
 Page 1 of 253 

 

 

 

Low-cost Portable Microscopy Systems for 

Biomedical Imaging and Healthcare 

Applications  

 

Thesis submitted by 

 

Ziao Jiao 

 

 

Department of Biomedical Engineering 

Strathclyde Institute of Pharmacy & Biomedical Sciences 

University of Strathclyde 

 

 

 

 

 

This thesis is submitted for the degree of Doctor of Philosophy in 

Biomedical Engineering. 



 Page 2 of 253 

 

Declaration of Work 

This thesis is the result of the author’s original research. It has been composed by the 

author and has not been previously submitted for examination, which has led to the 

award of a degree. 

 

The copyright of this thesis belongs to the author under the terms of the United Kindom 

Copyright Act as qualified by the University of Strathclyde Regulation 3.50 

 

Due acknowledgment must always be made of the use of any material contained in or 

derived from this thesis. 

 

Signed: Ziao Jiao 

 

Date: November 23, 2023 

 

  



 Page 3 of 253 

 

Abstract 

In recent years, the development of low-cost portable microscopes (LPMs) has opened 

new possibilities for disease detection and biomedical research, especially in resource-

limited areas. Despite these advancements, the majority of existing LPMs are hampered 

by sophisticated optical and mechanical designs, require extensive post-data analysis, 

and are often tailored for specific biomedical applications, limiting their broader utility. 

Furthermore, creating an optical-sectioning microscope that is both compact and cost-

effective presents a significant challenge. Addressing these critical gaps, this PhD study 

aims to: (1) develop a universally applicable LPM featuring a simplified mechanical 

and optical design for real-time biomedical imaging analysis, and (2) design a novel, 

smartphone-based optical sectioning microscope that is both compact and affordable. 

These objectives are driven by the need to enhance accessibility to quality diagnostic 

tools in varied settings, promising a significant leap forward in the democratization of 

biomedical imaging technologies. 

 

With 3D printing, optimised optical design, and AI techniques, we can develop LPM’s 

real-time analysis functionality. I conducted a literature review on LPMs and related 

applications in my study and implemented two low-cost prototype microscopes and one 

theoretical study. 1) The first project is a portable AI fluorescence microscope based on 

a webcam and the NVIDIA Jetson Nano (NJN) with real-time analysis functionality. 

The system was 3D printed, weighing ~250 grams with a size of 145mm × 172 mm × 

144 mm (L×W×H) and costing ~$400. It achieves a physical magnification of ×5 and 

can resolve 228.1 lp/mm USAF features. The system can recognise and count 

fluorescent beads and human red blood cells (RBCs). 2) I developed a smartphone-

based optical sectioning microscope using the HiLo technique. To our knowledge, it is 

the first smartphone-based HiLo microscope that offers low-cost optical-sectioned 

widefield imaging. It has a 571.5 μm telecentric scanning range and an 11.7 μm axial 
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resolution. I successfully used it to realize optical sectioning imaging of fluorescent 

beads. For this system, I developed a new low-cost HiLo microscopy technique using 

microlens arrays (MLAs) with incoherent light-emitting diode (LED) light sources. I 

conducted a numerical simulation study assessing the integration of uncoherent LEDs 

and MLAs for a low-cost HiLo system. The MLA can generate structured illumination 

in HiLo. How the MLA’s geometry structure and physical parameters affect the image 

performance were discussed in detail. 

 

This PhD thesis explores the advancement of low-cost portable microscopes (LPMs) 

through the integration of 3D printing, optimized optical design, and artificial 

intelligence (AI) techniques to enhance their real-time analysis capabilities. The 

research involved a comprehensive literature review on LPMs and their applications, 

leading to the development of two innovative prototype LPMs, alongside a theoretical 

study. These works contribute significantly to the field by not only addressing the 

technical and financial barriers associated with advanced microscopy but also by laying 

the groundwork for future innovations in portable and accessible biomedical imaging. 

Through its focus on simplification, affordability, and practicality, the research holds 

promise for substantially expanding the reach and impact of diagnostic imaging 

technologies, especially in those resource-limited areas. 
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Chapter 1. Introduction 

The research aims and background will be introduced in this chapter. Section 1.1 will 

discuss the motivation and background. Following this, in Section 1.2, the first research 

work will be introduced, which is a portable AI-enhanced fluorescence microscope. 

Section 1.3 will introduce a smartphone-based optical sectioning microscope, while 

theoretical research aimed at reducing the cost of this smartphone-based optical 

sectioning microscope will be presented in Section 1.4. Additionally, Section 1.5 will 

outline the research aims and contributions of this work. Finally, the thesis will be 

outlined in Section 1.6. 

1.1 Motivation and Background 

Microscopical imaging is an intuitive way to observe microbiological activities and 

diagnose diseases. After acquiring images or videos of micro-scale objects, we can 

analyse their morphology, light intensities, or fluorescent signals to diagnose diseases. 

For example, we can diagnose sickle cell disease by observing red blood smear samples 

[1] and cancer cells using immunofluorescence stains and fluorescence microscopes [2]. 

However, commercial benchtop microscopes are bulky and expensive, and equipping 

benchtop microscopes can be challenging in underdeveloped or resource-limited areas.  

 

In response to these limitations, the development of LPMs emerges as an appropriate 

solution. These devices, engineered for compactness, cost savings, and affordability, 

extend their application scenarios. LPMs can significantly facilitate disease detection 

and biomedical research in resource-limited areas. For the past decade, we have 

witnessed the fast development of miniaturized sensors, optical components, 

electronics, and data processing units. 3D printing techniques also significantly enhance 

manufacturing efficiency, facilitating the integration of low-cost portable microscopes 

for POCT applications. The fast development of deep-learning strategies also promises 
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real-time image analysis, boosting their capacities in image segmentation [3], pattern 

recognition [4], and imaging quality enhancement [5].  

 

However, the widespread adoption of these low-cost portable microscopes is hindered 

by several critical challenges. Firstly, the intricate optical and mechanical designs of 

these devices are often complicated, making them less accessible to a broad user base. 

Secondly, the necessity for data to be transferred to a personal computer for post-

analysis introduces delays and hampers the ability for real-time decision-making, a 

crucial factor in many clinical and field settings. Furthermore, the specificity of their 

design for particular application scenarios severely limits their versatility and 

applicability across diverse research fields. Recognizing these significant limitations, 

my first research project proposes the development of an innovative low-cost portable 

microscope characterized by its simplified optomechanical design and integrated real-

time analysis capabilities. This novel microscope aims to support both brightfield and 

fluorescent imaging, ensuring broad applicability across various scientific disciplines. 

 

Moreover, optical sectioning microscopy represents a transformative advancement in 

the diagnosis of diseases, particularly those involving complex tissue structures and 

cellular arrangements. It can provide high-resolution images of multiple layers within 

a specimen. This feature is particularly beneficial in diagnosing diseases that exhibit 

subtle morphological changes at the cellular or subcellular level, which might be missed 

by traditional microscopy techniques. Nevertheless, applying optical sectioning 

microscopes in resource-limited areas faces significant challenges, primarily due to 

their high cost, complex operation, and stringent infrastructure requirements. 

Consequently, proposing a low-cost optical sectioning microscope that utilizes 

smartphone technology presents a formidable tool for biomedical research and disease 

diagnosis in resource-constrained regions. The advancements in semiconductor 

technology have equipped most smartphones with high-quality camera sensors, 
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powerful illumination sources, and superior lenses, all of which hold significant 

promise for bioimaging applications. To bridge the gap between resource-limited areas 

and the availability of optical sectioning microscopy, the subsequent study introduces a 

smartphone-based optical sectioning microscope. This is accompanied by an in-depth 

theoretical investigation aimed at further reducing its costs. 

 

Overall, I developed two LPMs in my study to meet the demands for fast disease 

detection and advanced POCT devices with imaging functionality. One is a low-cost, 

customized 3D-printed microscope capable of real-time analysis; the other is a 

smartphone-based HiLo optical sectioning microscope. Validation experiments were 

conducted on both systems to show their potential for biomedical imaging. Finally, a 

detailed theoretical study for applying microlens arrays (MLA) to minimize the cost of 

HiLo microscopy is included. 

1.2 PAIM (πM): Portable AI-enhance Fluorescence 

Microscope 

LPMs can be widely used in POCT applications [6], as well as in the detection of food 

and drinking water contaminants [7,8] in resource-limited areas. In these areas, the 

application of LPMs can significantly enhance biomedical research and disease 

diagnosis without incurring excessive costs. With the development of semiconductors 

and electronic devices, most LPMs are equipped with high-performance optical lenses 

and sensors at a relatively low cost. However, most of these LPMs are designed for 

specific applications, and their optomechanical designs are relatively sophisticated, 

often requiring development by professional engineers. Additionally, these LPMs 

function solely as microscopes, necessitating the transmission of captured data from 

camera sensors to computers for analysis by software, resulting in non-real-time data 

processing. Therefore, the research aims for this first sub-project are twofold: 1) to 
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develop an LPM with a simplified optomechanical design for ease of use, and 2) to 

integrate an AI edge computing processing unit with the LPM to enable real-time 

analysis without the need for data transmission to external PCs. 

 

1.2.1 Cell counting for πM performance validation 

Cell counting is a fundamental technique in both laboratory research and clinical 

practice, essential for quantifying the number of cells in a sample. This process is vital 

for understanding cell growth, viability, and function across various contexts, including 

the health assessment of cell cultures in biological experiments and disease diagnosis 

in medical settings. Traditionally, cell counting has been manually conducted using 

devices like hemacytometers under a microscope. However, advancements have led to 

automated systems and sophisticated technologies such as flow cytometry, enhancing 

speed and accuracy. Despite these advancements, the demand for cost-effective, 

accessible, and user-friendly cell counting methods persists, stimulating the 

development of innovative tools and techniques. 

 

Integrating AI functionality into an LPM for cell counting offers a transformative 

solution, particularly beneficial for resource-limited settings, by democratizing access 

to advanced research tools. This integration improves usability, enabling users of 

various expertise levels to obtain accurate and consistent results. The device's 

portability and real-time analysis capabilities broaden its application to field studies and 

point-of-care diagnostics, facilitating immediate decision-making. Additionally, AI's 

adaptability promotes continuous enhancement and versatility in applications, while 

automated data management supports more profound, insightful research. By reducing 

subjectivity and errors associated with manual counting, this innovative approach 

promises to advance the precision and reliability of cell analysis in diverse scientific 

and medical domains significantly. 
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Employing cell counting to validate the performance of a LPM's optical imaging and 

AI algorithms is a strategic move, capitalizing on the universal importance and 

quantitative nature of cell counting in the biological and medical sciences. This 

methodology not only assesses the system's ability to manage the complexity and 

variability of biological samples but also ensures the microscope's relevance for 

research and clinical diagnostics. Such a validation approach effectively demonstrates 

the microscope's potential to revolutionize access to sophisticated imaging and 

analytical technologies, positioning it as an invaluable tool for a wide array of scientific 

inquiries and applications. 

 

1.2.2 Use of models as biological phantoms 

In this study, bead phantoms were utilized due to their uniformity in size and shape, 

facilitating the standardization of experimental conditions and ensuring the 

reproducibility of results. These model beads acted as an idealized stand-in for cells, 

offering a controlled setting to examine specific variables devoid of the complexity and 

variability typical of biological specimens. Additionally, prepared fixed blood samples 

were employed for counting and segmentation experiments. The use of fixed blood 

samples brings the benefit of long-term stability and the preservation of cellular and 

subcellular structures, rendering them suitable for experiments that do not necessitate 

functional viability. Conversely, fresh blood samples are preferred in assays that require 

the assessment of cellular functionality and physiological responses, as they preserve 

the dynamic properties and reactivity of living cells. Taking into account both 

effectiveness and complexity, employing beads and prepared fixed blood samples 

represents a suitable approach to validate the performance of the proposed LPM. 
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1.2.3 Method of image analysis for cell segmentation 

Before the widespread use of neural networks for image analysis in cell segmentation, 

several traditional image processing and analysis methods were employed. These 

methods primarily relied on techniques that did not require the extensive training data 

or computational resources that neural networks demand.  

 

For example, thresholding is one of the simplest techniques where the image is 

converted into a binary image based on a threshold value. Pixels above the threshold 

are considered part of the object (e.g., cells), and those below are considered 

background. This method works well when there is high contrast between the objects 

and the background [9]. Edge detection is also a popular way for cell segmentation, 

techniques like the Sobel [10], Canny [11], and Prewitt operators [12] were used to 

detect edges within an image. These edges would then be used to outline objects of 

interest, such as cells. Edge detection works by identifying sudden changes (gradients) 

in pixel intensity.  

 

Although these traditional methods have provided valuable tools for analysing cell 

images, they are constrained by several limitations. They often struggle with low-

quality images marked by poor contrast or noise and require extensive manual tuning, 

making them less adaptable to varying image conditions. They tend to falter when 

dealing with complex cell structures, such as overlapping or closely situated cells, and 

lack the capacity to handle the inherent variability in cell morphology. Moreover, these 

methods cannot realize real-time analysis and manual feature selection is necessary. For 

LPMs, whose imaging performance cannot compete with benchtop microscopes, using 

these traditional algorithms for data processing cannot always get accurate results. 

 

CNNs have revolutionized cell segmentation by offering extraordinary accuracy, 
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efficiency, and robustness [13–15]. Their ability to automatically learn complex 

features from vast amounts of imaging data sets them apart, eliminating the need for 

manual feature selection and significantly reducing human error. CNNs excel in 

processing large datasets, adapting to various imaging conditions, showing high 

robustness in processing noisy data, and handling the intricate details of cellular 

structures. Moreover, the flexibility of transfer learning allows for leveraging pre-

trained models to enhance segmentation tasks, even with limited data. This end-to-end 

learning capability, combined with the potential for real-time processing, positions 

CNNs as a cornerstone technology in advancing biomedical imaging and analysis, 

opening new horizons for research and clinical applications. 

 

RBC count is a key component of a complete blood count, which is vital for diagnosing 

various conditions like anaemia, polycythaemia, and dehydration [16–18]. Real-time 

counting allows for immediate results, facilitating swift decision-making in clinical 

settings. In biomedical research, real-time RBC counting can provide insights into the 

effects of various drugs, treatments, and conditions on blood health and function [19]. 

It allows for the immediate observation of reactions and interactions within the blood. 

In these scenarios, using the microscope to acquiring blood sample images and applying 

algorithms to realize segmentation and counting are necessary. Counting RBCs in real 

time offers immediate results, enabling rapid decision-making. This is crucial in 

emergency situations where quick diagnosis and treatment initiation can be lifesaving 

[20]. Therefore, for realizing real-time RBC counting and segmentation in resource-

limited area, increasing disease diagnosis level, developing a LPM with real-time 

functionality is a good option. 

 

1.3 Smartphone-based Optical Sectioning Microscope 

Optical sectioning microscopy stands as a cornerstone in scientific research, 
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particularly within biological and biomedical research areas, due to its capacity for 

generating high-resolution three-dimensional images without necessitating the physical 

sectioning of specimens. This non-invasive approach preserves the integrity of living 

samples, enabling continuous observation of dynamic processes. The technique's 

compatibility with fluorescence microscopy, combined with its ability to filter out-of-

focus light, significantly enhances image clarity and contrast, thereby facilitating the 

detailed examination of cellular structures and molecular interactions. Furthermore, its 

versatility and quantitative imaging capabilities extend its applicability across a broad 

spectrum of scientific disciplines, making it an indispensable tool for advancing our 

understanding of complex biological systems and materials. 

 

However, the high cost and substantial size of traditional optical sectioning microscopes 

limit their availability, especially in underfunded laboratories, remote areas, and 

resource-limited areas. There is a notable gap in research focused on making this 

technology more accessible; few studies have concentrated on designing and 

developing low-cost, portable versions of optical sectioning microscopes. Addressing 

this gap by creating affordable, portable optical sectioning microscopes could 

significantly enhance healthcare standards and facilitate biomedical research in 

resource-limited regions, thereby promoting a more equitable distribution of scientific 

advancement and healthcare solutions worldwide. 

1.3.1 HiLo microscopy 

As an advanced optical sectioning imaging technique, HiLo microscopy works by 

acquiring two images of a specimen: one with uniform illumination (resembling 

traditional wide-field microscopy) and another with structured, non-uniform 

illumination [21]. The structured illumination is typically achieved by projecting a 

striped pattern onto the specimen. These two images are then computationally 

combined to produce a final image that retains the high-resolution features of the 
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specimen while significantly reducing out-of-focus light. Detailed information can be 

found in chapter 4 and chapter 5. 

 

Although there are variety of optical sectioning microscopy, like SIM [22], light-sheet 

microscopy [23], and confocal microscopy [24], HiLo microscopy presents unique 

advantages. First, implementing HiLo microscopy can be more cost-effective than 

setting up a light-sheet, SIM, or confocal microscopy system. It can be adapted to 

existing wide-field fluorescence microscopes with relatively straightforward 

modifications, bypassing the need for the elaborate setups and calibrations required by 

more complex systems like confocal and light-sheet microscopes. For instance, light-

sheet microscopy necessitates an additional illumination path to generate a light-sheet 

illumination pattern, which is orthogonal to the observation optical path. 

 

A critical benefit of HiLo microscopy is its minimal photodamage to biological 

specimens, an essential consideration for prolonged live-cell imaging to maintain 

specimen health. Unlike confocal microscopy, which often involves high-intensity laser 

scanning that may cause significant photobleaching and photodamage, HiLo 

microscopy employs lower light intensities. Although light-sheet microscopy also 

minimizes photodamage, its costs are considerably higher than those associated with 

HiLo microscopy. The problem with many light-sheet microscopes is the complex 

sample mounting requirement. Most will not be using illumination and detection 

through the same objective lens. 

 

HiLo microscopy can also provide faster imaging speeds compared to confocal 

microscopy and SIM. Confocal microscopy involves point-by-point scanning of the 

specimen, which can be time-consuming, especially for large areas or when acquiring 

multiple z-stacks. HiLo microscopy, however, captures entire fields of view, making it 

faster for certain applications.  
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SIM, on the other hand, requires capturing multiple images with different phase shifts 

of the illumination pattern for each orientation, which can be time-consuming, 

especially for dynamic live-cell imaging, and it necessitates complex algorithms to 

reconstruct the super-resolution image from the multiple phase-shifted images. 

However, HiLo microscopy can offer faster imaging speeds because it typically requires 

capturing fewer images to produce a high-contrast, optically sectioned image. It relies 

on a simpler computational approach to combine the uniformly and non-uniformly 

illuminated images, and the image processing involved in HiLo microscopy is generally 

less computationally intensive than that required for SIM.  

 

1.3.2 Smartphone-based HiLo 

The integration of smartphone with HiLo microscopy techniques presents a compelling 

case for the development of low-cost, portable optical sectioning microscopes. The 

feasibility of utilizing smartphones for microscopic applications is underpinned by the 

continuous advancements in their camera technology and LED illumination capabilities. 

Modern smartphones are equipped with high-resolution cameras, featuring sensors with 

high pixel density and sensitivity, enabling the capture of detailed and clear images. 

The LED flash and torch functions serve as adaptable and bright light sources, 

providing necessary illumination for viewing specimens. Moreover, the computational 

power of smartphones supports sophisticated image processing and analysis through 

various applications, enhancing the microscopy experience. 

 

On the other hand, HiLo microscopy, enhances image quality by combining high-

resolution and wide-field imaging, yielding clear and detailed images with improved 

contrast and reduced background noise. This technique is simple and cost effective 

when comparing with other advanced optical sectioning microscopy. By merging the 

convenience and accessibility of smartphone-based imaging with the advanced optical 
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sectioning capabilities of HiLo microscopy, it becomes possible to create a powerful, 

low-cost microscopy solution. Such a system would open new avenues for field-based 

studies and point-of-care diagnostics. The synergy of these technologies making 

advanced microscopy more accessible and practical for a wide range of applications. 

 

The integration of smartphones with HiLo microscopy stands out as more suitable 

compared to combinations with light sheet, confocal, or SIM due to several key factors 

spanning hardware requirements, software compatibility, and overall accessibility. First, 

HiLo microscopy requires minimal hardware alterations, making it highly compatible 

with the compact and integrated design of smartphones. Unlike light sheet or confocal 

systems, which necessitate elaborate setups with precise alignment and high-power 

light sources, HiLo can be implemented with simple optical modifications, aligning 

well with the portability of smartphones, and the LED flash in smartphones, while 

suitable for basic illumination in HiLo microscopy, may not provide the intensity or 

coherence required for techniques like light sheet or confocal microscopy, which often 

rely on laser sources for illumination. Moreover, HiLo microscopy leverages the high-

resolution sensors of smartphone cameras effectively, requiring only modest 

computational reconstruction to achieve optical sectioning. This is less demanding 

compared to the complex illumination patterns and high-speed imaging required in SIM, 

which may exceed the capabilities of standard smartphone cameras. 

 

Therefore, the combination of smartphones with HiLo microscopy offers a compelling 

balance of advanced imaging capabilities, ease of use, and affordability. This makes it 

particularly suited for applications where portability, cost, and user accessibility are key 

considerations, thus providing a strong case for its development and use over more 

complex and hardware-demanding techniques like light sheet, confocal, or SIM 

microscopy. 
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1.3.3 Data processing for smartphone-based HiLo microscopy 

In the proposed smartphone-based HiLo microscopy, SI images and widefield images 

are directly recorded by the iPhone original camera application, and then processed with 

HiLo algorithms on computer. Using smartphone providing a cost-effective alternative 

for capturing high-quality images. In some cases, Smartphones are being used in 

microscopy to capture images directly through the eyepiece of microscopes.  

 

However, the use of smartphones in microscopy is not without challenges. Dealing with 

the built-in image filters and processing algorithms of smartphones can be tricky, as 

these are typically optimized for general photography and can alter the raw data of 

microscopic images. This alteration can lead to inaccuracies in colour representation 

and detail, which is critical in scientific imaging. Moreover, smartphones have 

limitations in terms of optical zoom capabilities and sensor sensitivity compared to 

dedicated microscopy cameras, which can affect the resolution and quality of the 

captured images, particularly in low-light conditions. These limitations are discussed in 

detail in chapter 6. 

 

Despite these limitations, the use of smartphones in microscopy continues to grow, 

driven by ongoing advancements in smartphone camera technology and the 

development of specialized apps and attachments that aim to mitigate these challenges, 

making microscopy more accessible and versatile than ever before. 

 

1.4 Using Microlens Arrays (MLAs) for Minimizing 

the Cost of HiLo Microscopy 

The primary objective of this research is to explore cost-effective alternatives for 

implementing HiLo microscopy (see details in chapter. 5). The conventional approach 
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employs a DMD for producing Structured Illumination (SI). Despite its efficacy, the 

DMD's high cost necessitates the investigation of more economical solutions for SI 

generation, with the potential to significantly reduce overall expenses. 

 

This study proposes the use of microlens arrays (MLAs) as a viable, low-cost substitute 

for DMDs in creating SI for HiLo microscopy. The main reason for considering MLAs 

as an alternative is quite straightforward: they are simple and affordable tools for 

creating the necessary light patterns for structured illumination. Unlike more complex 

systems, MLAs use basic optical principles to focus light into regular, repeating patterns, 

which is exactly what we need for this kind of microscopy, but without the high cost. 

In contrast to DMDs, which require complex and expensive microfabrication processes 

to precisely control mirror orientations for light modulation, MLAs utilize fundamental 

optical refraction principles. By concentrating incident light into uniform, periodic 

focal points, MLAs can produce the necessary SI patterns with minimal hardware 

complexity and reduced manufacturing costs. 

 

MLAs present a cost-effective alternative to DMDs in HiLo microscopy. The cost 

advantage of MLAs over DMDs is underpinned by the availability of low-cost 

fabrication methods for MLAs, which significantly reduce the overall expense involved 

in their production and implementation. For instance, techniques such as microplastic 

embossing [25,26], microdroplet jetting [27,28], and laser swelling [29,30] have been 

identified as simple methods for producing MLAs at a fraction of the cost associated 

with the microfabrication of DMDs. These methods are particularly notable for their 

suitability for mass production, owing to their minimal complexity and reduced 

requirement for sophisticated equipment. Moreover, the advent of 3D printing 

technology has further expanded the possibilities for economical MLA fabrication, 

enabling the production of high-quality MLAs with minimal investment in specialized 

infrastructure [31,32].  
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It should be noticed that the fabrication of MLAs using Polydimethylsiloxane (PDMS) 

and exploiting surface tension methods has shown promising results for creating cost-

effective, high-quality optical components. One notable technique involves utilizing the 

interfacial tension force as the dominant mechanism for lens formation during spin 

coating under a multiphase system. This method leverages the unique properties of 

PDMS and the dynamics of surface tension to precisely shape microlenses [33]. 

 

To assess the feasibility of employing MLAs in HiLo microscopy, I conducted 

simulations of the HiLo imaging process using MLAs with varied parameters. The 

results of this analysis not only confirm the potential of MLAs in HiLo microscopy but 

also provide insights into how the specific characteristics of MLAs influence the quality 

of HiLo optical sectioning images. Although MLAs cannot be easily tuned when 

comparing with DMD, this study paves the way for understanding how MLA-generated 

patterns effect the final HiLo images and how to choose appropriate MLAs. 

 

1.5 Research Aims 

The key aims and goals of this PhD project are: 

1. To review current LPMs and corresponding biomedical applications and 

compare their performance and differences. 

2. To develop an AI-enhanced customized LPM with real-time target detection 

ability that can be used for RBC counting. 

3. To develop a low-cost HiLo optical sectioning microscope based on the 

smartphone. HiLo is a widefield optical sectioning algorithm, which will be 

introduced in the related section. 

4. To further minimize the cost of the HiLo optical sectioning microscope, a 

theoretical study about using the microlens array (MLA) with specific 

parameters to generate structured illumination (SI) is discussed. 
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1.6 List of Contributions 

A list of contributions of this PhD project are listed below: 

1. PAIM (πM): portable AI-enhanced fluorescence microscope for real-time target 

detection. 

⚫ Proposed a LPM with an easy optical path and mechanical design. 3D 

printed model constructs its body without any help of alloy or metal 

structure, and anyone can design it without sufficient mechanical design 

experience. Users can customize their artificial neural networks (ANNs) 

for applications on πM, such as feature extraction, pattern recognition, and 

cell counting. They can also connect πM to the internet and share real-time 

analysis results. 

⚫ The edge computing technique makes πM acquire a powerful AI-enhanced 

real-time analysis function. The NJN makes πM can be customized 

appropriately for different applications, and data transfer to the cloud and 

servers for analysis are exempted because of the NJN’s edge computing 

power. 

⚫ Even though those resource-limited regions have poor network and 

communication conditions, πM can also realize real-time analysis without 

any network data transfer because users can implant well-trained ANNs 

into the NJN in advance. This powerful AI module can immediately give 

users results after capturing microscopic images during the experiments. 

In the worst case, even if users want to realize functions that cannot be 

achieved in pre-trained ANNs, they can use πM to collect data and directly 

train their customized ANNs. After that, they can use πM to solve their 

given problems. 

2. Smartphone-based Optical Sectioning (SOS) Microscopy with A Telecentric 

Design for Fluorescence Imaging. 
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⚫ Proposed a smartphone-based optical sectioning microscope with an easy 

optical path and mechanical design. We built our SOS with off-the-shelf 

optical mechanical cage systems with 3D-printed adapters to seamlessly 

integrate the smartphone with the SOS main body. 

⚫ The broadband smartphone LED torch can effectively excite fluorescent 

polystyrene (PS) beads. The liquid light guide can be integrated with the 

adapter, guiding the smartphone’s LED light to the digital mirror device 

(DMD) with neglectable loss. 

⚫ The smartphone in our SOS microscope acts as a complementary metal-

oxide semiconductor (CMOS) sensor to decrease the cost of traditional 

HiLo microscopes. High-resolution coloured images can be acquired 

without external colour filters because of the smartphone’s Bayer filter and 

the small pixel size. 

⚫ The electrically tunable lens (ETL) was conjugated to the back pupil plane 

(BPP) of the objective lens for realizing a telecentric axial scan, which can 

stabilize SOS’s lateral magnification at different depths. 

⚫ To our knowledge, the proposed SOS is the first smartphone-based HiLo 

optical sectioning microscopy. It is a powerful, low-cost tool for 

biomedical research in resource-limited areas. 

3. Optimizing microlens arrays for incoherent HiLo microscopy. 

⚫ To our knowledge, this is the first numerical study about using proper 

MLAs to realize HiLo microscopy. 

⚫ This study can guide a more detailed analysis for further investigation in 

the theoretical research field, including a more comprehensive numerical 

aperture (NA) range, a larger microlens pitch, the ratio between NA and 

the lens pitch, and multiple microlens arrangements. 

⚫ This study can guide more researchers to establish low-cost MLA-based 

HiLo microscope systems in the experiment and engineering aspects. 
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1.7 Thesis Outline 

A summary of the following chapters of this thesis is shown below: 

 

Chapter 2: A literature review of LPMs 

This chapter will review different types of LPMs. They will be classified into 

smartphone-based, customized, and lensless LPMs. The hardware aspect will be first 

discussed. Their differences and performance will be introduced. LPMs for biomedical 

applications will also be discussed in detail. Finally, how to choose appropriate LPMs 

for different biomedical applications will be discussed. 

 

Chapter 3: PAIM (πM): portable AI-enhanced fluorescence microscope for real-

time target detection 

This work presents a PAIM (πM) based on a webcam and the NJN, integrating with 

edge computing techniques for real-time target detection. πM only costs ~$400 and its 

structure was constructed by a 3D printer, weighing only ~250 grams with dimensions 

of 145mm × 172 mm × 144 mm (L×W×H). It achieves a physical magnification of ×5 

and can resolve 228.1 lp/mm USAF features. Prepared microscopic samples, 

fluorescent PS beads, and human RBCs can be imaged in brightfield and fluorescence 

mode. The NJN exempts πM from time-consuming data transfer and image processing. 

Users can customize their ANNs for feature extraction, pattern recognition, and cell 

counting applications. They can also connect πM to the internet to share real-time 

analysis results. We used πM for fluorescent beads and human RBC observation. We 

demonstrated a convolution neural network (CNN) to realize real-time foreground 

feature extraction and counting functions without data transfer and image processing. 

With a miniature size and real-time analysis, πM has potential in point-of-care testing, 

field microorganism detection, and clinical diagnosis in resource-limited areas. 
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Chapter 4: Smartphone-based Optical Sectioning (SOS) Microscopy with A 

Telecentric Design for Fluorescence Imaging. 

This work presents a SOS microscope with a telecentric design for fluorescence 

imaging. SOS microscope uses the HiLo principle to realize the optical sectioning 

function, with a single smartphone replacing a high-cost illumination source and a 

camera sensor. It costs around £7,035 cheaper than a traditional HiLo microscope 

equipped with a scientific camera sensor and an illumination source. We used an ETL 

instead of a mechanical translation stage to realize low-cost axial scanning. SOS has a 

571.5 μm telecentric scanning range and a 5.5 μm axial resolution. We successfully 

used SOS for high-contrast fluorescent PS beads imaging with different wavelengths 

and optical sectioning imaging of accumulated fluorescent PS beads. SOS is a low-cost, 

compact optical sectioning microscope that is easy to replicate in a portable style. It has 

the potential for biomedical research in resource-limited areas. 

 

Chapter 5: Optimizing microlens arrays for incoherent HiLo microscopy 

This work presents a new low-cost HiLo microscopy technique using MLAs and 

incoherent LED light sources. We simulate SI patterns and HiLo image generation 

based on Fresnel diffraction and incoherent imaging theories. To observe how MLAs 

affect HiLo images, we used three common MLAs (cross-, cylinder-, and hexagon type) 

with specific microlens pitch and NA to generate periodic illumination patterns. 

According to the detailed mathematical deduction and numerical simulation, we 

analyse how different MLAs affect SI patterns’ appearance, modulation depth, and axial 

resolution. We also study how these SI patterns alter the final HiLo images’ 

performance. We conclude that increasing MLA’s lens pitch can enhance the HiLo 

image’s contrast and optically-sectioned ability. However, this pitch size has a valve 

value. Beyond that, we also find that the hexagon-type MLA is the most susceptible to 

artifacts, and we can get HiLo images with the mildest artifacts using cylinder-type 

MLA. To our knowledge, this is the first study about using proper MLAs to realize 
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HiLo microscopy. 

 

Chapter 6: Conclusion 

This chapter concludes the results and contributions of this PhD study. Future works 

and prospects of current studies are predicted and discussed. 
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Chapter 2. A Literature Review of 

LPMs 

Low-cost and portable microscopes can significantly facilitate disease detection and 

biomedical research in resource-limited areas. Recent advances in AI further boosted 

their capacities in image segmentation, pattern recognition, and imaging quality 

enhancement. This chapter will review recent advances in low-cost and portable 

microscopes for biomedical imaging applications. They can be categorized as 

smartphone-based, customized, and lensless microscopes. Then, I will discuss detailed 

case studies in biomedical imaging applications. At this chapter's final, I will summarize 

the key characteristics of LPMs under investigation. Additionally, I will provide 

insights into the criteria and considerations for selecting the most suitable LPMs 

tailored to specific biomedical applications. This discussion aims to distil the essential 

features and functionalities of LPMs, offering a practical guide for researchers and 

practitioners in choosing the appropriate microscope for their distinct biomedical needs. 

The comprehensive evaluation of LPM characteristics and the subsequent guidelines 

for selection will enhance the understanding and utilization of these portable imaging 

tools in diverse biomedical contexts. 

2.1 Introduction 

To fully develop the capabilities and potential applications of LPMs, it's crucial to 

recognize their role in transforming remote diagnostics, field research, and POCT 

applications. LPMs, characterized by their affordability and portability, enable 

immediate microscopic investigations in environments far from conventional 

laboratories. This innovation is particularly beneficial for field researchers and 

healthcare professionals who require quick and reliable diagnostic tools in remote or 

resource-limited settings. The ability of these microscopes to provide immediate 
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insights into the microscopic realm makes them invaluable tools in advancing 

healthcare diagnostics and environmental research. Considering about different type of 

LPMs, their corresponding characterizations, and application scenarios, many aspects 

should be discussed to get a better understand of LPMs: 

1. Choosing LPMs Appropriately: Considering the increasing diversity in LPMs, 

understanding how to select these devices correctly for various applications is 

crucial. 

2. Performance Enhancement: Exploring ways to enhance the performance of LPMs 

will contribute to their efficacy in diverse settings. 

3. Unique Features and Drawbacks: A comprehensive discussion on the unique 

features and potential drawbacks of LPMs is essential for a nuanced understanding 

of their capabilities and limitations. 

4. Future Development: Addressing the future development of LPMs is vital to 

anticipate emerging trends, technological advancements, and potential applications. 

These discussions will offer valuable insights for researchers, fostering a deeper 

understanding of the current landscape and guiding future developments in LPMs. 

 

There are many reviews about portable microscopes. Most of them are focused on 

detailed discussions of hardware systems, algorithms, and specific biomedical 

applications. For example, Wei et al. discussed portable microscopy platforms for 

single-molecule and particle detection [34]; Yang et al. reviewed the recent 

development of portable imaging platforms for cells analysis [35]; Cabodi et al. 

reviewed low-cost and portable lab-on-chip devices for malaria elimination [36]; 

Gopinath et al. discussed how to use low-cost portable devices for bacterial detection 

[37]. These review articles emphasized LPMs for specific biomedical applications. 

Cristobal et al. published a short review and commented on 23 articles in the last decade 

[38]; Kuang et al. reviewed computational portable microscopes and summarised their 

applications in POCT and telediagnosis cases [39]; Henriques et al. reviewed 
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customized microscopes for life sciences. He gave a field guide about how to design 

and use 3D printing to construct microscopes with different modalities [40]; Coté et al. 

classified LPMs into three imaging modalities (bright-field, fluorescence, and cross-

polarised) [41]; Ozcan et al. concentrated in mobile-phone-based microscopes and 

proposed potential diagnosis applications [42]. This gives the review a clearer clue for 

readers with different backgrounds and aims. Other review articles about LPMs and 

sensing platforms in environmental detection scenarios are out-of-scope, which can be 

found in [43–45].  

 

In this review section, I take a macroscopic approach to discuss LPMs, distinguishing 

my approach from the reviews mentioned above by providing a broad overview and 

technical trajectory from system design to its associated applications. From a systemic 

perspective, I categorize LPMs into three types: Smartphone-based, customized, and 

lens-less (or lens-free). I focus on their distinctive mechanical and design features, 

exploring imaging modalities and optical performance in each category. For each 

imaging platform, the advantages and drawbacks will be discussed. 

 

In the application segment, my emphasis lies on biomedical imaging applications, while 

non-imaging sensing applications are covered in References [42,46,47]. Here, four 

popular applications (Fig. 2-1) that can be realized on LPMs are chosen for detailed 

discussion. Additionally, how different hardware imaging platforms can be 

appropriately employed for various biomedical imaging applications will be discussed. 

 

Fig. 2-1 illustrates the structure of this review section. The primary objective is to bridge 

the gaps between multidisciplinary subjects, encompassing optics, electronics 

engineering, and biology. By presenting a cohesive structure, hardware microscopists 

can focus on the practical aspects of biomedical imaging applications. Simultaneously, 

this review is a valuable resource for biologists, introducing how low-cost portable 
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microscopes can support their biomedical and healthcare research endeavours. 

 

 

Fig. 2-1. The review’s structure. Three types of LPMs: smartphone-based, customized, 

and lensless. Four appropriate bioimaging applications which can be realized on LPMs. 

2.2 System Configuration of Low-cost Portable 

Microscopes 

There are three main categories of LPMs: smartphone-based, customized, and lensless 

(Fig. 2-1). Within each category, this analysis begins with a literature review and 

examines specifications about mechanical structures and optical properties. The 

characteristics and limitations are subsequently discussed in the final section. 

2.2.1 Smartphone-based Low-cost Portable Microscopes 

Modern smartphones have high-performance chips, internal memory, advanced optical 

sensors, and low-aberration lenses. They usually provide good imaging quality and fast 

data analysis functions. After combining smartphones with external optical lenses and 

filters, they can work as microscopes [48]. These smartphone-based LPMs are compact 

and user-friendly. They can obtain cellular scale resolution [49,50]. After examining 

recently published smartphone microscopes, I concluded that smartphone microscopes 

could be realized in three configurations: 1. Applying polymer [51] or liquid droplets 
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[52] onto the smartphone camera surface; 2. Putting a reversed smartphone lens before 

the smartphone camera to constitute a 1:1 magnification system [53]; 3. Designing 

proper mechanical adapters for harnessing external optical paths to the smartphone [54–

56]. Table. 2-1 lists smartphone-based microscopes with different configurations. The 

corresponding imaging modality, resolution, and biomedical imaging application are 

also described. 

 

Table. 2-1. Smartphone-based microscope classified by three configurations. BF: 

Brightfield, DF: Darkfield, PC: Phase contrast, OI: Oblique illumination, RI: 

Rheinberg illumination, FP: Fourier ptychography, WBC: White blood cell. 

Configuration Imaging modality Resolution Biomedical imaging application Reference 

Droplet 

BF 

3.91 μm 

Pathology imaging 

[57] 

1 μm [58] 

2.19 μm Microfluidic particle detection [59] 

BF/Fluorescence 

2.76μm 

Cell and tissue imaging/Cell counting/ 

Plasmid transfer evaluation/Superoxide production analysis 

[51] 

3.1 μm fluorescently labelled M. smegmatis detection [60] 

Reversed smartphone lens 

BF 

<=5 μm Blood smear imaging [53] 

<=5 μm Schistosoma haematobium infection diagnosis [61] 

<=6.5 μm L. loa microfilariae detection in whole blood [62] 

<=4 μm WBC screening [63] 

BF/Fluorescence 1.21 μm Blood cells morphology recognition and cell counting [64] 

BF/Fluorescence with UV 

illumination 

<1 μm 

Pathology imaging/Mucosal smear imaging/ 

Bacterial imaging 

[65] 

Mechanical adapter 

Fluorescence <=1.5 μm Single DNA molecules/nanoparticles/virus detection 

[66] 

[67] 

BF/DF/Fluorescence 

0.98 μm DNA sequencing and in situ mutation analysis [68] 

5.35 μm Cell sorting [69] 
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Quantitative phase 0.98 μm axial RBC quantitative phase imaging [70] 

BF/DF/PC 5 μm axial Human blood, cells, and bacterial imaging [71] 

BF/PC N/A Pathology imaging [72] 

BF/DF/OI/Fluorescence/RI/PC 1.7 μm Tissue/cells/fungus imaging [73] 

FP 870 nm Blood smear imaging [74] 

Fluorescence 1.2 μm Single-molecule detection  [75] 

 

a. Droplet  

Applying droplets onto the smartphone camera surface is a straightforward method for 

magnification. The formation of liquid lenses is facilitated by surface energy 

minimization, requiring no intricate parameter control [76]. Among polymers, PDMS 

is an ideal choice for crafting droplet lenses due to its capacity for high-temperature 

curing without significant shape deformation or viscosity alterations. Ekgasit et al. 

fabricated planoconvex lenses by dripping PDMS droplets onto small circular disks 

[77]. Kamal et al. introduced a passive droplet dispensing and capturing approach 

specifically designed for producing high-quality droplet lenses [78]. Hu et al. 

innovatively presented the concept of effective surface tension, enabling the modelling 

of fast-cured polymer droplets as conventional liquid droplets with a constant viscosity 

[79]. In a related study, Szydlowski employed oil droplets dripped onto the sample 

surface for microscopic image observation [52]. These studies showed that integrating 

droplet lenses with smartphones is a potent and cost-effective solution. 

 

Lee et al. successfully integrated the droplet lens with a smartphone, achieving an 

impressive 60x magnification. They applied this setup for imaging human pathology 

slides, pollen grains, and skin samples [57]. Similarly, Sung et al. investigated the 

properties of droplet lenses with varying volumes and curing temperatures, employing 

the droplet lens smartphone microscope for pathology imaging [58]. Salafi et al. 
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adopted a comparable approach, incorporating microfluidic devices for real-time 

particle detection. To facilitate this, they devised a 3D-printed adapter to seamlessly 

integrate microfluidic chips and droplet lenses with a smartphone, enabling particle 

counting at 240fps with an accuracy of (93.6 ± 2.0) % (average particle speed = 

2.2mm/s) [59].  

 

The studies highlighted above concentrated on brightfield imaging. However, to extend 

the capabilities of the droplet smartphone-based microscope to fluorescence imaging, 

Dai et al. [51] and Long et al. [60] employed a strategy of dyeing PDMS with silicon 

dyes. This innovative approach allowed for the combination of droplet lenses and 

absorption optical filters. Consequently, various applications such as plasmid 

transfection evaluation, superoxide production analysis, immunofluorescence 

pathology imaging [51], and detecting fluorescently labelled bacteria [60] became 

easily achievable. Diagrams extracted from the related research articles are depicted in 

Fig. 2-2. 

 

 

Fig. 2-2. Droplet lens smartphone-based microscopes for biomedical imaging 

applications. (a) Salafi et al. fabricated PDMS droplet lenses with different volumes to 
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obtain different magnifications. They designed a 3D-printed adapter to harness the 

droplet lens and the microfluidic chip into the smartphone for microfluidic particle 

counting [59]. (b) The smartphone is equipped with a silicon-dyed PDMS droplet lens 

for fluorescently labelled bacteria detection [60]. (c) The smartphone is equipped with 

different colour compound droplet lenses for various wavelength fluorescence 

observation [51]. 

b. Reversed Smartphone Lens 

An alternative method to implement a smartphone-based microscope involves 

positioning a reversed lens before the camera. This configuration creates an imaging 

relay system by combining the reversed and original smartphone lenses. The 

magnification is determined by the f-number ratio between the two lenses. When the 

reversed lens matches the specifications of the original smartphone lens, a 1:1 imaging 

relay system is established. Additionally, employing the same lens allows the creation 

of a symmetrical imaging system, effectively reducing off-axis aberrations [80]. 

 

In contrast to droplet-based methods, this approach does not necessitate a sophisticated 

fabrication process. Moreover, most smartphone lenses feature five to seven carefully 

designed plastic aspherical lenses, effectively minimizing optical aberrations while 

maintaining cost control. Switz et al. affixed the reversed lens to the phone using 

double-sided tape and devised a straightforward mechanical stage (costing less than 

$30). This system, boasting a resolution of less than 5μm, demonstrated the capability 

to observe human red blood cells (Fig. 2-3a) [53]. In another study [61], Ephraim et al. 

applied the same method for S. haematobium detection, achieving a system sensitivity 

and specificity of 68% and 100%, respectively. Ambrosio et al. utilized a reversed lens 

to create a smartphone microscope for capturing and analysing videos of microfilaria 

motions in the blood (Fig. 2-3b). In a clinical application, they examined 33 potentially 

Loa-infected patients in Cameroon, achieving a specificity and sensitivity of 94% and 
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100%, respectively [62]. In Central Africa, this device can potentially exclude patients 

from ivermectin-based treatment at the point of care in Loa-endemic regions, thereby 

facilitating the extension of drug administration programs for onchocerciasis and 

lymphatic filariasis. 

 

In 2020, Sánchez et al. presented a smartphone microscope employing a reversed lens 

and oblique 520nm illumination. This device demonstrated the capability to resolve 

optical absorption gaps (OAG) in nail fold capillaries, as illustrated in Fig. 2-3c. 

Leveraging the absorption of 520nm light by human RBCs, the technique facilitates 

quantitative screening of WBCs. In their experiments, a recording rate of 60fps proved 

sufficient to resolve an average frequency of 37 OAGs/minute passing through nail fold 

capillaries [63]. Similarly, Rabha et al. utilized the reversed lens and devised a 3D-

printed mechanical adapter to create a multimode (brightfield, fluorescence) imaging 

system [64]. This system achieved a lateral resolution of 1.21 μm over a satisfactory 

FOV (∼4530 μm2). Well-established brightfield and fluorescence imaging of blood 

cells and automatic cell counting were demonstrated. Additionally, they developed an 

algorithm and programmed the smartphone for cell counting (Fig. 2-3d). 

 

Liu et al. made a groundbreaking contribution by demonstrating the first ultraviolet 

surface excitation microscope on the smartphone platform, utilizing a reversed lens (Fig. 

2-3e). Their approach involved using sub-285nm UV light for illumination, penetrating 

only a few microns into typical specimens. This method achieves strong optical 

sectioning near the sample surface without degrading image contrast due to subsurface 

signals. Furthermore, sub-285nm UV light can effectively excite many fluorescent dyes 

(such as DAPI, fluorescein, rhodamine, etc.), providing a straightforward mechanism 

for general fluorescence imaging. The platform successfully realized pathology and 

immunofluorescence imaging, plant and environmental samples imaging, and mucosal 

smear imaging [65]. 
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Fig. 2-3. Reversed lens smartphone-based microscope for (a) human RBC imaging [53], 

(b) microfilaria detection in whole blood [62], (c) WBC screening [63], (d) blood cells 

morphology recognition and cell counting [64], and (e) pathology imaging, mucosal 

smear imaging, and bacterial imaging [65]. 

c. Mechanical Adapter 

To augment the functionalities and imaging modalities of smartphone-based 

microscopes, researchers employ CAD software and 3D printing to create mechanical 

adapters seamlessly compatible with specific smartphones. These adapters enable the 

integration of various optical devices and paths into the smartphone microscope, 

facilitating the realization of diverse imaging modalities, including fluorescence [81,82], 

DF [83], PC [84], and FP [74]. Unlike droplet and reversed lens smartphone-based 

microscopes, mechanical adapters offer the advantage of combining more advanced 
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imaging modalities with smartphones. Furthermore, these precisely engineered 

adapters contribute to the system's stability. 

 

The research group led by Aydogan Ozcan has put forth a diverse range of mechanical 

adapters tailored for various bioimaging applications with smartphones. These 

applications encompass imaging of blood cells on a fibre-optic array [85], detection of 

Giardia lamblia cysts [56], enhanced detection of plasmonic nanoparticles [86], 

smartphone microscopy enhanced by DL [87], detection of pathogenic bacteria [82], 

and blood cell detection [1,88]. Wei et al. [66] introduced a portable smartphone 

microscope for nanoparticle and virus detection. Their approach involved combining a 

smartphone with a mechanical adapter that integrated an illumination laser source, an 

optical filter, and an objective lens, effectively creating a fluorescent microscope. 

Remarkably lightweight at only 186g, the system achieved a resolution of 1.5μm and 

successfully demonstrated fluorescent single-virus imaging (Fig. 2-4a). In 2014 [67], 

they utilized a similar device to image single DNA molecules of various lengths, 

achieving a length measurement accuracy of <1 kbp for DNA molecules 10 kbp and 

longer (Fig. 2-4b). 

 

Kühnemund et al. established a smartphone platform for imaging and analysing DNA 

sequencing reactions and in situ point mutation detection assays in preserved tumour 

samples [68]. The system featured a half-pitch resolution of 0.98μm and an imaging 

FOV ∼0.8mm2. It accurately quantified individual RCA products over a 4-log dynamic 

range (1fM-10pM) (Fig. 2-4c). Knowlton et al. innovatively designed a smartphone-

based microfluidic cytometry incorporating magnets beside the microfluidic chip to 

generate a magnetic field inside the channel. This setup allowed sorting RBCs and other 

magnetically combined samples using magnetic force. The system could realize 

fluorescence, brightfield, and darkfield imaging modalities [69,89]. 
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To enhance the accuracy of single-molecule detection on the smartphone platform for 

POCT applications, Trofymchuk et al. successfully integrated DNA origami 

nanostructures to scaffold addressable NanoAntennas with Cleared HOtSpots 

(NACHOS). The incorporation of NACHOS significantly increased the brightness of 

single emitters, with the researchers building a smartphone microscope to achieve 

single-molecule detection for DNA specific to antibiotic-resistant Klebsiella 

pneumonia [75] (Fig. 2-4f). 

 

Researchers can leverage customized mechanical adapters to integrate smartphone 

microscopes with various illumination methods. Phillips et al. developed an adapter 

featuring a domed LED array, providing easy smartphone attachment. The domed LED 

design supports the smartphone microscope with BF, DF, and PC illumination [71]. 

Meng et al. introduced a smartphone microscope designed for quantitative phase 

imaging of RBCs using the transport of intensity equation (TIE). This setup achieves 

an axial resolution of 0.98 μm [70]. Rabha et al. engineered a smartphone microscope 

with seven illumination modes within a single setup. They employed a programmable 

OLED display as the illumination source, allowing for the imaging of tissues, cells, and 

fungal specimens [73] (Fig. 2-4d). Lee et al. proposed a smartphone-based FP 

microscope utilizing the display screen for illumination. This device attains a half-pitch 

resolution of 870 nm across a broad FOV measuring 2.1 × 1.6 mm2. Notably, the device 

can reconstruct unstained blood smear samples (Fig. 2-4e) [74]. 
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Fig. 2-4. Smartphone-based microscope using mechanical adapters for (a) fluorescent 

single-virus imaging [66], (b) imaging single DNA molecules of various lengths [67], 

(c) analysing DNA sequencing reactions and in situ point mutation detection assays in 

preserved tumour samples [68], (d) multimode imaging of tissues, cells, and fungus 

specimens [73], (e) Fourier ptychographic microscope [74], and (f) single-molecule 

detection for DNA specific to antibiotic-resistant Klebsiella pneumonia [75]. 
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2.2.2 Customized Low-cost Portable Microscopes 

Customized microscopes offer a broader range of imaging modalities compared to their 

smartphone-based counterparts. They can facilitate various functions, spanning from 

basic fluorescence microscopes [90,91] to advanced single-molecule [92,93] and SR 

microscopes [94,95]. Additionally, the meticulous mechanical design, precise 

alignment, and utilization of readily available components contribute to the enhanced 

optical performance of these customized microscopes. 

 

A notable advantage lies in the accessibility provided by open-source initiatives and 

microscopy societies, which encourage researchers to share their hardware designs 

openly. This collaborative effort enables the seamless downloading of customized 

components and mechanical designs [96,97]. Consequently, even biologists lacking 

extensive microscopy expertise can swiftly assemble a microscope tailored to their 

research needs, guided by the readily available open-source guidelines. 

 

Utilizing 3D printing proves to be a suitable technique for constructing budget-friendly 

mechanical structures and tailored components [40]. Researchers have demonstrated 

effective strategies for reducing the expenses associated with imaging sensors [98] and 

illumination sources [95,99,100]. Table. 2-2 presents a compilation of customized 

microscopes designed for specific biomedical applications. The evaluation of their 

system complexity is categorized into three levels: simple, medium, and complex. 
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Table. 2-2. Customized microscope classified by the system complexity. BF: 

Brightfield, DF: Darkfield, PC: Phase contrast, DH: Digital holography, RI: 

Rheinberg illumination, LS: Lightsheet, TPFM: Two-photon fluorescence microscopy, 

SR: Super-resolution, SIM: Structured illumination microscopy, ISM: Image 

Scanning microscopy 

Complexity Imaging modality Resolution Biomedical imaging application Reference 

Simple 

BF/DF/Fluorescence/LS  < 2.2 μm 
Monocyte to macrophage cell differentiation monitoring/ 

Zebrafish expressing green fluorescent protein (GFP) observation 
[101] 

BF/Fluorescence 

< 2 μm 
Cell motility monitoring/Cell and tissue viability analysis/ 

Oxygen microenvironment measurement inside organoids 
[102] 

1.3 μm Blood and faecal smears with parasite imaging [103] 

1.62 µm RBCs segmentation and counting [104] 

DH 0.594 µm RBCs analysis for COVID-19 screening [105–107] 

Fluorescence 3 μm In situ live-cell imaging and analysis [108] 

Medium 

BF/Fluorescence/Polarised 0.48 μm Giemsa-stained blood smear sample imaging [109] 

BF/DF/PC/RI/Fluorescence N/A RBCs with Plasmodium parasites imaging [110] 

BF/Fluorescence 

0.793 μm RBCs parasitemia measurements [111] 

2-3 μm Automated sample preparation and cell imaging [112] 

1.187 μm Single cells assay in microwells and cell tracking in the microfluidic chip [113] 

ISM/SIM 156 nm-300 nm Fluorescent-stained Hela cells imaging [114] 

Complex 

TPFM 
0.44 μm lateral 

1.68 μm axial 
Mice brain Ca2+ imaging [115] 

SR (DNA-PAINT) 10 nm Microtubules/ Mitochondrial/ DNA origami imaging [116] 

LS N/A Zebrafish imaging/ Nervous system dynamic observation [94] 

BF 7 μm 

Longitudinal live imaging of Xenopus tropicalis embryonic/ 

In-incubator imaging of human embryonic stem cells and brain 

organoids 

[117] 

 

a. OpenFlexure 

The Richard Bowman Group has established the OpenFlexure, a fully open-source and 

automated microscope, as illustrated in Fig. 2-5. This microscope features a customized 

3-axis translation stage with a travel capacity of 12 mm * 12 mm * 4 mm and impressive 

resolutions of 70 nm in the x-y-axis and 50 nm in the z-axis [118,119]. With a compact 

volume of 15 cm * 15 cm * 20 cm and a weight of 500 g, the OpenFlexure offers a 
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resolution of 0.48 μm and supports brightfield, epi-fluorescence, and polarized imaging 

modalities. Notably, it has been deployed extensively, with over 100 units produced and 

utilized in Tanzania and Kenya for educational, scientific, and clinical purposes, 

particularly in imaging blood smears for malaria diagnosis [109]. 

 

Stirling et al. expanded the capabilities of OpenFlexure by introducing additional 

imaging modalities such as DF, RI, and PC [110]. Furthermore, they integrated it with 

the Raspberry Pi for automated control and real-time analysis. Moreover, OpenFlexure 

can be freely integrated various applications, including SIM [120] and microfluidic 

antibiotic susceptibility testing [121]. The versatility and accessibility of the 

OpenFlexure contribute significantly to advancing microscopy applications in diverse 

research fields. 
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Fig. 2-5. OpenFlexure microscope and its variations for biomedical imaging. (a) 

OpenFlexure for RBCs imaging [109]. (b) The self-designed 3-axis translation stage of 

OpenFlexure was fabricated by 3D printing [118]. (c) Multi-modal OpenFlexure 

combined with Raspberry Pi for realizing automatic control and real-time analysis [110]. 

(d) SIM is realized on the OpenFlexure platform [120]. (e) Using OpenFlexure for 

testing antibiotic susceptibility in microfluidic chips [121]. 

b. μCube and UC2 

Delmans and Haseloff introduced μCube, an assembly standard designed to standardize 

the creation of modular optical devices [122]. Resembling a fundamental building block 

like LEGO, μCube allows the integration of optical, electrical, and mechanical 

components into its structure, as depicted in Fig. 2-6a. This modular approach 
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empowers biologists to construct personalized microscopes tailored to their unique 

applications and preferences. Furthermore, the innovation extends beyond standalone 

use, as Delmans and Haseloff have ingeniously developed an adapter that facilitates 

seamless connection with the OpenFlexure platform. This interoperability enhances the 

versatility of both μCube and OpenFlexure, providing researchers with a flexible toolkit 

for addressing a wide array of microscopy needs. 

 

Similarly, Diederich et al. introduced UC2, a 3D-printed, open-source, and modular 

microscope that offers easy replication, modification, and extension capabilities, as 

illustrated in Fig. 2-6b [101]. These basic cubes can be assembled in various 

configurations to suit specific biological applications, as depicted in Figure 2-6c. One 

notable application of UC2 involves monitoring monocyte-to-macrophage cell 

differentiation inside an incubator over a seven-day period, as shown in Fig. 2-6d. 

 

Moreover, UC2's adaptability is demonstrated by its transformation into a LSM for 

imaging transgenic Zebrafish expressing green fluorescent protein (GFP) at only 400 

Euros. Expanding its functionalities, Want et al. enhanced UC2 by incorporating 

consumer-grade DMD and laser projectors, thereby upgrading it to perform ISM and 

SIM. This upgraded system successfully imaged Alex Fluor 647- and SiR-stained HeLa 

cells [114]. The birth of UC2 facilitates cost-effective customization and innovation in 

microscopy applications. 

 

Ouyang et al. have pioneered an open-source modular framework designed for 

automated pipetting and imaging applications [112]. Integrating various components 

such as OpenFlexure [109], Opentrons [123], ImJoy [124], and UC2 [101], they have 

created a seamless, automated pipeline aimed at simplifying protocols and eliminating 

the risk of suboptimal data quality resulting from human error. The system, depicted in 

Fig. 2-6(e), can be remotely controlled through software, facilitating sample preparation 
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and imaging analysis. 

 

With an impressive resolution ranging from 2 to 3 μm, this framework successfully 

executed a comprehensive protocol, which included staining of HeLa cells, in situ 

microscopic observations, and data analysis—all performed through a user-friendly 

interface accessible in a web browser. Ouyang et al.'s integrated system showcases the 

potential for efficiently and precisely conducting complex experimental procedures in 

a modular, automated fashion. 
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Fig. 2-6. Customized microscopes based on modular designs. (a) μCube, a fundamental 

building block. Different components can be directly installed into it [122]. (b-d) UC2 

open-source microscope for various imaging modalities [101]. (e) An open-source 

modular framework is constructed by different customized microscopes and open-

source systems for automated pipetting and imaging applications [112]. 



 Page 57 of 253 

 

c. Others 

Zhang et al. innovatively created a mini-microscope using off-the-shelf components 

and a webcam [102]. This portable device is adept at real-time monitoring of cell 

migration and analysing the activities of microfluidic liver and cardiac bioreactors. 

Remarkably, it can seamlessly integrate with various platforms such as cell culture 

plates, microfluidic devices, and organs-on-a-chip systems, potentially serving as a 

versatile alternative to traditional bench-top microscopes for prolonged in-situ imaging, 

as depicted in Fig. 2-7a. 

 

Javidi et al. employed 3D printing to fabricate a cost-effective digital holographic 

microscopy setup, showcased in Fig. 2-7b. They developed sophisticated algorithms 

and utilized deep learning methods to quickly detect COVID-19 from RBCs [105–107]. 

Similarly, Tristan-Landin et al. designed a 3D-printed fluorescence microscope for 

single-cell detection, incorporating a Raspberry Pi for image analysis, as illustrated in 

Fig. 2-7c [113]. Ojaghi et al. proposed a portable microscope utilizing ultraviolet 

illumination featuring microfluidic chips for label-free neutropenia detection [125]. 

 

Aidukas et al. ingeniously transplanted FP into a 3D-printed portable device, 

successfully reconstructing lung carcinoma intensity and phase images (Fig. 2-7d) 

[126]. Zhu et al. engineered a portable microscope by integrating a camera lens with a 

smartphone [91]. Jang et al. constructed a miniature darkfield microscope for prolonged 

cell monitoring [127]. MicroHikari3D, a low-cost microscope platform transformed by 

a 3D printer, boasts automated sample positioning, autofocus, and multi-illumination 

modalities (Fig. 2-7e). Bueno et al. harnessed this platform for whole 2D slide imaging 

and observation of 3D live specimens [128]. 

 

In [129], Niu et al. introduced a quantitative phase microscope designed for phase 
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imaging of RBCs. The system demonstrates impressive temporal and spatial 

sensitivities of 0.65 nm and 1.04 nm, respectively, as shown in Fig. 2-7f. These diverse 

and innovative approaches showcase the potential of low-cost and portable microscopes 

in various research and application domains. 

 

Customized microscopes offer the advantage of being compact and capable of remote 

control, making them particularly valuable for real-time monitoring of cell cultures 

within an incubator. A noteworthy example is the miniaturized modular-array 

fluorescence microscopy (MAM), a compact system designed for living cell imaging 

[108]. The MAM system comprises twelve miniature microscopes, each consisting of 

a gradient-index (GRIN) lens, a filter, and an imaging lens. Deployable within an 

incubator, it can simultaneously capture images from twelve cell culture chambers of a 

12-well plate, as illustrated in Fig. 2-7g. 

 

MAM achieves an impressive lateral resolution of 3 μm with a rapid 60 Hz frame rate. 

Son et al. demonstrated the efficacy of MAM by successfully recording in vitro cell 

imaging of living COS-7 cells within the incubator. This capability positions MAM as 

a valuable tool for real-time observation and analysis of dynamic cellular processes in 

a controlled environment. 

 

Another comparable device is the Picroscope, which features 24 cameras designed for 

longitudinal biological imaging [117]. This innovative tool is compatible with standard 

24-well cell culture plates and can capture 3D z-stack image data. Furthermore, the 

Picroscope can be remotely controlled, enhancing its versatility and ease of use. Ly et 

al. demonstrated the capabilities of the Picroscope by utilizing it to capture longitudinal 

whole-organism image data for frogs, zebrafish, and planaria worms. 

 

The adaptability of the Picroscope extends to its deployment within an incubator, where 
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it successfully recorded both 2D monolayers and 3D mammalian tissue culture models, 

as depicted in Fig. 2-7h. This feature underscores its utility for observing dynamic 

biological processes in various experimental settings over time. The Picroscope stands 

as an advanced tool for comprehensive longitudinal imaging in biological research. 
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Fig. 2-7. Other customized microscopes for bioimaging applications. (a) Low-cost 

customized microscope for microfluidic applications [102]. (b) Digital holography 

microscope for COVID-19 diagnosis assisted by deep learning [105–107]. (c) 3D 

printed microscope for single-cell analysis [113]. (d) 3D printed FP microscope [126]. 

(e) MicroHikari3D automatic microscope [128]. (f) Portable quantitative phase 

microscope for RBCs phase imaging [129]. (g) The miniaturized MAM for the in vitro 

cell imaging of living COS-7 cells in the incubator [108]. (h) Picroscope for 

longitudinal whole organism imaging [117]. 

2.2.3 Lensless Low-cost-Portable Microscopes 

In lensless microscopy, as opposed to employing optical lenses for the magnification of 

microscopic targets onto an image sensor, the approach involves recording object-

generated diffraction patterns by the image sensor, subsequently reconstructed through 

post-processing algorithms. Traditional microscopes are subject to a 'Resolution-FOV' 

trade-off, imposing constraints on the space-bandwidth product (SBP). Lensless 

microscopy addresses this limitation by reducing the distance between samples and the 

sensor, enhancing the system's FOV. Nevertheless, the spatial resolution of the lensless 

imaging system remains contingent upon the pixel size of the sensor, thereby limiting 

the SBP. To surmount this pixel-induced limitation in resolution, researchers have 

employed subpixel resolving techniques such as microfluidic flow [130–133], light 

source shifting [134–140], and synthetic aperture [141]. 

 

Lensless microscopes can be integrated with lab-on-a-chip (LOC) and microfluidic 

devices. The advancement of edge computing and system-on-chip (SOC) capabilities 

facilitates the on-the-fly processing of data acquired through lensless microscopy. This 

integration enables real-time analysis and enhances the overall efficiency of the 

imaging system. Ozcan and McLeod conducted a comprehensive review of lensless 

imaging, sensing methodologies, and their associated biomedical applications [142]. 
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Robinson et al. delved into lensless imaging applications encompassing photography, 

refocusing, 3D imaging, and microscopy in a more macroscopic exploration. Their 

classification of lensless imaging systems includes illumination-modulated, mask-

modulated, and programmable-modulated categories. Additionally, they provided an 

overview of algorithms and deep learning techniques employed in lensless image 

reconstruction [143]. 

 

In this context, the emphasis is placed on lensless microscopy and its applications in 

bioimaging. It should be noted that lensless imaging applications such as photography, 

compressive sensing, and macroscopic 3D imaging fall outside the scope of this 

discussion. References are recommended [144,145] for those interested in these 

specific areas. Lensless microscopy is herein categorized into shadow imaging, digital 

holography, mask-modulated imaging, and fluorescence imaging. Refer to Table. 2-3 

for a comprehensive list of pertinent articles detailing resolution, image reconstruction 

methodologies, and bioimaging applications. 
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Table. 2-3. Lensless portable system for bioimaging applications. LDHM: Lensless 

digital holography microscopy, MLM: Mask-modulated microscopy. RPCA: Robust 

principle component analysis. FISTA: fast iterative shrinkage-thresholding algorithm. 

CNN: Convolution neural network. 

Modality Resolution Image reconstruction Biomedical imaging application Reference 

Shadow 

imaging 

40 μm 

N/A 

C. Elegan screening [146] 

3 μm Cell monitoring [147] 

0.24 μm Urine analysis [148] 

0.9 μm C. Elegen and cell imaging [131] 

0.66 μm Pixel super-resolution algorithm Continuous cell culture monitoring [137] 

LDHM 

2 μm 

N/A 

Cells detection and cytometry [149] 

N/A 

Prostate epithelial cells analysis [150] 

Real-time label-free cell detection [151] 

Gerchberg-Saxton algorithm 3D cell culture imaging [152] 

0.98 μm Phase retrieval and TIE Pathology imaging [153] 

3 – 5 μm Phase retrieval Real-time cell functions monitoring [154] 

1.55 μm Phase retrieval Sperm and platelet imaging [155] 

MLM 

1.6 μm RPCA/FISTA 
3D imaging of moving fluorescent beads 

in the microfluidic chip 
[156] 

0.78 μm Customized recovery algorithm Cancer slides imaging [157] 

N/A CNN 
RBC classification [158] 

Sickel cell disease identification [159] 

8 μm lateral 

50 μm axial 
FISTA 3D zebrafish imaging [160] 

< 9 μm lateral 

80 μm axial 
RPCA In vivo brain calcium dynamics imaging [161] 

Lensless 

fluorescence 

imaging 

10 μm 
Compressive sampling 

Transgenic C. Elegan imaging [162] 

<4 μm Giardia muris cysts imaging [163] 

36 lp/mm N/A Brain slice imaging [164] 

0.22 mm N/A Cancer cell detection [165] 

12 µm Customized 
Cell culture monitoring 

[166] 

1.2 μm N/A [167] 

 

a. Shadow Imaging 

Shadow imaging represents the most straightforward manifestation of lensless 

microscopy, requiring solely a stable illumination source and an image sensor, 
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rendering image reconstruction algorithms unnecessary. This technique positions 

specimens between the illumination source and the sensor (Fig. 2-8a). Notably, the 

illumination-to-sample distance spans approximately centimetres, surpassing the 

sample-to-sensor distance, which typically ranges from 1 μm to millimetres. To mitigate 

diffraction patterns effectively, researchers should set a minimal sample-to-sensor 

distance [146], typically less than 500 μm [142]. However, an incremental increase in 

this distance transforms shadow imaging into digital holography (as elucidated in 

section 2.3.2). In such instances, image reconstruction is imperative to restore 

amplitude and phase information [149]. 

 

Lange et al. utilized a compact shadow imaging apparatus with a microfluidic chip to 

investigate C. elegans [146]. Penwill et al. showcased the application of a lensless 

shadow imaging device for screening the growth phenotype of Schizosaccharomyces 

pombe [168]. Ozcan et al. introduced a lensless shadow imaging prototype (LUCAS) 

characterized by a wide FOV (37.25 mm * 25.70 mm) for monitoring and quantifying 

diverse cell types [147]. Zhang et al. seamlessly integrated a lensless shadow imaging 

device with a microfluidic chip, facilitating the automated recording of sperm 

movement within a microfluidic channel [169]. 

 

While lensless shadow imaging proves to be a compact means for particle detection 

[170], urine analysis [148], and cell monitoring [171,172], it is essential to acknowledge 

its limitation in resolution dictated by the pixel size of the sensor. 

 

Yang et al. devised a solution to address the inherent limitation imposed by pixel size, 

which involved the fabrication of a linear sub-micrometre aperture array positioned 

above the CMOS. Each aperture within the array is precisely centred on an individual 

pixel. In contrast, the microfluidic channel, positioned at a tilted angle over the aperture 

array, facilitates a line scan when the sample is introduced. Through the controlled flow 
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of the specimen, the adjacent linear aperture array functions as a scanning line, 

ultimately enabling the acquisition of sub-micrometre images upon the rectification of 

the line scan and estimation of flow velocity (Fig. 2-8d) [131,132,173]. 

 

Instead of modifying the hardware configuration, Zheng et al. retained the original 

hardware setup. However, they altered the illumination angle to capture low-resolution 

images from diverse perspectives (Fig. 2-8e, f). Subsequently, employing algorithms 

and leveraging these low-resolution images, they successfully reconstructed high-

resolution images [130,137]. 

 

 

Fig. 2-8. Lensless microscopy using shadow imaging principles. (a) Lensless shadow 

imaging principle, cropped from [142]. Lensless shadow imaging for sperm monitoring 

(b) [169] and continuous cell monitoring (c) [172]. SR shadow imaging by flowing 

samples (d) [131] and modulating illumination [130,137] (e,f) 
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b. Lensless Digital Holography Microscopy 

Lensless Digital Holography Microscopy (LDHM) employs either coherent or partially 

coherent light to illuminate samples, with the sensor capturing the resulting diffraction 

pattern [174,175]. This technique is extensively applied in LOC microscopy contexts 

[176]. The hardware setup closely resembles that of shadow imaging (Fig. 2-8a), with 

the notable distinction that the distance (z2) between samples and sensor can be 

increased for diffraction pattern recording [142]. 

 

In contrast to shadow imaging, LDHM excels in retrieving complex-field information 

encompassing both amplitude and phase. This capability enables the reconstruction of 

three-dimensional information, resulting in enhanced resolution and signal-to-noise 

ratio (SNR) compared to shadow imaging [150,174,177]. LDHM necessitates a 

coherent light source, commonly employing LEDs instead of lasers. By adjusting the 

source's size, bandwidth, and distance to the sample, LEDs' spatial coherence can be 

finely tuned, approximating the sample as illuminated by a partially coherent plane 

wave [174–176]. Despite lasers offering superior spatial and temporal coherence, they 

are susceptible to speckle noise. 

 

The coherent interference pattern captured on the sensor can be effectively modelled as 

an in-line hologram [178–180]. In this context, the intensity pattern arises from the 

interference between the scattering wave induced by the sample and the unobstructed 

reference wave transmitted from the source through the specimen. Leveraging the 

Fresnel diffraction integral to reverse-propagate the interference pattern allows for the 

reconstruction of the specimen in high resolution [181–183]. However, this digital 

holographic reconstruction approximation has limitations, particularly when applied to 

sparsely distributed samples. This constraint stems from the requirement that the 

sample-induced scattering wave must be less pronounced than the reference wave. 
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In a broader sense, the coherent interference pattern can be treated as a coherent 

diffraction pattern, challenging the validity of the clear reference wave assumption. 

Consequently, specific approaches, such as incorporating prior knowledge of the 

sample [174] or employing multiple measurements [141,153,177,184], become 

necessary for accurate sample recovery. 

 

LDHM exhibits sensitivity to sample sparsity, with the twin-image artifact becoming 

particularly pronounced in instances of high sample density [185,186]. Researchers use 

diverse approaches, such as employing varied sample-to-sensor distance measurements 

[153] and different illumination angles [141] to enhance sample information recovery. 

Additionally, the application of iterative phase recovery algorithms, such as the 

Gerchberg-Saxton (GS) algorithm [187,188] and the TIE [189,190], proves beneficial 

in improving reconstruction accuracy and convergence performance. For a more 

comprehensive exploration of LDHM and its intricacies, readers should consider 

authoritative sources [142,143,175]. 

 

LDHM emerges as a potent technique for cell and pathology imaging, analysis, and the 

recovery of phase information, particularly advantageous for sparse samples. Zora et al. 

undertook a cost-effective initiative, investing $52.82 to construct an open-source 

LDHM for bioimaging (Fig. 2-9a) [191]. Sobieranski et al. innovatively integrated 

LDHM with computational pixel super-resolution through multi-frame processing. 

Their prototype, employing the angular spectrum method, successfully recovered both 

intensity and phase information for sperm analysis, achieving a spatial resolution of 

1.55 μm over a FOV of 30mm² (Fig. 2-9b) [155]. 

 

Mundanyali et al. showcased a lensless on-chip microscope capable of realizing 

differential interference contrast imaging and imaging various blood cell types (RBC, 
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platelet, neutrophil). This system boasts a resolution of 1~2 μm across a 24mm² FOV 

and weighs approximately 46 grams (Fig. 2-9c) [174]. For target recognition using the 

lensless on-chip microscope, Seo et al. custom-tailored an algorithm for matching 

captured diffraction patterns to a predefined database (Fig. 2-9d) [149]. Furthermore, 

in their work [151,154], LDHM was leveraged for real-time cell culture monitoring, 

enabling the quantification of cell functions such as cell-substrate adhesion, cell 

spreading, cell division, cell division orientation, and cell death (Fig. 2-9e). 

 

Indeed, overcoming challenges posed by dense samples is achievable through various 

measurement and illumination strategies. Greenbaum et al. introduced a multi-detection 

approach by tilting the image sensor, employing the TIE, pixel SR, multi-height phase 

recovery, and colorization algorithms to capture detailed images of human pathology 

samples (Fig. 2-9f) [153]. Luo et al. incorporated the synthetic aperture method into 

LDHM for colour pathology imaging, achieving a system NA of 1.4 and a resolution of 

250 nm at a wavelength of 700 nm under unit magnification (Fig. 2-9g) [141]. Rivenson 

et al. employed two in-line holograms acquired at different sample-to-sensor distances 

and successfully recovered samples using multi-height phase recovery techniques (Fig. 

2-9h) [192]. 

 



 Page 68 of 253 

 

 

Fig. 2-9. Portable LDHM for bioimaging applications. (a) A low-cost portable LDHM 

for RBC imaging [191]. (b) LDHM with computational pixel super-resolution for sperm 

monitoring [155]. (c,d) LDHM for cell recognition [149,174]. (e-h) LDHM for dense 

sample imaging [141,151,154,192]. 
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c. Mask-modulated Lensless Microscopy 

In the preceding section (2.2.3.b), we observed that LDHM offers a compact 

dimensional profile, and its versatility in sample recovery extends from sparse to dense 

configurations through the application of phase retrieval algorithms. However, the 

recovery process presents an exceptionally ill-posed inverse problem intricately linked 

to experimental conditions and algorithmic performance. The recovery process 

becomes challenging if the differences between multiple detections are too subtle 

[143,193]. To address this issue, LDHM adopts strategies such as altering illumination 

patterns or adjusting the sample-to-sensor distance to acquire multiple detection results. 

 

Another approach to mitigate this challenge involves using mask-modulated lensless 

microscopy (MLM). In MLM, targets undergo illumination by a light source and are 

directly modulated by a mask before reaching the sensor. The resultant image on the 

sensor is a convolution between the sample and the PSF of the mask (Fig. 2-10). 

Generally, these masks fall into two categories: amplitude-based [156,194–198] and 

phase-based [194,199–203]. 

 

Amplitude-based masks are relatively easy to fabricate and cost-effective [156,194–

196]. However, due to the mask's attenuation and obstruction of specific light 

components, the SNR is compromised, limiting its efficacy in low-photon scenarios 

such as fluorescence imaging. 

 

On the other hand, phase-based masks modulate the light phase using wave optics 

without significant photon loss. This property makes them suitable for photon-limited 

scenarios like microscopy [156,160,161,204]. However, this advantage comes with a 

trade-off of high costs and intricate fabrication procedures [161,199,200,205]. 
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Fig. 2-10. The principle of MLM. The target is modulated by the mask and imaged to 

the sensor. At the sensor plane, the captured image is the convolution of the target and 

PSF of the mask. This image could be meaningless. Algorithms can reconstruct the final 

image. 

 

MLM exhibits versatility across various applications beyond microscopy and 

bioimaging, including photography, volumetric imaging, light field and refocusing, as 

well as compressive sensing [206]. In this discussion, the focus will be on reviewing 

references about MLM in microscopy and bioimaging. For a more comprehensive 

understanding of MLM and its applications in other domains, we strongly encourage 

readers to refer to the recommended sources [207]. 

 

Adams et al. introduced an amplitude-based lensless microscope named Flatscope, an 

ultra-lightweight device weighing only 0.2 grams and with a thickness of less than 1mm 

(Fig. 2-11a). Flatscope achieves a minimum resolution of 1.6 μm. The researchers 

employed Flatscope to record 3D volumetric videos of flowing fluorescent beads within 

microfluidic chips. To streamline the calibration and image reconstruction processes, 

they meticulously designed a mask pattern that could be decomposed by the outer 

product of two 1D functions. The reconstruction procedure was treated as solving a 

Tikhonov regularized least-squares problem [156]. 
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Jiang et al. implemented a diffuser between the object and the image sensor for 

modulation in their lensless microscope configuration. Utilizing the FP technique, they 

employed blind scanning of the sample in x-y positions using an illumination source 

for quantitative intensity and phase recovery (Fig. 2-11b). This system achieved a 

resolution of 0.78 μm over a 6.4mm * 4.6 mm FOV. Beyond biomedical slide imaging, 

they utilized the platform for cell segmentation based on quantitative phase maps 

captured by the lensless microscope [157]. 

 

Similarly, the research group led by Bahram Javidi incorporated a diffuser mask to 

realize lensless microscopy. They employed a low-cost, portable lensless microscope 

using an LD laser as the illumination source, with 3D printing facilitating device 

fabrication (Fig. 2-11c). Additionally, they integrated CNNs into their devices to 

achieve RBC classification and identify sickle cell disease [158,159]. 

 

MLM holds significant promise for advancing 3D biomedical imaging capabilities, 

facilitated by the masks' ability to encode light from various depths, enabling 3D 

imaging from a single acquisition [208]. Grossrubatscher et al. implemented a random 

microlens diffuser between the object and the image sensor (Fig. 2-11d). This setup 

allowed them to achieve 3D in vivo zebrafish imaging, with an 8 μm resolution in the 

lateral direction and a 50 μm resolution in the axial direction [160]. 

 

To address challenges such as light loss and low SNR inherent in amplitude-based mask 

lensless microscopes, Adams et al. introduced a novel phase-based mask lensless 

microscope called Bio-Flatscope (Fig. 2-11e). Bio-Flatscope exhibited improved 

performance compared to their previous Flatscope. The researchers designed a unique 

phase mask to generate the PSF using the near-field phase retrieval algorithm. The 

modulation transfer function (MTF) of Bio-Flatscope indicated the preservation of most 

spatial frequencies, allowing for the successful reconstruction of dense, low-contrast 
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samples such as biological tissue. Their investigations employed Bio-Flatscope to 

achieve 3D volume reconstruction of Hydra samples, stimulus-evoked Ca2+ brain 

monitoring in freely moving mice, and imaging of the human oral mucosa [161]. 

 

 

Fig. 2-11. Different types of mask-modulated lenless microscopes. (a) The FlatScope, 

an amplitude mask lensless microscope, cropped from [156]. (b) Using a diffuser as a 

modulator to realize mask-modulated lensless microscopes. The Fourier ptychography 

method is used for high-resolution images and phase recovery, cropped from [157]. (c) 

A low-cost diffuser-based lensless microscope for RBC detection. The CNN is used for 

sickle cell identification, cropped from [158,159]. (d) The lensless 3D fluorescent 

microscope, a random microlens diffuser is used as a modulator, cropped from [160]. 

(e) In Bio-Flatscope, the particular phase mask can generate contour PSF to modulate 
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the light signal. It can be used for 3D imaging, brain activity monitoring, and human 

oral mucosa imaging [161]. 

d. Fluorescence Imaging 

Fluorescence imaging can be successfully implemented in a lensless configuration 

[162,163,209]. The underlying principle is similar to shadow imaging, with the 

distinction that the collected light comprises incoherent fluorescent signals rather than 

scattered light. Moreover, in many fluorescence imaging scenarios, the emission light 

typically possesses a distinct wavelength from the excitation light. To attain images 

with a high SNR, excluding the excitation light from being captured by the image sensor 

is essential. 

 

Effectively rejecting excitation light can be achieved by incorporating an emission filter 

between the sensor and the sample. While Fabry-Perot film-coated filters offer superior 

filtering performance, their thickness is often impractical for lensless configurations, 

potentially compromising resolution [210]. Many filters can be directly fabricated or 

coupled to the sensor without significant spatial impact [211–214]. However, this 

approach may not eliminate all excitation light, occasionally leading to a low SNR in 

the images. 

 

An alternative strategy is to leverage total internal reflection (TIR) to prevent the 

collection of excitation light by the sensor [213]. Coskun et al. implemented a prism 

above the sensor to establish a TIR geometry (Fig. 2-12a). This configuration 

effectively avoids undesired scattering and excitation light, enabling the realization of 

Calcein-labeled white blood cell (WBC) imaging with a system resolution of about 40-

50 μm [209]. In a subsequent work [162], they employed compressive decoding 

processes to enhance the resolution to 10 μm, achieving lensless on-chip fluorescent 

imaging of transgenic C. elegans (Fig. 2-12b). 
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Another approach involves using optical fibre bundles to transmit the image to the 

sensor (Fig. 2-12c). In this setup, the sample is positioned on the surface of the optical 

fibre bundles, and the fluorescent signal can be relayed to the sensor. Inserting the 

emission filter between the fibre taper and the image sensor helps selectively capture 

the fluorescent signal. As the fibres carry the light toward the image sensor, the fibre 

bundle widens, providing a moderate on-chip magnification without needing a lens 

[163,215]. 

 

Sasagawa et al. developed an integrated fibre optical plate with optical filters named 

FOP, which can be directly coupled with the image sensor (Fig. 2-12d). The resolution 

of fluorescence imaging achieved with FOP is approximately 12 μm. The researchers 

successfully utilized FOP for time-lapse monitoring of cell culturing in a CO2 incubator 

[166] and imaging brain slices from a green fluorescent protein transgenic mouse [164] 

(Fig. 2-12e). To achieve high excitation light rejection performance, Kulmala et al. 

fabricated a high-performance dual-colour hybrid filter, combining it with FOP and 

mounting it onto a commercially available colour image sensor (Fig. 2-12f). Image 

processing effectively differentiated between green and red fluorescent beads by 

analysing images acquired through alternating excitation light sources [214]. 

 

Employing SI represents an effective strategy for enhancing the resolution of lensless 

fluorescence microscopy. Han et al. devised a lensless fluorescence microscope for 

longitudinal cell culture monitoring within an incubator (Fig. 2-12g). The system relies 

on the Talbot effect for imaging [216]. Their prototype achieves a resolution limit of 

1.2 μm over a 13 mm² FOV [167]. 

 

Tian et al. introduced a miniaturized light field lensless fluorescence microscope, 

GEOMScope, designed for 3D imaging (Fig. 2-12h). This setup combines an optical 
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filter with a thin microlens array, employing an innovative algorithm that integrates 

geometrical-optics-based pixel back projection and background suppressions for image 

reconstruction [204]. 

 

 

Fig. 2-12. Lensless microscopes for fluorescence imaging. (a-b) Using the TIR principle 

to reject excitation illumination. (a) [209]. (b) [162]. (c-f) Using optical fibre bundles 

to relay the image to the sensor. (c) [163]. (d) [166]. (e) [164]. (f) [214]. (g) A lensless 

fluorescence microscope for longitudinal cell culture monitoring from within the 
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incubator. The structured illumination is used for enhancing resolution [216]. (h) A 

miniatured light field lensless fluorescence microscope [204]. 

2.2.4 Discussion 

Section 2 comprehensively examines three LPM categories: smartphone-based, 

customized, and lensless. Within this segment, we have delved into the distinctive 

features inherent to each configuration, identifying their respective optimal application 

domains. The synthesis of information about each configuration is presented in Table. 

2-4, which encapsulates various facets of their attributes. 

 

The smartphone-based (droplet) configuration exhibits the lowest level of complexity, 

with optical magnification achieved using droplets. Nevertheless, owing to the inherent 

influence of hydrodynamics on lens shape control, this configuration manifests the least 

favourable imaging performance compared to other configurations. Concurrently, its 

imaging modality displays suboptimal results, particularly in BF and fluorescence 

imaging, as detailed in Table. 2-1. 

 

Due to their optomechanical design and incorporation of additional optical components, 

the other two smartphone-based microscopes (reversed smartphone lens and 

mechanical adapter) exhibit enhanced imaging quality and offer a broader range of 

imaging modalities. However, this improvement comes at the cost of intricate hardware 

configurations. For different smartphones, mechanical structures should be designed 

into various forms, which means these designs cannot be general. Deploying distinct 

algorithms and customized mobile applications allows for automated outcomes and 

real-time analysis in smartphone microscopes. These algorithms necessitate tailoring 

for specific applications, ensuring high-efficiency computing performance for seamless 

smartphone operation. 
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Notably, smartphone-based microscopes yield meaningful images directly, obviating 

the requirement for computationally intensive data recovery algorithms. Nevertheless, 

they must meet the demands of applications such as multi-target detection and high-

frame-rate video recording, which necessitate robust computational resources. Given 

their compact size and efficient computing capabilities, smartphone-based microscopes 

prove most suitable for POCT and healthcare applications in resource-limited areas. 

Examples include the detection of abnormal cells and the identification of 

parasites/bacteria in drinking water. 

 

Customized microscopes have a sophisticated optomechanical design tailored precisely 

to diverse biomedical applications, resulting in superior imaging performance and a 

broader array of imaging modalities. However, their primary limitation lies in the 

necessity for meticulous design and construction by experts in optomechanics for each 

specific application. In contrast to smartphone-based and lensless microscopes, the cost 

associated with customized microscopes is relatively higher. In terms of software 

capabilities, customized microscopes are equipped with external data processing units 

such as laptops, personal computers, and embedded systems (e.g., NJN, Raspberry Pi), 

enhancing compatibility and facilitating easy customization of software and algorithms 

for diverse applications. Integration with AI functionalities can be seamlessly realized 

on these platforms, given their high-performance processors. This attribute renders 

customized microscopes well-suited for laboratory and community hospital 

applications, including pathology studies and disease detection. 

 

Furthermore, the remote controllability of most embedded systems associated with 

customized microscopes extends their utility to real-time cell monitoring in specific 

chemical environments or incubators, amplifying their versatility in research settings. 

 

In contrast to smartphone-based and customized microscopes, lensless microscopes do 
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not directly capture images. Instead, the sensor initially captures diffraction patterns or 

modulated optical intensity fields. Subsequently, recovery algorithms are employed to 

reconstruct meaningful images from the acquired patterns. The data processing unit for 

lensless microscopes is also an external computational device. However, the original 

diffraction patterns or modulated optical intensity fields are susceptible to scattering, 

reflection, and sensor noise—random phenomena that introduce variability. 

Consequently, the same algorithm may yield different results across devices, 

diminishing the software compatibility of lensless microscopes compared to 

customized microscopes. 

 

The performance of lensless microscopes can vary for different applications and 

operational environments. In scenarios with low SNR, lensless microscopes may 

struggle to reconstruct meaningful images. Developing robust algorithms becomes 

crucial in such cases, though this aspect is beyond the scope of the current study. 

 

The hardware configuration of lensless microscopes is straightforward, comprising a 

sensor, a light source, and a thin glass cover to protect the sensor. Additional 

components such as modulation masks, optical filters, and fibre arrays become 

necessary in MLM and fluorescence imaging setups. The uncomplicated hardware 

design renders lensless microscopes particularly well-suited for applications in 

microfluidics and in vivo imaging. However, the rapid dynamic processes inherent in 

microfluidic movements and in vivo imaging signals pose significant challenges for the 

sensors employed in these setups. 
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Table. 2-4. Characteristic ranking of different low-cost and portable microscopes. 

Configuration 

Hardware Software 

Complexity Imaging performance 
Imaging 

modality 
Compatibility Algorithms necessity Performance 

Smartphone-

based 

Droplet    

   
Reversed smartphone 

lens 
   

Mechanical adapter    

Customized       

Lensless 

Shadow imaging    

  
Depend on 

applications 

LDHM    

MLM    

Fluorescence imaging    

 

2.3 Applications of Low-cost Portable Microscope 

LPMs hold promise as diagnostic and analytical instruments, contributing to enhanced 

healthcare outcomes and the progression of scientific investigations across diverse 

domains, mainly focusing on resource-limited regions and developing nations. This 

section encapsulates the most prevalent LPM applications, carefully chosen from prior 

reviews. We elucidate their biomedical implications and scrutinize various instances of 

low-cost and portable microscopes employed in each application. In contrast to their 

applications, we deliberate upon the merits and limitations of distinct devices. 

2.3.1 Point-of-Care Testing and Healthcare 

POCT plays a pivotal role in contemporary healthcare, denoting medical testing carried 

out close to the patient, typically at or near the care site, as opposed to the conventional 

practice of dispatching samples to a central laboratory for analysis. This methodology 

facilitates real-time test results, empowering healthcare providers to make prompt 

clinical decisions. Implementing POCT enables the early detection of diseases, 

facilitating timely interventions and ultimately enhancing patient outcomes. 
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Particularly in remote or resource-limited regions, POCT devices empower users to 

attain diagnoses without relying on elaborate laboratory protocols. The streamlining of 

laboratory processes through POCT contributes to a reduction in healthcare costs. 

 

Notably, the recent advancements in the IoT and high-speed telecommunication 

technologies, such as 5G, have synergized with POCT, giving rise to a convergence 

with telemedicine services. This integration allows patients to conduct tests in the 

comfort of their homes and share the results remotely with healthcare professionals. 

 

Using smartphone-based microscopes emerges as a compelling option for POCT and 

various healthcare applications. Most smartphones are equipped with high-performance 

optical lenses and sensors, complemented by robust computational capabilities within 

their chips. Leveraging the inherent strengths of smartphones, small neural networks 

such as MobileNets [217], VGG16 [218], and Alexnet [219] can be seamlessly 

integrated into these devices for real-time diagnostics. Additionally, the rapid 

communication and data transfer capabilities facilitated by telecommunications 

infrastructure further amplify the potential of smartphone-based microscopes, thereby 

advancing the landscape of telemedicine services. However, from both application and 

engineering perspectives, designing sample holders and mechanical adapters with 

broader compatibility is imperative to accommodate diverse smartphone models, which 

ensures versatility and accessibility in deploying smartphone-based microscopes across 

various devices. 

 

In their work, Knowlton S et al. [69] innovatively crafted a smartphone microscope for 

cell sorting, employing magnetic focusing in conjunction with fluorescence imaging to 

facilitate specific clinical assays. This compact system, costing a modest $105.87, 

proficiently identifies cell types and activities through brightfield, darkfield, or 

fluorescent imaging modes. Nevertheless, it fails to achieve real-time analysis, as data 
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processing relies on computer software. The adapter, unfortunately, lacks generalization 

and is tailored to a specific smartphone model. 

 

Addressing smartphone versatility, Ilyas S et al. [220] devised an external device 

compatible with various smartphones equipped with external lenses for magnification. 

Their Matlab algorithm enables the detection of sickle cell disease (SCD) from a drop 

of whole blood in POCT. Despite this advancement, the real-time analysis application 

was not transferred to the smartphone, and data analysis requires external devices. 

 

To enhance smartphone-based microscopes, Ozcan et al. harnessed DL technology, 

designing specific neural networks for SCD diagnosis [1] and image enhancement [87]. 

Despite generating commendable diagnostic results and high-quality image data, the 

reliance on external devices for data processing persists. 

 

Dacal E et al. [221] strived towards real-time applications by developing a smartphone-

based microscope with real-time DL for quantifying Trichuris trichiura infection. They 

transplanted the novel DL algorithm to the smartphone, enabling automatic assessment 

and quantification of parasitological infections by Soil-transmitted helminths in real-

time. However, it is worth noting that the entire system exhibits a relatively large 

volume as a drawback. 

2.3.2 Pathology 

Pathology is dedicated to examining tissues to diagnose and monitor diseases [222]. 

Within pathology, capturing high-resolution images with a large FOV is imperative to 

acquire informative insights and ensure the accurate and efficient diagnosis of diseases. 

 

Medical professionals and researchers have employed benchtop microscopes equipped 

with high-magnification objective lenses and scanning mechanisms to capture multiple 
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pathological images. However, this approach comes with inherent limitations, primarily 

a restricted FOV. To overcome this limitation, researchers employ image registration to 

stitch multiple images into a comprehensive pathology slide image, achieving both high 

resolution and a broader FOV. Nevertheless, the scanning mechanism introduces 

inefficiencies. Furthermore, the process is susceptible to artifacts from unstable 

mechanical scanning, thereby impacting the quality of the final registered images. 

Moreover, implementing a precise mechanical stage incurs substantial costs, presenting 

an additional challenge in the conventional pathology imaging approach. 

 

The primary challenge in pathology imaging is obtaining images with high SBP, which 

is addressed effectively by applying FP [223]. FP achieves high SBP images by 

illuminating samples from various directions. For in-depth insights into the detailed 

implementations and concepts of FP, refer to [223]. Notably, recent advancements have 

enabled the realization of FP microscopes using low-cost, off-the-shelf devices and 3D 

printing [74], rendering them well-suited for pathology studies in resource-limited areas. 

 

Aidukas. T et al. successfully implemented a low-cost FP microscope, incorporating a 

Raspberry Pi embedded system and a cost-effective Bayer sensor. This setup enables 

the reconstruction of 25-megapixel images with a resolution of 780nm [126]. The 

system is designed with a 3D-printed microscope structure, weighing a mere 250 grams 

and boasting external dimensions of 6cm * 9cm * 11cm. Noteworthy innovations 

include the development of novel image-construction techniques aimed at 

compensating for misalignments inherent in mechanical movement. The outcome of 

this approach is the reconstruction of an aberration-free, full FOV lung carcinoma 

image (~4 mm²) in both the intensity and phase domains, as illustrated in Fig. 2-8d. 

 

Lee et al. [74] introduced a novel approach to FP microscopy by developing a 

customized system. Diverging from conventional FP microscopes, they utilized the 
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smartphone screen as a programmable illumination source instead of an LED array, 

with the front built-in camera as the imaging device. This unique configuration 

integrates compact and lightweight optics modules with the smartphone through a self-

designed mechanical adapter (Fig. 2-5e). The resulting device achieves a resolution of 

870nm over a FOV measuring 2.1*1.6 mm², and it encompasses amplitude, phase, and 

colour imaging capabilities. They developed an Android application for capturing and 

recovering images in network-disconnected scenarios to enhance practicality. The 

system successfully reconstructed full FOV amplitude and phase images of unstained 

blood and Tilia stem samples. 

 

While FP microscopy stands as an effective method for pathology studies, it does 

present several challenges. Careful calibration of the illumination angle is required, and 

the arrangement of the light source significantly impacts the final image reconstruction. 

A multi-illumination scan becomes necessary, and the recovery of phase and amplitude 

images demands high-robustness algorithms. These factors collectively impede the 

imaging speed and quality of the FP microscope. 

 

In contrast, researchers can employ lensless microscopy, particularly LDHM, to obtain 

high SBP images in both amplitude and phase domains, thereby enhancing the 

efficiency of pathology studies. The LDHM approach involves only two optical 

components: a partially coherent illumination source and a sensor. This streamlined 

configuration offers a potentially more efficient and simplified solution for pathology 

imaging. 

 

In lensless microscopy, samples are directly positioned atop the sensor's cover glass, 

where the microscope's FOV and resolution are intricately linked to the sensor's active 

area and pixel size. Given the typically high density of pathology slides, achieving 

robust phase and amplitude recovery necessitates capturing more than 6-8 images at 
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different sample-to-sensor distances. 

 

To streamline the image reconstruction process, Rivenson et al. [192] identified that 

natural images often exhibit sparsity in specific domains. Leveraging this observation, 

they introduced a sparsity-based phase reconstruction technique implemented in the 

wavelet domain. This innovative approach reduces the number of required images for 

reconstruction by at least 2-fold. By successfully integrating their sparsity-based phase 

reconstruction algorithm with a simple lensless microscope, they accomplished 

imaging of breast cancer tissue slides over a substantial FOV of approximately 20 mm², 

as depicted in Fig. 2-10h. 

 

Luo et al. [141] pursued a similar objective in a parallel effort. Rather than varying the 

sample-to-sensor distance for robust image reconstruction, they embraced the synthetic 

aperture-based principle. This principle involves scanning the illumination angle across 

the dome surface, similar to FP microscopy, to enhance the effective NA of the 

reconstructed lens-free image (Fig. 2-10g). Remarkably, this approach allows the 

system's NA to reach 1.4, achieving a resolution of approximately 250nm at a 

wavelength of 700nm. Additionally, their method enables colour imaging of pathology 

slides without requiring multi-height scanning. The researchers successfully applied 

their technique to image colour-stained cancer tissue slides and unstained Papanicolaou 

smears over a substantial FOV of 20.5 mm². 

 

In the realm of pathology studies, customized FP microscopes and LDHMs emerge as 

the most fitting methodologies. While FP microscopes tend to boast more intricate 

mechanical structures than LDHMs, their recovery algorithms are notably more robust. 

Conversely, LDHMs rely heavily on advanced recovery algorithms and feature more 

compact dimensional sizes. It is worth noting that LDHMs can be combined with the 

FP illumination method to achieve high NA images. Nevertheless, both technologies' 
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reliance on multi-illumination or multi-height detection approaches is a common 

challenge. Overcoming this challenge by reducing the number of required detections 

and enhancing overall efficiency is a crucial goal for future studies in these fields. 

Efforts toward streamlining and optimizing these imaging techniques will undoubtedly 

contribute to advancing pathology studies. 

2.3.3 Cell Monitoring 

LPMs find extensive applications in cell monitoring studies. In the field of biology, cell 

monitoring involves the study of cell behaviours, measurement of cellular activities, 

and observation of cellular processes [224]. Microscopy is crucial in cell monitoring, 

particularly in live-cell imaging [225] and cell culture monitoring [226]. In many cell 

monitoring studies, observing how cells respond to various environments necessitates 

the live recording of microscopic images or videos under specific physical conditions, 

such as within a CO2 incubator, which implies that imaging devices should be remotely 

controlled under these specific environments. In such application scenarios, customized 

and lensless microscopes emerge as favourable choices due to their adaptability and 

versatility. 

 

Customized microscopes, as discussed in section 2.2.2, offer the advantage of easy 

construction for various applications. The incorporation of 3D-printed mechanical 

structures enhances their adaptability and cost-effectiveness. The evolution of 

semiconductor technology has resulted in the production of compact-sized embedded 

systems. This development allows for direct integration with customized microscopes, 

enabling the application of data analysis and remote-control functionalities. 

Consequently, a high level of integration can be achieved with customized microscopes, 

where optical systems, electronic devices, and mechanical components are seamlessly 

combined into a single platform. This integrated approach contributes to enhanced 

functionality and efficiency in diverse applications. 
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A notable example of a customized compact live-cell imaging platform is the MAM, 

proposed by Son. J et al. [108]. MAM integrates twelve miniature microscopes, a 12-

well plate, an LED array, and a USB hub for connecting to control systems, such as 

computers or embedded systems. Positioned as a cell monitoring platform, MAM is 

designed to be placed inside an incubator for time-lapse recording. Each miniature 

microscope within MAM is equipped with a GRIN objective and features individually 

addressed illumination and digital components. This design allows for the time-lapse 

recording of a specific well in the 12-well plate (Fig. 2-8g). MAM provides high 

fluorescence efficiency and low photo-toxicity for fluorescence observation, enabling 

parallel data acquisition. It achieves approximately 3μm lateral resolution with a 

temporal resolution of 60Hz. 

 

Researchers have successfully utilized MAM for imaging fixed COS-7 populations 

stained with HCS NuclearMask Deep Red and recording time-lapse videos of living 

COS-7 cells within the incubator. Despite its strengths as a potent cell monitoring 

platform suitable for incubator use, MAM does have some limitations. Firstly, it is 

limited to 12-well plates and cannot be adapted to other biological containers. 

Additionally, it requires cable connections, posing a constraint on its flexibility and 

manoeuvrability. 

 

To achieve remote control and automated image recording, Ly. V et al. developed a 

customized low-cost multi-camera and robotic imaging platform called Picroscope, 

designed for simultaneous cell monitoring [117]. Picroscope has 24 individual 

objectives, offering a resolution of approximately 7μm. The platform incorporates 

several Raspberry Pi Hubs and Arduino Uno for remote control and automatic image 

capture, eliminating the need for cable connections (Fig. 2-8h). Notably, the embedded 

systems in Picroscope are equipped with temperature and gas sensors, enabling 
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environmental monitoring during cell culture. Picroscope can perform automated image 

recording of a 24-well cell culture plate within the cell incubator. The captured data is 

then transferred to a remote computer or server for real-time results viewing during 

post-processing. Additionally, Picroscope can automatically execute brightfield z-stack 

imaging throughout the imaging process. 

 

In assessing Picroscope's performance, researchers employed the system to monitor 

various animal embryonic models (Xenopus tropicalis, Danio rerio, and planaria worms) 

during development and regeneration in the longitudinal direction. Furthermore, 

Picroscope was utilized for imaging human embryonic stem cells and 3D cortical 

organoids within a standard tissue culture incubator. Compared with MAM, Picroscope 

offers remote control and additional automatic functions. However, it currently 

encounters limitations in brightfield imaging, and its physical size is relatively 

substantial. Like MAM, Picroscope is specifically designed for use with a particular 

well plate and lacks broader applicability. 

 

Due to their compact design, lensless microscopes offer increased accessibility for cell 

monitoring within incubators. In a study by Ohta. J et al. [166], a lensless fluorescence 

imaging device was developed specifically for cell culture monitoring in a CO2 

incubator. Maintaining a short distance between the sensor and the sample is essential 

in lensless microscopes. To overcome this limitation and extend the sensor-sample 

distance, researchers implemented an FOP above the sensor, serving as a relay for the 

image to reach the sensor. A sandwich structure was also employed, placing the FOP 

between interference and an absorption filter to enable fluorescence observation (Fig. 

2-12d). A small cell culture chamber was also fabricated, allowing direct integration 

with the lensless microscope. The resolution achieved by this imaging system is 

approximately 12μm. 
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For validation, time-lapse imaging of GFP-transfected HEK293 cells was captured at 

10-minute intervals for 22 hours, all within the confines of the incubator. This lensless 

microscope configuration showcases its potential for real-time and long-term cell 

monitoring applications within controlled environments like CO2 incubators. 

 

While lensless microscopes offer the advantage of compactness, they face challenges 

when it comes to easy integration with commercial cell culture plates, such as 12-well 

or 96-well plates. Additionally, data analysis and post-processing can be intricate in 

lensless microscopy. Moreover, due to their compact size, implementing remote control 

and automated mechanisms on these platforms can be challenging. The limited 

dimensions pose difficulties, mainly because most mechanical components are larger 

than the camera sensor. As a result, realizing efficient remote control and automation 

features requires careful consideration and engineering efforts to overcome the 

constraints posed by the compact design of lensless microscopes. 

2.3.4 Microfluidic Applications 

Microfluidic involves the operation and control of tiny fluids from microliters to 

nanolitres. Generally, the core of microfluidics is the microfluidic chips, which are 

fabricated by semiconductor microfabrication technologies. Inside the chips are many 

intricate networks of channels and chambers on a small scale for chemical reactions. 

These devices are often called LOC systems, enabling precise control of fluid flow, 

mixing, and reaction processes [227]. For biomedical and healthcare research, 

microfluidic can reduce sample and reagent volumes, increase reaction times, and 

improve sensitivity. Moreover, thanks to its small size, microfluidic chips can integrate 

multiple analytical functions into a single platform. Some of the applications of 

microfluidics are POCT, environmental monitoring, chemical synthesis, and biological 

research [228]. 

Using microscopes in microfluidic applications is essential. It plays a crucial role in 
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enabling precise microscale observation and analysis of fluidic processes. Microscopes 

allow researchers to visualize fluid dynamics, particle interactions, and biochemical 

reactions in real time, offering insights into the intricate details of microscale 

phenomena. This visual feedback is essential for optimizing device performance, 

validating theoretical models, and ensuring the reliability of microfluidic systems. 

Moreover, microscopy facilitates the examination of cells, particles, and other 

biological entities within microfluidic environments, advancing applications in fields 

such as biology, medicine, and diagnostics. Integrating microscopes with microfluidic 

platforms enhances our ability to explore and exploit the full potential of these 

miniature systems, contributing significantly to advancements in research, diagnostics, 

and various industrial applications. 

 

Both customized and lensless microscopes are suitable for microfluidic applications. In 

[113], Tristan et al. constructed an portable fluorescence microscope that operates in 

bright-field mode and in three fluorescence channels: UV, green, and red. The system 

is assembled by six 3D printed parts and cost only 122 USD. A Raspberry Pi was 

programmed in Python to capture time-lapse images and videos. They successfully used 

the proposed microscope to realize single-channel microfluidic device observations. 

They injected THP-1 cells stained with Calcein-AM at a speed of ~150 μm/s, and 

recorded a video while cells flowed through the channel (Fig. 2-8c).  

 

To obtain large FOV images efficiently, Zhang et al. established a LDHM for large 

number of sperms tracking in the microfluidic chip [169]. They integrated a lensless 

charge-coupled device (CCD) with a microfluidic chip to facilitate a wide field of view 

(FOV) and automatic recording while sperm traverse a microfluidic channel. This 

integrated system allows for the sorting and tracking of a population of sperm within 

the microfluidic channel. Similar to the clinically employed swim-up column method, 

the channel can be observed in both horizontal and vertical configurations. The motility 
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of sperm can be quantified by tracing the shadow paths of individual sperm. 

Additionally, as sperm are sorted by swimming from the inlet toward the outlet of the 

microfluidic channel, motile sperm reaching the outlet can be extracted from the 

channel after the process. 

 

As previously discussed in Sections 2.3.2 and 2.3.3, customized microscopes exhibit 

sophistication in hardware design, whereas lensless microscopes demonstrate 

sophistication in algorithms. Considering their distinctive characteristics and varied 

microfluidic applications, choices can be tailored to specific scenarios. The lensless 

microscope stands out as a suitable option for LOC applications involving slow-speed 

activities, such as organ-on-chip monitoring. Because lensless microscopy highly relies 

on post-processing algorithms, processing high frame-rate video data imposes a 

significant computational burden, influencing the final reconstruction results. Moreover, 

lensless microscopy is appropriate for acquiring high SBP images without a mechanical 

scanning process. 

 

Conversely, customized microscopes are more adept for high-speed LOC applications 

like flow cytometry and high-throughput particle tracing. Implementing advanced 

algorithms in High-Performance Embedded Systems, exemplified by NJN and 

Raspberry Pi, facilitates image reconstruction and data analysis. Additionally, 

researchers can design high-magnification and NA optical paths to counteract sampling 

loss in the spatial domain when utilizing multi-pixels instead of a single pixel in a 

CMOS sensor for processing high-speed events. 

2.3.5 Discussion 

This section comprehensively discusses selecting suitable LPMs for various biomedical 

applications. Considering the configuration of LPMs and the distinctive features of 

different biomedical applications, researchers can employ LPMs in resource-limited 
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settings across four biomedical scenarios: POCT and healthcare, pathology, cell 

monitoring, and microfluidics. Table. 2-5 guides on selecting appropriate LPMs for 

distinct biomedical applications, accompanied by corresponding challenges. This 

framework is intended to direct researchers towards the correct path for the future 

development of diverse LPMs. 

 

Choosing smartphone-based microscopes in POCT and healthcare applications proves 

advantageous owing to their compact size and integrated communication capabilities. 

Results can be conveniently obtained through dedicated smartphone applications and 

transmitted to designated users or professionals. However, this platform encounters two 

challenges: Firstly, researchers and engineers must design mechanical adapters tailored 

for various smartphone models to ensure broader compatibility. Secondly, smartphones 

are constrained by limited computing power, restricting their applicability to relatively 

straightforward tasks such as target recognition, counting, fluorescent signal analysis, 

and segmentation. 

 

In pathology applications, opting for lensless microscopy proves to be a superior choice. 

While FP microscopy can also be employed to capture high-resolution images, its 

configuration is more intricate than lensless microscopy, and using a multi-illumination 

method requires precise LED calibration. Furthermore, a lensless microscope can be 

seamlessly integrated with an FP illumination setup to enhance overall image quality. 

The primary challenge associated with the lensless microscope lies in the requirement 

for multi-height detection. This hurdle could be overcome by exploring more robust 

algorithms and applying deep learning techniques. 

 

Considering the dimensions and mechanical structure of cell culture containers, as 

detailed in section 2.3.3, customized microscopes are highly practical for cell 

monitoring experiments. These microscopes can be conveniently situated within the 
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incubator, seamlessly integrating with cell culture containers for continuous real-time 

monitoring. Achieving remote control is feasible by employing an embedded system as 

the processing unit. However, a challenge similar to smartphone-based microscopes 

arises, emphasizing the necessity for a highly compatible mechanical design. 

 

As outlined in section 2.3.4, while both customized microscopes and lensless 

microscopes are viable options for microfluidic applications, the latter is a more 

favourable choice, particularly when considering the compact size of microfluidic chips. 

However, the imperative need for high-frame-rate video recording arises in situations 

involving high-speed events such as particle tracking and cytometry. This requirement 

means the algorithms should be highly robust to highly efficient data processing and 

image reconstruction. 

 

Table. 2-5. Proper LPMs and corresponding characteristics for different biomedical 

applications. 

Biomedical applications Proper LPM Problem 

POCT & Healthcare Smartphone-based microscope ⚫ Mechanical adapters should be designed with broader compatibility. 

⚫ Computing power is limited 

Pathology Lensless microscope Multi-height detection 

Cell monitoring Customized microscope Compatible mechanical design is necessary 

Microfluidic Lensless microscope Algorithms with high robustness is necessary for high frame rate videos 

processing and image reconstruction 

 

2.4 Conclusion 

In this chapter, a comprehensive review is conducted on articles about three distinct 

types of LPMs: Smartphone-based, customized LPMs, and lensless microscopes. Each 

type is carefully discussed, focusing on introducing the corresponding hardware 
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configurations and inherent characteristics. Subsequently, a critical analysis is 

presented, addressing the identified limitations and proposing viable solutions for each 

type. Following an extensive examination of prevalent application scenarios for LPMs, 

emphasis is placed on four prominent biomedical applications: POCT and healthcare, 

pathology, cell monitoring, and microfluidics. A choice of optimal platforms is provided 

for each application, accompanied by a comprehensive discussion of prevailing 

challenges. This examination offers valuable insights that can guide researchers in 

shaping the trajectory of future investigations in this domain. 

  



 Page 94 of 253 

 

Chapter 3. PAIM (πM): portable AI-

enhanced fluorescence microscope for 

real-time target detection 

In this research, a portable AI fluorescence microscope (πM) has been introduced, 

utilizing a webcam in conjunction with the NVIDIA Jetson Nano (NJN) for immediate 

target detection through edge computing techniques. πM offers a physical 

magnification of ×5 and demonstrates the ability to resolve 228.1 lp/mm (line pairs per 

millimetre) USAF features, making it suitable for imaging microscopic samples and 

fluorescent polystyrene (PS) beads. πM’s body was fabricated using a 3D printer, with 

a weight of approximately 250 grams and physical dimensions measuring 145mm in 

length, 172mm in width, and 144mm in height (L×W×H), costing ~$400. It has a 

similar brightfield imaging quality to benchtop microscopes (~$13,000). The 

customized Convolutional Neural Network (CNN) integrated into the NJN can perform 

feature extraction, real-time counting of PS beads, and red blood cell counting without 

the need for data transfer or image processing. Compared to two model-free image 

processing methods (OpenCV and CLIJ2), our CNN approach demonstrates robustness 

in counting beads at various concentrations. It achieves an accuracy of 80% in counting 

six aggregated beads. In terms of feature extraction and human red blood cell (RBC) 

counting, our CNN method demonstrated results that were closer to the ground truth 

(GT) when compared to the CLIJ2 method (GT: 201; CNN 196; CLIJ2: 189). With its 

compact size and real-time analytical capabilities, πM has potential in point-of-care 

testing, field microorganisms detection, and clinical diagnosis in resource-limited areas. 

3.1 Introduction 

Microscopes can reveal biological and biochemical processes. Over the past two 

decades, advancements in technology, such as 3D printing methods, MEMS (Micro-
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Electro-Mechanical Systems) systems, and diffractive optical elements have led to the 

miniaturization of microscope systems. Additionally, integrating new CMOS sensors 

and well-crafted optical lenses into smartphones has allowed for the development of 

compact microscopes. These miniaturized microscope systems are user-friendly, 

portable, and cost-effective compared to traditional laboratory microscopes. They have 

the potential to support various applications, including the diagnosis of conditions like 

sickle cell disease [220,229], sperm cell monitoring [230,231], and the detection of 

hazardous materials in drinking water in resource-limited areas [83,113].  

 

Numerous researchers utilize 3D printing technology to create compact and cost-

effective microscope systems. For instance, Bowmen et al. established the OpenFlexure 

microscope [109,118,119], which has applications in education, scientific research, and 

clinical settings in Tanzania and Kenya. Delmans and Haseloff proposed the μCube 

framework for 3D printing optomechanical parts for users to reconfigure their 

microscopes rapidly [122]. Diederich et al. also developed similar work. They 

developed microscopic components as LEGO-like building blocks to establish more 

complex systems [101]. The cheapest microscope, the Foldscope, was fabricated 

through origami techniques, with a production cost of less than $1. This innovative 

device can perform both brightfield and fluorescence imaging [232]. 

 

Furthermore, more scientific and precise experiments can be achieved in open-source 

portable microscopes, such as real-time in-vivo neuron imaging [233] and single-

molecule detection [92]. ANNs have recently enhanced portable microscopes’ data 

processing capacity. Shen et al. used only one aspherical lens to build a microscope. 

They used a deep learning (DL) algorithm to improve the resolution power and 

minimize optical aberrations [234]. Besides these intensity-based microscopes 

[90,102,235], Ozcan et al. used off-the-shelf devices and 3D printers to develop 

portable quantitative phase microscopes and holographic microscopes [129]. They used 
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ANNs or iterative algorithms to recover samples’ morphology instead of optical lenses 

[155,184,236,237]. Harvey et al. developed a low-cost 3D-printed Fourier 

ptychography microscope based on a Raspberry Pi. This system can computationally 

construct images with a high space-bandwidth product (25-megapixel with sub-micron 

resolution). They also used a novel algorithm to minimize aberrations [126]. Cacace et 

al. published design guidelines for a compact off-axis holographic microscope. They 

successfully used their prototype image flowing marine microalgae, polystyrene beads, 

E.coli bacteria, and microplastics [238]. To solve the problem of malaria diagnosis in 

remote regions where benchtop microscopes are unavailable, Gordon et al. designed a 

portable microscope with monochromatic visible illumination with a long working 

distance singlet aspheric objective lens. The detection limit can reach 0.18 parasites per 

100 red blood cells [111].  

 

Smartphone-based microscopes are easier to operate than open-source microscopes 

which are mentioned above. Ozcan et al. developed different smartphone-based 

microscopes for imaging viruses [66] and DNA molecules [67], detecting Giardia 

lamblia cysts [56], and screening sickle cells [1]. They combined a smartphone with 

optical fibre arrays to develop a high-resolution computational microscope. They used 

the Wiener deconvolution algorithm to reconstruct images of blood smear samples [85]. 

Trofymchuk et al. built a smartphone microscope and carried out a single-molecule 

detection assay for DNA specific to antibiotic-resistant Klebsiella pneumonia [75]. Lee 

and Yang developed a lensless smartphone-based microscope by removing the camera 

lens [239]. They made a compact system using ambient light illumination. This 

microscope can capture ultra-wide field-of-view (FOV) images with a sub-micron 

resolution. Dai et al. coupled different coloured polymer droplet lenses on smartphones 

to realize brightfield and fluorescence microscopes without optical lenses and filters. It 

can observe cells and tissues, count cells, and evaluate plasmid transfection and 

superoxide production [51]. Sung et al. developed a multicolour fluorescence 
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smartphone microscope [81]. They used total-internal-reflection (TIR) guided 

illumination inside the glass slide. This configuration can enhance images’ signal-to-

background ratios. Müller et al. optimized a peptide nucleic acid (PNA) based 

fluorescence in situ hybridization (FISH) assay and used a smartphone microscope for 

rapid identification of pathogenic bacteria [82]. Liu et al. demonstrated a portable 

smartphone microscope called MUSE, the first practical implementation of microscopy 

with ultraviolet surface excitation. This MUSE is a powerful tool for point-of-care 

diagnostics, health monitoring, and environmental studies [65]. McKay et al. used 

iPhone and an additional iPhone camera lens to resolve optical absorption gaps in 

nailfold capillaries. The system has a 4μm resolution with 1 mm2 FOV [63]. Moreover, 

computational microscopes, such as Fourier ptychography microscopes [240], phase 

contrast microscopes [71,72,241,242], and 3D phase microscopes [44,45], can also be 

constructed using smartphones.  

 

Several deep-learning techniques have been developed to process images captured from 

portable microscopes [87,243–246]. Gӧrӧcs et al. developed a portable deep-learning 

imaging flow cytometer for drinking water analysis [247,248]. Zhang et al. constructed 

a magnetically modulated lensless cytometry for blood cell detection [249]. Wu et al. 

developed a lensless microscope for herpes simplex virus detection and used DL to 

reconstruct high-quality images [250]. O’Connor et al. developed a compact digital 

holographic microscope. The built-in long short-term memory (LSTM) neural networks 

successfully classified different animals’ blood cells, normal and sickle blood cells from 

human blood [251]. The system can also screen blood cells for COVID-19 tests [106].  

 

In this project, I proposed a portable AI-enhanced fluorescence microscope equipped 

with real-time AI capabilities. Most open-source microscopes have complex 

optomechanical structures and rely on external devices such as laptops or computers 

for operation. Smartphone microscopes, while compact, often need more computational 
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power for image processing. In contrast, the πM microscope offers a balanced solution. 

Table. 3-1 provides a comparative analysis between πM and several similar existing 

systems. Compared to these systems, our approach stands out due to its innovative 

integration of optical imaging components and a data processing unit within a 

straightforward mechanical structure, all while maintaining a low cost. The utilization 

of a readily available off-the-shelf webcam lens yields excellent imaging quality 

without the need for intricate optimization algorithms or complex optical designs. 

Furthermore, the neural network can be easily tailored to various applications. The ease 

of configuration and cost-effective design make it well-suited for on-site network 

training and data collection. 

 

πM costs ~$400 and weighs 670g with a size of 145 mm × 172 mm × 144 mm. It has a 

×5 physical magnification and can resolve 228.1 lp/mm using the USAF target as an 

object. πM has two key innovations: First, it has a simplified optical path and 

mechanical design, making it accessible for individuals with limited mechanical design 

experience, allowing anyone to design it; Secondly, πM enables real-time AI-enhanced 

analysis using NJN-embedded neural networks for specific applications, and data 

transfer to the cloud or servers is unnecessary.  

 

I demonstrated πM by imaging samples and different fluorescent PS beads, realizing 

real-time feature extraction and counting of beads and human RBCs. We compared the 

OpenCV, CLIJ2, and our customized CNN methods in bead and human RBC counting 

experiments. Our CNN can recognize six aggregated beads with 80% accuracy 

(OpenCV: three aggregated beads with 26% accuracy; CLIJ2: six aggregated beads 

with 64% accuracy). It shows results closer to the ground truth (GT) than the CLIJ2 

method (GT: 201; CNN: 196; CLIJ2: 189) in human RBC recognition and counting. 

These experimental results provide a proof-of-principle debut of πM. 
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Table. 3-1. Comparative analysis between recent similar schemes. 

 Optomechanical 

complexity 

AI 

function 

Resolution Application Dimensional size 

(L*W*H) 

Cost 

Bowman et al. 

[109] 

High No 0.48μm Brightfield, fluorescence, and polarization 

imaging 

150*150*200 mm3, 

~500g 

~＄250 

Heintzman et al. 

[101] 

High No 0.6μm Observations of a transgenic Zebrafish 

expressing green fluorescent protein (GFP) 

200*50*200 mm3 

(Alterable) 

＄140~＄680 

(Altertable) 

Zhu et al. [234] Low Yes 0.66μm Brightfield imaging 200*200*400 mm3 N/A 

Zhou et al. [129] Medium No 1.15μm PRCs phase imaging, material metrology  370*320*80 mm3 ~ ＄5000 

Ferraro et al. 

[238] 

Low No 0.58μm Holographic microscope, flowing marine 

microalgae, polystyrene beads, E.coli bacteria 

and microplastics imaging 

~50*30*150 mm3 ~＄880 

Gordon et al. 

[111] 

High Yes 0.8μm Automated malarial parasitemia 

quantification in thin blood smears 

300*200*130 mm3 ~＄1318 

Ozcan et al. [1] Medium Yes < 1μm Sickle cell disease detection Smartphone+350g ＄60+Smartphone 

Trofymchuk et 

al. [75] 

Medium No 1.2μm DNA origami single molecule detection ~ 200*150*200 

mm3 

~＄4600 

Jenkins et al. 

[65] 

Medium No 3-4μm Ultraviolet Surface Excitation microscopy 138.3*67.1*7.1 mm3 

(iPhone 6s size) 

iPhone 6s + ＄10 

Durr et al. [63] Low No < 4μm (central 

FOV) 

< 6μm (peripheral) 

Quantification of optical absorption gaps in 

nailfold capillaries, neutropenia screening 

143.6*70.9*7.7 mm3 

(iPhone X size) 

N/A 

Kuang et al. [72] Medium Yes N/A Virtual phase contrast imaging 120*100*170 mm3 

400g 

Smartphone + 

＄1~10 

This work Low Yes 1.62μm Aggregated RBCs segmentation and counting 145*172*144 mm 

mm3, 250g 

＄300 

3.2 Method 

3.2.1 πM Framework 

Fig. 3-1(a) shows the πM framework. The NJN acts as the CPU to control the system.  

It incorporates illumination LEDs and a CMOS camera. Users can train and implement 

ANNs inside the NJN for real-time analysis. While we used a laptop to manage πM in 

this project, it can be seamlessly replaced with a touch screen interface. Ray-tracing 

simulations (OpticStudio 2017) and experiments determine πM’s dimensional size and 

optical paths. The construction of πM's main body components was carried out using 
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CAD software (Solidworks, 2020), and these components were subsequently 3D-

printed. 

 

 

Fig. 3-1. (a) πM diagram. (b) πM optical path. A filter is inserted between the CMOS 

and the inverse webcam lens for observing fluorescent signals. The customized ANN 

in the NJN can realize real-time image analyses. (c) The original webcam optical path. 

(d) πM’s optical path. Dashed triangle lines indicate the effective FOV in both object 

and image spaces (FOV: field of view, WD: working distance, ID: image distance, D: 

sensor’s horizontal size, FOVR: πM’s effective field of view, WDR: πM’s working 

distance, IDR: πM’s image distance). 

3.2.2 Imaging System Design 

Fig. 3-1(b) illustrates πM’s optical path. It provides the flexibility to utilize a white LED 

for brightfield imaging or substitute it with a different wavelength for fluorescence 

imaging. A biconcave and a scattering aspherical condenser lens were used for Galilean 

expander collimation. The biconcave lens expands the light, while the condenser lens 

collimates it.  
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One notable feature is the angle α (where α = 60°) between the illumination and 

detection optical axes. This configuration enhances the image contrast of transparent 

biological samples while preventing the direct collection of excitation light by the 

inverted webcam lens when πM is used for fluorescence observation. 

 

In the optical detection path, a webcam lens from an off-the-shelf internet webcam was 

disassembled (ELP, Shenzhen, China) and reversed as an objective lens for our system. 

A specialized holder was designed to integrate this lens with the camera sensor and the 

optical filter. Subsequently, the refitted webcam with an inverted webcam lens was 

harnessed to a z-direction translation stage, allowing for precise adjustment of the focal 

plane. It is important to note that the webcam lens we utilized was already well-

optimized. Therefore, this setup substantially magnifies the samples with minimal 

optical aberrations, particularly regarding spherical aberration. 

 

Before designing mechanical structures, the distances between optical elements (IDR 

and WDR in Fig. 3-1(d)) were first calculated. Since only a few parameters of the 

webcam lens working in the webcam optical path were known (Fig. 3-1(c)), we first 

used these parameters in combination with the paraxial approximation to calculate 

approximate values in Fig. 3-1(c). Then, we reversed the system and obtained the 

corresponding parameters in Fig. 3-1(d). 

 

Here we first consider the monochrome camera sensor. According to the Nyquist 

sampling requirement, the sampling frequency should be two times as high as the spatial 

frequency. To get a better resolution, we increase it to three. The magnification (PMAGR) 

is: 

 

𝑃𝑀𝐴𝐺𝑅 = ceiling (
3×𝑃𝑖𝑥𝑒𝑙 𝑝𝑖𝑡𝑐ℎ

𝐿𝑟𝑒𝑠
),        (3-1) 
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where 𝐿𝑟𝑒𝑠  is the theoretical resolution and the pixel pitch is the distance between 

neighbour pixels (1.62 μm).  

 

The minimum resolution is set to 1μm for πM to observe biological samples and 

𝑃𝑀𝐴𝐺𝑅 = 5. The imaging system functions for the webcam optical path in Fig. 3-1(c) 

are: 

 

𝐹 =  
ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑝𝑖𝑥𝑒𝑙 𝑛𝑢𝑚𝑏𝑒𝑟×pixel pitch×𝑊𝐷

𝐹𝑂𝑉
≈ 𝐼𝐷,     (3-2) 

𝑃𝑀𝐴𝐺 =
1

𝑃𝑀𝐴𝐺𝑅
=

ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑝𝑖𝑥𝑒𝑙 𝑛𝑢𝑚𝑏𝑒𝑟×pixel pitch

𝐹𝑂𝑉
,     (3-3) 

 

where the sensor’s horizontal pixel number and the pixel pitch are 3840 and 1.62μm, 

respectively. PMAGR is 5, and F (back focal length) is 3.6mm. As a result, WD is 

approximately 18mm, WDR is 3.6mm, and IDR is 18mm. 

 

It should be noticed that the formulas presented here are not exact solutions but rather 

approximations intended to guide us in determining an optimal starting point for the 

reversed webcam lens experiment. Due to the lack of specific details about the webcam 

lens, these estimated values provide a useful foundation for establishing a starting point 

and range for our tests aimed at achieving the desired outcomes. In practice, when 

employing a colour sensor equipped with a Bayer filter, the sampling rate should be 

quadrupled compared to the minimum required by the Nyquist criterion. Additionally, 

in equation 3-2, we simplify the webcam lens in its standard configuration to a thin lens 

model, which is an imprecise representation. Nonetheless, these approximations serve 

primarily to narrow down the initial testing range for subsequent experiments. For 

attaining accurate results, relying on simulations and hands-on experimentation is the 

most reliable approach. 
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Meanwhile, choosing a 1μm resolution is for RBCs counting. RBCs typically ranging 

between 6 to 8 micrometres in diameter.  

 

I estimated IDR = 13 ~ 18mm in ray-tracing simulations and plotted WDR vs IDR, 

PMAGR vs IDR, and PMAGR vs WDR curves in Fig. 3-2(c-d). WDR and PMAGR were 

tested at each data point five times to obtain mean values and standard variations (the 

error bars). IDR is chosen as 14mm to achieve the average WDR of 5.41mm and an 

average lateral magnification of ×5.14. 

 

 

Fig. 3-2. Inverse webcam lens measurements. (a) Ray-tracing simulations of the inverse 

webcam lens. Blue, green, and red rays correspond to 0mm, 0.5mm, and 1mm object 

height. (b) The experiment configuration. The object (R3L3S1P, Thorlabs) is 

illuminated by the white LED (LEDW7E, Thorlabs). Illumination lights are collimated 

by a diffusive surface aspherical lens (ACL2520U-DG15, Thorlabs). (c), (d) and (e) are 

relationships between IDR, WDR, and lateral magnifications. 

3.2.3 Illumination Path 

Simulated and experimental results were used to optimize πM’s illumination path to 

obtain even illumination at the object plane, as shown in Fig. 3-3(a). A concave lens 
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(LD2746, Thorlabs) and an aspherical lens (ACL2520U-DG15, Thorlabs) were used to 

constitute a Galilean collimator. This configuration can collimate light at a shorter 

distance. D1 and D3 were set as 10mm and 50mm, respectively. The Zemax RAID 

operand was used to calculate D2 = 8.037mm. During the experiment, we positioned a 

piece of white paper at the target location, situated 50 mm from the rear surface of the 

aspherical lens, as illustrated in Figure 3-3(a). The light illuminated the white paper, 

creating an intensity profile. A camera was placed on the opposite side to capture this 

intensity profile. Fig. 3-3(b) shows experimental results before and after collimation. 

Corresponding line profiles are shown in Fig. 3-3(c). The LED's intensity was 

concentrated at the centre, leading to excessive illumination power from the 

uncollimated LED. This high power caused saturation in the camera sensor, creating an 

uneven light intensity distribution across the surface of the target plane. This resulted 

in a profile that appeared almost flat in the central region of the surface. 

 

To better understand how collimated illumination affects the spatial resolution of 

brightfield and fluorescence microscopes, I compared the πM illumination with the 

critical and the Köhler illumination. The USAF-1951 (R3L3S1P, Thorlabs) was used as 

the test target, and the white LED (LEDW7E, Thorlabs) illumination source was chosen 

for brightfield imaging. Three different PS beads were used as samples (blue-green, Ex 

430/Em 465; yellow-green, Ex 505/Em 515; red, Ex 580/Em 605; Thermofisher) for 

fluorescence imaging and chose appropriate single wavelength LED sources (430nm, 

505nm, Lumex; LED591E, Thorlabs) for illumination. 
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Fig. 3-3. Collimation light path. (a) The simulated collimation optical path. (b) 

Intensity distribution before and after collimation. (c) Corresponding line profiles of 

(b). 

 

Fig. 3-4(a) illustrates three different illumination types. The light source is projected to 

the sample plane in critical illumination by a single convex lens (LD2746, Thorlabs). 

While this setup is the simplest, it has the drawback of imaging the light filament onto 

the sample plane, which can adversely affect image quality. Moreover, it can only 

illuminate a small region. On the other hand, Köhler and πM illuminations can collimate 

light and providing even illumination across larger areas at the sample plane. In 

experiments, Köhler illumination was constructed by a collector lens (LD2746, 

Thorlabs), a condenser lens (ACL2520U-DG15, Thorlabs), and two diaphragms (ID25, 

Thorlabs). Fig. 3-4(b) shows brightfield captured images with different illumination 

types. The corresponding line profiles of the sixth element of Group 7 (depicted in Fig. 

3-4(b)) are shown in Fig. 3-4(c). To judge the image quality: 

 

𝐶(%) =
𝐼𝑚𝑎𝑥−𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥+𝐼𝑚𝑖𝑛
,         (3-4) 

 

where Imax and Imin  are maximum and minimum pixel intensities, and a higher C means 

better image quality. 
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I also tested how the illumination field affects fluorescence images. Fig. 3-4(d) shows 

images of three different PS beads under different illumination types. The 

corresponding line profiles are shown in Fig. 3-4(e). It is important to note that the 

emission wavelength determines the resolution of fluorescent signals, and the optical 

filter is employed to block the excitation light. Consequently, the differences observed 

in these fluorescent bead images, resulting from different illumination types, are 

relatively insignificant. In contrast, in brightfield imaging, the imaging formation is due 

to the illumination light modulated by the object. According to the Abbe theory of 

microscope image formation, the image quality relies on the illumination light. Under 

the PAI-M illumination, we successfully discerned the sixth element in Group 7 of the 

USAF-1951 target (228.1 lp/mm). Additionally, we were able to observe 10μm PS 

beads exhibiting red, blue, and green fluorescence. We believe that the resolution 

constraints stem from the limited NA and the non-Koehler lighting setup, along with 

the poor quality of the commercial webcam's lens and sensor used in our system. 
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Fig. 3-4. Brightfield and fluorescence images are captured under different illumination 

setups. From (a)-(d), each column is related to the following illumination setup in Fig. 

3-4(a). (a) Illustration of three different illumination setups. (b) Corresponding 

brightfield images were captured under different illumination types. (c) Horizontal and 

vertical line profiles of the 6th element of Group 7 in Fig. 3-4(b). (d) Blue, green, and 

red fluorescence images of PS beads. Corresponding line profiles are shown in Fig. 3-

4(e). 
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3.2.4 Body Structures Construction 

The development of πM was facilitated through Solidworks software and a 3D printer, 

as depicted in Fig. 3-5, with a twenty-cent coin serving as the dimensional reference. 

The specific details regarding determining element sizes and arrangement have been 

discussed in previous sections (Sections 3.2.2 and 3.2.3). 

 

The overall dimensions of πM measure 172mm in length, 175mm in width, and 144mm 

in height. Galilean expander collimation was realized with a biconcave lens and a 

scattering aspherical condenser lens to collimate light (Fig. 3-5(b)). Furthermore, we 

replaced the original webcam lens holder with a redesigned one to realize πM's optical 

path, as demonstrated in Fig. 3-5(c). 

 

 

Fig. 3-5. Models of πM parts. (a) πM’s schematic. (b) Illumination part. (c) The 

redesigned inverse webcam (Zoomed-in part in (a)). The vignette shows the back side 

of the webcam lens holder. 

 

Fig. 3-6 shows CAD models of πM’s parts. There are four components: the main body 

(Fig. 3-6(a)), the illumination cover (Fig. 3-6(b)), the webcam lens holder (Fig. 3-6(c)), 

and the sensor holder (Fig. 3-6(d)). The main body accommodates an NJN and contains 
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an LED socket (LEDMT1F, Thorlabs), a concave lens (LD2746, Thorlabs), an 

aspherical convex lens (ACL2520U-DG15, Thorlabs), and an illumination cover 

stabilizing components. The webcam lens from the webcam was disassembled and 

mounted into the corresponding position (Inverse webcam lens) indicated in Fig. 3-6(c). 

The grey opaque parts in Fig. 3-6(c) are screw holes for coupling the webcam lens 

holder into the CMOS webcam. The sensor holder equipped with the redesigned 

microscopic webcam can be mounted to the Z-direction translation stage (DT12, 

Thorlabs) for adjusting the focus (Fig. 3-6(d)). Finally, the refitted webcam with a Z-

direction translation stage was installed to πM’s main body through an adapter (DT12A, 

Thorlabs). 

 

 

Fig. 3-6. CAD Models of πM parts. (a) The main body for assembling all components. 

Four screw holes under NJN hold NJN to the main body. (a) πM’s schematic. (b) The 

illumination cover is used for fixing LED and optical lenses. (c) Webcam lens holder 

for carrying the inverse webcam lens and an optical filter. (d) Sensor holder for holding 

the inverse webcam. 
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3.2.5 Foreground features extraction and the counting 

function 

The proposed CNN-enhanced foreground feature extraction and counting functions was 

implemented based on a cascade neural network composed of a U-Net [252] and a VGG 

[218] network. To acquire results efficiently, two networks were combined to 

simultaneously realize segmentation and counting functions. The first output 

segmentation maps of the U-net network can seamlessly link to the VGG network for 

target counting. The U-net contains six down- and up-sampling layers, eventually 

producing precisely segmented images. The training data Broad Bioimage Benchmark 

Collection (BBBC 005) was used [253], including the pervasive cellular morphology 

captured by a fluorescence microscope. Despite unfocused cells, the U-Net can 

segregate foreground and background. This segregated image offers a solid pre-

requisite for the counting task. The VGG network has seven convolutional and one fully 

connected (FC) layer. After two convolutions, the intensity and segregated images are 

fused to extract more spatial features. The FC layer then generates a scaler output 

indicating the number of cells. In experiments, the sensor’s frame rate was from 30fps 

to 250fps (4ms to 33ms processing time). The average processing time on the Jetson 

Nano for each RGB 256*256 image is about 35fps (28.6ms). 

 

While there are numerous image-processing algorithms available for counting 

aggregated beads or cells, CNN is more accessible to combine with various neural 

networks. The layer structures and their corresponding input and output features can be 

readily customized, providing a high degree of adaptability. Additionally, using transfer 

learning and open-source pre-trained neural networks can significantly save time. 

Furthermore, the NJN is an ideal Graphics Processing Unit (GPU) acceleration unit for 

parallel matrix manipulations. Compared to other iterative algorithms, CNN can 

outperform them considerably when executed on the NJN, demonstrating its superior 
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efficiency in various image-processing tasks. 

 

In addition, CNN can easily acquire many feature maps of aggregated and high-quantity 

targets. We compared the proposed method with the OpenCV and CLIJ2 [254] (an 

open-source unsupervised method) methods (Sections 3.3.3 and 3.3.4).  

3.2.6 Cascade neural network design and working flowchart 

U-Net is a prestigious network architecture for image segmentation [255–258]. Some 

derivatives of U-Net, such as Eff-UNet [259], Dense-UNet [260], and U-Net++ [261], 

etc., exhibit superior accuracy than naive U-Net. However, numerous skip connections 

in these architectures lead to big model sizes. In this project, the objective is to adopt 

compact, efficient neural networks for portable devices, where the model's size is 

crucial to achieve a reasonable trade-off between accuracy and computing efficiency. 

Visual Geometry Group (VGG) [218] was demonstrated to realize counting due to its 

unified, hardware-friendly topology, where the depth of down-sampling layers can be 

easily configured. Although ResNet [262] is a ubiquitous backbone that can prevent 

gradient vanishing and accelerate convergence, achieving faster inference, its 

generalization deteriorates more seriously as the network becomes deeper. Conversely, 

VGG can be generalized to different applications, and results also demonstrated the 

feasibility of cell counting (Sections 3.3.3 and 3.3.4). 

 

The network was implemented with PyTorch. Two networks were trained separately on 

an NVIDIA RTX 5000 GPU. Images in the training dataset were divided into 2200 for 

training and 200 for validation. The batch size was set to 64 and the number of epochs 

was set to 200. A batch normalization module follows each convolutional layer to 

prevent gradient vanishing. An early stopping strategy was used to avoid overfitting 

during the training stage, which means the training process could stop at a pre-defined 

patient number (ten in this case) before the loss function is divergent. Adjustable, 
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exponentially decreasing learning rates were utilized for both networks to accelerate 

training processes. Adam was used as the optimizer. MSELoss(·) and 

BCEWithLogitsLoss (·) were VGG and U-net loss functions. After the U-net training 

is completed, its pre-trained model acts as a pre-processing function to create 

foreground feature extraction images in the VGG training. To compare the neural 

network with conventional OpenCV approaches, we employed contour extraction 

(cv2.findContours(·) and cv2.contourArea(·)) functions to realize feature extraction 

and counting. Fig. 3-7 illustrates workflow charts of two solutions (Route A for the 

OpenCV approach and Route B for the cascade neural network approach). Beyond that, 

we also used the CLIJ2 [254] (an unsupervised method combining Ostu's thresholding 

[263] and Voronoi diagrams [264]) as a comparison. The CNN neural networks 

implement both feature extraction and counting functions. For the OpenCV method, 

feature extraction is obtained by model-free image processing, and a VGG network 

realizes the counting function. In contrast, both functions are model-free for the CLIJ2 

method. 
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Fig. 3-7. The cascade neural network architecture for foreground masking and counting. 

(a) A U-net is initially trained to generate mask images, and the optimal model is saved 

to serve the counting neural network afterwards. (b) The pre-trained U-net model 

operates as the test model to generate clear mask images to improve the robustness of 

the counting network. In contrast, OpenCV utilizes mask images for counting. The 

optimal VGG model is also saved when training is completed. (c) Both networks work 

in the test mode, and the intensity image goes through them sequentially. The 

corresponding mask image and the number of counts are the output. 

3.2.7 Foreground extraction performance 

It is essential to define and present appropriate metrics for the segmentation 

performance of the U-Net network for foreground feature extraction. The IoU is utilized 
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to evaluate the foreground extraction, which is defined as: 

 

                
( )

TP
IoU

TP FP FN
=

+ +
,          (3-5) 

            &&TP m m= ,               (3-6) 

              ( || )FP m m m= − ,              (3-7) 

                       ( || )FN m m m= − ,              (3-8) 

 

Where m and �̃� are ground truth and predicted masks, respectively. IoU ranges from 

0 to 1, where a greater IoU means the predicted mask exhibits more overlap areas 

regarding the ground truth mask. 100 images was randomly selected from our test 

dataset and evaluated predicted masks. The average IoUs obtained from OpenCV, CNN, 

and CLIJ2 are 0.35, 0.8, and 0.79, respectively. Fig. 3-8 shows the performance of three 

different algorithms which were used to generate the segmentation masks. OI is the 

original image from the dataset, GT is the ground truth binary mask of OI, and the other 

three masks are OI’s mask generated by corresponding algorithms. The link of the 

dataset can be found in the appendix. 

 

 

Fig. 3-8. Intersection of union plot for three different methods. GT is the ground truth. 
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3.2.8 Sample Preparation 

We used distilled water (ThermoFisher, USA) to prepare PS bead solutions with five 

concentrations (0.225×106, 0.45×106, 0.9×106, 1.8×106, and 3.6×106 beads/mL). The 

diameter of all PS beads is 10μm. For fluorescent imaging, we used three different PS 

beads (blue-green, Ex 430/Em 465; yellow-green, Ex 505/Em 515; red, Ex 580/Em 605; 

Thermofisher) solutions with 1.8×106 beads/mL concentration. PS beads (505/515, 

Thermofisher) at different concentrations were used to test πM’s real-time image 

foreground feature extraction and bead counting performances. Each sample was 

prepared on the glass side (Corning, USA) with a 10μL volume. 

3.3 Results 

3.3.1 Brightfield Imaging 

To assess the brightfield imaging capabilities of πM, we compared πM and a benchtop 

microscope (Olympus BX51, JP). Prepared microscope slides containing dog skeletal 

muscle, Hydrilla leaf, and rabbit spinal cord samples (AmScope, UK) were captured 

under brightfield illumination. When using the benchtop microscope, we employed a 

×5 objective lens and the same sensor (IMX317-Sony) to observe the samples. It is 

important to note that this comparative experiment is limited to a magnification of ×5 

because πM's magnification also matches this value. Therefore, the magnification of 

the objective lens of the benchtop microscope was chosen to be equivalent to that of 

πM, limiting the comparison to ×5 magnification. 

 

As shown in Fig. 3-9, the images of the prepared microscope slides are presented. The 

colour temperature of different illumination sources may lead to variations in 

background colour. Furthermore, our experiments revealed that images captured with a 

benchtop microscope contain more out-of-focus signals compared to those captured 
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with the πM, attributed to the differences in the NA of the objective lenses used. The 

πM's webcam lens has an NA of 0.2 and a magnification of ×5, whereas the benchtop 

microscope's objective lens, which is an Olympus model, has an NA of 0.15 and a 

magnification of ×4. The higher NA in the πM setup enables better rejection of out-of-

focus signals.  

 

It should be noticed that the Olympus benchtop microscope in our laboratory does not 

offer a ×5 magnification lens option (only ×4, ×10, ×20, ×60 are available), leading us 

to choose the ×4 lens for comparison purposes. While a Mitutoyo objective lens with 

×5 magnification is available 

(https://www.thorlabs.com/thorproduct.cfm?partnumber=MY5X-802), budget 

constraints prevented us from acquiring a new microscope equipped with it. Future 

comparisons will aim to include off-the-shelf microscopic objective lenses that match 

the magnification of the πM's webcam lens. 

 

To validate πM's resolution, the USAF-1951 resolution target was illuminated by six 

different LEDs (LED405E, LED465E, LED528HP, LED591E, LED630E, LEDW7E, 

Thorlabs). 228 line pair/mm targets (Element 6 of group 7) can be resolved under 

different wavelengths (Fig. 3-10, indicated by arrows). 

 

In Fig. 3-10, a notable deviation is observed between the anticipated theoretical 

resolution and the actual empirical resolution achieved by πM. Theoretically, given the 

NA (0.2 for πM) and illumination at 523nm, the system is expected to achieve a 

resolution of approximately 1.33μm. However, the empirical data suggest a 

significantly lower resolution of about 4.5μm, highlighting a discrepancy that warrants 

further examination. This gap between theoretical predictions and practical outcomes 

can be attributed to several factors inherent in the design of the πM system. The 

constraints imposed by the need for a portable and cost-effective design may inherently 
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limit the optical system's resolving power. Optical aberrations, both chromatic and 

spherical, are particularly challenging to correct in compact optical systems and likely 

contribute to the reduced resolution. Furthermore, the quality of the optical components, 

the precision of their alignment, and the capabilities of the imaging sensor may not be 

fully optimized to realize the system's potential resolution.  

 

To solve these problems, improvements in the quality of optical components, the 

implementation of advanced aberration correction strategies, and enhanced alignment 

precision could significantly narrow the gap between theoretical and observed 

resolution (Section 3.4). 

 

 

Fig. 3-9. Prepared microscope slides images captured by both PAI-M and benchtop 

brightfield microscope. I cropped these images for the same size and FOV for 

comparison, and the 50μm scale bar is for all images. Blue arrows depict dusts and 

scratch on microscopic slides captured by benchtop microscope with x4 magnification. 

The benchtop microscope objective lens has a more extended depth of focus, so the 

sensor will collect information in this range simultaneously. However, the πM’s 

objective lens has a smaller depth of focus range because of its higher NA and 

magnification. 
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Fig. 3-10. πM’s resolution under different illumination wavelengths. Each picture is 

cropped from the centre FOV. Horizontal and vertical line profiles of the 6th element, 

Group 7 (indicated by arrows), are depicted beside each picture. 

3.3.2 Fluorescence Imaging 

For the fluorescence imaging of various PS beads, we employed different LED light 

sources and optical filters. Specifically, a blue LED (430nm, Lumex) was used to excite 

blue-green beads, a yellow LED (505nm, Lumex) was used to excite yellow-green 

beads, and an orange single-wavelength LED (LED591E, Thorlabs) was used to excite 

red beads. Optical filters with specific wavelengths (473/10, 520/10, 610/10, Edmund 

Optics) were selected to observe the fluorescent signals effectively.  

 

To capture brightfield images, the system is initially set up in its standard configuration 

without the need for specialized filters. However, for fluorescence imaging, a crucial 

modification involves the disassembly of the adapter that houses the optical filter. This 

step is undertaken with precision to ensure the integrity of the optical path and 

components is maintained. Following the removal of the adapter, the optical filter 

specifically chosen for the fluorescence imaging application—based on the 

fluorophores' excitation and emission wavelengths—is carefully positioned within the 
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optical pathway. Once the appropriate filter is in place, the system is reassembled, 

ensuring the webcam lens holder and other components are securely and accurately 

repositioned. This reassembly is critical for maintaining the optical alignment and 

ensuring the system's overall functionality. The meticulous process of changing the 

optical filter and adjusting the webcam lens holder allows for a seamless transition 

between brightfield and fluorescence imaging, enabling the comprehensive 

characterization of samples using both modalities. This adaptability in imaging 

techniques underscores the πM system's versatility, making it a valuable tool for diverse 

applications in microscopy. 

 

However, this process introduces a notable limitation in maintaining precise optical 

alignment. The manual adjustment required for switching imaging modalities, despite 

being meticulously conducted, inherently carries the risk of slight deviations in 

alignment. This misalignment, even if minimal, can potentially affect the quality and 

accuracy of the captured images, thereby impacting the overall performance of the 

system. Addressing this challenge necessitates innovative solutions in future iterations 

of the πM system. Detailed discussions can be found in section 3.4. 

 

Fig. 3-11 shows the brightfield, fluorescence, and merged images of various PS beads. 

It also includes zoomed-in images highlighted by yellow-dashed rectangles. The 

zoomed-in images clearly show the aggregated beads, indicated by yellow arrows. 

Notably, both the brightfield and fluorescence images of the samples can be captured 

within the same FOV by changing the webcam lens holder (Fig. 3-5(c)) and adjusting 

the optical filter, offering a versatile and efficient imaging solution. 
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Fig. 3-11. Fluorescent PS beads image with different spectrums, and yellow arrows 

denote aggregated beads. The 50 μm scale bar is for the first three columns, and the 10 

μm scale bar is for the last column. The fluorescent signals of PS beads in the Zoomed-

in column are not located in the centre of the beads (yellow indicators), caused by the 

oblique illumination and the beads’ 3D-rounded shapes. When the illumination light 

excited fluorescent beads obliquely, the light does not directly illuminate the beads’ 

centres but their edges. Therefore, fluorescent signals appear on the beads’ peripherals. 

These fluorescent signals are all located in the upper left of the beads. 

3.3.3 Foreground feature extraction and bead counting 

PS bead samples were used to show πM’s real-time foreground feature extraction and 

counting performances. Table. 3-2. shows the quantitative counting results of the 

images captured in the centre FOV (800μm2). The CNN counting method demonstrates 

superior robustness compared to OpenCV, as it can effectively recognize aggregated 

beads. At lower (low and medium) concentrations, the CLIJ2 method exhibits better 

performance. However, at higher concentrations, the CNN also outperforms the CLIJ2 

method, primarily because the CNN can recognize aggregated targets, which highlights 

the adaptability and versatility of the CNN method for various sample concentrations 
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and complexities. 

 

Fig. 3-12 shows foreground feature extraction and counting results at different 

concentrations. Fig. 3-12(a) shows local FOV sample images (low: 0.225×106 

beads/mL, medium: 0.9×106 beads/mL, high: 3.6×106 beads/mL). The corresponding 

foreground feature extraction results are shown in the following rows. The 

cv2.morphologyEx function processes OpenCV input masks to eliminate the donut 

shape (shown in the CNN input mask). This configuration can enhance the counting 

accuracy of OpenCV. After segmentation, OpenCV and CNN masks were used as inputs 

for bead counting. 

 

Furthermore, PS bead samples with different aggregated numbers were used to validate 

OpenCV, the CNN, and the CLIJ2 method in counting aggregate beads (from one to 

eight). Fifty other groups for each aggregated number were tested. Fig. 3-12(b) shows 

the hot maps of counting accuracy for OpenCV (26% accuracy for three aggregated 

beads), CNN (80% accuracy for six aggregated beads), and CLIJ2(64% accuracy for 

six aggregated beads). These results show that the CNN is better for aggregated target 

counting and segmentation. 

 

Table. 3-2. Bead counting results. At each concentration, results were obtained by five 

captured images with different centre FOVs. GT is the ground truth, Avg is the 

average value, and Std is the standard deviation. 

 225 beads/μl 450 beads/μl 900 beads/μl 1800 beads/μl 3600 beads/μl 

 Avg Std Avg Std Avg Std Avg Std Avg Std 

GT 57 15.7 104.6 13.5 153.8 9.7 298.2 6.9 558.8 5.7 

OpenCV 49.4 12 77 9.1 103.2 6.6 217.8 5.9 293.4 5.9 

CNN 57.6 16.6 108.8 15.6 158.8 8.1 304.8 4.8 571.6 5.8 

CLIJ2 57 15.7 103.8 12.3 149.6 10 282.8 6.6 504 6.1 



 Page 122 of 253 

 

 

 

Fig. 3-12. πM’s foreground feature extraction and quantitative counting results. (a) 

Sample images of local FOV and corresponding foreground feature extraction maps. 

Input: captured images. OpenCV, CNN, and CLIJ2 mask: Corresponding foreground 

feature extraction masks. (b) Accuracy hot maps of counting aggregated beads for our 

CNN, OpenCV, and CLIJ2 methods. 

3.3.4 Red blood cells (RBC) extraction and counting 

Further, πM’s functionalities on actual biological samples were evaluated. Prepared 

human RBCs smear samples with Wright’ Strain were used as targets. These samples 

were bought from the Carolina, USA (https://www.carolina.com/histology-microscope-

slides/frog-blood-film-smear-microscope-slide/313128.pr). According to previous 

bead experiments, the OpenCV method performs the worst. Therefore, only the CNN 

and CLIJ2 methods were considered here. Forty-five sub-region images from 10 
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samples were randomly selected for RBC extraction and counting. Table. 3-3 provides 

the statistical results, and the GT was established by examining the samples using a 

benchtop microscope and a tally counter. Corresponding box and Whisker plot are 

shown in Fig.3-13. Compared to CLIJ2, the CNN method exhibits superior robustness 

and accuracy when applied to biological samples, showing its effectiveness in practical 

applications.  

 

 

Fig. 3-13. Whisker and box plot of RBCs counting. 

 

Table. 3-3. RBC counting results. 

 Ground truth CNN method CLIJ2 

method 

Average counting results of 45 

sub-regions 

201 196 189 

Counting standard deviation of 

45 sub-regions 

41 38 33 
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Fig. 3-14 shows original images of RBCs captured by πM and corresponding feature 

extraction maps using different methods. In the CNN mask row, RBCs are depicted by 

yellow labels, and these masks are used as the input for the counting neural network 

(Fig. 3-7). Each RBC is coded in the CLIJ2 mask row with a unique colour, and adjacent 

RBCs do not share the same colour. The extraction mask and counting results are 

obtained simultaneously. Although CLIJ2 is a model-free approach, prior knowledge 

about two parameters defining the distance of segregate cells and the precision of the 

segmentation boundary is needed. These two parameters should be fine-tuned to 

achieve optimal results. However, the data-driven CNN does not have this problem. 

The same result was consistently obtained for the same image in different trails. 

 

Fig. 3-14. Images of human RBCs. The first row is the original pictures captured by 

πM, and the second and third rows are foreground feature extraction processed by our 

CNN and CLIJ2 methods. The number above each picture is the corresponding RBC 

counting result of the ground truth, CNN, and CLIJ2 methods. The scale bar under the 
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top-left image is 20μm. 

 

Here, a crucial limitation is that the testing of the πM on denser RBC samples and its 

comparison with high-quality images from an benchtop microscope. The omission of 

these tests is attributed to the initial scope of the study focusing on establishing the 

foundational capabilities of the πM in less challenging conditions, potential technical 

constraints of the πM system, resource limitations, and the developmental stage of the 

microscope. Future research will need to incorporate these elements, testing the 

microscope on denser RBC samples and comparing its performance against high-end 

microscopes like the Olympus, to ensure the robustness and applicability of the πM 

system in a wider range of clinical and research settings. 

3.4 Discussion and prospect 

LPMs are low-cost, user-friendly, and compact. In resource-limited areas, they are 

powerful tools for biomedical research. πM’s components can be easily reconfigured, 

and its optic-mechanical structure is simple. It contains a powerful AI-embedded 

system NJN and achieves image acquisition and real-time analysis without data transfer. 

Different from other portable microscopes, πM has several unique features. Users can: 

(1) easily customize their ANNs for specific applications, such as feature extraction, 

pattern recognition, and cell counting. (2) πM does not rely on network communication. 

The NJN, a robust calculation module, obtains real-time analysis. Users do not need to 

upload their captured images to servers and clouds. (3) πM can be an ANN training 

machine. Users can seamlessly capture images and customize and train their networks. 

 

Despite its innovative design and application, the πM exhibits certain limitations that 

merit attention. One notable constraint is the lack of comparative analysis with 

benchtop microscopes under identical conditions, which restricts a comprehensive 

evaluation of its performance. Furthermore, the resolution achieved by the πM, 
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although commendable for its design and cost, falls short when compared with 

theoretical expectations. This discrepancy could be attributed to various factors such as 

optical aberrations and the quality of illumination, which are common challenges in 

compact microscopy designs. 

 

To solve these limitations, future iterations of the πM could focus on enhancing the 

optical components and illumination strategies to mitigate aberrations and improve 

resolution. Incorporating adaptive optics could be a viable solution to dynamically 

correct for aberrations in real-time. Moreover, optimizing the illumination system to 

ensure uniform and adequate lighting could significantly enhance image quality. 

Expanding the comparative studies to include a broader range of conditions and 

benchmarks against conventional microscopes would also provide deeper insights into 

the πM's capabilities and areas for improvement. Additionally, integrating advanced 

image processing algorithms and deep learning techniques could compensate for 

hardware limitations, offering improved image reconstruction and feature detection. 

These advancements could further solidify the πM's utility in diverse applications, from 

clinical diagnostics to environmental monitoring, particularly in resource-limited 

settings. 

 

PS bead samples validated πM’s feature extraction and target counting functionalities. 

Experimental results show that the CNN is much more robust than OpenCV or CLIJ2 

in bead counting. Six aggregated beads can be correctly counted with 80% accuracy. 

Furthermore, human RBC smear samples were imaged by πM. Different FOVs from 

RBC samples were selected randomly for recognition and counting. According to the 

statistical analysis, πM achieved closer results to the ground truth than CLIJ2. Both 

bead and RBC experiments show that πM has potential in biomedical image analysis, 

especially for those images and targets with sophisticated and dense features. 
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In this project, the primary objective was to develop an affordable and portable device 

for RBC imaging and counting, specifically focusing on this application. Considering 

project funding constraints, experimental conditions, and ethical concerns related to 

biological experiments, more complex biological experiments were not included in this 

study. However, several prepared teaching microscope slides were chosen for 

comparison, demonstrating the system's potential for powerful biomedical imaging. 

 

Furthermore, while the segmentation and counting functions were initially achieved 

using brightfield images, the inclusion of fluorescent bead imaging suggests that πM 

has the capacity for fluorescent imaging and diagnostics. Soon, the goal is to upgrade 

πM to enable the detection of sickle cell diseases and hazardous microorganisms in 

drinking water in resource-limited regions at a relatively low cost. This expansion will 

incorporate more fluorescent imaging and diagnostic capabilities into the system, 

enhancing its utility in healthcare and diagnostics. 

 

In the AI aspect, a U-Net network and a VGG network were effectively cascaded to 

provide segmentation results along with target counting numbers. This design not only 

simplifies the system's data processing but also preserves its robustness. It is important 

to note, however, that this method has been validated for well-prepared samples, 

meaning those with minimal contaminants. In real-world clinical applications, the 

distribution of complex contaminants on sample slides can present challenges for AI 

algorithms in accurately extracting targets.  

 

The absence of detailed quantification regarding the data processing speed, exposure 

times, and sample irradiance levels in our πM system is an aspect that requires further 

elaboration to enhance the comprehensiveness of our research findings. The term 'real-

time' in the context of our study was used to denote the system's capability to process 

and analyse images without perceivable delay, thus facilitating immediate interpretation 
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and decision-making. However, it is acknowledged that a more precise quantification 

of processing times, including exposure durations and sample irradiance measurements, 

would provide a clearer understanding of the system's efficiency and operational 

capabilities. 

 

The processing speed of the NJN is a critical parameter, especially when considering 

the application of the πM in scenarios requiring rapid data analysis, such as in clinical 

diagnostics or environmental monitoring. The absence of specific metrics regarding 

processing speed in our initial study was primarily due to the preliminary nature of the 

system's evaluation, where the focus was more on demonstrating feasibility and 

potential applications. 

 

In future studies, the aim is to address these issues without substantially increasing the 

complexity of the network. We will implement benchmark tests to measure the time 

taken by the NJN from image capture to the completion of data processing. This will 

include assessing the time required for various processes such as image acquisition, 

pre-processing, analysis, and displaying results. Meanwhile, conducting experiments to 

determine optimal exposure times for various sample types and imaging modalities are 

important. This will ensure that images are captured with sufficient quality for accurate 

analysis while minimizing potential damage to sensitive samples. We will also measure 

the irradiance levels for different imaging conditions to optimize image quality and 

ensure sample safety. This is particularly important for fluorescent imaging, where 

excessive irradiance can lead to photobleaching and sample damage. Moreover, some 

contaminants will be introduced to test the system's robustness and ability to simulate 

real-world scenarios. 

 

As mentioned in section 3.3.3, the adaptability of our πM system to transition between 

brightfield and fluorescence imaging, through the disassembly and reassembly of the 
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webcam and adaptation of optical filters, introducing a limitation in maintaining precise 

optical alignment. One promising approach is the integration of an automated alignment 

system, equipped with real-time feedback mechanisms. Such a system could utilize 

advanced algorithms and actuators to adjust the optical components automatically, 

ensuring optimal alignment is achieved and maintained throughout the imaging process. 

This automation would significantly reduce the likelihood of alignment errors and 

improve the system's reliability and user-friendliness. Another avenue for improvement 

involves the design of a modular optical component system with precise locking 

mechanisms. This would allow for the quick interchange of components, such as filters, 

without disrupting the core alignment of the optical path. Each module could be 

designed to fit into a predefined position with high precision, ensuring consistent 

alignment even after multiple disassembly and reassembly cycles. Exploring these 

solutions will be a focal point of our future research endeavours. By enhancing the πM 

system's ability to maintain perfect alignment across different imaging modalities, we 

can unlock its full potential and expand its applicability across a broader range of 

scientific and medical fields. 

 

These targeted investigations will not only fortify the understanding and operational 

efficiency of the πM system but will also contribute valuable insights to the broader 

scientific community engaged in the development and application of portable 

microscopy technologies. This concerted effort will pave the way for realizing the full 

potential of portable microscopy systems in real-world applications, where speed, 

efficiency, and precision are of paramount importance. 

 

For RBCs counting experiments, we recognize the importance of a more detailed 

analysis to fully understand the algorithm's performance, especially in challenging 

conditions such as denser RBC samples. The variability in cell morphology, density, 

and the presence of overlapping cells can significantly impact segmentation accuracy. 
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Additionally, comparing the algorithm's performance on images captured by the πM 

system versus a high-end microscope like the Olympus, known for its superior image 

quality, could provide valuable insights into the robustness and adaptability of our 

segmentation algorithm.  

 

Recognizing the importance of these aspects, we are committed to addressing them in 

subsequent studies. Future research will expand on the quantitative analysis, 

incorporating more detailed data visualizations to dissect the algorithm's performance 

nuances thoroughly. We plan to conduct comprehensive evaluations across a range of 

cell densities, including denser RBC samples, and compare the algorithm's efficacy on 

images obtained from both the πM system and conventional high-end microscopy 

systems. These efforts will not only enhance our understanding of the algorithm's 

strengths and limitations but also contribute to the iterative development and refinement 

of the πM system. 

3.5 Conclusion 

In this study, a 3D-printed portable AI-supported fluorescence microscope, denoted as 

πM, has been introduced. This compact device measures 145mm×172mm×144mm 

(L×W×H) and comes at an affordable cost of around $400. The imaging path of πM 

was achieved by reversing the front lens of a webcam. The device can resolve 228.1 

lp/mm when tested with the USAF target. πM has demonstrated the capability to capture 

brightfield images comparable to those obtained with a benchtop microscope. 

Furthermore, it can observe fluorescent PS beads with a diameter of 10μm. The 

embedded CNN enables real-time feature extraction and accurate bead counting. 

 

Quantitative experiments have confirmed that the CNN can significantly reduce 

counting inaccuracies caused by aggregated beads and exhibits superior robustness 

compared to the OpenCV and CLIJ2 methods. Additionally, results from experiments 



 Page 131 of 253 

 

involving the extraction and counting of RBCs exhibit the potential of πM in real-time 

biomedical image analysis and disease detection. The device shows promise in 

facilitating advanced healthcare and diagnostic applications. 
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Chapter 4. Smartphone-based 

Optical Sectioning (SOS) Microscopy 

with A Telecentric Design for 

Fluorescence Imaging 

This study introduces a Smartphone-based Optical Sectioning (SOS) microscope 

employing the HiLo technique, wherein a single smartphone replaces the conventional 

high-cost illumination source and camera sensor. The SOS system is assembled using 

optical mechanical cage systems, enhanced with 3D-printed adapters to integrate the 

smartphone with the main SOS body seamlessly. The liquid light guide can be 

incorporated into the adapter, efficiently directing the smartphone's LED light to the 

DMD with minimal loss. 

 

An ETL is utilized for cost-effective axial scanning instead of a mechanical translation 

stage. The ETL is conjugated to the objective lens's BPP, establishing a telecentric 

design through a 4f configuration. This design ensures consistency in magnification 

across different layers, preventing variations in image quality. The SOS system achieves 

a telecentric scanning range of 571.5 μm and an axial resolution of 11.7 μm. 

 

The broad-spectrum LED torch of the smartphone proves highly effective in exciting 

fluorescent PS beads. Consequently, the SOS microscope successfully captures high-

contrast images of fluorescent PS beads at varying wavelengths and enables optical 

sectioning imaging of accumulated fluorescent PS beads. This SOS configuration 

represents the pioneering smartphone-based HiLo optical sectioning microscopy, 

offering a potent and cost-efficient tool for biomedical research, particularly in 

resource-limited areas. 
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4.1 Introduction 

Widefield fluorescence microscopy (WFM) is widely used for imaging biological 

samples because of its cost-effectiveness, rapid imaging speed, and minimal 

photodamage and photobleaching [265–267]. However, WFM's optical transfer 

function (OTF) indicates a limited optical sectioning ability, resulting in low-contrast 

images due to out-of-focus signals [268,269]. Therefore, various methods have been 

proposed to achieve high-contrast optical sectioning images.  

 

One such method is confocal laser scanning microscopy (CLSM), which applies a 

spatial pinhole filter positioned at the conjugated focus point of the illumination to 

reject out-of-focus fluorescence. The scanning mechanism typically involves galvo 

mirrors and a motorized stage for acquiring three-dimensional (3D) images [270–272]. 

Line scanning confocal microscopy (LSCM) operates on a similar principle but with a 

slit replacing the spatial pinhole in CLSM. The sample is scanned in two directions 

instead of three, enhancing scanning speed [273,274].  

 

Two-photon excitation microscopy (TPEM) provides another effective approach to 

obtaining high-contrast images. Utilizing near-infrared two-photon absorption 

minimizes tissue scattering and strongly suppresses out-of-focus signals [275–277]. 

Light sheet microscopy (LSM) is another potent optical sectioning technique 

[23,94,278]. In LSM, the illumination and detection arms are separated orthogonally, 

allowing the imaging objective lens to detect only fluorescent signals from the 

selectively illuminated plane. This setup mitigates phototoxicity and photobleaching 

while enhancing imaging contrast [279–281]. 

 

Compared to the previously mentioned methods, structured illumination microscopy 

(SIM) boasts a relatively easy configuration. This technique yields modulated and in-
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focus images with notable contrast and optical sectioning capabilities [282]. 

Implementation involves the use of a DMD or a spatial light modulator (SLM) to project 

periodic patterns onto the sample plane [283,284]. To easily incorporate optical 

sectioning into WFM, Merts' group pioneered HiLo microscopy by leveraging SIM's 

optical sectioning capabilities [21,285,286]. Beyond its straightforward setup, HiLo 

requires only two images, as opposed to SIM's usual three, for operation. The HiLo 

principle involves acquiring one uniformly illuminated image and one structured-

illuminated image, followed by image processing algorithms to derive the optically 

sectioned image [21].  

 

HiLo is cost-effective by using a coherent laser and a diffuser to create speckles on 

samples [21,285,286] or using an incoherent light source and a DMD to project patterns 

on samples [287,288]. Lim et al. [286] have presented that HiLo’s optical sectioning 

performance is comparable to CLSM [21,286,289]. HiLo has demonstrated its efficacy 

in applications such as 3D image cytometry [290], observation of neuron cell activities 

[291,292], exploration of 3D cell mechanical properties [293], enhancement of retinal 

imaging quality [294]. Furthermore, HiLo can integrate with endoscopy [289,295] and 

optical scanning microscopy [296,297]. Despite its relative simplicity compared to 

other optical sectioning modalities, the costs associated with its light source, DMD or 

SLM, and advanced camera sensor remain noteworthy. 

 

Many smartphones have high-performance image sensors and camera lenses, and their 

costs are relatively low, which makes smartphone-based microscopy an effective and 

affordable choice for various applications such as bioimaging [1,51,81], disease 

detection [37,298], and point-of-care testing [6]. Moreover, smartphones can easily 

integrate with different imaging modalities, including bright-field microscopy [299], 

fluorescence microscopy [82,300], phase microscopy [70,71,73,241], and Fourier 

ptychographic microscopy [74].  
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However, most of these devices primarily rely on the cameras and sensors of 

smartphones, necessitating additional external LEDs for illumination, which limits their 

potential despite their strong capabilities [56,86,301]. To enhance the simplicity of 

smartphone-based microscopy, screen LCD and LED flashlights smartphones have 

been used for illumination [74,84]. 

 

Here, I present the smartphone-based optical sectioning (SOS) microscopy concept. To 

our knowledge, this is the first HiLo microscope utilizing a smartphone, providing cost-

effective optical-sectioned widefield imaging. The smartphone functions as a CMOS 

sensor, reducing the overall cost compared to traditional HiLo microscopes. Using the 

smartphone's Bayer filter and small pixel size allows for the acquisition of high-

resolution coloured images without the need for external colour filters. 

 

Adapters were designed to integrate the smartphone into the main microscope body. 

These adapters facilitate the incorporation of the smartphone into the system. A liquid 

light guide was introduced into the adapter to direct the smartphone's flashlight to the 

DMD. Simultaneously, a reverse smartphone lens was affixed to the camera, 

conjugating the intermediate image plane with the smartphone's sensor at 1X 

magnification. 

 

The ETL was conjugated with the objective lens's Back Focal Plane (BPP) for a 

telecentric axial scan. This configuration ensures a stable lateral magnification of SOS 

at various depths. A spectrometer was employed to test the smartphone's LED torch, 

revealing its broad spectrum, effectively exciting fluorescent PS beads with diverse 

wavelengths. 

 

The SOS microscope has a telecentric scanning range of 571.5 μm and an axial 

resolution of 11.7 μm. Its capabilities were successfully demonstrated in acquiring high-
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contrast widefield fluorescent images featuring 10μm PS beads with emission 

wavelengths of 465nm, 515nm, and 605nm. Optically sectioned images of accumulated 

PS beads were achieved within a 25 μm axial range, employing a 5μm step. 

 

To our knowledge, the proposed SOS is the first smartphone-based HiLo optical 

sectioning microscopy (£1,965), which can save around £7,035 when comparing with 

a traditional HiLo system (£9,000). It is a powerful tool for biomedical research in 

resource-limited areas. 

4.2 Materials and Methods 

4.2.1 HiLo Principle 

In HiLo, two images captured under uniform and structured illumination were used to 

extract the in-focus high-frequency components (IHC) and in-focus low-frequency 

components (ILC) and generate an optical-sectioning image ( , )HiLoI x y : 

 

           ( , ) ( , ) ( , )HiLo Lo HiI x y I x y I x y= + ,                 (4-1) 

 

where ( , )LoI x y   is the in-focus low-frequency image and ( , )HiI x y   is the in-focus 

high-frequency image, and x and y are spatial coordinates at the image plane. The 

parameter   is used to avoid the discontinuity at all frequencies, calculated by [295]: 

 

Kc

Kc

HP

LP
 = ,                 (4-2) 

 

where KcHP  and KcLP  are Gaussian high-pass and low-pass filters, respectively, and 
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cK , the cut-off frequency, should be less than or equal to the frequency of the structured 

illumination pattern. It should be notice that cK  is adjusted by the frequency of the 

DMD patterns. In section 4.3.4, for fluorescent beads imaging, cK   is set as 

45.36μm/lp, and the high-pass filter is directly applied to the Fourier transform of the 

data for acquiring ( , )HiI x y  components. 

 

According to the wide-field microscope's OTF, high-frequency features decay rapidly, 

defocused from the image plane [302]. Thus, a high-pass filter can be applied on the 

uniformly-illuminated image to obtain ICH: 

 

 1( , ) { { [ ( , )]}}Hi Kc uI x y HP I x y−=   ,          (4-3) 

 

where    and 1−   are two-dimensional Fourier transform and inverse Fourier 

transform, respectively. KcHP   denotes a Gaussian high-pass filter with the cutoff 

frequency Kc . uI  is the image under uniform illumination, and it can be divided into 

the in-focus term focusI , and the defocused term defocusI : 

 

                 ( , ) ( , ) ( , )u focus defocusI x y I x y I x y= + ,         (4-4) 

 

Similarly, the structurally-illuminated image under sinusoidal illumination is: 

 

        ( , ) ( , ) sin(2 ) ( , ) ( , )s focus focus defocusI x y I x y M kx I x y I x y= + + ,     (4-5) 

 

where M is the modulation depth and k is the pattern spatial frequency. The sinusoidal 

pattern can modulate in-focus images, whereas defocused images does not. 
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It should be noticed that the DMD can only generate binary patterns, which means that 

SI patterns should be stripe patterns. However, when using a DMD to project a stripe 

pattern onto the sample plane of a microscope, the transformation of the stripe pattern 

into a sinusoidal pattern is often attributed to the diffraction effects caused by the DMD 

itself, as well as the optical system of the microscope. The DMD consists of thousands 

of tiny mirrors that can tilt to direct light either towards or away from the projection 

lens. The edges of these mirrors can cause diffraction, which is the bending of light as 

it passes around the edges of an object. The small size of the mirrors is on the order of 

the wavelength of light, which can lead to significant diffraction effects, transforming 

the sharp edges of the stripe pattern into more sinusoidal patterns. Moreover, 

imperfections in the optical system of the microscope, such as lens aberrations, can 

distort the projected pattern. These aberrations can blur the edges of the stripes, 

contributing to the sinusoidal appearance. From the aspect of Fourier optics, when light 

is projected through any system with a finite aperture (like the DMD and the microscope 

optics), the system performs a Fourier transform on the light pattern. A stripe pattern, 

being like a square wave, has a Fourier transform that includes sinusoidal components. 

The optical system can emphasize these sinusoidal components, especially under 

coherent illumination conditions. 

 

To extract the ILC from ( , )uI x y  , a weighting function should be used to reject 

defocused low-frequency components. The weighting function serves to optimally 

combine the high-resolution information from the SI image with the low-noise 

background of the uniformly illuminated image. This process enhances the visibility of 

fine details in the specimen while suppressing the noise, resulting in clearer, more 

detailed images. Mathematically, the weighting function can be represented as a 

spatially varying parameter that determines the contribution of each type of illumination 

(uniform or speckle) at each point in the final image. Since the image modulated by the 
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sinusoidal pattern have the maximum contrast at the focal plane, we can relate this 

weighting function with the contrast. This weighting function can be obtained by using 

the rectified subtraction method [289], the single-sideband demodulation method [295], 

and the local contrast method [21]. Here, considering the robustness, calculation speed, 

and simplicity, we used the difference image with a band-pass filter for the contrast 

weighting function to remove the sample-induced contrast and obtain a better axial 

resolution [292]: 

 

  
1( , ) { { [ ( , ) ( , ) ]}}u sC x y std BPF I x y I x y−=   − ,     (4-6) 

 

where std  represents the stand deviation operation and BPF  is a 2D Gaussian band-

pass filter. The band-pass filter can remove the DC spectral components, which is not 

defocus. The optical sectioning performance of low-frequency components can be 

enhanced by tuning the bandpass filter’s width, and it can be denoted as: 

 

2 2 2 2

2 2
( , ) exp( ) exp( )

2

x y x y

x y

k k k k
BPF k k

 

+ +
= − − − ,     (4-7) 

 

where ( , )x yk k  is the spectral coordinate and   is the band-pass filter’s width. 

 

Weighted uniformly-illuminated images without defocusI  can be obtained by multiplying 

the uniformly-illuminated image with ( , )C x y . Then, a low-pass filter is applied to the 

weighted uniformly-illuminated image to diminish structurally-illuminated-induced 

sinusoidal noise to acquire ILC: 

 

1( , ) { { [ ( , ) ( , )]}}Lo Kc uI x y LP C x y I x y−=   ,      (4-8) 
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where KcLP  is the low-pass filter with cutoff frequency Kc . 

4.2.2 Optical Setup of the System 

Fig. 4-1(a) illustrates the optical configuration of SOS. A smartphone (iPhone 13Pro, 

Apple) serves as both the illumination source and the sensor. The LED light emitted by 

the smartphone is initially directed through a liquid light guide (3mm×6’, liquid light 

guide, Edmund Optics). This light is then filtered using a selected filter and collimated 

through the Köhler illumination setup (refer to section 4.2.4 for details) to illuminate 

the DMD (DLP LightCrafter 6500, Texas Instruments). The modulated reflective light 

from the DMD subsequently passes through a dichromatic mirror. L1 is an achromatic 

lens pair (MAP10303-A, Thorlabs), and L2 is an aspherical convex lens (ACL3026U-

A, Thorlabs). To maintain consistency between the input and reflective light planes, the 

DMD is rotated at 45° because each pixel on the DMD is activated along the diagonal 

line (see Fig. 4-1(b)). The illumination light is also introduced at a 24° angle from the 

direction normal to the DMD, allowing for reflection at 0°. Two 4f systems, namely L3-

RL2 (L3: AC508-180A, RL2: AC508-100A, Thorlabs) and OL-RL1 (OL: 

UPLanSApo/20X/0.75, Olympus, RL1: AC508-100A, Thorlabs), are employed for 

structured illumination. The ETL (EL-16-40-TC-VIS-5D-M27, Optotune) acts as a 

nonmechanical axial scanning device with a rapid response. It is conjugated to the Back 

Focal Plane (BFP) of the objective lens, ensuring a telecentric setup and maintaining 

constant lateral magnification during axial scanning (refer to section 4.2.3 for details). 

 

The objective lens collects the excited fluorescent signal, and the first image is located 

at the BFP of RL1. Then the image is again imaged at the BFP of TL (AC508-180A, 

Thorlabs) through RL2-TL 4f system. The ETL is located at the confocal plane of RL2, 

TL, and L3. To acquire the image using a smartphone, the same reversed smartphone 

lens is put in front of the camera to combine a 1:1 symmetric relay system. So the image 
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can finally be recorded by the smartphone sensor. The smartphone sensor is equipped 

with the Bayer filter so that coloured images can be directly acquired. Furthermore, 

adapters are designed and fabricated for integrating the smartphone and the liquid light 

guide to the cage system of the microscope’s main body without sacrificing any 

concentric of the optical path (Fig. 4-1(c), section 4.2.5 for detail). 

 

 

Fig. 4-1. Optical setup of the proposed SOS microscope. (a) The diagram of the SOS 

microscope. The DMD plane, which is conjugate to the sample plane, is illuminated by 

the collimated light. L3, RL2 and RL1, OL consist of two 4f systems. The illumination 

is introduced at 24° to ensure the DMD can reflect the light at 0°. For telecentric design, 

the ETL is conjugate to the BPP. The image is recorded by a smartphone equipped with 

a reversed smartphone lens. (b) and (c) shows the experiment setup. Adapters are 

designed to make the smartphone seamlessly integrate with the SOS main body (section 

4.2.5 for detail). OL: objective lens; M1-M3: mirror; RL1-RL2, L1-L3: lens; F: filter; 
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TL: tube lens; DM: dichromatic mirror; DMD: digital mirror device; ETL: electrical 

tunable lens; BPP: back pupil plane. 

4.2.3 Telecentric Design and Theoretical Axial Scanning 

Range 

The telecentric design can realized axial scanning with invariant lateral magnification. 

Here, an ETL was used for axial scanning by tuning the input current to change its 

surface shape. To maintain lateral magnification at different depths, the entrance and 

exit pupils should be located infinitely at object and image space, respectively. 

Therefore, the system setup should be strictly in the 4f configuration. 

 

Fig. 4-2 illustrates the telecentric design of the imaging path. ETL should be conjugated 

with the objective lens’s BPP to obtain the telecentric design. It is hard to put ETL 

directly at BPP; therefore, the 4f configuration (RL1-RL2 lens pair) was used to relay 

BPP, at which ETL and BPP are conjugated. Meanwhile, ETL is also located at the FFP 

of the TL to guarantee that the image space is telecentric. It should be noted that the 

clear aperture size of the conjugate BPP cannot surpass ETL’s clear aperture. Here, the 

BPP diameter of the objective lens is 9 mm and ETL’s clear aperture size is 16 mm. 

RL1 and RL2 with both 100 mm focal lengths was used to combine a 1:1 4f 

configuration, and its confocal plane coincident with the intermediate image plane I. 

 

 

Fig. 4-2. Telecentric imaging optical path. RL1 and RL2 is configured as a 4f system to 

relay the objective lens’ back pupil plane to ETL. The red and blue lines depict the 
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minimum and maximum axial scanning ranges. 

 

To calculate the theoretical scanning range in object space, the relationship between the 

axial displacement of the object plane and the intermediate image plane should be found. 

As shown in Fig. 4-2, z +  and z+  can be related by: 

 

          2

1

o

i OL RL

n
z z

n M
 + +

−

=  ,         (4-9) 

 

1OL RLM −  is the lateral magnification of the objective lens and the first relay lens (RL1), 

on  and in  are the refractive indices in the object and the image space, respectively. 

Here, for simplicity, both of them are unity. The scanning range will be different for the 

sample’s refractive index. 

 

The intermediate image plane I can be tuned by ETL, and RL2 and ETL can be treated 

as a compound lens. According to Gullstrand’s equation [303]: 
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,       (4-10) 

 

2RL ETLf −  is the focal length of the RL2-ETL-compound lens, ETLf  and 2RLf  are the 

focal lengths of ETL and RL, and 2ETL RLd −  is the distance between ETL and RL2. 

Since ETL is located at the BFP of RL2, Eq. (4-10) can be rewritten as: 
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Therefore, tuning ETL's optical power changes the compound lens's front principal 

plane instead of changing its focal length. This is equivalent to the axial displacement 

of the intermediate image plane I. As shown in Fig. 4-2, z+  can be written as [303]: 

 

  

2

2RL

ETL

f
z

f
+ = ,         (4-12) 

 

Combining Eq. (4-9) and Eq. (4-12) we obtain: 
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  denote the corresponding optical power. 

 

Therefore, the scanning range in the object space can be written as: 
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minETL −  and maxETL −  are the minimum and maximum optical power of ETL. 

4.2.4 Illumination Path Design 

Fig. 4-3 shows the exact illumination path for the HiLo microscopy. The light guide’s 

light must be collimated, and the final beam diameter D should fill the DMD’s active 

area. Furthermore, this diameter D cannot be too large to prevent illumination energy 

loss. Therefore, D was set to be the diagonal length of DMD’s active area. The Köhler 

setup was applied to acquire high-quality illumination. L1 was used as a collector to 
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image the light source to the FFP of the condenser (L2), and the final collimated light 

illuminated the DMD. To choose appropriate elements for L1 and L2, the relationship 

between the illumination half angle u and beam diameter D can be found according to 

the Gaussian optics. The magnification of the collector (L1) can be calculated as: 

 

 
1

1

sin

'sin '
c

n u
m

n u
= ,             (4-15) 

 

where 1n   and 1 'n   are the refractive index in the object and image space of L1, 

respectively. When the light is collimated by L2, the relationship between 'u  and D 

is: 

 

sin ' sin[arctan( )]
2 condenser

D
u

f
= ,      (4-16) 

 

condenserf  is L2’s focal length. The medium is air. Combining Eq. (4-15) and Eq. (4-16): 

 

sin sin[arctan( )]
2

c
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D
u m

f
= ,      (4-17) 

 

where the angle u  can be obtained from experiments (Section 4.3.2 for detail) and D 

should be slightly longer than the diagonal length of the DMD active area, which is 

12mm. 
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Fig. 4-3. Illumination light path. After calculating and experiments, appropriate L1 

(MAP10303-A, Thorlabs) and L2 (ACL3026U-A, Thorlabs) are chosen. L1 has 1X 

magnification, and the NA of L2 is 0.55. 

4.2.5 Smartphone Adapter Design 

I employed CAD design (Autodesk, Inventor Professional 2020) and 3D-printed two 

adapters. Fig. 4-4(a) shows the connections between these adapters. Two holders were 

designed to accommodate the iPhone. These adapters are designed similarly to the 

Thorlabs cage system adapter. So that the smartphone can be easily combined with the 

microscope’s main body without losing any concentricity. Fig. 4-4(b) illustrates the 

smartphone holder with the light guide and the reversed smartphone lens. 

 

 

Fig. 4-4. Home-made adapters. (a) The diagram of harnessing the smartphone to the 

microscope’s main body. (b) The light guide and the reversed smartphone lens are 

aligned through the smartphone holder. 

4.3 Results 

4.3.1 Performance of the Axial Scanning 

The theoretical axial scanning range can be obtained from Eq. (4-14). The effective 

ETL current (I) ranges from -250 mA to 250 mA, corresponding to the optical power 

from -3.3 to 3.5 dpt. The lateral magnification of the lens pair OL-RL1 is 11.1, and the 
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optical power of RL2 is 10 dpt. The theoretical axial scanning range is calculated as 

561 μm. 

 

The experimental axial scanning range is also measured to compare with the theoretical 

results. A uniform pattern was uploaded onto the DMD to generate wide-field 

illumination. A resolution target (R3L3S5P, Thorlabs) was imaged at the different axial 

positions by tuning the current of the ETL and the z-axis translation stage. In the 

experiment, I was adjusted to be -250, 125, 0, 125, and 250 mA. After each current 

adjustment, the target was axially removed by adjusting the translation stage (Edmund 

Optics) to get a clear image, and the relationship between I and the axial displacement 

(d) can be found (Fig. 4-5(c)). The translation stage here is for finding the relationship 

between the axial movement and the ETL current. It can be exempted during 

experiments. 

 

Fig. 4-5(a) shows five in-focus images at different depths; the central image is the in-

focus image without tuning the I (0mA). All images were captured without any 

horizontal or vertical movements. To prove the telecentric property of the proposed 

system during axial scanning, as shown in Fig. 4-5(a), three line profiles were traced at 

the same position when the I were -250mA, 0mA, and 250mA. As shown in Fig. 4-5(b), 

the size of each circle fixed, meaning that the lateral magnification is constant. The data 

is normalized by 
𝐼𝑚𝑎𝑥−𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥+𝐼𝑚𝑖𝑛
 for better visualization. 𝐼𝑚𝑎𝑥 and 𝐼𝑚𝑖𝑛 is maximum and 

minimum intensity respectively. Fig. 4-5(c) shows the ETL current versus the axial 

displacement. The axial position was set as a reference plane (d is zero) when I is zero. 

The measured axial scanning range is 571.5 μm, close to the theoretical value of 561 

μm with a 2% error. 

 

Fig. 4-5(d) shows the non-normalized line profiles of fig. 4-5(b). Obviously, the contrast 

is very low, and this could be attributed to several factors, including the limitations of 
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smartphone sensors, optical aberration, or misalignment of the optical path.  

 

Smartphone-based optical sectioning microscopy, as detailed in this study, utilizes 

smartphone sensors instead of high-cost camera sensors. While this is cost-effective and 

innovative, smartphone sensors may not always match the sensitivity and dynamic 

range of more specialized imaging sensors used in traditional microscopy. This can lead 

to lower contrast in captured images, especially in scenarios requiring high sensitivity 

to subtle changes in light intensity. More detailed discussions can be found in section 

4.4. 

 

Fig. 4-5. Performance of axial scanning and telecentric property. (a) In-focus images at 

different depths. The ETL current is first changed, then the target is moved axially to 

acquire a clear picture. (b) Corresponding line profiles in Fig. 4-5(a). (c) Relationship 

between the ETL current and axial displacement. (d) Non-normalized line profiles for 

(b). 
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4.3.2 Characterization of the Illumination Path 

a. Radial Intensity Distribution 

According to Eq. (4-17), the light source's radial intensity distribution decides how to 

choose the appropriate optical components to illuminate the whole DMD area with 

proper beam diameter. The low-loss liquid light guide (5mm * 6’ UV, Edmund Optics) 

was contacted to the smartphone’s LED. The output illumination radial intensity 

distribution was tested, as shown in Fig. 4-6(c). The radial intensity distribution directly 

irradiated from the smartphone was compared as shown in Fig. 4-6(a). Fig. 4-6(b) and 

(d) show the corresponding distributions and corresponding distributions in the polar 

coordinate system. The light guide can easily guide the illumination source to the aimed 

position. Besides, the power distribution from the light guide is more focused (14.2° 

FWHM) than the phone LED (21.6°).  

 

When coupling the LED light of a smartphone into the liquid light guide, the issue of 

light loss is not readily avoidable. The NA of the liquid light guide is noted to be 0.55, 

indicating a range of ±33 degrees. Hence, the occurrence of light loss is anticipated, as 

seen at the extreme end of the distribution in fig.4-6(d). It is believed that bending loss 

contributes to this issue. In practice, maintaining the light guide in a perfectly straight 

alignment is challenging, resulting in inevitable light attenuation. Additionally, the gap 

between the light guide's surface and the LED light source may cause the loss. 

Achieving a seamless contact between the light guide surface and the LED light source 

proved challenging during experimentation, leading to light leakage. Furthermore, the 

difference in diameters between the LED light source at 7mm and the 3mm core of the 

light guide further compounds the issue of light loss.  

 

Moreover, the power and the Etendue problem of illumination are also essential, and 
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these will directly decide the illumination efficiency. These are limitations of our 

current study, and detailed discussions can be found in section 4.4. 

 

 

Fig. 4-6. The measured radial intensity distribution by the power meter (LASERPOINT, 

Italy). Intensity distribution tests with (a) and without (c) the light guide. (b) The 

distribution of (a). (d) The distribution of (c). FWHM means the full-width-half-

maximum. The subplots in (b) and (d) are in the polar coordinate system. 

b. Spectral Intensity Distribution 

The spectrometer (HR2000, Ocean Optics) was used to test the smartphone LED’s 

spectrum. Fig. 4-7 shows the spectrum range of the iPhone 13pro LED. Like most white 

LEDs, the peak emission appears at ~450nm wavelength, and the normalised intensity 

in the visible spectrum range is higher than 50% except the dip around 480 nm. 
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Fig. 4-7. The spectrum of the iPhone 13pro LED. 

4.3.3 Optical Sectioning Capability 

To test SOS’ optical sectioning capability, I put a silver-coated mirror (PFR10-P01, 

Thorlabs) on the sample stage and projected DMD patterns with different periods to its 

surface. Since the pattern contrast decreased with defocus, contrast maps was extracted 

from pattern images and quantified the optical sectioning capability accordingly [289]. 

The green light (532nm) was used as reference [304]. An emission filter (FL532-3, 

Thorlabs) was inserted in front of the liquid guide. The focal plane was axially scanned 

with a 5μm step for a 15.12μm/lp pattern and a 10μm step for 75.6μm/lp and 

241.92μm/lp patterns. The normalized contrast for each axial image is calculated by C 

= (Imax - Imin)/ (Imax + Imin).  Fig. 4-8(a) shows the relationship between the normalized 

contrast and the axial position for three patterns with different frequencies. A higher 

frequency shows better optical section capability. This is because the higher spatial 

frequency modulation of the OTF in widefield microscopy decays with defocus more 

quickly, enabling better optical sectioning power. In this study, the DMD’s pixel size is 

7.56μm, so the highest frequency is 15.12μm/lp. Fig. 4-8(b) shows images with three 

frequencies captured at three axial positions. The pattern structure at 15.12μm/lp almost 

vanishes when the defocus distance is -10μm, whereas the periodic structure at 
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241.92μm/lp is still observable at the defocus distance -100μm.  

 

From these images, we can also find that the contrast is relatively low, especially when 

the frequency is higher. As mentioned in section 4.3.1, smartphone sensors may not be 

as capable as specialized microscopy cameras in detecting subtle changes in intensity, 

particularly in low-light conditions or when imaging faint fluorescence signals. This 

limitation can lead to images with lower contrast, especially for patterns with lower 

spatial frequencies where the distinction between illuminated and non-illuminated 

regions is less pronounced. 

 

Moreover, the optical system's resolution, defined by the diffraction limit, impacts how 

well high spatial frequency patterns are resolved. As the spatial frequency of a pattern 

approaches the system's resolution limit, it becomes increasingly difficult for the 

microscope to distinguish between the high and low regions of the pattern, leading to 

reduced contrast. This effect is exacerbated for higher spatial frequencies, which are 

closer to or beyond the resolution limit of the optical system. 

 

In HiLo, high spatial frequency components of the illumination pattern decay more 

rapidly with defocus compared to lower frequencies. While this rapid decay is 

beneficial for optical sectioning, it also means that at any significant defocus distance, 

high-frequency patterns lose contrast more quickly than lower-frequency patterns. 

Essentially, the high-frequency components are more sensitive to slight deviations from 

the focal plane, leading to a reduction in contrast when the sample is not precisely in 

focus. 

 



 Page 153 of 253 

 

 

Fig. 4-8. SOS’ optical sectioning capability. (a) The axial contrast profiles of DMD 

patterns for three spatial frequencies were obtained by imaging the reflected signal from 

the mirror sample. The Gaussian fitting was used for each experimental dataset. The 

Gaussian function's FWHM is also shown. (b) The images with three frequencies in (a) 

are captured at focus, and two defocus planes. 

4.3.4 Fluorescent beads imaging 

Fluorescent PS beads with 465 nm, 515 nm, and 605 nm excitation wavelengths 

(FluoSpheres, Thermo Fisher) were used to test SOS’ imaging performances. The 

bead’s size is 10μm in diameter. The samples were diluted ten times with deionised 

water and set on microscopic glass slides. For structured illumination, the DMD pattern 

period was set to 6 pix/lp (45.36μm/lp). For uniform illumination, all pixels on DMD 

were turned ‘on’. Fig. 4-9 shows the captured images of fluorescent bead samples. The 

widefield images were imaged under uniform illumination, and the SI images were 

under structured illumination. The HiLo algorithm was used to obtain the final HiLo 

images by taking both widefield and SI images. The code source and the ImageJ plugin 

can be found in appendix. To excite different fluorescent beads, different optical filters 

were inserted into the illumination path which was shown in Fig. 4-1(a), letter F (Fig. 

4-9(a), FBH430-10; Fig. 4-9(b), FBH500-40; Fig. 4-9(c), FBH580-10, Thorlabs). 

Because of the Bayer filter on the smartphone sensor, emission filters were unnecessary. 
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Fig. 4-9(d)- (f) shows corresponding line profiles in Fig. 4-9(a)-(c). 

 

 

Fig. 4-9. Fluorescent bead images at different wavelengths. (a) The bead samples with 

430nm excitation and 465nm emission. (b) The bead samples with 505nm excitation 

and 515nm emission. (c) The bead samples with 580nm excitation and 605nm emission. 

Corresponding line profiles of widefield and HiLo images are shown in (d)-(f). SI: 

Structured illumination. 

4.3.5 Optically sectioned imaging of accumulated fluorescent 

beads 

To test SOS’ optical sectioning performances, the fluorescent beads (FluoSpheres, 

Thermo Fisher, 505/515) of different layers were optically sectioned and then imaged. 

The 10μL bead solution without dilution was dipped onto the microscopic glass side 

and waited until it was dry. Therefore, beads start to accumulate and flow much slower. 
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The current (I) was set to -10.5, -7.0, -3.5, 0.0, 3.5, 7.0 mA , and the focus plane from -

15 μm to -10 μm with a 5 μm step. At each step, beads were illuminated by uniform and 

structured illumination (45.36 μm/lp). Fig. 4-10 shows widefield, structured 

illumination, and HiLo-processed images of accumulated beads at different depths. The 

HiLo images show much better optical sectioning capacity compared with widefield 

images. Out-of-focus signals are significantly suppressed. Several artefacts in the final 

HiLo images can also be found in the same position of widefield images (red 

rectangular), and there is no such artefact when samples are sparse (Fig. 4-9). In [305], 

researchers found that thick fluorescent objects could reduce speckle contrast, 

hampering the optical sectioning performance, but only in speckle illumination. In 

[287], in which the illumination setup is the same as our SOS, researchers found that 

the SI pattern of higher frequency can deliver a better axial resolution but more 

susceptible to out-of-focus background and thus produce severe artefacts in HiLo 

optical-sectioning images. Although these studies found artefacts in experiments, the 

cause of artefacts should be further examined. We speculate that this issue might be 

attributed to the camera of an iPhone smartphone, given the difficulty in adjusting its 

parameters and the challenge in accessing raw data. Furthermore, since the smartphone 

camera is optimized for general photography, it may pose challenges when used for 

capturing biological images. An in-depth examination of this phenomenon is provided 

in Section 4.4. 
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Fig. 4-10. Images of accumulated fluorescent beads at different depths. (a) widefield 

images. (b) SI images. (c) HiLo processed images. 

4.4 Discussion and Future Aspects 

Using microscopes for biomedical research and disease diagnosis poses challenges in 

resource-limited areas due to a lack of necessary resources. Especially for advanced 

optical sectioning microscopes, light sources, scientific sensors, precise translation 

stages, and optical components are usually costly. In response, a smartphone-based 

HiLo optical sectioning microscope, SOS, was proposed as a cost-effective solution 

utilizing a smartphone and an electrically tunable lens. Table. 4-1 summarizes the 

components used in the SOS and traditional HiLo systems and their corresponding costs. 

To make a cost comparison, because the traditional HiLo microscope can be built up in 

different ways, here we assume that the whole optical path structure is same and other 

components (objective lens, mirror, cage rod, lenses, filter, mechanical holders, et al.) 

in both SOS and traditional HiLo systems are identical. In that case, SOS demonstrates 

significant cost savings of approximately £7,035. 

 

The primary structure of SOS was designed and constructed using a compact cage 
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system. We developed and manufactured adapters to integrate the smartphone into this 

cage structure seamlessly. A liquid light guide was employed to channel the light from 

the smartphone torch to the Digital Micromirror Device (DMD) for structured 

illumination. The advantage of this approach is that we can freely guide light by using 

the liquid light guide to the aimed position. In this study, we only test the radial intensity 

distribution because the aim is to quickly demonstrate our proof-of-concept prototype 

and determine appropriate lenses for collimation so that the collimated beam size can 

exactly cover the DMD’s effective area. However, to examine whether the illumination 

source can effectively excite biological fluorescent dyes, the light power output and the 

Etendue of the light coming out of the fibre still needed to be carefully examined. These 

aspects are out of the scope of this work, and we will provide quantitative studies soon. 

 

In SOS, the ETL serves as an axial scanner, allowing the selection of sample planes and 

adjustment of the focal plane. The ETL is precisely conjugated to the BPP of the 

objective lens through a 4f configuration. This telecentric setup ensures the preservation 

of lateral magnification irrespective of the axial plane's position. Consequently, both 

the FOV and resolution remain constant. An additional benefit is that Z-stack images 

can be directly generated without post-processing. Moreover, the broadband LED light 

source employed in SOS proves highly effective in exciting various PS beads, providing 

versatility in imaging capabilities. 

 

The proof-of-concept SOS prototype has demonstrated its ability to successfully section 

and image 10μm PS fluorescent beads, indicating its significant potential for imaging 

more complex fluorescently labelled biological samples. However, as discussed in 

Section 4.3.5, when fluorescent beads are too dense, artefacts can be found in the final 

HiLo results. We conclude that the illumination and sample properties cause these 

artefacts. In addition, we suspect that images captured by the iPhone are not raw data 

and are processed by the post-processing algorithm. Therefore, some artefacts may be 
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introduced when these processed images are inputs for HiLo algorithms. Shi R., et al 

[287] also discovered these artefacts in their experiments. They concluded that these 

artefacts can be avoided by carefully choosing appropriate patterns and the frequency 

of the structure illumination according to biological samples. However, the cause of 

these artefacts is still unknown and needs further examination. In future studies, we will 

examine this aspect thoroughly. We will also use some Android smartphones and 

develop software to acquire raw format photos to discuss artefact problems. 

 

To testify whether SOS can image actual biological samples, this aspect needs further 

investigation. In the future, we will use SOS to conduct biological experiments with 

thicker biological samples (such as fluorescently labelled zebrafish). To develop a 

compact portable SOS, we will 3D print or machine some components holders instead 

of using Thorlabs cage system. 

 

This is a pioneer study about using a smartphone instead of a light source and a camera 

to realize HiLo optical sectioning microscopy. The cost is lower than that of traditional 

HiLo microscopy. However, we aim to minimize further its cost in the future. The most 

expensive parts of SOS are the DMD and the light guide. To save money and enable 

HiLo in low-resource settings, we can substitute the DMD with the diffusive or periodic 

pattern glass plates, and the light guide can be easily fabricated by low-cost polymers 

such as PDMS or PMMA. Furthermore, micro-LEDs are broadly used for illumination 

and display because of their brightness and small volume. We can use a micro-LED 

mini display and cheaper relay optics to generate and relay structured illumination. If 

this method is cheaper, additional light sources and light guides can be replaced, and 

more illumination structures can be generated by using a computer to control the micro-

LED mini display. 

 

The ETL and telecentric design maintain the lateral magnification and fast axial 
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scanning. However, an ETL still costs nearly £950, which is expensive for laboratories 

without sufficient funds. Cicuta P et al [109]. developed an open-source microscope, 

OpenFlexure, which allows easy customization and fast development of low-cost 

microscopes. For instance, Stirling J et al. [110]used the OpenFlexure Delta Stage and 

developed a multi-modal microscope. Matsui T et al. [120] established an optical 

sectioning microscope with the OpenFlexure stage. The other open-source microscope 

project, UC2 [101,114], also provides good options for customizing different low-cost 

microscopes. Therefore, in our future studies, we will make full use of these platforms 

and create appropriate modules to replace the ETL. 

 

Considering the fast development of smartphones, the iPhone 13Pro will eventually be 

out of date and using advanced smartphones in every resource-limited area is also 

unrealistic. To leverage the limitations of our smartphone HiLo and expand its 

application scenarios, we will focus on making it more general in future. For 3D-printed 

adapter parts, we will design a more compact and general part for different smartphones. 

We will apply clutch structures and adjustable mechanisms into adapters to harness 

different smartphones seamlessly. In this study, there is only one adapter for 

simultaneously combining the light guide and an iPhone 13 Pro. Considering that the 

cellphone's LED torch varies from type to type, we will separate the adapter into two 

parts, one for the smartphone's main body and the other for the light guide. Users can 

harness the phone and light guide to their corresponding adapters and combine two 

adapters. This configuration can make our method more general without considering 

smartphone types.  

 

The low-contrast issue observed in the images underscores significant challenges 

inherent in the application of SOS microscopy. The contrast degradation can be 

attributed to factors including the limitations of smartphone camera sensors, the optical 

resolution limits of the system, the behaviour of high spatial frequencies under defocus, 
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and the interaction of light with biological samples. Looking forward, addressing the 

low-contrast issue in SOS microscopy necessitates a multifaceted approach that 

encompasses both hardware optimization and computational strategies.  

 

From a hardware perspective, enhancing the light source's intensity and uniformity 

could improve the overall illumination quality, thereby boosting image contrast. 

Additionally, integrating more sensitive and high-dynamic-range sensors, possibly 

through advanced smartphone models or specialized imaging attachments, could 

mitigate the limitations currently imposed by smartphone cameras. On the 

computational front, the development of sophisticated image processing algorithms 

tailored for SOS microscopy could offer significant improvements. These algorithms 

could employ advanced techniques such as deconvolution, contrast enhancement, and 

noise reduction to improve the quality of the captured images. Furthermore, machine 

learning and AI could play a pivotal role in automatically optimizing the imaging 

parameters and processing strategies based on the sample's characteristics and the 

desired imaging outcomes. 

 

Another promising avenue is the exploration of adaptive optics and other real-time 

correction techniques to compensate for optical aberrations and misalignments in the 

imaging path. These technologies could dynamically adjust the optical setup in response 

to detected aberrations, ensuring optimal imaging conditions, and enhancing contrast. 

 

In conclusion, this is a pioneer study about testing the possibility of using smartphones 

to realize the HiLo optical sectioning microscopy. We find several limitations in SOS’s 

performance and configuration that will be further developed in future. These 

limitations can be solved, and the portable, low-cost HiLo microscope will be 

developed soon. 

Table. 4-1 Costs of the proposed SOS and traditional HiLo systems. 
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 SOS Traditional HiLo 

Light source N/A Tungsten-Halogen Source: ~ £5,000 

Camera sensor N/A 12 MP colour CMOS camera: ~ £2,000 

Smartphone Iphone 13pro: ~ £615 N/A 

Light guide ~ £400 N/A 

Axial translation stage Electrically tunable lens: ~ £950 Motorised translation stage: ~ £2000 

Total ~ £1,965 ~ £9,000 

4.5 Conclusion 

The proposed smartphone-based optical sectioning microscope, inspired by the HiLo 

principle, presents a compelling alternative to traditional HiLo systems, resulting in 

cost savings exceeding £7,035. In SOS, the dual functionalities of the illumination 

source and camera sensor are seamlessly integrated into a smartphone. An ETL serves 

as the axial translation stage, enabling axial scanning and focus plane selection. 

 

The telecentric setup employed in SOS ensures the preservation of lateral magnification 

regardless of the axial plane's position, eliminating the need for post-processing in 

imaging registration. SOS achieves an impressive axial range of 571.5 μm, closely 

approximating the theoretical value of 561 μm with a minimal 2% error. The axial 

resolution of SOS reaches 11.7 μm. Successful imaging of various PS beads was 

demonstrated, and optically sectioned images of accumulated beads were recorded 

within a 25 μm axial range using a 5 μm step. 
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Chapter 5. Optimizing microlens 

arrays for incoherent HiLo 

microscopy 

HiLo microscopy is a potent, budget-friendly, and easily configurable method for 

obtaining high-contrast optically-sectioned images. Nonetheless, conventional HiLo 

microscopes rely on either coherent light sources with diffusive glass plates or 

incoherent light sources utilizing DMD and SLM, which tend to be more costly.  

 

This study introduces a novel, cost-effective HiLo microscopy approach employing 

MLAs and incoherent LED light sources. I simulated SI patterns and HiLo image 

generation based on Fresnel diffraction and incoherent imaging. To investigate the 

impact of MLAs on HiLo images, I employed three commonly used MLAs with 

specific microlens pitch and NA parameters, generating periodic illumination patterns. 

According to simulations, using MLAs and incoherent light sources can significantly 

enhance image contrast compared to traditional widefield fluorescence microscopes. 

Surprisingly, the NA of the MLA was found to have an insignificant effect on HiLo 

images, while a larger lens pitch resulted in higher image contrast. However, an 

optimized lens pitch is crucial, as excessively high pitches led to artifacts in HiLo 

images.  

 

This numerical study represents the pioneering exploration of MLA-based HiLo 

microscopy. Its findings hold potential benefits for researchers seeking to employ 

MLAs and incoherent light sources in configuring cost-effective HiLo microscopes. 

5.1 Introduction 

HiLo is a widefield fluorescence microscope with an optical-sectioning (OS) function. 



 Page 163 of 253 

 

It is a robust method for rejecting background noise and acquiring high-resolution OS 

images [296,306]. HiLo can reveal fast biological processes in neuron cells [291,292], 

discover 3D cell mechanical properties by rejecting out-of-focus signals [293], improve 

retinal image quality [294], and realize 3D image cytometers [290]. HiLo can also 

achieve rapid and non-destructive imaging of freshly excised tissues with high 

efficiency and a good resolution [307]. In addition to its biomedical applications, HiLo 

extends its utility to measuring engineering microstructure surface profiles [308].  

 

The configuration of HiLo is like widefield epi-fluorescence microscopy (Fig. 5-1). The 

only difference is that in HiLo, the illumination light is adjusted to generate patterns on 

the sample plane. Any widefield epi-fluorescence microscope can be adapted to 

function as HiLo, facilitating optically-sectioned imaging by modifying the 

illumination path. Furthermore, HiLo seamlessly integrates with various biomedical 

imaging modalities, including endoscopy [289,295,309], 3D volumetric microscopy 

[310,311], and optical scanning microscopy [312]. Unlike optical-sectioning (OS) 

microscopy techniques like confocal [24], two-photon [276], and light sheet 

microscopy [23], HiLo eliminates the need for pinhole assignments, an expensive laser 

module, and dual objective lenses for illumination and excitation [313].  

 

Like SI microscopy, HiLo employs a light source that projects a distinct SI pattern onto 

the in-focus sample plane. However, what sets HiLo apart is its ability to reconstruct 

high-contrast OS images with just two images, one acquired with widefield illumination 

and the other with SI, in contrast to the three required by OS SI microscopes [314]. 

Thanks to advancements in deep learning (DL) algorithms and sophisticated image 

processing, HiLo has evolved to achieve OS imaging using a single image [288,315]. 

These characteristics collectively position HiLo as a cost-effective and user-friendly 

imaging technique. 
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HiLo's SI pattern determines the OS image's contrast and axial resolution [316]. Several 

studies have concluded that we can optimize the properties of speckle illumination 

[285,305] and frequency, modulation depth, and SI patterns [287,295] for the best OS 

images. There are two common ways to obtain SI patterns in HiLo: 1) using a coherent 

light source with a diffuser [21,317] to create speckle patterns or 2) using an incoherent 

light source with diffraction optical devices [292,318] to develop periodic patterns. 

However, coherent light sources, spatial light modulators (SLMs), and digital mirror 

devices (DMDs) increase the cost and system complexity. MLAs can also modulate 

light into different patterns. Researchers have exploited lithography [319] and laser 

etching techniques [320] to fabricate MLAs quickly. Moreover, the moulding method 

can also produce PDMS and PMMA-based MLAs [321]. Using appropriate MLAs 

instead of DMD or SLMs for HiLo can minimize costs and simplify the optical path. 

 

Furthermore, it is possible to substitute the expensive coherent light source in HiLo 

with a more economical uncoherent LED light source. This substitution, utilizing 

(MLAs in conjunction with LEDs, has the potential to markedly diminish both the cost 

and complexity associated with HiLo microscopy. However, properly selecting a 

specific MLA with appropriate parameters is the key to successfully implementing this 

approach. 

 

This numerical simulation study assesses the integration of uncoherent LEDs and 

MLAs for a low-cost HiLo system. I first simulated how MLAs generate periodic 

illumination patterns on the illuminated sample volume. According to several studies 

about MLAs fabrication [322,323], the three most common types of MLAs were chosen 

here: the cross-, cylinder-, and hexagon-types (Fig.5-1). I examined how MLA's NA 

and its microlens pitch affects the spatial distribution of these illumination patterns. 

Then I generated a simulated fluorescent block, multiplying it with the MLA-generated 

illumination pattern and using the HiLo algorithm to obtain high-contrast optical-
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sectioning images. To balance the computational efficiency and mesh fineness, MLA's 

NA was tuned within a small range (0.006-0.01). The microlens pitch is set from 60μm 

to 140μm with a 20μm step. After passing through the optical illumination path with 

0.1 times magnification, the illumination pattern period is from 6μm to 14μm with a 

2μm step. 

 

According to the simulation results, the HiLo image contrast is not significantly 

affected by MLA's NA but still has a minor enhancement with a higher NA. Notably, 

the relationship between the microlens pitch and image contrast is more pronounced. A 

higher pitch leads to enhanced image contrast, but if the illumination period reaches 

14μm/period, the contrast begins to deteriorate. Additionally, we explored three types 

of MLAs to understand how pattern distribution influences image quality. All three 

MLA types exhibit similar performance, except when the illumination period reaches 

its optimum value (12μm/period), where the cross-type MLA outperforms the others. 

The most favourable results are achieved using the cross-type MLA with a 0.1 NA and 

a pitch of 120μm. This numerical study is anticipated to inspire further theoretical 

investigations and contribute to the future development of cost-effective MLA-based 

HiLo microscopes. 

5.2 Theory 

5.2.1 Fundamentals of HiLo microscope 

The mathematic deduction and theoretical model of HiLo are discussed in chapter 4. In 

this study, the only different is the SI image is illuminated by MLA-generated 

illumination pattern. To avoid misunderstand, these formulations were rewrote again in 

a new coordinate system with different letters (Fig. 5-2).  

 

In HiLo, two images combine an OS image (𝐼𝐻𝑖𝐿𝑜(𝑢, 𝑣)): 
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𝐼𝐻𝑖𝐿𝑜(𝑢, 𝑣) = 𝐼𝐻𝑖(𝑢, 𝑣) + 𝜂𝐼𝐿𝑜(𝑢, 𝑣),             (5-1) 

 

where 𝐼𝐻𝑖(𝑢, 𝑣) is the in-focus high-frequency image, 𝐼𝐿𝑜(𝑢, 𝑣) is the in-focus low-

frequency image, and 𝑢, 𝑣  are spatial coordinates. The parameter 𝜂  can avoid 

discontinuities in the frequency domain, which can be calculated by [295]: 

 

𝜂 =
𝐻𝑃𝑘𝑐

𝐿𝑃𝑘𝑐

,          (5-2) 

 

where 𝐻𝑃𝜅𝑐
  and 𝐿𝑃𝜅𝑐

  are Gaussian HPF and LPF, respectively, and 𝑘𝑐 , the cut-off 

frequency, should be less than or equal to the frequency of the structured illumination 

pattern. 𝐿𝑃𝜅𝑐
  is complementary to 𝐻𝑃𝜅𝑐

 . Because 𝐼𝐻𝑖(𝑢, 𝑣)  is intuitively axially 

resolved, it can be acquired easily by: 

 

 𝐼𝐻𝑖(𝑢, 𝑣) = ℱ−1{𝐻𝑃𝑘𝑐
[𝐼𝑢(𝑘𝑢, 𝑘𝑣)]},       (5-3) 

 

where 𝐼𝑢(𝑘𝑢, 𝑘𝑣)  is the captured image in the frequency domain under uniform 

illumination and ℱ−1{ } is the inverse Fourier operator. To get 𝐼𝐿𝑜(𝑢, 𝑣), which cannot 

be axially resolved, we need a weighting function to select the in-focus portion of 

𝐼𝑢(𝑢, 𝑣) below the cut-off frequency. First, we get a bias-free difference image 𝐼∆(𝑢, 𝑣) 

by subtracting 𝐼𝑠(𝑢, 𝑣) , the captured image in the spatial domain under structured 

illumination, from 𝐼𝑢(𝑢, 𝑣): 

 

  𝐼∆(𝑢, 𝑣) = 𝐼𝑢(𝑢, 𝑣) − 𝐼𝑠(𝑢, 𝑣),        (5-4) 

 

where 𝐼𝑢(𝑢, 𝑣)  and 𝐼𝑠(𝑢, 𝑣)  are the captured images under uniform and structured 

illumination in the spatial domain. According to Eq. (5-4), we can estimate the 

illumination-induced contrast 𝐶(𝑢, 𝑣) by: 
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𝐶(𝑢, 𝑣) = 𝜎{𝐼∆(𝑢, 𝑣)},         (5-5) 

 

where 𝜎{ } means the standard deviation.  

 

In this study, the 𝐶(𝑢, 𝑣) is different with 𝐶(𝑥, 𝑦) in chapter 4. 𝐼∆(𝑢, 𝑣) here is not 

filtered by the band-pass filter. Because in this study, I care about how the MLA-

generated illumination pattern changes the result. If all difference images are not filtered 

by the band-pass filter, there is no relative change, and this can make the calculation 

more efficient. 

 

According to Eq. (4) and Eq. (5), we can guarantee that the modulated component is 

locally centred about zero and make the evaluation insensitivity to differences in the 

global illumination profile [289]. Then we weighted 𝐼𝑢(𝑢, 𝑣) with 𝐶(𝑢, 𝑣) and input 

it to the low-pass filter to acquire 𝐼𝐿𝑜(𝑢, 𝑣): 

 

   𝐼𝐿𝑜(𝑢, 𝑣) = ℱ−1{𝐿𝑃𝑘𝑐
[𝐶(𝑘𝑢, 𝑘𝑣)𝐼𝑢(𝑘𝑢, 𝑘𝑣)]},      (5-6) 

 

where 𝐶(𝑘𝑢, 𝑘𝑣) is 𝐶(𝑢, 𝑣) in the frequency domain. 

5.2.2 Theory of Pattern Projection and Image Formation 

In examining the impact of MLAs on HiLo microscope image quality, I conducted a 

comprehensive mathematical deduction elucidating the principles of structured 

illumination and image formation. Spectral domain multiplications were chosen instead 

of spatial domain convolutions to enhance computational efficiency.  

 

Fig. 5-1 illustrates the physical model of this study. The MLA modulates the collimated 
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beam and forms a specific pattern on its focal plane. The Fresnel diffraction theory was 

used in this part. To create different patterns, three common types of MLAs (cross-, 

cylinder- and hexagon types) were used. The illumination part of the 4f microscope 

system (L1 and OL) conjugates the illumination pattern to the sample plane, and the 

camera captures the excited fluorescent signal through the imaging part of the 4f 

microscope system (OL and Tube lens). The incoherent imaging theory was used in the 

illumination and imaging parts. 

 

 

Fig. 5-1. The physical model of this study. Red and blue dashed rectangles denote 

physical theories used in different parts. I used three different MLAs to generate 

different illumination patterns. This optical path is for structured illumination. The 

uniform illumination can be easily obtained by removing the MLA, and the collimated 

beam can be focused on the back pupil plane of the OL by L1. For simplicity, I denote 

four planes in the figure (source plane, MLA focal plane, sample plane, and image 

plane), which are the same as Fig. 5-2. (MLA: microlens array; L1: convex lens; EX: 

excitation filter; DM: dichroic mirror; OL: objective lens; EM: emission filter). 
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Fig. 5-2. Coordinate system of illumination and imaging process. 

 

Firstly, let us see the image formation on the image plane. Fig. 5-2 is the coordinate 

system for a mathematical deduction. The image acquired under SI is: 

 

    𝐼4𝑠(𝑢, 𝑣) = ∑ ∬𝑃𝑆𝐹𝑒𝑚(𝑢 − 𝜇, 𝑣 − 𝜎)|𝑧=𝑧𝑖
𝐼3(𝜇, 𝜎, 𝑧𝑖)𝑂(𝜇, 𝜎, 𝑧𝑖) 𝑑𝜇𝑑𝜎𝑛

𝑧𝑖=0 ,  (5-7) 

 

where 𝑃𝑆𝐹𝑒𝑚 is the 2D emission point spread function with a defocus term (different 

𝑧). 𝑂 and 𝐼3 are the 3D objects and illumination distribution, respectively, and 𝑧𝑖 is 

the defocus distance between the focus and target plane (𝑧𝑖 = 0 is in focus). 

 

To obtain the intensity distribution on the image plane, I convoluted the corresponding 

structure-illuminated sample plane for each slice with a defocused 𝑃𝑆𝐹𝑒𝑚, and summed 

them up from 𝑧𝑖 = 0 to 𝑧𝑖 = 𝑛. When 𝐼3(𝜇, 𝜎, 𝑧𝑖) is 1 for different 𝑧𝑖, we can obtain 

the image under uniform illumination ( 𝐼4𝑢(𝑢, 𝑣) ). For simplicity, we assume the 

imaging system is telecentric and has unit magnification. From Eq. (5-6), 𝐼3(𝜇, 𝜎, 𝑧𝑖) 

can determine the final HiLo image. 

 

The incident beam is assumed to be a monochromatic plane wave, and only the 

distribution inside each microlens of the MLA is considered. For the cross-type MLA, 

the amplitude distribution before the MLA can be written as: 
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  𝑈1(𝜉, 𝜂) = ∑ ∑ 𝑐𝑖𝑟𝑐 [
√(𝜉−𝑖𝑑)2+(𝜂−𝑗𝑑)2

𝑤
]𝑗𝑖 = {

1   𝑖𝑛𝑠𝑖𝑑𝑒 𝑒𝑎𝑐ℎ 𝑚𝑖𝑐𝑟𝑜 𝑙𝑒𝑛𝑠
0                           𝑜𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒

,    

(5-8) 

 

where 𝑤  is the radius of each microlens, 𝑑  is the distance of the neighboring 

microlens, 𝑖 and 𝑗 denote the indices of microlenses in two perpendicular directions (𝑖 

=0, 𝑗 =0 for central microlenses). The phase transformation of the cross-type MLA can 

be written as: 

 

        𝜙(𝜉, 𝜂) = ∑ ∑ 𝑒𝑥𝑝 {−𝑗
2𝜋

𝜆𝑒𝑥
[(𝜉 − 𝑖𝑑)2 + (𝜂 − 𝑗𝑑)2]}𝑗𝑖 , 𝑎𝑛𝑑 𝑑 > 2𝑤,  (5-9) 

 

where 𝜆𝑒𝑥 is the illumination wavelength. According to Eq. (5-8) and Eq. (5-9), we can 

obtain the Fraunhofer diffraction pattern at the focal plane of the MLA: 

 

𝑈2(𝑥, 𝑦) =
𝑒𝑥𝑝[

𝑗𝜋

𝜆𝑒𝑥𝑓
(𝑥2+𝑦2)]

𝑗𝜆𝑒𝑥𝑓
× ∑ ∑ ∬ 𝑐𝑖𝑟𝑐 [

√(𝜉−𝑖𝑑)2+(𝜂−𝑗𝑑)2

𝑤
] × 𝑒𝑥𝑝 {−𝑗

2𝜋

𝜆𝑒𝑥𝑓
[(𝜉 −𝑗𝑖

                                          𝑖𝑑)𝑥 + (𝜂 − 𝑗𝑑)𝑦]} 𝑑(𝜉 − 𝑖𝑑)𝑑(𝜂 − 𝑗𝑑),     (5-10) 

 

The integrand term in Eq. (5-10) is the Fourier transform of the input field at frequencies 

𝑘𝜉−𝑖𝑑 =
𝑥−𝑖𝑑

𝜆𝑒𝑥𝑓
, 𝑘𝜂−𝑗𝑑 =

𝑦−𝑗𝑑

𝜆𝑒𝑥𝑓
, and it can be written as: 

 

𝑈2(𝑥, 𝑦) =
𝑒𝑥𝑝[

𝑗𝜋

𝜆𝑒𝑥𝑓
(𝑥2+𝑦2)]

𝜆𝑒𝑥𝑓
∑ ∑ ℱ {𝑐𝑖𝑟𝑐 [

√(𝜉−𝑖𝑑)2+(𝜂−𝑗𝑑)2

𝑤
]}𝑗𝑖 ,    (5-11) 

 

To calculate the Fourier transform of the  function, I separate each microlens 

into unique polar coordinates and use the Hankel transform to obtain the corresponding 

Fourier transform. Eq. (5-11) can be further derived as: 
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  𝑈2(𝑥, 𝑦) = ∑ ∑
𝑒𝑥𝑝[

𝑗𝜋

𝜆𝑒𝑥𝑓
(𝑥2+𝑦2)]

𝑗𝜆𝑒𝑥𝑓𝑗𝑖 × 𝑤2
𝐽1[

2𝜋𝑤

𝜆𝑒𝑥𝑓
√(𝑥−𝑖𝑑)2+(𝑦−𝑗𝑑)2]

𝑤

𝜆𝑒𝑥𝑓
√(𝑥−𝑖𝑑)2+(𝑦−𝑗𝑑)2

,   (5-12) 

 

where 𝐽1  is the first-order Bessel function. For incoherent imaging, only the 

distribution of the illumination intensity is cared; thus, the intensity at the MLA focal 

plane is: 

 

𝐼2(𝑥, 𝑦) = |𝑈2(𝑥, 𝑦)𝑈2
∗(𝑥, 𝑦)| = ∑ ∑ (

𝑤2

𝜆𝑒𝑥𝑓
)

2

{
𝐽1[

2𝜋𝑤

𝜆𝑒𝑥𝑓
√(𝑥−𝑖𝑑)2+(𝑦−𝑗𝑑)2]

𝑤

𝜆𝑒𝑥𝑓
√(𝑥−𝑖𝑑)2+(𝑦−𝑗𝑑)2

}

2

𝑗𝑖 ,  

(5-13) 

 

For the HiLo microscope, the incoherent imaging theory is used to conjugate this 

pattern to the sample plane for SI. 

 

Assuming the blue dashed rectangular region in Fig. 5-1 is a telecentric configuration. 

The objective lens is used for illuminating and imaging the samples. According to the 

incoherent imaging theory, the intensity distribution on the sample plane is: 

 

𝐼3(𝜇, 𝜎, 𝑧)|𝑧=𝑧𝑖
= ∬|ℎ(𝜇 − 𝑥, 𝜎 − 𝑦)|𝑧=𝑧𝑖

|
2

× 𝐼3−𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐(𝜇, 𝜎)𝑑𝑥𝑑𝑦 

                                          = ∬|ℎ(𝜇 − 𝑥, 𝜎 − 𝑦)|𝑧=𝑧𝑖
|

2
× 𝐼2(𝑀𝑥, 𝑀𝑦)𝑑𝑥𝑑𝑦,      (5-14) 

 

where ℎ|𝑧=𝑧𝑖
 is the coherent impulse response function for the defocus distance 𝑧, the 

coordinate (𝜇, 𝜎)  is related with (𝜇 = 𝑀𝑥, 𝜎 = 𝑀𝑦) , and 𝑀  is the lateral 

magnification. 𝑧𝑖 = 0  is the in-focus plane. 𝐼3−𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐(𝜇, 𝜎)  is the scaled ideal 

geometric image copy of 𝐼2(𝑥, 𝑦) . Due to the telecentric configuration, 

𝐼3−𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐(𝜇, 𝜎)  remains the same for different 𝑧  distances. The corresponding 

spectrum of Eq. (5-14) can be expressed as: 
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       𝐺3(𝑓𝜇, 𝑓𝜎)|
𝑧=𝑧𝑖

= ℋ𝑖𝑙𝑙(𝑓𝜇 , 𝑓𝜎)|
𝑧=𝑧𝑖

𝐺𝑔(𝑓𝜇, 𝑓𝜎),      (5-15) 

 

where ℋ𝑖𝑙𝑙(𝑓𝜇, 𝑓𝜎)|
𝑧=𝑧𝑖

 is the illumination OTF at a defocus distance 𝑧𝑖. Thus, Eq. (5-

14) can be rewritten as: 

 

𝐼3(𝜇, 𝜎, 𝑧)|𝑧=𝑧𝑖
= ℱ−1 {ℋ𝑖𝑙𝑙(𝑓𝜇, 𝑓𝜎)|

𝑧=𝑧𝑖
𝐺𝑔(𝑓𝜇, 𝑓𝜎)},    (5-16) 

 

To get the defocused-OTF, we should know the corresponding CTF. Assuming the 

optical system is aberration-free, and the CTF of the system is: 

 

     ℋ𝑖𝑙𝑙(𝑓𝜇, 𝑓𝜎) = 𝑐𝑖𝑟𝑐 (
𝜆𝑒𝑥𝑧𝑥𝑝√𝑓𝜇

2+𝑓𝜎
2

𝑤𝑥𝑝
) 𝑒𝑥𝑝 {𝑗

2𝜋

𝜆𝑒𝑥
𝑊𝑑 [

(𝜆𝑒𝑥𝑧𝑥𝑝)
2

(𝑓𝜇
2+𝑓𝜎

2)

𝑤𝑥𝑝
2 ]} ,  (5-17) 

 

where   and   are the exit pupil distance and exit pupil radius, respectively, 

 ,  is the numerical aperture of the objective lens, and  is the 

Seidel defocus coefficient. Also, we have  [324]. Eq. (5-17) can be 

therefore rewritten as: 

 

  ℋ𝑖𝑙𝑙(𝑓𝜇, 𝑓𝜎) = 𝑐𝑖𝑟𝑐 (
√𝑓𝜇

2+𝑓𝜎
2

𝑓0
) 𝑒𝑥𝑝{𝑗𝜋𝑧𝑖𝜆𝑒𝑥(𝑓𝜇

2 + 𝑓𝜎
2)},    (5-18) 

 

where  is . The sign assignment of wavefront error is the same as [324]. 

For convenience, I recall it here. In Fig. 5-3, when the defocused wavefront converges 

to the right side of the ideal focus point and the corresponding defocused wavefront on 

the left side,  and  are positive. 



 Page 173 of 253 

 

 

Fig. 5-3. Illustration of defocus. E is the exit pupil, wavefront wi converges to the 

focus point f, and the defocus wavefront wab is centred on the axis at the defocus point 

f '. 

 

According to the analytic expression for the OTF of a circular asymmetric optical 

system with defocused aberration, which was first given by Hopkins [325], the OTF of 

the HiLo illumination can be rewritten as: 

 

  ℋ𝑖𝑙𝑙(𝜌) =
4

𝜋𝑎
𝑐𝑜𝑠 (

1

2
𝛼𝜌) {𝛽𝐽1(𝛼) + ∑ (−1)𝑛+1∞

𝑛=1
𝑠𝑖𝑛(2𝑛𝛽)

2𝑛
[𝐽2𝑛−1(𝛼) − 𝐽2𝑛+1(𝛼)]}  

                        −
4

𝜋𝑎
𝑠𝑖𝑛 (

1

2
𝛼𝜌) ∑ (−1)𝑛∞

𝑛=1
𝑠𝑖𝑛[(2𝑛+1)𝛽]

2𝑛+1
[𝐽2𝑛(𝛼) − 𝐽2(𝑛+1)(𝛼)],    

(5-19) 

 

where  ,  ,  ,   and   are normalized 

spatial frequency components defined as   and  , 

respectively. 

 

The high-order Bessel function makes Eq. (5-19) converge rather slowly. In simulations, 

we set  = 0.5λ for each step, and the approximation of Eq. (5-19) can also obtain 
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accurate results [39].  in Eq. (5-16) is: 

 

 ℋ𝑖𝑙𝑙(𝑓𝜇, 𝑓𝜎)|
𝑧=𝑧𝑖

= ℋ𝑖𝑙𝑙(𝜌) = {
2(1−0.69𝜌+0.076𝜌2+0.043𝜌3)[

𝐽1(𝛼−0.5𝛼𝜌)

(𝛼−0.5𝛼𝜌)
]

0

,|𝜌|<2
,|𝜌|≥2

,    

(5-20) 

 

I calculated the Fourier transform of  to obtain 𝐺𝑔(𝑓𝜇, 𝑓𝜎)  in Eq. (5-16). 

Recalling Eq. (5-13) and using the autocorrelation theorem, the Fourier transform of 

is: 

 

   ℱ{𝐼2(𝑀𝑥, 𝑀𝑦)} = ℱ{|𝑈2(𝑀𝑥, 𝑀𝑦)|2} =
1

𝑀4 [𝐴𝐶𝐹 〈𝐺2 (
𝑓𝑥

𝑀
,

𝑓𝑦

𝑀
)〉],   (5-21) 

 

where   is the auto-correlation function operator and   is the 

scaling spectrum of  . Using the convolution and successive transform theorems, 

neglecting the constant term in Eq. (5-11), we can obtain the following: 

 

  𝐺2 (
𝑓𝑥

𝑀
,

𝑓𝑦

𝑀
) = ℱ {𝑒𝑥𝑝 [

𝑗𝜋𝑀2(𝑥2+𝑦2)

𝜆𝑒𝑥𝑓
]} ⊗ ∑ ∑ 𝑐𝑖𝑟𝑐 [

√[𝑀(𝑥−𝑖𝑑)]2+[𝑀(𝑦−𝑗𝑑)]2

𝑀𝑤
]𝑗𝑖 ,    

(5-22) 

 

Where is the convolution operator. Combing Eqs. (5-16), (5-20), (5-21), and (5-22), 

we can rewrite the 3D illumination pattern on the sample volume as: 

 

            𝐼3(𝜇, 𝜎, 𝑧)|𝑧=𝑧𝑖
= ℱ−1 {ℋ𝑖𝑙𝑙(𝜌) × 𝐴𝐶𝐹 〈ℱ {𝑒𝑥𝑝 [

𝑗𝜋𝑀2(𝑥2+𝑦2)

𝜆𝑒𝑥𝑓
]} ⊗

                                                   ∑ ∑ 𝑐𝑖𝑟𝑐 [
√[𝑀(𝑥−𝑖𝑑)]2+[𝑀(𝑦−𝑗𝑑)]2

𝑀𝑤
]𝑗𝑖 〉},            (5-23) 

 

From Eq. (5-7), we can rewrite it in the spectrum domain: 
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   𝐼4𝑠(𝑢, 𝑣) = ∑ ℱ−1 {ℋ𝑖𝑚𝑎(𝜌)ℱ{𝑂(𝜇, 𝜎, 𝑧𝑖)𝐼3(𝜇, 𝜎, 𝑧)|𝑧=𝑧𝑖
}}𝑛

𝑧𝑖=0
,    (5-24) 

 

where ℋ𝑖𝑚𝑎(𝜌) is the same as Eq. (5-20), except that the emission wavelength  

substitutes the illumination wavelength  . 

5.3 Simulations 

5.3.1 3D illumination pattern on the sample volume 

I simulated different 3D illumination patterns on the sample volume. The illumination 

wavelength is 520nm, the illumination NA is 0.5, and the sample volume is 

200*200*100μm (width*length*height). MLA's NA was set from 0.006 to 0.01 with a 

step of 0.001. Each microlens is 50μm in diameter; the microlens pitch (distance 

between adjacent microlens) is from 60μm to 140μm with a 20μm step. Fig. 5-4 shows 

several normalized 3D illumination patterns created by different MLAs. The x-y section 

shows the intensity distribution on the focus plane (𝑧𝑖 = 0μm ), and the x-z section 

shows the axial intensity distribution of the central slice (y = 0) from 𝑧𝑖 = 0μm to 𝑧𝑖 =

100μm. The magnification of the illumination light path is 0.1; therefore, the pattern 

period on the sample plane in Fig. 5-4 is ten times smaller than MLA's lens pitch (6μm, 

10μm, and 14μm). 
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Fig. 5-4. 3D illumination intensity distribution on the sample volume created by cross-

type (a), cylinder-type (b), and hexagon-type (c) MLAs. Each picture is self-normalized, 
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and the NA is MLA's numerical aperture. The period is the distance between adjacent 

focus points on the x-y focus plane, which MLA creates. 

 

When using MLA to create SI on the sample, its microlens pitch and NA determine the 

modulation depth (MD). Fig. 5-5 shows horizontal line profiles of the focus plane (x-y 

section, y = 0 in Fig. 5-4). In the same MLA type, a higher microlens pitch increases 

MD. Beyond that, increasing NA also causes a higher MD. According to Eqs (5-8) and 

(5-18), the intensity distribution formed by each microlens at the sample plane is an 

Airy pattern. Therefore, if the period (corresponding to MLA's microlens pitch) and NA 

are too large, the side lobes of each focus point will sum up and cause oscillation (purple 

arrows in Fig. 5-5). MD is defined as , where 

  and   are the profile's maximum and minimum intensities. Fig. 5-6 shows 

relationships between MD, NA, and the period for different MLAs. As expected, 

increasing the period and NA can obtain higher MD rates. Because of the structure's 

similarity, illumination patterns formed by the cross-type and hexagon-type MLAs have 

similar MD rates and trends. When the period and the NA are both low, cylinder-type 

MLAs can create patterns with higher MD rates (> 50%). 
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Fig. 5-5. Horizontal line profiles of illumination patterns on the in-focus plane (x-y 

section, y=0). Different colour lines represent microlens NA. 

 

 

Fig. 5-6. Relationships between MD and microlens NA (a), MD and pattern period (b). 

Different color lines represent MLA's type. Scales are different for better visualization. 
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5.3.2 The axial resolution of illumination patterns on the 

sample volume 

The relationship between MLA and axial resolution of illumination patterns on the 

sample volume is also numerically studied. Fig. 5-7 shows the central (x = y = 0) axial 

line profiles of illumination patterns on the sample volume. The axial range is 0μm to 

10μm. Purple arrows denote the first global minimal value along the axial line. This 

position is denoted as 𝑧𝑚𝑖𝑛, whose corresponding intensity is 𝐼𝑧−𝑚𝑖𝑛. 

 

Similarly, the in-focus position 𝑧𝑚𝑎𝑥  has the maximum intensity 𝐼𝑧−𝑚𝑎𝑥 . 𝛿𝐼  is 

𝐼𝑧−𝑚𝑎𝑥 − 𝐼𝑧−𝑚𝑖𝑛 . To quantify the axial resolution, we defined the axial FWHM as 

2𝑧𝐹𝑊𝐻𝑀. 𝑧𝐹𝑊𝐻𝑀 is the axial position when the axial intensity is half the difference 

between maximum and first side lobe minimum intensity. For clearance, these 

definitions are annotated in Fig. 5-7, centre picture. Fig. 5-7 shows that Cross-type and 

Hexagon-type line profiles are similar, and Cylinder-type lines are always higher than 

the others. As expected, a higher NA increases 𝛿𝐼 . Beyond that, 𝑧𝑚𝑖𝑛  seems only 

determined by the period of the illumination pattern, and a higher period would bring a 

larger 𝑧𝑚𝑖𝑛. We did a quantitative analysis to discover how the MLA type affects the 

axial resolution of illumination patterns. Table. 5-1. summarizes how 𝑧𝑚𝑖𝑛 behaves in 

terms of the MLA type, the periods, and NA. Obviously, 𝑧𝑚𝑖𝑛 depends only on the 

period of the illumination pattern. 
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Fig. 5-7. Axial line profiles of illumination patterns at x = y = 0. The purple arrow 

denotes the first global minimal position along the axial line. The central picture shows 

detailed positions about 𝑧𝑚𝑖𝑛, 𝑧𝐹𝑊𝐻𝑀, 𝐼𝑧−𝑚𝑖𝑛, and 𝐼𝑧−𝑚𝑎𝑥. 

 

Table. 5-1. The value of 𝑧𝑚𝑖𝑛 (μm as the unit) in terms of the MLA type, the period, 

and NA. Cro, cyl, and hex denote cross-type, cylinder-type, and hexagon-type MLAs. 

         Period 

NA 

6μm/period 8μm/period 10μm/period 12μm/period 14μm/period 

 cro cyl hex cro cyl hex cro cyl hex cro cyl hex cro cyl hex 

0.006 3 3 3 4 4 4 4.95 4.95 4.95 5.85 5.85 5.85 6.8 6.9 6.8 

0.007 3 3 3 4 4 4 4.95 4.95 4.95 5.85 5.95 5.85 6.9 6.9 6.8 

0.008 3 3 3 4 4 4 4.95 4.95 4.95 5.95 5.95 5.85 6.9 6.95 6.9 

0.009 3 3 3 4 4 4 4.95 4.95 4.95 5.95 6 5.95 6.95 6.95 6.9 

0.01 3 3 3 4 4 4 4.95 5.05 4.95 5.95 6 5.95 6.95 7 6.95 
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Fig. 5-8 shows the axial resolution (𝑧𝐹𝑊𝐻𝑀) changing with different MLA's NA and 

illumination pattern periods. The higher the MLA's NA or, the lower the illumination 

pattern period, the better the axial resolution. In Fig. 5-8(a), the gradient is steeper with 

a higher period. On the other hand, the gradient is gentle with higher NA in Fig. 5-8(b). 

In addition, the cylinder-type MLA has worse axial resolution when compared to the 

others. Because the cylinder-type MLA creates periodic features on the focus plane only 

in a one-dimensional direction. The intensity variation only exists in one direction; 

however, in cross-type and hexagon-type, this variation is in two orthogonal directions, 

and the propagating light field changes more quickly. Therefore, 𝑧𝐹𝑊𝐻𝑀 in cross- and 

hexagon-types are smaller 𝑧𝐹𝑊𝐻𝑀 in the cylindrical type. 
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Fig. 5-8. Relationships between axial resolution (𝑧𝐹𝑊𝐻𝑀) and microlens NA (a), axial 

resolution (𝑧𝐹𝑊𝐻𝑀) and pattern period (b). Different color lines represent MLA's type. 

5.3.3 HiLo imaging simulation 

To understand the effects of MLA-generated SI patterns on the HiLo image, a 

fluorescent block was modelled for simulating incoherent widefield and HiLo imaging 

(Fig. 5-9(a) and (b)). According to Eq. (5-6), the sample was multiplied with a specific 
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3D illumination pattern. Then, I used the incoherent imaging theory to acquire SI 

images on the camera plane. Similarly, the same method was used to obtain widefield 

images (Fig. 5-9(c)), except that the fluorescent block was multiplied by the all-one 

matrix instead of the MLA-generated SI pattern. In the simulations, the illumination 

and the imaging NA were set to 0.5, and the excitation and emission wavelengths are 

520nm and 580nm, respectively. The magnification in the illumination light path is 10, 

and 1 in the imaging light path. 

 

 

Fig. 5-9. Simulated fluorescent block for HiLo imaging (a and b). The green parts can 

be excited by 520nm wavelength illumination. The residual grey transparent parts 

cannot create a fluorescent signal. The emission wavelength is 580nm. (c) The self-

normalized widefield image on the camera plane. 

 

Fig. 5-10 shows images of the fluorescent block on the camera plane. SI columns are 

images under SI illumination, and HiLo columns show final HiLo pictures. The 

widefield image used as input for HiLo algorithms is shown in Fig. 5-9(c). In Fig. 5-

10(a), the fluorescent target is excited by a cross-type illumination pattern, and others 

are excited by cylinder-type (Fig. 5-10(b)) and hexagon-type (Fig. 5-10(c)). When the 

pattern's period is 14μm/period, I found uneven artifacts on these HiLo images (white 

arrows). Especially when the pattern is the hexagon type (Fig. 5-10(c)), artifacts seem 

the worst. The cross-type pattern also generates recognizable ununiform intensity (Fig. 

5-10(a)). In cylinder-type patterns, these imperfections are the mildest. Artifacts are 

caused by side lobes that sum up and cause oscillations (Purple arrows in Fig. 5-5). 

With larger lens pitch and higher NA, more side lobes will exist between each microlens, 
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and the oscillation will become more serious. These artifacts are the mildest in cylinder-

type patterns because side lobes and oscillation only exist in one dimension but two 

dimensions in both cross-type and hexagon-type. Furthermore, cross-type has fewer 

artifacts when compared with hexagon-type since its two-dimensional patterns are 

orthogonal and can be decomposed into x and y directions. However, in hexagon-type, 

these artifacts are correlated. To quantitively analyse how MLA-generated illumination 

patterns affect HiLo images, I traced line profiles on each HiLo image (Red line in Fig. 

5-10(a). Same tracing positions in all HiLo images.). 
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Fig. 5-10. Captured images on the camera plane. The corresponding widefield image is 

shown in Fig. 5-9(c). SI columns show images under different SI illumination. HiLo 

columns are the final HiLo images. Headlines are periods of corresponding illumination 

patterns. 8 μm/period and 12 μm/period are not shown. Different NAs are 

corresponding to MLA's numerical aperture. NA = 0.007 and NA = 0.009 are not shown. 

(a) Cross-type illumination pattern. (b) Cylinder-type. (c) Hexagon-type. Each image is 

normalized. White arrows depict imperfections. 

 

In Fig. 5-10, these images are similar; therefore, captured images of 8μm/period, 

12μm/period, NA=0.007, and NA=0.009 are not shown. However, line profiles were 

traced on every condition, NA from 0.006 to 0.01 with a step of 0.001, and period from 

6μm/period to 14μm/period with 2μm/period step. According to the line profiles shown 

in Fig. 5-11, the NA of MLA does not seem to affect the quality of the final HiLo image. 

Fig. 5-11(a) (12μm/period column) shows a minor contrast enhancement with a higher 

NA. However, some artifacts are created if the period is too high (14μm/period). In Fig. 

5-11(a), the contrast of the second and fourth lobes (purple arrows) is lower than others, 

and their trends become inverse (the higher the NA, the lower the contrast). In Fig. 5-

11(b), we can see clearly that a higher period can enhance the final HiLo image contrast, 

and this tendency is more evident for the cross-type illumination. Like Fig. 5-11(a), 
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artifacts appear when the period is 14μm/period. 

 

 

Fig. 5-11. Line profiles (along the red line in Fig. 5-10) of HiLo images under different 

illumination patterns. In (a), we can see that the NA of MLA does not significantly 

affect the image quality. Interestingly, when the period is 14μm/period, the contrast of 

the second and fourth lobes (counted from left to right) is lower than others. (Depicted 

by purple arrows). The same phenomenon can be found in (b). In (b), the image contrast 

becomes better with a higher period, except 14μm/period. 

 

Furthermore, the normalized local maximum intensity of the middle lobe in Fig. 5-11 

was recorded. Table. 5-2 shows how the intensity changes with different periods and 

NA. The period affects the intensity more significantly than MLA's NA. The best 

parameter setting is the cross-type pattern with 0.01NA and 12μm/period. 
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Table. 5-2. The normalized local maximum intensity of the middle lobe in Fig. 5-11. 

Abbreviations are the same in Table. 5-1 

         Period 

NA 

6μm/period 8μm/period 10μm/period 12μm/period 14μm/period 

 cro cyl hex cro cyl hex cro cyl hex cro cyl hex cro cyl hex 

0.006 0.84 0.844 0.838 0.85 0.852 0.85 0.863 0.862 0.862 0.916 0.868 0.888 0.873 0.859 0.867 

0.007 0.842 0.846 0.841 0.853 0.855 0.853 0.866 0.864 0.866 0.928 0.872 0.895 0.875 0.861 0.868 

0.008 0.844 0.848 0.843 0.855 0.856 0.856 0.869 0.865 0.869 0.936 0.875 0.898 0.877 0.861 0.869 

0.009 0.845 0.85 0.844 0.857 0.857 0.859 0.871 0.867 0.871 0.942 0.877 0.9 0.878 0.862 0.869 

0.01 0.847 0.852 0.846 0.858 0.858 0.86 0.872 0.868 0.873 0.946 0.879 0.901 0.879 0.863 0.87 

5.4 Discussion and prospect 

HiLo microscopy stands out as a potent and uncomplicated instrument for optical 

sectioning. Conventionally, two methods are employed to generate SI patterns: one 

involves a coherent light source and a rotated scattering glass to produce speckle 

patterns, while the other utilizes an incoherent light source and a DMD to create 

customized periodic patterns. However, using a coherent light source and DMD 

increases system cost and bulkiness. In this research, I designed different types of 

microlens generating a structural illumination pattern for HiLo. This alternative 

configuration promises to reduce both the cost and system complexity associated with 

HiLo microscopy. 

 

In this study, I choose three distinct MLA types—cross, cylinder, and hexagon—each 

characterized by varying physical parameters such as NA and microlens pitch size. 

These MLAs served as diffractive components for generating SI patterns. To begin, I 

employed the Fresnel diffraction theory to explore the influence of different MLAs on 

SI patterns. The MD exhibited an increase with higher NA values when the microlens 

pitch was sufficiently small. Similarly, with low NA, the MD experienced a significant 

boost with a broader lens pitch. However, it was observed that when both NA and 
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microlens pitch were excessively high, the MD remained unaffected. 

 

NA and the microlens pitch size need to be carefully chosen. A higher NA would 

minimize focus point size, and a higher period can lead these focus points side lobes to 

accumulate between each microlens, causing oscillations (Fig. 5-5 purple arrows). 

These oscillations will create artifacts on the final HiLo images (Fig. 5-10 red arrows). 

Here, I chose NA from 0.006 to 0.01 to prevent the focal point size is too small. In terms 

of other MLAs type, the cross-type and hexagon-type perform similarly, and the 

cylinder-type MLA can generate SI patterns with a better modulation depth when NA 

or the microlens pitch is low. I also discussed the axial resolution of SI patterns. As 

expected, when the microlens pitch lens is unaltered, a higher NA can deliver a better 

axial resolution. This trend is evident with a bigger microlens pitch. Conversely, the 

axial resolution becomes worse with a higher microlens pitch when NA is unaltered, 

and this phenomenon is more pronounced in low NA conditions. When MLA's 

parameters are the same, the cylinder-type MLA has the worst axial resolution, and the 

cross-type and the hexagon-type MLA perform similarly. 

 

Continuously, I multiplied the simulation-generated fluorescent block with SI patterns, 

using the incoherent imaging theory and HiLo algorithms to investigate the links 

between HiLo images and MLAs. We found subtle differences among these HiLo 

images with different MLA's NA, and a higher NA can enhance the image contrast 

negligibly. Regarding the microlens pitch, a higher distance leads to better image 

contrast. Interestingly, a large microlens pitch can introduce artifacts and ununiform 

intensity to final HiLo images. We also found that the hexagon-type MLA is the most 

susceptible to artifacts. Using the cross-type MLA with NA of 0.01 and the microlens 

pitch of 120 μm to generate SI patterns can obtain the best HiLo images. In cylinder-

type and hexagon-type, the best parameter is NA = 0.01 with a 120μm microlens pitch. 

Besides, due to the simplicity of corresponding periodic patterns, less oscillation can be 
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found in cylinder-type-generated illumination patterns. We can obtain HiLo images 

with the mildest artifacts using cylinder-type MLA. 

 

Microlens arrays have found diverse applications in microscopy, enhancing imaging 

capabilities through improved resolution and contrast. The success of MLAs in SIM 

underscores their potential in advancing microscopy techniques [326]. By creating fine, 

structured illumination patterns, MLAs facilitate super-resolution imaging, a principle 

we aim to extend to HiLo microscopy. This approach promises significant 

advancements in observing dynamic biological processes with minimal phototoxicity 

and rapid imaging capabilities. 

 

Overall, in this study, we found that the cylinder-type MLA can be used for HiLo 

imaging with the mildest artifacts due to the simplicity of the corresponding structure. 

However, this aspect also leads to its corresponding light intensity field only varying in 

one dimension, which minimizes the axial resolution. Cross-type and hexagon-type 

MLAs can obtain a better axial resolution but tend to produce more artifacts. Therefore, 

there exists a trade-off between the artifacts-free and better axial resolution. 

Researchers should carefully choose the appropriate MLA for HiLo imaging. 

 

This study finds a new method for HiLo imaging. During the simulation, we found 

several interesting phenomena, which will be further investigated through theoretical 

analysis and mathematical deduction in future. These include: 1) A quantitative link 

between the microlens pitch and NA (e.g., ratio); 2) Theoretical and mathematical 

analysis about why the zmin in Fig. 5-7 is unrelated to NA; 3) If translating different 

distances of each line of the microlens in cross-type MLA, how this affects the final 

HiLo image? 

 

Throughout our research, we encountered several challenges, notably in the fabrication 
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process, where maintaining uniformity and precision across the MLA proved 

demanding. Additionally, the integration of the MLA with existing microscopy setups 

posed alignment and calibration hurdles, impacting the overall feasibility and 

accessibility of the proposed solution. Moving forward, our research will focus on 

refining the fabrication process to enhance the scalability and usability of MLAs in 

microscopy.  

 

The validation of the current simulation study is a crucial aspect to consider. While 

simulation software such as Zemax and COMSOL are powerful tools for comparison, 

their application was not deemed suitable for this study for several reasons. Firstly, the 

study introduces a novel low-cost HiLo microscopy technique that leverages MLAs and 

incoherent LED light sources. This approach may fundamentally differ from the 

methodologies typically modelled in Zemax and COMSOL, potentially rendering direct 

comparisons less meaningful or relevant. Furthermore, the simulations conducted in 

this research are intricately tailored to the specific characteristics of MLAs and their 

impact on HiLo microscopy, a level of specificity that might not align with the broad-

spectrum applications of Zemax and COMSOL, thus making any comparison less 

insightful. 

 

Additionally, the focus of this study leans more towards the practical implementation 

and optimization of MLAs for HiLo microscopy rather than on theoretical simulations 

alone. Although Zemax and COMSOL are renowned for their detailed optical 

simulations, this research emphasizes experimental outcomes over theoretical 

modelling. The core objective of this research is to establish the feasibility and benefits 

of employing MLAs alongside incoherent LED sources for HiLo microscopy. Given 

that Zemax and COMSOL may not offer specialized features necessary for simulating 

the unique aspects of this methodology, comparisons with these tools might not align 

with the intended scope of this study. Hence, prioritizing experimental validation of the 
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MLA-based HiLo microscopy technique over theoretical comparisons is essential, as 

demonstrating the practical effectiveness and advantages through experimental 

validation aligns more closely with the research objectives. 

 

Experimental validation of the simulated designs will be a critical next step, alongside 

exploring innovative materials and fabrication techniques to overcome current 

limitations. The goal is to transition from theoretical models to practical 

implementations, unlocking new possibilities in high-resolution, low-phototoxicity 

imaging for biological research. 

5.5 Conclusion 

In conclusion, this study proposes the practical and cost-effective application of MLAs 

in generating SI for HiLo microscopy. It systematically examines how MLA parameters, 

including MLA type, NA, and microlens pitch, impact the final HiLo images, 

identifying optimal MLA parameters. Notably, this marks the first exploration of 

utilizing specific MLAs to achieve HiLo microscopy. Future investigations will develop 

deeper, including a broader NA range, larger microlens pitch, the ratio between NA and 

the lens pitch, and various microlens arrangements. 

 

This study contributes valuable insights into the optimization of MLA-based HiLo 

microscopy and serves as a guide for researchers seeking to establish such microscope 

systems. The potential impact of these tools lies in their ability to facilitate the 

acquisition of high-quality biomedical images cost-efficiently and efficiently, further 

advancing research capabilities in the field. 
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Chapter 6. Conclusion 

6.1 Discussions and limitations 

In resource-limited regions and developing countries, the application of microscopy for 

disease detection and biomedical research faces obstacles due to inadequate financial 

resources. Establishing sophisticated microscopic imaging systems and healthcare 

laboratories is challenging in these settings. Nevertheless, the progress in high-speed 

communication, AI techniques, and the Internet of Things (IoT) has paved the way for 

remote diagnostics and analysis. This breakthrough enables individuals to utilize 

affordable devices to capture original image data and transmit it to a server for analysis. 

Notably, GPUs have recently augmented the computing capabilities of embedded 

systems, empowering them with real-time functionality. 

 

LPMs emerge as robust tools for bioimaging applications, especially in resource-

limited and underdeveloped areas. Their mechanical bodies are predominantly crafted 

through 3D printing technology, rendering them user-friendly and compact. In 

healthcare settings, these microscopes find versatile applications in POCT, disease 

detection, and on-the-spot organism identification. For instance, LPMs prove effective 

in achieving real-time detection and counting of RBC, identifying sickle cell disease, 

and detecting microorganisms in drinking water. Their portability and ease of use make 

them valuable assets in scenarios where traditional imaging setups may need to be more 

practical and financially feasible. 

 

Tasks requiring low-computational image processing, such as target recognition, image 

segmentation, and target counting, can be efficiently handled by embedded systems or 

consumer electronics devices like smartphones, enabling real-time data analysis. DL 

algorithms can seamlessly integrate into these devices to cater to various real-time 
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applications. LPMs can capture original images or videos for scenarios demanding 

high-computational image processing. These data sets can then be uploaded to a cloud 

server for more intensive data processing. Subsequently, the processed results can be 

transmitted back to users for diagnostics. This approach optimally leverages the 

computational capabilities of both local devices and cloud-based servers for effective 

and timely data analysis. 

 

In this PhD study, a literature review was first conducted in Chapter 2. Different types 

of LPMs were discussed from a hardware configuration perspective and classified into 

smartphone-based LPMs, customized LPMs, and lensless LPMs. Moreover, how to 

choose the appropriate LPM based on its characteristics for various biomedical 

applications was considered. Four commonly proposed applications for LPMs were 

reviewed, including POCT and healthcare, pathology, cell monitoring, and microfluidic 

applications. 

6.1.1 Portable AI-enhanced fluorescence microscope for real-

time target detection 

Chapter 3 proposed a portable AI fluorescence microscope (πM) based on a webcam 

and the NJN. It is a customized LPM and has a powerful AI-enhanced real-time analysis 

function. The NJN makes πM can be customized appropriately for different applications, 

and data transfer to the cloud and servers for analysis are exempted because of the 

NJN’s edge computing power. πM has an easy optical path and mechanical design, 

weighing only ~250 grams with dimensions of 145mm × 172 mm × 144 mm (L×W×H). 

It has x5 magnification and can resolve 228.1 lp/mm microscopic features. The 

brightfield imaging of microscopic samples and human RBCs and fluorescence 

imaging of PS beads can be proposed on πM. A convolution neural network was 

demonstrated on πM to realize foreground feature extraction and counting functions 
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without data transfer and image processing. Compared with the OpenCV and CLIJ2 

algorithms, the customized CNN methods can recognize six aggregated beads with 80% 

accuracy (OpenCV: three aggregated beads with 26% accuracy; CLIJ2: six aggregated 

beads with 64% accuracy). In human RBCs counting and recognition, the CNN shows 

results closer to the GT than the CLIJ2 method (GT: 201; CNN: 196; CLIJ2: 189). 

These experimental results provide a proof-of-principle debut of πM. 

 

The primary problem addressed by this study is the lack of accessible, cost-effective, 

and portable microscopy solutions capable of real-time analysis in resource-limited 

settings. Traditional benchtop microscopes, while precise, are often expensive, bulky, 

and require significant expertise to operate. Additionally, they typically need external 

devices for data processing, which can further complicate their use in fieldwork or in 

regions with limited access to technological infrastructure. 

 

The πM system offers a solution by providing a portable, affordable, and user-friendly 

alternative that does not compromise on the quality of brightfield and fluorescence 

imaging. Its design, which utilizes a reversed webcam lens and an NVIDIA Jetson Nano 

for computation, allows for real-time image processing without the need for data 

transfer to external computers. This feature is particularly beneficial for applications in 

remote or resource-limited areas where immediate analysis is crucial, such as in 

diagnosing diseases or monitoring environmental samples. 

 

However, there are still several limitations. The πM achieves a physical magnification 

of ×5, which is sufficient for various applications but may not match the higher 

magnification and resolution capabilities of more advanced benchtop microscopes. This 

limitation could affect the system's utility in applications requiring detailed cellular or 

molecular imaging. 
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While the customized convolutional neural network (CNN) shows robust performance 

in feature extraction and target counting in the tested scenarios, the generalizability of 

this AI model to different types of samples and conditions remains a question. The 

performance of the system in the presence of complex biological samples with high 

variability and in conditions not included in the training dataset could be a potential 

limitation. Moreover, real-time data analysis, a critical feature of this system, faces 

several constraints. These include computational limitations inherent to portable 

devices, potential data transfer delays, the need for highly efficient algorithms, 

significant power consumption, and the challenges of ensuring accuracy across diverse 

conditions. Additionally, there's a risk of users becoming overly reliant on automated 

analyses, possibly at the expense of critical human expertise. Overcoming these 

challenges necessitates a comprehensive approach, focusing on technological 

advancements, algorithmic optimizations, user education, and improved power 

management strategies. As these issues are addressed over time, the utility and 

application scope of real-time analysis in portable microscopy are expected to expand, 

enhancing its impact in both research and practical field applications. 

 

Real-time video processing, as opposed to static image analysis, involves the 

continuous and instantaneous analysis of video frames to extract and interpret dynamic 

changes within the sample being observed. This feature is particularly crucial for 

observing biological processes in live specimens, such as cellular motility, blood flow, 

or microbial interactions, where the temporal aspect of the observation provides critical 

insights into the biological phenomena. Implementing real-time video processing in πM 

poses several challenges. Firstly, the computational load increases significantly with 

video processing, as each frame of the video needs to be analysed in real-time. This 

demands highly efficient algorithms and potent processing units that can handle high-

throughput data without latency, which might be a constraint given the compact and 

portable nature of the πM system. Moreover, video processing requires advanced data 
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compression and storage solutions to manage the large volumes of data generated, 

without overwhelming the device's storage capacities or compromising the video 

quality. This is particularly challenging in field settings where data offloading options 

might be limited. 

 

The system's performance, as demonstrated with PS beads and RBCs, relies on well-

prepared samples. In real-world applications, especially in field settings, the presence 

of contaminants or poorly prepared samples could significantly affect the system's 

accuracy and reliability. 

 

In hardware aspects, while the use of off-the-shelf components and 3D printing 

technology contributes to the system's affordability and portability, it may also limit the 

system's adaptability and scalability to more demanding applications. Users with 

specific needs might find it challenging to modify or upgrade the system without 

extensive technical knowledge. Beyond that, its long-term durability and reliability 

under various environmental conditions have not been addressed. The impact of factors 

such as temperature fluctuations, humidity, and mechanical shocks on the system's 

performance over time is unclear. 

 

In conclusion, the πM system represents a significant advancement in making 

microscopy more accessible and practical for a wide range of applications, particularly 

in resource-limited settings. However, its limitations regarding optical performance, AI 

generalization, dependency on sample preparation, hardware customization, and long-

term reliability need to be considered when evaluating its suitability for specific 

applications. Future developments could focus on enhancing the system's versatility, 

scalability, and robustness to extend its utility in both educational and research contexts. 
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6.1.2 Smartphone-based HiLo 

A smartphone-based LPM with optical sectioning ability (SOS) was presented in 

Chapter 4. SOS microscope uses the HiLo principle to realize the optical sectioning 

function, with a single smartphone replacing a high-cost illumination source and a 

camera sensor. It has an easy optical path and mechanical design. The liquid light guide 

relayed the broadband smartphone LED into the DMD devices for SI. For realizing the 

telecentric axial scan, the ETL was conjugated to the BPP of the objective lens, which 

can stabilize SOS’s lateral magnification at different depths. SOS has a 571.5μm 

telecentric scanning range and a 5.5μm axial resolution, which costs around £7,035 

cheaper than a traditional HiLo microscope equipped with a scientific camera sensor 

and an illumination source. The high-contrast fluorescent PS beads imaging with 

different wavelengths and optical sectioning imaging of accumulated fluorescent PS 

beads were proposed by HiLo. The proposed SOS is the first smartphone-based HiLo 

optical sectioning microscopy. It is a powerful, low-cost tool for biomedical research in 

resource-limited areas. 

 

The primary problem solved by this study is the high cost and complexity associated 

with traditional HiLo optical sectioning microscopes. By incorporating a smartphone 

to serve both as the illumination source and the camera sensor, the study effectively 

reduces the financial barrier to accessing high-quality optical sectioning microscopy. 

This democratization of advanced microscopy techniques is particularly beneficial for 

biomedical research and diagnostics in under-resourced areas, where such technology 

could significantly impact healthcare outcomes. Moreover, the study introduces a 

telecentric design with an ETL for axial scanning, maintaining constant lateral 

magnification across different axial planes. This feature ensures high-quality imaging 

without the need for complex post-processing, further simplifying the use of the system 

while ensuring the fidelity of the captured images. 



 Page 198 of 253 

 

 

Despite its innovative approach and significant contributions, the study encounters 

several limitations that warrant further investigation and improvement. 

 

The occurrence of artefacts in the final HiLo images, particularly when imaging dense 

fluorescent beads, presents a significant limitation. These artefacts could potentially 

obscure or distort crucial details in the sample, leading to misinterpretation of the data. 

The study attributes these artefacts to the properties of the illumination and the sample, 

as well as the image processing algorithms implemented by the smartphone's camera 

software. Addressing this issue requires a deeper understanding of the interaction 

between the structured illumination patterns, sample properties, and the smartphone's 

imaging algorithms. 

 

The illumination Etendue is also a problem. The study highlights concern regarding the 

effective excitation of biological fluorescent dyes and the adequacy of the light power 

output from the smartphone's LED torch. This limitation could affect the system's 

versatility and applicability to a wide range of biological samples, particularly those 

requiring specific excitation wavelengths or higher power illumination. A 

comprehensive analysis of the light guide's Etendue and the illumination system's 

power output is necessary to ensure the system's effectiveness across various 

applications. Moreover, the reliance on a smartphone's LED as an illumination source 

might introduce variability in image quality due to ambient light conditions. The SOS 

Microscope utilizes the smartphone's LED torch as an illumination source, which is not 

designed for microscopy. This can lead to challenges in achieving uniform, controlled 

illumination that is crucial for consistent and reliable imaging, particularly for 

fluorescence microscopy. Unlike controlled illumination sources in traditional 

microscopes that provide consistent lighting, the varying intensity and colour 

temperature of environmental light could affect the consistency and reliability of 
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imaging results when using SOS in different settings. 

 

In generalizability and compatibility aspects, the current design of the SOS Microscope 

is tailored to a specific smartphone model, which may limit its generalizability and 

adaptability to other devices. As smartphone technology rapidly evolves, the system's 

design must be adaptable to accommodate a wide range of devices to ensure its long-

term applicability and relevance. Beyond that, the mechanical stability of the setup, 

relying on 3D-printed adapters and off-the-shelf optical components, might not match 

the precision and stability of dedicated microscopy systems. This could lead to issues 

with image blurring, alignment, and repeatability, particularly during extended imaging 

sessions or when handling sensitive samples that require high precision. 

 

While the study demonstrates the capability of SOS for optical sectioning with good 

axial resolution, the inherent optical limitations of smartphone cameras, such as limited 

numerical aperture and depth of field, might restrict the maximum achievable resolution 

and depth penetration compared to traditional high-end microscopes. This could be 

particularly challenging when dealing with complex biological samples that require 

high-resolution imaging at various depths. Smartphone cameras are optimized for 

general photography, not microscopy. The quality of lenses and sensors in smartphones, 

while impressive for consumer photography, may not match the precision and clarity 

required for high-resolution microscopy, especially when imaging at the cellular or sub-

cellular level. Furthermore, the vast diversity in smartphone models and their camera 

specifications introduces variability in imaging performance. This lack of 

standardization can lead to inconsistent imaging results and complicate the replication 

of experiments across different devices. In software and data processing aspects, the 

study hints at potential artefacts introduced by smartphone image processing algorithms. 

Beyond this, the overall capacity for on-device data processing, storage, and 

sophisticated image analysis might be limited by the smartphone's hardware and 



 Page 200 of 253 

 

software capabilities. Smartphones automatically process images to enhance visual 

appeal for general photography, which may include noise reduction, sharpening, and 

colour correction. These processing algorithms can introduce artefacts or alter the raw 

data in ways that may be undesirable for scientific imaging, where authenticity and 

accuracy of the raw data are paramount.  

 

In conclusion, the development of the SOS Microscope represents a significant step 

forward in making advanced optical sectioning microscopy more accessible and 

affordable. However, addressing the identified limitations, such as the artefact and 

illumination etendue problems, and enhancing the system's compatibility with various 

smartphone models, requires a multi-faceted approach, including hardware 

improvements for enhanced stability and resolution, software development for robust 

image processing and analysis, and the development of guidelines and training 

materials for users. Additionally, exploring the integration of the SOS system with 

existing microscopy platforms could leverage the strengths of both traditional and 

smartphone-based approaches to overcome some of these challenges. Further research 

and development in these areas will be essential to optimize the system's performance 

and expand its applicability in biomedical research and diagnostics. 

6.1.3 Microlens arrays for incoherent HiLo microscopy 

Following Chapter 4, a numerical study about using proper MLAs to realize HiLo 

microscopy was presented. This study aimed to substitute the DMD device in the 

traditional HiLo with the MLA, decreasing the cost of the traditional HiLo microscopy. 

Instead of using the DMD, different MLAs can also be used for SI pattern generation. 

SI patterns and HiLo image generation were simulated based on Fresnel diffraction and 

incoherent imaging theories. Three common MLAs (cross-, cylinder-, and hexagon type) 

with specific microlens pitch and NA were used to generate periodic illumination 

patterns in simulation. According to simulation results, increasing MLA’s lens pitch can 
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enhance the HiLo image’s contrast and optically sectioned ability, and this pitch size 

has a valve value. Hexagon-type MLA is the most susceptible to artifacts, but HiLo 

images can be acquired with the mildest artifacts using cylinder-type MLA. This study 

can guide a more detailed analysis for further investigation in the theoretical research 

field, including a more comprehensive NA range, a larger microlens pitch, the ratio 

between NA and the lens pitch, and multiple microlens arrangements. Moreover, this 

study can support more researchers in establishing low-cost MLA-based HiLo 

microscope systems in the experiment and engineering aspects. 

 

This study's novel approach of employing MLAs for SI in HiLo microscopy represents 

a significant stride towards simplification and cost reduction in optical imaging. The 

rigorous simulation-based comparison across various MLA types (cross, cylinder, and 

hexagon) and configurations (differing NAs and microlens pitches) provides a 

comprehensive understanding of how these parameters influence image quality and 

contrast. Particularly, the revelation that the microlens pitch has a pronounced effect on 

image contrast, with an optimal pitch identified, underscores the nuanced balance 

between MLA design and imaging efficacy. However, it's important to critically assess 

the assumption that a single optimal configuration (cross-type MLA, 0.01 NA, 120 μm 

pitch) could universally apply across diverse imaging scenarios. Biological samples are 

notoriously varied in their optical properties, and what works best in a simulation may 

not translate directly to all practical applications. 

 

The study's acknowledgment of potential artifacts introduced by certain MLA 

configurations is commendable for its transparency. However, this issue raises deeper 

questions about the trade-offs between cost-efficiency and image fidelity. The presence 

of artifacts in images, especially when using hexagon-type MLAs, could limit the 

technique's applicability or require additional post-processing to mitigate these effects, 

potentially offsetting some cost advantages. Moreover, the reliance on numerical 
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simulations, while practical for an initial feasibility study, introduces a level of 

abstraction from real-world complexities. The biological imaging field is replete with 

examples where theoretical models provide an incomplete picture due to biological 

variability, sample preparation differences, and unforeseen optical interactions. Thus, 

experimental validation is not just a formality but a crucial step that could reveal 

additional challenges or necessitate further refinements to the proposed technique. 

 

6.2 Future works 

This PhD research develops two distinct types of LPMs and introduces a theoretical 

study to guide further research endeavours to minimize the cost of LPMs. Although the 

study has achieved advancements in enhancing compactness, reducing costs, and 

broadening the modality of LPMs, several challenges need further exploration and 

resolution. Identifying and subsequently addressing these challenges will contribute to 

the ongoing refinement and optimization of LPMs for diverse applications. 

6.2.1 Portable AI-enhanced fluorescence microscope for real-

time target detection 

The first work (Chapter 3) proposed a real-time CNN for target recognition and 

counting. For future enhancements of πM, a critical and thoughtful approach is required, 

particularly in enhancing its real-time data analysis capabilities. Drawing from case 

studies, such as the use of machine learning algorithms in low-power edge devices in 

remote environmental monitoring, it's evident that optimizing computational efficiency 

without compromising analytical depth is paramount. For instance, employing 

lightweight neural networks like MobileNets, which have shown promise in mobile 

vision applications, could offer a pathway to achieving robust real-time analysis within 

the πM's computational constraints. 
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To address challenges in real-time analysis, future work could explore the application 

of edge computing and machine learning algorithms specifically optimized for video 

processing. For example, techniques like background subtraction and frame 

differencing could be employed to reduce the computational load by focusing the 

analysis on changes between consecutive frames rather than processing each frame in 

its entirety. Case studies in applications like environmental monitoring, where real-time 

video processing has been used to track wildlife movements or monitor water quality, 

could provide valuable insights into practical implementations. These examples 

illustrate the potential of real-time video analysis to provide not only static snapshots 

but also dynamic insights into the observed subjects, thereby enriching the data and its 

interpretability. 

 

Incorporating real-time video processing into the πM system would undoubtedly 

enhance its capabilities, making it a more versatile tool for a wider range of applications, 

from educational purposes to sophisticated scientific research and diagnostics. It would 

allow users not only to observe but also to interact with and manipulate samples in real-

time, opening up new possibilities for exploratory learning and research. 

 

Expanding the scope of biological experiments is another critical area for future work. 

The device's efficacy in diverse biological contexts can be benchmarked against 

established microscopy techniques in clinical diagnostics, such as malaria parasite 

detection or tuberculosis diagnosis, where the nuances of sample variability are well-

documented. These case studies can provide a framework for designing comprehensive 

testing protocols for the πM system, ensuring its utility across a broad spectrum of 

biological research and medical diagnostics. 

 

In addressing hardware limitations, inspiration can be drawn from the field of consumer 



 Page 204 of 253 

 

electronics, where advancements in miniaturized camera technologies have 

revolutionized mobile phone imaging. Applying similar innovations to the optical 

components of the πM could enhance its imaging capabilities while maintaining 

portability and affordability. Moreover, integrating rugged design principles from 

outdoor and military-grade equipment could improve the device's durability for field 

applications, as seen in portable water quality testing kits used in disaster-stricken 

regions. 

 

Furthermore, to ensure the system's applicability in precision experiments, a series of 

methodical validation studies should be conducted. For example, comparing the πM's 

performance in counting circulating tumour cells against gold-standard flow cytometry 

could offer valuable insights into its precision and reliability. These studies not only 

serve to validate the device but also to highlight areas for iterative improvement. 

 

By critically examining these aspects and incorporating lessons from relevant case 

studies and examples, future developments of the πM system can be more effectively 

aligned with the practical needs and challenges of field-based microscopy, paving the 

way for broader adoption and impact in scientific research and healthcare diagnostics. 

6.2.2 Smartphone-based HiLo 

To address the inherent limitations associated with utilizing smartphones for 

microscopy, future research and development efforts must be comprehensive and 

interdisciplinary. A significant focus should be placed on enhancing optical quality, 

which could be achieved by designing specialized optical attachments tailored to 

smartphone cameras. These attachments could include adaptive lenses to improve 

resolution and image quality, thus compensating for the limitations of built-in 

smartphone lenses. Moreover, the development of clip-on illumination modules would 

provide more uniform and controllable lighting, essential for various microscopy 
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techniques, particularly fluorescence microscopy. 

 

The variability in smartphone models poses a challenge to consistent imaging 

performance, necessitating hardware standardization and the creation of modular 

smartphone microscopy kits. These kits would ensure adaptability to different devices, 

while standardized components such as illumination sources, lens adapters, and sample 

holders would guarantee compatibility and repeatability. Furthermore, dedicated 

microscopy applications need to be developed to bypass or minimize native image 

processing algorithms in smartphones, allowing for the capture and storage of raw 

image data. Integrating basic image analysis tools within these apps would empower 

users to conduct essential computations directly on their devices. 

 

Illumination control is crucial for microscopy, prompting the need for software-

controlled illumination systems within the smartphone microscopy setup. These 

systems would enable precise control over various illumination parameters, catering to 

different techniques and sample requirements. Addressing the issue of thermal 

management is also critical, as prolonged imaging sessions could lead to overheating. 

Incorporating thermal management solutions would ensure the smartphone and 

biological samples remain unaffected by temperature increases. 

 

The mechanical stability of the setup is paramount, and future work should focus on 

enhancing the design and manufacturing of components such as adapters and holders. 

Using more robust materials or incorporating fine adjustment mechanisms could 

significantly improve precision and stability. Additionally, the user interface of 

smartphone microscopy apps should be specifically designed for scientific users, 

incorporating ergonomic considerations and possibly voice commands or external 

control devices to enhance usability. 
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Although the presented smartphone-based HiLo optical sectioning microscope 

significantly reduces costs compared to traditional systems, future efforts will aim to 

reduce costs even further by exploring alternative components such as using diffusive 

or periodic pattern glass plates instead of a DMD and fabricating light guides from low-

cost polymers like PDMS or PMMA. Additionally, employing micro-LED mini 

displays and more affordable relay optics could further reduce the necessity for 

additional light sources and enable the generation of various structured illumination 

patterns. 

 

Moreover, the application of SOS in imaging actual biological samples, such as 

fluorescently labelled zebrafish, will be explored to validate its effectiveness in real-

world bioimaging scenarios.  

6.3.3 Microlens arrays for incoherent HiLo microscopy 

Chapter 5 provides a theoretical study of using MLAs to decrease the cost of HiLo 

microscopy. For future research, a multifaceted approach is essential to bridge the gap 

between the promising results obtained from simulations and the complex realities of 

practical microscopy applications. Firstly, a comprehensive series of experimental 

validations should be conducted across a diverse array of biological samples to assess 

the robustness and applicability of the proposed MLA-based HiLo microscopy 

technique. This would involve not only confirming the simulation results but also 

exploring the technique's performance under varied sample conditions, including 

different types of tissues, live-cell imaging, and long-term time-lapse studies. 

Additionally, further investigations into the mitigation strategies for artifacts, especially 

those associated with specific MLA configurations, are crucial. Developing advanced 

image processing algorithms or exploring alternative MLA designs could provide 

solutions. Another promising avenue is the integration of this technique with other 

imaging modalities or the incorporation of adaptive optics to enhance resolution and 



 Page 207 of 253 

 

contrast dynamically. Moreover, exploring the potential for miniaturization and 

portability of the MLA-based HiLo setup could open new avenues for in-field 

biological research and point-of-care diagnostics. Ultimately, the goal should be to not 

only validate and refine the proposed method but also to expand its capabilities and 

applications, making it a versatile tool in the arsenal of optical microscopy techniques. 

References 

[1] de Haan K, Ceylan Koydemir H, Rivenson Y, et al. Automated screening of 

sickle cells using a smartphone-based microscope and deep learning[J]. NPJ 

digital medicine, 2020, 3(1): 76. 

[2] Tan W C C, Nerurkar S N, Cai H Y, et al. Overview of multiplex 

immunohistochemistry/immunofluorescence techniques in the era of cancer 

immunotherapy[J]. Cancer Communications, 2020, 40(4): 135-153. 

[3] Minaee S, Boykov Y, Porikli F, et al. Image segmentation using deep learning: A 

survey[J]. IEEE transactions on pattern analysis and machine intelligence, 2021, 

44(7): 3523-3542. 

[4] Bai X, Wang X, Liu X, et al. Explainable deep learning for efficient and robust 

pattern recognition: A survey of recent developments[J]. Pattern Recognition, 

2021, 120: 108102. 

[5] Razzak M I, Naz S, Zaib A. Deep learning for medical image processing: 

Overview, challenges and the future[J]. Classification in BioApps: Automation 

of decision making, 2018: 323-350. 

[6] Ayardulabi R, Khamespanah E, Abbasinia S, et al. Point-of-care applications of 

smartphone-based microscopy[J]. Sensors and Actuators A: Physical, 2021, 331: 

113048. 



 Page 208 of 253 

 

[7] Shan Y, Wang B, Huang H, et al. On-site quantitative Hg2+ measurements based 

on selective and sensitive fluorescence biosensor and miniaturized smartphone 

fluorescence microscope[J]. Biosensors and Bioelectronics, 2019, 132: 238-247. 

[8] Shrestha R, Duwal R, Wagle S, et al. A smartphone microscopic method for 

simultaneous detection of (oo) cysts of Cryptosporidium and Giardia[J]. PLoS 

Neglected Tropical Diseases, 2020, 14(9): e0008560. 

[9] Atta M A, Imtiaz M, Hassan A, et al. Image segmentation by using threshold 

techniques[J]. Lahore Garrison University Research Journal of Computer 

Science and Information Technology, 2018, 2(2): 1-6. 

[10] Kanopoulos N, Vasanthavada N, Baker R L. Design of an image edge detection 

filter using the Sobel operator[J]. IEEE Journal of solid-state circuits, 1988, 

23(2): 358-367. 

[11] Deng C X, Wang G B, Yang X R. Image edge detection algorithm based on 

improved canny operator[C]//2013 International Conference on Wavelet 

Analysis and Pattern Recognition. IEEE, 2013: 168-172. 

[12] Dong W, Shisheng Z. Color image recognition method based on the prewitt 

operator[C]//2008 International Conference on Computer Science and Software 

Engineering. IEEE, 2008, 6: 170-173. 

[13] Fully convolutional architecture vs sliding-window CNN for corneal endothelium 

cell segmentation 

[14] Cell segmentation and tracking using CNN-based distance predictions and a graph-

based matching strategy 

[15] An Automatic Nucleus Segmentation and CNN Model based Classification 

Method of White Blood Cell 

[16] Quality counts: new parameters in blood cell counting 

[17] Evaluation of diagnostic criteria in polycythemia vera 

[18] Distribution of dehydration rates generated by maximal Gardos-channel activation 

in normal and sickle red blood cells 



 Page 209 of 253 

 

[19] Automated Blood Cell Counts: State of the Art 

[20] Spurious counts and spurious results on haematology analysers: a review. Part II: 

white blood cells, red blood cells, haemoglobin, red cell indices and reticulocytes 

 

 

 

[21] Lim D, Chu K K, Mertz J. Wide-field fluorescence sectioning with hybrid 

speckle and uniform-illumination microscopy[J]. Optics letters, 2008, 33(16): 

1819-1821. 

[22] Saxena M, Eluru G, Gorthi S S. Structured illumination microscopy[J]. 

Advances in Optics and Photonics, 2015, 7(2): 241-275. 

[23] Olarte O E, Andilla J, Gualda E J, et al. Light-sheet microscopy: a tutorial[J]. 

Advances in Optics and Photonics, 2018, 10(1): 111-179. 

[24] Jonkman J, Brown C M, Wright G D, et al. Tutorial: guidance for quantitative 

confocal microscopy[J]. Nature protocols, 2020, 15(5): 1585-1611. 

[25] Pan L W, Shen X, Lin L. Microplastic lens array fabricated by a hot intrusion 

process[J]. Journal of microelectromechanical systems, 2004, 13(6): 1063-1071. 

[26] Xie D, Chang X, Shu X, et al. Rapid fabrication of thermoplastic polymer 

refractive microlens array using contactless hot embossing technology[J]. Optics 

Express, 2015, 23(4): 5154-5166. 

[27] Zhu X, Li Z, Hu Y, et al. Facile fabrication of defogging microlens arrays using 

electric field-driven jet printing[J]. Optics & Laser Technology, 2020, 123: 

105943. 

[28] Luo Y, Wang L, Ding Y, et al. Direct fabrication of microlens arrays with high 

numerical aperture by ink-jetting on nanotextured surface[J]. Applied Surface 

Science, 2013, 279: 36-40. 

[29] Shao J, Ding Y, Zhai H, et al. Fabrication of large curvature microlens array using 

confined laser swelling method[J]. Optics letters, 2013, 38(16): 3044-3046. 



 Page 210 of 253 

 

[30] Li J, Wang W, Mei X, et al. Rapid fabrication of microlens arrays on PMMA 

substrate using a microlens array by rear-side picosecond laser swelling[J]. 

Optics and Lasers in Engineering, 2020, 126: 105872. 

[31] Luo J, Guo Y, Wang X. Rapid fabrication of curved microlens array using the 3D 

printing mold[J]. Optik, 2018, 156: 556-563. 

[32] Zhang H, Qi T, Zhu X, et al. 3D printing of a PDMS cylindrical microlens array 

with 100% fill-factor[J]. ACS Applied Materials & Interfaces, 2021, 13(30): 

36295-36306. 

[33] Sun R, Yang H, Rock D M, et al. Manufacturing PDMS micro lens array using 

spin coating under a multiphase system[J]. Journal of Micromechanics and 

Microengineering, 2017, 27(5): 055012. 

[34] Skolrood L, Wang Y, Zhang S, et al. Single-molecule and particle detection on 

true portable microscopy platforms[J]. Sensors and Actuators Reports, 2022, 4: 

100063. 

[35] Yang K, Wu J, Santos S, et al. Recent development of portable imaging platforms 

for cell-based assays[J]. Biosensors and Bioelectronics, 2019, 124: 150-160. 

[36] Kolluri N, Klapperich C M, Cabodi M. Towards lab-on-a-chip diagnostics for 

malaria elimination[J]. Lab on a Chip, 2018, 18(1): 75-94. 

[37] Gopinath S C B, Tang T H, Chen Y, et al. Bacterial detection: From microscope 

to smartphone[J]. Biosensors and Bioelectronics, 2014, 60: 332-342. 

[38] Salido J, Bueno G, Ruiz ‐ Santaquiteria J, et al. A review on low ‐ cost 

microscopes for Open Science[J]. Microscopy research and technique, 2022, 

85(10): 3270-3283. 

[39] Bian Y, Xing T, Jiao K, et al. Computational portable microscopes for point-of-

care-test and tele-diagnosis[J]. Cells, 2022, 11(22): 3670. 

[40] Del Rosario M, Heil H S, Mendes A, et al. The field guide to 3D printing in 

optical microscopy for life sciences[J]. Advanced Biology, 2022, 6(4): 2100994. 



 Page 211 of 253 

 

[41] Gordon P, Venancio V P, Mertens-Talcott S U, et al. Portable bright-field, 

fluorescence, and cross-polarized microscope toward point-of-care imaging 

diagnostics[J]. Journal of Biomedical Optics, 2019, 24(9): 096502-096502. 

[42] Contreras-Naranjo J C, Wei Q, Ozcan A. Mobile phone-based microscopy, 

sensing, and diagnostics[J]. IEEE Journal of Selected Topics in Quantum 

Electronics, 2015, 22(3): 1-14. 

[43] Sivakumar R, Lee N Y. Recent progress in smartphone-based techniques for food 

safety and the detection of heavy metal ions in environmental water[J]. 

Chemosphere, 2021, 275: 130096. 

[44] Yadav P, Yadav L, Laddha H, et al. Upsurgence of smartphone as an economical, 

portable, and consumer-friendly analytical device/interface platform for digital 

sensing of hazardous environmental ions[J]. Trends in Environmental Analytical 

Chemistry, 2022, 36: e00177. 

[45] Kuroda A, Alexandrov M, Nishimura T, et al. Rapid on‐site detection of airborne 

asbestos fibers and potentially hazardous nanomaterials using fluorescence 

microscopy‐based biosensing[J]. Biotechnology Journal, 2016, 11(6): 757-767. 

[46] Shin Y H, Gutierrez-Wing M T, Choi J W. Recent progress in portable 

fluorescence sensors[J]. Journal of The Electrochemical Society, 2021, 168(1): 

017502. 

[47] Yang J, Wang K, Xu H, et al. Detection platforms for point-of-care testing based 

on colorimetric, luminescent and magnetic assays: A review[J]. Talanta, 2019, 

202: 96-110. 

[48] Roda A, Michelini E, Zangheri M, et al. Smartphone-based biosensors: A critical 

review and perspectives[J]. TrAC Trends in Analytical Chemistry, 2016, 79: 317-

325. 

[49] Wang B, Li Y, Zhou M, et al. Smartphone-based platforms implementing 

microfluidic detection with image-based artificial intelligence[J]. Nature 

Communications, 2023, 14(1): 1-18. 



 Page 212 of 253 

 

[50] Banik S, Melanthota S K, Arbaaz, et al. Recent trends in smartphone-based 

detection for biomedical applications: a review[J]. Analytical and Bioanalytical 

Chemistry, 2021, 413: 2389-2406. 

[51] Dai B, Jiao Z, Zheng L, et al. Colour compound lenses for a portable fluorescence 

microscope[J]. Light: Science & Applications, 2019, 8(1): 75. 

[52] Szydlowski N A, Jing H, Alqashmi M, et al. Cell phone digital microscopy using 

an oil droplet[J]. Biomedical Optics Express, 2020, 11(5): 2328-2338. 

[53] Switz N A, D'Ambrosio M V, Fletcher D A. Low-cost mobile phone microscopy 

with a reversed mobile phone camera lens[J]. PloS one, 2014, 9(5): e95330. 

[54] Snow J W, Koydemir H C, Karinca D K, et al. Rapid imaging, detection, and 

quantification of Nosema ceranae spores in honey bees using mobile phone-

based fluorescence microscopy[J]. Lab on a Chip, 2019, 19(5): 789-797. 

[55] Leonard J, Koydemir H C, Koutnik V S, et al. Smartphone-enabled rapid 

quantification of microplastics[J]. Journal of Hazardous Materials Letters, 2022, 

3: 100052. 

[56] Koydemir H C, Gorocs Z, Tseng D, et al. Rapid imaging, detection and 

quantification of Giardia lamblia cysts using mobile-phone based fluorescent 

microscopy and machine learning[J]. Lab on a Chip, 2015, 15(5): 1284-1293. 

[57] Lee W M, Upadhya A, Reece P J, et al. Fabricating low cost and high 

performance elastomer lenses using hanging droplets[J]. Biomedical optics 

express, 2014, 5(5): 1626-1635. 

[58] Sung Y L, Jeang J, Lee C H, et al. Fabricating optical lenses by inkjet printing 

and heat-assisted in situ curing of polydimethylsiloxane for smartphone 

microscopy[J]. Journal of biomedical optics, 2015, 20(4): 047005-047005. 

[59] Salafi T, Zeming K K, Lim J W, et al. Portable Smartphone‐Based Platform for 

Real ‐ Time Particle Detection in Microfluidics[J]. Advanced Materials 

Technologies, 2019, 4(3): 1800359. 



 Page 213 of 253 

 

[60] Long J, Parker H E, Ehrlich K, et al. Frugal filtering optical lenses for point-of-

care diagnostics[J]. Biomedical Optics Express, 2020, 11(4): 1864-1875. 

[61] Ephraim R K D, Duah E, Cybulski J S, et al. Diagnosis of Schistosoma 

haematobium infection with a mobile phone-mounted Foldscope and a reversed-

lens CellScope in Ghana[J]. The American journal of tropical medicine and 

hygiene, 2015, 92(6): 1253. 

[62] D’Ambrosio M V, Bakalar M, Bennuru S, et al. Point-of-care quantification of 

blood-borne filarial parasites with a mobile phone microscope[J]. Science 

translational medicine, 2015, 7(286): 286re4-286re4. 

[63] McKay G N, Mohan N, Butterworth I, et al. Visualization of blood cell contrast 

in nailfold capillaries with high-speed reverse lens mobile phone microscopy[J]. 

Biomedical optics express, 2020, 11(4): 2268-2276. 

[64] Rabha D, Biswas S, Hatiboruah D, et al. An affordable, handheld multimodal 

microscopic system with onboard cell morphology and counting features on a 

mobile device[J]. Analyst, 2022, 147(12): 2859-2869. 

[65] Liu Y, Rollins A M, Levenson R M, et al. Pocket MUSE: an affordable, versatile 

and high-performance fluorescence microscope using a smartphone[J]. 

Communications biology, 2021, 4(1): 334. 

[66] Wei Q, Qi H, Luo W, et al. Fluorescent imaging of single nanoparticles and 

viruses on a smart phone[J]. ACS nano, 2013, 7(10): 9147-9155. 

[67] Wei Q, Luo W, Chiang S, et al. Imaging and sizing of single DNA molecules on 

a mobile phone[J]. ACS nano, 2014, 8(12): 12725-12733. 

[68] Kühnemund M, Wei Q, Darai E, et al. Targeted DNA sequencing and in situ 

mutation analysis using mobile phone microscopy[J]. Nature communications, 

2017, 8(1): 13913. 

[69] Knowlton S, Joshi A, Syrrist P, et al. 3D-printed smartphone-based point of care 

tool for fluorescence-and magnetophoresis-based cytometry[J]. Lab on a Chip, 

2017, 17(16): 2839-2851. 



 Page 214 of 253 

 

[70] Meng X, Huang H, Yan K, et al. Smartphone based hand-held quantitative phase 

microscope using the transport of intensity equation method[J]. Lab on a Chip, 

2017, 17(1): 104-109. 

[71] Phillips Z F, D'Ambrosio M V, Tian L, et al. Multi-contrast imaging and digital 

refocusing on a mobile microscope with a domed LED array[J]. PloS one, 2015, 

10(5): e0124938. 

[72] Bian Y, Jiang Y, Huang Y, et al. Smart-phone phase contrast microscope with a 

singlet lens and deep learning[J]. Optics & Laser Technology, 2021, 139: 106900. 

[73] Rabha D, Rather M A, Mandal M, et al. Programmable illumination smartphone 

microscopy (PISM): A multimodal imaging platform for biomedical 

applications[J]. Optics and Lasers in Engineering, 2022, 151: 106931. 

[74] Lee K C, Lee K, Jung J, et al. A smartphone-based Fourier ptychographic 

microscope using the display screen for illumination[J]. ACS Photonics, 2021, 

8(5): 1307-1315. 

[75] Trofymchuk K, Glembockyte V, Grabenhorst L, et al. Addressable nanoantennas 

with cleared hotspots for single-molecule detection on a portable smartphone 

microscope[J]. Nature communications, 2021, 12(1): 950. 

[76] Chowdhury F A, Chau K J. Variable focus microscopy using a suspended water 

droplet[J]. Journal of Optics, 2012, 14(5): 055501. 

[77] Ekgasit S, Kaewmanee N, Jangtawee P, et al. Elastomeric PDMS planoconvex 

lenses fabricated by a confined sessile drop technique[J]. ACS applied materials 

& interfaces, 2016, 8(31): 20474-20482. 

[78] Kamal T, Watkins R, Cen Z, et al. Design and fabrication of a passive droplet 

dispenser for portable high resolution imaging system[J]. Scientific reports, 2017, 

7(1): 41482. 

[79] Sung Y L, Garan J, Hu Z, et al. Modeling the surface of fast-cured polymer 

droplet lenses for precision fabrication[J]. Applied optics, 2018, 57(35): 10342-

10347. 



 Page 215 of 253 

 

[80] Malacara Z, Malacara-Hernández D, Malacara-Hernández Z. Handbook of 

optical design[M]. CRC press, 2003. 

[81] Sung Y, Campa F, Shih W C. Open-source do-it-yourself multi-color 

fluorescence smartphone microscopy[J]. Biomedical optics express, 2017, 8(11): 

5075-5086. 

[82] Müller V, Sousa J M, Koydemir H C, et al. Identification of pathogenic bacteria 

in complex samples using a smartphone based fluorescence microscope[J]. RSC 

advances, 2018, 8(64): 36493-36502. 

[83] Nguyen H, Sung Y, O’Shaughnessy K, et al. Smartphone nanocolorimetry for 

on-demand lead detection and quantitation in drinking water[J]. Analytical 

chemistry, 2018, 90(19): 11517-11522. 

[84] Rabha D, Biswas S, Chamuah N, et al. Wide-field multi-modal microscopic 

imaging using smartphone[J]. Optics and Lasers in Engineering, 2021, 137: 

106343. 

[85] Navruz I, Coskun A F, Wong J, et al. Smart-phone based computational 

microscopy using multi-frame contact imaging on a fiber-optic array[J]. Lab on 

a Chip, 2013, 13(20): 4015-4023. 

[86] Wei Q, Acuna G, Kim S, et al. Plasmonics enhanced smartphone fluorescence 

microscopy[J]. Scientific reports, 2017, 7(1): 2124. 

[87] Rivenson Y, Ceylan Koydemir H, Wang H, et al. Deep learning enhanced mobile-

phone microscopy[J]. Acs Photonics, 2018, 5(6): 2354-2364. 

[88] Ghonge T, Koydemir H C, Valera E, et al. Smartphone-imaged microfluidic 

biochip for measuring CD64 expression from whole blood[J]. Analyst, 2019, 

144(13): 3925-3935. 

[89] Knowlton S M, Sencan I, Aytar Y, et al. Sickle cell detection using a 

smartphone[J]. Scientific reports, 2015, 5(1): 15022. 

[90] Miller A R, Davis G L, Oden Z M, et al. Portable, battery-operated, low-cost, 

bright field and fluorescence microscope[J]. PloS one, 2010, 5(8): e11890. 



 Page 216 of 253 

 

[91] Zhu W, Pirovano G, O’Neal P K, et al. Smartphone epifluorescence microscopy 

for cellular imaging of fresh tissue in low-resource settings[J]. Biomedical optics 

express, 2020, 11(1): 89-98. 

[92] Brown J W P, Bauer A, Polinkovsky M E, et al. Single-molecule detection on a 

portable 3D-printed microscope[J]. Nature Communications, 2019, 10(1): 5662. 

[93] Ambrose B, Baxter J M, Cully J, et al. The smfBox is an open-source platform 

for single-molecule FRET[J]. Nature communications, 2020, 11(1): 5641. 

[94] Pitrone P G, Schindelin J, Stuyvenberg L, et al. OpenSPIM: an open-access light-

sheet microscopy platform[J]. Nature methods, 2013, 10(7): 598-599. 

[95] Prakash K. Laser-free super-resolution microscopy[J]. Philosophical 

Transactions of the Royal Society A, 2021, 379(2199): 20200144. 

[96] Diederich B, Müllenbroich C, Vladimirov N, et al. CAD we share? Publishing 

reproducible microscope hardware[J]. Nature Methods, 2022, 19(9): 1026-1030. 

[97] Hohlbein J, Diederich B, Marsikova B, et al. Open microscopy in the life 

sciences: quo vadis?[J]. Nature methods, 2022, 19(9): 1020-1025. 

[98] Diekmann R, Till K, Müller M, et al. Characterization of an industry-grade 

CMOS camera well suited for single molecule localization microscopy–high 

performance super-resolution at low cost[J]. Scientific reports, 2017, 7(1): 14425. 

[99] Schröder D, Deschamps J, Dasgupta A, et al. Cost-efficient open source laser 

engine for microscopy[J]. Biomedical Optics Express, 2020, 11(2): 609-623. 

[100] Nicovich P R, Walsh J, Böcking T, et al. NicoLase—an open-source diode laser 

combiner, fiber launch, and sequencing controller for fluorescence 

microscopy[J]. PLoS One, 2017, 12(3): e0173879. 

[101] Diederich B, Lachmann R, Carlstedt S, et al. A versatile and customizable low-

cost 3D-printed open standard for microscopic imaging[J]. Nature 

communications, 2020, 11(1): 5979. 



 Page 217 of 253 

 

[102] Zhang Y S, Ribas J, Nadhman A, et al. A cost-effective fluorescence mini-

microscope for biomedical applications[J]. Lab on a Chip, 2015, 15(18): 3661-

3669. 

[103] Lu Q, Liu G, Xiao C, et al. A modular, open-source, slide-scanning microscope 

for diagnostic applications in resource-constrained settings[J]. PloS one, 2018, 

13(3): e0194063. 

[104] Jiao Z, Zang Z, Wang Q, et al. PAIM (πM): Portable AI-enhanced fluorescence 

microscope for real-time target detection[J]. Optics & Laser Technology, 2023, 

163: 109356. 

[105] O’Connor T, Javidi B. COVID-19 screening with digital holographic microscopy 

using intra-patient probability functions of spatio-temporal bio-optical 

attributes[J]. Biomedical Optics Express, 2022, 13(10): 5377-5389. 

[106] O’Connor T, Shen J B, Liang B T, et al. Digital holographic deep learning of red 

blood cells for field-portable, rapid COVID-19 screening[J]. Optics Letters, 

2021, 46(10): 2344-2347. 

[107] O’Connor T, Santaniello S, Javidi B. COVID-19 detection from red blood cells 

using highly comparative time-series analysis (HCTSA) in digital holographic 

microscopy[J]. Optics Express, 2022, 30(2): 1723-1736. 

[108] Son J, Mandracchia B, Jia S. Miniaturized modular-array fluorescence 

microscopy[J]. Biomedical Optics Express, 2020, 11(12): 7221-7235. 

[109] Collins J T, Knapper J, Stirling J, et al. Robotic microscopy for everyone: the 

OpenFlexure microscope[J]. Biomedical Optics Express, 2020, 11(5): 2447-

2460. 

[110] McDermott S, Ayazi F, Collins J, et al. Multi-modal microscopy imaging with 

the OpenFlexure Delta Stage[J]. Optics Express, 2022, 30(15): 26377-26395. 

[111] Gordon P D, De Ville C, Sacchettini J C, et al. A portable brightfield and 

fluorescence microscope toward automated malarial parasitemia quantification 

in thin blood smears[J]. PloS one, 2022, 17(4): e0266441. 



 Page 218 of 253 

 

[112] Ouyang W, Bowman R W, Wang H, et al. An Open‐Source Modular Framework 

for Automated Pipetting and Imaging Applications[J]. Advanced biology, 2022, 

6(4): 2101063. 

[113] Tristan-Landin S B, Gonzalez-Suarez A M, Jimenez-Valdes R J, et al. Facile 

assembly of an affordable miniature multicolor fluorescence microscope made 

of 3D-printed parts enables detection of single cells[J]. PloS one, 2019, 14(10): 

e0215114. 

[114] Wang H, Lachmann R, Marsikova B, et al. UCsim2: 2D structured illumination 

microscopy using UC2[J]. bioRxiv, 2021: 2021.01. 08.425840. 

[115] Rosenegger D G, Tran C H T, LeDue J, et al. A high performance, cost-effective, 

open-source microscope for scanning two-photon microscopy that is modular 

and readily adaptable[J]. PloS one, 2014, 9(10): e110475. 

[116] Auer A, Schlichthaerle T, Woehrstein J B, et al. Nanometer‐scale Multiplexed 

Super‐Resolution Imaging with an Economic 3D‐DNA‐PAINT Microscope[J]. 

ChemPhysChem, 2018, 19(22): 3024-3034. 

[117] Ly V T, Baudin P V, Pansodtee P, et al. Picroscope: low-cost system for 

simultaneous longitudinal biological imaging[J]. Communications biology, 2021, 

4(1): 1261. 

[118] Meng Q, Harrington K, Stirling J, et al. The OpenFlexure Block Stage: sub-100 

nm fibre alignment with a monolithic plastic flexure stage[J]. Optics Express, 

2020, 28(4): 4763-4772. 

[119] Sharkey J P, Foo D C W, Kabla A, et al. A one-piece 3D printed flexure 

translation stage for open-source microscopy[J]. Review of Scientific 

Instruments, 2016, 87(2). 

[120] Matsui T, Fujiwara D. Optical sectioning robotic microscopy for everyone: the 

structured illumination microscope with the OpenFlexure stages[J]. Optics 

Express, 2022, 30(13): 23208-23216. 



 Page 219 of 253 

 

[121] Diep T T, Needs S H, Bizley S, et al. Rapid Bacterial Motility Monitoring Using 

Inexpensive 3D-Printed OpenFlexure Microscopy Allows Microfluidic 

Antibiotic Susceptibility Testing[J]. Micromachines, 2022, 13(11): 1974. 

[122] Delmans M, Haseloff J. μCube: A framework for 3D printable optomechanics[J]. 

Journal of Open Hardware, 2018, 2(1): 2-2. 

[123] Sanderson T, Rayner J C. PlasmoTron: an open-source platform for automated 

culture of malaria parasites[J]. BioRxiv, 2017: 241596. 

[124] Ouyang W, Mueller F, Hjelmare M, et al. ImJoy: an open-source computational 

platform for the deep learning era[J]. Nature methods, 2019, 16(12): 1199-1200. 

[125] Ojaghi A, Williams E K, Kaza N, et al. Label-free deep-UV microscopy detection 

and grading of neutropenia using a passive microfluidic device[J]. Optics Letters, 

2022, 47(22): 6005-6008. 

[126] Aidukas T, Eckert R, Harvey A R, et al. Low-cost, sub-micron resolution, wide-

field computational microscopy using opensource hardware[J]. Scientific reports, 

2019, 9(1): 7457. 

[127] Jang Y, Han S, Song C, et al. Miniaturized optimal incident light angle‐fitted 

dark field system for contrast ‐ enhanced real ‐ time monitoring of 2D/3D ‐

projected cell motions[J]. Journal of Biophotonics, 2022, 15(10): e202200091. 

[128] Salido J, Toledano P T, Vallez N, et al. MicroHikari3D: an automated DIY digital 

microscopy platform with deep learning capabilities[J]. Biomedical Optics 

Express, 2021, 12(11): 7223-7243. 

[129] Niu M, Luo G, Shu X, et al. Portable quantitative phase microscope for material 

metrology and biological imaging[J]. Photonics Research, 2020, 8(7): 1253-

1259. 

[130] Zheng G, Lee S A, Yang S, et al. Sub-pixel resolving optofluidic microscope for 

on-chip cell imaging[J]. Lab on a Chip, 2010, 10(22): 3125-3129. 



 Page 220 of 253 

 

[131] Cui X, Lee L M, Heng X, et al. Lensless high-resolution on-chip optofluidic 

microscopes for Caenorhabditis elegans and cell imaging[J]. Proceedings of the 

National Academy of Sciences, 2008, 105(31): 10670-10675. 

[132] Heng X, Erickson D, Baugh L R, et al. Optofluidic microscopy—a method for 

implementing a high resolution optical microscope on a chip[J]. Lab on a Chip, 

2006, 6(10): 1274-1276. 

[133] Bishara W, Zhu H, Ozcan A. Holographic opto-fluidic microscopy[J]. Optics 

express, 2010, 18(26): 27499-27510. 

[134] Greenbaum A, Luo W, Khademhosseinieh B, et al. Increased space-bandwidth 

product in pixel super-resolved lensfree on-chip microscopy[J]. Scientific 

reports, 2013, 3(1): 1717. 

[135] McLeod E, Luo W, Mudanyali O, et al. Toward giga-pixel nanoscopy on a chip: 

a computational wide-field look at the nano-scale without the use of lenses[J]. 

Lab on a Chip, 2013, 13(11): 2028-2035. 

[136] Bishara W, Su T W, Coskun A F, et al. Lensfree on-chip microscopy over a wide 

field-of-view using pixel super-resolution[J]. Optics express, 2010, 18(11): 

11181-11191. 

[137] Zheng G, Lee S A, Antebi Y, et al. The ePetri dish, an on-chip cell imaging 

platform based on subpixel perspective sweeping microscopy (SPSM)[J]. 

Proceedings of the National Academy of Sciences, 2011, 108(41): 16889-16894. 

[138] Lee S A, Zheng G, Mukherjee N, et al. On-chip continuous monitoring of motile 

microorganisms on an ePetri platform[J]. Lab on a Chip, 2012, 12(13): 2385-

2390. 

[139] Han C, Yang C. Viral plaque analysis on a wide field-of-view, time-lapse, on-

chip imaging platform[J]. Analyst, 2014, 139(15): 3727-3734. 

[140] Lee S A, Erath J, Zheng G, et al. Imaging and identification of waterborne 

parasites using a chip-scale microscope[J]. PloS one, 2014, 9(2): e89712. 



 Page 221 of 253 

 

[141] Luo W, Greenbaum A, Zhang Y, et al. Synthetic aperture-based on-chip 

microscopy[J]. Light: Science & Applications, 2015, 4(3): e261-e261. 

[142] Ozcan A, McLeod E. Lensless imaging and sensing[J]. Annual review of 

biomedical engineering, 2016, 18: 77-102. 

[143] Boominathan V, Robinson J T, Waller L, et al. Recent advances in lensless 

imaging[J]. Optica, 2022, 9(1): 1-16. 

[144] Yuan X, Brady D J, Katsaggelos A K. Snapshot compressive imaging: Theory, 

algorithms, and applications[J]. IEEE Signal Processing Magazine, 2021, 38(2): 

65-88. 

[145] Qi D, Zhang S, Yang C, et al. Single-shot compressed ultrafast photography: a 

review[J]. Advanced Photonics, 2020, 2(1): 014003-014003. 

[146] Lange D, Storment C W, Conley C A, et al. A microfluidic shadow imaging 

system for the study of the nematode Caenorhabditis elegans in space[J]. Sensors 

and Actuators B: Chemical, 2005, 107(2): 904-914. 

[147] Ozcan A, Demirci U. Ultra wide-field lens-free monitoring of cells on-chip[J]. 

Lab on a Chip, 2008, 8(1): 98-106. 

[148] Kun J, Smieja M, Xiong B, et al. The use of motion analysis as particle 

biomarkers in lensless optofluidic projection imaging for point of care urine 

analysis[J]. Scientific reports, 2019, 9(1): 17255. 

[149] Seo S, Su T W, Tseng D K, et al. Lensfree holographic imaging for on-chip 

cytometry and diagnostics[J]. Lab on a Chip, 2009, 9(6): 777-787. 

[150] Dolega M E, Allier C, Kesavan S V, et al. Label-free analysis of prostate acini-

like 3D structures by lensfree imaging[J]. Biosensors and Bioelectronics, 2013, 

49: 176-183. 

[151] Kesavan S V, Navarro F P, Menneteau M, et al. Real-time label-free detection of 

dividing cells by means of lensfree video-microscopy[J]. Journal of biomedical 

optics, 2014, 19(3): 036004-036004. 



 Page 222 of 253 

 

[152] Berdeu A, Laperrousaz B, Bordy T, et al. Lens-free microscopy for 3D+ time 

acquisitions of 3D cell culture[J]. Scientific reports, 2018, 8(1): 16135. 

[153] Greenbaum A, Zhang Y, Feizi A, et al. Wide-field computational imaging of 

pathology slides using lens-free on-chip microscopy[J]. Science translational 

medicine, 2014, 6(267): 267ra175-267ra175. 

[154] Kesavan S V, Momey F, Cioni O, et al. High-throughput monitoring of major 

cell functions by means of lensfree video microscopy[J]. Scientific reports, 2014, 

4(1): 5942. 

[155] Sobieranski A C, Inci F, Tekin H C, et al. Portable lensless wide-field microscopy 

imaging platform based on digital inline holography and multi-frame pixel super-

resolution[J]. Light, science & applications, 2015, 4: e346. 

[156] Adams J K, Boominathan V, Avants B W, et al. Single-frame 3D fluorescence 

microscopy with ultraminiature lensless FlatScope[J]. Science advances, 2017, 

3(12): e1701548. 

[157] Jiang S, Zhu J, Song P, et al. Wide-field, high-resolution lensless on-chip 

microscopy via near-field blind ptychographic modulation[J]. Lab on a Chip, 

2020, 20(6): 1058-1065. 

[158] O’Connor T, Hawxhurst C, Shor L M, et al. Red blood cell classification in 

lensless single random phase encoding using convolutional neural networks[J]. 

Optics Express, 2020, 28(22): 33504-33515. 

[159] Douglass P M, O’Connor T, Javidi B. Automated sickle cell disease 

identification in human red blood cells using a lensless single random phase 

encoding biosensor and convolutional neural networks[J]. Optics Express, 2022, 

30(20): 35965-35977. 

[160] Kuo G, Liu F L, Grossrubatscher I, et al. On-chip fluorescence microscopy with 

a random microlens diffuser[J]. Optics express, 2020, 28(6): 8384-8399. 



 Page 223 of 253 

 

[161] Adams J K, Yan D, Wu J, et al. In vivo lensless microscopy via a phase mask 

generating diffraction patterns with high-contrast contours[J]. Nature 

Biomedical Engineering, 2022, 6(5): 617-628. 

[162] Coskun A F, Sencan I, Su T W, et al. Lensfree fluorescent on-chip imaging of 

transgenic Caenorhabditis elegans over an ultra-wide field-of-view[J]. PloS one, 

2011, 6(1): e15955. 

[163] Coskun A F, Sencan I, Su T W, et al. Wide-field lensless fluorescent microscopy 

using a tapered fiber-optic faceplate on a chip[J]. Analyst, 2011, 136(17): 3512-

3518. 

[164] Sasagawa K, Ohta Y, Kawahara M, et al. Wide field-of-view lensless 

fluorescence imaging device with hybrid bandpass emission filter[J]. AIP 

Advances, 2019, 9(3). 

[165] Papageorgiou E P, Zhang H, Giverts S, et al. Real-time cancer detection with an 

integrated lensless fluorescence contact imager[J]. Biomedical optics express, 

2018, 9(8): 3607-3623. 

[166] Sasagawa K, Kimura A, Haruta M, et al. Highly sensitive lens-free fluorescence 

imaging device enabled by a complementary combination of interference and 

absorption filters[J]. Biomedical optics express, 2018, 9(9): 4329-4344. 

[167] Han C, Pang S, Bower D V, et al. Wide field-of-view on-chip Talbot fluorescence 

microscopy for longitudinal cell culture monitoring from within the incubator[J]. 

Analytical chemistry, 2013, 85(4): 2356-2360. 

[168] Penwill L A, Batten G E, Castagnetti S, et al. Growth phenotype screening of 

Schizosaccharomyces pombe using a Lensless microscope[J]. Biosensors and 

Bioelectronics, 2014, 54: 345-350. 

[169] Zhang X, Khimji I, Gurkan U A, et al. Lensless imaging for simultaneous 

microfluidic sperm monitoring and sorting[J]. Lab on a Chip, 2011, 11(15): 

2535-2540. 



 Page 224 of 253 

 

[170] Roy M, Seo D, Oh C H, et al. Low-cost telemedicine device performing cell and 

particle size measurement based on lens-free shadow imaging technology[J]. 

Biosensors and Bioelectronics, 2015, 67: 715-723. 

[171] Su T W, Seo S, Erlinger A, et al. High ‐ throughput lensfree imaging and 

characterization of a heterogeneous cell solution on a chip[J]. Biotechnology and 

bioengineering, 2009, 102(3): 856-868. 

[172] Jin G, Yoo I H, Pack S P, et al. Lens-free shadow image based high-throughput 

continuous cell monitoring technique[J]. Biosensors and Bioelectronics, 2012, 

38(1): 126-131. 

[173] Lee L M, Cui X, Yang C. The application of on-chip optofluidic microscopy for 

imaging Giardia lamblia trophozoites and cysts[J]. Biomedical microdevices, 

2009, 11: 951-958. 

[174] Mudanyali O, Tseng D, Oh C, et al. Compact, light-weight and cost-effective 

microscope based on lensless incoherent holography for telemedicine 

applications[J]. Lab on a Chip, 2010, 10(11): 1417-1428. 

[175] Wu Y, Ozcan A. Lensless digital holographic microscopy and its applications in 

biomedicine and environmental monitoring[J]. Methods, 2018, 136: 4-16. 

[176] Göröcs Z, Ozcan A. On-chip biomedical imaging[J]. IEEE reviews in biomedical 

engineering, 2012, 6: 29-46. 

[177] Greenbaum A, Ozcan A. Maskless imaging of dense samples using pixel super-

resolution based multi-height lensfree on-chip microscopy[J]. Optics express, 

2012, 20(3): 3129-3143. 

[178] Xu W, Jericho M H, Meinertzhagen I A, et al. Digital in-line holography for 

biological applications[J]. Proceedings of the National Academy of Sciences, 

2001, 98(20): 11301-11305. 

[179] Verrier N, Coëtmellec S, Brunel M, et al. Digital in-line holography in thick 

optical systems: application to visualization in pipes[J]. Applied optics, 2008, 

47(22): 4147-4157. 



 Page 225 of 253 

 

[180] Kim M K. Principles and techniques of digital holographic microscopy[J]. SPIE 

reviews, 2010, 1(1): 018005. 

[181] Trujillo C, Piedrahita-Quintero P, Garcia-Sucerquia J. Digital lensless 

holographic microscopy: numerical simulation and reconstruction with 

ImageJ[J]. Applied Optics, 2020, 59(19): 5788-5795. 

[182] Kreis T M. Frequency analysis of digital holography[J]. Optical Engineering, 

2002, 41(4): 771-778. 

[183] Ebrahimi S, Dashtdar M. Lens-free digital holographic microscopy for cell 

imaging and tracking by Fresnel diffraction from a phase discontinuity[J]. Optics 

Letters, 2021, 46(15): 3516-3519. 

[184] Greenbaum A, Sikora U, Ozcan A. Field-portable wide-field microscopy of 

dense samples using multi-height pixel super-resolution based lensfree 

imaging[J]. Lab on a Chip, 2012, 12(7): 1242-1245. 

[185] Latychevskaia T, Fink H W. Solution to the twin image problem in holography[J]. 

Physical review letters, 2007, 98(23): 233901. 

[186] Guizar-Sicairos M, Fienup J R. Understanding the twin-image problem in phase 

retrieval[J]. JOSA A, 2012, 29(11): 2367-2375. 

[187] Zalevsky Z, Mendlovic D, Dorsch R G. Gerchberg–Saxton algorithm applied in 

the fractional Fourier or the Fresnel domain[J]. Optics Letters, 1996, 21(12): 

842-844. 

[188] Yang G, Dong B, Gu B, et al. Gerchberg–Saxton and Yang–Gu algorithms for 

phase retrieval in a nonunitary transform system: a comparison[J]. Applied optics, 

1994, 33(2): 209-218. 

[189] Gureyev T E, Roberts A, Nugent K A. Partially coherent fields, the transport-of-

intensity equation, and phase uniqueness[J]. JOSA A, 1995, 12(9): 1942-1946. 

[190] Zuo C, Li J, Sun J, et al. Transport of intensity equation: a tutorial[J]. Optics and 

Lasers in Engineering, 2020, 135: 106187. 



 Page 226 of 253 

 

[191] Tobon-Maya H, Zapata-Valencia S, Zora-Guzmán E, et al. Open-source, cost-

effective, portable, 3D-printed digital lensless holographic microscope[J]. 

Applied Optics, 2021, 60(4): A205-A214. 

[192] Rivenson Y, Wu Y, Wang H, et al. Sparsity-based multi-height phase recovery in 

holographic microscopy[J]. Scientific reports, 2016, 6(1): 37862. 

[193] Kim G, Isaacson K, Palmer R, et al. Lensless photography with only an image 

sensor[J]. Applied optics, 2017, 56(23): 6450-6456. 

[194] Asif M S, Ayremlou A, Sankaranarayanan A, et al. Flatcam: Thin, lensless 

cameras using coded aperture and computation[J]. IEEE Transactions on 

Computational Imaging, 2016, 3(3): 384-397. 

[195] Tajima K, Shimano T, Nakamura Y, et al. Lensless light-field imaging with multi-

phased fresnel zone aperture[C]//2017 IEEE International Conference on 

Computational Photography (ICCP). IEEE, 2017: 1-7. 

[196] Wu J, Zhang H, Zhang W, et al. Single-shot lensless imaging with fresnel zone 

aperture and incoherent illumination[J]. Light: Science & Applications, 2020, 

9(1): 53. 

[197] DeWeert M J, Farm B P. Lensless coded-aperture imaging with separable 

Doubly-Toeplitz masks[J]. Optical Engineering, 2015, 54(2): 023102-023102. 

[198] Shimano T, Nakamura Y, Tajima K, et al. Lensless light-field imaging with 

Fresnel zone aperture: quasi-coherent coding[J]. Applied optics, 2018, 57(11): 

2841-2850. 

[199] Boominathan V, Adams J K, Robinson J T, et al. Phlatcam: Designed phase-mask 

based thin lensless camera[J]. IEEE transactions on pattern analysis and machine 

intelligence, 2020, 42(7): 1618-1629. 

[200] Chi W, George N. Optical imaging with phase-coded aperture[J]. Optics express, 

2011, 19(5): 4294-4300. 



 Page 227 of 253 

 

[201] Gill P R, Stork D G. Lensless ultra-miniature imagers using odd-symmetry spiral 

phase gratings[C]//Computational Optical Sensing and Imaging. Optica 

Publishing Group, 2013: CW4C. 3. 

[202] Antipa N, Kuo G, Heckel R, et al. DiffuserCam: lensless single-exposure 3D 

imaging[J]. Optica, 2018, 5(1): 1-9. 

[203] Chi W, George N. Phase-coded aperture for optical imaging[J]. Optics 

Communications, 2009, 282(11): 2110-2117. 

[204] Tian F, Hu J, Yang W. GEOMScope: large field‐of‐view 3D lensless microscopy 

with low computational complexity[J]. Laser & photonics reviews, 2021, 15(8): 

2100072. 

[205] Singh A K, Pedrini G, Takeda M, et al. Scatter-plate microscope for lensless 

microscopy with diffraction limited resolution[J]. Scientific Reports, 2017, 7(1): 

10687. 

[206] Baraniuk R G, Cevher V, Duarte M F, et al. Model-based compressive sensing[J]. 

IEEE Transactions on information theory, 2010, 56(4): 1982-2001. 

[207] Zhang Z, Zhou Y, Jiang S, et al. Invited Article: Mask-modulated lensless 

imaging with multi-angle illuminations[J]. APL Photonics, 2018, 3(6). 

[208] Cai Z, Chen J, Pedrini G, et al. Lensless light-field imaging through diffuser 

encoding[J]. Light: Science & Applications, 2020, 9(1): 143. 

[209] Coskun A F, Su T W, Ozcan A. Wide field-of-view lens-free fluorescent imaging 

on a chip[J]. Lab on a Chip, 2010, 10(7): 824-827. 

[210] Shanmugam A, Salthouse C. Lensless fluorescence imaging with height 

calculation[J]. Journal of Biomedical Optics, 2014, 19(1): 016002-016002. 

[211] Martinelli L, Choumane H, Ha K N, et al. Sensor-integrated fluorescent 

microarray for ultrahigh sensitivity direct-imaging bioassays: Role of a high 

rejection of excitation light[J]. Applied Physics Letters, 2007, 91(8). 



 Page 228 of 253 

 

[212] Lee S A, Ou X, Lee J E, et al. Chip-scale fluorescence microscope based on a 

silo-filter complementary metal-oxide semiconductor image sensor[J]. Optics 

letters, 2013, 38(11): 1817-1819. 

[213] Sencan I, Coskun A F, Sikora U, et al. Spectral demultiplexing in holographic 

and fluorescent on-chip microscopy[J]. Scientific reports, 2014, 4(1): 3760. 

[214] Kulmala N, Sasagawa K, Treepetchkul T, et al. Lensless dual-color fluorescence 

imaging device using hybrid filter[J]. Japanese journal of applied physics, 2022, 

61(SC): SC1020. 

[215] Coskun A F, Sencan I, Su T W, et al. Lensless wide-field fluorescent imaging on 

a chip using compressive decoding of sparse objects[J]. Optics express, 2010, 

18(10): 10510-10523. 

[216] Pang S, Han C, Kato M, et al. Wide and scalable field-of-view Talbot-grid-based 

fluorescence microscopy[J]. Optics letters, 2012, 37(23): 5018-5020. 

[217] Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural 

networks for mobile vision applications[J]. arXiv preprint arXiv:1704.04861, 

2017. 

[218] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale 

image recognition[J]. arXiv preprint arXiv:1409.1556, 2014. 

[219] Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep 

convolutional neural networks[J]. Advances in neural information processing 

systems, 2012, 25. 

[220] Ilyas S, Sher M, Du E, et al. Smartphone-based sickle cell disease detection and 

monitoring for point-of-care settings[J]. Biosensors and Bioelectronics, 2020, 

165: 112417. 

[221] Dacal E, Bermejo-Peláez D, Lin L, et al. Mobile microscopy and telemedicine 

platform assisted by deep learning for the quantification of Trichuris trichiura 

infection[J]. PLoS neglected tropical diseases, 2021, 15(9): e0009677. 



 Page 229 of 253 

 

[222] Cui M, Zhang D Y. Artificial intelligence and computational pathology[J]. 

Laboratory Investigation, 2021, 101(4): 412-422. 

[223] Zheng G, Shen C, Jiang S, et al. Concept, implementations and applications of 

Fourier ptychography[J]. Nature Reviews Physics, 2021, 3(3): 207-223. 

[224] Wang D, Lippard S J. Cellular processing of platinum anticancer drugs[J]. Nature 

reviews Drug discovery, 2005, 4(4): 307-320. 

[225] Qian Y, Karpus J, Kabil O, et al. Selective fluorescent probes for live-cell 

monitoring of sulphide[J]. Nature communications, 2011, 2(1): 495. 

[226] Joeris K, Frerichs J G, Konstantinov K, et al. In-situ microscopy: Online process 

monitoring of mammalian cell cultures[J]. Cytotechnology, 2002, 38: 129-134. 

[227] Dittrich P S, Manz A. Lab-on-a-chip: microfluidics in drug discovery[J]. Nature 

reviews Drug discovery, 2006, 5(3): 210-218. 

[228] Mark D, Haeberle S, Roth G, et al. Microfluidic lab-on-a-chip platforms: 

requirements, characteristics and applications[J]. Microfluidics based 

microsystems: fundamentals and applications, 2010: 305-376. 

[229] Das P K, Meher S, Panda R, et al. A review of automated methods for the 

detection of sickle cell disease[J]. IEEE reviews in biomedical engineering, 2019, 

13: 309-324. 

[230] Amaral A, Ramalho ‐ Santos J. Assessment of mitochondrial potential: 

implications for the correct monitoring of human sperm function[J]. 

International journal of andrology, 2010, 33(1): e180-e186. 

[231] Knowlton S M, Sadasivam M, Tasoglu S. Microfluidics for sperm research[J]. 

Trends in biotechnology, 2015, 33(4): 221-229. 

[232] Cybulski J S, Clements J, Prakash M. Foldscope: origami-based paper 

microscope[J]. PloS one, 2014, 9(6): e98781. 

[233] Ghosh K K, Burns L D, Cocker E D, et al. Miniaturized integration of a 

fluorescence microscope[J]. Nature methods, 2011, 8(10): 871-878. 



 Page 230 of 253 

 

[234] Shen H, Gao J. Portable deep learning singlet microscope[J]. Journal of 

Biophotonics, 2020, 13(6): e202000013. 

[235] Nuñez I, Matute T, Herrera R, et al. Low cost and open source multi-fluorescence 

imaging system for teaching and research in biology and bioengineering[J]. PloS 

one, 2017, 12(11): e0187163. 

[236] Lee M, Yaglidere O, Ozcan A. Field-portable reflection and transmission 

microscopy based on lensless holography[J]. Biomedical optics express, 2011, 

2(9): 2721-2730. 

[237] Greenbaum A, Akbari N, Feizi A, et al. Field-portable pixel super-resolution 

colour microscope[J]. PloS one, 2013, 8(9): e76475. 

[238] Cacace T, Bianco V, Mandracchia B, et al. Compact off-axis holographic slide 

microscope: design guidelines[J]. Biomedical Optics Express, 2020, 11(5): 

2511-2532. 

[239] Lee S A, Yang C. A smartphone-based chip-scale microscope using ambient 

illumination[J]. Lab on a Chip, 2014, 14(16): 3056-3063. 

[240] Dong S, Guo K, Nanda P, et al. FPscope: a field-portable high-resolution 

microscope using a cellphone lens[J]. Biomedical optics express, 2014, 5(10): 

3305-3310. 

[241] Jung D, Choi J H, Kim S, et al. Smartphone-based multi-contrast microscope 

using color-multiplexed illumination[J]. Scientific reports, 2017, 7(1): 7564. 

[242] Diederich B, Wartmann R, Schadwinkel H, et al. Using machine-learning to 

optimize phase contrast in a low-cost cellphone microscope[J]. PloS one, 2018, 

13(3): e0192937. 

[243] Wu Y, Luo Y, Chaudhari G, et al. Bright-field holography: cross-modality deep 

learning enables snapshot 3D imaging with bright-field contrast using a single 

hologram[J]. Light: Science & Applications, 2019, 8(1): 25. 

[244] Liu T, De Haan K, Rivenson Y, et al. Deep learning-based super-resolution in 

coherent imaging systems[J]. Scientific reports, 2019, 9(1): 3926. 



 Page 231 of 253 

 

[245] Rivenson Y, Liu T, Wei Z, et al. PhaseStain: the digital staining of label-free 

quantitative phase microscopy images using deep learning[J]. Light: Science & 

Applications, 2019, 8(1): 23. 

[246] Li Y, Zheng R, Wu Y, et al. A low‐cost, automated parasite diagnostic system via 

a portable, robotic microscope and deep learning[J]. Journal of biophotonics, 

2019, 12(9): e201800410. 

[247] Gӧrӧcs Z, Tamamitsu M, Bianco V, et al. A deep learning-enabled portable 

imaging flow cytometer for cost-effective, high-throughput, and label-free 

analysis of natural water samples[J]. Light: Science & Applications, 2018, 7(1): 

66. 

[248] Göröcs Z, Baum D, Song F, et al. Label-free detection of Giardia lamblia cysts 

using a deep learning-enabled portable imaging flow cytometer[J]. Lab on a Chip, 

2020, 20(23): 4404-4412. 

[249] Zhang Y, Ouyang M, Ray A, et al. Computational cytometer based on 

magnetically modulated coherent imaging and deep learning[J]. Light: Science 

& Applications, 2019, 8(1): 91. 

[250] Wu Y, Ray A, Wei Q, et al. Deep learning enables high-throughput analysis of 

particle-aggregation-based biosensors imaged using holography[J]. Acs 

Photonics, 2018, 6(2): 294-301. 

[251] O’Connor T, Anand A, Andemariam B, et al. Deep learning-based cell 

identification and disease diagnosis using spatio-temporal cellular dynamics in 

compact digital holographic microscopy[J]. Biomedical Optics Express, 2020, 

11(8): 4491-4508. 

[252] Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical 

image segmentation[C]//Medical image computing and computer-assisted 

intervention–MICCAI 2015: 18th international conference, Munich, Germany, 

October 5-9, 2015, proceedings, part III 18. Springer International Publishing, 

2015: 234-241. 



 Page 232 of 253 

 

[253] Ljosa V, Sokolnicki K L, Carpenter A E. Annotated high-throughput microscopy 

image sets for validation[J]. Nature methods, 2012, 9(7): 637-637. 

[254] Haase R, Royer L A, Steinbach P, et al. CLIJ: GPU-accelerated image processing 

for everyone[J]. Nature methods, 2020, 17(1): 5-6. 

[255] Falk T, Mai D, Bensch R, et al. U-Net: deep learning for cell counting, detection, 

and morphometry[J]. Nature methods, 2019, 16(1): 67-70. 

[256] Isensee F, Jaeger P F, Kohl S A A, et al. nnU-Net: a self-configuring method for 

deep learning-based biomedical image segmentation[J]. Nature methods, 2021, 

18(2): 203-211. 

[257] Zhou Y, Huang W, Dong P, et al. D-UNet: a dimension-fusion U shape network 

for chronic stroke lesion segmentation[J]. IEEE/ACM transactions on 

computational biology and bioinformatics, 2019, 18(3): 940-950. 

[258] Xu Y K T, Chitsaz D, Brown R A, et al. Deep learning for high-throughput 

quantification of oligodendrocyte ensheathment at single-cell resolution[J]. 

Communications biology, 2019, 2(1): 116. 

[259] Baheti B, Innani S, Gajre S, et al. Eff-unet: A novel architecture for semantic 

segmentation in unstructured environment[C]//Proceedings of the IEEE/CVF 

Conference on Computer Vision and Pattern Recognition Workshops. 2020: 358-

359. 

[260] Li X, Chen H, Qi X, et al. H-DenseUNet: hybrid densely connected UNet for 

liver and tumor segmentation from CT volumes[J]. IEEE transactions on medical 

imaging, 2018, 37(12): 2663-2674. 

[261] Zhou Z, Siddiquee M M R, Tajbakhsh N, et al. Unet++: Redesigning skip 

connections to exploit multiscale features in image segmentation[J]. IEEE 

transactions on medical imaging, 2019, 39(6): 1856-1867. 

[262] He K, Zhang X, Ren S, et al. Deep residual learning for image 

recognition[C]//Proceedings of the IEEE conference on computer vision and 

pattern recognition. 2016: 770-778. 



 Page 233 of 253 

 

[263] Otsu N. A threshold selection method from gray-level histograms[J]. Automatica, 

1975, 11(285-296): 23-27. 

[264] De Berg M. Computational geometry: algorithms and applications[M]. Springer 

Science & Business Media, 2000. 

[265] Webb D J, Brown C M. Epi-fluorescence microscopy[J]. Cell Imaging 

Techniques: Methods and Protocols, 2013: 29-59. 

[266] Schneckenburger H, Weber P, Wagner M, et al. Light exposure and cell viability 

in fluorescence microscopy[J]. Journal of microscopy, 2012, 245(3): 311-318. 

[267] Icha J, Weber M, Waters J C, et al. Phototoxicity in live fluorescence microscopy, 

and how to avoid it[J]. BioEssays, 2017, 39(8): 1700003. 

[268] Gustafsson M G L, Shao L, Carlton P M, et al. Three-dimensional resolution 

doubling in wide-field fluorescence microscopy by structured illumination[J]. 

Biophysical journal, 2008, 94(12): 4957-4970. 

[269] Agard D A, Hiraoka Y, Shaw P, et al. Fluorescence microscopy in three 

dimensions[J]. Methods in cell biology, 1989, 30: 353-377. 

[270] Amos W B, White J G. How the confocal laser scanning microscope entered 

biological research[J]. Biology of the Cell, 2003, 95(6): 335-342. 

[271] Carlsson K, Danielsson P E, Lenz R, et al. Three-dimensional microscopy using 

a confocal laser scanning microscope[J]. Optics letters, 1985, 10(2): 53-55. 

[272] Bayguinov P O, Oakley D M, Shih C C, et al. Modern laser scanning confocal 

microscopy[J]. Current protocols in cytometry, 2018, 85(1): e39. 

[273] Dusch E, Dorval T, Vincent N, et al. Three‐dimensional point spread function 

model for line‐scanning confocal microscope with high‐aperture objective[J]. 

Journal of microscopy, 2007, 228(2): 132-138. 

[274] Gareau D S, Krueger J G, Hawkes J E, et al. Line scanning, stage scanning 

confocal microscope (LSSSCM)[J]. Biomedical Optics Express, 2017, 8(8): 

3807-3815. 



 Page 234 of 253 

 

[275] So P T C, Dong C Y, Masters B R, et al. Two-photon excitation fluorescence 

microscopy[J]. Annual review of biomedical engineering, 2000, 2(1): 399-429. 

[276] Helmchen F, Denk W. Deep tissue two-photon microscopy[J]. Nature methods, 

2005, 2(12): 932-940. 

[277] Moreaux L, Sandre O, Blanchard-Desce M, et al. Membrane imaging by 

simultaneous second-harmonic generation and two-photon microscopy[J]. 

Optics Letters, 2000, 25(5): 320-322. 

[278] Vettenburg T, Dalgarno H I C, Nylk J, et al. Light-sheet microscopy using an 

Airy beam[J]. Nature methods, 2014, 11(5): 541-544. 

[279] Jemielita M, Taormina M J, DeLaurier A, et al. Comparing phototoxicity during 

the development of a zebrafish craniofacial bone using confocal and light sheet 

fluorescence microscopy techniques[J]. Journal of biophotonics, 2013, 6(11‐12): 

920-928. 

[280] Xiong B, Han X, Wu J, et al. Improving axial resolution of Bessel beam light-

sheet fluorescence microscopy by photobleaching imprinting[J]. Optics Express, 

2020, 28(7): 9464-9476. 

[281] Chen B C, Legant W R, Wang K, et al. Lattice light-sheet microscopy: imaging 

molecules to embryos at high spatiotemporal resolution[J]. Science, 2014, 

346(6208): 1257998. 

[282] Gustafsson M G L. Surpassing the lateral resolution limit by a factor of two using 

structured illumination microscopy[J]. Journal of microscopy, 2000, 198(2): 82-

87. 

[283] York A G, Parekh S H, Nogare D D, et al. Resolution doubling in live, 

multicellular organisms via multifocal structured illumination microscopy[J]. 

Nature methods, 2012, 9(7): 749-754. 

[284] Dan D, Lei M, Yao B, et al. DMD-based LED-illumination super-resolution and 

optical sectioning microscopy[J]. Scientific reports, 2013, 3(1): 1116. 



 Page 235 of 253 

 

[285] Ventalon C, Mertz J. Dynamic speckle illumination microscopy with translated 

versus randomized speckle patterns[J]. Optics express, 2006, 14(16): 7198-7209. 

[286] Lim D, Ford T N, Chu K K, et al. Optically sectioned in vivo imaging with 

speckle illumination HiLo microscopy[J]. Journal of biomedical optics, 2011, 

16(1): 016014-016014-8. 

[287] Shi R, Kong L. Evaluating structured-illumination patterns in optimizing optical-

sectioning of HiLo microscopy[J]. Journal of Physics D: Applied Physics, 2021, 

54(41): 414001. 

[288] Chai C, Chen C, Liu X, et al. Deep learning based one-shot optically-sectioned 

structured illumination microscopy for surface measurement[J]. Optics Express, 

2021, 29(3): 4010-4021. 

[289] Ford T N, Lim D, Mertz J. Fast optically sectioned fluorescence HiLo 

endomicroscopy[J]. Journal of biomedical optics, 2012, 17(2): 021105-021105. 

[290] Choi H, Wadduwage D N, Tu T Y, et al. Three‐dimensional image cytometer 

based on widefield structured light microscopy and high‐speed remote depth 

scanning[J]. Cytometry Part A, 2015, 87(1): 49-60. 

[291] Lauterbach M A, Ronzitti E, Sternberg J R, et al. Fast calcium imaging with 

optical sectioning via HiLo microscopy[J]. PloS one, 2015, 10(12): e0143681. 

[292] Shi R, Jin C, Xie H, et al. Multi-plane, wide-field fluorescent microscopy for 

biodynamic imaging in vivo[J]. Biomedical Optics Express, 2019, 10(12): 6625-

6635. 

[293] Michaelson J, Choi H, So P, et al. Depth-resolved cellular microrheology using 

HiLo microscopy[J]. Biomedical Optics Express, 2012, 3(6): 1241-1255. 

[294] Zhou X, Bedggood P, Metha A. Improving high resolution retinal image quality 

using speckle illumination HiLo imaging[J]. Biomedical Optics Express, 2014, 

5(8): 2563-2579. 



 Page 236 of 253 

 

[295] Santos S, Chu K K, Lim D, et al. Optically sectioned fluorescence 

endomicroscopy with hybrid-illumination imaging through a flexible fiber 

bundle[J]. Journal of biomedical optics, 2009, 14(3): 030502-030502-3. 

[296] Mertz J, Kim J. Scanning light-sheet microscopy in the whole mouse brain with 

HiLo background rejection[J]. Journal of biomedical optics, 2010, 15(1): 

016027-016027-7. 

[297] Bhattacharya D, Singh V R, Zhi C, et al. Three dimensional HiLo-based 

structured illumination for a digital scanned laser sheet microscopy (DSLM) in 

thick tissue imaging[J]. Optics Express, 2012, 20(25): 27337-27347. 

[298] Chung S, Breshears L E, Gonzales A, et al. Norovirus detection in water samples 

at the level of single virus copies per microliter using a smartphone-based 

fluorescence microscope[J]. Nature Protocols, 2021, 16(3): 1452-1475. 

[299] Cai F, Wang T, Lu W, et al. High-resolution mobile bio-microscope with 

smartphone telephoto camera lens[J]. Optik, 2020, 207: 164449. 

[300] Vietz C, Schütte M L, Wei Q, et al. Benchmarking smartphone fluorescence-

based microscopy with DNA origami nanobeads: reducing the gap toward 

single-molecule sensitivity[J]. ACS omega, 2019, 4(1): 637-642. 

[301] Kim J, Go T, Lee S J. Volumetric monitoring of airborne particulate matter 

concentration using smartphone-based digital holographic microscopy and deep 

learning[J]. Journal of Hazardous Materials, 2021, 418: 126351. 

[302] Stokseth P A. Properties of a defocused optical system[J]. JOSA, 1969, 59(10): 

1314-1321. 

[303] Greivenkamp J E. Field guide to geometrical optics[C]. Bellingham, WA: SPIE, 

2004. 

[304] Kim J Y, Lee C, Park K, et al. Fast optical-resolution photoacoustic microscopy 

using a 2-axis water-proofing MEMS scanner[J]. Scientific reports, 2015, 5(1): 

7932. 



 Page 237 of 253 

 

[305] Mazzaferri J, Kunik D, Belisle J M, et al. Analyzing speckle contrast for HiLo 

microscopy optimization[J]. Optics express, 2011, 19(15): 14508-14517. 

[306] Schniete J, Franssen A, Dempster J, et al. Fast optical sectioning for widefield 

fluorescence mesoscopy with the mesolens based on HiLo microscopy[J]. 

Scientific reports, 2018, 8(1): 16259. 

[307] Zhang Y, Kang L, Lo C T K, et al. Rapid slide-free and non-destructive 

histological imaging using wide-field optical-sectioning microscopy[J]. 

Biomedical Optics Express, 2022, 13(5): 2782-2796. 

[308] Kang S, Ryu I, Kim D, et al. High-speed three-dimensional surface profile 

measurement with the HiLo optical imaging technique[J]. Current Optics and 

Photonics, 2018, 2(6): 568-575. 

[309] Hsiao H, Lin C Y, Vyas S, et al. Telecentric design for digital‐scanning‐based 

HiLo optical sectioning endomicroscopy with an electrically tunable lens[J]. 

Journal of Biophotonics, 2021, 14(2): e202000335. 

[310] Philipp K, Smolarski A, Koukourakis N, et al. Volumetric HiLo microscopy 

employing an electrically tunable lens[J]. Optics express, 2016, 24(13): 15029-

15041. 

[311] Lin W, Wang D, Meng Y, et al. Multi-focus microscope with HiLo algorithm for 

fast 3-D fluorescent imaging[J]. PloS one, 2019, 14(9): e0222729. 

[312] Qiao W, Jin R, Luo T, et al. Single-scan HiLo with line-illumination strategy for 

optical section imaging of thick tissues[J]. Biomedical Optics Express, 2021, 

12(4): 2373-2383. 

[313] Mertz J. Optical sectioning microscopy with planar or structured illumination[J]. 

Nature methods, 2011, 8(10): 811-819. 

[314] Neil M A A, Juškaitis R, Wilson T. Method of obtaining optical sectioning by 

using structured light in a conventional microscope[J]. Optics letters, 1997, 

22(24): 1905-1907. 



 Page 238 of 253 

 

[315] Hu Y, Liang D, Wang J, et al. Background‐free wide‐field fluorescence imaging 

using edge detection combined with HiLo[J]. Journal of Biophotonics, 2022, 

15(8): e202200031. 

[316] Karadaglić D, Wilson T. Image formation in structured illumination wide-field 

fluorescence microscopy[J]. Micron, 2008, 39(7): 808-818. 

[317] Ventalon C, Mertz J. Quasi-confocal fluorescence sectioning with dynamic 

speckle illumination[J]. Optics letters, 2005, 30(24): 3350-3352. 

[318] Shabani H, Doblas A, Saavedra G, et al. Improvement of two-dimensional 

structured illumination microscopy with an incoherent illumination pattern of 

tunable frequency[J]. Applied Optics, 2018, 57(7): B92-B101. 

[319] Chang S I, Yoon J B. Shape-controlled, high fill-factor microlens arrays 

fabricated by a 3D diffuser lithography and plastic replication method[J]. Optics 

Express, 2004, 12(25): 6366-6371. 

[320] Lim C S, Hong M H, Kumar A S, et al. Fabrication of concave micro lens array 

using laser patterning and isotropic etching[J]. International Journal of Machine 

Tools and Manufacture, 2006, 46(5): 552-558. 

[321] Kuo W K, Lin S Y, Hsu S W, et al. Fabrication and investigation of the bionic 

curved visual microlens array films[J]. Optical Materials, 2017, 66: 630-639. 

[322] Yuan W, Li L H, Lee W B, et al. Fabrication of microlens array and its application: 

a review[J]. Chinese Journal of Mechanical Engineering, 2018, 31(1): 1-9. 

[323] Sohn I B, Choi H K, Noh Y C, et al. Laser assisted fabrication of micro-lens array 

and characterization of their beam shaping property[J]. Applied Surface Science, 

2019, 479: 375-385. 

[324] FitzGerrell A R, Dowski E R, Cathey W T. Defocus transfer function for 

circularly symmetric pupils[J]. Applied Optics, 1997, 36(23): 5796-5804. 

[325] Hopkins H H. The frequency response of a defocused optical system[J]. 

Proceedings of the Royal Society of London. Series A. Mathematical and 

Physical Sciences, 1955, 231(1184): 91-103. 



 Page 239 of 253 

 

[326] York A G, Chandris P, Nogare D D, et al. Instant super-resolution imaging in live 

cells and embryos via analog image processing[J]. Nature methods, 2013, 10(11): 

1122-1126. 

  

 

  



 Page 240 of 253 

 

Appendix 

Journal publications 

1. Jiao Z, Zang Z, Wang Q, et al. PAIM (πM): Portable AI-enhanced fluorescence 

microscope for real-time target detection[J]. Optics & Laser Technology, 2023, 163: 

109356. 

2. Jiao Z, Pan M, Yousaf K, et al. Smartphone-based Optical Sectioning (SOS) 

Microscopy with A Telecentric Design for Fluorescence Imaging[J]. arXiv preprint 

arXiv:2310.01928, 2023. 

3. Jiao Z, Chen X, Li D D U. Optimizing microlens arrays for incoherent HiLo 

microscopy[J]. Results in Optics, 2024: 100622. 

4. Zang Z, Xiao D, Wang Q, et al. Compact and robust deep learning architecture for 

fluorescence lifetime imaging and FPGA implementation[J]. Methods and 

Applications in Fluorescence, 2023, 11(2): 025002. 

Conference submission 

1. Zang Z, Xiao D, Wang Q, et al. Hardware inspired neural network for efficient time-

resolved biomedical imaging[C]//2022 44th Annual International Conference of the 

IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2022: 1883-

1886. 

2. Xiao D, Zang Z, Wang Q, et al. Smart wide-field fluorescence lifetime imaging 

system with CMOS single-photon avalanche diode arrays[C]//2022 44th Annual 

International Conference of the IEEE Engineering in Medicine & Biology Society 

(EMBC). IEEE, 2022: 1887-1890. 



 Page 241 of 253 

 

Supplementary information  

List of PAIM components (Fixed cost for brightfield imaging 

and counting of RBCs): 

Product Item Price Supplier 

White LED LEDW7E $1.4 Thorlabs 

Aspheric 

condenser lens 

ACL2520U-DG15 $17.19 Thorlabs 

Biconcave lens LD2746 $24.48 Thorlabs 

AI unit (Cable 

included) 

Jetson Nano $110.65 Taobao, China 

USB Webcam 

(Cable included) 

ELP,4K, Sony-

IMX317 

$65.99 Taobao, China 

LED socket LEDMT1F $52.41 Thorlabs 

Translation stage DT12 $73.89 Thorlabs 

Angle bracket DT12A $38.5 Thorlabs 

3D Print part  $12.63 Department of 

Mechanical 

Engineering 

 

These items are fixed cost for PAIM (Brightfield imaging for RBCs imaging and count), 

total cost is $397.14. If users want to realize fluorescent imaging, the white LED can 

be substituted by other LED with specific wavelength. Also, corresponding optical filter 

can be inserted into the specific position of designed adapter (Fig. 3-6c). 

Data for the PAIM 

The data for the webcam lens testing and PAIM STL files can be downloaded in the 
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following link: 

https://github.com/ZiaoJiao/PAIM 

 

The training data set can be downloaded in the following link: 

https://bbbc.broadinstitute.org/BBBC005 

 

For the neural network code and software to run the RBCs counting and segmentation 

functionalities, we are securing multiple Chinese patents, necessitating confidentiality 

at this stage. In the future, our plan includes launching a commercial software package 

accessible through license purchase. However, we are open to disclosing select 

components of the code, encompassing the neural network architectures tailored for 

segmentation and counting tasks and the code for calculating IoU: 

 

Code for segmentation neural network: 

###################################### 

import torch 

import torch.nn as nn 

 

 

class double_conv(nn.Module): 

    ''' 

    Double Convolution layer with both 2 BN and Activation Layer in between 

    Conv2d==>BN==>Activation==>Conv2d==>BN==>Activation 

    ''' 

    def __init__(self, in_channel, out_channel): 

        super(double_conv, self).__init__() 

        self.conv = nn.Sequential( 

            nn.Conv2d(in_channel, out_channel, 3, padding=1), 
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            nn.ReLU(inplace=True), 

            nn.BatchNorm2d(out_channel), 

            nn.Conv2d(out_channel, out_channel, 3, padding=1), 

            nn.ReLU(inplace=True), 

            nn.BatchNorm2d(out_channel) 

        ) 

    def forward(self, x): 

        x = self.conv(x) 

        return x 

 

class down_conv(nn.Module): 

  ''' 

  A maxpool layer followed by a Double Convolution. 

  MaxPool2d==>double_conv. 

  ''' 

  def __init__(self, in_channel, out_channel): 

    super(down_conv, self).__init__() 

    self.down = nn.Sequential( 

        nn.MaxPool2d(2), 

        double_conv(in_channel, out_channel) 

    ) 

  def forward(self, x): 

    x = self.down(x) 

    return x 

 

class up_sample(nn.Module): 

  def __init__(self, in_channel, out_channel): 

    super(up_sample, self).__init__() 
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    self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) 

    self.double_conv = double_conv(in_channel, out_channel) 

 

  def forward(self, x1, x2): 

      x1 = self.up(x1) 

      x = torch.cat([x1, x2], dim=1) 

      x = self.double_conv(x) 

      return x 

 

class UNet_density(nn.Module): 

  '''Main Unet Model''' 

  def __init__(self, in_channel, out_channel): 

    super(UNet_density, self).__init__() 

    ## DownSampling Block 

    self.down_block1 = double_conv(in_channel, 16) 

    self.down_block2 = down_conv(16, 32) 

    self.down_block3 = down_conv(32, 64) 

    self.down_block4 = down_conv(64, 128) 

    self.down_block5 = down_conv(128, 256) 

    self.down_block6 = down_conv(256, 512) 

 

    ## UpSampling Block 

    self.up_block1 = up_sample(1024+512, 512) 

    self.up_block2 = up_sample(512+256, 256) 

    self.up_block3 = up_sample(256+128, 128) 

    self.up_block4 = up_sample(128+64, 64) 

    self.up_block5 = up_sample(64+32, 32) 

    self.up_block6 = up_sample(32+16, 16) 
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  def forward(self, x): 

    #Down 

    x1 = self.down_block1(x) 

    x2 = self.down_block2(x1) 

    x3 = self.down_block3(x2) 

    x4 = self.down_block4(x3) 

    x5 = self.down_block5(x4) 

    x6 = self.down_block6(x5) 

 

    #Up 

    x8 = self.up_block1(x7, x6) 

    x9 = self.up_block2(x8, x5) 

    x10 = self.up_block3(x9, x4) 

    x11 = self.up_block4(x10, x3) 

    x12 = self.up_block5(x11, x2) 

    x13 = self.up_block6(x12, x1) 

    x14 = self.up_block7(x13) 

 

return out 

###################################### 

 

 

Code for counting neural network: 

###################################### 

import torch 
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import torch.nn as nn 

from torch.autograd import Variable 

import math 

 

 

cfg = { 

    'VGG11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 

    'VGG13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 

    'VGG16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 

512, 512, 'M'], 

    'VGG19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 

'M', 512, 512, 512, 512, 'M'], 

} 

 

img_size = (256, 256) 

 

class VGG(nn.Module): 

    def __init__(self, vgg_name): 

        super(VGG, self).__init__() 

 

        self.input_image = nn.Sequential( 

            nn.Conv2d(1, 16, kernel_size=3, stride = 1, padding=1), 

            nn.BatchNorm2d(16), 

            nn.ReLU(inplace=True), 

            nn.Conv2d(16, 32, kernel_size=3, stride = 1, padding=1), 

            nn.BatchNorm2d(32), 

            nn.ReLU(inplace=True) 
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        ) 

 

        self.input_mask = nn.Sequential( 

            nn.Conv2d(1, 16, kernel_size=3, stride = 1, padding=1), 

            nn.BatchNorm2d(16), 

            nn.ReLU(inplace=True), 

            nn.Conv2d(16, 32, kernel_size=3, stride = 1, padding=1), 

            nn.BatchNorm2d(32), 

            nn.ReLU(inplace=True) 

        ) 

 

        self.convs = self._make_layers(cfg[vgg_name]) 

 

        in_dim = 512 * math.floor(img_size[0]/2**5)*math.floor(img_size[1]/2**5) 

        self.dense = nn.Sequential( 

            nn.Linear(in_dim, 1024), 

            nn.BatchNorm1d(1024), 

            nn.LeakyReLU(0.1), 

            nn.Linear(1024, 512), 

            nn.BatchNorm1d(512), 

            nn.LeakyReLU(0.1), 

            nn.Linear(512, 1), 

            nn.ReLU() 

        ) 

 

    def _make_layers(self, cfg): 

        layers = [] 

        in_channels = 64 
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        flag = 0 

        for x in cfg: 

            if x == 'M': 

                layers += [nn.MaxPool2d(kernel_size=2, stride=2)] # h=h/2 

            else: 

                layers += [nn.Conv2d(in_channels, x, kernel_size=3, stride = 1, 

padding=1), 

                           nn.BatchNorm2d(x), 

                           nn.ReLU(inplace=True)] 

                in_channels = x 

                flag += 1 

         

        return nn.Sequential(*layers) 

 

    def forward(self, x1,x2): 

        ''' 

        x1: density map 

        x2: mask 

        ''' 

        out1 = self.input_image(x1) 

        out2 = self.input_mask(x2) 

        out = torch.cat((out1, out2), dim=1) 

 

        out = self.convs(out) 

        out = out.view(out.size(0), -1) 

        out = self.dense(out) 

        return out 

###################################### 
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Code for IoU calculation: 

###################################### 

ret, mask_opencv = cv2.threshold(test_image, 0, 255, cv2.THRESH_BINARY) 

 

intersection_opencv = np.logical_and(test_images_mask_annots, mask_opencv) 

union = np.logical_or(test_images_mask_annots, mask_opencv) 

iou_score_opencv = np.sum(intersection_opencv) / np.sum(union) 

print('IoU_opencv is %s' % iou_score_opencv) 

 

intersection_unet = np.logical_and(test_images_mask_annots, test_recon_mask) 

union = np.logical_or(test_images_mask_annots, test_recon_mask) 

iou_score_unet = np.sum(intersection_unet) / np.sum(union) 

print('IoU_unet is %s' % iou_score_unet) 

###################################### 

Protocol for setup your own PAIM 

1. Printing the 3D Parts: 

Utilize a 3D printer to fabricate the necessary components for the microscope. Ensure 

you have the correct 3D models and that your printer settings are optimized for the 

material and precision required. 

 

2. Assemble All Components: 

Carefully assemble the 3D-printed parts along with any additional hardware required 

for the microscope. Follow any assembly guides or schematics provided with the 3D 

models to ensure correct assembly. 

 

3. Configure the Operating System and Software Environment on Jetson Nano 
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To set up your Jetson Nano, you need to configure the operating system and the 

necessary software environment. Visit the official Jetson Nano starting guide 

(https://developer.nvidia.com/embedded/learn/get-started-jetson-nano-devkit) for 

detailed instructions on how to do this. 

 

4. Connecting Peripherals to Jetson Nano: 

Webcam: Connect your webcam to one of the USB ports on the Jetson Nano to enable 

video input. 

Keyboard and Mouse: Plug in a keyboard and mouse into the available USB ports for 

navigation and input. 

Screen: Attach a screen to the HDMI port on the Jetson Nano for display purposes. 

 

5. Configuring the Python Coding Environment on Jetson Nano 

Configuring a robust Python coding environment on your Jetson Nano is crucial for 

efficiently developing and running your applications. Follow these steps to set up a 

conducive Python workspace: 

⚫ Update and Upgrade Jetson Nano 

Before installing any new software, it's good practice to update and upgrade your 

system packages to ensure compatibility and security. 

##### code here ##### 

sudo apt-get update 

sudo apt-get upgrade 

##### code end ##### 

⚫ Install Python 

Jetson Nano usually comes with Python pre-installed. Verify the installation and version 

using: 

##### code here ##### 

python3 --version 
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##### code end ##### 

If Python is not installed or you need a different version, use the following command 

to install it: 

##### code here ##### 

sudo apt-get install python3 

##### code end ##### 

⚫ Setting up pip 

Pip is a package installer for Python. You can install it with: 

##### code here ##### 

sudo apt-get install python3-pip 

##### code end ##### 

Once installed, you can use pip to install Python packages: 

##### code here ##### 

pip3 install <package-name> 

##### code end ##### 

⚫ Virtual Environments 

It's a best practice to use virtual environments for your Python projects to manage 

dependencies efficiently. 

Install the virtual environment package: 

##### code here ##### 

sudo apt-get install python3-venv 

##### code end ##### 

Create a new virtual environment: 

##### code here ##### 

python3 -m venv myenv 

##### code end ##### 

Activate the virtual environment: 

##### code here ##### 
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source myenv/bin/activate 

##### code end ##### 

⚫ Install development tools 

Install development tools like IDEs or text editors. Popular choices include Visual 

Studio Code, PyCharm, or simpler editors like Nano or Vim. For Visual Studio Code, 

you can follow the official installation guide provided by Microsoft: 

https://code.visualstudio.com/docs/setup/linux 

⚫ Jupyter Notebook/Lab 

For interactive coding sessions, Jupyter Notebook or Lab is an excellent tool. Install it 

within your virtual environment: 

##### code here ##### 

pip install jupyterlab 

##### code end ##### 

To run Jupyter Lab: 

##### code here ##### 

jupyter lab 

##### code end ##### 

⚫ Additional Libraries and Frameworks 

Depending on your project, you may need additional libraries like NumPy, Pandas, or 

frameworks like TensorFlow or PyTorch. Install them using pip within your virtual 

environment: 

##### code here ##### 

pip install numpy pandas tensorflow pytorch 

##### code end ##### 

⚫ Test Your Setup 

Once everything is installed, test your setup by running a simple Python script or a 

Jupyter notebook to ensure all components are working correctly. For more detailed 

instructions and troubleshooting, refer to the official NVIDIA documentation for Jetson 
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Nano (https://developer.nvidia.com/embedded/learn/get-started-jetson-nano-devkit). 

Code source and plugin for SOS 

The HiLo plugin used for SOS can be found in the following link: 

https://sites.bu.edu/biomicroscopy/resources/4/ 

 

Also, a Matlab tutorial can be found in the following link: 

https://github.com/SWC-Advanced-Microscopy/HiLo_SIM 

Mechanical design parts for SOS 

The mechanical design parts for SOS can be downloaded from the following link: 

https://github.com/ZiaoJiao/SOS 

Code for Chapter 5 simulation 

The code used for simulation in chapter 5 can be downloaded from the following link: 

https://github.com/ZiaoJiao/MLA_HiLo 

 


