The Environment and Macroeconomy

Prince Asare Vitenu-Sackey

A thesis presented for the degree of

Doctor of Philosophy

Department of Economics

University of Strathclyde
November 2025



Declaration

This thesis is the result of the author’s original research. It has been composed by the author
and has not been previously submitted for examination, which has led to the award of a
degree. The copyright of this thesis belongs to the author under the terms of the United
Kingdom Copyright Acts as qualified by University of Strathclyde Regulation 3.50. Due
acknowledgement must always be made of the use of any material contained in, or derived

from, this thesis.



Acknowledgements

I extend my deepest gratitude to the Department of Economics at the University of Strath-
clyde for granting me the scholarship that made this academic journey possible. Their finan-
cial support has been instrumental in allowing me to focus on my research and contribute
meaningfully to the field of economics.

[ am profoundly grateful to my supervisors, Professor Joseph Byrne and Dr. Sharada
Davidson, for their invaluable guidance, encouragement, and patience throughout this pro-
cess. In particular, I owe a special debt of gratitude to Professor Joseph Byrne for his
unwavering mentorship, insightful critiques, and the research assistantship opportunity that
provided both academic and financial support during my studies. His dedication to my de-
velopment as a researcher has been truly transformative. I would also like to thank Dr Sandy
Kyaw and Professor Julia Darby, the viva examiners for their time and helpful comments.

Also, T wish to thank my parents, Albert K. Vitenu-Sackey and the late Diana Quaye
for their support so far. A special gratitute to my late mother, whose relentless efforts and
sacrifices ensured that I could pursue higher education despite the challenges she faced as a
semi-literate woman. Her unwavering belief in the power of education continues to inspire
me, and this work stands as a testament to her enduring legacy.

Finally, we would like to acknowledge that a version of the chapter “The Macroeconomic
Impact of Global and Country-Specific Climate Risk” was published in an academic journal,

Environmental and Resource Economics, volume 87 issue 3, pages 655-682.



Abstract

This thesis explores the intricate relationship between the environment and macroeconomic
outcomes through three interconnected studies. The first study, “The Macroeconomic Impact
of Global and Country-Specific Climate Risk”, examines how climate risks influence economic
performance at both the global and national levels. It investigates whether climate shocks
induce substantial and persistent economic fluctuations. We find that global climate risk
is more connected with macroeconomic activity than the country-specific climate risk ir-
respective of economic status. The second study, “The Economic Consequences of Green
Growth: A Multi-Country Empirical Study”, evaluates the macroeconomic implications of
green growth. While transitioning to environmentally sustainable growth is widely advocated,
its particular economic effects—whether in terms of productivity, employment, or investment
dynamics—remain a subject of ongoing debate. This chapter provides empirical evidence on
the economic trade-offs and benefits of green growth strategies across multiple economies.
Our findings suggest that green growth indicators are strongly associated with GDP growth
in advanced economies than in emerging economies. The final study, “RéD Intensity and
Global Warming”, takes a historical perspective on the role of innovation in addressing cli-
mate change. This chapter explores whether technological advancements have contributed
to climate mitigation and innovation efforts are necessary to address global warming effec-
tively. We observed an inverse relationship between R&D intensity and global warming.
This, however, suggests that R&D intensity could positively lead to the reduction in global

warming.
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1.1 Motivation

The interaction between the environment and the macroeconomy has become a critical area
of research, particularly in light of accelerating climate change, evolving policy landscapes,
and the transition to sustainable economic models.! Since the period of classical economists,
the primary inquiry in economics has been to elucidate the factors contributing to the sub-
stantial disparities in living standards among countries and the pronounced fluctuations in
global living standards over the long period of time.? In recent times, climate change is
causing increased volatility in extreme weather events, which is affecting people globally;
see Nordhaus and Moffat (2017). Climate risks, as a result of temperature changes, both
global and country-specific, pose significant challenges to macroeconomic stability, affect-
ing key indicators such as output growth, inflation and employment.® Meanwhile, the shift
towards green growth strategies raises questions about their economic consequences, partic-
ularly across heterogeneous countries. Additionally, understanding the role of research and
development (R&D) in mitigating global warming provides insights into long-term policy
measures aimed at reducing environmental damage while fostering economic resilience.
This thesis explores the intricate relationship between the environment and macroeco-
nomic dynamics through three interconnected studies. The first study, “The Macroeconomic
Impact of Global and Country-Specific Climate Risk”, examines how climate risks influence
economic performance at both the global and national levels. Climate change is a key policy
concern. It has the potential to damage household welfare and economic activity.* In his
Nobel Prize Lecture, Nordhaus (2019a) summed up the consensus on climate change: global

warming is a threat to humankind and the natural world. The economic implications of cli-

1Crist et al. (2017), Nordhaus (2019a), Nordhaus (2019b), and Ruggerio (2021).
2Xepapadeas (2005) in the Handbook of Environmental Economics.
3For example, Dell et al. (2012), Donadelli et al. (2017) and Kotz et al. (2022).

4Giglio et al. (2021). Sheng et al. (2022) also demonstrate that volatility in temperature growth decelerates
economic activity roughly five times more than when temperature growth increases by the same amount in
the higher uncertainty-based domain of a nonlinear model.

15



mate change are potentially huge for firms, households and government policy. Stern (2008)
summarises that climate risk is global in its nature and impact. The effects may only reveal
themselves over the long-term and economic analysis of climate change should have a central
role for risk and uncertainty. This chapter seeks to add to the literature on the macroeco-
nomic impact of climate change, focusing upon the nature and impact of global and country
specific climate risk over an extended time period. In addition, it investigates whether cli-
mate shocks induce persistent economic fluctuations and how macroeconomic policies should
respond to such risks.

The second study, “The Economic Consequences of Green Growth: A Multi-Country Em-
pirical Study”, examines the macroeconomic implications of green growth policies. While
transitioning to environmentally sustainable growth is widely advocated, its economic ef-
fects—whether in terms of productivity, employment, or investment dynamics—remain a
subject of ongoing debate. Balancing rapid, environmentally friendly development for achiev-
ing Sustainable Development Goals (SDGs) is a contentious issue. Green growth promotes
natural capital conservation and creates opportunities in employment and trade, which also
adds to growth.” On the other hand, investment in adaptation and green technology will have
an opportunity cost. Adaptation of economic activity and generating green growth has been
key to limiting climate change and combating environmental degradation.® Whether encour-
aging green economic activity has a beneficial impact on economic growth more generally is
controversial. There is less of a consensus on the exact nature and extent of the potential
tension between economic development and environmental protection. One potential way
forward is for countries to engage in green growth, which seeks to protect the environmen-
tal and also promote growth in general (Bohensky et al., 2011; Griggs et al., 2013; Pretty,
2013; Potts et al., 2016). This chapter provides empirical evidence on the economic growth

trade-offs and benefits of green growth strategies across multiple economies.

5See Wackernagel and Rees (1997), OECD (2011, 2017), World Bank (2012), Swainson and Mahanty
(2018) and Ofori et al. (2023).

6See Stern et al. (1996), Tol (2009b) and Nordhaus (2019b).
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The final study, “RéD Intensity and Global Warming”, takes a historical perspective on
the role of innovation in addressing climate change. The assertion that technological advance-
ments will have a positive effect on environmental quality, referred to as the technological
effect, is a recurring theme in the extensive literature on the Environmental Kuznet Curve
(EKC) hypothesis (see Churchill et al., 2019). Investments in research and development are
focused on boosting productivity as well as improving the quality and diversity of products
(Fisher-Vanden and Wing, 2008). More R&D investment, for example, is likely to improve
environmental quality in situations where effective environmental management systems are
in place to ensure proper waste management (Arora and Cason, 1996; Churchill et al., 2019;
Huang et al., 2021; Paramati et al., 2021). However, there is uncertainty regarding the effect
of technological advancement on global warming emanating from greenhouse gas emissions
(Meinshausen et al., 2009; Moss et al., 2010; Arent et al., 2011).

Two significant uncertainties obscure the future requirements of green technology, Fulker-
son et al. (1989) argued that the future of energy technology is shaped by increasing energy
demand and the pressing issue of the greenhouse gas effect. Although new technology may
increase efficiency, increasing output may necessitate the use of additional natural resources,
which could result in an increase in carbon emissions. This theory is supported by the fact
that R&D has historically produced declining returns (Newell, 2009; Churchill et al., 2019).
As our stock of knowledge grows, it becomes increasingly challenging to make new discov-
eries, leading to a decrease in the amount of research and development conducted over time
(Jones, 2009; Newell, 2009; Bloom et al., 2020). However, it is important to note that eco-
nomic growth still requires an increasing amount of natural resources and may likely cause
environmental destruction. This chapter explores whether technological advancements have
contributed to climate mitigation and whether sustained innovation efforts are necessary to
address global warming effectively. As it assesses the relationship between R&D intensity
and share of greenhouse gas emissions contribution to global temperature changes in OECD

countries.
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Jointly, these three studies provide a comprehensive understanding of the macroeconomic
dimensions of environmental challenges. By integrating insights from climate risk analysis,
green growth, and technological innovation, this thesis contributes to the broader discourse
on sustainable economic development and informs policy discussions on balancing economic

growth with environmental sustainability.

1.2 Research Questions

o The first study considers the questions, do the potential future temperature variations
impact economic growth, is the impact country-specific or global, and does the condi-

tional volatility matter?

o In the second study, we consider the question: do green growth indicators contribute

to economic growth more generally?

o In the final study, we ask: can R&D intensity significantly lead to a reduction in global

warming? Is the intensity country-specific or contingent upon global spillovers?

1.3 Chapter Overview and Empirical Strategy

In chapter 2, we examine the empirical relationship between economic activity and climate
risk. Key time series used in this study are measures of climate risk, macroeconomic activity
and carbon emissions. To construct a measure of climate risk, we source temperature data
from World Bank Climate Knowledge Portal and we focus upon temperature changes. We
use temperature changes as the basis of measuring country-specific and global climate risk.
To model macroeconomic activity, we use the growth rate of real GDP. The steady increase
in global temperature caused by accumulated carbon dioxide in the atmosphere, which raises
atmospheric carbon concentration and eventually changes temperature, is measured using

carbon emissions per capita. The data spans from 1901 to 2020 for thirty countries. This
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research employed a factor stochastic volatility method to measure climate risks in order to
assess its impact on macroeconomic activity. Here, we decomposed climate risk into country-
specific risks and global spillovers. To examine the relationship between macroeconomic
activity, idiosyncratic and global climate risk, this study uses a Bayesian Panel VAR with
a hierarchical prior. We consider further robustness and extensions of our approach. These
include using dynamic panel methods robust to endogeneity, controlling for temperature
levels and alternative identification of shocks. To account for endogeneity and whether our
evidence is contingent upon specific empirical methods we generalise our results by using
Generalised Methods of Moments estimation (GMM).

In chapter 3, we seek to estimate as a growth regression model to examine the importance
of green growth indicators for economic activity. This model assumes parameter homogeneity
and cross-section independence of stochastic error. Temple (1999) emphasises several econo-
metric challenges for growth regressions. These include parameter heterogeneity, spillovers,
and endogeneity. In this chapter, we seek to account for these in what follows. Firstly, we test
for country homogeneity and the other parameters. Our homogeneity test is from Pesaran
and Yamagata (2008) against the alternate hypothesis that all the slope coefficients are het-
erogeneous. Secondly, whether the cross-sectional error terms are independent, we can reject
the assumption that there is no evidence of cross-sectional dependence. Panel estimators
normally assume cross-sectional independence. We formulate a dynamic panel model with
heterogeneous coefficients and apply the dynamic common correlated mean group (CCE-
MG) estimator. The CCE-MG estimator is capable of capturing unobserved heterogeneity
and dynamic relationships, thereby offering enhanced predictive capabilities in comparison
to more basic panel data models. The common correlated effects are captured by incorporat-
ing cross-section averages to address the influence of common factors. The omission of the
common factor from the growth model may result in an omitted variable bias.

The key variable of interest when examining the impact of environmental factors on

economic growth is our measure of green growth. We use a measure of optimal green growth
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from Sarkodie et al. (2023). This indicator measures green growth performance across five
broad dimensions: natural asset base, socio-economic opportunities, productivity, quality
of life, and policy responses. This data are from 1992 to 2021 for 81 countries. This time
period was chosen for the study due to the availability of data for the green growth indicators
and total labour force. Other series such as physical capital, human capital, greenhouse gas
emissions, urbanisation, foreign direct investment, and green technologies are also used in
this study. The data were obtained from the World Bank, OECD, and Penn World Tables.

In chapter 4, the data used in this study is panel data of 20 OECD countries from 1870 to
2021 sourced from Jones et al. (2023) and Churchill et al. (2019), extended to include 2015 to
2021 data sourced from the World Bank’s World Development Indicators. We use the OECD
countries as the case for assessing how Research and Development (R&D) intensity impacts
global warming. Central to our analysis is that we seek to explain the impact of R&D on
climate change. Our country climate change measure is each country’s contribution to global
warming via emissions as a ratio. The independent variable is research and development
intensity, measured as the ratio of nominal R&D expenditure to nominal GDP sourced from
Churchill et al. (2019) and World Development Indicators. Other variables include real GDP
per capita, the quadratic function of real GDP per capita, the ratio of broad money to
GDP, a common proxy for financial development; total population and the ratio of trade
(imports plus exports) to GDP sourced from Churchill et al. (2019) and World Development
Indicators—as control variables. These control variables account for the finance, trade, and
population-level channels as potential mechanisms to influence R&D and global warming.
We further decompose research and development intensity into an idiosyncratic component
and a common factor, representative of country-specific and global spillovers of research
and development intensity. This allows us to examine their corresponding effects on global
warming. We use a multivariate stochastic volatility model and principal component analysis
to estimate the country-specific intensity and global R&D spillovers.

To examine our key empirical relationships, we use a variety of estimators. These allow
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us to examine the robustness of our results. These estimators include: random/fixed effects,
fixed effects regression with Driscoll-Kraay standard errors, and two-stage least squares fixed
effects instrumental variable methods. The objective, however, is to address potential cross-
sectional dependence, and endogeneity while estimating the relationship between R&D inten-
sity and greenhouse gas emissions contribution to global warming. To address non-linearity,
heterogeneity, and time-varying effects, we use a polynomial (quadratic) function of research
and development intensity, split the sample period into pre-World War II and post-World
War II following Churchill et al. (2019) and also based on structural break tests. Further,
country groupings into G7 and others are used to throw more light on the heterogeneous

effects.

1.4 Overview of Key Findings

Chapter 2 is entitled “The Macroeconomic Impact of Global and Country-Specific Climate
Risk.” This chapter examines the impact of climate risk on macroeconomic activity for thirty
countries using over a century of panel time series data. Climate change may have an im-
portant global dimension, and there may be an important dimension in the second moment
of climate change. Our methods seek to consider this. The key innovation of our chapter
is to use a factor stochastic volatility approach to decompose climate change into global
and country-specific climate risk and to consider their distinct impacts upon macroeconomic
activity. This allows us to differentiate the importance for economic activity of common
and idiosyncratic components of climate change. To allow for country heterogeneity, we
also differentiate the impact of climate risk upon advanced and emerging economies. While
the existing literature has focused on country based climate risk shocks, our results sug-
gest idiosyncratic or country-specific climate risk shocks are relatively unimportant. Global
climate risk, on the other hand, has a negative and relatively more important impact on

macroeconomic activity.
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Evidence from our core results suggests that shocks to country-specific climate risk are
relatively less important for macroeconomic activity. While the effect of idiosyncratic risk is
generally negative, critical intervals are close to zero indicating less evidence of a substantial
impact. Global climate risk is a relatively more important determinant of macroeconomic
activity. This is indicated by the larger negative GDP response to a global risk shock after
year four. It takes several years for the full effect of a global climate risk shock to feed its
way fully into GDP. We examined the exogenous impact therefore of country-specific and
the global climate risks on GDP growth from 1950 to 2020 in a separate empirical model.
We find stronger evidence that shocks to country-specific climate risk have no effect on GDP
growth. We identify an initially negative and important impact of the global risk shock on
GDP, with a maximum at year three. This is irrespective of whether we consider advanced
or emerging countries. There does seem to be overshooting of GDP after the initial negative
shock as additional volatility is induced into GDP by the global climate risk shock, which
eventually abates as the response returns to zero. Interestingly, we find that both advanced
and emerging countries are adversely impacted by climate risk shocks.

Chapter 3 is entitled “The Economic Consequences of Green Growth: A Multi-Country
Empirical Study.” Using a novel dataset, we examine whether green growth impacts macroe-
conomic outcomes for a large number of countries. Our green growth measure is a com-
posite index of natural asset base, environmental productivity, environmental-related policy
responses, socio-economic outcomes, and quality of life. In testing our central hypothesis,
we use empirical methods robust to panel parameter heterogeneity, cross-sectional correla-
tion, and endogeneity. Our empirical results strongly suggest that green growth has a posi-
tive impact on GDP growth, especially in an extended model and for advanced economies.
Specifically, our country results illustrate that the impact of green growth on GDP growth
is considerably heterogeneous. Our evidence indicates that the indicators of green growth
are more strongly associated with the growth of gross domestic product (GDP) in advanced

countries than emerging economies, as observed across the estimators used for the full sam-
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ple. Overall, we observed that the lagged term of green growth significantly contributes to
economic growth, even in the presence of unfavourable economic and environmental factors.
We find strong evidence that indicators of green growth are major contributors to economic
growth.

The third key empirical contribution in this thesis is in Chapter 4, with the title of “RéD
Intensity and Global Warming.” This chapter examines the relationship between R&D in-
tensity and global warming in the OECD countries. Research and Development is vital for
economic growth and mitigating or adapting to the impact of climate change. Investment
in R&D may, therefore, lead to technical change that could have positive effects on envi-
ronmental quality. Against this backdrop, we assess the impact of R&D intensity on global
warming for a sample of twenty OECD countries for over one hundred and fifty years of data.
Our multiple estimations suggest that R&D intensity is empirically relevant for global warm-
ing. Increasing R&D intensity is significantly associated with a reduction in global warming.
This relationship is also time invariant in terms of sign of the coefficient. In addition, there
are potential global R&D spillovers that are likely to scale up the efforts in reducing global
warming. This implies that global R&D spillovers are more important than country-specific
intensity. We find that the magnitude of R&D intensity’s impact on global warming has been
diminishing post-World War II as compared to pre-World War II. The findings are robust to
cross-sectional dependence, endogeneity, and structural breaks.

In view of our core results, we find that R&D intensity and global warming are inversely
related. Consistently, we find that the coefficient function of R&D intensity is negative
and significant for all the estimators and different specifications. The results are consistent
with the other findings in terms of the sign of the coefficients. This indicates that, despite
addressing structural breaks and the cross-sectional dependence of both R&D intensity and
global warming, as well as the other variables, R&D intensity may have the potential to
mitigate the effects of global warming. While the formal test finds evidence of one break,

the estimator does not suggest that the break is statistically significant. More importantly,
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there is non-linearity in the relationship between R&D and global warming. We observe
a negative coefficient for the quadratic term of R&D, which implies dimisnishing marginal
returns. R&D intially is very powerful in reducing a country’s contribution to global warming

but the effect diminishes with more R&D.
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Chapter 2

The Macroeconomic Impact of

Global and Country-Specific
Climate Risk
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2.1 Introduction

Climate change is widely expected to have a significant impact on economic activity for a
whole host of countries around the world." In his Nobel Prize Lecture, Nordhaus (2019a)
summed up the consensus on climate change: global warming is a threat to humankind and
the natural world. The economic implications of climate change are potentially huge for firms,
households and government policy. In addition to degradation of both the environment and
ecosystem itself, climate change shall damage the economy by impacting primary resources,
physical and human capital, R&D and productivity. In response, countries have implemented
policies to tackle climate change in an effort to reduce greenhouse gas emissions and abate
the adverse economic impact. While a policy consensus has emerged on climate change, some
research questions remain.” Stern (2008) summarises effectively the challenges for researchers
climate economics: climate risk is global in its nature and impact; the effects may only reveal
themselves over the long-term; and economic analysis of climate change should have a central
role for risk and uncertainty. This chapter seeks to add to the literature on the macroeconomic
impact of climate change, focusing upon the nature and impact of global and country specific
climate risk over an extended time period.

The United Nation’s Intergovernmental Panel on Climate Change (IPCC) noted in its
Sixth Assessment Report, in this regard that: our climate has become more volatile through
time, with extreme temperature changes impacting an increasing variety of geographic re-
gions (Arias et al., 2021). We observed from an illustrative sample of thirty countries that
there has been an increase in both average annual temperature growth and variability. For
our sample of thirty countries for over a century of annual data, average annual temper-

ature growth was 0.012°C, with a standard deviation of 0.279°C between 1901 and 1950.

'Nordhaus and Moffat (2017) considered several existing analyses on the macroeconomic implications of
climate change using a systematic research synthesis. They found that the damage to income ranged from
over 2 per cent to over 8 per cent, depending upon whether there was 3°C or 6°C warming. See also Weitzman
(2007), Tol (2009a), Burke et al. (2015), Donadelli et al. (2017), Alessandri and Mumtaz (2021), Kotz et al.
(2021), Kahn et al. (2021), Pindyck (2021), Donadelli et al. (2022), and Kotz et al. (2022).

2See Weitzman (2007), Stern (2008) and Pindyck (2021).
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From 1950 to 2020 average annual temperature growth rose to 0.015°C, with the standard
deviation increasing to 0.292°C. This increase in climate variability is important, not least
since Alessandri and Mumtaz (2021), Kotz et al. (2021) and Donadelli et al. (2022) present
evidence that climate risk in the form of temperature variability can have a detrimental
impact upon macroeconomic outcomes. This is based upon both empirical and theoretical
research, using either realized temperature volatility or ex ante stochastic volatility measures
of climate risk.?

There are several channels by which climate risk may impact the economy. Investments
which are irreversible, and have an option value of waiting, may be delayed by firms due to
uncertainty (Dixit and Pindyck, 1994; Bloom, 2009). This may result in decreased expendi-
tures on new business capital and R&D. Berestycki et al. (2022) document that climate policy
uncertainty is linked to substantial declines in investment in capital-intensive industries, no-
tably in pollution-intensive sectors subject to climate policy changes. Extensive research has
emphasised the urgency of incorporating the physical aspect of climate threats into economic
impact studies. These studies demonstrate that climate risks have a negative impact, not
only upon labour productivity and capital quality, but also upon R&D expenditures, thereby
lowering economic growth. In other words, climate risks can directly influence both economic
production and consumption.

Our chapter makes four contributions to the literature on the economic impact of global
warming. Firstly, we illustrate climate interconnectedness from one country to the next for
our large sample of countries using generalised temperature spillover indices from Diebold
and Yilmaz (2012), which is order invariant. Our evidence suggests that temperature changes
have experienced spillovers from one country to the next, indicating the interconnectedness

of these countries. In essence, connectedness motivates the notion that there are common

3See Cascaldi-Garcia et al. (2023) for an extensive discussion of empirical measures of uncertainty and
risk.

4See for example Donadelli et al. (2017), Donadelli et al. (2021), Kotz et al. (2021), Pindyck (2021),
Donadelli et al. (2022), Kotz et al. (2022), and Sheng et al. (2022).
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factors in temperature changes. Given this global interconnectedness, it is critical to model
common factors of climate when assessing its impact on macroeconomic activity.

Our second contribution is to consider the impact of climate variability upon real GDP
growth by differentiating between the impact of global climate risk and country specific
climate risk using a factor model. Global climate risk may matter more than idiosyncratic
climate risk for economic activity, since climate change is a global phenomenon, as suggested
by Stern (2008). Factor models are widely used in empirical macro research: see Kose
et al. (2003), Foerster et al. (2011) and Ferndndez et al. (2018).> Related to, but different
from our factor approach, Alessandri and Mumtaz (2021) use univariate stochastic volatility
associated with temperature to examine the long-term impact of climate change uncertainty
on economic growth.® However, the potentially distinct impact of global and country specific
climate uncertainties upon GDP growth have not been considered by the literature as far as
we are aware. In light of this, the purpose of this present work is to extend Alessandri and
Mumtaz (2021) by employing factor stochastic volatility, which is multivariate, as opposed
to stochastic volatility which is univariate, to decompose climate uncertainties. Our factor
stochastic volatility approach to modeling climate change more fully accounts for the global
nature of climate risk.

The third contribution of our chapter is to consider the impact of climate change over
the very long term. This also chimes with Stern (2008) who emphasizes that climate change
can be long term in its nature or impact. We therefore consider around 120 years of data
when examining the impact of global and country specific climate risk on GDP. This con-
trasts with existing studies which typically consider a more recent sample period. And while
climate change has become more acute in recent years, climate risk has potentially impacted
outcomes for an extended period. We also assess whether our results are sensitive to the

sample period chosen and whether the effects of climate change have become more acute in

5Ang et al. (2009) and Herskovic et al. (2016) investigated a common factor in idiosyncratic volatility in
quantitative asset pricing, as well as high idiosyncratic volatility and low returns.

6We also differentiate our measure of climate uncertainty from Gavriilidis (2021) and Sheng et al. (2022).
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recent years. Fourthly, our work distinguishes the effects of climate risk upon advanced and
emerging economies because the effects of climate change may depend upon country charac-
teristics. Despite the possibility of cummulative temperature increases above pre-industrial
levels ranging from 1.5°C to 4.5°C, certain regions may be heterogeneously impacted by
global warming (see Houghton, 1996; O’Brien and Leichenko, 2000). We consider whether
the climate risk experienced by emerging economies is country-specific or mainly the result
of global spillovers. Both advanced and emerging economies are major contributors of green-
house gas emissions which could substantially affect their economies due to climate risk.
Both groups of countries may be heterogeneously impacted by climate risk and be more or
less able to abate the impact of climate variability.

To preview our result, we established that overall climate risk is substantial and rele-
vant for macroeconomic activity, consistent with the earlier literature such as: Dell et al.
(2012), Donadelli et al. (2017), Alessandri and Mumtaz (2021), Donadelli et al. (2021), Kotz
et al. (2021), Donadelli et al. (2022), Kotz et al. (2022), Sheng et al. (2022), among otherss.
Separating climate risk into global and country-specific elements we make our key contribu-
tions. Country specific climate risk shocks have a relatively less important impact on GDP
fluctuations. By comparison, global climate risk has a negative and relatively more impor-
tant impact on GDP, and induces more volatility of macroeconomic activity. Our results
indicate that both advanced and emerging economies are impacted to a greater extent by
common, rather than the idiosyncratic climate risk, which emphasizes the global dimension
of climate change. In addition, we find evidence of strong interconnectedness of temperature
changes among the countries in our sample. Most importantly, both temperature changes
and GDP growth depict positive spillover effects from one country to another. Our econo-
metric method’s ability to capture cross-sectional heterogeneity and spillovers renders our
findings robust and substantial.

The rest of the study is divided as follows: the second section briefly discusses the existing

literature, the third describes the empirical model and method used in the empirical analysis;
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the fourth section reports our empirical results; and the fifth section concludes the study.

2.2 Literature Review

Uncertainty is increasingly important for empirical research in several economic applications,
see Cascaldi-Garcia et al. (2023). In an early study, Bernanke (1983) argues that an increase
in uncertainty damages the economy’s total demand through a conventional channel tied to
the real option theory. Bloom (2009) suggests that uncertainty influences decision-making
because it increases the option value of waiting. In other words, corporations and, in the
case of durable products, consumers are more cautious when confronted with uncertainty
due to the significant costs associated with making poor investment decisions. Consequently,
investments, hirings, and expenditures are postponed until periods of lesser uncertainty. Due
to the misallocation of resources across businesses, uncertainty is also anticipated to have
a negative influence on the supply-side productivity of the economy (Bloom et al., 2018).
According to Bloom et al. (2018), it is argued that in periods of normal economic conditions,
less efficient companies tend to experience a decrease in size, while more productive firms
tend to grow, thereby contributing to the overall maintenance of high aggregate productivity.
In situations characterised by elevated levels of uncertainty, businesses tend to impose re-
strictions on their expansion and contraction activities. This, in turn, hampers a substantial
portion of the productivity-enhancing reallocation process, ultimately resulting in a decline
in the evaluated aggregate total factor productivity. The main question of this study pertains
to whether there existss a correlation between a heightened likelihood of encountering greater
temperature variations in the future, specifically an increase in the conditional volatility of
yearly temperatures, and its potential impact on economic growth.

As already mentioned climate change is a key policy concern. It has the potential to

damage household welfare and economic activity (Giglio et al., 2021).” Two lines of research

"Sheng et al. (2022) show that temperature growth volatility slows economic activity about five times
more than a comparable rise in temperature, under high uncertainty in a nonlinear model.
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underpin our study. The first line examines the economic implications of climate change.
They substantially argued on the negative relationship between income and global warming.
To assess the relationship between climate and economic activity researchers use various
methods, including the general equilibrium model, and the integrated assessment model in
its reduced form.® The second line of research examines the macroeconomic implications of
increases in risk and uncertainty associated with climate change. The literature establishes
the critical role of macroeconomic volatility on investment, consumption, and output.” By
examining the relationship between climate risk, notably climate change uncertainty, and
macroeconomic activity, this study aims to bring new and diverse evidence to inform policy
direction and academic discussion.

It should be noted that several chapters examine the empirical relationship between eco-
nomic development and weather conditions. For instance, Dell et al. (2012) seek to determine
the economic effects of climate change in an empirical context. They accomplish this by trac-
ing the temporal evolution of countries’” average temperatures and output growth. According
to Dell et al. (2012), rising temperatures have a greater negative impact on economic growth
in developing nations than in industrialised nations. Similar to Dell et al. (2012), Brenner and
Lee (2014) used a panel of nations to determine if changes in temperature and precipitation
levels are associated with slowed economic growth.'Y They demonstrate that rising temper-
atures have a detrimental effect on economic growth in warm, developed nations, whereas
increased precipitation has a beneficial effect on growth, particularly in developed nations
with low average precipitation. Meanwhile, Zhao et al. (2018) contend that the impacts of

annual temperature on productivity can also vary widely among countries. Using global sub-

8These studies investigated the link between climate change as in temperature, rainfall and precipitation
growth on aggregate production and consumption and in general economic productivity or economic growth
(Hassler et al., 2016; Stern, 2016; Nordhaus and Moffat, 2017; Alessandri and Mumtaz, 2021; Kotz et al.,
2021, 2022).

9While Ciccarelli and Marotta (2021), Kahn et al. (2021), Kim et al. (2021), and Sheng et al. (2022)
examined climate risk and uncertainty impact of economic activities in diverse ways.

0Brenner and Lee (2014) anticipate a substantial increase in the global average temperature in the coming
decades. They analyse historical temperature and precipitation variations to determine whether changes in
temperature and precipitation are connected with economic growth declines.
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national short panel data, they review the link between temperature and economic growth
and demonstrate that climate-related negative consequences can differ at the regional level.
Donadelli et al. (2017) demonstrate empirically that a temperature shock has a substan-
tial, negative, and statistically significant effect on total factor productivity, production, and
labour productivity. In contrast, they demonstrate that quicker adaptation to climate shocks
is associated with lower welfare costs. In line with that, welfare benefits increase dramatically
when the rate of adaptation improves over time. According to Kotz et al. (2022), a rise in
the number of rainy days and excessive daily rainfall, as well as a nonlinear reaction to the
total annual and averaged monthly variations in rainfall, slows economic growth rates. In
addition, both daily rainfall and total annual rainfall are most detrimental to high-income
countries and industries, such as services and manufacturing, supporting previous research
that emphasised the benefits of greater annual rainfall for low-income, agriculturally-based
economies.

Apparently, numerous studies have identified connections between overall changes in tem-
perature and economic growth either in short or long-term, but data on the relationship be-
tween within-year temperature variability and macroeconomic variables is scant (Donadelli
et al., 2022); few studies have suggested that the relationship between climate uncertainty
and economic outcomes is significant and very important (Burke et al., 2015; Pindyck, 2021).
Other studies are of the view that climate change risks as a result of uncertainty leads to
output losses and surges in prices. Essentially, the negative effect of climate risks or uncer-
tainties emanate from demand-side and supply-side shocks (Batten, 2018; Batten et al., 2020;
Ciccarelli and Marotta, 2021; Kiley, 2021). Further, Kotz et al. (2022) postulate that cli-
mate change exacerbates growth such that variability of rainfall responds to economic growth
non-linearly. It is demonstrated by Sheng et al. (2022) that climate risks have a detrimental
impact on economic activity to a similar extent regardless of whether the risks are caused by
changes in temperature growth or volatility. However, when temperature growth increases

by a similar magnitude in the higher uncertainty-based regime in a nonlinear context, the
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volatility of temperature growth contracts economic activity roughly five times more than
when temperature growth decreases by a similar amount. Donadelli et al. (2021) explore
labour productivity, patent obsolescence, and capital quality in their analysis of the negative
R&D expenditure effect of rising temperatures. According to them, temperature shocks are
damaging to economic growth due to a decline in investment on research and development.
It has been found by, Donadelli et al. (2022) that richer economies are more susceptible to
the negative economic consequences of temperature fluctuation shocks. Kotz et al. (2021) ar-
gue that day-to-day temperature variability is influenced by seasonal differences and income,
resulting in the greatest risks in low-income regions and low-latitudes.

In contrast, there is research which suggests that the economic effects of climate change
are negligible. Pretis et al. (2018) find that, beyond global nonlinear temperature effects,
monthly temperature and precipitation variability has no impact on economic growth under
1.5°C or 2°C warming. They also document that temperature variations have almost no
effect on growth in economies with a yearly average temperature, but temperature variations
appear to have significant consequences in countries with extremely high or low average yearly
temperature temperatures.

The topic of climate spillovers have received limited attention in the existing body of
research. The existence of this gap becomes apparent when examining multiple facets of
climate interactions. Prominent instances encompass investigations that delve into the direct
impacts of climate change, as exemplified in the scholarly contribution of Schleypen et al.
(2022). Moreover, the examination of spillover effects of regional temperatures, as illustrated
by Cashin et al. (2017), underscores the insufficient consideration given to this complex
phenomenon.

Furthermore, scholarly research has increasingly focused on investigating intricate aspects
of climate spillovers. For instance, Zhao et al. (2023) have delved into the systemic risk that
emerges from the interconnection between coal-supported electricity generation and weather

patterns. The research conducted by Khalfaoui et al. (2022) and Su et al. (2022) demonstrates
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the growing acknowledgement of the interdependencies between climate policy spillovers and
their impacts on energy systems. These studies shed light on the interconnected nature of
climate-related dynamics, both within and between sectors and regions.

Significantly, there has been increased attention on indirect climate spillovers, as evi-
denced by research conducted by Zhang et al. (2023). This study has provided valuable
insights into the complex mechanisms through which climate change can spread across inter-
connected systems, thereby emphasising the necessity for a more holistic comprehension of
the extensive consequences associated with climate spillovers.

Given ongoing investigations, it is apparent that climate spillovers are a multifaceted and
interconnected phenomenon that warrants increased scholarly focus. The scholarly literature
emphasises the significance of not only mitigating the immediate impacts of climate change
but also recognising the complex web of repercussions that can span across geographical,
sectoral, and policy domains, ultimately influencing the global socioeconomic framework.
The available data on climate change and macroeconomic activity indicate that an increase
in annual average temperature has an effect on macroeconomic growth. However, a number
of fundamental elements of the economy are affected by deviations in daily temperature from

seasonal expectations that are not adequately reflected in annual averages.

2.3 Empirical Methods

2.3.1 Data

Key time series used in this study are measures of climate risk, macroeconomic activity and
carbon emissions. We use temperature changes as the basis of measuring country-specific
and global climate risk. To model macroeconomic activity, we use the growth rate of real
GDP. The steady increase in global temperature caused by accumulated carbon dioxide in
the atmosphere, which raises atmospheric carbon concentration and eventually changes tem-

perature, is measured using carbon emissions per capita. Moreover, we use carbon emission
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per capita since this is also important for the relationship between climate risk and macroe-

conomic activity. The data spans from 1901 to 2020 for thirty countries.!’

Climate Data

To construct a measure of climate risk, we source temperature data from World Bank Climate
Knowledge Portal and we focus upon temperature changes. Temperature is derived from the
Climate Research Unit (CRU) observed dataset. The CRU gridded time series are a widely
used climate dataset that covers all land domains of the world except Antarctica on a 0.5°
latitude by 0.5° longitude grid. It is calculated by obtaining climate anomalies from large
networks of weather stations’ observations within a country. However, a key innovation
in this chapter is that climate risk is measured by a factor stochastic volatility model of
average temperature changes. The primary practical and computational benefit of the factor
stochastic volatility (FSV) model lies in its parsimony. This model effectively represents the
variances and covariances of a vector of time-series by employing a low-dimensional stochastic
volatility (SV) structure that is determined by common factors. It is a frequently observed
phenomenon that the quantity of common factors among extensive sets of time-series vectors
tends to be significantly smaller, typically by one or two orders of magnitude. This occurrence
has a notable impact on the accuracy of estimation and computational processes.'? Unlike the
FSV which uses a multivariate process, previous studies modelled climate risk by a standard
normal factor model in which both the idiosyncratic time series variances and common factors

variances are combined as a univariate stochastic volatility process.'?

" Countries include both advanced and emerging economies. These are Australia, Belgium, Canada,
Switzerland, Germany, Denmark, Spain, Finland, France, United Kingdom, Italy, Japan, Netherlands, Por-
tugal, Sweden, United States, Norway, Argentina, Bolivia, Brazil, Chile, Colombia, Cuba, Indonesia, India,
Sri Lanka, Mexico, Peru, Uruguay, and Venezuela. Further details on our data set can be found in Table
2A-3 in the appendix.

12By contrast, it is linked to a significant computation complexity when the number of dimensions of The
data are moderate to large, see Kastner et al. (2014). Pitt and Shephard (1999) believe that using models
to accurately measure VAR is a worthwhile topic.

3Huber et al. (2018), Alessandri and Mumtaz (2021) and Sheng et al. (2022) used a Bayesian stochastic
volatility model to evaluate the long term impact of climate change on economic growth. They follow a
univariate stochastic volatility process, in contrast to our factor approach.
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Macroeconomic Activity

Macroeconomic activity in our study is measured by the real GDP growth rate and real
GDP per capita. However, the majority of the results use real GDP growth. The only
time growth in real GDP per capita is used instead is in robustness checks. The real GDP
growth rate is calculated by authors using real GDP per capita and population data from the
Maddison Project and the World Bank’s World Development Indicators. Dell et al. (2012)
document two possible outcome of temperature impact on economic activity; that is, (7) level
of output through agricultural yields, and (i7) productivity growth through investment and
institutional effectiveness. In addition, the authors suggest that warmer temperatures may
slow growth in developing and underdeveloped countries rather than temporarily lowering
output. These growth effects would imply huge repercussions of global warming because even
minor growth effects have large consequences over time.'* According to Burke et al. (2015),
the global climate and economic activity are intertwined. It is essential to note that hot-
ter climates reduce output by reducing investment, lowering worker productivity, worsening
health outcomes, and lowering agricultural and industrial output—thereby, thwarting overall
macroeconomic activity (Moore and Diaz, 2015; Carleton and Hsiang, 2016). Some recent
studies have emphasised the importance of understanding the impact of climate uncertainty
on macroeconomic growth (Kiley, 2021; Kotz et al., 2021; Donadelli et al., 2022; Kotz et al.,
2022). According to Dell et al. (2012), transient weather shocks that capture levels and
growth effects have an impact on the growth rate during the shock’s initial phase. This effect
eventually goes the other way when weather returns to its steady state. As an illustration, a
temperature shock may result in lower agricultural output, but after the temperature returns
to normal, agricultural production recovers. By contrast, the growth effect manifests during
the weather shock and cannot be reversed: a country’s failure to innovate during one era
pushes it further behind the curve over the long term.

Climate change potentially impacts the demand and supply side of an economy: from the

1See also Lucas (1988) on why the determinants of long run economic growth can be staggering.
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supply side, it disrupts output by adversely affecting prices and hampering future growth
through extreme weather conditions and natural disasters—and perhaps affect physical cap-
ital as a demand side effects (Ciccarelli and Marotta, 2021). Arguably, the aforementioned
effects from both demand and supply sides relative to climate change have been identified as
simple, taking into account the short-term and long-term effects. Thus, shifts in consump-
tion, income, exports, investment, and infrastructure are closely linked to climate awareness

and migration (Batten et al., 2020).

Carbon Emissions

Carbon dioxide emissions are caused by the combustion of fossil fuels, deforestation, agri-
culture, and industrial activities such as the production of cement. They include carbon
dioxide emitted during the combustion of solid, liquid, and gas fuels, as well as gas flaring.
Productivity and economic growth have a direct influence on individual well-being. Since at
least the industrial revolution, global economic growth has been driven by energy from fossil
fuel, which contributes to greenhouse gas emissions. Carbon emissions cause global warming
on the long run affecting atmospheric carbon concentration, which alters temperatures and

induces climate change (Pindyck, 2021).

2.3.2 Modelling Climate Risk

Common variation in the unpredictable component of a large variety of economic variables, is
frequently referred to as time-varying macroeconomic uncertainty (Jurado et al., 2015; Mum-
taz and Theodoridis, 2017; Beckmann et al., 2019). Commonly used uncertainty measures do
not capture the long-lasting bursts of activity that seem to correlate with real economic ac-
tivity (Jurado et al., 2015). Nonetheless, Jurado et al. (2015) state that there is no objective
measure of uncertainty when it comes to assessing macroeconomic activity and uncertainty.
To this end, the Jurado and coauthors develop novel metrics of uncertainty and connect them

to macroeconomic activity. The objective is to generate reasonable econometric estimates
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of uncertainty that are decoupled from the structure of specific theoretical models, as well
as from reliance on any single or limited number of measurable economic indicators. Other
measures of climate change policy uncertainty and overall economic policy uncertainty have
emerged, with these indices being built against the backdrop of newschapters using specific
keywords, see Baker et al. (2016), among others."”

We construct our climate risk measures by using the multivariate factor stochastic volatil-
ity (MFSV) model proposed by Kastner and Frithwirth-Schnatter (2014).' The following

steps are used to construct our country-specific and global climate risk measures:

o Step 1: We compute the changes in average annual temperature for 30 countries from
1901 to 2020. This is done by simple differencing: AT, = T; — T;_1, where T}

represents the average annual temperature for the country ¢ at time t.

» Step 2: Subsequently, we follow Kastner and Frithwirth-Schnatter (2014) to model our

climate risk measures as:

Zit = Nify + 3, B ~ N(0, H;) (2.1)

Zi; denotes log changes in annual temperature for our sample of 30 countries. We replace
T;; with Z; to differentiate the univariate and multivariate modelling of our climate
risk measures. f; represents the common latent factor, which denotes the contribution
of the common global factor of a country i’s temperature changes. A; is the factor
loading for country ¢. 3; denotes the idiosyncratic volatilities, the country-specific
climate risks. In our PVAR model, we denote the global climate risk measure, A;f; as

o, and the country-specific climate risk measure, ¥, as o..

« Step 3: We estimate the MFSV model by selecting one factor (r = 1) since we are

15Gavriilidis (2021) develops an index for climate policy uncertainty to measure the volatility of climate
change policy and its related implications for the US. Our work is focused upon developing a more broad-
based, multi-country measure of climate uncertainty.

16The theoretical foundation of this model is extensively outlined in the Appendix 6.3.
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interested in a single global climate risk factor and implement the MCMC approach

with 5000 draws.

2.3.3 Panel VAR

To examine the relationship between macroeconomic activity, idiosyncratic and global cli-
mate risk, this study uses a Bayesian Panel VAR with a hierarchical prior. This Bayesian
Panel VAR method was created by Jarocinski (2010). It provides a richer approach because
it treats all parameters as random variables and incorporates them into the estimation pro-
cess. The hierarchical structure of our panel VAR model, which allows for the possibility
of heterogeneous responses to climate risk shocks across the selected countries, is one of the
model’s key components. To capture the endogenous relationship between climate risk and
macroeconomic activity, we define X;; = [07, o5y, yit) With country-specific climate risk
(0}), global climate risk (0F,) and y;; denotes the growth rate of real GDP. Both climate risk
measures are obtained from the factor stochastic volatility model in equation (2A-2) using
annual temperature changes. In accordance with Jarocinski (2010), we assume a panel model

as follows:

L
Xit = Z B;l.Xit_l + b;wt =+ F;Zit —+ Uit (22)
=1

where w;, is a vector of common exogenous variable and X; is a n vector of endogenous vari-
ables. The subscrpits i« = 1, ..., N represents countries, t = 1,...,T represents time periods,
and [ = 1, ..., L represents the lags. In terms of the X;;_; and w; coefficients, we define an
exchangeable prior. The prior is non-informative for the z; coefficients, which may contain
country-specific constant terms. The vector u; contains A(0,3;) VAR innovations which
are iid. The variables to which the exchangeable prior applies are collected in a vector called
ziy = [X}_1... X, w;]’. In terms of data matrices, the model for country i can be obtained

by vertically stacking X/, x}, and w) for all ¢:
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X;and U; are T'xn. Where X;is T x K, Z; are T x M, B; are K xn and I'; are M xn. B;
= [B}, ..., B];, b)) relates the coefficients matrix of B; to the coefficients of equation (2.2).
Therefore, we can formulate x; = vecX;, 8; = vecB;, ~; = vecl;.

The data-generating statistical model is assumed to be as follows, in which the probability

for country 7 has the form
p(xil Bis i i) = N((L, ® Xi) B + (I @ Zi)7i, 8 @ Ir)) (2.4)

Country coefficients on the variables in X; are assumed to be normally distributed with a

mean of B and a variance of A; which may vary by country:
p(ﬂi|37 Ai) = N(Bv Aj) (2.5)
The prior for A; and B is uniform on the real line and non-informative:
p(B)  plys) o 1 (2.6)
Subsequently, the standard diffuse prior is also applied to the error’s variances:
P(E;) oc |2 (2.7)

The equations (2.4) to (2.7) define the dynamic models of variables in X; and exogenous
controls in W as particular instances of the unknown underlying model defined by 8.
Mumtaz and Sunder-Plassmann (2021) implemented the hierarchical VAR prior to thresh-
old and regime switching, demonstrating its robustness given that it permits cross-sectional
heterogeneity. In such circumstances, regularisation is required because the majority of
macroeconomic data contain time series with few observations. The Bayesian literature pro-
vides several methods for achieving parsimony within the PVAR framework to address this
issue. One body of research applies shrinkage priors to various regions of the parameter space,
see Koop and Korobilis (2016) and Koop and Korobilis (2019). This method theoretically
treats the PVAR as a large VAR with asymmetric shrinkage with respect to the coefficients
in A;, B;, and the free elements of ¥;. Canova and Ciccarelli (2004), Canova and Ciccarelli

(2009) and Jarocinski (2010) make use of the observation that domestic macroeconomic dy-
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namics are relatively similar across countries, implying that the matrices A; are comparable.
However, interdependencies, whether dynamic or static, are typically disregarded when data
from multiple countries are combined by averaging A,;.

The functional form of the prior, which is standard and motivated by computational ease,
consists of a normal, uniform, inverted gamma density combined with a degenerated inverted
Wishart density for 32;, making the prior conditionally conjugate. The Bayes theorem is used
to calculate the posterior density of the model’s parameters, which is a normalised product
of the likelihood and the prior (Jarocinski, 2010). Due to the prior’s conditional conjugacy,
all conditional posterior densities can be conveniently and numerically analysed using the
Gibbs sampler because they are all normal, inverted gamma, or inverted Wishart (Gelman
et al., 1995).

The estimation procedure employs Gelman et al. (1995)’s hierarchical linear model mod-
ified by Jarocinski (2010). The concept of similarity is formalised as a Gaussian prior for
each country’s coefficients that is centred on the countries’ common mean—an exchangeable
prior. This method offers two distinct benefits: (7) we can estimate the cross-country average
impulse response to climate risk shocks by averaging the coefficients. In light of this, there
is a greater likelihood of estimation precision when information from a panel is utilised as
opposed to business cycle dynamics from a single time series. (4i) Since our model allows
for heterogeneous effects of climate risk shocks across the panel, the exchangeable prior, or
hierarchical prior, implies that the posterior estimates of country-specific impulse responses
incorporate panel data. It is essential to note that the precision of estimates for individ-
ual countries could potentially be enhanced (Mumtaz and Sunder-Plassmann, 2021). Above
all, it treats all parameters as random variables and incorporates them into the estimation

process, this method is more flexible (also see Jarocinski (2010) for details).
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Identification Strategy

In this section we set out the identification scheme we use to operationalise our empirical
model. We utilise impulse response functions based upon the estimated parameters of our
PVAR model to consider the impact of climate risk shocks on economic activity. We are
therefore focused upon the effect of a climate risk shock upon GDP. Climate risk can have
a contemporaneous impact upon economic activity in our model and this is consistent with
weather shocks impacting the economy within year. Our model also allows there to be a more
nuanced and data driven interaction and feedback between climate and GDP in the medium
to long run. Our panel VAR model therefore allows for a two-way interaction between cli-
mate and macroeconomic activity: in theory, temperature can influence GDP growth and
respond endogenously to GDP growth. Against this backdrop, we use a recursive identifi-
cation strategy. Our Cholesky factorization of shocks implies macroeconomic activity has
no immediate impact on climate change. In computing the orthogonalized impulse response
shocks, we typically order climate variables first in bivariate VARs, whether they be temper-
ature growth or uncertainty. We order economic activity last, except when we also include

C'O2 in our model.

2.4 Empirical Results

2.4.1 Descriptive Statistics

Graphical evidence of the key variables of interest is provided in Figure 2.1: which depicts
climate risk, temperature changes, temperature levels, and GDP growth rate from 1901 to
2020. Tt is clear that temperature levels have risen dramatically on average for the countries
we sample since the beginning of the last century, and especially over the last sixty years.
For our sample of countries, average temperatures have risen by nearly 2°C over the full
sample period. The increase in temperatures is for both advanced and emerging economies.

Advanced economies have increased by around 2°C, while emerging economies have increased
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Figure 2.1: Climate risk, temperature and GDP
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Notes: This figure presents average time of series of country temperature levels, temperature growth and
GDP growth rates for the period 1901 to 2020. Unweighted averages of all 30 sampled countries. Temperature
levels and temperature growth are measured in Degree Celsius and GDP growth are in percentages.
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Figure 2.2: Generalised spillover index: temperature changes
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1°C. Temperature growth has been highly variable over the entire sample period, although
with more pronounced and frequent spikes later in the second half of the sample period.
Despite some recessions, GDP growth in both advanced and emerging economies has been
consistent. The results from Diebold and Yilmaz (2012) applied to our temperature data are
provided in Figure 2.2. The key message from this figure is that temperatures in one country
are linked to temperatures in other countries. This can be gleaned from the sizable spillover
percentages in Figure 2.2, which are at least 29% and frequently considerably more. We use
this preliminary evidence to justify our focus in This chapter on the macroeconomic impact
of global temperature.

Descriptive statistics are presented in Table 2.1. In addition to mean, standard devia-
tion, maximum and minimum statistics, we include Pearson correlations. Economic growth
has generally be positive over the entire sample period. It is important to note that the
correlation between country-specific climate risk (0};) and GDP growth () is negative and
significant, for the entire sample, 1901 to 2020. We find that temperature growth (T;) is
positively correlated with GDP growth (y;;) but crucially this is not a statistically signifi-
cant relationship. In contrast, there is a negative correlation between the country-specific
climate risk (o) and GDP growth (y;;) in Table 2.1. Similarly, a negative correlation is ob-
served between univariate climate risk (Hj;) and GDP growth (y;;). The correlation between
country-specific climate risk (o) and GDP growth (y;), as well as univariate climate risk
(H},), is statistically significant at the 5% level. In terms of carbon emissions (CO2y), it is
clear that there has been an increase of 0.85 metric tonnes per capita on average per year
between 1901 and 2020, with a standard deviation of 1.46 metric tonnes per capita.

The study revealed that there was a discernible pattern of temperature fluctuations,
indicating a mean rise of 0.5°C over the period spanning from 1901 to 2020. Similarly,
Alessandri and Mumtaz (2021) find that the volatility in temperature for different economic
regions ranges from 0.1°C to 0.5°C. What seems to be surprising is the trend in country-

specific and global temperature volatility for our sample. Our evidence suggests that the
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Table 2.1: Descriptive statistics and correlation matrices

Statistics Yit T, 0;5 CO2; HEE Jgt
Mean 2.793 0.014 -2.234 0.827 0.541 -0.012
SD 2.317 0.287 0.221 0.647 0.284 0.106
Min -6.740 -0.699 -2.430 -0.334 0.000 -0.199
Max 7.194 0.781 0.000 1.619 1.363 0.260
Correlations Yit T, ag CO2; HEE Ugt

Yit 1

T 0.007 1

oy 0.007 -0.003 1

CO2; 0.015 0.011 0.074%*%* 1

H, -0.038**  0.005 0.324%F% 0. 477%%* |

ory -0.044** 0.011 -0.007 -0.034**  -0.033** 1

Notes: This table presents descriptive statistics of the data used in the study. Descriptive statistics are mean,
standard deviation (SD), minimum, maximum and Pearson correlations. This is for temperature changes in
°C (T;), idiosyncratic country specific climate risk (o7;), global climate risk (o'F,), country carbon emissions
(CO2y;), and country annual real GDP growth (y;;). And also univariate climate risk (Hj;). Global and
idiosyncratic climate risk are from equation (2A-4). Data period 1901 to 2020 for 30 countries. Asterisk ***
** ¥ denote 1%, 5% and 10% significance levels, respectively.

idiosyncratic (country-specific) and global (common) factor have time variation in volatility.
This substantiates the benefit of our approach. There could be heterogeneity. However
we have sought to accommodate that by splitting our sample of countries into advanced
economies and emerging countries, based upon a demarcation from the World Bank.'” We
also argue that the Alessandri and Mumtaz (2021)’s approach used in estimating temperature
volatility differs from ours. Since we decomposed the univariate climate risk into country-
specific and global climate risks, our approach uses latent factors that make ¥; appear sparser
in order to overcome the dimensionality curse.

We have temperature change as our underlying measure of climate. Temperature changes
more likely to have constant mean than temperature levels. Formally we test for whether the

panel time series are non-stationary using panel unit root tests. In particular we use Levin

et al. (2002) (LLC) and Im et al. (2003) (IPS) Panel Unit Root tests. Both LLC and IPS

"https://datatopics.worldbank.org/world-development-indicators/the-world-by-income-and
-region.html
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have a null hypothesis of panel unit root. These methods applied to temperature changes
confirm they are I(0) stationary. The results in Table 3A-6 reject the null hypothesis for
the panel time series temperature change (T;;) that the data have a unit root, since the test
statistic is much less than the critical value at the 1% statistical level. Panel unit root tests
are employed to test whether the underlying temperature change data has panels containing

a unit root. However, our finding suggests that there is no evidence of a unit root.

2.4.2 Climate Risk as Univariate Stochastic Volatility

In this section, we present baseline empirical results of the relationship between climate risk
and macroeconomic activity.!® To set the scene, we begin by considering the impact of
univariate country climate risk upon GDP growth using standard impulse response analysis.
Climate risk based upon univariate stochastic volatility of temperature changes conflates
both idiosyncratic and global climate risk. The impact upon GDP of a univariate climate
variability shock are presented in Figure 2.3. We present three panels of impulse response
functions based upon the estimated Panel VAR with univariate climate variability (H},) and
GDP growth (y;)."” We plot 10 year response horizons to these climate variability shocks
for all 30 countries in our sample. This shall allow us to benchmark the effect of climate
variability on macroeconomic activity in general. We see from Figure 2.3 that climate risk has
an important and negative effect upon GDP. This is because the median posterior response
in the top panel of Figure 2.3 of economic activity to a univariate climate risk shock for all
countries is below zero and the response critical interval does not contain the zero axis.

We also present evidence that for both advanced and emerging economies, in the lower
panels, climate variability also has a negative effect upon economic activity. After year six,
there is a relatively small yet positive effect of univariate climate risk upon growth for all

nations. Consistent with our findings, Donadelli et al. (2017) present evidence that univariate

BFurther information on the parameters associated with model estimation are reported in Table 2A-5 in
the Appendix.

19See Chapter 2 - Appendix A for the methodology underpinning H},.
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Figure 2.3: Impact of univariate climate variability on GDP
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Notes: This figure presents evidence of the impact of univariate climate variability on macroeconomic activity.
A measure of risk based upon univariate stochastic volatility comprises idiosyncratic and global climate risk.
Specifically the top panel is the impulse response function from a shock to temperature change (univariate
stochastic) volatility (HJ,) upon GDP growth (y;;) for all countries. Our sample of 30 advanced and emerging
economies is between 1901 and 2020. We use a bivariate Panel VAR, PVAR(HY,, y;;) to produce the impulse
responses in this figure. The evidence suggests there is a negative impact from two years to four years. The
shock is a one standard deviation increase in risk. We include the posterior median of the shock (red) and
68% critical band or posterior coverage band (grey).



temperature variability has a negative relationship with real economic activities. That is, an
increase in temperature variability is more likely to reduce overall economic activity through
for example, lower labour productivity. Meanwhile, Kotz et al. (2021) document that due to
seasonal differences and income levels, low-income countries are more susceptible to greater
climate risks. In a separate study, Kotz et al. (2022) confirmed that advanced countries are
also not spared of the economic impact of climate risk. Burke et al. (2015) confirmed in their
study that temperature uncertainty has a negative impact on overall output and increases
prices as a result of both supply-side and demand-side shocks. Donadelli et al. (2022) and
Sheng et al. (2022) acknowledge that the impact of climate risks on macroeconomic activity

is significant and negative.

2.4.3 Climate Risk and Factor Stochastic Volatility

Having considered the impact of univariate climate risk on GDP, we now look to our main
results, which differentiate global and idiosyncratic climate risk. Figure 2.4 presents the core
results of the impact of global and idiosyncratic climate risk on macroeconomic activity. We
initially focus in Figure 2.4 on the impact of country specific risk (o7;) in panel (i) and global
climate risk (0F,) in panel (ii), delineated by the factor stochastic volatility model for the
full sample period. Evidence from the core results suggests that shocks to country-specific
climate risk are relatively less important for macroeconomic activity. While the effect of
idiosyncratic risk is generally negative, critical intervals are closer to zero indicating less evi-
dence of a substantial impact. Global climate risk is a relatively more important determinant
of macroeconomic activity. This is indicated by the larger negative GDP response to a global
risk shock after year three. It takes several years for the full effect of a global climate risk
shock to feed the way through GDP.

In the past few years, the cross-sectional and distributional ramifications of climate change
have been debated. It has been argued that rising temperatures may only or largely affect

impoverished countries that are heavily dependent on agriculture and have low capacity for
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Figure 2.4: Global and country specific climate risk impact upon GDP
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Notes: This figure presents evidence of the impact of global and country specific climate risk on macroeco-
nomic activity. Specifically the left column is the impulse response function from a shock to idiosyncratic
country climate risk (U;Et) upon GDP growth (y;;). The right column of panels are global climate risk (U}H‘;t)
upon GDP growth (y;;). Our sample of 30 advanced and emerging economies between 1901 and 2020. We
use a trivariate Panel VAR, PVAR(o}, U}T,t, yit). The evidence suggests the impact on macroeconomic ac-
tivity of a country specific climate risk shock is more rapid, negative and short-lived. The shock is a one
standard deviation increase in risk. Global climate risk, on the other hand, is an important determinant of
macroeconomic activity. A global climate risk shock could either impede or promote macroeconomic activity.
We include the posterior median of the shock (red) and 68% critical band or posterior coverage band (grey).
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response to climate change (Burke et al., 2015; Feng and Kao, 2021; Kiley, 2021; Kotz et al.,
2022). In line with this argument, we split our sample into advanced and emerging countries
to investigate the impact of climate risk on these distinct country groupings. The outcome
for advanced and emerging economies depicted in Figure 2.4 as Panel (iii), (iv), (v) and (vi).
The Figure 2.4 emphasizes that both advanced and emerging economies are more susceptible
to global risk shocks, than to idiosyncratic climate shocks. This is a surprising result, since
typically poorer countries are considered to be more likely to be effected by climate change.
But our results would indicate that this distinction within our modeling context may have

been over emphasized.

2.4.4 Robustness/Extension
Climate Risk Impact on GDP Per Capita

From a development standpoint, GDP per capita growth may be more interesting to capture
macroeconomic activity, since it also has implications for average living standards. To un-
derstand the dynamics of shocks to country-specific climate risk, and the global climate risk
from a development perspective, in the spirit of Dell et al. (2012) and Donadelli et al. (2017),
we substitute GDP growth with GDP per capita growth in our baseline model. According
to the findings in Figure 2.4, global climate risk is important for macroeconomic activity.
The short run impact is rapid, sizable and negative. This findings is an indication of the

robustness of our baseline model with GDP growth (as shown in Figure 2.5).

Climate Risk, Carbon Emissions and GDP Growth

Pindyck (2021) emphasises the importance of carbon emissions as the largest contributor
to greenhouse gas emissions, which cause global warming in the long run by affecting at-
mospheric carbon concentration and influencing temperature through climate change. We
examined aggregate outcomes directly in our baseline model, ignoring a priori assumptions

about which mechanisms to include and how they might interact, operate, and combine.
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Figure 2.5: Robustness/extension

Impact of Country-specific and Global Climate Risk on GDP per capita
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Notes: This figure presents evidence of the impact of climate risk on macroeconomic activity. Our sample
of 30 advanced and emerging economies between 1901 and 2020. We use a trivariate Panel VAR, PVAR(O’};,
ok, ypcit) for panel (i) and (ii). The evidence suggests the impact on GDP per capita of a climate risk shock
is more rapid, negative and pronounced. Meanwhile, country specific shocks impact on GDP growth is not
important. The shock is a one standard deviation increase in risk. Global climate risk, on the other hand,
is an important determinant of macroeconomic activity. A global climate risk shock could impede and later
promote macroeconomic activity. We include the posterior median of the shock (red) and 68% critical band

or posterior coverage band (grey).
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Figure 2.6: Robustness/extension

Intervening Role of Carbon emissions
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Notes: This figure presents evidence of the impact of climate risk on macroeconomic activity, taking into
account the role of carbon emissions. Panel (iii) and (iv) use a four-variable Panel VAR, PVAR(c},, o5,
yit, CO2;). The evidence suggests the impact on GDP of a climate risk shock is more rapid, negative and
pronounced. Meanwhile, country specific shocks impact on GDP growth is relatively less important. The
shock is a one standard deviation increase in risk. We include the posterior median of the shock (red) and
68% critical band or posterior coverage band (grey).
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Furthermore, we used temperature fluctuations with the intention of isolating their effects
from time-invariant country characteristics.

We expand our baseline model to include carbon emissions in order to better understand
the mechanism or transmission channel between climate risk and macroeconomic activity,
i.e., country-specific climate risk, global climate risk, and GDP growth. We discovered that
the results of our baseline model do not differ from the results of the extended model with
carbon emissions. Our findings suggest that country-specific climate risk are unimportant
for macroeconomic activity, despite a negative impact in the two years following the shock.
Global climate risk, on the other hand, is an important determinant of macroeconomic ac-
tivity. In the initial phase of a global climate risk shock, macroeconomic activity may be
hindered; however, macroeconomic activity is subsequently boosted, as shown in Figure 2.6.

It may be the case that climate change is a recent phenomenon and its impact is different
in recent decades. We examined the exogenous impact therefore of country-specific and
the global climate risks on GDP growth from 1950 to 2020 in a separate empirical model.
To comprehend how climate risk has contributed to the overall macroeconomic activities of
selected countries, we tend to focus on the post-war period. This sample is comparable to
those from Alessandri and Mumtaz (2021) and Donadelli et al. (2022). Figure 2.7 illustrates
the outcome for the post 1950 sample. We find stronger evidence that shocks to global climate
risk have an initially negative impact on GDP, albeit for advanced economies at year 3 after
the global risk shock. There is less evidence of an initially negative impact for emerging
countries. There does seem to be overshooting of GDP after the fourth year as additional
volatility is induced into GDP by the global climate risk shock, especially for idiosyncratic
shocks.

Further Robustness

In this subsection we consider further robustness and extensions of our approach. These in-

clude using dynamic panel methods robust to endogeneity, controlling for temperature levels
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Figure 2.7: Country-specific and Global Climate risk/carbon emissions impact on GDP: post 1950

Country-specific Global
(i) All countries (ii) All countries

[
=
-
N
w
0
a
<
—
=]

(iii) Advanced Economies (iv) Advanced Economies
0.4

0.3
0.2

0.1

0.0

(v) Emerging Economies (vi) Emerging Economies

2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

[

Notes: This figure presents evidence of the impact of climate risk on macroeconomic activity accounting for
the transmission channel of carbon emissions. Specifically the left panel is the impulse response function from
a shock to country climate risk (o07;) upon GDP growth (y;;). The right column of panels are country-specific
climate risk (o},) upon carbon emissions (C02;). Our sample of 30 advanced and emerging economies
between 1950 and 2020. We use a four-variable Panel VAR, PVAR(O’EI;, Ugt, yit, CO2;4). The evidence
suggests that idiosyncratic climate shocks do not have a strong impact on GDP after 1950, although it is
negative. We include the posterior median of the shock (red) and 68% critical band or posterior coverage
band (grey).
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Table 2.2: Dynamic panel system GMM and robust estimations

GMM GMM GMM ROBUST ROBUST ROBUST
M1 M2 M3 M1 M2 M3
Yir—1 0.028F 0.029FF  _0.02°%F (.02 20.02 20.02
(0.00) (0.00) (0.00) (0.05) (0.05) (0.04)
oL 0.06%** 0.06%** — 0.06 0.06 —
(0.01) (0.01) — (0.09) (0.08) —
ory -37.99%F* -39.89%**  _37.99%F -39.894**
(1.64) - (1.35) (16.84)  — (15.50)
Constant 2.73H** 3.16%** 2.45%%* 2.73%** 3.16%** 2.45%**
(0.07) (0.02) (0.08) (0.49) (0.25) (0.53)
Wald Chi? 1107.82%*%*  253.11*** 888.81*** 10.10** 1.89 9.05**
Instruments 436 436 435 436 436 435
AR(2)
Z-stats. 0.13 0.18 0.15 0.09 0.14 0.12
P-value 0.89 0.86 0.88 0.92 0.89 0.91
Sargan Test
Chi? 118.33 118.41 118.44 — — —
P-value 1.00 1.00 1.00 — — —
Obs. 3480 3480 3480 3480 3480 3480

Notes: This table presents dynamic panel data estimation with the two-step system generalised method of
moment (GMM) (Blundell and Bond (1998)) and Windmeijer (2005) Robust (ROBUST) standard errors
techniques. Idiosyncratic climate risk (o7,), global climate risk (05;), and country annual real GDP growth
(yit). Data period 1901 to 2020 for 30 countries. Asterisk *** ** and * denote 1%, 5% and 10% significance
levels, respectively. Standard errors are in parentheses. M1 represent the model [y;; = F(yit—1, 0y, 0], M2
represent the model [y = F(yir—1, 05;)], and M3 represent the model [y = F(yi1—1,05)]- The Z-statistics
for the AR(2) model represents the Sargan test for over-identifying restrictions. HO: The over-identifying
restrictions are valid. Wald Chi? assess the validity of the instruments employed in the estimation. The null
hypothesis for the Wald chi-squared test is that the instruments are valid, meaning they are uncorrelated
with the error term and meet the necessary assumptions.

and alternative identification of shocks. To account for endogeneity and whether our evi-
dence is contingent upon specific empirical methods we can generalise our results by using
Generalised Methods of Moments (GMM) estimation from Blundell and Bond (1998), Blun-
dell et al. (2001), Blundell and Bond (2000) and Windmeijer (2005). Also whilst Bai and
Ng (2006, 2008b) and Bai and Ng (2008a) show in linear models that the factor estimates
can be treated as known if v/T/N — 0, as in our case, there may be a question whether
generated regressors drive our results. We go with the grain of Pagan (1984) and use GMM
to circumnavigate this potential issue to obtain consistent estimates of the relationship be-

tween climate risk and macroeconomic activity. We find evidence of a stronger and more
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deleterious impact upon macroeconomic activity from the global climate risk factor, relative
to idiosyncratic results, using dynamic panel systems GMM, including with robust standard
errors. These results are provided in Tables 2.2 and 2B-1 in the Appendix 6.3. Finally, we
re-ordered the variables in a benchmark VAR with GDP, idiosyncratic and global climate
risk to examine whether benchmark results from impulse responses were order invariant. We

found evidence that our impulse responses were not sensitive to the ordering of the variables

in the VAR.?"

2.5 Conclusion

In this chapter, we examined the impact of climate risk on macroeconomic activity for thirty
countries using over a century of panel time series data. Climate change may have an im-
portant global dimension, and there may be an important dimension in the second moment
of climate change. Our methods sought to consider this. The key innovation of our chapter
was to use a factor stochastic volatility approach to decompose climate change into global
and country-specific climate risk and to consider their distinct impacts upon macroeconomic
activity. This allows us to differentiate the importance for economic activity of common and
idiosyncratic components of climate change.

To allow for country heterogeneity, we also differentiated the impact of climate risk upon
advanced and emerging economies. While the existing literature has focused on country
based climate risk shocks, our results suggest idiosyncratic or country-specific climate risk
shocks are relatively unimportant. Global climate risk, on the other hand, has a negative
and relatively more important impact on macroeconomic activity. Since the impact of global

climate risk on macroeconomic activity is empirically identified as negative. It is important

20In additional analysis, we considered a comparison of the full sample and subsamples. While we did not
formally test for structural breaks, we found evidence that the global risk factor consistently had a negative
and important (i.e., statistically significant) impact on GDP, relative to the idiosyncratic. Hence, this analysis
is based upon the entire sample of results which benefits from the full time span of the extended dataset and
the power of the panel.
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to investigate how the transition to green economic activities is more likely to lead to positive
gains in macroeconomic activity. Therefore, in the next chapter we investigate the economic

consequences of green growth in a multi-country empirical study.
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Chapter 3

The Economic Consequences of
Green Growth: A

Multi-Country Empirical Study
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3.1 Introduction

Policymakers in many countries are increasingly promoting green growth, since it provides en-
vironmental services and protects natural resources. This is highlighted by the multi-country
Paris Agreement of 2015, which committed signatories to a legally binding international
treaty on climate change. Adaptation of economic activity and generating green growth is
key to limiting climate change and combating environmental degradation.® Whether encour-
aging green economic activity has a beneficial impact on economic growth more generally
is controversial. Green growth potentially boosts economic activity through investment and
innovation in production.? Green growth promotes natural capital conservation and creates
opportunities in employment and trade, which also adds to growth.? On the other hand, in-
vestment in adaptation and green technology will have an opportunity cost. How to balance
environmentally friendly development to achieve Sustainable Development Goals (SDGs) is a
matter of debate. Our research revisits the link between green growth and economic growth
more generally.

This chapter makes three important practical contributions to the literature on green
growth. Firstly, we use a recently developed measure of green growth from Sarkodie et al.
(2023) to assess the important of whether going for green growth is beneficial for economic
activity in general. This novel measure of green growth has several advantages. It is com-
prehensive and consistent in its country coverage. It is also broad in coverage and exploits
information along five environmental dimensions. These include environmental policy re-
sponses, environmental productivity, socio-economic opportunities, the natural asset base,
and quality of life. In more detail, the green growth index is comprised of approximately
152 environmental and growth-induced indicators sourced from the OECD database. We

seek to build upon existing research on green growth and sustainable development. Prior

1See Stern et al. (1996), Tol (2009b) and Nordhaus (2019b).
2Bohensky et al. (2011), Griggs et al. (2013), Pretty (2013), Potts et al. (2016).

3See Wackernagel and Rees (1997), OECD (2011, 2017), World Bank (2012), Swainson and Mahanty
(2018) and Ofori et al. (2023).
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research focused on a more narrow measure of green growth (Zhao et al., 2022b; Zhou et al.,
2022). Lin and Zhu (2019b) developed a comprehensive index of the green economy and
utilised a method that uses non-radial direction distance function to assess the growth of the
green economy. Nevertheless, these indices may miss relevant dimensions of green growth,
such as environmental policy responses and productivity. It can be argued that a worth-
while green growth index ought to fully capture a diverse range of environmental factors
(Liu et al., 2015, 2018; Swain and Ranganathan, 2021). In addition, a green growth index
should evolve with changes in environmental, economic, and social dynamics (Capasso et al.,
2019). We contend that the transition from brown to green growth requires deliberate, di-
verse measures informed by economic resources, political decisions, socio-economic capacities,
and environmental results. Intuitively, we describe green growth as a sustainable economic
development strategy that is independent of adverse environmental impacts, while promoting
eco-technological efficiency, alleviating poverty, and enhancing social inclusion. The green
growth index developed by Sarkodie et al. (2023) encompasses these critical parameters. In
contrast to the conventional approaches for creating indices, they utilise an innovative sum-
mary index strategy employing a generalised least squares attributed-standardized-weighted
index that accounts for strongly correlated variables and missing data.

Our chapter’s second contribution is to employ recent developments in panel econometrics,
empirical methods little used in the green growth literature. In doing so we account for cross-
country heterogeneity, cross-country spillovers and potential endogeneity. We utilise panel
econometric estimators that are robust to cross-sectional dependence and dynamic linkages.*
Spillovers and common shocks are accounted for in particular by the Dynamic Common
Correlated Effects (DCCE) estimators initiated by Pesaran (2006). This approach is robust
to common shocks like global crises and pandemics, potentially offering insights into the

. . . =4
effects of our green growth measure on economic activity.”

4See Pesaran (2006), Chudik et al. (2013) Chudik and Pesaran (2015) and Ditzen (2022).

STllustrative examples of research using the Dynamic Common Correlated Effects estimator include Eber-
hardt and Teal (2011), Pesaran and Tosetti (2011), Vos and Everaert (2021) and Ditzen (2022).
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Our third contribution is related to our theoretical framework, built upon a three-input
Cobb-Douglas production function, which is sufficiently flexible for a range of measures typ-
ically considered to be important for the economy-environment nexus. Our goal is to under-
stand the conditions or mechanisms by which green growth indicators may impact economic
growth from an empirical standpoint.® There remains a notable gap in understanding the
relationship between green growth indicators and GDP growth, as well as the effectiveness of
these indicators in reducing environmental degradation and improving economic and social
circumstances; see Adedoyin et al. (2020), Awan et al. (2021), Wang et al. (2023a) and Wang
et al. (2023b).

We now provide a summary of key results. Our empirical study finds that green growth
significantly contributes to driving economic growth. The relationship between green growth
and GDP growth is conditioned upon physical capital investment, urbanisation, human cap-
ital, and green technologies. Our evidence indicates that the indicator of green growth are
more strongly associated with the growth of gross domestic product (GDP) in only advanced
economies. This study is in five sections: section one introduces the context of green indi-
cators and GDP growth; section two briefly discussess thees the existing literature on the
subject matter; section three highlights the empirical methods used; section four discusses

the empirical results; and section five concludes the study.

3.2 Literature Review

The debate on the relationship between development and the environment has recently in-
tensified. A consensus has emerged that environmental pollution and climate change have
the potential to severely harm the environment and sustainable development; see Crist et al.
(2017) and Ruggerio (2021). There is less of a consensus on the exact nature and extent of

the potential tension between economic development and environmental protection. One po-

6Similarly, Omri and Belaid (2021) employed a Cobb-Douglas production function to examine the impact
of renewable energy on socio-economic well-being, taking account of environmental factors.
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tential policy approach is for countries to engage in green growth, which seeks to protect the
environmental and also promote growth in general (Bohensky et al., 2011; Griggs et al., 2013;
Pretty, 2013; Potts et al., 2016). Despite green growth policies being beneficial, quantifying
their statistical impact on jobs and socio-economic opportunities remains challenging (see, for
example Hammer et al., 2011; Shao et al., 2020). Slower innovation prompts increased gov-
ernment investment in research and development (Allen, 2011; Anderson et al., 2014; OECD,
2017). However, funding for environmental and energy-related goals has remained stagnant,
accompanied by a shift towards renewable sources (De Coninck and Béckstrand, 2011). To
effectively align with environmental objectives, there is a need for long-term incentives due
to the global deceleration in environmental technology innovation (Acemoglu et al., 2012;
O’Neill et al., 2017; Naylor et al., 2021).

Grossman and Krueger (1991) argues that the rate of technological advancement deter-
mines how much of an impact economic growth has on environmental quality. Technologi-
cal advancements spur the creation of environmentally friendly production methods, which
increase clean productivity; see also Schmalensee (2012) and Hao et al. (2023). Because
natural capital, which includes the environment, is an input to the production function,
environmental conservation could lead to increased use of natural capital and, therefore, in-
creased income; see Hinterberger et al. (1997), Wackernagel and Rees (1997) and Hallegatte
et al. (2012). Market failures, such as external costs and poorly defined property rights, are
prevalent in the utilisation of environmental resources; addressing these failures can increase
the effective supply of natural capital and thus output. It can also increase the welfare of
people directly through improvements in air and water quality, which may not be captured
by standard GDP statistics but is nonetheless an important goal of economic policy (Jaffe
et al., 2005; Hallegatte et al., 2012). Without necessarily slowing the processes down, green
growth involves making growth processes more resource-efficient, cleaner, and more resilient;
see Hallegatte et al. (2012), Schmalensee (2012), Hickel and Kallis (2020), and Hao et al.

(2023). Green innovation is a crucial strategy for promoting harmony between humans and
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the natural world, focusing on six pursuits: products, processes, market orientation, ecolog-
ical considerations, material flow reduction, and motivating factors and enhanced business
standards. It is expected to be a key factor in future economic growth, utilizing green tech-
nologies to conserve energy, prevent pollution, recycle waste, and create environmentally
friendly products (Chen et al., 2006; Luo et al., 2022).

From a different perspective, Hickel and Kallis (2020) argue that complete decoupling from
carbon emissions is extremely unlikely to be achieved at a rate fast enough to keep global
warming from exceeding 1.5°C or 2°C, even under positive policy conditions. Moreover, there
is no direct evidence that unconditional decoupling from resource use can be achieved on a
global scale against the backdrop of continued economic growth. Jaffe et al. (2005) stressed
that in the event of inadequate or ineffective environmental policies, it is highly probable
that investments in the creation and adoption of new environmentally friendly technologies
will be significantly less than what would be deemed socially acceptable. Information issues
and beneficial knowledge, as well as adoption spillovers, have the potential to further erode
innovation’s incentives. Meanwhile, Du et al. (2021) emphasised that environmental regula-
tion will substantially encourage the development of green technologies and the improvement
of industrial structures when economic development levels are typically high. Consequently,
environmental regulation can contribute to the greening of the economy in two ways: the
development of new environmentally friendly technologies and the improvement of industrial
structures. Capasso et al. (2019) in an earlier study document that green growth necessitates
expertise in managing intricate scenarios, steering technological advancements towards more
environmentally friendly technologies, evaluating imperfections in the market, structural sys-
tems, and transformative systems, and prioritising green growth procedures across various
levels.

The extant literature presents empirical evidence that substantiates the idea that green

"Schiederig et al. (2012) explored the literature on green innovation and innovation management. The
authors propose that the terms environmental, ecological, and green innovation are all being used inter-
changeably.
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growth policy can stimulate economic growth.® Nevertheless, it is crucial to acknowledge
that the relationship between green growth and GDP growth is complex and can differ based
on various factors, including the specific measures chosen to assess green growth, the coun-
try’s level of economic growth, and the policy framework in place (Omri and Belaid, 2021).
In their study, Omri and Belaid (2021) discovered that green growth exerts a favourable
and substantial influence on the growth of gross domestic product (GDP). The study addi-
tionally discovered that the impact of green growth on GDP growth is more pronounced in
nations with elevated levels of economic development. Other studies have also discovered a
positive and significant relationship between green growth and economic growth.” However,
these studies indicate that countries with more stringent environmental regulations, greater
technological innovation, and a higher level of environmental awareness tend to experience a
more pronounced effect.

Empirical studies in this field use a variety of econometric methods. In particular, Ade-
doyin et al. (2020) applied the fully modified ordinary least square (FMOLS), dynamic or-
dinary least square (DOLS), and canonical cointegration regression (CCR) in a time series
study of the United States for the period 1981 to 2017. Omri and Belaid (2021) utilised the
system GMM to understand the role of renewable energy consumption as a mechanism in
driving environmental impact on socio-economic welfare with a sample of 31 transition and
developing economies. Wang et al. (2023a) studied how green policy with respect to China’s
city pilot policy affects labour productivity and overall growth by using the difference-in-
difference (D-I-D) method for samples spanning 2006 and 2016. Wang et al. (2023b) also
used the moment of method quantile regression (MMQR) method to assess the long-run
relationship between green finances, taxes, and carbon emissions for OECD countries from

1990 to 2020.

8see Adedoyin et al. (2020), Awan et al. (2021), Omri and Belaid (2021), Wang et al. (2023a) and Wang
et al. (2023b).

9see also Adedoyin et al. (2020), Awan et al. (2021), Zhou et al. (2022), Wang et al. (2023a), and Wang
et al. (2023b).
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The existing studies diverge in relation to the use of indicators to represent green growth.
For instance, Zhou et al. (2022) investigates the influence of financial technology (fintech) and
environmentally-friendly finance (green finance) on the promotion of sustainable economic
growth in China’s regional economy. The approach involved compiling an extensive green
economic growth index by utilising China’s provincial panel data spanning 2011 to 2018. Zhou
et al. (2022) used twelve indicators to construct the green growth index. The findings indicate
that the utilisation of fintech and the implementation of green finance have a substantial
positive impact on the advancement of environmentally sustainable economic growth. It is
worth noting that this effect varies across different regions. Stronger impact was observed
for the eastern part of China than the central and western part of China. Fintech innovation
primarily drives sustainable economic growth by facilitating green credit and investment,
thereby enhancing the maturity of green finance. Meanwhile, Lin and Zhu (2019b) examined
the link between government expenditure and environmentally sustainable economic growth
in 282 cities at the prefecture level, spanning the years 2005 to 2016. The study develops
a green economic growth index by employing a non-radial direction distance function with
six variables. It then assesses the impact of fiscal education and R&D spending on green
economic growth. The study reveals that the green economic growth index experiences
fluctuations as a result of local government politics. Additionally, investment in research and
development (R&D) and education contributes to the promotion of green economic growth
by fostering technological advancements and enhancing human capital.

The green growth indicators are crucial for monitoring and evaluating the current state
of the green growth model. Due to varying interpretations of the concept of green growth,
researchers employ diverse approaches to develop green growth indices. Nevertheless, these
indices fail to accurately depict the actuality of the situation. To effectively study the influ-
ence of green growth indicators on GDP growth, it is necessary to employ a more intricate

measure to fully grasp this phenomenon and perhaps reduce the dimensionality of the index.
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3.3 Modelling Strategy

3.3.1 Theoretical Motivation

We motivate our empirical model using a Cobb-Douglas production function with three
inputs; see Mankiw et al. (1992), Durlauf et al. (2005), Hassler and Krusell (2018) and
De Visscher et al. (2020). In our model, economic activity (Y;;) for country ¢ at time ¢ is
determined by the following inputs: labour, L;;, physical capital, K;;, and other determinants
of economic activity, X;;. In general terms, this three input production function can be
written in the basic functional form as follows:

Y;t — f(LitJ Kita th) (3]')

The Cobb-Douglas production function gives a specific functional form of economic activity.
Taking account of (constant) total factor productivity (Ag,;) for country ¢ and a stochastic

error term (e“t), economic activity becomes:

Yir = Agi L3 K32 X G et (3.2)

This relationship includes heterogeneous country elasticities, ay;, ao; and as;. Fach country
may combine inputs; labour, capital and other factors to produce outputs in different ways.
To re-express this production function as a heterogeneous growth equation with three inputs,
we take the log first difference of both sides of equation (3.2) parameters, and we have:

Ayit = Q; -+ OéliAlit —+ OéziA/{?it + agl’AQJit + €t (33)

In this equation, the growth rate of GDP (Ay;;) is the function of growth rate of labour (Aly),
growth of capital (Ak;), and the growth rate of other potential environmental determinants
of economic growth (Ax;). Here g, is a stationary stochastic error term which comprises
measurement error, time-varying total factor productivity, and potentially common cross-
country factors beyond those accounted for by the fixed effects ap;. Such a common factor
model, more formally could be written as follows:

Ayit = Q; + Oéll'Alit + agiAkit -+ OégiA;Cit -+ ')/th + Ut (34)
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Equation (3.4) accounts for common factors F; such that in equation (3.3) e = Vi Fy + uy.
These common factors include global environmental factors, which impact different countries
heterogeneously through factor loading ~;.

When empirically modeling environmental determinants of economic activity, we take
two approaches. Our first approach is more parsimonious and focuses on a single summary
statistic of environmental activity. Our single measure is our green growth indicator (Ag;)
from Sarkodie et al. (2023), which we use to replace Ax;; in equation (3.4). This broad-
based country-specific indicator of environmental activity potentially spans the full gambit of
relevant environmental activity. Consequently, our central empirical model of the relationship
between green growth and economic growth, which accounts for cross-country heterogeneity
and spillovers, becomes:

Ay = o + a1 Al + o Ak + asiAgie + i Fy + wi (3.5)

Secondly, we estimate an extended empirical approach, with key environmental drivers
highlighted by the environmental literature. Doing so will give us a better sense of whether
our parsimonious model is robust to alternative measures of environmental activity. Thus, our
extended approach includes being guided by, for example, the environmental model known as
the Integrated Population, Affluence and Technology (IPAT) approach from York et al. (2003)
and Wei (2011). In this model, urbanisation impacts economic growth, transforms rural
populations, and causes infrastructural strains, inequality, and environmental concerns (Sit
and Yang, 1997; Li et al., 2019). In addition, industrialisation increases energy consumption,
income levels and foreign direct investment, while increasing emissions of CO2 and other
greenhouse gases; see Sadorsky (2013), Aller et al. (2021), Singhania and Saini (2021), and
Fang et al. (2022). Consequently, greenhouse gas emissions are typically considered to cause
global warming, which leads to climate change (Ivanovski and Churchill, 2020). Climate
change adaptation requires a shift towards green growth, influenced by economic resources,
socio-economic abilities, political decisions, and environmental concerns; see Brown (2000),

Pretty (2013), Ofori et al. (2023), Sarkodie et al. (2023), among many others. Our extended
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environmental growth regression therefore includes population, technology, emissions and
FDI. Thus, the determinants of economic growth overall in the more general specification
becomes:

Ay = o + 01 Al + 0o Ak 4+ s Agiy + i Apiy + s ATy + ag Aeyy + a A fdiy + i (3.6)

Here, the country-specific growth rate of the urban population is denoted by Ap;. The
growth rate of environmentally friendly technologies is Ar;. Greenhouse gas emissions are
Ae;;. Finally, the growth rate of foreign direct investment is A fdi;. Also in equation (3.6),
heterogeneous country specific parameters are aq; to as;.

To account for the dynamic nature of economies and the crucial role of knowledge and
skills in driving economic productivity, we substitute labour (Al;) with human capital
(Ahcy). This substitution incorporates human capital into a Cobb-Douglas production func-
tion as well as extended environmental regression (Becker et al., 1990; Romer, 1990; Loo6f
and Heshmati, 2002; Mehra et al., 2014). The model is adjusted to match the features of
contemporary economies and offers a more comprehensive framework for examining economic
growth and development. Typically measures of labour input does not take into consider-
ation variations in worker quality or skill levels; see Hanushek and Kimko (2000), Krusell
et al. (2000) and Katiraee et al. (2021). The labour input variable with a measure of human
capital enables a more sophisticated evaluation of the workforce, considering factors such as

experience, expertise, and specialisation; see also Teixeira and Queirds (2016).

3.3.2 Econometric Methods

This section sets out the econometric methods used in this chapter. We seek to estimate
equation (3.3) as a growth regression to examine the importance of green growth indicators
for economic activity. This model assumes parameter homogeneity and cross-section inde-
pendence of stochastic error. Temple (1999) emphasizes several econometric challenges for
growth regressions. These include parameter heterogeneity, spillovers, and endogeneity. We

seek to account for these in what follows. Firstly, we test for country homogeneity in the
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Qp;, arp; 1O aiz; parameters in equation (3.3). Our homogeneity test is from Pesaran and Yama-
gata (2008) against the alternate hypothesis that all the slope coefficients are heterogeneous.
Secondly, whether the cross-sectional error terms €; in equation (3.3) are independent, i.e.,
cor(eq, €0 # 0),Vi # j, we can reject the assumption that there is no evidence of cross-

sectional dependence. Panel estimators normally assume cross-sectional independence.

Panel Cross Sectional Dependency Test

If cross-sectional errors are not independent, and when cross-sectional unit interdependence
is ignored, the error term in a regression exhibits cross-sectional dependence. The correlation
between units violates the fundamental OLS assumption that the error term is independent
and identically distributed (see Chudik and Pesaran, 2013, 2015). Cross-sectional dependence
in the error term can lead to omitted variable bias or endogeneity, resulting in estimation
inconsistencies; see also Pesaran (2015). Cross-sectional dependence can be calculated using
the correlation between units. For example, unit ¢ and unit j errors can be correlated. If
the correlation is high, cross-sectional dependence is evident. The test for cross-sectional
dependence identifies panel variables or residuals with weak cross-sectional dependence. We
conducted this important test using the cross-sectional dependency (CD) from Pesaran (2015,
2021).

According to Ditzen (2021), the magnitude of common factors can be quantified by a
constant ranging from 0 to 1, known as the exponent of cross-sectional dependence. Chudik
et al. (2011) categorise CD into four types based on its limiting behaviour: strong (o = 1),
semi-strong (0.5 < a < 1), weak (v = 0), and semi-weak (0 < « < 0.5) cross-sectional
dependency. Semi-weak cross-sectional dependence can be defined as follows: even when the
number of cross-sectional units increases indefinitely, the combined impact of the common
factors remains constant. Owing to strong cross-sectional dependence, the cumulative impact

of the common factors intensifies as the number of cross-sectional units increases.
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Panel Slope Heterogeneity

We also seek to account for parameter heterogeneity in our empirical modelling. Pesaran and
Yamagata (2008) proposed the test for slope heterogeneity, which standardises Swamey’s test
for slope homogeneity under the assumption that all slope coefficients across cross-sectional
units are identical. However, if the homogeneous assumption is present in the proposed
model, the test for slope heterogeneity appears to be reliable but may produce inefficient
estimates. In contrast, if the proposed model contains slope heterogeneity, the homogeneous
assumption may also result in biased and inconsistent estimates. In this context, the test
for slope heterogeneity performs plausible and implicit estimates for the two hypotheses and
compares them to determine the best option. Given that the unrestricted model relies on a
cross-sectional unit-specific OLS regression model, i.e., the model under the alternative as-
sumption, and the restricted model relies on a weighted fixed effects method, which supports
the homogeneous slopes. The test is predicated on the disparity between the two models.
Large values of the test statistic indicate an inconsistency between estimations of fixed effects
and estimates of unit-specific effects; thus, the null hypothesis of slope homogeneity can be

rejected.

Common Correlated Effects

Following Chudik et al. (2013) and Ditzen (2021), we formulate the dynamic panel model
with heterogeneous coefficients below:

pT
Ayir = ao; + 01 Ayi—1 + aiDzy + Y v Fi + € (3.7)
1=0

where oy, represents country-specific fixed effects, a1; and aw; are the country-specific parame-
ter coefficients to be estimated, and Az, = (Aly, Akiy, Agiv, Apis, ATy, Aeyy, Afdiy) is growth
rates in labour, physical capital, green growth, urbanisation, green technologies, greenhouse
gas emissions, and foreign direct investment, whereas Ay;; is GDP growth. Y77, ’y;lFt_l are

the common correlated effects captured by incorporating cross-section averages to address
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the influence of common factors.

The omission of the common factor from equation (3.7) results in an omitted variable bias,
which in turn causes ordinary least squares estimation to become inconsistent, see Everaert
and De Groote (2016). Pesaran (2006) and Chudik and Pesaran (2015) have put forth a
proposed estimator that aims to consistently estimate equation (3.7) by employing cross-
sectional averages as an approximation for the common factors. The cross-sectional averages
are augmented with a lagged floor of v/T in a dynamic model. The model is written as:

pr
Ayir = i + @1 Ayi 1 + Qi Azy + Z Vi Zi-1 + € (3.8)
1=0

Where 377, v}, 2,1 estimates 307, v, Fy_; in equation (3.7). The variables Z, ; represent
the cross-sectional averages of both the dependent and independent variables. The estimated
coefficients of the cross-sectional averages, denoted as %I-l, are commonly regarded as nuisance
parameters. The model can be fitted using either a mean-group estimator, as proposed by
Pesaran and Smith (1995), Pesaran (2006), and Chudik and Pesaran (2019), or a pooled
estimator, as suggested by Pesaran (2006) and Juodis et al. (2021). The estimator in question
is commonly referred to as the common-correlated effects mean-group (CCE-MG) estimator.

The CCE-MG estimator is capable of capturing unobserved heterogeneity and dynamic
relationships, thereby offering enhanced predictive capabilities in comparison to more basic
panel data models; see Churchill et al. (2018). These estimators integrate data from both
cross-sectional and time-series dimensions, thereby enhancing the precision and reliability
of parameter estimates. This approach proves to be particularly beneficial when working
with small sample sizes (Eberhardt and Teal, 2011). The (dynamic) common correlated
effect (D-CCE) estimators offer a unique approach that incorporates elements from both
approaches. D-CCE models are designed to represent time-varying common factors and
individual-specific effects in a dynamic panel data context; see Chudik et al. (2013) and
Ditzen (2021). They provide a flexible framework for modelling cross-sectional dependence

that changes over time (Chudik and Pesaran, 2015). Therefore, they are likely to provide
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valid and reliable estimations over the static and dynamic fixed effects estimators.'’

We assume that investments in physical capital and economic growth are endogenous.
This suggests that countries with a high GDP per capita have the ability to save a greater
amount of money and consequently amass a larger amount of capital. This results in a
situation where investments in physical capital and the level of GDP have a reversed causality.
For further information, refer to the works of Temple (1999) and Durlauf and Aghion (2005).
As proposed by Temple (1999), it is possible to use the lags of the endogenous variable as an
instrument. To prevent a decrease in the degree of freedom resulting from including additional
variables in the model, we use the lags of GDP growth and physical capital as instruments.
Given this, we use the common correlated effect mean group instrumental variable estimator

proposed by Ditzen (2018)."!

3.3.3 Data

This section sets out the data used in our study. The key variable of interest when examining
the impact of environmental factors on economic growth is our measure of green growth. We
use a measure of optimal green growth from Sarkodie et al. (2023). This indicator measures
green growth performance across five broad dimensions: resource use, natural asset base,
socio-economic opportunities, productivity, quality of life, and policy responses. This series
has the advantage that it separates economic growth from resource consumption by consider-
ing environmental externalities, encouraging sustainable practices in energy, agriculture, and
industry, and promoting social inclusion. The series is a composite index of environmental
determinants of economic growth with over 152 variables. This data are from 1992 to 2021

for 81 countries. This time period was chosen for the study due to the availability of data

O Tweedie (2001) argues that fixed effects estimator does not permit heterogeneity and may effectively
estimator parameter coefficients when the homogeneity assumption holds.

U Throughout the common correlated effect mean group instrumental variable estimations, we instrument
physical capital as an endogenous variable with one-year and two-year lags and the one-year lag of economic
growth as exogenous variables following Temple (1999) and Ditzen (2018) given as Ak = Akji—1, Akjr_o,
Ayit—1.
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for the green growth indicators and total labour force. Other series such as physical capital,
human capital, greenhouse gas emissions, urbanisation, foreign direct investment, and green
technologies are also used in this study. The data were obtained from the World Bank,
OECD, and Penn World Tables. Table 3A-1 in the Appendix describes the series and their
measurement units.

The Cobb-Douglas production function and extended environmental model both moti-
vate our choice of empirical determinants of economic growth, in the spirit of Mankiw et al.
(1992), Durlauf et al. (2005), Hassler and Krusell (2018) and De Visscher et al. (2020). The
Cobb-Douglas production function incorporates three inputs, namely physical capital, labour,
and the green growth index. We additionally expand our proposed model by incorporating
additional environmental indicators, e.g., the IPAT alongside the Cobb-Douglas production
function model; see equation (3.6). Considering the environmental and macroeconomic fac-
tors underpinning the basic Cobb-Douglas production function model and the IPAT extended
model, we incorporate variables such as urbanisation, greenhouse gas emissions, green tech-
nologies, and foreign direct investment into a unified model. Subsequently, we replace labour
with a human capital index. Given that, labour does not take into consideration variations
in worker quality or skill levels; see Hanushek and Kimko (2000), Krusell et al. (2000) and
Katiraee et al. (2021). Human capital enables a more sophisticated evaluation of the work-
force, considering factors such as experience, expertise, and specialisation; see also Teixeira
and Queirés (2016).

We present the correlations between green growth and GDP growth for our full sample,
the advanced economies and emerging economies, in Table 3A-2 in the Appendix. The ev-
idence suggests that overall green growth has a positive but insignificant correlation with
GDP growth, and perhaps this is also evident in emerging economies. However, we find a
positive and significant correlation in advanced economies. While there may not always be
an insignificant correlation between green growth indicators and GDP growth, specific cir-

cumstances can result in such a correlation; see, for example, Schaltegger and Synnestvedt
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(2002), Van den Bergh (2011), Fritz and Koch (2016) among otherss. The factors that lead
to this situation are transition costs (Gurney et al., 2009; McCann, 2013), policy adjust-
ments (Schaltegger and Synnestvedt, 2002), resource reallocation (IPCC, 2014), consumer
behaviour (Mercure et al., 2016), and global economic factors (Fritz and Koch, 2016). The
implementation costs of transitioning may impede the rate of economic growth, while modi-
fications in policies may have an impact on the efficiency and production levels of industries
(Gurney et al.; 2009; McCann, 2013). The process of reallocating resources may initially
result in a decrease in production for conventional industries (IPCC, 2014), while consumer
behaviour can impact revenues (Mercure et al., 2016). Global economic conditions can also

have an impact on both indicators (Fritz and Koch, 2016).

3.3.4 Green Determinants of Economic Growth

Urbanisation has a significant influence on economic growth. Urbanisation is also referred
to as the transformation of rural populations into urban people or the urbanisation of rural
areas which gives rise to infrastructural strains, inequality, and environmental concerns (Sit
and Yang, 1997; Li et al., 2019). The industrialisation that results from urbanisation has
an effect on energy consumption (Sadorsky, 2013; Fang et al., 2022). Urbanisation influ-
ences energy demand by increasing the demand for housing, transport, and other publicly
provided utilities; see Giineralp and Seto (2008). Urbanisation increases traffic due to indus-
trial activity, puts pressure on the agricultural sector to produce more food for both rural
and urban populations (Epstein and Jezeph, 2001; WHO, 2016), boosts commercialisation
(McMichael, 2000; Song and Knaap, 2004), modifies the urban structure (Giineralp and Seto,
2008; Blonigen and Cristea, 2015), stimulates financial development, which encourages in-
vestment activities and industrialisation (Douglas et al., 2002; Giineralp and Seto, 2008),
increases the demand for production materials, and stimulates the movement of labour from
the countryside to the city as they contribute to urbanisation and influence energy demand

(Rephann and Isserman, 1994; Douglas et al., 2002; Kamal-Chaoui and Robert, 2009).
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With respect to environmental quality determinants, Ivanovski and Churchill (2020)
present evidence that the convergence path away from greenhouse gas emissions depends
critically on income per capita, international trade, and urbanisation in Australia from 1990
to 2017. Aller et al. (2021) also show that a number of important factors influence CO2
emissions, including GDP per capita, fossil fuel consumption, urbanisation, industrialisa-
tion, democratisation, trade effects, and political polarisation. Notably, income level influ-
ences these determinants, and foreign direct investment is also responsible for environmental
degradation (Wagner and Timmins, 2009; Singhania and Saini, 2021). Moore et al. (2022)
emphasised that the potential costs and effectiveness of mitigation technologies play a cru-
cial role in understanding the disparities in emissions trajectories and, consequently, their
impacts on global warming, which eventually causes climate change.

Climate change adaptation and mitigation necessitate a vital shift towards green growth
(Sarkodie et al., 2023). Sarkodie et al. (2023) suggest that the transition from brown to
green growth requires a range of strategic actions that are influenced by economic resources,
socio-economic abilities, political decisions, and environmental issues, referred to as green
growth indicators. Green growth indicators are crucial for achieving sustainable develop-
ment by harmonising the growth of an economy with the optimal objective of conserving
the environment; see Brown (2000), Griggs et al. (2013), Pretty (2013). Given that green
growth indicators help to assess progress, monitor the environmental consequences, and pri-
oritise long-term sustainability (van Vuuren et al., 2015; Diaz et al., 2019; Delabre et al.,
2021; Portner et al., 2023). Moreover, green growth entails providing guidance for policy
decisions (World Bank, 2012), fostering inclusive development (Wackernagel and Rees, 1997;
Swainson and Mahanty, 2018), ensuring resource efficiency (Potts et al., 2016), promoting
global cooperation (Ofori et al., 2023), and enhancing resilience to climate change (Stern
et al., 1996; Hallegatte et al., 2012; Schmalensee, 2012; Hickel and Kallis, 2020; Hao et al.,
2023). In addition, green growth indicators facilitate assessment of a nation’s climate-related

vulnerabilities; see also Fiissel (2010), Formetta and Feyen (2019), and Sarkodie et al. (2023).
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Table 3.1: Descriptive statistics

’ Mean ‘ SD ‘ Max. Min. ‘ Obs. ‘
Ay 3.19 4.59 42.78 -45.66 2,430
Al 1.71 2.13 19.64 -11.49 2,430
Ak 3.67 2.77 18.80 -3.44 2,430
Ag;s 0.55 0.14 1.00 0.00 2,430
Ahcg 0.89 0.63 4.64 -0.69 2,430

Notes: This table contains descriptive statistics for: Mean; SD = standard deviation; Max = maximum
value; Min = minimum value; Obs. = number of observations. GDP growth is denoted as Ay;;, growth in
labour force is denoted as Al;;, growth in physical capital accumulation is denoted as Ak;;, green growth
is denoted as Ag;;. Ahcy represents the growth rate of human capital index. Sample of 81 advanced and
emerging countries from 1992 to 2021.

3.4 Results

3.4.1 Descriptive Statistics

We begin our empirical analysis by providing some descriptive statistics; see Table 3.1 for
our full sample and the Appendix for the advanced and emerging economies’ samples. The
evidence from our entire sample shows that the average economic growth is 3.19%, with a
standard deviation of 4.59%. Emerging economies during the sample period had a higher
average and higher variability of economic growth as expected; see Appendix. From the
descriptive statistics, we also see that our measure of green growth is positive on average.
In contrast to economic growth, advanced economies exhibit relatively higher green growth.
This is notable and prima facie evidence that we should account for the heterogeneous nature

and relationship between economic growth and green growth.

3.4.2 Econometric Pre-Tests

We also conduct some formal econometric pre-tests to assess cross-sectional dependency (CD)
and slope heterogeneity. The cross-sectional dependency (CD) test has a null hypothesis of
no or weak cross-sectional dependence (Pesaran, 2015, 2021). If the CD test statistic has a

p<0.05 and « value significantly exceeds 0.5, the null hypothesis is rejected, and we ave no
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Table 3.2: Cross-sectional dependence and slope heterogeneity

’ Statistics \ CD \ Q@ \ Adj.A ‘
Ayit 95.80*** [0.00] 0.79
Aly 50.36*** 0.00] 0.68
Ak 17.74%%% [0.00] 0.63
Agit 188.36™** [0.00] 1.00
Ahcyy 30.26*** [0.00] 0.67
Slope Heterogeneity
L. Ayi = Ak, Ali, Agi 9.14*** [0.00]
2. Ay = Akyy, Ahciy, Agis 0.98 [0.33]

Notes: This table presents cross-sectional dependence tests, denoted as CD and « from Pesaran (2015, 2021).
We reject the null hypothesis of weak cross-sectional dependence when the CD statistics shows a p-value
less than 0.05. Cross-sectional dependency is considered strong when a = 1, semi-strong 0.5 < a < 1, weak
a = 0, and semi-weak 0 < a < 0.5. GDP growth is denoted as Ay;;, growth in labour force is denoted as
Al;, growth in physical capital is denoted as Ak;;, green growth is denoted as Ag;;. This table also contains
a test statistics for estimation parameter heterogeneity, Adj.A from Pesaran and Yamagata (2008) where
we reject the null hypothesis of no cross-sectional heterogeneity when the test statistics have a p-value less
than 0.05. P-values are presented in the square brackets. Asterisks *** ** and * denote 1%, 5% and 10%
significance levels.

evidence of cross-sectional dependency; see Pesaran (2015, 2021). Our results in Table 3.2
for the full sample indicate that « is consistently greater than 0.5 for all series with small
associated p-values, hence there is semi-strong to strong cross-sectional dependence. It was
observed that the slope heterogeneity exists for the full sample. Using Pesaran (2007) unit
root tests, we observed that all the panel time series are stationary. That is, we are able to
reject the null hypothesis of panel unit root against an alternative of no panel unit root at
1% statistical significance level. We can therefore assume that our data series are stationary
and will not be susceptible to a spurious regression problem. The results are presented in

Table 3A-6 in the Appendix.

3.4.3 Econometric Evidence
Benchmark Results

We begin our formal analysis of the relationship between economic activity and green growth
by presenting benchmark results. Initially, we use an Auto-Regressive Distributed Lag

(ARDL) model based upon equation (3.5) with up to one lag and a general to specific
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methodology to systematically examine our core relationships. We use mean group esti-
mation to tackle cross country heterogeneity in estimated parameters and account for cross
country spillovers by having common factors. Table 3.3 is our first set of core results.

Table 3.3 column (1) contains a dynamic fixed effects (DFE) estimation with homogeneous
coefficients. In particular, in column (1) lagged green growth (i.e. the coefficient on Ag; 1)
is statistically significant at the 1% significance level, indicating a powerful relationship be-
tween green growth and economic activity. However, the dynamic fixed effects estimator
may not be robust to spillovers and parameter heterogeneity. In contrast, column (2) is a
full ARDL(1,1,1,1) model estimated by dynamic mean group estimation with common cor-
relates. This empirical model may be overparameterized, and the CD-stat for cross-sectional
dependence rejects the null of no cross-sectional dependence. Therefore, cross-sectional de-
pendence still exists in the estimated model. Columns (3) and (4), using a general-to-specific
approach, illustrate that lagged green growth, similar to DFE in column (1), again dominates
a contemporaneous impact, here at the 10% level. We also considered replacing labour with
human capital in the estimated results in Table 3.4. With human capital, we also observed
a positive and statistically significant coefficient for lagged green growth. This could be due
to adjustment costs or delays in the impact of green economic activity on macro growth.

We consequently focus in what follows on the relationship between economic activity and
lagged green growth. Having established our fundamental relationship using an ARDL model
with a general to specific methodology, we now consider whether this approach is robust to
a variety of estimators. These estimators take account of potential parameter heterogeneity,
error cross sectional correlation and endogeneity. The estimators are: Fixed Effects (FE),
Dynamic Fixed Effects (DFE), Common Correlated Effects Mean Group MG(+CCE), Dy-
namic Common Correlated Effects Mean Group, DMG (4+CCE), and Common Correlation
Effects Mean Group instrumental variable, MG-IV(+CCE) estimators. Fixed effects, with
and without dynamic terms from the dependent variable, is a standard estimator in empirical

applications. It is also a useful benchmark but may not fully deal with cross-sectional hetero-
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Table 3.3: Baseline regression evidence

| Estimator | DFE | DMG(+CCE) | DMG(+CCE) | DMG(+CCE) |
Ag; -0.44 0.55 0.45
(0.65) (0.59) (0.53)
Agis—1 3.417%%* 0.81 1.26*
(0.67) (0.71) (0.70)
Aly 0.62%** 0.37** 0.31%* 0.23**
(0.05) (0.13) (0.11) (0.11)
Aliy_q -0.21%** -0.02
(0.05) (0.12)
Ak 0.88%*** 1.70%+* 0.64%** 0.65%**
(0.08) (0.25) (0.09) (0.10)
Aki_q -0.57F** -1.32%*
(0.07) (0.24)
Ayit1 0.12%%* 0.09** 0.11%* 0.10%*
(0.02) (0.03) (0.03) (0.03)
Constant -0.73 -2.02 -2.43FF* -2.63FF*
(0.50) (0.70) (0.54) (0.58)
Common factors No Yes Yes Yes
NxT 2,349 2,187 2,187 2,187
R? 0.25 0.43 0.60 0.58
F-stat 68.16%** 1.90%** 1.60%** 1.70%%*
F-test: Allu; =0 1.33 [0.03]
CD-stat. 8.94%** 1.04 0.86
CD-stat. [p-value] [0.00] 0.30] [0.39]

Notes: This table presents the results on the impact of green growth indicators on GDP growth for a sample of
81 countries from 1992 to 2021. In this table we use an ARDL model with economic growth explained by green
growth, labour and capital. The estimators are (1) DFE denotes Dynamic Fixed Effects ARDL. Columns
(2) to (4) use Dynamic Common Correlated Effects Mean Group estimation based upon a general to specific
ARDL specification. Asterisk *** ** and * denote 1%, 5% and 10% significance levels. GDP growth is
denoted as Ay;, growth in labour force is denoted as Al;;, growth in physical capital accumulation is denoted
as Ak, green growth is denoted as Ag;;. F-test: All u; = 0 assumes that unobservables and regressors are
mean independent; p-values are in the square brackets. The CD-stat represents a cross-sectional dependence
test of the residuals with a null hypothesis of no or weak cross-sectional dependence from Pesaran (2015,
2021). We do not reject this null at the 5% significance level but if the CD-stat p-value > 0.05. Standard
errors are presented in the parentheses.

geneity, cross-sectional dependency and endogeneity.!? In contrast, mean group estimation
more fully accounts for parameter heterogeneity. We have established in Table 3.2 evidence
of heterogeneity in the estimated coefficients. If this heterogeneity was not accounted for,

there would be heterogeneity bias. Also evidence of cross-sectional correlation due perhaps

12Failure to consider these issues can lead to biased and inconsistent estimation results; see Ditzen (2021)
and Pesaran (2015, 2021).
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Table 3.4:

Baseline regression evidence with human capital

‘ Estimator ‘ DFE ‘ DMG(+CCE) ‘ DMG(+CCE) ‘ DMG(+CCE) ‘
Agi -0.24 0.81 0.61
(0.67) (0.52) (0.59)
Agii_1 3.72%H* 1.06 1.73%*
(0.70) (0.74) (0.76)
Ahcit -0.20 -2.53%* -1.76 -1.79
(0.38) (1.08) (1.27) (1.20)
Ahcit_q 0.45 1.44
(0.37) (1.23)
Ak 0.95%** 1.79%%* 0.77*%* 0.81***
(08) (0.27) (0.12) (0.13)
Akiy_q -0.59%** S1.47FHK
(08) (0.26)
Ay 0.13*** 0.04 0.07* 0.04
(0.02) (0.03) (0.04) (0.04)
Constant -0.68 -2.43 -1.30 -1.50
(0.54) (1.49) (1.07) (1.00)
Common factors No Yes Yes Yes
NxT 2,349 2,106 2,106 2,106
R? 0.20 0.45 0.62 0.60
F-stat 39.58%** 1.40%%* 1.17%%* 1.80%**
F-test: All u; =0 1.26 [0.06]
CD-stat. 9.37%** 2.20%* 1.31
CD-stat. [p-value] [0.00] [0.03] [0.19]

Notes: This table presents the estimations of the impact of green growth indicators on GDP growth for
a sample of 81 countries from 1992 to 2021. In this table we use an ARDL model with economic growth
explained by green growth, human capital and capital. The estimators are (1) DFE denotes Dynamic
Fixed Effects ARDL. (2) DMG (4+CCE) denotes (Dynamic) Common Correlated Effects Estimator - Mean
Group ARDL full model. (3) DMG (+CCE) denotes (Dynamic) Common Correlated Effects Estimator -
Mean Group ARDL intermediate model. (4) DMG (+CCE) denotes (Dynamic) Common Correlated Effects
Estimator - Mean Group ARDL final model. Asterisk *** ** and * denote 1%, 5% and 10% significance
levels. GDP growth is denoted as Ay;;, growth in human capital index is denoted as Ahc;;, growth in physical
capital accumulation is denoted as Ak;;, green growth is denoted as Ag;;. F-test: All u; = 0 assumes that
unobservables and regressors are mean independent; p-values are in the square brackets [ ]. We do not reject
the null hypothesis with p-value > 0.05. The CD-stat represents a cross-sectional dependence test of the
residuals with a null hypothesis of no or weak cross-sectional dependence from Pesaran (2015, 2021). We
do not reject this null at the 5% significance level but if the CD-stat p-value > 0.05. Standard errors are
presented in the parentheses.

to common shocks, suggest it is imperative to address this aspect. In such instances, the
preference lies in employing the mean group plus common correlated effects estimator, given
the presence of both heterogeneity as confirmed by the heterogeneity test and cross-sectional
correlation. Finally, we use the mean group-instrumental variable with a common correlated
effect estimator to deal with potential endogeneity since our Granger causality test confirms

evidence of reverse causality. Most importantly, in a growth model, there is the tendency
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to experience reverse causality in that capital accumulation and GDP growth are considered
endogenous; see, for example, Temple (1999) and Durlauf et al. (2005). Table 3.5 illustrates
the outcome of our findings for the full sample.'?

The findings from our benchmark analysis with green growth, as presented in Table 3.5,
indicate that green growth has a substantial impact on economic growth, as exhibited in
columns (1) to (4). In contrast, we find less evidence of a link between economic activity
and green growth, as shown by the common correlated mean group instrumental variable
(MG-IV+CCE) estimator in column (5).!* This evidence differs from what was observed in
columns (1) to (4). Perhaps this further suggests endogeneity between economic activity and
green growth and potential reverse causality. The MG-IV(+CCE) estimator is capable of
dealing with this issue while also addressing cross-sectional heterogeneity and cross-sectional
spillovers; see Ditzen (2018).

Whilst our mean group estimation methods are robust to country heterogeneity, there
are potentially differences in behaviour across advanced and emerging economies. Lin and
Zhu (2019b), Su and Fan (2022), Zhao et al. (2022a) and Zhou et al. (2022) argue that the
influence of green growth indicators on economic growth varies significantly across different
regions, given that countries with more stringent environmental regulations, greater techno-
logical innovation, and a higher level of environmental awareness tend to experience a more
pronounced effect. To give a sense of the global heterogeneity of the country estimations,
we mapped country coefficients to illustrate considerable country heterogeneity, which is also
consistent with the formal parameter heterogeneity tests in Table 3.2, from Pesaran and Yam-
agata (2008). Our country results illustrate that the impact of green growth on GDP growth
is considerably heterogeneous, for example, countries including Cyprus, Greece, and Ireland

are more likely to experience positive effects whereas Argentina, Ethiopia and Panama could

13Tn the Table 3A-9, we present the evidence observed from the advanced and emerging economies sub-
sample to comprehend the heterogeneity of our sample

“Throughout the MG-IV(+CCE) estimations, we instrument physical capital as an endogenous variable
with one-year and two-year lags, and the one-year lag of economic growth as exogenous variables following
Ditzen (2018) given as Ak; = Akjp—1, Aki—o, Ayi—1.
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potentially experience adverse effects of green growth on GDP growth, as shown in Figure
3A-1 in the Appendix. In addition, our evidence presented in Table 3A-9 indicates that the
indicator of green growth are more strongly associated with the growth of gross domestic
product (GDP) in advanced countries than emerging economies, as observed across the esti-
mators used for the full sample. This reflects the theoretical position of the EKC hypothesis,
which suggests that at the initial stage of economic development, countries experience envi-
ronmental destruction but this is reversed after a certain income threshold is achieved. In
view of this, advanced economies having achieved this income threshold are better able to
invest in cleaner and green technologies, ensure stricter environmental regulations and en-
vironmental sustainability policies. By constrast, developing or emerging economies are at
the early stage of economic development and are closely tied to resource-intensive and envi-
ronmentally straining activities. Given the structural difference in policy, access to cleaner
and green techologies, and institutional capacity, the relationship between green growth and

GDP appears to be insignificant.

Extended Model

We go on now and consider the relationship between green growth and economic activity in
an extended model. We consider in particular whether there may be other environmental
and economic factors that could mediate the relationship between green growth and eco-
nomic growth. Chudik and Pesaran (2015) argue that adding covariates to account for the
effects of many common factors that are not observed can improve the consistency of esti-
mation. Here, we extend our baseline model by combining the production function model
with three inputs and the IPAT model. Consequently, we apply the same approach used for
the benchmark model. First, we assess the relationship with an ARDL model and subse-
quently rely on the significant measure of green growth. Whilst there is evidence that both
current period and lagged green growth positively impact economic activity in Table 3.6,

we find stronger evidence associated with the lagged indicator. This is also consistent with
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Table 3.5: Regression evidence with multiple panel estimators

Estimator FE DFE MG DMG MG-IV
(+CCE) (+CCE) (+CCE)
Agit_1 3.41%%* 3.2 1.28%* 1.26%* 0.92
(0.67) (0.67) (0.73) (0.70) (0.75)
Aly 0.62%** 0.59%** 0.23** 0.23** 0.23*
(0.05) (0.05) (0.11) (0.11) (0.12)
Ak, 0.48*** 0.41%%* 0.75%** 0.65%** 0.25%*
(0.05) (0.05) (0.10) (0.10) (0.10)
Ayit—l 010*** 010**
(0.02) (0.03)
Constant -1.52%** -1.45%** -2.61FF* -2.63*F* -1.24%*
(0.43) (0.42) (0.60) (0.58) (0.64)
Common factors No No Yes Yes Yes
NxT 2,349 2,349 2,187 2,187 2.106
R? 0.21 0.22 0.63 0.58 0.33
F-stat 119.23%** 96.21%** 1.70%** 1.70%*** 2.18%**
F-test: All u; =0 1.81 [0.00] | 1.49 [0.00]
CD-stat. 1.11 0.86 -1.14
CD-stat. [p-value] [0.27] [0.39] [0.26]

Notes: This table presents the estimations of the impact of green growth indicators on GDP growth for
a sample of 81 countries from 1992 to 2021. The estimators are (1) FE denotes Fixed Effects. (2) DFE
denotes Dynamic Fixed Effects. (3) MG (+CCE) denotes Common Correlated Effects Estimator - Mean
Group. (4) DMG (+CCE) denotes (Dynamic) Common Correlated Effects Estimator - Mean Group. (5)
MG-IV (+CCE) denotes (Dynamic) Common Correlated Effects Estimator - Mean Group IV. Model 1 to 5
are estimated upon equation (3.5). Asterisk *** ** and * denote 1%, 5% and 10% significance levels. GDP
growth is denoted as Ay;, growth in labour force is denoted as Al;;, growth in physical capital accumulation
is denoted as Ak;;, green growth is denoted as Ag;;. F-test: All u; = 0 assumes that unobservables and
regressors are mean independent. We do not reject the null hypothesis with p-value > 0.05; p-values are in
the square brackets. The CD-stat represents a cross-sectional dependence test of the residuals with a null
hypothesis of no or weak cross-sectional dependence from Pesaran (2015, 2021). We do not reject this null at
the 5% significance level but if the CD-stat p-value > 0.05. Standard errors are presented in the parentheses.

the notion that there are adjustment costs in responding to green growth. Given this, we
rely on the lagged green growth measure in our subsequent estimations. Table 3.7 presents
our extended model results. These results estimate equation (3.6) above, the relationship
between green growth and economic activity, conditional upon urban population, environ-
mental technologies, greenhouse gas emissions and FDI, while also accounting for parameter
heterogeneity, spillovers and endogeneity. We therefore provided five estimations in Table
3.7; FE, DFE, MG(+CCE), DMG(+CCE) and MG-IV(+CCE). In general, it is evident that

there is a strong positive relationship between green growth and economic activity, albeit
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Table 3.6: Regression evidence: extended model

\ Estimator | DFE | DMG(+CCE) | DMG(+CCE) | DMG(+CCE) |
Agi -0.71 0.39 0.85*
(0.61) (0.69) (0.46)
Agit1 2.8%** 0.48 1.20%*
(0.64) (0.94) (0.71)
Al 0.56%** 0.37* 0.35%* 0.27
(0.05) (0.20) (0.21) (0.20)
Al -0.12%* 0.10
(0.05) (0.17)
Ak 0.78%** 1.57%** 0.71%** 0.73%**
(0.07) (0.30) (0.10) (0.10)
Ak -0.48%** -1.08%**
(0.07) (0.27)
Apy -0.06 0.83 -0.74%* -0.62%*
(0.16) (0.70) (0.33) (0.31)
A])it,1 -0.22 -1.14
(0.16) (0.70)
ATy 0.00 -0.01%** -0.01* -0.01
(0.00) (0.00) (0.01) (0.01)
ATit—l 0.00 -001*
(0.00) (0.00)
A fdig 0.01%** 0.00 0.02** 0.02**
(0.00) (0.00) (0.00) (0.00)
A fdig 1 0.00 0.00
(0.00) (0.00)
Ae;t 0.20%** 0.11%** 0.217%%* 0.20%**
(0.01) (0.03) (0.03) (0.03)
Aejrq 0.00 -0.03
(0.01) (0.03)
Ay 1 0.10%** 0.04 0.06* 0.05
(0.02) (0.04) (0.03) (0.03)
Constant 0.12 -2.11%* -2.36%F* -2.60%**
(0.49) (1.10) (0.71) (0.76)
Common factors No Yes Yes Yes
NxT 2,349 2,187 2,187 2,187
R? 0.33 0.22 0.40 0.38
F-stat 53.10%** 1.49%** 1.88%** 2.05%**
F-test: All u; =0 1.36 [0.02]
CD-stat. 1.70 -0.11 0.26
CD-stat. [p-value] [0.09] [0.91] [0.79]

Notes: This table presents the estimations of the impact of green growth indicators on GDP growth for
a sample of 81 countries from 1992 to 2021. The estimators are (1) DFE denotes Dynamic Fixed Effects
ARDL. (2) DMG (+CCE) denotes (Dynamic) Common Correlated Effects Estimator - Mean Group ARDL
full model. (3) DMG (4+CCE) denotes (Dynamic) Common Correlated Effects Estimator - Mean Group
ARDL intermediate model. (4) DMG (+CCE) denotes (Dynamic) Common Correlated Effects Estimator -
Mean Group ARDL final model. Asterisk *** ** and * denote 1%, 5% and 10% significance levels. GDP
growth is denoted as Ay;, growth in labour force is denoted as Al;;, growth in physical capital accumulation
is denoted as Ak, green growth is denoted as Ag;. growth in urban population is denoted as Ap;, growth
in foreign direct investment inflows is denoted as Afdi;;, Ae;; represents the growth in greenhouse gas
emissions and growth in green technologies is denoted as A7;;. F-test: All u; = 0 assumes that unobservables
and regressors are mean independent; p-values are in the square brackets. We do not reject the null hypothesis
with p-value > 0.05.The CD-stat represents a cross-sectional dependence test of the residuals with a null
hypothesis of no or weak cross-sectional dependence from Pesaran (2015, 2021). We do not reject this null at
the 5% significance level but if the CD-stat p-value > 0.05. Standard errors are presented in the parentheses.
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Table 3.7: Extended model with multiple panel estimators

Estimator FE DFE MG DMG MG-IV
(+CCE) (+CCE) (+CCE)
Agit1 2.86*** 2.74%** 1.51%* 1.61** 1.52%*
(0.63) (0.63) (0.74) (0.73) (0.78)
Al 0.58*H* 0.57*** 0.18 0.31 0.20
(0.05) (0.05) (0.18) (0.22) (0.21)
Ak, 0.44%** 0.38%** 0.93*** 0.86%** 0.40**
(0.04) (0.05) (0.12) (0.11) (0.15)
Apy -0.28%* -0.35%H* -0.34 -0.18 0.06
(0.10) (0.10) (0.35) (0.34) (0.45)
ATy 0.00 0.00 -0.01°%* 0.00 -0.01*
(0.00) (0.00) (0.00) (0.00) (0.01)
Aegy 0.20%*** 0.20%*** 0.18*** 0.18%** 0.20%***
(0.01) (0.01) (0.03) (0.03) (0.03)
Afdiy 0.01%*#* 0.01%** 0.00 0.01 0.00
(0.00) (0.00) (0.00) (0.00) (0.00)
Ayis_1 0.09%*** 0.02
(0.02) (0.04)
Constant -0.72% -0.57 -1.34 -2.91* -2.34
(0.42) (0.42) (1.56) (1.61) (1.72)
Common factors No No Yes Yes Yes
NxT 2,349 2,349 2,187 2,187 2,106
R? 0.29 0.30 0.39 0.37 0.59
F-stat 95.33%** 87.30%** 1.43%%* 1.39%** 2.08%H*
F-test: Allu; =0 1.80 [0.00] | 1.52 [0.00]
CD-stat. 0.69 0.54 -0.54
CD-stat. (p-value) [0.49] [0.59] [0.59]

Notes: This table presents the estimations of the impact of green growth indicators on GDP growth for a
sample of 81 countries from 1992 to 2021. In these estimations, we combine the baseline model with three
inputs and the IPAT model. The estimators are (1) FE denotes Fixed Effects. (2) DFE denotes Dynamic
Fixed Effects. (3) MG (+CCE) denotes Common Correlated Effects Estimator - Mean Group. (4) DMG
(+CCE) denotes (Dynamic) Common Correlated Effects Estimator - Mean Group. (5) MG-IV (+CCE)
denotes (Dynamic) Common Correlated Effects Estimator - Mean Group IV. Model 1 to 5 are estimated
upon equation (3.6). Asterisk *** ** and * denote 1%, 5% and 10% significance levels. GDP growth is
denoted as Ay;;, growth in labour force participation rate is denoted as Al;;, growth in physical capital
accumulation is denoted as Ak;;, green growth is denoted as Ag;¢, growth in urban population is denoted
as Ap;, growth in foreign direct investment inflows is denoted as Afdi;;, Ae; represents the growth in
greenhouse gas emissions and growth in green technologies is denoted as A7;;. F-test: All u; = 0 assumes
that unobservables and regressors are mean independent. We do not reject the null hypothesis with p-value
> 0.05; p-values are in the square brackets. The CD-stat represents a cross-sectional dependence test of the
residuals with a null hypothesis of no or weak cross-sectional dependence from Pesaran (2015, 2021). We
do not reject this null at the 5% significance level but if the CD-stat p-value > 0.05. Standard errors are
presented in the parentheses.

with a lag potentially due to adjustment costs. Our approach accounts for different effects

from country specific policies. Environmental policies such as carbon pricing, subsidies for
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renewable energy, and overall environmental policy stringency. Green growth is arguably
the sustainability strategy considered to have a cross-cut and positive impact on countries
vulnerable to rising sea level and extreme weather events as these can potentially have severe
economic consequences (Bohensky et al., 2011; Potts et al., 2016; Cramer et al., 2018).

To offset the possibility that our results are unduly impacted by over-parameterisation,
we introduce urbanisation and green technologies separately to gain insight into the environ-
mental factors that may impact the relationship between green growth and economic activity.
The results are presented in the Appendix.!” Our findings indicate that urbanisation has a
negative and substantial impact on GDP growth. Despite the relationship between urbani-
sation and GDP growth, green growth still positively impacts GDP growth. In contrast the
alternative measure of green technologies (A7;;) from the OECD is not found to have a strong
relationship with GDP growth, beyond that contained within our main green growth mea-
sure. Overall, we observed that the lagged term of green growth significantly contributes to
economic growth, even in the presence of unfavourable economic and environmental factors.
We find strong evidence that indicators of green growth are major contributors to economic
growth, in support of the existing literature. These studies document that green growth in-
dicators, such as fintech (Ren et al., 2022), knowledge-intensive growth (Pretty, 2013; Potts
et al., 2016; Wang et al., 2022), environmental taxes (Bohensky et al., 2011; Griggs et al.,
2013; Song et al., 2019; Fernandes et al., 2021; Jin et al., 2023), green energy (Yi and Liu,
2015; Li et al., 2022; Mahmood et al., 2022), and green finance (Zhou et al., 2022), have a

substantial positive effect on green economic growth.

Decomposition of Green Growth

Our final empirical exercise in This chapter is to decompose the green growth measure into
constituent sub-dimensions, and assess the impact on economic activity. The sub-dimensional

measures include natural asset base, policy responses related to the environment, socio-

15Refer to Table 3A-10 for the impact of urbanisation (Ap;;), and Table 3A-11 for the impact of green
technologies (A7;).

87



economic outcomes, quality of life, and productivity. Sarkodie et al. (2023) contends that
these sub-dimensional measures act as foundational elements for promoting sustainable eco-
nomic growth. Consequently, we assessed the relationship between these measures and GDP
growth for our sample of 81 countries, comprising 27 advanced economies and 54 emerging
economies. Our analysis reveals that the sub-dimension of green growth, natural assets base
have a consistently and sometimes statistically significant impact on economic activity. This
is based upon an empirical model with lagged green growth indicators, consistent with the
key results in the main chapter of the chapter. The strongest evidence is for the impact of
natural asset base, productivity and socio-economic indicators. However, the latter result
for the socio-economic indicator is potentially strongest, as it is accounting for heterogeneity,
spillovers and endogeneity. This implies that socioeconomic outcomes are potential contrib-
utors to economic growth and perhaps greater and improved socioeconomic policies geared
towards green growth has the tendency to drive economic prosperity; see Easton and Walker
(1997) and Faria and Montesinos (2009). The result remains unaffected by endogeneity,
cross-sectional dependence, and cross-sectional heterogeneity due to our utilisation of the
MG-IV(+CCE) estimator, which effectively addresses these concerns through our economet-

ric approach. Results are in the appendix.

3.5 Conclusion

Using a novel dataset we examined whether green growth impacts macroeconomic outcomes
for a large number of countries. Our green growth measure is a composite index of natural as-
set base, environmental productivity, environmental-related policy responses, socio-economic
outcomes, and quality of life. In testing our central hypothesis, we used empirical methods
robust to panel parameter heterogeneity, cross-sectional correlation, and endogeneity. Our
empirical results strongly suggest that green growth has a positive impact on GDP growth,

especially in an extended model and for advanced economies. Specifically, our country results
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illustrate that the impact of green growth on GDP growth is considerably heterogeneous.
Our evidence indicates that the indicator of green growth are more with the growth of
gross domestic product (GDP) in advanced countries than emerging economies, as observed
across the estimators used for the full sample. Overall, we observed that the lagged term
of green growth significantly contributes to economic growth, even in the presence of un-
favourable economic and environmental factors. We find strong evidence that indicators of
green growth are major contributors to economic growth. Research and Development (R&D)
is a recurring topic in the carbon emissions literature. Investments in R&D leads to tech-
nological advancement in the production of efficient and cleaner technologies that could aid
in the adaptation and mitigation of climate change effects as a result of global warming.
Research and development intensity may decrease as knowledge increases, making it harder
to make new discoveries. However, economic growth requires more natural resources, poten-
tially causing environmental destruction, raising the question of whether R&D intensity can
significantly reduce global warming. In the next chapter, we examine the impact of R&D

intensity on global warming.
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4.1 Introduction

Over the past decades, there has been an unprecedented rise in greenhouse gases, and global
warming has emerged as a global policy concern; see in particular Acemoglu et al. (2012),
and Nordhaus (2019a). Since carbon dioxide (CO2) emissions are the primary causes of
global warming, a considerable body of knowledge in environmental and energy economics
has emerged that explores the causes of carbon emissions as well as alternative mitigation
strategies (see for example Arora and Cason, 1996; Dinda, 2004; Churchill et al., 2019; Lin
and Zhu, 2019a; Huang et al., 2021). Macroeconomic indicators such as economic growth,
population, and trade, among others things, have been studied as determinants of environ-
mental quality in the literature; see Grossman and Krueger (1995), Koop and Tole (1999),
and Dinda (2004). Existing studies frequently test the environmental Kuznets curve (EKC)
hypothesis, which hypothesises an inverted U-shaped linkage between per capita income
and various pollutants, to examine factors influencing environmental quality. Grossman and
Krueger (1995), Koop and Tole (1999), and Dinda (2004) have extensively utilised the EKC
hypothesis and identified an inverted U-shaped curve between income levels and various
environmental quality determinants.

Research and Development (R&D) intensity is the resource allocation commitment to in-
novation and technological progress; see Levin (1988) and Veugelers (1997). The effectiveness
of R&D in combating global warming, meanwhile, differs with various phases of economic de-
velopment (Mansfield, 1972). The type of R&D spending is practically important. Research
and development on energy efficiency has been establised to be more effective in mitigating
carbon emissions; see for example, Churchill et al. (2019), Shahbaz et al. (2020), Huang
et al. (2021) and Safi et al. (2021). This accentuates the urgency of improving R&D invest-
ments toward innovations that directly help to lower greenhouse gas emissions. The EKC
hypothesis provides a framework that highlights on how environmental quality and economic
growth interact. Including R&D intensity in this model draws attention to the possibility

of technological innovation changing conventional EKC path. This, therefore, stresses the
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importance of strategic R&D investment to properly fight global warming. The assertion
that technological advancements will have a positive effect on environmental quality, referred
to as the technological effect, is a recurring theme in the extensive literature on the EKC
hypothesis (see Churchill et al., 2019; Shahbaz et al., 2020; Huang et al., 2021; Safi et al.,
2021). Investments in research and development are focused on boosting productivity as well
as improving the quality and diversity of products (Fisher-Vanden and Wing, 2008).

Endogenous growth theory argues that long-term economic growth is driven by factors
that influence the opportunities and incentives for knowledge production; see Lucas (1988),
Romer (1994) and Aghion et al. (1998). Importantly R&D investment can result in improved
efficiency in production and the use of natural resources and energy; see Barbier (1999). As
income rises, countries are better able to invest in R&D and, as a result, adopt more effi-
cient technologies (Grossman and Krueger, 1995). More efficient technologies can minimise
the strain on natural resources while also reducing greenhouse gas emissions and pollutants
(Dinda, 2004), resulting in a clean and healthy environment (Grossman and Krueger, 1995).
More R&D investment, for example, is likely to improve environmental quality in situations
where effective environmental management systems are in place to ensure proper waste man-
agement (Arora and Cason, 1996; Churchill et al., 2019; Huang et al., 2021; Paramati et al.,
2021). Although new technology may increase efficiency, increasing output may necessitate
the use of additional natural resources, which could result in an increase in carbon emissions.
This theory is supported by the fact that R&D has historically produced declining returns
(Newell, 2009; Churchill et al., 2019).

There is uncertainty regarding the effect of technological advancement on global warm-
ing emanating from greenhouse gas emissions (Meinshausen et al., 2009; Moss et al., 2010;
Arent et al., 2011). Two significant uncertainties obscure the future requirements of green
technology, Fulkerson et al. (1989) argued that the future of energy technology is shaped by
increasing energy demand and the pressing issue of the greenhouse gas effect. This revela-

tion highlights the need for a well-rounded approach to research and development. Higher
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economic growth and trade openness through the scale effects of larger production is likely
to adversely impact environmental quality. Given that new technologies may potentially im-
prove efficiency, output growth may require more natural resource consumption, which may
likely increase carbon emissions (Chen et al., 2020). This development may eventually in-
crease atmospheric carbon concentration, potentially altering the average global temperature
and leading to global warming (Pindyck, 2021). It seems that the possibility is more likely
because the returns on research and development decrease as time goes on. However, it is
important to note that economic growth still requires an increasing amount of natural re-
sources and is likely to cause environmental destruction. These arguments beg the question:
can R&D intensity lead to a significant reduction in global warming?

Our study makes three important contributions. Our first contribution is to examine
the empirical relationship between R&D and individual countries’ contributions to global
warming. Since the pre-industrial period, anthropogenic emissions of carbon dioxide (CO2),
nitrous oxide (N20) and methane (CH4) have significantly contributed to global warming
(Masson-Delmotte et al., 2021). Consequently, international climate policy has concentrated
on these emissions. Assessing national contributions to climate change, as well as informing
equitable commitments to decarbonisation, are of significant interest; see Jones et al. (2023).
Importantly, understanding national contributions to climate change is critical to under-
standing the burden of responsibility a country carries for global warming and can inform
the design of international policies pursuing equitable decarbonisation pathways. The extant
literature usually focus on carbon emissions, which is just a single measure of greenhouse gas
emissions; see for example, Churchill et al. (2019). However, the ultimate policy objective
is to reduce temperature rise, but not just limit carbon emissions. Therefore, temperature,
which is the climate variable of concern is more tied to individual countries’ greenhouse gas
emissions contribution to global temperature changes than just carbon emissions per se. To
the best of our knowledge no other research has examined the relationship between R&D and

individual countries’ contribution to global warming. The closest literature is from Churchill
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et al. (2019) that studied the relationship between R&D intensity and carbon emissions for
the period 1870 to 2014 for G-7 countries. In addition, we use a novel dataset on global
warming sourced from Jones et al. (2023) and also extend the span in both time and coun-
try dimension over Churchill et al. (2019). This contribution is significant because it moves
beyond existing studies. (a) We assess the impact on R&D on climate change, specifically
the individual countries’ greenhouse gases emission contribution to changes in average global
temperature. (b) We study the case of 20 OECD countries over the period 1870 to 2021, as
this offers more perspective into recent developments in climate change and R&D spending.

Our second contribution is to decompose R&D at the country level to global R&D and
country-level R&D. This is in the spirit of Coe et al. (2009) since it allows for spillovers in
R&D, but is different in that foreign and national R&D is not available from 1870 to 2021.
While the decomposition of R&D spillovers have been done previously by using domestic and
foreign R&D capital stock (Coe and Helpman, 1995; Coe et al., 2009). Our novel approach
is to use a multivariate stochastic volatility model and by extension a principal component
analysis to decompose R&D into global spillovers and country-specific R&D intensity. This
is premised on a common belief that technological spillovers could likely enhance efficiency
in production. As it is more likely to lead to lower energy and natural resource use, which
would potentially reduce greenhouse gas emissions and eventually limit global warmig (Fisher-
Vanden, 2003). Lastly, studying the impact of R&D on global warming over a longer period
could be complex and would potentially experience cross-sectional dependence, time-varying
volatility, structural breaks, endogeneity, heterogeneity, and non-linearity. Given these, we
use multiple econometric methods and approaches that can handle these relevant issues. We
use methods such as fixed effects, random effects, fixed effects regression with Driscoll-Kraay
standard errors, two-stage least squares fixed effects instrumental variable, as well as sample
split based on structural break test to address the econometric concerns emphasised in the
existing literature; see Churchill et al. (2019) and Huang et al. (2021).

Our key findings could be set out as follows: (1) R&D intensity significantly reduces
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global warming across 20 OECD countries from 1870 to 2021. The impact is different across
OECD countries. In G7 countries, the effect is significantly positive, while there is a clear
negative impact observed in other OECD countries. (2) The effect of R&D intensity on
global warming has been less significant after World War II compared to the pre-war period.
Potentially this is because of diversification of R&D investments. (3) At the global level, R&D
intensity consistently and significantly reduces global warming, underscoring the importance
of international research collaborations, knowledge, and technological transfers.

The structure of the chapter is as follows: section one introduces the topic, section two
reviews the existing literature to identify gaps and tease out the importance of the phe-
nomenon of interest, section three highlights the empirical model, data, and econometric
methods used in the study, section four presents the results and discusses the findings, and

section five concludes the study.

4.2 Literature Review

Global warming is highly important for citizens, policy makers and academic researchers. A
global climate assessment revealed for the first time that human activities are altering the
environment and its biodiversity through climate change; consequently, the effects of global
warming are projected to intensify; see Delworth and Knutson (2000) and Kerr (2007). As-
sessing the global determinants and consequences of global warming is of considerable inter-
est; see also Berg et al. (2024) and Chapter 2 of this thesis. The rise in global temperatures
has stimulated an intense academic and international policy debate, highlighting concerns
regarding the sustainability of the global economy (Donadelli et al., 2021). While economists
and policymakers generally agree that climate change can incur substantial costs on the econ-
omy and society, there is no consensus on (i) the R&D effects of global warming and (i7) the
mechanisms through which R&D is more likely to impact global warming.

The existing literature has documented considerable evidence in relation to the R&D-
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emissions nexus. For instance, Churchill et al. (2019) used a sample of G7 countries between
1870 and 2014. The authors applied the common correlated effect mean group and non-
parametric Local Linear Dummy Variable Estimation (LLDVE) methods. Their findings
indicate a time-varying relationship between R&D and CO2 emissions with a notable negative
coefficient. However, a positive coefficient function was observed during the second half
of the 20th century and a gradual increase for the first 110 years but slightly decreased
afterwards. Similarly, Safi et al. (2021) looks into how environmental taxes and research
and development influence consumption-based carbon emissions in G-7 countries over the
period from 1990 to 2019. The results indicate a consistent long-term relationship among
taxes, R&D, imports, exports, GDP, and CO2 emissions. Their findings conclude that taxes,
research and development, and exports play a crucial role in lowering emissions, whereas
GDP and imports tend to increase them. Policymakers in G-7 countries are encouraged to
concentrate on these factors to reach carbon neutrality. Shahbaz et al. (2020) use historical
data on the UK from 1870 to 2017 to understand how R&D spending, financial development,
and economic growth influence carbon emissions. The authors document an inverted-U-
shaped relationship between R&D spending and carbon emissions.!

Understanding the relationship between R&D investment and environmental sustainabil-
ity in European countries, Paramati et al. (2021) confirmed that when countries increase
their investments in research and development, it leads to a higher consumption of renewable
energy. This, in turn, helps to reduce the amount of CO2 emissions in European countries.
The study also suggests that one way to further reduce CO2 emissions is by increasing the
proportion of renewable energy in the overall energy mix. This evidence is apparent for
25 Furopean countries for the period 1998 to 2014 by using the Fully Modified Ordinary
Least Square (FMOLS). Huang et al. (2021) also studied the energy-saving R&D and carbon

intensity in China for 30 provinces between 2000 and 2016. They utilised the fixed effects

!The EKC hypothesis suggests an inverted U-shaped curve, that is, due to the trade-off between economic
growth and environmental quality, some level of environmental degradation is inevitable in the initial phases
of development. Yet, beyond a specific income level, the decline in environmental quality will start to improve;
see Grossman and Krueger (1991, 1995).
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instrumental variable method, dynamic panel threshold method, and difference generalised
method of moment method. According to their findings, when businesses invest in energy-
saving research and development, it greatly reduces carbon intensity. The authors further
argue that utility-type research and development (R&D) activities have a greater impact on
reducing carbon intensity. The analysis found that there was a structural shift in the rela-
tionship between energy-saving R&D activities and carbon intensity. This structural shift
was influenced by the capacity to absorb technology, which either promoted or alleviated
these effects.

In a different context, Fisher-Vanden and Wing (2008) examined how research and de-
velopment affect energy consumption and greenhouse gas emissions in developing nations.
They showed that R&D aimed at improving efficiency and enhancing quality has contrasting
impacts on energy and emission intensities. The balance relies on responsive upstream out-
put and responsive downstream output elasticities and the proportion of emissions-intensive
inputs used. The research employs a computable general equilibrium simulation to highlight
the challenges of integrating these findings into climate policy analysis. Similarly, Van der
Zwaan et al. (2002) in an earlier study argued that incorporating endogenous innovation
necessitates quicker emission reductions to comply with atmospheric carbon concentration
constraints. Donadelli et al. (2021) investigates three mechanisms by which an increase in
global temperature adversely impacts the growth of R&D expenditure. They observed that
positive temperature shocks adversely impact patent obsolescence, labour productivity, and
capital efficiency. However, decreased labour productivity results in diminished resources for
R&D investment, whereas elevated temperatures may constrain capital availability, diminish
demand for intermediate goods or patents, and adversely affect R&D spending.

The literature on the nexus between R&D intensity and global warming is sparse, despite
its relative importance in our quest to deal with climate change externalities. Research and
development play a crucial role in tackling global warming. It is important to emphasise that

it contributes to the development of new technologies, accelerates the transition to a low-
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carbon economy (Zeqiraj et al., 2020), and boosts economic competitiveness (Pigato et al.,
2020). Wong et al. (2013) found that energy focused research and development expendi-
ture resulted in greater efficiency of economic growth compared to fossil fuel consumption,
regardless of oil reserves. Nonetheless, allocating resources to research and development in
areas like energy, transportation, and manufacturing can help accelerate the transition to a
low-carbon economy—reducing global warming (Joskow, 1998; Kittner et al., 2017; Atar and
Durmaz, 2024). Pigato et al. (2020) and Blanco et al. (2022) argue that there is an urgent
need to transfer knowledge and low-carbon technologies from advanced countries to devel-
oping countries given that future emissions are anticipated to come from these countries in
their quest to exponentially increase living standards and eradicate poverty. Understanding
the link between research and development and global warming can assist policymakers in
crafting effective climate policies and developing strategies for managing risks and adapting

to climate changes.

4.3 Model, Data and Econometric Methods

4.3.1 Empirical Model

Following Churchill et al. (2019), we model the relationship between R&D intensity and
global warming. Our empirical model examines whether research and development (R&D;;)
is positively or negatively impacts global warming (GW;;). Both R&D and global warming
are panel time series. We define global warming as the individual countries’ greenhouse gases
emissions contribution to the changes in average global temperature. While the relationship
itself could be unconditional, it’s more likely to be conditional upon other factors (X;;). The
relationship between global warming and research and development, could be linear but also

could be dependent upon the level of development, see for example Grossman and Krueger
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(1991, 1995).? Some level of environmental degradation seems inevitable in the initial stages
of development. Yet, beyond a specific income level, the decline in environmental quality

may start to improve. We therefore formulate the following empirical model:

GWi = f(R&Djr, Xit) = Pio + B1R& Dy + BaXit + i (4.1)

Equation (4.1) sets out the empirical model, in which Sy, 51 and [3; are estimated parameters
and wu; is the error term at time t for country ¢. We enhance the general specification in
Equation (4.1) by being explicit about the conditional factors in Equation (4.2). These condi-
tional factors include trade (TRADE};), financial development (M2;), population (POP;),
real GDP per capita (Y};); and a quadratic function of real GDP (Y;?). The extended empirical

model is:

GWit - BZ'O + BlR&th + BQTRADEIt + 63M2it ( )
4.2

+ BsPOPy + B5Yi + B6Yi; + wat
Bio represents the individual country-specific effects, 81 to (g are the parameter coefficients to
be estimated. GW;; denote global warming, and R&D;; denote Research and Development
(R&D) intensity. Yj; is real GDP per capita; Y;? is the quadratic function of Yj; financial de-
velopment is measured by M2;; in Equation (4.2), which is the ratio of broad money to GDP;
POP; is the total population; and TRADE;, is the ratio of trade (imports plus exports) to
GDP. In the early stages of economic growth, higher per capita income leads to increased en-
vironmental degradation due to industrialization, urbanization, and increased consumption.
Therefore the expected sign on real GDP is (i.e. [5) is positive. After reaching a certain
income threshold (the turning point), further income growth leads to a reduction in environ-
mental degradation as economies shift toward cleaner technologies, better regulations, and
increased environmental awareness. Hence, the expected sign on the quadratic term of Real
GDP (i.e. () is negative. Our a priori expectation of the coefficients of trade (i.e. [33), finan-

cial development (i.e. f53) and population (i.e. [34) are negative signs. Trade openness can

2The authors find that concentrations of two pollutants increase with per capita GDP at low-income levels
but decrease at higher income levels. However, for most indicators, economic growth leads to an initial phase
of environmental destructions, which is later improved as income levels increase.
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lead to clean technology spillovers which substantiate the pollution halo effects of advanced
economies. The OECD countries are characterised by stronger and well-developed financial
sector. These countries have earmarked funds for green R&D and environmentally-friendly
technologies. With more cleaner, green and efficient technologies, an increasing population
can benefit from such developments, which may lead to lower emissions per capita.

By extension, we decompose R&D intensity into global factors and idiosyncratic (country-
specific) factors. Idiosyncratic R&D represents efforts unique to individual countries, focusing
on proprietary technologies or processes that may lead to competitive advantages. While the
global (common factor R&D) spillovers constitutes collaborative research initiatives, shared
technological advancements, or widespread industry practices that collectively influence en-
vironmental outcomes. In Section 4.4.4, we analyse how global warming responds to changes
in country-specific R&D intensity (R&DZ) and the global (common) component of R&D
intensity (R&D/"). This is obtained as a multivariate decomposition of country-level R&D

intensity. We derive the model below:

GWi = f(R&Djy, Xit) = Pio + B1R& Dy + B2 Xt + i (4.3)

We decompose R&D as

R&Dy = R&DF + R&D}, (4.4)

The decomposition of R&D intensity is done by employing a principal component analysis
and multivariate factor stochastic volatility model. For the principal component analysis
(PCA), we follow this approach: we run a PCA on R&D intensity for country i at time ¢,
as this calculates the principal components. We then generate the scores of the principal
components retained, this represents the common factor, also known as global spillovers
(R&DF). Finally, we computer the idiosyncratic scores, the country-specific R&D intensity
(R&D}). The idiosyncratic scores are the difference between the actual R&D intensity
values and their modeled values. For the MFSV approach, we estimate our model with

one factor (r = 1) and implement the MCMC approach with 5000 draws. The common
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R&D factor captures cross-border collaborative dynamics as it reflects fluctuations in R&D
intensity across countries. It also highlights on shared technological advancements given that
R&D advancements in one country often influence innovation trajectories of other countries
through trade, licensing, or international patent families. The factor distinguishes global
trends from country-specific policies. This allows for straightforward attribution of global
collaborative R&D initiatives.

We then formally formulate our extended model as follows:

GWy = f(R&DF, R&D.,, X3)
(4.5)
= BiO + ’YlR&DtF -+ ’)/QR&DZIt -+ ’YgXit + €4

Where ;o denotes the individual country fixed effects, 7, and 7, denote the parame-
ter coefficients of global R&D (R&D!') and country-specific (R&D},) R&D spillovers (see
equations (4B-1) to (4B-4) in Appendix B for the underlying models), and 73 denotes the
parameter coefficients of the control variables X;;, such as population, trade openness, finan-
cial development, GDP per capita, and the quadratic term of GDP per capita. In relation
to the decomposition, Gillingham et al. (2008) contend that important issues in empirical
modelling include accurately calculating the opportunity costs of creating knowledge about
climate change, managing knowledge spillovers, and finding a solid empirical basis for pa-
rameterizing technological relationships. These are all important for understanding how
technological change affects climate change. However, there is no one approach that works
best in all areas, and the analytical goal (positive or normative) may determine which method
is preferred.

This chapter argues that innovation that improves efficiency can significantly impact
energy consumption and greenhouse gas emissions among countries; see also Fisher-Vanden
and Wing (2008). It is commonly believed that when advanced technologies spread from
developed countries to developing ones, it will enhance the efficiency of the latter, leading to
lower energy consumption and reduced greenhouse gas emissions, thereby inhibiting global

warming. While this outcome might indeed happen, it is also probable that greater efficiency
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will lead to faster growth in output, which could result in higher energy consumption and
emissions overall; for example, see Fisher-Vanden (2003). While boosting productivity is a
key focus of research and development in many countries, there is a growing emphasis on
improving product quality and diversity in innovative efforts. This trend matters because
these improvements can influence energy consumption and emissions by altering the mix of
output and how value-added is distributed across industries, which is essentially structural
change.

Sectors that see more rapid advancements in product quality and variety are likely to
grow at a faster pace compared to their less innovative counterparts, altering the general
composition of overall output. The energy and emissions intensities of the overall economy
could increase or decrease based on the energy consumption patterns of these key industries.
In an earlier study, Van der Zwaan et al. (2002) indicated that incorporating endogenous
innovation leads to earlier emission reductions in order to comply with atmospheric carbon
concentration limits; see also Wang et al. (2020). Nonetheless, the impact is more significant
than what the literature indicates. Additionally, developing non-fossil energy technologies
presents a significant chance for reducing emissions (Atar and Durmaz, 2024). R&D deliv-
ers efficient and environmentally sustainable solutions of green innovations, while economic
growth can improve efficiency and reduce carbon intensity; see Lv et al. (2021) and Li and
Wei (2021). However, growth driven by R&D may lead to brown innovation if such initiatives
are not environmentally-friendly, which could worsen global warming; see also, Chen et al.
(2020). Technology diffusion and specialization in cleaner industries can lead to pollution
haven effects or clean technology spillovers—that is, pollution halo effects (Letchumanan and
Kodama, 2000). Overall, these factors play a crucial role in promoting R&D and reducing

emissions, and eventually limiting global warming.
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4.3.2 Data

In this section, we provide details of our data and the macroeconomic variables used in our
study to test the relationship between climate and innovation activity. We have panel data
for 20 OECD countries from 1870 to 2021 sourced from Jones et al. (2023) and Churchill
et al. (2019). This is extended to include 2015 to 2021 data sourced from the World Bank’s
World Development Indicators. We focus on twenty advanced economies while examining
whether impacts global warming based on the following: (1) research and development allows
for significant innovation in climate-related technologies, such as renewable energy and sus-
tainable manufacturing. (2) OECD countries also have more reliable data on R&D spending,
environmental policies, and emissions can be evaluated to reduce emissions globally. Above
all, the diverse economic and industrial structures of OECD countries can also highlight the
most effective R&D investments in combating climate change.

Central to our analysis is that we seek to explain the impact of R&D on climate change.
Our country climate change measure is each country’s contributions to global warming via
emissions as a ratio. Our climate change variable (GW};) is measured as a percentage of
greenhouse gases emissions contribution to the world’s temperature change in levels. This
is sourced from Jones et al. (2023). The independent variable is research and development
intensity (R&D;;), measured as the ratio of nominal R&D expenditure to nominal GDP
sourced from Churchill et al. (2019) and World Development Indicators in log levels. Other
variables include Yy, Y2, M2, POP;, and TRADE; are control variables in their natural
logarithm. Yj; is real GDP per capita; Y;? is the quadratic function of Yj; M2 is the
ratio of broad money to GDP, a common proxy for financial development; POP is the
total population; and TRADE is the ratio of trade (imports plus exports) to GDP sourced
from Churchill et al. (2019) and World Development Indicators. These control variables
account for the finance, trade, and population-level channels as potential mechanisms to
influence R&D and global warming. In Section 4.4.4, we decompose each country’s research

and development intensity into an idiosyncratic component and a common factor spillovers,
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representative of country-specific and global spillovers of research and development intensity
and their corresponding effects on global warming. We use a multivariate stochastic volatility
model and principal component analysis to estimate the country-specific and global R&D
spillovers.

We report the correlations among the variables in Table 4A-1 in the Appendix. We observe
significant correlations between trade and global warming (negative) as well as population
and global warming (positive). Also, a positive correlation between R&D intensity and trade
openness is evident. Essentially, countries that invest resources into R&D tend to be more
innovative and competitive on the global level, which results in greater trade openness. This
promotes the spread of technology through trade, boosting local research and development
initiatives (Dechezleprétre and Glachant, 2014). As the population grows, it can result in
increased greenhouse gas emissions and harm to the environment since there is a greater
need for resources such as energy, water, and food; see Khan and Hanjra (2009). Liberalising
trade can enhance GDP per capita by drawing in foreign investment and facilitating access to
international technology and expertise (Henry et al., 2009). On the other hand, an increase
in population can lead to a decrease in the resources available for each individual, which can
restrict the funds for investments that boost productivity (Bloom et al., 2003). Dependency
ratios can restrict the growth of GDP per capita.

The way investment resources are allocated and our willingness to take risks can have an
impact on sectors that rely heavily on research and development. Larger populations striving
for self-sufficiency and the presence of trade policy barriers can influence the level of trade
openness (Ewing-Chow and Slade, 2016). As GDP per capita rises, financial development
grows, bolstering banking systems, savings, and investments. An increase in GDP per capita
boosts the demand for money, which in turn leads to a larger money supply (Hall, 2009). The
connections between macroeconomic factors and environmental variables are clearly evident

in these relationships.
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4.3.3 Econometric Methods

Understanding the empirical relationship between climate change and macroeconomic vari-
ables is not relied on one-sided method. Theoretical climate-economy models, such as In-
tegrated Assessment Models (IAMs), are often underpinned by assumptions that can be
investigated empirically; see Churchill et al. (2019). There are also major limitations to
understanding of key socioeconomic and physical factors, along with model design choices.
Those factors contribute to data limitations in studying climate change and mitigation poli-
cies. Studying the impact of R&D on global warming over a longer period could be complex.
The relationship might potentially experience time-varying volatility, structural breaks, en-
dogeneity, and non-linearity, as well as the impact being heterogeneous across countries; see
also Churchill et al. (2019) and Huang et al. (2021).

To examine our key empirical relationships, we use a variety of estimators. These have
various strengths and allow us to examine the robustness of our results with different es-
timators. The objective, however, is to address potential cross-sectional dependence, and
endogeneity while estimating the relationship between R&D intensity and greenhouse gas
emissions contribution to global warming. First, we use a fixed effects estimator, assuming
that the individual-specific effects are jointly significantly and are correlated to the explana-
tory variables. We also assume that there are issues with endogeneity with the individual-
specific effects and the other explanatory variables. If endogeneity is apparently not an issue,
then the random effects estimator would confirm that. The relationship between R&D inten-
sity and global warming could potentially have reverse causality. Given that global warming
can lead to increased R&D intensity to mitigate its effects, the nature of R&D activities
can either contribute to or reduce global warming. This can be attributed to underlying
factors such as economic growth, policy frameworks, and social awareness that shape both
R&D intensity and global warming. A strong economy, for instance, may allocate more R&D
resources while also boosting industrial activity generating emissions. This widespread de-

pendency might obscure the link between R&D intensity and climate change. Churchill et al.
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(2019) argues that R&D intensity can have a detrimental impact on environmental quality
due to increased production, which is referred to as the scale effect that comes with higher
economic growth (Omri et al., 2015) and trade openness (Chen et al., 2022). Although new
technology has the capacity to enhance efficiency, achieving higher output may still neces-
sitate the utilisation of additional natural resources, potentially resulting in an increase in
CO2 emissions (Chen et al., 2020). This may cause atmospheric carbon concentration, and
eventually altering average global temperature, leading to global warming (Pindyck, 2021).
Given this, we suspect endogeneity between R&D intensity and global warming. Hence, we
employ the two-stage least square fixed effects instrumental variable estimator as the final
method coupled with per capita income and the one-year lag of per capita income as valid
instruments that can correct for this bias. We use the fixed effects regression with Discroll-
Kraay standard errors to address cross-sectional dependence among the countries, in the
spirit of Driscoll and Kraay (1998).

To address non-linearity, heterogeneity, and time-varying effects, we use a polynomial
(quadratic) function of research and development intensity, split the sample period into pre-
World War II and post-World War II following Churchill et al. (2019) and also based on
structural break tests. Further, country groupings into G7 and others are used to throw
more light on the heterogeneous effects of R&D intensity. The relationship between R&D
and global warming may not remain constant over time. By splitting the sample or testing for
breaks, we can account for changes in how they interact, such as shifts in policy, technology,
or economic conditions. This averts the assumption of a single linear relationship from over-
simplifying the dynamics. Moreover, different time periods or subgroups may exhibit distinct
characteristics or responses. Most especially, countries at different stages of development or
facing different levels of climate risk might respond differently to similar policies. Splitting
the sample allows for separate analysis of these differences, capturing the heterogeneity and

time-varying effects.
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Table 4.1: Descriptive statistics

’ Mean ‘ SD ‘ Max. Min. ‘ Obs. ‘
GW,, 2.35 5.61 29.68 0.09 3,040
R& Dy, 0.12 0.52 3.49 0.00 3,040
TRADE; -2.62 2.48 16.15 -7.22 3,040
POP; 16.32 1.50 19.62 0.00 3,040
M2 4.03 0.95 10.46 0.00 3,040
Y; 8.94 1.52 26.13 -9.80 3,040
Y? 82.30 37.64 682.65 32.78 3,040

Notes: This table contains descriptive statistics for: Mean; SD = standard deviation; Max = maximum
value; Min = minimum value; Obs. = number of observations.

4.4 Results and Discussion

4.4.1 Descriptive Statistics

This section reports on the descriptive statistics of the variables, as presented in Table 4.1.
The descriptive statistics indicate a substantial variation across most variables, particularly
in global warming, R&D intensity, and trade openness (see the standard deviations). These
variations highlight the diverse economic and environmental contexts represented in the data.
These variations are important in understanding the relationship between R&D activities,
economic factors, and their potential impacts on global warming. The large standard de-
viations across most variables suggest that our study needs to account for the significant

heterogeneity in the sample.

4.4.2 Preliminary Tests

We begin our investigation by first testing for cross-sectional dependence in the spirit of Pe-
saran (2015, 2021). The null hypothesis of the cross-sectional dependence assumes weak cross-
sectional correlations among the units. The alternate hypothesis confirms cross-sectional
dependence, suggesting that the units are strongly correlated. The outcome of the test is
presented in Table 4.2. We reject the null hypothesis of cross-sectional dependence at 1%

significance level. Also, the cross-sectional exponent « indicates strong cross-sectional de-
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Table 4.2: Unit root and cross-sectional dependence tests

| | CIPS | Lags | Remarks [ CDtest | CD o] |
GWa, 22647 4 1(0) 164,457 0.88
R&Dy, 3.7k 1 1(0) 169.45%%+ 1.00
TRADE; 2,634 1 1(0) 151.20%** 1.00
POP, L9 5k | 1(0) 144.68%+* 1.00
M2y, 9,36+ 1 1(0) 30,724+ 0.90
Yy L0.27%* 1 1(0) 125.41%%* 1.00

Notes: This table reports the unit tests. CIPS represents cross-sectional IPS unit roots developed by Pesaran
(2007). The null hypothesis suggests all panels have unit roots. The alternate hypothesis suggests at least
one series in the panel has no unit root for CIPS test and some (but not necessarily all) have not unit root
for TIPS test. CD and « denote cross-sectional dependence tests by Pesaran (2015, 2021). We reject the
null hypothesis of weak cross-sectional dependence when the CD statistics shows a p-value less than 0.05.
Cross-sectional dependency is considered strong when a = 1, semi-strong 0.5 < a < 1, weak o = 0, and
semi-weak 0 < o < 0.5. Asterisks *** ** and * denote 1%, 5% and 10% significance levels.

Table 4.3: Cointegration tests

Westerlund Cointegration Tests

(1) GWy, R&D;y, TRADEy, POPy, M2, Yy, Y 8.8k
(2) GWy, R&D%, TRADE;, POPy, M2, Yy, Y 8.9k
(3) GWy, R&D),, R&DY, TRADE;;, POP;y, M2y, Vi, Y;? 1.67**

Notes: This table contains a test statistics for estimating cointegration, variance ratio test from Westerlund
(2005) where we reject the null hypothesis of no cointegration when the test statistics have a p-value less
than 0.05. P-values are presented in the square brackets. Asterisks *** ** and * denote 1%, 5% and 10%
significance levels.

pendence among the variables. We strongly confirm evidence of cross-sectional dependence
among the selected variables.

We then test for stationarity, and structural breaks of the variables given the longer time
span of the data. In particular, we use Pesaran (2007) test for testing the stationarity levels
of the variables. We present the outcome of our unit root tests in Table 4.2. We therefore find
no evidence that there is pervasive non-stationarity in the data nor the possibility that there
can be spurious relationships. This is contrary to what Churchill et al. (2019) observed for
variables such as carbon emissions, population, and GDP. On the other hand, we further test
for cointegration of the variables in the models. The outcome, which is exhibited in Table 4.3,
indicates that the null hypothesis of no cointegration or spurious regression is rejected at 1%
significance levels for models (1) and (2), and at 5% significance level for model (3). Finally,

we test for structural breaks in our model using the test developed by Ditzen et al. (2021).
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While testing for structural breaks, we also account for heteroskedasticity, autocorrelation,
and cross-sectional dependence. The outcome is presented in Table 4.7. It is important
to emphasise that upon accounting for cross-sectional dependence of R&D intensity for the
structural break test, we observe a one-year break point, i.e., 1967. When we account for
the cross-sectional dependence of global warming, then the break points turn out to be two
years, i.e., 1908 and 1968. Furthermore, we consider the cross-sectional dependence of all

variables and identify a one-year breakpoint in 1946.

4.4.3 Benchmark Results
Empirical Linear Model

For the initial estimations, we use the four estimators discussed to capture and address the
major econometric issues raised in the existing literature in order to produce reliable and
valid results for robust inference; see, for example, Churchill et al. (2019) and Huang et al.
(2021). We assess whether our empirical results are robust to different empirical estimators.
These estimators are fixed effects (FE), random effects (RE), fixed effects with Driscoll-Kraay
standard errors (FE-DK), and two-stage least squares fixed effects instrumental variable
regression (FE-IV).

Global warming could be influenced in diverse ways such as through industrial policies,
energy mix, technological diffusion, population, trade, financial development, etc. If these
factors are omitted from the analysis, the projected direct impact of R&D on global tempera-
ture could be negligible. In as much as a direct bivariate regression could be important, it may
be misleading when R&D affects emissions since it could be indirect, potentially mediated
by technology adoption, regulation, or economic growth. We formally assess the relationship
between R&D intensity and global warming in our benchmark model including factors such
as population, trade openness, financial development, economic growth, and exponential rise
in economic growth.

We present the results for our benchmark model in Table 4.4 for the linear estimations.
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Table 4.4:

Benchmark climate change model

| Estimator | FE | RE | FE(DK) | FEIV |
R&D; 0.17FFF 0. 17 -0.17** -0.16**
(0.05) (0.05) (0.07) (0.05)
TRADE; -0.03* -0.03** -0.03* -0.03%*
(0.02) (0.02) (0.01) (0.02)
M2, -0.06** -0.06* -0.06 -0.04
(0.03) (0.03) (0.05) (0.03)
POP; -0.33%FFF | 0328 | L0.33FRF | -0.60%F
(0.04) (0.04) (0.05) (0.15)
Vit 0.10%* 0.09%* 0.10 0.69%*
(0.05) (0.05) (0.09) (0.31)
V7 -0.01%FFF | -0.01%* -0.09%* -0.03%*
(0.00) (0.00) (0.00) (0.01)
Constant 7.72%HK 7.65%H% 77244 8.88HH*
(0.57) (1.29) (0.41) (0.87)
R? 0.19 0.19 0.08 0.23
F-stat. 44.26%* 400.51%*
X2 263.07*** 17980.53***
F-test: All 5; =0 3590.72 3523.79
[0.00] [0.00]
N xT 3,040 3,040 3,040 3,020

Notes: This table presents the results of R&D intensity’s impact on global warming (GW;;). FE = Fixed
Effects. RE = Random Effects. FE-DK = Fixed Effects with Discroll-Kraay standard errors addressing
cross-sectional dependence. FE-IV = Fixed Effects Instrumental Variable. The F-test assumes the joint
significance of the fixed effects. If the p-value is low (< 0.05), we reject null hypothesis, suggesting that
individual-specific effects are significant, and FE should be used instead of pooled OLS. Square brackets [ ]
exhibits the p-values of the F-tests. X2 test statistic has a null of poor model fit. Asterisks ***, ** and *
denote 1%, 5% and 10% significance levels. Standard errors are presented in the parentheses.

Our analysis indicates a significant inverse relationship between R&D intensity and global
warming. Specifically, a 1% increase in R&D intensity is associated with a reduction in green-
house gas emissions’ contribution to global warming by approximately 0.16% to 0.17%. Fixed
Effects (FE) and Random Effects (RE) estimators both yield a coefficient of -0.17, significant
at the 1% level, while the Fixed Effects-Instrumental Variables (FE-IV) estimator produces
a coefficient of -0.16, significant at the 5% level. These findings underscore the substantial
impact of R&D intensity on mitigating global warming. We use the fixed effects estimator to

robust-check the random effects estimator. Subsequently, we estimate the extended model by
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excluding the quadratic term of per capita income (Y;?). This would allow us to comprehend
whether the estimation of the benchmark model would be spurious. This is because, in our
initial unit root tests, we observe that the variable Y;? is non-stationary and perhaps may be
an unbalanced regression if included in the model. The outcome of our findings is presented
in Table 4A-4. Our evidence suggests that the sign on the coefficient of R&D intensity is
unaffected except the magnitude that slightly decreases. Moreover, the estimated coefficient
of R&D intensity loses its significance upon addressing cross-sectional dependence with the
FE-DK estimator. This implies that the inclusion of ¥;? in the benchark model is substantial
as it allows us to assess the scale effects of the environment-economic development nexus.

To shed light on the conditional variables, we observe negative sign on coefficients for
trade, financial developmment, population and the quadratic term of real GDP per capita.
With exception of real GDP per capita which shows positive sign. This implies that the role
of trade openness, population and financial development are beneficial to the effects of R&D
on global warming. However, the sign on financial development becomes insignificant after
addressing cross-sectional dependence and endogeneity issues. In view of this, we can argue
that population and trade openness serve as moderators to amplify the positive environmental
impacts of R&D by facilitating the diffusion of clean technologies (Klette and Kortum, 2004)
or fostering economies of scale and increased public pressure for sustainable policies (Dai,
2025). In addition, as income levels of countries’ increase, they are better able to invest
in the development of cleaner and efficient technologies that could exert positive effects
on environmental quality (Grossman and Krueger, 1995). This is because some level of
environmental degradation is inevitable in the initial phases of development. The implication
is, beyond a specific income level, the extent to which environmental quality declines will
diminish.

In the context of model comparisons, we find that the estimated coefficients for the fixed
effects results of our extended model are similar to those of the random effects estimations,

as presented in Table 4.4. In contrast, according to our Hausman test presented in Table

111



4A-3 in the appendix, the fixed effects estimations are preferable to the random effects
estimations. We observed that the individual-country specific effects and the explanatory
variables are correlated. In addition, the Hausman (1978) test statistic for both Fixed Effects
and Random Effects are consistent under the null, but RE is more efficient. In contrast, the
FE is consistent under the alternative. Rejecting the null of equivalence of FE and RE

suggests that we normally should adopt FE.

Empirical Non-Linear Model

Turning now to the estimates of the non-linear models’ estimations, we assess the relation-
ship between the quadratic term of R&D and global warming coupled with the other control
variables. We argue there may be non-linearity in the relationship between R&D and global
warming; a negative coefficient is consistent with dimisnishing marginal returns. R&D in-
tially is very powerful in reducing a country’s contribution to global warming but the effect
diminishes with more R&D. We present the results in Table 4.5. We find negative relation-
ship between the quadratic term of R&D and global warming. The evidence suggests that a
percentage point increase in R&D intensity is most likely to lead to a reduction in the share
of greenhouse gas emissions contribution to global warming by 0.06% and 0.07% at 1% and
5% significance levels. We find that higher R&D intensity could possibly reduce the share
of greenhouse gas emissions contribution to average global temperature changes. However,
the relationship between R&D intensity and global warming is nonlinear, given that for all
our estimations we observed a consistent negative, significant and reduced coefficients. In
contrast, the magnitude of the impact is likely to diminish over time, as compared to the
results of the linear estimations in Table 4.4.

This revelation is in support of Newell (2009)’s assertion that as the stock of existing
knowledge increases, it becomes more difficult to make new discoveries, which results in
lower levels of R&D intensity over time. Also, Aleluia Reis et al. (2023) argue that a strong

initial investment is crucial to kickstart the transition, after which R&D spending can slowly
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Table 4.5: Benchmark climate change non-linear model

| Estimator | FE | RE | FE(DK) | FEIV |
R&D?, -0.06%¥* [ -0.06%%* -0.06%* -0.07%F
(0.02) (0.02) (0.02) (0.02)
TRADE; -0.03** -0.03** -0.03%* -0.03%*
(0.01) (0.01) (0.01) (0.01)
M2, -0.06** -0.06** -0.06 -0.04
(0.03) (0.03) (0.04) (0.03)
POP; -0.33%FFF | -0.32%F | L0.33FRF | -0.61%F
(0.04) (0.04) (0.05) (0.15)
Yy 0.10%* 0.10%* 0.10 0.71%*
(0.05) (0.05) (0.09) (0.31)
V7 -0.01%FFF | -0.01%* -0.01%* -0.03**
(0.00) (0.00) (0.00) (0.01)
Constant 7.70%H* 7647 7.70%H* 8.9k
(0.56) (1.29) (0.39) (0.87)
R? 0.19 0.19 0.08 0.23
F-stat. 45.08%** 391.65%**
X2 267.99%* 18018.41%**
N xT 3040 3040 3040 3020

Notes: This table presents the estimations of the impact of long run impact of the quadratic term of R&D
intensity on global warming for a sample of 20 OECD countries from 1870 to 2021. X2 test statistic has a
null of poor model fit. Asterisks ***, ** and * denote 1%, 5% and 10% significance levels. Standard errors
are presented in the parentheses.

decrease as the benefits of learning-by-doing take over. Initially, investment in research and
development might be entirely focused on tackling climate change—that is, on renewable
energy and green innovations. In the likely event, R&D may change to other priorities,
such as artificial intelligence, biotech, and defense as economies grow, which may potentially
reduce its ability to slow down global warming.

We conclude that the relationship between R&D intensity and global warming is negative
and substantial, as well as could potentially persist for a longer period. Additionally, we
confirm an inverted U-shaped curve relationship between real GDP per capita and global
warming in our sample. A U-shaped curve is suggested by Grossman and Krueger (1991,

1995), as it indicates that as income increases, countries are better able to invest in R&D

and may adopt more efficient technologies. This would perhaps likely minimise the overde-
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pendence on natural resources while also mitigating emissions and pollutants (Dinda, 2004),
leading to a clean and healthy environment (Grossman and Krueger, 1995). A substantial
amount of R&D investment is likely to improve environmental quality when stringent and
effective environmental policies and management systems are in place to ensure proper waste
management, pollution, and emissions mitigation (Arora and Cason, 1996; Churchill et al.,
2019; Huang et al., 2021; Paramati et al., 2021). Our findings are robust to cross-sectional
dependence, unobserved heterogeneity, non-linearity, and endogeneity. The relationship is

conditional upon per capita income, population, financial development, and trade openness.

4.4.4 R&D Common Factors

Further, we assess the relationship between R&D intensity and global warming by using the
decomposition into country-specific and global spillovers in the extended model. Following
Coe et al. (2009), we decompose R&D intensity on the assumption that there may be po-
tential spillover effects internationally from one country to another. Our method is different
from Coe et al. (2009) who model foreign R&D as a means of identifying spillovers, while
we model spillovers looking at a common factor and the extent to which each country locks
on to the common with a factor loading. Our factor model approach also has the advan-
tage of being able to model spillovers for a long data period, while Coe et al. (2009) may
not be feasible given the absence of data sources that span 150 years. Country level or id-
iosyncratic R&D involves exclusive efforts by individual countries, while global (common)
R&D spillovers involves collaborative research, shared technologies, and industry practices
influencing environmental outcomes.

Our common factor approach also has considerable advantages in terms of generality. We
model common factors in two ways: in terms of growth rates and in terms of volatility. First
we use the principal component analysis (PCA) to extract the common factor of research
and development intensity and further compute the idiosyncratic components. For robust-

ness sake, second we model commonalities by using a multivariate factor stochastic volatility
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Table 4.6: Climate change and R&D PCA decomposition

| Estimator | FE | RE | FE(DK) | FEIV |
R& D}, 0.03%** 0.03%** 0.03%* 0.03%**
(0.01) (0.01) (0.01) (0.01)
R&DYf -0.05%FF | -0.05%*F | -0.05%FF | -0.05%*
(0.01) (0.01) (0.01) (0.01)
TRADE; 0.01 0.01 0.01 0.01
(0.02) (0.02) (0.01) (0.02)
M2, -0.05% -0.05* -0.05 -0.02
(0.03) (0.03) (0.05) (0.03)
POP; 0.19%FF 1 0.18%¥F | 0. 19%FF | 0.48%K
(0.05) (0.05) (0.05) (0.14)
Vit 0.14%* 0.14%* 0.14 0.78%*
(0.05) (0.05) (0.09) (0.32)
V7 -0.01** -0.01** -0.01* -0.03**
(0.00) (0.00) (0.00) (0.01)
constant 5.05%** 4.,92%k* 5.05%#* 6.18%**
(0.85) (1.43) (0.66) (0.97)
R? 0.10 0.09 0.09 0.18
F-stat. 40.85%** 534.89%**
X2 284.34%** 18093.87+**
N xT 3,040 3,040 3,040 3,020

Notes: This table presents the results decomposed R&D intensity’s impact on global warming. Here, the
decomposition is done using a principal component analysis. X2 test statistic has a null of poor model fit.
Asterisks *** ** and * denote 1%, 5% and 10% significance levels. Standard errors are presented in the
parentheses.

(MFSV) model created by Hosszejni and Kastner (2021a) and estimating it using Bayesian
methods. The factor stochastic volatility model’s Bayesian estimation is based on standard
univariate stochastic volatility implementations and includes a number of new features to
make it work efficiently. The major advantage of using the MFSV is that it aids in under-
standing the intricate connections among various factors and their fluctuations in a dynamic
manner, as shown in Equation 4.4 in Section 4.3.1. Essentially, instead of addressing the
volatility of each variable on its own, it posits that a limited number of underlying factors
influence the overall volatility across all variables. This diminishes the complexities while

still capturing essential patterns in the data. The objective, however, is to augment the PCA

115



approach as the multivariate factor stochastic volatility approach uses the log-volatilities as
against the levels that is used by the former.

The outcome of the findings is presented in Table 4.6 for the principal component anal-
ysis decomposition of R&D. We observe a negative and statistically significant relationship
between global R&D spillovers and global warming. However, the PCA computation of
country-specific research and development intensity exhibits consistent positive and signif-
icant relationship with global warming.® A study shows that research and development
spending and renewable energy consumption negatively correlate, further affirming that an
increase in country-level research and development investment may not inherently lead to
renewable energy consumption. Meanwhile, greater investments in physical assets, such as
machinery and infrastructure, frequently result in higher emissions, as numerous industrial
and infrastructure initiatives are energy-intensive.*

In retrospect, we show that the intensity of global R&D spillovers have a notable neg-
ative effect on global warming, suggesting that an increase in global R&D spillovers could
potentially decrease global warming. This indicates that advancements in technology and
innovations fuelled by global research and development and the transfer of advanced tech-
nologies as well as knowledge from developed countries to developing countries can result
in more efficient or cleaner technologies that could help address climate change; see Pigato
et al. (2020) and Blanco et al. (2022). In addition, the influence of country-level R&D in-
tensity on global warming is devastatitng, indicating that tackling climate change requires
a coordinated global approach. The research highlights the importance of working together

globally in areas like research and development, implementing flexible climate policies, and

3Table 4A-5 presents the findings for the multivariate stochastic volatility decomposition of R&D intensity.
Our evidence suggests that global R&D intensity has a negative and significant relationship with global
warming as a result of global spillovers. As shown for all the estimators, a percentage point increase in global
R&D spillovers could potentially reduce global warming by about 0.07% and 0.09%. Moreover, we find that
the country-level R&D intensity has an inconsistent impact on global warming across all estimations. In
terms of the two approaches, the outcome of our findings does not differ except that there is slight difference
in the magnitude of coefficients and R?.

4Naz et al. (2024) find a positive and moderate correlation among GDP, gross capital formation, labor,
and greenhouse gas (GHG) emissions, most especially in the G7 countries.
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using a mix of policy measures, technology, and current innovation to enhance the beneficial

effects of R&D on climate change.

4.4.5 Structural Breaks

Recognising structural breaks is key to assessing R&D intensity’s long-term impact on global
warming. These breaks lead to important changes in how R&D relate to global warming over
time, including shifts in historical events and policy, advancements in technology, global eco-
nomic changes, variations in data availability and measurement, and an increasing awareness
of climate change (Ditzen et al., 2021). Historical events such as industrial revolutions, ma-
jor wars, and environmental policies like the Kyoto Protocol and the Paris Agreement may
have changed the dynamics of global warming and R&D intensity; see Atar and Durmaz
(2024). Technological breakthroughs in renewable energy and advancements in energy effi-
ciency might have changed how R&D efforts affect emissions; see Acheampong et al. (2022)
and Abbas et al. (2024). Shifts in how data is collected and a growing awareness of climate
change might lead to structural breaks in the data, suggesting a change in the focus and
effectiveness of R&D efforts to combat global warming.

We conduct structural break tests on the assumption that the break dates are unknown
and there may be potential cross-sectional dependence of R&D intensity and global warm-
ing. The structural break tests are presented in Table 4.7 for all variables’ cross-sectional
dependence specification. Other specifications include R&D cross-sectional dependence and
global warming cross-sectional dependence while assessing the structural breaks, as presented
in Table 4A-2 in the Appendix. In the spirit of Ditzen et al. (2021), we performed structural
tests against the null of no structural breaks. The alternate hypothesis suggests at least one
structural break. The outcome of the test indicates a critical value of 10.25, which is above
the critical value of 4.08 at 1% significance level. We, however, reject the null hypothesis
of no structural break, as presented in Table 4.7. Based on these structural break tests,

we include dummies of the break years as exogenous variables in the baseline models. The
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Table 4.7:

Structural break tests

Stat. 1% 5% 10%
Critical Critical Critical
value value value

Structural Break Test 1
GW; = {(R&Dyy, TRADE;;, POPy,
M2y, Ya, Y2)
F(1]0) 10.25%** 4.08 3.35 2.99
F(2]1) 3.31 4.32 3.69 3.34
F(3]2) 3.77* 4.51 3.84 3.53
F(4]3) 3.73* 4.59 3.96 3.68
F(5/4) 6.93*** 4.70 4.07 3.77
Cross-section dependence = GWy,
R&D;;, TRADE;,, POP;, M2, Yy,
Y;?, Break points = 1 year: 1946

Notes: This table presents the results for structural break tests. The structural break test accounts for
heteroskedasticity, autocorrelation, and cross-sectional dependence where the cross-sectional variables are
exhibited in parentheses for each test. The test is developed by Ditzen et al. (2021). Asterisks ***  **,
and * denote 1%, 5% and 10% significance levels. F(1]0) rejects the null of no structural breaks against the
alternate hypothesis of one structural break. F(2|1) accepts null of structural break hence we conclude that
there is evidence of structural break. Critical values from 1% to 10% significance levels.

outcome of the estimations, including dummies of the break years, are presented in Table
4.8 taking into account the cross-sectional dependence of all variables with 1946 as the break
year, Table 4A-6 taking into account the cross-sectional dependence of R&D intensity with
1908 and 1968 as break years, and Table 4A-7 taking into account the cross-sectional de-
pendence of global warming with 1967 as the break year. Our findings indicate that R&D
intensity has a significant negative impact on global warming across all estimations. The
results are consistent with the other findings in terms of the sign of the coefficients. This in-
dicates that, despite addressing structural breaks and the cross-sectional dependence of both
R&D intensity and global warming, as well as the other variables, R&D intensity may have
the potential to mitigate the effects of global warming. While the formal test finds evidence

of one break, the estimator does not suggest that the break is statistically significant.
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Table 4.8: Climate change and R&D: structural breaks

| Estimator | FE | RE | FE(DK) | FEIV
R&D; 0.17FFF 0. 17 -0.17** -0.16**
(0.05) (0.05) (0.07) (0.05)
BREAK gummy 0.07 0.07 0.07** 0.12
(0.22) (0.22) (0.03) (0.22)
TRADE; -0.03* -0.03* -0.03* -0.03%*
(0.02) (0.02) (0.01) (0.02)
M2, -0.06** -0.06** -0.06 -0.04
(0.03) (0.03) (0.05) (0.03)
POP; -0.33%FFF | 0.32%¥F | L0.33FFF | 0.61%F
(0.04) (0.04) (0.05) (0.15)
Vi 0.10%* 0.10%* 0.10 0.70%*
(0.05) (0.05) (0.09) (0.31)
V7 -0.01%FFF | -0.01%* -0.01** -0.03**
(0.00) (0.00) (0.00) (0.01)
Constant 7. T2 7.65%H* 7.2 8.90%**
(0.57) (1.29) (0.41) (0.88)
R? 0.19 0.19 0.08 0.23
F-stat. 37.94%** 1203.25%**
X2 263.09%** 17975, 71%%*
N xT 3,040 3,040 3,040 3,020

Notes: This table presents the estimations of the impact of long run impact of R&D intensity on global
warming for a sample of 20 OECD countries from 1870 to 2021. Here, we focused on the cross-sectional
dependence of all variables while considering the structural breaks: Test (1). The null hypothesis of test the
presence of a break against the alternative of one more break, as it is estimated against lower and upper
limits of breaks. X'? test statistic has a null of poor model fit. Asterisks *** ** and * denote 1%, 5% and
10% significance levels. Standard errors are presented in the parentheses.

4.4.6 Other Results

We further decompose our sample into pre- and post-World War II to understand the time-
varying effects, as these events may have influenced economic priorities and industrial activity.
The outcome of these estimations is presented in Table 4A-8 for the pre-World War II and
Table 4A-9 for post-World War II samples, respectively. Our findings indicate that the impact
of R&D intensity on global warming does not vary in sign but rather in magnitude. The
evidence indicates that the effect of R&D intensity has been minimal following World War 11

in comparison to the period preceding it. The findings imply that while R&D intensity has
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consistently influenced global warming, the post-World War II shift in economic priorities,
diversification of R&D fields, environmental policies, and slower growth in emission-intensive
industries reduced the magnitude of its impact. During pre-World War II period, R&D
was strongly tied to industrial growth, leading to a more pronounced effect on emissions
and global warming, whereas post-World War II, the connection between R&D and global
warming weakened due to a more complex global economic and technological landscape.
Subsequently, we assess the heterogeneity assumption of our sample. We split our sample
of 20 OECD countries into G7 and other 13 countries to better assess the heterogeneous
effects of R&D intensity on global warming. These results are presented in Table 4A-10
for the G7 countries and Table 4A-11 for the other 13 countries in the Appendix. With
their industrialisation, technological leadership, and larger R&D budgets, G7 countries are
likely to show a stronger historical link between R&D intensity and global warming. In
contrast, the other 13 OECD countries may have different R&D and energy policies that affect
emissions, especially in recent years. This separation highlights the different roles of economic
history, policy, and technology in these groups. Our estimations reveal a consistently positive
relationship between R&D intensity and global warming in the G7 countries, whereas a
consistent negative and significant impact of R&D intensity on global warming is evident
in the other 13 OECD countries. In G7 countries, the relationship is positive, which may
likely be due to factors like legacy fossil fuel innovations, and industrial R&D. On the other
hand, the other 13 OECD countries, with a more consistent focus on cleaner technologies and
less reliance on emissions-intensive industries, show a clearer and more consistent negative

relationship between R&D intensity and global warming.

4.5 Conclusion

This chapter examined the relationship between R&D intensity and global warming in the

OECD countries. Research and Development is vital for economic growth and mitigating
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or adapting to the impact of climate change. Investment in R&D may, therefore, lead to
technical change that could have positive effects on environmental quality. Against this
backdrop, we assessed the impact of R&D intensity on global warming for a sample of twenty
OECD countries for over one hundred and fifty years of data. Our multiple estimations
suggest that R&D intensity is empirically relevant for global warming. Increasing R&D
intensity is significantly associated with a reduction in global warming. This relationship is
also time invariant in terms of sign of the coefficient. In addition, there are potential global
R&D spillovers that are likely to scale up the efforts in reducing global warming. This implies
that global R&D spillovers are more important than country-specific intensity. We find that
the magnitude of R&D intensity’s impact on global warming has been diminishing post-
World War II as compared to pre-World War II. The findings are robust to cross-sectional

dependence, endogeneity, and structural breaks.
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Chapter 5

General Discussion and Policy

Implications

This chapter of the thesis shall discuss the policy implications of the research in greater
detail. We begin by examining “The Macroeconomic Impact of Global and Country-Specific
Climate Risk, ” followed by “The Economic Consequences of Green Growth: A Multi-Country

Empirical Study” and finally, “Ré/D Intensity and Global Warming.”
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5.1 The Macroeconomic Impact of Global and Country-

Specific Climate Risk

Chapter two of the thesis highlighted the critical role of global climate risk in impacting
macroeconomic activity. While the literature has primarily examined country-specific climate
risk, our results suggest that such risks, although negative in their impact, are relatively less
significant in comparison to global climate risk. Our results imply long-term and substantial
negative effects of global climate risk on GDP growth across both advanced and emerging
economies. Emphasising the interconnected nature of climate-related shocks and implying a
need for coordinated global policy responses. A key insight from our study is the delayed and
persistent effect of global climate risk shocks on macroeconomic performance. The lagged
impact, peaking around the third year, highlights the structural vulnerabilities economies face
when adjusting to climate-induced disruptions. Furthermore, the temporary overshooting of
GDP following an initial decline suggests that global climate risk shocks introduce volatility
into economic activity before eventual stabilisation. The finding is comparable to those
from Alessandri and Mumtaz (2021) and Donadelli et al. (2022). This finding is crucial for
policymakers in designing adaptive economic strategies that can buffer against such economic
fluctuations. Below are the policy implications for our findings:

Global Climate Governance: Given the dominant role of global climate risk in macroe-
conomic activity, policy measures must prioritise international cooperation. The estimated
adverse impact observed across advanced and emerging economies calls for strengthened
multilateral frameworks, such as enhanced commitments to the Paris Agreement, and better
integration of climate-related risks into global financial stability assessments; see Han and
Cheng (2023).

Structural Reforms: The delayed effects of climate shocks necessitate forward-looking
policies that enhance economic resilience. Governments should invest in climate adaptation

infrastructure, diversify their energy sources towards renewables, and promote sustainable

123



agriculture to mitigate long-term economic disruptions; see also, Chen et al. (2023).

Monetary and Fiscal Policy: Central banks and financial regulators must incorporate
climate risk into macroeconomic forecasting and monetary policy frameworks; see Campiglio
et al. (2018) and Batten et al. (2020). The findings indicate that global climate risk induces
additional economic volatility, which suggests the need for countercyclical fiscal measures,
green financial instruments, and climate stress testing in financial markets; see also, Battiston
et al. (2017) and Lamperti et al. (2021).

Advanced and Emerging Economies: Although both advanced and emerging economies
are adversely affected by climate risk shocks. It is important to emphasise that advanced
economies should ensure reducing carbon emissions through stringent environmental policies
and regulations; see Ahmed (2020). In addition, advanced economies should invest in criti-
cal technologies that could aid decarbonisation; see also, Jigemann et al. (2013). Emerging
economies, on the other hand, require financial and technological support to transition to-
wards climate-resilient growth models while maintaining economic development goals (Nhamo
and Chapungu, 2024). This is in line with notion that developing countries face financial
challenges in addressing the pressing climate change effects whereas advanced economies
contribute the chunk of emissions that causes global warming.

Climate Risk Monitoring: The factor stochastic volatility approach used in this chap-
ter highlights the importance of high-quality climate and macroeconomic data. The available
data on climate change and macroeconomic activity indicate that an increase in annual av-
erage temperature has an effect on macroeconomic growth; see, for example, Alessandri and
Mumtaz (2021), Donadelli et al. (2022), and Kotz et al. (2022). However, a number of macroe-
conomic activities are affected by deviations in daily temperature from seasonal expectations
that are not adequately reflected in annual averages; see Kotz et al. (2021). Governments
and international institutions should invest in climate risk monitoring to enhance prediction
of climate risk.

The macroeconomic effects of climate risk are no longer confined to individual countries
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but manifest through globally interconnected channels. This thesis’s findings reinforce the
argument that mitigating climate risk requires proactive and coordinated global efforts rather
than isolated national policies. The long-term and significant adverse effects of global climate
risk on GDP emphasise the need for immediate and sustained policy actions. Without such
interventions, economies may continue to experience heightened volatility and structural
economic downturns, reinforcing the urgency of integrating climate risk considerations into

economic policymaking.

5.2 The Economic Consequences of Green Growth: A
Multi-Country Empirical Study

Chapter three of this thesis highlights the significant and positive relationship between green
growth and macroeconomic performance, particularly in advanced economies. The compre-
hensive green growth measure, which incorporates environmental productivity, policy re-
sponses, and socio-economic factors, demonstrates that transitioning towards a greener econ-
omy does not necessarily come at the cost of economic expansion; see Easton and Walker
(1997) and Faria and Montesinos (2009). Instead, the results suggest that well-designed green
growth policies that can lead to sustainable economic development; see also, Fay (2012). One
of the key results from this chapter is the heterogeneity in the effects of green growth across
countries. These variations underscore the importance of country-specific conditions, such as
economic structure, labour force composition, and policy implementation for the effectiveness
of green growth policies—in consistent with Igbal et al. (2025) and Sharma et al. (2025). The
presence of significant lagged effects further reinforces the notion that green growth policies
require time to have their full effect. Given these findings, we make the following policy
recommendations:

Particular Country Approaches: Given the heterogeneous effects of green growth,

policymakers must adopt country-specific approaches. While advanced economies can use

125



their existing infrastructure and skilled labour force to ensure green innovation, emerging
economies may need transitional policies that mitigate potential short-term economic dis-
ruptions. Targeted investments in renewable energy, sustainable agriculture, and green in-
frastructure can minimise negative consequences; see, for example, Choi et al. (2021) and
Zhang et al. (2022).

Policy and Institutional Stability: The significant lagged effects of green growth on
GDP highlight the necessity for long-term policy commitment. It is instructive to suggest
that investment incentives (Di Falco and Sharma, 2018), environmental policy stringency
(Song and Knaap, 2004), and maintaining policy consistency (Basheer et al., 2022), would
repose confidence in businesses and investors at large, to participate in sustainable economic
activities. Therefore, policymakers need to pay critical attention to these issues. Short-term
political or economic disruptions should not derail long-term green growth strategies.

Balancing Economic and Environmental Goals: While green growth contributes
positively to economic performance, there is the need to ensure that sustainable development
goals are primarily the focus of every facets of government policies. Essentially, countries that
experience initial negative effects should prioritise a gradual and adaptive approach. This
may include incorporating compensatory measures such as green subsidies, carbon pricing
mechanisms, and financial support for industries transitioning to sustainable models (Knopf
et al., 2010; Feng and Ge, 2024).

Climate Finance: Emerging economies may require additional financial and technical
support to transition towards green growth; see Liu and Liu (2025). International coopera-
tion, climate finance mechanisms, and public-private partnerships can help bridge investment
gaps. Multilateral institutions should play a central role in facilitating access to green finance
and ensuring that funds are efficiently allocated to projects with high economic and environ-
mental impact; see Chen et al. (2024).

Measurement of Green Growth: Accurate and comprehensive data collection is criti-

cal for assessing green growth policies; see, for instance, Sarkodie et al. (2023). Governments
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should better track environmental productivity, policy effectiveness, and socio-economic out-
comes. This will enable evidence-based policymaking and allow for adjustments to strategies
as needed.

The empirical evidence strongly supports the positive economic implications of green
growth, particularly in advanced economies. However, the heterogeneous effects across dif-
ferent countries highlight the need for adaptive and country-specific strategies. Policymakers
must consider financial constraints when designing green growth policies. By ensuring policy
consistency, and improving financial and policy support, countries can benefit from green
growth while minimising potential short-term economic disruptions. Green growth can have

a powerful impact if the right policy mix is adopted.

5.3 R&D Intensity and Global Warming

Chapter four of this thesis emphasises the role of R&D intensity in addressing global warm-
ing. The evidence suggests that increased investment in R&D has been important in reducing
global warming. Technology potentially has a powerful impact upon global warming. Increas-
ing R&D intensity is significantly associated with the reduction in global warming, which is
time-invariant in terms of sign of the coefficient but the size differs. A notable insight from
this research is the significance of global R&D spillovers, which are more important for global
warming than country-specific R&D efforts. This suggests that international collaboration
and knowledge spillovers in research and development play a pivotal role in the global fight
against climate change. However, the observed decline in the effectiveness of R&D inten-
sity in mitigating global warming post-World War II, compared to the pre-World War II
period, raises important questions about the evolving nature of technological progress and
its environmental impact.

Furthermore, the confirmation of an inverted U-shaped curve between per capita income

and global warming indicates that economic growth initially contributes environmental degra-
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dation but eventually leads to improvements in environmental quality as economies mature
and invest more in green technologies. This finding is in support with the broader literature
on the relationship between economic development and environmental sustainability; see,
for example, Grossman and Krueger (1991), Grossman and Krueger (1995), Koop and Tole
(1999), Dinda (2004) and Shahbaz et al. (2020). These studies suggest the need for specific
policies that accelerate the transition to cleaner and sustainable developent. Here are some
policy implications for our findings:

Global R&D Collaboration: Given the importance of global R&D spillovers, policy-
makers should aim to promote international research collaborations, joint innovation projects,
and technology-transfer arrangements; see, for example, Debackere and Veugelers (2005) and
Proskuryakova et al. (2017). It is worth noting that strengthening cross-border collaboration
in clean energy research and climate-friendly technologies that can propagate the positive ef-
fects of R&D investment on global warming reduction is essential. Becker (2015) argues that
R&D cooperation through university research and high-skilled human capital usually esca-
lates private sector R&D. According to Becker (2015), there are three categories that public
policies are usually considered. (i) Policies that considers R&D tax credits and direct subsi-
dies, (1) policices in support of the university research system and (ii7) policies in support of
the formation of high-skilled human capital, and support of formal R&D cooperations across
a variety of institutions. In order to ensure sustainable and effective research and develop-
ment of climate-related innovations, governments and policymakers should provide condusive
environment for all players; see Elia et al. (2020) and Omri and Jabeur (2024). This can
include tax credits and subsidies, and direct investment for green technology projects. More
importantly, public-private partnerships should be encouraged for development and deploy-
ment of sustainable production and climate solutions.

Post-WWII Decline in R&D Intensity: The chapter’s revelation of diminishing im-
pact of R&D intensity on global warming after the World War II indicates the need to

re-examine R&D policy initiatives. R&D policies should focus on ensuring that research
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efforts are effectively translated into practical, scalable, and impactful solutions; see David
and Hall (2000). This may involve strengthening stronger industry-academia collaborations.
Sakakibara (1997) argues that complementary knowledge spillovers are the underlying benefit
of R&D collaboration. This may be attributed to the rapid diffusion of knowledge and tech-
nology among stakeholders. In this instance, it supports the deployment and development
of pilot projects for nascent green technologies. By contrast, it is important for govern-
ments to ensure environmental policy stringency that could support the commercialisation
of environmentally-friendly innovations. Since we find that an inverted U-shaped curve re-
lationship exists between economic development and environmental quality. It is important
to emphasise that early investments in sustainable infrastructure, ensuring stringent envi-
ronmental management, and economic diversification polices should be of high priority to
achieve low-carbon economy.

The chapter’s findings highlight the fundamental role of R&D intensity in mitigating
global warming and underscores the importance of global R&D spillovers in achieving envi-
ronmental sustainability. Despite R&D investment being an important policy initiative to
address climate change, we find that its intensity has evolved over time. This implies that
continuous and sustainable policy implementation and adaptation is strongly needed; such
as strengthening international collaboration, improving financial support for environmental-

related R&D investment, and adoption of cleaner and green technologies.
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Chapter 6

Summary and Conclusion

This chapter provides a summary and conclusion to the thesis. We begin with a conclusion
and summary of our first study, “The Macroeconomic Impact of Global and Country-Specific
Climate Risk, ” followed by the second study, “The Economic Consequences of Green Growth:
A Multi-Country Empirical Study” and final the study, “RéD Intensity and Global Warm-

»

mng.
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6.1 The Macroeconomic Impact of Global and Country-

Specific Climate Risk

Temperature increases have been shown to have an adverse effect on economic growth, es-
pecially in developing countries (see Dell et al., 2012; Burke et al., 2015; Feng and Kao,
2021; Kotz et al., 2021, among otherss). This study demonstrates how climate change affects
macroeconomic activity via a volatility channel. We used the Bayesian Panel VAR with hi-
erarchical prior to estimate the VAR coefficients of macroeconomic activity and climate risk
for 17 advanced and 13 emerging economies for the period 1901 to 2020. No other papers as
far as we are aware have applied factor stochastic volatility to model global risk, consistent
with the notion from Stern (2008) that climate change is global in character. Our results
highlight that there is a powerful negative impact from global climate risk on macroeconomic
activity.

To allow for country heterogeneity, we also differentiate the impact of climate risk upon
advanced and emerging economies. We discover that both advanced and emerging countries
are negatively affected by climate risk shocks. Existing literature has focused on country-
based risk shocks, but our findings indicate that idiosyncratic or country-specific climate
risk shocks are relatively unimportant. On the other hand, global climate risk has a nega-
tive and relatively more important impact on macroeconomic activity. In accordance with
Stern (2008), we also find that the impact of climate risk on macroeconomic activity is far-
reaching and potentially long-lasting. It is essential to recognise that countries’ temperature
changes are interconnected, as evidenced by substantial spillovers. This discovery supports
and justifies the significance of our findings. In addition, the capability of our econometric
method to capture cross-sectional heterogeneity and spillovers makes our findings robust and
noteworthy:.

One potential limitation to our research is that we do not differentiate various forms of

shocks. We leave to future research discussion of modelling underpinning shocks to climate
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variability and how they can impact GDP depending upon the source of shock. Addition-
ally, our study fails to consider additional external factors, such as policy responses, adaptive
strategies, or technological advancements, which have the potential to either mitigate or exac-
erbate the effects of climate risks. Hence, it is plausible that dynamic models that effectively
capture the dynamic nature of the relationship between climate risk and macroeconomic
activity, taking into consideration the temporal changes in climate patterns, economic condi-
tions, and policies, may provide valuable insights into this phenomenon. A future extension
to this research could be that we focus on a wider range of countries, with more global cov-
erage, albeit over a short time period. This could also encompass the examination of policy

measures, international cooperation, and their resultant effects.

6.2 The Economic Consequences of Green Growth: A
Multi-Country Empirical Study

Climate change has led to country adaptation policies via promotion of green growth policies.
Comparable data on green economic activity has been hard to find; see Hammer et al. (2011);
Shao et al. (2020). This study examines the dynamic relationship between green growth
and GDP growth, thereby contributing to the expanding body of research on the economic
consequences of climate adaptation. Estimators robust to cross sectional error correlation,
parameter heterogeneity and potential endogeneity are used for a sample of 81 countries from
1992 to 2021. The methodology relies on estimating the common factors by utilising cross-
sectional averages of the dependent and independent variables. We use dynamic common
correlated effects, mean group, and mean group instrumental variable estimators, along with
static and dynamic fixed effects.

To summarise our main findings, we support the notion that green growth positively and
significantly contribute to economic growth. The relationship between green growth and GDP

growth is robust to accounting for the impact of physical capital investment, urbanisation,
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human capital, and green technologies. The relationship between green growth and GDP
growth is bidirectional, although there is a noticeable delay in the effect, suggesting that
the influence of green growth on GDP growth is more rapid in advanced economies than in
emerging economies. Our analysis reveals that the sub-dimension of green growth known as
environmental-policy-related response and social economic opportunities have a positive and
significant impact on the increase in GDP growth. However, other sub-dimensions such as
natural asset base, environmental productivity, and quality of life do not have an immediate
effect on GDP growth.

Considering the approach used, it is crucial to emphasize that the estimators for the
dynamic common correlated effect were found to be consistent when assessing the dynamic
relationship using our sample size of T" < N than the fixed effects estimators. Given that
they are robust and flexible to address cross-sectional dependence, cross-sectional hetero-
geneity, and endogeneity; see Ditzen (2021). Everaert and De Groote (2016) confirm that
the properties of the common correlated effect estimator, when applied to small samples,
can be utilised for estimating dynamic panel data models, as long as the sample size (T")
is not excessively small. Chudik and Pesaran (2015) show that using a dynamic common
correlated effect mean group estimator and adding covariates to account for the effects of
many common factors that are not observed can help lower the bias in small sample time
series analysis. This ensures consistent rates and enables the derivation of the asymptotic
distribution. We acknowledge the presence of possible constraints in the study. Owing to the
limited availability of data, the quality and reliability of data from different countries may
differ, posing a challenge in deriving significant conclusions and restricting the extent of the
analysis. Examining the drivers of heterogeneity of country results through time could be a

promising avenue.
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6.3 R&D Intensity and Global Warming

This study explores how research and development relates to global warming. Emphasising
the impact of R&D spillovers at both global and country levels. Our analysis shows that
R&D mitigates climate change impacts in 20 OECD countries. Our results show that in-
creased R&D intensity significantly mitigates global warming, highlighting the environmental
benefits of technological progress. Most essentially, investment in R&D that might lead to
development of efficient technologies is likely to improve efficiency in production, natural
resource and energy use. In effect, as countries experience growth in per capita income, they
are better able to invest in R&D that could reduce the strain on natural resources, miti-
gate emissions and improve biodiversity. Our analysis reveals heterogeneity: R&D intensity
increases global warming in G7 countries but reduces it in the other 13 OECD countries.
Our findings reveal that R&D intensity had a much greater impact before World War II
than afterward. On the other hand, the findings indicate that global R&D spillovers have a
negative and statistically significant impact on global warming.

Our findings also show that global collaborative R&D effectively combats climate change,
while country-specific research may hinder progress potentially due to inconsistent policies,
fossil fuel dependence, and rebound effects. This emphasizes the importance of working
together across borders in research and development related to climate and transferring tech-
nology to achieve beneficial outcomes across the globe. This further highlights the essential
importance of global research and development initiatives in fostering technological advance-
ments that aid in addressing climate change. The study also reveals that R&D intensity at the
country level could positively and significantly affect global warming, emphasising the need
for international collaboration and collective action in promoting effective climate-related
innovations. The dependence on national R&D investments alone might not be enough to
tackle climate change; we need to tap into knowledge and technological transfers as well.
These findings highlight the importance of ongoing and collaborative global research and

development efforts, especially in green technologies, to effectively address global warming.
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Policymakers need to take into account not just the immediate advantages of investing in
R&D, but also the long-term interactions and responses within the global climate system. As
we forge ahead, adopting a global strategy for research and development, backed by global
partnerships and steady financial support, will be crucial in tackling the climate crisis. We
acknowledge the potential limitation of our study in using aggregate data on R&D to under-
study the country-level and global impact of global warming. Given that the results using
aggregated data are harder to interpret, and also use to advocate for very specific policy

recommendations.
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Appendix - Chapter 2

Appendix A: Supplementary Results and Methodology
Modelling Univariate Climate Risk (H},)

To estimate univariate climate risk H}, for all countries 7 at time ¢, we apply a univariate
stochastic volatility estimation model country-by-country, with T; representing a country
time series representing temperature changes. Univariate stochastic volatility is constructed
independently for each country. We use a stochastic volatility (SV) model to estimate uni-
variate climate risk H}, for each country, based upon the following framework for T;:
T, = exp(hi/2)ey,
hivr = p+ p(he — v) + o1, (2A-1)
et ~ N(0,1),m ~ N(0, 1),
The random variables ¢; and 7, are assumed to be independent. Whereas the log-variance
process h; is initialised with Ay drawn from a normal distribution with mean p and variance
02/(1 — ¢?). The SV parameters, denoted as v = (u, ¢, ), are used in our study. Here, p
represents the level, ¢ represents the persistence, and o (also known as volvol) represents the

standard deviation of the log-variance.

Modelling Global Climate Risk (o7,)

In the factor Stochastic Volatility model, Bayesian estimation improves on the univariate
Stochastic Volatility implementations and offers multiple options to enhance efficiency (An-
dersen et al., 1999; Hosszejni and Kastner, 2021b). To circumvent the issue of sluggish
convergence in high dimensions, our model is estimated with a sampler that uses multiple

1

interweaving strategies (Hosszejni and Kastner, 2021b)." Several factors are influenced by

!The efficiency of sampling in Bayesian inference for stochastic volatility models using Markov Chain
Monte Carlo (MCMC) methods is heavily contingent upon the specific values of the parameters being esti-
mated. The standard centre parameterization of posterior draws is inadequate in cases where the volatility
of the volatility parameter in the latent state equation is low. Conversely, non-centered versions of the model
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a small number of random sources, which explain how the observations interact with one
another. In addition, latent factor models provide an effective method for estimating the
dynamic covariance matrix. They decrease the number of unknowns. In a typical latent
factor model with r factors, the decomposition is the diagonal matrix, which contains the
variances of the idiosyncratic errors (Hosszejni and Kastner, 2021b).

A significant issue with dynamic covariance estimate is the large number of unknowns
relative to the number of observations. To be precise, a quadratic expression in N have
N(N+1)/2 degrees of freedom which has a corresponding covariance matrix ¥; when the
cross-sectional dimension is N. Using latent factors, one can make >; appear sparser in order
to overcome the dimensionality curse. When creating latent factor models, it is essential to
keep in mind that even multidimensional systems can be governed by a limited number of
random sources.

Against this backdrop, this research employed a factor stochastic volatility method to
measure climate risks in order to assess its impact on macroeconomic activity. In the factor
stochastic model, the covariance matrix of %; and 3, is representing independent univari-
ate stochastic volatility processes which are both diagonal. Identification issues relative to
factor stochastic volatility are relevant. Some of the identification assumptions are the sign,
the order, and the scale of the factors is unidentified. In the factor Stochastic Volatility
model, Bayesian estimation improves on the univariate SV implementations and offers mul-
tiple options to enhance efficiency. To circumvent the issue of sluggish convergence in high
dimensions, it is performed with a sampler that employs several ancillarity-sufficiency inter-

weaving strategy (ASIS) types.”

exhibit shortcomings when applied to highly persistent latent variable series. The efficacy of the ancillarity-
sufficiency interweaving technique in addressing these challenges across various multilevel models has been
substantiated (Yu and Meng, 2011; Kastner and Frithwirth-Schnatter, 2014).

2The efficiency of sampling in Bayesian inference for stochastic volatility models using Markov Chain
Monte Carlo (MCMC) methods is heavily contingent upon the specific values of the parameters being esti-
mated. The standard centre parameterization of posterior draws is inadequate in cases where the volatility
of the volatility parameter in the latent state equation is low. Conversely, non-centered versions of the model
exhibit shortcomings when applied to highly persistent latent variable series. The efficacy of the ancillarity-
sufficiency interweaving technique in addressing these challenges across various multilevel models has been
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In this chapter we model global climate risk using a Factor Stochastic Volatility model.
Zit | ﬁ7A7 ft7§t ~ NN(IB + A‘fhit)?

FilZ ~ N(0, %),
where V(8 + Af;, ;) denotes the normal distribution for the matrix Z; with mean tem-

(2A-2)

perature changes represented by 8 = (f,...,0x)" with temperature change factors f, =
(fity---sfrt) 7. The factor loadings are A € RY*" in equation (2A-2). The covariance matrices

3, and ¥, are both diagonal and can be written as:

3, = diag(exp(hy), ..., exp(hny)),
3, = diag(exp(hiy), ..., exp(hy))),
E@tNN(ﬁz—f_@z(Ezt—l_ﬁz)aE?» Z: ]_,,N,

Bjt ~ N(ﬂ] + Saj(h']'t—l - ﬂj)’a—?a J=1..m

(2A-3)

The total variance (3;) of temperature changes can be decomposed into factor and idiosyn-

cratic variance.
Zt = it + ita <2A—4)

Where 3, consists of variances of the idiosyncratic errors while £, = r < N. Equation (2A-4)

can be modified utilising equation (2A-2) to become:
Et — AitAT + ita (2A-5>

In essence, identification issues relative to factor stochastic volatility are relevant at this
stage. For any generalised permutation matrix P of size r X r, there is some other viable
decomposition £, = A’ 3} (A)T + X, where A’ = AP and ¥ = P 3, P". However, the
uncertainty in the scale of the factors is resolved by setting their log-variance level to zero. In
the second stage of our empirical analysis examining the relationship between macroeconomic

activity and climate risk, we denote country specific climate risk (X;) as o, and global climate

risk (AZ,AT) as o,

substantiated (Yu and Meng, 2011; Kastner and Frithwirth-Schnatter, 2014).
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Optimal Lag Length Selection

The table below highlights information criteria for optimal lag length selection for PVAR(o7,
0y Yit). The optimal lag length for the PVAR, as indicated by the table, is four. According
to the evidence, the values of each criterion are lower at a lag length of four than at other

lag lengths in support of Donadelli et al. (2022). See Table 2A-1 for details.

Table 2A-1: Panel VAR lag length selection

Model MBIC MAIC HQIC
PVAR(1) —23.686 —5.717 —12.186
PVAR(2) —23.641 —5.672 —12.141
PVAR(3) —23.254 —5.285 —11.754
PVAR(4) —23.228* —5.250* —11.729%

Notes: This table provides information criteria used to select the optimal lag length for our benchmark Panel

VAR model. Hence we include several information criteria and varying the lag length from the PVAR(1)
to PVAR(4). * indicates lag order selected by the criterion. MBIC: MMSC-Bayesian information criterion.
MAIC: MMSC-Akaike Information Criterion. MQIC: MMSC-Hannan and Quinn Information Criterion. This
method is developed by Andrews and Lu (2001).

Climate Risk Impact on GDP Volatility

Higher temperature risks increase growth risks; perhaps a GDP contraction arises from the
combined impact of higher climatic and economic uncertainty. As a result, the transmission
mechanism is based on risk rather than actual temperature changes.® In contrast to this
argument, we show that the impact of shocks on country-specific climate risk is not important
for GDP growth volatility, as shown in Figures 2A-1 and 2A-2. It is worth noting that even
with our later sample, the impact of both country-specific and global climate risk are not

important for GDP growth volatility. Overall, we find that climate risk impact on GDP

growth is homogeneous.

3 Alessandri and Mumtaz (2021) argue that shocks to temperature volatility trigger a positive impact on
GDP growth volatility.
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Figure 2A-1: Climate risk impact on GDP volatility: full sample
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Notes: This figure presents evidence of the impact of climate risk on macroeconomic volatility. Specifically
the left panel is the impulse response function from a shock to country climate risk (07;) upon GDP growth
volatility (0%). The right column of panels are global climate risk (o5,) upon GDP growth volatility (o).
GDP volatility is derived from factor stochastic volatility model which is idiosyncratic volatility of GDP
growth. Our sample of 30 advanced and emerging economies between 1901 and 2020. We use a trivariate
Panel VAR, PVAR(o},, 0r,, 0f,). The evidence suggests the impact on macroeconomic volatility of a climate
risk shock is not important and noticeable. The shock is a one standard deviation increase in risk. We include
the posterior median of the shock (red) and 68% critical band or posterior coverage band (grey).
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Figure 2A-2: Climate risk impact on GDP volatility: post 1950
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Notes: This figure presents evidence of the impact of climate risk on macroeconomic volatility. Specifically
the left panel is the impulse response function from a shock to country climate risk (07;) upon GDP growth
volatility (0%). The right column of panels are global climate risk (o5,) upon GDP growth volatility (o).
GDP volatility is derived from factor stochastic volatility model thus idiosyncratic volatility of GDP growth.
Our sample of 30 advanced and emerging economies between 1950 and 2020. We use a trivariate Panel VAR,
PVAR(0},, 05y, 0%). The evidence suggests the impact on macroeconomic volatility of a climate risk shock
is not important and noticeable. The shock is a one standard deviation increase in risk. We include the
posterior median of the shock (red) and 68% critical band or posterior coverage band (grey).
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Figure 2A-3: Factor loadings of common factor: temperature
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Notes: Factor loadings of common factor of idiosyncratic volatility of temperature growth. Data
from 1901 to 2020. See Table 2A-4 for components corresponding countries.

Figure 2A-4: Idiosyncratic temperature volatility correlation
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Notes: Correlation among countries’ residuals of idiosyncratic temperature volatility. Data from

1901 to 2020.
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Table 2A-2: Panel unit root tests

Panel Time Series \ LLC \ IPS

T;; -27.733%H* -43.827***
oy -17.663*** -47.936***
Yit -18.042%** -31.779*HE
CO2;; -48.TRTH** -30.724%**
Univariate Time Series ‘ ADF ‘

T [ -2.898%* \

Notes: This table presents panel unit root tests of Levin et al. (2002) (LLC) and Im et al. (2003) (IPS). The
null hypothesis posited by panel unit root tests implies the presence of a unit root within the panels whereas
the alternative hypothesis suggests no evidence of unit root in the panels. ADF denotes augmented Dickey-
Fuller test for unit root. Critical values for ADF test: -3.504 (1%); -2.889 (5%) and -2.579 (10%). This is
univariate time series test for unit root. The alternative hypothesis posits that the variable was generated
by a process that remains constant over time, whereas the null hypothesis suggests that the variable includes
a unit root. Temperature changes is denoted as (Ty), idiosyncratic climate risk (o7;), country annual real
GDP growth (y;;), country carbon emissions (CO2;;) and global climate risk (o,). The data time span is
1901 to 2020 for 30 countries. Asterisk *** ** and * denote 1%, 5% and 10% significance levels where we
reject the null hypothesis of unit root.

Table 2A-3: Description of variables

Indicator \ Variable

Yit GDP growth

YPCit GDP per capita growth

ol GDP growth volatility

T Temperature change

oy Idiosyncratic volatility of temperature change
ory Common factor of volatility of temperature risk
HY Univariate volatility of temperature change
HZEL Univariate volatility of temperature levels
CO2; Carbon emissions per capita
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Table 2A-4: Factor loadings: components and corresponding countries

Component Indicator Country
1 AUS Australia
2 BEL Belgium
3 CAN Canada
4 CHE Switzerland
5 FIN Finland
6 DEU Germany
7 FRA France

8 ITA [taly

9 JPN Japan
10 NLD Netherlands
11 NOR Norway
12 PRT Portugal
13 SWE Sweden
14 ESP Spain
15 UK UK

16 USA USA

17 DEN Denmark
18 ARG Argentina
19 BRA Brazil
20 CHL Chile
21 COL Colombia
22 IDN Indonesia
23 IND India
24 PER Peru

25 LKA Sri Lanka
26 VEN Venezuela
27 URY Uruguay
28 BOL Bolivia
29 CUB Cuba
30 MEX Mexico
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Table 2A-5: Model estimation information bear and factor stochastic volatility model

Specification

Details

Factors specification
VAR specification

1
Bayesian PVAR random hierarchical effects

Iterations 20000
Burn-in iterations 2000
Lag length 4
Horizon 10
Hyperparameters

Autoregressive coefficient 0.75
Overall tightness 0.1
Cross-variable weighting 0.5
Lag decay 1
Exogenous variable tightness 100
IG shape on overall tightness 0.001
IG scale on overall tightness 0.001
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Table 2A-6: Data source and classification

Variable Countries Data - start Data - end Interpolation Source

Temperature all countries 1901 2020 substantial World Bank Climate Knowledge Portal
GDP per capita and population All countries except Cuba and Indonesia 1901 2018 substantial Maddison Project

GDP per capita and population Indonesia 1901 - 1941 1950 - 2018 1942 - 1949  Maddison Project

GDP per capita and population Cuba 1903 2018 1901 - 1902  Maddison Project

GDP growth rate All countries 2019 2020 World Development Indicators

CO emissions per capita (Metric tonnes) Bolivia 1929 2018 1901 - 1928  Carbon Emission Information Analysis
CO, per capita (Metric tonnes) Colombia 1922 2018 1901 - 1921 '

CO, per capita (Metric tonnes) Cuba 1941 2018 1901 - 1940 '

CO4 per capita (Metric tonnes) Uruguay 1932 2018 1901 - 1931 "

CO4 per capita (Metric tonnes) Venezuela 1913 2018 1901 - 1912 '

CO4 per capita (Metric tonnes) Sri Lanka 1949 2018 1901 - 1948 "

Notes: The climate knowledge on climate change portal offers a platform for accessing and analysing extensive data on climate change and development. https://climateknowledgeport
al.worldbank.org/download-data: The Maddison Project Database includes data on long-term comparative economic growth and income levels. The World Development Indicators are
repository of development variables from the World Bank. https://www.rug.nl/ggdc/historicaldevelopment/maddison/releases/maddison-project-database-2020. The World Development
Indicators are repository of development variables from the World Bank. https://databank.worldbank.org/source/world-development-indicators. Climate Watch. 2020. GHG Emissions.
Washington, DC: World Resources Institute. Available at: https://www.climatewatchdata.org/ghg-emissions.SeeSP.POP.TOTLforthedenominator’ssource. The data are sourced from Carbon

Dioxide Information Analysis Center of the U.S. Department of Energy at https://cdiac.ess-dive.lbl.gov/.


https://climateknowledgeportal.worldbank.org/download-data
https://climateknowledgeportal.worldbank.org/download-data
https://www.rug.nl/ggdc/historicaldevelopment/maddison/releases/maddison-project-database-2020
https://databank.worldbank.org/source/world-development-indicators.
https://www.climatewatchdata.org/ghg-emissions. See SP.POP.TOTL for the denominator's source
https://cdiac.ess-dive.lbl.gov/

Appendix B: Robustness/Extension — Cont’d
Generated Regressor Issue

Global climate risk (0F,) by construction in the factor stochastic volatility model equation
(1) is orthogonal to idiosyncratic climate risk (o). Whether country GDP is predominantly
or indeed exclusively impacted by global and/or idiosyncratic climate risk is the focus of the
chapter. We firstly observe that latent factors can be considered as though they are observed,
provided that N and T are both large. In particular, Bai and Ng (2006, 2008b) and Bai
and Ng (2008a) show in linear models that the factor estimates can be treated as known if
VT /N — 0. Indeed assuming the factors are known is common in the empirical literature
using a two step approach, see Jurado et al. (2015)) and Creal and Wu (2017). Carriero et al.
(2018) also suggest that factor estimation uncertainty can be small when vT/N — 0. The
latter is the case for our panel of temperature change data.

Secondly, to show that our empirical results are robust to any potential uncertainty in
the estimation of the factors, we follow Pagan (1984). He recommends using Instrumental
Variables to account for potential measurement error in econometric models. We use the
Dynamic Panel Systems Generalised Method of Moments (GMM) estimator, which under
certain conditions is the same as Instrumental Variables. The properties of the dynamic
panel GMM estimator are considered in Blundell and Bond (1998), Blundell et al. (2001)
and Blundell and Bond (2000). Windmeijer (2005) suggests that incorporating a correction
for estimated standard errors using robust standard errors enhances inference in the size of
the Wald test. We present both uncorrected and corrected standard errors in our Panel GMM
results in Table 2.2 for our full sample and 2B-1 for the later sample. Overall, therefore, our
approach is to use dynamic panel GMM with robust standard error estimators to analyze
the impact upon country GDP growth of idiosyncratic and global climate risk, which should

account for potential measurement error.
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Our dynamic panel data system GMM and robust standard errors techniques in both
Table 2.2 and 2B-1 suggest that global climate risk is more important for economic growth
than idiosyncratic climate risk. In columns 2 to 4 using the conventional GMM estimator
suggest that the global risk factor o, has a large and statistically significant negative im-
pact upon real GDP. This is consistent with the key results from the Panel VAR impulse
responses. This is also the case with GMM with robust standard errors at the 10% signifi-
cance level in column 7. Idiosyncratic climate risk factor o, has a positive effect, albeit with
a small estimate coefficient. Reassuringly idiosyncratic climate risk is important, in terms of
statistical significance, when we use robust standard errors in columns 5 to 7. The findings
indicate overall that global climate risk has a significantly adverse effect on GDP growth,
while the impact of country-specific climate risk on GDP growth is less important and this
is consistent with the key results in the chapter. This provides evidence that our Panel VAR
results are not an artefact of measurement error and global climate risk is relatively more

important in impacting macroeconomic activity.
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Table 2B-1: Dynamic panel system GMM and robust estimations: Later Sample

GMM GMM GMM ROBUST ROBUST ROBUST
M1 M2 M3 M1 M2 M3
Yit—4 0.03%** 0.04%** 0.03** 0.03 0.04 0.03
(0.01) (0.01) (0.01) (0.05) (0.04) (0.06)
o -0.21%FF  — -0.20%**F  0.21%FF  — -0.20**
(0.02) — (0.02) (0.06) — (0.05)
a}fﬂt — -18.48%**F  _19.31%F* -18.48**  -19.31*
— (4.31) (5.02) — (8.40) (10.86)
Constant 3.13%** 3.53%** 2.83*H* 3.13%%* 3.53HH* 2.83**
(0.22) (0.35) (0.27) (0.80) (0.82) (1.02)
Wald chi? 517.32%F*F*  191.64*** 382.57*** 15.44%* 16.55%* 25.23%%*
Instruments 428 427 428 428 427 428
AR(2)
Z-stats. -0.58 -0.44 -0.42 -0.45 -0.34 -0.32
P-value 0.56 0.66 0.67 0.65 0.73 0.75
Sargan Test
Chi? 70.11 69.77 67.77 — — —
P-value 1.00 1.00 1.00 — — —
Obs. 1,846 1,846 1,846 1,846 1,846 1,846

Notes: This table presents dynamic panel data estimation with the two-step system generalised method of
moment (GMM) (Blundell and Bond (1998)) and Windmeijer (2005) Robust (ROBUST) standard errors
techniques. Idiosyncratic climate risk (o7,), global climate risk (05,), and country annual real GDP growth
(yit). Data period 1950 to 2020 for 30 countries. Asterisk *** ** and * denote 1%, 5% and 10% significance
levels, respectively. Standard errors are in parentheses. M1 represent the model [y;; = F(yit—1, 0pyy 0y)], M2
represent the model [y;; = F(yi—1, 0.;)], and M3 represent the model [y;; = F(yi1—1,0;)]. The Z-statistics
for the AR(2) model represents the Sargan test for over-identifying restrictions. HO: The over-identifying
restrictions are valid. Wald Chi? assess the validity of the instruments employed in the estimation. The null
hypothesis for the Wald chi-squared test is that the instruments are valid, meaning they are uncorrelated
with the error term and meet the necessary assumptions.
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Appendix - Chapter 3

Appendix A: Supplementary Results

Figure 3A-1: Country-specific green growth impact on GDP growth
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Notes: This figure presents heatmap evidence of country-specific impacts of green growth on GDP growth
for our sample of 81 countries for the period spanning 1992 to 2021. The heatmap is a reflection of the
results illustrated in Table 3.5 using the MG-IV(4+CCE) estimator for the benchmark model. The solid blue-
shaded countries depicted positive coefficients, while the mid- to light-blue-shaded countries exhibited zero to
negative coefficients. Cyprus, Greece, Ireland, Iraq, and Sudan exhibited positive and significant coefficients,
whereas Argentina, Ethiopia, and Panama showed negative and significant coefficients of 5% or less.
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Table 3A-1: Variables and data sources

‘ Variables ‘ Indicators ‘ Units of Measurement ‘ Sources
GDP growth Ayt log growth rate of GDP | World Development
(constant 2015 US$) Indicators, World
Bank
Physical capital Ak log growth rate of capital | Penn World Tables
stock. The capital stock is
measured in millions of 2017
US dollars at constant na-
tional prices.
Labour Al log growth rate of total | World Development
labour force Indicators, World
Bank
Green Growth Agit Green growth indica- | Sarkodie et al. (2023)
tor. Index scores for
the Green Growth Index
range from 0 to 1. Sub-
dimensions: natural asset
base, environmental-related
policy responses, quality of
life, environmental produc-
tivity, and socio-economic
outcomes.
Green Technologies ATy log growth rate of the | OECD statistics
number of environmental- | Database
related patent registrations
Urbanisation Apis log growth rate of Urban | World Development
population Indicators, World
Bank
Greenhouse gas Aegy log growth rate of total | World Development
emissions greenhouse gas emissions | Indicators, World
(kt of CO2 equivalent) Bank
Foreign Direct Afdiy log growth rate of foreign | World Development
Investment direct Investment inflows | Indicators, World
(BoP, current US$) Bank
Human capital index Ahcy log growth rate of human | Penn World Tables

capital index. The Human
Capital Index (HCI) is a
metric that evaluates the
level of human capital in a
given population. It is de-
termined by considering two
key factors: the number of
years individuals have spent
in formal education and the
economic benefits.
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Table 3A-2: Correlation matrix

Full Sample

Correlation AYir \ Agis \ ANKis AN

Ay 1.00

Agi 0.02 1.00

Ak, 0.37*** -0.01 1.00

Al 0.32%** 0.01 0.22%** 1.00
Advanced Economies

Correlation Ayzt ‘ Agzt ‘ Ak’zt Alzt

Ay 1.00

Agis 0.10%** 1.00

AN 79 0.45%** 0.09** 1.00

Al 0.40%** 0.10%** 0.48%** 1.00
Emerging Economies

Correlation JAN TR \ Agis \ AKis AN

Ayit 1.00

Agis 0.03 1.00

Ak, 0.34%** 0.02 1.00

Al 0.29%** 0.04* 0.12%** 1.00

Notes: This table presents the correlation matrix Ay;; = Aly, Ak ,Ag;: for our full sample (81 countries),

advanced economies (27 countries), and emerging economies (54 countries) from 1992 to 2021. Asteris

Kkk
k

** and * denote 1%, 5% and 10% significance levels. GDP growth is denoted as Ay;, growth in labour force
is denoted as Al;;, growth in physical capital accumulation is denoted as Ak;;, green growth is denoted as

Agis.
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Table 3A-3: Descriptive statistics — cont’d

] Full Sample Mean \ SD \ Max. \ Min. Obs.
ATy -0.47 56.19 315.75 -268.98 2,430
Ap; 1.95 1.60 18.58 -8.83 2,430
Afdiy 10.64 85.77 632.73 -689.52 2,430
Aejy 1.17 6.10 107.12 -89.68 2,430
Advanced Mean SD Max. Min. Obs.
Economies
Ay 2.36 3.15 21.89 -11.84 810
Al 1.03 1.40 7.85 -4.36 810
Ak 2.61 1.70 11.94 -0.93 810
Ag; 0.58 0.12 1.00 0.10 810
ATy 0.14 39.32 315.75 -243.61 810
Apiy 0.96 0.76 5.32 -4.17 810
Afdiy 9.36 92.60 632.73 -689.52 810
Aejy -0.43 4.60 23.83 -27.33 810
Ahcg 0.60 0.58 4.64 -0.51 810
Emerging Mean SD Max. Min. Obs.
Economies
Ay 3.60 5.11 42.78 -45.66 1,620
Al 2.05 2.35 19.64 -11.49 1,620
Ak 4.20 3.03 18.80 -3.44 1,620
Ag;s 0.54 0.14 1.00 0.00 1,620
ATy -0.78 62.96 270.22 -268.98 1,620
Apiy 2.44 1.68 18.58 -8.83 1,620
Afdiy 11.28 82.16 550.02 -464.22 1,620
Aeyy 1.96 6.58 107.12 -89.68 1,620
Ahcyy 1.03 0.60 3.48 -0.69 1,620

Notes: SD = standard deviation; Max = maximum value; Min = minimum value; Obs. = number of

observations. GDP growth is denoted as Ay;, growth in labour force is denoted as Al;;, growth in physical
capital accumulation is denoted as Ak;;, green growth is denoted as Ag;:, growth in urban population is
denoted as Ap;;, growth in foreign direct investment inflows is denoted as A fdi;;, Ae;; represents the growth
in greenhouse gases emission and growth in green technologies is denoted as A7;;. growth in human capital
index is denoted as Ahcy. Sample of 81 advanced and emerging countries from 1992 to 2021.
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Table 3A-4: Cross-sectional dependence and slope heterogeneity

‘ Statistics ‘ CD ‘ o ‘ Adj.A ‘

Ay 3.63%%% [0.00] 0.56

Apir 34.28%** [0.00] 0.80

Afdiy 16.62%% [0.00] 0.80

Aey 41.10%%* [0.00] 0.56

Slope Heterogeneity

3. Ayie = Ak, Aliy, Agir, Apie, Aejy, ATy, A fdiy 11.59*** [0.00]
4. Ayir = Akip, Ahci, Agis, Apis, Aei, ATy, A fdiyy 10.80%** [0.00]

CD and « denote cross-sectional dependence tests by Pesaran (2015, 2021). We reject the null hypothesis
of weak cross-sectional dependence when the CD statistics shows a p-value less than 0.05. Cross-sectional
dependency is considered strong when o = 1, semi-strong 0.5 < a < 1, weak @ = 0, and semi-weak
0 < a < 0.5. GDP growth is denoted as Ay;;, growth in labour force participation rate is denoted as
Alj;, growth in physical capital accumulation is denoted as Ak;;, green growth is denoted as Ag;;, growth
in urban population is denoted as Ap;:, growth in foreign direct investment inflows is denoted as A fdi;,
Aey represents the growth in greenhouse gas emissions and growth in green technologies is denoted as A7y.
Adj.A denotes test statistics of heterogeneity by Pesaran and Yamagata (2008) where we reject the null
hypothesis of no cross-sectional heterogeneity when the test statistics have a p-value less than 0.05. P-values
are presented in the square brackets []. Asterisks *** ** and * denote 1%, 5% and 10% significance levels.
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Table 3A-5: Cross-sectional dependence and slope heterogeneity

‘ Advanced Economies ‘ CD ‘ Q@ ‘ Adj.A ‘

Ay 61.51%F* 1.00

Al 9.72%%% 0.83

Ak 36.05%** 0.91

Agit 59.91%%* 1.00

ATy 20.36%** 0.83

Apit 6.207%* 0.67

Afdiy 3.59%** 0.61

Aeit 28,467+ 0.62

Ahcy 9.10%%* 0.65

Slope Heterogeneity

L. Ay = Ak, Aliy, Agit 1.51 [0.13]
2. Ayir = Aky, Ahcy, Agi -0.80 [0.43]
3. Ay = Ak, Aliy, Agir, Apiy, Ay, Ay, Afdiy 4.69 [0.00]
4. Ayir = Ak, Ahciy, Agis, Apis, Aey, A1y, A fdiy 5.30 [0.00]

‘ Emerging Economies ‘ CD ‘ Q@ ‘ Adj.A

Ay 50.85%F* 0.81

Al 45.56*F* 0.74

Ak 21.27FF* 0.79

Agit 130.60*** 1.00

ATy -1.13 0.68

Apit 38.56%+* 0.81

Afdii 14.90%%* 0.82

Aeit 19.97%%* 0.53

Ahcyy 20.61%%* 0.71

Slope Heterogeneity

L Ay = Akie, Alip, Agir 9.94 [0.00]
2. Ayt = Ak, Ahcir, Agi 1.42 [0.16]
3. Ayir = Ak, Aliy, Agiv, Apir, Aejy, ATiy, Af diyy 10.27 [0.00]
4. Ay = Ak, Ahciy, Agis, Apis, Deiy, Atiy, A fdiy 8.90 [0.00]

Notes: GDP growth is denoted as Ay;, growth in labour force is denoted as Al;;, growth in human capital
index is denoted as Ahc;;, growth in physical capital accumulation is denoted as Ak;;, green growth is
denoted as Ag;;, growth in urban population is denoted as Ap;;, growth in foreign direct investment inflows
is denoted as A fdi;;, Ae;y represents the growth in greenhouse gas emissions and growth in green technologies
is denoted as A7;;. CD and « denote cross-sectional dependence tests by Pesaran (2015, 2021). We reject
the null hypothesis of weak cross-sectional dependence when the CD statistics shows a p-value less than 0.05.
Cross-sectional dependency is considered strong when « = 1, semi-strong 0.5 < a < 1, weak a = 0, and
semi-weak 0 < a < 0.5. Adj.A denotes test statistics of heterogeneity by Pesaran and Yamagata (2008)
where we reject the null hypothesis of no cross-sectional heterogeneity when the test statistics has a p-value
less than 0.05. P-values are presented in the square brackets [ |. Asterisks *** ** and * denote 1%, 5% and
10% significance levels.
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Table 3A-6: Panel unit root tests

Full Sample [ CADFEF CIPS

a7 —10.93%*** —3.7G¥k**
JAN S -7 .56 F* ~-3.55%**
VAN 79 —11.05%** -2 . 38F**
AGis _12.85%** _4. 5ok
VAN 9 -23.607%** -5 .59%**
DNpse —3.82%** -2.01%*

I\ fdi;, —26.97] F** -5.83%**
Aeq 17T A kR —4.971%**
ARc, —4. A7 _2.10%*
Advanced Economies CADF CIPS

I(0) I(0)

N —6.837F** —4.00Q%**
Al —4.84%** _3.42%kk
VAN 79 -4.067F** —2.60Q%**
NG —7.607F** —4.467F**
ATy 14 437k _5. T4k
JA S P -1.53 -1.69

I\ fdi;, —15.23%%** -5.O&***
paAN I —13.10%** -5 .37k*k*
ANNhciy -1.91%*%* —2.TOFF*
Emerging Economies CADF CIPS

I(0) I(0)

Ayt —9.60*F* —4.Q1FF*
paN 2 —-8.1 0% ** —-3.5]k**
ANFKe —9. 24k ** —2.48%FF*
NG -10.41%** -4 .51 FF*
N\ Te —22 .99k *k -5.96G%***
JA S P -3.34%k** -1.72

I\ fdi;, 21 .88 ** -5.80Q%**
ANe;, -13.60%F** —4 [ ToFFFE
ANNcy -4 QO ** -2.13%*%*

Notes: This table shows the panel unit root tests for the variables in the study. CIPS and CADF represent
cross-sectional TIPS and ADF unit roots developed by Pesaran (2007). The null hypothesis suggests evidence
of a unit root in the series. The alternate hypothesis suggests no evidence of a unit root. Asterisks *** **,
and * denote 1%, 5% and 10% significance levels. Critical values for CIPS tests: -2.07 (10%); -2.15 (5%);
-2.30 (1%). GDP growth is denoted as Ay;;, growth in labour force is denoted as Al;;, growth in human
capital index is denoted as Ahc;s, growth in physical capital accumulation is denoted as Ak;;, green growth
index is denoted as Ag;¢, growth in urban population is denoted as Ap;;, growth in foreign direct investment
inflows is denoted as Afdi;;, Ae;; represents the growth in greenhouse gases emission and growth in green
technologies is denoted as A7;.
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Table 3A-7: Granger causality

’ Full Sample Lags \ Z-bar tilde \ P-value \ Remarks

Agir — Ay 1 7.38%%* 0.00

Bidirectional
Ay — Agit 1 3.60%%* 0.00
Advanced Lags Z-bar tilde P-value Remarks
Economies
Agis — Ay 1 11.86%** 0.00

Bidirectional
Ay — Agi 1 4.33%%% 0.00
Emerging Lags Z-bar tilde P-value Remarks
Economies
Agy — Ay 2 2.12%* 0.03

Bidirectional
Ay — Agi 1 1.98%% 0.05

Notes: This table shows the Granger causal relationship between green growth indicators and GDP growth
for our full sample and advanced and emerging economies’ samples. The data are from 1992 to 2021. We
assess the Granger causal linkage on the optimal lag lengths as depicted in the table.
direction of causality. Bidirectional means a feedback effect and a two-way causal relationship. Models are
estimated upon equation (3B-1). Asterisk *** ** and * denote 1%, 5% and 10% significance levels. GDP

growth is denoted as Ay;;, and green growth is denoted as Ag;;.

179

— denotes the




Table 3A-8: Regression evidence: contemporaneous green growth

Estimator FE DFE MG DMG MG-IV
(+CCE) (+CCE) (+CCE)
Agit 0.42 0.14 0.68 0.45 0.20
(0.65) (0.54) (0.56) (0.53) (0.68)
Aly 0.64*** 0.61%** 0.28** 0.31** 0.30**
(0.05) (0.05) (0.10) (0.11) (0.12)
Ak 0.47+%* 0.39%#* 0.75%+* 0.64*** 0.26**
(0.05) (0.05) (0.11) (0.09) (0.12)
Ayis_1 0.10%** 0.11**
(0.02) (0.03)
Constant 0.12 0.32 -2.44%** -2.43%** -1.11%
(0.41) (0.41) (0.54) (0.54) (0.66)
Common factors No No Yes Yes Yes
NxT 2,430 2,349 2,268 2,187 2,106
R? 0.20 0.21 0.65 0.60 0.32
F-stat 110.67%%* 89.25%** 1.63*** 1.60*** 2.07HF*
F-test: Allu; =0 1.71 [0.00] | 1.45[0.01]
CD-stat. 1.02 1.04 -0.52
CD-stat. (p-value) 0.31 0.30 0.60

Notes: This table presents the estimations of the impact of green growth indicators on GDP growth for
a sample of 81 countries from 1992 to 2021. The estimators are (1) FE denotes Fixed Effects. (2) DFE
denotes Dynamic Fixed Effects. (3) MG (+CCE) denotes Common Correlated Effects Estimator - Mean
Group. (4) DMG (4+CCE) denotes (Dynamic) Common Correlated Effects Estimator - Mean Group. (5)
MG-IV (+CCE) denotes (Dynamic) Common Correlated Effects Estimator - Mean Group IV. Model 1 to 5
are estimated upon equation (3.5). Asterisk *** ** and * denote 1%, 5% and 10% significance levels. GDP
growth is denoted as Ay;, growth in labour force is denoted as Al;;, growth in physical capital accumulation
is denoted as Ak, green growth is denoted as Ag;. F-test: All w; = 0 assumes that unobservables and
regressors are mean independent; p-values are in the square brackets [ ]. We do not reject the null hypothesis
with p-value > 0.05. The CD-stat represents a cross-sectional dependence test with a null hypothesis of no
or weak cross-sectional dependence. We do not reject this null if the CD-stat p-value > 0.05. Standard errors
are presented in the parentheses.

180



Table 3A-9: Baseline regression evidence: country heterogeneity

Sample Advanced Economies
Estimator FE DFE MG DMG MG-IV
(+CCE) (+CCE) (+CCE)
Agi—1 8. 44 8. 73FF* 1.44% 1.23 1.40%
(0.83) (0.84) (0.84) (0.91) (0.82)
Al 0.47H** 0.52%** 0.38*** 0.30** 0.40%**
(0.08) (0.08) (0.11) (0.11) (0.11)
Ak 0.54%** 0.64*** 0.49%** 0.36 0.12
(0.09) (0.10) (0.60) (0.17) (0.21)
Ayir_1 S0.11%* 0.11%*
(0.04) (0.05)
Constant -4 4THRFE -1.36** -1.24%* -0.54
(0.53) (0.60) (0.58 (0.75)
Common factors No No Yes Yes Yes
NxT 783 783 702 702 702
R?2 0.32 0.32 0.63 0.59 0.30
F-stat T4.26F*F* 54.46%*** 1.33%* 1.32%* 2.52%**
F-test: All u; =0 1.81 [0.01] | 2.07 [0.00]
CD-stat. -0.53 -0.11 -1.05
CD-stat. (p-value) 0.60 0.91 0.29
Sample Emerging Economies
Estimator FE DFE MG DMG MG-IV
(+CCE) (+CCE) (+CCE)
Agit—1 1.40 1.29 0.63 1.44* 2.19
(0.89) (0.88) (0.79) (0.81) (2.07)
Al 0.64%** 0.61%** 0.13 0.26 0.13
(0.06) (0.06) (0.16) (0.18) (0.27)
Ak 0.46*+** 0.38%** 0.69 0.68*** 0.28%*
(0.05) (0.06) (0.14) (0.14) (0.15)
Ayit—l 013*** -0.02
(0.02) (0.04)
Constant -0.38 -0.36 -2.34%% -2.74%* 1.61
(0.57) (0.56) (0.85) (0.95) (1.99)
Common factors No No Yes Yes Yes
NxT 1,566 1,566 1,512 1,404 1,350
R? 0.17 0.20 0.65 0.59 0.36
F-stat T4.43%*F* 63.54*** 2.01*** 1.29%** 1.80%**
F-test: All u; =0 1.89 [0.00] 1.50 [0.02]
CD-stat. 1.67 1.92 1.39
CD-stat. (p-value) 0.10 0.06 0.17

Notes: This table presents the estimations of the impact of green growth indicators on GDP growth for a
sample of advanced (27) and emerging (54) countries, from 1992 to 2021. The estimators are (1) FE denotes
Fixed Effects. (2) DFE denotes Dynamic Fixed Effects. (3) MG (+CCE) denotes Common Correlated Effects
Estimator - Mean Group. (4) DMG (+CCE) denotes (Dynamic) Common Correlated Effects Estimator -
Mean Group. (5) MG-IV (+CCE) denotes (Dynamic) Common Correlated Effects Estimator - Mean Group
IV. Model 1 to 5 are estimated upon equation (3.5). Asterisk *** ** and * denote 1%, 5% and 10%
significance levels. GDP growth is denoted as Ay;, growth in labour force is denoted as Al;;, growth in
physical capital accumulation is denoted as Ak;;, green growth is denoted as Ag;. F-test: All u; = 0
assumes that unobservables and regressors are mean independent; p-values are in the square brackets [ ]. We
do not reject the null hypothesis with p-value > 0.05. The CD-stat represents a cross-sectional dependence
test with a null hypothesis of no or weak cross-sectional dependence. We do not reject this null if the CD-stat
p-value > 0.05. Standard errors are presented in the parentheses.
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Table 3A-10: Robustness: baseline model + urbanisation

Sample Full sample
Estimator FE DFE MG DMG MG-IV
(+CCE) (+CCE) (+CCE)
Agii_1 3.45%H* 3.30%H* 1.64%* 1.39%* 1.35%
(0.67) (0.66) (0.73) (0.71) (0.80)
Al 0.70%*#* 0.69*** 0.39** 0.34** 0.39%*
(0.05) (0.05) (0.14) (0.14) (0.17)
Ak 0.50%*** 0.43*** 0.94*** 0.94%** 0.68***
(0.05) (0.05) (0.14) (0.15) (0.21)
Apg -0.27%* -0.35%H* -0.82%* -0.79%* -1.47%*
(0.10) (0.10) (0.40) (0.40) (0.60)
Ay 0.11%%* 0.00
(0.02) (0.03)
Constant -1.19%* -1.02%* -2 TQFRHK -2.84%K -0.88
(0.44) (0.44) (0.82) (0.84) (0.95)
Common factors No No Yes Yes Yes
NxT 2,349 2,349 2,106 2,106 2,025
R? 0.20 0.22 0.57 0.54 0.38
F-stat 01.43%%* 79.63*** 1.42%** 1.34%%* 1.98%**
F-test: Allu; =0 1.89 [0.00] | 1.58 [0.00]
CD-stat. 1.24 1.36 -0.00
CD-stat. (p-value) 0.21 0.17 1.00

Notes: This table presents the estimations of the impact of green growth indicators on GDP growth for
a sample of 81 countries, consisting of advanced (27) and emerging (54) countries, from 1992 to 2021. In
these estimations, we include urbanisation (Ap;;) in equation (3.5) to assess the individual factors of the
IPAT model. The estimators are (1) FE denotes Static Fixed Effets. (2) DFE denotes Dynamic Fixed
Effects. (3) MG (+CCE) denotes Common Correlated Effects Estimator - Mean Group. (4) DMG (+CCE)
denotes (Dynamic) Common Correlated Effects Estimator - Mean Group. (5) MG-IV (+CCE) denotes
(Dynamic) Common Correlated Effects Estimator - Mean Group IV. Asterisk *** ** and * denote 1%,
5% and 10% significance levels. GDP growth is denoted as Ay, growth in labour force is denoted as Aly,
growth in physical capital accumulation is denoted as Ak, green growth is denoted as Ag;;, growth in
urban population is denoted as Ap;;. F-test: All u; = 0 assumes that unobservables and regressors are mean
independent. We do not reject the null hypothesis with p-value > 0.05; p-values are in the square brackets [ ].
The CD-stat represents a cross-sectional dependence test with a null hypothesis of no or weak cross-sectional
dependence. We do not reject this null if the CD-stat p-value > 0.05. Standard errors are presented in the
parentheses.
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Table 3A-11: Robustness: baseline model + green technologies

Sample Full sample
Estimator SFE DFE MG DMG MG-IV
(+CCE) (+CCE) (+CCE)
Agii_1 3.40%H* 3,26+ 1.38%* 1.28% 1.42%
(0.67) (0.67) (0.76) (0.73) (0.85)
Al 0.62%+* 0.59%#* 0.18 0.17 0.18
(0.05) (0.05) (0.12) (0.11) (0.14)
Ak 0.48%*** 0.41%%* 0.74%** 0.64*** 0.38**
(0.05) (0.05) (0.11) (0.11) (0.13)
ATy 0.00 0.00 0.00 -0.01* 0.00
(0.00) (0.00) (0.00) (0.00) (0.01)
Ayit—l 010*** 008**
(0.02) (0.04)
Constant -1.52%** -1.44%%* -2 BTHRHK -2.57HHK -1.78%*
(0.43) (0.42) (0.62) (0.58) (0.76)
Common factors No No Yes Yes Yes
NxT 2,349 2,349 2,106 2,106 2,025
R? 0.21 0.22 0.60 0.57 0.36
F-stat 89.66*** 7T 1.25%** 1.22%%* 1.82%**
F-test: Allu; =0 1.81 [0.00] | 1.49 [0.00]
CD-stat. 0.38 -0.23 -0.75
CD-stat. (p-value) 0.70 0.82 0.45

Notes: This table presents the estimations of the impact of green growth indicators on GDP growth for
a sample of 81 countries, consisting of advanced (27) and emerging (54) countries, from 1992 to 2021. In
these estimations, we include green technologies (A7) in equation (3.5) to assess the individual factors
of the IPAT model. The estimators are (1) FE denotes Static Fixed Effets. (2) DFE denotes Dynamic
Fixed Effects. (3) MG (+CCE) denotes Common Correlated Effects Estimator - Mean Group. (4) DMG
(+CCE) denotes (Dynamic) Common Correlated Effects Estimator - Mean Group. (5) MG-IV (+CCE)
denotes (Dynamic) Common Correlated Effects Estimator - Mean Group IV. Asterisk *** ** and * denote
1%, 5% and 10% significance levels. GDP growth is denoted as Ay, growth in labour force is denoted as
Alj;, growth in physical capital accumulation is denoted as Ak;;, green growth is denoted as Ag;;, growth
in green technologies is denoted as A7;;. F-test: All u; = 0 assumes that unobservables and regressors are
mean independent. We do not reject the null hypothesis with p-value > 0.05; p-values are in the square
brackets []. The CD-stat represents a cross-sectional dependence test with a null hypothesis of no or weak
cross-sectional dependence. We do not reject this null if the CD-stat p-value > 0.05. Standard errors are
presented in the parentheses.
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Table 3A-12:

Decomposition of contemporaneous green growth

Sample Full sample
Estimator FE DFE MG DMG MG-IV
(+CCE) (+CCE) (+CCE)
Agnag_, 1.89%** 1.78%%* 0.85% 0.85% 0.28
(0.41) (0.41) (0.51) (0.46) (0.63)
Agpris_1 -0.38 -0.20 -0.93 -0.95 -0.08
(0.57) (0.57) (0.68) (0.82) (0.95)
Agse;_q 0.61 0.63 0.49 0.30 1.19*
(0.53) (0.53) (0.67) (0.72) (0.65)
Agprod;;_, 3.13%** 2.86%** 0.54 0.52 0.21
(0.66) (0.66) (0.77) (0.90) (0.94)
Agqliy_q 0.23 0.28 1.45 1.54 0.40
(0.66) (0.66) (0.93) (0.97) (0.95)
Aly 0.59%#* 0.57*** 0.24** 0.25%* 0.23*
(0.05) (0.05) (0.11) (0.11) (0.13)
Ak, 0.48*** 0.42%%* 0. 74+ 0.68%** 0.22%*
(0.05) (0.05) (0.11) (0.11) (0.12)
Ay 0.09*** 0.06
(0.02) (0.04)
Constant -2, T4 -2.62%HF -3.50%** -3.59 -2.40%*
(0.64) (0.63) (0.78) (0.80) (0.97)
Common factors No No Yes Yes Yes
NxT 2,349 2,349 2,187 2,187 2,106
R? 0.21 0.23 0.49 0.45 0.46
F-stat 54.37F** 50.18%** 1.51%** 1.52%** 0.46
F-test: All u; =0 1.80 [0.00] | 1.50 [0.00]
CD-stat. 1.26 1.17 0.59
CD-stat. (p-value) 0.21 0.24 0.55

Notes: This table presents the estimations of the impact of decomposed green growth measure on GDP
growth for a sample of 81 countries from 1992 to 2021. The estimators are (1) FE denotes Fixed Effects.
(2) DFE denotes Dynamic Fixed Effects. (3) MG (+CCE) denotes Common Correlated Effects Estimator -
Mean Group. (4) DMG (+CCE) denotes (Dynamic) Common Correlated Effects Estimator - Mean Group.
(5) MG-IV (+CCE) denotes (Dynamic) Common Correlated Effects Estimator - Mean Group IV. Model
1 to 5 are estimated upon equation (3.5). Asterisk *** ** and * denote 1%, 5% and 10% significance
levels. GDP growth is denoted as Ay;;, growth in labour force is denoted as Al;;, growth in physical capital
accumulation is denoted as Ak;;, growth in natural asset base indicators is denoted as Agna;;, environmental-
related policy response is denoted as Agpr;¢, quality of life is denoted as Aggl;;, socio-economic outcomes is
denoted as Agse;s, and environmental productivity is denoted as Agprod;;. F-test: All u; = 0 assumes that
unobservables and regressors are mean independent. We do not reject the null hypothesis with p-value >
0.05; p-values are in the square brackets []. The CD-stat represents a cross-sectional dependence test with
a null hypothesis of no or weak cross-sectional dependence. We do not reject this null if the CD-stat p-value
> 0.05. Standard errors are presented in the parentheses.
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Appendix B: Empirical Methods

Granger Causality

In order to examine the question of Granger causality, we assess the nature of the relationship
between the green growth index and GDP growth. According to Granger (1969), in a bivariate
framework, the first variable is considered to be the causal factor for the second variable if the
predictive accuracy of the second variable improves when lagged values of the first variable
are taken into account. Granger-causality tests are commonly employed in the analysis of
vector autoregressive (VAR) models, specifically in relation to the examination of individual
equations within VAR systems. The individual equations in vector autoregressive (VAR)
models can be represented as autoregressive distributed lag (ADL) relationships:

p p
Ayt = co + Z a1t AYie—1 + Z Q2it AGit—1 + €it (3B-1)

=1 =1

The variables Ay;; and Ag; represent the first and second variables, correspondingly. The
determination of the value of variable p is contingent upon the inclusion of lagged terms in
the model. The formulation of the hypothesis that there is no Granger-causality between
the variables Ag;; and Ay;; involves conducting a test on the coefficients aq;; and awg, with [
ranging from 1 to p, to determine if they are equal to zero. The rationale for conducting such
an experiment is clear-cut. As stated by Hamilton (1994), when episode Ag;, is perceived as
the causal factor for episode Ay;;. It is anticipated that episode Ag;; would precede episode
Ay;;. The computation of the test statistic entails summing the squared residuals (RSS)
obtained from both the restricted equation and the unrestricted equation, as follows:

P
Y = co + Z Yy + € (3B-2)

=1

Where Y;; represents the dependent variables Ay;; and Ag;;. The formula for conducting

joint-significance tests, as described in the existing literature, is employed in this analysis:

F— (RSSO - RSSl)/p

"~ RSS,/(T—2p—1) (3B-3)

The variable under consideration follows a distribution that can be described as F(p,T —
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2p — 1). Equation (3B-3) uses the residual sum of squares from the restricted (RSSy) and
unrestricted (RSS1) models. The test’s validity is constrained to asymptotic conditions due
to the incorporation of a lagged dependent variable in the regression model. A test that

exhibits asymptotic equivalence is presented by:

5 _ T(RSS, — RSS))
. RSS,

(3B-4)
The variable follows a chi-squared distribution with p degrees of freedom.

In our endeavour to examine the causal relationship between green growth and economic
growth, we also conducted a Granger causality test. The Granger causality test examines the
unidirectional and bidirectional causal relationship between green growth and GDP growth.
This relationship is observable irrespective of economic status. Even though the green growth
indicators and GDP growth are linked in both directions, there is a clear time lag effect

that shows how quickly green growth indicators affect GDP growth in advanced economies

compared to emerging economies. We present the outcome of the Granger causality test in

Table 3A-7.
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Appendix - Chapter 4

Appendix A: Supplementary Results

Table 4A-1: Correlation matrix

| | GWw | R&Dy |TRADE) POPy | M2y | Yy |
GW,, 1

R&D; -0.01 1

TRADE; -0.09%*F*% | 0.62%** 1

POP; 0.46%** 0.02 -0.03* 1

M2, 0.02 -0.35%** | 0.01 | -0.05%* 1

Vi 0.00 0.33%** | 0.50%%% | -0.27%%* | 0.09%** 1

Notes: R&D;; denote research and development intensity (log levels of nominal R&D spending over GDP).
GW,; denote global warming (levels), TRADE;; denote log levels of trade openness, M2;; denote log levels
of broad money, POP;; denote log levels of total population. Y;; denotes log levels of real GDP per capita.
Y;? denote quadratic function of the log levels of real GPD per capita. Asterisks *** ** and * denote 1%,
5% and 10% significance levels.
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Table 4A-2:

Structural break tests

Stat. 1% 5% 10%
Critical Critical Critical
value value value

Structural Break Test 2
GW;; = R&D;;, TRADE;;, POP;,
M2y, Ya, Y
F(1]0) 7.26%** 4.08 3.35 2.99
F(2]1) 3.92%* 4.32 3.69 3.34
F(3]2) 3.32 4.51 3.84 3.53
F(4]3) 4.01%* 4.59 3.96 3.68
F(5/4) 3.20 4.70 4.07 3.77
Cross-sectional dependence = GWy,
Break points = 2 years: 1908, 1968
Structural Break Test 3
GW,;; = R&D;,, TRADE;,, POP;,
M2y, Yo, Y2
F(1]0) 8.69%*** 4.08 3.35 2.99
F(2]1) 3.26 4.32 3.69 3.34
F(3]2) 4.35%* 4.51 3.84 3.53
F(4]3) 4.08** 4.59 3.96 3.68
F(5/4) 2.15 4.70 4.07 3.77
Cross-sectional dependence = R& Dy,
Break point = 1 year: 1967

Notes: This table presents the results for structural break tests. The structural break test accounts for
heteroskedasticity, autocorrelation, and cross-sectional dependence where the cross-sectional variables are
exhibited in parentheses for each test. The null hypothesis of test the presence of a break against the
alternative of one more break, as it is estimated against lower and upper limits of breaks. The test is
developed by Ditzen et al. (2021). Asterisks *** ** and * denote 1%, 5% and 10% significance levels.

Table 4A-3: Hausman test

| [ ) | (BFF) | OFEBFE) [ Std. er. |
R&Dy, -0.167 -0.168 0.001 0.002
TRADE -0.030 -0.029 0.001 0.001
M2y, -0.059 -0.059 0.000 0.001
POP, -0.323 -0.328 0.005 0.001

Y, 0.095 0.098 0.003 0.001

Y2 -0.008 -0.008 0.000 0.000

X2 = 45.44%%*

Notes: bE denotes coefficients of random effects and BF'¥ denotes coefficients of fixed effects. The Hausman
(1978) test statistic assumes that under the null, RE is both consistent and efficient. And that FE is consistent
under alternative. Rejecting the null of equivalence of FE and RE suggests that we normally should adopt
FE. X2 test statistic suggests that FE is more preferable because the RE is inconsistent as the significance
level is less than 5%. Asterisk *** ** and * denote 1%, 5% and 10% significance levels. Standard errors are
presented in the parentheses.
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Table 4A-4: Benchmark climate change-R&D model without Y7

Estimator | FE | RE | FE(DK) | FEIV |
R& D,y -0.14%* -0.13%* -0.14 -0.14%*
(0.06) (0.05) (0.09) (0.05)
TRADE; -0.06%** -0.06%** -0.06%** -0.06%**
(0.01) (0.01) (0.02) (0.02)
M2, -0.08%* -0.08%* -0.08 -0.08%*
(0.03) (0.03) (0.07) (0.03)
POP, ~(). 22Kk (.21 % -(). 2%k -(. 2%k
(0.02) (0.02) (0.02) (0.02)
Yi -0.06%* -0.06%* -0.06%** -0.06%*
(0.02) (0.02) (0.01) (0.03)
Constant 6.55%** 6.51%** 6.55*** 6.58%**
(0.48) (1.22) (0.33) (0.56)
R? 0.12 0.12 0.08 0.12
F-stat. 50.21 %% 129.48%**
X2 249.15%**
F-test: All 5, =0 3806.26 17749.39
[0.00] [0.00]
NxT 3,040 3,040 3,040 3,020

Notes: This table presents the estimations using fixed effects estimator for robustness check. FE denotes
fixed effects. FE(DK) denotes Driscoll-Kraay standard errors-fixed effects, and FE-IV denotes fixed effects
instrumental variable estimator. The F-test assumes the joint significance of the fixed effects. If the p-value
is low (< 0.05), we reject null hypothesis, suggesting that individual-specific effects are significant, and FE
should be used instead of pooled OLS. Square brackets [ | exhibits the p-values of the F-tests. X2 test statistic
has a null of poor model fit. Asterisks *** ** and * denote 1%, 5% and 10% significance levels. Standard
errors are presented in the parentheses.

189



Table 4A-5: Climate change and R&D SV decomposition extended model

Estimator ‘ FE ‘ RE ‘ FE(DK) ‘ FE-IV ‘
R&DI 0.01% 0.01% 0.01 0.00
(0.00) (0.00) (0.00) (0.00)
R&Df7 -0.07** -0.07** -0.07F** -0.09%**
(0.02) (0.02) (0.01) (0.03)
TRADE; -0.05%** -0.05%** -0.05%** -0.04**
(0.01) (0.01) (0.01) (0.01)
M2, -0.04% 20.04% -0.04 20.02
(0.02) (0.02) (0.03) (0.03)
POP;, -0.35%%* -0.34%%* -0.35%** -0.66%**
(0.04) (0.04) (0.05) (0.15)
Yi 0.08%* 0.08%* 0.08 0.78%*
(0.05) (0.05) (0.10) (0.33)
Y2 0.01FF | 0,010 | .00 | -0.04%
(0.00) (0.00) (0.00) (0.01)
Constant T .59%H* T .52HH* T .59%K* 8.56F**
(0.69) (1.30) (0.46) (0.82)
R? 0.20 0.19 0.08 0.23
F-stat. 38.88*** 385.18***
X2 269.19*** 18035.44***
N xT 3,040 3,040 3,040 3,020

Notes: In this table, we decompose research and development into idiosyncratic and common factor using

multivariate stochastic volatility approach. X2 test statistic has a null of poor model fit. Asterisks

kkk o kk
’ ’

and * denote 1%, 5% and 10% significance levels. Standard errors are presented in the parentheses.
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Table 4A-6: Climate change and R&D: structural break

| Estimator | FE | RE | FE(DK) | FEIV
R&D; 0.17FFF [ 0. 17 -0.17** -0.16**
(0.05) (0.05) (0.07) (0.05)
GWaummy 0.04 0.04 0.04 0.03
(0.16) (0.16) (0.04) (0.15)
TRADE; -0.03* -0.03** -0.03* -0.03%*
(0.02) (0.02) (0.01) (0.02)
M2, -0.06** -0.06** -0.06 -0.04
(0.03) (0.03) (0.05) (0.03)
POP; -0.33%FFF | 0.32%¥F | 0.33FFF | 0.60%F
(0.04) (0.04) (0.05) (0.15)
Vit 0.10%* 0.09%* 0.10 0.69%*
(0.05) (0.05) (0.09) (0.31)
& -0.01%FFF | -0.01%* -0.01** -0.03**
(0.00) (0.00) (0.00) (0.01)
Constant 7.72%HK 7.65%H* 7.72%HK 8.89%H*
(0.57) (1.29) (0.41) (0.87)
R? 0.19 0.19 0.08 0.23
F-stat. 37.947%4% 374.00%**
X2 263.05%** 17974.86%**
N xT 3,040 3,040 3,040 3,020

Notes: This table presents the estimations of the impact of long run impact of R&D intensity on global
warming for a sample of 20 OECD countries from 1870 to 2021. Here, we focused on the cross-sectional
dependence of global warming while considering the structural breaks: Test (2). The null hypothesis of test
the presence of a break against the alternative of one more break, as it is estimated against lower and upper
limits of breaks. X2test statistic has a null of poor model fit. Asterisks ***, ** and * denote 1%, 5% and
10% significance levels. Standard errors are presented in the parentheses.
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Table 4A-7: Climate change and R&D: structural break

| Estimator | FE | RE | FE(DK) | FEIV
R&D; 0.17FFF [ 0. 17 -0.17** -0.16**
(0.05) (0.05) (0.07) (0.31)
R& D gummy -0.02 -0.02 -0.02 -0.03
(0.22) (0.22) (0.01) (0.22)
TRADE; -0.03* -0.03** -0.03* -0.03%*
(0.02) (0.02) (0.01) (0.02)
M2, -0.06** -0.06** -0.06 -0.04
(0.03) (0.03) (0.05) (0.03)
POP; -0.32%FF | 0.32%¥F | _0.32FFF | 0.60%*
(0.04) (0.04) (0.05) (0.15)
Vit 0.10%* 0.09%* 0.10 0.69%*
(0.05) (0.05) (0.09) (0.31)
& -0.01%FFF | -0.01%* -0.01** -0.03**
(0.00) (0.00) (0.00) (0.01)
Constant 7T 7.65%H* 7.7 8.88%H*
(0.57) (1.29) (0.41) (0.87)
R? 0.19 0.19 0.08 0.23
F-stat. 37.93%** 610.12%**
X2 262.99%** 17974.63%**
N xT 3,040 3,040 3,040 3,020

Notes: This table presents the estimations of the impact of long run impact of R&D intensity on global

warming for a sample of 20 OECD countries from 1870 to 2021.

Here, we focus on the cross-sectional

dependence of research and development intensity while considering the structural break: Test (3). The null
hypothesis of test the presence of a break against the alternative of one more break, as it is estimated against
lower and upper limits of breaks. AZ2test statistic has a null of poor model fit. Asterisks *** ** and *
denote 1%, 5% and 10% significance levels. Standard errors are presented in the parentheses.
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Table 4A-8: Time-varying effects: Pre-World War II

| Estimator | FE \ RE | FE(DK) | FE-IV |

R& D, -21.05%%* -21.09%** -21.05%** -20.68%**
(1.93) (1.93) (1.80) (4.68)

TRADE; -0.02 -0.02 -0.02%* -0.02
(0.01) (0.01) (0.01) (0.06)

M2;, 0.01 0.01 0.01 0.00
(0.02) (0.02) (0.02) (0.13)

POP; 0.26%** (.27 0.26%%* 0.21
(0.04) (0.04) (0.04) (0.38)

Y 0.00 0.00 0.00 0.85
(0.02) (0.02) (0.01) (7.96)

Y2 0.01%** 0.01 0.0 1%k -0.04
(0.00) (0.00) (0.00) (0.46)

Constant -2.06%** 2.11 -2.06%+* -4.83
(0.53) (1.35) (0.57) (27.67)

R? 0.32 0.32 0.16 0.36

F-stat. 29,51 %% 55.31%*x*

X? 177.64%** 197917.48%*x

NxT 1,380 1,380 1,380 1,360

Notes: This table presents the estimations of the impact of long run impact of R&D intensity on global
warming for a sample of 20 OECD countries from 1870 to 1938 (PRE-WORLD WAR II). X2 test statistic
has a null of poor model fit. Asterisk *** ** and * denote 1%, 5% and 10% significance levels. Standard
errors are presented in the parentheses.
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Table 4A-9: Time-varying effects: Post-World War 11

Estimator | FE | RE | FE(DK) FE-IV |

R&Dy -0.07* -0.07* -0.07* -0.08*
(0.04) (0.04) (0.04) (0.04)

TRADE; 0.07¥FFF 0,07 | 0.07FFF | -0.06%%F
(0.01) (0.01) (0.01) (0.02)

M2, -0.08%*F [ -0.08%*F | -0.08%F* -0.06**
(0.02) (0.02) (0.02) (0.03)

POP; S0.54%HK [ 0.52%K () 5k -0.82%*
(0.08) (0.08) (0.09) (0.38)

Yii 0.54% 0.50%** 0.54%* 1.02
(0.12) (0.12) (0.19) (0.67)

V7 -0.03%** [ -0.03%¥F | -0.03%** -0.05
(0.01) (0.01) (0.01) (0.03)

Constant 8.78HH* 8.52HH* 8.78%H* 10.64%**
(0.85) (1.30) (0.48) (2.66)

R? 0.31 0.31 0.11 0.36

F-stat. 30.53*** 1660.60***

X2 178.07 14696.82%**

NxT 1,520 1,520 1,520 1,500

Notes: This table presents the estimations of the impact of long run impact of R&D intensity on global
warming for a sample of 20 OECD countries from 1946 to 2021 (POST-WORLD WAR II). X2 test statistic
has a null of poor model fit. Asterisks *** ** and * denote 1%, 5% and 10% significance levels. Standard
errors are presented in the parentheses.
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Table 4A-10: Heterogeneity: G7 countries

| Estimator | FE | RE | FE(DK) | FEIV |
R&D;, 0.48%** 4 8Q¥Hk 0.48%%* 0.61%%*
(0.12) (0.55) (0.10) (0.13)
TRADE; 0.20%* Wk 0.20%%* 0.31 %%
(0.06) (0.23) (0.05) (0.08)
M2, -0.37H** -1.95%kk -(. 37k -4k
(0.06) (0.25) (0.09) (0.07)
POP, 1.99%*x* 3.90%** 1.99%k* -2,k
(0.17) (0.31) (0.12) (0.17)
Y 22.60%H* 22.95%%% 22.60%** 27.28%H%
(0.99) (4.19) (1.34) (2.56)
Y2 _1.20%*x ~0.96%+** -1.20%*x 1.5k
(0.06) (0.25) (0.08) (0.15)
Constant S54.43FHE | 1193, 42%0K | 54 4Z¥KK | 7D TRk
(4.79) (18.96) (5.74) (10.58)
R? 0.09 0.47 0.48 0.08
F-stat. 161.45%** 615. 75k
X2 028.32%#* 24128.23%**
NxT 1,064 1,064 1,064 1,057

Notes: This table presents the estimations of the impact of long run impact of R&D intensity on global
warming for a sample of G7 countries from 1870 to 2021. X2 test statistic has a null of poor model fit.
Asterisks *** ** and * denote 1%, 5% and 10% significance levels. Standard errors are presented in the

parentheses.
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Table 4A-11:

Heterogeneity: other 13 countries

| Estimator | FE | RE | FE(DK) | FEIV |
R&D;; -0.03%** ~0.03%** -0.03%F* ~0.02%F*
(0.00) (0.00) (0.00) (0.00)
TRADE;, 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00)
M2, ~0.02%** ~0.02%** ~(0.02%** 0.00
(0.00) (0.00) (0.00) (0.00)
POP;, ~0.04%%** ~0.047%** ~0.047%%* 0.12%%*
(0.00) (0.00) (0.01) (0.01)
Y 0.02%** 0.02%** 0.02 0.21%%*
(0.00) (0.00) (0.02) (0.03)
Y2 0.00 0.00 0.00 ~0.01%**
(0.00) 0.00 (0.00) (0.00)
Constant 1.02%** 1.02%** 1.02%** 1.27%**
(0.05) (0.16) (0.05) (0.06)
R2 0.00 0.00 0.18 0.00
F-stat. TATHRK 262.21 ¥
X2 435.14%** 83941.19%**
NxT 1,976 1,976 1,976 1,963

Notes: This table presents the estimations of the impact of long run impact of R&D intensity on global
warming for a sample of 13 other OECD countries from 1870 to 2021. X2 test statistic has a null of poor
model fit. Asterisks *** ** and * denote 1%, 5% and 10% significance levels. Standard errors are presented

in the parentheses.

196



Appendix B: Modelling Research and Development Intensity Spillovers

We model research and development intensity spillovers using an MFSV model:

R&th | IB7A-7 fth&Dt NNN(IB + Aft7R&Dt)7
ft|RE/Dt (g M(O, %t),
where N (B + Af;, R&D,) denotes the normal distribution for the matrix R&D;; with

(4B-1)

mean research and development intensity represented by 8 = (f31,...,8x) " with research and
development intensity factors f. = (fis,..... ) . The factor loadings are A € RV*" in equation
(4B-1). The covariance matrices R& D, and R@Dt are both diagonal and can be written
as:

R&D; = diag(exp(hit), ...,exp(hny)),
R&D, = diag(exp(hi), ..., exp(hye)),

— — 4B-2
T ~ N (@i + @ (s — 1), REDY), i=1,., N, (45-2)
~ ~ —2

hje ~ N(ft; + @j(hji1 — i), R&D;), j=1,..,m,

The total variance (R&Dy) of research and development intensity can be decomposed into

factor and idiosyncratic variance.
R&D, = R&D, + R&D,, (4B-3)

Where R& D, consists of variances of the idiosyncratic errors while R?&VDt = r < N. Equa-

tion (4B-3) can be modified utilising equation (4B-1) to become:
R&D, = AR&D,A" + R&D,, (4B-4)

For any generalised permutation matrix P of size r X r, there is some other viable decompo-
sition R&D; = A’ RED; (A)T + R&D;, where A’ = AP and R?&VD; — P R&D, P".
Practically, the uncertainty in the scale of the factors is resolved by setting their log-variance
level to zero. In the second stage of our empirical analysis examining the relationship be-
tween global warming and research and development intensity, we denote country specific
research and development intensity spillovers (R&D;) as R&D}, and global research and

development intensity spillovers (ARthAT) as R&DF .
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