF model of a simple 

neuron. A depiction of an idealistic LIF neuron model is given in Fig. 5.3.1(b).  

In the example given in Fig. 5.3.1(b), we can see that a singlet and doublet of input 

pulses, incident on the LIF neuron, sucessfully integrate together. Despite the 

succesful integration, the weighting of the inputs and the leaky nature of the system 

reduce their overall contribution to the potential. Their final contribution is not 

significant enough to cross the threshold potential and no response is observed at the 

output of the system. A triplet of input pulses in quick succession is required to 

produce a potential greather than 𝑉𝑡ℎ𝑟𝑒𝑠ℎ after integration, and trigger a response at 

the output of the neuron.  

In our VCSEL neuron system we implement a similar test to investigate its ability to 

integate multiple input perturbations entering at different and controlled time-instants 

to analyse their ability to trigger spike firing events (upon exceeding the VCSEL 

neuron’s activation threshold). The experimental arrangement used for this study was 

the same as that described in Fig. 3.1.3. Figure. 5.3.2 plots the results showcasing the 

response of the VCSEL neuron to different incoming temporal perturbation patterns, 

including the injection of fast singlet, doublet and triplet bursts of input perturbations.  

Figs. 5.3.2 (a) & (b) show four sets of input injection perturbations incident on the 

VCSEL neuron and the resultant output of the system. The rising edge of each set of 

perturbations is separated by 2.0 ns and each pulse has a width of 100 ps. Pulses 

within the doublet and triplet bursts were configured with a peak to peak separation 

of ~160 ps, giving the doublet and triplet bursts a total length ~400 ps and ~600 ps, 

respectively. In both cases depicted in Figs. 5.3.2 (a) & (b), the first input perturbation 

is a single super-threshold pulse. This is used as a control to indicate the system is 

suitably close the spiking threshold and that inputs of sufficient strength can 

successfully activate spiking responses. Similarly, the second pulse in Figs. 5.3.2 (a) 

& (b) is created with a sub-threhsold amplitude, failing to activate an output spiking 

response. In this situation, we therefore expect to observe a consistent spiking 

response at the beginning of the VCSEL neuron output, followed by a gap of no 

spiking activity. The pulse amplitude of individual inputs within the following 

doublet and triplet input bursts were set to match that of the previous sub-threshold 



150 
 

control pulse. In both cases (Figs. 5.3.2 (a) & (b)) the injected input sequences are 

the same, however, each plot is configured with a different spike threshold level for 

the VCSEL neuron. These different spiking threshold levels were set by altering the 

frequency detuning between the optically injected signal and the VCSEL’s 

resonance. An injection power of 183 μW into the orthogonal mode of the VCSEL 

was used for both the far from threshold (-6.0 GHz) and close to threshold (-6.35 

GHz) measurements. 

 

Figure 5.3.2. - Investigation of optical integration in a VCSEL neuron using multiple input 

pulse patterns. Optically injected input (top) and recorded optical response from the VCSEL 

neuron (bottom) when using (a) far from & (b) close to threshold operation points. The 

injected input contains first large and small control pulses, before a doublet and a triplet pulse 

input burst. Temporal maps (c) & (d) plot the continuous time traces of (a) & (b). Spike 

intensity is represented using colour, with yellow and blue colours showing respectively 

spike crests and stable output intensities. The spiking efficiency of the VCSEL neuron’s 

response is given as a percentage of the total number of recorded injections (750 consecutive 

cycles). Experimental parameters: I = 5.0 mA, T = 298 K, Orthogonal (XP) mode injection, 

Pinj = 183 μW, ∆f = (a) -6.0 GHz (b) -6.35 GHz. Figure reproduced from [193]. 
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In both cases (Figs. 5.3.2 (a) & (b)), initially the VCSEL neuron produces a stable 

injection locked output. Then, upon the arrival of the large super-threshold control 

pulse at (~1.5 ns), exceeding the activation threshold of the VCSEL neuron, a spike 

is ellicited (with a 99.6% and 100% efficiency). At ~3.5 ns in both cases, as expected, 

the arrival of the second sub-threshold input pulse does not trigger a spiking event 

from the system. After the arrival of the two control pulses, the doublet and triplet 

bursts enter the VCSEL neuron. For the case of the higher spike firing threshold level, 

Fig. 5.3.2 (a) shows the activation of a single spike event at ~7.5 ns. The spike is 

activated by the successful integration of the individual sub-threshold pulses within 

the triplet input burst, whose combined energy exceeds the spike activation threshold 

of the system (with an efficiency of 89.5%) as in the LIF neuron model. In Fig. 5.3.2 

(a) the doublet input does not trigger a consistent spiking response from the VCSEL 

neuron as their combined energy falls below the threshold level. For this first case of 

analysis, the temporal map of Fig. 5.3.2 (c) shows the response of the system for 750 

consecutive injections of the input perturbation sequence. From the map we see that 

the spiking response from the intial control pulse and the triplet each produce 

consistent responses (99.6 % and 100% efficient), conversely, the doublet does not 

ellict a regular response over all input cycles, with a poor spike efficiency of 8%.  

The response of the system does however change when we consider the case closer 

to threshold. Individual time series and the temporal map (measured for 750 

consecutive input sequences) for this second case of analysis are shown in Fig. 5.3.2 

(b) & (d), respectively. The reduction in spike firing threshold level lowers the overall 

total energy requirement for spike activation, allowing for more reliable responses 

from integrated input bursts. Thus, the integration of the doublet bursts observed in 

Figs. 5.3.2 (b) & (d) now shows a reliable spiking response at the output of the 

VCSEL neuron with a higher spike efficiency of 87.4%. Similarly the response of 

the triplet burst is improved further with activations across 99.8% of cycles. These 

experimental results demonstrate that optical input integration is possible within our 

VCSEL neurons given responses occur within a short time window, similar to the 

LIF model of a neuron. It also demonstrates that we can tune the spiking response of 

the system by controlling either the weights of incoming inputs or by altering the 

threshold level via experimental parameters. The demonstration of optical input 
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integration is paramount to the neuromorphic capabilitites of VCSEL neurons as 

input integration is key for network interconnectivity functionalities and the 

development of decision making processing systems. 

 

Figure 5.3.3. - Simulated optical integration in a spiking VCSEL neuron using the Spin-Flip 

Model. (a) Optically injected inputs and (b) simulated optical responses from the VCSEL 

neuron. The input injection contains first a large and a small control pulse before a series of 

pulse bursts. The input bursts entering the VCSEL are pulse sets of 3, 4, 8 (narrow width) 

and 8 (regular) pulses, respectively. Simulation parameters: I = 2.5Ith, λ = 1300 nm, 

Orthogonal (XP) mode injection, ∆f = -4.0 GHz,  𝑘 = 185𝑛𝑠−1, 𝛾𝑎 = 2𝑛𝑠
−1, 𝛾𝑝 =

128𝑛𝑠−1, 𝛼 = 2, 𝛾𝑁 = 0.5𝑛𝑠
−1, 𝛾𝑠 = 110𝑛𝑠

−1, 𝛽𝑠𝑝 = 10
−6 and 𝑘𝑖𝑛𝑗 = 125𝑛𝑠

−1.  

 

Using the Spin-Flip Model (SFM) (see Chapter 2.3), we confirm the experimental 

findings on the input integration capability of VCSEL neurons. In the simulations 

developed, input pulses are optically injected into the simulated VCSEL neuron. The 

simulation parameters used were the same as those described in Chapter 2.3. Similar 

to the experiment (Fig. 5.3.2), a pair of control pulses, one of super-threshold and 

sub-threshold input strength, are injected into the VCSEL neuron as shown in Fig. 

5.3.3 (a). Input bursts of 3, 4 and 8 pulses are then injected into the device. Pulse 

widths of 100 ps with inter-pulse-intervals of 100 ps are used in each burst with the 

exception of the third burst which features narrow 50 ps pulses with inter-pulse 

intervals of 50 ps. The simulated response of the VCSEL to the injected inputs is 

plotted in Fig. 5.3.3 (b).  
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Figure 5.3.3 shows that initially the VCSEL neuron output remains stable as the 

system is injection locked to the external constant signal. The simulated VCSEL 

neuron responds to the incoming super- and sub-threshold control inputs with a single 

activation of a spike event at ~5.0 ns. This indicates that the injection level configured 

yields an injection locking output, and that the spike activation threshold is between 

the amplitudes of the large and small input pulses (perturbations). After the control 

pulses, the first input burst of 3 sub-threshold pulses, at ~14 ns, enters the simulated 

VCSEL neuron. Here however, the total energy of the input burst is not sufficient to 

activate a spike at the output of the VCSEL neuron. In the second burst (at ~19 ns) 

an additional pulse is added, creating a burst of four pulses. Now, the VCSEL neuron 

fires a spike indicating that pulse integration across the burst has enough energy to 

cross the activation threshold of the system. The integration of multiple temporally-

delayed inputs is also successfully simulated in the third and fourth bursts of eight 

pulses. In these demonstrations, eight pulses (both equal and shorter in duration than 

the bursts before) are used to successfully trigger excitable responses. The narrow 

burst demonstrates that theoretically, given the capability to generate signals at 

higher rates, we could experimentally combine more inputs within the integration 

window, keeping the duration of input bursts short. This is possible as the total energy 

of both the four pulse, and narrow 8 pulse bursts are similar. The same effect is true 

for the fourth burst of input pulses. In this case the 8 pulses are forced to integrate 

over a larger time but due to the increased pulse width, a lower overall pulse 

amplitude is required to trigger the VCSEL response. This effect further 

demonstrates that pulse integration is indeed possible within VCSEL neurons, but 

also highlights that given the appropriate input rate and amplitude, the width of the 

window of integration can be controlled. Overall, the simulations in Fig. 5.3.3 

confirm the experimental findings of Fig. 5.3.2 regarding the integration capability 

of the VCSEL neuron, similar to the LIF model. 

In a functional application of the optical input integration in VCSEL neurons, we 

demonstrate a decision making process referred to as temporal coincidence detection. 

Used in biological neurons to combat timing jitter [267], coincidence detection is the 

recognition of two temporally-close sub-threshold inputs that activate a spiking 
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output when their arrival times fall within a short time window, remaining quiescent 

otherwise. Coincidence detection is exemplified for our VCSEL neuron in Fig. 5.3.4. 

 

 

Figure 5.3.4. - Coincidence Detection Schematic. Two inputs that arrive within a coincidence 

time window, τ, activate a spike at the output of VCSEL neuron. The system operates as a 

temporal ‘AND’ gate, requiring the sychronised injection of two separate inputs. Figure 

reproduced from [193]. 

 

In Fig. 5.3.4 two input sources each injecting a perturbation (pulse) are incident on a 

VCSEL neuron. Input 1 injects a pulse at t1, and Input 2 injects a pulse at t2. In the 

(top) case that t2-t1 is less than the coincidence time window, τ, the inputs are deemed 

coincident, and the VCSEL neuron fires a spike. In the (bottom) case that t2-t1 > τ, 

the inputs are not coincident and the system does not fire. Coincidence detection 

therefore performs a temporally-resolved AND logic operation. We investigate 

experimentally this functionality in a VCSEL neuron using the setup in Fig. 3.1.3, 

where a single optical injection line is encoded with two temporally-resolved 

(virtual) inputs via the time-division multiplexing (TDM) of pulse pairs. This 

arrangement therefore demonstrates the processing functionality of a system of 3 

neurons in a 2-into-1 fan-in architecture. Here the presynaptic neurons and their 
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inputs are virtual as they are encoded in different time instants and are generated 

directly with the AWG in the setup. The experimental results demonstrating the 

achievement of coincident detection functionality at ultrafast rates using a single 

VCSEL neuron are provided in Fig. 5.3.5.  

 

 

Figure 5.3.5. - Experimental coincidence detection using optical input integration. Inputs are 

optically injected (top) into a VCSEL neuron which fires spikes (middle) when inputs are 

sufficiently coincident in time. Selected corresponding insets are expanded below. 7 sets of 

two input pulses with separations (tdelay) decreasing from ~820 ps to ~340 ps are injected 

alongside a set of control pulses. The threshold is indicated by the dotted red line. 

Experimental parameters: I = 5.0 mA, T = 298 K, Orthogonal (XP) mode injection, Pinj = 

244.2 μW, ∆f = -9.18 GHz. Figure reproduced from [193]. 

 

The optical inputs injected into the VCSEL neuron are shown in the top plot of Fig. 

5.3.5, with the measured time series response of the system shown below. Again, a 

pair of control pulses, super-threshold and sub-threhsold respectively, are used to 

ensure the system is operating with the correct spike activation threshold. The optical 

inputs incident on the VCSEL neuron are pairs of temporally-uncorrelated pulses 
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with time separations (tdelay) decreasing gradually from ~820 ps to ~340 ps. The input 

pulses were programmed to have the same amplitude as the sub-threshold control 

pulse, each with ~170 ps pulse widths. Optical injection was made such that the 

VCSEL neuron was initially injection locked, generating a stable output. Figure. 

5.3.5 shows that the control pulses, as expected, activate a single spike from the 

system at ~6 ns (inset left). At ~13 ns and ~15 ns the first a second pulse pairs, of 

tdelay ~ 820 ps and ~750 ps (inset middle) respectively, enter the VCSEL neuron. Both 

these pulses pairs fail to activate a spike response from the system indicating that 

their integrated pulse energies do not exceed the spiking threshold given their large 

temporal separations (tdelay). Since the latter is larger than the coincidence temporal 

window τ, the system deems them as not coincident, remaining quiescent. It is not 

until the sixth input pulse pair, with tdelay ~420 ps, that we find the case of coincident 

pulses. Similarly, the seventh pulse pair, tdelay ~340 ps, elicits a spike at output of the 

VCSEL neuron. The integration of these pulse pairs successfully creates a total input 

that is capable of crossing the activation threshold of the system given their short 

pulse separations below the value of the coincident time window τ. The system deems 

these inputs as coincident producing a spike firing response.  

Figure 5.3.6 plots the temporal map of the VCSEL neuron’s response to 172 

consecutive cycles of the optical input sequence. In the temporal map the first 

consistent response (at approx. 4 ns), indicated by a yelow line, is that of the strong 

input control pulse (with a 100% spike efficiency). The map then shows that as the 

input pulse separation tdelay decreases, the number of consistent spiking responses 

elicited at the output of the device increases, becoming increasingly consistent (33.1 

% and 73.2% efficient)  at approx. 28 ns and 35 ns (for pulse separations of ~420 ps 

and ~340 ps). This result points to the VCSEL neuron acting, as anticipated, like a 

leaky system where any resultant integrated amplitude degrades or decays over time. 

This effect produces the coincidence detection operation we expect as pulses that are 

more temporally correlated integrate more efficiently, hence activating spiking 

outputs in the system. The results in the temporal map show the system deems input 

pulse pairs occuring within ~340 ps as coincident as there the system activates 73.2% 

of the time. Unlike the result shown in Fig. 5.3.5, pulse pairs with tdelay ~420 ps a 
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lower efficiency (33.1%) than would be desired in the impementation of a decision 

making system.   

The coincidence window in the VCSEL neuron, can be altered by varying the 

amplitude (weight) of inputs or through the control of experimental parameters. A 

selective integration window such as this is a simple pathway to programmable 

coincidence detection, a feature commonly applied in alarm triggering systems, 

where sets of input values, occuring sychronously, elicit a specific output alert. In the 

case of the VCSEL neuron system demonstrated here, this functionality can be 

achieved in the optical domain using input integration and fast 100 ps spiking 

responses, compatible with SNNs for decision making circuits at telecom 

wavelengths. 

 

Figure 5.3.6. - Temporal map of the coincidence detection responses from the VCSEL 

neuron. Results are produced from 172 cycles of data corresponding to Fig. 5.3.5. Seven 

sets of two input pulses with separations (tdelay) decreasing from ~820 ps to ~340 ps are 

injected alongside a set of control pulses. The spike efficiencies for the control pulse as 

well as the pulse pairs of ~340 ps, ~420 ps, and ~490 ps are given as percentages of the 172 

total cycles. Experimental parameters: I = 5.0 mA, T = 298 K, Orthogonal (XP) mode 

injection, Pinj = 244.2 μW, ∆f = -9.18 GHz. Figure reproduced from [193]. 
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In summary, we probed the VCSEL neuron to investigate its ability to perform the 

integration of multiple optical inputs. We found that, as in the LIF neuronal model, 

the VCSEL neuron has the ability to integrate bursts of inputs that occur within a 

short (sub-ns) temporal window. Through experiment and simulation we observed 

that input amplitude (weight), input separation (input rate) and spiking threshold 

level, each play interconnected roles that allow us to selectively control the 

integration window of inputs. This revelation of the integration functionality in the 

VCSEL neuron is very imporant for neuromorphic functionalities. This result helps 

propel the functionality of VCSEL-neurons beyond single input threshold-and-

activate applications such as Digital-to-Spiking (DTS) conversion, and into integrate-

and-fire inteconnected network applications. In a basic demonstration of this new 

integrate-and-fire functionality we approached the decision making task of temporal 

coincidence detection. In this experiment two virtual neurons feed inputs into a single 

VCSEL neuron with the system operating similar to a temporally-resolved AND 

logic gate, activating only when the inputs are coincident. We demonstrated that the 

integration of optical inputs can implement an optical AND gate and discussed that 

by programming the selective integration window of the system, the coincidence 

window can be controlled. This experimental system gives a simple pathway to 

optical alarm triggering systems with rapid decision windows (sub-nanosecond long) 

that utlise optical input signals at high speed (100 ps-long input pulses) and produce 

100 ps-long spikes, compatible with SNNs and other telecomunication wavelength 

platforms.  

 

5.4 Pattern Recognition and Learning with Photonic 

Neuron Architectures  

In this Chapter we build upon the optical input integration functionality of 

VCSEL neurons and apply this system to a functional pattern recognition task. We 

again utlise time-division multiplexing to incorporate multiple (virtual) inputs into 
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the injection line of the VCSEL neuron for the recognition of high-speed 4-bit data 

patterns via the firing of fast optical spikes. 

One of the large motivators for ANNs and neuromorphic computing systems is the 

ability to efficiently process large data volumes and perform complex tasks. One such 

complex task, where ANNs excel is pattern recognition. In pattern recognition 

systems, inputs are tested for regularitites or patterns to enable classification 

operations, that attempt to give each set of inputs a predetermined distinctive label. 

In order to perform this task, recognition systems are trained using inputs that have 

known labels, allowing the weights of the system to be calculated. When the data or 

pattern arrives at the input, it is mulitplied by the weights (mask) of the system and 

depending on its result, is or is not identified by the system as the target label. This 

complex task is efficiently implemented in neural networks using the reconfigurable 

weights of synaptic connections. These connections allow the weights of different 

inputs to be controlled independently, granting the capablity to enhance or reject 

different input contributions to indicate the true label.  

 

 

Figure 5.4.1. - Time-division multiplexing (TDM) and 4-bit input weighting scheme utilised 

for the pattern recognition task with the VCSEL neuron. Four virtual inputs are sampled 

(τsamp) and staggered into a single injection line, creating 4-bit data patterns. These are 

weighted using a customisable weight array before injection into the VCSEL neuron for 

processing. Input multiplexing and weighting is performed offline after which the weighted 

input is generated in an AWG and injected into the VCSEL neuron. Figure reproduced from 

[193]. 
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Here, we demonstrate experimentally, using a single VCSEL neuron, a 4-bit input 

pattern recognition system able to operate at very high speeds. Similar to the 

demonstration of the LIF functionality (Chapter 5.3), we will make use of virtual 

(time multiplexed) inputs to place our VCSEL neuron in a virtual fan-in network. We 

use 4 virtual inputs incident on a single VCSEL neuron to test the pattern recognition 

capability of our system while keeping the hardware complexity low. Time-division 

multiplexing (TDM) is used to combine the 4 virtual inputs into a single optical 

injection line as shown in Fig. 5.4.1.  

In TDM, each of the four utilised inputs is sampled for a short duration (τsamp), before 

being sequencially staggered into a four input temporal pattern. In this experiment 

we generate inputs where pulses have a bit value of ‘1’ and pulse absenses (stable 

outputs) have a bit value of ‘0’. Four virtual inputs are therefore combined to produce 

4-bit input patterns. As discussed above, pattern recognition requires the application 

of weight to each input bit. In this system we multiply the bit value of each input by 

a weight, determined by a customisable weighting array. The application of weight 

is completed offline, prior to the generation of the modulation signal and the injection 

of the VCSEL neuron. Here we focus on the recognition of an individual target 

pattern, applying a unique set of weights to the input data. Input 4-bit patterns that 

are successfully detected activate a spiking response at the output of the system with 

non-target patterns remaining silent.  

Sequences of input patterns were used to test the recognition efficiency of different 

target patterns. The input data sequences were created with bit value intensities (‘1’ 

or ‘0’) and sample steps of 83.3 ps (at a rate of 12 GSa/s). Each virtual input was 

assigned 2 samples, the first one corresponds to the ‘true value’ of the input bit and 

the second a return to zero value. Using this process we create 4-bit input patterns 

with a total duration of ~650 ps. The patterns were then grouped according to the 

number of active input bits. This created 3 sets of sequences (data, input patterns) 

with 1 active ‘1’ bit, 2 active ‘1’ bits and 3 active ‘1’ bits. All input data sequences, 

encoded in optical injection without weighting, are shown below in Fig. 5.4.2.  
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Figure 5.4.2. - Time series of 4-bit input data patterns (Pre-weighting) with (a) 1 active ‘1’ 

bit, (b) 2 active ‘1’ bits and (c) 3 active ‘1’ bits. A total of 14 patterns are generated. Active 

‘1’ bits are encoded as drops in optical intensity and ‘0’ bits as stable intensity. Figure 

reproduced from [193]. 

 

The 4-bit input patterns are referred to as patterns A-F within their active bit number 

sets. A total of 14 unique patterns are created using the 4-bit scheme, 4 in set 1, 6 in 

set 2, and 4 in set 3. The testing of 4-bit patterns 1111 and 0000 are excluded due to 

their unique classification. Each pattern within an input sequence or set is separated 

by 10 samples (~830 ps). The separation helps distinguish neighbouring patterns 

while extending the input timing to match better the system’s refractory period to 

provide successful pattern detections.  

The weighting step within our pattern recognition system sees each individual bit 

within the 4-bit patterns multiplied by a weighting value. The same 4 weighting 

values are applied across all patterns in an input sequence. The weighting is used to 

eliminate, or reduce, the contributions of incorrect bits to the spike firing response of 

a target detection. Each value in the weighting array corresponds to a sample point 

in the data sequence and holds a weighting value between -1 and 1. Weighting values 
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W1, W2, W3 and W4 were applied to the first, second, third and fourth bits of each 

input pattern respectively. The product of the input data and weighting array produces 

the weighted data which will be generated with the AWG for injection into the 

VCSEL neuron. Using unique weight combinations allows us to detect target patterns 

individually. The weighting tables for all 4-bit patterns and examples of weighted 

data inputs for some 1, 2 and 3 active ‘1’ bit patterns are shown in Fig. 5.4.3. The 

weighing values were selected through a supervised learning approach. The bit 

weights were varied and tested experimentally to improve the recognition efficiency 

of target patterns or decrease the number of false recognitions. 

 

 

Figure 5.4.3. - Weight tables and weighted 4-bit input data sequences. Bit weights applied to 

detect each 4-bit pattern in (a) 1, (b) 2 and (c) 3 active ‘1’ bit pattern classes. Weighted input 

time series (d-f) are shown for the highlighted (green) patterns of each set. Figure reproduced 

from [193]. 

The recognition of a target 4-bit pattern using our neuromorphic VCSEL-based 

spiking system is demonstrated in Fig 5.4.4. This shows the data inputs, the weighting 

values, the weighted data and the VCSEL neuron’s response for four patterns from 

the 2 active ‘1’ bits data set. The target for recognition is the 4-bit pattern C (1001). 

The time series at the top of Fig. 5.4.4 show four 4-bit patterns, namely A (1100), B 

(1010), C (1001) and D (0011), before weighting. Below the data inputs, the weights 
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that are applied offline to the input data sequences are shown. In this case the weights 

applied are 1, -0.5, -1 and 0.75, respectively. Time series of the weighted data are 

shown in the third row of Fig. 5.4.4. These weighted inputs are then optically injected 

into the VCSEL neuron producing the output time series at the bottom row of Fig. 

5.4.4. In the case of the 4 injected patterns shown in Fig. 5.4.4, only the target pattern 

C (1001) elicits a spike from the VCSEL neuron, which remains quiescent for all 

other non-target patterns. In this specific case, after weighting, only target pattern C 

has the combined contribution of 2 input bits. These two input bits, that occur within 

~650 ps, integrate together towards the threshold of spiking, successfully activating 

a response where other patterns do not, highlighting a positive recognition.  

 

 

Figure 5.4.4. - Pattern recognition task with a VCSEL neuron. Measured time series (top) 

show the pre-weighting optical inputs (Data) for various target and non-target 4-bit patterns. 

The weighting values (Weights) and the resulting post-weighting optical inputs 

(Data*Weights) are plotted in the middle rows. The VCSEL neuron’s optical output (Output) 

is plotted at the bottom showing successful detection of the target pattern. 4 patterns are 

shown with 2 active ‘1’ bits: A (1100), B (1010), C (1001) and D (0110), with pattern C 

(1001) being the target. Figure reproduced from [193]. 
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Figure 5.4.5. - 4-bit pattern representation using 2x2 grids. Figure reproduced from [193]. 

 

 

Figure 5.4.6. - 4-bit pattern recognition confusion matrices of the VCSEL neuron system. 

The measured recognition/detection efficiencies for all 4-bit data patterns of each set (a) 1 

active ‘1’ bit, (b) 2 active ‘1’ bits and (c) 3 active ‘1’ bits. The blue colour depth indicates 

the efficiency measured over 130 consecutive test cycles. Experimental parameters: I = 5 

mA, T = 298K, Orthogonal (XP) mode injection, ∆f = -7.41 GHz, Pinj = 140.5 μW. Figure 

reproduced from [193]. 

 

Using the VCSEL neuron we tested the recognition efficiency of all 14 4-bit patterns. 

For each target pattern we investigated the response of the system to 130 consecutive 

recognition tests, comparing the expected and measured spiking responses. In each 

of the experimental runs optical injection was made at a frequency detuning of ∆f = 

-7.41 GHz from the XP mode of the VCSEL with an injection power of Pinj = 140.5 

μW. To improve the presentation of recognition efficiencies we implement a simple 

graphical representation for each 4-bit pattern as shown in Fig. 5.4.5. 2x2 grids, 

where black (1) and white (0) pixels denote bit value, are read (by row) from left to 

right, to give the complete 4-bit pattern value. The recognition efficiency of each 

pattern is shown in the confusion matrices of Fig. 5.4.6. Three confusion matrices 
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are given, one for each set of input patterns: 1 active (Fig. 5.4.6 (a)), 2 active (Fig. 

5.4.6 (b)) and 3 active ‘1’ bits (Fig. 5.4.6 (c)). 

The confusion matrices represent the detection accuracy of the 4-bit input patterns. 

The horizontal axis represents the target patterns and the vertical axis represents the 

patterns detected by the VCSEL neuron. The recognition efficiency is given within 

the matrix, which represents the ratio of observed-to-expected pattern detections. In 

an ideal case, the confusion matrix would show ‘1.0’ values on the diagonals and 

‘0.0’ elsewhere, meaning the system returned no false negatives or false positives. 

False positives (false detections) appear as non-zero recognition efficiencies for non-

matched target and detected patterns. The sum of each column can be larger than 

unity as spiking detections may be triggered by multiple weighted input patterns in a 

single input sequence. Fig. 5.4.6 (a) shows the recognition efficiencies for patterns 

containing 1 active ‘1’ bit. In this data set, the weights applied to the inputs are trivial 

as shown in Fig. 5.4.3 (a). As each input pattern contains only 1 bit, after weighting, 

only the target pattern has an input. The ‘1’ bits from all non-target patterns are 

eliminated. Therefore, no false detections occur in 130 cycles and the confusion 

matrix shows the ideal results. In the case of 1 bit inputs no input integration is 

required as only one of four virtual inputs is active. The VCSEL neuron is therefore 

demonstrating the threshold and activation of a single input, hence we therefore 

expect the ideal performance demonstrated by the system. The recognition efficiency 

of the 2 active ‘1’ bit set is shown in Fig. 5.4.6 (b). In this data set we see very high 

recognition efficiencies with the best performance being achieved for patterns A 

(1100), D (0110) and F (0011). These patterns can be characterised as having two 

consecutive ‘1’ bits. This means upon injection into the VCSEL neuron these inputs 

occur within the shortest possible integration window, reducing the effects of the 

leaky system and achieving a stronger overall contribution towards the spiking 

activation threshold of the VCSEL neuron. As previously observed (Chapter 5.3), 

this creates a more consistent response from the system, improving recognition 

efficiency. The recognition of patterns B (1010), C (1001) and E (0101) also show 

high consistency but with increasing number of false positives. In these patterns we 

see an increased separation of input bits within the pattern which requires larger 

integration times. This inevitably creates a weaker, leakier, integration which 
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requires a reduced activation threshold when compared to other patterns. The reduced 

activation requirement gives rise to the higher number of false positives with pattern 

C (1001) having the largest possible separation between active ‘1’ bits, giving the 

highest number of false positives. In Fig. 5.4.6 (c) we see the recognition efficiencies 

of the set of inputs with 3 active ‘1’ bit patterns. The recognition efficiencies of 

patterns A (1110) and D (0111) showed the highest values due to their consecutive 

active ‘1’ bits. The patterns of increased bit separation, B (1101) and C (1011), also 

showed high recognition efficiencies but produced higher numbers of false positives. 

These results show that a single VCSEL neuron can successfully implement a high-

speed 4-bit pattern recognition system. We must note that in spite of the very good 

performance and accuracy shown by the system, the results of the pattern recognition 

task could still be further improved via the selection of optimal weight values (that 

might decrease the number of false recognitions) and the reduction of the length of 

the integration window. Here, a minimum bit separation of 2 samples (~160 ps) had 

to be selected because it reached the maximum available bandwidth provided by our 

experimental equipment (AWG). This enabled us to integrate sub-nanosecond pulse 

bursts however, faster modulation speeds would reduce the integration window 

further, improving the input bit rate and the total integration contribution of our 

optical inputs. Similarly, with improved input bit rate our system could investigate 

larger patterns (e.g. 8-bit or higher), expanding the usefulness and applicability of 

the system.  

To advance this pattern recognition system in the future we could implement 

automatic supervised or unsupervised learning schemes. These would remove the 

need to train the system weights manually by incorporating an external feedback 

loop, potentially improving system performance. Unsupervised learning schemes for 

pattern recognition systems have been implemented in other reports [82], [83], 

showing the final weighting solution can provide excellent recognition efficiencies.  

Finally, these results provide a first proof-of-concept demonstration of a successful 

neuromorphic processing system based upon VCSEL neurons, capable of performing 

a complex pattern recognition task. Our report here shows specifically how we 

implement 4-bit pattern recognition with fast spiking optical components. Initially 
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we implement TDM to create 4-bit input patterns from 4 virtual inputs and perform 

the weighting of input bits offline. Applying the optical integrate-and-fire 

functionality of the VCSEL neuron, we perform pattern recognition of each sub-

nanosecond 4-bit pattern, triggering fast ~100 ps spiking responses for positive 

detections. The optical signals that we utilise demonstrate that we can perform the 

recognition of sub-nanosecond pulse bursts at near GHz rates with very high 

recognition efficiencies. The current system, created using commercially-available, 

hardware-friendly and telecom compatible components, utilises a supervised 

learning scheme, granting yet further room for system performance improvement. 

Motivated by these results we believe that multi-VCSEL functionality, with the 

capability to perform multistep classification in parallel, could be achieved with these 

devices, as well as the ability to recognise longer (e.g. 8-bit) patterns given 

improvements to experimental equipment. There is therefore significant potential for 

VCSEL neurons to be implemented in new developments of light-enabled intelligent 

neuromorphic processing systems, given the inherent advantageous attributes of 

VCSELs e.g. compactness, low cost, ease of use, etc. Neuromorphic systems based 

upon VCSEL neurons, therefore have great prospects to be implemented in complex 

architectures for future avenues of ultrafast systems that apply brain-inspired 

functionalities towards pattern recognition processing applications.      

5.5 Image Processing and Feature Detection 

In this Chapter we apply the neuromorphic functionalities of VCSEL neurons 

to image processing, achieving edge-feature detection in digital images with neural-

like spiking responses at very high speeds. We utilise time-division multiplexing 

(TDM) to realise complex image processing with hardware friendly systems using a 

single VCSEL neuron for operation. We will introduce first our approach to spike-

based convolution and edge-feature detection with a threshold-and-fire 

demonstration, moving to an all-optical binary convolution realisation, and finally an 

all-optical integrate-and-fire approach. We will also demonstrate the performance of 

the integrate-and-fire VCSEL neuron when working with a large number of complex 

images from the popular MNIST-handwritten digit database and share theoretical 
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results showcasing spike-based convolution operation with higher dimensional 

kernels for enhanced performance. 

Training computers to interpret and recognise images as humans do, more commonly 

known as computer vision, is a complex task being undertaken using a combination 

of image processing and machine learning techniques [268]. Branching from 

artificial intelligence (AI), computer vision is now seeing a surge in interest as the 

goal to automate traditionally human tasks becomes more prevalent with the rapid 

development of fields such as medical image analysis [269] and autonomous vehicles 

[270]. Image classification and interpretation is one of the characteristic tasks 

frequently performed by ANNs, and within these one of the essential steps for 

computer vision and image processing is the collection of edge-feature information. 

This is usually extracted by applying kernel operators (masks) to the source image in 

a traditional image processing task referred to as convolution [271]. The kernel 

operators multiply the intensity values of the source image pixels, creating a product 

that identifies the successful or unsuccessful detection of key image features such as 

interest points, lines, edges and corners. Using a large number of parallel nodes in a 

convolutional neural network (CNN), edge information can be generated and 

compared such that a recognition can be performed by assembling many smaller 

features [272]. CNN-based systems however, suffer from increased power and 

computational resource requirements, due to the complicated interconnected 

architectures and computationally expensive convolution operations. This problem 

leads to the requirement of dedicated hardware, such as multicore-CPUs or GPUs 

[8], [273], [274], restricting the footprint and application of many electronic CNN 

systems. However, like neuromorphic spiking systems, the investigation of CNNs 

with photonic technologies has seen a rise in recent years [54], [81]–[83], [275], 

[276]. In the move to a light-based approach the computationally intensive 

convolution task can benefit from the speed, energy efficiency, bandwidth and 

parallelism offered by photonic technologies. A number of complete approaches to 

photonic CNNs have been proposed with devices such as Mach-Zehnder 

interferometers [54], [276], ring resonators and photodiodes [81], [275], and phase 

change materials (PCMs) [82], [83] providing the core neuronal functionalities 

required for image convolution. Recent experimental and numerical reports suggest 
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that these state-of-the-art photonic systems can help improve convolution operation 

speed by up to 5 orders of magnitude, making them highly desirable for novel 

photonic processing applications [81]. We have focused our attention on this 

challenging research aspect. Specifically, we provide here experimental 

demonstrators of photonic spike-based convolution system based upon a single 

VCSEL neuron for image processing and edge-feature detection tasks.  

 

5.5.1 Threshold-and-Fire Image Feature Detection  

In a first experimental demonstration, we implement a photonic spike-based 

convolution system based upon a single VCSEL neuron, which elicits spiking 

responses upon the injection of pre-convolved optical inputs. In this configuration 

the neuromorphic system performs a threshold-and-fire functionality, outputting 

edge-feature information in the form of ultrafast sub-nanosecond optical spikes. 

Unlike conventional photonic implementations of CNNs, we utilise time-division 

multiplexing (TDM) to achieve image edge detection using a single VCSEL neuron, 

helping reduce dramatically hardware complexity. Experimental results for the edge 

detection of multiple digital images are reported here alongside the predicted 

theoretical (SFM-modelled) response to the pre-processed image input [194]. The 

pre-processing stage that implements the image convolution and input generation for 

this initial threshold-and-fire demonstration is described in Fig. 5.5.1.  

 

Figure 5.5.1. - Pre-processing stage for threshold-and-fire edge detection by a VCSEL 

neuron. Figure reproduced from [194]. 
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Firstly, in the preprocessing stage matrices of positive (black) and negative (white) 

integer pixels are formed from digital greyscale or colour images. Three source 

images were selected, each with different directional features as shown in Fig. 5.5.2. 

These were 28x28 pixel images of a cross (Fig. 5.5.2 (a)) and a Saltire (Scotland’s 

national flag, Fig. 5.5.2 (b)) which have vertical, horizontal and diagonal features 

present. The third larger 50x50 pixel image of the University of Strathclyde’s 

Institute of Photonics (IOP) logo (Fig. 5.5.2 (c)) contains additional curved features. 

To extract the edge-feature information from these images we perform spiking 

convolution with a 2x2 kernel operator. The kernel operator applies a set of weights 

to a 2x2 neighbourhood of pixels within the image. After weighting, the 2x2 set of 

weighted values are summated into a single value called the destination pixel. By 

repeating the kernel operation, scanning across every pixel in each row of the source 

image, the destination pixels can be reconstructed into the final convolved image. 

The selection of the kernel is key in this operation as different kerenel operators target 

different features for recognition. The comparison of pixels within the kernel 

neighbourhood to the kernel itself is what creates positive recognitions in this 

process. The value of the destination pixel for the pixel neighbourhood used in this 

work is described in the following equation (Eq. 5.5.1):  

                                                    , , ,

0 0
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p q p m q n m n

m n

g f K+ +

= =

=                        (Eq. 5.5.1)                              

Here the destination pixel value is given by gp,q, when anchor-pixel fp,q is operated on 

by customisable kernel K. A pixel neighbourhood (local pattern descriptor) of (M+1) 

x (N+1), with M = N = 1 is used to match the 2x2 operator. Applying the 2x2 kernel 

in this way means pixels on either the far right-hand side or the bottom of the image 

cannot be operated on as they contain half the required neighbouring pixels. It is 

possible to compensate for the missing pixels by padding the image with additional 

redundant pixels, however this is not required and may alter the detection of features 

near the edge of the image. When performed without padding (as done here), the 

dimensions of the resulting convolved image are reduced by 1, due to the dropping 

of a single row and column of pixels. 
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As is shown in Fig. 5.5.1, once the new convolved image is calculated, we create an 

image input suitable for injection into our threshold-and-fire VCSEL neuron. This 

image input will be used to identify target edge-features through the activation of 

sub-nanosecond optical spikes at the output of the VCSEL neuron. Similar to Chapter 

5.4, TDM is used to sequentially inject each destination pixel from the convolved 

image into the VCSEL neuron. The input signal is generated with each pixel allocated 

the same configurable pixel duration. In this demonstration a pixel duration of 1.5 ns 

was selected, slightly higher than the refractory period of the VCSEL neuron (see 

Chapter 3.3). A return-to-zero (RZ) coding scheme is employed to generate each 

input, with the initial 0.25 ns of each sequence holding the destination pixel value 

and the remainder set to 0. The RZ encoding scheme and the 1.5 ns pixel duration 

are selected to ensure only a single spike output can be activated in the VCSEL 

neuron by a target detection, and that neighbouring pixels each have the capability to 

trigger their own specific spiking response. In the example in Fig. 5.5.1, pixel 2 

triggers a positive recognition with a total destination pixel value of 4. Hence, in the 

image input it holds a value of 4 for a short time at the beginning of the 1.5 ns segment 

before returning to zero, where the next TDM pixel is then encoded. This input 

encoding is repeated for all the pixels in the convolved image, and the resulting signal 

was generated using an AWG.  

Overall, the pre-processing stage utilised in this demonstration is responsible for the 

application of the kernel to the image and the summation of the resultant pixels into 

the destination pixel value. This process, often referred to as the multiply-and-

accumulate (MAC) process is therefore performed offline, outside the photonic 

VCSEL neuron system. This MAC process, inspired by the synaptic weighting and 

integration of inputs in biological neural networks, is responsible for the convolution 

operation in CNN demonstrations. In this demonstration our photonic VCSEL 

neuron is acting as a threshold-and-fire neuron, responsible for the thresholding and 

conversion of the convolved image into high-speed temporal spiking regimes with 

the detected edge-feature information of the image.  
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Figure 5.5.2. - Black and white source images of a cross (a), a saltire (Scotland’s national 

flag) (b) and the logo of Strathclyde’s Institute of Photonics (c). Vertical (Kernels 1-2), 

horizontal (Kernels 3-4) and diagonal (Kernels 5-8) operators are used to detect specific 

edge-features in the images. (a) and (b) have a resolution of 28x28 pixels whereas (c) has a 

larger resolution of 50x50 pixels. Figure reproduced from [194]. 

 

The experimental setup used to realise the threshold-and-fire edge detection is shown 

in Fig. 5.5.3. Experimentally the system is identical to the modulated optical injection 

setup used in the previous realisation of multi-pulse integration and earlier 

demonstrations of controlled spike activation (see Chapter 5.3). A single tuneable 

laser is used as a source of optical injection (encoding the image information via 

TDM) for our VCSEL neuron. The optical injection is passed through an optical 

isolator, a variable optical attenuator and a polarisation controller before entering a 

10 GHz MZ amplitude modulator. The optical intensity is encoded with the TDM 

image input created in the pre-processing stage, with positive input values creating 

intensity drops in the optical injection. The optical injection is passed through a 

second polarisation controller before entering the VCSEL neuron via an optical 

circulator. Amplified fast photodetectors were used to collect the output of the 

VCSEL neuron before the signal was analysed using a high-speed real-time 
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oscilloscope. Throughout this experimental demonstration of threshold-and-fire edge 

detection, the (fibre-pigtailed) VCSEL neuron was driven at a bias current of 6.5 mA 

and temperature stabilised at 298 K. Under these operating conditions the VCSEL 

neuron produced single mode emission with a dominant parallel (YP) polarisation. 

In this demonstration optical injection was made at -4.58 GHz frequency detuning 

from the subsidiary, attenuated, orthogonal (XP) polarisation mode, inducing 

polarisation switching upon injection locking to the external signal. An injection 

power of 152.7 µW was used. Here, when inputs of sufficient intensity enter the 

VCSEL neuron, we expect the injection locking to breakdown triggering a fast 

neuromorphic spike. By configuring the threshold for all input pulse amplitudes 

equal to 4, as in pixel 2 of the example given in Fig. 5.5.1, the system should activate 

spiking responses correctly revealing target edge-features.  

 

 

Figure 5.5.3. - Experimental setup used for threshold-and-fire image edge detection with a 

VCSEL neuron. TDM inputs generated in the pre-processing stage are encoded into optical 

injection through the use of an optical modulator. Only pre-processed inputs relating to target 

featuers have sufficient intensity to activate spiking responses. TL – tuneable master laser, 

ISO – optical isolator, VOA – variable optical attenuator, PC- polarisation controller, MZ – 

Mach Zehnder intensity modulator, PM – power meter, OSC – oscilloscope. Figure 

reproduced from [194]. 
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Alongside the experimental demonstration of the threshold-and-fire image edge-

feature detection with a VCSEL neuron, we also numerically modelled (using the 

SFM described in Chapter 2.3) the response of the system to the TDM image input 

generated in the pre-processing stage. The modified SFM includes additional terms 

for the injection of an optical signal (encoding the image information) and was solved 

using the fourth order Runge-Kutta method. The SFM simulations allow us to 

compare the experimentally achieved spiking responses to those predicted by theory.  

In the first demonstration of threshold-and-fire image edge detection, four kernel 

operators were scanned across the ‘cross’ image shown in Fig. 5.5.2. Kernels 1-4 

(also shown in Fig. 5.5.2) were applied to the source image in sequence with the 

resulting image input being injected into the VCSEL neuron. In this demonstration 

Kernels 1-2 are responsible for detecting vertical lines, with Kernel 1 detecting 

transitions from white-to-black pixels and Kernel 2 detecting black-to-white 

transitions. Kernels 3-4 were used to target horizontal features, with Kernel 3 

detecting edges with white-to-black transitions and Kernel 4 detecting black-to-white 

transitions. Once injected into the VCSEL neuron its output was captured, 

demultiplexed and reconstructed to form (M-1) x (N-1) pixel maps. Experimental 

results for Kernels 1-4 are plotted in Fig. 5.5.4. The image reconstruction maps 

shown in Figs. 5.5.4 (a)-(b) & (e)-(f) depict the time series captured at the output of 

the VCSEL neuron as intesity colourmaps. In these maps yellow pixels reveal the 

firing of a spiking event by the VCSEL neuron; hence marking the presence of a 

target edge-feature in the source image. In the case of Figs. 5.5.4 (a) & (b) the 

colourmaps reveal the vertical edges of the ‘cross’ image indicating the vertical 

features were successfully identified by Kernels 1 and 2. In Fig. 5.5.4 (c)-(d) the pre-

processed image input and the corresponding VCSEL neuron’s response for pixel 

row 10 in (a) are plotted. Figure 5.5.4 (c) shows the image input contains a positive 

input of 4 and a negative input of 4, corresponding to each vertical edge of the cross 

pattern for that specific row of the image. Upon injection into the VCSEL neuron, 

the system activates a single spiking response for the positive pulse only. This 

indicates that the system is operating correctly and that only positive inputs can 

activate the spiking machanism in our neuromorphic system.  
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Figure 5.5.4. - Threhsold-and-fire responses from the VCSEL neuron when Kernels 1 (a), 2 

(b), 3 (e) and 4 (f) are applied to the ‘cross’ source image. The pre-processed image input 

and recorded time series corresponding to the selected rows in (a) and (e), are plotted at the 

bottom of the figure. Input (c) and output (d) correspond to row 10 of (a). Input (g) and output 

(h) correspond to row 12 of (e). The pixel duration is set to 1.5 ns. Experimental parameters: 

I = 6.5 mA, T = 298 K, Orthogonal (XP) mode injection, Pinj = 152.7 μW, ∆f = -4.58 GHz. 

Figure reproduced from [194]. 

 

Horizontal edge detection is also performed in Figs. 5.5.4 (e) & (f) using Kernel 

operators 3-4. Again in the reconstructed image maps, we see the successful 

activation of fast spiking events along both the rising and falling horizontal features. 

Unlike the vertical activations, the colourmaps do not form neat lines along the edges 

but instead appear as dotted/broken lines. This is a simple visual effect caused by the 

the short duration of the spikes (~100 ps) compared to the length of the pixel (1.5 ns), 

meaning the yellow spike does not fill the entire pixel. As before, Figs. 5.5.4 (g) & 

(h) plot the image input injected into the VCSEL neuron and the response from the 
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system for row 12 of Fig. 5.5.4 (e). In this example, as Kernel 3 is scanned 

horizontally across the ‘cross’ image, an input of multiple positive pulses is 

generated. Upon its injection into the VCSEL we find the system successfully 

activates for all the positive inputs of value 4, identifying the target features. The 

system correctly remains silent during the injection of half-amplitude inputs of value 

2 (corner features). This result demonstrates that the system is effectively 

thresholding the different input values, allowing only inputs of value 4 to cross the 

activation threshold of the device. These results show that our experimental system 

is capable of performing a threshold-and-fire functionality when horizontal and 

vertical kernels (Kernels 1-4) are applied to a black and white digital image.  

 

 

 Figure 5.5.5. - Simulated response of the VCSEL neuron when Kernels 1 (a), 2 (b), 3 (e) 

and 4 (f) are applied to the ‘cross’ image using the SFM. Similar to Fig. 5.5.4, inputs and 

outputs are plotted for row 10 of (a) and row 12 of (e). Simulation parameters: γp =128 ns-1, 

γa =2 ns-1, γN =0.5 ns-1, γs =110 ns-1, α =2, k =185 ns-1, kinj =15 ns-1 and βsp =10-5. Figure 

reproduced from [194]. 
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Using SFM-based simulations, the theoretical response of the VCSEL neuron to the 

injection of the same ‘cross’ source image was calculated. The theoretical results, 

plotted in Fig. 5.5.5, calculated using the same Kernels 1-4 as in the experiments, 

have white and blue colourmaps to help destinguish simulations from experimental 

measurements. The reconstructed numerical colourmaps (Figs. 5.5.4 (a)-(b) & (e)-

(f)) show excellent agreement with the experimental findings, with the same number 

of spiking responses being activated when each individual kernel is applied. The 

simulated results present a similar spiking threshold to the experimental 

measurements avoiding the activation of corner pixels.  

Additionally, the spiking frequency achieved by the numerical model showed good 

consistency with the experiment, enabling the edge-detection system to operate at 1.5 

ns/pixel, allowing ~910,000 28x28 pixel images to be processed every second. 

Overall, a comparison of activated pixels in the simulated results to those measured 

experimentally gives a total pixel error of 0, with no false or absent detections 

present. The theoretical and experimental results therefore show a high level of 

consistency. These results demonstrate the VCSEL neuron can be used as a 

threshold-and-fire device, in tandem with convolution, for the generation of vertical 

and horizontal edge information in a fast spiking respresentation.  

The application of individual kernels for complete image edge detection necessitates 

the running of multiple experimental inputs. However, it is possible to reduce the 

number of experimental runs required to reveal all edge information by performing 

gradient edge detection. The gradient of the source image, which reveals information 

about the rate of change of pixel intensity, can be used to detect features regardless 

of their directionality. By specifically calculating the magnitude of the gradient, we 

can create an input for our VCSEL neuron that identifies all pixel features that 

sufficiently cross the activation threshold of the device. The gradient magnitude can 

be calculated using Eq. 5.5.2: 

                                                      ( ) 2 2, x yG x y G G= +                                      (Eq. 5.5.2) 
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Where |𝐺(𝑥, 𝑦)| is the gradient magnitude and 𝐺𝑥 and 𝐺𝑦 are the resulting 

convolutions of the source image with a horizontal and vertical kernel. Here the 

horizontal and vertical kernels are required to be 90º rotations of one another. The 

gradient magnitude of an image can therefore be calculated by combining two of the 

kernels used in the previous ‘cross’ image demonstration. By combining the results 

of Kernel 1 and 3 according to Eq. 5.5.2, we create the gradient magnitude to replace 

the destination pixel value in our pre-processed image inputs. This allows us to 

perform edge detection with gradient magnitudes in combination with our 

neuromorphic threshold-and-fire VCSEL system. In Fig. 5.5.6 the results for the 

gradient magnitude edge detection of the ‘saltire’ and ‘IOP’ images are plotted. 

The experimental gradient magnitude edge detection of the ‘saltire’ (Fig. 5.5.2 (b)) 

source image is plotted in Fig. 5.5.6 (a). The results show that the VCSEL neuron 

triggered fast spiking responses for pixels containing diagonal features. The system 

is therefore capable of activating spiking outputs to detect different directionalities 

(in addition to vertical and horizontal features) as well as both black-to-white and 

white-to-black pixel transisitons without the requirement for multiple kernels, as 

shown in the experimental time series (Fig. 5.5.6 (c)). This indicates that the gradient 

magnitiude works correctly for the collection of all-edge information as no diagonal 

kernels were utilised, only Kernels 1 and 3 (vertical and horizontal operators) were 

combined according to Eq. 5.5.2. The theoretical response for the edge detection of 

the ‘saltire’ source image with gradient magnitude (Fig. 5.5.6 (b)) shows excellent 

agreement with the result obtained experimentally. The modelling detected all of the 

same diagonal features in the source image with experimental results proving 99.86% 

accurate to the theoretical findings. To further test the image gradient magnitude 

technique in tandem with our threshold-and-fire VCSEL neuron, the larger 50x50 

pixel ‘IOP’ logo source image (Fig. 5.5.2 (c)) was run experimentally and simulated 

theoretically. Despite using this larger image containing curved and straight line 

features, the VCSEL neuron demonstrated (Fig. 5.5.6 (e) & (g)) its ability to identify 

every edge-feature in the image, regardless of directionality or shape. The larger 

50x50 image only required the extension of the image input and a longer time series 

measurement to process the image, with pixel duration (1.5 ns/pixel) remaining 

consistent. Again, the numerically predicted VCSEL response (Fig. 5.5.6 (f)) showed 
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excellent agreement with the experimental results, yielding an accuracy of 99.67% 

when compared to the modelled result. The gradient magnitude edge detection 

technique can therefore be used in tandem with our threshold-and-fire VCSEL 

neuron to reveal all edge information in a source image, irrespective of its shape or 

directionality, within a single experimental run. 

Overall these results show that our VCSEL neuron is capable of performing a 

neuronal threshold-and-fire functionality which we capitalise on to yield image edge-

feature detection operation. Using TDM inputs and an offline pre-processing stage 

we are able to detect all edge-features in source images with kernel operators, 

activating sub-nanosecond optical spikes for positive target edge-feature 

recognitions. Our single VCSEL neuron system also demonstrated its capability to 

detect all image edge information using inputs pre-processed with image gradient 

magnitude. This allowed our system to threshold pulsed inputs and fire fast optical 

spikes for all edges in a single experimental run, removing the requirement for 

multiple kernels to achieve a complete detection. In both cases, pre-processing with 

individual kernels or pre-processing with gradient magnitude, experimental results 

showed excellent agreement with our numerical findings. The theoretical results 

confirmed both the successful edge detection capability and fast spiking rates 

achievable from our devices. In these results our system demonstrated operation at 

1.5 ns/pixel, allowing the photonic edge detection of a 50x50 pixel images in 3.75 

µs. We believe that this speed could be increased to achieved operation at 1 ns/pixel, 

in-line with the refractory period of these devices, however, even faster operation 

could be achieved by VCSELs with further increased spiking rates. Additonally, in 

our work a single VCSEL neuron is employed to perform the image processing task, 

helping reduce hardware complexity. It would however be possible to have multiple 

devices perform their neuronal functionalities in parallel, potentially peforming edge 

detection with different kernel operators, or even processing different sections or 

pixels of an image simultaneously. Such a system architecture would resemble more 

those of traditional CNNs, helping further improve processing speed.  
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Figure 5.5.6. - Gradient magnitude edge detection results for ‘saltire’ (a-d) and ‘IOP’ logo 

(e-h) source images. Experimental (blue) and theoretical (white) responses are plotted in 

reconstructed image temporal maps (a,e) and (b,f), using the spiking responses at the VCSEL 

neuron’s output. The experimental and theoretical time series of row 10 in (a) and (b) are 

plotted in (c) and (d). The experimental and theoretical time series of row 25 in (e) and (f) 

are plotted in (g) and (h). Experimental and theoretical parameters match those used in Figs. 

5.5.4 and 5.5.5. Figure reproduced from [194]. 

 

The system in its current state does not perform in-system MAC operations (required 

for in-system convolution) and is the implementation of a single layer, capable of 

edge detection. We will explore and demonstrate the implementation of our VCSEL 

neuron system for traditional CNN tasks, such as image classification, in later 

chapters of this work. Finally, in this demonstration we use a 2x2 kernel operator, 

however, in this threshold-and-fire system the size of the kernel is flexible. Larger 

kernel sizes could be used in the pre-processing stage without issue as only the 

destination pixel value is encoded in the image input. This means the VCSEL sees 

no significant change of input when the size of the kernel is altered. These results 

therefore show that traditional image convolution tasks can be implemented 

alongside a threshold-and-fire VCSEL neuron to achieve edge-feature detection in a 
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fast optical spiking representation. This system is therefore a promising first step 

towards implementing VCSEL neurons in future photonic neuromorphic image 

processing systems for novel computer vision applications. 

 

5.5.2 Binary Convolution for Image Gradient Magnitude 

In our second demonstrator of a VCSEL neuron system for neuromorphic 

image processing, we apply what is known as binary convolution to reveal edge-

feature information through image gradient magnitude. As mentioned previously, the 

traditional implementation of CNNs in electronic-based systems often requires the 

use of dedicated hardware such as mulitcore processors and graphical processing 

units [8], [273], [274]. This requirement is caused by the large number of convolution 

operations performed by CNNs, often imposing a vast computational expense on the 

system. This requirement might make CNNs unsuitable for implemetation into 

smaller platforms where power and speed may be limited. This is one of the reasons 

to investigate photonics for future CNN technology however, there are yet further 

changes we can make to remedy the computational expense of these systems. By 

altering the weights applied to each of the inputs in the CNN such that it holds a 

binary value, we can optimise and approximate traditional CNN operation. This 

process, that creates a binary CNN, has shown to provide a reduction in the memory 

requirements and a boost to operation speed (up x58 performance) when compared 

to traditional CNN operation [277]. There have been a number of optimised binary 

CNNs proposed for training processes and image classification tasks in literature 

[277]–[279]. Here, we propose and demonstrate an all-optical binary convolution 

system based on a spiking photonic VCSEL neuron. We also utilise a single VCSEL 

and TDM to realise an extremely hardware-friendly image processing system. The 

experimental setup used to implement the all-optical binary convolution is shown in 

Fig. 5.5.7. The all-optical binary convolution results shown here have been adapted 

from our recent publication [201]. 
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Figure 5.5.7. - Experimental setup used for all-optical binary convolution with a spiking 

VCSEL neuron. The system implements in series modulators (MZ1 & MZ2) to perform the 

kernel operation on the selected source image. The number of resulting spiking dynamics 

reveals the convolution outcome. TL – tuneable master laser, ISO – optical isolator, VOA – 

variable optical attenuator, PC- polarisation controller, MZ – Mach Zehnder intensity 

modulator, PM – power meter, OSC – oscilloscope. 

 

The experimental all-optical binary convolution system implemented with a VCSEL 

neuron is fed information through two inputs. The two inputs pass respectively the 

information regarding the source image and the kernel operator to two Mach Zehnder 

intensity modulators (MZ1 & MZ2). The kernel operators hold weighting values of 

0 and 1 only for this binary convolution system. The two MZs are connected in series 

within the optical injection setup, as shown in Fig. 5.5.7. The inputs representing the 

source image and kernel are generated using a 12 GSa/s AWG, amplified using 

electrical amplifiers, and fed to each MZ where they are encoded into the optical 

injection. Here, the MZ modulators are used in series within a single optical injection 

line to create a multi-level optical signal. This multi-level injection is required for the 

in-system convolution, responsible for the image edge detection process described 

graphically in Fig. 5.5.8. The use of a single optical injection line is also beneficial 

to the system as it enables simple optical injection locking (required for spike 

activation) and reduced hardware requirements, lowering setup complexity and cost. 

As in previous experimental arrangements, light from a tuneable laser is optically 

injected into our VCSEL neuron via a fibre-coupled optical isolator, attenuator, 

polarisation controllers and circulator. In this arrangement an additional polarisation 

controller was added to the setup to control the polarisation of the light entering the 
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second MZ (MZ2), maximising performance. The VCSEL used in this work was 

driven with a bias current of I = 6.5 mA at a stabilised temperature of T = 293 K. The 

device displayed parallel polarisation (YP) mode dominance when in solitary 

operation however, optical injection was made into the orthogonal (XP) mode of the 

device with a detuning of Δf = -5.64 GHz and power of Pinj = 127 µW.  

 

Figure 5.5.8. - An example of all-optical binary convolution with a spiking VCSEL neuron. 

A 3x3 image sub matrix (a) and a 3x3 kernel operator (b), are encoded in a single injection 

line creating a 3-level injection signal (c). Upon injection into the VCSEL neuron the spiking 

binary convolution (d) is produced, with the number of spikes totalling the final result. The 

temporal map for 100 consecutive responses (e) indicates the result reproduceability. Figure 

reproduced from [201]. 

 

Two-dimensional (2D) binary convolution calculations are now performed by the 

VCSEL neuron to reveal the edge-feature information of complex digital images. To 

do so an M x N kernel is element-wise multiplied with an M x N pixel neighbourhood 

from the source image, subsequently producing a weighted set of values. In our 

experiments, pixels and kernels are temporally encoded using rectangular pulses, 

with pulses of value ‘1’ being encoded as intensity drops in the optical injection, and 

pulses of value ‘0’ producing no modulation. An experimental illustration showing 

how the encoding of image and kernel data inputs is performed in this arrangement, 

is shown in Figs. 5.5.8 (a) & (b). The rectangular pulses used to encode image data 

and kernel inputs were set to a duration of 1.5 ns to align with the refractory period 

of the spiking dynamics of the VCSEL neuron. In the example of Fig. 5.5.8, 9 pulses 

are present in the time series to reproduce a 3 x 3 image sub matrix and kernel 
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operator inputs. In order to achieve the in-system binary convolution, both the image 

modulation and kernel modulation are required to overlap. As both signals were 

generated synchronously, we had to delay the generation of the kernel signal such 

that the image encoded signal had sufficient time to reach MZ2. The delay was 

introduced via the AWG and was equal to the time required for light to travel from 

MZ1 to MZ2. The resulting combined signal is shown in Fig. 5.5.8 (c). This three-

level signal (low, medium and high) was injected into our VCSEL neuron. The 

experimental conditions are set for the system to remain injection-locked for the 

medium and high input intensity levels and to trigger fast optical spike outputs for 

the lowest intensity level. The VCSEL neuron would then fire a single fast spiking 

response for each pulse in the low level state as shown in Fig. 5.5.8 (d). Importantly, 

the number of fast spiking responses for every M x N set of input values, reveals 

directly the result of the all-optical binary convolution operation. In the example in 

Fig. 5.5.8, the result of the binary convolution is therefore 4. The VCSEL response 

to 100 consecutive three-level inputs is shown in the temporal map of Fig. 5.5.8 (e). 

The appearance of four straight lines indicates that the VCSEL can consistently 

activate the same spiking pattern, making the optical binary convolution results 

obtained with the VCSEL neuron reproducible. By sequentially injecting at different 

time instants all the pixels in a source image (using TDM), we can recreate a 

complete (binary) convolved image hereby revealing its target edge-feature 

information. This technique allows us to perform the binary convolution operation 

directly in the optical domain without pre-processing stages. Additionally, in this 

system, a spike does not directly indicate the detection of a target feature, instead, 

the number of spikes hold the result of the convolution operation. Hence, directly 

counting the number of spikes completes the MAC convolution operation. In this 

work we achieve this during software analysis of the time series collected at the 

output of the VCSEL neuron (post-experiment). It might in the future be possible to 

achieve this spike counting experimentally using spike/photon counting hardware.  

In Fig. 5.5.8 a single kernel operator is applied. For the detection of all edge-features 

in a source image we can again calculate the gradient magnitude G(x) of the image. 

Like the demonstration given in Fig. 5.5.6, the extraction of gradient magnitude can 

be achieved by combining the results of multiple binary kernel operations.  In our 
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all-optical binary convolution system the following equations describes this process 

in more detail [280]: 

 

                                                                           (Eq. 5.5.3) 

                                                          (Eq. 5.5.4) 

                                                          (Eq. 5.5.5) 

                                                                     (Eq. 5.5.6) 

 

Here 𝐺𝑋(𝑥) and 𝐺𝑌(𝑥) are made up of a total of four binary convolutions, 𝐵(𝑥)⊗

𝐵𝑋,𝑌
± , according to Fig. 5.5.9. These four binary convolutions can be combined 

according to Eq. 5.5.3 to reveal the gradient magnitude information G(x) of the 

image. 𝐵(𝑥) represents the 5x5 pixel neighbourhood (see Fig. 5.5.9 (b)) of pixel x in 

the ‘square’ source image (Fig. 5.5.9 (a)). Due to binary weighting, a kernel operation 

can be thought of as a sampling of 𝐵(𝑥) with a local pattern descriptor. Within this 

local pattern descriptor (Fig. 5.5.9 (c)) 4 smaller segments, 𝐵𝑋
+, 𝐵𝑌
+, 𝐵𝑋
−, 𝐵𝑌
−, 

correspond to the 4 kernel operations required for gradient magnitude calculation. 

Each individual kernel operator therefore only requires a small 2x5 range of the 

pixels sampled from the 5x5 pixel neighbourhood. The local pattern descriptor is set 

using ix, ip (the intensity of pixel x and the intensity of its pth neighbour respectively) 

and a comparison function 𝑠(𝑖𝑝, 𝑖𝑥). 

                                                                 (Eq. 5.5.7) 

The comparison function uses the pixel intensity threshold Tx = 0.25ix + 20 to convert 

the image intensity values into N binary values (N = 5 x 5 -1). Of the N pixels within 
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range of the pattern descriptor, only 16 pixels in total require sampling as 8 pixels 

are given descriptor values of 0. This reduces the number of pixels that require 

sampling, improving speed and efficiency. The 24x24 pixel source image used in this 

experimental demonstration is that of a black square on a white background (Fig. 

5.5.9 (a)). The intensities of the white and black pixels in the greyscale ‘square’ 

image are 255 and 0, respectively.  

 

Figure 5.5.9. - The ‘square’ source image and the local binary pattern descriptor applied to 

the image. The ‘square’ source image (a) is 24x24 pixel white background with a 10x10 pixel 

black square. The local pattern descriptor (c) indicates the weights and hence pixels sampled. 

The highlighted sections are used to calculate each kernel operator, 𝐵𝑋
+, 𝐵𝑌
+, 𝐵𝑋
−, 𝐵𝑌
−. N pixels 

(grey) fall within the range of the local pattern descriptor (b), when centred around pixel x. 

Figure reproduced from [201]. 

 

Selecting the red-highlighted black pixel in the ‘square’ source image, we get an 

intensity of ix = 0. Serialising neighbouring pixels in columns, for the 1st neighbour 

we get an intensity of ip =i1 = 255, hence 𝑠(𝑖1, 𝑖𝑥) = 1. However, for the 3rd neighbour 

we get an intensity of ip =i3 = 0, hence 𝑠(𝑖3, 𝑖𝑥) = 0. If we sample all N pixels in the 

range of the local pattern descriptor for red-highlighted pixel x we get: 
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In the case of B(x), white pixels have a value of 1 and black pixels have a value of 0. 

The kernel operators adopted in this work are highlighted in Fig. 5.5.9 (c). B(x) here 

corresponds directly to a thresholded pixel neighbourhood of the image. The kernel 

operators are then applied to B(x) with any pixels falling outside the kernel given a 

value of 0. The kernel operator 𝐵𝑋
+, when operating on N sampled pixels is also 

shown.  

 

Serialising both the kernel and the sampled image in columns we can obtain N value 

strings for B(x) = (1,1,0,0,0,1,1,0,0,0…) and 𝐵𝑋
+ = (1,0,1,0,1,0,1,1,1,0…). However, 

many of the N values within these strings are redundant, as their value will always 

be zero. For this reason, we shorten each string and select the 10 values in which the 

kernel operator was applied. The shortened strings were then used to generate pulsed 

inputs similar to Figs. 5.5.8 (a) & (b). Each pulse had a 1.5 ns duration, creating a 15 

ns long input for every time-division multiplexed pixel in the edge detection task. 

The calculation of the gradient magnitude G(x) requires four binary convolutions 

therefore four sets of image submatrices and kernel operators were created to each 

be injected into the all-optical system. The dimensions of the final image were 

reduced following the binary convolution. This is the result of edge and corner pixels 

not having sufficient neighbours to apply all the kernels effectively [281].  

It should be noted here that if, as mentioned briefly, only 16 pixels are sampled from 

the original image (as opposed to sampling N) then each kernel, 𝐵𝑋
+, 𝐵𝑌
+, 𝐵𝑋
−, 𝐵𝑌
−, will 

have only 6 values to operate on. This would in turn reduce the length of each string 

to 6, making it possible to perform the same convolution in 9 ns as opposed to 15 ns. 

For demonstrational purposes, in the following we show experimental results that use 

10-value strings and inputs. The experimental binary convolution results for the red-

highlighted pixel are plotted in Fig. 5.5.10. For the example case of the 𝐵𝑋
+ kernel 

operator we find the result of the binary convolution is 2, with both the first and 

seventh inputs generating a sub-nanosecond spiking response (Fig. 5.5.10 (a)). This 
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result is as expected and is consistent with 𝐵(𝑥)⊗ 𝐵𝑋
+. The results for the remaining 

kernel operators (𝐵𝑌
+, 𝐵𝑋
−, 𝐵𝑌
−) produce binary convolution results of 6, 2 and 0 

respectively. Using the experimental results for the red highlighted pixel we find that 

G(x), 𝐺𝑋(𝑥) and 𝐺𝑌(𝑥) calculate as 6, 0 and 6 respectively, using Eqs. 5.5.3-5.5.5.  

 

Figure 5.5.10. - Experimental binary convolution results for the red-highlighted pixel in the 

‘square’ image for each kernel operator (𝐵𝑋
+, 𝐵𝑌
+, 𝐵𝑋
−, 𝐵𝑌
−) and the complete gradient map 

reconstructions. Experimental parameters: I = 6.5 mA, T = 293 K, Orthogonal (XP) mode 

injection, Pinj = 127 μW, ∆f = -5.64 GHz. Figure reproduced from [201]. 

 

Experimentally repeating the process for all the pixels in the ‘square’ image, by 

means of TDM, we measure and calculate the gradient magnitude of each pixel and 

plot the final results in gradient maps (see Fig. 5.5.10 (b)). These reconstruct the 

source image, using the gradient magnitude to plot and reveal changes in pixel 

intensity and highlight edge information. We can see in the G(x) plot (Fig. 5.5.10 (b)) 

the ‘square’ appears hollow, indicating the four edges of the square were successfully 

detected. The resolution of the edge information in the gradient maps can be further 

enhanced by filtering G(x) > 3. This helps by thinning white lines to better reveal the 

locations of true edges where large pixel intensity changes occur. Additionally, the 

gradient maps of 𝐺𝑋(𝑥) and 𝐺𝑌(𝑥), calculated from the experimentally measured 
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response of the VCSEL neuron are plotted in Fig. 5.5.10 (b). These gradient maps 

reveal that the horizontal and vertical features of the ‘square’ source image can also 

be individually detected, meaning specific kernel operators can still be used to search 

for target edge-features. Running the four binary convolutions in our all-optical 

experimental setup has therefore demonstrated it can successfully identify edge 

information in a digital image via gradient magnitude calculations.  

 

Figure 5.5.11. - The ‘Horse’ source image and resulting experimentally measured gradient 

maps. The original ‘horse’ image (a) was sampled to create a smaller 100x105 pixel ‘Horse 

head’ image (b). The experimentally obtained gradient maps plot the final gradient 

magnitude G(x) (c) as well as the vertical 𝐺𝑋(𝑥) (d) and horizontal 𝐺𝑌(𝑥) (e) components. 

Experimental parameters were identical to those used previously in Fig. 5.5.10. Figure 

reproduced from [201]. 

 

To further test the capability of our experimental system we selected a more complex 

source image (Fig. 5.5.11 (a)) from the Berkeley Segmentation Dataset [56]. A 

100x105 pixel portion of the ‘horse’ image was selected (Fig. 5.5.11 (b)) for binary 
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convolution with our VCSEL-based all-optical photonic spiking system. This smaller 

portion was selected to help keep the experimental demonstration within the useable 

memory of the oscilloscope. The ‘horse head’ image was converted from RGB to 

greyscale before the same experimental procedure, used previously in the ‘square’ 

image experiment, was applied. The four sets of image and kernel operators were 

encoded into the optical injection and the temporal response of the VCSEL neuron 

was recorded. The number of fast spikes from the VCSEL neuron was counted for 

each pixel and the resultant gradient maps were plotted (Fig. 5.5.11 (c)-(e)). The 

gradient maps reveal that even in the larger, more complex image, the optical binary 

convolution system still successfully reveals the outline and shape of the horse head. 

The system also reveals it can detect some smaller detail in the image including; the 

stripe along the nose of the horse, parts of the mane and the cheek bone. The gradient 

map does however reveal the detection of background features within the image, such 

as the darker spots of grass behind the horse. This level of detail indicates that the 

current all-optical binary convolution system, based on a spiking VCSEL neuron, is 

capable of performing image gradient magnitude. The tuning of the activation 

threshold would permit to reduce low gradient magnitude activations, if desired.  

 

Figure 5.5.12. - Horse source image (a) from the Berkeley Segmentation Dataset and 

numerically simulated gradient maps for G(x) (b), 𝐺𝑋(𝑥) (c), 𝐺𝑌(𝑥) (d). Theoretical 

parameters: γp =128 ns-1, γa =2 ns-1, γN =0.5 ns-1, γs =110 ns-1, α =2, k =185 ns-1, kinj =125 ns-

1 and βsp =10-6. Figure reproduced from [201]. 
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To further reinforce the experimental all-optical binary convolution results, the SFM 

was used to numerically simulate the response of the VCSEL neuron. Using the same 

theoretical model described previously in Chapter 2.3, the predicted all-optical binary 

convolution of the full ‘horse’ image by the VCSEL neuron was computed. The 

simulated input remained consistent with the experimental system, using 10 pulsed 

inputs of 1.5 ns duration per pixel. The theoretical response of the VCSEL neuron to 

the four sets of inputs was then used to calculate the gradient magnitude, resulting in 

the gradient maps presented in Fig. 5.5.12. The gradient maps show that edge 

information is successfully revealed in the theoretical simulations, and that a good 

level of agreement is found between experimental and theoretical responses.  

We also tested numerically the performance of the proposed binary convolution 

system to noisy inputs. The response of the VCSEL-based system to the example 

image and kernel inputs demonstrated in Fig. 5.5.8, were calculated using the SFM.  

The results in Fig. 5.5.13 show that in the case of no input noise (left row in Fig. 

5.5.13), the simulated system responds with the expected result, i.e. 4 fast spike 

activations (as it was found experimentally in Fig. 5.5.8). After this, we tested 

numerically the response of the system to image and kernel inputs with a signal to 

noise ratio (SNR) of 20 dB, as seen in the right row plots in Fig. 5.5.13 (a) & (b)). 

For the case of noisy inputs, the simulated results also show that the result of the 

convolution remains the same, with 4 spikes activated. The proposed all-optical 

binary convolution system is therefore resilient to noisy inputs suggesting that in the 

experimental system, the exposure to electrical or optical noise should not 

significantly affect the activation of target features.  

Overall, the all-optical binary convolution system demonstrated experimentally in 

this work, is capable of revealing gradient magnitude and edge information in both 

simple and complex images. Additionally, we have provided the theoretical 

modelling of the system using the SFM, revealing a good level of agreement with 

experimental findings. 
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Figure 5.5.13. - Theoretical binary convolutions with noisy inputs. The image inputs (a) and 

kernels (b) with no noise (left) and 20 dB SNR (right) produce the same VCSEL output (c). 

Figure reproduced from [201]. 

 

In these experimental and theoretical demonstrations, a time of 15 ns is required to 

perform the optical binary convolution operation of one pixel. With four binary 

convolution operations required to reveal the image gradient magnitude, a total of 60 

ns is needed to process one pixel completely. Considering that the VCSEL used in 

the experiments may deliver approximately 0.5 mW of optical power, we can deduce 

that the energy consumption for the calculation of gradient magnitude with a VCSEL 

neuron could be as low as 30 pJ (0.5 mW x 60 ns) per pixel, using commercially-

sourced devices without any additional optimisation stage. Furthermore, given the 

local pattern descriptor, if we sampled the minimum 16 pixels, we could perform 

each binary convolution in 9 ns, further reducing the energy consumption to 18 pJ 

per pixel. Alongside the encouraging energy consumption levels, the reduced number 

of convolution operations in comparison to traditional convolution helps improve 

system’s performance. Where traditional convolution would require the sampling of 

all 25 pixels in the 5x5 range of the kernel, we need only 16, with 6 pixels being used 

for each of the 4 kernel operations. A recent report in literature [280], where binary 

convolution was compared to the Canny implementation of convolution [282] when 

producing image gradient maps, showed the improvement in speed that can be 

gained. The binary convolution was able to perform the image processing task at 4.7 
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Hz with the Canny technique producing an operation speed of 0.5 Hz. This report 

also made use of a intel i7 mobile processor that operates with several watts of power 

(15 W in the case of the i7 [283]). This indicates that the binary convolution 

technique can be faster than alternative convolution methods and that our photonic 

all-optical system has the potential to increase binary convolution energy efficiency 

significantly. Overall, we demonstrate here a simple, hardware friendly system 

capable of image edge detection via image gradient magnitudes with a single VCSEL 

neuron. In this, our second implementation of image processing and edge detection, 

we perform the kernel operation, thresholding and spike firing within the optical 

system with our VCSEL neuron. In this work the counting of spiking responses is 

completed offline, but we believe this could be achieved using the appropriate 

hardware in the future. Unlike other impressive, but complex, photonic binary CNNs 

[284], our experimental setup is easily approachable, containing only off-the-shelf 

commercial components, delivering a fast, spiking output directly at the 

telecommunication’s wavelength of 1300 nm. We have also demonstrated that the 

system can be resilient to noisy inputs and that this binary convolution system holds 

key advantages in terms of energy consumption and operation speed. We believe this 

method of implementing VCSEL neurons as image processing devices demonstrates 

the high prospects for VCSEL-based platforms for novel application in edge 

detection and computer vision systems. 

 

5.5.3 Integrate-and-Fire Image Feature Detection 

In our third and final implementation of VCSEL-based neuromorphic image 

processing systems, we look to make use of the multiple input integration 

functionality present within VCSEL neurons for all-optical operation. In this 

configuration, referred to here as the integrate-and-fire method, we build upon the 

initial threshold-and-fire technique by incorporating bursts of consecutive input 

pulses. This method allows for the complete embedding of the convolution operation 

into the photonic system as we reported in [202]. Again, unlike alternative reports of 

photonic CNNs [81]–[83], [275], [276] we make use of a system built with only a 
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single VCSEL neuron, using time-multiplexed kernel operators to perform complete 

image edge detection with reduced hardware complexity and expense. 

 

 

Figure 5.5.14. - Integrate-and-fire image processing technique applied to images in the 

VCSEL neuron system. A source image is converted into binary values and multiplied by a 

2x2 kernel, creating a Hadamard (elementwise) product. The resulting 2x2 product is used 

as a set of values for the generation of a return-to-zero (RZ) image input, where each value 

dictates the amplitude of a pulse within a configurable pixel duration. The process is 

repeated, scanning the kernel operator across the entire image, time-multiplexing the input 

for each pixel. Figure reproduced from [202]. 

 

The technique applied to achieve integrate-and-fire image edge detection 

draws a number of similarities to that described in Fig. 5.5.3. Source images are 

selected and converted into black and white integers, and 2x2 kernel operators are 

applied to the source images using the same scanning window method as in previous 

realisations to produce Hadamard products for each image pixel. In this work, as 

shown in Fig. 5.5.14, we demonstrate for the first time the in-system integration 

ability of a VCSEL neuron to perform the pooling of the Hadamard product. To 

achieve this, we encode the weighted pixel values into a (return-to-zero) RZ signal, 

where each value is assigned an individual pulse. Each encoded input pulse has an 

amplitude corresponding to its Hadamard product value and a duration of ~100 ps 

FWHM. A peak-to-peak separation of ~150 ps is used between input pulses with zero 

padding also added to fill the total pixel time duration up to a configurable value. In 

this work a pixel duration of 3.0 ns was selected. This value, well over the spiking 

refractory period of the VCSEL neuron, allowed each pixel to independently activate 

spiking outputs. This encoding scheme effectively makes use of TDM to encode the 

Hadamard product into a burst of input pulses, while also encoding multiple 
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convolution operations sequentially into a single device, making the VCSEL neuron 

act in effect as a full neuronal layer able to directly perform complex operations, such 

as image-feature detection. The encoded image input is then generated in the AWG 

and fed via optical injection into the VCSEL neuron, using the same experimental 

setup described previously in Fig. 5.5.3. We highlight here that the pre-processing of 

the encoded image input incorporates the matrix multiplication operations of pixels 

values and kernel operators. In this demonstration the optically-injected VCSEL is 

incorporated as an integrate-and-fire neuron which accumulates the results of these 

matrix multiplications via time-multiplexed input pulses.  

 

 

 

Figure 5.5.15. - Experimental edge detection with an integrate-and-fire VCSEL neuron. The 

32x32 pixel image of a printed “Digit 4” (a) is operated on by 8 different 2x2 kernels (c)-(j). 

Two vertical (c)-(d) and horizontal (e)-(f), as well as four diagonal (g)-(j) kernels are shown. 

The final 8 kernel reconstruction (b) reveals all edges in the image. Each plot is created by 

de-multiplexing the time series of the VCSEL neuron, plotting pixels with a positive spike 

activation (recognition) in black. Experimental parameters: I = 4.0 mA, T = 293 K, Parallel 

(YP) mode injection, Pinj = 112.6 μW, ∆f = -7.6 GHz. Figure reproduced from [202]. 
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For the first demonstration of integrate-and-fire edge-feature detection with a 

VCSEL neuron, we run multiple kernel operators on the 32x32 pixel image of a 

printed “Digit 4”. The source image pixel data, plotted in Fig. 5.5.15 (a), is first 

converted into integer values before applying the kernel operators. Due to the 2x2 

kernel dimension, two kernels were required to activate each side of the vertical and 

horizontal features. Similarly, no padding was used on the source image, resulting in 

the reduction of the final image dimension by 1. The kernel operators used on the 

“Digit 4” image applied integer, 1 (black) and -1 (white), weights. The operation with 

each kernel produced a bursting image input which was subsequently generated by 

the AWG, optically encoded with a MZ modulator into the optical input line, and 

injected into the VCSEL neuron. The optical spiking responses of the VCSEL neuron 

were captured with a fast real-time oscilloscope and analysed using temporal maps. 

These de-multiplexed the captured time series into the appropriate number of image 

rows and columns. Finally, 3.0 ns segments (the configured pixel duration) were 

sampled from the temporal maps to reveal which pixel inputs had activated spiking 

responses. If a spiking response was present (not present), a black (white) pixel was 

plotted in a final image reconstruction. The convolution results for vertical and 

horizontal kernel operations are plotted in the 31x31 pixel reconstructions shown in 

Figs. 5.5.15 (c)-(f). The latter clearly show the identification of both the vertical and 

horizontal edges of the “Digit 4”. This means each kernel operator correctly produced 

a Hadamard product corresponding to a burst of 4 positive input pulses for each target 

feature. When integrated by the VCSEL neuron, the bursts overall input contribution 

has sufficient strength to cross the activation threshold of the device, producing a 

spiking response for each target feature. Similarly, additional kernel operators were 

used to reveal the diagonal edges of the four. The diagonal kernel operators had non-

integer weights with values 0.5, 0.75, 0.75 and -1 (and the three rotations) 

respectively. The results of the diagonal integrate-and-fire convolutions, shown in 

Figs. 5.5.15 (g)-(j), clearly show the diagonal edges, as well as additional features 

such as corners, of the “Digit 4” are successfully identified. Therefore, using all eight 

experimental runs, we can combine the convolutions into a single 8 kernel 

reconstruction (Fig. 5.5.15 (b)), revealing all edge information present in the source 

image. The optical technique presented here, with our integrating VCSEL neuron, is 
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therefore capable of providing edge detection functionality, where the photonic 

system performs the summation or pooling of convolved values with optical 

hardware.  

 

 

Figure 5.5.16. - All-optical edge-feature detection of the RGB 323x323 pixel “University of 

Strathclyde (UoS) crest” by the VCSEL neuron (a). The green (G) colour channel of the 

image was selected (b). Experimental results from 8 2x2 kernel operators combined to 

produce the final reconstruction (c), revealing all edges in the image. Experimental 

parameters: I = 4.0 mA, T = 293 K, Parallel (YP) mode injection, Pinj = 147.2 μW, ∆f = -

6.88 GHz. Figure reproduced from [202]. 

 

To continue testing the capability of our all-optical VCSEL neuron system we 

selected a higher resolution 323x323 pixel RGB image of the University of 

Strathclyde’s (UoS’s) crest (Fig. 5.5.16 (a)). This image, containing more complex 

features, has three colour channels, red, green and blue (RGB). Typically, the 

conversion of an RGB image to greyscale can be completed by averaging over the 

pixel intensity of each channel, however, by selecting a specific channel we can 

enhance the contrast of the black and white image, simplifying the edge detection. 

For this reason, the green channel was selected before conversion to greyscale, and 

subsequent conversion into black and white pixels (Fig. 5.5.16 (b)). Using the same 

8 kernel operators as in the previous demonstration (Fig. 5.5.15), 8 unique image 

inputs were calculated and generated for injection into the VCSEL neuron. The 

results of the 8 experimental convolutions are combined into the kernel 

reconstruction plotted in Fig. 5.5.16 (c).  
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From Fig. 5.5.16 (c) we can see that the edge detection of the “UoS’s crest” image 

successfully revealed edge-features of every directionality. Horizontal, vertical and 

diagonal lines were all recognised by their respective kernel operators, each 

successfully creating and integrating burst of input pulses, producing fast spiking 

responses. From this result we can deduce that the size and complexity of the image 

does not impede the operation of the photonic spiking edge detection system. In this 

demonstration the configurable pixel duration remained 3.0 ns per pixel. For this 

reason, the larger image only required a longer processing time and a larger time 

series measurement to successful complete each experimental convolution (3.0 ns x 

322 x 322 = 311.1 µs per convolution). This result means that complete edge 

detection of this larger image can be accomplished in 2.5 ms, with up to 400 images 

of this resolution possible every second, despite the utilization of a very simple and 

highly hardware friendly approach using a single commercially-available VCSEL.  

 

 

 

Figure 5.5.17. - Spiking edge-feature detection with the VCSEL neuron with noisy source 

images. Noise was introduced to the “Digit 4” image using random variations of background-

pixel (a)-(b), and global-pixel intensity (c)-(d), where 100% noise represents a random 

intensity variation from white (-1) to black (1). 8 2x2 kernels are run sequentially for 

complete edge detection. Experimental parameters are identical to those used in Fig. 5.5.15. 

Figure reproduced from [202]. 
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The all-optical edge-feature detection performance of the integrate-and-fire VCSEL 

neuron was next tested with noisy source images. Noise was added to the printed 

“Digit 4” source image in two ways: 

 

1) In the first method, noise was added into the intensity of the white background 

pixels, varying each white pixel randomly between its current value (-1) and 

a percentage (%) of the maximum intensity value (1). For a background noise 

of 100% we therefore expect white pixels to vary randomly between white (-

1) and black (1). Background noise levels of 0%, 20%, 40%, 60% and 80% 

were implemented into the source images as shown in Fig. 5.5.17 (a).  

2) In the second method, the global pixel intensity was varied according to the 

configurable noise percentage (%). In this case, 100% noise would cause 

white pixels to vary randomly varied between white (-1) and black (1), and 

black pixels to randomly vary between black (1) and white (-1). Global noise 

was varied from 0% to 5%, 10%, 15% and 20%, as shown in Fig. 5.5.17 (c).  

 

In both cases investigated, 8 (2x2) kernels were applied to each source image with 

each convolution operation sequentially generated into a single temporal input. This 

allowed us to perform complete edge-feature detection with just one VCSEL neuron, 

acting in fact as a full neuronal layer, in a single experimental run. Therefore, the 

weights of the kernel operators had to be altered such that the activation threshold 

was consistent for all integrating bursts. This is required as the maximum integrated 

input for a diagonal kernel is 3 (1+0.75+0.75+0.5) and the maximum integrated input 

for vertical and horizontal kernels is 4 (1+1+1+1). The maximum integrated input 

was therefore normalised by adjusting the vertical and horizontal kernel weights to 

the non-integer value of 0.75, such that 0.75+0.75+0.75+0.75 = 3. This allowed all 

integrated bursts throughout the 8 convolutions (for all kernels used) to activate the 

desired spiking outputs with the same activation threshold of the VCSEL neuron. 

Finally, the convolutions of all 5 noisy images were combined into a single image 

input, using TDM. This meant that the activation threshold for spiking edge detection 

was consistent across all tested images and that all could be tested in one 
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experimental run. The spiking responses of the system were measured and analysed, 

producing the 8 kernel reconstructions shown in Figs. 5.5.17 (b) & (d).  

Looking at the case of increasing image background noise (Figs. 5.5.17 (a) & (b)), 

we find that initially the system responds as expected, revealing all edges in the 

noiseless image. This result highlights that the normalisation of all kernel weights 

used correctly allows each target feature to integrate inputs bursts and activate 

spiking responses when all data is fed in a single experimental run. When the 

background noise in the image is increased to 20%, we see that most diagonal and 

vertical activations remain intact, with the number of horizontal detections dropping 

(25.9% less activations overall). This indicates that input bursts, generated by 

horizontal kernels, are integrating less effectively than of others and are therefore not 

activating as frequently. This discrepancy is likely caused by the horizontal scanning 

of the kernel operator during the convolution, which creates positive detections in 

consecutive pixels. The constant activation of excitable spikes may slightly reduce 

the influence of pulsed inputs in the following pixel, resulting in a small drop in 

integration efficiency compared to other kernel operators. Nevertheless, the ‘four’ 

shape can still be recognised as horizontal, vertical and diagonal features remain 

detected. Increasing the background noise to 40%, we see the number of detections 

reduce overall (57.7% less activations), however, sufficient horizontal, vertical and 

diagonal features still remain, allowing the digit to be recognizable. Yet further 

increasing the background noise of the image to 60%, we see that the detection of 

almost all vertical and horizontal edges are lost, with a total 79.8% reduction in spike 

activations. The detection of mostly diagonal features is achieved in this result, but 

this is not unexpected. The diagonal kernels are built with 3 black-pixel and 1 white-

pixel detecting value. This means that the changes to background noise only apply to 

1 of 4 values present during the kernel operation, compared to 2 of 4 in the vertical 

and horizontal operation, making the diagonal kernel more resilient to background 

noise. Despite this, the image becomes unrecognisable, and performance further 

decreases as background noise reaches 80%. These results in any case show that 

without altering the activation threshold of the spiking system (VCSEL neuron), 

recognition of target features can still be achieved up to levels as high as 40% 

background noise.  
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The results for globally increasing pixel noise are shown in Fig. 5.5.17 (d). Again, as 

expected, when an image without noise is injected, the experimental results show 

successful spike-firing detection for all edge-features of the “Digit 4”. Increasing the 

global noise to 5% and 10%, reveals a good level of performance overall, with the 

number of horizontal detections reducing by 11% and 20.1%, similar to the previous 

case of growing background noise. Increasing the global noise further to 15% causes 

the number of detections for vertical, horizontal and diagonal edges to all drop overall 

(52.2% less activations). The image however, contains enough feature information 

to recognise the image as a “Digit 4”. Finally, increasing global image noise to 20% 

removes almost all feature detection (76.1% less activations) as now varying pixel 

intensities fail to match the kernel operator, creating input bursts incapable of spike 

activation. Unlike the background noise case, diagonal kernels do not show 

additional resilience as they are equally affected by the global noise. These results 

show that source images can be influenced by a pixel intensity variation of at least 

15% before kernel operators (set for noiseless images) fail to recognise target 

features.  

Overall, this all-optical spike-based approach to image processing with an integrate-

and-fire VCSEL neuron has demonstrated that it can successfully perform edge-

feature detection tasks on large complex images at high speed rates, and with high 

noise robust operation. It has also demonstrated that despite utilizing a highly 

hardware-friendly approach using a single spiking VCSEL neuron and TDM, it can 

perform distinct kernel operations on multiple complex images.  

Additionally, we have further tested the integrate-and-fire VCSEL neuron system 

using large numbers of images from the MNIST handwritten digit database [285]. 

The latter’s significance is that no two of the images are the same, making it more 

challenging for classification systems to identify which of the 10 classes (0-9) an 

image belongs to.  For this study, a total of 5000 28x28 pixel images of digits 0-9 

(500 per digit) were tested in our system, with each image subject to convolution 

operation by 6 symmetrical kernel operators. TDM was used to sequentially perform 

each kernel operation on all 500 images (per digit) in a single experimental run.  
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An example of the experimental results obtained with a (digit 4) MNIST image and 

its 6-kernel reconstruction are shown in Figs. 5.5.18 (a) & (b). Additional results for 

different digits are also plotted in Fig. 5.5.18 (c). These results show that the spiking 

VCSEL neuron system can successfully generate edge-feature image information 

with the MNIST input data. The use of symmetrical kernel operators and binary 

weights allow all integrating bursts to successfully activate for all 500 consecutive 

images that were injected in a single experimental run. Utilising TDM to compute 

different kernel operators sequentially over consecutive source images, permitted the 

single VCSEL neuron system to perform complete edge-feature detection of 500 

MNIST images in 6.56 ms (3 ns x 27 x 27 x 6 kernels x 500 images). This speed, 

13.12 µs per MNIST image, achieved with commercially-sourced VCSELs, without 

any additional device optimization, is theoretically limited by the refractory period 

of the spiking dynamics in the VCSEL neuron (approx. 1 ns in our case). Hence, 

further speed operation improvements are possible simply by reducing the total pixel 

time duration, currently set at 3 ns to values closer to the spiking refractory period 

(approx. 1 ns). Also, additional optimization of VCSEL design and fabrication might 

permit to increase the spiking rate of VCSEL neurons, beyond those currently 

reported here, and hence allow higher speed spiking edge detection operation.  

In addition, we combined our VCSEL neuron spiking edge detection system with a 

software implemented spiking neural network (SNN), in order to perform digit 

classification with the processed images of MNIST handwritten digits. The software 

SNN was fed directly the temporal spiking edge-feature information produced by the 

VCSEL neuron, which in fact acted as a full neuronal layer implemented in photonic 

hardware. The software SNN then performed further spiking convolution and 

pooling operations to provide a classification for each tested MNIST source image. 

The structure and operation of the software SNN is detailed in our recent literature 

report [202] and was designed and operated by colleagues in Dr Gaetano di 

Caterina’s group in Strathclyde’s Electronic and Electrical Engineering (EEE) 

department. This architecture, combining photonic (VCSEL-based) hardware and a 

software-implemented SNN, revealed successful image classification, with a very 

high mean ‘handwritten digit’ recognition efficiency of 96.1%. This exciting result 

indicates the feasibility for hybrid photonic/software SNN systems for spike-based 
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image processing applications including both edge detection and image recognition 

tasks with high accuracy and at high rates. Further, this positive result highlights that 

VCSEL neurons have the capability to perform spiking edge detection to the standard 

required for such complex tasks and that their spike-based output is compatible with 

larger SNN architectures.  

 

 

Figure 5.5.18. - MNIST handwritten-digit edge detection with an integrate-and-fire VCSEL 

neuron. Six 2x2 symmetrical kernels (2 vertical, 2 horizontal, 2 diagonal) were applied to 

500 images of each digit from the MNIST dataset. All kernels are sequentially applied to the 

source image (a) which, when analysed and combined, produce reconstructions (b) that 

reveal all edge information. Each set of MNIST digits (c) were processed separately. 

Experimental parameters: I = 4.0 mA, T = 293 K, Parallel (YP) mode injection, Pinj = 159.1 

μW, ∆f = -5.79 GHz. Figure reproduced from [202]. 

 

Finally, we also investigated the potential for VCSEL neurons to perform spike-

based convolution operations with larger kernel operators for enhanced system 

performance. Using the SFM, we simulated the operation of a VCSEL neuron with 

3x3 kernel operators. We calculated the response of the VCSEL neuron to incoming 

image data inputs, generated using the technique described in Fig. 5.5.14, 

implementing bursts of 9 input pulses, one for each Hadamard product value (3x3 

kernel). The input pulses were configured with pulse widths of 100 ps and pulse 

separations of 10 ps, creating 1 ns-long bursts of 9 input pulses within the 

configurable 3 ns pixel duration. Using an image of a ‘handwritten digit 3’ from the 

MNIST database (Fig. 5.5.19 (a)), the simulated VCSEL neuron performed spike-
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based convolution operations with 8 (2 horizontal, 2 vertical and 4 diagonal) 3x3 

kernel operators (Fig. 5.5.19 (c)-(j)). The following simulation parameters were used: 

γp =128 ns-1, γa =2 ns-1, γN =0.5 ns-1, γs =110 ns-1, α =2, k =185 ns-1, kinj =125 ns-1 and 

βsp =10-6. 

 

 

 

Figure 5.5.19. - SFM simulation of VCSEL neuron-based MNIST edge detection with 3x3 

kernels. The MNIST source image (a) is operated on by 8 different 3x3 kernels (c)-(j). Two 

vertical (c)-(d), two horizontal (e)-(f), and four diagonal (g)-(j) kernels are shown. The final 

8 kernel reconstruction (b) reveals all edges in the image. Figure reproduced from [202]. 

 

The numerically calculated results in Fig. 5.5.19 reveal that successful detection of 

target features without the activation of false positives is possible for higher (3x3) 

dimensional kernels, indicating the effective integration of bursts of 9 pulses 

(producing a Hadamard product) within the VCSEL neuron. This result, beyond the 

current capabilities of our experimental setup, reveals the integration of the VCSEL 

neuron can be utilised for larger bursts of input pulses. Overall, the 8-kernel 

reconstruction, shown in Fig. 5.5.19 (b), reveals that complete edge detection can 

theoretically be performed with an integrate-and-fire VCSEL neuron. It could 

therefore be possible to implement VCSEL neurons for feature detection layers in 
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photonic hardware SNNs using higher dimensionality kernels for operation (as those 

applied in the software-implemented SNN [202]), towards advanced spiking 

VCSEL-based photonic image processing platforms.  

In this Chapter we have demonstrated three methods of implementing the image 

processing task of edge detection with a photonic spiking VCSEL neuron. In the first 

method we demonstrated a threshold-and-fire approach that utilised pre-convolved 

inputs for the edge detection of digital images. These results showcased that the 

thresholding of destination pixel values could be performed to output target edge 

information in a fast-optical spiking representation. Experimentally measured time 

series showed excellent agreement with theoretical modelling and gradient based 

edge detection was demonstrated, revealing all the edge information present in one 

image in a single experimental run. Secondly, we provided results showcasing image 

edge detection via a VCSEL-based all-optical binary convolution system. In this 

method the result of the convolution was given in the number of spiking responses 

produced by the VCSEL neuron. Using a sparse local pattern descriptor and kernel 

operator, gradient maps were calculated revealing all edge information in digital 

images. The binary convolution technique helped reduce the number of convolution 

operations performed and improved the energy efficiency and speed of the image 

processing task. Finally, in the third approach to VCSEL-based image processing and 

edge detection, we exploited the integrate-and-fire functionality of VCSEL neurons. 

This technique, implementing further the convolution operation into the photonic 

system, demonstrated the edge detection of complex images with various resolutions. 

Images from the MNIST handwritten digit database were processed using this 

method, with complete edge detection performed at a rate of 13.12 µs per image. 

Additionally, the experimental edge detection results from this experiment were fed 

directly into a SNN for the further classification of MNIST digits, achieving a final 

mean recognition efficiency of 96.1%. Finally, theoretical modelling of the integrate-

and-fire technique showed its successful operation with larger 3x3 kernel operators, 

revealing the ability of VCSEL neurons to develop further convolution application, 

such as feature detection, in the future.  

Overall, these results have revealed that VCSEL neurons have a potential future in 

the realisation of image processing and computer vision systems. They have 
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demonstrated the ability to apply neuromorphic functionalities to achieve 

convolution and edge detection with optical systems, through integrating, 

thresholding and activating fast spiking information directly in the optical domain. 

Despite employing a single VCSEL neuron these methods have shown pathways to 

fast (13.12 µs per MNIST image) and efficient edge detection and have demonstrated 

their ability to interface with other spike-based SNNs for complex image processing 

tasks. We believe for these reasons that VCSEL neurons have great prospects for 

image processing systems, in both their hardware-friendly single device 

architectures, or in larger networks for spike-based neuromorphic systems.  
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Chapter 6  

Conclusions and Future work 

 

6.1 Conclusions  

VCSELs are an exciting photonic technology with regards to their capability 

to generate a range of fast (sub-nanosecond) dynamical behaviours alongside their 

technology maturity, low cost, wide availability, compactness and low power 

requirements. In this thesis we experimentally exploit the behavioural similarities of 

VCSELs to biological neurons in order to assess their suitability for artificial optical 

spiking neurons for future photonic neuromorphic brain-inspired platforms for 

beyond Von Neumann information processing.  

In Chapter 3 we first investigated the controllable neuron-like spiking dynamics 

generated by VCSEL neurons under optical injection. By exploiting a bifurcation 

point around the injection locking/unlocking boundary we activated fast spiking 

dynamics at the output of the VCSEL neuron using short input perturbations (stimuli) 

in both the power of the optical injection, and the bias current of the VCSEL. The 

neuron-like excitable responses (spikes) activated had short ~100 ps pulse widths and 

sub-nanosecond rates, making the spiking responses multiple orders of magnitude 

faster than the MHz-rate of electronic systems [72]. We revealed the spiking 

responses of the VCSEL neuron were reproducible and that by increasing the length 

of the input stimuli we could achieve continuous tonic spike firing like that produced 

by neurons. Further, we showed the injection locking mechanism could be used 

inversely to suppress the spiking output of the VCSEL neuron, realising a neuronal 

inhibitory response. Our experimental investigation also revealed that the 

controllable excitable spiking responses in VCSEL neurons were governed by 

activation thresholds, like those of threshold-and-fire neuronal models, and that this 

could be easily controlled by varying the position of the system in parameter space. 

These results additionally revealed a neuron-like data rate encoding mechanism in 

photonic VCSEL neurons, which showed increasingly strong input stimuli would 
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reduce the activation delay of spiking dynamics. Similarly, the maximum encoding 

rate, which like in biological neurons is governed by the refractory period of the 

spiking responses, was measured here to be as low as 0.84 ns. This means the 

photonic artificial VCSEL neuron can be operated at rates >1 GHz (given strong 

enough inputs) for ultrafast spiking-based information encoding. Photonic VCSEL 

neurons therefore possess multiple neuromorphic functionalities in-line with those of 

neurons and importantly are capable of producing fast optical spiking responses, at 

multiple orders of magnitude faster than electronic implementations [72].     

In Chapter 4 we investigated the interconnection of artificial VCSEL neurons in 

different neural network-inspired architectures. We first demonstrated the 

communication of excitable neuron-like spiking dynamics in a feedforward 1-to-1 

configuration of two similar telecom wavelength, commercially-available VCSELs. 

We revealed VCSEL neurons connected in this 1-to-1 manner could exhibit 

cascadable spiking/inhibitory behaviour, providing sufficient output to influence 

downstream devices, effectively realising the communication of spiking information 

between two layers of artificial neurons in a neuromorphic system. We then 

demonstrated the propagation of spiking signals in a diverging 1-to-2 feedforward 

architecture with a single VCSEL neuron triggering simultaneous responses in two 

downstream VCSEL neurons. This result revealed that a single VCSEL neuron could 

provide information (spikes) to many neurons in a network, more easily facilitating 

the additional neural connections required for complex neural network architectures 

capable of information processing. We next created a real biological-inspired retinal 

neural circuit using three cascaded (1-to-1-to-1) VCSEL neurons. Both spiking and 

non-spiking signals were used to investigate the conversion of bipolar and retinal 

ganglion cell signals. We showed two ON-type-inspired circuits (increasing and 

decreasing light stimuli) and that an input layer of modulated VCSEL neurons could 

successfully inject signals into the network. We demonstrated here that VCSELs can 

be used to create and communicate non-spiking signals as well as perform the 

conversion of non-spiking signal into fast sub-nanosecond spikes without additional 

signal manipulation steps. The successful demonstration of the all-VCSEL system 

provides the addition benefit of simplifying hardware requirements, reducing system 
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footprint, and increasing the energy efficiency of potential future implementations of 

artificial networks of VCSEL neurons.  

In Chapter 5 we demonstrated different potential applications of systems based on 

spiking VCSEL neurons for functional neuro-inspired information processing. In our 

first demonstration we revealed that VCSEL neurons could be used to bridge the gap 

between existing digital-binary technologies and spike-based optical systems by 

performing digital-to-spike conversion. We demonstrated that modulated optical 

injection could be used to convert NRZ and RZ signals at high rates, up to 1 Gb/s, 

into output trains of fast 100 ps-long optical spikes. The VCSEL neuron-based 

system enables a hardware-friendly off-the-shelf solution for integrating 

neuromorphic spike-based systems with conventional technologies, directly at the 

wavelength of telecommunications networks. We next demonstrated the use of 

VCSEL neurons in feedback architectures, through the use of artificial autaptic 

connections, to create neuromorphic photonic spiking memory systems. We showed 

that a single VCSEL neuron, subject to optical feedback (autapse), could be made to 

activate and store spiking signals in τ-long memory cycles. Using optical 

pertubations we demonstrated the writing of spikes within memory at will. Similarly, 

we demonstrated the formation of stable spiking memory sequences in mutually 

coupled VCSEL neurons. In both cases we deduce that the storage capacity of the 

memory is dictated by the refractory period of the VCSEL neuron and the length of 

the feedback delay. These VCSEL-based implementations could therefore be 

applicable in neuromorphic systems where the creation of spiking memories is 

required via off-the-shelf, hardware-friendly optical components. We next 

demonstrated the exciting capability of the VCSEL neuron to integrate temporally 

separated inputs, effectively realising the integrate-and-fire operation of neuronal 

models. We showed both experimentally and theoretically that a VCSEL neuron, 

subject to time multiplexed inputs, could be made to integrate bursts within a short 

temporal window and respond accordingly with a fast (100 ps-long) spiking 

response. This revelation of integrate-and-fire functionality allowed the VCSEL 

neurons to move towards neural network operation. In our first demonstration, we 

performed the coincidence detection of two optical inputs incident on the VCSEL 

neuron, showing that the latter sucessfully activated when the two inputs were close 



210 
 

in time effectively realising a time-resolved AND logic gate. This VCSEL-based 

coincidence detection system could provide a simple pathway to optical alarm 

triggering systems where rapid decision making (sub-nanosecond-long windows) is 

required with fast optical inputs, compatible with spiking neural networks.   

Our next functional VCSEL neuron processing circuit demonstrated a pattern 

recognition task that identified 4-bit input sequences with the triggering of fast 

spiking responses. We employed time-division multiplexing (TDM) and the 

integrate-and-fire functionality of the VCSEL neuron, to identify (at high-speeds) 

target 4-bit patterns by injecting sub-nanosecond bursts of weighted inputs (at 80 

ps/bit). We demonstrated experimentally that by weighting the input pattern 

effectively, the VCSEL neuron could trigger spikes for the correct pattern with 

overall high average recognition efficiencies and inputs rates of near 1 GHz. These 

proof-of-concept results yet still utilised a supervised learning scheme and a single 

VCSEL neuron, but nevertheless highlight the significant potential these devices 

have for the implemention of off-the-shelf, ultrafast, spike-based classification 

systems towards pattern recognition processing applications.  

Our final experimental demonstrations of VCSEL neurons for functional applications 

tackled the field of image processing and feature detection. We first demonstrated 

that by combining a VCSEL neuron with the image processing technique 

convolution, we could perform the edge-feature detection of digital images, 

outputting fast spiking responses for positive recognitions. By scanning 2x2 kernel 

operators over images in an offline pre-processing stage, we generated destination 

pixel values which were injected into the VCSEL neuron for processing. We showed 

that the threshold-and-fire neuronal behaviour of the VCSEL neuron could be used 

to detect the appropriate target and respond accordingly with fast 100 ps-long spikes. 

We revealed a single VCSEL neuron was capable of detecting all the edge-feature 

information in an image (through the use of multiple kernels or in a single run using 

gradient magnitude) at rates of up to 1.5 ns per pixel, matching SFM simulated 

results. We next showed an alternative all-optical binary convolution method for 

extracting image gradient magnitudes using a single spiking VCSEL neuron. In this 

image processing method we applied kernel operators within the photonic system by 

generating and overlapping the kernel weights and pixel data in two interconnected 
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modulators. The subsequent multilevel signal was injected into the VCSEL neuron, 

creating a train of fast optical spiking responses containing the image’s gradient 

magnitude information. We revealed that VCSEL neuron-based binary convolution 

system also holds key advantages in terms of efficiency and speed, despite the 

hardware-friendly system using solely a single VCSEL neuron. The experimental 

findings were found to closely match those simulated using the SFM and the 

theoretical system showed good resilience to noisy inputs. Our last demonstration of 

a functional image processing system exploited the neuronal integrate-and-fire 

functionality of the VCSEL neuron to perform the 2x2 high-speed spike-enabled 

image convolution. We used TDM to inject the hadamard products of each kernel 

operation into the VCSEL neuron, futher implementing convolution within the 

optical system, and sucessfully detected edge-feature information in images of 

various resolutions with fast optical spikes. We processed images from the MNIST 

handwritten digit database and achieved a VCSEL neuron processing rate of 13.12 

μs per image, and further demonstrated the classification of the MNIST images by 

directly feeding our edge information into a software-implemented SNN, achieving 

a high mean reconigition efficiency of 96.1%. Using the SFM we again demonstrated 

in theory that edge-feature detection could also be performed with larger (3x3) kernel 

operators. The results achieved here highlight the prospects of the image processing 

functionality of VCSEL-based neuromorphic systems built with just a single VCSEL 

performing the operation of an entire network layer of artificial neurons. This 

hardware system, operating at a telecom wavelengths, hence realises a hardware-

friendly photonic spike-based processing system towards image processing 

applications and computer vision for AI.  

To conclude, we have investigated VCSELs as potential candidates for future 

neuromorphic systems amidst rising demands for increasing information processing 

speeds and AI. We have demonstrated that VCSELs have the capability to emulate 

biological neurons, presenting many of the features of neuronal models (tonic spike-

firing, thresholding, integration, refractoriness, etc.) but at speeds >6 order of 

magnitude faster (sub-nanosecond rates). Our investigations have focused on VCSEL 

neurons for neuromorphic processing applications, and through such have 

experimentally and theoretically demonstrated sucessful pattern recognition and 
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image processing tasks all with commercially-sourced, telecom wavelength VCSELs 

and hardware-friendly designs. The possibility for the use of VCSEL neurons in 

future neuromorphic systems is therefore exciting and with the room for further 

developments and research, VCSEL-based systems could help realise brain-inspired 

spike-based computing on an ultrafast, low power requirement, photonic platform. 

 

6.2 Future Work  

In this thesis we have obtained a diverse range of interesting results during 

our investigation of VCSELs as artificial spiking neurons, however, there are 

avenues of this research that present opportunities for further study. Here I will 

briefly highlight a few areas of potential future investigation. 

In future studies of VCSELs as artificial spiking neurons I believe it is of key interest 

to more closely investigate, experimentally and theoretically, the behaviour of the 

neuronal integrate-and-fire functionality of the VCSEL neurons. Investigation into 

the use of higher numbers of temporally separated inputs could diversify the uses of 

the integrate-and-fire functionality, allowing VCSEL neurons to break into image 

feature recognition with the processing of larger kernel operators (as demonstrated 

theoretically in Fig. 5.3.19). This could be done by generating inputs at a higher rate 

(>12 GSa/s), allowing for smaller input pulse widths and separations to be used, 

similar to the theoretical demonstration shown in Fig. 5.3.3. Alternatively, attempts 

could be made to integrate temporally-correlated inputs from different sources in a 

single VCSEL neuron, realising a true fan-in (many to one) architecture. This result 

would nullify the temporal leakage of the activation energy in integrate-and-fire 

VCSEL neurons, allowing for improved input weighting schemes and more efficient 

integration operations. An investigation of this type would be necessary for the 

development of artificial neural networks of VCSELs where the connectivity 

between different layers is high. Further, studying the effect of inhibitory pulses 

during input integration would improve the understanding of the system, potentially 

opening doors to schemes with negatives weights for unique processing operations 
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such as the XOR classification task. Finally, investigating the potential for integrate-

and-fire operation with electrically-triggered spiking responses could provide a 

gateway to optical-electrical-optical (OEO) connections between VCSEL neurons. 

In this scheme the strict wavelength requirement of upstream signals/neurons to 

match the integrating neuron could be circumvented, allowing for simplier neural 

network implementations.  

The expansion and scalability of VCSEL neurons into larger networks of devices is 

another research area of key interest to the development of future VCSEL-based 

photonic neuromorphic systems. Increasing the scale of the VCSEL neuron systems 

would help improve their processing speed, by enabling access to in-parallel 

operations with multiple VCSEL neurons, and their applicability, by achieving 

different artificial neural network architectures for different processing tasks. One 

interesting approach that could be investigated is the scaling VCSEL neurons via the 

use of VCSEL arrays, specifically arrays grown for the purpose of network 

connectivity, with each VCSEL device exhibiting a similar operational wavelength. 

Such arrays of VCSEL neurons would allow for the investigation of all-VCSEL 

networks, as shown in Chapter 3.3, that could propagate spiking signals at a single 

wavelength without the requirement for signal manipulation. The experimental 

implementation of such an array system (and its interconnects) would be highly 

interesting, and could potentially be achieved using technologies such as microlens 

arrays or digital micromirror devices. Alternatively, the scaling of VCSEL neuron 

systems could be studied with OEO inter-neuron connections, which would remove 

the requirement for single wavelength operation, enabling the possibility of 

wavelength-division multiplexing inputs at the potential cost of operation speed and 

energy efficiency. Finally, the investigation of suitable optical weighting elements, 

for photonic synaptic connections, is also required when considering the scaling of 

VCSEL neurons in larger neural networks. The weighting operation of synaptic 

connections is key to the processing capability of neuronal models and should 

therefore be studied before the implementation of multiple VCSEL neurons. Several 

approaches to optical weighting could be considered as synaptic elements  including 

optical modulators, microring resonators and Vertical Cavity Semiconductor Optical 

Amplifiers (VCSOAs).  
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Finally, the use of commercially-available VCSELs has proven effective at 

implementing off-the-shelf, hardware-friendly photonic spiking systems. However, 

as discussed throughout this thesis, the maximum processing rate of a VCSEL neuron 

is frequently dictacted by the refractory period of the excitable spiking dynamics 

(approximately 1 ns). Hence an interesting research avenue would be the 

investigation of different VCSEL fabrication designs towards the realisation of 

ultrafast >1 GHz excitable spiking responses. Given improvements in the spiking 

refractory period could be achieved, the processing rate of the spike-based platform 

would directly benefit, allowing DTS, pattern recognition and image processing to 

each be completed at higher maximum speeds. 

In conclusion, we have demonstrated the exciting functionality and flexibility of 

VCSELs to operate as ultrafast (GHz rates) artificial spiking neurons. We have 

reported functional processing applications, such as pattern recognition and image 

edge-feature detection and classification, that were implemented using only a single 

off-the-shelf, telecom VCSEL (acting as an artificial photonic neuron). However, 

given the potential for further research and the development of faster neural networks 

of VCSEL neurons, we anticipate further interest in VCSELs for future spike-based 

photonic information processing systems and light-enabled AI platforms. 
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